
CHAPTER 3:  EMBEDDED ETHERNET 

24 

DESIGN AND DEVELOPMENT OF A REMOTE 
RECONFIGURABLE INTERNET EMBEDDED I/O 

CONTROLLER 
  

By 
 

Grant Phillips 
 
 
 

submitted in complete fulfillment of the degree: 
 

MAGISTER TECHNOLOGIAE: 
ELECTRICAL ENGINEERING 

 
 
 

in the 
 

Faculty of Electrical and Mechanical Engineering, 
at the 

Port Elizabeth Technikon 
 
 
 

Promoter: 
Frank Adlam 

 
 
 
 

January 2003 
 



CHAPTER 3:  EMBEDDED ETHERNET 

25 

I, Grant Phillips, hereby declare that: 

 

• the work done in this thesis is my own; 

• all sources used or referred to have been documented and recognized; and 

• this thesis has not been previously submitted in full or partial fulfilment of the 

requirements for an equivalent or higher qualification at any other educational 

institution. 

 

 

 

 

________________________ 

Signature               Date:   

14/01/2003 
         

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER 3:  EMBEDDED ETHERNET 

26 

 
ACKNOWLEDGEMENTS 

 

• I would like to thank Jeremy Bentham for the knowledge he shared with me via 

emails and through his book.  The work he has done in the field of embedded 

Internet systems was the driving force behind my project.  

 

• My sincere appreciation to the Altera Corporation for donating a MAX7000S 

development kit.  This was extremely helpful in learning about CPLDs and reduced 

my developing time drastically. 

 

• Sincere thanks to my mentor, Frank Adlam, for his support, motivation and patience 

during the development of this project. 

 

• My deepest thanks also go to my family and fiancé for their support and 

encouragement throughout this project. 

 

• Lastly I would like to thank the Lord Jesus Christ for giving me the strength and 

dedication to finish the project to the best of my ability. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER 3:  EMBEDDED ETHERNET 

27 

 
ABSTRACT 

 

The use of embedded Internet systems is growing rapidly in the manufacturing sector.  

These systems allow the monitoring and controlling of plant machinery and manufactured 

items from a remote location via a standard Web interface. 

 

In a manufacturing environment, it is inevitable that long running processes will require 

support for dynamic reconfiguration because, for example, machines may fail, services 

may be moved or withdrawn and user requirements may change.  In such an environment 

it is essential that the operation and architecture of such processes can be modified to 

reflect such changes. 

 

This research project will present methods and ideas for establishing a reconfigurable 

remote system by using standard 8-bit microcontrollers and reconfigurable hardware.  It 

will allow a manufacturing process to be modified and changed within minutes without 

even having to be physically present at the location where the process is running.    
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CHAPTER 1 
INTRODUCTION 

 
Industry analysts see embedded Internet systems as poised for rapid growth in the 

manufacturing sector in the next few years.  Embedded Internet systems allow users to 

communicate directly with items such as plant, machinery and manufactured components 

delivered to site.  This communication may range from passive remote monitoring to direct 

control or resetting of the remote system.  Although it seems that these systems are 

almost perfect, they do however lack one important component: reconfigurability. 

 

1.1 PROBLEM STATEMENT 

The rapid growth of embedded Internet applications such as data logging and controlling 

requires remote online maintenance and system upgrade capability to enable flexible 

system re-configurations.  This leads to the following sub-problems in current embedded 

Internet systems: 

 

• To modify the controlling software on the remote application, the system must 

physically be disconnected from the network to reprogram the device in the field.   

• Modifying the Input/Output (I/O) interfacing hardware of the system normally leads 

to the redesign of the I/O hardware printed circuit board (PCB).   

• Specialised technical staff often has to travel long distances to do maintenance and 

system upgrades on remote systems. 

• Existing systems are limited in terms of flexibility. 

 

1.2 HYPOTHESIS 

A remote configurable/programmable embedded Internet system will be developed to 

allow flexible system configurations in industry.  The system can be divided into the 

following main components (refer to Figure 1.1): 

 

• An embedded Internet application board with the following components: 
� Communications processor for connecting the embedded system to the 

Internet and for managing the TCP/IP stack. 
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� I/O processor which is the main device controlling the input and output of the 

embedded system. 
� Reconfigurable hardware which can be adapted to the needs of the user for 

the specific application. 
� A programming processor which will be the heart of the whole 

reconfigurability aspect of the embedded Internet application. 

• Embedded server software to allow data communication between the PC 

and the remote embedded system via Ethernet. 

• Client software for a standard PC to allow the following functions: 
� Transfer new program files for I/O processors, the web server and the 

reconfigurable hardware to the remote system. 
� Instruct the programming processor to reprogram the I/O processor, the web 

server and reconfigurable hardware. 
� Allow the user to send and receive data from the remote Internet application 

and thereby also to control the application. 

 

1.3 DELIMITATION OF PROJECT 

• Computer literate users will operate the client software and should have the necessary 

technical background of the system used in the particular remote application. 

 

• Programming files for the particular reprogrammable/reconfigurable components will be 

developed using third party development tools.  The client software will only act as a 

medium to transfer compiled programs to the remote Internet application as indicated 

in Figure 1.1 on the next page. 

 

• The programming routines implemented in the programming processor for the 

reprogrammable/reconfigurable components, will be limited to a specific manufacturer 

for this project. 

 

• TCP/IP is the main network protocol that will be investigated in this project, although 

the implementation of other protocols may be used. 
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1.4 OUTLINE OF THE SYSTEM DEVELOPED 

Figure 1.1 illustrates a system diagram indicating the project outline. 

 

Remote embedded system

Compile new design for the
reconfigurable hardware

E.g.  Altera's MAX + PLUS II
development software

Compile new software for the
I/O processor

E.g. Microchip's MPLAB
development software

.jbc .hex

Memory
devices

Programming
processor

Internet

The MAX + PLUS II
software converts the
new design to a JAM
byte code file (.jbc).

The MPLAB software
generates the Intel
Hexadecimal File.

The client software transfers the
.hex and .jbc files to the remote
system and initiates the programming
of the different components.
The Web browser is used for
monitoring and controlling the actual
remote system.

The memory devices store
the programming data
(.hex and .jbc files).

The programming processor
consists of all the algorythms
to program the reconfigurable
hardware and the I/O processor.

Input/Output
processor

Reconfigurable
hardware

Communications
processor

Web server
The communications processor
handles the TCP/IP stack and
enables communication to the
client application.

The I/O processor is the main
processor in the system

The reconfigurable hardware
provides the physical interface
to the outside field.

Client software
& Web browser

I/O connection to
the outside field

 

Figure 1.1   The project outline. 
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1.5 SIGNIFICANCE OF THE PROJECT 

The remote configurable/programmable embedded Internet system will be more flexible 

than similar existing systems.  This is advantageous, for example, in the scenario where a 

manufacturer produces a product for a period of time and then needs to change the 

system configuration in order to use the same system to produce another product.  Instead 

of sending a maintenance team to physically change the hardware at the remote system, 

the user will now be able to do this remotely from a PC via the Internet.  It also reduces 

maintenance cost and time significantly, especially if the system is located in a different 

town where travelling becomes a factor.   

 

Embedded software for the I/O processor and reconfigurable hardware can also be 

changed remotely without having to remove the processor or memory from the system 

board and thus reduces downtime. 

 

1.6 REVIEW OF RELEVANT LITERATURE 

The I/O processor must be able to be programmed while it is still in the circuit in order to 

make the remote Internet application flexible.  In-System Programming (ISP) is a 

technique where a programmable device is programmed after the device is placed in a 

circuit board.  In-Circuit Serial Programming (ICSP) is an enhanced ISP technique and 

uses only two I/O pins to serially input and output data which makes ICSP easy to use and 

less intrusive on the normal operation of the microcontroller unit (MCU). 

 

ICSP can be used in a variety of ways: 

• Reduce cost of field upgrades 

• Add unique ID code to your system during manufacturing 

• Calibrate your system in the field 

• Customize and configure your system in the field 

[Microchip: In-circuit serial programming guide, 2001] 

 

Some kind of hardware must be implemented to make the interface to the outside field 

flexible.  Programmable logic components are devices which are able to implement a wide 

variety of logic functions, both combinational and sequential.  The actual logic function 

implemented is determined by the user, using some form of design entry software to 
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specify the state of the internal programmable points.  The internal programmable points, 

effectively are, switches which can be selected to be either closed or open.   

[Seals et al, 1998] 

 

In-system programmability in Altera’s programmable logic devices (PLDs) makes 

prototyping easy during design development, streamlines production, increases design 

flexibility and allows quick and efficient in-field upgrades.  ISP uses the IEEE Std. 1149.1 

Joint Action Test Group (JTAG) test port, which allows devices to be programmed and the 

PCB to be functionally tested in a single manufacturing step.   

 

The Jam programming and test language, compatible with all current PLDs that offer ISP, 

provides a software-level standard for in-system programming by remaining vendor-

independent, which results in small file sizes and reduces programming times.  Designers, 

using the Jam language to implement ISP, can lengthen the life and enhance the quality 

and flexibility of the end product 

[Altera: Introduction to ISP, 1999]. 

 

Until now, the Internet has almost exclusively served the computer market.  With the 

introduction of IPv6 (a new Internet communication standard), the Internet is likely to serve 

very different needs in construction, each with a new set of requirements.  Nomadic 

computing, through a variety of network attachments including radio frequency wireless 

networks and infrared systems, will make on-site communication more viable.  But 

perhaps more significantly will be the possibility of remote device controls – more 

specifically embedded systems.  Remote access is enabling cost savings in development, 

commissioning, use, and maintenance and is also the major driving force for transferring 

Internet mass technologies from the office and commercial sectors to industrial 

applications [Finch, 1998]. 

 

A certain protocol must be used to establish communication between the remote server 

and the client application software.  TCP/IP is a family of protocols used for computer 

communications.  Often a TCP/IP user does not use the TCP/IP protocol itself, but some 

other protocol from the family.  This protocol family includes the following: 

• IP (Internet Protocol) 

• ARP (Address Resolution Protocol) 
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• ICMP (Internet Control Message Protocol) 

• UDP (User Datagram Protocol) 

• TCP (Transport Control Protocol) 

• RIP (Routing Information Protocol) 

• SMTP (Simple Mail Transfer Protocol) 

[Arnett, 1994] 

 

1.7 ORGANIZATION OF THESIS 

The chapters are organized logically as far as possible.  The first two chapters will provide 

all the background information needed to fully understand the project.  Thereafter the 

chapters will introduce the different project building blocks individually and leads to the last 

chapter which covers the systems test results and conclusions.  The different building 

blocks for the project are as follows: 

 

• The Ethernet interface 

• A Web server 

• The Input/Output controller 

• Reconfigurable hardware 

• The Embedded programming interface 

• The Software environment 

 

Here is a summary of the layout for the rest of the thesis: 

 

Chapter 2: A background of the origin of computer networks.  Detailed description 

of the different network layers is also given which is of vital importance to 

understand the rest of the thesis. 

Chapter 3: To start explaining the building blocks of the project.  This chapter 

builds further on the knowledge of basic networks and examines the possibility of 

using embedded controllers to implement Ethernet connectivity, highlighting some 

possible limitations and solutions. 

Chapter 4: Gives a detailed explanation of how an embedded controller is 

implemented as the web server in this system. 
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Chapter 5: Explains the operation of the actual input/output controlling processor 

and inter-processor protocols that have to be implemented.  The in-circuit 

programming process for this processor will also be covered. 

Chapter 6: Introduces re-configurable hardware in general, and complex PLDs 

(CPLDs) more specifically.  Altera’s product range is then introduced and reasons 

for choosing this vendor is highlighted.  In-circuit programming in CPLDs is 

explained, followed by a detailed description of the reconfigurable hardware 

interface. 

Chapter 7: Covers a detailed description and study of the heart of the whole 

system – the actual programming processor. 

Chapter 8: Explains how the client software transfers new programming files to 

the remote system and gives instructions to program the different components of 

the system.  It also shows how any web browser can be used to access the remote 

embedded web server. 

Chapter 9: Indicates the test results after the whole system was completed by 

testing it with three different applications which were developed and programmed 

from a remote location.  Some future development areas will also be highlighted 

and the thesis will end with a conclusion of the whole project. 
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CHAPTER 2 
THE INTERNET AND TCP/IP 

 
2.1 OVERVIEW 

The chapter starts with a brief history of the Internet and explains the whole concept of 

internetworking.  The rest of the chapter is dedicated to a description of some of the 

relevant protocols in the TCP/IP suite which is crucial for understanding the networking 

section of the project. 

 

2.2 INTERNETWORKING EVOLUTION 

Twenty years ago state of the art data communications involved transmitting command 

and data at 2400 bits per second or less (Wilder, 1999, p.1).  This was done using analog 

telephone lines with a remote host to process the data using an application program.  To 

send data to another terminal (computer) in the same city (or sometimes even the same 

building) meant that the data first had to be sent to a remote host and then only relayed to 

the other terminal.  The process was termed terminal-to-terminal communication.  

Problems started arising due to the fact that the two terminals might have been in the 

same city, but then the host was in another city, causing data flow to be very slow.  The 

matter was worsened by the fact that the communications protocols were proprietary and 

meant that a terminal manufactured by “brand A” could only communicate with another 

“brand A” terminal.   

 

Then, in the early 1970s, Bob Medcalfe invented Ethernet which was a local area network 

(LAN) technology (Wilder, 1999, p.1).  This technology eliminated the need for a host in a 

terminal-to-terminal environment and raised the speed of data transfer by a 5000 times.  A 

few minor modifications were made to this LAN technology and was made into a standard 

called IEEE 802.2/IEEE 802.3, or as it is known today: Ethernet. 

 

Other LAN technologies, like token ring, were also developed and standardised after 

Ethernet, but were proprietary technologies and meant that two different LAN technologies 

could not interwork over a wide area network (WAN), i.e. company A’s token ring network 

could not communicate with company B’s Ethernet network.  
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It was only in the late 1970s that the non-proprietary transport control protocol/internet 

protocol (TCP/IP) was invented by Vinton Cerf and for the first time could dissimilar LAN 

and WAN protocols interwork.  TCP/IP was developed and used in the Advanced 

Research Projects Agency Network (ARPANET) and made it possible for the different 

topologies of the ARPANET to interwork.  ARPANET was later split into two parts:  the first 

was intended for military use and was called MILNET, and the second was the Internet as 

it is known today (Dulaney et al., 1995, p.4).  

 

The International Standards Organization (ISO) attempted to standardise an 

internetworking protocol to replace TCP/IP, but failed.  Their work, however, was 

documented as the Open System Interconnection (OSI) reference model and is still used 

today throughout the communications industry.  The model is described by seven layers: 

Application, Presentation, Session, Transport, Network, Data link and Physical (Blackwell, 

1995, p.258). 

 

2.3 INTERNET 

Wilder defines Internetworking as “the connection of multiple networks.”  The Internet is 

the connection of multiple diverse networks with different hardware technologies.  The 

protocol use to construct the original Internet backbone is called TCP/IP.  A non-profit 

company called Internet Society (ISOC) standardized all the protocols used by the 

Internet, which are collectively described as the TCP/IP protocol suite. 

 

Many government agencies, colleges and companies are connected worldwide by the 

Internet.  The most used upper layer programs of the Internet are the following: 

• World Wide Web (WWW) browsers:  To search data stored on the Internet, e.g. 

Internet Explorer & Netscape. 

• Electronic Mail (email):  To exchange memos and letters with individuals or 

companies, e.g. Outlook Express. 

• File transfer:  To exchange large files, e.g. CuteFTP, WSFTP. 

• Remote login:  To allow a user to log into an application located at a different 

computer. 

• Remote procedure call:  To execute remote procedures. 
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Many companies use the TCP/IP protocol suite to connect the different networks of their 

own company.  This implementation of the TCP/IP protocol suite in a private network is 

referred to as internets, or more specific, as intranets.  Their specifications, however, are 

the same as for the Internet. 

 

2.4 TCP/IP OVERVIEW 

The generic term "TCP/IP" means anything and everything related to the specific protocols 

of transmission control protocol (TCP) and Internet protocol (IP).  It can include other 

protocols, applications, and even the network medium. A sample of these protocols are: 

UDP, ARP, and ICMP, while a sample of these applications are: TELNET, FTP, and rcp.  

The more accurate term for TCP/IP would be "internet technology".  Any network that uses 

internet technology is called an "internet" (Bentham, 2000, p.73). 

 

2.4.1 BASIC STRUCTURE 

Figure 2.1 indicates the conceptual layering of the TCP/IP protocol suite compared to the 

OSI reference model.  These layers are depicted in the logical structure (Figure 2.2) of the 

layered protocols inside a computer on an internet.  Any computer that can communicate 

using internet technology has such a logical structure.  It is this logical structure that 

determines the behaviour of the computer on the internet.   

 

Application

Presentation

Session

Transport

Network

Data Link

Physical

Upper

Transport

Internet

Link

* Physical

* Physical Layer - Ethernet, Token Ring etc.

TCP/IP
Internet ISO

 

 
Figure 2.1   Conceptual layering of the Internet protocols (Adapted from Wilder, 1999, p.7). 
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Figure 2.2   Internet architecture and protocols (Wilder, 1999, p.8). 

 

The Internet provides three sets of services (Socolofsky et al., 2001, p.1).  At the lowest 

level is the IP, which is a connectionless delivery service.  The next level is the transport 

layer service and includes services like TCP, UDP, ICMP, etc. which uses the IP service.  

The highest level is the upper layer service and usually consists of the FTP (file browsing), 

HTTP (information browsing), etc. services, which uses the services of the transport layer.  

Theoretically the layered structure of the services permits research and development on 

one layer without affecting the others. 

 

The physical/link layer envelops the IP layer header and data.  If the physical layer is an 

Ethernet LAN, the IP layer places its message (datagram) in the Ethernet frame data field.  

The transport layer places its message (segment) in the IP data field.  The application 

layer places its data in the transport layer data field.  To indicate what combination of 

protocols in the TCP/IP suite is needed to transfer data, certain fields in each layer will 

indicate which service is needed in the next layer.   

 

The upper layer protocols are divided into two groups – those that provide a utility function 

to the Internet and those that provide a service directly to the user (Wilder, 1999, p.8).  

Examples of those that provide a direct user service are the following: 
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• Hypertext transfer protocol (HTTP):  Allows the user to receive information from the 

World Wide Web (WWW). 

• Simple message transfer protocol (SMTP):  Provides the user with email       

capabilities. 

• File transfer protocol (FTP):  Provides a service of reliable file transfers. 

• TELNET:  Provides remote logon capability. 

 

Those that provide a utility function are: 

• Simple network management protocol (SNMP):  Provides network management 

information. 

• Domain name service (DNS):  To allow the using of names instead of Internet 

addresses. 

• Address resolution protocol (ARP):  Provides a link layer address given an IP 

address. 

• Reverse address resolution protocol (RARP):  Provides an IP address given a link 

layer address. 

 

2.4.2 TERMINOLOGY 

The name of a unit of data that flows through an internet is dependent upon where it exists 

in the protocol stack.  In summary: if it is on an Ethernet it is called an Ethernet frame; if it 

is between the Ethernet driver and the IP module it is called a IP packet; if it is between 

the IP module and the UDP module it is called a UDP datagram; if it is between the IP 

module and the TCP module it is called a TCP segment; and if it is in a network application 

it is called a application message.  A driver is defined as software that communicates 

directly with the network interface hardware and a module as software that communicates 

with a driver, with network applications, or with another module (Socolofsky et al., 2001, 

p.3).   

 

2.4.3 FLOW OF DATA 

For an application that uses TCP, data passes between the application and the TCP 

module.  For applications that use UDP, data passes between the application and the UDP 

module.  FTP is a typical application that uses TCP.  Its protocol stack in this example is 
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FTP/TCP/IP/ENET.  SNMP (Simple Network Management Protocol) is an application that 

uses UDP.  Its protocol stack in this example is SNMP/UDP/IP/ENET. 

 

The TCP module, UDP module, and the Ethernet driver are n-to-1 multiplexers.  As 

multiplexers they switch many inputs to one output.  They are also 1-to-n de-multiplexers.  

As de-multiplexers they switch one input to many outputs according to the type field in the 

protocol header.   This is illustrated in Figure 2.3. 

 

 

Multiplexer

1 2 3 . . . n

1

Flow of
data De-multiplexer

1 2 3 . . . n

1

Flow of
data

 

 

Figure 2.3   n-to-1 Multiplexer and 1-to-n de-multiplexer. 

 

If an Ethernet frame comes up into the Ethernet driver off the network, the packet can be 

passed upwards to either the ARP module or to the IP module.  The value of the type field 

in the Ethernet frame determines whether the Ethernet frame is passed to the ARP or the 

IP module. 

 

If an IP packet comes up into IP, the unit of data is passed upwards to either TCP or UDP, 

as determined by the value of the protocol field in the IP header.  If the UDP datagram 

comes up into UDP, the application message is passed upwards to the network application 

based on the value of the port field in the UDP header.  If the TCP message comes up into 

TCP, the application message is passed upwards to the network application based on the 

value of the port field in the TCP header.  
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For downwards multiplexing there is only the one downward path; each protocol module 

adds its header information so the packet can be de-multiplexed at the destination 

computer.  Data passing out from the applications through either TCP or UDP converges 

on the IP module and is sent downwards through the lower network interface driver. 

Although internet technology supports many different network media, Ethernet is used for 

all examples because it is the most common physical network used under IP and will 

effectively also be the network that will be used for the project.  The computer in Figure 2.2 

has a single Ethernet connection.  The 6-byte Ethernet address is unique for each 

interface on an Ethernet and is located at the lower interface of the Ethernet driver. 

The computer also has a 4-byte IP address.  This address is located at the lower interface 

to the IP module.  The IP address must be unique for an internet.  A running computer 

always knows its own IP address and Ethernet address. 

 

2.4.4 IP CREATES A SINGLE LOGICAL NETWORK 

The IP module is central to the success of internet technology (Arnett et al., 1995, p.20).  

Each module or driver adds its header to the message as the message passes down 

through the protocol stack.  Each module or driver strips the corresponding header from 

the message as the message climbs the protocol stack up towards the application.  The IP 

header contains the IP address, which builds a single logical network from multiple 

physical networks.  This interconnection of physical networks is the source of the name: 

internet.  A set of interconnected physical networks that limit the range of an IP packet is 

called an "internet" (Socolofsky et al., 2001, p.8). 

 

2.4.5 PHYSICAL NETWORK INDEPENDENCE 

IP hides the underlying network hardware from the network applications.  If a new physical 

network has to be developed, it can be put into service by implementing a new driver that 

connects to the internet underneath IP.  Thus, the network applications remain intact and 

are not vulnerable to changes in hardware technology. 

 

2.5 ETHERNET 

Ethernet uses Carrier Sense and Multiple Access with Collision Detection (CSMA/CD).  

CSMA/CD means that all devices communicate on a single medium, that only one can 

transmit at a time, and that they can all receive simultaneously (Socolofsky et al., 2001, 
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p.9).  If 2 devices try to transmit at the same instant, the transmit collision is detected, and 

both devices wait a random (but short) period before trying to transmit again. 

An Ethernet frame contains the destination address, source address, type field, data, and 

cyclic redundancy check (CRC) as indicated in Figure 2.4. 

 

Destination address

6 bytes

Source address

6 bytes

Type

2 bytes

Data

46-1500 bytes

CRC

4 bytes
 

Figure 2.4   Ethernet frame (Adapted from Arnett et al., 1995, p.53). 

 

2.5.1 DESTINATION AND SOURCE ADDRESSES 

These 6-byte values identify the recipients and sender of the frame and are generally 

known as media access control (MAC) addresses (Arnett et al., 1995, p.56).  Each 

network adaptor (controller) has its 6-byte address burned into a memory device at 

manufacture, but it is the responsibility of the networking software to copy this value into 

the appropriate field of the network packet.  Every controller then listens for Ethernet 

frames with their destination address.  All devices also listen for Ethernet frames with a 

wild-card destination address of "FF-FF-FF-FF-FF-FF" (in hexadecimal), called a 

"broadcast" address. 

 

2.5.2 TYPE/LENGTH FIELD 

This field is used differently for different Ethernet standards.  The one standard uses it to 

indicate the total number of bytes in the data field.  Other standards use it as a protocol 

type field, indicating which protocol is being used in the data field. 

 

2.5.3 DATA 

This area contains user data in any format with the only restriction that the minimum size 

must be 46 bytes and the maximum 1500 bytes (Bentham, 2000, p.11).  The minimum is 

necessary to ensure that the overall frame is at least 64 bytes.  If the frame has less than 

64 bytes, there might be a danger that frame collisions would not be detected.  The 

protocols of the Internet layer (ARP, IP, RARP) are transmitted in this data field of the 

Ethernet frame. 
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2.5.4 CYCLIC REDUNDANCY CHECK 

The network controller checks this value to determine if the frame is corrupted and then 

discards this frame.  It is automatically appended by the Ethernet controller on transmit 

and checked on receive. 

 

2.6 ARP 

Address Resolution Protocol (ARP) is used to translate IP addresses to Ethernet 

addresses.  The translation is done only for outgoing IP packets, because this is when the 

IP header and the Ethernet header are created. 

 

The translation is performed with a table look-up.  The table, called the ARP table, is 

stored in memory and contains a row for each computer (Socolofsky et al., 2001, p.11).  

There is a column for IP address and a column for Ethernet address.  When translating an 

IP address to an Ethernet address, the table is searched for a matching IP address.  Table 

2.1 indicates a simplified ARP table. 

 

 

 

 

 

 

Table 2.1   Example ARP table. 

 

The human convention when writing out the 4-byte IP address is each byte in decimal and 

separating bytes with a period.  When writing out the 6-byte Ethernet address, the 

conventions are each byte in hexadecimal and separating bytes with either a minus sign or 

a colon. 

  

The ARP table is necessary because the IP address and Ethernet address are selected 

independently; an algorithm cannot be used to translate IP address to Ethernet address.  

The IP address is selected by the network manager based on the location of the computer 

IP address Ethernet address 

223.1.2.1 

223.1.2.3 

223.1.2.4 

08-00-39-00-2F-C3 

08-00-5A-21-A7-22 

08-00-10-99-AC-54 
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on the internet.  When the computer is moved to a different part of an internet, its IP 

address must be changed.  The Ethernet address is selected by the manufacturer based 

on the Ethernet address space licensed by the manufacturer.  When the Ethernet 

hardware interface board changes, the Ethernet address changes. 

 

2.7 INTERNET PROTOCOL 

The IP module is central to internet technology and the essence of IP is its route table 

(Arnett et al., 1995, p.61).  IP uses this in-memory table to make all decisions about 

routing an IP packet.  The content of the route table is defined by the network 

administrator and any mistakes in this table will lead to blockage of communication.  

 

The route table is best understood by first having an overview of routing, then learning 

about IP network addresses, and then looking at the details. 

 

2.7.1 DIRECT ROUTING 

Figure 2.5 represents a tiny internet with 3 computers: A, B, and C.  Each computer has 

the same TCP/IP protocol stack as in Figure 2.2.  Each computer's Ethernet interface has 

its own Ethernet address.  Each computer has an IP address assigned to the IP interface 

by the network manager, who also has assigned an IP network number to the Ethernet. 

 

Ethernet 1
IP network "Research"

A B C

 

Figure 2.5   One IP network. 

 

When A sends an IP packet to B, the IP header contains A's IP address as the source IP 

address, and the Ethernet header contains A's Ethernet address as the source Ethernet 

address.  Also, the IP header contains B's IP address as the destination IP address and 

the Ethernet header contains B's Ethernet address as the destination Ethernet address.  

This is demonstrated in Table 2.2. 
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Address Source Destination 

IP header 

Ethernet header 

A 

A 

B 

B 

 
Table 2.2   Addresses in an Ethernet frame for an IP packet from A to B. 

 

When B's IP module receives the IP packet from A, it checks the destination IP address 

against its own, looking for a match, then it passes the datagram to the upper-level 

protocol. 

 

This communication between A and B is termed direct routing (Socolofsky et al., 2001, 

p.16). 

 

2.7.2 INDIRECT ROUTING 

Figure 2.6 is a more realistic view of an internet.  It is composed of 3 Ethernets and 3 IP 

networks connected by an IP-router called computer D.  Each IP network has 4 

computers; each computer has its own IP address and Ethernet address. 

 

Ethernet 1
IP network "Research"

A B C

Ethernet 2
IP network "Accounting"

E F G

Ethernet 3
IP network "Factory"

H I J

D

 

Figure 2.6   Three IP networks; one internet (Adapted from Socolofsky et al., 2001, p.17). 
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Except for computer D, each computer has a TCP/IP protocol stack like the one shown in 

Figure 2.2.  Computer D is the IP-router.  It is connected to all 3 networks and therefore 

has 3 IP addresses and 3 Ethernet addresses.  Computer D has a TCP/IP protocol stack 

similar to that in Figure 2.2, except that it has 3 ARP modules and 3 Ethernet drivers.  

Note that computer D has only one IP module. 

  

The network manager has assigned a unique number, called an IP network number, to 

each of the Ethernets.  The IP network numbers are not shown in this diagram, just the 

network names. 

  

When computer A sends an IP packet to computer B, the process is identical to direct 

routing.  Any communication between computers located on a single IP network can be 

described using direct routing. 

  

When computer D and A communicate, computer D and E communicate, and computer D 

and H communicate, it is direct communication.  This is because each of these pairs of 

computers is on the same IP network. 

  

However, when computer A communicates with a computer on the far side of the IP-

router, communication is no longer direct.  A must use D to forward the IP packet to the 

next IP network.  This communication is called "indirect". 

 

This routing of IP packets is done by IP modules and happens transparently to TCP, UDP, 

and the network applications. 

  

If A sends an IP packet to E, the source IP address and the source Ethernet address are 

A's.  The destination IP address is E's, but because A's IP module sends the IP packet to 

D for forwarding, the destination Ethernet address is D's, as indicated in Table 2.3. 

 

Address Source Destination 

IP header 

Ethernet header 

A 

A 

E 

D 

 
Table 2.3   Addresses in an Ethernet frame for an IP packet from A to E (before D). 
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D's IP module receives the IP packet and upon examining the destination IP address, 

detects that it is not its IP address, and sends the IP packet directly to E.  This is indicated 

in Table 2.4. 

 

Address Source Destination 

IP header 

Ethernet header 

A 

D 

E 

E 

 
Table 2.4   Addresses in an Ethernet frame for an IP packet from A to E (after D). 

 

2.7.3 IP ADDRESS 

To identify an individual computer on the Internet, it must have a unique address.  The 

current version of the Internet Protocol (IPv4) uses a 4-byte number, expressed in dotted 

decimal notation (e.g. 123.45.67.9).  This address consists of 3 parts (Wilder, 1999, 

p.152): 

• A network address, which uniquely identifies an organization. 

