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Abstract:  
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maker optimizes with respect to the worst state realization. For a class of robust decision 
problems there exists a sequence of Bayesian decision problems whose solution converges 
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1 Introduction

In recent years robust or maxmin decision theory has been put forward as an al-

ternative to standard Bayesian decision theory in macroeconomics (e.g. Hansen

and Sargent (2000), (2001)).1

The key idea behind robust decision theory is that agents might face un-

certainty that they cannot quantify in terms of prior probabilities because �too

little is known� to do so.

Without prior probabilities Bayesian decisions are not deÞned. Robust de-

cision theory Þlls this gap by postulating that any action is evaluated according

to the worst outcome that it can generate among the uncertain states to which

prior probabilities cannot be assigned, see Gilboa and Schmeidler (1989) for an

axiomatization.

A key motivation for introducing robust decision makers into macroeconomic

models is that such models can explain behavior that seems not to be rational

from a Bayesian perspective and thereby improve the descriptive performance of

otherwise standard macroeconomic models. Hansen et al. (1999), for example,

show that a slight preference for robustness can explain a substantial part of

the observed equity premiums.

Despite its increasing popularity in applied macroeconomics (e.g. Onatski

and Stock (2000), Tetlow and von zur Muehlen (2001)), the relation of robust

decision theory to standard Bayesian decision theory seems to have received

little attention. At the same time, it seems important to understand the links

between the two problems since they might inform us in which ways robust

decision makers may alter and improve the descriptive performance of macroe-

conomic models. Moreover, possible links are potentially informative about how

to compute robust decisions in applications.

The present paper shows that robust decision problems can be interpreted

in terms of the limit of a sequence of Bayesian decision problems. For a simple

class of robust decision problems, I show that there is a sequence of Bayesian

1 I use the term robust decision theory synonymous to the term �maxmin decision theory�,

as put forward by Gilboa and Schmeidler (1989). Hansen et. al. (2002) have shown how these

two classes of problems can be linked.
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decision problems with ever increasing risk aversion that has the property that

the associated optimal decisions converge to the optimal robust decision.

Convergence is robust to the precise assignment of prior probabilities by the

Bayesian as long as strictly positive probability is assigned to all states over

which the robust decision faces unquantiÞable uncertainty. This suggests the

following Bayesian interpretation of robust decision theory: it represents the

choice of a particular objective function that has the property that optimal

Bayesian decisions are insensitive (or robust) to many different priors.

These results hold not only when the desire for robustness is of a global

nature but also if desired robustness is locally restricted to some small set of

perturbations around a reference model.

Besides ever increasing risk-aversion, the sequence of Bayesian decision prob-

lems has a second interesting property: utility fails to be time separable even

if the objective function of the robust decision maker (seemingly) displays such

time separability. This property emerges because the worst case evaluated by

the robust decision maker depends on the full decision vector and not only on

the decision of a single period.

The next section introduces the decision problem and describes the robust

and Bayesian approach to its solution. Section 3 derives the convergence result

which is illustrated in section 3.1 with the help of a simple example. Section

4 extends the setup to inÞnite dimensional decision problems with discounting.

An appendix collects the proofs.

2 Bayesian and Robust Decision Problems

Consider a decision maker whose objective can be described by a simple loss

function that depends on a decision vector x ∈ Rn and an unknown state of the
world s:

L(x, s) (1)

L(·, s) is assumed to be twice continuously differentiable and strictly convex for
all s. The state of the world s is assumed to belong to some Þnite and known

set Ωs = {s1, . . . sI} and the decision is assumed to belong to a compact and
convex set Ωx ⊂ Rn of feasible decisions.
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While the state s entering the loss function (1) may be interpreted literally

as a state of nature, it is more interesting to interpret s as indexing probability

distributions over random events. The latter implies that each s is associated

with a different economic model about the underlying stochastic process, which

is an interpretation more in line with the recent literature on robust control in

macroeconomics.

First, consider a Bayesian decision maker. Based on Savage�s axioms such a

decision maker can construct subjective prior probabilities pi (i = 1, . . . n) that

describe the likelihood with which the decision maker believes that state si will

realize.

