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Abstract:  
Despite powerful advances in yield curve modeling in the last twenty years, comparatively 
little attention has been paid to the key practical problem of forecasting the yield curve. In this 
paper we do so. We use neither the no-arbitrage approach, which focuses on accurately fitting 
the cross section of interest rates at any given time but neglects time-series dynamics, nor the 
equilibrium approach, which focuses on time-series dynamics (primarily those of the 
instantaneous rate) but pays comparatively little attention to fitting the entire cross section at 
any given time and has been shown to forecast poorly. Instead, we use variations on the 
Nelson-Siegel exponential components framework to model the entire yield curve, period-by-
period, as a three-dimensional parameter evolving dynamically. We show that the three time-
varying parameters may be interpreted as factors corresponding to level, slope and curvature, 
and that they may be estimated with high efficiency. We propose and estimate autoregressive 
models for the factors, and we show that our models are consistent with a variety of stylized 
facts regarding the yield curve. We use our models to produce term-structure forecasts at both 
short and long horizons, with encouraging results. In particular, our forecasts appear much 
more accurate at long horizons than various standard benchmark forecasts. 
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1 The empirical literature that models yields as a cointegrated system, typically with one
underlying stochastic trend (the short rate) and stationary spreads relative to the short rate, is similar in
spirit.  See Diebold and Sharpe (1990), Hall, Anderson, and Granger (1992), Shea (1992), Swanson and
White (1995), and Pagan, Hall and Martin (1996).

2 For comparative discussion of point and density forecasting, see Diebold, Gunther and Tay
(1998) and Diebold, Hahn and Tay (1999).
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1.  Introduction

The last twenty-five years have produced major advances in theoretical models of the term

structure as well as their econometric estimation.  Two popular approaches to term structure modeling

are no-arbitrage models and equilibrium models.  The no-arbitrage tradition focuses on perfectly fitting

the term structure at a point in time to ensure that no arbitrage possibilities exist, which is important for

pricing derivatives.  The equilibrium tradition focuses on modeling the dynamics of the instantaneous

rate, typically using affine models, after which yields at other maturities can be derived under various

assumptions about the risk premium.1  Prominent contributions in the no-arbitrage vein include Hull and

White (1990) and Heath, Jarrow and Morton (1992), and prominent contributions in the affine

equilibrium tradition include Vasicek (1977), Cox, Ingersoll and Ross (1985), and Duffie and Kan

(1996).

Interest rate point forecasting is crucial for bond portfolio management, and interest rate density

forecasting is important for both derivatives pricing and risk management.2  Hence one wonders what the

modern models have to say about interest rate forecasting.  It turns out that, despite the impressive

theoretical advances in the financial economics of the yield curve, surprisingly little attention has been

paid to the key practical problem of yield curve forecasting.  The arbitrage-free term structure literature

has little to say about dynamics or forecasting, as it is concerned primarily with fitting the term structure

at a point in time.  The affine equilibrium term structure literature is concerned with dynamics driven by

the short rate, and so is potentially linked to forecasting, but most papers in that tradition, such as de Jong

(2000) and Dai and Singleton (2000), focus only on in-sample fit as opposed to out-of-sample

forecasting.  Moreover, those that do focus on out-of-sample forecasting, notably Duffee (2002),

conclude that the models forecast poorly.

In this paper we take an explicitly out-of-sample forecasting perspective, and we use neither the

no-arbitrage approach nor the equilibrium approach.  Instead, we use the Nelson-Siegel (1987)

exponential components framework to distill the entire yield curve, period-by-period, into a three-

dimensional parameter that evolves dynamically.  We show that the three time-varying parameters may



3 Classic unrestricted factor analyses include Litterman and Scheinkman (1991) and Knez,
Litterman and Scheinkman (1994).
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be interpreted as factors.  Unlike factor analysis, however, in which one estimates both the unobserved

factors and the factor loadings, the Nelson-Siegel framework imposes structure on the factor loadings.3 

Doing so not only facilitates highly precise estimation of the factors, but, as we show, it also lets us

interpret the factors as level, slope and curvature.  We propose and estimate autoregressive models for

the factors, and then we forecast the yield curve by forecasting the factors.  Our results are encouraging;

in particular, our models produce one-year-ahead forecasts that are noticeably more accurate than

standard benchmarks.

Related work includes the factor models of Litzenberger, Squassi and Weir (1995), Bliss (1997a,

1997b), Dai and Singleton (2000), de Jong and Santa-Clara (1999), de Jong (2000), Brandt and Yaron

(2001) and Duffee (2002).  Particularly relevant are the three-factor models of Balduzzi, Das, Foresi and

Sundaram (1996), Chen (1996), and especially the Andersen-Lund (1997) model with stochastic mean

and volatility, whose three factors are interpreted in terms of level, slope and curvature.  We will

subsequently discuss related work in greater detail; for now, suffice it to say that little of it considers

forecasting directly, and that our approach, although related, is indeed very different.

We proceed as follows.  In section 2 we provide a detailed description of our modeling

framework, which interprets and extends earlier work in ways linked to recent developments in multi-

factor term structure modeling, and we also show how it can replicate a variety of stylized facts about the

yield curve.  In section 3 we proceed to an empirical analysis, describing the data, estimating the models,

and examining out-of-sample forecasting performance.  In section 4 we offer interpretive concluding

remarks.

2.  Modeling and Forecasting the Term Structure I:  Methods

Here we introduce the framework that we use for fitting and forecasting the yield curve.  We

argue that the well-known Nelson-Siegel (1987) curve is well-suited to our ultimate forecasting purposes,

and we introduce a novel twist of interpretation, showing that the three coefficients in the Nelson-Siegel

curve may be interpreted as latent level, slope and curvature factors.  We also argue that the nature of the

factors and factor loadings implicit in the Nelson-Siegel model facilitate consistency with various

empirical properties of the yield curve that have been cataloged over the years.  Finally, motivated by our

interpretation of the Nelson-Siegel model as a three-factor model of level, slope and curvature, we

contrast it to various multi-factor models that have appeared in the literature.
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Constructing “Raw” Yields

Let us first fix ideas and establish notation by introducing three key theoretical constructs and the

relationships among them:  the discount curve, the forward curve, and the yield curve.  Let  denotePt(
� )

the price of a � -period discount bond, i.e., the present value at time t of $1 receivable �  periods ahead, and

let  denote its continuously-compounded zero-coupon nominal yield to maturity.  From the yieldyt(
� )

curve we obtain the discount curve,

,Pt(
� ) � e

��� yt(
� )

and from the discount curve we obtain the instantaneous (nominal) forward rate curve,

.ft(
� ) ��� P

�
t (
� ) /Pt(

� )

The relationship between the yield to maturity and the forward rate is therefore

,yt(
� ) � 1�

� �
0

ft(u)du

which implies that the zero-coupon yield is an equally-weighed average of forward rates.  Given the yield

curve or forward curve, we can price any coupon bond as the sum of the present values of future coupon

and principal payments.

In practice, yield curves, discount curves and forward curves are not observed.  Instead, they

must be estimated from observed bond prices.  Two popular approaches to constructing yields proceed by

estimating a smooth discount curve and then converting to yields at the relevant maturities via the above

formulae.  The first discount-curve approach to yield construction is due to McCulloch (1975) and

McCulloch and Kwon (1993), who model the discount curve with a cubic spline.  The fitted discount

curve, however, diverges at long maturities instead of converging to zero.  Hence such curves provide a

poor fit to yield curves that are flat or have a flat long end, which requires an exponentially decreasing

discount function.

