
CHAPTER 3: EMBEDDED ETHERNET

24

DESIGN AND DEVELOPMENT OF A REMOTE
RECONFIGURABLE INTERNET EMBEDDED I/O

CONTROLLER

By

Grant Phillips

submitted in complete fulfillment of the degree:

MAGISTER TECHNOLOGIAE:
ELECTRICAL ENGINEERING

in the

Faculty of Electrical and Mechanical Engineering,
at the

Port Elizabeth Technikon

Promoter:
Frank Adlam

January 2003

CHAPTER 3: EMBEDDED ETHERNET

25

I, Grant Phillips, hereby declare that:

• the work done in this thesis is my own;

• all sources used or referred to have been documented and recognized; and

• this thesis has not been previously submitted in full or partial fulfilment of the

requirements for an equivalent or higher qualification at any other educational

institution.

Signature Date:

14/01/2003

CHAPTER 3: EMBEDDED ETHERNET

26

ACKNOWLEDGEMENTS

• I would like to thank Jeremy Bentham for the knowledge he shared with me via

emails and through his book. The work he has done in the field of embedded

Internet systems was the driving force behind my project.

• My sincere appreciation to the Altera Corporation for donating a MAX7000S

development kit. This was extremely helpful in learning about CPLDs and reduced

my developing time drastically.

• Sincere thanks to my mentor, Frank Adlam, for his support, motivation and patience

during the development of this project.

• My deepest thanks also go to my family and fiancé for their support and

encouragement throughout this project.

• Lastly I would like to thank the Lord Jesus Christ for giving me the strength and

dedication to finish the project to the best of my ability.

CHAPTER 3: EMBEDDED ETHERNET

27

ABSTRACT

The use of embedded Internet systems is growing rapidly in the manufacturing sector.

These systems allow the monitoring and controlling of plant machinery and manufactured

items from a remote location via a standard Web interface.

In a manufacturing environment, it is inevitable that long running processes will require

support for dynamic reconfiguration because, for example, machines may fail, services

may be moved or withdrawn and user requirements may change. In such an environment

it is essential that the operation and architecture of such processes can be modified to

reflect such changes.

This research project will present methods and ideas for establishing a reconfigurable

remote system by using standard 8-bit microcontrollers and reconfigurable hardware. It

will allow a manufacturing process to be modified and changed within minutes without

even having to be physically present at the location where the process is running.

CHAPTER 3: EMBEDDED ETHERNET

28

TABLE OF CONTENTS

ACKNOWLEDGEMENTS..i

ABSTRACT...i i

TABLE OF CONTENTS...ii i

LIST OF FIGURES...ix

LIST OF TABLES ..xiv

LIST OF ABBREVIATIONS...xvi

CHAPTER 1 INTRODUCTION

1.1 PROBLEM STATEMENT...1

1.2 HYPOTHESIS..2

1.3 DELIMITATION OF PROJECT ..2

1.4 OUTLINE OF THE SYSTEM DEVELOPED...3

1.5 SIGNIFICANCE OF THE PROJECT..4

1.6 REVIEW OF RELEVANT LITERATURE..4

1.7 ORGANIZATION OF THESIS..6

CHAPTER 2 THE INTERNET AND TCP/IP

2.1 OVERVIEW ...8

2.2 INTERNETWORKING EVOLUTION..9

2.3 INTERNET...9

2.4 TCP/IP OVERVIEW ...10

2.4.1 BASIC STRUCTURE ..10

2.4.2 TERMINOLOGY..12

2.4.3 FLOW OF DATA ...12

2.4.4 IP CREATES A SINGLE LOGICAL NETWORK..14

CHAPTER 3: EMBEDDED ETHERNET

29

2.4.5 PHYSICAL NETWORK INDEPENDENCE..14

2.5 ETHERNET ...14

2.5.1 DESTINATION AND SOURCE ADDRESSES ..15

2.5.2 TYPE/LENGTH FIELD ..15

2.5.3 DATA ..15

2.5.4 CYCLIC REDUNDANCY CHECK ...16

2.6 ARP ...16

2.7 INTERNET PROTOCOL..17

2.7.1 DIRECT ROUTING ...17

2.7.2 INDIRECT ROUTING..18

2.7.3 IP ADDRESS ..20

2.7.4 NAMES ...20

2.8 USER DATAGRAM PROTOCOL ..21

2.9 TRANSMISSION CONTROL PROTOCOL..21

2.10 TELNET ..22

2.11 FILE TRANSFER PROTOCOL ...23

2.12 HYPERTEXT TRANSFER PROTOCOL ...23

2.13 CONCLUSION ..23

CHAPTER 3 EMBEDDED ETHERNET

3.1 OVERVIEW ...24

3.2 HARDWARE..24

3.2.1 ETHERNET INTERFACE ...24

3.2.2 ETHERNET HARDWARE...25

3.2.3 MICROCONTROLLER INTERFACE ..27

3.3 ETHERNET DRIVER ...31

3.3.1 NIC INITIALISATION ..31

3.3.2 ACCESSING THE PACKET BUFFER ..32

3.3.3 PACKET RECEPTION..33

3.3.4 PACKET ANALYSIS ...35

3.3.5 PACKET TRANSMISSION..36

3.4 PROTOCOL DRIVERS..37

3.5 CONCLUSION...37

CHAPTER 3: EMBEDDED ETHERNET

30

CHAPTER 4 EMBEDDED WEB SERVER

4.1 OVERVIEW ...38

4.2 HYPERTEXT TRANSFER PROTOCOL..38

4.2.1 GET METHOD ..39

4.2.2 REQUEST...39

4.2.3 RESPONSE ..40

4.3 HYPERTEXT MARKUP LANGUAGE ..41

4.4 DYNAMIC WEB PAGES..42

4.4.1 DYNAMIC REQUEST USING EGI..42

4.4.2 DYNAMIC OUTPUT..44

4.5 ROM FILE SYSTEM ..46

4.6 WEB SERVER DRIVER ..48

4.7 CONCLUSION...50

CHAPTER 5 THE INPUT/OUTPUT CONTROLLER

5.1 OVERVIEW ...51

5.2 INPUT/OUTPUT CONTROLLER SELECTION CRITERIA51

5.2.1 REPROGRAMMABILITY ..51

5.2.2 PROGRAMMING INTERFACE ...51

5.2.3 DEVELOPMENT SOFTWARE..52

5.2.4 FEATURES AND PERIPHERALS ..52

5.3 ANALOG INTERFACE...53

5.4 LIQUID CRYSTAL DISPLAY INTERFACE ..55

5.5 I/O INTERFACE...56

5.6 INFORMATION EXCHANGE PROTOCOL..56

5.6.1 REQUIRED HARDWARE ...57

5.6.2 PROTOCOL DEFINITION...58

5.6.3 PROTOCOL IMPLEMENTATION ...58

5.6.4 I/O CONTROLLER DRIVER ...61

5.7 CONCLUSION...63

CHAPTER 6 RECONFIGURABLE HARDWARE

CHAPTER 3: EMBEDDED ETHERNET

31

6.1 OVERVIEW ...64

6.2 INTRODUCTION TO LOGIC DEVICES...64

6.2.1 STANDARD LOGIC FAMILIES ...64

6.2.1.1 Gate functions ...64

6.2.1.2 Sequential logic ...64

6.2.1.3 Practical logic circuits ..65

6.2.1.4 Large-scale integration ..66

6.2.2 PROGRAMMABLE LOGIC DEVICE ...66

6.2.2.1 Programmable switches ..66

6.2.2.2 PAL devices...67

6.2.2.3 Generic PLDs, FPLAs and FPLSs...68

6.2.2.4 CPLDs

6.3 MAX7000S DEVICES ..71

6.3.1 ARCHITECTURE..71

6.3.1.1 Logic array blocks..72

6.3.1.2 Macrocells ...73

6.3.1.3 Expander product terms ..74

6.3.1.4 Programmable interconnect array ...74

6.3.1.5 I/O control blocks...75

6.3.2 IN-SYSTEM PROGRAMMABILITY (ISP)..76

6.4 HARDWARE SELECTION CRITERIA...76

6.4.1 REPROGRAMMABILITY ..76

6.4.2 DEVELOPMENT SOFTWARE AND HARDWARE76

6.4.3 FEATURES...77

6.5 RECONFIGURABLE HARDWARE INTERFACE...77

6.6 CONCLUSION...81

CHAPTER 7 THE EMBEDDED PROGRAMMING INTERFACE

7.1 OVERVIEW ...82

7.2 IN-CIRCUIT SERIAL PROGRAMMING (ICSP) WITH THE PIC16F877..............82

7.2.1 HARDWARE REQUIREMENTS ...82

7.2.2 PROGRAM MODE ENTRY...84

7.2.2.1 Low-voltage ICSP mode..85

CHAPTER 3: EMBEDDED ETHERNET

32

7.2.2.2 Serial program/verify operation..86

7.3 IN-SYSTEM PROGRAMMABILITY WITH THE MAX7000S87

7.3.1 FEATURES AND BENEFITS..87

7.3.2 VCC-LEVEL PROGRAMMING ...88

7.3.3 JTAG INTERFACE..89

7.3.4 PROGRAMMING THE MAX7000S DEVICE...89

7.3.4.1 Single-device programming ...90

7.3.4.2 JTAG-chain programming..90

7.4 THE PROGRAMMING INTERFACE..91

7.5 SOURCE FILE STORAGE ..95

7.5.1 I/O CONTROLLER STORAGE ...96

7.5.2 MAX7000S STORAGE ...97

7.6 PROGRAMMING INTERFACE SOFTWARE ..98

7.6.1 ICSP FUNCTIONS..98

7.6.2 JAM BYTE-CODE PLAYER..105

7.6.2.1 The Jam file ...106

7.6.2.2 The Jam Player ...107

7.6.2.3 Jam Player operation...110

7.6.3 I2C FUNCTIONS FOR EEPROMs ..111

7.6.4 MAIN PROGRAMMING LOOP ...116

7.7 CONCLUSION...118

CHAPTER 8 SOFTWARE ENVIRONMENT

8.1 OVERVIEW ...119

8.2 EMBEDDED ETHERNET (EmEther) UTILITY...119

8.2.1 OPERATION...119

8.2.2 SOURCE CODE DESCRIPTION ..123

8.2.2.1 Building source files...123

8.2.2.2 Transferring source files ..124

8.2.2.3 Instructing the remote programming processor126

8.2.2.4 Progress indication ..127

8.3 ACCESSING THE REMOTE SYSTEM..129

8.4 DEVELOPMENT SOFTWARE ..130

CHAPTER 3: EMBEDDED ETHERNET

33

8.5 CONCLUSION...131

CHAPTER 9 SYSTEM TESTING, FUTURE DEVELOPMENTS AND CONCLUSION

9.1 OVERVIEW ...132

9.2 SYSTEM TESTING..132

9.2.1 DIP SWITCH & LEDs..132

9.2.1.1 Web page ..135

9.2.1.2 Code for MAX7000S..138

9.2.1.3 Code for I/O controller ...139

9.2.1.4 Results...144

9.2.2 TEMPERATURE LOGGER...144

9.2.2.1 Web page ..147

9.2.2.2 Code for MAX7000S..151

9.2.2.3 Code for I/O controller ...153

9.2.2.4 Results...156

9.2.3 APPLIC-71 UNIT...157

9.2.3.1 Web page ..159

9.2.3.2 Code for MAX7000S..165

9.2.3.3 Code for I/O controller ...165

9.2.3.4 Results...171

9.3 CURRENT LIMITATIONS..171

9.4 FUTURE DEVELOPMENTS..172

9.5 CONCLUSION...173

APPENDIX A REFERENCES...174

CHAPTER 3: EMBEDDED ETHERNET

34

LIST OF FIGURES

Figure 1.1 The project layout. ...3

Figure 2.1 Conceptual layering of the Internet protocols...10

Figure 2.2 Internet architecture and protocols. ...11

Figure 2.3 n-to-1 Multiplexer and 1-to-n de-multiplexer. ...13

Figure 2.4 Ethernet frame. ..15

Figure 2.5 One IP network ..17

Figure 2.6 Three IP networks; One internet. ...18

Figure 3.1 Star network topology. ...24

Figure 3.2 Ethernet hardware block diagram. ...26

Figure 3.3 Ethernet controller interfaces. ..27

Figure 3.4 Ethernet controller access cycles. ...28

Figure 3.5 The embedded Ethernet interface. ..30

Figure 3.6 Read and write functions. ..31

Figure 3.7 NIC initialisation. ..32

Figure 3.8 Reading and writing from RTL8019AS RAM..33

Figure 3.9 Ethernet header structure. ...34

Figure 3.10 NIC hardware-specific header. ..34

Figure 3.11 Receiving an Ethernet frame. ..35

Figure 3.12 Packet analysis functions...36

Figure 3.13 Packet transmission functions. ..37

Figure 4.1 An example of a GET method with the optional header...............................40

Figure 4.2 An example of a HTTP request/response process.40

Figure 4.3 Example of a HTML document. ...41

Figure 4.4 An example to demonstrate dynamic Web page requests using EGI.43

Figure 4.5 An example to demonstrate dynamic Web pages using form controls.44

Figure 4.6 Directory structure in firmware. ..46

Figure 4.7 Example of a file system in a ROM..47

Figure 4.8 A section of the HTTP driver that detects the GET method.48

CHAPTER 3: EMBEDDED ETHERNET

35

Figure 4.9 The tx_file_byte() function..49

Figure 5.1 I/O controller analog interface..53

Figure 5.2 Analog interface example. ...54

Figure 5.3 Liquid crystal display interface. ..55

Figure 5.4 External LCD connection example...56

Figure 5.5 RS-232 interface between the Web server and I/O controller......................57

Figure 5.6 Code to send a request to the I/O controller. ...59

Figure 5.7 Code to change the output status of port pins on the I/O controller.60

Figure 5.8 Necessary code to include when developing code for the I/O controller......61

Figure 6.1 D-type latch circuit. ..64

Figure 6.2 D-type flip-flop..65

Figure 6.3 Four-bit counter. ..65

Figure 6.4 Full adder using discrete logic. ..67

Figure 6.5 Full adder using a PAL4H2 device...68

Figure 6.6 A typical macrocell...69

Figure 6.7 Programmable OR-array..69

Figure 6.8 Simplified FPLS schematic. ...70

Figure 6.9 CPLD block diagram..71

Figure 6.10 MAX7000 device block diagram ..72

Figure 6.11 MAX7000 macrocell block diagram. ..73

Figure 6.12 PIA routing. ..74

Figure 6.13 MAX7000 I/O control block. ...75

Figure 6.14 Reconfigurable hardware interface. ...78

Figure 6.15 I/O controller and EPM7128S pin configuration. ..80

Figure 6.16 Graphic entry for assigning unused pins as inputs.81

Figure 7.1 Typical application circuit...82

Figure 7.2 Program memory map for the PIC16F877...85

Figure 7.3 Single device programming. ..90

Figure 7.4 JTAG-chain device programming. ...90

Figure 7.5 Simplified block diagram of programming interface92

Figure 7.6 Bi-directional ports using buffers..95

Figure 7.7 Structure of a PIC16F877 source file stored in EEPROM............................96

CHAPTER 3: EMBEDDED ETHERNET

36

Figure 7.8 Source file storage example. ...97

Figure 7.9 Structure of a MAX7000S source file stored in EEPROM............................98

Figure 7.10 Flow chart for programming the program memory.......................................99

Figure 7.11 Flow chart for programming the ID locations and configuration word.100

Figure 7.12 I/O definitions for programming the PIC16F877...101

Figure 7.13 Bit I/O functions. ..101

Figure 7.14 Data send and receive functions..102

Figure 7.15 The program cycle function..103

Figure 7.16 The main programming function. ...104

Figure 7.17 Transferring and loading of the Jam file...105

Figure 7.18 Block diagram of ISP using a Jam file and Jam Player..............................106

Figure 7.19 Generating a JBC file using the MAX+PLUS II software............................106

Figure 7.20 Jam Player source code structure. ..107

Figure 7.21 Loading the JBC file into RAM...108

Figure 7.22 Function for interfacing to the JTAG signals. ...109

Figure 7.23 Delay function for Jam Player. ...110

Figure 7.24 JTAG TAP controller state machine...110

Figure 7.25 Pin definitions for accessing the I2C bus..111

Figure 7.26 Functions for creating START and STOP conditions on the I2C bus.112

Figure 7.27 Functions for accessing the I2C bus interface..113

Figure 7.28 Functions to test if a sent data byte was acknowledged.114

Figure 7.29 Reading data from the 24LC256..115

Figure 7.30 Functions for reading data from a specific memory location.115

Figure 7.31 Reading an instruction from the Ethernet interface controller.116

Figure 7.32 The main programming loop. ...117

Figure 8.1 The EmEther utility. ...119

Figure 8.2 Sending data via the Internet using a TCP socket.124

Figure 8.3 Breaking up the source file into data packets for transferring.125

Figure 8.4 The data transfer packet..125

Figure 8.5 Transferring the source file using data packets. ..126

Figure 8.6 Indicating the remote programming processor to begin programming.......127

Figure 8.7 Requesting the programming progress for the Web server.127

Figure 8.8 Data feedback packet from the remote Web server...................................127

CHAPTER 3: EMBEDDED ETHERNET

37

Figure 8.9 Receiving data from the remote Web server using the TCP socket

connection. ..128

Figure 8.10 An example of an embedded Web page..129

Figure 8.11 Error message when trying to access the remote system while it is in

programming mode..130

Figure 9.1 Required hardware for the DIP switch & LEDs application.133

Figure 9.2 Web page for the DIP switch & LEDs application.135

Figure 9.3 Directory structure for the DIP switch & LEDs application.135

Figure 9.4 HTML code for main.htm ...137

Figure 9.5 HTML code for leds.egi..137

Figure 9.6 HTML code for dip.egi..138

Figure 9.7 MAX7000S graphic entry for the DIP switch & LEDs application...............138

Figure 9.8 I/O controller source code for the DIP switch & LEDs application..............139

Figure 9.9 Required hardware for the temperature logger application.145

Figure 9.10 Web page for the temperature logger application.147

Figure 9.11 Directory structure for the temperature logger application.148

Figure 9.12 HTML code for main.htm ...149

Figure 9.13 HTML code for temp.egi ..150

Figure 9.14 HTML code for time.egi..150

Figure 9.15 HTML code for updown.egi..150

Figure 9.16 HTML code for log.egi..151

Figure 9.17 MAX7000S graphic entry for the temperature logger application...............152

Figure 9.18 I/O controller source code for the temperature logger application..............153

Figure 9.19 Required hardware for the APPLIC-71 application.158

Figure 9.20 Web page for the APPLIC-71 application. ...160

Figure 9.21 Directory structure for APPLIC-71 application..161

Figure 9.22 HTML code for main.htm ...162

Figure 9.23 HTML code for light.egi..163

Figure 9.24 HTML code for stepper.egi ..163

Figure 9.25 HTML code for position.egi ..164

Figure 9.26 HTML code for inputs.egi...164

Figure 9.27 HTML code for led.egi..164

CHAPTER 3: EMBEDDED ETHERNET

38

Figure 9.28 MAX7000S graphic entry for the APPLIC-71 application.165

Figure 9.29 I/O controller source code for the APPLIC-71 application..........................166

CHAPTER 3: EMBEDDED ETHERNET

39

LIST OF TABLES

Table 2.1 Example ARP table..16

Table 2.2 Addresses in an Ethernet frame for an IP packet from A to B......................18

Table 2.3 Addresses in an Ethernet frame for an IP packet from A to E (before D).....19

Table 2.4 Addresses in an Ethernet frame for an IP packet from A to E (after D).20

Table 5.1 Programming pins description for the PIC16F877.52

Table 5.2 Analog pins configuration...54

Table 5.3 Jumper settings for LCD assignment. ..55

Table 6.1 I/O connections..79

Table 7.1 Features and benefits of ISP-capable MAX devices....................................88

Table 7.2 JTAG pins. ...89

Table 7.3 Truth table for status lines..93

Table 7.4 Truth table for command lines. ..94

Table 7.5 JTAG interface port pins. ...109

Table 8.1 Development packages and reference material used in this project..........130

Table 9.1 I/O connections for the DIP switch & LEDs application..............................134

Table 9.2 EGI request characters for the DIP switch & LEDs application..................136

Table 9.3 EGI output characters for the DIP switch & LEDs application....................137

Table 9.4 Typical loading and programming times for the DIP switch & LEDs

application..144

Table 9.5 I/O connections for the temperature logger application.146

Table 9.6 EGI request characters for the temperature logger application..................149

Table 9.7 EGI output characters for the temperature logger application....................149

Table 9.8 Typical loading and programming times for the temperature logger

application..156

Table 9.9 I/O connections for the APPLIC-71 application..159

Table 9.10 EGI output characters for the APPLIC-71 application................................161

CHAPTER 3: EMBEDDED ETHERNET

40

Table 9.11 EGI request characters for the APPLIC-71 application..............................162

Table 9.12 Typical loading and programming times for the APPLIC-71 application. ...171

CHAPTER 3: EMBEDDED ETHERNET

41

LIST OF ABBREVIATIONS

AIM......................... Avalanche-Induced Migration

ARP........................ Address Resolution Protocol

ARPANET Advanced Research Projects Agency Network

ASCII American Standard Code for Information Interchange

ASIC....................... Application Specific Integrated Circuits

BCD........................ Binary-Coded Decimal

BOR Brown-out Reset

BST Boundary-scan Test

CGI......................... Common Gateway Interface

CMOS..................... Complementary Metal-Oxide Semiconductor

CPLD...................... Complex PLD

CPU........................ Central Processing Unit

CRC Cyclic Redundancy Check

CSMA/CD............... Carrier Sense and Multiple Access With Collision Detection

DHCP Dynamic Host Configuration Protocol

DMA Direct Memory Access

DNS........................ Domain Name Service

EEPROM................ Electrically Erasable Programmable Read-Only Memory

EGI Embedded Gateway Interface

ESD........................ Electrostatic Discharge

FIFO....................... First-In/First-Out

FPLA Field Programmable Logic Array

FPLS Field Programmable Logic Sequence

FTP File Transfer Protocol

GAL Generic Array Logic

HTML Hypertext Markup Language

HTTP...................... Hypertext Transfer Protocol

I/O Input/Output

I2C Inter-IC

ICD In-Circuit Debugger

ICMP Internet Control Message Protocol

ICSP....................... In-Circuit Serial Programming

CHAPTER 3: EMBEDDED ETHERNET

42

IDE Integrated Development Environment

IP............................ Internet Protocol

ISA Industry Standard Architecture

ISO International Standards Organization

ISOC Internet Society

ISP In-System Programming

JTAG Joint Action Test Group

Kb........................... Kilobyte

LAB Logic Array Block

LAN Local Area Network

LCD Liquid Crystal Display

LED Light-Emitting Diode

LSB Least Significant Bit

LSI.......................... Large-Scale Integration

LVP Low-Voltage Programming

MAC Media Access Control

MAX........................ Multiple Array Matrix

MCU Microcontroller Unit

MOS Metal-Oxide Semiconductor

MSB........................ Most Significant Byte

MSI......................... Medium-Scale Integration

NFS........................ Network File System

NIC Network Interface Controller

OSI Open System Interconnection

OST........................ Oscillator Start-up Timer

PAL Programmable Array Logic

PCB........................ Printed Circuit Board

PIA Programmable Interconnection Array

PLD Programmable Logic Devices

POR Power-On Reset

PWM Pulse Width Modulation

PWRT Power-Up Timer

RAM Random Access Memory

RARP Reverse Address Resolution Protocol

CHAPTER 3: EMBEDDED ETHERNET

43

RIP Routing Information Protocol

RISC....................... Reduced Instruction Set Computer

ROM....................... Read-Only Memory

RTC........................ Real Time Clock

SMTP Simple Mail Transfer Protocol

SNMP..................... Simple Network Management Protocol

SPI Serial Peripheral Interface

SSI Small-Scale Integrations

SSP Synchronous Serial Port

TAP Test Access Port

TCP........................ Transport Control Protocol

TTL......................... Transistor Transistor Logic

UART Universal Asynchronous Receiver/Transmitter

UDP........................ User Datagram Protocol

USART Universal Synchronous Asynchronous Receiver Transmitter

UTP........................ Untwisted Pair

WAN....................... Wide Area Network

WDT....................... Watchdog Timer

WWW World Wide Web

CHAPTER 3: EMBEDDED ETHERNET

44

CHAPTER 1
INTRODUCTION

Industry analysts see embedded Internet systems as poised for rapid growth in the

manufacturing sector in the next few years. Embedded Internet systems allow users to

communicate directly with items such as plant, machinery and manufactured components

delivered to site. This communication may range from passive remote monitoring to direct

control or resetting of the remote system. Although it seems that these systems are

almost perfect, they do however lack one important component: reconfigurability.

1.1 PROBLEM STATEMENT

The rapid growth of embedded Internet applications such as data logging and controlling

requires remote online maintenance and system upgrade capability to enable flexible

system re-configurations. This leads to the following sub-problems in current embedded

Internet systems:

• To modify the controlling software on the remote application, the system must

physically be disconnected from the network to reprogram the device in the field.

• Modifying the Input/Output (I/O) interfacing hardware of the system normally leads

to the redesign of the I/O hardware printed circuit board (PCB).

• Specialised technical staff often has to travel long distances to do maintenance and

system upgrades on remote systems.

• Existing systems are limited in terms of flexibility.

1.2 HYPOTHESIS

A remote configurable/programmable embedded Internet system will be developed to

allow flexible system configurations in industry. The system can be divided into the

following main components (refer to Figure 1.1):

• An embedded Internet application board with the following components:
� Communications processor for connecting the embedded system to the

Internet and for managing the TCP/IP stack.

CHAPTER 3: EMBEDDED ETHERNET

45

� I/O processor which is the main device controlling the input and output of the

embedded system.
� Reconfigurable hardware which can be adapted to the needs of the user for

the specific application.
� A programming processor which will be the heart of the whole

reconfigurability aspect of the embedded Internet application.

• Embedded server software to allow data communication between the PC

and the remote embedded system via Ethernet.

• Client software for a standard PC to allow the following functions:
� Transfer new program files for I/O processors, the web server and the

reconfigurable hardware to the remote system.
� Instruct the programming processor to reprogram the I/O processor, the web

server and reconfigurable hardware.
� Allow the user to send and receive data from the remote Internet application

and thereby also to control the application.

1.3 DELIMITATION OF PROJECT

• Computer literate users will operate the client software and should have the necessary

technical background of the system used in the particular remote application.

• Programming files for the particular reprogrammable/reconfigurable components will be

developed using third party development tools. The client software will only act as a

medium to transfer compiled programs to the remote Internet application as indicated

in Figure 1.1 on the next page.

• The programming routines implemented in the programming processor for the

reprogrammable/reconfigurable components, will be limited to a specific manufacturer

for this project.

• TCP/IP is the main network protocol that will be investigated in this project, although

the implementation of other protocols may be used.

CHAPTER 3: EMBEDDED ETHERNET

46

1.4 OUTLINE OF THE SYSTEM DEVELOPED

Figure 1.1 illustrates a system diagram indicating the project outline.

Remote embedded system

Compile new design for the
reconfigurable hardware

E.g. Altera's MAX + PLUS II
development software

Compile new software for the
I/O processor

E.g. Microchip's MPLAB
development software

.jbc .hex

Memory
devices

Programming
processor

Internet

The MAX + PLUS II
software converts the
new design to a JAM
byte code file (.jbc).

The MPLAB software
generates the Intel
Hexadecimal File.

The client software transfers the
.hex and .jbc files to the remote
system and initiates the programming
of the different components.
The Web browser is used for
monitoring and controlling the actual
remote system.

The memory devices store
the programming data
(.hex and .jbc files).

The programming processor
consists of all the algorythms
to program the reconfigurable
hardware and the I/O processor.

Input/Output
processor

Reconfigurable
hardware

Communications
processor

Web server
The communications processor
handles the TCP/IP stack and
enables communication to the
client application.

The I/O processor is the main
processor in the system

The reconfigurable hardware
provides the physical interface
to the outside field.

Client software
& Web browser

I/O connection to
the outside field

Figure 1.1 The project outline.

CHAPTER 3: EMBEDDED ETHERNET

47

1.5 SIGNIFICANCE OF THE PROJECT

The remote configurable/programmable embedded Internet system will be more flexible

than similar existing systems. This is advantageous, for example, in the scenario where a

manufacturer produces a product for a period of time and then needs to change the

system configuration in order to use the same system to produce another product. Instead

of sending a maintenance team to physically change the hardware at the remote system,

the user will now be able to do this remotely from a PC via the Internet. It also reduces

maintenance cost and time significantly, especially if the system is located in a different

town where travelling becomes a factor.

Embedded software for the I/O processor and reconfigurable hardware can also be

changed remotely without having to remove the processor or memory from the system

board and thus reduces downtime.

1.6 REVIEW OF RELEVANT LITERATURE

The I/O processor must be able to be programmed while it is still in the circuit in order to

make the remote Internet application flexible. In-System Programming (ISP) is a

technique where a programmable device is programmed after the device is placed in a

circuit board. In-Circuit Serial Programming (ICSP) is an enhanced ISP technique and

uses only two I/O pins to serially input and output data which makes ICSP easy to use and

less intrusive on the normal operation of the microcontroller unit (MCU).

ICSP can be used in a variety of ways:

• Reduce cost of field upgrades

• Add unique ID code to your system during manufacturing

• Calibrate your system in the field

• Customize and configure your system in the field

[Microchip: In-circuit serial programming guide, 2001]

Some kind of hardware must be implemented to make the interface to the outside field

flexible. Programmable logic components are devices which are able to implement a wide

variety of logic functions, both combinational and sequential. The actual logic function

implemented is determined by the user, using some form of design entry software to

CHAPTER 3: EMBEDDED ETHERNET

48

specify the state of the internal programmable points. The internal programmable points,

effectively are, switches which can be selected to be either closed or open.

[Seals et al, 1998]

In-system programmability in Altera’s programmable logic devices (PLDs) makes

prototyping easy during design development, streamlines production, increases design

flexibility and allows quick and efficient in-field upgrades. ISP uses the IEEE Std. 1149.1

Joint Action Test Group (JTAG) test port, which allows devices to be programmed and the

PCB to be functionally tested in a single manufacturing step.

The Jam programming and test language, compatible with all current PLDs that offer ISP,

provides a software-level standard for in-system programming by remaining vendor-

independent, which results in small file sizes and reduces programming times. Designers,

using the Jam language to implement ISP, can lengthen the life and enhance the quality

and flexibility of the end product

[Altera: Introduction to ISP, 1999].

Until now, the Internet has almost exclusively served the computer market. With the

introduction of IPv6 (a new Internet communication standard), the Internet is likely to serve

very different needs in construction, each with a new set of requirements. Nomadic

computing, through a variety of network attachments including radio frequency wireless

networks and infrared systems, will make on-site communication more viable. But

perhaps more significantly will be the possibility of remote device controls – more

specifically embedded systems. Remote access is enabling cost savings in development,

commissioning, use, and maintenance and is also the major driving force for transferring

Internet mass technologies from the office and commercial sectors to industrial

applications [Finch, 1998].