Given these priors a Bayesian acts to

min
x∈Ωx

E [L(x, s)] = min
x∈Ωx

IX
i=1

L(x, si)pi (2)

Next, consider what has been called a robust decision maker who cannot

assign meaningful priors to the realization of the state s. The inability to assign

prior probabilities might be due to a failure of some of Savage�s axioms, e.g.

if there is no random variable with uniform distribution that allows for the

calibration of probabilities.

Uncertainty that cannot be quantiÞed in terms of subjective probabilities has

been called Knightian uncertainty in the literature. The existence of Knightian

uncertainty opens many possible ways for modeling the decision problem. One

intuitive way, suggested by Blinder (1998), is to simply average over the states

of the world. The resulting decision problem would be equivalent to a Bayesian

decision problem with pi = 1
I (i = 1, . . . , I).

The most widely advocated method to model decisions in the presence of

Knightian uncertainty is to let the decision maker choose the action x that

minimizes the maximum possible loss associated with x. In mathematical terms

min
x∈Ωx

max
s∈Ωs

L(x, s) (3)

Let x∗r denote the solution to the minimization part of problem (3). An ax-

iomatic formulation for such a decision theory has been given by Gilboa and

Schmeidler (1989).
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When Ωs contains the states of the world in a primitive sense, then equation

(3) implies that the decision maker has a preference for global robustness, as an

action x is evaluated with respect to all possible outcomes. For the case where

Ωs indexes a set of probability distributions (economic models), equation (3)

allows for a preference for local robustness, as the decision maker seeks only to

be robust with respect to models contained in Ωs.

It is useful to rewrite the robust decision problem as follows:

min
x∈Ωx

R(x) with

R(x) ≡
IX
i=1

L(x, si)I(x, si) (4)

where I(x, si) is an indicator function that is equal to one if si is a maximizer

of L(x, si) and that is equal to zero otherwise.2 Rewriting the robust objective

in this way helps to highlight the relation to the Bayesian problem (2).

The indicator functions appearing in (4) look almost like �prior probabilities�

of the robust decision maker. These �robust priors� put all probability weight on

the worst state associated with a given decision x. Since this worst state may

shift with x, the �prior� of the robust decision maker may shift with the chosen

decision. This is a major difference to Bayesian priors.

Given the previous observation, there exists an immediate equivalence be-

tween robust and Bayesian decisions, as pointed out by Chamberlain (2000)

and Hansen et al. (2002): if the Bayesian�s priors put all probability weight on

the worst state associated with the robust decision, then the optimal Bayesian

decision is identical to the robust decision. Note, however, that these priors

need not be rational from a Bayesian perspective.

Instead of choosing the Bayesian�s priors, this paper seeks to choose an

objective function for the Bayesian problem to achieve an equivalence between

the optimal Bayesian and robust decisions that holds (almost) independent from

the prior probabilities assigned by the Bayesian. This is done in the next section.

2 If there are several maximizers I deÞne the indicator function to be 1 only for the state

with the lowest index i.
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3 Linking Bayesian and Robust Decision Prob-

lems

The objective of this section is to establish a link between the Bayesian and the

robust decision problems described in the previous section. The main idea is to

change the objective function of the Bayesian decision problem in a way that

the Bayesian�s objective will have the same minimum as the robust objective.

Since the Bayesian�s loss function depends on the action x, altering the loss

function is a back-door through which one can cause the Bayesian to behave as

if her priors were changing across actions. In particular, if the Bayesian was to

maximize a transformed loss function T (L(x, s)) with the property that

T (L(x, s)) = L(x, s) · I(x, s)
ps

(5)

where ps is the prior probability for state s, then the Bayesian problem would

be identical to the robust decision problem:

min
x∈Ωx

E [T (L(x, s))]

= min
x∈Ωx

IX
i=1

L(x, si)
I(x, si)

pi
pi

= min
x∈Ωx

R(x)

Of course, such a transformed �loss function� is not a loss function in the strict

sense since it depends on prior probabilities.