A second discount-curve approach to yield construction is due to Vasicek and Fong (1982), who

fit exponential splines to the discount curve, using a negative transformation of maturity instead of

maturity itself, which ensures that the  forward rates and zero-coupon yields converge to a fixed limit as

maturity increases.  Hence the Vasicek-Fong model is more successful at fitting yield curves with flat



4 See, for example, Courant and Hilbert (1953).
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yt(
� ) �
	 1t � 	 2t

1 � e
���

t
�


t
� � 	 3t

1 � e
���

t
�


t
� � e

���
t
�

.

long ends.  It has problems of its own, however, because its estimation requires iterative nonlinear

optimization, and it can be hard to restrict the implied forward rates to be positive.

A third and very popular approach to yield construction is due to Fama and Bliss (1987), who

construct yields not via an estimated discount curve, but rather via estimated forward rates at the

observed maturities.  Their method sequentially constructs the forward rates necessary to price

successively longer-maturity bonds, often called an “unsmoothed Fama-Bliss”  forward rates, and then

constructs “unsmoothed Fama-Bliss yields”  by averaging the appropriate unsmoothed Fama-Bliss

forward rates.  The unsmoothed Fama-Bliss yields exactly price the included bonds.  Throughout this

paper, we model and forecast the unsmoothed Fama-Bliss yields.

Modeling Yields:  The Nelson-Siegel Yield Curve and its Interpretation

At any given time, we have a large set of (Fama-Bliss unsmoothed) yields, to which we fit a

parametric curve for purposes of modeling and forecasting.  Throughout this paper, we use the Nelson-

Siegel (1987) functional form, which is a convenient and parsimonious three-component exponential

approximation.  In particular, Nelson and Siegel (1987), as extended by Siegel and Nelson (1988), work

with the forward rate curve,

.ft(
� ) �
	 1t � 	 2te

���
t
� � 	 3t


t
� e ��� t

�

The Nelson-Siegel forward rate curve can be viewed as a constant plus a Laguerre function, which is a

polynomial times an exponential decay term and is a popular mathematical approximating function.4  The

corresponding yield curve is

The Nelson-Siegel yield curve also corresponds to a discount curve that begins at one at zero maturity

and approaches zero at infinite maturity, as appropriate.

Let us now interpret the parameters in the Nelson-Siegel model.  The parameter  governs the


t

exponential decay rate; small values of  produce slow decay and can better fit the curve at long


t

maturities, while large values of  produce fast decay and can better fit the curve at short maturities.  


t


t



5 Throughout this paper, and for reasons that will be discussed subsequently in detail, we set  =


t

0.0609 for all t.

6 Factors are typically not uniquely identified in factor analysis.  Bliss (1997a) rotates the first
factor so that its loading is a vector of ones.  In our approach, the unit loading on the first factor is
imposed from the beginning, which potentially enables us to estimate the other factors more efficiently.
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also governs where the loading on  achieves its maximum.5 	 3t

We interpret ,  and  as three latent dynamic factors.  The loading on  is 1, a constant	 1t 	 2t 	 3t 	 1t

that does not decay to zero in the limit; hence it may be viewed as a long-term factor.  The loading on 	 2t

is  , a function that starts at 1 but decays monotonically and quickly to 0; hence it may be(1 � e
���

t
�
) /


t
�

viewed as a short-term factor.  The loading on  is  , which starts at 0 (and is thus	 3t ((1 � e
���

t
�
) /


t
� ) � e

���
t
�

not short-term), increases, and then decays to zero (and thus is not long-term); hence it may be viewed as

a medium-term factor.  We plot the three factor loadings in Figure 1.  They are similar to those obtained

by Bliss (1997a), who estimated loadings via a statistical factor analysis.6

An important insight is that the three factors, which following the literature we have thus far

called long-term, short-term and medium-term, may also be interpreted in terms of level, slope and

curvature.  The long-term factor , for example, governs the yield curve level.  In particular, one can	 1t

easily verify that .  Alternatively, note that an increase in  increases all yields equally, as theyt(� ) ��	 1t 	 1t

loading is identical at all maturities, thereby changing the level of the yield curve.

The short-term factor  is closely related to the yield curve slope, which we define as the ten-	 2t

year yield minus the three-month yield.  In particular, .  Some authors suchyt(120) � yt(3) ��� .78	 2t � .06	 3t

as Frankel and Lown (1994), moreover, define the yield curve slope as , which is exactlyyt(� ) � yt(0)

equal to .  Alternatively, note that an increase in  increases short yields more than long yields,��	 2t 	 2t

because the short rates load on  more heavily, thereby changing the slope of the yield curve.	 2t

We have seen that  governs the level of the yield curve and  governs its slope.  It is	 1t 	 2t

interesting to note, moreover, that the instantaneous yield depends on both the level and slope factors,

because .  Several other models have the same implication.  In particular, Dai andyt(0) ��	 1t � 	 2t

Singleton (2000) show that the three-factor models of Balduzzi, Das, Foresi and Sundaram (1996) and

Chen (1996) impose the restrictions that the instantaneous yield is an affine function of only two of the

three state variables, a property shared by the Andersen-Lund (1997) three-factor non-affine model.

Finally, the medium-term factor  is closely related to the yield curve curvature, which we	 3t

define as twice the two-year yield minus the sum of the ten-year and three-month yields.  In particular,
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.  Alternatively, note that an increase in  will have little2yt(24) � yt(3) � yt(120) � .00053	 2t � .37 	 3t 	 3t

effect on very short or very long yields, which load minimally on it, but will increase medium-term

yields, which load more heavily on it, thereby increasing yield curve curvature.

Now that we have interpreted Nelson-Siegel as a three-factor of level, slope and curvature, it is

appropriate to contrast it to Litzenberger, Squassi and Weir (1995), which is highly related yet distinct. 

First, although Litzenberger et al. model the discount curve  using exponential components and wePt(
� )

model the yield curve  using exponential components, the yield curve is a log transformation of theyt(
� )

discount curve because , so the two approaches are equivalent in the one-factor case. yt(
� ) ��� log Pt(

� )/�
In the multi-factor case, however, a sum of factors in the yield curve will not be a sum in the discount

curve, so there is generally no simple mapping between the approaches.  Second, both we and

Litzenberger et al. provide novel interpretations of the parameters of fitted curves.  Litzenberger et al.,

however, do not interpret parameters directly as factors.

In closing this sub-section, it is worth noting that what we have called the “Nelson-Siegel curve”

is actually a different factorization than the one originally advocated by Nelson and Siegel (1987), who

used

.yt(
� ) � b1t � b2t

1 � e
���

t
�


t
� � b3te

���
t
�

Obviously the Nelson-Siegel factorization matches ours with , , and .  Ours isb1t ��	 1t b2t ��	 2t � 	 3t b3t ��	 3t

preferable, however, for reasons that we are now in a position to appreciate.  First,  and(1 � e
���

t
�
) /


t
�

 have similar monotonically decreasing shape, so if we were to interpret  and  as factors, thene
���

t
�

b2 b3

their loadings would be forced to be very similar, which creates at least two problems.  First,

conceptually, it would be hard to provide intuitive interpretations of the factors in the original Nelson-

Siegel framework.  Second, operationally, it would be difficult to estimate the factors precisely, because

the high coherence in the factors produces multicolinearity.