A certain protocol must be used to establish communication between the remote server

and the client application software. TCP/IP is a family of protocols used for computer

communications. Often a TCP/IP user does not use the TCP/IP protocol itself, but some

other protocol from the family. This protocol family includes the following:

• IP (Internet Protocol)

• ARP (Address Resolution Protocol)

CHAPTER 3: EMBEDDED ETHERNET

49

• ICMP (Internet Control Message Protocol)

• UDP (User Datagram Protocol)

• TCP (Transport Control Protocol)

• RIP (Routing Information Protocol)

• SMTP (Simple Mail Transfer Protocol)

[Arnett, 1994]

1.7 ORGANIZATION OF THESIS

The chapters are organized logically as far as possible. The first two chapters will provide

all the background information needed to fully understand the project. Thereafter the

chapters will introduce the different project building blocks individually and leads to the last

chapter which covers the systems test results and conclusions. The different building

blocks for the project are as follows:

• The Ethernet interface

• A Web server

• The Input/Output controller

• Reconfigurable hardware

• The Embedded programming interface

• The Software environment

Here is a summary of the layout for the rest of the thesis:

Chapter 2: A background of the origin of computer networks. Detailed description

of the different network layers is also given which is of vital importance to

understand the rest of the thesis.

Chapter 3: To start explaining the building blocks of the project. This chapter

builds further on the knowledge of basic networks and examines the possibility of

using embedded controllers to implement Ethernet connectivity, highlighting some

possible limitations and solutions.

Chapter 4: Gives a detailed explanation of how an embedded controller is

implemented as the web server in this system.

CHAPTER 3: EMBEDDED ETHERNET

50

Chapter 5: Explains the operation of the actual input/output controlling processor

and inter-processor protocols that have to be implemented. The in-circuit

programming process for this processor will also be covered.

Chapter 6: Introduces re-configurable hardware in general, and complex PLDs

(CPLDs) more specifically. Altera’s product range is then introduced and reasons

for choosing this vendor is highlighted. In-circuit programming in CPLDs is

explained, followed by a detailed description of the reconfigurable hardware

interface.

Chapter 7: Covers a detailed description and study of the heart of the whole

system – the actual programming processor.

Chapter 8: Explains how the client software transfers new programming files to

the remote system and gives instructions to program the different components of

the system. It also shows how any web browser can be used to access the remote

embedded web server.

Chapter 9: Indicates the test results after the whole system was completed by

testing it with three different applications which were developed and programmed

from a remote location. Some future development areas will also be highlighted

and the thesis will end with a conclusion of the whole project.

CHAPTER 3: EMBEDDED ETHERNET

51

CHAPTER 2
THE INTERNET AND TCP/IP

2.1 OVERVIEW

The chapter starts with a brief history of the Internet and explains the whole concept of

internetworking. The rest of the chapter is dedicated to a description of some of the

relevant protocols in the TCP/IP suite which is crucial for understanding the networking

section of the project.

2.2 INTERNETWORKING EVOLUTION

Twenty years ago state of the art data communications involved transmitting command

and data at 2400 bits per second or less (Wilder, 1999, p.1). This was done using analog

telephone lines with a remote host to process the data using an application program. To

send data to another terminal (computer) in the same city (or sometimes even the same

building) meant that the data first had to be sent to a remote host and then only relayed to

the other terminal. The process was termed terminal-to-terminal communication.

Problems started arising due to the fact that the two terminals might have been in the

same city, but then the host was in another city, causing data flow to be very slow. The

matter was worsened by the fact that the communications protocols were proprietary and

meant that a terminal manufactured by “brand A” could only communicate with another

“brand A” terminal.

Then, in the early 1970s, Bob Medcalfe invented Ethernet which was a local area network

(LAN) technology (Wilder, 1999, p.1). This technology eliminated the need for a host in a

terminal-to-terminal environment and raised the speed of data transfer by a 5000 times. A

few minor modifications were made to this LAN technology and was made into a standard

called IEEE 802.2/IEEE 802.3, or as it is known today: Ethernet.

Other LAN technologies, like token ring, were also developed and standardised after

Ethernet, but were proprietary technologies and meant that two different LAN technologies

could not interwork over a wide area network (WAN), i.e. company A’s token ring network

could not communicate with company B’s Ethernet network.

CHAPTER 3: EMBEDDED ETHERNET

52

It was only in the late 1970s that the non-proprietary transport control protocol/internet

protocol (TCP/IP) was invented by Vinton Cerf and for the first time could dissimilar LAN

and WAN protocols interwork. TCP/IP was developed and used in the Advanced

Research Projects Agency Network (ARPANET) and made it possible for the different

topologies of the ARPANET to interwork. ARPANET was later split into two parts: the first

was intended for military use and was called MILNET, and the second was the Internet as

it is known today (Dulaney et al., 1995, p.4).

The International Standards Organization (ISO) attempted to standardise an

internetworking protocol to replace TCP/IP, but failed. Their work, however, was

documented as the Open System Interconnection (OSI) reference model and is still used

today throughout the communications industry. The model is described by seven layers:

Application, Presentation, Session, Transport, Network, Data link and Physical (Blackwell,

1995, p.258).

2.3 INTERNET

Wilder defines Internetworking as “the connection of multiple networks.” The Internet is

the connection of multiple diverse networks with different hardware technologies. The

protocol use to construct the original Internet backbone is called TCP/IP. A non-profit

company called Internet Society (ISOC) standardized all the protocols used by the

Internet, which are collectively described as the TCP/IP protocol suite.

Many government agencies, colleges and companies are connected worldwide by the

Internet. The most used upper layer programs of the Internet are the following:

• World Wide Web (WWW) browsers: To search data stored on the Internet, e.g.

Internet Explorer & Netscape.

• Electronic Mail (email): To exchange memos and letters with individuals or

companies, e.g. Outlook Express.

• File transfer: To exchange large files, e.g. CuteFTP, WSFTP.

• Remote login: To allow a user to log into an application located at a different

computer.

• Remote procedure call: To execute remote procedures.

CHAPTER 3: EMBEDDED ETHERNET

53

Many companies use the TCP/IP protocol suite to connect the different networks of their

own company. This implementation of the TCP/IP protocol suite in a private network is

referred to as internets, or more specific, as intranets. Their specifications, however, are

the same as for the Internet.

2.4 TCP/IP OVERVIEW

The generic term "TCP/IP" means anything and everything related to the specific protocols

of transmission control protocol (TCP) and Internet protocol (IP). It can include other

protocols, applications, and even the network medium. A sample of these protocols are:

UDP, ARP, and ICMP, while a sample of these applications are: TELNET, FTP, and rcp.

The more accurate term for TCP/IP would be "internet technology". Any network that uses

internet technology is called an "internet" (Bentham, 2000, p.73).

2.4.1 BASIC STRUCTURE

Figure 2.1 indicates the conceptual layering of the TCP/IP protocol suite compared to the

OSI reference model. These layers are depicted in the logical structure (Figure 2.2) of the

layered protocols inside a computer on an internet. Any computer that can communicate

using internet technology has such a logical structure. It is this logical structure that

determines the behaviour of the computer on the internet.

Application

Presentation

Session

Transport

Network

Data Link

Physical

Upper

Transport

Internet

Link

* Physical

* Physical Layer - Ethernet, Token Ring etc.

TCP/IP
Internet ISO

Figure 2.1 Conceptual layering of the Internet protocols (Adapted from Wilder, 1999, p.7).

CHAPTER 3: EMBEDDED ETHERNET

54

Figure 2.2 Internet architecture and protocols (Wilder, 1999, p.8).

The Internet provides three sets of services (Socolofsky et al., 2001, p.1). At the lowest

level is the IP, which is a connectionless delivery service. The next level is the transport

layer service and includes services like TCP, UDP, ICMP, etc. which uses the IP service.

The highest level is the upper layer service and usually consists of the FTP (file browsing),

HTTP (information browsing), etc. services, which uses the services of the transport layer.

Theoretically the layered structure of the services permits research and development on

one layer without affecting the others.

The physical/link layer envelops the IP layer header and data. If the physical layer is an

Ethernet LAN, the IP layer places its message (datagram) in the Ethernet frame data field.

The transport layer places its message (segment) in the IP data field. The application

layer places its data in the transport layer data field. To indicate what combination of

protocols in the TCP/IP suite is needed to transfer data, certain fields in each layer will

indicate which service is needed in the next layer.

The upper layer protocols are divided into two groups – those that provide a utility function

to the Internet and those that provide a service directly to the user (Wilder, 1999, p.8).

Examples of those that provide a direct user service are the following:

CHAPTER 3: EMBEDDED ETHERNET

55

• Hypertext transfer protocol (HTTP): Allows the user to receive information from the

World Wide Web (WWW).

• Simple message transfer protocol (SMTP): Provides the user with email

capabilities.

• File transfer protocol (FTP): Provides a service of reliable file transfers.

• TELNET: Provides remote logon capability.

Those that provide a utility function are:

• Simple network management protocol (SNMP): Provides network management

information.

• Domain name service (DNS): To allow the using of names instead of Internet

addresses.

• Address resolution protocol (ARP): Provides a link layer address given an IP

address.

• Reverse address resolution protocol (RARP): Provides an IP address given a link

layer address.

2.4.2 TERMINOLOGY

The name of a unit of data that flows through an internet is dependent upon where it exists

in the protocol stack. In summary: if it is on an Ethernet it is called an Ethernet frame; if it

is between the Ethernet driver and the IP module it is called a IP packet; if it is between

the IP module and the UDP module it is called a UDP datagram; if it is between the IP

module and the TCP module it is called a TCP segment; and if it is in a network application

it is called a application message. A driver is defined as software that communicates

directly with the network interface hardware and a module as software that communicates

with a driver, with network applications, or with another module (Socolofsky et al., 2001,

p.3).

2.4.3 FLOW OF DATA

For an application that uses TCP, data passes between the application and the TCP

module. For applications that use UDP, data passes between the application and the UDP

module. FTP is a typical application that uses TCP. Its protocol stack in this example is

CHAPTER 3: EMBEDDED ETHERNET

56

FTP/TCP/IP/ENET. SNMP (Simple Network Management Protocol) is an application that

uses UDP. Its protocol stack in this example is SNMP/UDP/IP/ENET.

The TCP module, UDP module, and the Ethernet driver are n-to-1 multiplexers. As

multiplexers they switch many inputs to one output. They are also 1-to-n de-multiplexers.

As de-multiplexers they switch one input to many outputs according to the type field in the

protocol header. This is illustrated in Figure 2.3.

Multiplexer

1 2 3 . . . n

1

Flow of
data De-multiplexer

1 2 3 . . . n

1

Flow of
data

Figure 2.3 n-to-1 Multiplexer and 1-to-n de-multiplexer.

If an Ethernet frame comes up into the Ethernet driver off the network, the packet can be

passed upwards to either the ARP module or to the IP module. The value of the type field

in the Ethernet frame determines whether the Ethernet frame is passed to the ARP or the

IP module.

If an IP packet comes up into IP, the unit of data is passed upwards to either TCP or UDP,

as determined by the value of the protocol field in the IP header. If the UDP datagram

comes up into UDP, the application message is passed upwards to the network application

based on the value of the port field in the UDP header. If the TCP message comes up into

TCP, the application message is passed upwards to the network application based on the

value of the port field in the TCP header.

CHAPTER 3: EMBEDDED ETHERNET

57

For downwards multiplexing there is only the one downward path; each protocol module

adds its header information so the packet can be de-multiplexed at the destination

computer. Data passing out from the applications through either TCP or UDP converges

on the IP module and is sent downwards through the lower network interface driver.

Although internet technology supports many different network media, Ethernet is used for

all examples because it is the most common physical network used under IP and will

effectively also be the network that will be used for the project. The computer in Figure 2.2

has a single Ethernet connection. The 6-byte Ethernet address is unique for each

interface on an Ethernet and is located at the lower interface of the Ethernet driver.

The computer also has a 4-byte IP address. This address is located at the lower interface

to the IP module. The IP address must be unique for an internet. A running computer

always knows its own IP address and Ethernet address.

2.4.4 IP CREATES A SINGLE LOGICAL NETWORK

The IP module is central to the success of internet technology (Arnett et al., 1995, p.20).

Each module or driver adds its header to the message as the message passes down

through the protocol stack. Each module or driver strips the corresponding header from

the message as the message climbs the protocol stack up towards the application. The IP

header contains the IP address, which builds a single logical network from multiple

physical networks. This interconnection of physical networks is the source of the name:

internet. A set of interconnected physical networks that limit the range of an IP packet is

called an "internet" (Socolofsky et al., 2001, p.8).

2.4.5 PHYSICAL NETWORK INDEPENDENCE

IP hides the underlying network hardware from the network applications. If a new physical

network has to be developed, it can be put into service by implementing a new driver that

connects to the internet underneath IP. Thus, the network applications remain intact and

are not vulnerable to changes in hardware technology.

2.5 ETHERNET

Ethernet uses Carrier Sense and Multiple Access with Collision Detection (CSMA/CD).

CSMA/CD means that all devices communicate on a single medium, that only one can

transmit at a time, and that they can all receive simultaneously (Socolofsky et al., 2001,

CHAPTER 3: EMBEDDED ETHERNET

58

p.9). If 2 devices try to transmit at the same instant, the transmit collision is detected, and

both devices wait a random (but short) period before trying to transmit again.

An Ethernet frame contains the destination address, source address, type field, data, and

cyclic redundancy check (CRC) as indicated in Figure 2.4.

Destination address

6 bytes

Source address

6 bytes

Type

2 bytes

Data

46-1500 bytes

CRC

4 bytes

Figure 2.4 Ethernet frame (Adapted from Arnett et al., 1995, p.53).

2.5.1 DESTINATION AND SOURCE ADDRESSES

These 6-byte values identify the recipients and sender of the frame and are generally

known as media access control (MAC) addresses (Arnett et al., 1995, p.56). Each

network adaptor (controller) has its 6-byte address burned into a memory device at

manufacture, but it is the responsibility of the networking software to copy this value into

the appropriate field of the network packet. Every controller then listens for Ethernet

frames with their destination address. All devices also listen for Ethernet frames with a

wild-card destination address of "FF-FF-FF-FF-FF-FF" (in hexadecimal), called a

"broadcast" address.

2.5.2 TYPE/LENGTH FIELD

This field is used differently for different Ethernet standards. The one standard uses it to

indicate the total number of bytes in the data field. Other standards use it as a protocol

type field, indicating which protocol is being used in the data field.

2.5.3 DATA

This area contains user data in any format with the only restriction that the minimum size

must be 46 bytes and the maximum 1500 bytes (Bentham, 2000, p.11). The minimum is

necessary to ensure that the overall frame is at least 64 bytes. If the frame has less than

64 bytes, there might be a danger that frame collisions would not be detected. The

protocols of the Internet layer (ARP, IP, RARP) are transmitted in this data field of the

Ethernet frame.

CHAPTER 3: EMBEDDED ETHERNET

59

2.5.4 CYCLIC REDUNDANCY CHECK

The network controller checks this value to determine if the frame is corrupted and then

discards this frame. It is automatically appended by the Ethernet controller on transmit

and checked on receive.

2.6 ARP

Address Resolution Protocol (ARP) is used to translate IP addresses to Ethernet

addresses. The translation is done only for outgoing IP packets, because this is when the

IP header and the Ethernet header are created.

The translation is performed with a table look-up. The table, called the ARP table, is

stored in memory and contains a row for each computer (Socolofsky et al., 2001, p.11).

There is a column for IP address and a column for Ethernet address. When translating an

IP address to an Ethernet address, the table is searched for a matching IP address. Table

2.1 indicates a simplified ARP table.

Table 2.1 Example ARP table.

The human convention when writing out the 4-byte IP address is each byte in decimal and

separating bytes with a period. When writing out the 6-byte Ethernet address, the

conventions are each byte in hexadecimal and separating bytes with either a minus sign or

a colon.

The ARP table is necessary because the IP address and Ethernet address are selected

independently; an algorithm cannot be used to translate IP address to Ethernet address.

The IP address is selected by the network manager based on the location of the computer

IP address Ethernet address

223.1.2.1

223.1.2.3

223.1.2.4

08-00-39-00-2F-C3

08-00-5A-21-A7-22

08-00-10-99-AC-54

CHAPTER 3: EMBEDDED ETHERNET

60

on the internet. When the computer is moved to a different part of an internet, its IP

address must be changed. The Ethernet address is selected by the manufacturer based

on the Ethernet address space licensed by the manufacturer. When the Ethernet

hardware interface board changes, the Ethernet address changes.

2.7 INTERNET PROTOCOL

The IP module is central to internet technology and the essence of IP is its route table

(Arnett et al., 1995, p.61). IP uses this in-memory table to make all decisions about

routing an IP packet. The content of the route table is defined by the network

administrator and any mistakes in this table will lead to blockage of communication.

The route table is best understood by first having an overview of routing, then learning

about IP network addresses, and then looking at the details.

2.7.1 DIRECT ROUTING

Figure 2.5 represents a tiny internet with 3 computers: A, B, and C. Each computer has

the same TCP/IP protocol stack as in Figure 2.2. Each computer's Ethernet interface has

its own Ethernet address. Each computer has an IP address assigned to the IP interface

by the network manager, who also has assigned an IP network number to the Ethernet.

Ethernet 1
IP network "Research"

A B C

Figure 2.5 One IP network.

When A sends an IP packet to B, the IP header contains A's IP address as the source IP

address, and the Ethernet header contains A's Ethernet address as the source Ethernet

address. Also, the IP header contains B's IP address as the destination IP address and

the Ethernet header contains B's Ethernet address as the destination Ethernet address.

This is demonstrated in Table 2.2.

CHAPTER 3: EMBEDDED ETHERNET

61

Address Source Destination

IP header

Ethernet header

A

A

B

B

Table 2.2 Addresses in an Ethernet frame for an IP packet from A to B.

When B's IP module receives the IP packet from A, it checks the destination IP address

against its own, looking for a match, then it passes the datagram to the upper-level

protocol.

This communication between A and B is termed direct routing (Socolofsky et al., 2001,

p.16).

2.7.2 INDIRECT ROUTING

Figure 2.6 is a more realistic view of an internet. It is composed of 3 Ethernets and 3 IP

networks connected by an IP-router called computer D. Each IP network has 4

computers; each computer has its own IP address and Ethernet address.

Ethernet 1
IP network "Research"

A B C

Ethernet 2
IP network "Accounting"

E F G

Ethernet 3
IP network "Factory"

H I J

D

Figure 2.6 Three IP networks; one internet (Adapted from Socolofsky et al., 2001, p.17).

CHAPTER 3: EMBEDDED ETHERNET

62

Except for computer D, each computer has a TCP/IP protocol stack like the one shown in

Figure 2.2. Computer D is the IP-router. It is connected to all 3 networks and therefore

has 3 IP addresses and 3 Ethernet addresses. Computer D has a TCP/IP protocol stack

similar to that in Figure 2.2, except that it has 3 ARP modules and 3 Ethernet drivers.

Note that computer D has only one IP module.

The network manager has assigned a unique number, called an IP network number, to

each of the Ethernets. The IP network numbers are not shown in this diagram, just the

network names.

When computer A sends an IP packet to computer B, the process is identical to direct

routing. Any communication between computers located on a single IP network can be

described using direct routing.

When computer D and A communicate, computer D and E communicate, and computer D

and H communicate, it is direct communication. This is because each of these pairs of

computers is on the same IP network.

However, when computer A communicates with a computer on the far side of the IP-

router, communication is no longer direct. A must use D to forward the IP packet to the

next IP network. This communication is called "indirect".

This routing of IP packets is done by IP modules and happens transparently to TCP, UDP,

and the network applications.

If A sends an IP packet to E, the source IP address and the source Ethernet address are

A's. The destination IP address is E's, but because A's IP module sends the IP packet to

D for forwarding, the destination Ethernet address is D's, as indicated in Table 2.3.

Address Source Destination

IP header

Ethernet header

A

A

E

D

Table 2.3 Addresses in an Ethernet frame for an IP packet from A to E (before D).

CHAPTER 3: EMBEDDED ETHERNET

63

D's IP module receives the IP packet and upon examining the destination IP address,

detects that it is not its IP address, and sends the IP packet directly to E. This is indicated

in Table 2.4.

Address Source Destination

IP header

Ethernet header

A

D

E

E

Table 2.4 Addresses in an Ethernet frame for an IP packet from A to E (after D).

2.7.3 IP ADDRESS

To identify an individual computer on the Internet, it must have a unique address. The

current version of the Internet Protocol (IPv4) uses a 4-byte number, expressed in dotted

decimal notation (e.g. 123.45.67.9). This address consists of 3 parts (Wilder, 1999,

p.152):

• A network address, which uniquely identifies an organization.

• A subnet address, which identifies a subnet within the organization.

• A system address, which identifies a single node on that subnet.

So the address 123.45.67.8 has a class A network address of 123. However, if this node

wants to contact another with the address 123.45.78.9, the knowledge that it is in the

same organization is of little use. What the node really needs to know is whether the

destination is on the same subnet. To do this, each node is equipped with a “subnet

mask”; a logical AND with this value will eliminate the system address so that the rest of

the address fields can be compared. If the node 123.45.67.8 has a subnet mask of

255.255.255.0, then it would detect that 123.45.78.9 was on a different subnet

(123.45.67.8 AND 255.255.255.0 = 123.45.67.0 which is not equal to 123.45.78.0),

whereas a mask value of 255.255.0.0 would suggest it is on the same subnet (123.45.67.8

AND 255.255.0.0 = 123.45.0.0 which is equal to 123.45.0.0).

2.7.4 NAMES

People refer to computers by names, not numbers. A computer called alpha might have

the IP address of 223.1.2.1. For small networks, this name-to-address translation data is

often kept on each computer in the "hosts" file. For larger networks, this translation data

CHAPTER 3: EMBEDDED ETHERNET

64

file is stored on a server and accessed across the network when needed. A few lines from

that file might look like this:

223.1.2.1 alpha
223.1.2.2 beta
223.1.2.3 gamma
223.1.2.4 delta
223.1.3.2 epsilon
223.1.4.2 iota

2.8 USER DATAGRAM PROTOCOL

UDP is one of the two main protocols to reside on top of IP. It offers service to the user's

network applications. Example network applications that use UDP are: Network File

System (NFS) and SNMP. The service is little more than an interface to IP.

UDP is a connectionless datagram delivery service that does not guarantee delivery. UDP

does not maintain an end-to-end connection with the remote UDP module. It merely

pushes the datagram out on the net and accepts incoming datagrams off the net.

UDP adds two values to what is provided by IP (Socolofsky et al., 2001, p.27). One is the

multiplexing of information between applications based on port number. The other is a

checksum to check the integrity of the data.

2.9 TRANSMISSION CONTROL PROTOCOL

TCP provides a different service than UDP. TCP offers a connection-oriented byte stream,

instead of a connectionless datagram delivery service. TCP guarantees delivery, whereas

UDP does not.

TCP is used by network applications that require guaranteed delivery and cannot be

bothered with doing time-outs and retransmissions. The two most typical network

applications that use TCP are FTP and TELNET. TCP's greater capability is not without

cost: it requires more central processing unit (CPU) and network bandwidth (Arnett et al.,

1995, p.69). The internals of the TCP module are much more complicated than those in a

UDP module.

CHAPTER 3: EMBEDDED ETHERNET

65

Similar to UDP, network applications connect to TCP ports. Well-defined port numbers are

dedicated to specific applications. For instance, the TELNET server uses port number 23.

The TELNET client can find the server simply by connecting to port 23 of TCP on the

specified computer.

When the application first starts using TCP, the TCP module on the client's computer and

the TCP module on the server's computer start communicating with each other. These

two end-point TCP modules contain state information that defines a virtual circuit. This

virtual circuit consumes resources in both TCP end-points. The virtual circuit is full duplex.

Data can go in both directions simultaneously. The application writes data to the TCP

port, the data traverses the network and is read by the application at the far end.

TCP packetizes the byte stream at will. It does not retain the boundaries between writes.

For example, if an application does 5 writes to the TCP port, the application at the far end

might do 10 reads to get all the data or it might get all the data with a single read. There is

no correlation between the number and size of writes at one end to the number and size of

reads at the other end.

TCP is a sliding window protocol with time-out and retransmits. Outgoing data must be

acknowledged by the far-end TCP. Acknowledgements can be piggybacked on data.

Both receiving ends can flow control the far end, thus preventing a buffer overrun.

As with all sliding window protocols, the protocol has a window size. The window size

determines the amount of data that can be transmitted before an acknowledgement is

required. For TCP, this amount is not a number of TCP segments but a number of bytes.

2.10 TELNET

TELNET provides a remote login capability on TCP. The operation and appearance is

similar to keyboard dialing through a telephone switch (Arnett et al., 1195, p.74). On the

command line the user types "telnet delta" and receives a login prompt from the computer

called "delta".

CHAPTER 3: EMBEDDED ETHERNET

66

TELNET works well. It is an old application and has widespread interoperability.

Implementations of TELNET usually work between different operating systems.

2.11 FILE TRANSFER PROTOCOL

File Transfer Protocol (FTP), as old as TELNET, also uses TCP and has widespread

interoperability (rfc). The operation and appearance is as if a user TELNETed to the

remote computer, but instead of typing usual commands, the user has to make do with a

short list of commands for directory listings and the like. FTP commands allow the copying

of files between computers.

2.12 HYPERTEXT TRANSFER PROTOCOL

Hypertext transfer protocol (HTTP) is used to transfer document files between computers

over the Internet. The document files contain tagged words that are used as pointers to

other information, or lists of other information. The Hypertext Markup Language (HTML) is

used to construct the payload message transported by HTTP.

Basically it is a upper layer application that uses the well known TCP port 80 to create a

connection between a client and server (Wilder, 1999, p.345). A client simply sends a

request message to a HTTP server, which sends a response message to the client and

closes the connection.

2.13 CONCLUSION

Networking protocols and their general operation was explained without any in-depth

detail. The purpose for this chapter was to provide a background into networking to be

able to understand the rest of the thesis.

Chapter 3 will build on the knowledge obtained about certain protocols in this chapter to

establish an Ethernet connection via an 8-bit microcontroller.

CHAPTER 3: EMBEDDED ETHERNET

67

CHAPTER 3
EMBEDDED ETHERNET

3.1 OVERVIEW

In his book “TCP/IP Lean: Web Servers for Embedded Systems”, Jeremy Bentham

describes techniques to implement a small web server on a PIC microcontroller. The only

limitation is that it can only be used on a LAN using a serial (SLIP) link. He went further by

creating methods to implement this same system to allow Ethernet communication. These

hardware methods and how they fit into the entire project will be discussed in this chapter.

The references for this whole chapter are: “TCP/IP Lean: Web Servers for Embedded

Systems (J. Bentham)” and the “PICDEM.net User’s Guide (Microchip)”.

3.2 HARDWARE

This section will explain the hardware requirements to implement Ethernet on an

embedded system.

3.2.1 ETHERNET INTERFACE

As explained in Chapter 2, Ethernet is designed to allow a large number of terminals to be

connected together, which basically means that one computer could send data to any of

the other computers on that network. Currently the star topology is implemented by

Ethernet where each computer is connected to a repeater and several repeaters again are

connected together to form a LAN (Figure 3.1).

NODE 1 NODE 2 NODE 3

REPEATER

Figure 3.1 Star network topology.

CHAPTER 3: EMBEDDED ETHERNET

68

Hardware on each computer arbitrates with other computers on the network so they can

transmit data when necessary. Each computer (node) has its own 6-byte Ethernet

address (MAC address) to enable it to filter out messages not intended for that node and

hence to reduce the strain implied on the resources of that node. All the messages on the

network have a destination MAC address and a source MAC address where one node

wants to communicate to another node. This is known as unicast. Sometimes it might be

necessary to send a message to all nodes on the network which is known then as

broadcast.

The need to filter certain MAC addresses and the requirement to handle the 10Mbps data

rate, dictates the use of Ethernet specific hardware. Currently there are no

microcontrollers with built-in Ethernet interfaces and therefore external network interface

hardware has to be used.

3.2.2 ETHERNET HARDWARE

The old style Industry Standard Architecture (ISA) computer networks cards need to buffer

all incoming and outgoing messages in a packet buffer to avoid overloading the computer.

Access to these cards via the ISA bus is more or less 1 MB per second, whereas the data

rate at which messages enter and leave the network card is 10 MB per second.

Modern network interface cards need less buffering, since they can interface directly to the

PC main memory over a fast 32-bit bus. This, however, is unsuitable for microcontrollers

because microcontroller speeds are not fast enough for the restrictions of these cards and

therefore it was decided to use an old style ISA buffered interface.

Figure 3.2 indicates a block diagram of the ISA network interface controller (NIC) that will

be used in the project.

CHAPTER 3: EMBEDDED ETHERNET

69

Control
registers

Remote
DMA

Packet Buffer
RAM

16-byte
FIFO

Local
DMA

Receive
de-serialiser

Transmit
serialiser

CPU
interface

Network
interface

Figure 3.2 Ethernet hardware block diagram (Adapted from PICDEM.net User’s guide,

p.29).

• The CPU can read and write the control registers. These registers are organized in

banks (register pages) so that a large number of registers can be accessed using

only 4 address bits.

• The CPU cannot access the packet buffer random access memory (RAM) directly,

but instead has to make use of the remote direct memory access (DMA) controller.

The control registers are used to set up the desired packet buffer address and byte

count, whereafter the CPU repeatedly reads or writes a data latch, to transfer a

block of data to and from the packet buffer. The latch is not one of the control

registers and therefore an extra line is needed, making the number of address lines

a total of five (A0-4).

• Once the NIC is set up, it can now transfer data between the packet buffer and the

network interface using a small first-in/first-out (FIFO) buffer and a second DMA

channel. The NIC is intelligent enough so that it can receive several messages

(Ethernet frames) without intervention from the host CPU.

The Realtek RTL8019AS was chosen as the NIC to be used in the project. It is a

derivative of the well-known DP8390 NIC which was one of the first network controllers

that was developed. Figure 3.3 shows the general connection between a Ethernet

controller and a microcontroller.

CHAPTER 3: EMBEDDED ETHERNET

70

Read

Write

RESET

Data 0-7

Addr 0-4

Microcontroller Ethernet
controller

CPU
INTERFACE

NETWORK
INTERFACE

TX

RX

Figure 3.3 Ethernet controller interfaces (Adapted from PICDEM.net User’s guide, p.30).

3.2.3 MICROCONTROLLER INTERFACE

In order to drive the RTL8019AS Ethernet controller, the microcontroller has to simulate

the read and write cycles of a standard computer ISA bus. The steps for a single cycle

read/write are as follows:

1. Set the address.

The standard RTL8019AS controller has 20 address lines (A0-A19), but only 5 of

these lines are used to access the registers that are needed in this application. The

rest of the address lines are tied down to ground.

2. Set the data lines.

In a read cycle these lines act as inputs to the microcontroller and in a write cycle

they act as outputs from the microcontroller.

3. Activate the Read or Write signals.

To activate a Read or Write signal, these lines have to be set LOW.

4. If it is a Read cycle, fetch the data.

As soon as the Read signal goes LOW for a read cycle, the Ethernet controller

drives the data bus and places the data at the specified address on the data bus.

CHAPTER 3: EMBEDDED ETHERNET

71

5. De-activate both Read and Write signals.

If it was a Read cycle, the Ethernet controller will stop driving the data bus. If it was

a Write cycle the controller will latch the data that was placed on the data bus by the

microcontroller.

6. Unset the data lines.

The microcontroller output driver for the data bus should be disabled so that other

devices can use the data bus, i.e. the microcontroller data port should be set as

inputs.

Figure 3.4 indicates the signals involved in a read or write cycle.

Address

Read

Write

Data

Figure 3.4 Ethernet controller access cycles (PICDEM.net User’s guide, p.31).

