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Glossary 

A 

Actuator:  A motor or transducer that converts electrical, hydraulic, 

or pneumatic energy into power for motion or action. 

Anthropomorphic Robot:  Also known as a jointed-arm robot. A robot with all 

rotary joints and motions similar to a person’s arm. 

Application (Computer):  A program which is designed to facilitate the user to 

perform prescribed tasks. 

Articulated Robot:  A robot arm which contains at least two consecutive 

revolute joints acting around parallel axes resembling 

human arm motion. The work envelop is formed by 

partial cylinders or spheres. 

ActiveX:  An ActiveX control is an extension to Visual Basic 

Toolbox. When adding an ActiveX component, it 

becomes a part of the development and run-time 

environment and provides new functionality for the 

application. 

Algorithm:  Normally used as a basis for writing a computer 

program. This is a set of rules with a finite number of 

steps for solving a problem. 



 
  

xviii

Application Layer:  The highest layer of the 7-Layer OSI model structure, 

containing all user or application programs. 

B 

Binary Image:  A digitized image in which the brightness of the pixel 

can have only two different values, such as white and 

black. 

Binarization:  A process which converts a grayscale image into binary 

image. 

 

C 

Cell:  A manufacturing unit consisting of two or more work 

stations or machines, and the material transport 

mechanisms and storage buffers that interconnect them. 

Chain Codes:  A set of straight line segments of specified length and 

direction which are used to represent a boundary. 

Typically, this representation is established on a 

rectangular grid using 4- or 8-connectivity. 

Classification:  A process of grouping objects together into classes 

(subpopulations) according to their perceived likenesses 

or similarities. 



 
  

xix

Closed-Loop Control:  The use of a feedback loop to measure and compare 

actual system performance with desired performance. 

This allows the robot control to make any necessary 

adjustment. 

Computer Vision:  Also known as machine vision. The use of computers or 

other electronic hardware to acquire, interpret, and 

process visual information. It involves the use of visual 

sensors to create an electronic or numerical analog of a 

visual scene, and computer processing to extract 

intelligence from this representation. 

Configuration: The description and specification of mechanism, 

including the kinematics and/or structural features, the 

number of degree of freedom, the joint travel range, and 

the type of drive for the robot. 

Control system:   A system in which a series of measured values are used  

to make a decision on manipulating various parameters 

in the system to achieve a desired value of the original 

measured value. 

Convolution:  An image enhancement technique in which each pixel is 

subjected to a mathematical operation that groups it with 

its nearest neighbours and calculates its value 

accordingly. 



 
  

xx

Coordinate Transformation:  In robotics, a 4×4 matrix used to describe the positions 

and orientations of coordinate frames in space. It is a 

suitable data structure for the description of the relative 

position and orientation between objects. Matrix 

multiplication of the transformations establishes the 

overall relationship between objects. 

D 

Degree of Freedom:  The number of independent ways the end effectors can 

move. It is defined by the number of rotational or 

translational axes through which motion can be obtained. 

Every variable representing a degree of freedom must be 

specified if the physical state of the manipulator is to be 

completely defined. 

E 

Edge Detection:  An image analysis technique in which information about 

a scene is obtained without acquiring an entire image. 

Locations of transition from black to white and white to 

black are recorded, stored, and connected through a 

process called connectivity to separate objects in the 

image into blobs. The blobs can then be analyzed and 

recognized for their respective features. 



 
  

xxi

End Effector:  Also known as end-of-arm tooling or, more simply, 

hand. The subsystem of an industrial robot system that 

links the mechanical portion of the robot (manipulator) 

to the part being handled or worked on, and gives the 

robot the ability to pick up and transfer parts and/or 

handle a multitude of differing tools to perform work on 

parts. 

End-of-Arm Tooling:  A device, commonly made up of four distinct elements, 

which provide for (1) attachment of the hand or tool to 

the robot tool mounting plate, (2) power for actuation of 

tooling motions, (3) mechanical linkages, and (4) sensors 

integrated into the tooling. 

F 

Feature Extractor:  A program used in image analysis to compute the values 

of attributes (features) considered by the user to be 

possibly useful in distinguishing between different 

shapes of interest. 

Feedback:  The signal or data sent to the control system from a 

controlled machine or process to denote its response to 

the command signal. 



 
  

xxii

Frame:  A full video image comprising of two fields. A PAL 

frame has a total 625 lines ( an NTSC frame has 525 

lines). 

Frame Grabber:  An image processing peripheral that samples, digitizes 

and stores a television camera frame in computer 

memory.  

 

G 

Grayscale Image:  A digitized image in which the brightness of the pixels 

can have more than two values which are typically 128 

or 256. A grayscale image requires more storage space 

and more sophisticated image processing than a binary 

image. 

H 

Homogeneous Transform:  A 4×4 matrix which represents the rotation and 

translation of vectors in the joint coordinate systems. It is 

used to compute the position and orientation of any 

coordinate system with respect to any other coordinate 

system. 



 
  

xxiii

Handshaking:   Exchange of predefined signals between two devices 

establishing a connection. 

I 

Image Analysis:  The interpretation of data received from an imaging 

device.  

Imaging:  The analysis of an image to derive the identity, position, 

orientation, or condition of objects in the scene. 

Dimensional measurements may also be performed. 

Intelligent Robot:  A robot that can be programmed to execute performance 

choices contingent on sensory inputs. 

Interface:  A shared boundary which might be a mechanical or 

electrical connection between two devices; it might be a 

portion of computer storage accessed by two or more 

programs; or it might be a device for communication 

with a human operator. 

J 

Joint:  A rotary or linear articulation or axis of rotational or 

translational (sliding) motion in a manipulator system. 

 

 



 
  

xxiv

K 

Kinematics (Robot):  The study of the mapping of joint coordinates to link 

coordinates in motion, and inverse mapping of link 

coordinates to joint coordinates in motion. 

L 

Linear Interpolation:  A computer function automatically performed in the 

control that defines the continuum of points in a straight 

line based on only two taught coordinate positions. All 

calculated points are automatically inserted between the 

taught coordinate positions upon playback. 

M 

Manipulator:  A mechanism, usually consisting of a series of segments, 

or links, jointed or sliding relative to one another, for 

grasping and moving objects, usually in several degrees 

of freedom. A manipulator refers mainly to the 

mechanical aspect of a robot. 

Mathematical Modeling:  Using mathematics, computers and engineering to 

describe, simulate, analyse and improve processes and 

systems. 



 
  

xxv

Modular Programming:  A software design methodology which requires 

components to be developed in isolation so as to 

facilitate the integration of different modules. 

N 

Network:     An interconnected group of nodes or stations. 

Network architecture:  A set of design principles, including the organization of 

functions and the description  of data formats and 

procedures, used as the basis for the design and 

implementation of a network (ISO). 

O 

Orientation:  Also known as positioning. The consistent movement or 

manipulation of an object into a controlled position and 

attitude in space. 

P 

Path:  A series of positions in space that a robot manipulator or 

grasped object moves through. 

Pixel:  Also known as photo-element or photosite. This is a 

digital picture or sensor element. Pixel is short for 

picture-cell. 

Peer-to-Peer:     A connection between only two items of equipment. 



 
  

xxvi

Protocols:  A format set of conventions governing the formatting 

and relative timing of messages exchange between two 

communicating systems.  

R 

Real-time:  A system is capable of operating in real-time when it is 

fast enough to react to the real-world events. 

Recognition:  A labeling process, that is, is the function of recognition 

algorithms is to in a scene and to assign a label to that 

object. 

Robot:  A robot is a reprogrammable,  multifunctional 

manipulator designed to move material, parts tools, or 

specialized devices through variable programmed 

motions for the performance of a variety of tasks. 

Robot Calibration (for vision):  The act of determining the relative orientation of the 

camera coordinate system with respect to the robot 

coordinate system. 

Robotics:     The science of designing, building, and applying robots. 

S 

Sensing:  The feedback from the environment of the robot which 

enables the robot to react to its environment. Sensory 

inputs may come from a variety of sensor types 



 
  

xxvii

including proximity switches, force sensors, tactile 

sensors, and machine vision systems. 

Sensor:  A device such as a transducer that detects a physical 

phenomenon and relays information to a control device. 

T 

Teach Pendant:  Also known as teach box. A portable, hand-held 

programming device connected to the robot controller 

containing a number of buttons, switches, or 

programming keys used to direct the controller in 

positioning the robot and interfacing with auxiliary 

equipment. It is used for teach pendant programming. 

Thresholding:  A procedure of binarization of an image by segmenting 

it to black and white regions (represented by ones and 

zeroes). The gray level of each pixel is compared to a 

threshold value and then set to 0 or 1 so that binary 

image analysis can then be performed. 

Tool Centre Point (TCP):  A tool-related reference point that lies along the last 

wrist axis at a user-specified distance from the wrist. 

Trajectory:  A sub-element of a cycle that defines lesser but integral 

elements of the cycle. A trajectory is made up of points 

at which the robot performs or passes through an 

operation, depending on the programming. 



 
  

xxviii

Translation:  A movement such that all axes remain parallel to what 

they were (i.e. without rotation). 

V 

Vision, 2D:  The processing of 2D images by a computer vision 

system to derive the identity, position, orientation, or 

condition of objects in the scene. 

Vision System:  A system interfaced with a robot which locates a part, 

identifies it, directs the gripper to a suitable grasping 

position, picks up the part, and brings the part to the 

work area. A coordinate transformation between the 

camera and the robot must be carried out to enable 

proper operation of the system. 

 

VGA:  Video Graphics Array. This standard utilizes analog 

signals only offering a resolution of 640x480 pixels, a 

palette of 256 colours out of 256000 colours and the 

ability to display 16 colours at the same time. 
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CHAPTER 1     INTRODUCTION 

“One machine can do the work of a hundred ordinary men, but no machine can do the             

work of one extraordinary man “ [1]              

                 - Elbert Hubbard 

Background to Industrial Robot Automation 

With the pressing need for increased productivity and delivery of end products of uniform 

quality, industry is turning more and more to computer-based automation.  

At the present time, most of industrial automated manufacturing is carried out by special-

purpose machines, designed to perform specific functions in a manufacturing process.  

The inflexibility and generally high cost of these machines often referred to as hard 

automation systems, have led to a broad-based interest in the use of robots capable of 

performing a variety of manufacturing functions in a more flexible working environment 

and at lower production costs. 

A robot is a reprogrammable general-purpose manipulator with external sensors that can 

perform various assembly tasks. A robot may possess intelligence, which is normally due 

to computer algorithms associated with its controls and sensing systems. Industrial robots 

are general-purpose, computer-controlled manipulators consisting of several rigid links 

connected in series by revolute or prismatic joints. 

Most of today’s industrial robots, though controlled by mini and microcomputers are 

basically simple positional machines. They execute a given task by playing back a 
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prerecorded or preprogrammed sequence of motion that has been previously guided or 

taught by the hand-held control teach box. Moreover, these robots are equipped with little 

or no external sensors for obtaining the information vital to its working environment. 

As a result robots are used mainly for relatively simple, repetitive tasks. More research 

effort has been directed in sensory feedback systems, which has resulted in improving the 

overall performance of the manipulator system.  

An example of a sensory feedback system would be: a vision Charge-Coupled Device 

(CCD) system. This can be utilized to manipulate the robot position dependant on the 

surrounding robot environment (various object profile sizes). This vision system can only 

be used within the robot movement envelope. 

1.1 Objectives 

 

Due to the rapid changes in the manufacturing environment, there has become a growing 

need for integrated vision based systems and automated remote robot trajectory motion 

control. Figure 1.1 illustrates the architecture proposed to fulfill the overall objective for 

an industrial application.  
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 Figure 1.1: System architecture for an industrial application 

The system overview comprises of the following base components, illustrated in        

Figure 1.1: 

 Industrial Asea Brown Bovery (ABB) robot Manipulator and Controller 

 Standards AMD Bridge Personal Computer (PC) 

 CCD Vision Camera 

 Ethernet Network system  

In order to achieve the objective of a vision-based automatic robotic trajectory motion 

control, the following sub-problems have been identified: 

 Study the fundamentals of an ABB robot (ABB 1400 Series), its control 

mechanism and principles in order to develop a user interface for industrial 

robotic communication. 
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 Study the RAPID program language of the industrial robot in order to realize 

basic operation of movement and execution of simple tasks.  

 Investigate the remote communication for industrial specialized machines via 

standard Ethernet communication. 

 Build an interface for robot communication based on Ethernet hardware for local 

and remote access to industrial robots. The remote access will be based on TCP/IP 

protocols. 

 Study the kinematics of the industrial robot and its possible operations 

(movement) for industrial applications such as, material handling, sealing, etc. 

 Develop a software interface to manipulate industrial robot path motion according 

to operational tasks. Interpolation and dynamic control may be taken into account 

in the path control. The control mechanism may be achieved via an industrial 

SCADA (MMI).       

 Develop algorithms to extract the object profile from a dynamic image, which can 

be utilized to provide the industrial robot with position feedback. This creates an 

automated closed loop system.   

1.2 Hypothesis 

A vision-based CCD sensory system can be integrated with an industrial robot to sense an 

object’s profile and manipulate the robot’s position online, according to the object 

profile, resulting in increased robot flexibility and system performance. 
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1.3 Delimitations of research 

 The remote RAPID program language environment will not include a fully 

automatic environment. It will focus only on the basic robot movement. 

 No Ethernet hardware will be designed and manufactured for both the Bridge PC 

and Robot controller, neither will it include the TCP/IP protocol software which is 

used to communicate with the robot via the network software layers. The Ethernet 

software protocol will be handled via the ProComm software platform, which has 

been developed by the manufacturer, ABB. The use of this platform reduces 

software development time.  

 RobComm frees one from underlying communication protocols therefore in this 

study more time can be spent developing the user interface. RobCOMM uses 

ActiveX controls (Rimbase.ocx), which enables the user to interact between 

standard software packages such as Visual C and Visual Basic and the industrial 

robot control system during real time operations. 

 The user interface will be developed using only Visual C and Visual Basic. This 

will focus only on the visual control of the industrial robot, such as system status 

and axis orientation position. 

1.4 Assumption 

The necessary hardware and software tools required to do the research will be available, 

as well as providing full functionality to achieve all of the abovementioned objectives. 
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1.5 Significance of the study 

Currently in industry, industrial robots are beginning to take over repetitive tasks, which 

were previously performed by humans. Industrial robots significantly improve the quality 

of the end product. It also results in improved efficiency as high product volumes are 

produced. 

This research will attempt to illustrate the fact that robotic equipment should possess 

some form of sensory feedback, which would give the robot the ability to automatically 

manipulate the robot path without the intervention of human interaction. 

1.6 Organization of Thesis 

Objectives, hypotheses, delimitations, and significance of this research project are 

introduced in Chapter 1. Chapter 2 analyzes the relevant theories, corresponding 

components, related technology, and up-to-date development in the robot sensory 

feedback devices, as well as remote automated robot control in terms of literature survey. 

Chapter 3 describes the overall system setup, hardware architecture, software 

components, implementation of subsystems, and integration of individual subsystems to 

form a platform for profile recognition and integrated robot control via a PC-Based 

system. Chapter 4 involves the architecture of PC-Based robot trajectory path planning 

system, with emphasis on remote robot programming environment, robot kinematics, as 

well as their implementation. Chapter 5 involves the architecture of robot vision 

recognition system, digital image processing techniques, algorithms of profile extraction, 

as well as their implementation. Chapter 6 describes the system integration, providing a 
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detailed insight of all the components required to achieve the overall system objective. 

Chapter 7 provides the conclusion to the research, introducing possible future extensions 

and developments to this research platform.  
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CHAPTER 2                                                                             

INDUSTRIAL ROBOT CONTROL 

This chapter will serve as a background to topics and mathematic fundamentals related to 

this dissertation. This includes robotic manufacturing systems and robotic interfacing 

software. New technologies and trends related to these areas will also be discussed. In 

order to understand the project as a whole and its relevance to manufacturing, industrial 

applications will also be highlighted. 

Background to Robotics   

With a pressing need for increased productivity and the delivery of end products of 

uniform quality, industry is turning more and more towards computer-based automation. 

Most automated manufacturing tasks, at the present time, are carried out by special-

purpose machines designed to perform a predetermined function in a manufacturing 

process. The inflexibility and generally high cost of these machines, often called hard 

automation systems, have led to a broad-based interest in the use of robots capable of 

performing a variety of manufacturing functions in a more flexible working environment. 

This also results in lower production costs.  

The word ROBOT originated from the Czech word “robota”, meaning – WORK. 

Webster’s dictionary defines a robot as: “ an automatic device that performs functions 

ordinarily ascribed to human beings.“ 

A definition used by the Robot Institute of America gives a more precise description of 

an industrial robot: “ a robot is a reprogrammable multi-functional manipulator designed 
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to move materials, parts, tools or specialized devices, through variable programmed 

motions for the performance of a variety of tasks.“ In short, a robot is a 

reprogrammable general-purpose manipulator with external sensors that can 

perform assembly tasks. With this definition, a robot must possess intelligence, which is 

normally due to computer algorithms associated with its control and sensing systems. 

An industrial robot is a general-purpose, computer-controlled manipulator consisting of 

several rigid links connected in series by revolute or prismatic joints. One end of the 

chain is attached to a supporting base, while the other end is free and equipped with a tool 

to manipulate objects or perform assembly tasks. The motion of the joints results in 

relative motion of the links. Mechanically, a robot is composed of an arm, wrist and tool. 

The work volume is the sphere of influence of a robot whose arm can deliver the wrist 

subassembly unit to any point within the sphere. The arm subassembly generally can 

move within 3 degrees of freedom (3DOF)[15][16]. 

The wrist subassembly unit usually consists of three rotary motions.                       

These motions are defined as -    

 pitch,  

 yaw; and  

 roll. 

Hence, for a six-jointed robot the arm subassembly is the positioning mechanism, while 

the wrist subassembly is the orientation mechanism. 
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Figure 2.1: Illustration of a Cincinnati Milacron T3 robot arm [1]  

Many commercially available industrial robots are widely used in manufacturing and 

assembly tasks, such as material handling, spot / arc welding, parts assembly, spray 

painting, loading and unloading numerically controlled machines. 

Robots are defined into four basic motion defining categories, illustrated in Figure 2.2.  

a. Cartesian Co-ordinates 

b. Cylindrical Co-ordinates 

c. Spherical Co-ordinates 

d. Revolute or Articulate Co-ordinates 
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Figure 2.2: Illustration of various robot arm categories [1] 

Most of today’s industrial robots are controlled by mini- and micro-computers and are 

basically simple positional machines. They execute a given task by playing back 

prerecorded or preprogrammed sequences of motion that have been previously guided or 

taught by the user with a hand-held control-teach pendant. Moreover, these robots are 

equipped with little or no external sensors for obtaining the information vital to its 

working environment. As a result, robots are used mainly for relatively simple, repetitive 

tasks. More research effort is being directed towards improving the overall performance 

of the manipulator system. Automation and Robotics are two closely related technologies. 
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AUTOMATION is defined as: “a technology that is concerned with the use of 

mechanical, electronic, and computer-based systems in the operation and control of 

production.” 

Examples include - transfer lines, mechanized assembly machines, feedback control 

systems, numerically controlled machine tools and robots. Accordingly, robotics is a 

form of industrial automation. 

There are three broad classes of industrial automation:  

(i) Fixed Automation – is used when the volume of production is very high and 

it is therefore appropriate to design specialized equipment to process the 

product. An example of this would be in the automotive industry, where 

highly integrated transfer lines consisting of several dozen workstations are 

used to perform machining operations on engine and transmission 

components. 

(ii) Programmable Automation – is used when the volume of production is 

relatively low and there are a variety of products to be made. In this case the 

production equipment is designed to be adaptable to variations in product 

configuration. This adaptability feature is accomplished by operating the 

equipment under the control of a “program” of instructions, which has been 

prepared especially for the given product. 

(iii) Flexible Automation – other terms used include FMS and Computer-

Integrated Manufacturing Systems.” This type of automation is most suitable 
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for the mid-volume production range. Flexible automated systems typically 

consist of a series of workstations that are interconnected by a materials-

handling and storage system. A central computer is used to control the various 

activities that occur in the system.  

 

Figure 2.3: Relationship of fixed automation, programmable automation, and 
flexible automation as a function of production volume and product variety [2] 

Of the three types of automation, robotics coincide most closely with programmable 

automation. An industrial robot is a general-purpose, re-programmable machine, which 

possesses certain anthropomorphic or humanlike characteristics. The most typical 

humanlike characteristic of existing robots is their movable arms. The robot can be 

programmed to move its arm through a sequence of motions in order to perform some 

useful task. It will repeat that motion pattern over and over until reprogrammed to 

perform some other task. Hence, the programming feature allows robots to be used for a 

variety of different industrial operations, many of which involve the robot working 

together with other pieces of automated or semi-automated equipment [2][3]. 
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2.1.1 Robot Structure 

A robot is made up of two main parts:  

The manipulator is the part of the robot that consists of links connected by revolute or 

prismatic joints as illustrated in Figure 2.4[22]. 

