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Abstract

The availability of modern commodity multicore processors and multiprocessor computer sys-
tems has resulted in the widespread adoption of parallel computers in a variety of environments,
ranging from the home to workstation and server environments in particular. Unfortunately, par-
allel programming is harder and requires more expertise than the traditional sequential program-
ming model. The variety of tools and parallel programming models available to the programmer
further complicates the issue. The primary goal of this research was to identify and describe
a selection of parallel programming tools and techniques to aid novice parallel programmers
in the process of developing efficient parallel C/C++ programs for the Linux platform. This
was achieved by highlighting and describing the key concepts and hardware factors that affect
parallel programming, providing a brief survey of commonly available software development
tools and parallel programming models and libraries, and presenting structured approaches to
software performance tuning and parallel programming. Finally, the performance of several
parallel programming models and libraries was investigated, along with the programming effort
required to implement solutions using the respective models.

A quantitative research methodology was applied to the investigation of the performance and
programming effort associated with the selected parallel programming models and libraries,
which included automatic parallelisation by the compiler, Boost Threads, Cilk Plus, OpenMP,
POSIX threads (Pthreads), and Threading Building Blocks (TBB). Additionally, the perfor-
mance of the GNU C/C++ and Intel C/C++ compilers was examined. The results revealed that
the choice of parallel programming model or library is dependent on the type of problem being
solved and that there is no overall best choice for all classes of problem. However, the results
also indicate that parallel programming models with higher levels of abstraction require less
programming effort and provide similar performance compared to explicit threading models.

The principle conclusion was that the problem analysis and parallel design are an important
factor in the selection of the parallel programming model and tools, but that models with higher
levels of abstractions, such as OpenMP and Threading Building Blocks, are favoured.
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Chapter 1

Introduction

With the advent of commercial multicore processors, modern computer systems have taken
on parallel capabilities. It is now common for modern commodity computer systems to ship
with two or more processor cores and the chip manufacturers are not stopping there [19, 124].
CPUs with between two and twelve physical processor cores are readily available from man-
ufacturers such as AMD, IBM, Intel, and Oracle Sun, with sixteen-core variants on the near
horizon. The Sun SPARC T-series, IBM POWER7, and Intel Hyper-Threading enabled range
of processors take multicore parallel processing a step further by supporting multiple threads
of execution per core. Intel’s Tera-scale research program has even produced 48-core and 80-
core experimental CPUs for research purposes, demonstrating the potential for highly parallel
manycore architectures [62, 94, 132]. These multicore and multiprocessor computer systems
are seeing use almost everywhere, particularly in the server and workstation markets, as well
as in scientific computing where hundreds of multicore CPUs are harnessed to form massively
parallel supercomputers. This trend towards increasing the number of processor cores instead
of improving clock speeds can be attributed to the physical limitations of modern processor de-
signs [54, 53, 124, 136]. Other processor improvements, such as instruction-level parallelism,
are also reaching their limits and it is becoming harder for CPU designers to increase the perfor-
mance of the individual processor cores. As such, multicore designs represent both the present
and future of the CPU and signal the need for programmers to start thinking in parallel as op-
posed to the traditional sequential programming model [54, 136].

This has serious implications for the design and development of applications, since writing and
debugging parallel software is a difficult task that requires more knowledge and expertise than
sequential programming [53, 136, 141]. So, following the commitment of chip manufacturers
to the development of multicore CPUs, the key limiting factors for software performance are the

1
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parallel programming abilities of software programmers and the availability of easy-to-use, ef-
ficient parallel programming models and parallel-aware software development tools. However,
well over a hundred different parallel programming models and libraries have been developed
over the years, most of which failed to gain any traction in the programming community, leaving
only a handful still in widespread use. Therefore, programmers and library developers should
focus on using and extending the current range of successful parallel programming models in-
stead of attempting to develop new models that may only see limited use. The real problem
lies in helping programmers to think in parallel and providing methodical approaches to iden-
tifying and exploiting the potential parallelism in a program using an appropriate parallel API
or library [21, 102, 103, 141]. Further assistance is required when it comes to identifying and
debugging errors and performance issues in the resulting parallel code. This is where parallel-
aware software development tools can come to the aid of the programmer [124]. A wide range
of both free and commercial debugging and performance analysis tools are available, so the
main problem lies in choosing the appropriate tools and learning how to use them effectively.
Unfortunately, simply understanding the tools and methodologies for parallel programming is
not enough to ensure that the resulting parallel program has good efficiency. The programmer
also needs to understand the underlying platforms and architectures as they define a number
of factors that affect performance, such as the importance of using cache to reduce memory
access latency. The end result is that parallel programming requires more effort than sequential
programming, so, where possible, parallel programming environments should attempt to reduce
the effort required to develop correct efficient parallel programs [136].

There are several studies into the performance of parallel programs using various parallel pro-
gramming models [6, 86, 87, 91, 14]. However, these studies tend to focus on the performance
aspect and little attention is given to the quantitative analysis and comparison of the program-
ming effort associated with implementing parallel programs using each of the selected parallel
programming models. Kegel et al. [86, 87] present a subjective analysis of programming effort
in respect to the parallel programming model, but very little work has gone into the quantitative
analysis of performance versus programming effort.

1.1 Problem Statement and Research Goals

The problem that we attempt to address in this thesis, either in full or in part, is the identification,
selection, and usage of appropriate libraries, language extensions, tools, and approaches for the
development of efficient parallel programs in C and C++ for the Linux platform from the stand-
point of a novice parallel programmer, while minimising programmer effort. Our definition
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of a novice parallel programmer primarily includes intermediate and advanced level sequential
programmers starting to use parallel constructs. That being said, it is becoming increasingly
important for those new to programming to be introduced to parallel programming concepts
and the associated shift in the way of thinking about problems and their solutions.

This problem has a number of facets, which include the analysis of the hardware character-
istics of multiprocessor systems, the identification of suitable parallel programming libraries
and APIs, the identification of suitable parallel programming software development tools, im-
plementing parallelism in several programs using each of the selected parallel programming
models, measuring the performance of the implementations, measuring the code metrics as-
sociated with the implementations as an estimate of programming effort, and comparing the
resulting measurements between the different parallel programming models.

Therefore, the research goals of this thesis are fourfold:

1. Describe the key concepts of parallel programming and provide an overview of the organ-
isational and architectural characteristics of commodity multiprocessor computer systems
as they relate to performance.

2. Provide a short survey of current parallel programming models and parallel-aware soft-
ware development tools for C and C++.

3. Present and describe techniques for parallel programming and performance optimisation.

4. Evaluate and compare the performance and programming effort of several parallel pro-
gram implementations using the different parallel programming models.

1.2 Thesis Organisation

The relevant chapters of the thesis are organised as described below:

Chapter 2 introduces and discusses several important concepts related to multiprocessor com-
puters and parallel programming.

Chapter 3 presents a short survey of common parallel programming models and libraries, as
well as a variety of programming tools.
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Chapter 4 describes a methodical approach to performance tuning, lists and describes a num-
ber of performance optimisations, and describes an approach to parallel programming
using patterns.

Chapter 5 defines the research methodology for the empirical investigation and comparison of
several parallel programming models.

Chapter 6 then describes the implementation of optimisations and parallelism in selected pro-
grams using the parallel programming models.

Chapter 7 presents, compares, and discusses the performance results and code metrics for the
various implementations.

Chapter 8 summarises this thesis and presents the conclusions drawn from the research.

Appendix A lists a selection of relevant compiler options, while Appendix B provides the code
listings for the original sequential programs.



Chapter 2

Background Work

2.1 Introduction

The field of concurrent and parallel computing has developed extensively over the last few
decades, evolving from the early parallel supercomputers and mainframes to the modern mas-
sively parallel supercomputers and commodity parallel processors commonly found in desk-
tops, servers, laptops, and even gaming consoles. The software driving these systems has also
progressed substantially, resulting in a myriad of concurrent and parallel programming models
and systems. Understanding these systems and the underlying hardware is critical, as so aptly
stated by Herlihy and Shavit in the quote below.

You cannot program a multiprocessor effectively unless you know what a multipro-
cessor is. [56, p. 469]

In this chapter, we present the main concepts associated with parallel computing as they pertain
to later discussions. We also present a brief introduction to computer organisation, focusing on
processor and memory organisations typically found in modern commodity computer hardware,
since the programmer can often leverage the characteristics of the hardware to improve the
performance of the target program. This is particularly evident with memory and cache systems,
where the understanding and effective use of the caching mechanism can improve performance
significantly.

Furthermore, we describe the performance characteristics of parallel programs and how these
metrics and models can be used to determine the efficiency of parallel algorithms and pro-
grams on increasingly parallel computer systems. In addition to these performance metrics,

5
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we describe a number of code metrics that measure or model the complexity of program code.
These code metrics are used in the evaluation as a way of defining the effort expended by the
programmer.

2.2 Parallel Programming Terms and Concepts

To avoid any ambiguity or misunderstanding, we first present our definitions for some of the
key terms and concepts as used in this thesis.

2.2.1 Serial Computing

Serial or sequential computing essentially follows the von Neumann architecture, whereby a
single central processing unit (CPU) executes a program stored in memory that specifies a
sequence of read and write operations on that memory [11, 35, 115]. The problem is broken
into a sequence of instructions or operations, which perform the computations necessary to
solve the problem. These operations execute one after another (in other words, sequentially),
with only one instruction being executed at any one time [11].