The following I/O lines are needed on the microcontroller:

• One read output and 1 Write output.

• Five address outputs. These lines are only needed when the Ethernet controller is

accessed and could be used for other functions otherwise.

• Eight bi-directional data lines, which are also only needed when the Ethernet

controller is accessed.

Microchip’s PIC16F877 was chosen as the microcontroller to interface to the RTL8019AS

Ethernet controller for the following reasons:

• It has a total of 33 I/O pins in a 40-pin DIP package, making it very suitable to

interface the RTL8019AS and then still have 18 I/O pins left to use for other parts of

the project, as will be described in the following chapters.

• Microchip’s “F” series microcontrollers contain FLASH based program memory

which means that they can be reprogrammed without removing the device from the

CHAPTER 3: EMBEDDED ETHERNET

72

board. This is a huge advantage, as this will reduce the developing time quite

significantly.

• To make development even easier, the PIC16F877 consists of built-in debug

capabilities.

• It contains built-in EEPROM data memory, which makes it convenient to save set-

up data (such as the MAC address and IP address) internally and then not to worry

about a power failure where such data might be lost.

Figure 3.5 indicates the actual connections of the RTL8019AS and PIC16F877 to establish

the Ethernet interface for the project.

• D1 is used as the system LED and flashes if the system is in operation.

• The S1 pushbutton is used for resetting the Ethernet interface, while S2 is used for

setting up the parameters (e.g. MAC and IP addresses) for the whole system.

• J3 acts as the in-circuit debugger (ICD) port for debugging and programming the

PIC16F877 while still in the circuit.

• A power supply section is used to provide a regulated +5V for the whole system.

• A liquid crystal display (LCD) interface is included for use to display messages or

information. Jumpers JP1 to JP8 determine to which source the LCD is connected.

If the jumpers are in the position 1-3, then the LCD is connected to the I/O

controller, and if it is in the

1-2 position, it is connected to the Ethernet interface controller.

• A RS-232 interface is also provided to make development easier and could be used

for debugging purposes. Jumpers JP4 and JP5 can disconnect the PIC16F877’s

RS-232 module from the RS-232 transceiver and is then connected in such a way

to establish RS-232 communication between the Ethernet interface controller and

the I/O controller.

• U4, the RTL8019AS, uses three LEDs to indicate if there are packets transmitted,

received or if collisions occur. The physical connection to the Ethernet port (J4) is

established using the FL1012 untwisted pair (UTP) transceiver.

• The STATUS0-3 and CMD0-1 nets on the PIC16F877 are used for command and

status control between the Ethernet controller and the Programmer controller.

These lines will be explained in detail in the following chapters.

CHAPTER 3: EMBEDDED ETHERNET

73

Figure 3.5 The embedded Ethernet interface.

i

3.3 ETHERNET DRIVER

The following sections will describe the software drivers that are needed to access the

RTL8019AS and hence to simulate the PC ISA bus. The drivers were written in the C

language using the C-compiler from Custom Computer Services (www.ccsinfo.com).

3.3.1 NIC INITIALIZATION

The most fundamental part of the Ethernet device driver is to be able to read and write to

the NIC. Figure 3.6 indicates how this is accomplished in the firmware.

/* Input a byte from a NIC register */
BYTE innic(int reg)
{
 BYTE b;

 DATA_FROM_NIC;
 NIC_ADDR = reg;
 NIC_IOR_ = 0;
 b = NIC_DATA;
 NIC_IOR_ = 1;
 return(b);
}

/* Output a byte to a NIC register */
void outnic(int reg, int b)
{
 NIC_ADDR = reg;
 NIC_DATA = b;
 DATA_TO_NIC;
 NIC_IOW_ = 0;
 delay_cycles(1);
 NIC_IOW_ = 1;
 DATA_FROM_NIC;
}

Figure 3.6 Read and write functions (PICDEM.net User’s guide, p.34).

The DATA_FROM and DATA_TO macros are used to set the microcontroller data port

direction registers (TRIS). To ensure the Read and Write signals remain LOW for the

correct time, a single CPU cycle delay is added to each function.

Once the read and write functions are established, the NIC can be initialised using a series

of outnic functions calls as indicated in Figure 3.7.

ii

outnic(CMDR, 0x21); /* Stop, DMA abort, page 0 */
delay_ms(2); /* ..wait to take effect */
outnic(DCR, DCRVAL);
outnic(RBCR0, 0); /* Clear remote byte count */
outnic(RBCR1, 0);
outnic(RCR, 0x20); /* Rx monitor mode */
outnic(TCR, 0x02); /* Tx internal loopback */

Figure 3.7 NIC initialisation (PICDEM.net User’s guide, p.34).

Note that Figure 3.7 doesn’t show all the initialisation parameters needed. The only real

important parameters are the following:

• Ethernet MAC address

This 6-byte address must be supplied to the NIC so that it can filter out incoming

packets not intended for this node.

• Address filtering

The parameter enables or disables promiscuous mode. Enabling promiscuous

mode means that the NIC will accept all packets it receives and will not filter them

out, which is convenient for initial development and testing of the firmware.

• RAM size

The RTL8019AS has a total of 16Kbytes of packet buffer RAM. When the NIC is

used in 8-bit mode, it is suggested that only 8Kbytes should be used. Doing this will

mean that there are 1.5Kbytes for the transmit buffer and 6.5K for the receive

buffer.

3.3.2 ACCESSING THE PACKET BUFFER

The operation of a normal network adaptor is such that the host CPU will read the entire

packet from the Ethernet controller into its own RAM and then process it from there. Since

one packet is much larger than the RAM capacity of a microcontroller, it will be necessary

to fetch and process the incoming packets in small chunks. The NIC’s DMA controller is

useful for this purpose, since it can accept any packet buffer address and byte count.

Figure 3.8 shows the methods to read and write data from the NIC’s RAM area.

iii

/* Set the 'remote DMA' address in the NIC's RAM to be accessed */
void setnic_addr(WORD addr)
{
 outnic(ISR, 0x40); /* Clear remote DMA interrupt flag */
 outnic(RSAR0, addr&0xff); /* Data addr */
 outnic(RSAR1, addr>>8);
}

/* Get data from NIC's RAM into the given buffer */
void getnic_data(BYTE *data, int len)
{
 BYTE b;

 outnic(ISR, 0x40); /* Clear remote DMA interrupt flag */
 outnic(RBCR0, len); /* Byte count */
 outnic(RBCR1, 0);
 outnic(CMDR, 0x0a); /* Start, DMA remote read */
 while (len--) /* Get bytes */
 {
 b = innic(DATAPORT);
 *data++ = b;
 }
}

/* Put the given data into the NIC's RAM */
void putnic_data(BYTE *data, int len)
{
 len += len & 1; /* Round length up to an even value */
 outnic(ISR, 0x40); /* Clear remote DMA interrupt flag */
 outnic(RBCR0, len); /* Byte count */
 outnic(RBCR1, 0);
 outnic(CMDR, 0x12); /* Start, DMA remote write */
 while (len--) /* O/P bytes */
 outnic(DATAPORT, *data++);
 len = 255; /* Done: must ensure DMA complete */
 while (len && (innic(ISR)&0x40)==0)
 len--;
}
Figure 3.8 Reading and writing data from RTL8019AS RAM (PICDEM.net User’s guide,

p.36).

3.3.3 PACKET RECEPTION

Packet analysis basically involves the following:

• Checking for over-runs of the packet buffer

• Detecting that one or more packets have been received

• Checking the error status of the packet

• Establishing the start address of the packet in the buffer

• Freeing up the buffer RAM used by the packet

iv

Each Ethernet packet has its own header containing the 6-byte destination and source

addresses (known as the MAC addresses). The structure to define these headers is

shown in Figure 3.9.

#define MACLEN 6

typedef struct { // Ethernet frame header
 BYTE dest[MACLEN]; // Dest & srce MAC addresses
 BYTE srce[MACLEN];
 WORD pcol; // Protocol
} ETHERHEADER;

Figure 3.9 Ethernet header structure (PICDEM.net User’s guide, p.37).

The total frame size, including the header and a 4-byte CRC, is between 64 and 1518

bytes, so the actual length of data is between 46 and 1500 bytes. If less than the

minimum, the data is padded to fit.

The NIC also adds its own hardware-specific header on the front of the Ethernet packet,

so that the length and error status are known (Figure 3.10).

typedef struct { // NIC hardware packet header
 BYTE stat; // Error status
 BYTE next; // Pointer to next block
 WORD len; // Length of this frame incl. CRC
} NICHEADER;

Figure 3.10 NIC hardware-specific header (PICDEM.net User’s guide, p.37).

As a result, the frame in the NIC buffer RAM has two headers in front of the data and to

simplify this, the driver copies them into local RAM.

typedef struct { // NIC and Ethernet headers combined
 NICHEADER nic;
 ETHERHEADER eth;
} NICETHERHEADER;

NICETHERHEADER nicin; // Buffer for incoming NIC & Ether hdrs

/* Get packet into buffer, return length (excl CRC), or 0 if none available */
WORD get_ether()
{
 WORD len=0, curr;
 . . .
 getnic_data((BYTE *)&nicin, sizeof(nicin));

v

 len = nicin.nic.len; /* Take length from stored header */
 . . .
 len -= MACLEN+MACLEN+2+CRCLEN;
 . . .
 return(len); /* Return length excl. CRC */
}

Figure 3.11 Receiving an Ethernet frame (PICDEM.net User’s guide, p.38).

3.3.4 PACKET ANALYSIS

Due to the shortage of local on-chip RAM in the microcontroller, the incoming packet must

be analysed as it is in the NIC buffer RAM. The packet data is then fetched a byte at a

time while the checksum is computed for IP verification. Figure 3.12 shows some of the

packet analysis functions.

/* Get a byte from network buffer; if end, set flag */
BYTE getch_net(void)
{
 BYTE b=0;

 atend = rxout>=rxin;
 if (!atend)
 {
 b = getnic_byte();
 rxout++;
 check_byte(b);
 }
 return(b);
}

BYTE ungot_byte;
BOOL ungot;

/* Get an incoming byte value, return 0 if end of message */
BOOL get_byte(BYTE &b)
{
 if (ungot)
 b = ungot_byte;
 else
 b = getch_net();
 ungot = 0;
 return(!atend);
}

/* Unget (push back) an incoming byte value */
void unget_byte(BYTE &b)
{
 ungot_byte = b;
 ungot = 1;
}

/* Get an incoming word value, return 0 if end of message */
BOOL get_word(WORD &w)
{
 BYTE hi, lo;

vi

 hi = getch_net();
 lo = getch_net();
 w = ((WORD)hi<<8) | (WORD)lo;
 return(!atend);
}

/* Match an incoming byte value, return 0 not matched, or end of message */
BOOL match_word(WORD w)
{
 WORD inw;

 return(get_word(inw) && inw==w);
}

/* Skip an incoming word value, return 0 if end of message */
BOOL skip_word(void)
{
 getch_net();
 getch_net();
 return(!atend);
}

Figure 3.12 Packet analysis functions (PICDEM.net User’s guide, p.39).

The Unget() function is included so that one byte can be pushed back into the NIC buffer

RAM. The get_, match_, and skip_ functions are used for the actual packet analysis.

3.3.5 PACKET TRANSMISSION

The packet transmission driver has to do the following:

• Write the Ethernet header (destination & source addresses, and type of protocol)

into the NIC packet buffer.

• Write the packet data into the buffer.

• Set the length of the packet in the NIC registers.

• Start the NIC state machine.

The NIC will automatically retry the transmission if it fails due to a collision, but the

transmission could still fail if the network is heavily loaded. The packet transmission

drivers will not take action in this event, since it is the upper layers (TCP) that initiate a

retry. Figure 3.13 shows two of the packet transmission functions.

#define TXBUFFLEN 64
BYTE txbuff[TXBUFFLEN]; // Tx buffer
int txin, txout;

/* Put a byte into the network buffer */
void putch_net(BYTE b)
{

vii

 if (txin < TXBUFFLEN)
 txbuff[txin++] = b;
 check_byte(b);
}

/* Send Ethernet packet given payload len */
void put_ether(void *data, WORD dlen)
{
 outnic(ISR, 0x0a); /* Clear interrupt flags */
 setnic_addr(TXSTART<<8);
 putnic_data(nicin.eth.srce, MACLEN);
 putnic_data(myeth, MACLEN);
 swapw(nicin.eth.pcol);
 putnic_data(&nicin.eth.pcol, 2);
 putnic_data(data, dlen);
}

Figure 3.13 Packet transmission functions (PICDEM.net User’s guide, p.40).

3.4 PROTOCOL DRIVERS

The drivers for the ARP, IP, ICMP, TCP and HTTP protocols are not included in this

chapter as they basically remain the same as described in Bentham’s book “TCP/IP Lean:

Web Servers for Embedded Systems”. Changes to these protocols will be indicated in the

relevant chapters that follow.

3.5 CONCLUSION

This chapter explained the hardware implementation of the RTL8019AS Ethernet

controller in an embedded system to establish Ethernet communication with a PIC

microcontroller. Software drivers for this interface have also been described briefly.

The next chapter will deal with one of the upper layer protocols: HTTP. This will then be

used to create an embedded Web server using the same PIC microcontroller that is used

for interfacing with the RTL8019AS.

viii

CHAPTER 4
EMBEDDED WEB SERVER

4.1 OVERVIEW

This chapter takes a look at HTTP and how it was implemented in the project. The HTML

language will also be briefly discussed. The project makes use of its own read-only

memory (ROM) file system, which is explained with an example. Only the relevant

sections of the Web server driver are discussed.

4.2 HYPERTEXT TRANSFER PROTOCOL

HTTP is the primary protocol used to distribute information on the Web (Stanek, 1996,

p.15). HTTP is a powerful and fast protocol that allows for easy exchange of files.

To achieve high speed and versatility, HTTP is defined as a connectionless and stateless

protocol. This means that the client and server do not maintain a connection or state

information related to the connection. When clients connect to the server, they make a

request, get a response, then disconnect. Because a connection is not maintained, no

system resources are used after the transaction is completed. Consequently, HTTP

servers are only limited by active connections and can generally service hundreds of

transactions with low system overhead (Stanek, 1996, p.16). The only drawback to

connectionless protocols is that when the same client requests additional data, the

connection must be re-established. To Web users this means a delay whenever additional

data is requested.

HTTP is also a stateless protocol. Servers using stateless protocols maintain no

information about completed transactions and processes. When a client breaks a

connection with a server running a stateless protocol, there is no data that has to be

cleaned up or logged. By not tracking state information, there is less overhead on the

server and the server can generally handle transactions swiftly (Stanek, 1996, p.17).

The fact that HTTP is connectionless and stateless makes it possible to use a PIC

microcontroller as a Web server, seeing that the controller will not be occupied constantly.

ix

4.2.1 GET METHOD

To fetch a Web document, the browser (Internet Explorer 5.0, Netscape etc.) opens a TCP

connection to server port 80, then uses the HTTP protocol to send a request. The request

and response are one or more lines of text, each terminated by the newline characters. If

the request is successful, the information (document text, graphical data) is then sent

down the same connection, which is then close on completion. HTTP commands are

called methods. The one used to fetch documents is the GET method.

4.2.2 REQUEST

A basic request consists of the following:

• The keyword GET

• The filename

• A protocol identifier

• The newline character

e.g.

GET /index.htm HTTP/1.0<CR><LF>

Generally a browser only receives data (Web pages) from the Web server, but it is also

possible to send data back to the server. In this case the request stays exactly as above,

but the ‘?’ character is added together with some tag specific characters.

e.g.

GET /index.htm?Q.x=10&Q.y=10 HTTP/1.0

This example demonstrates what the request will look like if the user clicks on an image,

on the Web page, with the tag name ‘Q’. The x and y coordinates are passed to the server

in this case.

Following the GET method is an optional header containing further browser-specific

details, such as its configuration and the document format it can accept (Figure 4.1).

x

GET /index.htm HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/4.5 [en] (Win95; I)
Pragma: no-cache
Host: 10.1.1.11
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, /image/png, */*
Accept-Encoding: gzip
Accept-Language: en
Accept-Charset: iso-8859-1, *, utf-8

Figure 4.1 An example of a GET method with the optional header.

The optional header is simply ignored in this mini Web server application since this data is

not necessary for a simple Web page transfer.

4.2.3 RESPONSE

The server replies with a response line containing the HTTP version, status code and

description, such as

HTTP/1.0 200 OK

or an error code as shown below.

HTTP/1.0 404 Not Found

The server may then send optional header information in a similar format to the request

headers, but once again, the header will be ignored in this case seeing that it is not

necessary and will only take up more resources on the PIC microcontroller.

Immediately after the response line from the server, the server sends a blank line followed

by the entity body. The entity body is simply the text of graphic data that was requested by

the client. The request/response process using the HTTP protocol is demonstrated in

Figure 4.2.

CLIENT SERVER

GET /index.htm HTTP/1.0

HTTP/1.0 200 OK

Contents of "index.htm"

Figure 4.2 An example of a HTTP request/response process.

xi

4.3 HYPERTEXT MARKUP LANGUAGE

HTML is the most commonly used language for designing Web pages (Stanek, 1996,

p18). HTML’s popularity stems in large part from its ease of use and friendliness. With

HTML, the user can quickly and easily create Web documents and make them available to

a wide audience. HTML also enables the user to control many of the layout aspects for

text and images (e.g. size, position, etc.).

By default, all text in an HTML document is intended for display on the browser screen.

HTML tags contain information that affects the text presentation and allows the insertion of

extra information into the text, such as graphic images and navigational links. The tag

consists of left and right angle brackets (‘<’ and ‘>’) enclosing text that is generally

insensitive to case. Figure 4.3 demonstrates a simple HTML document and the resulting

Web page.

<html>
<head>
<title>New Page 1</title>
</head>
<body bgcolor="#00FFFF">
<p align="center">Hi There!!!</p>
<p align="center"></p>
</body>
</html>

Figure 4.3 Example of a HTML document.

xii

4.4 DYNAMIC WEB PAGES

A classic Web server provides Web pages without alteration and is essentially just a file

server. Modern servers can alter Web pages on the fly or create the pages from scratch

each time they are requested. The umbrella term for this facility is common gateway

interface (CGI), which, because of the large amount of string manipulation involved, is

usually implemented on a powerful system running a language, such as Perl, that is well

suited for the job (Bentham, 2000, p.237).

Because of the PIC microcontroller’s lack of RAM and difficulty with string manipulation, it

will not be suitable for implementing CGI. Instead another method called embedded

gateway interface (EGI) will be used. This method was developed by Jeremy Bentham,

but was changed and simplified for the purposes of this project

4.4.1 DYNAMIC REQUEST USING EGI

The EGI will be invoked every time a client requests a document with an “.egi” extension.

The server will then do the following steps:

• Look up the document name with the matching “.egi” extension and if not found, an

error message will be displayed.

• Start transmitting the contents of the document byte by byte using the HTTP

protocol.

• When an EGI variable substitution character (‘@’ or ‘#’) is detected, the value of the

particular variable name following that will be requested from the I/O controller.

Transmission is temporarily halted.

• On receiving the value from the I/O controller, the EGI character and the variable

name is removed from the document and the value of the variable is transmitted.

• Transmission then continues as normally, until the next EGI character is detected.

Figure 4.4 demonstrates a simple Web page utilising EGI to read the temperature and

values of four toggle switches from the remote embedded system. The first line:

<html><meta http-equiv="refresh" content="3">

causes the Web page to be refreshed every 3 seconds to update the values for the

temperature and the toggle switches.

xiii

<html><meta http-equiv="refresh" content="3">
<title>Input Status</title>
<body bgcolor="#CCFF99">
<p align="center">Input Status</p>
<hr>
<p align="center">TEMPERATURE</p>
<p align="center">@1<font face="Arial"
color="#0000FF" size="6">
^oC</p>
<p align="center">TOGGLE SWITCHES</p>
<p align="center">@2 @3 @4
@5</p>
</body>
</html>

Viewed as a normal Web page:

Viewed after being connected to the embedded system:

Figure 4.4 An example to demonstrate dynamic Web page requests using EGI.

xiv

4.4.2 DYNAMIC OUTPUT

When a client needs to send data to a server, Web page form controls can be used. This

will cause the Web page request to have ‘?’ character at the end of the line (as described

in section 4.2.2). In this case, it is not necessary for the Web page to have an “.egi”

extension and it could be just a normal “.htm” or “.html” document with form controls on it.

As soon as the server recognizes the ‘?’ character in the request line, it will:

• evaluate the rest of the data following the ‘?’ character.

• send this data to the I/O controller so that it can make changes to the system

accordingly.

• transmit the normal response along with the Web page contents.

Figure 4.5 gives an example of such a transaction and is continued on the next to show

the results.

<html>
<head>
<title>PIC Web Server</title>
</head>
<body bgcolor="#CCFF99">
<p align="center">PIC Web Server
</p>
<hr>
<form action="Fig4_5.htm">
 <p align="left">
 LED Output: <input type="submit" value="ON" name="B1"><input
type="submit" value="OFF" name="B1"></p>
</form>
<form action="Fig4_5.htm">
 <p align="left">Activation
 Password: <input type="text" name="pass" size="20"><input type="submit" value="Submit"
name="B2"></p>
</form>
<p align="left"> </p>
</body>
</html>

Figure 4.5 An example to demonstrate dynamic Web pages using form controls.

xv

Figure 4.5 continued.

xvi

4.5 ROM FILE SYSTEM

HTML documents, images and other files are normally stored on the server on hard disks.

If a client requests information on Web pages from the server, the documents are simply

read from the hard disk and transferred using the HTTP protocol.

Hard disks are, however, not usually found in 8-bit embedded systems because of their

complexity. This means that some other kind of memory device is needed to store the

information documents for the server. This project makes use of a single 32Kb inter-IC

(I2C) serial EEPROM (24LC256) and basically simulates a hard disk system.

A client will need to find a file in the system using the filename as an identifier. This

implies a file directory of some sort, preferably in a block at the start of the ROM. This will

allow the client to search the directory using sequential read cycles until the desired file is

found and will minimize the number of address select cycles that will have to be emitted.

The elements required in the directory are:

• The length of the file in bytes

• A pointer to the start of the file contents in ROM

• A TCP checksum for the file

• Flags to enable EGI variable substitution

• A filename (lowercase, 8.3 format)

This results in a directory structure in the firmware as indicated in Figure 4.6.

#define ROM_FNAMELEN 12 /* Maximum filename size */

typedef struct /* Filename block structure */
{
 WORD len; /* Length of file in bytes */
 WORD start; /* Start address of file data in ROM */
 WORD check; /* TCP checksum of file */
 BYTE flags; /* Embedded Gateway Interface (EGI) flags */
 char name[ROM_FNAMELEN]; /* Lower-case filename with extension */
} ROM_FNAME;

/* Embedded Gateway Interface (EGI) flag values */
#define EGI_ATVARS 0x01 /* '@' variable substitution scheme */
#define EGI_HASHVARS 0x02 /* '#' and '|' boolean variables */

Figure 4.6 Directory structure in firmware.

xvii

The end of the directory area in ROM is identified by an entry with a dummy length value

of 0xFFFF.

The following is also required for the file system:

• Default page

The default page, “index.htm”, must be easy to find, so it must be the first file in the

ROM.

• HTTP header

String manipulation is difficult on a PIC microcontroller because of the lack of RAM.

So instead of identifying the file type and prefixing the file with the correct HTTP

response header (including the content-type), the files are stored on the ROM with

their headers already attached.

• EGI flags

The EGI flags need to be set if EGI variable substitution is to be performed on the

file as it is sent out.

Figure 4.7 illustrates a simplified file system in a ROM.

"Content-Type: text/html"

"Content-Type: image/gif"

"Content-Type: text/html"

len = 0x10

start = 0x2F

check = 0xAB

flags = 0x00

name = "index.htm"

len = 0x02

start = 0x0050

check = 0xCA

flags = 0x00

name = "switch.gif"

len = 0x04

start = 0x006B

check = 0x9F

flags = 0x01

name = "inputs.egi"

len = 0xFF

start =

check = 0xFF

flags = 0x00

name = " "

0x0000

0x0001

0x0002

0x0003

0x0004 - 0x000C

0x000D

0x000E

0x000F

0x0010

0x0011 - 0x001A

0x001B

0x001C

0x001D

0x001E

0x001F - 0x0029

0x002A

0x002B

0x002C

0x002D

0x002E

Address: Address:

0x002F - 0x0045

0x0046

0x0050 - 0x0066

0x0067

0x004F

0x006A

0x006B - 0x0082

0x0083

Contents of:
"index.htm"

Contents of:
"switch.gif"

Contents of:
"inputs.egi"

D
ir

ec
to

ry
 a

re
a

C
on

te
nt

s
ar

ea

0x0084

Header

End of directory

Figure 4.7 Example of a file system in a ROM.

xviii

4.6 WEB SERVER DRIVER

Figure 4.8 shows the section of the HTTP software driver that detects the GET method in

the HTTP request from the client.

if (match_byte('G') && match_byte('E') && match_byte('T'))
 {
 ret = 1;
 match_byte(' ');
 match_byte('/'); // Start of filename
 DEBUG_PUTC(' ');
 memset(romdir.f.name, 0, ROM_FNAMELEN);
 for (i=0; i<ROM_FNAMELEN && get_byte(c) && c>' ' && c!='?'; i++)
 { // Name terminated by space or '?'
 DEBUG_PUTC(c);
 romdir.f.name[i] = c;
 } // If file found in ROM
 if (find_file())
 { // ..check for form arguments
 DEBUG_PUTC('>');
 check_formargs();
 }
 else // File not found, get index.htm
 {
 DEBUG_PUTC('?');
 romdir.f.name[0] = 0;
 find_file();
 }
 checkhi = checklo = 0;
 checkflag = 0;
 txin = IPHDR_LEN + TCPHDR_LEN;
 if (!fileidx) // No files at all in ROM - disaster!
 {
 setnic_addr((TXSTART<<8)+sizeof(ETHERHEADER)+IPHDR_LEN+TCPHDR_LEN);
 printf(putnic_checkbyte, HTTP_FAIL);
 tflags = TFIN+TACK;
 d_checkhi = checkhi;
 d_checklo = checklo;
 tcp_xmit();
 }
 else // File found OK
 {
 open_file(); // Start i2c transfer
 setnic_addr((TXSTART<<8)+sizeof(ETHERHEADER)+IPHDR_LEN+TCPHDR_LEN);
 while (tx_file_byte()) // Copy bytes from ROM to NIC
 ;
 close_file();
 tflags = TFIN+TPUSH+TACK; // Close connection when sent
 d_checkhi = checkhi; // Save checksum
 d_checklo = checklo;
 tcp_xmit(); // Do header, transmit segment
 }
 }

Figure 4.8 A section of the HTTP driver that detects the GET method.

1

2

3

4

5

6

xix

1. The if.. statement reads the characters from the HTTP protocol’s data area. It makes

use of three match_byte() function calls to determine if the first three characters

correspond with “GET” (the request line from the client).

2. The for.. loop then reads the rest of the characters directly after the GET method until it

reaches a blank space or the ‘?’ character, which represents the end of the file name.

3. The ROM file system is then searched to see if the filename exists in the directory.

4. If the file is found, the check_formarg() function is called, which will simply just check

each of the characters after the ‘?’ character in the request line to determine what the

command to the I/O controller should be. The contents of the check_formargs()

function will depend on the application self.

5. If the file is not found in ROM, then the default page “index.htm” is loaded.

6. Once the file is opened, the HTTP header for that particular file is transmitted. The

tx_file_byte() function (Figure 4.9) will then transmit the contents of the file byte by

byte.

BOOL tx_file_byte(void)
{
 int ret=0;
 BYTE b,c;

 if (romdir.f.len) // Check if any bytes left to send
 {
 b = i2c_read(1); // Get next byte from ROM
 if ((romdir.f.flags&EGI_ATVARS) && b=='@')
 { // If '@' and EGI var substitution..
 b = i2c_read(1); // ..get 2nd byte
 romdir.f.len--;
 while(bit_test(PIR1, 5)) // clear input buffer
 getch();
 putchar('?');
 putchar(b);
 while(!bit_test(PIR1, 5)); // wait for response
 do
 {
 c = getch();
 if (c != '~')
 printf(putnic_checkbyte, "%c", c);
 } while(c != '~');
 }
 else // Non-EGI byte; send out unmodified
 putnic_checkbyte(b);
 romdir.f.len--; // Decrement length
 ret = 1;
 }
 return(ret);
}

Figure 4.9 The tx_file_byte() function.

1

2

3

4

5

xx

1. The driver makes use of the CCS function i2c_read() to read the file from ROM.

2. For every byte it reads from ROM, it checks if the byte corresponds with the ‘@’ EGI

character.

3. If the ‘@’ character is detected and the EGI flags for the particular file is set (section

4.5), then the next byte is read to determine the variable number that is requested.

4. The driver then makes use of a RS-232 protocol (will be explained in Chapter 5) to

communicate with the I/O controller to request a particular variable’s value. The result

is then transmitted as part of the contents of the document.

5. If the ‘@’ character is not detected, then the byte that was read from ROM is then just

simply transmitted as it is using the putnic_checkbyte() function. The

putnic_checkbyte() function updates the Ethernet packet’s checksum on the fly, i.e.

as it adds data to the Ethernet packet.

4.7 CONCLUSION

The chapter explained all the building blocks for a Web server and how to implement them

on an embedded system. Certain changes to standard HTML documents also need to be

made to allow dynamic Web pages. These dynamic pages make embedded Ethernet

applications very powerful, so these methods were explained in detail. The chapter then

concluded with a brief explanation of certain sections of the HTTP driver.

Chapter 5 will cover the next section of the project: the Input/Output controller. The I/O

controller will control all the inputs and outputs to the system and somehow it must be able

to communicate with the Web server. This protocol will be explained along with a detailed

description of the firmware on the I/O controller.

xxi

CHAPTER 5
THE INPUT/OUTPUT CONTROLLER

5.1 OVERVIEW

The purpose of this project is to be able to control and monitor processes. This controlling

and monitoring is achieved by implementing a microcontroller of which the main purpose is

to simply control its outputs and monitor its inputs. The microcontroller also needs to be

totally dynamic towards software upgrades, application changes etc., and therefore needs

to be able to be reprogrammed while it is still in the circuit.

This chapter will describe this input/output (I/O) controller interface in detail and will also

explain the necessary firmware that is needed for this interface.

5.2 INPUT/OUTPUT CONTROLLER SELECTION CRITERIA

Microchip’s PIC16F877 was chosen as the I/O controller for this project and the reasons

for selecting it can be summarised as follows:

5.2.1 REPROGRAMMABILITY

The aim of the whole project is to be totally reconfigurable and therefore this is also the

main selection criterion for a suitable microcontroller. PE Technikon has all the

development tools for the PIC16F877 and that was probably the main reason for choosing

this microcontroller.

Microchip makes use of an ICSP technique, which allows a microcontroller to be

programmed after the device is placed in a circuit board (In-circuit serial programming

guide, p.1). Because these devices then accommodate rapid code changes, they offer

tremendous flexibility and reduce development time considerably.

5.2.2 PROGRAMMING INTERFACE

PIC16F877 microcontrollers can be programmed at a lower voltage (+5V) than the normal

+12V required by conventional microcontrollers. This makes it very suitable for this

application for the simple reason that all the devices on the board operate from a single

+5V power supply and therefore a second +12V power rail will be unnecessary.

xxii

In low voltage programming mode, the PIC16F877 uses only 4 of the microcontroller’s

pins, as indicated in Table 5.1. Again this is a major advantage because there will be

more pins available for the controlling or monitoring functions.