Given that direct equivalence between the two problems requires a Bayesian

loss that depends on priors, the strategy is to construct a sequence of trans-

formed loss functions T k(L(x, s)) for the Bayesian problem with the property

that these transformed loss functions are independent of the prior. At the same

time the solution to

min
x∈Ωx

E
£
T k(L(x, s))

¤
(6)

which is denoted by x∗k should converge to the robust solution x
∗
r as k increases

without bound, i.e.

lim
k→∞

kx∗k − x∗rk = 0.
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DeÞne the following sequence of transforming functions T k(·):3

T k(L) = ekL

Since T k(·) is increasingly convex as k increases, a Bayesian with objective
T k(L) will become increasingly risk averse in terms of the coefficient of absolute

risk aversion. As a result, the value of the transformed loss T k(L) increases

disproportionately with the size of the loss L.

Intuitively, this implies that the largest of all losses L associated with some

action x obtains increasing relative weight. This should move the solution to the

Bayesian decision problem closer and closer to the robust solution. Proposition

1 below conÞrms this intuition:

Proposition 1 Let x∗k denote the solution to the transformed Bayesian decision
problem (6) with prior probabilities pi > 0 (i = 1, . . . n). Let x∗r denote the
solution to the robust decision problem (4). Then

lim
k→∞

kx∗k − x∗rk = 0

The proof of proposition 1 can be found in the appendix. Proposition 1

shows that robust decisions can be interpreted as decisions of a Bayesian with

an inÞnite degree of risk-aversion and arbitrary strictly positive priors over the

domain to which the robust decision maker cannot assign prior probabilities.

In Bayesian terms the desire for robustness represents a choice of a particular

objective function, which has the property that optimal decisions are robust to

the assignment of prior probabilities.

The next subsection illustrates proposition 1 using a univariate example.

3.1 An Example

Consider the following simple loss function, which has been considered amongst

others by Brainard (1967) and Onatski (2000):

L(x, s) = (sx− π∗)2

The variable π∗ denotes an inßation target pursued by the central bank while
sx denotes the inßation rate that results when the decision maker chooses policy

3The particular sequence Tk is just chosen for convenience and other sequences might give

the same result.
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x and the state of the world is given by s. If x is the real interest rate, then

the factor s represents the sensitivity of the economy�s inßation rate to the real

interest rate, a number likely to be unknown to the policy maker. Moreover,

the policy maker might be unable to assign probabilities to the various values

of s.

For simplicity, suppose that the desired target inßation rate is π∗ = 2 and
that there are only two potential multipliers sl < sh with sl = 1 and sh = 3.

The loss functions associated for each of these multipliers are shown in Þgure

1. The dotted line in the graph indicates the maximum loss associated with

each action. Figure 1 clearly shows that the robust decision that minimizes the

maximum loss is given by x∗r = 1.
4

Suppose a Bayesian central bank assigns equal probability to each of the

two multipliers si (i = l, h). The optimal Bayesian decision is then given by

x∗ = 0.8.
The Bayesian decision maker reacts less aggressively than the robust decision

maker. This is the case because the Bayesian trades off the gains and losses

across the different realizations of s. At the robust decision (x = 1) the loss

functions in Þgure 1 have different absolute slope coefficients depending on the

value of si (i = l, h). Therefore, the Bayesian has an incentive to decrease the

interest rate below 1 since the gains made for the realization sh will exceed the

losses for realizations sl, given the prior probabilities assigned to these states.

When the Bayesian�s objective function is subjected to increasingly convex

transformations through T k(·) risk aversion increases. This implies that the
gains for the state sh will be appreciated less relative to the potential losses

for state sl. Graphically one can interpret this as Þgure 1 being scaled in the

direction of the y-axis with each point being scaled by a factor that is increasing

with its distance from the x-axis. As a result, the slope of L(x, sl) to the left

of x = 1 increases much faster than the absolute value of the slope of L(x, sh)

to the left of this point. This pushes the Bayesian decision into the direction of

the robust decision.