Modern CPUs and operating systems distort this description somewhat, introducing an element
of concurrency to otherwise sequential programs. Hardware level improvements in modern
CPUs allow for instruction-level parallelism as described in Section 2.4.1. Multitasking operat-
ing systems interleave the execution of multiple programs on a computer with a single processor
using mechanisms such as time-slicing, thereby giving the illusion of parallelism [99, 103]. Se-
rial programs that are written to be executed on a single processor, can typically run on parallel
computers without modification. However, this does not mean that the program will execute in
parallel, or that the program will execute exclusively on one processor as the operating system
may schedule execution over different processors during the program’s lifetime.

2.2.2 Parallel Computing

Parallel computing or parallel processing refers to the simultaneous execution of computa-
tional tasks over multiple processors to solve the specified problem [11]. This is similar to
concurrency, but there is a subtle distinction between concurrency and parallel execution. Con-
currency refers to the potential for simultaneous execution of independent computations within
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a program. The exploitable concurrency is the degree to which it is possible to structure the
code such that it harnesses or exploits the available concurrency [102].

A programmer harnesses this exploitable concurrency by breaking the problem down into dis-
crete concurrent parts, and then developing and implementing a parallel algorithm using an
appropriate parallel programming language or environment. When the resulting parallel pro-
gram is executed on a parallel system, it is said to be executing in parallel if the instructions of
concurrent computations are being executed on multiple different processors at the same time,
as opposed to interleaving the execution of these concurrent instructions [11, 102]. The paral-
lel system in question could be a single computer with multiple CPUs or processor cores, or
it could be a cluster of computers connected by a network (distributed processing). It could
even be a hybrid system where there is a cluster of multiprocessor computers [11, 99]. Parallel
processing harnesses the exploitable concurrency in various problems to solve these problems
in a shorter time or to solve bigger problem sets using more processors [11].

2.2.3 Tasks

For our purposes, a task is defined as a chunk of work or sequence of instructions that needs to
be processed or executed. The task itself is defined by the programmer and corresponds to the
algorithm being implemented [102, 125]. It is also important to note that tasks are not explicitly
associated with any particular thread or unit of execution (UE) until runtime.

2.2.4 Processes and Threads

A process is a collection of resources and state, controlled by the operating system (OS). These
resources include the input/output (I/O) descriptors or handles, security attributes, context in-
formation, and memory resources, including the runtime or call stack, heap, executable code
and program data [99, 102, 131]. The state transitions for an executing process can be seen in
Figure 2.1 [99, 131].

A thread can be seen as a distinct execution path within a process, with its own instruction

pointer and stack and the ability to access shared memory between other threads within the
process [102, 125].

In a multitasking operating system, the CPU scheduler allocates and de-allocates processor ex-
ecution time for threads and processes using a context switch [99]. A thread or process can also
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Figure 2.1: State transition diagram for process execution [99, 131].

be referred to generically as a unit of execution (UE). A process is considered a “heavyweight”
UE, whereas threads are “lightweight” since they share the context of their parent process and
thus have a lower context switching time [102].

2.2.5 Locks

A lock or mutual exclusion lock (mutex) is a special shared variable or abstract data type that
simplistically has two states: locked and unlocked. It also has methods for locking and un-
locking the object. When a thread calls the lock method for a particular mutex, the state of
the mutex is checked. If the mutex is currently locked (the lock has already been acquired by
another thread), the calling thread will typically spin or block until the lock becomes available,
otherwise it will immediately acquire the lock and continue execution. The unlock method
simply releases the lock on the mutex and makes it available to other threads [20, 56, 124].

A semaphore is slightly different to a mutex in that it is used to constrain access to a shared
resource instead of preventing simulataneous execution by multiple threads. The semaphore
keeps track of resource accesses using an integer counter that is decremented on access to the
resource and incremented once a thread is done using the resource. If the counter reaches zero,
threads wanting to gain access to the resource will have to spin or block until the counter is
greater than zero [20, 124]. An extended description of the various types of locks can be found
in Section 2.5.

2.2.6 Critical Sections, Barriers and Synchronisation

A critical section (CS) is a section of code that can only be executed by a single thread at any
one time. This section is usually controlled by locking a critical section specific mutex and then
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Figure 2.2: Parallel execution of two threads encountering a critical section.

unlocking the mutex at the end of the section. This prevents other threads from entering the
critical section as they will block or spin while the mutex is locked. The use of mutexes and
semaphores to protect critical sections forms the basis of mutual exclusion and synchronisation
in parallel programming [20, 56, 99, 125].

The pseudocode example in Listing 2.1 shows a parallel max routine that makes use of a critical
section to protect access to a global variable. Figure 2.2 shows the execution of threads encoun-
tering a critical section and demonstrates how threads block when they reach a critical section
that is currently being traversed by another thread.

1 SET globalmax to 0
2 INIT maxmutex
3

4 SUBROUTINE parallel_max ARGS sublist
5 SET localmax to 0
6 FOR each element in the sublist
7 IF element > localmax THEN
8 STORE element in localmax
9 END IF

10 END FOR
11

12 /* start of critical section */
13 LOCK maxmutex
14 IF localmax > globalmax THEN
15 STORE localmax in globalmax
16 END IF
17 UNLOCK maxmutex
18 /* end of critical section */
19 END SUBROUTINE

Listing 2.1: Pseudocode example of a critical section.

Another important concept is that of a barrier, which is similar to a critical section except
that instead of only letting one thread execute a particular section of code, the barrier forces
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I:::: .1. ____ _ L-========n---:,~ 
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threads that reach it to wait or block until all threads in the group have reached that point.
Once all the threads have reached the barrier, the blocked threads are notified that they may
leave the barrier and continue executing [56, 105]. This is typically used in applications where
progress on a new computation phase can continue only if the previous phase has been fully
completed. Barriers essentially enforce synchronisation points for asynchronously executing
groups of threads [56, 105].

2.2.7 Race Conditions

A data race condition typically occurs when two or more threads attempt to update the same
shared variable. The race condition becomes apparent when one thread overwrites the changes
made by another thread, thus losing the original change and affecting the correctness of the
program [20, 102, 125].

Consider the following scenario. Thread A reads the value of variable x with the intent of adding
5 to the existing value and saving the result back to x. Thread B, however, also wishes to modify
x by taking the current value and subtracting 3 before saving the result back to x. If Thread B

happens to read the value of x after Thread A reads it, but before Thread A stores the new value,
a race condition occurs as the modification made by Thread A will be overwritten when Thread
B stores its result [125]. The effect of this can be seen in Table 2.1. This is typically resolved
by placing the code that modifies x within a critical section [20, 125].

Table 2.1: Race Condition between two executing threads [125].

Thread A Thread B x

Read x: 7 - 7
- Read x: 7 7
- Subtract 3 7
Add 5 - 7
Update x: 7 + 5 - 12
- Update x: 7 - 3 4

Race conditions arise due to variable thread scheduling where the OS is responsible for the
allocation and timing of thread execution as opposed to the programmer [102, 125]. This can
lead to unpredictable and often hard to reproduce errors when modifying shared variables. Since
the error may not present itself during testing, it often goes unnoticed until it affects the program
in its production environment. Even if the error does get noticed, debugging is frustrated by the
fact that thread execution is nondeterministic between program runs, which makes reproducing
the problem particularly difficult. Errors of this nature are prevented by carefully implementing
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Figure 2.3: Deadlock between two executing threads. Thread 1 acquires Lock A and Thread
2 acquires Lock B. Thread 1 then attempts to acquire Lock B and Thread 2 attempts to acquire
Lock A, however, both locks have already been taken, resulting in a deadlock.

and controlling access to shared variables, using mutual exclusion and synchronisation where
necessary [20, 102, 125].

2.2.8 Deadlock

Deadlock occurs when at least two threads block indefinitely because they are each waiting for
locks to be released that are currently being held by the other. This deadlocked state between
threads results in the program never running to completion unless the deadlock is forcibly bro-
ken [20, 22, 102, 125].

If none of the threads gives up its currently held lock to allow another thread to continue, the
threads will remain blocked forever as illustrated in Figure 2.3. When implementing mutual
exclusion using locks, the programmer must take care to avoid implementing the locks such
that deadlock can occur. One way that this can be done is by ensuring that locks are acquired
in a specific order and by releasing currently held locks if all the necessary locks cannot be
acquired at once and then trying again [20, 22].

Deadlock-freedom is the property whereby if some thread tries to acquire a lock, then some
thread will succeed in acquiring the lock [56].
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2.2.9 Starvation and Livelock

Starvation is a condition whereby a thread is unable to progress because it is unable to gain
access to required shared resources, which are protected by a critical section. This is typically
caused by other threads monopolising access to the shared resource for extended periods of
time [96, 109]. Should the thread in question regain access to the required shared resources, it
will continue executing normally. Starvation-freedom is the property of a program whereby if
a thread reaches a critical section, that thread will eventually execute its critical section [20, 7].
Starvation-freedom implies deadlock-freedom [56].

Livelock is a form of starvation whereby threads are unable to progress and perform useful
work because they, or a required resource, are too busy servicing interrupts and requests from
other threads [96, 109]. This is unlike deadlock, where the offending threads are mutually
blocking each other, in that the program can recover if the interrupts or requests decrease to a
point where the thread can progress with useful work. Livelock-freedom is a weaker property,
compared to starvation-freedom, and states that if a thread reaches a critical section, then some
thread eventually executes its critical section [20, 7].