Stylized Facts of the Yield Curve and the Model’s Potential Ability to Replicate Them

A good model of yield curve dynamics should be able to reproduce the historical stylized facts

concerning the average shape of the yield curve, the variety of shapes assumed at different times, the

strong persistence of yields and weak persistence of spreads, and so on.  It is not easy for a parsimonious

model to accord with all such facts.  Duffee (2002), for example, shows that multi-factor affine models

are inconsistent with many of the facts, perhaps because term premia may not be adequately captured by

affine models.  
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Let us consider some of the most important stylized facts and the ability of our model to replicate

them, in principle:

(1)  The average yield curve is increasing and concave.  In our framework, the average yield

curve is the yield curve corresponding to the average values of ,  and .  It is	 1t 	 2t 	 3t

certainly possible in principle that it may be increasing and concave.

(2)  The yield curve assumes a variety of shapes through time, including upward sloping,

downward sloping, humped, and inverted humped.  The yield curve in our framework

can assume all of those shapes.  Whether and how often it does depends upon the

variation in ,  and .	 1t 	 2t 	 3t

(3)  Yield dynamics are persistent, and spread dynamics are much less persistent.  Persistent

yield dynamics would correspond to strong persistence of , and less persistent spread	 1t

dynamics would correspond to weaker persistence of .	 2t

(4)  The short end of the yield curve is more volatile than the long end.  In our framework, this is

reflected in factor loadings:  the short end depends positively on both  and ,	 1t 	 2t

whereas the long end depends only on .	 1t

(5)  Long rates are more persistent than short rates.  In our framework, long rates depend only on

.  If  is the most persistent factor, then long rates will be more persistent than short	 1t 	 1t

rates.

Overall, it seems clear that our framework is consistent, at least in principle, with many of the key

stylized facts of yield curve behavior.  Whether principle accords with practice is an empirical matter, to

which we now turn.

3.  Modeling and Forecasting the Term Structure II:  Empirics

In this section, we estimate and assess the fit of the three-factor model in a time series of cross

sections, after which we model and forecast the extracted level, slope and curvature components.  We

begin by introducing the data.

The Data

We use end-of-month price quotes (bid-ask average) for U.S. Treasuries, from January 1985

through December 2000, taken from the CRSP government bonds files.  CRSP filters the data,

eliminating bonds with option features (callable and flower bonds), and bonds with special liquidity

problems (notes and bonds with less than one year to maturity, and bills with less than one month to

maturity), and then converts the filtered bond prices to unsmoothed Fama-Bliss (1987) forward rates. 

Then, using programs and CRSP data kndly supplied by Rob Bliss, we convert the unsmoothed



7 We checked the derived dataset and verified that the difference between it and the original
dataset is only one or two basis points.

8 That is why affine models don’ t fit the data well; they can’ t generate such high variability and
quick mean reversion in curvature.
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Fama-Bliss forward rates into unsmoothed Fama-Bliss zero yields.

Although most of our analysis does not require the use of fixed maturities, doing so greatly

simplifies our subsequent forecasting exercises.  Hence we pool the data into fixed maturities.  Because

not every month has the same maturities available, we linearly interpolate nearby maturities to pool into

fixed maturities of 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108, and 120 months, where a

month is defined as 30.4375 days.  Although there is no bond with exactly 30.4375 days to maturity, each

month there are many bonds with either 30, 31, 32, 33, or 34 days to maturity.  Similarly we obtain data

for maturities of 3 months, 6 months, etc.7

The various yields, as well as the yield curve level, slope and curvature defined above, will play

a prominent role in the sequel.  Hence we focus on them now in some detail.  In Figure 2 we provide a

three-dimensional plot of our yield curve data.  The large amount of temporal variation in the level is

visually apparent.  The variation in slope and curvature is less strong, but nevertheless apparent.  In Table

1, we present descriptive statistics for the yields.  It is clear that the typical yield curve is upward sloping,

that the long rates are less volatile and more persistent than short rates, that the level (120-month yield) is

highly persistent but varies only moderately relative to its mean, that the slope is less persistent than any

individual yield but quite highly variable relative to its mean, and the curvature is the least persistent of

all factors and the most highly variable relative to its mean.8  It is also worth noting, because it will be

relevant for our future modeling choices, that level, slope and curvature are not highly correlated with

each other; all pairwise correlations are less than 0.40.  In Figure 3 we display the median yield curve

together with pointwise interquartile ranges.  The earlier-mentioned upward sloping pattern, with long

rates less volatile than short rates, is apparent.  One can also see that the distributions of yields around

their medians tend to be asymmetric, with a long right tail.

Fitting Yield Curves

As discussed above, we fit the yield curve using the three-factor model,



9 Other weightings and loss functions have been explored by Bliss (1997b), Soderlind and
Svensson (1997), and Bates (1999).

10 Although, as discussed earlier, we attempted to remove illiquid bonds, complete elimination is
not possible.
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We could estimate the parameters  by nonlinear least squares, for each month t. 
�

t � { 	 1t, 	 2t, 	 3t,


t}

Following standard practice tracing to Nelson and Siegel (1987), however, we instead fix  at a


t

prespecified value, which lets us compute the values of the two regressors (factor loadings) and use

ordinary least squares to estimate the betas (factors), for each month t.  Doing so enhances not only

simplicity and convenience, but also numerical trustworthiness, by enabling us to replace hundreds of

potentially challenging numerical optimizations with trivial least-squares regressions.  The question

arises, of course, as to an appropriate value for .  Recall that  determines the maturity at which the


t


t

loading on the medium-term, or curvature, factor achieves it maximum.  Two- or three-year maturities are

commonly used in that regard, so we simply picked the average, 30 months.  The   value that


t

maximizes the loading on the medium-term factor at exactly 30 months is =0.0609.  


t

Applying ordinary least squares to the yield data for each month gives us a time series of

estimates of  and a corresponding panel of residuals, or pricing errors.  Note that, because{ ˆ	 1t,
ˆ	 2t,

ˆ	 3t}

the maturities are not equally spaced, we implicitly weight the most “active”  region of the yield curve

most heavily when fitting the model.9  There are many aspects to a full assessment of the “ fit”  of our

model.  In Figure 4 we plot the implied average fitted yield curve against the average actual yield curve. 

The two agree quite closely.  In Figure 5 we dig deeper by plotting the raw yield curve and the three-

factor fitted yield curve for some selected dates.  Clearly the three-factor model is capable of replicating

a variety of yield curve shapes:  upward sloping, downward sloping, humped, and inverted humped.  It

does, however, have difficulties at some dates, especially when yields are dispersed, with multiple

interior minima and maxima.  Overall, however, the residual plot in Figure 6 indicates a good fit.

In Table 2 we present statistics that describe the in-sample fit.  The residual sample

autocorrelations indicate that pricing errors are persistent.  As noted in Bliss (1997b), regardless of the

term structure estimation method used, there is a persistent discrepancy between actual bond prices and

prices estimated from term structure models.  Presumably these discrepancies arise from persistent tax

and/or liquidity effects.10  However, because they persist, they should vanish from fitted yield changes.

In Figure 7 we plot  along with the empirical level, slope and curvature defined{ ˆ	 1t,
ˆ	 2t,

ˆ	 3t}

earlier.  The figure confirms our assertion that the three factors in our model correspond to level, slope



11 We use SIC to choose the lags in the augmented Dickey-Fuller unit-root test.  The MacKinnon
critical values for rejection of hypothesis of a unit root are -3.4518 at the one percent level, -2.8704 at the
five percent level, and -2.5714 at the ten percent level.