Figure 2 shows how the Bayesian decision approaches the robust decision

as k increases, which suggests a convenient way to calculate (approximately)

robust decisions.5

4Since there is no uncertainty about the sign of the parameters s the optimal robust decision

coincides with the optimal decision under certainty equivalence, as noted by Onatski (2000).
5The speed of convergence will depend, amongst other things, on the Bayesian�s prior.
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4 Extension

While the loss function considered so far assumed a Þnite dimensional deci-

sion vector, macroeconomists tend to use inÞnite horizon models with inÞnite

dimensional decision vectors. In this section we show that the results of the

previous section extend in a natural way to the inÞnite horizon problems with

discounting.

Consider the following loss function

L(x, s) =
∞X
t=0

βtl(xt, s)

where xt ∈ Rn denotes the period t decision, the vector x = (x00, x01, . . . )0 the
stacked period decisions, and β < 1 a discount factor. The period loss function

l(·, s) is assumed to be strictly convex and twice continuously differentiable for
all s. The period decision xt must be chosen from a compact and convex set of

feasible decisions Ω
t that might depend on past decisions. Furthermore, there

is a compact set Ωx ⊂ Rn such that Ωt ⊂ Ωx for all t.
The robust decision maker minimizes

min
{xt|xt∈Ωt}

max
s∈Ωs

∞X
t=0

βtl(xt, s) (7)

To construct the transformed Bayesian problem it might seem natural at Þrst

to transform the period loss function l(·, ·) to preserve the time separability of
the objective function, e.g. to let the Bayesian minimize

min
{xt|xt∈Ωt}

IX
i=1

∞X
t=0

βtekl(xt,si)pi (8)

However, the solution to this problem will not necessarily converge to the so-

lution of the robust decision problem as k increases without bound. This is

the case because a marginal change of some decision might have its strongest

impact for a state si that differs from the worst-case state s∗r associated with
the robust decision. When, in addition, the sign of the utility change for si is

opposite to the sign of the utility change for s∗r , then the Bayesian decisions for
(8) fails to converge as k→∞. This is illustrated in the following example.
Convergence will be slower, the less weight is attached to the worst state associated with the

robust decision.
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Example 2 Let the optimal robust decision be given by x∗0r = (x∗0r,0, x∗0r,1, . . . )
and the state si (i = 1, 2) that maximizes the loss for this and any neighboring

decisions is given by s1. Next consider the decision

x0 = x0∗r + (d
0, 0, 0, 0 . . . )

which is equal to x∗r, except for the Þrst period. Suppose that altering the decision
from x∗r to x causes the loss in period zero to increase by γ1 > 0 units in state
s1. This causes x to be suboptimal for the robust decision maker.

Next, consider a Bayesian decision maker with objective (8) who considers

a deviation from x∗r to x. The change ∆k in the Þrst period loss is given by

∆k = (e
k(l(x∗r,0,s1)+γ1) − ekl(x∗r,0,s1))p1 +

³
ek(l(x

∗
r,0,s2)+γ2) − ekl(x∗r,0,s2)

´
p2 (9)

where γ2 = l(x∗r,0 + d, s2) − l(x∗r,0, s2). Suppose γ2 < 0 and l(x∗r,0, s2) >
l(x∗r,0, s1) + γ1 > 0, which cannot be excluded, then

lim
k→∞

∆k = −∞

which indicates that a Bayesian with objective function (8) will prefer x to xr∗

for all sufficiently large k.

To obtain a convergence result similar to the one in section 3 one has to

deÞne the transformed loss function as

T k(L(x, s)) = ek(
P∞

t=0 β
tl(xt,si)) (10)

and let the Bayesian minimize

min
{xt|xt∈Ωt}

IX
i=1

ek(
P∞

t=0 β
tl(xt,si))pi (11)

where pi are prior probabilities.

Proposition 3 below shows that, as k increases without bound, the Bayesian

solution to problem (11) converges to the robust solution in terms of the follow-

ing vector norm:

kxkβ =
∞X
t=0

βtx0txt (12)
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Proposition 3 Let x∗k denote the solution to the transformed Bayesian decision
problem (11) with prior probabilities pi > 0 (i = 1, . . . n). Let x∗r denote the
solution to the robust decision problem (7). Then

lim
k→∞

kx∗k − x∗rkβ = 0

The proof of proposition 3 is identical to the one of proposition 1 with the

exception that one has to substitute expressions involving the standard vector

norm by the �discounted� norm (12).