2.3 Parallel Performance

As with most performance improvement efforts, the ultimate goal is to improve speedup and
scalability. These performance characteristics can be predicted using models or measured in
practice. Some common performance measures are defined below.

• CPU time is the sum of the time spent actively executing the instructions of a particular
computer program for each processor [54].

• Wall clock time or elapsed time is the real-world execution time of a program, including
overheads and input/output delays [54].

• Latency refers to time delay between the issuing of a request and the response to the
request [54].

• Throughput is a measure of the amount of data transferred or requests serviced per unit
of time [54].
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While measuring the actual performance of the program in question provides the best indication
of speedup and scalability issues, it is often useful to predict and anticipate these metrics with
the aid of the models given below. Amdahl’s Law and Gustafson’s Law allow one to anticipate
the speedup for future systems for which neither processor counts nor workload sizes are cur-
rently available, thus preventing direct measurement. These analytical models do not predict all
aspects of parallel performance, but they do provide a base for expected performance. However,
profiling is the only way to accurately identify the sections of code that will provide the greatest
gain from optimisation.

2.3.1 Speedup

When talking about speedup, the total running time to complete execution of the program (wall
clock time) is typically taken as the primary metric. This total time is denoted by Ttotal(P),
where P represents the number of processors. The total time can often be decomposed into a
number of serial terms, representing the portions of the program that cannot be run in parallel,
and a compute portion, which can be distributed over as many processors as are available [102].
The serial terms usually consist of initialisation and finalisation routines that are unable to split
their workload between additional processors. However, the compute portion of the program is
able to execute its workload in parallel and is represented by the time to complete the compute
portion on one processor over the number of available processors [102]. This relationship be-
tween the serial terms and the parallel compute section, resulting in the total time, can be seen
in (2.1) [102].

Ttotal(P) = Tinitialisation +
Tcompute(1)

P
+Tf inalisation (2.1)

It must be noted that (2.1) only reflects the simplified case where there are no overheads such as
thread startup and scheduling or locking, which affect the performance of the parallel compute
section. However, this concept of serial and parallel sections of code is important and is re-
examined in Section 2.3.2.

The relative speedup of a program, denoted by S and shown in (2.2), is another useful measure
for parallel programming. It determines how much faster a particular program will run when
additional processors are made available. It is calculated by dividing the total time for executing
the program with one processor by the total time for P processors. While perfect linear speedup,
where the speedup is equal to P, is the desired outcome, this is seldom possible as the serial
terms are unable to execute faster with additional processors [102]. However, in some rare cases,
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superlinear speedup can be achieved through efficient cache utilisation between processor cores
on the same CPU, which overcomes the lack of speedup for the serial terms [21].

S(P) =
Ttotal(1)
Ttotal(P)

(2.2)

Related to the concept of relative speedup is the measure for efficiency, denoted by E and shown
in (2.3). Efficiency is simply the speedup of the program over the number of processors [102].
This measure is useful in that it provides an easier to understand measure for how effectively
additional processors are utilised.

E(P) =
Ttotal(1)

PTtotal(P)
(2.3)

2.3.2 Amdahl’s Law

As previously described, parallel programs consist of both serial and parallel sections of code.
A problem arises when one adds increasingly more processors in an attempt to improve the
speedup of the program. As the processor count increases, so does the speedup, but not at the
same rate. The problem lies with the well-known Amdahl’s law, defined in (2.4).

SAMDAHL(P) =
1

(1− f )+ f
P

, (2.4)

where SAMDAHL represents the speedup, f the proportion of the program that executes in parallel,
and P the number of processors [56, 102, 125, 134]. In essence, this law states that speedup is
hampered by the sequential portion of the program. As an example, given f = 0.9 and P = 10,
the maximum speedup is only around 5.26x, which is clearly not ideal. The speedup value pre-
dicted by Amdahl’s Law is generally an upper bound on the speedup as overheads in the parallel
algorithm are not factored into the calculation. However, as mentioned in Section 2.3.1, there
are cases where effective caching of data and other factors such as better resource utilisation,
can result in a speedup greater than that predicted by Amdahl’s Law [21, 102].

Furthermore, we can calculate the maximum attainable speedup given an infinite number of
processors and an ideal parallel algorithm using (2.5) [102].

SMAX =
1

1− f
(2.5)
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Figure 2.4: Speedup according to Amdahl’s Law for f = 0.9

It is quite clear from Figure 2.4, which depicts the graph for (2.4) with increasing values of P

against perfect linear speedup given f = 0.9, that there are diminishing returns to adding more
processors in an attempt to solve a problem faster. Amdahl’s Law represents fixed-size speedup

and it is often considered a pessimistic outlook on parallelism [125, 134].

It is therefore crucial to make every effort to reduce the sequential portion in programs to help
increase speedup [56]. However, code that works well with four processors may not scale with
eight or even sixteen processor cores, so careful attention must also be paid to the implementa-
tion of the parallel algorithm and managing the associated overheads [19].

2.3.3 Gustafson’s Law

The problem with Amdahl’s Law is that it focuses primarily on the speedup achieved when
attempting to reduce the total runtime of a fixed workload by increasing the number of pro-
cessors (fixed-size speedup). While this is the goal when implementing parallelism in many of
the cases, John Gustafson re-evaluated Amdahl’s Law and took another approach to achieving
scalability with increasing hardware capabilities [102, 125, 134].

Gustafson considered the problem in a more positive light. He noted that if the proportion of the
program that is sequential cannot be easily parallelised, better scaling can be achieved by per-
forming more work in the parallel sections. The time spent in the serial portions of a program
typically increase less than the parallel sections as the problem size or workload is increased,
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thus reducing the serial fraction of the program. This is often referred to as fixed-time scaling.
The reduction in the serial fraction with increasing problem size results in improved speedup
and scaling as per Amdahl’s Law [48, 102, 125]. Modern society’s hunger for more informa-
tion and the ever increasing volumes of data and information being produced by researchers
and society alike play quite aptly into Gustafson’s forward-thinking and optimistic approach
to scaling [102]. However, not all problem sizes can be increased, so this approach may not
always be applicable.

Returning to our earlier equations for total runtime and speedup, we can reformulate some
of these terms and produce Gustafson’s Law in terms of performance on a P-processor sys-
tem [102]. First we define the scaled serial fraction, denoted by γscaled in (2.6), as the serial
terms over the total time for P processors [102].

γscaled =
Tinitialisation +Tf inalisation

Ttotal(P)
(2.6)

We derive the computation time on P processors in terms of the total time on P processors and
the scaled serial fraction in (2.7).

Tcompute(P) = Ttotal(P)− (Tinitialisation +Tf inalisation)

= Ttotal(P)− γscaledTtotal(P)
(2.7)

We then define the total time for one processor in terms of the parallel computation time and
the serial terms for P processors, substituting in the equations from (2.6) and (2.7), to produce
(2.8) [102]. Following on from this, we rewrite the equation for speedup as expressed in (2.2),
taking into account the the scaled serial portion and simplifying, which results in Gustafson’s
Law as defined in (2.9) [102].

Ttotal(1) = Tinitialisation +PTcompute(P)+Tf inalisation

= γscaledTtotal(P)+P(Ttotal(P)− γscaledTtotal(P))

= γscaledTtotal(P)+P(1− γscaled)Ttotal(P)

(2.8)
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Figure 2.5: Scaling according to Amdahl’s Law and Gustafson’s Law [125].

SGUSTAFSON(P) =
Ttotal(1)
Ttotal(P)

=
γscaledTtotal(P)+P(1− γscaled)Ttotal(P)

Ttotal(P)

= γscaled +P(1− γscaled)

= P+(1−P)γscaled

(2.9)

An interesting observation can be made about the above equation. If the time taken by the
serial terms remains constant and we keep the size of the computation for each processor the
same, eventually we reach a point where the speedup increases at the same rate as the number
of processors, which is known as linear or order of n scaling [125, 102].

The illustration in Figure 2.5 highlights the key difference between Amdahl’s Law (fixed-time
scaling) and Gustafson’s observations (fixed-size scaling), showing that scaling can be improved
by increasing the problem size. This ultimately results in far more effective use of the avail-
able processing power compared to a static workload [125]. Depicted in the illustration is a
program with serial terms, which perform initialisation and finalisation, and a parallel compu-
tation section executing concurrently on N processors. Time taken for each section of work is
represented in the arbitrary unit t, and summaries of total times and speedup (highlighting the
speedup limitations of Amdahl’s Law) are presented below each diagram.

Sun et al. [134] note that the memory-wall problem, referring to the performance gap between
memory and processors, is likely to play a greater role in determining speedup in the future.
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2.3.4 Sequential Algorithms versus Parallel Algorithms

While Amdahl’s Law and Gustafson’s Law provide a means for us to predict speedup for pro-
grams running on a parallel system, they are based on the flawed assumption that the program
must execute roughly the same number and type of instructions for both the serial and paral-
lel versions. However, there are cases where simply adapting the original serial algorithm to
work in parallel is inefficient and a more natural parallel implementation exists. In cases such
as this, it is often worthwhile re-examining the problem and designing a more suitable parallel
algorithm [125].