• A subnet address, which identifies a subnet within the organization. 

• A system address, which identifies a single node on that subnet. 

 

So the address 123.45.67.8 has a class A network address of 123.  However, if this node 

wants to contact another with the address 123.45.78.9, the knowledge that it is in the 

same organization is of little use.  What the node really needs to know is whether the 

destination is on the same subnet.  To do this, each node is equipped with a “subnet 

mask”; a logical AND with this value will eliminate the system address so that the rest of 

the address fields can be compared.  If the node 123.45.67.8 has a subnet mask of 

255.255.255.0, then it would detect that 123.45.78.9 was on a different subnet 

(123.45.67.8 AND 255.255.255.0 = 123.45.67.0 which is not equal to 123.45.78.0), 

whereas a mask value of 255.255.0.0 would suggest it is on the same subnet (123.45.67.8 

AND 255.255.0.0 = 123.45.0.0 which is equal to 123.45.0.0). 

 

2.7.4 NAMES 

People refer to computers by names, not numbers.  A computer called alpha might have 

the IP address of 223.1.2.1.  For small networks, this name-to-address translation data is 

often kept on each computer in the "hosts" file.  For larger networks, this translation data 
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file is stored on a server and accessed across the network when needed.  A few lines from 

that file might look like this: 

 
223.1.2.1     alpha 
223.1.2.2     beta 
223.1.2.3     gamma 
223.1.2.4     delta 
223.1.3.2     epsilon 
223.1.4.2     iota 

 

2.8 USER DATAGRAM PROTOCOL 

UDP is one of the two main protocols to reside on top of IP.  It offers service to the user's 

network applications.  Example network applications that use UDP are: Network File 

System (NFS) and SNMP.  The service is little more than an interface to IP. 

  

UDP is a connectionless datagram delivery service that does not guarantee delivery.  UDP 

does not maintain an end-to-end connection with the remote UDP module.  It merely 

pushes the datagram out on the net and accepts incoming datagrams off the net. 

  

UDP adds two values to what is provided by IP (Socolofsky et al., 2001, p.27).  One is the 

multiplexing of information between applications based on port number.  The other is a 

checksum to check the integrity of the data. 

 

2.9 TRANSMISSION CONTROL PROTOCOL 

TCP provides a different service than UDP.  TCP offers a connection-oriented byte stream, 

instead of a connectionless datagram delivery service.  TCP guarantees delivery, whereas 

UDP does not. 

 

TCP is used by network applications that require guaranteed delivery and cannot be 

bothered with doing time-outs and retransmissions.  The two most typical network 

applications that use TCP are FTP and TELNET.  TCP's greater capability is not without 

cost: it requires more central processing unit (CPU) and network bandwidth (Arnett et al., 

1995, p.69).  The internals of the TCP module are much more complicated than those in a 

UDP module. 
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Similar to UDP, network applications connect to TCP ports.  Well-defined port numbers are 

dedicated to specific applications.  For instance, the TELNET server uses port number 23. 

The TELNET client can find the server simply by connecting to port 23 of TCP on the 

specified computer. 

 

When the application first starts using TCP, the TCP module on the client's computer and 

the TCP module on the server's computer start communicating with each other.  These 

two end-point TCP modules contain state information that defines a virtual circuit.  This 

virtual circuit consumes resources in both TCP end-points.  The virtual circuit is full duplex.  

Data can go in both directions simultaneously.  The application writes data to the TCP 

port, the data traverses the network and is read by the application at the far end.  

 

TCP packetizes the byte stream at will.  It does not retain the boundaries between writes. 

For example, if an application does 5 writes to the TCP port, the application at the far end 

might do 10 reads to get all the data or it might get all the data with a single read.  There is 

no correlation between the number and size of writes at one end to the number and size of 

reads at the other end. 

  

TCP is a sliding window protocol with time-out and retransmits.  Outgoing data must be 

acknowledged by the far-end TCP.  Acknowledgements can be piggybacked on data.  

Both receiving ends can flow control the far end, thus preventing a buffer overrun. 

 

As with all sliding window protocols, the protocol has a window size.  The window size 

determines the amount of data that can be transmitted before an acknowledgement is 

required.  For TCP, this amount is not a number of TCP segments but a number of bytes. 

 

2.10 TELNET 

TELNET provides a remote login capability on TCP.  The operation and appearance is 

similar to keyboard dialing through a telephone switch (Arnett et al., 1195, p.74).  On the 

command line the user types "telnet delta" and receives a login prompt from the computer 

called "delta".   
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TELNET works well.  It is an old application and has widespread interoperability.  

Implementations of TELNET usually work between different operating systems.  

 

2.11 FILE TRANSFER PROTOCOL 

File Transfer Protocol (FTP), as old as TELNET, also uses TCP and has widespread 

interoperability (rfc).  The operation and appearance is as if a user TELNETed to the 

remote computer, but instead of typing usual commands, the user has to make do with a 

short list of commands for directory listings and the like.  FTP commands allow the copying 

of files between computers. 
 

2.12 HYPERTEXT TRANSFER PROTOCOL 

Hypertext transfer protocol (HTTP) is used to transfer document files between computers 

over the Internet.  The document files contain tagged words that are used as pointers to 

other information, or lists of other information.  The Hypertext Markup Language (HTML) is 

used to construct the payload message transported by HTTP. 

 

Basically it is a upper layer application that uses the well known TCP port 80 to create a 

connection between a client and server (Wilder, 1999, p.345).  A client simply sends a 

request message to a HTTP server, which sends a response message to the client and 

closes the connection. 

 

2.13 CONCLUSION 

Networking protocols and their general operation was explained without any in-depth 

detail.  The purpose for this chapter was to provide a background into networking to be 

able to understand the rest of the thesis. 

 

Chapter 3 will build on the knowledge obtained about certain protocols in this chapter to 

establish an Ethernet connection via an 8-bit microcontroller. 
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CHAPTER 3 
EMBEDDED ETHERNET 

 
3.1 OVERVIEW 

In his book “TCP/IP Lean: Web Servers for Embedded Systems”, Jeremy Bentham 

describes techniques to implement a small web server on a PIC microcontroller.  The only 

limitation is that it can only be used on a LAN using a serial (SLIP) link.  He went further by 

creating methods to implement this same system to allow Ethernet communication.  These 

hardware methods and how they fit into the entire project will be discussed in this chapter.  

The references for this whole chapter are: “TCP/IP Lean: Web Servers for Embedded 

Systems (J. Bentham)” and the “PICDEM.net User’s Guide (Microchip)”. 

 

3.2 HARDWARE 

This section will explain the hardware requirements to implement Ethernet on an 

embedded system. 

 

3.2.1 ETHERNET INTERFACE 

As explained in Chapter 2, Ethernet is designed to allow a large number of terminals to be 

connected together, which basically means that one computer could send data to any of 

the other computers on that network.  Currently the star topology is implemented by 

Ethernet where each computer is connected to a repeater and several repeaters again are 

connected together to form a LAN (Figure 3.1). 

 

NODE 1 NODE 2 NODE 3

REPEATER  

Figure 3.1   Star network topology. 
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Hardware on each computer arbitrates with other computers on the network so they can 

transmit data when necessary.  Each computer (node) has its own 6-byte Ethernet 

address (MAC address) to enable it to filter out messages not intended for that node and 

hence to reduce the strain implied on the resources of that node.  All the messages on the 

network have a destination MAC address and a source MAC address where one node 

wants to communicate to another node.  This is known as unicast.  Sometimes it might be 

necessary to send a message to all nodes on the network which is known then as 

broadcast. 

 

The need to filter certain MAC addresses and the requirement to handle the 10Mbps data 

rate, dictates the use of Ethernet specific hardware.  Currently there are no 

microcontrollers with built-in Ethernet interfaces and therefore external network interface 

hardware has to be used. 

 

3.2.2 ETHERNET HARDWARE 

The old style Industry Standard Architecture (ISA) computer networks cards need to buffer 

all incoming and outgoing messages in a packet buffer to avoid overloading the computer.  

Access to these cards via the ISA bus is more or less 1 MB per second, whereas the data 

rate at which messages enter and leave the network card is 10 MB per second.   

 

Modern network interface cards need less buffering, since they can interface directly to the 

PC main memory over a fast 32-bit bus.  This, however, is unsuitable for microcontrollers 

because microcontroller speeds are not fast enough for the restrictions of these cards and 

therefore it was decided to use an old style ISA buffered interface. 

 

Figure 3.2 indicates a block diagram of the ISA network interface controller (NIC) that will 

be used in the project. 
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Figure 3.2   Ethernet hardware block diagram (Adapted from PICDEM.net User’s guide, 

p.29). 

 

• The CPU can read and write the control registers.  These registers are organized in 

banks (register pages) so that a large number of registers can be accessed using 

only 4 address bits. 

• The CPU cannot access the packet buffer random access memory (RAM) directly, 

but instead has to make use of the remote direct memory access (DMA) controller.  

The control registers are used to set up the desired packet buffer address and byte 

count, whereafter the CPU repeatedly reads or writes a data latch, to transfer a 

block of data to and from the packet buffer.  The latch is not one of the control 

registers and therefore an extra line is needed, making the number of address lines 

a total of five (A0-4). 

• Once the NIC is set up, it can now transfer data between the packet buffer and the 

network interface using a small first-in/first-out (FIFO) buffer and a second DMA 

channel.  The NIC is intelligent enough so that it can receive several messages 

(Ethernet frames) without intervention from the host CPU. 

 

The Realtek RTL8019AS was chosen as the NIC to be used in the project.  It is a 

derivative of the well-known DP8390 NIC which was one of the first network controllers 

that was developed.  Figure 3.3 shows the general connection between a Ethernet 

controller and a microcontroller. 
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Figure 3.3   Ethernet controller interfaces (Adapted from PICDEM.net User’s guide, p.30). 

 

3.2.3 MICROCONTROLLER INTERFACE 

In order to drive the RTL8019AS Ethernet controller, the microcontroller has to simulate 

the read and write cycles of a standard computer ISA bus.  The steps for a single cycle 

read/write are as follows: 

 

1. Set the address. 

The standard RTL8019AS controller has 20 address lines (A0-A19), but only 5 of 

these lines are used to access the registers that are needed in this application.  The 

rest of the address lines are tied down to ground. 

 

2. Set the data lines. 

In a read cycle these lines act as inputs to the microcontroller and in a write cycle 

they act as outputs from the microcontroller. 

 

3. Activate the Read or Write signals. 

To activate a Read or Write signal, these lines have to be set LOW. 

 

4. If it is a Read cycle, fetch the data. 

As soon as the Read signal goes LOW for a read cycle, the Ethernet controller 

drives the data bus and places the data at the specified address on the data bus. 
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5. De-activate both Read and Write signals. 

If it was a Read cycle, the Ethernet controller will stop driving the data bus.  If it was 

a Write cycle the controller will latch the data that was placed on the data bus by the 

microcontroller. 

 

6. Unset the data lines. 

The microcontroller output driver for the data bus should be disabled so that other 

devices can use the data bus, i.e. the microcontroller data port should be set as 

inputs. 

 

Figure 3.4 indicates the signals involved in a read or write cycle. 

 

Address

Read

Write

Data
 

Figure 3.4   Ethernet controller access cycles (PICDEM.net User’s guide, p.31). 

 

The following I/O lines are needed on the microcontroller: 

• One read output and 1 Write output. 

• Five address outputs.  These lines are only needed when the Ethernet controller is 

accessed and could be used for other functions otherwise. 

• Eight bi-directional data lines, which are also only needed when the Ethernet 

controller is accessed. 

 

Microchip’s PIC16F877 was chosen as the microcontroller to interface to the RTL8019AS 

Ethernet controller for the following reasons: 

• It has a total of 33 I/O pins in a 40-pin DIP package, making it very suitable to 

interface the RTL8019AS and then still have 18 I/O pins left to use for other parts of 

the project, as will be described in the following chapters. 

• Microchip’s “F” series microcontrollers contain FLASH based program memory 

which means that they can be reprogrammed without removing the device from the 
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board.  This is a huge advantage, as this will reduce the developing time quite 

significantly. 

• To make development even easier, the PIC16F877 consists of built-in debug 

capabilities. 

• It contains built-in EEPROM data memory, which makes it convenient to save set-

up data (such as the MAC address and IP address) internally and then not to worry 

about a power failure where such data might be lost. 

 

Figure 3.5 indicates the actual connections of the RTL8019AS and PIC16F877 to establish 

the Ethernet interface for the project. 

 

• D1 is used as the system LED and flashes if the system is in operation. 

• The S1 pushbutton is used for resetting the Ethernet interface, while S2 is used for 

setting up the parameters (e.g. MAC and IP addresses) for the whole system. 

• J3 acts as the in-circuit debugger (ICD) port for debugging and programming the 

PIC16F877 while still in the circuit. 

• A power supply section is used to provide a regulated +5V for the whole system. 

• A liquid crystal display (LCD) interface is included for use to display messages or 

information.  Jumpers JP1 to JP8 determine to which source the LCD is connected.  

If the jumpers are in the position 1-3, then the LCD is connected to the I/O 

controller, and if it is in the 

1-2 position, it is connected to the Ethernet interface controller. 

• A RS-232 interface is also provided to make development easier and could be used 

for debugging purposes.  Jumpers JP4 and JP5 can disconnect the PIC16F877’s 

RS-232 module from the RS-232 transceiver and is then connected in such a way 

to establish RS-232 communication between the Ethernet interface controller and 

the I/O controller. 

• U4, the RTL8019AS, uses three LEDs to indicate if there are packets transmitted, 

received or if collisions occur.  The physical connection to the Ethernet port (J4) is 

established using the FL1012 untwisted pair (UTP) transceiver. 

• The STATUS0-3 and CMD0-1 nets on the PIC16F877 are used for command and 

status control between the Ethernet controller and the Programmer controller.  

These lines will be explained in detail in the following chapters. 
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Figure 3.5   The embedded Ethernet interface. 
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3.3 ETHERNET DRIVER 

The following sections will describe the software drivers that are needed to access the 

RTL8019AS and hence to simulate the PC ISA bus.  The drivers were written in the C 

language using the C-compiler from Custom Computer Services (www.ccsinfo.com). 

 

3.3.1 NIC INITIALIZATION 

The most fundamental part of the Ethernet device driver is to be able to read and write to 

the NIC.  Figure 3.6 indicates how this is accomplished in the firmware. 

 

/* Input a byte from a NIC register */ 
BYTE innic(int reg) 
{ 
    BYTE b; 
 
    DATA_FROM_NIC; 
    NIC_ADDR = reg; 
    NIC_IOR_ = 0; 
    b = NIC_DATA; 
    NIC_IOR_ = 1; 
    return(b); 
} 
 
/* Output a byte to a NIC register */ 
void outnic(int reg, int b) 
{ 
    NIC_ADDR = reg; 
    NIC_DATA = b; 
    DATA_TO_NIC; 
    NIC_IOW_ = 0; 
    delay_cycles(1); 
    NIC_IOW_ = 1; 
    DATA_FROM_NIC; 
} 

Figure 3.6   Read and write functions (PICDEM.net User’s guide, p.34). 

 

The DATA_FROM and DATA_TO macros are used to set the microcontroller data port 

direction registers (TRIS).  To ensure the Read and Write signals remain LOW for the 

correct time, a single CPU cycle delay is added to each function. 

 

Once the read and write functions are established, the NIC can be initialised using a series 

of outnic functions calls as indicated in Figure 3.7. 
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outnic(CMDR, 0x21);                  /* Stop, DMA abort, page 0 */ 
delay_ms(2);                         /* ..wait to take effect */ 
outnic(DCR, DCRVAL); 
outnic(RBCR0, 0);                    /* Clear remote byte count */ 
outnic(RBCR1, 0); 
outnic(RCR, 0x20);                   /* Rx monitor mode */ 
outnic(TCR, 0x02);                   /* Tx internal loopback */ 
 

Figure 3.7   NIC initialisation (PICDEM.net User’s guide, p.34). 

 

Note that Figure 3.7 doesn’t show all the initialisation parameters needed.  The only real 

important parameters are the following: 

 

• Ethernet MAC address 

This 6-byte address must be supplied to the NIC so that it can filter out incoming 

packets not intended for this node.   

• Address filtering 

The parameter enables or disables promiscuous mode.  Enabling promiscuous 

mode means that the NIC will accept all packets it receives and will not filter them 

out, which is convenient for initial development and testing of the firmware. 

• RAM size 

The RTL8019AS has a total of 16Kbytes of packet buffer RAM.  When the NIC is 

used in 8-bit mode, it is suggested that only 8Kbytes should be used.  Doing this will 

mean that there are 1.5Kbytes for the transmit buffer and 6.5K for the receive 

buffer. 

 

3.3.2 ACCESSING THE PACKET BUFFER 

The operation of a normal network adaptor is such that the host CPU will read the entire 

packet from the Ethernet controller into its own RAM and then process it from there.  Since 

one packet is much larger than the RAM capacity of a microcontroller, it will be necessary 

to fetch and process the incoming packets in small chunks.  The NIC’s DMA controller is 

useful for this purpose, since it can accept any packet buffer address and byte count. 

Figure 3.8 shows the methods to read and write data from the NIC’s RAM area. 
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/* Set the 'remote DMA' address in the NIC's RAM to be accessed */ 
void setnic_addr(WORD addr) 
{ 
    outnic(ISR, 0x40);                    /* Clear remote DMA interrupt flag */ 
    outnic(RSAR0, addr&0xff);           /* Data addr */ 
    outnic(RSAR1, addr>>8); 
} 
 
/* Get data from NIC's RAM into the given buffer */ 
void getnic_data(BYTE *data, int len) 
{ 
    BYTE b; 
     
    outnic(ISR, 0x40);                    /* Clear remote DMA interrupt flag */ 
    outnic(RBCR0, len);                  /* Byte count */ 
    outnic(RBCR1, 0); 
    outnic(CMDR, 0x0a);                  /* Start, DMA remote read */ 
    while (len--)                         /* Get bytes */ 
    { 
        b = innic(DATAPORT); 
        *data++ = b; 
    } 
} 
 
/* Put the given data into the NIC's RAM */ 
void putnic_data(BYTE *data, int len) 
{ 
    len += len & 1;                       /* Round length up to an even value */ 
    outnic(ISR, 0x40);                    /* Clear remote DMA interrupt flag */ 
    outnic(RBCR0, len);                  /* Byte count */ 
    outnic(RBCR1, 0); 
    outnic(CMDR, 0x12);                  /* Start, DMA remote write */ 
    while (len--)                          /* O/P bytes */ 
        outnic(DATAPORT, *data++); 
    len = 255;                            /* Done: must ensure DMA complete */ 
    while (len && (innic(ISR)&0x40)==0) 
        len--; 
} 
Figure 3.8   Reading and writing data from RTL8019AS RAM (PICDEM.net User’s guide, 

p.36). 

 

3.3.3 PACKET RECEPTION 

Packet analysis basically involves the following: 

• Checking for over-runs of the packet buffer 

• Detecting that one or more packets have been received 

• Checking the error status of the packet 

• Establishing the start address of the packet in the buffer 

• Freeing up the buffer RAM used by the packet 
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Each Ethernet packet has its own header containing the 6-byte destination and source 

addresses (known as the MAC addresses).  The structure to define these headers is 

shown in Figure 3.9. 

 

#define MACLEN    6 
 
typedef struct {                 // Ethernet frame header  
    BYTE dest[MACLEN];           //     Dest & srce MAC addresses  
    BYTE srce[MACLEN]; 
    WORD pcol;                   //     Protocol  
} ETHERHEADER; 
 

Figure 3.9   Ethernet header structure (PICDEM.net User’s guide, p.37). 

 

The total frame size, including the header and a 4-byte CRC, is between 64 and 1518 

bytes, so the actual length of data is between 46 and 1500 bytes.  If less than the 

minimum, the data is padded to fit. 

 

The NIC also adds its own hardware-specific header on the front of the Ethernet packet, 

so that the length and error status are known (Figure 3.10). 

 

typedef struct {                               // NIC hardware packet header 
    BYTE stat;                   //     Error status 
    BYTE next;                   //     Pointer to next block 
    WORD len;                   //     Length of this frame incl. CRC 
} NICHEADER; 
 

Figure 3.10   NIC hardware-specific header (PICDEM.net User’s guide, p.37). 

 

As a result, the frame in the NIC buffer RAM has two headers in front of the data and to 

simplify this, the driver copies them into local RAM. 

 

typedef struct {                  // NIC and Ethernet headers combined 
    NICHEADER nic; 
    ETHERHEADER eth; 
} NICETHERHEADER; 
 
NICETHERHEADER nicin;             // Buffer for incoming NIC & Ether hdrs 
 
/* Get packet into buffer, return length (excl CRC), or 0 if none available */ 
WORD get_ether() 
{ 
    WORD len=0, curr; 
    . . .        
    getnic_data((BYTE *)&nicin, sizeof(nicin)); 
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    len = nicin.nic.len;                         /* Take length from stored header */ 
    . . . 
    len -= MACLEN+MACLEN+2+CRCLEN; 
    . . . 
    return(len);                                       /* Return length excl. CRC */ 
} 

Figure 3.11   Receiving an Ethernet frame (PICDEM.net User’s guide, p.38). 

 

3.3.4 PACKET ANALYSIS 

Due to the shortage of local on-chip RAM in the microcontroller, the incoming packet must 

be analysed as it is in the NIC buffer RAM.  The packet data is then fetched a byte at a 

time while the checksum is computed for IP verification.  Figure 3.12 shows some of the 

packet analysis functions. 

 

/* Get a byte from network buffer; if end, set flag */ 
BYTE getch_net(void) 
{ 
    BYTE b=0; 
 
    atend = rxout>=rxin; 
    if (!atend) 
    { 
        b = getnic_byte(); 
        rxout++; 
        check_byte(b); 
    } 
    return(b); 
} 
 
BYTE ungot_byte; 
BOOL ungot; 
 
/* Get an incoming byte value, return 0 if end of message */ 
BOOL get_byte(BYTE &b) 
{ 
    if (ungot) 
        b = ungot_byte; 
    else 
        b = getch_net(); 
    ungot = 0; 
    return(!atend); 
} 
 
/* Unget (push back) an incoming byte value */ 
void unget_byte(BYTE &b) 
{ 
    ungot_byte = b; 
    ungot = 1; 
} 
 
/* Get an incoming word value, return 0 if end of message */ 
BOOL get_word(WORD &w) 
{ 
    BYTE hi, lo; 
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    hi = getch_net(); 
    lo = getch_net(); 
    w = ((WORD)hi<<8) | (WORD)lo; 
    return(!atend); 
} 
 
/* Match an incoming byte value, return 0 not matched, or end of message */ 
BOOL match_word(WORD w) 
{ 
    WORD inw; 
 
    return(get_word(inw) && inw==w); 
} 
 
/* Skip an incoming word value, return 0 if end of message */ 
BOOL skip_word(void) 
{ 
    getch_net(); 
    getch_net(); 
    return(!atend); 
}  

Figure 3.12   Packet analysis functions (PICDEM.net User’s guide, p.39). 

 

The Unget() function is included so that one byte can be pushed back into the NIC buffer 

RAM.  The get_, match_, and skip_ functions are used for the actual packet analysis. 

 

3.3.5 PACKET TRANSMISSION 

The packet transmission driver has to do the following: 

• Write the Ethernet header (destination & source addresses, and type of protocol) 

into the NIC packet buffer. 

• Write the packet data into the buffer. 

• Set the length of the packet in the NIC registers. 

• Start the NIC state machine. 

The NIC will automatically retry the transmission if it fails due to a collision, but the 

transmission could still fail if the network is heavily loaded.  The packet transmission 

drivers will not take action in this event, since it is the upper layers (TCP) that initiate a 

retry.  Figure 3.13 shows two of the packet transmission functions. 

 

#define TXBUFFLEN 64             
BYTE txbuff[TXBUFFLEN];          // Tx buffer 
int txin, txout; 
 
/* Put a byte into the network buffer */ 
void putch_net(BYTE b) 
{ 
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    if (txin < TXBUFFLEN) 
        txbuff[txin++] = b; 
    check_byte(b); 
} 
 
/* Send Ethernet packet given payload len */ 
void put_ether(void *data, WORD dlen) 
{ 
    outnic(ISR, 0x0a);                /* Clear interrupt flags */ 
    setnic_addr(TXSTART<<8); 
    putnic_data(nicin.eth.srce, MACLEN); 
    putnic_data(myeth, MACLEN); 
    swapw(nicin.eth.pcol);          
    putnic_data(&nicin.eth.pcol, 2); 
    putnic_data(data, dlen); 
} 

Figure 3.13   Packet transmission functions (PICDEM.net User’s guide, p.40). 

 

3.4 PROTOCOL DRIVERS 

The drivers for the ARP, IP, ICMP, TCP and HTTP protocols are not included in this 

chapter as they basically remain the same as described in Bentham’s book “TCP/IP Lean: 

Web Servers for Embedded Systems”.  Changes to these protocols will be indicated in the 

relevant chapters that follow. 

 

3.5 CONCLUSION 

This chapter explained the hardware implementation of the RTL8019AS Ethernet 

controller in an embedded system to establish Ethernet communication with a PIC 

microcontroller.  Software drivers for this interface have also been described briefly.   

 

The next chapter will deal with one of the upper layer protocols: HTTP.  This will then be 

used to create an embedded Web server using the same PIC microcontroller that is used 

for interfacing with the RTL8019AS. 
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CHAPTER 4 
EMBEDDED WEB SERVER 

 
4.1 OVERVIEW 

This chapter takes a look at HTTP and how it was implemented in the project.  The HTML 

language will also be briefly discussed.  The project makes use of its own read-only 

memory (ROM) file system, which is explained with an example.  Only the relevant 

sections of the Web server driver are discussed. 

 

4.2 HYPERTEXT TRANSFER PROTOCOL 

HTTP is the primary protocol used to distribute information on the Web (Stanek, 1996, 

p.15).  HTTP is a powerful and fast protocol that allows for easy exchange of files. 

 

To achieve high speed and versatility, HTTP is defined as a connectionless and stateless 

protocol.  This means that the client and server do not maintain a connection or state 

information related to the connection.  When clients connect to the server, they make a 

request, get a response, then disconnect.  Because a connection is not maintained, no 

system resources are used after the transaction is completed.  Consequently, HTTP 

servers are only limited by active connections and can generally service hundreds of 

transactions with low system overhead (Stanek, 1996, p.16).  The only drawback to 

connectionless protocols is that when the same client requests additional data, the 

connection must be re-established.  To Web users this means a delay whenever additional 

data is requested. 

 

HTTP is also a stateless protocol.  Servers using stateless protocols maintain no 

information about completed transactions and processes.  When a client breaks a 

connection with a server running a stateless protocol, there is no data that has to be 

cleaned up or logged.  By not tracking state information, there is less overhead on the 

server and the server can generally handle transactions swiftly (Stanek, 1996, p.17). 

 

The fact that HTTP is connectionless and stateless makes it possible to use a PIC 

microcontroller as a Web server, seeing that the controller will not be occupied constantly. 
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4.2.1 GET METHOD 

To fetch a Web document, the browser (Internet Explorer 5.0, Netscape etc.) opens a TCP 

connection to server port 80, then uses the HTTP protocol to send a request.  The request 

and response are one or more lines of text, each terminated by the newline characters.  If 

the request is successful, the information (document text, graphical data) is then sent 

down the same connection, which is then close on completion.  HTTP commands are 

called methods.  The one used to fetch documents is the GET method. 

 

4.2.2 REQUEST 

A basic request consists of the following: 

• The keyword GET 

• The filename 

• A protocol identifier 

• The newline character 

 

e.g. 

GET /index.htm HTTP/1.0<CR><LF> 

 

Generally a browser only receives data (Web pages) from the Web server, but it is also 

possible to send data back to the server.  In this case the request stays exactly as above, 

but the ‘?’ character is added together with some tag specific characters. 

 

e.g. 

GET /index.htm?Q.x=10&Q.y=10 HTTP/1.0 

 

This example demonstrates what the request will look like if the user clicks on an image, 

on the Web page, with the tag name ‘Q’.  The x and y coordinates are passed to the server 

in this case. 

 

Following the GET method is an optional header containing further browser-specific 

details, such as its configuration and the document format it can accept (Figure 4.1). 
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GET /index.htm HTTP/1.0 
Connection: Keep-Alive 
User-Agent: Mozilla/4.5 [en] (Win95; I) 
Pragma: no-cache 
Host: 10.1.1.11 
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, /image/png, */* 
Accept-Encoding: gzip 
Accept-Language: en 
Accept-Charset: iso-8859-1, *, utf-8 
 

Figure 4.1   An example of a GET method with the optional header. 

 

The optional header is simply ignored in this mini Web server application since this data is 

not necessary for a simple Web page transfer. 

 

4.2.3 RESPONSE 

The server replies with a response line containing the HTTP version, status code and 

description, such as 

HTTP/1.0 200 OK 

or an error code as shown below. 

HTTP/1.0 404 Not Found 

The server may then send optional header information in a similar format to the request 

headers, but once again, the header will be ignored in this case seeing that it is not 

necessary and will only take up more resources on the PIC microcontroller. 

Immediately after the response line from the server, the server sends a blank line followed 

by the entity body.  The entity body is simply the text of graphic data that was requested by 

the client.  The request/response process using the HTTP protocol is demonstrated in 

Figure 4.2. 

 

CLIENT SERVER

GET /index.htm HTTP/1.0

HTTP/1.0 200 OK

Contents of "index.htm"

 

Figure 4.2  An example of a HTTP request/response process. 
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4.3 HYPERTEXT MARKUP LANGUAGE 

HTML is the most commonly used language for designing Web pages (Stanek, 1996, 

p18).  HTML’s popularity stems in large part from its ease of use and friendliness.  With 

HTML, the user can quickly and easily create Web documents and make them available to 

a wide audience.  HTML also enables the user to control many of the layout aspects for 

text and images (e.g. size, position, etc.). 

 

By default, all text in an HTML document is intended for display on the browser screen.  

HTML tags contain information that affects the text presentation and allows the insertion of 

extra information into the text, such as graphic images and navigational links.  The tag 

consists of left and right angle brackets (‘<’ and ‘>’) enclosing text that is generally 

insensitive to case.  Figure 4.3 demonstrates a simple HTML document and the resulting 

Web page. 