During programming

Pin Name Function Pin Type Description

RB3 PGM INPUT Low voltage ICSP input

RB6 CLOCK OUTPUT Clock output

RB7 DATA INPUT/OUTPUT Data input/output

MCLR VTEST MODE PROGRAMMING Program mode select

Table 5.1 Programming pins description for the PIC16F877.

During normal operation, pins RB6 and RB7 can be used for other functions, e.g.

input/output.

5.2.3 DEVELOPMENT SOFTWARE

Microchip has their own Integrated Development Environment (IDE) software package

called MPLAB. The package is totally free and can be downloaded from

www.microchip.com, which makes it very appealing for embedded software developers.

MPLAB also allows the use of third-party c-compilers.

5.2.4 FEATURES AND PERIPHERALS

The PIC16F877 is rich with features and peripherals:

• It has a high performance reduced instruction set computer (RISC) CPU.

• Operating speed of DC up to 20Mhz.

• 8K x 14 words of FLASH Program Memory.

368 x 8 bytes of Data Memory (RAM).

256 x 8 bytes of EEPROM Data Memory.

• Interrupt capability (14 sources).

• 8 Level hardware stack.

• Power-on Reset (POR).

• Power-up Timer (PWRT) and Oscillator Start-up Timer (OST).

• Watchdog Timer (WDT) with its own on-chip RC oscillator.

xxiii

• Power saving SLEEP mode.

• High sink/source current: 25mA.

• Low power consumption.

• 3 Timers.

• 2 Capture, Compare, pulse width modulation (PWM) modules.

• 10-bit multi-channel Analog-to-Digital converter.

• Synchronous Serial port (SSP) with Serial Peripheral Interface (SPI) and I2C.

• Universal Synchronous Asynchronous Receiver Transmitter (USART) with 9-bit

address detection.

• Brown-out detection circuitry for Brown-out Reset (BOR).

5.3 ANALOG INTERFACE

An analog interface is also added to the I/O controller to allow the measurement of analog

values in real-time. This interface is indicated in Figure 5.1.

Figure 5.1 I/O controller analog interface.

The pins from port A (except RA4) and port E are used as the analog inputs to the

microcontroller as shown in Table 5.2.

xxiv

Pin Description

RA0 Channel 0

RA1 Channel 1

RA2 Channel 2 OR negative reference voltage (Vref-)

RA3 Channel 3 OR positive reference voltage (Vref+)

RA5 Channel 4

RE0 Channel 5

RE1 Channel 6

RE2 Channel 7

Table 5.2 Analog pins configuration.

These pins can also be used as normal inputs or outputs through the use of jumpers JP10

to JP17. If a jumper is in the position 1-2, that particular microcontroller pin will be used as

an input or output, and if it is in the 1-3 position it will be used as a pure analog input. Pins

RA2 and RA3 can be used as normal analog inputs or as voltage reference inputs for the

PIC16F877’s analog-to-digital converter, e.g. if a analog sensor has an output voltage

between +1.5V and +3V, then to make use of the full 10-bit conversion, the user must set

the Vref- pin to exactly +1.5V (maybe through the use of a potentiometer) and the Vref+ pin

to +3V. Figure 5.2 shows an example for using the analog interface.

I/O connector

0 1 2 3 5 0 1 2

Port A Port E

I/O Controller

2
1
3

2
1
3

2
1
3

Temp.
sensor

Jumpers

Figure 5.2 Analog interface example.

xxv

5.4 LIQUID CRYSTAL DISPLAY INTERFACE

The board has a connector for a LCD, which is mainly used by the Ethernet interface

controller (as explained in Chapter 3). This LCD can, however, also be used by the I/O

controller through the use of jumpers JP1 to JP8 and JP18 to JP24 as indicated in Figure

5.3.

Figure 5.3 Liquid crystal display interface.

Potentiometer R6 is simply the contrast control for the LCD. The LCD’s pins are routed to

port D of the I/O controller if it is assigned to it. Table 5.3 summarizes the jumper settings

for assigning the LCD.

JP1 to JP8 JP18 to JP24 Assigned to: I/O controller pins RD0 to RD6

1-2 1-2 Ethernet interface

controller

Used as I/O pins

1-2 1-3 Ethernet interface

controller

Used for LCD, but LCD assigned to

Ethernet interface controller.

1-3 1-2 I/O controller Used as I/O pins, therefore LCD

will not work even it is assigned.

1-3 1-3 I/O controller Used for LCD

Table 5.3 Jumper settings for LCD assignment.

Often the user will need the LCD for the Ethernet interface, but will also need an additional

LCD to be connected to the I/O controller. In this case an external LCD can be connected

xxvi

directly to the I/O connector pins IO30 to IO36 and then port D of the I/O controller can be

programmed to drive the LCD (provided that jumpers JP18 to JP24 are in the 1-2 position).

This is demonstrated in Figure 5.4.

I/O Controller

Ethernet
interface
controller

External LCD

Internal LCD

LCD
connectorPort D

I/O connector

Ribbon
cable

Ribbon
cable

Figure 5.4 External LCD connection example.

5.5 I/O INTERFACE

The remaining port pins of the PIC16F877 can be used as general I/O pins. These pins

are routed directly to the I/O connector and can be used to connect external peripherals,

sensors and actuators to the board. The remaining pins are also routed to a

reconfigurable hardware interface, which will be explained in the next chapter.

5.6 INFORMATION EXCHANGE PROTOCOL

The I/O controller operates independently from the Ethernet interface and uses most of its

resources to fulfil a controlling or monitoring function. This process can, however, be

coupled to an embedded Web page as described in Chapter 4, and therefore some kind of

information exchange method between the Web server and the I/O controller needs to be

established.

xxvii

5.6.1 REQUIRED HARDWARE

To minimize the amount of pins used on the I/O controller, it was decided to use a USART

link between the Web server and the I/O controller. This means that port pins RC6 and

RC7 will not be available to the user for normal I/O functions. Figure 5.5 indicates the

USART interface.

Figure 5.5 USART interface between the Web server and I/O controller

Jumpers JP4 and JP9 are used to select the function of the Web server’s USART module.

If these jumpers are in the 1-3 position, the Web server’s RXD and TXD pins are used to

communicate with the I/O controller. The jumpers could also be set to the 1-2 position,

which will divert the Web server’s USART module to a MAX232 transceiver to allow

communication with a PC. The last option was added purely for development reasons and

note must be taken that no communication can take place between the Web server and

the I/O controller when making use of this feature.

xxviii

5.6.2 PROTOCOL DEFINITION

The Web server uses the USART link for two reasons:

• To request data from the I/O controller, e.g. the value of the temperature variable.

• To issue a command to the I/O controller, e.g. switch pin RB6 on.

These commands and requests are built into the embedded Web pages as described in

Chapter 4. It is the task of the Web server to issue the requests and the commands to the

I/O controller using the following scheme:

To send a request for a certain variable value:

1. Clear the receive buffer.

2. Send the ‘?’ character followed by the character describing the requested variable.

3. Wait for a response.

4. Read the incoming data until the ‘~’ character is received.

5. Transmit this data as part of the Web page.

To issue a command to the I/O controller:

1. Send the ‘!’ character.

2. Send the character describing the output to change.

5.6.3 PROTOCOL IMPLEMENTATION

The implementation of the protocol occurs at the HTTP level.

For sending a request:

When a client requests a Web page, the Web server uses the tx_file_byte() function to

transfer the file byte for byte from the I2C serial EEPROM as shown in Figure 5.6.

1. Read the next character from the file to transmit as a Web page.

2. If the character is a variable substitution EGI flag (‘@’), then get ready to send a

request to the I/O controller using the information exchange protocol.

3. Read the byte that describes the variable that needs to be accessed, e.g. 2 in the

case of the HTML code: “the temperature is @2 degrees Celsius”.

4. Clear the Web server’s USART receive buffer to make sure that the data is received

correctly.

xxix

5. Send the ‘?’ character followed by the character describing the requested variable.

6. Wait in a loop until a response is received from the I/O controller.

7. Read the data byte for byte as it is sent from the I/O controller until the STOP (‘~’)

character is read. As the data is received, it must be transmitted as part of the Web

page file.

8. If no data is requested, then send the character as part of a normal Web page.

/* Transmit a byte from the current i2c file to the NIC
** Return 0 when complete file is sent
** If file has EGI flag set, perform run-time variable substitution */

BOOL tx_file_byte(void)
{
 int ret=0;
 BYTE b,c;

 if (romdir.f.len) // Check if any bytes left to send
 {
 b = i2c_read(1); // Get next byte from ROM
 if ((romdir.f.flags&EGI_ATVARS) && b=='@')
 { // If '@' and EGI var substitution..
 b = i2c_read(1); // ..get 2nd byte
 romdir.f.len--;
 while(bit_test(PIR1, 5)) // clear input buffer

 getch();
 putchar('?');
 putchar(b);
 while(!bit_test(PIR1, 5)); // wait for response
 do
 {
 c = getch();
 if (c != '~')
 printf(putnic_checkbyte, "%c", c); // transmit data as it is read
 } while(c != '~'); // read data until STOP character ‘~’ is read
 }
 else // Non-EGI byte; send out unmodified
 putnic_checkbyte(b);
 romdir.f.len--; // Decrement length
 ret = 1;
 }
 return(ret);
}

Figure 5.6 Code to send a request to the I/O controller.

For sending a command:

The check_formargs() function implements the information exchange protocol for sending

commands to the I/O controller. Sending a command currently means to change the

output status of port pins on the I/O controller. To implement text inputs etc. from a Web

1

2

3

4

5

6

7

8

xxx

page will require minor modification to the check_formargs() function, but has not been

implemented in the current software drivers.

To implement sending a command to the I/O controller in a Web page, the following will be

required in the HTML code:

• Add a pushbutton to the page.

• Change the form method to “SUBMIT”.

• Change the form action to the name of the Web page.

• Make sure the name of the pushbutton (or input) starts with a ‘Q’ followed by a

number, e.g. “Q2”.

The following line gives an indication of what the Web page request to the server looks like

when a pushbutton (Q0) is clicked:

http://www.petech.ac.za/picweb/Outputs.egi?Q0.x=10&Q0.y=14

Figure 5.7 indicates the protocol implementation in the check_formargs() function.

/* Check for arguments in HTTP request string */
void check_formargs(void)
{
 char c;

 if (match_byte('Q')) // detects if a valid command is going to be issued
 {
 get_byte(c); // get byte that describes the output to change
 putchar('!'); // send the command character to the I/O controller
 putchar(c); // send the output to change
 }
}

Figure 5.7 Code to change the output status of port pins on the I/O controller.

1. Check if a valid output needs to be changed.

2. Read the value of the output that needs to be changed.

3. Send the command character (‘!’) to the I/O controller via the USART link.

4. Send the value of the output that needs to be changed.

1

2

3

xxxi

5.6.4 I/O CONTROLLER DRIVER

The I/O controller also requires a small portion of code to complete the information

exchange protocol. This code must always be included in any software that is written for

the I/O controller and basically acts as a template for developers as indicated in Figure

5.8.

#include <16F877.H>
#device *=16

// ******************** Required Code ********************
#use DELAY(CLOCK=20000000) // setup crystal frequency
#use RS232 (BAUD=115200, XMIT=PIN_C6, RCV=PIN_C7, ERRORS) // setup USART module
#define STOP putchar('~') // STOP character for protocol

#int_rda // interrupt routine for receiving a command / request
void serial_isr(void)
{
 char b;
 disable_interrupts(global);
 b = getch(); // read character describing a request or command
 if (b == '?') // request
 {
 b = getch(); // read request number
 switch(b)
 {
 case '0': { // example of sending a reply to a request
 if (input(PIN_A0))
 printf("0"); // use printf() for reply
 else
 printf("1");
 STOP; // send STOP character after data has been send
 }
 break;
 }
 }
 if (b == '!') // command
 {
 b = getch(); // read command number
 switch(b)
 {
 case '0': { // example of receiving a command
 if (LED0)
 LED0 = 0;
 else
 LED0 = 1;
 }
 break;

 }
 }
 enable_interrupts(global);
}
// ***

Figure 5.8 Necessary code to include when developing code for the I/O controller.

1

2

3 4

5

6

7

8

9

xxxii

void main(void)
{

// ******************** Required Code ********************
 set_tris_c(0x80); // setup RXD and TXD pins for USART
 enable_interrupts(global);
 enable_interrupts(int_rda); // enable interrupt on USART receive
// ***

 while(1) // main program loop
 {
 …………………..;
 }
}

Figure 5.8 continued.

1. Set the crystal frequency to 20Mhz and setup the USART module for 115200 baud

rate. Also define the ‘~’ character as STOP.

2. The interrupt service routine will be invoked as soon as the Web server sends data

(command or request) via the USART link.

3. All other interrupts must be disabled during the interrupt routine to ensure the correct

operation of the information exchange protocol.

4. Read the first incoming character which describes if the message is a command or a

request.

5. If it is a request (‘?’), then read the request number.

6. Reply to the request number using printf() functions ending the transmission with a

STOP.

7. If it is a command (‘!’), then read the command number.

8. Act on the incoming command by changing the status of port pins etc.

9. Other interrupts can now be enabled again.

10. Setup the TRISC register to allow the correct operation of the RC6(TX) and RC7(RX)

pins.

11. This is simply the main loop the developer will use to control a certain process as with

normal embedded applications.

Chapter 9 will cover complete examples and will demonstrate the information exchange

protocol more clearly.

10

11

xxxiii

5.7 CONCLUSION

The main purpose of this chapter was to explain the function of the I/O controller and how

to interface external applications to it. The most important feature of the I/O controller,

namely the information exchange protocol, was explained in detail with reference to the

Web server. All the necessary code for implementing the protocol was also explained.

Chapter 6 will introduce the next dynamic component in the project: the reconfigurable

hardware. A brief introduction to programmable logic will be given, after which there will

be an in-depth explanation of how the reconfigurable hardware is implemented in the

project and how it is interfaced with the rest of the circuit.

xxxiv

CHAPTER 6
RECONFIGURABLE HARDWARE

6.1 OVERVIEW

This chapter will cover the reconfigurable hardware component of the project. A brief

introduction to PLDs will be given after which the MAX7000S series of PLDs will be

introduced. The complete hardware interface will be described and the way in which it fits

in with the I/O controller will be explained.

6.2 INTRODUCTION TO LOGIC DEVICES

A brief introduction to logic devices will follow to provide a background to PLDs.

6.2.1 STANDARD LOGIC FAMILIES

6.2.1.1 Gate functions

The primary building block of logic circuits is the logic gate (Carter, 1997, p.2). This is a

device which operates on two or more logic signals to give an output which is defined by a

logic operator. The standard logic operators are AND, OR and INVERT.

6.2.1.2 Sequential logic

The output of a gate does not depend on the order in which the signals are applied

(Bostock, 1996, p.3). If both inputs of a two-input AND gate are LOW, the output will also

be LOW. If input A goes HIGH before B, or if B goes HIGH before A the result will be the

same.

In the circuit in Figure 6.1 the order of the inputs does however make a difference to the

result.

Figure 6.1 D-type latch circuit (Bostock, 1996, p.3).

xxxv

If input LE is HIGH the output Q will be the same as input D. Suppose that LE is taken

LOW. If D was HIGH when LE went LOW, Q will also be HIGH. Conversely, if D was

LOW, Q will stay LOW. This circuit is known as a latch. The output of the circuit depends

on the sequence in which the signals are applied, hence the term sequential circuit.

Figure 6.2 shows another sequential circuit known as a flip-flop.

Figure 6.2 D-type flip-flop (Bostock, 1996, p.4).

6.2.1.3 Practical logic circuits

Devices containing one or more gates, latches or flip-flops form the basis of the standard

logic families (Carter, 1997, p.6). Circuit designers can use these integrated circuits to

build more complex functions by interconnecting these small-scale integrations (SSIs) on a

PCB. However, the device manufacturers anticipated these requirements by producing

medium-scale integration (MSI) parts which contain many of the standard circuit functions

which can be built from gates and flip-flops. Typical examples of MSI functions are one-to-

eight line decoder/demultiplexers, four-bit shift registers, and four-bit counters (Figure 6.3).

Figure 6.3 Four-bit counter (Bostock, 1996, p.9).

xxxvi

6.2.1.4 Large-scale integration

As processes improved to the point where a thousand or more transistors could be laid on

a single chip, large-scale integration (LSI) became feasible. The situation is different to

MSI. MSI functions can still be looked on as building blocks with universal application, e.g.

a CD player or digital multimeter. LSI circuits are usually a self-contained function, of

which the microprocessor is the best example. Apart from microprocessors, most LSI

functions are specific to a particular application, e.g. an universal asynchronous

receiver/transmitter (UART) will normally only be found in communications equipment and

a frequency synthesiser in tuners (Carter, 1997, p.8).

6.2.2 PROGRAMMABLE LOGIC DEVICES

Circuit designers had only two options for building logic circuits: using the standard logic

families or using devices called application specific integrated circuits (ASICs) (Bostock,

1996, p.17). With ASIC devices, designers had to design the layout of the LSI circuit and

then had to have it developed by a company at high cost. If changes needed to be made

to the ASIC, the whole layout had to be resubmitted and developed. This scenario

changed very quickly with the evolution of the programmable switch.

6.2.2.1 Programmable switches

There are four types of programmable switches which have been used in programmable

logic devices (Carter, 1997, p.20).

The metal fuse was the first type of switch and is traditionally associated with bipolar

PLDs. An alloy, such as nichrome or tungsten-titanium, is evaporated onto the surface of

the chip and etched into small strips. A current pulse of about 50mA is sufficient to

vaporize the metal, which fuses into the overlying silicon dioxide leaving an open circuit at

the fuse site.

An alternative fuse in bipolar technology is the avalanche-induced migration (AIM) device

(Bostock, 1996, p.20). This is a small transistor with a floating base, so that the emitter-

collector path is normally high impedance. If the emitter-base junction is deliberately

overstressed, the aluminium from the emitter contact will migrate into the junction causing

a short-circuit. The emitter-collector path is now a diode and can be used in its own right

as a gating element.

xxxvii

In metal-oxide semiconductor (MOS) technology the transistors are, themselves, very

efficient switches which can be turned on and off by applying HIGH or LOW signals to their

gates. By adding a second gate, floating between the control gate and the conducting

channel, the transistor threshold can be varied by charging or discharging the second

gate. In the low threshold condition the transistor acts normally, but in the high threshold

state the channel is held off permanently. The floating gate can be charged electrically but

needs ultra-violet light to discharge it.

A later development is the antifuse (Carter, 1997, p.21). This is simply a thin layer of

silicon oxide/nitride sandwiched between two conducting layers, which may be either

silicon or metal. A short voltage pulse of 15V – 20V ruptures the insulating layer and the

heat alloys the two layers together. A resistor of less than 1KΩ results, sufficiently low to

appear as an ON switch to signals in a complementary metal-oxide semiconductor

(CMOS) environment.

6.2.2.2 PAL devices

The most commonly used PLDs are programmable array logic (PAL) devices (Bolton,

1990, p.31). They are based on the idea that any combinational logic function can be

represented by a “sum of products” equation. AND functions are sometimes referred to as

product terms, and OR functions as sums terms. Sum of products means just the OR

combination of a number of AND terms.

Figure 6.4 shows how a full adder can be built using only discrete logic. PAL devices can

be incorporated to do exactly the same function as discrete logic as indicated in the

example in Figure 6.5 using a PAL4H2 device.

Figure 6.4 Full adder using discrete logic (adapted from Carter, 1990, p.27).

xxxviii

Figure 6.5 Full adder using a PAL4H2 device (adapted from Carter, 1990, p.27).

Each crossing point between a vertical signal line and the input line into each AND gate

has a programmable switch which determines whether or not the signal is connected to

the AND gate. The diagonal crosses indicate those fuses which are left intact for the

application.

6.2.2.3 Generic PLDs, FPLAs and FPLSs

The drawback to some of the ranges of PALs is that designers were restricted to fixed

architectures with eight, six, four or no flip-flops (Bostock, 1996, p.24). The introduction of

generic macrocells made PLDs more flexible architecturally. Figure 6.6 shows a typical

macrocell. The flexibility is achieved by the use of programmable mutliplexers to route the

output signal through different paths.

xxxix

Figure 6.6 A typical macrocell (Bostock, 1996, p.25).

There is another class of PLD which can sometimes manage to overcome product term

limitation problems with PALs and GALs; this is the field programmable logic array (FPLA).

The difference is that they have 32 product terms which can be accessed by any output

(Carter, 1990, p.28). This is achieved by having the OR gates connected by a

programmable array to the AND gates, as can be seen in Figure 6.7.

Figure 6.7 Programmable OR-array (Bostock, 1996, p.25).

A field programmable logic sequence (FPLS) device is simply a FPLA with flip-flops added

to it as shown in the simplified schematic in Figure 6.8.

xl

Figure 6.8 Simplified FPLS schematic (Bostock, 1996, p.26).

6.2.2.4 CPLDs

One approach to making PLDs with a higher logic content is to integrate several small

PALs in one package (Bolton, 1990, p.41). Different manufacturers may differ in detail in

the way they do this but they all have certain features in common. These devices are

called complex PLDs (CPLDs) and the basic structure is indicated in Figure 6.9.

The input cells and I/O cells may be taken together as some families have no, or only a

few, separate inputs and use I/O cells for this function. In general, an I/O cell connects the

logic blocks to the outside world and features a transistor transistor logic (TTL) or CMOS

interface. The outputs always have a tri-state capability which can be permanently

enabled or disabled, or controlled by internal logic. They can function as dedicated input,

dedicated outputs with optional feedback or as bussable outputs. The advantage of being

able to choose the function of all I/Os is that the input and output sites are not pre-

determined and this gives extra flexibility to the PCB layout (Bostock, 1996, p.30).

The interconnection matrix allows a reduced number of inputs to feed each logic block. It

can be considered that each logic block is an individual PAL within the larger PLD, and

that each PAL is connected to the others via the interconnection matrix.

xli

Figure 6.9 CPLD block diagram (Bostock, 1996, p.31).

6.3 MAX7000 DEVICES

6.3.1 ARCHITECTURE

Multiple array matrix (MAX) 7000 devices, introduced by Altera, conform to the general

scheme of CPLD architecture, in that they contain logic blocks with a central

interconnection matrix linking them together, logically. Figure 6.10 shows the block

diagram of a typical MAX7000 device.

The interconnection matrix is called the programmable interconnection array (PIA); the

logic block is a logic array block (LAB). All signals, including direct inputs, I/Os and

macrocell feedbacks, pass through the PIA.

xlii

Figure 6.10 MAX7000 device block diagram (MAX7000 Programmable Logic Device

Family, p.8).

6.3.1.1 Logic array blocks

The MAX7000 device architecture is based on the linking of high-performance, flexible,

logic array modules called logic array blocks (LABs) (MAX7000 Programmable Logic

Device Family, p.8). LABs consist of 16 macrocell arrays. Multiple LABs are linked

together via the PIA, a global bus that is fed by all dedicated inputs, I/O pins and

macrocells.

Each LAB is fed by the following signals:

• 36 signals from the PIA that are used for general logic inputs

• Global controls that are used for secondary register functions

• Direct input paths from I/O pins to the registers that are used for fast setup times

xliii

6.3.1.2 Macrocells

The macrocell can be individually configured for either sequential or combinational logic

operation. The macrocell consists of 3 functional blocks: the logic array, the product-term

select matrix, and the programmable register as indicated in Figure 6.11.

Figure 6.11 MAX7000 macrocell block diagram (MAX7000 Programmable Logic Device

Family, p.9).

Combinational logic is implemented in the logic array, which provides five product terms

per macrocell. Two kinds of expander product terms (“expanders”) are available to

supplement macrocell logic resources (Bostock, 1996, p.79):

• Shareable expanders – inverted product terms that are fed back into the logic array

• Parallel expanders – product terms borrowed from adjacent macrocells

Each macrocell can be individually programmed to implement D, T, JK or SR operation

with programmable clock control. The flip-flop can be bypassed for combinational

operation.

xliv

Each programmable register can be clocked in three different modes:

• A global clock signal – achieves the fastest clock to output performance.

• A global clock signal and enabled by an active HIGH clock enable – provides an

enable on each flip-flop while maintaining a fast clock to output performance.

• An array clock implemented with a product term – the flip-flop can be clocked by

signals from buried macrocells or I/O pins.

Each register also supports asynchronous preset and clear functions, while the clear

function can also be driven by an active LOW dedicated global clear pin (GCLRn).

6.3.1.3 Expander product terms

More complex logic functions require additional product terms than the five available in

each macrocell (MAX7000 Programmable Logic Device Family, p.11). Another macrocell

can be used to supply the required logic resources, but the MAX7000 architecture also

allows both shareable and parallel expander product terms that provide additional product

terms directly to any macrocell in the same LAB.

6.3.1.4 Programmable interconnect array

Logic is routed between LABs via the PIA (Bostock, 1996, p.79). The global bus is a

programmable path that connects any signal source to any destination on the device.

Figure 6.12 shows how PIA signals are routed into the LAB. An EEPROM cell controls

one of the inputs to a 2-input AND gate, which selects a PIA signal to drive into the LAB.

Figure 6.12 PIA routing (MAX7000 Programmable Logic Device Family, p.14).

xlv

6.3.1.5 I/O control blocks

The I/O control block allows each I/O pin to be individually configured for input, output, or

bi-directional operation (MAX7000 Programmable Logic Device Family, p.14). All I/O pins

have a tri-state buffer that is individually controlled by one of the global output enable

signals or directly connected to ground or VCC. The I/O control block has six global output

enable signals, a subset of the I/O pins, or a subset of the I/O macrocells. Figure 6.13

shows the I/O control block for the MAX7000 device.

Figure 6.13 MAX7000 I/O control block (MAX7000 Programmable Logic Device Family,

p.8).

xlvi

6.3.2 IN-SYSTEM PROGRAMMABILITY (ISP)

MAX7000S devices are in-system programmable via an industry standard 4-pin JTAG

interface (IEEE Std.1149.1-1990) (MAX7000 Programmable Logic Device Family, p.16).

ISP allows quick, efficient iterations during design development and debugging cycles.

The MAX7000S architecture internally generates the high programming voltage required to

program EEPROM cells, allowing in-system programming with only a single 5V power

supply. During in-system programming, the I/O pins are tri-stated and pulled up to

eliminate board conflicts. The pull-up value is nominally 50KΩ.

ISP simplifies the manufacturing flow by allowing devices to be mounted on a printed

circuit board with standard in-circuit test equipment before they are programmed.

Programming the devices after they are placed on the board eliminates lead damage on

high pin count packages due to device handling and allows a device to be reprogrammed

after a system has already shipped to the field (Bostock, 1996, p.80).

6.4 HARDWARE SELECTION CRITERIA

The EPM7128S device from Altera’s MAX7000S family was chosen for the project and the

reasons for selecting this particular device can be summarised as follows:

6.4.1 REPROGRAMMABILITY

This was the most important criterion for selecting a suitable PLD for the project. As

mentioned in section 6.3.2, Altera’s MAX7000S family of CPLDs has the ability to be

reprogrammed while still being in-circuit through an industry standard JTAG interface.

Most of the CPLDs these days have in-system programmable capabilities, but not all of

them use the JTAG standard to actually program the devices. This JTAG interface is the

feature that makes this project’s hardware interface so flexible. It means that any PLD that

supports the JTAG interface can be added to the board and can be reprogrammed in-

circuit, without changing any embedded software at all.

6.4.2 DEVELOPMENT SOFTWARE AND HARDWARE

Altera’s logic development software, MAX+PLUS II, is available from www.altera.com for

free. This free package only supports the MAX7000S range of PLDs and only allows

graphic entry and VHDL for developing logic circuits. As mentioned in the previous

xlvii

chapter, free development software is a large deciding factor for choosing appropriate

development tools for designers.

Probably the biggest deciding factor for choosing one of Altera’s devices was the fact that

their support was excellent and they donated a development board to PE Technikon which

made the development for this project so much easier. The development board allows the

designer to test LEDs and switches with an EPM7128S device and also with a FLEX10K

device.

6.4.3 FEATURES

The features of the EPM7128S also played a role in the decision of a PLD for the project

and here are some of them:

• 2500 usable gates

• 5ns pin-to-pin logic delays with up to 175.4 Mhz counter frequencies

• Open drain output option

• Programmable power-saving mode for a reduction of over 50% in each macrocell

• 100 user I/O pins available

• Programmable security bit for protection of designs

6.5 RECONFIGURABLE HARDWARE INTERFACE

Figure 6.14 indicates the schematic layout of the hardware interface. The two connectors,

J10 and J11, provide the interface to the field for connecting peripherals to the board for

interfacing with the PLD, the I/O controller, or both. The jumpers for selecting the analog

I/O pins and the port D setup for the I/O controller, are also indicated.

Connector J9 is also included to add another PLD device to the JTAG chain which can

also be reprogrammed. Another microcontroller which supports JTAG may also be added

through this connector to make the system even more flexible.

Each of the pins from the EPM7128S device and the I/O controller are numbered as I/O

pins on the J10 and J11 connectors (e.g. IO23 on J10). Table 6.1 gives a summary of

these I/O pins and their connection to the I/O controller and the EPM7128S.

xlviii

Figure 6.14 Reconfigurable hardware interface.

xlix

CONN I/O PIC EPM7128S CONN I/O PIC EPM7128S
J10 PORT PIN PIN J11 PORT PIN PIN

1 0 RB0 33 4 1 36 RD6 29 51
2 1 RB1 34 5 2 37 RD7 30 52
3 2 RB2 35 6 3 38 54
4 3 8 4 39 55
5 4 RB4 37 9 5 40 56
6 5 RB5 38 10 6 41 57
7 6 11 7 42 58
8 7 12 8 43 60
9 8 15 9 44 61

10 9 RA0/AN0 2 16 10 45 63
11 10 RA1/AN1 3 17 11 46 64
12 11 RA2/AN2 4 18 12 47 65
13 12 RA3/AN3 5 20 13 48 67
14 13 RA4 6 21 14 49 68
15 14 RA5/AN4 7 22 15 50 69
16 15 24 16 51 70
17 16 25 17 52 RE2/AN7 10 73
18 17 27 18 53 RE1/AN6 9 74
19 18 28 19 54 RE0/AN5 8 75
20 19 29 20 55 76
21 20 30 21 56 77
22 21 31 22 57 79
23 22 RC0 15 33 23 58 80
24 23 RC1 16 34 24 59 81
25 24 RC2 17 35 25 IN0 1
26 25 RC3 18 36 26 IN1 2
27 26 RC4 23 37 27 IN2 83
28 27 RC5 24 39 28 IN3 84
29 28 40 29 ADC0 RA0/AN0 2 use JP10
30 29 41 30 ADC1 RA1/AN1 3 use JP11
31 30 RD0 19 44 31 ADC2 RA2/AN2 4 use JP12
32 31 RD1 20 45 32 ADC3 RA3/AN3 5 use JP13
33 32 RD2 21 46 33 ADC4 RA5/AN4 7 use JP14
34 33 RD3 22 48 34 ADC5 RE0/AN5 8 use JP15
35 34 RD4 27 49 35 ADC6 RE1/AN6 9 use JP16
36 35 RD5 28 50 36 ADC7 RE2/AN7 10 use JP17
37 VCC 37 VCC
38 VCC 38 VCC
39 GND 39 GND
40 GND 40 GND

Table 6.1 I/O connections.