2.4 Computer Organisation

At a high level, a computer is made up of a number of components, namely, the central process-
ing unit (CPU), memory (both primary and secondary storage memory), input and output (I/O)
devices or components, and the interconnection structure between these components. The CPU
executes the instructions that perform the operations necessary for the computer to function and
carry out the given tasks. Computer memory is responsible for storing the instructions and data
necessary for the operation of the computer. There are typically two kinds of memory: primary
memories such as the RAM used by main memory and various caches; and the secondary or
storage memory, which is used to store data on a more permanent basis [131]. I/O devices
facilitate interaction between the computer and the user, through devices such as the keyboard
and graphical display, or other devices and computers through components such as network
interface cards (NIC) or serial ports. Finally, the interconnection network, typically in the form
of a hierarchy of buses, is responsible for carrying address, control, and data signals between
the various components in the system [131].

The performance of a computer depends on a multitude of factors, both hardware and software.
Arguably, some of the greatest contributing factors are those pertaining to computer organisa-
tion for a given architecture. Organisational design choices such as the memory types, sizes,
and hierarchy play an important role, especially given the widening gap between processor
and memory performance [54, 131]. Our research focuses on software targeting commodity
hardware and processors based on the x86 and x86-64 (64-bit) architectures, as these are the
most common architectures due to their cost-effectiveness compared to larger specialised sys-
tems [27, 54]. As such, the computer organisation issues discussed in this section typically
center around modern commodity hardware.
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While at first, it may seem that these organisational factors only affect hardware designers and
operating system programmers, many of them have consequences for application programmers
in terms of how their programs are structured and coded. A good example of this is the effect on
performance of good or bad cache utilisation, which can often be influenced by the programmer.
As such, the key concepts regarding memory and processor organisation are presented below
with particular emphasis on those factors affecting the programmer, or which can be influenced
by the programmer in some manner.

2.4.1 Processor Organisation

Processor organisation describes the characteristics of the processor and how one or more pro-
cessors are connected to each other and to the rest of the system. In this section we briefly
discuss the characteristics of modern CPUs and how they affect performance. We then go on
to classify computer systems according to Flynn’s Taxonomy, and describe common processor
organisations for commodity hardware.

CPU Characteristics

The CPU or processor is central to the operation of a computer system. It is responsible for
controlling the operations of the computer and executing instructions, thus enabling the com-
puter to perform its allocated tasks [131]. The major components of a CPU in the von Neumann
architecture, which paved the way for software in the form of stored programs, are described
below and illustrated in Figure 2.6.

• Control Unit (CU): The control unit is responsible for fetching and interpreting instruc-
tions, and then issuing the necessary control signals to execute the instructions. Obtain-
ing instructions and data from memory and then issuing control signals to general-purpose
logic and arithmetic components to carry out those instructions gives these general-purpose
processors the ability to execute instructions written by the programmer in the form of
software programs. This is in contrast to hardwired programs where the logic components
are designed and connected, at the hardware level, to take the input data and process it in
a specific way. For such a system, changing the operation of the program requires that
the hardware be rewired [131]. The architecture or instruction set of the processor deter-
mines the addressing modes and the types and formats of the instructions interpreted by
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the control unit. Architectures fall into two broad categories: reduced instruction set com-
puter (RISC) architectures, which are characterised by a large number of general-purpose
registers and simple instruction sets with optimised instruction pipelines; or complex in-
struction set computer (CISC), architectures, which are characterised by a greater number
of more complex and specialised instructions and fewer general-purpose registers [131].

The processing required to complete the fetch cycle and execute cycle for a single instruc-
tion, is known as an instruction cycle. The interrupt cycle must also be considered in this
process. Devices and other components within the system can make interrupt requests,
which are essentially events that cause the sequence of instructions for the current pro-
gram to be suspended in order to service the appropriate interrupt handler instructions.
After the interrupt has been dealt with, execution of the previously running program is
automatically resumed [54, 131].

• Registers: The CPU contains a number of internal registers, which are a special type
of memory or storage used to hold data that is necessary for the operation of the pro-
cessor. The architecture of the processor determines the types and sizes of the registers
that are implemented. For instance, a stack-based architecture arranges the registers to be
accessed as a stack using Push and Pop instructions, whereas a load-store type of archi-
tecture will have a set of general-purpose registers that are accessed explicitly using Load

and Store instructions [54].

As an example, a hypothetical accumulator architecture may have the following general-
purpose registers: a program counter (PC), which tracks the address of the next instruc-
tion; an instruction register (IR), which holds the operation code or opcode for the current
instruction; a memory address register (MAR), which holds the memory address to be read
or written to; a memory buffer register (MBR) where the resulting data of the memory read
is stored or where the data to be written is temporarily buffered; and an accumulator (AC),
which holds the temporary results of operations performed by the ALU [131].

• Arithmetic and Logic Unit (ALU): The ALU performs the actual calculations and logic
operations required to execute instructions. General-purpose arithmetic and logic compo-
nents are found in the ALU and are configured to accept control signals from the control
unit. The control signals specify how these components are combined so as to perform
the desired operation. Some typical examples of arithmetic operations implemented in
the ALU are the add, subtract, multiply, and divide operators. Integer and floating point
data is treated differently, so there may be different implementations of these operators
depending on the data type of the operands. Logic operations will typically include the
equal to, greater than, and less than comparison operators, amongst others [131].
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While the architecture prescribes which instructions need to be implemented, the manner
in which these instructions are implemented is an organisational issue. It is up to the
CPU designers to decide how the arithmetic and logic components are utilised to perform
the required instructions. For example, the multiply operator can be implemented as
a special multiply unit or the same effect can be achieved by using the add operator
repeatedly [131]. These kinds of organisational design choices lead to CPUs within the
same architecture family having different physical and performance characteristics.

• CPU Interconnection: An interconnection structure is needed to enable communica-
tion in the form of control, address, and data signals between the various components
within the CPU as well as to the rest of the system. There are a variety of interconnec-
tion topologies including direct point-to-point, bus, hypercube, crossbar switch, mesh,
ring, and torus. The bus interconnect is the most common structure for connecting the
main system components. Hierarchies of buses are also typical in modern computer sys-
tems, with a local front-side bus on the CPU, which is connected to the system bus and
lower buses, such as the expansion buses [115, 131]. Early processors used point-to-point
links and buses internally, but crossbar switches, meshes, and ring networks have become
common as well [54, 131]. The AMD Opteron range of CPUs support multiple Hyper-
Transport links between CPU nodes in a multiprocessor system, which is based on the
hypercube topology [27]. The torus, ring, and hypercube topologies are typically used to
connect the nodes in supercomputers and clusters of computers [54, 124].

The performance of a bus or other interconnect is characterised by the bandwidth and
latency of the interconnect, which are affected by the bus width and frequency of the
connections. With regard to buses, bandwidth is typically understood to be the maximum
rate of data or information transfer and can be measured in bits per second. Latency is
the time it takes for a packet of information to complete its transmission between the
source and destination [54, 115]. Bus width is the number of bits that can be transported
over the bus in parallel, while frequency (clock frequency) is the number of cycles per
second. The frequency and bus width are multiplied to produce the theoretical maximum
bandwidth and in some cases, this can also be multiplied by the number of transfers per
cycle for buses where multiple transfers per cycle are possible [131].

At the individual processor level, performance is determined by a number of factors, such as
the clock speed or clock frequency and the number of cycles per instruction (CPI), although
CPI is not directly comparable with other processors and instruction sets [54]. Instruction-
level parallelism, as described in the next section, lowers the CPI by optimising the instruction
pipeline and is critical to improving processor performance. The clock speed of a processor,
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Figure 2.6: Components of a computer and the central processing unit in the von Neumann
architecture [115, 54].

which is governed by a clock running at a constant rate, indicates the number of cycles executed
per second by the processor. The clock speed is typically described by its rate (e.g., 2.4GHz,
which is 2.4 billion cycles per second) [54]. Therefore, an increase in the clock speed of a
processor results in more instructions executed per second and thus greater performance.

Historically, increases in processor performance have been brought about by increases in clock
speed, along with incremental organisational improvements. This has been made possible by
improvements in the fabrication process of integrated circuits, which have enabled the manu-
facturing of ever smaller electronic components, such as transistors. The reduced size of the
components in turn, has allowed for these components to be packed more densely on a chip.
This forms the basis of Moore’s Law, derived from the observation by Gordon Moore, the co-
founder of Intel, that the number of transistors that could be placed on a chip would double
every year (this has recently slowed to doubling every 18 months) [53, 124, 131]. The so-called
“scaling laws”, observed by Robert Dennard and his colleagues at IBM, also derive from the
process shrink in the manufacturing of chips. Dennard’s first observation was that the voltage
and current, and thus the power consumption of a transistor, is proportional to its area. This
means that as these transistors get smaller and are placed more densely on a chip, the power
density of the chip remains constant. The second observation was that the switching delay of
a transistor is proportional to its size, and therefore the frequency or speed of the transistor
increases as the transistor gets smaller [53].
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However, as the size of transistors decreases and the voltages are reduced, they begin to leak
more current. Therefore, the voltage supplied to the transistors needs to be decreased at a
lower rate than the decrease in transistor size to manage this leakage of current. This breaks
the proportional power scaling and results in an increase in power density, which means that
the chip produces more heat that needs to be dissipated in some way. Consequently, the fre-
quency cannot be increased as easily because the voltage cannot be decreased and increasing
the frequency without decreasing the voltage results in more heat. This places practical limits
on the frequencies attainable by chips such as CPUs, based on how effectively the chips can be
cooled [53, 124, 131]. It is for this reason that the manufacturers of modern commodity CPUs
have turned to multicore designs. Since the number of transistors that can be packed on a chip
is still increasing, it is possible to keep the processor frequency relatively constant and use the
additional transistors to implement multiple processor cores on a single CPU package. This
improves the performance of the CPU by adding parallel processing capabilities or thread-level

parallelism [53, 54, 131].