  

Figure 2.4:  ABB 1400 Robot Manipulator, 6 Axis [ 6 DOF ][22] 

The controller contains the electronics required to control the manipulator, external axes 

and peripheral equipment, as illustrated in Figure 2.5[22]. 
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Figure 2.5:  ABB 1400 Robot Controller [22] 

2.1.2 Robot Arm Kinematics and Dynamics 

Robot arm kinematics deals with the analytical study of the geometry of motion of a 

robot arm with respect to a fixed reference co-ordinate system. This system is without 

regard to the force / moments that cause the motion. Thus, kinematics deals with the 

analytical description of the spacial displacement of the robot as a function of time, in 

particular the relations between the joint-variable space and the position and orientation 

of the end-effector of a robot arm [10]. 

The two fundamental concepts with respect to robot arm kinematics are - 

 direct kinematics; and 

 inverse kinematics. 



 
  

16

Since independent variables in a robot arm are the joint variables, and a task is usually 

stated in terms of the reference co-ordinate frame, the inverse kinematics problem is used 

more frequently. 

A systematic and generalized approach which utilizing matrix algebra to describe and 

represent the spatial geometry of the links of a robot arm by systematically establishing a 

co-ordinate system (body-attached frame) to each link of an articulated chain [42]. This 

method uses a 3x3 homogeneous transformation matrix to describe the special 

relationship between two adjacent mechanical links and reduces the direct kinematic 

problem to finding an equivalent 3x3 homogeneous transformation matrix [1]. Thus, 

through sequential transformations, the end-effector expressed in the “hand co-ordinates” 

can be transformed and expressed in the “base co-ordinates” which make up the inertial 

frame of this dynamic system. 

Rotation matrices which comprise of a 3×3 rotation matrix can be defined as a 

transformation matrix which operates on a position vector in a three-dimensional 

Euclidean space and maps its coordinates expressed in a rotated coordinate system 

OUVW (body-attached frame) to a reference coordinate system OXYZ, as shown in Figure 

2.6. [22][3][10] 

 

 

Figure 2.6: Reference and body-attached co-ordinate system [22][1] 
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Figure 2.7 shows the OUVW coordinate system rotated at an α angle about the OX axis, 

then rotated an φ angle about the OY axis, and then rotated an θ angle about the OY.  

 

 

 

 

 

Figure 2.7: Illustration of an OUVW rotating co-ordinate system [22][1] 

The rotation matrices can be represented as the following respectively:  
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Figure 2.8: Illustration of a Rotation 3x3 Matrix for the 3 axes [x,y,z] [1][3] 

Composite Rotation Matrix form the basic rotation matrices which can be multiplied 

together to represent a sequence of finite rotations about the principle axes of the OXYZ 

coordinate system. Since matrix multiplications do not commute, the order or sequence of 

performing rotations is important. The rotation matrix representing a rotation of α angle 
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about the OX axis (yaw) followed by a rotation of θ angle about the OZ (roll) followed by 

a rotation of φ angle about OY (pitch) axis is given by the resultant rotation matrix as: 
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The rotation matrix representing a rotation of φ angle about OY axis followed by a 

rotation of θ angle about the OZ axis followed by a rotation of α angle about the OX, the 

resultant rotation matrix representing these rotations is: [1][4] 
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2.1.2.1 Direct and Inverse Kinematics 

Figure 2.9 is an illustration of direct and inverse kinematics. 

    

Figure 2.9: A simple diagram indicating the relationship between direct and 
inverse robot kinematics [1] 
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Since the links of a robot arm may rotate and / or translate with respect to a reference 

co-ordinate frame, the total spatial displacement of the end-effector is due to the 

angular rotations and linear translations of the links. 

2.1.2.2 Links, Joints and their parameters 

A mechanical manipulator consists of a sequence of rigid bodies, called links, 

connected by either revolute or prismatic joints [5]. 

 

Figure 2.10:  A PUMA robot arm illustrating joints and links [1] 

Each joint-link pair constitutes one degree of freedom (DOF). For an N degree of 

freedom manipulator, there are N joint-link pairs with link 0 (not considered part of 

the robot) attached to a supporting base where an inertial co-ordinate frame is usually 

established for this dynamic system and the last link is attached with a tool. The joints 
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and links are numbered outwardly from the base. Thus, joint 1 is the point of 

connection between link 1 and the supporting base. A joint axis (for joint i) is 

established at the connection of two links as illustrated in Figure 2.10 and 2.11.  

 

Figure 2.11: Link co-ordinate system and its parameters [1][2] 

2.1.3 Robot Motion 

Robot motion is sub-divided into the following co-ordinate frames as listed below with 

respect the co-ordinate chain as illustrated in Figure 2.12: [21][22].  
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(i) The World Co-ordinate System – defines a reference to the floor, which is 

the starting point for the other co-ordinate systems. 

(ii) The Base Co-ordinate System – is attached to the base mounting surface of 

the robot. 

(iii) The Tool Co-ordinate System – specifies the tool’s center point and 

orientation. 

(iv) The User Co-ordinate System – specifies the position of a fixture or work 

piece. 

(v) The Object Co-ordinate System – specifies how a work piece is positioned 

in a fixture or work piece manipulator. 

(vi) Program displacement coordinate system — is set up by robot instructions 

in RAPID program, and is related to object coordinate system. 

User frame → object frame → program displacement frame →  p1 

World frame 

                   Base frame ← kinematic model ← wrist center frame ← tool frame 

 

 

 

Figure 2.12: Co-ordinate frame chain [21][22] 
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2.2 Manipulator Trajectory Control 

With the knowledge of kinematics and dynamics of a serial link manipulator, one would 

like to servo the manipulator’s joint actuators to accomplish a desired task by controlling 

the manipulator to follow a desired path. Before moving the robot arm it is of interest to 

know whether there are any obstacles present in the path that the robot arm has to 

traverse (obstacle constraints) and whether the manipulator hand needs to traverse along a 

specified path (path constraints). 

The space curve that the manipulator hand moves along from an initial location (position 

and orientation) to the final location is called the robot path. The trajectory planning 

interpolates and / or approximates the desired path by a class of polynomial functions and 

generates a sequence of time based “control set points” for the control of the manipulator 

from the initial location to the destination location. 

Control Analysis – the movement of the robot arm is usually performed in two distinct 

control  phases: 

1. Main motion control is to move the arm from the initial position / orientation to 

the vicinity of the desired target position / orientation along a planned trajectory. 

2. Fine motion control is when the end-effector of the arm dynamically interacts 

with the object using sensory feedback information from the sensors in order to 

complete the task. 

The current industrial approach to robot arm control is – treat each joint of the robot as a 

simple joint servo mechanism.  



 
  

23

The servo mechanism approach models the varying dynamics of a manipulator 

inadequately because it neglects the motion and configuration of the whole arm 

mechanism. Robot arm control requires the consideration of more efficient dynamic 

models, sophisticated control approaches, the use of dedicated computer architectures and 

parallel processing techniques [1]. 

2.2.1 Robot Programming Language 

One major obstacle in using manipulators as general-purpose assembly machines is the 

lack of  suitable and efficient communication between the user and the robotic system so 

that the user can direct the manipulator to accomplish a given task. There are several 

ways to communicate with a robot, such as: Discrete word recognition, teach and 

playback and a high-level programming language. The most general approach used in 

order to solve the human-robot communication problem is the use of high-level 

programming. Robots are commonly used in areas such as arc welding, spot welding and 

paint spraying. 

Robot programming is substantially different from traditional programming. There are 

several considerations which must be handled by any programming language, such as - 

 the objects to be manipulated by a robot are three-dimensional objects which have 

a variety of physical properties, 

 robots operate in a spatially complex environment, 

 the description and representation of three-dimensional objects in a computer are 

imprecise; and 
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 sensory information has to be monitored, manipulated and properly utilized. 

Current approaches to programming can be categorized into two categories, namely - 

1. robot-orientated programming; and  

2. object-orientated or task-level programming. 

In robot-orientated programming an assembly task is explicitly described as a sequence 

of robot motions. The robot is guided and controlled by the program throughout the entire 

task with each statement of the program roughly corresponding to one action of the robot. 

Task-level programming describes an assembly task as a sequence of positional goals of 

the object rather than the motion of the robot needed to achieve these goals and hence no 

explicit robot motion is specified [25][2][1]. 

2.2.2 Characteristics of Robot-level languages 

The most common approach taken in designing a robot-level language is to extend an 

existing high-level language to meet the requirements of robot programming. Its design 

philosophy is to provide a system environment where different robot programming 

interfaces may be built. It has a rich set of primitives for robot operations and allows the 

users to design high-level commands according to their particular needs. The following 

are needs identified for this project - 

(i) Position Specifications 

In robot assembly the robot and the parts are generally confined to a well-defined 

workspace. The parts are usually restricted by fixtures and feeders to minimize 
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positional uncertainties. Assembly from a set of randomly placed parts requires 

vision which is not yet common practice in industry. 

The most common approach used to describe the orientation and the position of the 

objects in the workspace is by co-ordinate frames. They are usually represented as 

4x4 homogeneous transformation matrices. A frame consists of a 3x3 submatrix 

(specifying the orientation) and a vector (specifying the position) which are defined 

with respect to some base frame. 

(ii) Motion Specifications 

The most common operation in robot assembly is the pick and place operation. It 

consists of moving the robot from an initial configuration to a grasping 

configuration, picking up an object and moving to final configuration. The motion 

is usually specified as a sequence of positional goals for the robot to attain. 

However, only specifying the initial and final configurations is not sufficient. Both 

constraints must be considered, such as obstacles in the present planned path [1]. 

(iii) Sensing and Flow of Control 

The location and the dimension of the object in the workspace can be identified 

only to a certain degree of accuracy. For a robot to perform tasks in the presence of 

these uncertainties sensing must be performed. The sensory information gathered 

also acts as a feedback from the environment enabling the robot to examine and 

verify the state of the assembly [30]. 
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Sensing in robot programming can be classified into three types : 

1. Position Sensing – used to identify the current position of the robot, 

usually achieved by encoders that measure the joint angle and compute the 

corresponding hand position (end effector) in the current workspace. 

2. Force and Tactile Sensing – used to detect the presence of objects in the 

workspace. 

3. Vision – used to identify objects and provide a rough estimate of their 

position, orientation and profile. 

(iv) Programming Support 

A language without programming support (editor / debugger) is useless to the user. 

A sophisticated language must provide a programming environment that allows the 

user to support it. Complex robot programs are difficult to develop and can be 

difficult to debug. It should be realized by now that programming in a robot-

oriented language is tedious and cumbersome. 

2.2.3 Characteristics of Task-level languages 

A completely different approach in robot programming is by task-level programming. An 

assembly task can best be described in terms of the objects being manipulated rather than 

by the robot motions. 

A task-level programming system allows the user to describe the task in a high level 

language (task specification). A task planner will then consult a database (world models) 



 
  

27

and transform the task specification into a robot-level program (robot program synthesis) 

that will accomplish the task. 

 

 
Figure 2.13: Task planner 
 

Architecture for a robot task planner is displayed in Figure 2.13 The task specification is 

decomposed into a sequence of subtasks by the task decomposer and information is 

extracted, such as: Initial state, final state, grasping position, operand, specifications and 

attachment relations. The subtasks then pass through the subtask planner which  generates 

the required robot program [29]. 

The concept of task planning is quite similar to the idea of automatic program generation 

in artificial intelligence. The user supplies the input-output requirements of a desired 
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program, and the program generator then generates a program that will produce the 

desired input-output behaviour [37]. 

Task-level programming, like automatic program generation, is in the research stage with 

many problems still unsolved. The problems encountered in task planning and some of 

the proposed solutions are discussed below. 

(i) World Modeling 

 This modeling is required to describe the geometric and physical properties of the 

object (including the robot) and to represent the state of the assembly of the objects 

in the workspace. 

 Geometric and Physical Models. For the task planner to generate a robot program 

that performs a given task, it must possess information about the objects and the 

robot itself. 

 A geometric model provides the spatial information (dimension, volume, shape) of 

the objects in the workspace. 

 In the AUTOPASS system [38], objects are modeled by utilizing a modeling system 

called GDP (geometric design processor) [39], which uses a procedural 

representation to describe objects. Within this procedure, the shape of the object is 

defined by calls to other procedures representing other objects or set operations. 

 GDP provides a set of primitive objects (all of them are polyhedra) which can be 

cuboid, cylinder, wedge, cone, hemisphere, laminum and revolute. These primitives 
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are internally represented as a list of surfaces, edges and points, which are defined 

by the parameters in the corresponding procedure. For example,  

  CALL SOLID(CUBOID, “Block”, xlen, ylen, zlen) ; 

 will invoke the procedure SOLID to define a rectangular box called Block with 

dimensions xlen, ylen, and zlen. More complicated objects can then be defined by 

calling other procedures and applying the MERGE subroutine to them. 

 In this research project, the same software coding approach is utilized as illustrated 

below. 

 Call Creat_Robot_robtargetVar("HOME", "PERS", "CBV", "1",  x, y,z, q1, q2, 

q3, q4) 

 RAPID robot target variables can be created on the fly when the robot trajectory 

program is automatically generated. The call function will ensure that a variable 

named “HOME” declared as a PERS = persistence, with the following x,y,z co-

ordinate position will be created in the master robot sub-routine RAPID program 

when requested. This function can generate a number of variables when 

requested.[22]     

(ii) Task Specification 

This is done with a high-level language. At the highest level one would like to have 

natural languages as the input, without having to give the assembly steps. An entire 

task like building a water pump could then be specified by the command “build 
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water pump”. However, this level of input is still quite far away. The current 

approach is to use an input language with a well-defined syntax and semantics, 

where the assembly sequence is given. An assembly task can be described as a 

sequence of states of the world model [1]. 

(iii) Robot Program Synthesis 

The synthesis of a robot program from a task specification is one of the most 

important and most difficult phases of task planning.  

The major steps in this phase are - 

 grasping, 

 planning, 

 motion planning; and 

 plan checking. 

Before the task planner can perform the planning, it must first convert the symbolic 

task specification into a usable form. One approach is to obtain configuration 

constraints from the symbolic relationships. The RAPT Interpreter extracts the 

symbolic relationships and forms a set of matrix equations with the constraint 

parameters of the objects as unknowns. These equations are solved symbolically by 

using a set of rewrite rules to simplify them. The result obtained is a set of 

constraints on the configurations of each object that must be satisfied to perform the 

operation. 
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2.3   Communication Controls 

The advent of the microprocessor created a new class of manufacturing devices – the 

digital controller. Digital devices are now not only commonplace in manufacturing but in 

many cases are essential to the manufacturing process. The management, maintenance 

and fully optimized use of these devices are greatly enhanced by communications 

between the control devices and supervisory computer systems. While in theory this 

communication should be trivial, it is in practice often so difficult as to be impossible. 

The evolution of modern industrial control has centered around the microprocessor.  

It is the microprocessor that has created the need to communicate and integrate 

manufacturing in today’s modern process plants. This is referred to as CIM.  

The flexibility of the microprocessor is best utilized through changes in programming. 

Communicating those changes to the device is essential if the benefit is to be derived. 

Short of storing the program variations locally, the only viable alternative is to store them 

remotely, then communicate them to the device. This is also the only practical way to 

process and archive the data remotely. To obtain the benefits from the flexibility and the 

wealth of information generated by the microprocessor communication is essential [8].  

2.3.1 Real-Time 

The definition of real time is not precise, it is very situational. Within the banking 

industry applications that deal with ATM’s are considered “real time”. However, during 

the four to seven seconds it often takes for an ATM transaction, hundreds of rands of a 
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product may be mismanufactured or serious safety problems may arise in a typical 

process. 

Yet in the 500 milliseconds that a DCS may take to measure a variable, calculate a 

response and execute a control action, a racing car can travel over ten times its own 

length. Real time is then relative to the environment. In batch and continuous processing 

operations, overall system response times are generally measured in the tens to hundreds 

of milliseconds or, at the worst, in seconds. Thus, the data communications networks 

within these systems must have performance characteristics that are consistent with this 

range.  

Most industrial robot controllers have to be configured and programmed via a hand held 

teach pendant, making programming very tedious and time consuming [3]. By providing 

the system with an Ethernet communication link between a bridge PC and the robot 

controllers opens the system to true real-time control application [6]. This ensures that 

RAPID path programming can be automatically generated remotely and downloaded 

when robot path position is manipulated due to the sensory feedback devices, such as a 

vision system. 

2.3.2 Local Area Networks (LAN’s) 

In an effort to address the growing complexity of data communications, networks were 

developed that allowed these devices to communicate with each other in a simpler 

fashion than with point-to-point technologies.  These networks reflect either the shared 

usage of media (physical connections) or the software protocols used to communicate. 

Many factors must be carefully weighed when selecting a LAN.  
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A variety of systems are available, each of which are unique in operation, hardware and 

capabilities. 

(i) Benefits of LAN’s 

LAN’s are essentially transparent to users and can provide a variety of benefits, 

depending on the configuration and usage. Some of the benefits could include - 

1. reduction / control of cabling cost, 

2. user sharing of programs, data, printers and communication links, 

3. access to multiple databases, 

4. access to remote systems, 

5. possibility of linking multivendor machines, 

6. improved data integrity and security; and 

7. improved staff communications. 

(ii) LAN characteristics 

Local area networking is a critical step in wiring either the office or the factory. By 

properly planning the network, one can create a system that links a group of 

different or incompatible computers, workstations, and accessories within one 

office, an entire building, or group of buildings. 
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In its simplest form, a local area network utilizes standard cabling, which acts as an 

electronic highway for transporting data and other information to and from different 

“workstations” in the same office area. 

 

Figure 2.14: Industrial LAN Network Architecture 

2.3.2.1 Communication Models 

(i) Proprietary Model 

DEC had their own model for communications, the DNA. DNA (Figure 2.15) is rich 

in peer-to-peer services. It first lacked terminal connectivity. DEC remedied that with 

the addition of LAT protocols, which were optimized for the terminal environment in 

a network-based system. 
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Figure 2.15: DNA by DEC and Internet model 

(ii) ISO Model – the seven functional communication layers are: [32] 

1. Application Layer : This layer is concerned with the information in the 

message and how well it serves the user. This is where application 

programs call upon the communication services. Typical protocols at this 

layer include FTAM, and VT. 

2. Presentation Layer : This layer is used to prepare the information for the 

application. 

3. Session Layer : This layer establishes the logical communications link 

between units and gradually feeds or buffers the information to the devices 

or the program that performs the Presentation function. The Session layer 



 
  

36

also provides the critical identification and authentication functions. It 

recognizes users and acknowledges both their arrival and departure.  

4. Transport Layer : This layer functions to provide a common interface to 

the communications network. It translates whatever unique requirements 

the other higher layers might have into something the network can 

understand. It detects and corrects errors in transmission and provides for 

the expedited delivery of priority messages. It checks the data, puts it into 

proper order if necessary, and usually sends an acknowledgement back to 

the originating Transport layer. 

5. Network Layer : This layer sets up a logical transmission path through a 

switched or dedicated network. In local networks this path may be only 

theoretical, since the individual units are almost always electrically 

connected into the circuit and the paths are defined by the network 

topology. 

6. Data Link Layer : This layer does the accounting and traffic control 

chores needed to transfer information on an electrical link. It forms the 

information to be moved into strings of characters, or into blocks of bits 

(characters). The Data Link layer puts every piece of information into the 

right place and checks it out before releasing it. Similarly, incoming 

information is broken down and properly routed within the receiving 

device. 
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7. Physical Layer : This layer describes the electrical and physical 

connection between the communicating links. 

 

Figure 2.16: OSI seven-layer model 

 

Figure 2.17: Data flow 
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There are ISO Standards for all seven ISO layers. At the lower two layers one of the 

common ISO/IEEE standards that are in place and use the ISO model as a reference is 

IEEE 802.3.  This refers to CSMA/CD networks. ETHERNET is a common example 

of CSMA/CD protocol [35]. 

(iii) Internet Protocols 

It appears no other protocol is having as great an impact on real-time networks today 

as TCP/IP (Transmission Control Protocol / Internet Protocol) – a subset of the 

collection of protocols employed by the Internet. The Internet evolved from the old 

US DOD ARPANET (Advanced Research Projects Agency Network). This 

nationwide network was designed to support the interconnection of local area 

networks at research institutions working on government funded projects. The initial 

key protocols had to do with end-to-end message integrity and routing information 

over the wide area network (WAN). This became the TCP/IP portion of the network. 

While TCP/IP play a significant part of the Internet, there are other protocols, for 

example file transfer, mail, and virtual terminal services [35]. 

(iv) Mid Level Protocols 

IP – The services provided by the IP protocol are basically either related to 

addressing and routing or associated with the segmentation of packets if maximum 

packet size varies between intermediate segments and the two end networks. 
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Figure 2.18: IP Frame  

IP Addresses – IP packets use a 4 byte address field for both the source and 

destination addresses. Within this 32 bit field is network and station address 

information. 