As a Þnal remark, I want to stress that the transformed Bayesian utility

function fails to be time separable.6 Marginal utility for the Bayesian problem

is given by

∂E
£
T k(L(x, s))

¤
∂xt

= kβt
X
i

∇l(xt, si)ek(
P∞

h=0 β
hl(xh,si))pi (13)

Since this expression does not converge for k→∞, consider the ratio of marginal
utilities instead:

∂E[Tk(L(x,s))]
∂xt

∂E[Tk(L(x,s))]
∂xt+j

(14)

The limit of (14) for k→∞ depends on the states s that maximize
P∞
h=0 β

hl(xh, s),

where the latter expression is the term showing up in the exponent of (13). Since

the states that maximize this expression depend on the whole decision vector x,

a decision change in some period other than t or t+ j may well alter this ratio.

5 Appendix

This section proves proposition 1. Rename states s such that at x∗r

L(x∗r , s1) ≥ L(x∗r , s2) ≥ . . . ≥ L(x∗r , sI)

and let

Ωmax = {i|L(x∗r , si) = L(x∗r , s1)}

I Þrst prove the following auxiliary result:
6The subsequent arguments assume a non-atomistic decision maker who takes into account

that the maximizing states are a function of his/her own decision x. See section 6 in Hansen

et al. (2002) for further discussion.
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Lemma 4 ∀ δ > 0 sufficiently small ∀ d ∈ Rn with kdk = δ ∃ ε > 0 indepen-
dent of d and a state i ∈ Ωmax s.t.

L(x∗r + d, si)− L(x∗r , si) > ε

Proof of lemma 4:. The difference can be expressed as

L(x∗r + d, si)− L(x∗r , si) = ∇L(x∗r , si)d+ d0∇2L(x∗r , si)d+O(3) (15)

where O(3) is a third order approximation error. Consider the Þrst order

term: From the optimality of x∗r follows that

∇L(x∗r , si)d ≥ 0 (16)

for some i ∈ Ωmax. Next, Þx such an i and consider the second order term.
Since ∇2L(x∗r , si) is normal and positive deÞnite, we have

∇2L(x∗r , si) = U 0iDiUi
where Ui is unitary and

Di = diag(λi,1 . . .λi,n)

with λi,j > 0 being the eigenvalues of ∇2L(x∗r , si). Then deÞning λi,min =
minj λi,j

d0∇2L(x∗r , s)d = d0U 0iDiUid
≥ λi,mind0U 0iUid (17)

= λi,mind
0d (18)

= λi,minδ (19)

Letting λmin = mini∈Ωmax λi,min it follows from (15), (??), and (19) that

L(x∗r + d, si)− L(x∗r , si) ≥ λminδ2 +O(3)

Choosing δ sufficiently small the third order approximation error can be

made arbitrarily small, e.g. smaller than λminδ
2 , then choosing ε = λminδ

2

establishes the claim.

Next, normalize the transformed objective of the Bayesian decision maker

(6) as follows

L
k
(x) =

1

ekL(x
∗
r ,s1)

IX
i=1

ekL(x,si)pi (20)
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Maximizing (20) delivers the same solution as maximizing (6). The limit of

L
k
(x∗r) for k →∞ exists and is given by:

lim
k→∞

L
k
(x∗r) =

X
i∈Ωmax

pi

Next, consider L
k
(x∗r + d) with d ∈ Rn and kdk = δ, δ sufficiently small. From

lemma 4 and (20) it follows that

L
k
(x∗r + d) >

ek(L(x
∗
r ,s1)+ε)

ekL(x
∗
r ,s1)

pmin

where pmin = mini pi. Therefore, there exists a k <∞ such that for all k > k

L
k
(x∗r + d) > L

k
(x∗r)

From the strict convexity of L
k
(·) it follows that the minimum x∗k of L

k
(·) must

be within distance δ from x∗r for all k > k, which establishes the claim.
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