Instruction-Level Parallelism

One particularly important organisational performance improvement is that of pipelining. As
previously described, the instruction cycle consists of a fetch cycle and an execute cycle, which
can be further broken down into a number of stages: fetching the instruction; decoding the
instruction; calculating the addresses for operands and fetching them from memory; executing
the instruction with the given operands; and finally storing the result back in memory. With-
out pipelining, the processor would have to wait for an instruction to pass through all of these
stages before proceeding with the next instruction. However, with pipelining, it is possible to
have multiple instructions in flight simultaneously, each at a different stage in the instruction
cycle. This allows the processor to keep all stages of the instruction cycle busy, greatly im-
proving performance [54, 82, 131]. Several conditions can affect the performance of pipelining
due to pipeline conflicts, namely, resource conflicts, data dependencies, and conditional branch
statements [54, 115]. Superpipelining extends this concept by adding a greater number of small
stages, creating a deeper pipeline, which allows more instructions to be in the pipeline simulta-
neously [54, 82, 131].

Another important organisational improvement is the introduction of superscalar processors.
In a superscalar processor, there are multiple instruction pipelines, which allows for indepen-
dent instructions to be executed concurrently on a single processor [54, 82]. The goal of such
processors is to enable the issuing of multiple instructions per clock cycle, resulting in a CPI
value lower than one. These are also known as multiple-issue processors [54]. Both statically
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and dynamically scheduled superscalar processors are available, with the Intel Itanium range
being an example of statically scheduled superscalar processors, and the Intel Pentium range
exhibiting dynamically scheduled superscalar features. Static scheduling relies on the compiler
to schedule code for the processor and is typically characterised by in-order issuing and exe-
cution of instructions. Speculative dynamically scheduled superscalar processors, like the Intel
Pentium 4, allow for out-of-order issuing and execution of instructions. Out-of-order execution
with speculation means that the processor’s scheduler is able to fetch, issue, and execute in-
dependent instructions from outside the normal, sequential instruction order, thus allowing for
better utilisation of the multiple instruction pipelines [54]. This can be combined with pipelin-
ing or superpipelining, resulting in a superpipelined superscalar processor. Both pipelining
and superscalar processors exhibit an instruction-level parallelism [131].

Modern commodity CPUs typically implement a number of extensions to the instruction set,
such as Multimedia Extensions (MMX) and the numerous versions of Streaming SIMD Exten-
sions (SSE) [54, 131]. The instructions added by MMX and SSE are primarily floating-point
operations for performing calculations on single-precision and double-precision floating point
data. SSE also adds instructions for cache prefetching and streaming store instructions that
bypass the cache [27, 54]. These extensions may also add additional registers and ALU com-
ponents to support the new instructions, as in the case of SSE, which adds 128-bit registers
and support for performing four 32-bit or two 64-bit floating-point operations in parallel [54].
These SSE instructions provide vector operation capabilities much like SIMD based architec-
tures, which are discussed briefly in the following section.

While these organisational improvements are at the hardware level, it may be possible to exploit
this knowledge at the software level in some cases by writing code that makes it easier for the
processor’s instruction scheduler to perform its job more effectively. Some of these techniques
are discussed in Chapter 4.

Flynn’s Taxonomy

Since the inception of computer systems, numerous serial and parallel architectures and organ-
isations have been proposed. Each system differs from the others in some way, whether it be
the target application or the interconnect between processors [102]. However, these differing
architectures can easily be characterised by the number of instruction and data streams using
Flynn’s Taxonomy as described below and illustrated in Figure 2.7 [32, 102].

• Single Instruction, Single Data (SISD) refers to a machine in which a single instruction
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stream acts upon a single data stream. Uniprocessor (UP) computer systems fall into this
category [32, 102].

• Single Instruction, Multiple Data (SIMD) refers to a machine in which a single in-
struction stream acts upon multiple data streams simultaneously [102]. This is one type
of parallel architecture with the most notable examples being vector processors and the
modern Graphics Processing Unit (GPU). This kind of architecture is best suited to fine-
grained parallelism as seen in many digital signal processing and multimedia applica-
tions [32, 102, 131].

• Multiple Instruction, Single Data (MISD) is a very uncommon type of machine in
which multiple instruction streams all act upon a single data stream [32, 102].

• Multiple Instruction, Multiple Data (MIMD) is the architecture most relevant to our
interests as most parallel computers fit into this category, including our modern multi-core
processors. MIMD is characterised by multiple instruction streams, each acting on its own
independent data stream. It is the most general of the architectures [32, 102]. The MIMD
architecture, specifically the Shared-Memory Multiprocessor, is the most relevant to our
research. As such, a detailed discussion of this architecture can be found in Section 2.4.1.

Uniprocessors

Uniprocessor systems are computer systems with a single logical processor and fall under the
SISD category of Flynn’s Taxonomy as defined above. They are the oldest type of computer
system and represent the von Neumann model of sequential computing as described in Sec-
tion 2.2.1 [35, 99]. Single processor computers have been and are likely still the predominant
type of computer system available, receiving many architectural and organisation improvements
over the years. However, the prevalence of multicore and multiprocessor computers systems is
on the rise, with most new computer systems shipping with at least a dual-core CPU. This is due
to the so-called “power wall” encountered by CPU designers, preventing them from increasing
the speed of single-core CPUs much beyond current levels [11, 53, 131].

Distributed Systems

Distributed systems and cluster computing systems involve groups or clusters of interconnected,
yet individual computers, each with its own processors, memory, and other resources. The in-
terconnection network varies with the nature of the distributed system being employed, rang-
ing from very fast links such as InfiniBand to slower links such as Ethernet [99, 131]. These
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computers collaborate over the network to solve problems in parallel and typically employ
message passing as the means for data distribution, interprocess communication, and synchro-
nisation. Message passing requires the programmer to program all interprocess communication
and distribution of data explicitly by specifying the required messages. Message Passing In-

terface (MPI) is a well-known application programming interface (API) for message passing,
which provides various routines for sending and receiving messages, as well as controlling pro-
cesses [11, 99, 102].

Render farms are a good example of cluster computing systems, acting as large compute clusters
to render the computer graphics (CG) scenes used in movies. The rendering of large animated
movies and CG scenes in modern blockbuster movies is a highly concurrent task as the scenes
can be easily divided and distributed between multiple computers, each of which can then render
its scenes independently of the others [102].

Symmetric Multiprocessors

Symmetric Multiprocessor (SMP) computer systems refer to standalone computers, controlled
by a single SMP aware OS, with two or more similar processors that have the same capabilities,
and that are connected to a single main memory via a shared interconnect such as a bus. Most
commodity multiprocessor systems employ SMP based designs due to their simplicity, however,
NUMA (described in Section 2.4.3) based systems are becoming more popular as processor
counts increase [131, 56, 102].

SMP systems enable parallel execution of a single program using multithreaded program-

ming. This is where a program’s instruction stream is split into separate, concurrent instruction
streams, known as threads, that are able to execute in parallel over multiple processors instead
of interleaving execution on a single processor. This requires the software programmer to de-
velop explicitly multithreaded code to exploit the parallelism of an SMP system [131]. SMP
based systems are typically easier to program than clusters and other distributed systems as
the programmer is presented with a single global address space, much like uniprocessor sys-
tems [54, 102].

The operating system also has to support SMP in that it must be able to schedule and balance
threads over multiple processors, otherwise the additional processors sit idle while one pro-
cessor does all the work. SMP computer systems are also beneficial for programs that are not
multithreaded as the OS can schedule separate processes and interrupts to be run on different
processors, improving the responsiveness of the system [54, 102].
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Early workstation and server SMP systems used motherboards with more than one CPU socket
on which additional single-core CPUs were installed. These CPUs communicate with each
other, I/O devices, and main memory via the shared system bus. More recently however, CPU
manufacturers like AMD, IBM, Intel, and Sun Microsystems have focused on producing CPUs
with increasing numbers of processor cores on a single chip. These multicore CPUs, or chip

multiprocessors (CMP) as they are sometimes called, are essentially SMP architectures at the
core level where two or more identical, self-contained (i.e., with its own ALU, CU, registers,
and cache memory) processor cores are connected via an internal interconnection network.
This internal interconnect then connects these cores to the system bus and any shared cache
[131, 54, 124]. A simple, hypothetical dual-core CMP with a shared cache is illustrated in
Figure 2.8.

As with single-core CPUs, multiple CMPs can be connected together on a motherboard with
multiple CPU sockets, further increasing the parallel processing capabilities of the system. Al-
ternatively, independent SMP/CMP systems can be connected in a cluster or distributed system.
The latter case is typically referred to as a hybrid system [102]. Depending on the layout of the
memory banks, the former case may exhibit NUMA characteristics and thus no longer conform
to the SMP architecture. This is typically true for cases where each CMP is connected to its own
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memory bank, which is then shared with the other CMPs over the interconnection network [54].