 

 
<html> 
<head> 
<title>New Page 1</title> 
</head> 
<body bgcolor="#00FFFF"> 
<p align="center"><b><font face="Arial" size="7" color="#000000">Hi There!!!</font></b></p> 
<p align="center"><img border="0" src="bd06784_.gif" width="264" height="243"></p> 
</body> 
</html> 
 

 
 

Figure 4.3   Example of a HTML document. 
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4.4 DYNAMIC WEB PAGES 

A classic Web server provides Web pages without alteration and is essentially just a file 

server.  Modern servers can alter Web pages on the fly or create the pages from scratch 

each time they are requested.  The umbrella term for this facility is common gateway 

interface (CGI), which, because of the large amount of string manipulation involved, is 

usually implemented on a powerful system running a language, such as Perl, that is well 

suited for the job (Bentham, 2000, p.237). 

 

Because of the PIC microcontroller’s lack of RAM and difficulty with string manipulation, it 

will not be suitable for implementing CGI.  Instead another method called embedded 

gateway interface (EGI) will be used.  This method was developed by Jeremy Bentham, 

but was changed and simplified for the purposes of this project 

 

4.4.1 DYNAMIC REQUEST USING EGI 

The EGI will be invoked every time a client requests a document with an “.egi” extension.  

The server will then do the following steps: 

• Look up the document name with the matching “.egi” extension and if not found, an 

error message will be displayed. 

• Start transmitting the contents of the document byte by byte using the HTTP 

protocol. 

• When an EGI variable substitution character (‘@’ or ‘#’) is detected, the value of the 

particular variable name following that will be requested from the I/O controller.  

Transmission is temporarily halted. 

• On receiving the value from the I/O controller, the EGI character and the variable 

name is removed from the document and the value of the variable is transmitted. 

• Transmission then continues as normally, until the next EGI character is detected. 

 

Figure 4.4 demonstrates a simple Web page utilising EGI to read the temperature and 

values of four toggle switches from the remote embedded system.  The first line: 

 
<html><meta http-equiv="refresh" content="3"> 

 
causes the Web page to be refreshed every 3 seconds to update the values for the 

temperature and the toggle switches. 
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<html><meta http-equiv="refresh" content="3"> 
<title>Input Status</title> 
<body bgcolor="#CCFF99"> 
<p align="center"><font face="Arial" size="7" color="#FF0000">Input Status</font></p> 
<hr> 
<p align="center"><font face="Arial" color="#0000FF" size="6">TEMPERATURE</font></p> 
<p align="center"><font face="Arial" size="6" color="#FF0000">@1</font><font face="Arial" 
color="#0000FF" size="6"> 
</font><font face="Arial" size="5"><sup>o</sup>C</font></p> 
<p align="center"><font face="Arial" color="#0000FF" size="6">TOGGLE SWITCHES</font></p> 
<p align="center"><font face="Arial" size="6" color="#FF0000">@2&nbsp; @3&nbsp;@4&nbsp; 
@5</font></p> 
</body> 
</html> 
 
Viewed as a normal Web page: 
 

 
 

Viewed after being connected to the embedded system: 
 

 
 

Figure 4.4   An example to demonstrate dynamic Web page requests using EGI. 
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4.4.2 DYNAMIC OUTPUT 

When a client needs to send data to a server, Web page form controls can be used.  This 

will cause the Web page request to have ‘?’ character at the end of the line (as described 

in section 4.2.2).  In this case, it is not necessary for the Web page to have an “.egi” 

extension and it could be just a normal “.htm” or “.html” document with form controls on it.  

As soon as the server recognizes the ‘?’ character in the request line, it will: 

• evaluate the rest of the data following the ‘?’ character.   

• send this data to the I/O controller so that it can make changes to the system 

accordingly. 

• transmit the normal response along with the Web page contents. 

 

Figure 4.5 gives an example of such a transaction and is continued on the next to show 

the results. 

 

 

 

 

<html> 
<head> 
<title>PIC Web Server</title> 
</head> 
<body bgcolor="#CCFF99"> 
<p align="center"><font face="Arial" size="7" color="#FF0000">PIC Web Server</font> 
</p> 
<hr> 
<form action="Fig4_5.htm"> 
  <p align="left"><font size="4" face="Arial" color="#0000FF"> 
  LED Output:&nbsp;&nbsp;&nbsp;&nbsp;</font><input type="submit" value="ON" name="B1"><input 
type="submit" value="OFF" name="B1"></p> 
</form> 
<form action="Fig4_5.htm"> 
  <p align="left"><font face="Arial" color="#0000FF" size="4">Activation 
  Password: </font> <input type="text" name="pass" size="20"><input type="submit" value="Submit" 
name="B2"></p> 
</form> 
<p align="left">&nbsp;</p> 
</body> 
</html> 

Figure 4.5   An example to demonstrate dynamic Web pages using form controls. 
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Figure 4.5 continued. 
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4.5 ROM FILE SYSTEM 

HTML documents, images and other files are normally stored on the server on hard disks.  

If a client requests information on Web pages from the server, the documents are simply 

read from the hard disk and transferred using the HTTP protocol. 

 

Hard disks are, however, not usually found in 8-bit embedded systems because of their 

complexity.  This means that some other kind of memory device is needed to store the 

information documents for the server.  This project makes use of a single 32Kb inter-IC 

(I2C) serial EEPROM (24LC256) and basically simulates a hard disk system. 

 

A client will need to find a file in the system using the filename as an identifier.  This 

implies a file directory of some sort, preferably in a block at the start of the ROM.  This will 

allow the client to search the directory using sequential read cycles until the desired file is 

found and will minimize the number of address select cycles that will have to be emitted.  

The elements required in the directory are: 

• The length of the file in bytes 

• A pointer to the start of the file contents in ROM 

• A TCP checksum for the file 

• Flags to enable EGI variable substitution 

• A filename (lowercase, 8.3 format) 

 

This results in a directory structure in the firmware as indicated in Figure 4.6. 

 

#define ROM_FNAMELEN    12   /* Maximum filename size */ 
 
typedef struct             /* Filename block structure */ 
{ 
    WORD len;                  /* Length of file in bytes */ 
    WORD start;                /* Start address of file data in ROM */ 
    WORD check;               /* TCP checksum of file */ 
    BYTE flags;                /* Embedded Gateway Interface (EGI) flags */ 
    char name[ROM_FNAMELEN]; /* Lower-case filename with extension */ 
} ROM_FNAME; 
 
/* Embedded Gateway Interface (EGI) flag values */ 
#define EGI_ATVARS         0x01     /* '@' variable substitution scheme */ 
#define EGI_HASHVARS    0x02     /* '#' and '|' boolean variables */ 
 

Figure 4.6   Directory structure in firmware. 
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The end of the directory area in ROM is identified by an entry with a dummy length value 

of 0xFFFF. 

 

The following is also required for the file system: 

• Default page 

The default page, “index.htm”, must be easy to find, so it must be the first file in the 

ROM. 

• HTTP header 

String manipulation is difficult on a PIC microcontroller because of the lack of RAM.  

So instead of identifying the file type and prefixing the file with the correct HTTP 

response header (including the content-type), the files are stored on the ROM with 

their headers already attached. 

• EGI flags 

The EGI flags need to be set if EGI variable substitution is to be performed on the 

file as it is sent out. 

 

Figure 4.7 illustrates a simplified file system in a ROM. 

 

"Content-Type: text/html"

"Content-Type: image/gif"

"Content-Type: text/html"

len = 0x10

start = 0x2F

check = 0xAB

flags = 0x00

name = "index.htm"

len = 0x02

start = 0x0050

check = 0xCA

flags = 0x00

name = "switch.gif"

len = 0x04

start = 0x006B

check = 0x9F

flags = 0x01

name = "inputs.egi"

len = 0xFF

start =

check = 0xFF

flags = 0x00

name = " "

0x0000

0x0001

0x0002

0x0003

0x0004 - 0x000C

0x000D

0x000E

0x000F

0x0010

0x0011 - 0x001A

0x001B

0x001C

0x001D

0x001E

0x001F - 0x0029

0x002A

0x002B

0x002C

0x002D

0x002E

Address: Address:

0x002F - 0x0045

0x0046

0x0050 - 0x0066

0x0067

0x004F

0x006A

0x006B - 0x0082

0x0083

Contents of:
"index.htm"

Contents of:
"switch.gif"

Contents of:
"inputs.egi"
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ir

ec
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ry
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re
a
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0x0084

Header

End of directory

 
 

Figure 4.7   Example of a file system in a ROM. 
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4.6 WEB SERVER DRIVER 

Figure 4.8 shows the section of the HTTP software driver that detects the GET method in 

the HTTP request from the client.   

 

if (match_byte('G') && match_byte('E') && match_byte('T')) 
    { 
        ret = 1; 
        match_byte(' '); 
        match_byte('/');                // Start of filename 
        DEBUG_PUTC(' '); 
        memset(romdir.f.name, 0, ROM_FNAMELEN); 
        for (i=0; i<ROM_FNAMELEN && get_byte(c) && c>' ' && c!='?'; i++) 
        {                                // Name terminated by space or '?' 
            DEBUG_PUTC(c); 
            romdir.f.name[i] = c; 
        }                                // If file found in ROM 
        if (find_file()) 
        {                                // ..check for form arguments 
            DEBUG_PUTC('>'); 
            check_formargs(); 
        } 
        else                            // File not found, get index.htm 
        { 
            DEBUG_PUTC('?'); 
            romdir.f.name[0] = 0; 
            find_file(); 
        } 
        checkhi = checklo = 0; 
        checkflag = 0; 
        txin = IPHDR_LEN + TCPHDR_LEN;   
        if (!fileidx)                   // No files at all in ROM - disaster! 
        { 
            setnic_addr((TXSTART<<8)+sizeof(ETHERHEADER)+IPHDR_LEN+TCPHDR_LEN); 
            printf(putnic_checkbyte, HTTP_FAIL);     
            tflags = TFIN+TACK;     
            d_checkhi = checkhi; 
            d_checklo = checklo; 
            tcp_xmit(); 
        } 
        else                            // File found OK 
        { 
            open_file();                    // Start i2c transfer 
            setnic_addr((TXSTART<<8)+sizeof(ETHERHEADER)+IPHDR_LEN+TCPHDR_LEN); 
            while (tx_file_byte())          // Copy bytes from ROM to NIC 
                ; 
            close_file(); 
            tflags = TFIN+TPUSH+TACK;      // Close connection when sent 
            d_checkhi = checkhi;           // Save checksum 
            d_checklo = checklo; 
            tcp_xmit();                    // Do header, transmit segment 
        } 
    } 
 

Figure 4.8  A section of the HTTP driver that detects the GET method. 
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1. The if.. statement reads the characters from the HTTP protocol’s data area.  It makes 

use of three match_byte() function calls to determine if the first three characters 

correspond with “GET” (the request line from the client). 

2. The for.. loop then reads the rest of the characters directly after the GET method until it 

reaches a blank space or the ‘?’ character, which represents the end of the file name. 

3. The ROM file system is then searched to see if the filename exists in the directory.   

4. If the file is found, the check_formarg() function is called, which will simply just check 

each of the characters after the ‘?’ character in the request line to determine what the 

command to the I/O controller should be.  The contents of the check_formargs() 

function will depend on the application self. 

5. If the file is not found in ROM, then the default page “index.htm” is loaded. 

6. Once the file is opened, the HTTP header for that particular file is transmitted.  The 

tx_file_byte() function (Figure 4.9) will then transmit the contents of the file byte by 

byte.   

 

BOOL tx_file_byte(void) 
{ 
    int ret=0; 
    BYTE b,c; 
 
    if (romdir.f.len)                       // Check if any bytes left to send 
    { 
        b = i2c_read(1);                    // Get next byte from ROM 
        if ((romdir.f.flags&EGI_ATVARS) && b=='@') 
        {                                   // If '@' and EGI var substitution.. 
            b = i2c_read(1);                // ..get 2nd byte 
            romdir.f.len--; 
          while(bit_test(PIR1, 5))  // clear input buffer 
    getch(); 
   putchar('?'); 
   putchar(b); 
   while(!bit_test(PIR1, 5)); // wait for response    
   do 
   { 
    c = getch(); 
    if (c != '~') 
     printf(putnic_checkbyte, "%c", c); 
   } while(c != '~');  
        } 
        else                                // Non-EGI byte; send out unmodified 
            putnic_checkbyte(b); 
        romdir.f.len--;                     // Decrement length 
        ret = 1; 
    } 
    return(ret); 
} 

Figure 4.9   The tx_file_byte() function. 
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1. The driver makes use of the CCS function i2c_read() to read the file from ROM. 

2. For every byte it reads from ROM, it checks if the byte corresponds with the ‘@’ EGI 

character. 

3. If the ‘@’ character is detected and the EGI flags for the particular file is set (section 

4.5), then the next byte is read to determine the variable number that is requested. 

4. The driver then makes use of a RS-232 protocol (will be explained in Chapter 5) to 

communicate with the I/O controller to request a particular variable’s value.  The result 

is then transmitted as part of the contents of the document. 

5. If the ‘@’ character is not detected, then the byte that was read from ROM is then just 

simply transmitted as it is using the putnic_checkbyte() function.  The 

putnic_checkbyte() function updates the Ethernet packet’s checksum on the fly, i.e. 

as it adds data to the Ethernet packet. 

 

4.7 CONCLUSION 

The chapter explained all the building blocks for a Web server and how to implement them 

on an embedded system.  Certain changes to standard HTML documents also need to be 

made to allow dynamic Web pages.  These dynamic pages make embedded Ethernet 

applications very powerful, so these methods were explained in detail.  The chapter then 

concluded with a brief explanation of certain sections of the HTTP driver. 

 

Chapter 5 will cover the next section of the project: the Input/Output controller.  The I/O 

controller will control all the inputs and outputs to the system and somehow it must be able 

to communicate with the Web server.  This protocol will be explained along with a detailed 

description of the firmware on the I/O controller. 
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CHAPTER 5 
THE INPUT/OUTPUT CONTROLLER 

 
5.1 OVERVIEW 

The purpose of this project is to be able to control and monitor processes.  This controlling 

and monitoring is achieved by implementing a microcontroller of which the main purpose is 

to simply control its outputs and monitor its inputs.  The microcontroller also needs to be 

totally dynamic towards software upgrades, application changes etc., and therefore needs 

to be able to be reprogrammed while it is still in the circuit.   

 

This chapter will describe this input/output (I/O) controller interface in detail and will also 

explain the necessary firmware that is needed for this interface.   

 

5.2 INPUT/OUTPUT CONTROLLER SELECTION CRITERIA 

Microchip’s PIC16F877 was chosen as the I/O controller for this project and the reasons 

for selecting it can be summarised as follows: 

 

5.2.1 REPROGRAMMABILITY 

The aim of the whole project is to be totally reconfigurable and therefore this is also the 

main selection criterion for a suitable microcontroller.  PE Technikon has all the 

development tools for the PIC16F877 and that was probably the main reason for choosing 

this microcontroller. 

 

Microchip makes use of an ICSP technique, which allows a microcontroller to be 

programmed after the device is placed in a circuit board (In-circuit serial programming 

guide, p.1).  Because these devices then accommodate rapid code changes, they offer 

tremendous flexibility and reduce development time considerably.   

 

5.2.2 PROGRAMMING INTERFACE 

PIC16F877 microcontrollers can be programmed at a lower voltage (+5V) than the normal 

+12V required by conventional microcontrollers.  This makes it very suitable for this 

application for the simple reason that all the devices on the board operate from a single 

+5V power supply and therefore a second +12V power rail will be unnecessary. 
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In low voltage programming mode, the PIC16F877 uses only 4 of the microcontroller’s 

pins, as indicated in Table 5.1.  Again this is a major advantage because there will be 

more pins available for the controlling or monitoring functions. 

 

During programming  

Pin Name Function Pin Type Description 

RB3 PGM INPUT Low voltage ICSP input 

RB6 CLOCK OUTPUT Clock output 

RB7 DATA INPUT/OUTPUT Data input/output 

MCLR VTEST MODE PROGRAMMING Program mode select 

Table 5.1   Programming pins description for the PIC16F877. 

 

During normal operation, pins RB6 and RB7 can be used for other functions, e.g. 

input/output.   

  

5.2.3 DEVELOPMENT SOFTWARE 

Microchip has their own Integrated Development Environment (IDE) software package 

called MPLAB.  The package is totally free and can be downloaded from 

www.microchip.com, which makes it very appealing for embedded software developers.  

MPLAB also allows the use of third-party c-compilers. 

 

5.2.4 FEATURES AND PERIPHERALS 

The PIC16F877 is rich with features and peripherals: 

• It has a high performance reduced instruction set computer (RISC) CPU. 

• Operating speed of DC up to 20Mhz. 

• 8K x 14 words of FLASH Program Memory. 

368 x 8 bytes of Data Memory (RAM). 

256 x 8 bytes of EEPROM Data Memory. 

• Interrupt capability (14 sources). 

• 8 Level hardware stack. 

• Power-on Reset (POR). 

• Power-up Timer (PWRT) and Oscillator Start-up Timer (OST). 

• Watchdog Timer (WDT) with its own on-chip RC oscillator. 



 

xxiii 

• Power saving SLEEP mode. 

• High sink/source current: 25mA. 

• Low power consumption. 

• 3 Timers. 

• 2 Capture, Compare, pulse width modulation (PWM) modules. 

• 10-bit multi-channel Analog-to-Digital converter. 

• Synchronous Serial port (SSP) with Serial Peripheral Interface (SPI) and I2C. 

• Universal Synchronous Asynchronous Receiver Transmitter (USART) with 9-bit 

address detection. 

• Brown-out detection circuitry for Brown-out Reset (BOR). 

 

5.3 ANALOG INTERFACE 

An analog interface is also added to the I/O controller to allow the measurement of analog 

values in real-time.  This interface is indicated in Figure 5.1. 

 

 

Figure 5.1   I/O controller analog interface. 

 

The pins from port A (except RA4) and port E are used as the analog inputs to the 

microcontroller as shown in Table 5.2. 
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Pin Description 

RA0 Channel 0 

RA1 Channel 1 

RA2 Channel 2  OR  negative reference voltage (Vref-) 

RA3 Channel 3  OR  positive reference voltage (Vref+) 

RA5 Channel 4 

RE0 Channel 5 

RE1 Channel 6 

RE2 Channel 7 

Table 5.2   Analog pins configuration. 

 

These pins can also be used as normal inputs or outputs through the use of jumpers JP10 

to JP17.  If a jumper is in the position 1-2, that particular microcontroller pin will be used as 

an input or output, and if it is in the 1-3 position it will be used as a pure analog input.  Pins 

RA2 and RA3 can be used as normal analog inputs or as voltage reference inputs for the 

PIC16F877’s analog-to-digital converter, e.g. if a analog sensor has an output voltage 

between +1.5V and  +3V, then to make use of the full 10-bit conversion, the user must set 

the Vref- pin to exactly +1.5V (maybe through the use of a potentiometer) and the Vref+ pin 

to +3V.  Figure 5.2 shows an example for using the analog interface. 

 

I/O connector

0 1 2 3 5 0 1 2

Port A Port E

I/O Controller

2
1
3

2
1
3

2
1
3

Temp.
sensor

Jumpers

 

Figure 5.2   Analog interface example. 
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5.4 LIQUID CRYSTAL DISPLAY INTERFACE 

The board has a connector for a LCD, which is mainly used by the Ethernet interface 

controller (as explained in Chapter 3).  This LCD can, however, also be used by the I/O 

controller through the use of jumpers JP1 to JP8 and JP18 to JP24 as indicated in Figure 

5.3. 

 

 

Figure 5.3   Liquid crystal display interface. 

 

Potentiometer R6 is simply the contrast control for the LCD.  The LCD’s pins are routed to 

port D of the I/O controller if it is assigned to it.  Table 5.3 summarizes the jumper settings 

for assigning the LCD.   

 

JP1 to JP8 JP18 to JP24 Assigned to: I/O controller pins RD0 to RD6 

1-2 1-2 Ethernet interface 

controller 

Used as I/O pins 

1-2 1-3 Ethernet interface 

controller 

Used for LCD, but LCD assigned to 

Ethernet interface controller. 

1-3 1-2 I/O controller Used as I/O pins, therefore LCD 

will not work even it is assigned. 

1-3 1-3 I/O controller Used for LCD 

Table 5.3   Jumper settings for LCD assignment. 

 

Often the user will need the LCD for the Ethernet interface, but will also need an additional 

LCD to be connected to the I/O controller.  In this case an external LCD can be connected 
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directly to the I/O connector pins IO30 to IO36 and then port D of the I/O controller can be 

programmed to drive the LCD (provided that jumpers JP18 to JP24 are in the 1-2 position).  

This is demonstrated in Figure 5.4. 

 

I/O Controller

Ethernet
interface
controller

External LCD

Internal LCD

LCD
connectorPort D

I/O connector

Ribbon
cable

Ribbon
cable

 

Figure 5.4   External LCD connection example. 

 

5.5 I/O INTERFACE 

The remaining port pins of the PIC16F877 can be used as general I/O pins.  These pins 

are routed directly to the I/O connector and can be used to connect external peripherals, 

sensors and actuators to the board.  The remaining pins are also routed to a 

reconfigurable hardware interface, which will be explained in the next chapter. 

 

5.6 INFORMATION EXCHANGE PROTOCOL 

The I/O controller operates independently from the Ethernet interface and uses most of its 

resources to fulfil a controlling or monitoring function.  This process can, however, be 

coupled to an embedded Web page as described in Chapter 4, and therefore some kind of 

information exchange method between the Web server and the I/O controller needs to be 

established.  
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5.6.1 REQUIRED HARDWARE 

To minimize the amount of pins used on the I/O controller, it was decided to use a USART 

link between the Web server and the I/O controller.  This means that port pins RC6 and 

RC7 will not be available to the user for normal I/O functions.  Figure 5.5 indicates the 

USART interface. 

 

 

Figure 5.5   USART interface between the Web server and I/O controller 

 

Jumpers JP4 and JP9 are used to select the function of the Web server’s USART module.  

If these jumpers are in the 1-3 position, the Web server’s RXD and TXD pins are used to 

communicate with the I/O controller.  The jumpers could also be set to the 1-2 position, 

which will divert the Web server’s USART module to a MAX232 transceiver to allow 

communication with a PC.  The last option was added purely for development reasons and 

note must be taken that no communication can take place between the Web server and 

the I/O controller when making use of this feature. 
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5.6.2 PROTOCOL DEFINITION 

The Web server uses the USART link for two reasons: 

• To request data from the I/O controller, e.g. the value of the temperature variable. 

• To issue a command to the I/O controller, e.g. switch pin RB6 on. 

 

These commands and requests are built into the embedded Web pages as described in 

Chapter 4.  It is the task of the Web server to issue the requests and the commands to the 

I/O controller using the following scheme: 

 

To send a request for a certain variable value: 

1. Clear the receive buffer. 

2. Send the ‘?’ character followed by the character describing the requested variable. 

3. Wait for a response. 

4. Read the incoming data until the ‘~’ character is received. 

5. Transmit this data as part of the Web page.  

 

To issue a command to the I/O controller: 

1. Send the ‘!’ character. 

2. Send the character describing the output to change. 

 

5.6.3 PROTOCOL IMPLEMENTATION 

The implementation of the protocol occurs at the HTTP level.  

 

For sending a request: 

When a client requests a Web page, the Web server uses the tx_file_byte() function to 

transfer the file byte for byte from the I2C serial EEPROM as shown in Figure 5.6. 

 

1. Read the next character from the file to transmit as a Web page. 

2. If the character is a variable substitution EGI flag (‘@’), then get ready to send a 

request to the I/O controller using the information exchange protocol. 

3. Read the byte that describes the variable that needs to be accessed, e.g. 2 in the 

case of the HTML code: “the temperature is @2 degrees Celsius”. 

4. Clear the Web server’s USART receive buffer to make sure that the data is received 

correctly. 
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5. Send the ‘?’ character followed by the character describing the requested variable. 

6. Wait in a loop until a response is received from the I/O controller. 

7. Read the data byte for byte as it is sent from the I/O controller until the STOP (‘~’) 

character is read.  As the data is received, it must be transmitted as part of the Web 

page file. 

8. If no data is requested, then send the character as part of a normal Web page. 

 

/* Transmit a byte from the current i2c file to the NIC 
** Return 0 when complete file is sent 
** If file has EGI flag set, perform run-time variable substitution */ 
 
BOOL tx_file_byte(void) 
{ 
    int ret=0; 
    BYTE b,c; 
 
    if (romdir.f.len)                       // Check if any bytes left to send 
    { 
        b = i2c_read(1);                    // Get next byte from ROM 
        if ((romdir.f.flags&EGI_ATVARS) && b=='@') 
        {                                   // If '@' and EGI var substitution.. 
             b = i2c_read(1);               // ..get 2nd byte 
             romdir.f.len--; 
             while(bit_test(PIR1, 5))    // clear input buffer 

    getch(); 
 putchar('?'); 
 putchar(b); 
 while(!bit_test(PIR1, 5));   // wait for response 
 do 
 { 
     c = getch(); 
     if (c != '~') 
        printf(putnic_checkbyte, "%c", c);  // transmit data as it is read 
 } while(c != '~');     // read data until STOP character ‘~’ is read 
        } 
        else                                // Non-EGI byte; send out unmodified 
            putnic_checkbyte(b); 
        romdir.f.len--;                     // Decrement length 
        ret = 1; 
    } 
    return(ret); 
} 

Figure 5.6   Code to send a request to the I/O controller. 

 

For sending a command: 

The check_formargs() function implements the information exchange protocol for sending 

commands to the I/O controller.  Sending a command currently means to change the 

output status of port pins on the I/O controller.  To implement text inputs etc. from a Web 
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page will require minor modification to the check_formargs() function, but has not been 

implemented in the current software drivers. 

 

To implement sending a command to the I/O controller in a Web page, the following will be 

required in the HTML code: 

• Add a pushbutton to the page. 

• Change the form method to “SUBMIT”. 

• Change the form action to the name of the Web page. 

• Make sure the name of the pushbutton (or input) starts with a ‘Q’ followed by a 

number, e.g. “Q2”. 

 

The following line gives an indication of what the Web page request to the server looks like 

when a pushbutton (Q0) is clicked: 

 

http://www.petech.ac.za/picweb/Outputs.egi?Q0.x=10&Q0.y=14 

 

Figure 5.7 indicates the protocol implementation in the check_formargs() function. 

 

/* Check for arguments in HTTP request string */ 
void check_formargs(void) 
{ 
    char c; 
 
    if (match_byte('Q'))  // detects if a valid command is going to be issued 
    { 
        get_byte(c);  // get byte that describes the output to change 
        putchar('!');  // send the command character to the I/O controller 
        putchar(c);   // send the output to change 
    } 
} 

Figure 5.7   Code to change the output status of port pins on the I/O controller. 

 

1. Check if a valid output needs to be changed. 

2. Read the value of the output that needs to be changed. 

3. Send the command character (‘!’) to the I/O controller via the USART link. 

4. Send the value of the output that needs to be changed. 
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5.6.4 I/O CONTROLLER DRIVER 

The I/O controller also requires a small portion of code to complete the information 

exchange protocol.  This code must always be included in any software that is written for 

the I/O controller and basically acts as a template for developers as indicated in Figure 

5.8. 

 

#include <16F877.H> 
#device *=16 
 
 
// ******************** Required Code ******************** 
#use DELAY(CLOCK=20000000)     // setup crystal frequency 
#use RS232 (BAUD=115200, XMIT=PIN_C6, RCV=PIN_C7, ERRORS) // setup USART module 
#define STOP putchar('~')   // STOP character for protocol 
 
#int_rda     // interrupt routine for receiving a command / request 
void serial_isr(void)  
{ 
    char b; 
    disable_interrupts(global); 
    b = getch();     // read character describing a request or command 
    if (b == '?')     // request 
    { 
        b = getch();    // read request number 
        switch(b) 
        { 
            case '0': {    // example of sending a reply to a request 
      if (input(PIN_A0))  
          printf("0");   // use printf() for reply 
      else 
          printf("1"); 
      STOP;   // send STOP character after data has been send 
  }  
  break;  
        }  
    } 
    if (b == '!')     // command 
    { 
        b = getch();    // read command number 
        switch(b) 
        { 
            case '0': {    // example of receiving a command 
      if (LED0) 
          LED0 = 0; 
      else 
          LED0 = 1; 
  }  
  break; 
    
        } 
    } 
    enable_interrupts(global);   
} 
// ******************************************************* 

Figure 5.8   Necessary code to include when developing code for the I/O controller. 
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void main(void) 
{ 
 
// ******************** Required Code ******************** 
    set_tris_c(0x80);    // setup RXD and TXD pins for USART 
    enable_interrupts(global); 
    enable_interrupts(int_rda);   // enable interrupt on USART receive 
// *********************************************************** 
 
    while(1)     // main program loop 
    { 
        …………………..; 
    }  
} 

Figure 5.8 continued. 

 

1. Set the crystal frequency to 20Mhz and setup the USART module for 115200 baud 

rate.  Also define the ‘~’ character as STOP. 

2. The interrupt service routine will be invoked as soon as the Web server sends data 

(command or request) via the USART link. 

3. All other interrupts must be disabled during the interrupt routine to ensure the correct 

operation of the information exchange protocol. 

4. Read the first incoming character which describes if the message is a command or a 

request. 

5. If it is a request (‘?’), then read the request number. 

6. Reply to the request number using printf() functions ending the transmission with a 

STOP. 

7. If it is a command (‘!’), then read the command number. 

8. Act on the incoming command by changing the status of port pins etc. 

9. Other interrupts can now be enabled again. 

10. Setup the TRISC register to allow the correct operation of the RC6(TX) and RC7(RX) 

pins. 

11. This is simply the main loop the developer will use to control a certain process as with 

normal embedded applications. 

 

Chapter 9 will cover complete examples and will demonstrate the information exchange 

protocol more clearly. 
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5.7 CONCLUSION 

The main purpose of this chapter was to explain the function of the I/O controller and how 

to interface external applications to it.  The most important feature of the I/O controller, 

namely the information exchange protocol, was explained in detail with reference to the 

Web server.  All the necessary code for implementing the protocol was also explained. 

 

Chapter 6 will introduce the next dynamic component in the project:  the reconfigurable 

hardware.  A brief introduction to programmable logic will be given, after which there will 

be an in-depth explanation of how the reconfigurable hardware is implemented in the 

project and how it is interfaced with the rest of the circuit. 
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CHAPTER 6 
RECONFIGURABLE HARDWARE 

 
6.1 OVERVIEW 

This chapter will cover the reconfigurable hardware component of the project.  A brief 

introduction to PLDs will be given after which the MAX7000S series of PLDs will be 

introduced.  The complete hardware interface will be described and the way in which it fits 

in with the I/O controller will be explained. 

 

6.2 INTRODUCTION TO LOGIC DEVICES 

A brief introduction to logic devices will follow to provide a background to PLDs. 