IP Routing – IP routing is accomplished as a shared function. The source station 

determines if the destination is part of the local network. If it is, the packet is sent 

directly to the destination. If the destination is not on the local network, the IP layer 

uses a stored table of routing information and destination addresses to determine 

which gateway device to send the packet to. The gateway is then responsible for the 

further transmission of that packet. 

TCP – Transport Control Protocol – Because the underlying IP layer does not 

provide reliable service, being datagram-based, another service is required to ensure 

end-to-end integrity. This is the function of the transmission control protocol.         

Fig 2.19 shows the contents of the TCP packet. 

 

Figure 2.19: TCP Frame  

 



 
  

40

The use of ports, as they are called in a TCP environment, facilitates multiple 

sessions. The ports serve as a means to establish a virtual connection at this level, 

promoting guaranteed delivery. The sequence number is used to ensure proper 

ordering as the packets are received. The WINDOW parameter is used for flow 

control. If interfacing through TCP, it is advisable to use this full TCP packet as 

opposed to the lower overhead user datagram protocol (UDP) packets. The UDP 

packet as shown in Figure 2.20 does not support a connection-orientated service or 

error recovery and, as such, is of little value as an interfacing protocol for real-time 

networks. If the information is important enough to burden the real-time system with 

its handling, it should certainly warrant the additional integrity that the full TCP 

packet affords [8].  

 

Figure 2.20: UDP Frame 

2.3.2.2 Real-Time Issues of TCP/IP 

TCP/IP has become a readily accepted networking protocol for general-purpose 

plantwide networks, particularly where Unix systems are present. 

As shown in Figure 2.21, a Client Server approach that uses TCP/IP is popular. 

Generally, these systems have dedicated serial interfaces to the process control 

systems from which they extract data. However, as more TCP/IP-based systems are 

implemented, it is reasonable to expect that TCP/IP network interfaces will become 
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available. This means, as with so many other developments in networking, that 

additional communication loads will be placed on those real-time networks as they 

move data to higher level systems. An understanding of TCP/IP services undoubtedly 

will be a prerequisite for internetworking in the very near future. 

 

Figure 2.21: Client-server approach using TCP/IP  

2.4   Robot Sensing 

The use of an external sensing mechanism allows a robot to interact with its environment 

in a flexible manner. This is in contrast to preprogrammed operations in which a robot is 

taught to perform repetitive tasks via a set of preprogrammed functions. Although the 

latter is by far the most predominant form of operation of current industrial robots, the 

use of sensing technology to endow machines with a greater degree of intelligence in 

dealing with the environment is indeed an active topic of research and development in the 

robotic field. 
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Robot sensing is divided into two functional areas, internal and external states: 

1. Internal State Sensors – deal with the detection of variables such as arm joint 

positions, which are used for robot control. 

2. External State Sensors – deal with the detection of variables, such as range, 

proximity and touch. Although proximity, touch and force sensing play a 

significant role in the improvement of robot performance, vision is recognized as 

the most powerful of robot sensory capabilities [5]. 

2.4.1 Machine Vision 

Machine vision (other names include computer vision and artificial vision) is an 

important sensor technology with potential applications in many industrial operations. 

Many of the current applications of machine vision are in inspection, however it is 

anticipated that vision technology will play an increasingly significant role in the future 

of robotics.  

Vision systems designed to be utilized with robot or manufacturing systems must meet 

two important criteria which currently limit the influx of vision systems to the  

manufacturing community. The first of these criteria is the need for a relatively low-cost 

vision system. The second criterion is the need for relatively rapid response time needed 

for robot or manufacturing applications, typically a fraction of a second. 

Nevertheless, there has been a significant influx of vision systems into the manufacturing 

world. The systems are used to perform tasks, which include selecting parts that are 

randomly orientated from a bin or conveyer, parts identification and limited inspection. 
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These capabilities are selectively used in traditional applications to reduce the cost of part 

and tool fixturing, to allow the robot program to test for and adapt to limited variations in 

the environment. 

Advances in vision technology for robotics are expected to broaden the capabilities to 

allow for vision-based guidance of the robot arm, complex inspection for close 

dimensional tolerances, improved recognition and part location capabilities. These will 

result from the constantly reducing cost of computational capability, increased speed and 

new and better algorithms currently being developed. 

The field of computer vision was one of the fastest growing commercial areas in the latter 

part of the twentieth century. Computer vision is a complex and multidisciplinary field 

and is still in its early stages of development. 

Advances in vision technology and related disciplines are expected within the next 

decade, which will permit applications not only in manufacturing, but also in photo 

interpretation, robotic operations in hazardous environments, autonomous navigation, 

cartography and medical image analysis. 

2.4.1.1 Background 

Vision may be defined as the process of extracting, characterizing, and interpreting 

information from images of a two dimensional world. This process, also commonly 

referred to as machine or computer vision, may be subdivided into six principal 

areas, the operation of the vision system consists of six functions as illustrated in 

Figure 2.22: [1][2][3][5] 
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1. Sensing   – Is the process that yields a visual image. 

2. Preprocessing  – Deals with techniques such as noise reduction and 

enhancement of details. 

3. Segmentation  – Is the process that partitions an image into objects of 

interest. 

4. Description  – Deals with the computation of features (e.g. size and 

shape) suitable differentiating one type of object from another. 

5. Recognition  – Is the process that identifies these objects (e.g. wrench, 

bolt, engine block, Object profiles). 

6. Interpretation  – Assigns meaning to an ensemble of recognized objects. 

 

Figure 2.22:  Robot Vision basic structure 
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Machine Vision is concerned with the sensing of vision data and its interpretation by 

a computer. The typical vision system consists of the camera and digitizing hardware, 

a digital computer, and hardware and software necessary to interface them. The 

operation of the vision system consists of three functions as illustrated in Figure 2.23: 

1. Sensing and digitizing image data 

2. Image processing and analysis 

3. Application 

 

Figure 2.23: This diagram simplifies the relationship between the three functions 

of machine vision [2] 
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The sensing and digitizing functions involve the input of vision data by means of a 

camera focused on the scene of interest. Special lighting techniques are frequently 

used to obtain an image of sufficient contrast for later processing [12][13]. The image 

viewed by the camera is typically digitized and stored in computer memory. 

The digital image is called a frame of vision data and is frequently captured by a 

hardware device called a grabber [24][32]. 

The frames consist of a matrix of data representing projections of the scene sensed by 

the camera. The elements of the matrix are called picture elements, or pixels. The 

number of pixels are determined by a sampling process performed on each image 

frame. A single pixel is a projection of a small portion of the scene which reduces that 

portion to a single value. The value is the measure of the light intensity for that 

element of the scene. Each pixel intensity is converted into a digital value. 

The digitized image matrix for each frame is stored and then subjected to image 

processing and analysis functions for data reduction and interpretation of the image.  

These steps are required in order to permit real-time application of vision analysis 

required in robotic applications. 

Typically an image frame will be thresholded to produce a binary image, and then 

various feature measurements will further reduce the data representation of the image. 

This data reduction can change the representation of a frame from several hundred 

thousand bytes of raw image data to several hundred bytes of feature value data. The 

resultant feature data can be analyzed in the available time for action by the robot 

system. 
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Various techniques to compute the feature values can be programmed into the 

computer to obtain feature descriptors of the image which are matched against 

previously computed values stored in the computer. These descriptors include shape 

and size characteristics that can be readily calculated from the thresholded image 

matrix. 

To accomplish image processing and analysis, the vision system must be trained 

frequently. In training, information is obtained on prototype objects and stored as 

computer models. 

The information gathered during training consists of features such as the area of the 

object, its perimeter length, major and minor diameters and similar features. During 

subsequent operation of the system, feature values computed on unknown objects 

viewed by the camera are compared with the computer models to determine if match 

has occurred. 

The final function of a machine vision system is the applications function. The 

current applications of machine vision in robotics include inspection, part 

identification, location and orientation. Research is ongoing in advanced applications 

of machine vision for use in complex inspection, guidance and navigation. 

Many two-dimensional vision systems can operate on a binary image which is the 

result of a simple thresholding technique. This is based on an assumed high contrast 

between the object(s) and the background. Image contrast can be manipulated by 

using a controlled lighting system. 
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Another way of classifying vision systems is according to the number of gray levels 

used to characterize the image. In a binary image the gray level values are divided 

into either of two categories, black or white. Other systems permit the classification 

of each pixel’s gray level into various levels, the range of which is called a gray scale. 

As is true in humans, vision capabilities endow a robot with a sophisticated sensing 

mechanism that allows the machine to respond to its environment in an “intelligent” 

and flexible manner [2][9]. 

2.4.1.2 Vision Preprocessing 

Vision processing has three levels - 

1. low-level vision [sensing and preprocessing] - use algorithms to compensate 

noise reduction and then a primitive image can be extracted, 

2. medium-level [subdivision-segmentation, description, and recognition of 

individual objects] – refers to those processes that extract, categorize, and 

label components in an image resulting from low-level vision; and 

3. high-level vision [interpretation] – refers to processes that attempt to emulate 

cognition. 

Plenty of image preprocessing techniques are available in the field of robot vision. 

The method used for image preprocessing range from spatial-domain and frequency-

domain. Only a subset of them is suited for real-time image processing if the 

processing speed plays a predominant role in this process.  
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Convolution technique is one of the spatial-domain techniques used most frequently 

(also referred to as templates, windows, or filters) [32]. The desired image f(x, y) can 

be obtained by convoluting the original image i(x, y) with a convolution mask h(x, y). 

 f(x, y) = h(x, y) * i(x, y)  

In robot vision system, the convolution masks are usually a 3×3, 5×5 or 7×7 matrices. 

For computational purposes the 3×3 matrix is widely utilized in real-time systems 

where system speed is required. A typical convolution mask is given as 
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The image preprocessing techniques, which are also employed in this project, are the 

following: 

 Smoothing 

Smoothing operations are used for reducing noise and other spurious effects that may 

be present in an image as a result of sampling, quantization, transmission, or 

disturbances in the environment during image acquisition. The following convolution 

masks are used: 
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 High Pass Filtering 

High pass filtering is utilized to sharpen images that are out of focus or fuzzy. Its 

convolution mask is 
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 Median Filtering 

Median filtering ranks the current set of nine pixel intensities in order of magnitude 

and places the median intensity value into the destination image at the central point. 

The whole image is processed in turn by sliding the window over the entire image. 

 Low Pass Filtering 

Low pass filtering is exploited to smooth out a sharp image. Its convolution mask is 

given as: 
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 Noise Cleaning 

Noise cleaning is employed to remove random noise spikes on the captured image. Its 

convolution mask is given as: 
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 Averaging 

Averaging can be used to remove random noise spikes and clean edge features in the 

image.  Its convolution mask is given as: 
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 Thresholding 

Digital image thresholding is a crucial process in robot vision system, which is used 

to manipulate the captured image. To separate and extract the object from the 

background in terms of an image array f(x, y), a threshold of T is normally utilized. 

The thresholding technique is not limited to a fixed value T. A thresholded image can 

be acquired by 
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In the case of dark objects on a light background, thresholding takes the selected 

grayscale value T and compares each pixel intensity in the image. If the intensity at 

pixel f(x, y) < T that pixel is replaced by a logic 0 value. If the intensity f(x, y) > T 

that pixel is replaced by a logic 1 value. A typical image intensity histogram with two 

peaks is shown in Figure 2.24. 
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. 

 

 

Figure 2.24: Typical two peak intensity histogram 

The manipulated image after thresholding is illustrated in Figure 2.25. 

  

Figure 2.25: Thresholding to gray-level Image 

In general, thresholding falls into two categories, which are manual thresholding and 

adaptive thresholding. Adaptive thresholding takes a histogram of all the pixel 

intensities in the images, detects the pixel intensity most frequent in the image and 

follows the histogram curve down to identify the minimum. An adaptive thresholding 

is capable of figuring out an optimal thresholding value [5]. 
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 Contour Detection 

Contour detection plays a central role in robot vision. Using the information from the 

contours means a considerable reduction in the volume of data to be processed in 

image analysis. In addition, using the contours obtained from the image is their 

relative stability under fluctuations in the lighting of the scene. The standard 

approaches to contour detection are implicitly based on a very simple model in which 

the image is regarded as ideally composed of essentially constant region separated by 

step edges. The classical approach [3] to contour detection makes use of digital 

(finite-difference) versions of standard isotropic derivative operators, such as the 

gradient or Laplacian. 

The first derivative of a contour model is zero in all region of constant intensity. The 

second derivative is zero in all locations, except at the onset and termination of an 

intensity transition. 

 Laplacian Edge Detection 

The Laplacian is a scalar second derivative operator for functions of two dimensions, 

given by: 

 ),(),(),( 2

2

2

2

yxf
y

yxf
x

yxf
∂
∂

+
∂
∂

=∇   

The digital Laplacian at point (x, y) can be defined as: 

 L[f(x, y)] =[f(x+1, y) + f(x-1, y) + f(x, y+1) + f(x, y-1)] –4f(x, y)  
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2.4.1.3 Industrial Machine Vision  

Researchers in the field of Industrial Machine Vision (IMV) concentrate their efforts 

on problems appropriate to the industrial environment. In such an environment one 

may be able to control the background, the lighting, the camera position, or other 

parameters. Such control may allow the use of techniques that would be inappropriate 

to a general-purpose vision system. 

2.4.1.4 Fundamentals – The formation of a Digital Image 

The imaging literature is filled with a variety of imaging devices, including 

dissectors, flying spot scanners, videocons, orthicons, plumbicons, CCD’c (charge-

couples devices), and others [40][41]. These devices differ both in the ways in which 

they form images and in the properties of the images so formed. However, all the 

devices convert light energy to voltage in similar ways. 

2.4.1.5 Vision Hardware Components 

Vision systems are occasionally supplied by the robot manufacturer and integrated 

with the controller, but usually are separate, with an interface to the robot controller 

as illustrated in Figure 2.26[14] 
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Figure 2.26: The components of a robot vision system 

2.4.1.6 Image Acquisition 

Visual information is converted to electrical signals by visual sensors. When sampled 

spatially and quantized in amplitude, these signals yield a digital image. 

The following is of importance with regard to digital images: 

1. The principal imaging techniques used for robotic vision 

2. The effects of sampling on spatial resolution 

3. The effects of amplitude quantization on intensity resolution 

The principal devices used for robotic vision are television cameras, consisting either 

of a tube or a solid-state imaging sensor, and associated electronics. 

As far as a color CCD camera is concerned, the captured image, which is made of a 

pixel array Ik(x, y) (where k = 1, 2, 3; x = 1, 2, …, m; y = 1, 2, …, n)  
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where size is m × n, contains the colour information and intensity of three colour 

channels. This colour pixel array can be represented as 
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The representation of pixel varies from the purposes of image processing. RGB (red, 

green, and blue) method, HSB (hue, saturation, and brightness) method, and CMYK 

(cyan, magenta, yellow, and black) method are commonly used. In the field of 

machine vision, RGB method is generally employed. In this case, each pixel is 

represented by three channels which denote red, green, and blue intensity 

respectively[32]. 

2.4.1.7 Applications of Vision include: 

1. Detecting object presence or type 

2. Determining object location and orientation before grasping 

3. Feedback during grasping 

4. Feedback for path control in welding and other continuous processes 

5. Feedback for fitting a part during assembly 

6. Reading identity codes 

7. Object counting 
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8. Inspection, e.g. of printed circuit boards to detect incorrectly inserted 

components 

2.5 Conclusion 

A large aspect of industrial robotics has been discussed as a whole, such as how robots 

are categorized according to their arm movement configuration, how they are utilized in 

automation applications, robot manipulator axis structure, robot kinematics and dynamics 

for both direct and inverse kinematics, the parameters of robot arm links and joints as 

defined and a 4 x 4 homogeneous transformation matrix is introduced to describe the 

location of the link with respect to the fixed co-ordinate frame. Another area of 

discussion is robot manipulator trajectory path planning, robot programming languages 

and methods, robot sensing and flow control methods which will play an important role 

in later chapters.  

In order to provide an industrial robot with remote flexibility, different communication 

protocols were discussed, focusing on the real-time issues as well as the Ethernet 

communication protocols, and protocol layers, which will ensure that the real-time 

system issues will be overcome.  

Robot movement flexibility can be enhanced, by providing the robot with a sensing 

device, such as a vision system. 

The fundamental concepts covered in this chapter will be used extensively in the chapters 

to follow, for deriving the equations of motion of an industrial ABB robot manipulator 

that describes the dynamic behaviour of a robot arm. 
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CHAPTER 3 

SYSTEM SETUP : 
HARDWARE AND SOFTWARE ARCHITECTURE 

This chapter provides a brief overview of the system architecture in terms of hardware 

and software components required and developed to achieve the integrated vision-based 

trajectory control system for an industrial ABB Robot. The system architecture provides 

the system platform overview of how the components were implemented in this research 

project. 

3.1 Introduction 

 

Figure 3.1: Communication Interfaces and Software development components for 
hardware sub-systems 
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In this research project to perform profile recognition and integrated robot control for 

industrial applications the following principle modules, as illustrated in Figure 3.1, were 

established:  

 Robot Vision, which consists of a CCD camera [23] and an AGP bus frame 

grabber [24]. The camera is fixed to the robot arm and captures an image of the 

object. It is interfaced to the frame grabber hardware, which provides the live 

images, this is controlled through 2D Flash Point API’s, the components are 

utilized to ensure that the image processing can be fulfilled. 

 Bridge PC-Based control system, which provides the system with an on-line robot 

trajectory motion control mechanism. The PC-Based control is equipped with 

FactoryWare Software, which provides the system with powerful communication 

components that ensure a stable Ethernet communication platform such as:  

 RobComm - equipped with a software toolkit for simplified 

communication control between PC control system and S4 robot 

controllers via Ethernet. 

 Rapid Application Protocol (RAP) - handles the synchronization 

services between the Bridge computer and the S4 robot controller. 

These services are provided by the FactoryWare interface options.      

 RobComm consists of ActiveX Components that are common to 

all applications, thereby enabling rapid application development.  
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 RobComm Server provides a status monitoring display, which 

provides current status of all the defined aliases and a tuning 

interface to adjust how RobComm communicates with each alias. 

 DDE Sever Engine provides a software building block that takes 

care of the communication with the robot and presents the robot 

data in a standard DDE format. Examples of applications that 

handle DDE communication are Microsoft “Excel”, which can be 

utilized for system visualization.  

 An ABB industrial robot IRB-1400 and controller, which can be accessed through 

S4 Ethernet or serial communication. S4 robot Controller has been equipped with 

a standard Ethernet hardware, enabling the system to communicate with other 

remote Ethernet devices, which utilized standard TCP/IP Ethernet protocols. This 

hardware enables the Ethernet integration between the Bridge Computer and the 

S4 robot controller. In order to initiate communication the following software 

components need to be established: 

 FactoryWare Services install all communication protocols 

available for Ethernet communication. 

 Ethernet Services, ensure that all relevant components become 

available in the S4 controller configuration environment, which 

will in turn initiate the Ethernet hardware in the robot controller 

hardware rank. 

 Rapid Application Protocols, handle the synchronization services 

between the S4 robot controller and the Bridge PC. 
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The aim of this PC-based experimental setup is to provide a platform for the 

manufacturing environment where continuous change in product, orientation and 

environment has a major effect on system setup. This will reduce the loss of production. 

The robot with vision sensory feedback is used to manipulate the robot trajectory path 

when there is a change in object profile and orientation. The robot is given this ability by 

means of a PC-Based Control system with vision and path manipulation software. A 

CCD camera provides a video image to a video frame grabber, which captures a 2D 

image of the environment of the robot. The Bridge PC software will process the image 

data and generate an image map which contains the object profile co-ordinates. The co-

ordinates are then used to generate the RAPID Robot trajectory path. The RAPID 

program is downloaded to the robot controller via an Ethernet serial communication link  

(TCP/IP Protocol). All robot control command events are managed via the Ethernet link. 

The Ethernet communication link is set up for peer-to-peer communication for this 

project setup. 

The Bridge PC is set up as the backbone and provides the link between the camera and 

robot controller. It has been set up with a host name “S4” and the Ethernet IP address 

100.100.100.1. The RobComm Server manages the Ethernet protocol between the Bridge 

PC and robot controller. The second Ethernet card manages the communication with the 

LAN. This provides the additional system flexibility. 
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When the system software starts up so does the RobComm Server and a dedicated 

communication link with the robot controller is established. This allows the ActiveX 

component to access all the relevant components needed for the research project. 

Before the installation of the relevant software the ABB IRB 1400 Industrial Robot at PE 

Technikon, did not have the capability of remote access from a remote server via an 

Ethernet link. The Ethernet hardware and all relevant Ethernet software protocols were 

installed. This enabled the robot with remote communication access. 

The Bridge PC was equipped with 2D-Video Frame Grabber hardware, which provides 

the platform for image processing for the robotic environment. 

3.2 Implementation Aspects for the Communications between 

hardware sub-systems 

In this project the three major hardware sub-systems, namely: Industrial Robot Controller 

and the vision sensory system were integrated with a PC-Based control system to 

facilitate real-time response capability. 