From Table 6.1 it can been seen that some of the EPM7128S’ pins are connected to the

I/O controller’s pins. A block diagram as in Figure 6.15 can represent this configuration.

l

EPM7128S

PIC16F877IO4

IO4

IO4

J10:5

R
B

4

9

Figure 6.15 I/O controller and EPM7128S pin configuration.

The block diagram indicates that the pins of the two devices are connected directly without

any buffers or resistors between them, which might cause problems if not used correctly.

Any unused pin of the EPM7128S will be pulled down to ground, which will cause a short if

an I/O controller pin on that same net is forced HIGH and will cause damage to either the

I/O controller or the EPM7128S. For this reason all unused pins on the EPM7128S which

are also connected to the I/O controller are programmed as inputs. This will allow the I/O

controller to be able to drive the line either HIGH or LOW without causing any damage.

The same applies to unused I/O controller pins; these pins must be programmed as inputs

by using the PIC16F877’s TRIS registers which will allow the EPM7128S to drive the line

HIGH or LOW.

Figure 6.16 shows the graphic representation for assigning the unused pins of the

EPM7128S, that are also connected to the I/O controller, as inputs. It will also be used as

a template for doing a logic design on the board. The left-hand side is all the input pins

and the right-hand side the outputs. The inputs have net names which correspond with

the I/O controller pin it is connected to and the output pins have net names that

correspond to the I/O connector pin it is connected to, e.g. input RA3 (pin 5 on the

PIC16F877) is connected to I/O number 12 (pin 13 on connector J10). Each of the input

and output symbols have the word “template@” next to it. This is simply the name of the

current project (“template” in this case) followed by the actual pin number of the

EPM7128S it is connected to. Using this as a template is easy. The designer can simply

move around the inputs and outputs and add other building blocks to circuits. Other inputs

and outputs can also be added, and the existing inputs can even be made outputs and

vice versa.

li

Figure 6.16 Graphic entry for assigning unused pins as inputs.

6.6 CONCLUSION

The chapter gave a brief introduction to programmable logic devices to promote the idea of

reprogrammable hardware in the project. The MAX7000S device from Altera was

introduced as part of the detailed explanation of the actual reconfigurable hardware

interface in the project.

The next chapter will explain the most important section of the project in terms of

reconfigurability: the actual programming interface. This will also be the last chapter

discussing the hardware for the project.

lii

CHAPTER 7
THE EMBEDDED PROGRAMMING INTERFACE

7.1 OVERVIEW

This is the last chapter on the hardware section of the project and will discuss the

programming interface in detail. In-circuit programming in PICmicro devices will first be

explained after which in-system programming in Altera’s MAX7000S devices will be

discussed. A detailed description of the hardware for the actual programming interface will

follow. The chapter will conclude with a discussion on the necessary embedded software

for the programming interface.

7.2 IN-CIRCUIT SERIAL PROGRAMMING (ICSP) WITH THE PIC16F877

The PIC16F877 is used as the I/O controller in the project and needs to be dynamic in the

sense that it can be reprogrammed. Microchip’s PICmicro devices are programmed using

a serial method and will allow them to be reprogrammed while still plugged into the system

(In-circuit serial programming for PIC16F8XX FLASH MCUs, p.1). The PIC16F877 may

also be programmed using a single +5V supply in low voltage programming mode.

7.2.1 HARDWARE REQUIREMENTS

The application circuit is the most important aspect when determining the requirements for

ICSP in PICmicro devices (In-circuit serial programming guide, p.21). Figure 7.1 shows a

typical application circuit.

Figure 7.1 Typical application circuit (In-circuit serial programming guide, p.21).

liii

The application must compensate for the following:

• Isolation of the MCLR/Vpp pin from the rest of the circuit

• Isolation of pins RB6 and RB7 from the rest of the circuit

• Capacitance on each of the Vdd, MCLR/Vpp, RB6 and RB7 pins

• Minimum and maximum operating voltage for Vdd

• PICmicro oscillator

• Interface to the programmer

The MCLR/Vpp pin is normally connected to an RC circuit (In-circuit serial programming

guide, p.21). In normal programming mode this pin is driven to +13V to allow

programming of the device, so the application circuit should be isolated from this voltage.

Isolation is provided by the diode.

Pins RB6 and RB7 are used by the PIC16F877 for serial programming. RB6 is the clock

line, which is driven by the programming device. RB7 is a bi-directional data line and is

driven by die programming device when programmed and by the PIC16F877 when data is

read or verified. These pins are not dedicated for programming and can be used for I/O

functions when the PICmicro runs normally. To prevent signal interference during

programming, however, these pins must be isolated from the application circuit. This is

normally done by introducing a series resistor between the application circuit connection

and the pin (In-circuit serial programming for PIC16F8XX FLASH MCUs, p.165).

The total capacitance on the programming pins affects the rise rates of these signals as

they are driven out of the programming device (In-circuit serial programming guide, p.22).

The programming device must be able to drive these lines strong enough to overcome the

capacitance. Buffers are normally added between the programming device and the

PICmicro if the programmer’s driving capability is too weak.

Microchip states that the PIC16F877 should be programmed at a Vdd level or +5V, which

is the general supply voltage for embedded circuits. Sometimes, however, PICmicro

devices are used in circuits which are powered from a series of 1.5V cells. These cells will

not supply the circuit with exactly +5V, but with +4.5V instead. To ensure optimal

programming, the PICmicro device must programmed at +5V and verified at +4.5V.

liv

The programming device must drive the MCLR/Vpp pin to the programming voltage before

the oscillator toggles four or more times. Failure to do this causes the PICmicro to start up

and increment program counter to some value X. As soon as the device then enters

programming mode, the programming will start at an offset of X. This scenario is not

applicable when using a crystal oscillator for the PICmicro, since it makes use of an

oscillator start-up circuit. With RC oscillators, however, the oscillator pins must first be

driven LOW before rising the MCLR/Vpp pins to prevent the device from starting up (In-

circuit serial programming guide, p.22).

Both the Vdd and programming supply voltages must have a minimum resolution of 0.25V.

Table 5.1 in Chapter 5 describes the programming pins for the PIC16F877.

7.2.2 PROGRAM MODE ENTRY

The user memory space extends from 0x0000 to 0x1FFF (8K). In programming mode the

program memory space extends from 0x0000 to 0x3FFF, with the first half (0x0000 –

0x1FFF) being user program memory and the second half (0x2000 – 0x3FFF) being

configuration memory. The PIC16F877’s program counter (PC) will increment from

0x0000 to 0x1FFF and wrap to 0x0000; and increment from 0x2000 to 0x3FFF and wrap

around to 0x2000.

In the configuration memory space, only 0x2000 – 0x200F are physically implemented, of

which only 0x2000 to 0x2007 are available. The first four memory locations (0x2000 –

0x2003) in the configuration memory are the ID locations which can be used to store any

ID information for the device. It is recommended that only the lower four bits of the word

must be used for storing ID information (In-circuit serial programming for PIC16F8XX

FLASH MCUs, p.166). The configuration word is at location 0x2007.

Figure 7.2 gives a summary of the program memory map.

lv

Reserved

Implemented

Reserved

Configuration Word

Device ID

Reserved

Reserved

ID Location

ID Location

ID Location

ID Location

0x2000

0x2001

0x2002

0x2003

0x2004

0x2005

0x2006

0x2007

0x0000

0x1FFF

0x2008

0x2100

0x3FFF

8K words

Figure 7.2 Program memory map for the PIC16F877 (Adapted from In-circuit serial

programming for PIC16F8XX FLASH MCUs, p.167).

7.2.2.1 Low-voltage ICSP mode

When the low-voltage programming (LVP) bit in the configuration word is set to 1, the low-

voltage ICSP entry is enabled. Pin RB3 will be dedicated to programming in the low-

voltage ICSP mode. This programming mode is entered by following the next steps:

• Hold pins RB6 and RB7 LOW

• Bring the MCLR/Vpp pin to +5V

• Bring pin RB3 to +5V

This will cause the device to go into programming mode and places all other logic into the

reset state (high impedance inputs).

lvi

7.2.2.2 Serial program/verify operation

The PIC16F877 makes use of certain commands for the programming/verification of the

device. All commands are transmitted least significant bit (LSB) on the rising edge of the

clock. The commands are:

• LOAD CONFIGURATION

After this command the PC will be set to 0x2000. The only way to get back to the

user program memory is to reset the device by driving MCLR/Vpp LOW.

• LOAD DATA FOR PROGRAM MEMORY

After receiving this command, the chip will load a 14-bit data word.

• LOAD DATA FOR DATA MEMORY

After receiving this command, the chip will load a 14-bit data word. The data

memory is, however, only 8-bits wide and thus only the first 8-bits of data after the

start bit will be programmed into the data memory.

• READ DATA FROM PROGRAM MEMORY

After receiving this command, the PICmicro device will transmit data bits out of the

program memory currently accessed.

• READ DATA FROM DATA MEMORY

After receiving this command, the PICmicro device will transmit data bits out of the

data memory currently accessed.

• INCREMENT ADDRESS

The PC will increment when this command is received.

• BEGIN PROGRAMMING

Programming of the appropriate memory will begin after this command is received

and decoded. A load command must be given before every ‘begin programming’

command.

lvii

• BULK ERASE PROGRAM MEMORY

After this command is performed, the next command will erase the entire program

memory.

• BULK ERASE DATA MEMORY

After this command is performed, the next command will erase the entire data

memory.

7.3 IN-SYSTEM PROGRAMMABILITY WITH THE MAX7000S

MAX7000S devices are PLDs, based on the Altera Multiple Array Matrix (MAX)

architecture that supports the IEEE Std. 1149.1 JTAG interface. MAX devices are also in-

system programmable, which adds programming flexibility and provides benefits in many

phases of product development, manufacturing and field use. Seeing that the EPM7128S

provides the reconfigurable hardware interface to the project, the programming interface

also needs to be able to program the MAX device using an embedded processor.

7.3.1 FEATURES AND BENEFITS

ISP reduces cost, shortens development time and provides a wider range of programming

options than standard device programming methods (Introduction to ISP, p.1). With ISP,

the developer can:

• Program and reprogram devices after they are soldered onto the PCB, minimizing

the possibility of lead damage or electrostatic discharge (ESD) exposure.

• Manufacture systems before finalizing device configuration.

• Perform boundary-scan test (BST) procedures and program devices using in-circuit

testers.

• Upgrade systems in the field after they have been shipped.

Table 7.1 summarises the features and benefits of using ISP-capable devices.

lviii

Table 7.1 Features and benefits of ISP-capable MAX devices (Introduction to ISP, p.3).

7.3.2 VCC-LEVEL PROGRAMMING

MAX7000S devices support ISP through a Vcc-level programming voltage (In-system

programmability guidelines, p.4). The devices generate a +12V programming voltage

internally to program, verify and erase the device’s EEPROM cells, eliminating the need

for the external +12V programming voltage typically required for programming.

MAX7000S devices are guaranteed for 100 erase and programming cycles with 100%

programming and functional yields (Introduction to ISP, p.5).

lix

7.3.3 JTAG INTERFACE

The IEEE Std. 1149.1 JTAG interface makes use of four lines to program a MAX device.

These lines are described in Table 7.2. Not only MAX devices can be programmed using

this interface, but also any other device that supports JTAG. This is what makes this

interface so powerful in this project, because now any other device (even microcontrollers)

can be added to the board and also be programmed using the same programming

interface.

Table 7.2 JTAG pins (Introduction to ISP, p.8).

During erasure, programming, and verification, all device I/O pins are tri-stated to eliminate

interference from other devices on the PCB. Devices are programmed by applying the

appropriate signals on the TMS and TCK inputs and shifting data into and out of the

devices on the TDI and TDO pins respectively. After programming, the IEEE Std. 1149.1

JTAG Test Access Port (TAP) controller state machine must be advanced to the RESET

state, which is maintained by external pull-up resistors on the TCK, TMS and TDI pins.

During normal operation, the pull-up resistors prevent the device from entering other

modes. Figure 7.3 in the next section shows a typical JTAG connection to a device.

7.3.4 PROGRAMMING THE MAX7000S DEVICE

The JTAG interface can be used to program a single device or a chain of devices,

depending on the layout of the PCB.

lx

7.3.4.1 Single-device programming

This is the simplest form for programming a JTAG device and is indicated in Figure 7.3.

ISP Target Device

TDI

TMS

TDO

TCK

VCC VCC

1K 1K

1K

TDI

TMS

TCK

TDO

IEEE Std. 1149.1
JTAG Interface

Figure 7.3 Single device programming (Adapted from In-system programmability in MAX

devices, p.9).

7.3.4.2 JTAG-chain device programming

When programming a chain of devices, the JTAG interface is connected to several

devices. The number of devices in the JTAG chain is limited only by the drive capability of

the JTAG interface. Buffers are often implemented to improve this. Figure 7.4 shows the

typical JTAG connection for chain device programming.

Other IEEE Std. 1149.1
JTAG-compliant device

TDI

TMS

TDO

TCK

VCC VCC

1K 1K

1K

TDI

TMS

TCK

TDO

IEEE Std. 1149.1
JTAG Interface

Target Altera device

TDI

TMS

TDO

TCK

TDI

TMS

TDO

TCK

Other IEEE Std. 1149.1
JTAG-compliant device

Figure 7.4 JTAG-chain device programming (Adapted from In-system programmability in

MAX devices, p.10).

lxi

Chain device programming can be further divided into:

• Sequential programming

It is the process of programming multiple devices in a chain one device at a time

(In-system programmability guidelines, p.7). After the first device in the chain is

finished being programmed, the next device is programmed. The sequence

continues until specified devices in the JTAG chain are programmed. After a device

is programmed, it uses a JTAG BYPASS instruction to pass data to subsequent

devices in the chain.

• Concurrent programming

Concurrent programming is used to program devices from the same family in

parallel. The result is a considerably faster programming time than sequential

programming (In-system programmability guidelines, p.8). The only drawback of

this scheme is that the devices must all be of the same family (i.e. microcontrollers

and CPLDs cannot be in the same chain).

7.4 THE PROGRAMMING INTERFACE

The whole programming process for the I/O controller and the reconfigurable hardware is

controlled by an 80C552 microcontroller, a derivative of the very popular 80C51. This

microcontroller has various enhancements from its predecessor, but will not be elaborated

on seeing that it wasn’t a factor when a suitable programming processor was chosen. The

main requirements for a processor was:

• Must have at least 64K of program memory (could be internal or accessed

externally)

• Must have at least 21 free bi-directional I/O pins (for status, commands, ICSP

programming for the PIC16F877, the JTAG interface and I2C communication).

• Must be an 8051 derivative, seeing that the Jam player for programming the

MAX7000S device is written for an 8051 core microcontroller.

The main reason for settling for the 80C552 is simply for its local availability and cost.

There are, however, other 8051 derivatives available that can run at even higher speeds

than the 80C552.

lxii

A simplified block diagram indicating the programming interface with the 80C552 is shown

in Figure 7.5.

80C552

Status0
Status1
Status2
Status3

Cmd0
Cmd1

TCK
TMS

TDO
TDI

PGC
PGD

MCLR
LVP

OE

WE

64K RAM

Data memory

64K ROM

Program memory

OE

RD

WR

PSEN

32K I2C EEPROM

ID: 0

S
D

A

S
C

L

32K I2C EEPROM

ID: 1

S
D

A

S
C

L

32K I2C EEPROM

ID: 7

S
D

A

S
C

L

S
D

A

S
C

L

To
I/O controller

To
MAX7000S

To Ethernet
interface
controller

Figure 7.5 Simplified block diagram of programming interface.

The 80C552 retrieves and executes instructions from ROM or program memory. Part of

executing instructions involves controlling I/O pins that provide access to ROM, RAM, I/O

ports and addresses. When the 80C552 retrieves an instruction to access external data,

or RAM, the processor automatically toggles the RD pin such that the information in the

RAM is retrieved and stored in the appropriate internal registers. These actions are

performed automatically by the processor. The ROM contains the embedded software for

programming the I/O controller and the MAX7000S device and makes use of the external

RAM, or data memory, to store temporary data for calculations.

lxiii

The interface also makes use of eight EEPROM memory devices, which are all connected

to the 80C552 via a common I2C bus. The I2C bus is implemented by using two bi-

directional lines (SDA, SCL) on the 80C552. The source files for the I/O controller and the

MAX7000S are transferred via the Internet and each gets stored in one of these devices.

At the moment only two of the EEPROMs are used; one for the source file of the I/O

controller and one for the source file of the MAX7000S. The rest of the EEPROMs are

used purely for future developments.

The 80C552 also have four status lines (Status0 – Status3), which are directly connected

to four pins of the Ethernet interface controller. It is used to indicate to the Ethernet

interface controller how far the source code is loaded into memory and how far the

programming process is. The status lines will also indicate if any problems occurred

during loading or programming the device. Table 7.3 summarises the truth table for the

status lines.

STATUS3 STATUS2 STATUS1 STATUS0 Description Value

0 0 0 0 Nothing 0

0 0 0 1 Loading 4% 1

0 0 1 0 Loading 20% 2

0 0 1 1 Loading 36% 3

0 1 0 0 Loading 52% 4

0 1 0 1 Loading 68% 5

0 1 1 0 Loading 84% 6

0 1 1 1 Loading 100% 7

1 0 0 0 Programming 4% 8

1 0 0 1 Programming 20% 9

1 0 1 0 Programming 36% 10

1 0 1 1 Programming 52% 11

1 1 0 0 Programming 68% 12

1 1 0 1 Programming 84% 13

1 1 1 0 Programming 100% 14

1 1 1 1 Error Loading/Programming 15

Table 7.3 Truth table for status lines.

lxiv

The two command lines (Cmd0 and Cmd1) are also directly connected to two pins of the

Ethernet interface controller. The Ethernet interface uses these lines to instruct the

programming processor (80C552) to start with the programming process of the I/O

controller or the MAX7000S. Table 7.4 summarises the function of the two lines.

CMD1 CMD0 Description Value

0 0 Nothing 0

0 1 Program RECONFIGURABLE HARDWARE 1

1 0 Program I/O CONTROLLER CPU 2

Table 7.4 Truth table for command lines.

Both the interfaces for programming the I/O controller and the MAX7000S use four lines

each. The MAX7000S programming interface makes use of one input line (TDO) and

three output lines (TDI, TMD, TCK). The I/O controller interface makes use of three output

lines (PGC, LVP, MLCR) and one bi-directional line (PGD). Both these sets of

programming lines first go through buffers to provide them with enough driving current to

program the devices. This automatically causes a complication in the bi-directional lines

since the buffers operate only in one direction. The bi-directional lines for the I2C bus are

also first taken through the buffer. To support the bi-directional lines, a new scheme must

be used as shown in Figure 7.6.

Instead of having only one bi-directional pin on the 80C552, the line is split into a _IN and

an _OUT pin, e.g. the PGD pin is split into a PGD_IN and a PGD_OUT pin. The original

bi-directional line still operates as usual, but it has two pins connected to it; a pin that will

drive the line and a pin that will be driven by the line itself.

The JTAG FROM CPU connector (J7) is connected to the MAX7000S programming

interface from the 80C552 after the buffers. The JTAG IN connector (J8) is connected

straight to the programming pins of the MAX7000S device. Both these connectors were

added purely for development reasons and there could have been just a straight

connection between the two connectors for the interface to operate correctly. At the

moment a ribbon cable is used to provide this straight connection.

lxv

Figure 7.6 Bi-directional ports using buffers.

7.5 SOURCE FILE STORAGE

As mentioned above, the source files for the I/O controller and the MAX7000S are stored

in the I2C EEPROMs. To program the specific device, the 80C552 first fetches all the

information from the EEPROM and stores it in a large buffer (in the external RAM) from

where it then programs the device. This section will explain the storage structure for the

two devices’ source files.

lxvi

7.5.1 I/O CONTROLLER STORAGE

The storage of the source file for the I/O controller is complicated by the fact that the

PIC16F877 uses 14-bit instruction words. The I2C EEPROM memory only has a data

width of 8-bits, which means that each instruction word will have to be divided into a HI

byte and a LO byte. The four main programming areas in the PIC16F877 is the Program

memory, the ID locations, the Configuration word and the Data memory. Not all four these

areas will always need to be programmed and most of the time only the Program memory

will be utilised. To cater for this, a scheme for determining the amount of bytes used by a

particular programming area has been devised and will also help to separate these areas

in the EEPROM itself. Figure 7.7 shows a typical structure for a PIC16F8777 source file

stored in the I2C EEPROM.

PM_USED

ID_USED

CW_USED

DM_USED

PM_START

ID_START

CW_START

DM_START

HI

LO

0x0000

0x0001

0x0002

0x0003

0x000F

0x000E

0x0010

0x0017

Address 8-bit Data

Actual
programmaing
data

Figure 7.7 Structure of a PIC16F877 source file stored in EEPROM.

From the figure it can be seen that in each case the HI byte is stored first followed by the

LO byte. The PM_USED parameter indicates how many words have been used for the

Program memory area. The same applies for the ID_USED (ID locations), CW_USED

(Configuration word) and DM_USED (Data memory) parameters. PM_START simply acts

lxvii

as a “pointer” to indicate at exactly what EEPROM address the data for the Program

memory starts. Once again, the same applies to ID_START, CW_START and

DM_START parameters. The addresses stored in the parameters must be doubled to find

the exact EEPROM address, seeing that the PIC16F877 works with 14-bit words.

Figure 7.8 is an example of a source file after it has been stored in EEPROM. A normal

hex editor was used to read the contents of the EEPROM and display it.

PM_USED ID_USED CW_USED DM-USED PM_START ID_START CW_START DM_START

Figure 7.8 Source file storage example.

Start of Program memory data Start of Data memory data

The example shows that 60 words are used by the Program memory and 4 words by the

Data memory. There are no words used for the ID locations and Configuration word. The

PM_START parameter reads the value 0x0008, but must be doubled to indicate the start

address of the Program memory data (0x0010). The same applies to the DM_START

parameter to indicate the start of the Data memory (0x0088). Both the ID_START and

CW_START parameters read as 0x3FFF. This is simply a dummy start position, seeing

that both these areas are not utilised in this example.

7.5.2 MAX7000S STORAGE

The storage structure for the MAX7000S is much less complicated since the Jam byte-

code player (explained in the next section) uses 8-bit words for programming the device.

The only extra information required is the number of bytes that needs to be programmed

into the MAX device. Figure 7.9 shows a typical structure for a MAX7000S source file

stored in the I2C EEPROM.

lxviii

BYTES_USED
HI

LO

0x0000

0x0001

0x0002

0x0003

0x000F

0x000E

Address 8-bit Data

Actual
programmaing
data

Figure 7.9 Structure of a MAX7000S source file stored in EEPROM.

Seeing that this particular EEPROM can store data in up to 32K different address

allocations, it is once again necessary to split the BYTES_USED parameter into a HI byte

and a LO byte. The rest of the programming data, however, is used as single bytes and

does not need separate HI and LO bytes.

7.6 PROGRAMMING INTERFACE SOFTWARE

The embedded software for the programming interface can be divided into four different

parts:

• ICSP functions for programming the PIC16F877

• The Jam byte-code player for programming the MAX7000S

• Code for driving the I2C bus

• The main program loop which will do all the controlling of the different parts

7.6.1 ICSP FUNCTIONS

As mentioned in section 7.2.3.2, the internal programming interface of PIC16F877 uses

certain commands to program itself. Figure 7.10 shows the typical flow chart for

programming the program memory and Figure 7.11 shows the flow chart for programming

the configuration word and the ID locations.

lxix

Figure 7.10 Flow chart for programming the program memory (In-circuit serial

programming for PIC16F8XX FLASH MCUs, p.170).

lxx

Figure 7.11 Flow chart for programming the ID locations and configuration word (In-circuit

serial programming for PIC16F8XX FLASH MCUs, p.171).

lxxi

To implement these flow charts and apply the internal commands, the programming

interface from the 80C552 must drive the PIC16F877 with the correct signals.

The 80C552 makes use of the following I/O definitions throughout the program to access

its own port pins for driving the PIC16F877’s programming interface. The data line is bi-

directional, therefore it is necessary to use separate pins (as explained in section 7.4).

#define MCLR P1_5 // connected to MCLR (PIC)
#define CLK P1_2 // connected to RB6 (PIC)
#define DATA_OUT P1_3 // connected to RB7 (PIC)
#define DATA_IN P1_6 // connected to RB7 (PIC)
#define LVP P1_4 // connected to RB3 (PIC)

Figure 7.12 I/O definitions for programming the PIC16F877.

Pin RB6 is used as the clock input by the PIC16F877 and RB7 is used for entering

command bits and data input/output during serial programming. The 80C552 makes use

of the sendbit() and recvbit() functions to send a bit (a HIGH or a LOW) and receive a bit

from the PIC16F877.

void sendbit(bit b)
{

if (b==1) DATA_OUT = 1; else DATA_OUT = 0;
 CLK = 1;
 delay_us(1); // tset1
 CLK = 0; // clocked into PIC on this edge (falling)
 delay_us(1); // thld1
 DATA_OUT = 0; // idle with data line low
}

bit recvbit(void)
{
 bit b;
 CLK = 1;
 delay_us(1); // tdly3
 CLK = 0; // data is ready just before this
 b = DATA_IN;
 delay_us(1); // thld1
 return b;
}

Figure 7.13 Bit I/O functions.

Each bit is latched on the falling edge of the clock (RB6 or CLK). After sending a bit on the

RB7 line, it is very important to make the DATA_OUT pin HIGH to allow the PIC16F877 to

drive this line if the 80C552 needs data from it. The delay_us() function is used to

lxxii

implement the minimum setup and hold times according to the PIC16F877’s AC/DC

specifications.

The programming processor makes use of the sendcmd() function to send a 6-bit

command to the PIC16F877. At the same time it also uses the senddata() and recvdata()

functions to send and receive a whole 14-bit word from the PIC16F877.

void sendcmd(byte b)
{
 byte XDATA_AREA i;

 delay_us(2); // thld0
 for(i = 6; i > 0; i--)
 {
 sendbit(b & 1); // send LSB first
 b = b >> 1;
 }
 delay_us(2); // tdly2
}

void senddata(word w) // sends 14-bit word from bottom of w
{
 byte XDATA_AREA i;

 delay_us(2); // thld0
 sendbit(0); // one garbage bit
 for(i = 14; i > 0; i--)
 {
 sendbit(w & 1); // 14 data bits LSB first
 w = w >> 1;
 }
 sendbit(0); // one garbage bit
 delay_us(2); // tdly2
}

word recvdata() // receives 14-bit word, LSB first
{
 byte XDATA_AREA i;
 bit b;
 word XDATA_AREA w = 0;

 DATA_OUT = 1; // enables DATA_IN as input
 delay_us(2); // thld0
 recvbit(); // one garbage bit
 for(i = 0; i < 14; i ++)
 {
 b = recvbit();
 w = w | ((word)b << i); // 14 data bits
 }
 recvbit(); // one garbage bit
 delay_us(2); // tdly2
 DATA_OUT = 0; // idle with DATA line low
 return w;
}

Figure 7.14 Data send and receive functions.

lxxiii

These functions make use of the above mentioned bit I/O functions to fulfil its function.

Commands that have data associated with them are specified to have a minimum delay of

1us between the command and the data. Once again it is important to keep the

DATA_OUT pin at an idle state to allow the PIC16F877 to drive it.

The progcycle() function is used to establish the program cycle as was shown in the flow

chart of Figure 7.10. The function simply sends a 6-byte command followed by a 14-bit

argument, issues the BEGIN PROGRAMMING command and waits for 100 microseconds.

void progcycle(byte cmd, word arg) // send a command and argument
{
 sendcmd(cmd);
 senddata(arg);
 sendcmd(BEGINERASEPROG);
 delay_us(100);
}

Figure 7.15 The program cycle function.

The programall() function is the main ICSP function which will program the different areas

of the PIC16F877. It makes use of all the abovementioned functions to physically access

the programming interface for the PIC16F877. The function uses 6 parameters:

• Mode

Specifies if the function must be used to verify (= 0) the contents of the specified area

of the PIC16F877 or whether be used to program (= 1) that area.

• Mask

Since the program uses two memory locations for each data word (i.e. 16 bits), the

function uses this mask to specify which data bits must be ignored (e.g. a mask of

0x3FFF, or 0011 1111 1111 1111 in binary, will ignore the 2 most significant bits).

• Writecommand

Specifies the 6-bit command for the particular PICmicro device (PIC16F877 in this

case) for writing to the specified area.

• Readcommand

Specifies the 6-bit command for the particular PICmicro device (PIC16F877 in this

case) for reading from the specified area.

lxxiv

• Base

Indicates where the start of the data in EEPROM is for the specified area that needs to

be programmed.

• Used

Indicates to the function how many words are used of the specified area for

programming.

bit programall(int mode, word mask, byte writecommand, byte readcommand, word base, word used)
{
 word XDATA_AREA i, w, temp;
 unsigned char XDATA_AREA lo, hi;
 float XDATA_AREA previous, t;

 if (base == PBASE) //used for calculating % programmed
 previous = 0;
 else if (base == IBASE)
 previous = PUSED;
 else if (base == CBASE)
 previous = PUSED+IUSED;
 else if (base == DBASE)
 previous = PUSED+IUSED+CUSED;

 printf("%04X bytes to program\nProgress: ", used); //shows % finished

 for(i = base * 2; i < (base + used) * 2; i=i+2) //start reading from base up to number
 { //of words used
 if (((i - (base * 2)) % 16) == 0)
 printf("%04X\b\b\b\b", i - (base * 2));
 hi = jbi_program[i]; //read HI byte
 lo = jbi_program[i+1]; //read LO byte
 temp = (hi << 8) | lo;
 printf("%04X ", i/2);
 if (mode == PROGRAM) //program word if specified as program
 progcycle(writecommand, (temp & mask)); //use mask to ignore unused bits
 printf("%04X\n", temp & mask);
 sendcmd(readcommand); //read word from PIC16F877
 w = (recvdata() & mask); //verify word
 if (w != (temp & mask)) //display error if not verified
 {
 printf("Failed at %04X: Expecting %04X, found %04X.\n", i/2, temp & mask, w);
 return 0;
 }
 sendcmd(INCREMENTADDRESS); //increment PC to next location
 previous++;
 t = (previous/(PUSED+IUSED+CUSED+DUSED) * 100) + 100; //loading percentage
 write_status(t);
 }
 return 1;
}

Figure 7.16 The main programming function.

lxxv

This function can be used to program the Program memory, Data memory, ID locations

and Configuration word of the PIC16F877, without the need of a separate function for each

area.

7.6.2 JAM BYTE-CODE PLAYER

The Jam language has two parts: the Jam File and the Jam Player (Embedded

programming using the 8051 & Jam byte-code, p.4). A Jam File, which contains all the

information to program ISP-capable devices, is generated from the MAX+PLUS II

development software. This file is then transferred via the Internet to the board and stored

in one of the I2C EEPROMs (as shown in Figure 7.17). Like with the PIC16F877

programming, this file must first be read into RAM before any programming can be done.

The Jam Player runs on the 80C552 processor (stored in ROM), interprets the information

in the Jam File and generates the binary data stream for device programming. Because

updates may only be needed by and are confined to the Jam File, the Jam Player requires

no changes and is used to program any vendor’s device.

RAM

EEPROM

80C552 Ethermet
interface
controller

Internet

PC

JTAG
interface

Figure 7.17 Transferring and loading of the Jam file.

lxxvi

Figure 7.18 shows a block diagram of how in-system programming is achieved with the

Jam language.