 

6.2.1 STANDARD LOGIC FAMILIES 

6.2.1.1 Gate functions 

The primary building block of logic circuits is the logic gate (Carter, 1997, p.2).  This is a 

device which operates on two or more logic signals to give an output which is defined by a 

logic operator.  The standard logic operators are AND, OR and INVERT. 

 

6.2.1.2 Sequential logic 

The output of a gate does not depend on the order in which the signals are applied 

(Bostock, 1996, p.3).  If both inputs of a two-input AND gate are LOW, the output will also 

be LOW.  If input A goes HIGH before B, or if B goes HIGH before A the result will be the 

same. 

 

In the circuit in Figure 6.1 the order of the inputs does however make a difference to the 

result.   

 

Figure 6.1   D-type latch circuit (Bostock, 1996, p.3). 
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If input LE is HIGH the output Q will be the same as input D.  Suppose that LE is taken 

LOW.  If D was HIGH when LE went LOW, Q will also be HIGH.  Conversely, if D was 

LOW, Q will stay LOW.  This circuit is known as a latch.  The output of the circuit depends 

on the sequence in which the signals are applied, hence the term sequential circuit.  

 

Figure 6.2 shows another sequential circuit known as a flip-flop. 

 

 

Figure 6.2  D-type flip-flop (Bostock, 1996, p.4). 

 

6.2.1.3 Practical logic circuits 

Devices containing one or more gates, latches or flip-flops form the basis of the standard 

logic families (Carter, 1997, p.6).  Circuit designers can use these integrated circuits to 

build more complex functions by interconnecting these small-scale integrations (SSIs) on a 

PCB.  However, the device manufacturers anticipated these requirements by producing 

medium-scale integration (MSI) parts which contain many of the standard circuit functions 

which can be built from gates and flip-flops.  Typical examples of MSI functions are one-to-

eight line decoder/demultiplexers, four-bit shift registers, and four-bit counters (Figure 6.3). 

 

 

Figure 6.3   Four-bit counter (Bostock, 1996, p.9). 
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6.2.1.4 Large-scale integration 

As processes improved to the point where a thousand or more transistors could be laid on 

a single chip, large-scale integration (LSI) became feasible.  The situation is different to 

MSI.  MSI functions can still be looked on as building blocks with universal application, e.g. 

a CD player or digital multimeter.  LSI circuits are usually a self-contained function, of 

which the microprocessor is the best example.  Apart from microprocessors, most LSI 

functions are specific to a particular application, e.g. an universal asynchronous 

receiver/transmitter (UART) will normally only be found in communications equipment and 

a frequency synthesiser in tuners (Carter, 1997, p.8). 

 

6.2.2 PROGRAMMABLE LOGIC DEVICES 

Circuit designers had only two options for building logic circuits: using the standard logic 

families or using devices called application specific integrated circuits (ASICs) (Bostock, 

1996, p.17).  With ASIC devices, designers had to design the layout of the LSI circuit and 

then had to have it developed by a company at high cost.  If changes needed to be made 

to the ASIC, the whole layout had to be resubmitted and developed.  This scenario 

changed very quickly with the evolution of the programmable switch. 

 

6.2.2.1 Programmable switches 

There are four types of programmable switches which have been used in programmable 

logic devices (Carter, 1997, p.20).   

 

The metal fuse was the first type of switch and is traditionally associated with bipolar 

PLDs.  An alloy, such as nichrome or tungsten-titanium, is evaporated onto the surface of 

the chip and etched into small strips.  A current pulse of about 50mA is sufficient to 

vaporize the metal, which fuses into the overlying silicon dioxide leaving an open circuit at 

the fuse site. 

 

An alternative fuse in bipolar technology is the avalanche-induced migration (AIM) device 

(Bostock, 1996, p.20).  This is a small transistor with a floating base, so that the emitter-

collector path is normally high impedance.  If the emitter-base junction is deliberately 

overstressed, the aluminium from the emitter contact will migrate into the junction causing 

a short-circuit.  The emitter-collector path is now a diode and can be used in its own right 

as a gating element.   
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In metal-oxide semiconductor (MOS) technology the transistors are, themselves, very 

efficient switches which can be turned on and off by applying HIGH or LOW signals to their 

gates.  By adding a second gate, floating between the control gate and the conducting 

channel, the transistor threshold can be varied by charging or discharging the second 

gate.  In the low threshold condition the transistor acts normally, but in the high threshold 

state the channel is held off permanently.  The floating gate can be charged electrically but 

needs ultra-violet light to discharge it. 

 

A later development is the antifuse (Carter, 1997, p.21).  This is simply a thin layer of 

silicon oxide/nitride sandwiched between two conducting layers, which may be either 

silicon or metal.  A short voltage pulse of 15V – 20V ruptures the insulating layer and the 

heat alloys the two layers together.  A resistor of less than 1KΩ results, sufficiently low to 

appear as an ON switch to signals in a complementary metal-oxide semiconductor 

(CMOS) environment. 

 

6.2.2.2 PAL devices 

The most commonly used PLDs are programmable array logic (PAL) devices (Bolton, 

1990, p.31).  They are based on the idea that any combinational logic function can be 

represented by a “sum of products” equation.  AND functions are sometimes referred to as 

product terms, and OR functions as sums terms.  Sum of products means just the OR 

combination of a number of AND terms. 

 

Figure 6.4 shows how a full adder can be built using only discrete logic.  PAL devices can 

be incorporated to do exactly the same function as discrete logic as indicated in the 

example in Figure 6.5 using a PAL4H2 device. 

 

 

Figure 6.4   Full adder using discrete logic (adapted from Carter, 1990, p.27). 
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Figure 6.5  Full adder using a PAL4H2 device (adapted from Carter, 1990, p.27). 

 

Each crossing point between a vertical signal line and the input line into each AND gate 

has a programmable switch which determines whether or not the signal is connected to 

the AND gate.  The diagonal crosses indicate those fuses which are left intact for the 

application. 

 

6.2.2.3 Generic PLDs, FPLAs and FPLSs 

The drawback to some of the ranges of PALs is that designers were restricted to fixed 

architectures with eight, six, four or no flip-flops (Bostock, 1996, p.24).  The introduction of 

generic macrocells made PLDs more flexible architecturally.  Figure 6.6 shows a typical 

macrocell.  The flexibility is achieved by the use of programmable mutliplexers to route the 

output signal through different paths. 



 

xxxix 

 

Figure 6.6   A typical macrocell (Bostock, 1996, p.25). 

 

There is another class of PLD which can sometimes manage to overcome product term 

limitation problems with PALs and GALs; this is the field programmable logic array (FPLA).  

The difference is that they have 32 product terms which can be accessed by any output 

(Carter, 1990, p.28).  This is achieved by having the OR gates connected by a 

programmable array to the AND gates, as can be seen in Figure 6.7. 

 

 

Figure 6.7   Programmable OR-array (Bostock, 1996, p.25). 

 

A field programmable logic sequence (FPLS) device is simply a FPLA with flip-flops added 

to it as shown in the simplified schematic in Figure 6.8. 
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Figure 6.8   Simplified FPLS schematic (Bostock, 1996, p.26). 

 

6.2.2.4 CPLDs 

One approach to making PLDs with a higher logic content is to integrate several small 

PALs in one package (Bolton, 1990, p.41).  Different manufacturers may differ in detail in 

the way they do this but they all have certain features in common.  These devices are 

called complex PLDs (CPLDs) and the basic structure is indicated in Figure 6.9. 

 

The input cells and I/O cells may be taken together as some families have no, or only a 

few, separate inputs and use I/O cells for this function.  In general, an I/O cell connects the 

logic blocks to the outside world and features a transistor transistor logic (TTL) or CMOS 

interface.  The outputs always have a tri-state capability which can be permanently 

enabled or disabled, or controlled by internal logic.  They can function as dedicated input, 

dedicated outputs with optional feedback or as bussable outputs.  The advantage of being 

able to choose the function of all I/Os is that the input and output sites are not pre-

determined and this gives extra flexibility to the PCB layout (Bostock, 1996, p.30). 

 

The interconnection matrix allows a reduced number of inputs to feed each logic block.  It 

can be considered that each logic block is an individual PAL within the larger PLD, and 

that each PAL is connected to the others via the interconnection matrix. 
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Figure 6.9   CPLD block diagram (Bostock, 1996, p.31). 

 

6.3 MAX7000 DEVICES 

6.3.1 ARCHITECTURE 

Multiple array matrix (MAX) 7000 devices, introduced by Altera, conform to the general 

scheme of CPLD architecture, in that they contain logic blocks with a central 

interconnection matrix linking them together, logically.  Figure 6.10 shows the block 

diagram of a typical MAX7000 device. 

 

The interconnection matrix is called the programmable interconnection array (PIA); the 

logic block is a logic array block (LAB).  All signals, including direct inputs, I/Os and 

macrocell feedbacks, pass through the PIA. 
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Figure 6.10   MAX7000 device block diagram (MAX7000 Programmable Logic Device 

Family, p.8). 

 

6.3.1.1 Logic array blocks 

The MAX7000 device architecture is based on the linking of high-performance, flexible, 

logic array modules called logic array blocks (LABs) (MAX7000 Programmable Logic 

Device Family, p.8).  LABs consist of 16 macrocell arrays.  Multiple LABs are linked 

together via the PIA, a global bus that is fed by all dedicated inputs, I/O pins and 

macrocells. 

 

Each LAB is fed by the following signals: 

• 36 signals from the PIA that are used for general logic inputs 

• Global controls that are used for secondary register functions 

• Direct input paths from I/O pins to the registers that are used for fast setup times 
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6.3.1.2 Macrocells 

The macrocell can be individually configured for either sequential or combinational logic 

operation.  The macrocell consists of 3 functional blocks: the logic array, the product-term 

select matrix, and the programmable register as indicated in Figure 6.11. 

 

 

Figure 6.11   MAX7000 macrocell block diagram (MAX7000 Programmable Logic Device 

Family, p.9). 

 

Combinational logic is implemented in the logic array, which provides five product terms 

per macrocell.  Two kinds of expander product terms (“expanders”) are available to 

supplement macrocell logic resources (Bostock, 1996, p.79): 

 

• Shareable expanders – inverted product terms that are fed back into the logic array 

• Parallel expanders – product terms borrowed from adjacent macrocells 

 

Each macrocell can be individually programmed to implement D, T, JK or SR operation 

with programmable clock control.  The flip-flop can be bypassed for combinational 

operation. 
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Each programmable register can be clocked in three different modes: 

• A global clock signal – achieves the fastest clock to output performance. 

• A global clock signal and enabled by an active HIGH clock enable – provides an 

enable on each flip-flop while maintaining a fast clock to output performance. 

• An array clock implemented with a product term – the flip-flop can be clocked by 

signals from buried macrocells or I/O pins. 

 

Each register also supports asynchronous preset and clear functions, while the clear 

function can also be driven by an active LOW dedicated global clear pin (GCLRn). 

 

6.3.1.3 Expander product terms 

More complex logic functions require additional product terms than the five available in 

each macrocell (MAX7000 Programmable Logic Device Family, p.11).  Another macrocell 

can be used to supply the required logic resources, but the MAX7000 architecture also 

allows both shareable and parallel expander product terms that provide additional product 

terms directly to any macrocell in the same LAB. 

 

6.3.1.4 Programmable interconnect array 

Logic is routed between LABs via the PIA (Bostock, 1996, p.79).  The global bus is a 

programmable path that connects any signal source to any destination on the device.  

Figure 6.12 shows how PIA signals are routed into the LAB.  An EEPROM cell controls 

one of the inputs to a 2-input AND gate, which selects a PIA signal to drive into the LAB. 

 

 

Figure 6.12   PIA routing (MAX7000 Programmable Logic Device Family, p.14). 
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6.3.1.5 I/O control blocks 

The I/O control block allows each I/O pin to be individually configured for input, output, or 

bi-directional operation (MAX7000 Programmable Logic Device Family, p.14).  All I/O pins 

have a tri-state buffer that is individually controlled by one of the global output enable 

signals or directly connected to ground or VCC.  The I/O control block has six global output 

enable signals, a subset of the I/O pins, or a subset of the I/O macrocells.  Figure 6.13 

shows the I/O control block for the MAX7000 device. 

 

 

Figure 6.13  MAX7000 I/O control block (MAX7000 Programmable Logic Device Family, 

p.8). 

 



 

xlvi 

6.3.2 IN-SYSTEM PROGRAMMABILITY (ISP) 

MAX7000S devices are in-system programmable via an industry standard 4-pin JTAG 

interface (IEEE Std.1149.1-1990) (MAX7000 Programmable Logic Device Family, p.16).  

ISP allows quick, efficient iterations during design development and debugging cycles.  

The MAX7000S architecture internally generates the high programming voltage required to 

program EEPROM cells, allowing in-system programming with only a single 5V power 

supply.  During in-system programming, the I/O pins are tri-stated and pulled up to 

eliminate board conflicts.  The pull-up value is nominally 50KΩ. 

 

ISP simplifies the manufacturing flow by allowing devices to be mounted on a printed 

circuit board with standard in-circuit test equipment before they are programmed.  

Programming the devices after they are placed on the board eliminates lead damage on 

high pin count packages due to device handling and allows a device to be reprogrammed 

after a system has already shipped to the field (Bostock, 1996, p.80). 

 

6.4 HARDWARE SELECTION CRITERIA 

The EPM7128S device from Altera’s MAX7000S family was chosen for the project and the 

reasons for selecting this particular device can be summarised as follows: 

 

6.4.1 REPROGRAMMABILITY 

This was the most important criterion for selecting a suitable PLD for the project.  As 

mentioned in section 6.3.2, Altera’s MAX7000S family of CPLDs has the ability to be 

reprogrammed while still being in-circuit through an industry standard JTAG interface.  

Most of the CPLDs these days have in-system programmable capabilities, but not all of 

them use the JTAG standard to actually program the devices.  This JTAG interface is the 

feature that makes this project’s hardware interface so flexible.  It means that any PLD that 

supports the JTAG interface can be added to the board and can be reprogrammed in-

circuit, without changing any embedded software at all. 

 

6.4.2 DEVELOPMENT SOFTWARE AND HARDWARE 

Altera’s logic development software, MAX+PLUS II, is available from www.altera.com for 

free.  This free package only supports the MAX7000S range of PLDs and only allows 

graphic entry and VHDL for developing logic circuits.  As mentioned in the previous 
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chapter, free development software is a large deciding factor for choosing appropriate 

development tools for designers. 

 

Probably the biggest deciding factor for choosing one of Altera’s devices was the fact that 

their support was excellent and they donated a development board to PE Technikon which 

made the development for this project so much easier.  The development board allows the 

designer to test LEDs and switches with an EPM7128S device and also with a FLEX10K 

device. 

 

6.4.3 FEATURES 

The features of the EPM7128S also played a role in the decision of a PLD for the project 

and here are some of them: 

 

• 2500 usable gates 

• 5ns pin-to-pin logic delays with up to 175.4 Mhz counter frequencies 

• Open drain output option 

• Programmable power-saving mode for a reduction of over 50% in each macrocell 

• 100 user I/O pins available 

• Programmable security bit for protection of designs 

 

6.5 RECONFIGURABLE HARDWARE INTERFACE 

Figure 6.14 indicates the schematic layout of the hardware interface.  The two connectors, 

J10 and J11, provide the interface to the field for connecting peripherals to the board for 

interfacing with the PLD, the I/O controller, or both.  The jumpers for selecting the analog 

I/O pins and the port D setup for the I/O controller, are also indicated. 

 

Connector J9 is also included to add another PLD device to the JTAG chain which can 

also be reprogrammed.  Another microcontroller which supports JTAG may also be added 

through this connector to make the system even more flexible. 

 

Each of the pins from the EPM7128S device and the I/O controller are numbered as I/O 

pins on the J10 and J11 connectors (e.g. IO23 on J10).  Table 6.1 gives a summary of 

these I/O pins and their connection to the I/O controller and the EPM7128S. 
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Figure 6.14   Reconfigurable hardware interface. 
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CONN I/O           PIC EPM7128S  CONN I/O           PIC EPM7128S 
J10   PORT PIN PIN  J11   PORT PIN PIN 

1 0 RB0 33 4  1 36 RD6 29 51 
2 1 RB1 34 5  2 37 RD7 30 52 
3 2 RB2 35 6  3 38     54 
4 3     8  4 39     55 
5 4 RB4 37 9  5 40     56 
6 5 RB5 38 10  6 41     57 
7 6     11  7 42     58 
8 7     12  8 43     60 
9 8     15  9 44     61 

10 9 RA0/AN0 2 16  10 45     63 
11 10 RA1/AN1 3 17  11 46     64 
12 11 RA2/AN2 4 18  12 47     65 
13 12 RA3/AN3 5 20  13 48     67 
14 13 RA4 6 21  14 49     68 
15 14 RA5/AN4 7 22  15 50     69 
16 15     24  16 51     70 
17 16     25  17 52 RE2/AN7 10 73 
18 17     27  18 53 RE1/AN6 9 74 
19 18     28  19 54 RE0/AN5 8 75 
20 19     29  20 55     76 
21 20     30  21 56     77 
22 21     31  22 57     79 
23 22 RC0 15 33  23 58     80 
24 23 RC1 16 34  24 59     81 
25 24 RC2 17 35  25 IN0     1 
26 25 RC3 18 36  26 IN1     2 
27 26 RC4 23 37  27 IN2     83 
28 27 RC5 24 39  28 IN3     84 
29 28     40  29 ADC0 RA0/AN0 2 use JP10 
30 29     41  30 ADC1 RA1/AN1 3 use JP11 
31 30 RD0 19 44  31 ADC2 RA2/AN2 4 use JP12 
32 31 RD1 20 45  32 ADC3 RA3/AN3 5 use JP13 
33 32 RD2 21 46  33 ADC4 RA5/AN4 7 use JP14 
34 33 RD3 22 48  34 ADC5 RE0/AN5 8 use JP15 
35 34 RD4 27 49  35 ADC6 RE1/AN6 9 use JP16 
36 35 RD5 28 50  36 ADC7 RE2/AN7 10 use JP17 
37             VCC    37             VCC   
38             VCC    38             VCC   
39              GND      39              GND     
40              GND      40              GND     

 
Table 6.1   I/O connections. 

 

From Table 6.1 it can been seen that some of the EPM7128S’ pins are connected to the 

I/O controller’s pins.  A block diagram as in Figure 6.15 can represent this configuration.  
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Figure 6.15   I/O controller and EPM7128S pin configuration. 

 

The block diagram indicates that the pins of the two devices are connected directly without 

any buffers or resistors between them, which might cause problems if not used correctly.  

Any unused pin of the EPM7128S will be pulled down to ground, which will cause a short if 

an I/O controller pin on that same net is forced HIGH and will cause damage to either the 

I/O controller or the EPM7128S.  For this reason all unused pins on the EPM7128S which 

are also connected to the I/O controller are programmed as inputs.  This will allow the I/O 

controller to be able to drive the line either HIGH or LOW without causing any damage.  

The same applies to unused I/O controller pins; these pins must be programmed as inputs 

by using the PIC16F877’s TRIS registers which will allow the EPM7128S to drive the line 

HIGH or LOW. 

 

Figure 6.16 shows the graphic representation for assigning the unused pins of the 

EPM7128S, that are also connected to the I/O controller, as inputs.  It will also be used as 

a template for doing a logic design on the board.  The left-hand side is all the input pins 

and the right-hand side the outputs.  The inputs have net names which correspond with 

the I/O controller pin it is connected to and the output pins have net names that 

correspond to the I/O connector pin it is connected to, e.g. input RA3 (pin 5 on the 

PIC16F877) is connected to I/O number 12 (pin 13 on connector J10).  Each of the input 

and output symbols have the word “template@” next to it.  This is simply the name of the 

current project (“template” in this case) followed by the actual pin number of the 

EPM7128S it is connected to.  Using this as a template is easy.  The designer can simply 

move around the inputs and outputs and add other building blocks to circuits.  Other inputs 

and outputs can also be added, and the existing inputs can even be made outputs and 

vice versa.  
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Figure 6.16   Graphic entry for assigning unused pins as inputs. 

 

6.6 CONCLUSION 

The chapter gave a brief introduction to programmable logic devices to promote the idea of 

reprogrammable hardware in the project.  The MAX7000S device from Altera was 

introduced as part of the detailed explanation of the actual reconfigurable hardware 

interface in the project.   

 

The next chapter will explain the most important section of the project in terms of 

reconfigurability: the actual programming interface.  This will also be the last chapter 

discussing the hardware for the project. 
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CHAPTER 7 
THE EMBEDDED PROGRAMMING INTERFACE 

 
7.1 OVERVIEW 

This is the last chapter on the hardware section of the project and will discuss the 

programming interface in detail.  In-circuit programming in PICmicro devices will first be 

explained after which in-system programming in Altera’s MAX7000S devices will be 

discussed.  A detailed description of the hardware for the actual programming interface will 

follow.  The chapter will conclude with a discussion on the necessary embedded software 

for the programming interface. 

 

7.2 IN-CIRCUIT SERIAL PROGRAMMING (ICSP) WITH THE PIC16F877 

The PIC16F877 is used as the I/O controller in the project and needs to be dynamic in the 

sense that it can be reprogrammed.  Microchip’s PICmicro devices are programmed using 

a serial method and will allow them to be reprogrammed while still plugged into the system 

(In-circuit serial programming for PIC16F8XX FLASH MCUs, p.1).  The PIC16F877 may 

also be programmed using a single +5V supply in low voltage programming mode. 

 

7.2.1 HARDWARE REQUIREMENTS 

The application circuit is the most important aspect when determining the requirements for 

ICSP in PICmicro devices (In-circuit serial programming guide, p.21).  Figure 7.1 shows a 

typical application circuit.   

 

 

Figure 7.1   Typical application circuit (In-circuit serial programming guide, p.21). 
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The application must compensate for the following: 

• Isolation of the MCLR/Vpp pin from the rest of the circuit 

• Isolation of pins RB6 and RB7 from the rest of the circuit 

• Capacitance on each of the Vdd, MCLR/Vpp, RB6 and RB7 pins 

• Minimum and maximum operating voltage for Vdd 

• PICmicro oscillator 

• Interface to the programmer 

 

The MCLR/Vpp pin is normally connected to an RC circuit (In-circuit serial programming 

guide, p.21).  In normal programming mode this pin is driven to +13V to allow 

programming of the device, so the application circuit should be isolated from this voltage.  

Isolation is provided by the diode. 

 

Pins RB6 and RB7 are used by the PIC16F877 for serial programming.  RB6 is the clock 

line, which is driven by the programming device.  RB7 is a bi-directional data line and is 

driven by die programming device when programmed and by the PIC16F877 when data is 

read or verified.  These pins are not dedicated for programming and can be used for I/O 

functions when the PICmicro runs normally.  To prevent signal interference during 

programming, however, these pins must be isolated from the application circuit.  This is 

normally done by introducing a series resistor between the application circuit connection 

and the pin (In-circuit serial programming for PIC16F8XX FLASH MCUs, p.165). 

 

The total capacitance on the programming pins affects the rise rates of these signals as 

they are driven out of the programming device (In-circuit serial programming guide, p.22).  

The programming device must be able to drive these lines strong enough to overcome the 

capacitance.  Buffers are normally added between the programming device and the 

PICmicro if the programmer’s driving capability is too weak. 

 

Microchip states that the PIC16F877 should be programmed at a Vdd level or +5V, which 

is the general supply voltage for embedded circuits.  Sometimes, however, PICmicro 

devices are used in circuits which are powered from a series of 1.5V cells.  These cells will 

not supply the circuit with exactly +5V, but with +4.5V instead.  To ensure optimal 

programming, the PICmicro device must programmed at +5V and verified at +4.5V.  
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The programming device must drive the MCLR/Vpp pin to the programming voltage before 

the oscillator toggles four or more times.  Failure to do this causes the PICmicro to start up 

and increment program counter to some value X.  As soon as the device then enters 

programming mode, the programming will start at an offset of X.  This scenario is not 

applicable when using a crystal oscillator for the PICmicro, since it makes use of an 

oscillator start-up circuit.  With RC oscillators, however, the oscillator pins must first be 

driven LOW before rising the MCLR/Vpp pins to prevent the device from starting up (In-

circuit serial programming guide, p.22).   

 

Both the Vdd and programming supply voltages must have a minimum resolution of 0.25V.  

Table 5.1 in Chapter 5 describes the programming pins for the PIC16F877. 

 

7.2.2 PROGRAM MODE ENTRY 

The user memory space extends from 0x0000 to 0x1FFF (8K).  In programming mode the 

program memory space extends from 0x0000 to 0x3FFF, with the first half (0x0000 – 

0x1FFF) being user program memory and the second half (0x2000 – 0x3FFF) being 

configuration memory.  The PIC16F877’s program counter (PC) will increment from 

0x0000 to 0x1FFF and wrap to 0x0000; and increment from 0x2000 to 0x3FFF and wrap 

around to 0x2000. 

 

In the configuration memory space, only 0x2000 – 0x200F are physically implemented, of 

which only 0x2000 to 0x2007 are available.  The first four memory locations (0x2000 – 

0x2003) in the configuration memory are the ID locations which can be used to store any 

ID information for the device.  It is recommended that only the lower four bits of the word 

must be used for storing ID information (In-circuit serial programming for PIC16F8XX 

FLASH MCUs, p.166).  The configuration word is at location 0x2007.   

 

Figure 7.2 gives a summary of the program memory map. 
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Figure 7.2  Program memory map for the PIC16F877 (Adapted from In-circuit serial 

programming for PIC16F8XX FLASH MCUs, p.167). 

 

7.2.2.1 Low-voltage ICSP mode 

When the low-voltage programming (LVP) bit in the configuration word is set to 1, the low-

voltage ICSP entry is enabled.  Pin RB3 will be dedicated to programming in the low-

voltage ICSP mode.  This programming mode is entered by following the next steps: 

• Hold pins RB6 and RB7 LOW 

• Bring the MCLR/Vpp pin to +5V 

• Bring pin RB3 to +5V 

 

This will cause the device to go into programming mode and places all other logic into the 

reset state (high impedance inputs).  
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7.2.2.2 Serial program/verify operation 

The PIC16F877 makes use of certain commands for the programming/verification of the 

device.  All commands are transmitted least significant bit (LSB) on the rising edge of the 

clock.  The commands are: 

 

• LOAD CONFIGURATION 

After this command the PC will be set to 0x2000.  The only way to get back to the 

user program memory is to reset the device by driving MCLR/Vpp LOW. 

 

• LOAD DATA FOR PROGRAM MEMORY 

After receiving this command, the chip will load a 14-bit data word. 

 

• LOAD DATA FOR DATA MEMORY 

After receiving this command, the chip will load a 14-bit data word.  The data 

memory is, however, only 8-bits wide and thus only the first 8-bits of data after the 

start bit will be programmed into the data memory. 

 

• READ DATA FROM PROGRAM MEMORY 

After receiving this command, the PICmicro device will transmit data bits out of the 

program memory currently accessed. 

 

• READ DATA FROM DATA MEMORY 

After receiving this command, the PICmicro device will transmit data bits out of the 

data memory currently accessed. 

 

• INCREMENT ADDRESS 

The PC will increment when this command is received. 

 

• BEGIN PROGRAMMING 

Programming of the appropriate memory will begin after this command is received 

and decoded.  A load command must be given before every ‘begin programming’ 

command. 
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• BULK ERASE PROGRAM MEMORY 

After this command is performed, the next command will erase the entire program 

memory. 

 

• BULK ERASE DATA MEMORY 

After this command is performed, the next command will erase the entire data 

memory. 

 

7.3 IN-SYSTEM PROGRAMMABILITY WITH THE MAX7000S 

MAX7000S devices are PLDs, based on the Altera Multiple Array Matrix (MAX) 

architecture that supports the IEEE Std. 1149.1 JTAG interface.  MAX devices are also in-

system programmable, which adds programming flexibility and provides benefits in many 

phases of product development, manufacturing and field use.  Seeing that the EPM7128S 

provides the reconfigurable hardware interface to the project, the programming interface 

also needs to be able to program the MAX device using an embedded processor. 

 

7.3.1 FEATURES AND BENEFITS 

ISP reduces cost, shortens development time and provides a wider range of programming 

options than standard device programming methods (Introduction to ISP, p.1).  With ISP, 

the developer can: 

• Program and reprogram devices after they are soldered onto the PCB, minimizing 

the possibility of lead damage or electrostatic discharge (ESD) exposure. 

• Manufacture systems before finalizing device configuration. 

• Perform boundary-scan test (BST) procedures and program devices using in-circuit 

testers. 

• Upgrade systems in the field after they have been shipped. 

 

Table 7.1 summarises the features and benefits of using ISP-capable devices. 
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Table 7.1   Features and benefits of ISP-capable MAX devices (Introduction to ISP, p.3). 

 

7.3.2 VCC-LEVEL PROGRAMMING 

MAX7000S devices support ISP through a Vcc-level programming voltage (In-system 

programmability guidelines, p.4).  The devices generate a +12V programming voltage 

internally to program, verify and erase the device’s EEPROM cells, eliminating the need 

for the external +12V programming voltage typically required for programming. 

 

MAX7000S devices are guaranteed for 100 erase and programming cycles with 100% 

programming and functional yields (Introduction to ISP, p.5). 
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7.3.3 JTAG INTERFACE 

The IEEE Std. 1149.1 JTAG interface makes use of four lines to program a MAX device.  

These lines are described in Table 7.2.  Not only MAX devices can be programmed using 

this interface, but also any other device that supports JTAG.  This is what makes this 

interface so powerful in this project, because now any other device (even microcontrollers) 

can be added to the board and also be programmed using the same programming 

interface. 

 

 

Table 7.2   JTAG pins (Introduction to ISP, p.8). 

 

During erasure, programming, and verification, all device I/O pins are tri-stated to eliminate 

interference from other devices on the PCB.  Devices are programmed by applying the 

appropriate signals on the TMS and TCK inputs and shifting data into and out of the 

devices on the TDI and TDO pins respectively.  After programming, the IEEE Std. 1149.1 

JTAG Test Access Port (TAP) controller state machine must be advanced to the RESET 

state, which is maintained by external pull-up resistors on the TCK, TMS and TDI pins.  

During normal operation, the pull-up resistors prevent the device from entering other 

modes.  Figure 7.3 in the next section shows a typical JTAG connection to a device. 

 

7.3.4 PROGRAMMING THE MAX7000S DEVICE 

The JTAG interface can be used to program a single device or a chain of devices, 

depending on the layout of the PCB. 
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7.3.4.1 Single-device programming 

This is the simplest form for programming a JTAG device and is indicated in Figure 7.3. 
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VCC VCC

1K 1K
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TMS

TCK

TDO

IEEE Std. 1149.1
JTAG Interface

 

Figure 7.3   Single device programming (Adapted from In-system programmability in MAX 

devices, p.9). 