Simultaneous multithreading (SMT) is another type of SMP organisation seen in some CPUs.
SMT is implemented by duplicating execution units within a single processor or CPU core,
thus making a single physical processor appear as two logical processors. This allows the
processor to execute two threads simultaneously for only a minor increase in CPU components.
Certain models in the Intel Pentium 4 CPU range (and more recently, the Intel Core i7 range and
associated Xeon models) implement SMT, which they refer to as hyperthreading [124, 131].

The interconnection network, particularly the bus and switch based interconnects, is the biggest
limitation to the scalability of processors in an SMP system. As processor counts increase,
the interconnect traffic reaches a point where it saturates the available bandwidth on the shared
interconnection network, or the cost of connecting the additional processors becomes too high.
Faster and wider interconnects alleviate this to some extent, but there is also a limit to the
complexity and power requirements of such interconnects. The response to this problem comes
in the form of NUMA based systems, which are discussed in Section 2.4.3 [115].

An important factor in the performance of an SMP system is the nature and implementation
of the cache coherency mechanisms in relation to the type of interconnect used. Some of the
relevant aspects and mechanisms for cache coherency as they pertain to SMP are discussed in
Section 2.4.2.

2.4.2 Computer Memory

A computer system’s memory is used to store the data and instructions necessary for the com-
puter to operate and run the user’s software applications. Some of the primary characteristics
of memory are:

• Capacity and addressable units – The size or capacity of memory is typically measured
in bytes or words. A word is the unit of organisation of memory. The word length is
dependant on the processor architecture, but it is usually equal to the instruction length
of the processor. The addressable unit is the granularity to which the processor can
reference or address locations in memory. A word is the typical addressable unit, but
some architectures allow byte level addressing. The total number of addressable units
depends on the address length [131].

• Unit of transfer – The unit of transfer is the number of bits that can be read from or
written to a particular type of memory at once. A unit of transfer that spans multiple
words is referred to as a block. Block sizes vary with memory type [131].
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• Access method – Sequential access refers to types of memory that are organised into
records that must be accessed in a specific linear order. Direct access involves accessing
areas of memory directly by referring to the unique address of the desired block which
is based on the physical location of the block in memory. The memory at the target
location is then searched to find the addressed block. Random access allows for directly
referencing and accessing arbitrary memory locations, resulting in a constant access time.
Associative access is similar to random access, except that it addresses and accesses the
desired memory location by simultaneously checking the contents of all words in memory
for a match to a specific tag [131].

• Performance – Memory performance is critical to overall system performance. The ac-

cess time or latency is the time it takes from the moment an access request (a read or write
operation) for a memory location is made to the moment that the request is fulfilled. Ac-
cess time is sometimes measured as the number of elapsed processor cycles. The transfer

rate refers to the speed or rate at which data is transferred to or from memory [131].

• Volatility – Volatile memory requires a charge to retain its current value, meaning that
it cannot hold data while the computer is off. Many semiconductor based memories
are volatile. Non-volatile memories, such as magnetic or optical storage, do not require
power to retain data, making them suitable for long-term storage even while the computer
system is powered down [131].

There are many different types of memory, varying in speed, capacity, access time, and cost.
These memory types are organised in a memory hierarchy with the faster, yet smaller and more
expensive memories at the top, and the larger, yet slower and cheaper memories at the bottom.
At the top of the hierarchy, we find registers, which are very small, yet very fast specialised
memory stores built into the CPU. Next in the hierarchy is cache memory, which is also found
on the CPU and is itself organised in a hierarchy of cache levels. Cache memory has a very
low access time, usually in the 0.5 ns to 25 ns range, and is relatively small compared to main
memory. The capacity of cache memory varies from just a few kilobytes to the low megabyte
range depending on the cache level and model of processor. Main memory or primary memory

has a slower access time than cache, but it has a significantly lower cost-per-bit. This lower cost
means that main memory has far greater capacity than cache, with modern commodity computer
systems ranging from hundreds of megabytes to multiple gigabytes of main memory. Registers,
caches, and main memory are all classified as internal memory and are volatile [54, 115, 131].

The remaining types, such as secondary and removable memory, are classified as external mem-
ory and are non-volatile, meaning that they can be used for long-term storage. These memories
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offer substantially greater capacity (up to terabytes of storage capacity) and lower cost-per-bit
at the expense of slower access times and transfer rates. With CPUs improving in performance
at a greater rate than main memory, there is the temptation to make use of larger quantities
of the faster memory technologies (as seen in caches) in place of the current main memory
technologies. However, this is prohibitively expensive and mostly unnecessary as the memory
hierarchy is able to hide much of the access latency by exploiting locality through techniques
such as caching and prefetching data [54, 115, 131].

There are a number of concepts relating to memory accesses that have an effect on the perfor-
mance of the memory hierarchy. Some of the concepts are described below.

• Hit – Hit refers to a memory request that is satisfied by a given level of memory [115].

• Miss – A miss occurs when the requested data is not located in the desired level of mem-
ory and needs to be retrieved from a lower, slower level of memory [115].

• Hit rate and miss rate – The hit rate for a particular level of memory refers to the per-
centage of memory accesses satisfied by that level of memory. The miss rate refers to the
percentage of memory accesses that cannot be satisfied by a given level of memory [115].

• Hit time – The hit time is the time it takes to access the requested data for a particular
level of memory in the event of a request hit [115].

• Miss penalty – The miss penalty is the time it takes to retrieve the requested data from a
lower level of memory, store it in the current level of memory, and deliver the data to the
processor that requested it when a miss occurs [115].

• Memory stall cycles – This refers to the number of clock cycles during which the pro-
cessor is stalled while waiting for data to be returned from memory. It is dependent on
the clock speed of the processor and the miss penalty of memory in question [54].

• Locality of reference – Locality of reference refers to the tendency of memory accesses
to cluster during a program’s execution. This is particularly evident for loops and subrou-
tines where a limited set of data and instructions are referenced repeatedly as the program
iterates through the loop or makes frequent calls to a particular subroutine. Spatial lo-

cality refers to accesses that are clustered in a particular address space, whereas temporal

locality is a form of locality whereby recently accessed elements tend to be accessed again
within a short period of time. The last form, whereby instructions are usually accessed
sequentially, is known as sequential locality [54, 115, 131].
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As stated previously, it is too expensive to make exclusive use of the fastest memory technolo-
gies. However, by taking advantage of locality, the slower access times of memory lower in the
memory hierarchy can be mitigated. This is achieved by ensuring that the data and instructions
that are most likely to be used in the near future are available in the faster levels of memory. This
results in a better hit rate for fast memories like the cache, thereby avoiding the performance
impact of miss penalties that can stall the processor for hundreds to thousands of cycles [54].

Main memory and cache memory are described in greater detail below. We also introduce the
concept of virtual memory.

Main Memory

The main memory of a computer system typically uses random access memory (RAM). Logi-
cally, main memory is represented as a linear array of addressable locations. It is connected to
the system bus or front-side bus of the CPU via the memory controller in the Northbridge chip.
More recent CPUs now come with integrated memory controllers, allowing main memory to be
connected to the CPU directly [27, 115].

Main memory is generally considered to be a medium-speed memory in terms of the memory
hierarchy. There are two main types of RAM: static RAM (SRAM) and dynamic RAM (DRAM).
SRAM is faster, but more expensive than DRAM. As such, it is used for cache memory instead
of main memory. Unlike SRAM, DRAM uses capacitors that require constant refreshing to
maintain cell state and introduce a delay when reading or writing values to a cell. DRAM
cells are organised in an array of rows and columns that need to be individually selected to be
accessed [27, 54, 115].

Main memory in modern commodity computer systems uses Double Data Rate DRAM (DDR)

as opposed to the older Synchronous DRAM (SDRAM). The memory controller dictates the
clock frequency of the DRAM modules. The key difference between DDR and SDRAM is that
DDR is able to transfer data on both the rising and falling edges of the clock cycle, thus doubling
the effective frequency. There are currently three standards for DDR memory, namely DDR1,
DDR2, and DDR3, each of which improves on the previous standard with increased frequencies
and lower power requirements. The unit of transfer for modern memory controllers is typically
around 64 bits, which can then be multiplied by the effective bus frequency to produce the
maximum transfer rate [27].
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Cache Memory

Cache memory is a very fast, but small memory that sits between the processor and main mem-
ory. It is usually implemented on the CPU itself using fast, expensive SRAM. The primary
purpose of cache memory is to improve the average memory access time and approach an ac-
cess time as close as possible to that of the fastest memory available, using only small amounts
of this expensive memory type. This is achieved by attempting to cache frequently accessed
data so that future requests for that data result in a cache hit and can be served directly from
the much faster cache, as opposed to having the processor stall while it waits for the data from
main memory [54, 115, 124, 131].

Cache memory is divided into a number of fixed-length blocks known as cache lines or cache

blocks. Each cache line contains a fixed number of words, as defined by the cache line size, and
a tag that identifies the contents of the line. The cache line size is defined by the processor’s
architecture and cannot be reconfigured for that particular model of CPU. The overall size of
the cache determines the number of available cache lines. While increasing the cache size can
improve performance by allowing more blocks to be cached, larger caches tend to have longer
access times. For the purposes of caching, main memory is also considered to be divided into
equal-size blocks as per the cache line size [54, 115, 124, 131]. This concept is illustrated in
Figure 2.9.