12 Note that we directly regress factors at t+h on factors at t, which is a standard method of
coaxing least squares into optimizing the relevant loss function, h-month-ahead RMSE, as opposed to the
usual 1-month-ahead RMSE.  We estimate all competitor models in the same way, as described below.

10

ŷt � h/t(
� ) � ˆ	 1,t � h/t � ˆ	 2,t � h/t

1 � e
�����

 � � ˆ	 3,t � h/t
1 � e

�����
 � � e

�����
,

ˆ	 i,t � h/t � ĉi � ˆ� i
ˆ	 it, i � 1, 2, 3,

ŷt � h/t(
� ) � ˆ	 1,t � h/t � ˆ	 2,t � h/t

1 � e
�����

 � � ˆ	 3,t � h/t
1 � e

�����
 � � e

�����
,

and curvature.  The correlations between the estimated factors and the empirical level, slope, and

curvature are  = 0.97,  =  -0.99, and  = 0.99, where  are the empirical� (ˆ	 1t , l t)
� (ˆ	 2t ,st)

� (ˆ	 3t ,ct) (l t, st, ct)

level, slope and curvature of the yield curve.  In Table 3 and Figure 8 (left column) we present

descriptive statistics for the estimated factors.  From the autocorrelations of the three factors, we can see

that the first factor is the most persistent, and that the second factor is more persistent than the third. 

Augmented Dickey-Fuller tests suggest that  and  may have a unit roots, and that  does not.11 ˆ	 1
ˆ	 2

ˆ	 3

Finally, the pairwise correlations between the estimated factors are not large.

Modeling and Forecasting Yield Curve Level, Slope and Curvature

We model and forecast the Nelson-Siegel factors as univariate AR(1) processes.  The AR(1)

models can be viewed as natural benchmarks determined a priori:  the simplest great workhorse

autoregressive models.  The yield forecasts based on underlying univariate AR(1) factor specifications

are:

where

and  and  are obtained by regressing  on an intercept and .12ĉi ˆ� i
ˆ	 it

ˆ	 i,t � h
For comparison , we also produce yield forecasts based on an underlying multivariate VAR(1)

specification, as:

where



13 That, of course, is the reason for the ubiquitous use of Bayesian analysis, featuring strong
priors on the VAR coefficients, for VAR forecasting, as pioneered by Doan, Litterman and Sims (1984).
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ˆ	 t � h/t � ĉ � ˆ� ˆ	 t.

ŷt � h/t(
� ) � yt(

� ).

We include the VAR forecasts for completeness, although one might expect them to be inferior to the AR

forecasts for at least two reasons.  First, as is well-known from the macroeconomics literature,

unrestricted VARs tend to produce poor forecasts of economic variables even when there is important

cross-variable interaction, due to the large number of included parameters and the resulting potential for

in-sample overfitting.13  Second, our factors indeed display little cross-factor interaction and are not

highly correlated, so that an appropriate multivariate model is likely close to a stacked set of univariate

models.

In Figure 8 (right column) we provide some evidence on the goodness of fit of the AR(1) models

fit to the estimated level, slope and curvature factors, showing residual autocorrelation functions.  The

autocorrelations are very small, indicating that the models accurately describe the conditional means of

level, slope and curvature .

Out-of-Sample Forecasting Performance of the Three-Factor Model

A good approximation to yield-curve dynamics should not only fit well in-sample, but also

forecast well out-of-sample.  Because the yield curve depends only on , forecasting the yield{ ˆ	 1t,
ˆ	 2t,

ˆ	 3t}

curve is equivalent to forecasting .  In this section we undertake just such a forecasting{ ˆ	 1t,
ˆ	 2t,

ˆ	 3t}

exercise.  We estimate and forecast recursively, using data from 1985:1 to the time that the forecast is

made, beginning in 1994:1 and extending through 2000:12.

In Tables 4-6 we compare h-month-ahead out-of sample forecasting results from Nelson-Siegel

models to those of several natural competitors, for maturities of 3, 12, 36, 60 and 120 months, and

forecast horizons of h = 1, 6 and 12 months.  Let us now describe the competitors in terms of how their

forecasts are generated.

(1)  Random walk:

The forecast is always “no change.”

(2)  Slope regression:



14 Note that this is an unrestricted version of the model estimated by Cochrane and Piazzesi. 
Imposition of the Cochrane-Piazzesi restrictions produced qualitatively identical results.
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ŷt � h/t(
� ) � yt(

� ) � ĉ(� ) � ˆ� (� ) (yt(
� ) � yt(3)).

ŷt � h/t(
� ) � yt(

� ) � ĉ(� ) � ˆ� (� ) (f h
t (� ) � yt(

� )),

ŷt � h/t(
� ) � yt(

� ) � ĉ(� ) � ˆ� 0(
� ) yt(12) ���

9

k � 1 ˆ� k(
� ) f 12k

t (12).

ŷt � h/t(
� ) � ĉ(� ) � ˆ� yt(

� ).

ŷt � h/t � ĉ � ˆ� yt.

ẑt � h/t � ĉ � ˆ� zt,

The forecasted yield change is obtained from a regression of historical yield changes on

yield curve slopes.

(3)  Fama-Bliss forward rate regression:

where  is the forward rate contracted at time  for loans from time  to timef h
t (� ) t t � h

.  Hence the forecasted yield change is obtained from a regression of historicalt � h � �
yield changes on forward spreads.  Note that, because the forward rate is proportional to

the derivative of the discount function, the information used to forecast future yields in

forward rate regressions is very similar to that in slope regressions.

(4)  Cochrane-Piazzesi (2002) forward curve regression:

Note that the Fama-Bliss forward regression is a special case of the Cochrane-Piazzesi

forward regression.14

(5)  AR(1) on yield levels:

(6)  VAR(1) on yield levels:

where .yt � [yt(3), yt(12), yt(36), yt(60), yt(120)]
�

(7)  VAR(1) on yield changes:
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ẑt � h/t � ĉ � ˆ� zt,

ẑt � h/t � ĉ � ˆ� zt,

x̂i,t � h/t � ĉi � ˆ� i xit, i � 1, 2, 3,

ŷt � h|t(
� ) � q1(

� ) x̂1,t � h|t � q2(
� ) x̂2,t � h|t � q3(

� ) x̂3,t � h|t,

where . zt � [yt(3) � yt � 1(3), yt(12) � yt � 1(12), yt(36) � yt � 1(36), yt(60) � yt � 1(60), yt(120) � yt � 1(120)]
�

(8)  ECM(1) with one common trend:

where .zt � [yt(3) � yt � 1(3), yt(12) � yt(3), yt(36) � yt(3), yt(60) � yt(3), yt(120) � yt(3)]
�

(9)  ECM(1) with two common trends:

where  zt � [yt(3) � yt � 1(3), yt(12) � yt � 1(12), yt(36) � yt(3), yt(60) � yt(3), yt(120) � yt(3)]
�
.

(10)  Direct regression on three AR(1) principal components

We first perform a principal components analysis on the full set of seventeen yields ,yt

effectively decomposing the yield covariance matrix as , where the diagonalQ� Q T

elements of  are the eigenvalues and the columns of  are the associated eigenvectors. � Q

Denote the largest three eigenvalues by , and denote the associated


1,


2, and


3

eigenvectors by .  The first three principal components q1, q2, and q3 xt � [x1t, x2t, x3t]

are then defined by ,   We then use a univariate AR(1) model toxit � q
�

i yt i � 1, 2, 3.

produce h-step-ahead forecasts of the principal components:

and we produce forecasts for yields  asyt � [yt(3), yt(12), yt(36), yt(60), yt(120)]
�

 

where  is the element in the eigenvector  that corresponds to maturity .qi(
� ) qi

�
We define forecast errors at t+h as .  Note well that, in each case, the object beingyt � h(� ) � ŷt � h/t(

� )
forecast ( ) is a future yield,  not a future Nelson-Siegel fitted yield.  We will examine a number ofyt � h(� )
descriptive statistics for the forecast errors, including mean, standard deviation, root mean squared error

(RMSE), and autocorrelations at various displacements.