 

7.3.4.2 JTAG-chain device programming 

When programming a chain of devices, the JTAG interface is connected to several 

devices.  The number of devices in the JTAG chain is limited only by the drive capability of 

the JTAG interface.  Buffers are often implemented to improve this.  Figure 7.4 shows the 

typical JTAG connection for chain device programming.   
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Figure 7.4   JTAG-chain device programming (Adapted from In-system programmability in 

MAX devices, p.10). 
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Chain device programming can be further divided into: 

 

• Sequential programming 

It is the process of programming multiple devices in a chain one device at a time 

(In-system programmability guidelines, p.7).  After the first device in the chain is 

finished being programmed, the next device is programmed.  The sequence 

continues until specified devices in the JTAG chain are programmed.  After a device 

is programmed, it uses a JTAG BYPASS instruction to pass data to subsequent 

devices in the chain. 

 

• Concurrent programming 

Concurrent programming is used to program devices from the same family in 

parallel.  The result is a considerably faster programming time than sequential 

programming (In-system programmability guidelines, p.8).  The only drawback of 

this scheme is that the devices must all be of the same family (i.e. microcontrollers 

and CPLDs cannot be in the same chain).   

 

7.4 THE PROGRAMMING INTERFACE 

The whole programming process for the I/O controller and the reconfigurable hardware is 

controlled by an 80C552 microcontroller, a derivative of the very popular 80C51.  This 

microcontroller has various enhancements from its predecessor, but will not be elaborated 

on seeing that it wasn’t a factor when a suitable programming processor was chosen.  The 

main requirements for a processor was: 

• Must have at least 64K of program memory (could be internal or accessed 

externally) 

• Must have at least 21 free bi-directional I/O pins (for status, commands, ICSP 

programming for the PIC16F877, the JTAG interface and I2C communication). 

• Must be an 8051 derivative, seeing that the Jam player for programming the 

MAX7000S device is written for an 8051 core microcontroller. 

 

The main reason for settling for the 80C552 is simply for its local availability and cost.  

There are, however, other 8051 derivatives available that can run at even higher speeds 

than the 80C552. 



 

lxii 

A simplified block diagram indicating the programming interface with the 80C552 is shown 

in Figure 7.5.   
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Figure 7.5   Simplified block diagram of programming interface. 

 

The 80C552 retrieves and executes instructions from ROM or program memory.  Part of 

executing instructions involves controlling I/O pins that provide access to ROM, RAM, I/O 

ports and addresses.  When the 80C552 retrieves an instruction to access external data, 

or RAM, the processor automatically toggles the RD pin such that the information in the 

RAM is retrieved and stored in the appropriate internal registers.  These actions are 

performed automatically by the processor.  The ROM contains the embedded software for 

programming the I/O controller and the MAX7000S device and makes use of the external 

RAM, or data memory, to store temporary data for calculations. 
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The interface also makes use of eight EEPROM memory devices, which are all connected 

to the 80C552 via a common I2C bus.  The I2C bus is implemented by using two bi-

directional lines (SDA, SCL) on the 80C552.  The source files for the I/O controller and the 

MAX7000S are transferred via the Internet and each gets stored in one of these devices.  

At the moment only two of the EEPROMs are used; one for the source file of the I/O 

controller and one for the source file of the MAX7000S.  The rest of the EEPROMs are 

used purely for future developments. 

 

The 80C552 also have four status lines (Status0 – Status3), which are directly connected 

to four pins of the Ethernet interface controller.  It is used to indicate to the Ethernet 

interface controller how far the source code is loaded into memory and how far the 

programming process is.  The status lines will also indicate if any problems occurred 

during loading or programming the device.  Table 7.3 summarises the truth table for the 

status lines. 

 

STATUS3 STATUS2 STATUS1 STATUS0 Description Value 

0 0 0 0 Nothing 0 

0 0 0 1 Loading 4% 1 

0 0 1 0 Loading 20% 2 

0 0 1 1 Loading 36% 3 

0 1 0 0 Loading 52% 4 

0 1 0 1 Loading 68% 5 

0 1 1 0 Loading 84% 6 

0 1 1 1 Loading 100% 7 

1 0 0 0 Programming 4% 8 

1 0 0 1 Programming 20% 9 

1 0 1 0 Programming 36% 10 

1 0 1 1 Programming 52% 11 

1 1 0 0 Programming 68% 12 

1 1 0 1 Programming 84% 13 

1 1 1 0 Programming 100% 14 

1 1 1 1 Error Loading/Programming 15 
 

Table 7.3   Truth table for status lines. 
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The two command lines (Cmd0 and Cmd1) are also directly connected to two pins of the 

Ethernet interface controller.  The Ethernet interface uses these lines to instruct the 

programming processor (80C552) to start with the programming process of the I/O 

controller or the MAX7000S.  Table 7.4 summarises the function of the two lines. 

 

CMD1 CMD0 Description Value 

0 0 Nothing 0 

0 1 Program RECONFIGURABLE HARDWARE 1 

1 0 Program I/O CONTROLLER CPU 2 
 

Table 7.4   Truth table for command lines. 

 

Both the interfaces for programming the I/O controller and the MAX7000S use four lines 

each.  The MAX7000S programming interface makes use of one input line (TDO) and 

three output lines (TDI, TMD, TCK).  The I/O controller interface makes use of three output 

lines (PGC, LVP, MLCR) and one bi-directional line (PGD).  Both these sets of 

programming lines first go through buffers to provide them with enough driving current to 

program the devices.  This automatically causes a complication in the bi-directional lines 

since the buffers operate only in one direction.  The bi-directional lines for the I2C bus are 

also first taken through the buffer.  To support the bi-directional lines, a new scheme must 

be used as shown in Figure 7.6. 

 

Instead of having only one bi-directional pin on the 80C552, the line is split into a _IN and 

an _OUT pin, e.g. the PGD pin is split into a PGD_IN and a PGD_OUT pin.  The original 

bi-directional line still operates as usual, but it has two pins connected to it; a pin that will 

drive the line and a pin that will be driven by the line itself. 

 

The JTAG FROM CPU connector (J7) is connected to the MAX7000S programming 

interface from the 80C552 after the buffers.  The JTAG IN connector (J8) is connected 

straight to the programming pins of the MAX7000S device.  Both these connectors were 

added purely for development reasons and there could have been just a straight 

connection between the two connectors for the interface to operate correctly.  At the 

moment a ribbon cable is used to provide this straight connection. 
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Figure 7.6   Bi-directional ports using buffers. 

 

7.5 SOURCE FILE STORAGE 

As mentioned above, the source files for the I/O controller and the MAX7000S are stored 

in the I2C EEPROMs.  To program the specific device, the 80C552 first fetches all the 

information from the EEPROM and stores it in a large buffer (in the external RAM) from 

where it then programs the device.  This section will explain the storage structure for the 

two devices’ source files. 
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7.5.1 I/O CONTROLLER STORAGE 

The storage of the source file for the I/O controller is complicated by the fact that the 

PIC16F877 uses 14-bit instruction words.  The I2C EEPROM memory only has a data 

width of 8-bits, which means that each instruction word will have to be divided into a HI 

byte and a LO byte.  The four main programming areas in the PIC16F877 is the Program 

memory, the ID locations, the Configuration word and the Data memory.  Not all four these 

areas will always need to be programmed and most of the time only the Program memory 

will be utilised.  To cater for this, a scheme for determining the amount of bytes used by a 

particular programming area has been devised and will also help to separate these areas 

in the EEPROM itself.  Figure 7.7 shows a typical structure for a PIC16F8777 source file 

stored in the I2C EEPROM. 
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PM_START
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HI
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0x0000

0x0001

0x0002

0x0003

0x000F

0x000E

0x0010

0x0017

Address 8-bit Data

Actual
programmaing
data

 

Figure 7.7   Structure of a PIC16F877 source file stored in EEPROM. 

 

From the figure it can be seen that in each case the HI byte is stored first followed by the 

LO byte.  The PM_USED parameter indicates how many words have been used for the 

Program memory area.  The same applies for the ID_USED (ID locations), CW_USED 

(Configuration word) and DM_USED (Data memory) parameters.  PM_START simply acts 
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as a “pointer” to indicate at exactly what EEPROM address the data for the Program 

memory starts.  Once again, the same applies to ID_START, CW_START and 

DM_START parameters.  The addresses stored in the parameters must be doubled to find 

the exact EEPROM address, seeing that the PIC16F877 works with 14-bit words.   

Figure 7.8 is an example of a source file after it has been stored in EEPROM.  A normal 

hex editor was used to read the contents of the EEPROM and display it. 

 

PM_USED      ID_USED      CW_USED      DM-USED      PM_START    ID_START    CW_START    DM_START  

 

 

Figure 7.8  Source file storage example. 

Start of Program memory data             Start of Data memory data 

 

The example shows that 60 words are used by the Program memory and 4 words by the 

Data memory.  There are no words used for the ID locations and Configuration word.  The 

PM_START parameter reads the value 0x0008, but must be doubled to indicate the start 

address of the Program memory data (0x0010).  The same applies to the DM_START 

parameter to indicate the start of the Data memory (0x0088).  Both the ID_START and 

CW_START parameters read as 0x3FFF.  This is simply a dummy start position, seeing 

that both these areas are not utilised in this example. 

 

7.5.2 MAX7000S STORAGE 

The storage structure for the MAX7000S is much less complicated since the Jam byte-

code player (explained in the next section) uses 8-bit words for programming the device.  

The only extra information required is the number of bytes that needs to be programmed 

into the MAX device.  Figure 7.9 shows a typical structure for a MAX7000S source file 

stored in the I2C EEPROM. 
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BYTES_USED
HI

LO

0x0000

0x0001

0x0002

0x0003

0x000F

0x000E

Address 8-bit Data

Actual
programmaing
data

 

Figure 7.9   Structure of a MAX7000S source file stored in EEPROM. 

 

Seeing that this particular EEPROM can store data in up to 32K different address 

allocations, it is once again necessary to split the BYTES_USED parameter into a HI byte 

and a LO byte.  The rest of the programming data, however, is used as single bytes and 

does not need separate HI and LO bytes. 

 

7.6 PROGRAMMING INTERFACE SOFTWARE 

The embedded software for the programming interface can be divided into four different 

parts: 

• ICSP functions for programming the PIC16F877 

• The Jam byte-code player for programming the MAX7000S 

• Code for driving the I2C bus 

• The main program loop which will do all the controlling of the different parts 

 

7.6.1 ICSP FUNCTIONS 

As mentioned in section 7.2.3.2, the internal programming interface of PIC16F877 uses 

certain commands to program itself.  Figure 7.10 shows the typical flow chart for 

programming the program memory and Figure 7.11 shows the flow chart for programming 

the configuration word and the ID locations. 
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Figure 7.10   Flow chart for programming the program memory (In-circuit serial 

programming for PIC16F8XX FLASH MCUs, p.170). 
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Figure 7.11   Flow chart for programming the ID locations and configuration word (In-circuit 

serial programming for PIC16F8XX FLASH MCUs, p.171). 
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To implement these flow charts and apply the internal commands, the programming 

interface from the 80C552 must drive the PIC16F877 with the correct signals.    

 

The 80C552 makes use of the following I/O definitions throughout the program to access 

its own port pins for driving the PIC16F877’s programming interface.  The data line is bi-

directional, therefore it is necessary to use separate pins (as explained in section 7.4). 

 

#define MCLR  P1_5   // connected to MCLR (PIC) 
#define CLK  P1_2        // connected to RB6 (PIC) 
#define DATA_OUT P1_3   // connected to RB7 (PIC) 
#define DATA_IN P1_6   // connected to RB7 (PIC) 
#define LVP       P1_4  // connected to RB3 (PIC) 

Figure 7.12   I/O definitions for programming the PIC16F877. 

 

Pin RB6 is used as the clock input by the PIC16F877 and RB7 is used for entering 

command bits and data input/output during serial programming.  The 80C552 makes use 

of the sendbit() and recvbit() functions to send a bit (a HIGH or a LOW) and receive a bit 

from the PIC16F877. 

 

void sendbit(bit b) 
{ 

if (b==1) DATA_OUT = 1; else DATA_OUT = 0; 
 CLK = 1; 
 delay_us(1);       // tset1 
 CLK = 0;    // clocked into PIC on this edge (falling) 
 delay_us(1);    // thld1 
 DATA_OUT = 0;   // idle with data line low 
}  
   
  
bit recvbit(void) 
{ 
 bit b; 
 CLK = 1; 
 delay_us(1);    // tdly3 
 CLK = 0;    // data is ready just before this 
 b = DATA_IN; 
 delay_us(1);    // thld1 
 return b; 
}   

Figure 7.13   Bit I/O functions. 

 

Each bit is latched on the falling edge of the clock (RB6 or CLK).  After sending a bit on the 

RB7 line, it is very important to make the DATA_OUT pin HIGH to allow the PIC16F877 to 

drive this line if the 80C552 needs data from it.  The delay_us() function is used to 
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implement the minimum setup and hold times according to the PIC16F877’s AC/DC 

specifications. 

 

The programming processor makes use of the sendcmd() function to send a 6-bit 

command to the PIC16F877.  At the same time it also uses the senddata() and recvdata() 

functions to send and receive a whole 14-bit word from the PIC16F877.   

 
void sendcmd(byte b) 
{ 
 byte XDATA_AREA i; 
 
 delay_us(2);    // thld0 
 for(i = 6; i > 0; i--) 
 { 
  sendbit(b & 1);     // send LSB first 
  b = b >> 1; 
 } 
 delay_us(2);    // tdly2 
}  
 
void senddata(word w)        // sends 14-bit word from bottom of w 
{ 
 byte XDATA_AREA i; 
 
 delay_us(2);    // thld0 
 sendbit(0);    // one garbage bit 
 for(i = 14; i > 0; i--) 
 { 
  sendbit(w & 1);   // 14 data bits LSB first 
  w = w >> 1; 
 } 
 sendbit(0);    // one garbage bit 
 delay_us(2);    // tdly2 
}   
         
word recvdata()     // receives 14-bit word, LSB first 
{ 
 byte XDATA_AREA i; 
 bit b; 
 word XDATA_AREA w = 0; 
 
 DATA_OUT = 1;   // enables DATA_IN as input 
 delay_us(2);    // thld0 
 recvbit();                     // one garbage bit 
 for(i = 0; i < 14; i ++) 
 { 
  b = recvbit();  
  w = w | ((word)b << i);  // 14 data bits 
 } 
 recvbit();    // one garbage bit 
 delay_us(2);    // tdly2 
 DATA_OUT = 0;   // idle with DATA line low 
 return w; 
}     

Figure 7.14   Data send and receive functions. 
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These functions make use of the above mentioned bit I/O functions to fulfil its function.  

Commands that have data associated with them are specified to have a minimum delay of 

1us between the command and the data.  Once again it is important to keep the 

DATA_OUT pin at an idle state to allow the PIC16F877 to drive it. 

 

The progcycle() function is used to establish the program cycle as was shown in the flow 

chart of Figure 7.10.  The function simply sends a 6-byte command followed by a 14-bit 

argument, issues the BEGIN PROGRAMMING command and waits for 100 microseconds. 

 

void progcycle(byte cmd, word arg)  // send a command and argument 
{ 
 sendcmd(cmd); 
 senddata(arg); 
 sendcmd(BEGINERASEPROG); 
 delay_us(100);     
} 

Figure 7.15   The program cycle function. 

 

The programall() function is the main ICSP function which will program the different areas 

of the PIC16F877.  It makes use of all the abovementioned functions to physically access 

the programming interface for the PIC16F877.  The function uses 6 parameters:  

• Mode 

Specifies if the function must be used to verify (= 0) the contents of the specified area 

of the PIC16F877 or whether be used to program (= 1) that area. 

• Mask 

Since the program uses two memory locations for each data word (i.e. 16 bits), the 

function uses this mask to specify which data bits must be ignored (e.g. a mask of 

0x3FFF, or 0011 1111 1111 1111 in binary, will ignore the 2 most significant bits). 

• Writecommand 

Specifies the 6-bit command for the particular PICmicro device (PIC16F877 in this 

case) for writing to the specified area. 

• Readcommand 

Specifies the 6-bit command for the particular PICmicro device (PIC16F877 in this 

case) for reading from the specified area. 
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• Base 

Indicates where the start of the data in EEPROM is for the specified area that needs to 

be programmed. 

• Used 

Indicates to the function how many words are used of the specified area for 

programming. 

 
bit programall(int mode, word mask, byte writecommand, byte readcommand, word base, word used)    
{ 
 word XDATA_AREA i, w, temp;             
 unsigned char XDATA_AREA lo, hi; 
 float XDATA_AREA previous, t; 
 
 if (base == PBASE)     //used for calculating % programmed 
  previous = 0; 
 else if (base == IBASE) 
  previous = PUSED; 
 else if (base == CBASE) 
  previous = PUSED+IUSED; 
 else if (base == DBASE) 
  previous = PUSED+IUSED+CUSED; 
 
 printf("%04X bytes to program\nProgress: ", used); //shows % finished 
 
 for(i = base * 2; i < (base + used) * 2; i=i+2)  //start reading from base up to number 
 {       //of words used 
  if (((i - (base * 2)) % 16) == 0) 
   printf("%04X\b\b\b\b", i - (base * 2)); 
  hi = jbi_program[i];    //read HI byte 
  lo = jbi_program[i+1];    //read LO byte 
  temp = (hi << 8) | lo; 
       printf("%04X    ", i/2); 
  if (mode == PROGRAM)   //program word if specified as program 
   progcycle(writecommand, (temp & mask));  //use mask to ignore unused bits 
  printf("%04X\n", temp & mask); 
      sendcmd(readcommand);    //read word from PIC16F877 
  w = (recvdata() & mask);    //verify word 
  if (w != (temp & mask))     //display error if not verified 
  { 
   printf("Failed at %04X: Expecting %04X, found %04X.\n", i/2, temp & mask, w); 
   return 0; 
  }                         
  sendcmd(INCREMENTADDRESS);   //increment PC to next location 
  previous++; 
  t = (previous/(PUSED+IUSED+CUSED+DUSED) * 100) + 100;              //loading percentage 
  write_status(t); 
 } 
 return 1; 
} 

Figure 7.16   The main programming function. 
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This function can be used to program the Program memory, Data memory, ID locations 

and Configuration word of the PIC16F877, without the need of a separate function for each 

area. 

 

7.6.2 JAM BYTE-CODE PLAYER 

The Jam language has two parts: the Jam File and the Jam Player (Embedded 

programming using the 8051 & Jam byte-code, p.4).  A Jam File, which contains all the 

information to program ISP-capable devices, is generated from the MAX+PLUS II 

development software.  This file is then transferred via the Internet to the board and stored 

in one of the I2C EEPROMs (as shown in Figure 7.17).  Like with the PIC16F877 

programming, this file must first be read into RAM before any programming can be done.  

The Jam Player runs on the 80C552 processor (stored in ROM), interprets the information 

in the Jam File and generates the binary data stream for device programming.  Because 

updates may only be needed by and are confined to the Jam File, the Jam Player requires 

no changes and is used to program any vendor’s device. 

 

RAM

EEPROM

80C552 Ethermet
interface
controller

Internet

PC

JTAG
interface

 

Figure 7.17   Transferring and loading of the Jam file. 
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Figure 7.18 shows a block diagram of how in-system programming is achieved with the 

Jam language. 

 

Embedded processor (80C552)

to JTAG chain
Jam Player

RAM

.jbc

00100 ... 0100 ... etc.

JTAG binary data stream

 

Figure 7.18   Block diagram of ISP using a Jam file and Jam Player (Adapted from 

Embedded programming using the 8051 & Jam byte-code, p.4). 

 

7.6.2.1 The Jam file 

Jam Files are compact files containing programming data and algorithm information 

needed to program any device through the IEEE Std. 1149.1 JTAG port.  Altera products 

support two separate implementations of the Jam File: the Jam Byte-code File (.jbc) and 

the ASCII Jam File (.jam).  The JBC file is a binary file, while the Jam file is text only.  In 

this project only the JBC file is implemented because it provides much smaller file sizes 

and faster programming times.  The block diagram in Figure 7.19 shows how a JBC file is 

generated for in-system programming using the MAX+PLUS II software. 

 

Compile
design 1

Compile
design 2

Compile
design 3

MAX+PLUS II

Utility

.pof.pof.pof

.jbc

.hex

EEPROM

Internet

 

Figure 7.19   Generating a JBC file using the MAX+PLUS II software. 
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7.6.2.2 The Jam Player 

The Jam Player is a C program that parses the JBC file (which is read from EEPROM into 

RAM), interprets each Jam instruction, and reads and writes data to and from the JTAG 

chain.  Figure 7.20 illustrates the Jam Player source code structure. 

 

Parse Interpret
Compare
 & Export

ERROR

TCK

TMS

TDI

TDO

Jam Player

I/O functions

Main program

.jbc

 

Figure 7.20   Jam Player source code structure (Adapted from Embedded programming 

using the 8051 & Jam byte-code, p.9). 

 

The Jam Player resides permanently in system memory (ROM), where it interprets the 

commands given in the JBC file (now in RAM) and generates a binary data stream for 

device programming.  The structure confines all upgrades to the JBC file and allows the 

Jam Player to adapt to any system architecture. 

 

The Jam Byte-code Player is written in the C programming language for the 8051 core 

processor and can be downloaded from www.jamisp.com.  The source code can be 

compiled for any 8051 variant as long as the supporting compiler can compile C code.  To 

implement the Jam Byte-code Player on the 80C552 in this project, some changes had to 

be made to the source code: 

• The JBC file can either be stored in ROM or RAM.  In this project the JBC file will 

constantly change, therefore must be stored in RAM.  To specify that it will be 

stored in RAM, the following line must be added to the beginning of the source 

code: 

#define JBC_FILE_IN_RAM = 1 
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The JBC file will actually be stored in one of the I2C EEPROMs, be read into RAM 

and from there will be read again to program the device.  The jbi_load_jbc_file() 

function will be used to read the JBC file from EEPROM into RAM as shown in 

Figure 7.21. 

 

JBI_RETURN_TYPE jbi_load_jbc_file(void) 
{ 
 JBI_RETURN_TYPE XDATA_AREA crc_result = JBIC_IO_ERROR; 
 unsigned int XDATA_AREA expected_crc; 
 unsigned int XDATA_AREA actual_crc; 
 unsigned int XDATA_AREA note_offset = 0; 
 unsigned char XDATA_AREA lo, hi; 
     word XDATA_AREA i, used; 
 float XDATA_AREA temp=0, t; 
 
 EA = 0;      //disable interrupts 
 hi = IIread_eeprom(DEVICE2, 0x0000);  //reads HI byte of how many bytes are used 
 lo = IIread_eeprom(DEVICE2, 0x0001);  //read LO byte 
 used = (hi << 8) | lo;  
 printf("Number of bytes to read: %04X \n", used); 
 printf("Loading from ROM...\n"); 
 
 for (i = 0; i < used; i++)    //start reading data from EEPROM 
 { 
     jbi_program[i] = IIread_eeprom(DEVICE2, i + 2); 
  temp++; 
  if ((i % 100) == 0)   //update loading percentage every 100 bytes 
  { 
   printf("%04X\b\b\b\b", i); 
   t = (temp/used) * 100;     //loading percentage 
   write_status(t);   //change status lines to indicate loading % 
  } 
 } 
 printf("\nLoaded %u bytes\n", i); 
 printf("Checking CRC\n"); 
 crc_result = jbi_check_crc(&expected_crc, &actual_crc);   //do CRC check on file 
 if (crc_result == JBIC_SUCCESS) 
 { 
  printf("CRC matched: expected %04X, actual %04X\n", expected_crc, actual_crc); 
 } 
 else 
 { 
  printf("CRC mismatch: expected %04X, actual %04X\n", expected_crc, actual_crc); 
 } 
 if (crc_result == JBIC_SUCCESS)     //Dump out NOTE fields 
 { 
  while (jbi_get_note(&note_offset, jbi_note_key, jbi_note_value, 256) == 0) 
  { 
   printf("NOTE \"%s\" = \"%s\"\n", jbi_note_key, jbi_note_value); 
  } 
 } 
 
 return (crc_result); 
} 

Figure 7.21   Loading the JBC file into RAM. 
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• The jbi_jtag_io() function is the interface to the IEEE Std. 1149.1 JTAG signals 

TDI, TMS, TCK and TDO.  The signals are mapped to the 80C552’s hardware ports 

as follows: 

 

Signal Hardware Port 
TDI P1.0 

TMS P1.1 

TCK P1.7 

TDO P3.5 
Table 7.5   JTAG interface port pins. 

 

The function receives three parameters indicating the required state for the TMS, 

TDI and TDO signals, and returns one parameter indicating the state of the TDI 

signal. 

 

BIT jbi_jtag_io(BIT tms, BIT tdi, BIT read_tdo) 
{ 
 BIT tdo = 0; 
 
 P1_1 = tms;  /* set TMS signal */ 
 P1_0 = tdi;  /* set TDI signal */ 
 
 if (read_tdo) 
 { 
  tdo = P3_5; /* read TDO signal */ 
 } 
 
 P1_7 = 1;  /* strobe TCK signal */ 
 P1_7 = 0; 
 
 return (tdo); 
} 

Figure 7.22   Function for interfacing to the JTAG signals. 

 

• Pulses of varying widths are used to program the internal EEPROM cells of the 

MAX devices.  The Jam Player uses the jbi_delay() routine to implement these 

pulse widths.  This routine must be customized based on the speed of the 

processor and the time it takes the processor to execute a single loop.  The 80C552 

in this project, however, is running on a 12Mhz crystal which is slow already, so the 

delay in the routine is just set to the minimum (= 0). 
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void jbi_delay(unsigned long microseconds) 
{ 
 unsigned long count = microseconds >> 3; 
 
 while (count != 0) count--; 
} 

Figure 7.23   Delay function for Jam Player. 

 

7.6.2.3 Jam Player operation 

The Jam Player provides an interface for manipulating the IEEE Std. 1149.1 JTAG TAP 

state machine.  The TAP controller is a 16-state state machine that is clocked on the rising 

edge of TCK, and uses the TMS pin to control JTAG operation in a device.  Figure 7.24 

shows the flow of the TAP controller state machine. 

 

Figure 7.24   JTAG TAP controller state machine (Embedded programming using the 8051 

& Jam byte-code, p.20). 
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While the Jam Player provides a driver that manipulates the TAP controller, the JBC File 

provides the high-level intelligence needed to program a given device.  All Jam instructions 

that send JTAG data to the device involves moving the TAP controller through either the 

data register leg of the state machine or the instruction register leg. 

 

The high-level Jam instructions are the DRSCAN instruction for scanning the JTAG data 

register, the IRSCAN instruction for scanning the instruction register, and the WAIT 

command that causes the state machine to sit idle for a specified period of time.  Each leg 

of the TAP controller is scanned repeatedly, according to instructions in the JBC file, until 

all of the target devices are programmed. 

 

7.6.3 I2C FUNCTIONS FOR EEPROMs 

Inter-Integrated Circuit (I2C) is a two wire bus for eight bit data transfer applications 

(24LC256 Datasheet, p.1).  The two wires (serial clock and serial data) carry information 

between the devices connected to the bus.  The serial data wire is bi-directional but data 

may flow in only one direction at a given time.  Each device on the bus can operate as 

either a transmitter or receiver, but not simultaneously.  Some devices may be only 

transmitters while others only receivers.  An example of a receive only device is a display, 

while a memory would both receive and transmit information.  The device that generates 

the clock pulses is called the master and the device that receives is called the slave. 

 

The 24LC256 is a 32K x 8-bit serial EEPROM and is used to store the source files in the 

this project.  It uses two pins, serial clock (SCK) and serial data (SDA), to transmit and 

receive data from the 80C552.  Three chip select pins (A0, A1, A2) are also used to allow 

more than one 24LC256 to be used on the one I2C bus.  The pins are hardwired to either 

+5V or GND to set the address for each EEPROM.  Seeing that there are three chip select 

pins, there can only be a maximum of eight EEPROMs on the I2C bus. 

 

The 80C552 makes use of the following pin definitions to access the I2C bus. 

 

#define SCL_IN   P4_0    
#define SCL_OUT  P4_1 
#define SDA_OUT  P4_3         
#define SDA_IN  P4_2 

Figure 7.25   Pin definitions for accessing the I2C bus. 
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The SDA and SCL line each have an input and an output pin on the 80C552 (as explained 

in section 7.4 in this chapter. 

 

When the I2C bus is not in use, the SDA and SCL lines must be HIGH.  This means that 

the output pins SDA_OUT and SCL_OUT must also be HIGH, otherwise these pins will 

pull the SDA and SCL lines LOW.  Data can only be transmitted when the bus is not busy.  

Any data transfer must be preceded by a START condition on the bus and ended with a 

STOP condition.  The START condition is created when the SDA line is pulled LOW before 

the SCL line, and a STOP condition when the SCL line is pulled HIGH before the SDA line. 

The 80C552 uses the IIstart() and IIstop() functions to create the START and STOP 

conditions. 

 

bit IIstart(void) 
{ 
 SDA_OUT = 1;       // release SDA and SCL lines 
 SCL_OUT = 1; 
 if ((SCL_IN != 1) || (SDA_IN != 1))         // check if bus is free 
  return(0); 
 delay_us(1); 
 SDA_OUT = 0;       // pull SDA LOW before SCL 
 delay_us(1); 
 SCL_OUT = 0; 
 delay_us(1); 
 return(1); 
} 
 
void IIstop(void) 
{ 
 SCL_OUT = 0; 
 SDA_OUT = 0; 
 delay_us(1);       // pull SCL HIGH before SDA 
 SCL_OUT = 1;       // release SCL line 
 delay_us(1); 
 SDA_OUT = 1;       // release SDA line 
 delay_us(1); 
} 

Figure 7.26   Functions for creating START and STOP conditions on the I2C bus. 

 

The IIclk(), IIout(), and IIin() functions are used to write and read 8 bits of data to the I2C 

bus.  Data is transmitted and received with the most significant byte (MSB) first.  Each 

receiving device, when addressed, is obliged to generate an acknowledgement signal after 

the reception of each byte of data.  The master must generate an extra clock pulse which 

is associated with this acknowledge bit.  The slave must pull the SDA line LOW during the 

acknowledgement pulse to acknowledge the data.  The IIread_ack() function is used for 
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this purpose in the program.  It will return a 1 if the data was acknowledged, otherwise it 

will return a 0. 