Embedded processor (80C552)

to JTAG chain
Jam Player

RAM

.jbc

00100 ... 0100 ... etc.

JTAG binary data stream

Figure 7.18 Block diagram of ISP using a Jam file and Jam Player (Adapted from

Embedded programming using the 8051 & Jam byte-code, p.4).

7.6.2.1 The Jam file

Jam Files are compact files containing programming data and algorithm information

needed to program any device through the IEEE Std. 1149.1 JTAG port. Altera products

support two separate implementations of the Jam File: the Jam Byte-code File (.jbc) and

the ASCII Jam File (.jam). The JBC file is a binary file, while the Jam file is text only. In

this project only the JBC file is implemented because it provides much smaller file sizes

and faster programming times. The block diagram in Figure 7.19 shows how a JBC file is

generated for in-system programming using the MAX+PLUS II software.

Compile
design 1

Compile
design 2

Compile
design 3

MAX+PLUS II

Utility

.pof.pof.pof

.jbc

.hex

EEPROM

Internet

Figure 7.19 Generating a JBC file using the MAX+PLUS II software.

lxxvii

7.6.2.2 The Jam Player

The Jam Player is a C program that parses the JBC file (which is read from EEPROM into

RAM), interprets each Jam instruction, and reads and writes data to and from the JTAG

chain. Figure 7.20 illustrates the Jam Player source code structure.

Parse Interpret
Compare
 & Export

ERROR

TCK

TMS

TDI

TDO

Jam Player

I/O functions

Main program

.jbc

Figure 7.20 Jam Player source code structure (Adapted from Embedded programming

using the 8051 & Jam byte-code, p.9).

The Jam Player resides permanently in system memory (ROM), where it interprets the

commands given in the JBC file (now in RAM) and generates a binary data stream for

device programming. The structure confines all upgrades to the JBC file and allows the

Jam Player to adapt to any system architecture.

The Jam Byte-code Player is written in the C programming language for the 8051 core

processor and can be downloaded from www.jamisp.com. The source code can be

compiled for any 8051 variant as long as the supporting compiler can compile C code. To

implement the Jam Byte-code Player on the 80C552 in this project, some changes had to

be made to the source code:

• The JBC file can either be stored in ROM or RAM. In this project the JBC file will

constantly change, therefore must be stored in RAM. To specify that it will be

stored in RAM, the following line must be added to the beginning of the source

code:

#define JBC_FILE_IN_RAM = 1

lxxviii

The JBC file will actually be stored in one of the I2C EEPROMs, be read into RAM

and from there will be read again to program the device. The jbi_load_jbc_file()

function will be used to read the JBC file from EEPROM into RAM as shown in

Figure 7.21.

JBI_RETURN_TYPE jbi_load_jbc_file(void)
{
 JBI_RETURN_TYPE XDATA_AREA crc_result = JBIC_IO_ERROR;
 unsigned int XDATA_AREA expected_crc;
 unsigned int XDATA_AREA actual_crc;
 unsigned int XDATA_AREA note_offset = 0;
 unsigned char XDATA_AREA lo, hi;
 word XDATA_AREA i, used;
 float XDATA_AREA temp=0, t;

 EA = 0; //disable interrupts
 hi = IIread_eeprom(DEVICE2, 0x0000); //reads HI byte of how many bytes are used
 lo = IIread_eeprom(DEVICE2, 0x0001); //read LO byte
 used = (hi << 8) | lo;
 printf("Number of bytes to read: %04X \n", used);
 printf("Loading from ROM...\n");

 for (i = 0; i < used; i++) //start reading data from EEPROM
 {
 jbi_program[i] = IIread_eeprom(DEVICE2, i + 2);
 temp++;
 if ((i % 100) == 0) //update loading percentage every 100 bytes
 {
 printf("%04X\b\b\b\b", i);
 t = (temp/used) * 100; //loading percentage
 write_status(t); //change status lines to indicate loading %
 }
 }
 printf("\nLoaded %u bytes\n", i);
 printf("Checking CRC\n");
 crc_result = jbi_check_crc(&expected_crc, &actual_crc); //do CRC check on file
 if (crc_result == JBIC_SUCCESS)
 {
 printf("CRC matched: expected %04X, actual %04X\n", expected_crc, actual_crc);
 }
 else
 {
 printf("CRC mismatch: expected %04X, actual %04X\n", expected_crc, actual_crc);
 }
 if (crc_result == JBIC_SUCCESS) //Dump out NOTE fields
 {
 while (jbi_get_note(¬e_offset, jbi_note_key, jbi_note_value, 256) == 0)
 {
 printf("NOTE \"%s\" = \"%s\"\n", jbi_note_key, jbi_note_value);
 }
 }

 return (crc_result);
}

Figure 7.21 Loading the JBC file into RAM.

lxxix

• The jbi_jtag_io() function is the interface to the IEEE Std. 1149.1 JTAG signals

TDI, TMS, TCK and TDO. The signals are mapped to the 80C552’s hardware ports

as follows:

Signal Hardware Port
TDI P1.0

TMS P1.1

TCK P1.7

TDO P3.5
Table 7.5 JTAG interface port pins.

The function receives three parameters indicating the required state for the TMS,

TDI and TDO signals, and returns one parameter indicating the state of the TDI

signal.

BIT jbi_jtag_io(BIT tms, BIT tdi, BIT read_tdo)
{
 BIT tdo = 0;

 P1_1 = tms; /* set TMS signal */
 P1_0 = tdi; /* set TDI signal */

 if (read_tdo)
 {
 tdo = P3_5; /* read TDO signal */
 }

 P1_7 = 1; /* strobe TCK signal */
 P1_7 = 0;

 return (tdo);
}

Figure 7.22 Function for interfacing to the JTAG signals.

• Pulses of varying widths are used to program the internal EEPROM cells of the

MAX devices. The Jam Player uses the jbi_delay() routine to implement these

pulse widths. This routine must be customized based on the speed of the

processor and the time it takes the processor to execute a single loop. The 80C552

in this project, however, is running on a 12Mhz crystal which is slow already, so the

delay in the routine is just set to the minimum (= 0).

lxxx

void jbi_delay(unsigned long microseconds)
{
 unsigned long count = microseconds >> 3;

 while (count != 0) count--;
}

Figure 7.23 Delay function for Jam Player.

7.6.2.3 Jam Player operation

The Jam Player provides an interface for manipulating the IEEE Std. 1149.1 JTAG TAP

state machine. The TAP controller is a 16-state state machine that is clocked on the rising

edge of TCK, and uses the TMS pin to control JTAG operation in a device. Figure 7.24

shows the flow of the TAP controller state machine.

Figure 7.24 JTAG TAP controller state machine (Embedded programming using the 8051

& Jam byte-code, p.20).

lxxxi

While the Jam Player provides a driver that manipulates the TAP controller, the JBC File

provides the high-level intelligence needed to program a given device. All Jam instructions

that send JTAG data to the device involves moving the TAP controller through either the

data register leg of the state machine or the instruction register leg.

The high-level Jam instructions are the DRSCAN instruction for scanning the JTAG data

register, the IRSCAN instruction for scanning the instruction register, and the WAIT

command that causes the state machine to sit idle for a specified period of time. Each leg

of the TAP controller is scanned repeatedly, according to instructions in the JBC file, until

all of the target devices are programmed.

7.6.3 I2C FUNCTIONS FOR EEPROMs

Inter-Integrated Circuit (I2C) is a two wire bus for eight bit data transfer applications

(24LC256 Datasheet, p.1). The two wires (serial clock and serial data) carry information

between the devices connected to the bus. The serial data wire is bi-directional but data

may flow in only one direction at a given time. Each device on the bus can operate as

either a transmitter or receiver, but not simultaneously. Some devices may be only

transmitters while others only receivers. An example of a receive only device is a display,

while a memory would both receive and transmit information. The device that generates

the clock pulses is called the master and the device that receives is called the slave.

The 24LC256 is a 32K x 8-bit serial EEPROM and is used to store the source files in the

this project. It uses two pins, serial clock (SCK) and serial data (SDA), to transmit and

receive data from the 80C552. Three chip select pins (A0, A1, A2) are also used to allow

more than one 24LC256 to be used on the one I2C bus. The pins are hardwired to either

+5V or GND to set the address for each EEPROM. Seeing that there are three chip select

pins, there can only be a maximum of eight EEPROMs on the I2C bus.

The 80C552 makes use of the following pin definitions to access the I2C bus.

#define SCL_IN P4_0
#define SCL_OUT P4_1
#define SDA_OUT P4_3
#define SDA_IN P4_2

Figure 7.25 Pin definitions for accessing the I2C bus.

lxxxii

The SDA and SCL line each have an input and an output pin on the 80C552 (as explained

in section 7.4 in this chapter.

When the I2C bus is not in use, the SDA and SCL lines must be HIGH. This means that

the output pins SDA_OUT and SCL_OUT must also be HIGH, otherwise these pins will

pull the SDA and SCL lines LOW. Data can only be transmitted when the bus is not busy.

Any data transfer must be preceded by a START condition on the bus and ended with a

STOP condition. The START condition is created when the SDA line is pulled LOW before

the SCL line, and a STOP condition when the SCL line is pulled HIGH before the SDA line.

The 80C552 uses the IIstart() and IIstop() functions to create the START and STOP

conditions.

bit IIstart(void)
{
 SDA_OUT = 1; // release SDA and SCL lines
 SCL_OUT = 1;
 if ((SCL_IN != 1) || (SDA_IN != 1)) // check if bus is free
 return(0);
 delay_us(1);
 SDA_OUT = 0; // pull SDA LOW before SCL
 delay_us(1);
 SCL_OUT = 0;
 delay_us(1);
 return(1);
}

void IIstop(void)
{
 SCL_OUT = 0;
 SDA_OUT = 0;
 delay_us(1); // pull SCL HIGH before SDA
 SCL_OUT = 1; // release SCL line
 delay_us(1);
 SDA_OUT = 1; // release SDA line
 delay_us(1);
}

Figure 7.26 Functions for creating START and STOP conditions on the I2C bus.

The IIclk(), IIout(), and IIin() functions are used to write and read 8 bits of data to the I2C

bus. Data is transmitted and received with the most significant byte (MSB) first. Each

receiving device, when addressed, is obliged to generate an acknowledgement signal after

the reception of each byte of data. The master must generate an extra clock pulse which

is associated with this acknowledge bit. The slave must pull the SDA line LOW during the

acknowledgement pulse to acknowledge the data. The IIread_ack() function is used for

lxxxiii

this purpose in the program. It will return a 1 if the data was acknowledged, otherwise it

will return a 0.

void IIclk(void) // generates clock pulse
{
 SCL_OUT = 1;
 delay_us(1);
 SCL_OUT = 0;
}

void IIout(byte DATA) // transmits a byte onto the I2C bus
{
 byte i;

 for (i = 128; i >= 1; i=i/2) // MSB first
 {
 if (i & DATA)
 SDA_OUT = 1;
 else
 SDA_OUT = 0;
 delay_us(1);
 IIclk(); // generate clock pulse
 }
 SDA_OUT = 1; // release SDA line
 delay_us(1);
}

byte IIin(void)
{
 byte i, DATA=0;

 SDA_OUT = 1; // to enable SDA_IN as input
 for(i=128; i >= 1; i=i/2) // MSB first
 {
 SCL_OUT = 1;
 delay_us(1);
 if (SDA_IN) // read bit on lagging edge of clock line
 DATA = DATA + i;
 SCL_OUT = 0;
 delay_us(1);
 }
 return(DATA);
}

Figure 2.27 Functions for accessing the I2C bus interface.

lxxxiv

bit IIread_ack(void)
{
 SDA_OUT = 1;
 SCL_OUT = 1;
 delay_us(1);
 if (SDA_IN) // if SDA is HIGH, then byte IS NOT acknowledged
 {
 SCL_OUT = 0;
 return(0);
 }
 else // if SDA is LOW, then byte IS acknowledged
 {
 SCL_OUT = 0;
 return(1);
 }
}

Figure 7.28 Function to test if a sent data byte was acknowledged.

The 80C552 will not need to write data to the EEPROMs, therefore no EEPROM write

functions were added to the program. The main purpose of the I2C bus for the 80C552 is

to read data from the serial EEPROMs and is accomplished by using the IIstart_read()

and IIread_eeprom() functions. Reading data from a specific memory location in the

serial EEPROM involves the following steps from the 80C552:

• Generate a START condition.

• Send a control word with R/W bit set as 0.

The control word consists of a 4-bit control code which is always 1010 for the

24LC256. The next three bits are the chip select bits (A2, A1, A0). These bits allow

the selection of individual 24LC256 devices on the same I2C bus. The last bit (R/W)

simply defines the operation to be performed. When a one read operation is

selected, and when it is a zero write operation is selected.

• Check acknowledgement bit.

• Send the HI byte of the required memory location to be read.

• Check acknowledgement bit.

• Send the LO byte of the required memory location to be read.

• Check acknowledgement bit.

• Generate a START condition.

• Send a control word with R/W bit set as 1.

• Check acknowledgement bit.

• Read the incoming data (MSB first).

• The master will not acknowledge the transfer, but does generate a STOP condition.

lxxxv

Figure 7.29 summarises this read operation.

Figure 7.29 Reading data from the 24LC256 (24LC256 Datasheet, p.10).

#define DEVICE0 0xA0 // device Ids according to each device’s hardwiring
#define DEVICE1 0xA2 // of pins A2 – A0. First 4-bits of ID is 1010 which is
#define DEVICE2 0xA4 // default for the 24LC256.
#define DEVICE3 0xA6
#define DEVICE4 0xA8
#define DEVICE5 0xAA
#define DEVICE6 0xAC
#define DEVICE7 0xAE
#define READ 1
#define WRITE 0

void IIstart_read(byte CS, word ADDRESS) // starts the reading procedure from EEPROM
{
 IIstart(); // generate START condition
 IIout(EEPROM | CS | WRITE); // send control word - write
 IIread_ack(); // check ack
 IIout((byte)(ADDRESS >> 8)); // send HIGH byte of ADDRESS
 IIread_ack(); // check ack
 IIout((byte)(ADDRESS & 0x00ff)); // send LO byte of ADDRESS
 IIread_ack(); // check ack
 IIstart(); // generate START condition
 IIout(EEPROM | CS | READ); // send control word - read
 IIread_ack(); // check ack
}

byte IIread_eeprom(byte CS, word ADDRESS) // reads the data from EEPROM
{
 byte DATA = 0;

 IIstart_read(CS, ADDRESS);
 DATA = IIin(); // read data
 IIstop(); // generate STOP condition

 return(DATA);
}
Figure 7.30 Functions for reading data from a specific memory location in the 24LC256.

lxxxvi

7.6.4 MAIN PROGRAMMING LOOP

With all the functions for ICSP with the PIC16F877, ISP for the MAX7000S and the I2C

communications defined, the rest of the program is quite simple. All the 80C552 has to do

now is to wait in a loop until a command is received from the Ethernet interface controller.

The read_cmd() function monitors the CMD0 and CMD1 lines from the Ethernet interface

to determine the required instruction. It almost acts like the popular getch() C function; the

program waits in a loop until a key is pressed (a command is received).

byte read_cmd(void)
{
 byte XDATA_AREA val=0;

 CMD0 = 1; // enables CMD0 and CMD1 as inputs
 CMD1 = 1;

 while((CMD0 == 0) & (CMD1 ==0)); // wait until CMD0 or CMD1 changes to HIGH

 if ((CMD0 == 1) & (CMD1 ==0)) // program I/O controller (val = 2)
 val=1;
 else
 if ((CMD0 == 0) & (CMD1 ==1)) // program hardware (val = 1)
 val=2;
 else
 if ((CMD0 == 1) & (CMD1 ==1)) // future command
 val=3;
 else
 val=0; // unknown command

 while((CMD0 != 0) & (CMD1 != 0)); // wait until Ethernet interface controller takes both
 return(val); // lines LOW again. Ethernet interface controller
} // only pulses the lines for the command

Figure 7.31 Reading an instruction from the Ethernet interface controller.

Right throughout the program the printf() statement is used to write information to the

80C552’s RS-232 module. This is purely done for debugging purposes and can be

omitted.

Figure 7.32 shows the main programming loop. It makes use of a switch() statement to

determine the required operations for the command received. The write_status() function

manipulates the Status0 – Status3 lines to indicate the percentage completed (as

described in section 7.4).

lxxxvii

while (1)
{
 printf("\nEmbedded Ethernet Controller v2.00\n"); //display message menu
 printf("1. Load, Program & Run Reconfigureable Hardware\n");
 printf("2. Load, Program & Run Controller CPU\n");
 printf("3. Load, Program & Run Server CPU\n\n-> ");
 b = read_cmd(); //wait for command
 printf("\n");
 switch(b)
 {
 case 0: printf ("Invalid choice!\n"); break; //invalid choice

 case 1: {
 write_status(1); //force loading 4%
 printf ("********** Hardware **********\n");
 crc_result = jbi_load_jbc_file(); //load file from EEPROM
 init_list = jbi_init_list_program; //set ISP parameters
 } break;
 case 2: {
 write_status(1); //force loading 4%
 printf ("********** Controller CPU **********\n");
 printf("Erasing PIC ...\n");
 EraseAll(); //erase contents of PIC
 printf("Loading ...\n");
 LoadICSPFromRom(); //load file from EEPROM
 printf("Programming Program Memory ...\n");
 vppreset(); //enter programming mode
 programall(PROGRAM, PMASK, LOADPROGRAM, READPROGRAM,
PBASE, PUSED); //program program memory
 printf("Programming ID Locations ...\n");
 sendcmd(LOADCONFIG);
 senddata(DEFAULTCONFIG);
 programall(PROGRAM, IMASK, LOADPROGRAM, READPROGRAM,
IBASE, IUSED); //program ID locations
 printf("Programming Configuration Byte ...\n");
 for (i = 0; i < CBASE - IBASE - IUSED; i ++)
 sendcmd(INCREMENTADDRESS);
 programall(PROGRAM, CMASK, LOADPROGRAM, READPROGRAM,
CBASE, CUSED); //program config word

vppreset();
 printf("Programming EEPROM Memory ...\n");
 programall(PROGRAM, DMASK, LOADDATA, READDATA, DBASE,
DUSED); //program data memory
 Stop();
 Run(); //exit program mode & run
 write_status(0);
 } break;
 case 3: {

 //future command
 } break;
 default: printf ("Invalid choice!\n"); break; //invalid choice
 } // end switch()

if (b == 1) //MAX7000S selected
 {
 // Jam Player execution code
 }
} //end while()

Figure 7.32 The main programming loop.

lxxxviii

7.7 CONCLUSION

This chapter took an in depth look at in-system programmability with the PIC16F877 and

the MAX7000S devices and Jam Player were explained in detail. The storage scheme for

the source files was demonstrated and an example was also included. The software code

for the different programming components was explained with extracts from the completed

embedded code.

This chapter was the last hardware chapter and the next chapter will give a brief overview

of the operation of the software involved for developing software for the devices on the

board and for transferring the files. Accessing the board using a standard Web browser

(e.g. Internet Explorer 5.0) will also be demonstrated.

lxxxix

CHAPTER 8
SOFTWARE ENVIRONMENT

8.1 OVERVIEW

This chapter will take a look at the software side of the project. First the operation and

description of the software utility (EmEther) for transferring and programming the source

files will be explained. It will be followed by a brief description of how to access the remote

system. The chapter will then end with a short summary of the development software and

reference material used in this project.

8.2 EMBEDDED ETHERNET (EmEther) UTILITY

The user must use the embedded Ethernet (EmEther) utility to transfer new source files to

the remote board and issue the commands to the programming processor to start

programming the required section. The utility will also provide a progress bar to indicate

the percentage of completion.

8.2.1 OPERATION

Figure 8.1 shows a screen capture of the EmEther utility.

Figure 8.1 The EmEther utility.

xc

Building and transferring HTML documents:

1. Choose the required Web page directory to be transferred.

2. Click the Build Web Directory button.

 Before a Web page directory can be transferred to the remote system, it must first be

built into a special file format that allows it to be stored in the remote system’s

EEPROM. A detailed description of the built file will be displayed in the Status

frame. It gives a breakdown of each file’s name, size, start address in EEPROM,

length, checksum and EGI flags.

3. Click the Transfer Web Directory button.

 The progress bar at the bottom of the window will indicate the percentage of file

transfer.

The transferred Web directory takes immediate effect on the remote system once it is

transferred and does not need to be issued a command to program it.

xci

Building, transferring and programming PICmicro source files:

1. Choose the required PICmicro source file (.hex) to be transferred.

2. Click the Build Hex File button.

Before a PICmicro source file can be transferred to the remote system, it must first be

built into a special file format that allows it to be stored in the remote system’s

EEPROM. A detailed description of the built file will be displayed in the Status

frame. It gives a breakdown of the size of each of the memory areas in the

PIC16F877 and their start addresses inside the EEPROM.

3. Click the Transfer Hex File button.

The progress bar at the bottom of the window will indicate the percentage of file

transfer.

xcii

4. Click the Program Hex File button.

Before the transferred PICmicro source file can take effect on the remote system, the

programming interface on the remote system must first get the instruction to load the

source file from EEPROM and then program the PIC16F877. The first progress bar

will indicate how much of the source file is loaded by the programming processor

from the EEPROM.

Shortly after the programming processor has read the whole source file from

EEPROM, the next progress bar will appear, indicating the percentage of the actual

programming of the PIC16F877.

The PIC16F877 will now be updated with the new source file and will take immediate

effect.

Transferring and programming MAX7000S source files:

1. Choose the required MAX7000S source file (.jbc) to be transferred. If other JTAG

devices were added to the circuit, those files can also be transferred using the same

method.

2. Click the Transfer JBC File button.

The source file for the MAX7000S is already in a suitable file format for storing it in

one of the EEPROMs on the remote system, and therefore it is not necessary to build

xciii

the file first. The progress bar at the bottom of the window will indicate the

percentage of file transfer.

3. Click the Program JBC File button.

Before the transferred MAX7000S source file can take effect on the remote system,

the programming interface on the remote system must first get instruction to load the

source file from EEPROM and then program the MAX7000S. The progress bar will

indicate how much of the source file is loaded by the programming processor from

the EEPROM.

Unfortunately the Jam Byte-Code Player does not provide a feedback of the progress

for programming a JTAG device. An EPM7128S device has a programming time of

roughly 5 minutes. The next chapter will demonstrate three different test applications

for the system and the programming times for each application will be indicated. The

user can see if the programming processor is busy with programming a device by

simply trying to access the Web page. If the system is still busy, a “Busy

programming!” page will appear.

8.2.2 SOURCE CODE DESCRIPTION

The EmEther utility was developed using Visual Basic 6.0. The source code can be

divided into four different sections: building source files, transferring source files,

instructing the remote programming processor, and progress indication.

8.2.2.1 Building source fi les

Only source files for the PIC16F877 and the HTML documents for the Web server needs

to be compiled into a special format. This format will allow the file to be stored in one of

the I2C EEPROMs of the remote system. The source file for the MAX7000S device is

already in the correct format and can be stored as is.

The cmdBuildWebDir_Click() and cmdBuildHexFile_Click() functions are used to build

the source files. It simply creates an image of what the EEPROM contents should be on

xciv

the local PC’s drive (“hextemp.rom” and “webtemp.rom”). The file structure for both these

sections has been explained in Chapter 4 and 7, therefore a detailed description of the

source code is not necessary.

8.2.2.2 Transferring source files

Transferring the source files means transferring the “hextemp.rom” and “webtemp.rom”

files via the Internet to the remote system’s EEPROMs. The .jbc file for the MAX7000S is

transferred just as it is.

Send_Socket() is the most important function for transferring source files via the Internet.

Private Sub Send_Socket(data As String)
 Winsock1.Connect ‘ create TCP socket connection on port 1000
 Do Until Winsock1.State = sckConnected ‘ wait until connected
 DoEvents: DoEvents: DoEvents: DoEvents ‘ dummy
 If Winsock1.State = sckError Then ‘ if error, display message
 MsgBox "Problem connecting!"
 Exit Sub
 End If
 Loop

 Winsock1.SendData data ‘ send data via socket connection

 Do Until Winsock1.State = sckClosing ‘ wait until connection is closed by remote system
 DoEvents: DoEvents: DoEvents: DoEvents ‘ dummy
 If Winsock1.State = sckError Then ‘ if error, display message
 MsgBox "Problem connecting!"
 Exit Sub
 End If
 Loop
 Winsock1.Close ‘ close TCP socket
End Sub

Figure 8.2 Sending data via the Internet using a TCP socket.

The function makes use of the Winsock ActiveX control to establish a TCP socket

connection with the remote system. A socket connection is basically a data pipe that

allows reliable bi-directional data transfer between two nodes (Wilder, 1999, p.169). The

Winsock control uses the following two lines to setup the remote destination’s IP address

and port number:

Winsock1.RemoteHost = "picweb.petech.ac.za"
Winsock1.RemotePort = 1000

xcv

The EmEther utility transfers source files using the cmdTransWebDir_Click(),

cmdTransHexFile_Click() and cmdTransJBCFile_Click() functions. Each of these

functions operates exactly the same and makes use of the packet_data array to break up

the file to be transferred into data packets of 64 bytes each (data can only be written to a

I2C EEPROM in 64-byte pages). The packet_listcount variable indicate the number of

packets that need to be transferred.

 Const PACKET_SIZE As Byte = 64 ‘ size of the data packets in bytes

 Open "webtemp.rom" For Binary As #1 ‘ determine the size of the source file in bytes
 leng = LOF(1)
 For i = 0 To leng – 1 ‘ read the contents of the source file into a buffer
 buff(i) = Input(1, #1)
 Next i
 Close #1

 temp_str = "" ‘ temporary string
 next_stop = PACKET_SIZE ‘ next break point in the source file for a complete packet
 packet_listcount = 0 ‘ number of packets that need to be transferred = 0

 For i = 0 To leng – 1 ‘ start reading from the buffer
 If i < next_stop Then ‘ if the current byte position is next than the next break
 temp_str = temp_str + buff(i) ‘ add current byte to temporary string
 Else
 packet_data(packet_listcount) = temp_str ‘ load current packet with the temporary string
 packet_listcount = packet_listcount + 1 ‘ increase number of packets to be transferred
 next_stop = next_stop + PACKET_SIZE ‘ increase next break position with 64 bytes
 temp_str = "" ‘ clear temporary string
 temp_str = temp_str + buff(i) ‘ add current byte to temporary string
 End If
 Next i
 If leng - 1 < next_stop Then ‘ if last packet has less than 64 bytes
 packet_data(packet_listcount) = temp_str
 End If

Figure 8.3 Breaking up the source file into data packets for transferring.

These functions transfer each packet using a 4-byte header. Each packet is sent with a

start address so that the remote Web server knows where to store the data in the

EEPROM. The packet length and source file type is also added for the Web server to

identify in which EEPROM the data should be stored and how much data will be stored.

The final packet is shown in Figure 8.4.

Packet
Length

Source File
Type

EEPROM
Start Address -

Hi byte

EEPROM
Start Address -

Lo byte
Data

Figure 8.4 The data transfer packet.

xcvi

 Const WEB_FILE_TYPE As Byte = 0 ‘ constants to indicate file types
 Const ICSP_FILE_TYPE As Byte = 1
 Const JTAG_FILE_TYPE As Byte = 2

 high_address = 0 ‘ start at EEPROM address 0x0000
 low_address = 0

 For j = 0 To packet_listcount ‘ start transferring packets one by one
 packet_len = Chr(Len(packet_data(j)) + 4) ‘ packet length = header length + data length

 Send_Socket (packet_len + Chr(WEB_FILE_TYPE) + Chr(high_address) + Chr(low_address) +
packet_data(j)) ‘ send packet using the TCP socket on port 1000

 low_address = low_address + PACKET_SIZE ‘ increase the next EEPROM start address with
 If low_address > 255 Then ‘ 64 bytes
 low_address = 0
 high_address = high_address + 1
 End If
 Next j

Figure 8.5 Transferring the source file using data packets.

The main purpose of these functions is to transfer the built source files as they are and

store them in the remote system’s EEPROMs exactly in the same order, starting at

EEPROM address 0x0000.

8.2.2.3 Instructing the remote programming processor

For the update source files of the PIC16F877 and the MAX7000S to take effect, the

programming processor first needs to be instructed to program the devices with the

contents of the corresponding EEPROM. Only the transferred HTML documents for the

Web server takes immediately effect and does not need to be programmed.

The EmEther utility makes use of the cmdProgHexFile_Click() and

cmdProgJBCFile_Click() functions to issue the begin programming command to the

remote programming processor. The command is also transferred via the Internet using a

packet, although this packet only has two bytes. The first byte simply indicates to the Web

server that this is not a file transfer, but a command packet and always has the value of

255 (or 0xFF). The second byte indicates which device must be programmed. Both these

functions again operate exactly the same.

xcvii

Const PROGRAM_COMMAND As Byte = &HFF ‘ command constants
Const PROGRAM_SERVER As Byte = &H3
Const PROGRAM_CONTROLLER As Byte = &H2
Const PROGRAM_HARDWARE As Byte = &H1

Private Sub cmdProgHexFile_Click()
 If (PROGRAMMING_STATUS = 0) Then ‘ if utility IS NOT busy programming another device

 Send_Socket (Chr(PROGRAM_COMMAND) + Chr(PROGRAM_CONTROLLER)) ‘ send command

 PROGRAMMING = True ‘ set busy programming flag
 Else
 MsgBox "error", vbExclamation, "Program Error" ‘ display message if programming another device
 End If
End Sub

Figure 8.6 Indicating the remote programming processor to begin programming.

8.2.2.4 Progress indication

A Timer ActiveX control calls up a function every second to request the programming

progress (only while programming) from the remote Web server. Once again it issues a

command in the format of a packet with the first byte as 0xFF. The last byte will indicate to

the Web server that the utility needs an indication of the programming progress.

Const PROGRAM_CHECK As Byte = &H0 ‘ request programming progress command

Private Sub Timer1_Timer()
 If PROGRAMMING = True Then ‘ only if busy programming a device
 Send_Socket (Chr(PROGRAM_COMMAND) + Chr(PROGRAM_CHECK)) ‘ send command
 End If
End Sub

Figure 8.7 Requesting the programming progress from the Web server.

The remote Web server also uses a 2-byte packet method to feed data back to the

EmEther utility and the general structure looks as follows:

Programming progress (= 1)
OR

File transfer progress(= 0)
Data (1 byte)

Figure 8.8 Data feedback packet from the remote Web server.

The first byte indicates to the EmEther utility that it is a programming progress feedback

packet or a file transfer progress feedback packet. The data byte either indicates the

value of the Status lines (from the programming processor for programming progress

xcviii

indication) or it indicates the number of bytes of the transferred file that was programmed

into the EEPROM.

Winsock1_DataArrival() is a Winsock control method that is called as soon as data

arrives on the TCP socket connection and is used to capture feedback from the remote

Web server. The Progress bar ActiveX control is used to indicate the programming

progress.