Our model’s 1-month-ahead forecasting results, reported in Table 4, are in certain respects

humbling.  In absolute terms, the forecasts appear suboptimal:  the forecast errors appear serially

correlated.  In relative terms, RMSE comparison at various maturities reveals that our forecasts, although



15 Note that Nelson-Siegel loadings imply a very smooth yield curve, which in turn suggests that
our model, although not arbitrage-free, would not likely generate extreme portfolio positions. 
Competitors such as regression on principal components, in contrast, have no smooth cross-sectional
restrictions and may well generate extreme portfolio positions in practice.  This is one important way in
which our approach is superior to directs regression on principal components, despite the fact that our
estimated factors are close to the first three principal components.  (Four more are given below.)

16 We report 12-month-ahead forecast error serial correlation coefficients at displacements of 12
and 24 months, in contrast to those at displacements of 1 and 12 months reported for the 1-month-ahead
forecast errors, because the 12-month-ahead errors would naturally have moving-average structure even
if the forecasts were fully optimal, due to the overlap.
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slightly better than the random walk and slope regression forecasts, are indeed only very slightly better. 

Finally, the Diebold-Mariano (1995) statistics reported in Table 7 indicate universal insignificance of the

RMSE differences between our 1-month-ahead forecasts and those from random walks or Fama-Bliss

regressions.

The 1-month-ahead forecast defects likely come from a variety of sources, some of which could

be eliminated.  First, for example, pricing errors due to illiquidity may be highly persistent and could be

reduced by including variables that may explain mispricing.  It is worth noting, moreover, that related

papers such as Bliss (1997b) and de Jong (2000) also find serially correlated forecast errors, often with

persistence much stronger than ours.

Matters improve radically, however, as the forecast horizon lengthens.  Our model’s 6-month-

ahead forecasting results, reported in Table 5, are noticeably improved, and our model’s 12-month-ahead

forecasting results, reported in Table 6, are much improved.  In particular, our model’s 12-month ahead

forecasts outperform those of all competitors at all maturities, often by a wide margin in both relative and

absolute terms.  Seven of the ten Diebold-Mariano statistics in Table 7 indicate significant 12-month-

ahead RMSE superiority of our forecasts at the five percent level.  The strong yield curve forecastability

at the 12-month-ahead horizon is, for example, very attractive from the vantage point of active bond

trading and the vantage point of credit portfolio risk management.15  Moreover, our 12-month-ahead

forecasts, like their 1- and 6-month-ahead counterparts, could be improved upon, because the forecast

errors remain serially correlated.16

It is worth noting that Duffee (2002) finds that even the simplest random walk forecasts dominate

those from the Dai-Singleton (2000) affine model, which therefore appears largely useless for

forecasting.  Hence Duffee proposes a less-restrictive “essentially-affine”  model and shows that it

forecasts better than the random walk in most cases, which is appropriately viewed as a victory.  A



17 We note, however, that our enthusiasm must be tempered by the fact that our in-sample and
out-of-sample periods are not identical to Duffee’s, so definitive comparisons can not be made.
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comparison of our results and Duffee’s, however, reveals that our three-factor model produces larger

percentage reductions in out-of-sample RMSE relative to the random walk than does Duffee’s best

essentially-affine model.  Our forecasting success is particularly notable in light of the fact that Duffee

forecasts only the smoothed yield curve, whereas we forecast the actual yield curve.17

Finally, we note that although our approach is closely related to direct principal components

regression, neither our approach nor our results are identical.  Interestingly, there is reason to prefer our

approach on both empirical and theoretical grounds.  Empirically, our results indicate that our approach

has superior forecasting performance on our sample of yields.  Theoretically, other methods, including

regression on principal components and regression on ad hoc empirical level, slope and curvature, often

have unappealing features, including:

(1)  they can not be used to produce yields at maturities other than those observed in the data, 

(2)  they do not guarantee a smooth yield curve and forward curve, 

(3)  they do not guarantee positive forward rates at all horizons, and 

(4)  they do not guarantee that the discount function starts at 1 and approaches 0 as maturity

approaches infinity.

4.  Concluding Remarks

We have re-interpreted the Nelson-Siegel yield curve as a modern three-factor dynamic model of

level, slope and curvature, and we have explored the model’s performance in out-of-sample yield curve

forecasting.  Although the 1-month-ahead forecasting results are no better than those of random walk and

other leading competitors, the 1-year-ahead results are much superior.

A number of authors have proposed extensions to Nelson-Siegel to enhance flexibility, including

Bliss (1997b), Soderlind and Svensson (1997), Björk and Christensen (1999), Filipovic (1999, 2000),

Björk (2000), Björk and Landén (2000) and Björk and Svensson (2001).  From the perspective of interest

rate forecasting accuracy, however, the desirability of the above generalizations of Nelson-Siegel is not

obvious, which is why we did not pursue them here.  For example, although the Bliss and Soderlind-

Svensson extensions can have in-sample fit no worse than that of Nelson-Siegel, because they include

Nelson-Siegel as a special case, there is no guarantee of better out-of-sample forecasting performance. 

Indeed, accumulated experience suggest that parsimonious models are often more successful for out-of-



18 See Diebold (2004).

19 See Dai and Singleton (2002) for an interesting analysis that explores certain aspects of the
tradeoff between freedom from arbitrage and forecasting performance.
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sample forecasting.18  

Some of the extensions alluded to above are designed to make Nelson-Siegel consistent with no-

arbitrage pricing.  It is not obvious to us, however, that use of arbitrage-free models is necessary or

desirable for producing good forecasts.19  Indeed we have shown that our model (which is not arbitrage-

free) produces good forecasts, whereas Duffee (2002) and others have recently shown that the popular

affine no-arbitrage models produce very poor forecasts.  Moreover, although our model is not

theoretically arbitrage-free, we expect it to be empirically nearly arbitrage-free.  The U.S. Treasury bond

market is very liquid, which should make Treasury bond yields nearly arbitrage-free, so that given the

very good fit of our model, it should also be nearly arbitrage-free.