Figure 3.1 illustrates the hardware components and the software interface modules that 

was developed and integrated. The following sub-sections will give a brief outline on the 

hardware components which is illustrated Figures 3.2a-c, and from an implementation 

aspect of the communication modules and software development.  
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Figure 3.2a: 1400 ABB Robot, Vision Feedback Camera & Bridge PC -System Setup 

 

Figure 3.2b: 1400 ABB Robot Controller  & Bridge PC – System Setup 
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Figure 3.2c: 1400 ABB Robot Controller  & Bridge PC Hardware – System Setup 

3.2.1 Industrial Robot 

The robot being utilized in this research is an ABB IRB 1400 Industrial Robot, which 

was installed at the Manufacturing Technology Research Centre (MTRC) at PE 

Technikon. The robot consists of two major components, namely the manipulator and the 

controller. 

The robot manipulator has six axes, with spherically-jointed geometry. This provides the 

robot with six degrees of freedom (6DOF). The manipulator has three axes for 

positioning and three axes for orientation. The robot was designed for a manufacturing 

environment, specifically for flexible robot-based automation. 

The controller has a variety of flexible hardware enabling it to communicate with remote 

hardware using one of the following methods, e.g. I/O, Analog, Serial RS232, Serial 

Ethernet, etc. All of the methods use standard industrial interface mediums. The robot has 
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a work envelope of approximately 1.444 m radius with a repeatable position accuracy of 

0.05 mm. 

The S4C Controller is a standard controller and is used as the platform for twenty-two 

different ABB robots. The robot controller consists of three onboard computers to 

achieve control of the robot, its axis and to perform I/O. A dedicated Ethernet hardware 

controller manages all data transfer between the remote peripherals (under the TCP/IP 

protocol). The robot utilizes Baseware as the operating kernel system. This kernel 

provides complete control of the robot in order to control program execution, 

communication and motion. Application programs run on top of the operating kernel 

system. The ABB Robot programming language RAPID is used to program the robot for 

motion functionality. The programming environment consists of a number of dedicated 

functions, e.g. MOVEJ, MOVEL, etc. 

A module contains all data and functions. A program may consist of a number of 

modules, which include user-defined modules and system modules. Only one module will 

implement a main function, which is the entry point of the program. 

A teach pendant is connected to the controller and is used as the control and 

programming user interface. Pull-down menus, dialogues and windows are used to 

display information to the user. Touch keys and a joystick are provided as input devices. 

The controller is provided with Ethernet hardware, which allows the remote user to 

access robot information and status at high speed. This opens the window to the true 

sense of real-time control. The Ethernet link can be connected directly to the PC via              

peer-to-peer interface or via a network hub. The ABB Ethernet hardware and software 
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require four IP addresses for remote access, which increases the speed of access. The IP 

address of the remote device must not overlap the IP address of the robot. 

The network platform of the robot controller is managed via Factoryware software that is 

loaded on top of the baseware software and it utilizes the RAP protocol. The RAP 

protocol manages all data flow between the robot controller and the remote device.  

Figure 3.3 illustrates the robot controller Ethernet configuration sequence that is required 

in order for the Bridge-PC to establish a communication link via the FactoryWare 

software. Without this setup sequence the communication link would be unavailable.  

The following robot controller component entities are required, which will provide the 

Ethernet communication link:  

 Physical Protocol – Ethernet hardware controller card 

 Transmission protocol – providing the Industrial robot with a unique IP network 

address on the Ethernet LAN, IP Address utilized is 100.100.100.102, with a 

Sub-Net of 255.255.255.0 

 Application Protocol – protocol language which will be utilized by the robot, to 

handle critical data information about the robot controller and manipulator such 

as, controller status, manipulator TCP position, controller program position, etc 
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Figure 3.3:  Robot Controller Ethernet Communication Configuration 

3.2.2 Bridge PC 

The PC utilized for this research is a standard office PC with an AMD processor and 

512MB of onboard memory, which enhances the overall processing speed of the 

simulation software. Windows 98 operating system was selected due to the constraints of 

the software components needed for the robot communication. The PC was equipped 

with two standard 10 Base / 100 Ethernet hardware cards, which are used for robot 

communication and LAN.  An enhanced video frame grabber 3D graphic hardware card 

(Flash Point) was installed to process image data. 

The Ethernet hardware utilized for the peer-to-peer robot communication was set up with 

a static IP address 100.100.100.101, subnet 255.255.255.0 while the LAN IP address is 

dynamic and configured via the remote server, which is illustrated in Figure 3.4. 
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Figure3.4: Experimental Ethernet TCP/IP Configuration Robot & LAN Connection 

3.2.3 Robot Vision System 

The robot vision system consists of a CCD camera and a Flash Point 3D frame grabber 

was implemented. The following architecture consists as:  

3.2.3.1 CCD Camera Control 

CCD camera is the hardware core of vision system. SRC-503HP CCD camera is 

utilized. [23] It is a high performance CCD camera. It supports high-resolution output 
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up to 752×582V (440,000 pixels) and its scanning system provides 15,625 kHz (H) 

and 50 Hz (V). In addition, this camera model supports auto backlight compensation, 

auto white balance (AGC) and zoom [23].  

3.2.3.2 Flash Point 3D Frame Grabber Control 

Composite video image (Image resolution of 640×480) is captured by the frame 

grabber. The Flash point 3D video image brightness, contrast, saturation, etc are 

manipulating the image processing software to ensure that the best  possible image 

will be processed correctly. Flashpoint 3D frame grabber with PCI bus is employed in 

this application. This is a high-performance, low-cost PCI frame grabber which is 

able to capture and display full-frame color and video in real time to VGA display 

memory. It supports pixel format of 8/16/32 bits per pixel. It supports non-destructive 

overlay on live video [24].  

3.3 Software Architecture 

Figure 3.5 shows the software architecture indicating all the software components 

developed and how these components were integrated to establish an integrated robot 

vision control system. The software components were logically divided into the following 

modules: 

 Vision Recognition Classes      

 Robot Trajectory Control 

 RobComm Active X Components and DDE Engine  
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 S4 Robot RAPID Program Structure   

 

 

Figure 3.5: Software architecture – Integrated Robot Vision Control system 

The following sub-sections describes the implementation aspects of the software 

components developed: 
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3.3.1 Vision  Recognition Classes and Image API’s  

FP3D header is the primary library, which contains many vital type definition constants, 

structure definitions, and prototypes used when calling the Flash Point 3D API. 

Initialization of the Flash Point 3D library functions must be called to put a live image 

video window on the VGA display. This is illustrated in Figure 3.6. 

 

Figure 3.6: Illustrates frame grabber configuration sequence 

In general, four FlashPoint 3D library functions must be called to put a live video 

window on the VGA display, which is listed as follows: [24] 
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 FPV_Int function initializes FlashPoint VGA to the current loaded configuration 

values. 

 FPV_SetVideoConfig function sets the FlashPoint VGA’s video input 

configuration. 

 FPV_SetVideoWindow function sets the size and location of the video window on 

the FlashPoint VGA’s display. 

 FPV_VideoLive function starts or stops the incoming video. 

The grabbing video image is performed by using the following API functions: [24]  

 FPV_CopyVGARect, copies a rectangle of pixel data to or from the VGA frame 

buffer or offscreen buffer.  

 FPV_ScreenToDIB, create a DIB from a screen rectangle. 

 FPV_Savefile, saves an image bitmap from memory to disk. The file type is 

determined from the file extension. 

The default mode of grabbing the Flash Point 3D image assumes that the video is always 

on top. This means that if the video is partially covered by a window or graphics all of the 

video image is still copied. Once the image is grabbed into video memory, the image is 

processed and analyzed via algorithms. These algorithms were created in a Microsoft 

Visual C environment. The profile image map is extracted and processed to create a robot 

motion trajectory path, which is illustrated in Figure 3.7. 
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Figure 3.7: Vision Profile Extraction Architecture 

The Profile Image Extraction Architecture is composed of the following components:  

 Object profile image - captured into the frame grabber’s video memory, via the 

FPV_ScreenToDIB API image function. 

 Image Noise filtering - performs the image pre-processing module, which makes 

use of different filters, such as: Low pass, high pass, median, noise cleaning, 

averaging, smoothing, etc. 

 Image Extraction - performs from the thresholding algorithm, which produces a 

consistent binary image. 

 Profile Extraction - performs edge thinning to produce a one pixel thick boundary 

and then extracts the geometric features from the boundary. 
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 Image profile co-ordinate map is uploaded to an access database, which will be 

utilized to produce a profile trajectory path. 

3.3.2 Robot Trajectory Control 

The environment for an intelligent robot handling system is always regarded as 

unpredictable. The path trajectory engine must be planned online, the engine must receive 

a continuous flow of information about occurring events and generate new controls, while 

previously controlled motions are being executed. All relevant path trajectory co-ordinate 

positions must be generated on-line, transferring them to their respective goals.  

An architecture of trajectory program generation engine is shown in Figure 3.8 For robot 

handing system, the relationship between the robot coordinate system (tool coordinate 

system) and object coordinate system must be created. Transformation matrices are 

usually employed for this purpose. 

 

Figure 3.8 Robot trajectory generation engine 
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Robot trajectory generation engine architecture is composed of the following 

components: 

 Initialize Robot Path trajectory engine, which will automatically generate the 

robot trajectory RAPID program for an ABB robot controller. 

 The image map is downloaded from the Access Database, which contains the 

image data such as, profile position with respect to the object co-ordinate frame, 

size, orientation, and the pixel image ratio. 

 The image map is used to generate a kinematic trajectory path RAPID robot 

program for the current image profile, which will be mimicked by the robot. 

 The trajectory profile RAPID program is uploaded into the ABB control via an 

Ethernet communication link. Data transfer is synchronized by the software I/O 

mechanism to ensure that the robot controller does not react erratically during 

data transfer. 

 Motion Control, which handle the robot motion synchronization. 

3.3.3 RobComm ActiveX Components and DDE Engine 

3.3.3.1 RobComm ActiveX Components 

The Factoryware Interface option enables the robot system to communicate with a PC 

using RobComm. The RobComm Ethernet configuration is illustrated in Figure 3.9, 

whereby a unique Alias Name and IP address has to be created which is mapped to 
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the Bridge PC’s static IP address. This will provide the crucial link for the ActiveX 

component, to access parameter information from the robot controller: 

 

Figure 3.9: FactoryWare Configuration 

RobComm requires RAP communication services, which are uploaded to the robot 

controller. This will enable bi-directional communication flow. RobComm  is a 

collection of ActiveX Controls (OCX). The operation of the OCX controls is 

configured via the control properties. The OCX components provide a flexible, 

comprehensive communication interface to the S4 robot controller.  

RobbComm ActiveX controls support a 32 bit windows application created with 

Microsoft Visual Basic, Visual C, or Wonderware InTouch version 7.0. 
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RobComm is designed to run multiple applications, including multi-threaded 

applications. It can communicate with multiple S4 controllers without conflict. 

Applications developed with RobComm work via an Ethernet link to multiple robots. 

The Factoryware Interface includes RAP, based on MMS functionality. RAP is used 

for robot communication, and provide the following functions : 

 Start and stop execution 

 Transfer program to / from the robot 

 Transfer system parameters to / from the robot 

 Transfer files to / from the robot 

 Read the robot status 

 Read or write data 

 Read error messages 

 Change robot mode 

 Read logs 

RAP communication is available in both serial and network links as illustrated by 

Figure 3.10, the Ethernet network configuration has been utilized for this 

experimental setup, which adds an advantage to the real-time processing for this 

application [22].  
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Figure 3.10: S4 Robot Controller communication protocols 

3.3.3.2 S4 DDE Server 

ABB S4 DDE Server is designed to utilise the robot communication protocols and 

make you more productive by combining the power of PCs with that of the robots. 

The ABB S4 DDE Server is a software building block that takes care of the 

communication with the robot and presents the robot data in the standard DDE 

format. Any application that can “talk” the DDE “language” can communicate with 

the ABB robots via the ABB S4 DDE Server. Examples of applications that do DDE 

communication are Microsoft “Excel” and “InTouch” from Wonderware. With 

InTouch the user can build his own custom user interface, visualizing his production 

process. InTouch then needs the ABB S4 DDE  Server in order to communicate with 

the robots.The DDE Server communicates with the robots using the RAP protocol. It 

maintains a database of the relevant variables in the robot and makes sure that these 

DDE variables are kept updated all the time.  
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If new RAPID variables are introduced in the robot program, the DDE Server will 

create corresponding DDE variables “on-the-fly”. The application using the DDE 

Server can therefore concentrate on the user interface and rely on the updated DDE 

variables . The ABB S4 DDE Server provides reading and writing of I/O, RAPID 

variables and robot system variables. It supports spontaneous messages from the 

robot (SCWrite), as well as file operations. DDE Server DDE stands for Dynamic 

Data Exchange. It is a communication protocol designed by Microsoft to allow 

Windows applications to send and receive data from each other. It is implemented as 

a client/server mechanism. The server application (like the ABB S4 DDE Server) 

provides the data and accepts request from any other application that is interested in 

its data. Requesting applications (like InTouch) are called clients. To obtain data from 

another application the client program opens a channel to the server application by 

specifying three things:  Figure 3.12 illustrates the ABB S4 DDE Server environment, 

the application name is “ABBS4DDE”. A topic represents a logical connection to a 

robot, and identifies the individual robot. The topic names are defined when you 

configure the robots in the DDE server. Figure3.11 illustrates the format for 

addressing the DDE items. 

 

Figure 3.11: DDE addressing structure 
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Figure 3.12: DDE Server Engine  

3.3.4 S4 Robot RAPID Program Structure  

A RAPID program consists of instructions and data. The program is usually made up of 

three different parts: 

 A main routine 

 Several subroutines 

 Program data 

The program memory contains system modules. The main routine is the routine from 

which program execution starts. Subroutines are used to divide the program up into 

smaller parts in order to obtain a modular program that is easy to read and maintain. Data 

is used to define positions, numeric values (registers, counters) and co-ordinate systems, 

etc. The structure of RAPID program is shown in Figure 3.13. 
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Figure 3.13:  S4 ABB Controller RAPID program structure 

System modules are programs that are always present in the memory. Routines and data 

related to the installation rather than the program, such as tools and service routines, are 

stored in system modules.  

ABB Robot RAPID trajectory path structure is composed of the following components. 

This program structure will be utilized to form the main robot motion components in the 

experimental setup. The RAPID program structure, which is utilized in the experimental 

setup is illustrated in Figure 3.14, it comprises of the following components: 

 Main Program Routine – which handles the sub-routine call synchronization. 

 Persistence Robot Target Variables declaration. 

 Static Sub-Routines – this handles the static robot target co-ordinate routines. 

 Dynamic Sub-Routine – this handles the dynamic object co-ordinate frame. 
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Figure 3.14:  ABB Robot RAPID trajectory path structure 

3.4 Conclusion 

This chapter focused on the integrated hardware and software architecture for the 

communication and software development modules that will enable real-time robotic 

vision guided control.  

This architecture allows an industrial robot system to respond to changes of object 

displacement and orientation, which would in turn possibly provide the system with 

additional flexibility. This can be achieved by a robot vision sensory feedback system and 

a PC-based robot control system. Object-oriented techniques are employed in the 

software development. PC-bus interface cards (frame grabber, PMAC card, data 

acquisition card, and Ethernet card) are utilized, as well as ActiveX techniques are widely 

exploited to build up a configurable system. The proposed architecture in Figure 3.1 puts 
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forward a generic framework for a remote PC-Based robot control system, which 

organizes the system hardware and software components and reveals their relationships. 

Chapter 4 will describe the development of the software modules required to control the 

robot motion based on the visual information. The software components to perform 

object recognition is discussed in Chapter 5. 
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CHAPTER 4              

PC-BASED ROBOT TRAJECTORY PATH 

CONTROL SYSTEM 

 

To achieve this control software algorithms were developed using the robotic RAPID 

motion fundamental instruction set, RAPID programming environment, direct and 

inverse kinematics path trajectory control fundamentals, RAP Communication and Robot 

DDE Server aspects described in Chapter 2 and Chapter 3.  

Figure 4.1 illustrates the control architecture that was constructed to achieve the PC-

Based robot control mechanism as well as the interface to the vision sensory system 

described in Chapter 5. In order to achieve the above control mechanism, robot motion 

fundamentals were developed into algorithms, which will be discussed in detail. The 

programming architecture provides a platform for further development of a remote robot 

control. It also considers all software components implemented in the development of 

robot control via an Ethernet communication to an ABB industrial Robot Controller, 

communication aspects although indicated, were covered in Chapter 3. 
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 Figure 4.1: PC-Based Robot Trajectory Path Control Architecture 

The PC-Based Robot Trajectory control system receives a profile map from the vision 

sensory system, it consists of the following components: 

 Frame Grabber  

The CCD Camera provides the vision sensory feedback system for this research 

project, which provides the system with greater movement flexibility.  

 Image Processing        

Image processing Class – A raw image is captured into dynamic memory where 

algorithms analyze the binary map of the image by filtering and cleaning random 
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noise. Threshold is utilized to provide a gray-scale of the image. The object can 

be clearly distinguished from the background.         

 Profile Extraction    

Profile Extraction Class – Utilizes close chain vectors, which utilizes standard 

mathematic alogorithms. This ensures that the chain profile segments contain the 

magnitude and position of the object.  

 Profile Manipulation and Trajectory program generation Engine 

This uses the extracted profile to automatically create a robot trajectory path that 

will track the image. 

 Image Database  

This provides a storage medium that handles the image profile co-ordinate map. 

The co-ordinates will be utilized by the robot trajectory program generation 

engine to create a RAPID trajectory program.   

 Profile Manipulation and Trajectory Program Generation Engine 

The PC-Based RAPID program engine was developed to provide a platform for 

the trajectory path control. This engine provides an environment for basic RAPID 

motion program development and control. This environment utilizes direct and 

inverse kinematics path modeling algorithms to control TCP position of the robot 

manipulator. The RobComm ActiveX components form the most important 

building blocks for the research platform, which provides the tools for the system 
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integration. The vision feedback system is integrated via a PC-Based robot control 

to an industrial robot controller. Without this ActiveX component the research 

would not have been possible.   

 Communication Control 

The control mechanism establishes and maintains the communication link 

between the motion control engine and the RobComm server.   

 Motion Control  

The control mechanism synchronizes robot motion control.   

 DDE Server Engine 

The DDE server engine provides additional programming flexibility for industrial 

Visualization software environments. [Intouch Wonderware SCADA Software] 

The following sub-sections provide the fundamentals for the RAPID programming 

environment, which are used to construct software algorithms that will transform the 

image profile to actual trajectory motion commands in order for the system to trace the 

image profile on-line. 

4.1 Robot RAPID Motion Control Commands 

Path motion forms the main component of any industrial robot. Figure 4.2 illustrates the 

move command structure for an ABB robot controller, which will servo the robot 

manipulator to specific path co-ordinates that have been predefined or calculated from 
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robot kinematics algorithms. The Industrial robot MOVE command is structured as 

illustrated in Figure 4.2.  

 

Figure 4.2: MOVE command architecture 

MOVE Command consist of the following components:  

 MOVEL = Linear path motion 

 P1 = the destination position to which the robot is to move 

 V100 = Motion Speed 

 Z10 = Zone size (accuracy) , i.e. how close the robot must be to the destination 

position before it can start to move towards the next position 

 TOOL1 = Current Tool Position (TCP) 
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Motion MOVE Instruction 

The robot manipulator position control managed in this research project is illustrated in 

Figure 4.3. 

 Linear Motion MOVE[L] 

 The linear motion functionality   

Joint Motion MOVE[J] 

The JOINT motion functionality  

Joint Motion MOVE[C] 

This JOINT motion was not utilized in the research project, but is available to the 

robot system. 

 

 

Figure 4.3: Motion path type commands 
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Motion SPEED and ZONE size specification 

The speed and zone size refer to different data fields, which include the desired speed in 

mm/s, zone size in mm, etc. You can create and name these data fields yourself, but the 

most commonly used values are already available. 

Motion TOOL TCP 

One must then specify the tool, its dimensions and weight, in the tool data. The TCP of 

the tool is moved to the specified destination position when the instruction is executed, as 

illustrated in Figure 4.4 

 

  MoveL p1, v200, z10, tool1 
 MoveL p2, v100, fine, tool1 

  MoveL p3, v500, fine, tool1 

Figure 4.4: Positioning the robot  
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4.2 RAPID Program Data Types 

Figure 4.5 displays the variable declaration for a robot target position which will be 

utilized in the remote manipulation/construction software for robot position manipulation.  

 

Figure 4.5: Robtarget variable declaration 

The robot target variables consist of the following structures. It contains a (x, y, z) co-

ordinate frame with  (q1, q2, q3, q4) which indicates the robot orientation position. The 

data type “Robtarget” is used for the robot’s position, which includes the orientation of 

the tool and the configuration of the axes. 

 Var POS position (x,y,z) 
 POS START_POS 
 START_POS:=[500,0,940] 

The data type “Orient” is used for orientation (such as the orientation of a tool) and 

rotation (such as the rotation of a co-ordinate system). 