Private Sub Winsock1_DataArrival(ByVal bytesTotal As Long)
 Dim temp As String ‘ temporary string

 Winsock1.GetData temp ‘ read data from TCP socket

 Select Case (Asc(Mid(temp, 1, 1))) ‘ program feedback or file feedback
 Case 0: TotalBytesSend = TotalBytesSend + (Asc(Mid(temp, 2, 1)) - 3)
 progProgress.Position = (CInt((TotalBytesSend / TotalBytesToSend) * 100))
 frmMain.Refresh ‘ update progress bar

 Case 1: PROGRAMMING_STATUS = Asc(Mid(temp, 2, 1)) ‘ programming feedback
 If (PROGRAMMING_STATUS = 0) Then
 PROGRAMMING = False
 progProgress.Position = 0
 progProgress.ForeColor = vbBlue
 txtStatus.Text = ""
 txtStatus.Visible = False
 Else
 If PROGRAMMING_STATUS > 7 Then
 progProgress.ForeColor = vbCyan
 Else
 progProgress.ForeColor = vbGreen
 End If
 Select Case (PROGRAMMING_STATUS)
 Case 1: progProgress.Position = 4 ‘ File loading 4%
 Case 2: progProgress.Position = 20 ‘ File loading 20%
 Case 3: progProgress.Position = 36 ‘ File loading 36%
 Case 4: progProgress.Position = 52 ‘ File loading 52%
 Case 5: progProgress.Position = 68 ‘ File loading 68%
 Case 6: progProgress.Position = 84 ‘ File loading 84%
 Case 7: progProgress.Position = 100 ‘ File loading 100%
 Case 8: progProgress.Position = 4 ‘ Programming device 4%
 Case 9: progProgress.Position = 20 ‘ Programming device 20%
 Case 10: progProgress.Position = 36 ‘ Programming device 36%
 Case 11: progProgress.Position = 52 ‘ Programming device 52%
 Case 12: progProgress.Position = 68 ‘ Programming device 68%
 Case 13: progProgress.Position = 84 ‘ Programming device 84%
 Case 14: progProgress.Position = 100 ‘ Programming device 100%
 End Select
 End If
 End Select
End Sub
Figure 8.9 Receiving data from the remote Web server using the TCP socket connection.

xcix

8.3 ACCESSING THE REMOTE SYSTEM

The remote system can be accessed using a standard Web browser, e.g. Internet Explorer

5.0. A permanent demonstration unit has been installed at PE Technikon and can be seen

at Internet URL: picweb.petech.ac.za. Figure 8.10 shows a screen capture of one sample

application for the remote system.

Figure 8.10 An example of an embedded Web page.

Trying to access the Web page while the programming processor is busy with its

programming duties, will result in a Web page containing the words: “REMOTE SYSTEM

BUSY PROGRAMMING!” (Figure 8.11). This feature could be used to determine if the

programming processor is finished programming the MAX7000S device, seeing that no

progress information is available from the Jam Byte-code Player (as explained in section

8.2.1).

c

Figure 8.11 Error message when trying to access the remote system while it is in

programming mode.

8.4 DEVELOPMENT SOFTWARE

The user will have to use some kind of software package for developing embedded code

for the I/O controller (PIC16F877), developing logic designs for the MAX7000S device, and

for creating new embedded web pages. Development packages that were used for testing

purposes in this project is shown in Table 8.1.

Device Development
software Vendor Website Manual/Reference

material

PIC16F877 MPLAB Microchip www.microchip.com MPLAB User’s Guide

MAX7000S MAX+PLUS II Altera www.altera.com MAX+PLUS II:
Getting Started.

Web pages Frontpage Microsoft www.microsoft.com Using HTML, JAVA
and CGI

Table 8.1 Development packages and reference material used in this project.

ci

Full working examples of applications for the remote system will be explained in the next

chapter, and will give a clear indication of the relevant development software used for each

section.

8.5 CONCLUSION

The main purpose of this chapter was to explain the working and operation of the EmEther

utility for transferring and programming new source files.

The next chapter will demonstrate 3 sample applications used with the remote system,

including the source code for the different sections. Programming times, access times and

special comments will be provided with each example. The chapter will end with possible

future developments for the remote system and the conclusion for the whole project.

cii

CHAPTER 9
SYSTEM TESTING, FUTURE DEVELOPMENTS AND

CONCLUSION

9.1 OVERVIEW

This final chapter will indicate the test results of the whole system by testing it with three

different applications. Typical programming times will be given for each scenario.

Possible future development areas will also be highlighted followed by the final conclusion

of the project.

9.2 SYSTEM TESTING

To demonstrate the operation of the project, it was tested using three different

applications. The software for the applications was developed and programmed from two

different remote locations within PE Technikon’s Intranet. Due to security risks, a firewall

will block any attempts to program the board (using the EmEther utility) from a remote

location outside the PE Technikon. Remote users can, however, still monitor and control

the current programmed application through a standard Web browser (e.g. Internet

Explorer 5) by establishing a connection to the board itself at http://picweb.petech.ac.za.

All the information about this project, the code for the three different applications, the

EmEther utility, and relevant datasheets can also be downloaded from the following URL:

http://www.petech.ac.za/emether.

The three applications that were chosen are:

• A simulation of eight inputs and outputs using an 8-way DIP switch and LEDs.

• A temperature logger with a real-time clock.

• A Stepper motor, PWM, and push button simulation using an APPLIC-71 unit.

9.2.1 DIP SWITCH & LEDs

This simple application demonstrates how a user can monitor the status of an 8-way DIP

switch and control the output of eight LEDs. Figure 9.1 shows the required external

hardware and the connection to the remote Internet I/O controller board.

ciii

Figure 9.1 Required hardware for the DIP switch & LEDs application.

civ

The LEDs are all connected as common-anode, which means that a logic LOW is

necessary on the input for a LED to light up. Each switch in the DIP switch array is pulled

up on the one side with a 10K resistor and on the other side it is connected to ground.

This means that when a switch is open the output will be HIGH, and when the switch is

closed the output will be LOW. Using Table 6.1 (Chapter 6, p.79), the connections to the

I/O controller are as follows:

Description Connector

J10 pin

I/O controller

pin

LED0 36 RD5

LED1 35 RD4

LED2 34 RD3

LED3 33 RD2

LED4 32 RD1

LED5 31 RD0

LED6 3 RB2

LED7 5 RB4

SWITCH0 10 RA0

SWITCH1 11 RA1

SWITCH2 12 RA2

SWITCH3 13 RA3

SWITCH4 14 RA4

SWITCH5 15 RA5

SWITCH6 1 RB0

SWITCH7 2 RB1

Table 9.1 I/O connections for the DIP switch & LEDs application.

Jumpers JP10 to JP14 must be in the 1-2 position, because port A on the I/O controller is

configured as digital inputs and not as analog inputs.

cv

9.2.1.1 Web page

Figure 9.2 shows the Web page for the DIP switch & LEDs application.

Figure 9.2 Web page for the DIP switch & LEDs application.

The user can remotely monitor the status of the DIP switch and the LEDs. LEDs on the

remote board can also be toggled ON or OFF by clicking on the required LED. The

directory structure for the Web page is indicated in Figure 9.3.

dip.egi
index.htm
led0.gif
led1.gif
leds.egi
main.htm
sw0.gif
sw1.gif

Figure 9.3 Directory structure for the DIP switch & LEDs application.

cvi

The led_.gif and sw_.gif files are image files for indicating if a LED or switch is ON or OFF.

The index.htm file basically divides the Web page into three different frames: the main title

frame (main.htm), the inputs frame (dip.egi) and the outputs frame (leds.egi). A list of all

the EGI characters for requesting the status of variables from the remote board is

indicated in Table 9.2 (refer to section 4.4 for more detail about EGI characters).

Character Function

0 Returns status of SWITCH0

1 Returns status of SWITCH1

2 Returns status of SWITCH2

3 Returns status of SWITCH3

4 Returns status of SWITCH4

5 Returns status of SWITCH5

6 Returns status of SWITCH6

7 Returns status of SWITCH7

a Returns status of LED0

b Returns status of LED1

c Returns status of LED2

d Returns status of LED3

e Returns status of LED4

f Returns status of LED5

g Returns status of LED6

h Returns status of LED7

Table 9.2 EGI request characters for the DIP switch & LEDs application.

The EGI output characters for controlling the LEDs remotely are shown in Table 9.3. Each

of the LED images are push button controls with identifier names starting with a “Q”

followed by one of the EGI output characters.

Figure 9.4 to 9.6 shows the HTML code for the main.htm, leds.egi and dip.egi files.

cvii

Character Function

0 Toggles the output for LED0

1 Toggles the output for LED1

2 Toggles the output for LED2

3 Toggles the output for LED3

4 Toggles the output for LED4

5 Toggles the output for LED5

6 Toggles the output for LED6

7 Toggles the output for LED7

Table 9.3 EGI output characters for the DIP switch & LEDs application.

<head>
<t i t l e>DI P swi t ch & LEDs</ t i t l e>
</ head>
<body bgcol or =" #99CCFF" >
<p al i gn=" cent er " ><f ont f ace=" Ar i al " si ze=" 7" col or =" #000080" >EmEt her Test Web
page: </ f ont ></ p>
<hr >
<p al i gn=" cent er " ><f ont f ace=" Ar i al " si ze=" 7" col or =" #FFFF00" >DI P Swi t ch &
LEDs</ f ont ></ p>
<hr >
<p al i gn=" l ef t " ><f ont col or =" #0000FF" >
<f ont f ace=" Ar i al " >By: Gr ant Phi l l i ps</ f ont ></ f ont ></ b>

<f ont f ace=" Ar i al " s i ze=" 3" ><f ont col or =" #0000FF" >December 2002</ f ont >

<a hr ef =" mai l t o: phi l l i ps@pet ech. ac. za" >phi l l i ps@pet ech. ac. za</ a></ f ont ></ b>
</ p>

Figure 9.4 HTML code for main.htm

<head>
<t i t l e></ t i t l e>
</ head>
<body bgcol or =" #CCCCFF" >
<p al i gn=" cent er " ><f ont f ace=" Ar i al " si ze=" 6" col or =" #0000FF" >OUTPUTS</ f ont ></ p>
<hr >
<p al i gn=" cent er " ><f ont col or =" #0000FF" f ace=" Ar i al " si ze=" 5" >LEDs: </ f ont ></ p>
<f or m met hod=" SUBMI T" ac t i on=" l eds. egi " >
<p al i gn=" cent er " ><i nput bor der =" 0" s r c=" l ed@h. gi f " name=" Q7" wi dt h=" 20" hei ght =" 20"
t ype=" i mage" >
<i nput bor der =" 0" sr c=" l ed@g. gi f " name=" Q6" wi dt h=" 20" hei ght =" 20" t ype=" i mage" >
<i nput bor der =" 0" sr c=" l ed@f . gi f " name=" Q5" wi dt h=" 20" hei ght =" 20" t ype=" i mage" >
<i nput bor der =" 0" sr c=" l ed@e. gi f " name=" Q4" wi dt h=" 20" hei ght =" 20" t ype=" i mage" >
<i nput bor der =" 0" sr c=" l ed@d. gi f " name=" Q3" wi dt h=" 20" hei ght =" 20" t ype=" i mage" >
<i nput bor der =" 0" sr c=" l ed@c. gi f " name=" Q2" wi dt h=" 20" hei ght =" 20" t ype=" i mage" >
<i nput bor der =" 0" sr c=" l ed@a. gi f " name=" Q0" wi dt h=" 20" hei ght =" 20" t ype=" i mage" ></ p>
</ f or m>
<p> </ p>

Figure 9.5 HTML code for leds.egi

cviii

<head><met a ht t p- equi v=" r ef r esh" cont ent =" 3" >
<t i t l e></ t i t l e>
</ head>
<body bgcol or =" #CCCCFF" >
<p al i gn=" cent er " ><f ont f ace=" Ar i al " si ze=" 6" col or =" #0000FF" >I NPUTS</ f ont ></ p>
<hr >
<p al i gn=" cent er " ><f ont si ze=" 5" ><f ont col or =" #0000FF" ><f ont f ace=" Ar i al " >DI P
swi t ch: <i mg bor der =" 0" s r c=" sw@7. gi f " wi dt h=" 20" hei ght =" 40" > <i mg bor der =" 0"
sr c=" sw@6. gi f " wi dt h=" 20" hei ght =" 40" >
<i mg bor der =" 0" sr c=" sw@5. gi f " wi dt h=" 20" hei ght =" 40" > <i mg bor der =" 0" sr c=" sw@4. gi f "
wi dt h=" 20" hei ght =" 40" >
<i mg bor der =" 0" sr c=" sw@3. gi f " wi dt h=" 20" hei ght =" 40" > <i mg bor der =" 0" sr c=" sw@2. gi f "
wi dt h=" 20" hei ght =" 40" >
<i mg bor der =" 0" sr c=" sw@1. gi f " wi dt h=" 20" hei ght =" 40" > <i mg bor der =" 0" sr c=" sw@0. gi f "
wi dt h=" 20" hei ght =" 40" >
</ f ont ></ f ont ></ f ont ></ p>
<p> </ p>

Figure 9.6 HTML code for dip.egi

9.2.1.2 Code for MAX7000S

The reconfigurable hardware is not needed in this application since the I/O controller will

drive and monitor the LEDs and DIP switch directly. All the pins on the MAX7000S that

are connected to the I/O controller will therefore be programmed as inputs to prevent

contention (described in section 6.5). Figure 9.7 shows the graphic representation for this

configuration on the MAX7000S.

Figure 9.7 MAX7000S graphic entry for the DIP switch & LEDs application.

cix

9.2.1.3 Code for I/O controller

Figure 9.8 shows the source code for the I/O controller. The PIC16F877 simply drives its

output pin LOW to turn a LED ON and HIGH to turn it OFF. The interrupt routine is the

most important section of the program and handles all the variable requests.

#include <16F877.H>
#device *=16

// ********************** I/O Ports **********************
#byte PORTA = 0x05
#byte PORTB = 0x06
#byte PORTC = 0x07
#byte PORTD = 0x08
#byte PORTE = 0x09

short LED0 = 0; // Status of LEDs
short LED1 = 0;
short LED2 = 0;
short LED3 = 0;
short LED4 = 0;
short LED5 = 0;
short LED6 = 0;
short LED7 = 0;

void out_leds(void) // Updates LEDs
{
 output_bit(PIN_D5, ~LED0); // LEDs are connected common anode
 output_bit(PIN_D4, ~LED1);
 output_bit(PIN_D3, ~LED2);
 output_bit(PIN_D2, ~LED3);
 output_bit(PIN_D1, ~LED4);
 output_bit(PIN_D0, ~LED5);
 output_bit(PIN_B2, ~LED6);
 output_bit(PIN_B4, ~LED7);
}

// ******************** Required Code ********************
#use DELAY(CLOCK=20000000) // setup crystal frequency
#use RS232 (BAUD=115200, XMIT=PIN_C6, RCV=PIN_C7, ERRORS) // setup RS-232 module
#define STOP putchar('~') // STOP character for protocol

#int_rda // interrupt routine for receiving a command / request
void serial_isr(void)
{
 char b;

 disable_interrupts(global);
 b = getch(); // read character describing a request or command
 if (b == '?') // request
 {
 b = getch(); // read request number
 switch(b)
 {

Figure 9.8 I/O controller source code for the DIP switch & LEDs application.

cx

 case '0': { // SWITCH0
 if (input(PIN_A0)) // if input is HIGH, the switch is OFF (pulled up by R2)
 printf("0"); // use printf() for reply
 else
 printf("1");
 STOP; // send STOP character after data has been send
 }
 break;
 case '1': { // SWITCH1
 if (input(PIN_A1))
 printf("0");
 else
 printf("1");
 STOP;
 }
 break;
 case '2': { // SWITCH2
 if (input(PIN_A2))
 printf("0");
 else
 printf("1");
 STOP;
 }
 break;
 case '3': { // SWITCH3
 if (input(PIN_A3))
 printf("0");
 else
 printf("1");
 STOP;
 }
 break;
 case '4': { // SWITCH4
 if (input(PIN_A4))
 printf("0");
 else
 printf("1");
 STOP;
 }
 break;
 case '5': { // SWITCH5
 if (input(PIN_A5))
 printf("0");
 else
 printf("1");
 STOP;
 }
 break;
 case '6': { // SWITCH6
 if (input(PIN_B0))
 printf("0");
 else
 printf("1");
 STOP;
 }
 break;

Figure 9.8 continued.

cxi

 case '7': { // SWITCH7
 if (input(PIN_B1))
 printf("0");
 else
 printf("1");
 STOP;
 }
 break;
 case 'a': { // LED0
 if (~LED0) // if variable is HIGH, the LED is ON
 printf("0");
 else
 printf("1");
 STOP;
 }
 break;
 case 'b': { // LED1
 if (~LED1)
 printf("0");
 else
 printf("1");
 STOP;
 }
 break;
 case 'c': { // LED2
 if (~LED2)
 printf("0");
 else
 printf("1");
 STOP;
 }
 break;
 case 'd': { // LED3
 if (~LED3)
 printf("0");
 else
 printf("1");
 STOP;
 }
 break;
 case 'e': { // LED4
 if (~LED4)
 printf("0");
 else
 printf("1");
 STOP;
 }
 break;
 case 'f': { // LED5
 if (~LED5)
 printf("0");
 else
 printf("1");
 STOP;
 }
 break;

Figure 9.8 continued.

cxii

 case 'g': { // LED6
 if (~LED6)
 printf("0");
 else
 printf("1");
 STOP;
 }
 break;
 case 'h': { // LED7
 if (~LED7)
 printf("0");
 else
 printf("1");
 STOP;
 }
 break;
 deault: { // request not recognized, then reply with an ‘X’
 printf("X");
 STOP;
 }
 break;
 }
 }

 if (b == '!') // command
 {
 b = getch(); // read command number
 switch(b)
 {
 case '0': { // toggle LED0
 if (LED0) // if variable is HIGH, turn the LED OFF
 LED0 = 0;
 else
 LED0 = 1;
 }
 break;
 case '1': { // toggle LED1
 if (LED1)
 LED1 = 0;
 else
 LED1 = 1;
 }
 break;
 case '2': { // toggle LED2
 if (LED2)
 LED2 = 0;
 else
 LED2 = 1;
 }
 break;
 case '3': { // toggle LED3
 if (LED3)
 LED3 = 0;
 else
 LED3 = 1;
 }
 break;

Figure 9.8 continued.

cxiii

 case '4': { // toggle LED4
 if (LED4)
 LED4 = 0;
 else
 LED4 = 1;
 }
 break;
 case '5': { // toggle LED5
 if (LED5)
 LED5 = 0;
 else
 LED5 = 1;
 }
 break;
 case '6': { // toggle LED6
 if (LED6)
 LED6 = 0;
 else
 LED6 = 1;
 }
 break;
 case '7': { // toggle LED7
 if (LED7)
 LED7 = 0;
 else
 LED7 = 1;
 }
 break;
 }
 }

 enable_interrupts(global);
}
// ***

void main(void) // main program loop
{
// ******************** Required Code ***************
 set_tris_c(0x80); // setup RXD and TXD pins for RS-232
 enable_interrupts(global);
 enable_interrupts(int_rda); // enable interrupt on RS-232 receive
// ***
 set_tris_a(0xff); // set port direction registers
 set_tris_b(0xeb);
 set_tris_d(0x00);
 set_tris_e(0xff);
 portd = 255;
 portb = 255;
 porta = 0;
 porte = 0;

 while(1)
 {
 out_leds(); // continuously update the output of the LEDs
 }
}

Figure 9.8 continued.

cxiv

9.2.1.4 Results

Table 9.4 indicates typical times that were measured to transfer the different source code

files to the remote Internet I/O controller board and to program it in real-time.

File Size Transfer Program

dipleds.jbc 20933 bytes 8.16 sec 11 min 50.51 sec

dipleds.hex 3650 bytes 0.78 sec 1 min 3.18 sec

Web page 5727 bytes 2.41 sec

Table 9.4 Typical loading and programming times for the DIP switch & LEDs application.

9.2.2 TEMPERATURE LOGGER

This application demonstrates how a user can monitor the temperature at a remote

location. The system logs the temperature readings every hour and the user can then

view the temperature readings of the last twelve hours. Figure 9.9 shows the required

external hardware and the connection to the remote Internet I/O controller board.

A DS1305 is used as the real time clock (RTC). It is a SPI device and therefore only

needs four lines to access the internal registers of the RTC. The user will be able to set

the time using controls on the web page.

A LM35 temperature sensor is used to measure the temperature. It provides an analog

output voltage of 10mV/°C and is connected to the ADC0 pin, which in turn is connected to

pin RA0 of the I/O controller. Jumper JP10 should be in the 1-3 position because this pin

is used as an analog input and not as a digital input.

The two 7-segment LED displays provide feedback of the measured temperature at the

remote location itself. They are connected as common-cathode, which means that a logic

HIGH is necessary on the input for a LED segment to light up. The displays are driven

from the MAX7000S and are not directly connected to the I/O controller.

cxv

Figure 9.9 Required hardware for the temperature logger application.

cxvi

The connections to the I/O controller and the MAX7000S are as follows:

Description Connector

J11 pin

I/O controller

pin

MAX7000S

pin

Segment A (TENS) 5 56

Segment B (TENS) 6 57

Segment C (TENS) 13 67

Segment D (TENS) 12 65

Segment E (TENS) 11 64

Segment F (TENS) 4 55

Segment G (TENS) 3 54

Segment DOT (TENS) 14 68

Segment A (UNITS) 9 61

Segment B (UNITS) 10 63

Segment C (UNITS) 20 76

Segment D (UNITS) 16 70

Segment E (UNITS) 15 69

Segment F (UNITS) 8 60

Segment G (UNITS) 7 58

Segment DOT (UNITS) 21 77

CE (DS1305) 22 79

SDO (DS1305) 19 RE0

SDI (DS1305) 18 RE1

CLK (DS1305) 17 RE2

Table 9.5 I/O connections for the temperature logger application.

cxvii

9.2.2.1 Web page

Figure 9.10 shows the Web page for the temperature logger application.

Figure 9.10 Web page for the temperature logger application.

cxviii

The user can remotely monitor the temperature measured by the LM35. The RTC time

can be set using the up and down arrows on the Web page. Users can also view the

logged temperatures of the last twelve hours. The directory structure for the Web page is

indicated in Figure 9.11.

7seg_0.gif
7seg_1.gif
7seg_2.gif
7seg_3.gif
7seg_4.gif
7seg_5.gif
7seg_6.gif
7seg_7.gif
7seg_8.gif
7seg_9.gif
down.gif
index.htm
log.egi
main.htm
temp.egi
time.egi
up.gif
updown.egi

Figure 9.11 Directory structure for the temperature logger application.

The 7seg__.gif files are image files for indicating the temperature as it would be displayed

on the 7-segment displays on the remote Internet I/O controller board. The up.gif and

down.gif files are also image files for showing the arrows to set the time of the RTC. The

index.htm file basically divides the Web page into four different frames: the main title

frame (main.htm), the temperature display frame (temp.egi), the time display frame

(time.egi) and the time set frame (updown.egi). If a user needs to view the temperature

log, the temperature display frame will change to the log display frame (log.egi). A list of

all the EGI characters for requesting the status of variables from the remote board is

indicated in Table 9.6.

cxix

Character Function

0 Returns status of the TENS 7-segment display

1 Returns status of the UNITS 7-segment display

2 Returns the current time from the RTC (hour:min:sec)

3 Returns the log entries as one string

Table 9.6 EGI request characters for the temperature logger application.

The EGI output characters for setting the time of the RTC remotely are shown in Table 9.7.

Each of the arrow images are push button controls with identifier names starting with a “Q”

followed by one of the EGI output characters. Allow two to three seconds after clicking on

an arrow for the change to take effect.

Character Function

0 Decrement seconds

1 Increment seconds

2 Decrement minutes

3 Increment minutes

4 Decrement hours

5 Increment hours

Table 9.7 EGI output characters for the temperature logger application.

Figure 9.12 to 9.16 shows the HTML code for the main.htm, temp.egi, time.egi,

updown.egi and log.egi files.

<head>
<t i t l e>Temper at ur e Logger </ t i t l e>
</ head>
<body bgcol or =" #99CCFF" >
<p al i gn=" cent er " ><f ont f ace=" Ar i al " si ze=" 7" col or =" #000080" >EmEt her Test Web
page: </ f ont ></ p>
<hr >
<p al i gn=" l ef t " ><f ont col or =" #0000FF" ><f ont f ace=" Ar i al " >By: Gr ant
Phi l l i ps </ f ont >
 </ f ont ></ b>
<f ont f ace=" Ar i al " s i ze=" 7"
col or =" #FFFF00" >
Temper at ur e Logger </ f ont >
<f ont f ace=" Ar i al " s i ze=" 3" ><f ont
col or =" #0000FF" >December 2002</ f ont >

<a hr ef =" mai l t o: phi l l i ps@pet ech. ac. za" >phi l l i ps@pet ech. ac. za</ a></ f ont ></ b></ p>

Figure 9.12 HTML code for main.htm

cxx

<head><met a ht t p- equi v=" r ef r esh" cont ent =" 3" >
<t i t l e></ t i t l e>
</ head>
<body bgcol or =" #CCCCFF" >
<p al i gn=" cent er " ><f ont f ace=" Ar i al " si ze=" 6" col or =" #0000FF" >TEMPERATURE</ f ont ></ p>
<hr >
<p al i gn=" l ef t " ><f ont f ace=" Ar i al " ><a hr ef =" l og. egi " >Vi ew LOG</ a></ b></ f ont ></ p>
<p al i gn=" cent er " > </ p>
<p al i gn=" cent er " ><i mg bor der =" 0" sr c=" 7seg_@0. gi f " wi dt h=" 40" hei ght =" 66" >
<f ont f ace=" Ar i al " s i ze=" 5" col or =" #FF0000" ><i mg bor der =" 0" sr c=" 7seg_@1. gi f " wi dt h=" 40"
hei ght =" 66" >
</ f ont ><f ont col or =" #0000FF" ><sup><f ont f ace=" Ar i al " si ze=" 5" >o </ f ont > </ sup>
<f ont col or =" #0000FF" f ace=" Ar i al " s i ze=" 6" >C</ f ont ></ f ont ></ p>

Figure 9.13 HTML code for temp.egi

<head><met a ht t p- equi v=" r ef r esh" cont ent =" 1" >
<t i t l e></ t i t l e>
</ head>
<body bgcol or =" #CCCCFF" >
<p al i gn=" cent er " ><f ont f ace=" Ar i al " col or =" #FF0000" si ze=" 7" >@2</ f ont ></ p>
<p al i gn=" cent er " > </ p>
<p al i gn=" cent er " st y l e=" l i ne- hei ght : 100%" ><f ont f ace=" Ar i al " si ze=" 3"
col or =" #0000FF" >Set
t he t i me by usi ng</ f ont > <f ont f ace=" Ar i al " s i ze=" 3" col or =" #0000FF" >t he above
ar r ows. </ f ont ></ p>
<p al i gn=" cent er " st y l e=" l i ne- hei ght : 100%" ><f ont f ace=" Ar i al " si ze=" 3"
col or =" #0000FF" >Al l ow
2 - 3 seconds f or updat i ng. </ f ont ></ p>

Figure 9.14 HTML code for time.egi

<head>
<t i t l e></ t i t l e>
</ head>
<body bgcol or =" #CCCCFF" >
<p al i gn=" cent er " ><f ont f ace=" Ar i al " si ze=" 6" col or =" #0000FF" >TI ME</ f ont ></ p>
<hr >
<f or m met hod=" SUBMI T" ac t i on=" updown. egi " >
<p al i gn=" cent er " >
<i nput bor der =" 0" sr c=" up. gi f " name=" Q5" wi dt h=" 18" hei ght =" 21" t ype=" i mage" >
<i nput bor der =" 0" sr c=" down. gi f " name=" Q4" wi dt h=" 18" hei ght =" 21"
t ype=" i mage" >
<i nput bor der =" 0" sr c=" up. gi f " name=" Q3" wi dt h=" 18" hei ght =" 21" t ype=" i mage" >
<i nput bor der =" 0" sr c=" down. gi f " name=" Q2" wi dt h=" 18" hei ght =" 21"
t ype=" i mage" >
<i nput bor der =" 0" sr c=" up. gi f " name=" Q1" wi dt h=" 18" hei ght =" 21" t ype=" i mage" >
<i nput bor der =" 0" sr c=" down. gi f " name=" Q0" wi dt h=" 18" hei ght =" 21" t ype=" i mage" > </ p>
</ f or m>

Figure 9.15 HTML code for updown.egi

cxxi

<head><met a ht t p- equi v=" r ef r esh" cont ent =" 10" >
<t i t l e></ t i t l e>
</ head>
<body bgcol or =" #CCCCFF" >
<p al i gn=" cent er " ><f ont f ace=" Ar i al " si ze=" 6" col or =" #0000FF" >TEMPERATURE LOG: </ f ont ></ p>
<hr >
<p al i gn=" l ef t " ><f ont f ace=" Ar i al " col or =" #0000FF" ><a hr ef =" t emp. egi " >Vi ew
Temper at ur e</ a>

Last 12 hour s : </ b></ f ont ></ p>
<p al i gn=" r i ght " ><f ont f ace=" Ar i al " col or =" #008000" >@3</ f ont ></ p>
<p al i gn=" r i ght " > </ p>

Figure 9.16 HTML code for log.egi

9.2.2.2 Code for MAX7000S

The purpose of the MAX7000S in this application is to drive the two 7-segment displays. If

the displays were driven directly from the I/O controller, it will use 16 pins on the

PIC16F877 (8 pins per 7-segment display). To minimize the number of pins needed, two

7-segment drivers (7449) are programmed into the MAX7000S which drives the two

displays. The two 7-segment drivers are fed from a binary-to-double BCD driver. In this

application the LM35 will rarely measure temperatures beyond 50°C and therefore the

binary-to-double BCD driver only needs six inputs from the I/O controller (26 = 64).

Pin 79 on the MAX7000S (IO57) is used as the chip enable (CE) pin for the DS1305 and is

internally connected to pin RA5 of the I/O controller. Once again all unused pins of the

MAX7000S must be programmed as inputs.

Figure 9.17 shows the graphic representation for this configuration on the MAX7000S.

cxxii

Figure 9.17 MAX7000S graphic entry for the temperature logger application.

cxxiii

9.2.2.3 Code for I/O controller

Figure 9.18 shows the source code for the I/O controller. The PIC16F877 uses its analog

to digital converter to read the temperature measurement from the LM35. The I/O

controller also uses port C to drive the MAX7000S which in turn drives the two 7-segment

displays. Port E is used to access the SPI bus to communicate with the DS1305 RTC.