In closing, we would like to elaborate on the likely reason for the forecasting success of our

approach, which relies heavily on a broad interpretation of the shrinkage principle.  The essence of our

approach is intentionally to impose substantial a priori structure, motivated by simplicity,  parsimony,

and theory, in an explicit attempt to avoid data mining and hence enhance out-of-sample forecasting

ability.  This includes our use of a tightly-parametric model that places strict structure on factor loadings

in accordance with simple theoretical desiderata for the discount function, our decision to fix , our


emphasis on simple univariate modeling of the factors based upon our theoretically-derived interpretation

of the model as one of approximately orthogonal level, slope and curvature factors, and our emphasis on

the simplest possible AR(1) factor dynamics.  All of this is in keeping with a broad interpretation of the

“shrinkage principle,”  which has a firm foundation in Bayes-Stein theory, in empirical intuition, and in

an accumulated track record of good performance (e.g., Garcia-Ferrer et al., 1987; Zellner and Hong,

1989; Zellner and Min, 1993).  Here we interpret the shrinkage principle as the insight that imposition of

restrictions, which will of course degrade in-sample fit, may nevertheless be helpful for out-of-sample

forecasting, even if the restrictions are false.  The fact that the shrinkage principle works in the yield-

curve context, as it does in so many other contexts, is precisely what theory and empirical experience

would lead one to expect.  This is not to say, of course, that our specification is in any sense uniquely

best, and we make no claims to that effect.  Rather, the broad lesson of the paper is to show in the yield-

curve context that the shrinkage perspective, which tends to produce seemingly-naive but truly

sophisticatedly-simple models (of which ours is one example), may be very appealing when the goal is



17

forecasting.  Put differently, the paper emphasizes in the yield curve context Zellner’s (1992) “KISS

principle”  of forecasting – “Keep It Sophisticatedly Simple.”
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Table 1
Descriptive Statistics, Yield Curves 

Maturity
(Months) 

Mean Standard
Deviation

Minimum Maximum ˆ� (1) ˆ� (12) ˆ� (30)

3 5.630 1.488 2.732 9.131 0.978 0.569 -0.079

6 5.785 1.482 2.891 9.324 0.976 0.555 -0.042

9 5.907 1.492 2.984 9.343 0.973 0.545 -0.005

12 6.067 1.501 3.107 9.683 0.969 0.539 0.021

15 6.225 1.504 3.288 9.988 0.968 0.527 0.060

18 6.308 1.496 3.482 10.188 0.965 0.513 0.089

21 6.375 1.484 3.638 10.274 0.963 0.502 0.115

24 6.401 1.464 3.777 10.413 0.960 0.481 0.133

30 6.550 1.462 4.043 10.748 0.957 0.479 0.190

36 6.644 1.439 4.204 10.787 0.956 0.471 0.226

48 6.838 1.439 4.308 11.269 0.951 0.457 0.294

60 6.928 1.430 4.347 11.313 0.951 0.464 0.336

72 7.082 1.457 4.384 11.653 0.953 0.454 0.372

84 7.142 1.425 4.352 11.841 0.948 0.448 0.391

96 7.226 1.413 4.433 11.512 0.954 0.468 0.417

108 7.270 1.428 4.429 11.664 0.953 0.475 0.426

120 (level) 7.254 1.432 4.443 11.663 0.953 0.467 0.428

slope 1.624 1.213 -0.752 4.060 0.961 0.405 -0.049

curvature -0.081 0.648 -1.837 1.602 0.896 0.337 -0.015



Table 2
Descriptive Statistics, Yield Curve Residuals

Maturity
(Months)

 

Mean Standard 
Deviation

Min. Max. MAE RMSE ˆ� (1) ˆ� (12) ˆ� (30)