 

void IIclk(void)      // generates clock pulse 
{ 
 SCL_OUT = 1; 
 delay_us(1); 
 SCL_OUT = 0; 
} 
 
void IIout(byte DATA)     // transmits a byte onto the I2C bus 
{ 
 byte i; 
 
 for (i = 128; i >= 1; i=i/2)    // MSB first 
 { 
  if (i & DATA) 
   SDA_OUT = 1; 
  else 
   SDA_OUT = 0; 
  delay_us(1); 
  IIclk();     // generate clock pulse 
 } 
 SDA_OUT = 1;     // release SDA line 
 delay_us(1); 
} 
 
 
byte IIin(void) 
{ 
 byte i, DATA=0; 
 
 SDA_OUT = 1;     // to enable SDA_IN as input 
 for(i=128; i >= 1; i=i/2)    // MSB first 
 { 
  SCL_OUT = 1; 
  delay_us(1); 
  if (SDA_IN)    // read bit on lagging edge of clock line 
   DATA = DATA + i; 
  SCL_OUT = 0; 
  delay_us(1); 
 } 
 return(DATA);   
}   

Figure 2.27   Functions for accessing the I2C bus interface. 
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bit IIread_ack(void) 
{ 
 SDA_OUT = 1; 
 SCL_OUT = 1; 
 delay_us(1); 
 if (SDA_IN)                      // if SDA is HIGH, then byte IS NOT acknowledged 
 { 
  SCL_OUT = 0; 
  return(0); 
 } 
 else                      // if SDA is LOW, then byte IS acknowledged 
 { 
  SCL_OUT = 0;         
  return(1); 
 } 
} 

Figure 7.28   Function to test if a sent data byte was acknowledged. 

 

The 80C552 will not need to write data to the EEPROMs, therefore no EEPROM write 

functions were added to the program.  The main purpose of the I2C bus for the 80C552 is 

to read data from the serial EEPROMs and is accomplished by using the IIstart_read() 

and IIread_eeprom() functions.  Reading data from a specific memory location in the 

serial EEPROM involves the following steps from the 80C552: 

• Generate a START condition. 

• Send a control word with R/W bit set as 0. 

The control word consists of a 4-bit control code which is always 1010 for the 

24LC256.  The next three bits are the chip select bits (A2, A1, A0).  These bits allow 

the selection of individual 24LC256 devices on the same I2C bus.  The last bit (R/W) 

simply defines the operation to be performed.  When a one read operation is 

selected, and when it is a zero write operation is selected. 

• Check acknowledgement bit. 

• Send the HI byte of the required memory location to be read. 

• Check acknowledgement bit. 

• Send the LO byte of the required memory location to be read. 

• Check acknowledgement bit. 

• Generate a START condition. 

• Send a control word with R/W bit set as 1. 

• Check acknowledgement bit. 

• Read the incoming data (MSB first). 

• The master will not acknowledge the transfer, but does generate a STOP condition. 
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Figure 7.29 summarises this read operation. 

 

 

 
 

Figure 7.29   Reading data from the 24LC256 (24LC256 Datasheet, p.10). 

 

 

#define DEVICE0  0xA0   // device Ids according to each device’s hardwiring 
#define DEVICE1  0xA2   // of pins A2 – A0.  First 4-bits of ID is 1010 which is 
#define DEVICE2  0xA4   // default for the 24LC256. 
#define DEVICE3  0xA6 
#define DEVICE4  0xA8 
#define DEVICE5  0xAA 
#define DEVICE6  0xAC 
#define DEVICE7  0xAE 
#define READ   1 
#define WRITE   0 
 
void IIstart_read(byte CS, word ADDRESS)  // starts the reading procedure from EEPROM 
{ 
 IIstart();      // generate START condition 
 IIout(EEPROM | CS | WRITE);   // send control word - write 
 IIread_ack();     // check ack 
 IIout((byte)(ADDRESS >> 8));   // send HIGH byte of ADDRESS 
     IIread_ack();     // check ack 
 IIout((byte)(ADDRESS & 0x00ff));  // send LO byte of ADDRESS 
 IIread_ack();     // check ack 
 IIstart();      // generate START condition 
 IIout(EEPROM | CS | READ);   // send control word - read 
 IIread_ack();     // check ack 
} 
 
 
byte IIread_eeprom(byte CS, word ADDRESS)  // reads the data from EEPROM 
{ 
 byte DATA = 0; 
 
    IIstart_read(CS, ADDRESS); 
 DATA = IIin();     // read data 
 IIstop();      // generate STOP condition 
 
 return(DATA); 
} 
Figure 7.30   Functions for reading data from a specific memory location in the 24LC256. 
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7.6.4 MAIN PROGRAMMING LOOP 

With all the functions for ICSP with the PIC16F877, ISP for the MAX7000S and the I2C 

communications defined, the rest of the program is quite simple.  All the 80C552 has to do 

now is to wait in a loop until a command is received from the Ethernet interface controller.  

The read_cmd() function monitors the CMD0 and CMD1 lines from the Ethernet interface 

to determine the required instruction.  It almost acts like the popular getch() C function; the 

program waits in a loop until a key is pressed (a command is received). 

 

byte read_cmd(void) 
{ 
 byte XDATA_AREA val=0; 
 
 CMD0 = 1;     // enables CMD0 and CMD1 as inputs 
 CMD1 = 1; 
 
 while((CMD0 == 0) & (CMD1 ==0));  // wait until CMD0 or CMD1 changes to HIGH 
  
 if ((CMD0 == 1) & (CMD1 ==0))   // program I/O controller (val = 2) 
  val=1; 
 else 
  if ((CMD0 == 0) & (CMD1 ==1))  // program hardware (val = 1) 
   val=2; 
          else 
   if ((CMD0 == 1) & (CMD1 ==1)) // future command 
    val=3; 
   else 
    val=0;   // unknown command 
 
 while((CMD0 != 0) & (CMD1 != 0));  // wait until Ethernet interface controller takes both 
 return(val);     // lines LOW again.  Ethernet interface controller 
}       // only pulses the lines for the command 

Figure 7.31   Reading an instruction from the Ethernet interface controller. 

 

Right throughout the program the printf() statement is used to write information to the 

80C552’s RS-232 module.  This is purely done for debugging purposes and can be 

omitted. 

 

Figure 7.32 shows the main programming loop.  It makes use of a switch() statement to 

determine the required operations for the command received.  The write_status() function 

manipulates the Status0 – Status3 lines to indicate the percentage completed (as 

described in section 7.4).   
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while (1) 
{ 
 printf("\nEmbedded Ethernet Controller v2.00\n");   //display message menu 
  printf("1.  Load, Program & Run Reconfigureable Hardware\n"); 
 printf("2.  Load, Program & Run Controller CPU\n"); 
 printf("3.  Load, Program & Run Server CPU\n\n-> "); 
         b = read_cmd();        //wait for command 
 printf("\n"); 
 switch(b) 
 { 
  case 0:   printf ("Invalid choice!\n"); break;   //invalid choice 
 
  case 1:   { 
    write_status(1);        //force loading 4% 
    printf ("********** Hardware **********\n"); 
    crc_result = jbi_load_jbc_file();   //load file from EEPROM 
    init_list = jbi_init_list_program;   //set ISP parameters 
     } break;  
  case 2:   { 
        write_status(1);      //force loading 4% 
    printf ("********** Controller CPU **********\n");  
    printf("Erasing PIC ...\n"); 
    EraseAll();     //erase contents of PIC 
    printf("Loading ...\n"); 
    LoadICSPFromRom();    //load file from EEPROM 
    printf("Programming Program Memory ...\n"); 
    vppreset();     //enter programming mode 
    programall(PROGRAM, PMASK, LOADPROGRAM, READPROGRAM, 
PBASE, PUSED);        //program program memory 
    printf("Programming ID Locations ...\n"); 
    sendcmd(LOADCONFIG); 
    senddata(DEFAULTCONFIG); 
                           programall(PROGRAM, IMASK, LOADPROGRAM, READPROGRAM, 
IBASE, IUSED);        //program ID locations 
    printf("Programming Configuration Byte ...\n"); 
    for (i = 0; i < CBASE - IBASE - IUSED; i ++) 
    sendcmd(INCREMENTADDRESS); 
    programall(PROGRAM, CMASK, LOADPROGRAM, READPROGRAM, 
CBASE, CUSED);        //program config word 

vppreset(); 
    printf("Programming EEPROM Memory ...\n"); 
    programall(PROGRAM, DMASK, LOADDATA, READDATA, DBASE, 
DUSED);         //program data memory 
    Stop(); 
    Run();      //exit program mode & run 
    write_status(0); 
   } break;   
  case 3:  { 

      //future command 
   } break; 
  default: printf ("Invalid choice!\n"); break;   //invalid choice 
         }  // end switch() 

if (b == 1)        //MAX7000S selected 
 { 
  // Jam Player execution code 
 } 
}  //end while() 

 

Figure 7.32   The main programming loop. 
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7.7 CONCLUSION 

This chapter took an in depth look at in-system programmability with the PIC16F877 and 

the MAX7000S devices and Jam Player were explained in detail.  The storage scheme for 

the source files was demonstrated and an example was also included.  The software code 

for the different programming components was explained with extracts from the completed 

embedded code. 

 

This chapter was the last hardware chapter and the next chapter will give a brief overview 

of the operation of the software involved for developing software for the devices on the 

board and for transferring the files.  Accessing the board using a standard Web browser 

(e.g. Internet Explorer 5.0) will also be demonstrated. 
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CHAPTER 8 
SOFTWARE ENVIRONMENT 

 
8.1 OVERVIEW 

This chapter will take a look at the software side of the project.  First the operation and 

description of the software utility (EmEther) for transferring and programming the source 

files will be explained.  It will be followed by a brief description of how to access the remote 

system.  The chapter will then end with a short summary of the development software and 

reference material used in this project. 

 

8.2 EMBEDDED ETHERNET (EmEther) UTILITY 

The user must use the embedded Ethernet (EmEther) utility to transfer new source files to 

the remote board and issue the commands to the programming processor to start 

programming the required section.  The utility will also provide a progress bar to indicate 

the percentage of completion. 

 

8.2.1 OPERATION 

Figure 8.1 shows a screen capture of the EmEther utility.   

 

 

Figure 8.1  The EmEther utility. 
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Building and transferring HTML documents: 

 

1. Choose the required Web page directory to be transferred. 

 

 

2. Click the Build Web Directory button. 

 Before a Web page directory can be transferred to the remote system, it must first be 

built into a special file format that allows it to be stored in the remote system’s 

EEPROM.  A detailed description of the built file will be displayed in the Status 

frame.  It gives a breakdown of each file’s name, size, start address in EEPROM, 

length, checksum and EGI flags. 

 

 

3. Click the Transfer Web Directory button.   

 The progress bar at the bottom of the window will indicate the percentage of file 

transfer. 

 

 

The transferred Web directory takes immediate effect on the remote system once it is 

transferred and does not need to be issued a command to program it. 
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Building, transferring and programming PICmicro source files: 

 

1. Choose the required PICmicro source file (.hex) to be transferred. 

 

 

2. Click the Build Hex File button. 

Before a PICmicro source file can be transferred to the remote system, it must first be 

built into a special file format that allows it to be stored in the remote system’s 

EEPROM.  A detailed description of the built file will be displayed in the Status 

frame.  It gives a breakdown of the size of each of the memory areas in the 

PIC16F877 and their start addresses inside the EEPROM. 

 

 

3. Click the Transfer Hex File button. 

The progress bar at the bottom of the window will indicate the percentage of file 

transfer. 
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4. Click the Program Hex File button. 

Before the transferred PICmicro source file can take effect on the remote system, the 

programming interface on the remote system must first get the instruction to load the 

source file from EEPROM and then program the PIC16F877.  The first progress bar 

will indicate how much of the source file is loaded by the programming processor 

from the EEPROM.  

 

 

Shortly after the programming processor has read the whole source file from 

EEPROM, the next progress bar will appear, indicating the percentage of the actual 

programming of the PIC16F877. 

 

 

The PIC16F877 will now be updated with the new source file and will take immediate 

effect. 

 

Transferring and programming MAX7000S source files: 

 

1. Choose the required MAX7000S source file (.jbc) to be transferred.  If other JTAG 

devices were added to the circuit, those files can also be transferred using the same 

method. 

 

 

2. Click the Transfer JBC File button. 

The source file for the MAX7000S is already in a suitable file format for storing it in 

one of the EEPROMs on the remote system, and therefore it is not necessary to build 
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the file first.  The progress bar at the bottom of the window will indicate the 

percentage of file transfer. 

 

 

3. Click the Program JBC File button. 

Before the transferred MAX7000S source file can take effect on the remote system, 

the programming interface on the remote system must first get instruction to load the 

source file from EEPROM and then program the MAX7000S.  The progress bar will 

indicate how much of the source file is loaded by the programming processor from 

the EEPROM. 

 

 

Unfortunately the Jam Byte-Code Player does not provide a feedback of the progress 

for programming a JTAG device.  An EPM7128S device has a programming time of 

roughly 5 minutes.  The next chapter will demonstrate three different test applications 

for the system and the programming times for each application will be indicated.  The 

user can see if the programming processor is busy with programming a device by 

simply trying to access the Web page.  If the system is still busy, a “Busy 

programming!” page will appear. 

 

8.2.2 SOURCE CODE DESCRIPTION 

The EmEther utility was developed using Visual Basic 6.0.  The source code can be 

divided into four different sections:  building source files, transferring source files, 

instructing the remote programming processor, and progress indication. 

 

8.2.2.1 Building source fi les 

Only source files for the PIC16F877 and the HTML documents for the Web server needs 

to be compiled into a special format.  This format will allow the file to be stored in one of 

the I2C EEPROMs of the remote system.  The source file for the MAX7000S device is 

already in the correct format and can be stored as is.   

 

The cmdBuildWebDir_Click() and cmdBuildHexFile_Click() functions are used to build 

the source files.  It simply creates an image of what the EEPROM contents should be on 
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the local PC’s drive (“hextemp.rom” and “webtemp.rom”).  The file structure for both these 

sections has been explained in Chapter 4 and 7, therefore a detailed description of the 

source code is not necessary. 

 

8.2.2.2 Transferring source files 

Transferring the source files means transferring the “hextemp.rom” and “webtemp.rom” 

files via the Internet to the remote system’s EEPROMs.  The .jbc file for the MAX7000S is 

transferred just as it is. 

 

Send_Socket() is the most important function for transferring source files via the Internet. 

  

Private Sub Send_Socket(data As String)   
    Winsock1.Connect   ‘ create TCP socket connection on port 1000 
    Do Until Winsock1.State = sckConnected   ‘ wait until connected 
        DoEvents: DoEvents: DoEvents: DoEvents  ‘ dummy 
        If Winsock1.State = sckError Then   ‘ if error, display message 
            MsgBox "Problem connecting!" 
            Exit Sub 
        End If 
    Loop 
     
    Winsock1.SendData data   ‘ send data via socket connection 
     
    Do Until Winsock1.State = sckClosing   ‘ wait until connection is closed by remote system 
        DoEvents: DoEvents: DoEvents: DoEvents  ‘ dummy 
        If Winsock1.State = sckError Then   ‘ if error, display message 
            MsgBox "Problem connecting!" 
            Exit Sub 
        End If 
    Loop 
    Winsock1.Close   ‘ close TCP socket 
End Sub 

Figure 8.2   Sending data via the Internet using a TCP socket. 

 

The function makes use of the Winsock ActiveX control to establish a TCP socket 

connection with the remote system.  A socket connection is basically a data pipe that 

allows reliable bi-directional data transfer between two nodes (Wilder, 1999, p.169).  The 

Winsock control uses the following two lines to setup the remote destination’s IP address 

and port number: 

 

Winsock1.RemoteHost = "picweb.petech.ac.za" 
Winsock1.RemotePort = 1000 
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The EmEther utility transfers source files using the cmdTransWebDir_Click(), 

cmdTransHexFile_Click() and cmdTransJBCFile_Click() functions.  Each of these 

functions operates exactly the same and makes use of the packet_data array to break up 

the file to be transferred into data packets of 64 bytes each (data can only be written to a 

I2C EEPROM in 64-byte pages).  The packet_listcount variable indicate the number of 

packets that need to be transferred. 

 

    Const PACKET_SIZE As Byte = 64  ‘ size of the data packets in bytes 
 
    Open "webtemp.rom" For Binary As #1  ‘ determine the size of the source file in bytes 
    leng = LOF(1) 
    For i = 0 To leng – 1  ‘ read the contents of the source file into a buffer 
        buff(i) = Input(1, #1) 
    Next i 
    Close #1 
 
    temp_str = ""  ‘ temporary string 
    next_stop = PACKET_SIZE  ‘ next break point in the source file for a complete packet 
    packet_listcount = 0  ‘ number of packets that need to be transferred = 0 
     
    For i = 0 To leng – 1  ‘ start reading from the buffer 
        If i < next_stop Then  ‘ if the current byte position is next than the next break 
            temp_str = temp_str + buff(i)  ‘ add current byte to temporary string 
        Else 
            packet_data(packet_listcount) = temp_str ‘ load current packet with the temporary string 
            packet_listcount = packet_listcount + 1  ‘ increase number of packets to be transferred 
            next_stop = next_stop + PACKET_SIZE ‘ increase next break position with 64 bytes 
            temp_str = ""  ‘ clear temporary string 
            temp_str = temp_str + buff(i)  ‘ add current byte to temporary string 
        End If 
    Next i 
    If leng - 1 < next_stop Then  ‘ if last packet has less than 64 bytes 
        packet_data(packet_listcount) = temp_str 
    End If 

Figure 8.3   Breaking up the source file into data packets for transferring. 

 

These functions transfer each packet using a 4-byte header.  Each packet is sent with a 

start address so that the remote Web server knows where to store the data in the 

EEPROM.  The packet length and source file type is also added for the Web server to 

identify in which EEPROM the data should be stored and how much data will be stored.  

The final packet is shown in Figure 8.4. 

 

Packet
Length

Source File
Type

EEPROM
Start Address -

Hi byte

EEPROM
Start Address -

Lo byte
Data

 

Figure 8.4   The data transfer packet. 



 

xcvi 

    Const WEB_FILE_TYPE As Byte = 0  ‘ constants to indicate file types 
    Const ICSP_FILE_TYPE As Byte = 1 
    Const JTAG_FILE_TYPE As Byte = 2 
 
    high_address = 0  ‘ start at EEPROM address 0x0000 
    low_address = 0 
 
    For j = 0 To packet_listcount  ‘ start transferring packets one by one 
        packet_len = Chr(Len(packet_data(j)) + 4) ‘ packet length = header length + data length 
 
        Send_Socket (packet_len + Chr(WEB_FILE_TYPE) + Chr(high_address) + Chr(low_address) + 
packet_data(j))  ‘ send packet using the TCP socket on port 1000 
 
        low_address = low_address + PACKET_SIZE ‘ increase the next EEPROM start address with 
        If low_address > 255 Then  ‘ 64 bytes 
            low_address = 0 
            high_address = high_address + 1 
        End If 
    Next j 

Figure 8.5   Transferring the source file using data packets. 

 

The main purpose of these functions is to transfer the built source files as they are and 

store them in the remote system’s EEPROMs exactly in the same order, starting at 

EEPROM address 0x0000. 

 

8.2.2.3 Instructing the remote programming processor 

For the update source files of the PIC16F877 and the MAX7000S to take effect, the 

programming processor first needs to be instructed to program the devices with the 

contents of the corresponding EEPROM.  Only the transferred HTML documents for the 

Web server takes immediately effect and does not need to be programmed.   

 

The EmEther utility makes use of the cmdProgHexFile_Click() and 

cmdProgJBCFile_Click() functions to issue the begin programming command to the 

remote programming processor.  The command is also transferred via the Internet using a 

packet, although this packet only has two bytes.  The first byte simply indicates to the Web 

server that this is not a file transfer, but a command packet and always has the value of 

255 (or 0xFF).  The second byte indicates which device must be programmed.  Both these 

functions again operate exactly the same. 
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Const PROGRAM_COMMAND As Byte = &HFF ‘ command constants 
Const PROGRAM_SERVER As Byte = &H3 
Const PROGRAM_CONTROLLER As Byte = &H2 
Const PROGRAM_HARDWARE As Byte = &H1 
 
Private Sub cmdProgHexFile_Click() 
    If (PROGRAMMING_STATUS = 0) Then  ‘ if utility IS NOT busy programming another device 
 
        Send_Socket (Chr(PROGRAM_COMMAND) + Chr(PROGRAM_CONTROLLER))   ‘ send command 
 
        PROGRAMMING = True  ‘ set busy programming flag 
    Else 
        MsgBox "error", vbExclamation, "Program Error" ‘ display message if programming another device 
    End If 
End Sub 

Figure 8.6   Indicating the remote programming processor to begin programming. 

 

8.2.2.4 Progress indication 

A Timer ActiveX control calls up a function every second to request the programming 

progress (only while programming) from the remote Web server.  Once again it issues a 

command in the format of a packet with the first byte as 0xFF.  The last byte will indicate to 

the Web server that the utility needs an indication of the programming progress. 

 

Const PROGRAM_CHECK As Byte = &H0  ‘ request programming progress command 
 
Private Sub Timer1_Timer() 
    If PROGRAMMING = True Then  ‘ only if busy programming a device 
        Send_Socket (Chr(PROGRAM_COMMAND) + Chr(PROGRAM_CHECK)) ‘ send command 
    End If 
End Sub 

Figure 8.7   Requesting the programming progress from the Web server. 

 

The remote Web server also uses a 2-byte packet method to feed data back to the 

EmEther utility and the general structure looks as follows: 

 

Programming progress (= 1)
OR

File transfer progress(= 0)
Data (1 byte)

 

Figure 8.8   Data feedback packet from the remote Web server. 

 

The first byte indicates to the EmEther utility that it is a programming progress feedback 

packet or a file transfer progress feedback packet.  The data byte either indicates the 

value of the Status lines (from the programming processor for programming progress 
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indication) or it indicates the number of bytes of the transferred file that was programmed 

into the EEPROM. 

 

Winsock1_DataArrival() is a Winsock control method that is called as soon as data 

arrives on the TCP socket connection and is used to capture feedback from the remote 

Web server.  The Progress bar ActiveX control is used to indicate the programming 

progress. 

 

Private Sub Winsock1_DataArrival(ByVal bytesTotal As Long) 
    Dim temp As String  ‘ temporary string 
         
    Winsock1.GetData temp  ‘ read data from TCP socket 
         
    Select Case (Asc(Mid(temp, 1, 1)))  ‘ program feedback or file feedback 
        Case 0:     TotalBytesSend = TotalBytesSend + (Asc(Mid(temp, 2, 1)) - 3) 
                         progProgress.Position = (CInt((TotalBytesSend / TotalBytesToSend) * 100))   
                         frmMain.Refresh  ‘ update progress bar 
    
        Case 1:     PROGRAMMING_STATUS = Asc(Mid(temp, 2, 1)) ‘ programming feedback 
                         If (PROGRAMMING_STATUS = 0) Then 
                             PROGRAMMING = False 
                             progProgress.Position = 0 
                             progProgress.ForeColor = vbBlue 
                             txtStatus.Text = "" 
                             txtStatus.Visible = False 
                         Else 
                             If PROGRAMMING_STATUS > 7 Then 
                                 progProgress.ForeColor = vbCyan 
                             Else 
                                 progProgress.ForeColor = vbGreen 
                             End If 
                             Select Case (PROGRAMMING_STATUS) 
                                 Case 1: progProgress.Position = 4 ‘ File loading 4% 
                                 Case 2: progProgress.Position = 20 ‘ File loading 20% 
                                 Case 3: progProgress.Position = 36 ‘ File loading 36% 
                                 Case 4: progProgress.Position = 52 ‘ File loading 52% 
                                 Case 5: progProgress.Position = 68 ‘ File loading 68% 
                                 Case 6: progProgress.Position = 84 ‘ File loading 84% 
                                 Case 7: progProgress.Position = 100 ‘ File loading 100% 
                                 Case 8: progProgress.Position = 4 ‘ Programming device 4% 
                                 Case 9: progProgress.Position = 20 ‘ Programming device 20% 
                                 Case 10: progProgress.Position = 36 ‘ Programming device 36% 
                                 Case 11: progProgress.Position = 52 ‘ Programming device 52% 
                                 Case 12: progProgress.Position = 68 ‘ Programming device 68% 
                                 Case 13: progProgress.Position = 84 ‘ Programming device 84% 
                                Case 14: progProgress.Position = 100 ‘ Programming device 100% 
                             End Select 
                         End If 
    End Select 
End Sub 
Figure 8.9   Receiving data from the remote Web server using the TCP socket connection. 
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8.3 ACCESSING THE REMOTE SYSTEM 

The remote system can be accessed using a standard Web browser, e.g. Internet Explorer 

5.0.  A permanent demonstration unit has been installed at PE Technikon and can be seen 

at Internet URL: picweb.petech.ac.za.  Figure 8.10 shows a screen capture of one sample 

application for the remote system. 

 

 

Figure 8.10   An example of an embedded Web page. 

 

Trying to access the Web page while the programming processor is busy with its 

programming duties, will result in a Web page containing the words: “REMOTE SYSTEM 

BUSY PROGRAMMING!” (Figure 8.11).  This feature could be used to determine if the 

programming processor is finished programming the MAX7000S device, seeing that no 

progress information is available from the Jam Byte-code Player (as explained in section 

8.2.1). 

 

 



 

c 

 

Figure 8.11   Error message when trying to access the remote system while it is in 

programming mode. 

 

8.4 DEVELOPMENT SOFTWARE 

The user will have to use some kind of software package for developing embedded code 

for the I/O controller (PIC16F877), developing logic designs for the MAX7000S device, and 

for creating new embedded web pages.  Development packages that were used for testing 

purposes in this project is shown in Table 8.1. 

 

Device Development 
software Vendor Website Manual/Reference 

material 

PIC16F877 MPLAB Microchip www.microchip.com MPLAB User’s Guide 

MAX7000S MAX+PLUS II Altera www.altera.com MAX+PLUS II: 
Getting Started. 

Web pages Frontpage Microsoft www.microsoft.com Using HTML, JAVA 
and CGI 

Table 8.1   Development packages and reference material used in this project. 
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Full working examples of applications for the remote system will be explained in the next 

chapter, and will give a clear indication of the relevant development software used for each 

section. 

 

8.5 CONCLUSION 

The main purpose of this chapter was to explain the working and operation of the EmEther 

utility for transferring and programming new source files.   

 

The next chapter will demonstrate 3 sample applications used with the remote system, 

including the source code for the different sections.  Programming times, access times and 

special comments will be provided with each example.  The chapter will end with possible 

future developments for the remote system and the conclusion for the whole project. 
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CHAPTER 9 
SYSTEM TESTING, FUTURE DEVELOPMENTS AND 

CONCLUSION 
 

9.1 OVERVIEW 

This final chapter will indicate the test results of the whole system by testing it with three 

different applications.  Typical programming times will be given for each scenario.  

Possible future development areas will also be highlighted followed by the final conclusion 

of the project. 

 

9.2 SYSTEM TESTING 

To demonstrate the operation of the project, it was tested using three different 

applications.  The software for the applications was developed and programmed from two 

different remote locations within PE Technikon’s Intranet.  Due to security risks, a firewall 

will block any attempts to program the board (using the EmEther utility) from a remote 

location outside the PE Technikon.  Remote users can, however, still monitor and control 

the current programmed application through a standard Web browser (e.g. Internet 

Explorer 5) by establishing a connection to the board itself at http://picweb.petech.ac.za.  

All the information about this project, the code for the three different applications, the 

EmEther utility, and relevant datasheets can also be downloaded from the following URL: 

http://www.petech.ac.za/emether.  

 

The three applications that were chosen are:  

• A simulation of eight inputs and outputs using an 8-way DIP switch and LEDs. 

• A temperature logger with a real-time clock. 

• A Stepper motor, PWM, and push button simulation using an APPLIC-71 unit. 

 

9.2.1 DIP SWITCH & LEDs 

This simple application demonstrates how a user can monitor the status of an 8-way DIP 

switch and control the output of eight LEDs.  Figure 9.1 shows the required external 

hardware and the connection to the remote Internet I/O controller board.   
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Figure 9.1   Required hardware for the DIP switch & LEDs application. 
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The LEDs are all connected as common-anode, which means that a logic LOW is 

necessary on the input for a LED to light up.  Each switch in the DIP switch array is pulled 

up on the one side with a 10K resistor and on the other side it is connected to ground.  

This means that when a switch is open the output will be HIGH, and when the switch is 

closed the output will be LOW.  Using Table 6.1 (Chapter 6, p.79), the connections to the 

I/O controller are as follows: 

 

Description Connector 

J10 pin 

I/O controller 

pin 

LED0 36 RD5 

LED1 35 RD4 

LED2 34 RD3 

LED3 33 RD2 

LED4 32 RD1 

LED5 31 RD0 

LED6 3 RB2 

LED7 5 RB4 

SWITCH0 10 RA0 

SWITCH1 11 RA1 

SWITCH2 12 RA2 

SWITCH3 13 RA3 

SWITCH4 14 RA4 

SWITCH5 15 RA5 

SWITCH6 1 RB0 

SWITCH7 2 RB1 

Table 9.1   I/O connections for the DIP switch & LEDs application. 

 

Jumpers JP10 to JP14 must be in the 1-2 position, because port A on the I/O controller is 

configured as digital inputs and not as analog inputs.  
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9.2.1.1 Web page 

Figure 9.2 shows the Web page for the DIP switch & LEDs application. 

 

 

Figure 9.2   Web page for the DIP switch & LEDs application. 

 

The user can remotely monitor the status of the DIP switch and the LEDs.  LEDs on the 

remote board can also be toggled ON or OFF by clicking on the required LED.  The 

directory structure for the Web page is indicated in Figure 9.3. 

 

dip.egi
index.htm
led0.gif
led1.gif
leds.egi
main.htm
sw0.gif
sw1.gif  

Figure 9.3   Directory structure for the DIP switch & LEDs application. 
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The led_.gif and sw_.gif files are image files for indicating if a LED or switch is ON or OFF.  

The index.htm file basically divides the Web page into three different frames:  the main title 

frame (main.htm), the inputs frame (dip.egi) and the outputs frame (leds.egi).  A list of all 

the EGI characters for requesting the status of variables from the remote board is 

indicated in Table 9.2 (refer to section 4.4 for more detail about EGI characters). 

 

Character Function 

0 Returns status of SWITCH0 

1 Returns status of SWITCH1 

2 Returns status of SWITCH2 

3 Returns status of SWITCH3 

4 Returns status of SWITCH4 

5 Returns status of SWITCH5 

6 Returns status of SWITCH6 

7 Returns status of SWITCH7 

a Returns status of LED0 

b Returns status of LED1 

c Returns status of LED2 

d Returns status of LED3 

e Returns status of LED4 

f Returns status of LED5 

g Returns status of LED6 

h Returns status of LED7 

Table 9.2   EGI request characters for the DIP switch & LEDs application. 