 Var ORIENT Orient 
 ORIENT ORIENT1 
 ORIENT1:=[1,0,0,0] 

The orientation must be normalized and the sum of the system must be equal to one. 
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A quarternion describes the rotational matrix. Quarternions are calculated based on the 

elements of the rotational matrix. Figure 4.6 illustrates the orientation algorithms. 
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Figure 4.6: Quarternions algorithms 

4.3 ABB Robot RAPID Program and Motion Control 

In this research project the robot motion is controlled from the RAPID program, which 

has been automatically generated from the PC-Based Trajectory application. There is 

numerous programming structures that can be utilized, these structures are selected 

depending on required motion tasks. The current programming structure that was 

developed creates a flexible approach to achieve the end goal of the research project. The 

program has been segmented into a main program with a dynamic sub-routine and 

numerous static sub-routines.  

The static components are position co-ordinates that are utilized for calibration, object 

viewing, and object co-ordinate marker positions. The dynamic component manipulates 

the robot manipulator with respect to the object profile position co-ordinate map. Figure 

4.7 illustrates the program components architecture (static and dynamic). These 

components will be discussed in detailed below. 
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This co-ordinate map contains the orientation and position of the object profile. The CCD 

camera sensory feedback provides a closed loop system for the robot. 

The object image is viewed via a CCD camera. Image processing software manipulates 

the captured object profile, which extracts the image co-ordinate map. This co-ordinate 

map is fed back to the robot controller which servo’s the robot manipulator to trace the 

object profile.  

 
 
 

 

Figure 4.7: RAPID Robot program architecture 
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The RAPID program consist of the following components: 

The program architecture is illustrated in Figure 4.7. 

     Static RAPID Sub-routines  

 Main Robot program routine 

Main RAPID Program routine handler ensures that the correct routines are 

manipulated when requested by the remote trajectory application. The program 

sub-routines CALL synchronization utilizes a software handshake routine that has 

been developed. This handshake has been configured in such that the software  

“INDEX_MARKER” provides an index. This index ensures that the correct sub-

routine is called at the appropriate time. Due to the constraints of the RobComm 

ActiveX components a task program structure was developed whereby the 

numeric “INDEX_MARKER” variable was utilized to CALL the correct program 

sub-routine, for example when the “INDEX_MARKER=4” the system would 

jump to the “MIMIC_PROFILE” sub-routine. This would in turn trace the image 

profile, once the routine has been completed the “INDEX_MAKER=0” and return 

the main program routine.  

This “INDEX_MARKER” has been configured to be a persistent variable, which 

can be manipulated from the remote application. 

The Main RAPID program routine is illustrated below.  
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//**************************************************************** 
PROC main() 
    WHILE(TRUE)  
 

//SUB ROUNTINE THAT SERVO’S THE MANIPULATOR  
//TO A ZERO DEGREE REFERENCE POSITION. 
 
IF INDEX_MARKER=1 THEN 

        HOME; 
     ENDIF 
 
     //SUB ROUNTINE THAT SERVO’S THE MANIPULATOR 
 //TO THE OBJECT VIEWING POSITION IO ORDER TO CAPTURE 
 //THE VIEWED IMAGE. 

 
IF INDEX_MARKER=2 THEN 

        CAMERA_BIRD_VW; 
     ENDIF 
 
      
 

//SUB ROUNTINE THAT PROVIDES THE SYSTEM WITH A  
 //CALIBRATION REFERENCE LINE.  

 
IF INDEX_MARKER=3 THEN 

        CAL_OBJ; 
     ENDIF 
 

//DYNAMIC SUB ROUNTINE THAT IS UTILIZED TO CONTROL 
//THE MOTION WITH RESPECT TO THE OBJECT PROFILE. 
 
IF INDEX_MARKER=4 THEN 

        MIMIC_PROFILE; 
     ENDIF 
 
 

//SUB ROUTINE THAT PROVIDES A SIMPLE MECHANISM  
//TO CAPTURE THE OBJECT CO-ORDINATE REFERNECE  
//FRAME 
 
IF INDEX_MARKER=5 THEN 

        OBJ_CFRAME; 
     ENDIF 
 
ENDPROC 
//**************************************************************** 
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 Robot Home Position Sub-routine 

The robot HOME position routine forms part of the static movement commands. 

Once the command has been called, the system will request the robot controller to 

rotate and move all robot manipulator axes to their HOME position, which is the 

zero degree state. Figure 4.8 graphically illustrates the RAPID sub-routine call 

procedure.  

 

Figure 4.8: Home sub-routine function 

The software source code is illustrated below: 
//**************************************************************** 
SUB Routine RAPID program  
PROC HOME() 
    MoveAbsJ[[0,0,0,0,0,0], 

[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]] 
,v200,z50,tool0; 

 ENDPROC 
 
//**************************************************************** 
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 Robot Camera view position Sub-routine 

The robot “CAMERA_BIRD_VW” position routine forms part of the static 

movement commands .The robot controller will move the robot manipulator to 

the relevant position where the test object can be viewed correctly. A software 

BOOL flag “CAPTURE” is utilized for the system to be synchronized when the 

image has been correctly captured. The position will be maintained until the 

system request the robot controller to return the manipulator to the “HOME” 

position. Figure 4.9 graphically illustrates the RAPID sub-routine call procedure.  

 

 
 
 

Figure 4.9:  Robot camera view sub-routine 
 
The software source code is illustrated below : 
//**************************************************************** 
PROC CAMERA_BIRD_VW() 
    MoveJ CBV1,v200,z50,tool0; 
    MoveJ CBV2,v200,z50,tool0; 
    MoveJ CBV3,v200,z50,tool0; 
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    MoveJ CBV4,v100,z50,tool0; 
    WaitUntil CAPTURE=1; 
    MoveAbsJ[0,0,0,0,0,0], 

[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]] 
,v200,z50,tool0; 

    INDEX_MARKER:=0; 
ENDPROC 
//**************************************************************** 

 CCD Camera Pixel Ratio Calibration Sub-routine 

The robot “CAL_OBJ” position routine forms part of the static movement 

commands. This routine is utilized for system calibration where the robot 

manipulator will be commanded to mark off a specific calibration length that has 

been pre-programmed, for the vision system which will view the refer calibration 

marker and the object image pixel ratio can be calculated, to ensure that the 

correct object view is with in correct proportions. Figure 4.10 graphically 

illustrates the RAPID sub-routine call procedure.  

 

Figure 4.10: CCD camera pixel ration calibration 

The software source code is illustrated below: 
//**************************************************************** 
PROC CAL_OBJ() 
     

MoveJ CO1,v150,z50,tool0; 
MoveJ CO2,v150,z50,tool0; 
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MoveL Offs(CO2,0,200,-30),v50,z1,tool0; 
      MoveAbsJ[[0,0,0,0,0,0], 

[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]], 
v200,z50,tool0; 

INDEX_MARKER:=0; 
 
ENDPROC 
//**************************************************************** 

     Dynamic RAPID Sub-routine 

 MIMIC Profile Object Frame Sub-routine 

The robot “MIMIC_PROFILE” position routine forms the main part of the 

dynamic movement routines. This routine is utilized for the object profile, to trace 

the captured image, which is used to manipulate the robot manipulator to the 

required trajectory movement profile. Figure 4.11a-b graphically illustrates the 

RAPID dynamic sub-routine call procedure which traces the object profile.  

 

Figure 4.11a: Mimic profile object sub-routine 
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Figure 4.11b: Mimic profile object sequence 
 
The software source code is illustrated below : 
//**************************************************************** 
PROC MIMIC_PROFILE() 
     
PROC MIMIC_PROFILE() 
    MoveJ PRP1,v150,z50,tool0; 
    MoveJ PRP2,v150,z50,tool0; 
 
    START_POS:=PRP2; 
    MoveJ START_POS,v150,z50,tool0; 
    MoveL Offs(START_POS,0,0,0,Z_OFFSET),v150,z50,tool0; 
    MoveL Offs(START_POS,X_POS1,Y_POS1,Z_OFFSET),v150,z50,tool0; 
    MoveL Offs(START_POS,X_POS2,Y_POS2,Z_OFFSET),v150,z50,tool0; 
    MoveL Offs(START_POS,X_POS3,Y_POS3,Z_OFFSET),v150,z50,tool0; 
    MoveL Offs(START_POS,X_POS4,Y_POS4,Z_OFFSET),v150,z50,tool0; 
    MoveJ PRP3,v150,z50,tool0; 
     
MoveAbsJ 
[[0,0,0,0,0,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]],v200,z50,tool0; 
  ENDPROC     
    MoveAbsJ[[0,0,0,0,0,0], 

[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]], 
v200,z50,tool0; 

ENDPROC 
//**************************************************************** 
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In order for the remote system to servo the robot manipulator to a required target 

position, the robtarget variables have to be configured as “PERSISTENCE =  PERS“, this 

ensures that the RobComm handler can re-configure the target positions on the fly.  

The RAPID variable structure is illustrated below: 

//********************************************************************* 
PERS robtarget PRP4:=[[955.01,0,1195],[0.707106,2E-06,0.707108,2E-06],                
[0,0,-1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]; 
 
Constant robtarget PRP3:=[[1146.26,-187.55,576.24],[0.008364,0.118848,-0.992864,-
0.005275],[-1,0,-,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]; 
//********************************************************************* 
   

4.4 Robot Motion Control using Kinematics 

A mechanical manipulator can be modeled as an open-loop articulated chain with several 

rigid bodies (links) connected in series by either revolute or prismatics joints driven 

actuators. One end of the chain is attached to a supporting base while the other end is free 

and attached with a tool (end-effector) to manipulate objects or perform assembly tasks. 

The relative motion of the joints results in the motion of the links that positions the hand 

in a desired orientation. In most robotic applications one is interested in the spatial 

description of the end-effector of the robot manipulator with respect to a fixed reference 

co-ordinate system.  

Robot arm kinematics deals with the analytical study of the geometry of the motion of a 

robot arm with respect to a fixed reference co-ordinate system. In this research project 

two modeling methods are dealt with which form the basis in which the ABB IRB 1400 

robot is controlled.  
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Figure 4.12: Direct and inverse kinematics relationship 

Since the independent variables in a robot arm are the joint variables and a task is usually 

stated in terms of a reference co-ordinate frame, the inverse kinematics problem is used 

more frequently. Figure 4.12 illustrates the relationship between these two modeling 

methods. 

4.4.1 Direct Kinematics Solution 

There are numerous methods and algorithms used to determine and display the tool center 

position value of the robot. The method used in this project, the Denavit-Hartenberg (D-

H) theory, states that a 4x4 homogeneous transformation matrix represents each link co-

ordinate system at the joint with respect to the previous link co-ordinate system. Thus, 

through sequential transformations, the end-effector expressed in the “hand co-ordinates” 

can be transformed and expressed in the “base co-ordinate” which makes up the inertial 

frame of the dynamic system.   
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4.4.2 Direct Kinematic Computation for an IRB 1400 Robot 

An orthonormal cartesia co-ordinate system (xi, yi, zi) can be established for each link at 

its joint axis, where i = 1, 2, …, n (n = number of degrees of freedom) plus the base co-

ordinate frame. Since a rotary joint has only one degree of freedom, each  (xi, yi, zi) co-

ordinate frame of the robot arm corresponds to joint i + 1 and is fixed to link i. When the 

joint actuator activates joint i, link i will move with respect to i – 1. 

The base co-ordinates are defined as the 0th co-ordinate frame (xo, yo, zo), which is also 

the inertial co-ordinate frame. With respect to the ABB IRB 1400 robot, the tool                 

co-ordinate system is referenced by (x6, y6, z6). 

Co-ordinate frames are established based on the following rules: 

 The zi –1 axis lies along the axis of motion of the i’th joint. 

 The xi axis is normal to the zi –1 axis, and points away from it. 

 The yi axis completes the right-handed co-ordinate system. 

 

Figure 4.13: Link parameters and joint angle range for the ABB 1400 Industrial 

Robot 
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These link robot parameters, which are illustrated in Figure 4.13, are the true offset 

values for a ABB robot which is utilized in the forward kinematics algorithms. This, 

ensure that the correct TCP of the robot will be calculated. 

Kinematic Equations for an ABB Industrial Manipulator 

The homogenous matrix, H
RT   which provides the robot tool centre position and 

orientation with respect to the base co-ordinate system, needs to be calculated by a matrix 

chain product of successive co-ordinate transformation matrices of i
i A1− , and is expressed 

as   

niforAAAAAAT i
i

i
o ......2,1___............... 1

5
4

4
3

3
2

2
1

1
0 == −
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1000
iiii pzyx

 

where 
 

[ ]iiii pzyx  = orientation matrix of the ith co-ordinate system  
established at the link [i] with respect to the base 
co-ordinate system. It is the upper left 3x3 

partitioned matrix of iT0
 

 
ip  = position vector which points from the origin of 

the base co-ordinate system to the origin of the ith 
co-ordinate system. It is the upper right 3x1 

partitioned matrix of iT0
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Figure 4.14: ABB Industrial Robot link co-ordinate transformation matrices 

Specifically, for [i]=6, we obtain the T matrix, 6
0AT =  , which specifies the position and 

orientation of the endpoint of the manipulator with respect to the base co-ordinate system. 

The final robot arm matrix T for an ABB robot manipulator is given below with the 

equations for each of the matrix structures. The calculations equation was utilized to 

calculate the joint solution for a given set of joint angles. 
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where 
  
 n  = normal vector of the hand 
  
 s  = sliding vector of the hand 
 
 a =  approach vector of the hand 
 
 p =  position vector of the hand  
 
 

The direct kinematics solution of the six-link ABB robot manipulator is, simply a matter 

of calculating 6
0AT =  , by chain multiplying the six i

i A1− ,  matrices and evaluating each 

element of T matrix.   

For an ABB1400 Industrial robot, arm matrix T is found as follows: 
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where 
 
 

 
 

All calculations were implemented in the RAPID program generation engine for an 

industrial ABB IRB1400 manipulator, shown in section 4.4.4. The robot manipulator was 

positioned in specific locations and the robot controller TCP was correlated with the 

matrix calculation to verify the position accuracy [7]. 
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4.4.3 Analytical computation of the inverse kinematic model 

Computing the inverse kinematic position model (IKPM) of a robot arm is explained in 

terms of the basic trigonometric method for simple plane robot arms[27][28]. This 

approach has been utilized on the ABB IRB 1400 robot with respect to the plane joint 

axis. 

 

 

Figure 4.15: Planar 3-R Manipulator with the three reference joint angles 
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Transform joint co-ordinates to the end effector co-ordinates: 
  

 

Solving nonlinear trigonometric equations using a ‘atan2’ equation. The following non-

trigonometric equations steps, illustrate how joint manipulator angles can be calculated as 

follows: 

STEP 1: The calculation of Angle1: 

 

 

STEP2: 

 

 

STEP3: 
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STEP4: The calculation of Angle2: 

 

STEP5: The calculation of Angle3: 

 

 



 
  

112

4.4.4 Software Implementation of Robot Kinematics 

During the operational setup of this research project all software implemented for 

robot kinematics was constructed using Microsoft Visual Basic 6, instead of Visual C. 

This was due to the limitations of the RobComm ActiveX components. A kinematic 

function was created, which managed and manipulated the robot co-ordinate frame. 

This was dependent on the axis orientation angles. This function provides the full 

functional calculation of direct kinematics as well as the quarternions value of         

(q1 – q4). 

The quarternion value represents the rotational matrix of the tool co-ordinate system 

angle with respect to the robot base co-ordinate system. As seen in the previous 

section, the ABB robot positional structure is divided into the tool centre position    

(x, y, z) and the orientation of this TCP with respect to the quarternions (q1 – q4). 

This is the reason why the robot orientation is expressed in quarternion instead of axis 

angle position.  

The final arm matrix H
RT   is the relationship between the base and the tool as 

illustrated below. 
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Rotational Matrix 

 

 

The matrix is structured in the following manner. Three 3D vectors, vectors n, s, a, 

correspond to the rotated x, y, z, axis with respect to the tool co-ordinate system and 

the robot base co-ordinate system. 

The value of nx will then be the x component of the x vector. The quarternion values 

can be calculated using this matrix value as illustrated by the following equation: 

 

2
1321

1

+++
=

zyx
q  

2
1321

2

+−−
=

zyx
q  sign q2 = sign (y3-z2)  

2
1312

3

+−−
=

zxy
q  sign q3 = sign (z1-x3)  

2
1213

4

+−−
=

yxz
q  sign q4 = sign (x2-y1)  

 

 

Figure 4.16 illustrates the ABB robot remote kinematic programming environment, 

which provides a more flexible approach to remote RAPID robot programming 

environment. 
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Figure 4.16: Robot Path Engine environment 

The Visual Basic source code for the direct kinematics computation is illustrated 

below which is used to manipulate the robot TCP and orientation: 

//******************************************************************* 
// Convert the Angle Degree value to RAD value for computation requirements  
A1 = AD1 * (PI / 180) 
A2 = AD2 * (PI / 180) 
A3 = AD3 * (PI / 180) 
A4 = AD4 * (PI / 180) 
A5 = AD5 * (PI / 180) 
A6 = AD6 * (PI / 180) 
 
 
ROBOT_ANGLE1 = AD1 
ROBOT_ANGLE2 = AD2 
ROBOT_ANGLE3 = AD3 
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ROBOT_ANGLE4 = AD4 
ROBOT_ANGLE5 = AD5 
ROBOT_ANGLE6 = AD6 
 
//Link parameters   
 
ROBOT_OFFSET_ANGLE1 = Val(AO1) // 0 
ROBOT_OFFSET_ANGLE2 = Val(AO2) // -90 
ROBOT_OFFSET_ANGLE3 = Val(AO3) // 0 
ROBOT_OFFSET_ANGLE4 = Val(AO4) // 0 
ROBOT_OFFSET_ANGLE5 = Val(AO5) // 0 
ROBOT_OFFSET_ANGLE6 = Val(AO6) // 180 
 
//Correct angles for correct robot operations 
SN1 = Sin((ROBOT_ANGLE1 + ROBOT_OFFSET_ANGLE1) * PI / 180) 
CS1 = Cos((ROBOT_ANGLE1 + ROBOT_OFFSET_ANGLE1) * PI / 180) 
 
SN2 = Sin((ROBOT_ANGLE2 + ROBOT_OFFSET_ANGLE2) * PI / 180) 
CS2 = Cos((ROBOT_ANGLE2 + ROBOT_OFFSET_ANGLE2) * PI / 180) 
 
SN3 = Sin((ROBOT_ANGLE3 - ROBOT_ANGLE2 + ROBOT_OFFSET_ANGLE3) 
* PI / 180) 
CS3 = Cos((ROBOT_ANGLE3 - ROBOT_ANGLE2 + 
ROBOT_OFFSET_ANGLE3) * PI / 180) 
 
SN4 = Sin((ROBOT_ANGLE4 + ROBOT_OFFSET_ANGLE4) * PI / 180) 
CS4 = Cos((ROBOT_ANGLE4 + ROBOT_OFFSET_ANGLE4) * PI / 180) 
 
SN5 = Sin((ROBOT_ANGLE5 + ROBOT_OFFSET_ANGLE5) * PI / 180) 
CS5 = Cos((ROBOT_ANGLE5 + ROBOT_OFFSET_ANGLE5) * PI / 180) 
 
SN6 = Sin((ROBOT_ANGLE6 + ROBOT_OFFSET_ANGLE) * PI / 180) 
CS6 = Cos((ROBOT_ANGLE6 + ROBOT_OFFSET_ANGLE) * PI / 180) 
//Calculated arm matrix values 
Nx = CS1 * (CS2 * CS3 - SN2 * SN3) * (CS4 * CS5 * CS6 - SN4 * SN6) + SN1 * 
(SN4 * CS5 * CS6 + CS4 * SN6) - CS1 * SN5 * CS6 * (CS2 * SN3 + SN2 * CS3) 
Nxx = Val(Nx) 
Ny = SN1 * (CS2 * CS3 - SN2 * SN3) * (CS4 * CS5 * CS6 - SN4 * SN6) - CS1 * 
(SN4 * CS5 * CS6 + CS4 * SN6) - SN1 * SN5 * CS6 * (CS2 * SN3 + SN2 * CS3) 
Nyy = Val(Ny) 
Nz = -(SN2 * CS3 + CS2 * SN3) * (CS4 * CS5 * CS6 - SN4 * SN6) + SN5 * CS6 * 
(SN2 * SN3 - CS2 * CS3) 
Nzz = Val(Nz) 
Sx = -CS1 * (CS2 * CS3 - SN2 * SN3) * (CS4 * CS5 * SN6 + SN4 * CS6) - SN1 * 
(SN4 * CS5 * SN6 - CS4 * CS6) + CS1 * SN5 * SN6 * (CS2 * SN3 + SN2 * CS3) 
Sxx = Val(Sx) 
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Sy = -SN1 * (CS2 * CS3 - SN2 * SN3) * (CS4 * CS5 * SN6 + SN4 * CS6) - CS1 * 
(SN4 * CS5 * SN6 - CS4 * CS6) + SN1 * SN5 * SN6 * (CS2 * SN3 + SN2 * CS3) 
Syy = Val(Sy) 
Sz = (SN2 * CS3 + CS2 * SN3) * (CS4 * CS5 * SN6 + SN4 * CS6) - SN5 * SN6 * 
(SN2 * SN3 - CS2 * CS3) 
Szz = Val(Sz) 
Ax = -CS1 * CS4 * SN5 * (CS2 * CS3 - SN2 * SN3) - SN1 * SN4 * SN5 - CS1 * 
CS5 * (CS2 * SN3 + SN2 * CS3) 
Axx = Val(Ax) 
Ay = -SN1 * CS4 * SN5 * (CS2 * CS3 - SN2 * SN3) - CS1 * SN4 * SN5 - SN1 * 
CS5 * (CS2 * SN3 + SN2 * CS3) 
Ayy = Val(Ay) 
Az = CS4 * SN5 * (SN2 * CS3 + CS2 * SN3) + CS5 * (SN2 * SN3 - CS2 * CS3) 
Azz = Val(Az) 
 
Px = (-CS1 * CS4 * SN5 * d6 * (CS2 * CS3 - SN2 * SN3)) - (SN1 * SN4 * SN5 * 
d6) - (CS1 * (CS2 * SN3 + SN2 * CS3) * (d6 * CS5 + d4)) + (CS1 * (aa3 * CS2 * 
CS3 - aa3 * SN2 * SN3 + aa2 * CS1 * CS2 + aa1)) 
Py = -SN1 * CS4 * SN5 * d6 * (CS2 * CS3 - SN2 * SN3) + CS1 * SN4 * SN5 * d6 - 
SN1 * (CS2 * SN3 + SN2 * CS3) * (d6 * CS5 + d4) + aa3 * SN1 * SN2 * SN3 - aa3 
* SN1 * SN2 * SN3 + aa2 * SN1 * CS2 + aa1 * aa1 * SN1 
Pz = CS4 * SN5 * d6 * (SN2 * CS3 + CS2 * SN3) + (SN2 * SN3 - CS2 * CS3) * (d6 
* CS5 + d4) - (aa3 * SN2 * CS3 + aa3 * CS2 * SN3 + aa2 * SN2) + d1 
 
//Calculations of Quarternion values of a direct kinematics 
q1 = (Sqr(Nxx + Syy + Azz + 1) / 2) 
q2 = (Sqr(Nxx - Syy - Azz + 1) / 2) 
q3 = (Sqr(Syy - Nxx - Azz + 1) / 2) 
q4 = (Sqr(Azz - Nxx - Syy + 1) / 2) 
'q1 = Sqr(1.75) / 2 

 
//******************************************************************* 

4.5 Software Modules for robot motion control 

It was discovered during the research that programming a robot with a teach pendant was 

very time consuming. A Visual Basic programming platform was developed to minimize 

the development time. In future applications, key functions could be utilized to 

demonstrate the remote programming capability. 
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Figure 4.17 illustrates the remote RAPID program architecture for motion control. 