3 -0.018 0.080 -0.332 0.156 0.061 0.082 0.777 0.157 -0.360

6 -0.013 0.042 -0.141 0.218 0.032 0.044 0.291 0.257 -0.046

9 -0.026 0.062 -0.200 0.218 0.052 0.067 0.704 0.216 -0.247

12 0.013 0.080 -0.160 0.267 0.064 0.081 0.563 0.322 -0.266

15 0.063 0.050 -0.063 0.243 0.067 0.080 0.650 0.139 -0.070

18 0.048 0.035 -0.048 0.165 0.052 0.059 0.496 0.183 -0.139

21 0.026 0.030 -0.091 0.101 0.033 0.040 0.370 -0.044 -0.011

24 -0.027 0.045 -0.190 0.082 0.037 0.052 0.667 0.212 0.056

30 -0.020 0.036 -0.200 0.098 0.029 0.041 0.398 0.072 -0.058

36 -0.037 0.046 -0.203 0.128 0.047 0.059 0.597 0.053 -0.017

48 -0.018 0.065 -0.204 0.230 0.052 0.067 0.754 0.239 -0.321

60 -0.053 0.058 -0.199 0.186 0.066 0.079 0.758 -0.021 -0.175

72 0.010 0.080 -0.133 0.399 0.056 0.081 0.904 0.278 -0.163

84 0.001 0.062 -0.259 0.263 0.044 0.062 0.589 0.019 0.000

96 0.032 0.045 -0.202 0.111 0.045 0.055 0.697 0.120 -0.144

108 0.033 0.046 -0.161 0.132 0.047 0.057 0.669 0.081 -0.176

120 -0.016 0.071 -0.256 0.164 0.057 0.073 0.623 0.252 -0.070



Table 3
Descriptive Statistics, Estimated Factors

Factor Mean Std. Dev. Minimum Maximum ADF

7.579 1.524 4.427 12.088 0.957 0.511 0.454 -2.410

-2.098 1.608 -5.616 0.919 0.969 0.452 -0.082 -1.205

-0.162 1.687 -5.249 4.234 0.901 0.353 -0.006 -3.516



Table 4
Out-of-Sample 1-Month-Ahead Forecasting Results 

Nelson-Siegel with AR(1) Factor Dynamics

Maturity (J) Mean Std. Dev. RMSE

3 months -0.045 0.170 0.176 0.247 0.017

1 year 0.023 0.235 0.236 0.425 -0.213

3 years -0.056 0.273 0.279 0.332 -0.117

5 years -0.091 0.277 0.292 0.333 -0.116

10 years -0.062 0.252 0.260 0.259 -0.115

Random Walk

Maturity (J) Mean Std. Dev. RMSE

3 months 0.033 0.176 0.179 0.220 0.053

1 year 0.021 0.240 0.241 0.340 -0.153

3 years 0.007 0.279 0.279 0.341 -0.133

5 years -0.003 0.276 0.276 0.275 -0.131

10 years -0.011 0.254 0.254 0.215 -0.145

 Slope Regression

Maturity (J) Mean Std. Dev. RMSE

3 months NA NA NA NA NA

1 year 0.048 0.242 0.247 0.328 -0.145

3 years 0.032 0.286 0.288 0.373 -0.146

5 years 0.019 0.284 0.285 0.318 -0.150

10 years 0.013 0.260 0.260 0.245 -0.159

Fama-Bliss Forward Rate Regression

Maturity (J) Mean Std. Dev. RMSE

3 months 0.066 0.159 0.172 0.178 0.036

1 year 0.066 0.233 0.242 0.313 -0.148

3 years 0.024 0.286 0.287 0.380 -0.157

5 years 0.038 0.277 0.280 0.273 -0.125

10 years 0.041 0.251 0.254 0.200 -0.159



Table 4 (Continued) 
Out-of-Sample 1-Month-Ahead Forecasting Results

Cochrane-Piazzesi Forward Curve Regression

Maturity (J) Mean Std. Dev. RMSE

3 months NA NA NA NA NA

1 year -0.038 0.238 0.241 0.282 -0.088

3 years -0.034 0.287 0.289 0.377 -0.108

5 years -0.068 0.292 0.300 0.364 -0.084

10 years -0.113 0.257 0.281 0.271 -0.097

Univariate AR(1)s on Yield Levels

Maturity (J) Mean Std. Dev. RMSE

3 months 0.042 0.177 0.182 0.229 0.060

1 year 0.025 0.238 0.239 0.341 -0.147

3 years -0.005 0.276 0.276 0.345 -0.125

5 years -0.030 0.274 0.276 0.280 -0.127

10 years -0.054 0.252 0.258 0.224 -0.144

VAR(1) on Yield Levels

Maturity ( ) Mean Std. Dev. RMSE

3 months -0.013 0.176 0.176 0.229 0.128

1 year -0.026 0.262 0.263 0.447 -0.162

3 years -0.041 0.302 0.305 0.437 -0.154

5 years -0.064 0.303 0.310 0.429 -0.133

10 years -0.090 0.274 0.288 0.310 -0.123

VAR(1) on Yield Changes

Maturity ( ) Mean Std. Dev. RMSE

3 months 0.043 0.176 0.181 -0.019 0.156

1 year 0.029 0.230 0.232 0.157 -0.149

3 years 0.026 0.276 0.277 0.077 -0.049

5 years 0.021 0.276 0.277 0.010 -0.002

10 years 0.020 0.263 0.264 -0.017 -0.030



Table 5
Out-of-Sample 6-month-Ahead Forecasting Results

Nelson-Siegel with AR(1) Factor Dynamics

Maturity (J) Mean Std. Dev. RMSE

3 months 0.083 0.510 0.517 0.301 -0.190

1 year 0.131 0.656 0.669 0.168 -0.174

3 years -0.052 0.748 0.750 0.049 -0.189

5 years -0.173 0.758 0.777 0.069 -0.273

10 years -0.251 0.676 0.721 0.058 -0.288

Random Walk

Maturity (J) Mean Std. Dev. RMSE

3 months 0.220 0.564 0.605 0.381 -0.214

1 year 0.181 0.758 0.779 0.139 -0.150

3 years 0.099 0.873 0.879 0.018 -0.211

5 years 0.048 0.860 0.861 0.008 -0.249

10 years -0.020 0.758 0.758 0.019 -0.271

Slope Regression

Maturity (J) Mean Std. Dev. RMSE

3 months NA NA NA NA NA

1 year 0.422 0.811 0.914 0.109 -0.113

3 years 0.281 0.944 0.985 0.116 -0.198

5 years 0.209 0.939 0.962 0.103 -0.235

10 years 0.145 0.832 0.845 0.096 -0.256

Fama-Bliss Forward Rate Regression

Maturity (J) Mean Std. Dev. RMSE

3 months 0.494 0.549 0.739 0.208 -0.072

1 year 0.373 0.821 0.902 0.194 -0.150

3 years 0.255 0.964 0.997 0.092 -0.211

5 years 0.220 0.932 0.958 0.050 -0.248

10 years 0.223 0.794 0.825 0.038 -0.268



Table 5 (Continued) 
Out-of-Sample 6-month-Ahead Forecasting Results

Cochrane-Piazzesi Forward Curve Regression

Maturity (J) Mean Std. Dev. RMSE

3 months NA NA NA NA NA

1 year -0.155 0.845 0.859 0.220 -0.110

3 years -0.210 0.910 0.934 0.179 -0.218

5 years -0.224 0.910 0.937 0.193 -0.270

10 years -0.345 0.837 0.905 0.192 -0.287

Univariate AR(1)s on Yield Levels 

Maturity (J) Mean Std. Dev. RMSE

3 months 0.224 0.539 0.584 0.405 -0.210

1 year 0.160 0.707 0.725 0.193 -0.155

3 years -0.030 0.800 0.801 0.075 -0.211

5 years -0.144 0.789 0.802 0.061 -0.253

10 years -0.286 0.699 0.755 0.073 -0.278

VAR(1) on Yield Levels

Maturity ( ) Mean Std. Dev. RMSE

3 months -0.138 0.659 0.673 0.289 -0.160

1 year -0.195 0.880 0.901 0.133 -0.169

3 years -0.218 0.926 0.951 0.122 -0.240

5 years -0.258 0.919 0.955 0.140 -0.273

10 years -0.406 0.811 0.907 0.137 -0.293

VAR(1) on Yield Changes

Maturity ( ) Mean Std. Dev. RMSE

3 months 0.312 0.661 0.731 0.319 -0.256

1 year 0.310 0.845 0.900 0.172 -0.181

3 years 0.276 0.941 0.981 0.059 -0.210

5 years 0.246 0.917 0.949 0.048 -0.242

10 years 0.192 0.809 0.831 0.043 -0.259



Table 6
Out-of-Sample 12-month-Ahead Forecasting Results 

Nelson-Siegel with AR(1) Factor Dynamics

Maturity (J) Mean Std. Dev. RMSE

3 months 0.150 0.724 0.739 -0.288 0.001

1 year 0.173 0.823 0.841 -0.332 -0.004

3 years -0.123 0.910 0.918 -0.408 0.015

5 years -0.337 0.918 0.978 -0.412 0.003

10 years -0.531 0.825 0.981 -0.433 -0.003

Nelson-Siegel with VAR(1) Factor Dynamics

Maturity (J) Mean Std. Dev. RMSE

3 months -0.463 1.000 1.102 -0.163 -0.111

1 year -0.416 1.224 1.293 -0.265 -0.065

3 years -0.576 1.268 1.393 -0.317 -0.036

5 years -0.673 1.210 1.385 -0.315 -0.039

10 years -0.721 1.056 1.279 -0.299 -0.037

Random Walk

Maturity (J) Mean Std. Dev. RMSE

3 months 0.416 0.930 1.019 -0.118 -0.109

1 year 0.388 1.132 1.197 -0.268 -0.019

3 years 0.236 1.214 1.237 -0.419 0.060

5 years 0.130 1.184 1.191 -0.481 0.072

10 years -0.033 1.051 1.052 -0.508 0.069

Slope Regression

Maturity ( ) Mean Std. Dev. RMSE

3 months NA NA NA NA NA

1 year 0.896 1.235 1.526 -0.187 -0.024

3 years 0.641 1.316 1.464 -0.212 0.024

5 years 0.515 1.305 1.403 -0.255 0.035

10 years 0.362 1.208 1.261 -0.268 0.042



Table 6 (Continued)
Out-of-Sample 12-month-Ahead Forecasting Results

Fama-Bliss Forward Rate Regression

Maturity ( ) Mean Std. Dev. RMSE

3 months 0.942 1.010 1.381 -0.046 -0.096

1 year 0.875 1.276 1.547 -0.142 -0.039

3 years 0.746 1.378 1.567 -0.291 0.035

5 years 0.587 1.363 1.484 -0.352 0.040

10 years 0.547 1.198 1.317 -0.403 0.062

Cochrane-Piazzesi Forward Curve Regression

Maturity (J) Mean Std. Dev. RMSE

3 months NA NA NA NA NA

1 year -0.162 1.275 1.285 -0.179 -0.079

3 years -0.377 1.275 1.330 -0.274 -0.028

5 years -0.529 1.225 1.334 -0.301 -0.021

10 years -0.760 1.088 1.327 -0.307 -0.020

Univariate AR(1)s on Yield Levels

Maturity (J) Mean Std. Dev. RMSE

3 months 0.246 0.808 0.845 -0.213 -0.073

1 year 0.182 0.953 0.970 -0.271 -0.004

3 years -0.113 0.996 1.002 -0.380 0.061

5 years -0.301 0.961 1.007 -0.433 0.058