#include <16F877.H>
#use DELAY(CLOCK=20000000)
#include "ds1305.c"

// ********************** I/O Ports **********************
#byte PORTA = 0x05
#byte PORTB = 0x06
#byte PORTC = 0x07
#byte PORTD = 0x08
#byte PORTE = 0x09

long temp=0; // current temperature
byte DAY, MONTH, YEAR, HOUR, MIN, SEC; // current time
byte LOG_HOUR[12], LOG_MIN[12], LOG_SEC[12]; // time arrays for logging
long LOG_TEMP[12]; // temperature array for logging
signed int LOG_ENTRIES=-1; // current amount of logged temperatures

// ******************** Required Code ********************
#use DELAY(CLOCK=20000000) // setup crystal frequency
#use RS232 (BAUD=115200, XMIT=PIN_C6, RCV=PIN_C7, ERRORS) // setup RS-232 module
#define STOP putchar('~') // STOP character for protocol

#int_rda // interrupt routine for receiving a command / request
void serial_isr(void)
{
 char b;
 disable_interrupts(global);
 b = getch(); // read character describing a request or command
 if (b == '?') // request
 {
 b = getch(); // read request number
 switch(b)
 {
 case '0': {
 printf("%lu", temp/10); // returns status of TENS 7-segment display
 STOP;
 }
 break;
 case '1': {
 printf("%lu", temp%10); // returns status of UNITS 7-segment display
 STOP;
 }
 break;
 case '2': {
 printf("%X:%X:%X", HOUR, MIN, SEC); // returns current time
 STOP;
 }
 break;

Figure 9.18 I/O controller source code for the temperature logger application.

cxxiv

 case '3': {
 if (LOG_ENTRIES < 0) // no log entries
 printf(" ");
 else
 for (i=0; i <= LOG_ENTRIES; i++)
 {
 printf("%d. %X:%X:%X ----- %lu 'C
", i+1,
LOG_HOUR[i], LOG_MIN[i], LOG_SEC[i], LOG_TEMP[i]); // displays log as several lines of text
 }
 STOP;
 }
 break;
 deault: {
 printf("X"); // request not recognized, then reply with an ‘X’
 STOP;
 }
 break;
 }
 }

 if (b == '!') // command
 {
 b = getch(); // read command number
 switch(b)
 {
 case '0': { // decrement seconds
 if ((SEC == 0x50) || (SEC == 0x40) || (SEC == 0x30) || (SEC == 0x20) || (SEC == 0x10))
 SEC = SEC - 7;
 else if (SEC == 0x00)
 SEC = 0x59;
 else
 SEC--;
 RTC_Set_DateTime(0,0,0,HOUR,MIN,SEC);
 }
 break;
 case '1': { // increment seconds
 if ((SEC == 0x09) || (SEC == 0x19) || (SEC == 0x29) || (SEC == 0x39) || (SEC == 0x49))
 SEC = SEC + 7;
 else if (SEC == 0x59)
 SEC = 0x00;
 else
 SEC++;
 RTC_Set_DateTime(0,0,0,HOUR,MIN,SEC);
 }
 break;
 case '2': { // decrement minutes
 if ((MIN == 0x50) || (MIN == 0x40) || (MIN == 0x30) || (MIN == 0x20) || (MIN == 0x10))
 MIN = MIN - 7;
 else if (MIN == 0x00)
 MIN = 0x59;
 else
 MIN--;
 RTC_Set_DateTime(0,0,0,HOUR,MIN,SEC);
 }
 break;

Figure 9.18 continued.

cxxv

 case '3': { // increment minutes
 if ((MIN == 0x09) || (MIN == 0x19) || (MIN == 0x29) || (MIN == 0x39) || (MIN == 0x49))
 MIN = MIN + 7;
 else if (MIN == 0x59)
 MIN = 0x00;
 else
 MIN++;
 RTC_Set_DateTime(0,0,0,HOUR,MIN,SEC);
 }
 break;
 case '4': { // decrement hours
 if ((HOUR == 0x20) || (HOUR == 0x10))
 HOUR = HOUR - 7;
 else if (HOUR == 0x00)
 HOUR = 0x23;
 else
 HOUR--;
 RTC_Set_DateTime(0,0,0,HOUR,MIN,SEC);
 }
 break;
 case '5': { // increment hours
 if ((HOUR == 0x09) || (HOUR == 0x19))
 HOUR = HOUR + 7;
 else if (HOUR == 0x23)
 HOUR = 0x00;
 else
 HOUR++;
 RTC_Set_DateTime(0,0,0,HOUR,MIN,SEC);
 }
 break;
 }
 }

 enable_interrupts(global);
}

// ***

void main(void) // main program loop
{
 int i;
 long a=0, sum=0;
 byte LAST_LOG=0;

// ******************** Required Code ***************
 set_tris_c(0x80); // setup RXD and TXD pins for RS-232
 enable_interrupts(global);
 enable_interrupts(int_rda); // enable interrupt on RS-232 receive
// ***
 setup_adc_ports(RA0_ANALOG); // setup port A and ADC
 setup_adc(ADC_CLOCK_INTERNAL);
 set_adc_channel(0);
 set_tris_a(0x01); // set port direction registers
 set_tris_b(0x00);
 set_tris_d(0x00);
 set_tris_e(0x01);

Figure 9.18 continued.

cxxvi

 portc = 0;
 portd = 255;
 portb = 0;
 porta = 0;
 porte = 255;

 RTC_Init(); // initialise DS1305
 RTC_Set_DateTime(0,0,0,0,0,0); // reset time on DS1305

 while(1)
 {
 // ********** Get Temperature from LM35 on ADC channel 0 **********
 for (i=0; i<200; i++)
 {
 delay_ms(10); // allow to setle
 a = READ_ADC() * 500 / 1024; // get value
 sum = sum + a; // add to sum so that average can be calculated
 }
 temp = sum / 200; // calculate average
 portc = temp; // drive MAX7000S with the binary value of the temperature
 sum = 0; // reset sum

 // ********** Get time from RTC **********
 RTC_Get_Time(HOUR, MIN, SEC); // read time from DS1305

 // ********** Read sample every 1 hour **********
 if (HOUR - LAST_LOG >= 1) // if an hour expired, log the temperature
 {
 LOG_ENTRIES++;
 if (LOG_ENTRIES > 11)
 LOG_ENTRIES = 0;
 LAST_LOG = HOUR;
 LOG_HOUR[LOG_ENTRIES] = HOUR; // store temperature and time in the log arrays
 LOG_MIN[LOG_ENTRIES] = MIN;
 LOG_SEC[LOG_ENTRIES] = SEC;
 LOG_TEMP[LOG_ENTRIES] = TEMP;
 }
 }
}

Figure 9.18 continued.

9.2.2.4 Results

Table 9.8 indicates typical times that were measured to transfer the different source code

files to the remote Internet I/O controller board and to program it in real-time.

File Size Transfer Program

templog.jbc 21978 bytes 8.54 sec 12 min 11.98 sec

templog.hex 10077 bytes 1.55 sec 1 min 2.80 sec

Web page 16674 bytes 2.41 sec

Table 9.8 Typical loading and programming times for the temperature logger application.

cxxvii

9.2.3 APPLIC-71 UNIT

This application is based on the APPLIC-71 unit from Scientific Educational Systems

(SES). It is used as an educational tool to teach students about stepper motors, DC

motors, switches etc. The unit consists of various peripherals, but for this application only

the switches, the stepper motor, the lamp, the temperature sensor and the potentiometer

will be used. Figure 9.19 shows the required external hardware and the connection to the

remote Internet I/O controller board.

A LM35 temperature sensor is used to measure the temperature. It provides an analog

output voltage and is connected to the ADC1 pin, which in turn is connected to pin RA1 of

the I/O controller. The potentiometer is used to set the speed of the stepper motor and is

connected to the ADC0 pin (pin RA0 on the I/O controller). Jumpers JP10 and JP11

should be in the 1-3 position seeing that these pins are configured as an analog inputs and

not as a digital inputs.

A LED is also connected as common anode and needs a LOW on the input to turn it ON.

All the switches are connected to ground on the one side and pulled up by the

PIC16F877’s internal pull-up resistors on the other side. If a switch is closed, the input to

the I/O controller will be LOW.

The inputs to the stepper motor’s four windings first go through a ULN2803 octal driver to

allow the stepper motor to be driven from a +12V supply and to provide the necessary

current. PWM is demonstrated by using the lamp, which is driven by the ULN2803. By

changing the PWM duty cycle, the lamp will be dimmer or brighter.

cxxviii

Figure 9.19 Required hardware for the APPLIC-71 application.

cxxix

Using Table 6.1 (Chapter 6, p.79), the connections to the I/O controller are as follows:

Description Connector

J10 pin

Connector

J11 pin

I/O controller

pin

Switch 3 RB2

Pushbutton 2 RB1

Limit switch 1 RB0

LED 5 RB5

S1 (stepper motor) 25 RC5

S2 (stepper motor) 26 RC4

S3 (stepper motor) 27 RC3

S4 (stepper motor) 28 RC2

Lamp 24 RC1

LM35 30 RA1

Potentiometer 29 RA0

Table 9.9 I/O connections for the APPLIC-71 application.

9.2.3.1 Web page

Figure 9.20 shows the Web page for the APPLIC-71 application.

The user can remotely monitor the temperature measured by the LM35. By using the

arrow controls, the brightness of the lamp can be changed. As the lamp gets brighter, the

temperature will also increase seeing that the LM35 is positioned right next to the lamp.

The stepper motor can be started or stopped by clicking on the GO/STOP image and

clicking on the arrow image can change the direction. As the stepper motor turns, the

position of the shaft is indicated in degrees. The potentiometer on the APPLIC-71 unit

sets the speed of the stepper motor. The lower the speed indicator on the Web page, the

faster the stepper motor rotates.

cxxx

Figure 9.20 Web page for the APPLIC-71 application.

The directory structure for the Web page is indicated in Figure 9.21.

The light_.gif files are image files for indicating the brightness of the lamp. The ls_.gif,

sw_.gif, pb_.gif and led_.gif image files just indicates the status of the switches and the

LED. The index.htm file basically divides the Web page into six different frames: the main

title frame (main.htm), the lamp display frame (light.egi), the stepper control frame

(stepper.egi), the stepper position frame (position.egi), the inputs frame (inputs.egi) and

the LED frame (led.egi).

The EGI output characters for controlling the stepper motor, the lamp brightness and the

LED are shown in Table 9.10. The arrow images, the LED image and the stepper motor

control images are push button controls with identifier names starting with a “Q” followed

by one of the EGI output characters.

cxxxi

ccw.gif
cw.gif
down.gif
go.gif
index.htm
inputs.egi
led.egi
led0.gif
led1.gif
light.egi
light0.gif
light1.gif
light2.gif
light3.gif
light4.gif

ls0.gif
ls1.gif

main,htm

pb0.gif
pb1.gif
postion.egi
stepper.egi
stop.gif
sw0.gif

sw1.gif
up.gif

Figure 9.21 Directory structure for APPLIC-71 application.

Character Function

0 Toggles LED ON or OFF

1 Increases the lamp brightness

2 Decreases the lamp brightness

3 Changes stepper motor direction

4 Toggles stepper motor ON or OFF

Table 9.10 EGI output characters for the APPLIC-71 application.

A list of all the EGI characters for requesting the status of variables from the remote board

is indicated in Table 9.11.

cxxxii

Character Function

0 Returns status of the potentiometer (speed of the stepper)

1 Returns the temperature measured by the LM35

2 Returns the status of the limit switch

3 Returns the status of the push button

4 Returns the status of the switch

5 Returns the status of the LED

6 Returns the brightness of the lamp

7 Returns the current stepper motor direction

8 Returns the status of stepper motor

9 Returns the position of the stepper motor’s shaft

a Returns the speed of the stepper motor

Table 9.11 EGI request characters for the APPLIC-71 application.

Figure 9.22 to 9.27 shows the HTML code for the main.htm, light.egi, stepper.egi,

position.egi, inputs.egi and led.egi files.

<head>
<t i t l e>DI P swi t ch & LEDs</ t i t l e>
</ head>
<body bgcol or =" #99CCFF" >
<p al i gn=" cent er " ><f ont f ace=" Ar i al " si ze=" 7" col or =" #000080" >EmEt her Test Web
page: </ f ont ></ p>
<hr >
<p al i gn=" l ef t " ><f ont col or =" #0000FF" ><f ont f ace=" Ar i al " >By: Gr ant Phi l l i ps
</ f ont > </ f ont ></ b>
<f ont f ace=" Ar i al " s i ze=" 7" col or =" #FFFF00" >

APPLI C- 71 Uni t </ f ont >
<f ont f ace=" Ar i al " si ze=" 3" >
<f ont col or =" #0000FF" >December 2002</ f ont >

<a hr ef =" mai l t o: phi l l i ps@pet ech. ac. za" >phi l l i ps@pet ech. ac. za</ a></ f ont ></ b></ p>

Figure 9.22 HTML code for main.htm

cxxxiii

<ht ml >
<head><met a ht t p- equi v=" r ef r esh" cont ent =" 10" >
<t i t l e></ t i t l e>
</ head>
<body bgcol or =" #CCCCFF" >
<p al i gn=" cent er " ><f ont f ace=" Ar i al " si ze=" 6" col or =" #0000FF" >LI GHT</ f ont ></ p>
<hr >
<f or m met hod=" SUBMI T" ac t i on=" l i ght . egi " >
<p al i gn=" cent er " ><f ont f ace=" Ar i al " si ze=" 4" col or =" #0000FF" >Br i ght ness:
</ f ont > <i mg bor der =" 0" s r c=" l i ght @6. gi f " wi dt h=" 36" hei ght =" 36" >
<i nput bor der =" 0" sr c=" up. gi f " name=" Q1" wi dt h=" 18" hei ght =" 21" t ype=" i mage" >
<i nput bor der =" 0" sr c=" down. gi f " name=" Q2" wi dt h=" 18" hei ght =" 21" t ype=" i mage" ></ p>
</ f or m>
<p al i gn=" l ef t " ><f ont f ace=" Ar i al " col or =" #0000FF" s i ze=" 4" >
Temper at ur e:

</ f ont ><f ont f ace=" Ar i al " col or =" #FF0000" si ze=" 5" >@1</ f ont ><f ont f ace=" Ar i al " si ze=" 4"
col or =" #FF0000" >
</ f ont ><f ont col or =" #0000FF" ><f ont f ace=" Ar i al " s i ze=" 3" ><sup>o</ sup></ f ont >
<f ont f ace=" Ar i al " s i ze=" 5" >C</ f ont ></ f ont ></ p>
</ body>
</ ht ml >

Figure 9.23 HTML code for light.egi

<ht ml >
<head>
<t i t l e></ t i t l e>
</ head>
<body bgcol or =" #CCCCFF" >
<p al i gn=" cent er " ><f ont f ace=" Ar i al " si ze=" 6" col or =" #0000FF" >STEPPER</ f ont ></ p>
<hr >
<f or m met hod=" SUBMI T" ac t i on=" s t epper . egi " >
<p al i gn=" cent er " ><f ont col or =" #0000FF" f ace=" Ar i al " si ze=" 4" >Di r ect i on:
 </ f ont ><i nput bor der =" 0" sr c=" @7. gi f " name=" Q3" wi dt h=" 92" hei ght =" 84"
t ype=" i mage" >

<f ont col or =" #0000FF" f ace=" Ar i al " s i ze=" 4" >Go/ St op</ f ont >
<i nput bor der =" 0" sr c=" @8. gi f " name=" Q4" wi dt h=" 55" hei ght =" 55" t ype=" i mage" >
</ p>
</ f or m>
</ body>
</ ht ml >

Figure 9.24 HTML code for stepper.egi

cxxxiv

<ht ml ><met a ht t p- equi v=" r ef r esh" cont ent =" 1" >
<t i t l e></ t i t l e>
<body bgcol or =" #CCCCFF" >
<p al i gn=" l ef t " ><f ont col or =" #0000FF" f ace=" Ar i al " s i ze=" 4" >

Pos i t i on: </ f ont ><f ont f ace=" Ar i al " col or =" #FF0000" s i ze=" 5" >@9</ f ont >
<sup><f ont col or =" #0000FF" f ace=" Ar i al " s i ze=" 4" >o</ f ont ></ sup></ p>
<p al i gn=" l ef t " ><f ont f ace=" Ar i al " col or =" #0000FF" s i ze=" 5" ><sup>

 </ sup><sup> </ sup><sup> &
nbsp;
</ sup><sup>Speed: </ sup></ f ont ><sup><f ont f ace=" Ar i al " s i ze=" 4"
col or =" #0000FF" >
 </ b></ f ont ></ sup><sup><f ont f ace=" Ar i al " si ze=" 4" col or =" #0000FF" >
</ b></ f ont ></ sup>
<f ont f ace=" Ar i al " col or =" #FF0000" s i ze=" 6" ><sup>
@a</ sup></ f ont ></ p>
</ body>
</ ht ml >

Figure 9.25 HTML code for position.egi

<head><met a ht t p- equi v=" r ef r esh" cont ent =" 2" >
<t i t l e></ t i t l e>
</ head>
<body bgcol or =" #CCCCFF" >
<p al i gn=" cent er " ><f ont f ace=" Ar i al " si ze=" 6" col or =" #0000FF" >I NPUTS</ f ont ></ p>
<hr >
<p al i gn=" cent er " ><f ont col or =" #0000FF" f ace=" Ar i al " si ze=" 5" >
SW PB
LS </ f ont ></ p>
<f or m met hod=" SUBMI T" ac t i on=" i nput s . egi " >
<p
al i gn=" cent er " >
<i mg bor der =" 0" sr c=" sw@4. gi f " wi dt h=" 20"
hei ght =" 40" >
<i mg bor der =" 0" sr c=" pb@3. gi f " wi dt h=" 27"
hei ght =" 35" >
<i mg bor der =" 0" sr c=" l s@2. gi f " wi dt h=" 60"
hei ght =" 32" >
</ p>
</ f or m>
</ body>

Figure 9.26 HTML code for inputs.egi

<head>
<t i t l e></ t i t l e>
</ head>
<body bgcol or =" #CCCCFF" >
<p al i gn=" cent er " ><f ont col or =" #0000FF" f ace=" Ar i al " si ze=" 5" >LED</ f ont ></ p>
<f or m met hod=" SUBMI T" ac t i on=" l ed. egi " >
<p al i gn=" cent er " >
<i nput bor der =" 0" sr c=" l ed@5. gi f " name=" Q0" wi dt h=" 20" hei ght =" 20" t ype=" i mage" >
</ p>
</ f or m>
</ body>

Figure 9.27 HTML code for led.egi

cxxxv

9.2.3.2 Code for MAX7000S

As with the DIP switch & LEDs application, the reconfigurable hardware is not needed in

this application. All unused pins on the MAX7000S that are connected to the I/O controller

will be programmed as inputs. Figure 9.28 shows the graphic representation for this

configuration on the MAX7000S. The same source file as for the DIP switch & LEDs

application (dipleds.jbc) can be used to program the MAX7000S.

Figure 9.28 MAX7000S graphic entry for the APPLIC-71 application.

9.2.3.3 Code for I/O controller

Figure 9.29 shows the source code for the I/O controller. The PIC16F877 uses its analog

to digital converter to measure the temperature and the potentiometer.

cxxxvi

#include <16F877.H>
#use DELAY(CLOCK=20000000)

// ********************** I/O Ports **********************
#byte PORTA = 0x05
#byte PORTB = 0x06
#byte PORTC = 0x07
#byte PORTD = 0x08
#byte PORTE = 0x09

#define CW 1
#define CCW 0

long TEMP, POT, BRIGHTNESS = 0, STEPPER_SPEED=0;
short STEPPER_ON = 0;
short LED_ON = 0;
short STEP_DIR = CW;
float STEPPER_POS=0;
byte STEPPER_STATE = 0;
byte const STEPPER_POSITIONS[4] = {0b0101, // stepper motor sequence
 0b1001,
 0b1010,
 0b0110};
void read_analogs(void); // function prototypes
void Light(long BRIGHTNESS);
void LED(short VAL);
short SW(void);
short PB(void);
short LS(void);
void Stepper(short DIR, byte SPEED);

// ******************** Required Code ********************
#use DELAY(CLOCK=20000000) // setup crystal frequency
#use RS232 (BAUD=115200, XMIT=PIN_C6, RCV=PIN_C7, ERRORS) // setup RS-232 module
#define STOP putchar('~') // STOP character for protocol

#int_rda // interrupt routine for receiving a command / request
void serial_isr(void)
{
 char b;
 disable_interrupts(global);
 b = getch(); // read character describing a request or command
 if (b == '?') // request
 {
 b = getch(); // read request number
 switch(b)
 {
 case '0': {
 printf("%lu", POT); // returns analog value of potentiometer
 STOP;
 }
 break;
 case '1': {
 printf("%lu", TEMP); // returns temperature
 STOP;
 }
 break;

Figure 9.29 I/O controller source code for the APPLIC-71 application.

cxxxvii

 case '2': {
 if (LS()) // returns status of limit switch
 printf("1");
 else
 printf("0");
 STOP;
 }
 break;
 case '3': {
 if (PB()) // returns status of push button
 printf("1");
 else
 printf("0");
 STOP;
 }
 break;
 case '4': {
 if (SW()) // returns status of switch
 printf("1");
 else
 printf("0");
 STOP;
 }
 break;
 case '5': {
 if (LED_ON) // returns status of LED
 printf("1");
 else
 printf("0");
 STOP;
 }
 break;
 case '6': {
 printf("%lu", BRIGHTNESS/255); // returns brightness of lamp
 STOP;
 }
 break;
 case '7': {
 if (STEP_DIR == CW) // returns stepper motor direction; CW = 1; CCW = 0
 printf("cw");
 else
 printf("ccw");
 STOP;
 }
 break;
 case '8': {
 if (STEPPER_ON == 1) // returns status of stepper motor
 printf("stop");
 else
 printf("go");
 STOP;
 }
 break;
 case '9': {
 printf("%5.1f", STEPPER_POS); // returns stepper motor’s shaft position
 STOP;
 }
 break;

Figure 9.29 continued.

cxxxviii

 case 'a': {
 printf("%lu", STEPPER_SPEED); // returns stepper motor’s speed
 STOP;
 }
 break;
 deault: {
 printf("X"); // request not recognized, then reply with an ‘X’
 STOP;
 }
 break;
 }
 }

 if (b == '!') // command
 {
 b = getch(); // read command number
 switch(b)
 {
 case '0': { // toggles LED
 if (LED_ON == 1)
 LED(0);
 else
 LED(1);
 }
 break;
 case '1': {
 if (BRIGHTNESS < 1020) // increases brightness of lamp
 BRIGHTNESS = BRIGHTNESS + 255;
 }
 break;
 case '2': {
 if (BRIGHTNESS > 0) // decreases brightness of lamp
 BRIGHTNESS = BRIGHTNESS - 255;
 }
 break;
 case '3': {
 if (STEP_DIR == CW) // toggles stepper motor direction
 STEP_DIR = CCW;
 else
 STEP_DIR = CW;
 }
 break;
 case '4': {
 if (STEPPER_ON == 1) // toggles stepper motor ON or OFF
 STEPPER_ON = 0;
 else
 STEPPER_ON = 1;
 }
 break;
 }
 }
 enable_interrupts(global);
}

// ***

Figure 9.29 continued.

cxxxix

void main(void) // main program loop
{

// ******************** Required Code ***************
 set_tris_c(0x80); // setup RXD and TXD pins for RS-232
 enable_interrupts(global);
 enable_interrupts(int_rda); // enable interrupt on RS-232 receive
// ***

 setup_adc_ports(ALL_ANALOG); // setup port A and ADC
 setup_adc(ADC_CLOCK_INTERNAL);

 set_tris_a(0xFF); // set port direction registers
 set_tris_b(0xEF);
 set_tris_d(0xFF);
 set_tris_e(0xFF);
 port_b_pullups(TRUE); // enable internal pull-up resistors for switches
 setup_ccp2(CCP_PWM); // set PWM module
 setup_timer_2(T2_DIV_BY_1, 255, 2);
 portc = 0;
 portd = 0;
 portb = 0;
 porta = 0;
 porte = 0;
 LED(0);

 while(1)
 {
 read_analogs(); // read temperature and potentiometer
 light(BRIGHTNESS); // set the brightness of the lamp
 STEPPER_SPEED = ((1024-POT)/5) + 7; // stepper motor speed calculation according to pot
 stepper(STEP_DIR, STEPPER_SPEED); // set stepper motor direction and speed
 }
}

// ***************** Function definitions ***************

void read_analogs(void)
{
 delay_us(20);
 set_adc_channel(0); // read temperature on ADC channel 0 (pin RA0)
 delay_us(20);
 POT = read_adc();

 delay_us(20);
 set_adc_channel(1); // read temperature on ADC channel 1 (pin RA1)
 delay_us(20);
 TEMP = read_adc();
}

void light(long BRIGHTNESS)
{
 set_pwm2_duty(BRIGHTNESS); // set PWM duty cycle for brightness of lamp
}

Figure 9.29 continued.

cxl

void LED(short VAL) // toggles LED ON or OFF
{
 if (VAL == 1)
 {
 OUTPUT_LOW(PIN_B4);
 LED_ON = 1;
 }
 else
 {
 OUTPUT_HIGH(PIN_B4);
 LED_ON = 0;
 }
}

short SW(void) // returns status of switch
{
 if (INPUT(PIN_B2) == 0)
 return 1;
 else
 return 0;
}

short PB(void) // returns status of push button
{
 if (INPUT(PIN_B1) == 0)
 return 1;
 else
 return 0;
}

short LS(void) // returns status of limit switch
{
 if (INPUT(PIN_B0) == 0)
 return 1;
 else
 return 0;
}

void Stepper(short DIR, byte SPEED) // sets stepper motor direction and speed
{
 if (STEPPER_ON)
 {
 delay_ms(SPEED);

 if (DIR == 1)
 {
 if (STEPPER_STATE == 3)
 STEPPER_STATE = 0;
 else
 STEPPER_STATE++; // go to next stepper motor sequence
 if (STEPPER_POS >= 352.5)
 STEPPER_POS = 0;
 else
 STEPPER_POS = STEPPER_POS + 7.5; // 7.5 degrees per step
 }
 else

Figure 9.29 continued.

cxli

 {
 if (STEPPER_STATE == 0)
 STEPPER_STATE = 3;
 else
 STEPPER_STATE--; // go to previous stepper motor sequence
 if (STEPPER_POS <= 0)
 STEPPER_POS = 352.5;
 else
 STEPPER_POS = STEPPER_POS - 7.5;
 }
 output_bit(PIN_C5, bit_test(STEPPER_POSITIONS[STEPPER_STATE], 0)); // set stepper motor
 output_bit(PIN_C4, bit_test(STEPPER_POSITIONS[STEPPER_STATE], 1)); // inputs according to
 output_bit(PIN_C3, bit_test(STEPPER_POSITIONS[STEPPER_STATE], 2)); // current sequence
 output_bit(PIN_C2, bit_test(STEPPER_POSITIONS[STEPPER_STATE], 3)); // number
 }
}

Figure 9.29 continued.

9.2.3.4 Results

Table 9.12 indicates typical times that were measured to transfer the different source code

files to the remote Internet I/O controller board and to program it in real-time.

File Size Transfer Program

dipleds.jbc 20933 bytes 8.16 sec 11 min 50.51 sec

applic71.hex 10130 bytes 1.65 sec 2 min 50.04 sec

Web page 24134 bytes 9.42 sec

Table 9.12 Typical loading and programming times for the APPLIC-71 application.

9.3 CURRENT LIMITATIONS

Unfortunately the project had some limitations. The main reason for these limitations is

the lack of memory (RAM) of the Ethernet interface controller (PIC16F877) which only has

368 bytes of RAM. Various methods had to be performed to overcome this RAM issue, as

explained in the previous chapters, but unfortunately not all of the limitations could be

conquered. The current limitations are:

• The maximum file size that can be accessed from the remote Internet I/O controller

board is 1.5 Kbytes. It is not a real problem, as long as the Web page does not

include large images. The main idea of this remote system is to monitor and control

applications, and therefore no fancy images and controls are really necessary.

cxlii

• Only lower case and 8.3 format DOS file names are supported. This is a problem if

small JAVA applets need to be executed on the remote system, because JAVA

applets are case sensitive and not in the 8.3 format.

• The PIC16F877 has a program memory of 8K words, of which 7K is used by the

TCP/IP protocol stack and the supporting embedded code. The ideal situation

would be if the I/O controller and the Ethernet interface controller could be one

controller, but unfortunately the PIC16F877’s program memory does not allow this.

• Only the HTTP upper layer protocol is supported

• The system does not support dynamic IP address allocation through a dynamic host

configuration protocol (DHCP) server and needs a dedicated IP address within the

LAN.

9.4 FUTURE DEVELOPMENTS

The main two areas of the project that can be improved in the future are the speed and the

program memory size of the controllers. Here are some of the proposed future

developments or improvements:

• A faster programming processor. Currently an 8051 derivative is used and runs at

12Mhz. It might be worth looking at the new Dallas range of microcontrollers. They

are also based on the very popular 8051, but runs at higher clock frequencies (up to

50Mhz).

• Combine the Ethernet interface controller and the I/O controller in one

microcontroller. This will only be possible if the microcontroller has a large program

memory area. Microchip’s 18FXXX series has larger program memory than the

16FXXX series and might be worth looking at. Another approach would be to use

the latest 8051 based network microcontroller from Dallas (DS80C400) that has its

own built-in NIC.

• Combine the Ethernet interface controller and I/O controller and program them into

the CPLD. This will reduce the component count considerably.

• Support more upper level protocols such as FTP and SMTP.

• Allow for larger files that can be accessed with long file name support. This will

automatically make it easier to implement JAVA applets.

cxliii

• Improve the file system’s data access time. Currently I2C EEPROMs are used

which are relatively slow. At the time the design was done there were no 64K SPI

EEPROMs available which would improve the situation significantly.

9.5 CONCLUSION

The project has shown how a normal 8-bit microcontroller (PIC16F877 in this case) can be

used to establish a Web server and with the help of an I/O controller then to monitor and

control remote processes. Through the use reconfigurable hardware (CPLD) the process

can be reconfigured and reprogrammed from a remote location within minutes.

The aim of this research was to provide methods and ideas for combining embedded

Internet and reconfigurable hardware in one project to accomplish total reconfigurability of

a remote embedded Internet system.

cxliv

APPENDIX A
REFERENCES

1. Altera (2001). Embedded programming using the 8051 & Jam byte-code. San Jose:

Altera Corporation.

2. Altera (1999). In-system programmability guidelines. San Jose: Altera Corporation.

3. Altera (2000). In-system programmability in MAX devices. San Jose: Altera

Corporation.

4. Altera (1999). Introduction to ISP. San Jose: Altera Corporation.

5. Altera (2001). MAX+PLUS II: Getting Started. San Jose: Altera Corporation.

6. Altera (2000). MAX7000 Programmable Logic Device Family. San Jose: Altera

Corporation.

7. Arnett, F., Dulaney, E., Harper, E. (1995). Inside TCP/IP. Indianapolis: New Riders

Publishing.

8. Bentham, J. (2000). TCP/IP lean: Web servers for embedded systems. Lawrence:

CMP Books.

9. Blackwell, N. (1995). Handbook of data communications. Cambridge: Blackwell

Publishers.

10. Bolton, M. (1990). Digital Systems Design with Programmable Logic. Cornwall: T.J.

Press.

11. Bostock, G. (1996). FPGAs and Programmable LSI: A designer’s handbook.

Boston: Butterworth-Heinemann.

cxlv

12. Carter, J. (1997). Digital Designing with Programmable Logic Devices. New Jersey:

Prentice-Hall Inc.

13. Ladd, E. & O’Donnell, J. (1996). Using HTML, JAVA and CGI. Indianapolis: Que

Corporation.

14. Microchip (2001). 24LC256 Datasheet. Microchip Technology Inc.

15. Microchip (2000). In-circuit serial programming for PIC16F8XX FLASH MCUs.

Microchip Technology Inc.

16. Microchip (2001). In-circuit serial programming guide. Microchip Technology Inc.

17. Microchip (2000). MPLAB User’s Guide. Microchip Technology Inc.

18. Microchip (2001). PIC16F87X data sheet. Microchip Technology Inc.

19. Microchip (2001). PICDEM.net User’s guide. Microchip Technology Inc.

20. Socolofsky, T., Kale, C. (2001). “A TCP/IP Tutorial”. Article available from Internet

URL http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc1180.html.

21. Stanek, W. (1996). Web publishing unleashed (1st Edition). Indianapolis: Sams.net

Publishing.

22. Wilder, F. (1999). A guide to the TCP/IP protocol suite. London: Artech House.