When a word within a particular block of main memory is accessed, the whole block is copied
into the appropriate line in cache memory. This ensures that nearby memory locations are
available in the cache before they are requested by the processor, thereby taking advantage of
spatial locality to reduce cache misses. Cache misses can be further reduced by keeping active
cache lines in cache memory for as long as they are needed, which takes advantage of temporal
locality. However, space in the cache is limited, so a block cannot permanently occupy the
cache and eventually it will be necessary to evict the cache line to make space for new blocks.
This is managed by the cache mapping algorithm and the replacement algorithm of the cache
controller [124, 131].

A cache mapping algorithm maps blocks from main memory into their corresponding cache
lines. It is also responsible for ascertaining which main memory block occupies a particular
cache line. When the mapping algorithm assigns a memory block to a cache line, it records
the information necessary to distinguish this block from other blocks with the same cache line
mapping in the tag field of the cache line [124, 131]. The three cache mapping schemes are
described below.
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Figure 2.9: Cache memory structure showing the division of cache memory into cache lines
and main memory into blocks [131].

• Direct mapped cache – This scheme maps each memory block to one possible cache
line. This is the simplest of the mapping algorithms, but it has a significant downside. If
two or more blocks with the same cache line mapping are currently being accessed, they
will be forced to continually evict each other, even if there are other free cache lines (this
is known as thrashing) [27, 54, 131].

• Fully associative cache – With a fully associative cache, blocks can be assigned a posi-
tion anywhere in the cache. All cache line tags are checked simultaneously when search-
ing for a particular memory block in the cache. This becomes complex and expensive as
the cache size increases [27, 54, 131].

• Set associative cache – A set associative cache combines both of the above schemes
by dividing the cache into sets of associative cache lines. With an n-way set associative
cache, a block is first mapped to a specific associative set, and then, it can be mapped to
any one of the n cache lines in that set [27, 54, 131].

When a cache becomes full, any subsequent cache misses require existing lines to be evicted
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to make space for the new cache block. For associative caches, this is handled by the replace-
ment algorithm (direct mapped caches just replace the mapped line regardless of free capacity).
Least-recently used (LRU) is a popular replacement method that monitors cache line activity
and replaces lines that have been unused for the longest time. Other methods include random

replacement and the first in, first out (FIFO) method [54, 124].

Modern shared-memory multiprocessors, such as Intel’s Nehalem based multicore CPUs, im-
plement multiple levels of a cache. The first level of cache (L1) is usually very fast, but quite
small (around 64KB). Each CPU core has its own private L1 data and L1 instruction caches.
The second level of cache (L2) tends to be significantly larger and slightly slower than the L1
cache. Depending on the organisation of the processor, the L2 cache can either be shared be-
tween groups of CPU cores (larger L2 cache), as with early multicore designs, or each CPU
core can have its own private L2 cache (smaller L2 cache). L2 is typically a unified data and
instruction cache. CPUs implementing four or more cores will typically also come with a large
shared L3 cache [27, 54, 131].

The use of shared L2 and L3 caches allows for faster shared-memory synchronisation between
threads as different CPU cores have direct access to the fast, shared cache as opposed to having
to communicate over the slower system bus. However, as with many shared systems, contention
for cache resources becomes an issue, and the effects of maintaining cache coherency can affect
performance [16, 84, 153]. The goal of cache coherence is to allow processors to make effective
use of their private and shared caches while maintaining the consistency of shared data. The
key concepts regarding cache coherence are described below.

• Write policy – If a word in a cache line has been modified and that cache line is removed
from cache, it is necessary to write the modifed value back to the appropriate memory
location, otherwise the data in that location will be invalid. The write through policy
ensures that memory is always valid by modifying both the cache and main memory
when a cache line is updated. However, this creates substantial memory traffic. An
alternative policy, known as write back, makes changes to the cache only. It also marks
the cache line as having been modified, so that when the line is removed, the data is
written back to main memory only if the modified flag has been set. However, this can
result in inconsistency [54, 131].

• Directory protocol – A centralised cache controller maintains a directory that records
where cache line copies currently reside. Accesses to these cache lines go through this
controller, which then grants exclusive access to the line by invalidating the copy held by
other processors, forcing them to write back any modifications to these cache lines [54,
131].
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• Snooping protocols – When a shared cache line in one processor is updated, the cache
controller broadcasts this change on the processor interconnect network. All cache con-
trollers then watch or snoop on the broadcast network, looking for cache line changes that
affect them and allowing them to react accordingly [131].

• MESI protocol – The MESI protocol is the most commonly used cache coherence pro-
tocol. Cache line tags record one of four possible states.

Modified (M) – The line has been modified and is only available in this cache.

Exclusive (E) – The line is not in any other cache and does not differ from memory.

Shared (S) – The line may be in another cache and does not differ from memory.

Invalid (I) – The cache line contains invalid data.

The cache controllers then snoop on a common bus and react to cache events by modi-
fying the cache line state according to the prescribed MESI state transitions, invalidating
cache lines as required [131].

Cache misses can occur for a number of reasons: a compulsory miss occurs the first time a block
is read, a true sharing miss occurs as a result of one processor overwriting and invalidating a
shared variable used by another processor, false sharing occurs when one processor modifies
a non-shared variable in the same cache line as a variable being used by another processor
causing the whole line to be invalidated, conflict misses occur when a processor makes changes
to too many variables that each share the same associativity set, and capacity misses result from
working data sets that are greater than the cache capacity [54, 68, 120].

Identifying the causes of cache misses, through profiling, and rectifying these issues is critical
to improving multiprocessor performance [120]. Some cache use improvements include data
prefetching, which involves explicitly preloading required data into memory or cache before the
processor requests it, thus decreasing the chance of cache misses, and cache alignment and data
structure padding, which help reduce false sharing [68, 92]. Maintaining cache affinity, whereby
a thread is scheduled to the processor with the most relevant cache lines for that thread, is not
particularly important for single multicore processors, however, there are performance benefits
for systems with multiple multicore CPUs [84, 144].

Virtual Memory

Virtual memory acts as an extension to main memory by utilising a page file that is stored on the
computer system’s hard disk. This increases the address space available to processes, allowing
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for more processes than main memory can support alone. Main memory is divided into equal-
size chunks known as page frames. The virtual memory space is also divided into pages that
are the same size as a page frame. Processes are then allocated pages in virtual memory, which
need not be stored contiguously in main memory or even at all. Pages that have not been active
for a while are moved to the page file on the hard disk and paging occurs when virtual pages are
copied from the page file to RAM before they are likely to be used. A page fault occurs when
a requested page is not available in main memory, thereby incurring a performance penalty as
the page must be copied to RAM from the hard disk before it can be used [54, 115].

Virtual addresses need to be mapped to physical addresses in main memory. This is aided
by the process’s page table, which keeps records of the allocated pages and tracks their current
location and usage. However, these page tables are stored in memory, so any reference to virtual
memory requires an extra memory access for the page table. This can have a significant impact
on performance, so an additional cache, known as the translation lookaside buffer (TLB), is
used to speed up access to frequently used page table entries. The virtual memory system is
quite similar to cache memory as it takes advantage of locality and the increased capacity of
memory lower in the hierarchy [54, 115].

2.4.3 Memory Organisation

The memory organisation of a computer system is closely tied to the processor organisation
as described in Section 2.4.1. The two main memory organisations are described below with a
focus on the performance implications of each organisation and how they affect the programmer.

UMA

Uniform Memory Access (UMA) systems are those in which all processors have read and write
access to all regions of main memory through a shared interconnect such as a system bus. Since
all processors share the same bus, the memory access times for any region of main memory is
the same for all processors in the system. The cache coherence protocols are implemented at
the hardware level and typically utilise the system bus to transmit cache-coherence signals [54,
131]. This concept is illustrated in Figure 2.10, which depicts N processors connected to main
memory via a common system bus [131]. Modern SMP systems are a common example of
UMA.

One of the advantages of a UMA system is that the operating system and application program-
mers do not have to consider the effects of varying memory access times for different processors.
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Figure 2.10: UMA/SMP processor organisation [131].

This makes memory allocation, thread allocation, and load balancing somewhat simpler. How-
ever, the downside is that there are practical limits to how many processors can be connected in
this way. This arises from the fact that the bus traffic for memory access and cache coherence
mechanisms increases as the number of processors increases. Eventually, as additional proces-
sors are added, the system bus becomes saturated and creates a bottleneck, thus degrading the
performance of the system [27, 54, 131].

NUMA and CC-NUMA

In Non-Uniform Memory Access (NUMA) systems, all processors have read and write access to
all regions of main memory. However, the processors are organised in such a way that groups
of processors (typically SMP nodes) are connected internally via a local system bus, as well
as being connected to other groups of processors via an interconnect network of some form
(crossbar switches or multidimensional meshes). Each processor group has access to its own
local main memory via its system bus [54, 131]. The key difference between UMA and NUMA
arises when a processor accesses the main memory of another group of processors. Since the
processor does not have direct access to the remote memory region via its own system bus, it
incurs the cost of having to access the memory over the interconnect network. This introduces
additional latency that varies with the NUMA distance or NUMA factor (dependant on node
topology), as well as the speed or remaining bandwidth of the interconnect network [27, 93].
Therefore, the memory access time for a particular processor varies with the region of memory
being accessed [54, 131].