 

Figure 4.17: Program Modules and architecture for motion control 

 Program Header 

To ensure that the ABB robot controller will respond correctly to the 

automatically generated robot program, it is critical the correct program structure 

is generated via the remote robot program engine as illustrated in Figure 4.17. The 

following source code below displays the source code required to generate the 

ABB robot path trajectory program. 

The  “RobotPrgMAINHeader function will structure the robot program with the 

correct file header and footer. 
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//*************************************************************** 
// Robot Program HEADER 
Sub RobotPrgMAINHeader(FileName_X As String) 
Dim FileName As String 
Dim FileString As String 
 
FileName = FileName_X 
'Robot File *.prg 

Open "c:\" + FileName + ".prg" For Append As #1   ' Open file for output. 
FileString = "" 
Print #1, FileString 
List1.AddItem FileString 
FileString = "  PROC main()" 
Print #1, FileString 
List1.AddItem FileString 

Close #1    ' Close file. 
End Sub 
//**************************************************************** 
 
 Program Footer 

 
//****************************************************************
Sub RobotPrgFooter(FileName_X As String, PRG_Name As String) 
Dim FileName As String 
Dim FileString As String 
FileName = FileName_X 
'Robot File *.prg 

Open "c:\" + FileName + ".prg" For Append As #1   ' Open file for output. 
FileString = "ENDMODULE" 
List1.AddItem FileString 
Print #1, FileString 

Close #1    ' Close file. 
End Sub 
//**************************************************************** 
 
 Robot_RobTarget Variable declaration 

 

Once the user has generated the robot trajectory header structure, manipulator 

movement or Number variables can be generated via the Robot_robtargetVar and 

Creat_Robot_NUMVar function. The type structure items can be requested via 

the software function as discussed above. The software source code is illustrated 

below: 
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//**************************************************************** 
Sub Creat_Robot_robtargetVar(FileName_X As String, VAR_Type As String, 
VAR_Name As String, VAR_Name_ArrayCNT As String, x As Variant, y As 
Variant, z As Variant, q1 As Variant, q2 As Variant, q3 As Variant, q4 As 
Variant) 
'  format 
'  PERS robtarget START_POS:=[[1054.66,-320.13,571.33],[0.002583,-
0.053022,0.998589,0.001637],[-1,0,-
1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]; 
   
Dim FileName As String 
'config var format 
x = Format(x, "0.00") 
y = Format(y, "0.00") 
z = Format(z, "0.00") 
 
 
q1 = Format(q1, "0.000000") 
q2 = Format(q2, "0.000000") 
q3 = Format(q3, "0.000000") 
q4 = Format(q4, "0.000000") 
 
FileName = FileName_X 
'Robot File *.prg 
Open "c:\" + FileName + ".prg" For Append As #1   ' Open file for output. 
FileString = "  " + VAR_Type + " robtarget " + VAR_Name + ":=[[" + x + "," + x 
+ "," + z + "],[" + q1 + "," + q2 + "," + q3 + "," + q4 + "],[-1,0,-
1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];" 
List1.AddItem FileString 
Print #1, FileString 
 
Close #1    ' Close file. 
 
End Sub 
//**************************************************************** 
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 Robot_ Number Variable declaration 
 
 

//**************************************************************** 
Sub Creat_Robot_NUMVar(FileName_X As String, VAR_Type As String, 
VAR_Name As String, VAR_Name_ArrayCNT As String, NUM As Variant) 
'  format 
'  PERS num Z_POS8:=0; 
   
Dim FileName As String 
'config var format 
NUM = Format(NUM, "0") 
 
FileName = FileName_X 
'Robot File *.prg 
Open "c:\" + FileName + ".prg" For Append As #1   ' Open file for output. 
FileString = "  " + VAR_Type + " num " + VAR_Name + ":=" + NUM + ";" 
Print #1, FileString 
List1.AddItem FileString 
Close #1    ' Close file. 
 
End Sub 
//**************************************************************** 

 
 

 Robot MOVEMENT Command Function 

Robot MOVEMENT commands can be generated via the 

Create_InstructionMOVE function. The type structure items can be requested via 

the software function as discussed above. The software source code is illustrated 

below: 

//****************************************************************
Sub Create_InstructionMOVE(FileName_X As String, INSTRU As String, 
Pos_Var As String, SPEED As String, ACC As String, x As Variant, y As 
Variant, z As Variant, q1 As Variant, q2 As Variant, q3 As Variant, q4 As 
Variant, cf1 As Variant, cf4 As Variant, cf8 As Variant, cfx As Variant) 
 
Dim FileName As String 
Dim FileString As String 
Dim INST As String 
'ENDMODULE 
'    MoveJ PRP1,v150,z50,tool0; 
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INST = INSTRU 
 
FileName = FileName_X 
'Robot File *.prg 
Open "c:\" + FileName + ".prg" For Append As #1   ' Open file for output. 
 
If (INST = "MOVEJ") Then 
    FileString = "    MoveJ " + Pos_Var + "," + SPEED + "," + ACC + ",tool0;" 
End If 
If (INST = "MOVEL") Then 
    FileString = "    MoveL " + Pos_Var + "," + SPEED + "," + ACC + ",tool0;" 
End If 
 
Print #1, FileString 
Close #1    ' Close file. 
 
End Sub 
//**************************************************************** 

 RAPID Static Position Command Function 

Robot Static sub-routines are generated via the HOME_POS function. The type 

structure items can be requested via the software function as discussed above. The 

software source code is illustrated below:  

//**************************************************************** 
Sub HOME_POS(FileName_X As String) 
'    MoveAbsJ 
[[0,0,0,0,0,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]],v200,z50,tool0; 
 
Dim FileName As String 
Dim FileString As String 
FileName = FileName_X 
'Robot File *.prg 
Open "c:\" + FileName + ".prg" For Append As #1   ' Open file for output. 
FileString = "    MoveAbsJ 
[[0,0,0,0,0,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]],v200,z50,tool0;" 
Print #1, FileString 
List1.AddItem FileString 
Close #1    ' Close file. 
 
End Sub 
//**************************************************************** 
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4.6 OFF-LINE Development Environment to program robot 

Figure 4.18 illustrates the ABB robot remote programming environment, which provides 

a more flexible approach to remote RAPID robot programming environment. 

 

Figure 4.18: Remote RAPID programming environment 
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The ABB RAPID programming environment consists of the following components 

functionality: 

 Motion CMD ComboBOX  

This provides a selection of motion instructions available for the ABB robot 

controller such as, MOVEJ, MOVEL, MOVEABSJ. 

 GetROB_Pos Command Button 

GetROB_Pos Button allows the user to get the current robot manipulator co-

ordinate position, which can be utilized with the development of a new RAPID 

robot program. This is a useful tool to reduce RAPID robot programming time. 

Should the base program variables be configured correctly, certain variables may 

be updated on the fly. The GetRobPos position source code is illustrated below.  

Sub GetRobPos_click(Index As Integer) 
'This button updates the robot position fields 
Dim status As Integer  'return status variable 
 
Dim robpos As S4RobPosData ' dimension robot position object 
    ' create the object 
    Set robpos = CreateObject("S4RobPosData") 
        ' get the position from the robot 
    status = robotHelper(Index).S4CurrentPositionGet(robpos) 
    If status <> 0 Then    ' did the function work? 
      MsgBox "status = " + Str(status)  ' no,  
    Else   ' yes, it worked 
        lblPosDatX(Index) = Format$(robpos.x)  
        lblPosDatY(Index) = Format$(robpos.y) 
        lblPosDatZ(Index) = Format$(robpos.z) 
        lblPosDatQ1(Index) = Format$(robpos.q1) 
        lblPosDatQ2(Index) = Format$(robpos.q2) 
        lblPosDatQ3(Index) = Format$(robpos.q3) 
        lblPosDatQ4(Index) = Format$(robpos.q4) 
        lblPosDatTool(Index) = Format$(robpos.ToolObj) 
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        lblPosDatWobj(Index) = Format$(robpos.WObj) 
        lblPosDatEx1(Index) = Format$(robpos.eaxA) 
        lblPosDatEx2(Index) = Format$(robpos.eaxB) 
        lblPosDatEx3(Index) = Format$(robpos.eaxC) 
        lblPosDatEx4(Index) = Format$(robpos.eaxD) 
        lblPosDatEx5(Index) = Format$(robpos.eaxE) 
    End If 
 
End Sub 

 

 Speed ComboBOX  

This provides a selection of speed setting available for the ABB robot controller 

move instruction set such as, v100, v200, v500 ms. 

 Zone Size ComboBOX  

This provides a selection of Zone Size setting available for the ABB robot 

controller move instruction set such as, fine, 10, 20, etc. 

 Tool ComboBOX  

This provides a selection of Tool setting available for the ABB robot controller 

move instruction set such as, 0, 1, etc. 

 Add Command Button 

Once all the motion instruction variables have been selected, the add command 

button will update the program window with the correct MOVE instruction which 

has been configured. 
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 Save PRG Command Button, this will save all the robot motion sequences to 

RAPID program file with the correct file format that has been illustrated in 

Chapter 2. 

4.7 Communication Control  

While developing the system application, one of the main objectives was to establish the 

amount of flexibility the remote server would allow the remote user to access the robot 

controller functionality and at what possible update rate. This would establish if it was 

possible to create a real-time remote communication interface application. 

It was established that in order to control the position of the robot, there were two 

possible areas of analysis. 

1. This first approach was to generate a complete RAPID program on the PC after 

which this was uploaded via the remote Ethernet link. Thus for every new 

position change the robot requires the system to regenerate an entirely new 

RAPID program structure. The new program must then be uploaded to the robot. 

A large amount of processing time was wasted uploading information to the robot.  

This method certainly does not create a true real-time system and should only be 

utilized in areas where there is low volume production. 

2. The second approach was to create a base RAPID program with persistent 

variables. These variables are utilized for robot target positions. The persistent 

variables can be updated during the auto-processing cycle on the fly. This 
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provides the robot with the capability of real-time position versatility within the 

robot work co-ordinate frame. 

To ensure that the remote Ethernet programming environment can be achieve a stable and 

reliable communication link had to be established a verified. The communication link 

was establish as verified via windows DOS command ,  the    

 “PING IP Address” command. 

IP Address “ 100.100.100.102 “ as follows :  

C:\ping 100.100.100.102  
Ping 100.100.100.102 with 32 bytes of data: 
 
 
REMOTE device REPIES with a the following system packet information, if available : 
 
Reply from 100.100.100.102: bytes=32 time<10ms TTL=128 
Reply from 100.100.100.102: bytes=32 time<10ms TTL=128 
Reply from 100.100.100.102: bytes=32 time<10ms TTL=128 
Reply from 100.100.100.102: bytes=32 time<10ms TTL=128 
 
 
Ping statistics from 100.100.100.102: 
 Packets: Sent = 4, Received = 4 , Lost = 0 ( 0% loss) , 
Approximate round trip times in milli-seconds: 
 Minimum = 0ms, Maximum = 0ms, Average = 0ms 
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RobComm Server Configuration 

Once the Ethernet network has been correctly establish as demonstrated above, the 

RobComm server can be configured to provide the vital link between the Bridge PC and 

the Robot Controller. Figure 4.19 Illustrates the RobComm Ethernet server setup 

environment. In this environment a Alias Name is establish such as ‘S4’ which provides 

the link for the RobComm ActiveX. With this Alias Name, a network address has to be 

manual configured which is mapped to the network setting of the robot controller. The 

Network Address was configured as follows : TCP/IP Node Name  100.100.100.101. 

 

 
 
 
Figure 4.19: RobComm Ethernet communication setup “ IP:100.100.100.101” 
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RobComm Status Monitor 

The RobComm server provides a monitoring status window that allows the user to 

confirm that the server has correctly established a connection with the robot controller. 

Figure 4.20 Illustrates the RobComm connectivity environment server, to provide the 

user with communications activity status. 

 
 

 
 
 
 

Figure 4.20: RobComm Active Server establishing communication with 
ABB Robot Controller 
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4.8 Software Modules to Initiate Motion Control 

This user environment provides the trajectory path manipulation and control mechanism 

software. The robot system integration is handled via the RobComm ActiveX 

components and the software algorithms, which are illustrated below.  

Figure 4.21 illustrates the ABB robot remote trajectory application, which provides an 

automated flexible approach to a remote manipulation environment. 

 

Figure 4.21: ABB Robot trajectory Motion Control 
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RobComm Object Configuration 

In order to ensure that the RobComm ActiveX components are initialized correctly the 

following software object has to be initialized and a software alias created as follows:  

//**************************************************************** 
//Create an RobotHelper Object 
robotHelper(0).Robot = "S4"    'change this to your robot alias 
setUpRobots 
//**************************************************************** 

Manual robot motions commands 

This user environment provides the manual functionality to manipulation and control to 

robot manipulator to pre-define co-ordinate positions. Figure 4.22 illustrates the ABB 

robot remote manual motion environment for the dynamic and static RAPID sub-routines 

which were developed for research testing purposes. 

 

 

Figure 4.22: Software environment for manual robot control commands 
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The following visual basic source code below demonstrates the manual system 

functionality required to servo the robot manipulator to pre-defined coordinate positions, 

this was utilized while testing the remote communication link. This code provides the 

control mechanism platform to automated robot trajectory path system.  

//********************************************************************* 
Private Sub ManRoutines1_Click(Index As Integer) 
 
Dim status As Integer  'return status variable 
Dim i As Integer 
Dim resultid As Long 
     
  'S4 MAUNAL ROUTINE FUNCTIONS 
        Select Case Index: 
            Case 0: 'HOME ROBOT 
                Call MANUAL_S4_HOME 
                 ManRoutines1(0).value = False 
            Case 1: 'CAMERA BIRD VIEW POSITION 
                Call MANUAL_S4_CBV 
                ManRoutines1(1).value = False 
            Case 2: 'IMAGE CALIBRATION REF LINE 
                Call MANUAL_S4_CRL 
                ManRoutines1(2).value = False 
            Case 3: 'USER CO-ORDINATE FRAME REF 
                Call MANUAL_S4_UFC 
                ManRoutines1(3).value = False 
            Case 4: 'OBJECT CO-ORDINATE REF FRAME 
                Call MANUAL_S4_OFC 
                ManRoutines1(4).value = False 
            Case 5: 'MIMIC DEFAULT CO-ORDINATE 
                Call MANUAL_S4_MIMIC 
                ManRoutines1(5).value = False 
            Case 6: 'MIMIC DEFAULT CO-ORDINATE 
                 ManRoutines1(6).value = False 
                
         End Select 
 
End Sub 
//********************************************************************* 
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The OptionButton, “ManRoutines1(x)” triggers the manual sub-routine via the 

appropriate INDEX_MARKER value, this will call the correct robot controller sub-

routine that has been pre-configured in the RAPID robot program. Figure 4.23 illustrates 

when the HOME_ROBOT manual function has been selected. This will cause the 

INDEX_MARKER value to equal 1. The “S4ProgramNumVarWrite” command will 

request the robot controller RAPID program variable to CALL the HOME_ROBOT sub-

routine which will in turn servo the robot manipulator to the HOME position. The robot 

HOME position forces all the arm linkages to a zero degree state.  

 

 
 

Figure 4.23: RAPID Sub-Routine function  

//********************************************************************* 
 
Sub MANUAL_S4_HOME() 
Dim S4_VarNum_Name As String 
Dim S4_VarNum As Single 
Dim S4_VarNumResult As Integer 
Dim ResultSpec As Integer 
Dim resultid As Long 
 
'iNDEX MARKER = 1 
S4_VarNum_Name = "INDEX_MARKER" 
S4_VarNum = 1 
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S4_VarNumResult = Helper3.S4ProgramNumVarWrite(S4_VarNum_Name, 0, 
S4_VarNum, ResultSpec, resultid) 
 
End Sub 
 
//********************************************************************* 
 
 
Object Vision Manual Position control 

In most industrial applications the robot vision system is located in a fixed viewing 

position, which limits the object to a specific viewing position. In this research 

environment the CCD camera has been attached to the end of the robot arm, providing 

the system with additional viewing flexibility. This means, that a number of objects can 

be viewing in different positions within the robot workcell. For this application only one 

viewing position has been utilized, a pre-defined position has been programmed, the ‘z’ 

co-ordinate can be manipulated via the remote application. This ‘z’ co-ordinate 

displacement, references back to the camera viewing height. This software sub-routine is 

triggered in the same manner as the HOME_ROBOT sub routine, the only difference is 

that the software has a CAPTURE software flag that has been added to provide a viewing 

wait time period which synchronizes the robot controller from return to the HOME 

position before the image has been captured correctly. These software algorithms provide 

the control mechanism platform for automatic robot control. Software source code has 

been illustrated below.  

//********************************************************************* 
 
 
Sub MANUAL_S4_CBV() 
 
'CAPTURE FLAG = 0 
S4_VarNum_Name = "CAPTURE" 
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S4_VarNum = 0 
 
S4_VarNumResult = Helper3.S4ProgramNumVarWrite(S4_VarNum_Name, 0, 
S4_VarNum, ResultSpec, resultid) 
 
 
'iNDEX MARKER = 2 
S4_VarNum_Name = "INDEX_MARKER" 
S4_VarNum = 2 
 
 
S4_VarNumResult = Helper3.S4ProgramNumVarWrite(S4_VarNum_Name, 0, 
S4_VarNum, ResultSpec, resultid) 
 
 
If Trig1(1).value = True Then 
    CAPTURE_TIMER1.Enabled = True 
End If 
 
End Sub 
 
 
//********************************************************************* 
 
 
 
Robot Trajectory Co-ordinate Position control 

The following visual basic source code below is the vital component that handles the 

download routine for the object profile co-ordinate map to the relevant persistent robot 

variable which will be utilized to track the captured object profile. Figure 4.24 illustrates 

the software environment for object profile tracking.  
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Figure 4.24: Software environment for object profile tracking 

The download routine is synchronized via the data handshake routine that is discussed in 

later Chapters. Software source code which manages the robot trajectory position 

download transaction mechanism, has been illustrated below. 