 

The EGI output characters for controlling the LEDs remotely are shown in Table 9.3.  Each 

of the LED images are push button controls with identifier names starting with a “Q” 

followed by one of the EGI output characters. 

 

Figure 9.4 to 9.6 shows the HTML code for the main.htm, leds.egi and dip.egi files. 
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Character Function 

0 Toggles the output for LED0 

1 Toggles the output for LED1 

2 Toggles the output for LED2 

3 Toggles the output for LED3 

4 Toggles the output for LED4 

5 Toggles the output for LED5 

6 Toggles the output for LED6 

7 Toggles the output for LED7 

Table 9.3   EGI output characters for the DIP switch & LEDs application. 

 

<head> 
<t i t l e>DI P swi t ch & LEDs</ t i t l e> 
</ head> 
<body bgcol or =" #99CCFF" > 
<p al i gn=" cent er " ><f ont  f ace=" Ar i al "  si ze=" 7"  col or =" #000080" >EmEt her  Test  Web 
page: </ f ont ></ p> 
<hr > 
<p al i gn=" cent er " ><f ont  f ace=" Ar i al "  si ze=" 7"  col or =" #FFFF00" >DI P Swi t ch &amp;  
LEDs</ f ont ></ p> 
<hr > 
<p al i gn=" l ef t " ><b><f ont  col or =" #0000FF" > 
<f ont  f ace=" Ar i al " >By:  Gr ant  Phi l l i ps</ f ont ></ f ont ></ b><br ><b> 
<f ont  f ace=" Ar i al "  s i ze=" 3" ><f ont  col or =" #0000FF" >December  2002</ f ont > 
<br ><a hr ef =" mai l t o: phi l l i ps@pet ech. ac. za" >phi l l i ps@pet ech. ac. za</ a></ f ont ></ b> 
</ p> 

Figure 9.4   HTML code for main.htm 

 

<head> 
<t i t l e></ t i t l e> 
</ head> 
<body bgcol or =" #CCCCFF" > 
<p al i gn=" cent er " ><f ont  f ace=" Ar i al "  si ze=" 6"  col or =" #0000FF" >OUTPUTS</ f ont ></ p> 
<hr > 
<p al i gn=" cent er " ><f ont  col or =" #0000FF"  f ace=" Ar i al "  si ze=" 5" >LEDs: </ f ont ></ p> 
<f or m met hod=" SUBMI T"  ac t i on=" l eds. egi " > 
<p al i gn=" cent er " ><i nput  bor der =" 0"  s r c=" l ed@h. gi f "  name=" Q7"  wi dt h=" 20"  hei ght =" 20"  
t ype=" i mage" >&nbsp;  
<i nput  bor der =" 0"  sr c=" l ed@g. gi f "  name=" Q6"  wi dt h=" 20"  hei ght =" 20"  t ype=" i mage" >&nbsp;  
<i nput  bor der =" 0"  sr c=" l ed@f . gi f "  name=" Q5"  wi dt h=" 20"  hei ght =" 20"  t ype=" i mage" >&nbsp;  
<i nput  bor der =" 0"  sr c=" l ed@e. gi f "  name=" Q4"  wi dt h=" 20"  hei ght =" 20"  t ype=" i mage" >&nbsp;  
<i nput  bor der =" 0"  sr c=" l ed@d. gi f "  name=" Q3"  wi dt h=" 20"  hei ght =" 20"  t ype=" i mage" >&nbsp;  
<i nput  bor der =" 0"  sr c=" l ed@c. gi f "  name=" Q2"  wi dt h=" 20"  hei ght =" 20"  t ype=" i mage" >&nbsp;  
<i nput  bor der =" 0"  sr c=" l ed@a. gi f "  name=" Q0"  wi dt h=" 20"  hei ght =" 20"  t ype=" i mage" ></ p> 
</ f or m> 
<p>&nbsp; </ p> 

Figure 9.5   HTML code for leds.egi 
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<head><met a ht t p- equi v=" r ef r esh"  cont ent =" 3" > 
<t i t l e></ t i t l e> 
</ head> 
<body bgcol or =" #CCCCFF" > 
<p al i gn=" cent er " ><f ont  f ace=" Ar i al "  si ze=" 6"  col or =" #0000FF" >I NPUTS</ f ont ></ p> 
<hr > 
<p al i gn=" cent er " ><f ont  si ze=" 5" ><f ont  col or =" #0000FF" ><f ont  f ace=" Ar i al " >DI P 
swi t ch: &nbsp;  <i mg bor der =" 0"  s r c=" sw@7. gi f "  wi dt h=" 20"  hei ght =" 40" > <i mg bor der =" 0"  
sr c=" sw@6. gi f "  wi dt h=" 20"  hei ght =" 40" > 
<i mg bor der =" 0"  sr c=" sw@5. gi f "  wi dt h=" 20"  hei ght =" 40" > <i mg bor der =" 0"  sr c=" sw@4. gi f "  
wi dt h=" 20"  hei ght =" 40" > 
<i mg bor der =" 0"  sr c=" sw@3. gi f "  wi dt h=" 20"  hei ght =" 40" > <i mg bor der =" 0"  sr c=" sw@2. gi f "  
wi dt h=" 20"  hei ght =" 40" > 
<i mg bor der =" 0"  sr c=" sw@1. gi f "  wi dt h=" 20"  hei ght =" 40" > <i mg bor der =" 0"  sr c=" sw@0. gi f "  
wi dt h=" 20"  hei ght =" 40" > 
</ f ont ></ f ont ></ f ont ></ p> 
<p>&nbsp; </ p> 

Figure 9.6   HTML code for dip.egi 

 

9.2.1.2 Code for MAX7000S 

The reconfigurable hardware is not needed in this application since the I/O controller will 

drive and monitor the LEDs and DIP switch directly.  All the pins on the MAX7000S that 

are connected to the I/O controller will therefore be programmed as inputs to prevent 

contention (described in section 6.5).  Figure 9.7 shows the graphic representation for this 

configuration on the MAX7000S. 

 

 

Figure 9.7   MAX7000S graphic entry for the DIP switch & LEDs application. 
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9.2.1.3 Code for I/O controller 

Figure 9.8 shows the source code for the I/O controller.  The PIC16F877 simply drives its 

output pin LOW to turn a LED ON and HIGH to turn it OFF.  The interrupt routine is the 

most important section of the program and handles all the variable requests. 

 

 
#include <16F877.H> 
#device *=16 
 
// ********************** I/O Ports ********************** 
#byte   PORTA   = 0x05                
#byte   PORTB   = 0x06 
#byte   PORTC   = 0x07 
#byte   PORTD    = 0x08 
#byte   PORTE    = 0x09 
 
short LED0 = 0;     // Status of LEDs 
short LED1 = 0; 
short LED2 = 0; 
short LED3 = 0; 
short LED4 = 0; 
short LED5 = 0; 
short LED6 = 0; 
short LED7 = 0; 
 
void out_leds(void)    // Updates LEDs 
{ 
    output_bit(PIN_D5, ~LED0);   // LEDs are connected common anode 
    output_bit(PIN_D4, ~LED1); 
    output_bit(PIN_D3, ~LED2); 
    output_bit(PIN_D2, ~LED3); 
    output_bit(PIN_D1, ~LED4); 
    output_bit(PIN_D0, ~LED5); 
    output_bit(PIN_B2, ~LED6); 
    output_bit(PIN_B4, ~LED7); 
} 
 
// ******************** Required Code ******************** 
#use DELAY(CLOCK=20000000)     // setup crystal frequency 
#use RS232 (BAUD=115200, XMIT=PIN_C6, RCV=PIN_C7, ERRORS) // setup RS-232 module 
#define STOP putchar('~')   // STOP character for protocol 
 
#int_rda     // interrupt routine for receiving a command / request 
void serial_isr(void)  
{ 
    char b; 
 
    disable_interrupts(global); 
    b = getch();     // read character describing a request or command 
    if (b == '?')     // request 
    { 
        b = getch();    // read request number 
        switch(b) 
        { 
 

Figure 9.8   I/O controller source code for the DIP switch & LEDs application. 
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            case '0': {    // SWITCH0 
                  if (input(PIN_A0))  // if input is HIGH, the switch is OFF (pulled up by R2) 
          printf("0");   // use printf() for reply 
      else 
          printf("1"); 
      STOP;   // send STOP character after data has been send 
  }  
  break; 
            case '1': {    // SWITCH1 
      if (input(PIN_A1))  
          printf("0"); 
      else 
          printf("1"); 
      STOP; 
              }  
  break; 
            case '2': {    // SWITCH2 
      if (input(PIN_A2))  
          printf("0"); 
      else 
          printf("1"); 
      STOP; 
  }  
  break; 
            case '3': {    // SWITCH3 
          if (input(PIN_A3))  
          printf("0"); 
      else 
          printf("1"); 
      STOP; 
  }  
  break; 
            case '4': {     // SWITCH4 
                              if (input(PIN_A4))  
          printf("0"); 
      else 
          printf("1"); 
      STOP; 
  }  
  break; 
            case '5': {    // SWITCH5 
       if (input(PIN_A5))  
          printf("0"); 
      else 
          printf("1"); 
      STOP; 
  }  
  break; 
            case '6': {    // SWITCH6 
       if (input(PIN_B0))  
          printf("0"); 
      else 
          printf("1"); 
      STOP; 
  }  
  break; 
 

Figure 9.8 continued. 
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            case '7': {    // SWITCH7 
      if (input(PIN_B1))  
          printf("0"); 
      else 
          printf("1"); 
      STOP; 
  }  
  break; 
            case 'a': {    // LED0 
      if (~LED0)    // if variable is HIGH, the LED is ON  
          printf("0"); 
      else 
          printf("1"); 
      STOP; 
  }  
  break; 
            case 'b': {    // LED1 
      if (~LED1)  
          printf("0"); 
      else 
          printf("1"); 
      STOP; 
  }  
  break; 
            case 'c': {    // LED2 
      if (~LED2)  
          printf("0"); 
      else 
          printf("1"); 
      STOP; 
  }  
  break; 
            case 'd': {    // LED3 
      if (~LED3)  
          printf("0"); 
      else 
          printf("1"); 
      STOP; 
  }  
  break; 
            case 'e': {    // LED4 
      if (~LED4)  
          printf("0"); 
      else 
          printf("1"); 
      STOP; 
  }  
  break; 
            case 'f': {    // LED5 
      if (~LED5)  
          printf("0"); 
      else 
          printf("1"); 
      STOP; 
  }  
  break; 
 

Figure 9.8 continued. 
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            case 'g': {    // LED6 
      if (~LED6)  
          printf("0"); 
      else 
          printf("1"); 
      STOP; 
  }  
  break; 
            case 'h': {    // LED7 
      if (~LED7)  
          printf("0"); 
      else 
          printf("1"); 
      STOP; 
  }  
  break; 
            deault: {    // request not recognized, then reply with an ‘X’ 
      printf("X"); 
      STOP; 
  }  
  break; 
        }  
    }  
 
    if (b == '!')     // command  
    { 
        b = getch();    // read command number 
        switch(b) 
            { 
            case '0': {    // toggle LED0 
                              if (LED0)   // if variable is HIGH, turn the LED OFF 
          LED0 = 0; 
      else 
          LED0 = 1; 
  }  
  break; 
            case '1': {    // toggle LED1 
      if (LED1) 
          LED1 = 0; 
      else 
          LED1 = 1; 
  }  
  break; 
            case '2': {    // toggle LED2 
       if (LED2) 
          LED2 = 0; 
      else 
          LED2 = 1; 
  }  
  break;  
            case '3': {    // toggle LED3 
      if (LED3) 
          LED3 = 0; 
      else 
          LED3 = 1; 
  }  
  break; 
 

Figure 9.8 continued. 
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            case '4': {    // toggle LED4 
      if (LED4) 
          LED4 = 0; 
      else 
          LED4 = 1; 
  }  
  break; 
            case '5': {    // toggle LED5 
      if (LED5) 
          LED5 = 0; 
      else 
          LED5 = 1; 
  }  
  break; 
            case '6': {    // toggle LED6 
      if (LED6) 
          LED6 = 0; 
      else 
          LED6 = 1; 
  }  
  break;  
            case '7': {    // toggle LED7 
      if (LED7) 
          LED7 = 0; 
      else 
          LED7 = 1; 
  }  
  break; 
        } 
    } 
 
    enable_interrupts(global);   
} 
// ******************************************************* 
 
 
void main(void)     // main program loop 
{ 
// ******************** Required Code  *************** 
    set_tris_c(0x80);    // setup RXD and TXD pins for RS-232 
    enable_interrupts(global); 
    enable_interrupts(int_rda);   // enable interrupt on RS-232 receive 
// ******************************************************* 
    set_tris_a(0xff);    // set port direction registers 
    set_tris_b(0xeb); 
    set_tris_d(0x00); 
    set_tris_e(0xff); 
    portd = 255; 
    portb = 255; 
    porta = 0; 
    porte = 0; 
 
    while(1) 
    { 
        out_leds();     // continuously update the output of the LEDs 
    }  
} 

Figure 9.8 continued. 
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9.2.1.4 Results 

Table 9.4 indicates typical times that were measured to transfer the different source code 

files to the remote Internet I/O controller board and to program it in real-time.   

 

File Size Transfer Program 

dipleds.jbc 20933 bytes 8.16 sec 11 min 50.51 sec 

dipleds.hex 3650 bytes 0.78 sec 1 min 3.18 sec 

Web page 5727 bytes  2.41 sec 

Table 9.4   Typical loading and programming times for the DIP switch & LEDs application. 

 

9.2.2 TEMPERATURE LOGGER 

This application demonstrates how a user can monitor the temperature at a remote 

location.  The system logs the temperature readings every hour and the user can then 

view the temperature readings of the last twelve hours.  Figure 9.9 shows the required 

external hardware and the connection to the remote Internet I/O controller board.   

 

A DS1305 is used as the real time clock (RTC).  It is a SPI device and therefore only 

needs four lines to access the internal registers of the RTC.  The user will be able to set 

the time using controls on the web page. 

 

A LM35 temperature sensor is used to measure the temperature.  It provides an analog 

output voltage of 10mV/°C and is connected to the ADC0 pin, which in turn is connected to 

pin RA0 of the I/O controller.  Jumper JP10 should be in the 1-3 position because this pin 

is used as an analog input and not as a digital input. 

 

The two 7-segment LED displays provide feedback of the measured temperature at the 

remote location itself.  They are connected as common-cathode, which means that a logic 

HIGH is necessary on the input for a LED segment to light up.  The displays are driven 

from the MAX7000S and are not directly connected to the I/O controller.   
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Figure 9.9   Required hardware for the temperature logger application. 
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The connections to the I/O controller and the MAX7000S are as follows: 

 

Description Connector 

J11 pin 

I/O controller 

pin 

MAX7000S 

pin 

Segment A        (TENS) 5  56 

Segment B        (TENS) 6  57 

Segment C        (TENS) 13  67 

Segment D        (TENS) 12  65 

Segment E        (TENS) 11  64 

Segment F        (TENS) 4  55 

Segment G       (TENS) 3  54 

Segment DOT  (TENS) 14  68 

Segment A       (UNITS) 9  61 

Segment B       (UNITS) 10  63 

Segment C       (UNITS) 20  76 

Segment D       (UNITS) 16  70 

Segment E       (UNITS) 15  69 

Segment F       (UNITS) 8  60 

Segment G       (UNITS) 7  58 

Segment DOT  (UNITS) 21  77 

CE                  (DS1305) 22  79 

SDO               (DS1305) 19 RE0  

SDI                 (DS1305) 18 RE1  

CLK                (DS1305) 17 RE2  

Table 9.5   I/O connections for the temperature logger application. 
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9.2.2.1 Web page 

Figure 9.10 shows the Web page for the temperature logger application. 

 

 

Figure 9.10   Web page for the temperature logger application. 
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The user can remotely monitor the temperature measured by the LM35.  The RTC time 

can be set using the up and down arrows on the Web page.  Users can also view the 

logged temperatures of the last twelve hours.  The directory structure for the Web page is 

indicated in Figure 9.11. 

 

7seg_0.gif
7seg_1.gif
7seg_2.gif
7seg_3.gif
7seg_4.gif
7seg_5.gif
7seg_6.gif
7seg_7.gif
7seg_8.gif
7seg_9.gif
down.gif
index.htm
log.egi
main.htm
temp.egi
time.egi
up.gif
updown.egi  

Figure 9.11   Directory structure for the temperature logger application. 

 

The 7seg__.gif files are image files for indicating the temperature as it would be displayed 

on the 7-segment displays on the remote Internet I/O controller board.  The up.gif and 

down.gif files are also image files for showing the arrows to set the time of the RTC.  The 

index.htm file basically divides the Web page into four different frames:  the main title 

frame (main.htm), the temperature display frame (temp.egi), the time display frame 

(time.egi) and the time set frame (updown.egi).  If a user needs to view the temperature 

log, the temperature display frame will change to the log display frame (log.egi).  A list of 

all the EGI characters for requesting the status of variables from the remote board is 

indicated in Table 9.6. 
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Character Function 

0 Returns status of the TENS 7-segment display 

1 Returns status of the UNITS 7-segment display 

2 Returns the current time from the RTC (hour:min:sec) 

3 Returns the log entries as one string 

Table 9.6   EGI request characters for the temperature logger application. 

 

The EGI output characters for setting the time of the RTC remotely are shown in Table 9.7.  

Each of the arrow images are push button controls with identifier names starting with a “Q” 

followed by one of the EGI output characters.  Allow two to three seconds after clicking on 

an arrow for the change to take effect. 

 

Character Function 

0 Decrement seconds 

1 Increment seconds 

2 Decrement minutes 

3 Increment minutes 

4 Decrement hours 

5 Increment hours 

Table 9.7   EGI output characters for the temperature logger application. 

 

Figure 9.12 to 9.16 shows the HTML code for the main.htm, temp.egi, time.egi, 

updown.egi and log.egi files. 

 

<head> 
<t i t l e>Temper at ur e Logger </ t i t l e> 
</ head> 
<body bgcol or =" #99CCFF" > 
<p al i gn=" cent er " ><f ont  f ace=" Ar i al "  si ze=" 7"  col or =" #000080" >EmEt her  Test  Web 
page: </ f ont ></ p> 
<hr > 
<p al i gn=" l ef t " ><b><f ont  col or =" #0000FF" ><f ont  f ace=" Ar i al " >By:  Gr ant  
Phi l l i ps&nbsp; </ f ont > 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; </ f ont ></ b> 
<f ont  f ace=" Ar i al "  s i ze=" 7"  
col or =" #FFFF00" >&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;  
Temper at ur e Logger </ f ont ><br ><b><f ont  f ace=" Ar i al "  s i ze=" 3" ><f ont  
col or =" #0000FF" >December  2002</ f ont > 
<br ><a hr ef =" mai l t o: phi l l i ps@pet ech. ac. za" >phi l l i ps@pet ech. ac. za</ a></ f ont ></ b></ p> 

Figure 9.12   HTML code for main.htm 
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<head><met a ht t p- equi v=" r ef r esh"  cont ent =" 3" > 
<t i t l e></ t i t l e> 
</ head> 
<body bgcol or =" #CCCCFF" > 
<p al i gn=" cent er " ><f ont  f ace=" Ar i al "  si ze=" 6"  col or =" #0000FF" >TEMPERATURE</ f ont ></ p> 
<hr > 
<p al i gn=" l ef t " ><f ont  f ace=" Ar i al " ><b><a hr ef =" l og. egi " >Vi ew LOG</ a></ b></ f ont ></ p> 
<p al i gn=" cent er " >&nbsp; </ p> 
<p al i gn=" cent er " ><i mg bor der =" 0"  sr c=" 7seg_@0. gi f "  wi dt h=" 40"  hei ght =" 66" > 
<f ont  f ace=" Ar i al "  s i ze=" 5"  col or =" #FF0000" ><i mg bor der =" 0"  sr c=" 7seg_@1. gi f "  wi dt h=" 40"  
hei ght =" 66" > 
</ f ont ><f ont  col or =" #0000FF" ><sup><f ont  f ace=" Ar i al "  si ze=" 5" >o </ f ont > </ sup> 
<f ont  col or =" #0000FF"  f ace=" Ar i al "  s i ze=" 6" >C</ f ont ></ f ont ></ p> 

Figure 9.13   HTML code for temp.egi 

 

<head><met a ht t p- equi v=" r ef r esh"  cont ent =" 1" > 
<t i t l e></ t i t l e> 
</ head> 
<body bgcol or =" #CCCCFF" > 
<p al i gn=" cent er " ><f ont  f ace=" Ar i al "  col or =" #FF0000"  si ze=" 7" >@2</ f ont ></ p> 
<p al i gn=" cent er " >&nbsp; </ p> 
<p al i gn=" cent er "  st y l e=" l i ne- hei ght :  100%" ><f ont  f ace=" Ar i al "  si ze=" 3"  
col or =" #0000FF" >Set  
t he t i me by usi ng</ f ont > <f ont  f ace=" Ar i al "  s i ze=" 3"  col or =" #0000FF" >t he above 
ar r ows. </ f ont ></ p> 
<p al i gn=" cent er "  st y l e=" l i ne- hei ght :  100%" ><f ont  f ace=" Ar i al "  si ze=" 3"  
col or =" #0000FF" >Al l ow 
2 -  3 seconds f or  updat i ng. </ f ont ></ p> 

Figure 9.14   HTML code for time.egi 

 

<head> 
<t i t l e></ t i t l e> 
</ head> 
<body bgcol or =" #CCCCFF" > 
<p al i gn=" cent er " ><f ont  f ace=" Ar i al "  si ze=" 6"  col or =" #0000FF" >TI ME</ f ont ></ p> 
<hr > 
<f or m met hod=" SUBMI T"  ac t i on=" updown. egi " > 
<p al i gn=" cent er " > 
<i nput  bor der =" 0"  sr c=" up. gi f "  name=" Q5"  wi dt h=" 18"  hei ght =" 21"  t ype=" i mage" > 
<i nput  bor der =" 0"  sr c=" down. gi f "  name=" Q4"  wi dt h=" 18"  hei ght =" 21"  
t ype=" i mage" >&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;  
<i nput  bor der =" 0"  sr c=" up. gi f "  name=" Q3"  wi dt h=" 18"  hei ght =" 21"  t ype=" i mage" > 
<i nput  bor der =" 0"  sr c=" down. gi f "  name=" Q2"  wi dt h=" 18"  hei ght =" 21"  
t ype=" i mage" >&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;  
<i nput  bor der =" 0"  sr c=" up. gi f "  name=" Q1"  wi dt h=" 18"  hei ght =" 21"  t ype=" i mage" > 
<i nput  bor der =" 0"  sr c=" down. gi f "  name=" Q0"  wi dt h=" 18"  hei ght =" 21"  t ype=" i mage" >&nbsp; </ p> 
</ f or m> 

Figure 9.15   HTML code for updown.egi 
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<head><met a ht t p- equi v=" r ef r esh"  cont ent =" 10" > 
<t i t l e></ t i t l e> 
</ head> 
<body bgcol or =" #CCCCFF" > 
<p al i gn=" cent er " ><f ont  f ace=" Ar i al "  si ze=" 6"  col or =" #0000FF" >TEMPERATURE LOG: </ f ont ></ p> 
<hr > 
<p al i gn=" l ef t " ><f ont  f ace=" Ar i al "  col or =" #0000FF" ><b><a hr ef =" t emp. egi " >Vi ew 
Temper at ur e</ a> 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;  
Last  12 hour s : </ b></ f ont ></ p> 
<p al i gn=" r i ght " ><f ont  f ace=" Ar i al "  col or =" #008000" >@3</ f ont ></ p> 
<p al i gn=" r i ght " >&nbsp; </ p> 

Figure 9.16   HTML code for log.egi 

 

9.2.2.2   Code for MAX7000S 

The purpose of the MAX7000S in this application is to drive the two 7-segment displays.  If 

the displays were driven directly from the I/O controller, it will use 16 pins on the 

PIC16F877 (8 pins per 7-segment display).  To minimize the number of pins needed, two 

7-segment drivers (7449) are programmed into the MAX7000S which drives the two 

displays.  The two 7-segment drivers are fed from a binary-to-double BCD driver.  In this 

application the LM35 will rarely measure temperatures beyond 50°C and therefore the 

binary-to-double BCD driver only needs six inputs from the I/O controller (26 = 64). 

 

Pin 79 on the MAX7000S (IO57) is used as the chip enable (CE) pin for the DS1305 and is 

internally connected to pin RA5 of the I/O controller.  Once again all unused pins of the 

MAX7000S must be programmed as inputs. 

 

Figure 9.17 shows the graphic representation for this configuration on the MAX7000S. 
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Figure 9.17   MAX7000S graphic entry for the temperature logger application. 
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9.2.2.3 Code for I/O controller 

Figure 9.18 shows the source code for the I/O controller.  The PIC16F877 uses its analog 

to digital converter to read the temperature measurement from the LM35.  The I/O 

controller also uses port C to drive the MAX7000S which in turn drives the two 7-segment 

displays.  Port E is used to access the SPI bus to communicate with the DS1305 RTC. 

 

#include <16F877.H> 
#use DELAY(CLOCK=20000000) 
#include "ds1305.c" 
 
// ********************** I/O Ports ********************** 
#byte   PORTA   = 0x05                
#byte   PORTB   = 0x06 
#byte   PORTC   = 0x07 
#byte   PORTD    = 0x08 
#byte   PORTE    = 0x09 
 
long temp=0;      // current temperature 
byte DAY, MONTH, YEAR, HOUR, MIN, SEC;  // current time 
byte LOG_HOUR[12], LOG_MIN[12], LOG_SEC[12]; // time arrays for logging 
long LOG_TEMP[12];     // temperature array for logging 
signed int LOG_ENTRIES=-1;    // current amount of logged temperatures 
 
// ******************** Required Code ******************** 
#use DELAY(CLOCK=20000000)     // setup crystal frequency 
#use RS232 (BAUD=115200, XMIT=PIN_C6, RCV=PIN_C7, ERRORS) // setup RS-232 module 
#define STOP putchar('~')   // STOP character for protocol 
 
#int_rda     // interrupt routine for receiving a command / request 
void serial_isr(void)  
{ 
    char b; 
    disable_interrupts(global); 
    b = getch();     // read character describing a request or command 
    if (b == '?')     // request 
    { 
        b = getch();    // read request number 
        switch(b) 
        { 
            case '0': { 
      printf("%lu", temp/10); // returns status of TENS 7-segment display 
      STOP; 
  }  
  break; 
            case '1': { 
      printf("%lu", temp%10); // returns status of UNITS 7-segment display 
      STOP; 
  }  
  break; 
            case '2': { 
      printf("%X:%X:%X", HOUR, MIN, SEC); // returns current time 
      STOP; 
  }  
  break; 

Figure 9.18   I/O controller source code for the temperature logger application.          
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            case '3': { 
      if (LOG_ENTRIES < 0)   // no log entries 
          printf("  "); 
      else 
          for (i=0; i <= LOG_ENTRIES; i++) 
          { 
              printf("%d.&nbsp;&nbsp;&nbsp;&nbsp;%X:%X:%X  -----  %lu 'C<br>", i+1, 
LOG_HOUR[i], LOG_MIN[i], LOG_SEC[i], LOG_TEMP[i]); // displays log as several lines of text 
          } 
      STOP; 
  }  
  break; 
            deault:   { 
      printf("X");   // request not recognized, then reply with an ‘X’ 
      STOP; 
  }  
  break; 
        }  
    }  
 
    if (b == '!')     // command  
    { 
        b = getch();    // read command number 
        switch(b) 
        { 
            case '0': {    // decrement seconds 
      if ((SEC == 0x50) || (SEC == 0x40) || (SEC == 0x30) || (SEC == 0x20) || (SEC == 0x10)) 
          SEC = SEC - 7; 
      else if (SEC == 0x00) 
          SEC = 0x59; 
      else 
          SEC--; 
      RTC_Set_DateTime(0,0,0,HOUR,MIN,SEC); 
  }  
  break; 
            case '1': {    // increment seconds 
      if ((SEC == 0x09) || (SEC == 0x19) || (SEC == 0x29) || (SEC == 0x39) || (SEC == 0x49)) 
          SEC = SEC + 7; 
      else if (SEC == 0x59) 
          SEC = 0x00; 
      else 
          SEC++; 
      RTC_Set_DateTime(0,0,0,HOUR,MIN,SEC); 
  }  
  break; 
            case '2': {    // decrement minutes 
      if ((MIN == 0x50) || (MIN == 0x40) || (MIN == 0x30) || (MIN == 0x20) || (MIN == 0x10)) 
          MIN = MIN - 7; 
      else if (MIN == 0x00) 
          MIN = 0x59; 
      else 
          MIN--; 
      RTC_Set_DateTime(0,0,0,HOUR,MIN,SEC); 
  }  
  break; 
 

Figure 9.18 continued. 
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            case '3': {    // increment minutes 
      if ((MIN == 0x09) || (MIN == 0x19) || (MIN == 0x29) || (MIN == 0x39) || (MIN == 0x49)) 
          MIN = MIN + 7; 
      else if (MIN == 0x59) 
          MIN = 0x00; 
      else 
          MIN++; 
      RTC_Set_DateTime(0,0,0,HOUR,MIN,SEC); 
  }  
  break; 
            case '4': {    // decrement hours 
      if ((HOUR == 0x20) || (HOUR == 0x10)) 
          HOUR = HOUR - 7; 
      else if (HOUR == 0x00) 
          HOUR = 0x23; 
      else 
          HOUR--; 
      RTC_Set_DateTime(0,0,0,HOUR,MIN,SEC); 
  }  
  break; 
            case '5': {    // increment hours 
      if ((HOUR == 0x09) || (HOUR == 0x19)) 
          HOUR = HOUR + 7; 
      else if (HOUR == 0x23) 
          HOUR = 0x00; 
      else 
          HOUR++; 
      RTC_Set_DateTime(0,0,0,HOUR,MIN,SEC); 
  }  
  break; 
        } 
    } 
 
    enable_interrupts(global);   
} 
 
// ******************************************************* 
 
void main(void)     // main program loop 
{ 
    int i; 
    long a=0, sum=0; 
    byte LAST_LOG=0; 
 
// ******************** Required Code  *************** 
    set_tris_c(0x80);    // setup RXD and TXD pins for RS-232 
    enable_interrupts(global); 
    enable_interrupts(int_rda);   // enable interrupt on RS-232 receive 
// ******************************************************* 
    setup_adc_ports(RA0_ANALOG);  // setup port A and ADC 
    setup_adc(ADC_CLOCK_INTERNAL); 
    set_adc_channel(0); 
    set_tris_a(0x01);    // set port direction registers 
    set_tris_b(0x00); 
    set_tris_d(0x00); 
    set_tris_e(0x01); 
 

Figure 9.18 continued. 
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    portc = 0; 
    portd = 255; 
    portb = 0; 
    porta = 0; 
    porte = 255; 
 
    RTC_Init();     // initialise DS1305 
    RTC_Set_DateTime(0,0,0,0,0,0);  // reset time on DS1305 
 
    while(1) 
    { 
        // ********** Get Temperature from LM35 on ADC channel 0 ********** 
        for (i=0; i<200; i++) 
        { 
             delay_ms(10);                           // allow to setle 
     a = READ_ADC() * 500 / 1024;        // get value 
 sum = sum + a;    // add to sum so that average can be calculated 
        } 
        temp = sum / 200;    // calculate average 
        portc = temp;    // drive MAX7000S with the binary value of the temperature 
        sum = 0;     // reset sum 
 
        // ********** Get time from RTC ********** 
        RTC_Get_Time(HOUR, MIN, SEC); // read time from DS1305 
 
        // ********** Read sample every 1 hour ********** 
        if (HOUR - LAST_LOG >= 1)  // if an hour expired, log the temperature 
        { 
 LOG_ENTRIES++; 
 if (LOG_ENTRIES > 11) 
     LOG_ENTRIES = 0; 
 LAST_LOG = HOUR; 
 LOG_HOUR[LOG_ENTRIES] = HOUR;  // store temperature and time in the log arrays 
 LOG_MIN[LOG_ENTRIES] = MIN; 
 LOG_SEC[LOG_ENTRIES] = SEC; 
 LOG_TEMP[LOG_ENTRIES] = TEMP;  
        } 
    }  
} 

Figure 9.18 continued. 