10 years -0.603 0.835 1.030 -0.431 0.020

VAR(1) on Yield Levels

Maturity (J) Mean Std. Dev. RMSE

3 months -0.276 1.006 1.043 -0.219 -0.099

1 year -0.390 1.204 1.266 -0.322 -0.058

3 years -0.467 1.240 1.325 -0.345 -0.015

5 years -0.540 1.201 1.317 -0.348 -0.012

10 years -0.744 1.060 1.295 -0.328 -0.010



Table 6 (Continued)
Out-of-Sample 12-month-Ahead Forecasting Results

VAR(1) on Yield Changes

Maturity ( ) Mean Std. Dev. RMSE

3 months 0.717 1.072 1.290 -0.068 -0.127

1 year 0.704 1.240 1.426 -0.223 -0.041

3 years 0.627 1.341 1.480 -0.399 0.051

5 years 0.559 1.281 1.398 -0.459 0.070

10 years 0.408 1.136 1.207 -0.491 0.072

ECM(1) with one Common Trend

Maturity (J) Mean Std. Dev. RMSE

3 months 0.738 0.982 1.228 -0.163 -0.123

1 year 0.767 1.143 1.376 -0.239 -0.072

3 years 0.546 1.203 1.321 -0.278 -0.013

5 years 0.379 1.191 1.250 -0.278 -0.003

10 years 0.169 1.095 1.108 -0.224 0.009

ECM(1) with Two Common Trends

Maturity (J) Mean Std. Dev. RMSE

3 months 0.778 1.037 1.296 -0.175 -0.129

1 year 0.868 1.247 1.519 -0.286 -0.033

3 years 0.586 1.186 1.323 -0.288 -0.034

5 years 0.425 1.155 1.231 -0.304 -0.014

10 years 0.220 1.035 1.058 -0.274 0.015

Direct Regression on Three AR(1) Principal Components

Maturity (J) Mean Std. Dev. RMSE

3 months 0.162 0.785 0.802 -0.298 -0.020

1 year 0.416 0.979 1.064 -0.305 0.042

3 years -0.127 1.014 1.022 -0.372 0.054

5 years -0.393 1.013 1.087 -0.335 0.038

10 years -0.394 0.929 1.009 -0.284 0.066



Table 7
Out-of-Sample Forecast Accuracy Comparisons

Maturity
(J)

1-Month Horizon 12-Month Horizon

against
RW

against
FB

against
RW

against
FB

3 months -0.27 0.18 -1.65* -2.43*

1 year -0.64 -0.56 -2.04* -2.31*

3 years -0.02 -0.58 -2.11* -2.18*

5 years 0.97 0.57 -1.61 -1.90*

10 years 0.49 0.34 -0.63 -1.35
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Notes to Tables

Notes to Table 1:  
We present descriptive statistics for monthly yields at different maturities, and for the yield curve level,
slope and curvature, where we define the level as the 10-year yield, the slope as the difference between
the 10-year and 3-month yields, and the curvature as the twice the 2-year yield minus the sum of the 3-
month and 10-year yields.  The last three columns contain sample autocorrelations at displacements of 1,
12, and 30 months.  The sample period is 1985:01-2000:12.

Notes to Table 2:  
We fit the three-factor model,
 

using monthly yield data 1985:01-2000:12, with  fixed at 0.0609, and we present descriptive statistics


t
for the corresponding residuals at various maturities.  The last three columns contain residual sample
autocorrelations at displacements of 1, 12, and 30 months.

Notes to Table 3:
We fit the three-factor Nelson-Siegel model using monthly yield data 1985:01-2000:12, with  fixed at


t

0.0609, and we present descriptive statistics for the three estimated factors , , and .  The lastˆ	 1t
ˆ	 2t

ˆ	 3t
column contains augmented Dickey-Fuller (ADF) unit root test statistics, and the three columns to its left
contain sample autocorrelations at displacements of 1, 12, and 30 months.

Notes to Table 4:  
We present the results of out-of-sample 1-month-ahead forecasting using eight models, as described in
detail in the text.  We estimate all models recursively from 1985:1 to the time that the forecast is made,
beginning in 1994:1 and extending through 2000:12.  We define forecast errors at t +1 as

, and we report the mean, standard deviation and root mean squared errors of the forecastyt � 1(� ) � ŷt � 1/t(
� )

errors, as well as their first and twelfth sample autocorrelation coefficients.

Notes to Table 5:  
We present the results of out-of-sample 6-month-ahead forecasting using eight models, as described in
detail in the text.  We estimate all models recursively from 1985:1 to the time that the forecast is made,
beginning in 1994:1 and extending through 2000:12.  We define forecast errors at t +6 as

, and we report the mean, standard deviation and root mean squared errors of the forecastyt � 6(� ) � ŷt � 6/t(
� )

errors, as well as their sixth and eighteenth sample autocorrelation coefficients.

Notes to Table 6:  
We present the results of out-of-sample 12-month-ahead forecasting using twelve models, as described in
detail in the text.  We estimate all models recursively from 1985:1 to the time that the forecast is made,
beginning in 1994:1 and extending through 2000:12.  We define forecast errors at t +12 as

, and we report the mean, standard deviation and root mean squared errors of theyt � 12(
� ) � ŷt � 12/t(

� )
forecast errors, as well as their twelfth and twenty-fourth sample autocorrelation coefficients.

Notes to Table 7:  
We present Diebold-Mariano forecast accuracy comparison tests of our three-factor model forecasts
(using univariate AR(1) factor dynamics) against those of the Random Walk model (RW) and the Fama-
Bliss forward rate regression model (FB).  The null hypothesis is that the two forecasts have the same
mean squared error.  Negative values indicate superiority of our three-factor model forecasts, and
asterisks denote significance relative to the asymptotic null distribution at the ten percent level.
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Figure 1
Factor Loadings

Notes to Figure 1:  We plot the factor loadings in the three-factor model, 

where the three factors are , , and , the associated loadings are 1, , and ,	 1t 	 2t 	 3t
1 � e

���
t
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t
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and  denotes maturity.  We fix  = 0.0609.� 
t



Figure 2
Yield Curves, 1985.01-2000.12

Notes to Figure 2:  The sample consists of monthly yield data from January 1985 to December 2000 at
maturities of 3,  6,  9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108, and 120 months.
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Figure 3
Median Data-Based Yield Curve with Pointwise Interquartile Range

Notes to Figure 3:  For each maturity, we plot the median yield along with the twenty-fifth and seventy-
fifth percentiles. 
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Figure 4
Actual (Data-Based) and Fitted (Model-Based) Average Yield Curve

Notes to Figure 4:  We show the actual average yield curve and the fitted average yield curve obtained by
evaluating the Nelson-Siegel function at the mean values of ,  and  from Table 3.ˆ	 1t

ˆ	 2t
ˆ	 3t
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Figure 5
Selected Fitted (Model-Based) Yield Curves

Notes to Figure 5:  We plot fitted yield curves for selected dates, together with actual yields.  See text for

details.



Figure 6
Yield Curve Residuals, 1985.01 - 2000.12

Notes to Figure 6:  We plot residuals from Nelson-Siegel yield curves fitted month-by-month.  See text for
details.
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Figure 7
Model-Based Level, Slope and Curvature (i.e., Estimated Factors)

vs. Data-Based Level, Slope and Curvature

Notes to Figure 7:  We define the level as the 10-year yield, the slope as the difference between the 10-year
and 3-month yields, and the curvature as the twice the 2-year yield minus the sum of the 3-month and 10-
year yields.
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Figure 8
Autocorrelations and Residual Autocorrelations of Level, Slope and Curvature Factors

Notes to Figure 8:  We plot the sample autocorrelations of the three estimated factors, , , and , asˆ	 1t
ˆ	 2t

ˆ	 3t
well as the sample autocorrelations of AR(1) models fit to the three estimated factors, along with Barlett’s
approximate 95% confidence bands. 
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