//********************************************************************* 
Sub S4_PERS_VARIABLE_DOWNLOAD() 
 
Dim S4RobotAlias As String 
Dim S4_VarNum_Name As String 
Dim S4_VarNum As Single 
Dim S4_VarNumResult As Integer 
Dim ResultSpec As Integer 
Dim resultid As Long 
Dim CNT As Integer 
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ROB_INDEX_MARKER = 0 
 
S4RobotAlias = "S4" 
S4_VarNum_Name = "INDEX_MARKER" 
 
'GET CURRENT INDEX MARKER VALUE 
S4_VarNumResult = Helper3.S4ProgramNumVarRead(S4_VarNum_Name, 0, 
S4_VarNum) 
 
'IF INDEX MARKER <> 0 FORCE = 0 
If S4_VarNumResult <> 0 Then 
    S4_VarNum = 0 
    S4_VarNumResult = Helper3.S4ProgramNumVarWrite(S4_VarNum_Name, 0, 
S4_VarNum, ResultSpec, resultid) 
End If 
 
'HOME ROBOT CMD INDEX_MARKER = 1 
S4_VarNum_Name = "INDEX_MARKER" 
S4_VarNum = 1 
S4_VarNumResult = Helper3.S4ProgramNumVarWrite(S4_VarNum_Name, 0, 
S4_VarNum, ResultSpec, resultid) 
 
'MIMIC OBJECT PROFILE CMD INDEX MARKER = 4 
'DOWNLOAD PROFILE -> CO-ORDINATE [X,Y,Z ,Q1,Q2,Q3,Q4] TO S4 ROBOT 
 
'X_POSITION PROFILE REF 
CNT = 1 
For CNT = 1 To 4 
    S4_VarNum_Name = "X_POS" + Trim(Str(CNT)) 
    S4_VarNum = X_POS(CNT) 
    S4_VarNumResult = Helper3.S4ProgramNumVarWrite(S4_VarNum_Name, 0, 
S4_VarNum, ResultSpec, resultid) 
Next CNT 
 
'Y_POSITION PROFILE REF 
CNT = 1 
For CNT = 1 To 4 
    S4_VarNum_Name = "Y_POS" + Trim(Str(CNT)) 
    S4_VarNum = Y_POS(CNT) 
    S4_VarNumResult = Helper3.S4ProgramNumVarWrite(S4_VarNum_Name, 0, 
S4_VarNum, ResultSpec, resultid) 
Next CNT 
 
'Z_POSITION PROFILE REF 
CNT = 1 
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For CNT = 1 To 4 
    S4_VarNum_Name = "Y_POS" + Trim(Str(CNT)) 
    S4_VarNum = Z_POS(CNT) 
    S4_VarNumResult = Helper3.S4ProgramNumVarWrite(S4_VarNum_Name, 0, 
S4_VarNum, ResultSpec, resultid) 
Next CNT 
 
S4_VarNum_Name = "INDEX_MARKER" 
S4_VarNum = 1 
S4_VarNumResult = Helper3.S4ProgramNumVarWrite(S4_VarNum_Name, 0, 
S4_VarNum, ResultSpec, resultid) 
 
End Sub 
//********************************************************************* 

 

Robot Controller Hardware Control Mechanism  

Figure 4.25 illustrates the remote control tool bar mechanism utilized for the ABB robot 

controller to initiate hardware/software initialization sequences, eg START MOTOR, 

STOP MOTOR, RUN PROGRAM, LOAD PROGRAM etc. 

 

Figure 4.25: Software - Robot control tool bar 

The following visual basic source code below will become a vital link for the automated 

robot control, this code provides the control mechanism to control the robot controller via 

the Ethernet serial link, establish and manipulate control status of the robot controller. 
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//********************************************************************* 
Dim status As Integer  'return status variable 
Dim i As Integer 
Dim resultid As Long 
 
    For i = 0 To (numRobots - 1) 
        Select Case button.Index: 
            Case 1: 'motors off button 
                status = robotHelper(i).S4Standby(NOTIFY_IF_ERROR, resultid) 
            Case 2: 'motors on button 
                status = robotHelper(i).S4Run(NOTIFY_IF_ERROR, resultid) 
            Case 4: 'Stop program cycle 
                status = robotHelper(i).S4Stop(0, 3, NOTIFY_IF_ERROR, resultid) 
            Case 5: 'run program 1 cycle 
                status = robotHelper(i).S4Start(0, "", 1, 1, NOTIFY_IF_ERROR, resultid) 
            Case 6: 'run program continuous 
                status = robotHelper(i).S4Start(0, "", -1, 1, NOTIFY_IF_ERROR, resultid) 
            Case 8: 'move  to start of main, could be start of routine by emptying quotes 
                status = robotHelper(i).S4ProgramPrep(0, "main", -1, 1, NOTIFY_IF_ERROR,     
resultid) 
            Case 9: 'load program 
                status = robotHelper(i).S4Standby(0, resultid) 
            Case 11: 'file manager 
                robotExplorer.Show 
        End Select 
    Next i 
     
 If status <> 0 Then    '  Was function successful ?? 
      MsgBox "status = " + Str(status)  ' no,  message to user 
 End If 
//********************************************************************* 

Robot Controller Hardware Control Mechanism  

The following visual basic source code below will become a vital synchronization 

mechanism link. This code will ensure the current robot controller event status, ensuring 

that the control mechanism has manipulated the correct system functionality during 

upload or download to control the robot controller. 

//********************************************************************* 
Private Sub robotHelper_StatusChanged(Index As Integer, OprState As Integer, CtlState 
As Integer, PgmCtlState As Integer, PgmState As Integer) 
Dim msg As String 



 
  

139

 
    If OprState <> prevOprState(Index) Then 
        'set up the info software versions data whenever opr state changes 
        lblS4Boot(Index).Caption = robotHelper(Index).BootVersion 
        lblS4Sys(Index).Caption = robotHelper(Index).SysVersion 
        lblRC(Index).Caption = robotHelper(Index).RAPVersion 
        lblApp(Index).Caption = robotHelper(Index).ControlId 
        Select Case OprState 
             
            Case 0 
                'msg = "CommLink Down" 
                S4OPERSTATE = "CommLink Down" 
                OprSTATEZ = "CommLink Down" 
            Case 1 
                'msg = "Initialization" 
                S4OPERSTATE = "Initialization" 
                OprSTATEZ = "Initialization" 
            Case 2 
                'msg = "Test < 250 mm/s" 
                S4OPERSTATE = "Test < 250 mm/s" 
                OprSTATEZ = "Test < 250 mm/s" 
            Case 3 
                'msg = "Going to Auto" 
                S4OPERSTATE = "Going to Auto" 
                OprSTATEZ = "Going to Auto" 
            Case 4 
                'msg = "Auto" 
                S4OPERSTATE = "Auto" 
                OprSTATEZ = "Auto" 
            Case 5 
                'msg = "Going Test 100%" 
                S4OPERSTATE = "Going Test 100%" 
                OprSTATEZ = "Going Test 100%" 
            Case 6 
                'msg = "Test 100%" 
                S4OPERSTATE = "Test 100%" 
                OprSTATEZ = "Test 100%" 
            Case Else 
                'msg = "Unknown " 
                S4OPERSTATE = "Unknown " 
                OprSTATEZ = "Unknown " 
        End Select 
        lblOprState(Index) = msg 
        prevOprState(Index) = OprState 
    End If 
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    If CtlState <> prevCtrlState(Index) Then 
        Select Case CtlState 
            Case 1 
                'msg = "Initialization" 
                CtlSTATEZ = "Initialization" 
            Case 2 
                'msg = "Stand-By" 
                CtlSTATEZ = "Stand-By" 
            Case 3 
                'msg = "Power On" 
                CtlSTATEZ = "Power On" 
            Case 4 
                'msg = "Run" 
                CtlSTATEZ = "Run" 
            Case 5 
                'msg = "Power Off" 
                CtlSTATEZ = "Power Off" 
            Case 6 
                'msg = "Guard Stop" 
                CtlSTATEZ = "Guard Stop" 
            Case 7 
                'msg = "Emergency Stop" 
                CtlSTATEZ = "Emergency Stop" 
            Case 8 
                'msg = "Guard E-Stop" 
                CtlSTATEZ = "Guard E-Stop" 
            Case 9 
                'msg = "Stand-By E-Rst" 
                CtlSTATEZ = "Stand-By E-Rst" 
            Case Else 
                'msg = "Unknown" 
                CtlSTATEZ = "Unknown" 
        End Select 
        lblCtrlState(Index) = msg 
        prevCtrlState(Index) = CtlState 
    End If 
         
    If PgmCtlState <> prevPgmCtrlState(Index) Then 
        Select Case PgmCtlState 
            Case 1 
                msg = "Uninitialized" 
            Case 2 
                msg = "Ready" 
            Case 3 
                msg = "Executing" 
            Case 4 
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                msg = "Stopped" 
            Case 5 
                msg = "Full" 
            Case Else 
                msg = "Unknown" 
        End Select 
        lblPgmCtrlState(Index).Caption = msg 
        prevPgmCtrlState(Index) = PgmCtlState 
    End If 
     
    If msg <> "" Then robotFrame(Index).Caption = robotHelper(Index).Robot + " (" + 
msg + ")" 
     
    If PgmState <> prevPgmState(Index) Then 
        Select Case PgmState 
            Case 1 
                msg = "Empty" 
            Case 2 
                msg = "Loaded" 
            Case 3 
                msg = "Linked" 
            Case 4 
                msg = "Initiated" 
            Case Else 
                msg = "Unknown" 
        End Select 
        lblPgmState(Index).Caption = msg 
        prevPgmState(Index) = PgmState 
    End If 
 
End Sub 
//********************************************************************* 
 

Robot system Co-Ordinate Frame Database 

Access database structure below provides vital information with regard to the robot co-

ordinate frame system. This will be utilized to map the captured object profile co-ordinate 

system to the correct object with respect to the world co-ordinate system. Figure 4.26 

illustrates the Access data file configuration.  
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Figure 4.26: Co-ordinate Access Database Structure 

The Access Database structure source code is illustrated below [32][33]. 

//********************************************************************* 
'Setup DataBase File Structure 
AccessFile = "c:\" + "Co_OrdinateFrameSet" + ".mdb" 
 
FileCheck = Dir(AccessFile) 
 
If FileCheck = "" Then  
 
'open workspace and database dbEngine 
Set WB_Ws = DBEngine.Workspaces(0) 
Set WBData = WB_Ws.CreateDatabase(AccessFile, dbLangGeneral, dbVersion30) 
 
'create new table name 
Set WB = WBData.CreateTableDef("RuleSet") 
 
'creat table field and there field formats 
 
Set WBFlds(0) = WB.CreateField("robtarget_VarName", dbText) ' counter field 
WBFlds(0).Size = 50 
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Set WBFlds(1) = WB.CreateField("x", dbLong) 
WBFlds(1).Size = 50 
 
Set WBFlds(2) = WB.CreateField("y", dbLong) 
WBFlds(2).Size = 50 
 
Set WBFlds(3) = WB.CreateField("z", dbLong) 
WBFlds(3).Size = 50 
 
Set WBFlds(4) = WB.CreateField("q1", dbLong) 
WBFlds(4).Size = 50 
 
Set WBFlds(5) = WB.CreateField("q2", dbLong) 
WBFlds(5).Size = 50 
 
Set WBFlds(6) = WB.CreateField("q3", dbLong) 
WBFlds(6).Size = 50 
 
Set WBFlds(7) = WB.CreateField("q4", dbLong) 
WBFlds(7).Size = 50  …………… 
…………………………………… 
…………………………………… 
 
//********************************************************************* 

Robot RAPID Program File transfer Mechanism  

In order for the robot controller to receive/transmit program configuration file 

information between the remote terminal, a file handler needed to be generated to 

synchronize the file information transfer to the robot controller. This file transfer is only 

possible when the robot controller has been stopped  and in a manual control state. The 

source code below illustrates the file transfer mechanism, which handles the crucial file 

information. 

//********************************************************************* 
Public Sub copyFiles() 
'this routine copies files between devices 
'the from list is the selection in the file list window 
'the to device and directory are found in the treeview highlight fullpath 
 Dim status As Integer 
 Dim resultid As Long 
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 Dim RobotName As String 
 Dim fromEquip As String 
 Dim fromDev As String 
 Dim fromName As String 
 Dim toEquip As String 
 Dim toDev As Strings 
 Dim toName As String 
 Dim tag As String 
 Dim strg As String 
 Dim i As Integer, j As Integer 
 Dim flist As ListItem 
    If InStr(1, tvwPlant.DropHighlight.FullPath, ":") > 0 Then  'legal drop point 
        For i = 1 To FileList.ListItems.Count 
            Set flist = FileList.ListItems(i) 
            If flist.Selected Then 
                'Text1.Text = Text1.Text + flist.Text + ", " 
                tag = flist.tag 
                'first on the from side... 
                strg = Mid$(tag, 13) 
                fromEquip = Left$(strg, InStr(1, strg, "\", 1) - 1) 
                strg = Mid$(tag, InStr(1, tag, fromEquip, 1) + Len(fromEquip) + 1) 
                j = InStr(1, strg, "\", 1) 
                If j > 1 Then 
                    fromDev = Left$(strg, j - 1) 
                    fromName = Mid$(strg, j) + "\" + flist.Text 
                Else 
                    fromDev = strg 
                    fromName = flist.Text 
                End If 
                'now the to side 
                strg = Mid$(tvwPlant.DropHighlight.FullPath, 13) 
                toEquip = Left$(strg, InStr(1, strg, "\", 1) - 1) 
                strg = Mid$(tvwPlant.DropHighlight.FullPath, InStr(1, 
tvwPlant.DropHighlight.FullPath, toEquip, 1) + Len(toEquip) + 1) 
                j = InStr(1, strg, "\", 1) 
                If j > 1 Then 
                    toDev = Left$(strg, j - 1) 
                    toName = Mid$(strg, j) + "\" + flist.Text 
                Else 
                    toDev = strg 
                    toName = flist.Text 
                End If 
                If Not ((fromEquip = "This PC") Or (toEquip = "This PC")) Then 
                    j = MsgBox("Can't copy from ramdisk to ramdisk (yet)", vbCritical, "Copy 
Error") 
                Else 
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                    'set up the helper to work with the proper robot 
                    If (fromEquip <> "This PC") Then 
                        FMHelper.Robot = fromEquip 
                    ElseIf (toEquip <> "This PC") Then 
                        FMHelper.Robot = toEquip 
                    End If 
                    j = vbYes 
                    If mnu_confirm.Checked Then 
                        j = MsgBox("Do you want to copy: " + flist.Text + " to directory: " + 
tvwPlant.DropHighlight.FullPath, vbYesNo + vbQuestion, "Confirmation") 
                    End If 
                    If j = vbYes Then 
                        StatusBar.SimpleText = "Copying: " + flist.Text + " to directory: " + 
tvwPlant.DropHighlight.FullPath 
                        status = FMHelper.S4FileCopy(fromDev, fromName, toDev, toName, 3, 
resultid) 
                        If status <> 0 Then 
                            j = MsgBox("Copy failed, status=" + Str(status), vbCritical, "Copy 
Error") 
                            StatusBar.SimpleText = "" 
                        Else 
                            StatusBar.SimpleText = "Copied: " + flist.Text + " to directory: " + 
tvwPlant.DropHighlight.FullPath 
                        End If 
                    End If 
                End If 
            End If 
        Next i 
  Set tvwPlant.DropHighlight = Nothing 
        indrag = False 
         
    
         
    End If 
End Sub 
//********************************************************************* 
 

4.9 Remote RAPID DDE Robot Programming Environment 

 DDE items are utilized as a placeholder for the different variables in the S4 robot 

controller. To address those variables, the item naming must follow certain rules. 
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To connect a cell in an MS Excel worksheet to a digital output (ex: do1) in the S4 robot 

controller, you type: =ABBS4DDE|ROB1!a_digio_raplong_do1 in the formula bar in 

 

Figure 4.27:  Microsoft Excel DDE data simulation with DDE RobComm Server 

Robot DDE variable configuration 

To connect to a digital output (ex: do1) from Visual Basic, write: LinkTopic = 

ABBS4DDE|ROB1, LinkItem = a_digio_raplong_do1 and LinkMode = Automatic. 

4.9.1 General DDE item syntax 
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Connection to variables in the DDE Server are achieved by specifying the name of 

the variable. There are pre-defined variables and variables defined by the user. The 

variable names used to connect to the S4 robots are built up using the following 

system: 

<access method> _<functional group> _<variable type> _<variable name> 
 
 

4.9.2 Access method 

Some variables can only be read, some can only be written to, and others can be 

both read and written to. The name of the variable will indicate this in the first 

character: 

r_ read only 
w_ write only 
a_ read and write (automatic update variables) 
 
4.9.3 Functional group 

 
The variables are grouped according to their function.  
 
digio_ digital i/o 
anio_ analog i/o 
rpvar_ rapid program variables 
scwri_ superior computer write variables (spontaneous messages) 
sys_ system variables 
pgm_ program variables 
file_ file operation variables 
link_ communication link variables 
 

 
4.9.4 Variable type 

The variables have different types that must be specified. The two most used 

RAPID variable types are: 
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num_ number (single float) 
string_ string (text) 
 

Other variable types used in the DDE Server are: (as well as complex types like) 

raplong_ number (long integer) 
bool_ boolean (0 or 1) (i.e. true or false) 
wobjdata_ work object data 
pos_ position data 
speeddata_ speed data 
tooldata_ tool data 

There are many more data types supported by the DDE Server. Although you have 

to address complex variables with their correct type, they are reported back as a 

string with each field separated by a comma. Only RAPID variable types that you 

can reach from the DDE Server are those that are declared as persistent in your 

RAPID program. 

4.9.5 Variable name 

This last field in a complete variable name is the name of the variable as it appears 

in the S4 controller: an I/O name, a RAPID variable name, a system variable name, 

etc.  

Examples of complete names: 

a_digio_raplong_di1 
a_rpvar_string_Message 
a_rpvar_num_Counter 
r_sys_raplong_pgmstate.PgmState 
 
4.9.6 Digital I/O variables 
 

<access method>_DIGIO_<variable type>_<variable name> 
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Access method: A_ or W_ 
Functional group: DIGIO_ 
Variable type: RAPLONG 
Variable name: User defined 
 
4.9.7 Digital I/O name example 
 
A_DIGIO_RAPLONG_di1 
A_DIGIO_RAPLONG_do1 
A_DIGIO_RAPLONG_ingroup1 
A_DIGIO_RAPLONG_outgroup1 
W_DIGIO_RAPLONG_do1 
raplong_ number (long integer) 
bool_ boolean (0 or 1) (i.e. true or false) 
wobjdata_ work object data 
pos_ position data 
speeddata_ speed data 
tooldata_ tool data 
 

 
4.9.8 Rapid program variables 
 

Persistent (PERS) Rapid variables defined and declared in your program modules. 

<access method>_RPVAR_<variable type>_<variable name> 

Access method: A_ or W_ 
Functional group: RPVAR_ 

Variable type: STRING or NUM, as well as: wobjdata, pos, speeddata, tooldata, etc. 

Variable name: User defined.  

Rapid variable name example 

A_RPVAR_STRING_Message 
A_RPVAR_NUM_Counter 
W_RPVAR_STRING_Message 

Addressing the DDE items ABB S4 DDE Server 
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W_RPVAR_NUM_Counter 

 

4.10 Conclusion 

The discussion in this chapter emphasizes the robot motion programming structure, and 

different approaches of robot motion, different formulations for robot arm dynamic, 

RAPID program structure and remote RAPID programming environment. These 

components ensure that the trajectory application is capable of generating on-line robot 

RAPID program with reference to the object profile co-ordinate frame. 

Trajectory control generates robot RAPID programs in terms of data from object profile 

planning, kinematics of robot manipulator, and transformation matrices between relevant 

robot coordinate systems and vision coordinate system. Practical equations that build up 

the relationship between robot tool frame (represented by TCP of the three-fingered 

gripper) and object frame have been derived from the transformation matrices. An 

appropriate quaternion computation method derived in this project guarantees automated 

generation of robot programs. On this basis, modular RAPID programs are successfully 

generated and tested with regard to object profiles. 

Software I/O variables flags are employed as handshaking signal between execution of 

robot program and manipulation of the TCP so as to coordinate, these two relatively 

independent processes.  

The discussion in this chapter emphasizes the problem-solving or planning aspect of a 

robot. A robot planner attempts to find a path from our initial robot world to a final robot 
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world. The path consists of a sequence of operations that are considered primitive to the 

system. A solution to a problem could be the basis of a corresponding sequence of 

physical actions in the physical world.  
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CHAPTER 5              

VISION SENSORY SYSTEM FOR PROFILE RECOGNITION 
 

The advances in vision technology for robotics are expected to broaden the capabilities of 

robotic vision systems to allow for vision-based guidance of the robot arm, complex 

inspection for dimensional tolerances, and improved recognition and part location 

capabilities. These will result from the constantly reducing cost of computational 

capability, increased speed and new better algorithms currently being developed.    