 

9.2.2.4 Results 

Table 9.8 indicates typical times that were measured to transfer the different source code 

files to the remote Internet I/O controller board and to program it in real-time.   

 

File Size Transfer Program 

templog.jbc 21978 bytes 8.54 sec 12 min 11.98 sec 

templog.hex 10077 bytes 1.55 sec 1 min 2.80 sec 

Web page 16674 bytes  2.41 sec 

Table 9.8   Typical loading and programming times for the temperature logger application. 
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9.2.3 APPLIC-71 UNIT 

This application is based on the APPLIC-71 unit from Scientific Educational Systems 

(SES).  It is used as an educational tool to teach students about stepper motors, DC 

motors, switches etc.  The unit consists of various peripherals, but for this application only 

the switches, the stepper motor, the lamp, the temperature sensor and the potentiometer 

will be used.  Figure 9.19 shows the required external hardware and the connection to the 

remote Internet I/O controller board.   

 

A LM35 temperature sensor is used to measure the temperature.  It provides an analog 

output voltage and is connected to the ADC1 pin, which in turn is connected to pin RA1 of 

the I/O controller.  The potentiometer is used to set the speed of the stepper motor and is 

connected to the ADC0 pin (pin RA0 on the I/O controller).  Jumpers JP10 and JP11 

should be in the 1-3 position seeing that these pins are configured as an analog inputs and 

not as a digital inputs. 

 

A LED is also connected as common anode and needs a LOW on the input to turn it ON.  

All the switches are connected to ground on the one side and pulled up by the 

PIC16F877’s internal pull-up resistors on the other side.  If a switch is closed, the input to 

the I/O controller will be LOW. 

 

The inputs to the stepper motor’s four windings first go through a ULN2803 octal driver to 

allow the stepper motor to be driven from a +12V supply and to provide the necessary 

current.  PWM is demonstrated by using the lamp, which is driven by the ULN2803.  By 

changing the PWM duty cycle, the lamp will be dimmer or brighter. 
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Figure 9.19   Required hardware for the APPLIC-71 application. 
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Using Table 6.1 (Chapter 6, p.79), the connections to the I/O controller are as follows: 

 

Description Connector 

J10 pin 

Connector 

J11 pin 

I/O controller 

pin 

Switch 3  RB2 

Pushbutton 2  RB1 

Limit switch 1  RB0 

LED 5  RB5 

S1  (stepper motor) 25  RC5 

S2  (stepper motor) 26  RC4 

S3  (stepper motor) 27  RC3 

S4  (stepper motor) 28  RC2 

Lamp 24  RC1 

LM35  30 RA1 

Potentiometer  29 RA0 

Table 9.9   I/O connections for the APPLIC-71 application. 

 

9.2.3.1 Web page 

Figure 9.20 shows the Web page for the APPLIC-71 application. 

 

The user can remotely monitor the temperature measured by the LM35.  By using the 

arrow controls, the brightness of the lamp can be changed.  As the lamp gets brighter, the 

temperature will also increase seeing that the LM35 is positioned right next to the lamp. 

 

The stepper motor can be started or stopped by clicking on the GO/STOP image and 

clicking on the arrow image can change the direction.  As the stepper motor turns, the 

position of the shaft is indicated in degrees.  The potentiometer on the APPLIC-71 unit 

sets the speed of the stepper motor.  The lower the speed indicator on the Web page, the 

faster the stepper motor rotates. 
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Figure 9.20   Web page for the APPLIC-71 application. 

 

The directory structure for the Web page is indicated in Figure 9.21. 

 

The light_.gif files are image files for indicating the brightness of the lamp.  The ls_.gif, 

sw_.gif, pb_.gif and led_.gif image files just indicates the status of the switches and the 

LED.  The index.htm file basically divides the Web page into six different frames:  the main 

title frame (main.htm), the lamp display frame (light.egi), the stepper control frame 

(stepper.egi), the stepper position frame (position.egi), the inputs frame (inputs.egi) and 

the LED frame (led.egi).   

 

The EGI output characters for controlling the stepper motor, the lamp brightness and the 

LED are shown in Table 9.10.  The arrow images, the LED image and the stepper motor 

control images are push button controls with identifier names starting with a “Q” followed 

by one of the EGI output characters. 
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ccw.gif
cw.gif
down.gif
go.gif
index.htm
inputs.egi
led.egi
led0.gif
led1.gif
light.egi
light0.gif
light1.gif
light2.gif
light3.gif
light4.gif

ls0.gif
ls1.gif

main,htm

pb0.gif
pb1.gif
postion.egi
stepper.egi
stop.gif
sw0.gif

sw1.gif
up.gif  

Figure 9.21   Directory structure for APPLIC-71 application. 

 

Character Function 

0 Toggles LED ON or OFF 

1 Increases the lamp brightness 

2 Decreases the lamp brightness 

3 Changes stepper motor direction 

4 Toggles stepper motor ON or OFF 

Table 9.10   EGI output characters for the APPLIC-71 application. 

 

A list of all the EGI characters for requesting the status of variables from the remote board 

is indicated in Table 9.11. 
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Character Function 

0 Returns status of the potentiometer (speed of the stepper) 

1 Returns the temperature measured by the LM35 

2 Returns the status of the limit switch 

3 Returns the status of the push button 

4 Returns the status of the switch 

5 Returns the status of the LED 

6 Returns the brightness of the lamp 

7 Returns the current stepper motor direction 

8 Returns the status of stepper motor 

9 Returns the position of the stepper motor’s shaft 

a Returns the speed of the stepper motor 

Table 9.11   EGI request characters for the APPLIC-71 application. 

 

 

Figure 9.22 to 9.27 shows the HTML code for the main.htm, light.egi, stepper.egi, 

position.egi, inputs.egi and led.egi files. 

 

 

<head> 
<t i t l e>DI P swi t ch & LEDs</ t i t l e> 
</ head> 
<body bgcol or =" #99CCFF" > 
<p al i gn=" cent er " ><f ont  f ace=" Ar i al "  si ze=" 7"  col or =" #000080" >EmEt her  Test  Web 
page: </ f ont ></ p> 
<hr > 
<p al i gn=" l ef t " ><b><f ont  col or =" #0000FF" ><f ont  f ace=" Ar i al " >By:  Gr ant  Phi l l i ps&nbsp;  
</ f ont >&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; </ f ont ></ b> 
<f ont  f ace=" Ar i al "  s i ze=" 7"  col or =" #FFFF00" > 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;  
APPLI C- 71 Uni t </ f ont ><br ><b><f ont  f ace=" Ar i al "  si ze=" 3" > 
<f ont  col or =" #0000FF" >December  2002</ f ont > 
<br ><a hr ef =" mai l t o: phi l l i ps@pet ech. ac. za" >phi l l i ps@pet ech. ac. za</ a></ f ont ></ b></ p> 

Figure 9.22   HTML code for main.htm 
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<ht ml > 
<head><met a ht t p- equi v=" r ef r esh"  cont ent =" 10" > 
<t i t l e></ t i t l e> 
</ head> 
<body bgcol or =" #CCCCFF" > 
<p al i gn=" cent er " ><f ont  f ace=" Ar i al "  si ze=" 6"  col or =" #0000FF" >LI GHT</ f ont ></ p> 
<hr > 
<f or m met hod=" SUBMI T"  ac t i on=" l i ght . egi " > 
<p al i gn=" cent er " ><f ont  f ace=" Ar i al "  si ze=" 4"  col or =" #0000FF" >Br i ght ness:  
</ f ont >&nbsp;  <i mg bor der =" 0"  s r c=" l i ght @6. gi f "  wi dt h=" 36"  hei ght =" 36" >&nbsp; &nbsp; &nbsp;  
<i nput  bor der =" 0"  sr c=" up. gi f "  name=" Q1"  wi dt h=" 18"  hei ght =" 21"  t ype=" i mage" > 
<i nput  bor der =" 0"  sr c=" down. gi f "  name=" Q2"  wi dt h=" 18"  hei ght =" 21"  t ype=" i mage" ></ p> 
</ f or m> 
<p al i gn=" l ef t " ><f ont  f ace=" Ar i al "  col or =" #0000FF"  s i ze=" 4" >&nbsp; &nbsp; &nbsp;  
Temper at ur e:  
&nbsp; &nbsp; &nbsp; &nbsp;  
</ f ont ><f ont  f ace=" Ar i al "  col or =" #FF0000"  si ze=" 5" >@1</ f ont ><f ont  f ace=" Ar i al "  si ze=" 4"  
col or =" #FF0000" > 
</ f ont ><f ont  col or =" #0000FF" ><f ont  f ace=" Ar i al "  s i ze=" 3" ><sup>o</ sup></ f ont > 
<f ont  f ace=" Ar i al "  s i ze=" 5" >C</ f ont ></ f ont ></ p> 
</ body> 
</ ht ml > 

Figure 9.23   HTML code for light.egi 

 

 

 

<ht ml > 
<head> 
<t i t l e></ t i t l e> 
</ head> 
<body bgcol or =" #CCCCFF" > 
<p al i gn=" cent er " ><f ont  f ace=" Ar i al "  si ze=" 6"  col or =" #0000FF" >STEPPER</ f ont ></ p> 
<hr > 
<f or m met hod=" SUBMI T"  ac t i on=" s t epper . egi " > 
<p al i gn=" cent er " ><f ont  col or =" #0000FF"  f ace=" Ar i al "  si ze=" 4" >Di r ect i on:  
&nbsp; &nbsp; </ f ont ><i nput  bor der =" 0"  sr c=" @7. gi f "  name=" Q3"  wi dt h=" 92"  hei ght =" 84"  
t ype=" i mage" > 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;  
<f ont  col or =" #0000FF"  f ace=" Ar i al "  s i ze=" 4" >Go/ St op</ f ont >&nbsp;  
<i nput  bor der =" 0"  sr c=" @8. gi f "  name=" Q4"  wi dt h=" 55"  hei ght =" 55"  t ype=" i mage" >  
</ p> 
</ f or m> 
</ body> 
</ ht ml > 

Figure 9.24   HTML code for stepper.egi 
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<ht ml ><met a ht t p- equi v=" r ef r esh"  cont ent =" 1" > 
<t i t l e></ t i t l e> 
<body bgcol or =" #CCCCFF" > 
<p al i gn=" l ef t " ><f ont  col or =" #0000FF"  f ace=" Ar i al "  s i ze=" 4" > 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;  
Pos i t i on: &nbsp; &nbsp;  </ f ont ><f ont  f ace=" Ar i al "  col or =" #FF0000"  s i ze=" 5" >@9</ f ont > 
<sup><f ont  col or =" #0000FF"  f ace=" Ar i al "  s i ze=" 4" >o</ f ont ></ sup></ p> 
<p al i gn=" l ef t " ><f ont  f ace=" Ar i al "  col or =" #0000FF"  s i ze=" 5" ><sup> 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; </ sup><sup>&nbsp; &nbsp; &nbsp; </ sup><sup>&nbsp; &nbsp; &
nbsp;  
</ sup><sup>Speed: </ sup></ f ont ><sup><f ont  f ace=" Ar i al "  s i ze=" 4"  
col or =" #0000FF" >&nbsp; &nbsp; &nbsp;  
<b> </ b></ f ont ></ sup><sup><f ont  f ace=" Ar i al "  si ze=" 4"  col or =" #0000FF" ><b> 
</ b></ f ont ></ sup> 
<f ont  f ace=" Ar i al "  col or =" #FF0000"  s i ze=" 6" ><sup> 
@a</ sup></ f ont ></ p> 
</ body> 
</ ht ml > 

Figure 9.25   HTML code for position.egi 

 

 

<head><met a ht t p- equi v=" r ef r esh"  cont ent =" 2" > 
<t i t l e></ t i t l e> 
</ head> 
<body bgcol or =" #CCCCFF" > 
<p al i gn=" cent er " ><f ont  f ace=" Ar i al "  si ze=" 6"  col or =" #0000FF" >I NPUTS</ f ont ></ p> 
<hr > 
<p al i gn=" cent er " ><f ont  col or =" #0000FF"  f ace=" Ar i al "  si ze=" 5" >&nbsp; &nbsp; &nbsp;  
SW&nbsp; &nbsp; &nbsp;  PB&nbsp; &nbsp; &nbsp;  &nbsp;  
LS&nbsp; &nbsp; &nbsp; &nbsp; </ f ont ></ p> 
<f or m met hod=" SUBMI T"  ac t i on=" i nput s . egi " > 
<p 
al i gn=" cent er " >&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;  
<i mg bor der =" 0"  sr c=" sw@4. gi f "  wi dt h=" 20"  
hei ght =" 40" >&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;  
<i mg bor der =" 0"  sr c=" pb@3. gi f "  wi dt h=" 27"  
hei ght =" 35" >&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;  
<i mg bor der =" 0"  sr c=" l s@2. gi f "  wi dt h=" 60"  
hei ght =" 32" >&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;  
</ p> 
</ f or m> 
</ body> 

Figure 9.26   HTML code for inputs.egi 

 

 

<head> 
<t i t l e></ t i t l e> 
</ head> 
<body bgcol or =" #CCCCFF" > 
<p al i gn=" cent er " ><f ont  col or =" #0000FF"  f ace=" Ar i al "  si ze=" 5" >LED</ f ont ></ p> 
<f or m met hod=" SUBMI T"  ac t i on=" l ed. egi " > 
<p al i gn=" cent er " > 
<i nput  bor der =" 0"  sr c=" l ed@5. gi f "  name=" Q0"  wi dt h=" 20"  hei ght =" 20"  t ype=" i mage" > 
</ p> 
</ f or m> 
</ body> 

Figure 9.27   HTML code for led.egi 
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9.2.3.2 Code for MAX7000S 

As with the DIP switch & LEDs application, the reconfigurable hardware is not needed in 

this application.  All unused pins on the MAX7000S that are connected to the I/O controller 

will be programmed as inputs.  Figure 9.28 shows the graphic representation for this 

configuration on the MAX7000S.  The same source file as for the DIP switch & LEDs 

application (dipleds.jbc) can be used to program the MAX7000S. 

 

 

Figure 9.28   MAX7000S graphic entry for the APPLIC-71 application. 

 

 

9.2.3.3 Code for I/O controller 

Figure 9.29 shows the source code for the I/O controller.  The PIC16F877 uses its analog 

to digital converter to measure the temperature and the potentiometer.   
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#include <16F877.H> 
#use DELAY(CLOCK=20000000) 
 
// ********************** I/O Ports ********************** 
#byte   PORTA   = 0x05                
#byte   PORTB   = 0x06 
#byte   PORTC   = 0x07 
#byte   PORTD    = 0x08 
#byte   PORTE    = 0x09 
 
#define CW  1 
#define CCW  0 
 
long TEMP, POT, BRIGHTNESS = 0, STEPPER_SPEED=0; 
short STEPPER_ON = 0; 
short LED_ON = 0; 
short STEP_DIR = CW; 
float STEPPER_POS=0; 
byte STEPPER_STATE = 0; 
byte const STEPPER_POSITIONS[4] =  {0b0101,   // stepper motor sequence 
                              0b1001, 
                              0b1010, 
                              0b0110}; 
void read_analogs(void);      // function prototypes 
void Light(long BRIGHTNESS); 
void LED(short VAL); 
short SW(void); 
short PB(void); 
short LS(void); 
void Stepper(short DIR, byte SPEED); 
 
 
// ******************** Required Code ******************** 
#use DELAY(CLOCK=20000000)     // setup crystal frequency 
#use RS232 (BAUD=115200, XMIT=PIN_C6, RCV=PIN_C7, ERRORS) // setup RS-232 module 
#define STOP putchar('~')   // STOP character for protocol 
 
#int_rda     // interrupt routine for receiving a command / request 
void serial_isr(void)  
{ 
    char b; 
    disable_interrupts(global); 
    b = getch();     // read character describing a request or command 
    if (b == '?')     // request 
    { 
        b = getch();    // read request number 
        switch(b) 
        { 
            case '0': {     
                              printf("%lu", POT);  // returns analog value of potentiometer 
      STOP; 
  }  
  break; 
            case '1': { 
      printf("%lu", TEMP);  // returns temperature 
      STOP; 
  }  
  break; 

Figure 9.29   I/O controller source code for the APPLIC-71 application. 
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            case '2': { 
      if (LS())   // returns status of limit switch 
          printf("1"); 
      else 
          printf("0"); 
      STOP; 
  } 
  break;  
            case '3': { 
      if (PB())   // returns status of push button 
          printf("1"); 
      else 
          printf("0"); 
      STOP; 
  } 
  break; 
            case '4': { 
      if (SW())   // returns status of switch 
          printf("1"); 
      else 
          printf("0"); 
      STOP; 
  } 
  break; 
            case '5': { 
      if (LED_ON)   // returns status of LED 
          printf("1"); 
      else 
          printf("0"); 
      STOP; 
  } 
  break; 
            case '6': { 
       printf("%lu", BRIGHTNESS/255); // returns brightness of lamp 
       STOP; 
  } 
  break; 
            case '7': { 
      if (STEP_DIR == CW) // returns stepper motor direction; CW = 1; CCW = 0 
          printf("cw"); 
      else 
          printf("ccw"); 
      STOP; 
  } 
  break; 
            case '8': { 
       if (STEPPER_ON == 1) // returns status of stepper motor 
          printf("stop"); 
      else 
          printf("go"); 
      STOP; 
  } 
  break; 
            case '9': { 
      printf("%5.1f", STEPPER_POS); // returns stepper motor’s shaft position 
      STOP; 
  } 
  break; 
 

Figure 9.29 continued. 
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            case 'a': { 
      printf("%lu", STEPPER_SPEED); // returns stepper motor’s speed 
      STOP; 
  } 
  break; 
            deault: { 
      printf("X");   // request not recognized, then reply with an ‘X’ 
      STOP; 
  }  
  break; 
        }  
    }  
 
    if (b == '!')     // command  
    { 
        b = getch();    // read command number 
        switch(b) 
        { 
            case '0': {    // toggles LED 
      if (LED_ON == 1) 
          LED(0); 
      else 
          LED(1); 
  }  
  break; 
            case '1': { 
      if (BRIGHTNESS < 1020)   // increases brightness of lamp 
          BRIGHTNESS = BRIGHTNESS + 255; 
  }  
  break; 
            case '2': { 
      if (BRIGHTNESS > 0)   // decreases brightness of lamp 
          BRIGHTNESS = BRIGHTNESS - 255; 
  } 
  break; 
            case '3': { 
      if (STEP_DIR == CW)   // toggles stepper motor direction 
          STEP_DIR = CCW; 
      else 
          STEP_DIR = CW; 
  } 
  break; 
            case '4': { 
      if (STEPPER_ON == 1)   // toggles stepper motor ON or OFF 
          STEPPER_ON = 0; 
      else 
          STEPPER_ON = 1; 
  } 
  break; 
        } 
    } 
    enable_interrupts(global);   
} 
 
// ******************************************************* 
 

Figure 9.29 continued. 
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void main(void)     // main program loop 
{ 
 
// ******************** Required Code  *************** 
    set_tris_c(0x80);    // setup RXD and TXD pins for RS-232 
    enable_interrupts(global); 
    enable_interrupts(int_rda);   // enable interrupt on RS-232 receive 
// ******************************************************* 
 
    setup_adc_ports(ALL_ANALOG);  // setup port A and ADC 
    setup_adc(ADC_CLOCK_INTERNAL); 
  
    set_tris_a(0xFF);    // set port direction registers 
    set_tris_b(0xEF); 
    set_tris_d(0xFF); 
    set_tris_e(0xFF); 
    port_b_pullups(TRUE);   // enable internal pull-up resistors for switches 
    setup_ccp2(CCP_PWM);   // set PWM module 
    setup_timer_2(T2_DIV_BY_1, 255, 2); 
    portc = 0; 
    portd = 0; 
    portb = 0; 
    porta = 0; 
    porte = 0; 
    LED(0); 
 
    while(1) 
    { 
        read_analogs();    // read temperature and potentiometer 
        light(BRIGHTNESS);   // set the brightness of the lamp 
        STEPPER_SPEED = ((1024-POT)/5) + 7; // stepper motor speed calculation according to pot 
        stepper(STEP_DIR, STEPPER_SPEED); // set stepper motor direction and speed 
    }  
} 
 
 
// ***************** Function definitions *************** 
 
void read_analogs(void) 
{ 
    delay_us(20); 
    set_adc_channel(0);    // read temperature on ADC channel 0 (pin RA0) 
    delay_us(20); 
    POT = read_adc(); 
 
    delay_us(20); 
    set_adc_channel(1);    // read temperature on ADC channel 1 (pin RA1) 
    delay_us(20); 
    TEMP = read_adc(); 
} 
 
 
void light(long BRIGHTNESS) 
{ 
    set_pwm2_duty(BRIGHTNESS);  // set PWM duty cycle for brightness of lamp 
} 
 

Figure 9.29 continued. 
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void LED(short VAL)    // toggles LED ON or OFF 
{ 
    if (VAL == 1) 
    { 
        OUTPUT_LOW(PIN_B4); 
        LED_ON = 1; 
    } 
        else 
    { 
        OUTPUT_HIGH(PIN_B4); 
        LED_ON = 0; 
    } 
} 
 
short SW(void)     // returns status of switch 
{ 
    if (INPUT(PIN_B2) == 0) 
        return 1; 
    else 
        return 0; 
} 
 
short PB(void)     // returns status of push button 
{ 
    if (INPUT(PIN_B1) == 0) 
        return 1; 
    else 
        return 0; 
} 
 
short LS(void)     // returns status of limit switch 
{ 
    if (INPUT(PIN_B0) == 0) 
        return 1; 
    else 
        return 0; 
} 
 
void Stepper(short DIR, byte SPEED)   // sets stepper motor direction and speed 
{ 
    if (STEPPER_ON) 
    { 
        delay_ms(SPEED); 
 
        if (DIR == 1) 
        { 
            if (STEPPER_STATE == 3)  
                STEPPER_STATE = 0;  
            else  
                STEPPER_STATE++;  // go to next stepper motor sequence 
            if (STEPPER_POS >= 352.5) 
                STEPPER_POS = 0; 
            else 
                STEPPER_POS = STEPPER_POS + 7.5; // 7.5 degrees per step 
        } 
        else 
 

Figure 9.29 continued. 
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        { 
            if (STEPPER_STATE == 0)  
                STEPPER_STATE = 3;  
            else  
                STEPPER_STATE--;   // go to previous stepper motor sequence 
            if (STEPPER_POS <= 0) 
                STEPPER_POS = 352.5; 
            else 
                STEPPER_POS = STEPPER_POS - 7.5; 
        } 
        output_bit(PIN_C5, bit_test(STEPPER_POSITIONS[STEPPER_STATE], 0));    // set stepper motor 
        output_bit(PIN_C4, bit_test(STEPPER_POSITIONS[STEPPER_STATE], 1));    // inputs according to 
        output_bit(PIN_C3, bit_test(STEPPER_POSITIONS[STEPPER_STATE], 2));    // current sequence 
        output_bit(PIN_C2, bit_test(STEPPER_POSITIONS[STEPPER_STATE], 3));    // number 
    } 
} 

Figure 9.29 continued. 

 

9.2.3.4 Results 

Table 9.12 indicates typical times that were measured to transfer the different source code 

files to the remote Internet I/O controller board and to program it in real-time.   

 

File Size Transfer Program 

dipleds.jbc 20933 bytes 8.16 sec 11 min 50.51 sec 

applic71.hex 10130 bytes 1.65 sec 2 min 50.04 sec 

Web page 24134 bytes  9.42 sec 

Table 9.12   Typical loading and programming times for the APPLIC-71 application. 

 

9.3 CURRENT LIMITATIONS 

Unfortunately the project had some limitations.  The main reason for these limitations is 

the lack of memory (RAM) of the Ethernet interface controller (PIC16F877) which only has 

368 bytes of RAM.  Various methods had to be performed to overcome this RAM issue, as 

explained in the previous chapters, but unfortunately not all of the limitations could be 

conquered.  The current limitations are: 

 

• The maximum file size that can be accessed from the remote Internet I/O controller 

board is 1.5 Kbytes.  It is not a real problem, as long as the Web page does not 

include large images.  The main idea of this remote system is to monitor and control 

applications, and therefore no fancy images and controls are really necessary. 
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• Only lower case and 8.3 format DOS file names are supported.  This is a problem if 

small JAVA applets need to be executed on the remote system, because JAVA 

applets are case sensitive and not in the 8.3 format. 

• The PIC16F877 has a program memory of 8K words, of which 7K is used by the 

TCP/IP protocol stack and the supporting embedded code.  The ideal situation 

would be if the I/O controller and the Ethernet interface controller could be one 

controller, but unfortunately the PIC16F877’s program memory does not allow this. 

• Only the HTTP upper layer protocol is supported 

• The system does not support dynamic IP address allocation through a dynamic host 

configuration protocol (DHCP) server and needs a dedicated IP address within the 

LAN. 

 

9.4 FUTURE DEVELOPMENTS 

The main two areas of the project that can be improved in the future are the speed and the 

program memory size of the controllers.  Here are some of the proposed future 

developments or improvements: 

 

• A faster programming processor.  Currently an 8051 derivative is used and runs at 

12Mhz.  It might be worth looking at the new Dallas range of microcontrollers.  They 

are also based on the very popular 8051, but runs at higher clock frequencies (up to 

50Mhz). 

• Combine the Ethernet interface controller and the I/O controller in one 

microcontroller.  This will only be possible if the microcontroller has a large program 

memory area.  Microchip’s 18FXXX series has larger program memory than the 

16FXXX series and might be worth looking at.  Another approach would be to use 

the latest 8051 based network microcontroller from Dallas (DS80C400) that has its 

own built-in NIC. 

• Combine the Ethernet interface controller and I/O controller and program them into 

the CPLD.  This will reduce the component count considerably.  

• Support more upper level protocols such as FTP and SMTP. 

• Allow for larger files that can be accessed with long file name support.  This will 

automatically make it easier to implement JAVA applets. 
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• Improve the file system’s data access time.  Currently I2C EEPROMs are used 

which are relatively slow.  At the time the design was done there were no 64K SPI 

EEPROMs available which would improve the situation significantly. 

 

9.5 CONCLUSION 

The project has shown how a normal 8-bit microcontroller (PIC16F877 in this case) can be 

used to establish a Web server and with the help of an I/O controller then to monitor and 

control remote processes.  Through the use reconfigurable hardware (CPLD) the process 

can be reconfigured and reprogrammed from a remote location within minutes. 

 

The aim of this research was to provide methods and ideas for combining embedded 

Internet and reconfigurable hardware in one project to accomplish total reconfigurability of 

a remote embedded Internet system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

cxliv 

APPENDIX A 
REFERENCES 

  
1. Altera (2001). Embedded programming using the 8051 & Jam byte-code. San Jose: 

Altera Corporation. 

 

2. Altera (1999). In-system programmability guidelines. San Jose: Altera Corporation. 

 

3. Altera (2000). In-system programmability in MAX devices. San Jose: Altera 

Corporation. 

 

4. Altera (1999). Introduction to ISP. San Jose: Altera Corporation. 

 

5. Altera (2001). MAX+PLUS II: Getting Started. San Jose: Altera Corporation. 

 

6. Altera (2000). MAX7000 Programmable Logic Device Family. San Jose: Altera 

Corporation. 

 

7. Arnett, F., Dulaney, E., Harper, E. (1995). Inside TCP/IP. Indianapolis: New Riders 

Publishing. 

 

8. Bentham, J. (2000). TCP/IP lean: Web servers for embedded systems. Lawrence: 

CMP Books. 

 

9. Blackwell, N. (1995). Handbook of data communications. Cambridge: Blackwell 

Publishers. 

 

10. Bolton, M. (1990). Digital Systems Design with Programmable Logic. Cornwall: T.J. 

Press. 

 

11. Bostock, G. (1996). FPGAs and Programmable LSI: A designer’s handbook. 

Boston: Butterworth-Heinemann. 



 

cxlv 

12. Carter, J. (1997). Digital Designing with Programmable Logic Devices. New Jersey: 

Prentice-Hall Inc. 

 

13. Ladd, E. & O’Donnell, J. (1996). Using HTML, JAVA and CGI. Indianapolis: Que 

Corporation. 

 

14. Microchip (2001). 24LC256 Datasheet. Microchip Technology Inc. 

 

15. Microchip (2000). In-circuit serial programming for PIC16F8XX FLASH MCUs. 

Microchip Technology Inc. 

 

16. Microchip (2001). In-circuit serial programming guide. Microchip Technology Inc. 

 

17. Microchip (2000). MPLAB User’s Guide. Microchip Technology Inc. 

 

18. Microchip (2001). PIC16F87X data sheet. Microchip Technology Inc. 

 

19. Microchip (2001). PICDEM.net User’s guide. Microchip Technology Inc. 

 

20. Socolofsky, T., Kale, C. (2001). “A TCP/IP Tutorial”. Article available from Internet 

URL http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc1180.html. 

 

21. Stanek, W. (1996). Web publishing unleashed (1st Edition). Indianapolis: Sams.net 

Publishing. 

 

22. Wilder, F. (1999). A guide to the TCP/IP protocol suite. London: Artech House. 

 

 