Robot vision plays a critical role in robot intelligence. In robot vision systems, geometric 

feature extraction and representation are the two most important issues to which we must 

find solution in terms of the application requirements. To make the present robot vision 

systems suitable for various eye-hand applications, further researches and improvement 

still needs to be done. To implement a profile-oriented robot vision system, the following 

issues must be taken into consideration: 

 Image acquisition — includes selection of visual sensors in terms of image resolution 

of which the vision system must be in possession, illumination and other 

specifications. 

 Image processing techniques — encompasses methodology for image processing in 

terms of the requirements for real-time, complexity of computation and precision. 

 Profile Extraction of object’s geometric features — is dependent on the application to 

which the vision system is going to be applied.  
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This research focused on developing a profile that is used by the automated robot control 

application to facilitate on line dynamic response to changes in object profile.  

With an automated PC-Based Robot control system, the object position and orientation as 

well as the object’s profile must be identified and represented accurately. A high 

resolution CCD camera is utilized to acquire visual information of the object profile to be 

tracked.  A real-time system needs to overcome the bottleneck of intensive computation 

of a vision system. To represent the objects efficiently and effectively, edge vector 

expression method is developed such that computational efficiency is increased 

dramatically. A closed chain of vectors is generated. Thereof, profile traversing and 

feature extracting are conducted with respect to the chain.  

This chapter discusses the software components implemented to extract an object’s 

profile as illustrated in Figure 5.1. 

5.1 Software Components for Vision 

The robot vision system is segmented into two distinct areas.  

The first sub-section is the low-level vision. This is where the image acquisition and 

preprocessing function takes place.  

The second sub-section is the high-level vision. This includes extraction, modeling and 

profile recognition.  
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In this research project, the objective of the vision feedback system is to produce an 

image data co-ordinate map of the image profile captured. The software components 

developed to implement the vision system is shown in Figure 5.1. 

 

Figure 5.1: Software components to implement a vision sensory system  

In this research project, high-level vision provides an image profile co-ordinate map for 

the robot trajectory application, which will in turn be utilized by the robot manipulation 

and  trajectory program generation engine to direct the robot to its final positions.  

5.2 Image Acquisition 

The raw captured image needs to be processed to ensure that an accurate profile can be 

extracted. The mechanism utilized for the preprocessing of the image uses various filters 

and templates. These are used to eliminate distortion of the original image and will ensure 

a clear and accurate image [14].  

To ensure that a high quality image is captured, a high resolution CCD camera is utilized 

to view the digitized image. The CCD camera is interfaced to a high-speed frame grabber 

card, which processes the digital image. The 3D flash point frame grabber card is 

equipped with programmable hardware in order to improve the viewed image. The 
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following are examples of programmable features, moderate brightness, contrast, 

sharpness, etc. To facilitate image processing and increased precision, a clear contrast 

between the object and the background is needed. In this research project, a dark object 

was placed on a white background. The vision system views a flat object from a vertical 

position in order to eliminate shadows, non-uniform illumination and all distortions that 

cannot be compensated by adjusting the parameters of the frame grabber. Figure 5.2 

illustrates the test image captured of an object. 

 

 

Figure 5.2: Image capture via frame grabber 

The digital image captured is stored in the VGA system memory of the computer. The 

RGB colour image is transferred into the program buffer for further processing. The 

source code declaration illustrates the memory allocation for the captured image. 

LPBYTE AllocateMemory() { 
 

return LPImage = new BYTE[size.cx * size.cy * 3L + 
sizeof(BITMAPINFOHEADER)]; 

 
} 
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Figure 5.3: Memory allocation for the 3D Flash Point Frame Grabber [23] 
 
 
FPV_ScreenToDIB((VIDEOWIDTH - m_IS.size.cx) / 2, (VIDEOHEIGHT -   
 m_IS.size.cy) / 2, (SHORT) m_IS.size.cx, (SHORT) m_IS.size.cy,  
 (SHORT) STD_OFFSCREEN, (LPSTR) m_image.lpImage); 
 

Figure 5.4: Mechanism utilized to transfer the image into the allocated memory 
 
 

DIB - Device-Independent Bitmaps 

Bitmaps that contain a color table are device-independent. A color table describes how 

pixel values correspond to RGB color values. RGB is a model for describing colors that 

are produced by emitting light. A DIB contains the following color and dimension 

information:  

 The color format of the device on which the rectangular image was created  

 The resolution of the device on which the rectangular image was created 

 The palette for the device on which the image was created 

 An array of bits that maps red, green, blue (RGB) triplets to pixels in the 

rectangular image 

 A data-compression identifier that indicates the data compression scheme (if any) 

used to reduce the size of the array of bits 

BITMAPINFOHEADER 
 

The BITMAPINFOHEADER structure contains information about the dimensions and 

color format of a device-independent bitmap (DIB), which is illustrated below [35][25].  
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typedef struct tagBITMAPINFOHEADER{ // bmih  

    DWORD  biSize;  

    LONG   biWidth;  

    LONG   biHeight;  

    WORD   biPlanes;  

    WORD   biBitCount  

    DWORD  biCompression;  

    DWORD  biSizeImage;  

    LONG   biXPelsPerMeter;  

    LONG   biYPelsPerMeter;  

    DWORD  biClrUsed;  

    DWORD  biClrImportant;  

} BITMAPINFOHEADER;  

5.3 Image Preprocessing 

In order for the object profile to be captured correctly, the image needs to be 

preprocessed by applying standard matrix filter algorithms, which extract unwanted noise 

and image distortion. The algorithms utilized sequentially on the captured image are - 

 image filtering, 

 noise cleaning, 

 averaging; and 

 image thresholding. 

 The spatial convolution technique of the digital image is the platform basis for the 

software.[26] 

void CImageProfileProcessing::ConvolutionMech(const int nConV[3][3], BOOL style, 
int nConstant) 
{ 
int i, j; 
 int nRow, nCol; 
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 int nTemp; 
 
 for(i = 1; i < m_IS.size.cy - 1; i++)  

{ 
 for(j = 1; j < m_ IS.size.cx - 1; j++)  

{ 
  nTemp = 0; 
  for(nIR = -1; nIR <= 1; nIR++)  

{ 
   for(nIC = -1; nIC <= 1; nIC++)  

{ 
nTemp += *(m_lpImage + (i + nIR) * m_IS.size.cx + j + 
nIC) * nConV [nIR + 1][nIC + 1]; 

    } 
   } 

nTemp /= nConstant; 
   if(style == GREYSCALE) { 
    if(nTemp > WHITE_POINT) nTemp = WHITE_POINT; 
    if(nTemp < BLACK_POINT) nTemp = BLACK_POINT; 
   } 
   else { 
    if(nTemp > 1) nTemp = 1; 
    if(nTemp < 0) nTemp = 0; 
   } 
   *(m_lpImageTemp + i * m_imageSize.cx + j) = nTemp; 
  } 
 } 
 
 
} 
 

5.3.1 Image Filtering 

The three filters utilized are - 

 high-pass filters, 

 median filters; and 

 low-pass filters. 
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The three filters are combined to ensure the ideal image is achieved. 

The high-pass filter is utilized to sharpen the image that is out of focus or fuzzy. The 

function uses a 3x3 convolution matrix filter, which emphasizes differences in grey pixel 

levels in the 3x3 neighborhood about the central pixel window. Figure 5.5 illustrates the 

convolution filter window mechanism. 
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Figure 5.5: 3x3 matrix high-pass convolution filter 
 

const int nConV [3][3] = {{-1, -1, -1}, {-1, 9, -1}, {-1, -1, -1}};  
ConvolutionMech (nConV); 

 

Figure 5.6: Convolution filter mechanism 

Once the filtering process has been completed, the image is sharpened and the low 

frequency component in the image is removed. The template matrix used in the function 

is described in chapter 3. 

Image random noise spikes on a noisy image. The noise is removed by utilizing a median 

filtering mechanism. The median filtering mechanism utilizes a non-linear sorting of 

pixel intensity levels in a 3x3 matrix window. This is used to smooth out      ‘salt and 

pepper’ noise effects. Random noise becomes less apparent after a median filter has been 

applied to the image. This creates a smoother image. The implementation of median 

filtering selects windows of pixel data from a 3x3 array of pixels. The pixel set consists 

of nine pixels. The intensity of the pixel set is analyzed in order of grey scale magnitude. 
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The central matrix point is dependent on its current intensity. A 3x3 matrix window is 

moved over the entire video memory image grid, which is used to analyze the entire 

image pixel map.  

Low-pass filtering is utilized to reduce or eliminate high frequency noise components as 

well as smooth or soften sharp images. A 3x3 matrix convolution filter is utilized to 

provide a filtering mechanism to eliminate the high frequency components from the 

captured video image.  
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Figure 5.7: 3x3 matrix low-pass convolution filter 
 

const int nConV [3][3] = {{1, 1, 1}, {1, 2, 1}, {1, 1, 1}}; 
ConvolutionMech (nConV, GREYSCALE, 10); 
 

Figure 5.8: 3x3 matrix convolution filter 

5.3.2 Noise Cleaning 

Random noise signals, which occur in the captured image are reduced or eliminated with 

noise cleaning techniques. A 3x3 matrix convolution is utilized to smooth out this noise.  
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Figure 5.9: 3x3 matrix convolution noise smoothing filter 
 
const int nConV [3][3] = {{1, 2, 1}, {2, 4, 2}, {1, 2, 1}}; 
ConvolutionMech (nConV, GREYSCALE, 12); 

Figure 5.10: 3x3 matrix convolution filter 



 
  

160

5.3.3 Averaging 

The averaging technique is utilized to eliminate noise spikes and clean edge features in 

the image. The averaging function uses a 3x3 matrix sliding convolution window to 

smooth out the noisy image. 
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Figure 5.11: 3x3 matrix averaging convolution filter 
 
const int nConV [3][3] = {{1, 1, 1}, {1, 0, 1}, {1, 1, 1}}; 
ConvolutionMech (nConV, GREYSCALE, 8); 
 

Figure 5.12: 3x3 matrix convolution filter implemented as a software call function 
 

5.3.4 Image Thresholding 

This technique is the main mechanism, which provides the image building block for 

establishing boundaries in images.  The image contains a solid object resting on a 

contrasting background. The process of thresholding is that a threshold greylevel 

intensity range is established. The entire pixel image is analyzed and each pixel is altered 

according to its level of intensity. Should the current pixel fall below the greylevel range, 

the pixel is assigned to the background, while the other pixels that are equal or above the 

greylevel range are considered to be the object and are assigned to an object reference 

pixel. The greylevel ranges from 0 – 255. The manual threshold value is determined by 

calculating the difference of the intensity level between the object and the background. 
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Figure 5.13 illustrates an accurate binary image achieved through filtering, noise 

cleaning, averaging, and thresholding. 

void CImageProfileProcessing::TH() 
{ 
 int i, j; 
 
 for(i = 0; i < m_IS.size.cy; i++)  
{ 
 for(j = 0; j < m_IS.size.cx; j++)  
{ 
  if(*(m_lpImage + i * m_IS.size.cx + j) > m_nThreshold)  
{ 
   *(m_lpImage + i * m_IS.size.cx + j) = TRUE; 
   } 
  else  
{ 
   *(m_lpImage + i * m_IS.size.cx + j) = FALSE; 
   } 
  } 
 } 
} 

Threshold is one of the most commonly used image preprocessing tools utilized in image 

recognition system. This method has been illustrated below. 

 

Figure 5.13:  Image after threshold mechanism has been applied 
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5.4 Boundary Detection 

Boundary detection provides an improved mechanism to accelerate the process of image 

processing. The boundary features a sharp geylevel transition. If the edges are reliably 

strong, and the noise level is low, one can establish the edge magnitude of the image with 

a close chain mechanism. Close chain discontinuities occur at boundaries, which result 

from noise and other interferences. Edge linking and edge thinning must be applied after 

edge detection.  

5.4.1 Edge Detection 

Edge detection is implemented by analyzing each pixel neighborhood and quantifying the 

slope and direction of the object. In this research project, edge detection utilizes gradient 

slope detection operators.  

5.4.2 Edge Linking 

This technique analyses the video pixel binary image and manipulates any pixels, which 

lie on the boundary between the object and the background. In this application, linear 

interpolation is employed to create a continuous boundary. Figure 5.14 (a) shows the 

discontinuity from point A to point B on the boundary, while figure 5.14 (b) shows the 

principle of linear interpolation. 
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Figure 5.14: (a) Discontinuity from A to B  (b) Principle of linear interpolation 

The discontinuity from A and B in figure 5.14 (a) is expressed with line segment OP in 

figure 5.14 (b). Assume the distance from origin O to P is Xe pixels in the x axis and Ye 

pixels in the y axis. The linear interpolation method is employed to join point O and point 

P. The current co-ordinates of the point being interpolated is saved in a co-ordinate 

variable. 

X, Y1, Xr and Yr stand for registers that store the interpolation variables in the x and y 

axis respectively. Figure 5.15 illustrates the interpolation principle. 

 

A 

B 

O
x
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P 
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Figure 5.15: Block diagram of interpolation principle 

This method allows the profile to be traced and thinned to a single pixel-wide. This 

facilitates extraction of the object profile.  

5.4.3 Edge Following and Thinning 

The chain code mechanism is utilized to represent the object profile. The chain codes that 

are utilized in this research project comprise sets of straight-line segments of specified 

length and direction, which correlate to the object boundary sides. Edge thinning is 

performed while edge following is being executed. A single pixel-wide profile is then 
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generated. The chain code contains the start pixel address followed by a string of code 

words. Figure 5.16 shows the profile of the object after edge linking, edge following, and 

edge thinning. 

 

Figure 5.16: Profile of the object 

5.5 Extraction of the Image Profile 

Extraction of the profile from the object becomes a crucial mechanism for robot path 

manipulation. Closed chain vectors represent the object profile, which is illustrated in 

Figure 5.17. A continuous vector tracing method was developed, which utilizes standard 

mathematic algorithms. This ensures that the chain profile segments contain the 

orientation and magnitude of the object.  
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Figure 5.17: Object Profile 

This mechanism was developed to represent the profile of the object by means of a closed 

chain of vectors. The profile is represented by a square of different sizes. This vector 

tracing method locates the starting point of the vector chain within a given tolerance. 

Vector algebra fundamental  

Length of vector v = ix + jy is defined as 

 22|| yxv +=   

Unit vector v0 of vector v is defined as 

 
220 || yx

jyix
v
vv

+

+
==   

Angle θ between two vectors v1 and v2 can be calculated by 

 )(cos 2010
1 vv ⋅= −θ   

v10·v20 stands for the dot product (or inner product) of vector v10 and vector v20 which  are 

the unit vectors of vectors v1 and v2 respectively.  

Discriminator of two orthogonal vectors v1 and v2 is defined as 

 02010 =⋅ vv   

Discriminator of two parallel vectors v1 and v2 sharing the same direction is defined as 
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 12010 =⋅ vv   

Discriminator of two parallel vectors v1 and v2, having opposite directions, is defined as 

 12010 −=⋅ vv   

This algorithm is to locate each corner (or node) within given tolerance.  

Figure 5.18 illustrates the profile Image co-ordinate MAP which is utilized the generate a 

robot trajectory motion path. 

 

 

Figure 5.18: Object Profile Image Co-ordinate MAP 

5.6 Conclusion 

Vision feedback systems play a crucial role in robot trajectory manipulation. This system 

is by far the most complex feedback system that can be utilized by a robot controller. 

This complex system ensures that the robot controller gains maximum movement 



 
  

168

flexibility. Real-time image processing is highly dependent on the relevant algorithms. 

The overhead of the algorithm processing time influences the real-time close loop 

feedback system. The real-time time frame can be analyzed by calculating the time from 

which the vision system views the object to the time the robot controller reacts to the 

trajectory co-ordinate plan. 

Therefore in this research project it was proved that real-time robot manipulation can be 

achieved by utilizing the vision feedback system. 

 

 



 
  

169

CHAPTER 6              

CONCLUSION 

This chapter discusses the final project results. It will also illustrate the accomplishments 

and contributions of this study with regards to the objectives set out in Chapter 1. 

Problems that were encountered during the project’s development as well as future 

extensions to the project will be highlighted.  

 

6.1  Project Results   

Profile recognition and an automated robot trajectory system was created to provide 

industry with a more flexible approach to remote automated robot systems.  

A standard industrial ABB robot and bridge PC were used to test the project results. The 

two entities were linked together with a standard industrial LAN (Ethernet protocol). The 

system network link was configured in a peer-to-peer format. The bridge PC was 

equipped with two Ethernet cards as discussed in Chapter 3. One of the network cards 

was used for the network link between the robot controller and the bridge PC, the other 

network card was used for the LAN which enabled remote communication from the 

internet. An integrated software application was divided into two main areas, vision 

sensory system and robot trajectory path control which is illustrated in Chapter 4. All the 

image processing and extraction is handled by the first component while the second 

component manages the motion control. Software to enable communication between the 

bridge PC and robot controller was also established. 
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The following was performed and illustrated: 

 The object was extracted and managed via the CCD camera and frame grabber, 

which was integrated in the Visual C application.  

 The square flat black object was placed on a white background to create a 

guaranteed contrast between the object and the background.  

 The image was grabbed into the vision extraction application, which analyzed and 

processed the image. A profile of the object was then generated. 

 The profile object was manipulated so that all the crucial co-ordinates were 

extracted such as the marker position of all the corners of the square object. The 

co-ordinates were utilized to create a robot trajectory path for the ABB industrial 

robot controller.  

 The ABB industrial robot was utilized to provide position manipulation from the 

results. 

 The Ethernet cards were installed into both devices (bridge PC and robot 

controller). 

 The Ethernet protocol was successfully established via the configuration of the 

ABB controller and bridge PC. This was done via the RobComm server. 

 The ActiveX RobComm component was configured to ensure a stable and 

flexible communication platform was achieved. 
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 The remote robot position manipulation was successfully achieved by creating a 

real-time position control. 

 The DDE engine ensures that a standard SCADA application can be integrated 

with a robot controller ensuring flexible remote applications. 

 The profile recognition system was successfully integrated with the robot 

controller to provide an integrated feedback system. 

 A remote robot programming platform was developed to manipulate kinematics 

path motion. 

6.2  Accomplishments and Contributions of final results  

The experimental validation of the profile recognition and automated PC-Based Robot 

control system was made on a variety of distinguished objects. The experiment result is 

proven to be successful and fulfill the desired objectives. 

The accomplishments and contributions of this study can be summarized as follows: 

 A vision profile recognition and automated PC-Based robot control system 

integrated with ABB IRB1400 industrial robot is established and implemented 

successfully. 

 The generic algorithms developed in the robot vision system give practical and 

effective solutions to machine vision.  

 The robot manipulator trajectory planning algorithm succeeded in generating 

RAPID programs automatically with respect to the object profile and orientation. 
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 Seamless integration between individual modules. Serial data flow supports each 

module effectively. 

6.3  Problems encountered 

Problems that were encountered during this research project were of a software nature. 

All hardware was available, but the software limited full control of the hardware. The 

software problems, which were encountered, were overcome within time. This ensured 

that all testing and development was achieved. 

 No LAN was available therefore a peer-to-peer Ethernet communication was established 

for the remote communication between the robot controller and bridge PC. The second 

bridge PC Ethernet card was connected to a second remote PC to simulate a remote LAN 

communication. The IP address utilized was of a static nature and had to be manually 

configured. This was successfully established. 

The current Ethernet hardware for the ABB industrial robot controller required specific 

firmware and system services to be installed in order for the Ethernet service to be 

activated. Initially these were not available. A large amount of time was wasted sourcing 

the correct version of firmware for the robot baseware software. This problem was later 

solved. 

The factoryware software that was available was utilized to bridge the Ethernet 

communication gap. This software was found to be unstable at times due to the software 

license development environment. This caused major constraints in the development 

environment as the ActiveX component of RobComm could not be correctly utilized in 
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the Visual C environment. Therefore a Visual Basic platform had to be developed and 

was used to manage the remote communication platform between the robot controller and 

the bridge PC. This second platform had an impact on the real-time environment, which 

wasted unnecessary processing time. 

  

6.4  Possible extensions and conclusions 

There are many possible extensions from this basic setup. This research project proved to 

be a vital platform for a remote automated robot system. 

 The current vision system setup only allows a 2D vision environment. An 

additional non-contact displacement measurement device (laser) can be 

incorporated to provide the profile depth. This will provide a 3D virtual image, 

which would create additional system flexibility. 

 A 3D robot simulation software environment such as ‘Deneb’ can be integrated 

with the robot RAPID programming environment. After the entire robot 

environment has been simulated around the product tooling a base robot software 

program can be automatically generated. This will reduce robot programming 

time. Only fine tuning of position can be corrected during project system 

commissioning.  

 The Ethernet communication environment provides the ideal platform for real-

time position control. By adding additional intelligence software to the current 
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system the robot can automatically follow a moving object and make intelligent 

decisions dependent on the vision feedback.  

The aim of this research project was to provide a platform for vision feedback and an 

automated remote robot environment. During the research it was proved that a robot 

is able to react on vision feedback sensory information. This platform can prove to be 

a vital component of the motor manufacturing industry. 
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