A variation of NUMA is cache-coherent NUMA (CC-NUMA), which maintains cache coher-
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ence between the separate nodes in the system. While implementations vary, the general idea
is that when a processor requests data from memory, it attempts to satisfy this request from its
different levels of cache memory. If the data line is not in the processor’s cache, it is fetched
from the appropriate location in main memory. If the data is located in the local main memory,
the cache retrieves it over the local bus. However, if the data is not in the local main memory,
the cache initiates a request for the data line over the interconnect network. The data is then
transferred from the remote memory to the interconnect network via the remote bus, then to
the local bus from the interconnect, and finally to the requesting cache via the local bus [131].
Cache coherence is maintained by some form of memory directory on each node, which records
memory locations and cache line information. When a cache is modified, the relevant node is
responsible for broadcasting this fact to all the nodes. Each node’s directory is then checked
and affected cache lines are either evicted or invalidated until the updated value is written back
to memory. An alternative to the directory-based coherence mechanism is snooping [54, 131].

While not strictly NUMA, one can consider certain CPU cache topologies in a similar light.
The best examples of this are Intel’s early dual-core and quad-core CPUs, which, in the case
of the dual-core offerings do not have a shared L2 cache, and in the case of the quad-core
CPUs such as the Core 2 Q6600 and the later Q9400, two dual-core CPU dies, each with a
separate internally shared L2 cache, are combined on a single CPU package. In the described
cases, communication between L2 caches takes place over the system bus, incurring NUMA-
like memory access penalties. This has repercussions for thread allocation in the OS as we
would ideally want to place threads on the processor core closest to the L2 cache with the most
relevant shared data, much like NUMA [27, 63, 64].

The CC-NUMA processor organisation is illustrated in Figure 2.11, which depicts two SMP
nodes of N processors, connected via an interconnect network between the two system buses [131].

The main advantage of CC-NUMA over UMA systems is that the processor count can be in-
creased without the bandwidth limitations associated with the single system bus of SMP/UMA
systems, while still maintaining the single (shared) addressable memory space. This allows
for increased parallelism, and therefore, increased performance provided that memory accesses
are predominantly to the local memory and the various levels of cache memory are utilised
effectively [54, 131].

However, the downside of NUMA can be quite severe as the performance drops considerably
when applications make many remote memory accesses. Additionally, since NUMA based ar-
chitectures do not transparently look or behave like SMP, the onus is on the programmer to
account for the effects of remote memory accesses and to design systems that maintain good
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Figure 2.11: CC-NUMA processor organisation [131].

spatial and temporal locality [131]. Operating system developers have to accomodate the dis-
tributed memory organisation when implementing the logic for memory page allocation, pro-
cess and thread allocation, and load balancing in NUMA systems. This logic should attempt to
maximise locality of memory pages and minimise thread and process migration [27, 93].

Application programmers also need to consider situations where their program is run on NUMA
systems. This is typically achieved using OS supplied functionality and libraries to modify or
influence the memory and process allocation logic to suit the nature of the program better. More
explicit optimisations may also be possible, such as implementing code in the program, which
queries the NUMA node and policy information (using the available NUMA libraries), and
adjusts program execution accordingly [27, 93].

2.5 Mutexes, Semaphores and Barriers

While the simplistic definition given for locks in Section 2.2.5 is sufficient to understand dis-
cussions involving locks and critical sections, there is more to locks than simply being either
locked or unlocked. Locks, in their various forms, are described below and the concept of
atomic operations is introduced.

2.5.1 Properties of Concurrent Operations and Locks

Since much lock specific terminology is used in the discussion that follows, brief definitions of
the main concepts are provided below.
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Contention

Lock contention occurs when multiple threads attempt to acquire the same lock at the same
time. High contention refers to the situation where there are many threads contending for the
lock, and low contention has few threads in contention [56]. High contention reduces scalability
and increases the latency of operations associated with the contended lock [45].

Contention is typically linked to the granularity of the locks used to protect critical sections.
Coarse-grained locking refers to locks that encompass large critical sections, resulting in the
lock being held for longer, thereby causing high centention for the lock as multiple threads
reach the lock and are forced to wait. Fine-grained locking is the opposite in that multiple
small critical sections are used instead of locking large sections of code. Since the critical
sections are short, the locks are not held for very long and contention is likely to be lower for
each of the locks. However, increasing the number of locks increases the locking overheads, so
care must be taken to strike an appropriate balance [45].

Lock contention can also be reduced using locks that implement exponential backoff, whereby
the repeated attempts to acquire the lock after failure occur after successively longer periods of
time if contention is detected [8, 105, 123].

Re-entrant Locks

A lock is said to be re-entrant if it can be locked or acquired more than once by the same
thread. Re-entrant locks are important for methods that make recursive calls to themselves or
make nested calls to other methods that acquire the same lock. If a recursive method acquires
locks that are not re-entrant, the recursive call is likely to deadlock. Re-entrant locks typically
record which thread acquired the lock and keep a counter of how many times the lock has been
acquired by that thread. Whenever the lock is unlocked by the thread, the counter is decreased
and once the counter indicates that it is no longer held by the owner thread, the lock is released
and made available to other threads [56].

Non-blocking Operations

A blocking method or operation is one where an unexpected delay, such as a cache miss or
thread pre-emption by the OS, in one thread can cause delays in other concurrently executing
threads. Therefore, a non-blocking operation is one that does not cause threads to wait for
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delays experienced by other threads, thereby allowing multiple threads to make progress without
blocking one another [57, 56]. This is usually achieved using the primitive atomic operations
described later.

An operation or method is wait-free if every call to it completes its execution in a finite number
of steps, regardless of the execution speed of the method in other threads. Bounded wait-free

methods have a limit to the number of steps that a method can take. The wait-free property
ensures that all threads executing the method are able to make progress, but such methods can
be inefficient and a weaker non-blocking property may be sufficient [55, 56].

A lock-free method or operation is one that only guarantees that some method invocation com-
pletes its execution in a finite number of steps. This makes it a weaker non-blocking property
compared to wait-freedom and naturally, wait-freedom implies lock-freedom. Lock-free meth-
ods allow for some threads to starve, but in cases where this is unlikely, a fast lock-free algorithm
is preferable to a slower wait-free implementation [56].

Linearisability

Sequential consistency is a correctness property that requires that concurrently executing method
calls act as if they occurred sequentially, consistent with program order (there may be more than
one ordering that satisfies this condition). Unfortunately, sequential consistency is not composi-

tional in that it is not always possible to combine multiple sequentially consistent objects such
that they are sequentially consistent as a whole [56]. There is, however, a stronger correctness
condition for concurrent objects, referred to as linearisability. Linearisability imposes the re-
striction that method calls should appear to take effect instantaneously between their invocation
and return, making it a non-blocking property. This implies sequential consistency, however,
unlike sequential consistency, linearisability is compositional, making it appropriate for objects
in large systems where modularity is required [57, 56].

2.5.2 Atomic Operations

The need for mutual exclusion arises from the nondeterministic nature of threads executing in
parallel that read and modify shared memory. Statements written by the programmer may ap-
pear to execute correctly and without interruption, however, there is no guarantee that this is
the case for concurrently executing threads with statements that modify shared variables. Even
simply incrementing a variable by one using the var++ post-increment statement can result in
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multiple instructions being executed: the current value of the variable is read from memory, the
value is incremented by one, and the updated value is stored back in memory. As previously
described in Section 2.2.7, variable thread timing may result in interleaving execution of in-
structions from multiple threads, resulting in a race condition that can corrupt the value of the
incremented variable [125]. This can even present itself at the instruction level where certain
instructions take multiple instruction cycles to complete, particularly when the operands are
large registers that have to be read in smaller segments. The lack of sequential consistency for
memory reads and writes on modern multiprocessors allows for these reads and writes to be
re-ordered, thereby introducing the potential for other threads to modify the shared data before
it has been fully read and updated by the original thread [54, 56].

Therefore, when considering the order of operations being executed concurrently, the concept
of atomic, uninterruptible, or linearisable operations becomes very important. An atomic op-
eration is one that appears to complete instantaneously and without interruption or interference
from concurrently executing operations. As such, atomic operations require exclusive access
(mutual exclusion) to concurrent objects, which are shared data-structures (registers, variables,
and objects) that are accessed by concurrent processes or threads [57, 55]. Additionally, atomic
operations will typically fail outright without making any changes if the right conditions are not
met, leaving memory in a consistent state and allowing the program to attempt the operation
again.

Primitive Atomic Operations

Application programmers are able to specify atomic operations or sets of operations in their
program using mutexes that protect critical sections of code. However, the mutex variable
or data-structure is itself a shared object that is updated by concurrently executing threads or
processes. Even a simple mutex that uses a boolean variable to store the state of the lock is
susceptible to a race condition if multiple threads executing in parallel attempt to acquire the
lock at exactly the same instant in time. These threads all read the mutex as being unlocked, set
the mutex variable to its locked state and proceed into the critical section, thereby voiding the
mutual exclusion property of the critical section [56].

Therefore, the high-level locks used by programmers need to be supported by primitive atomic
operations implemented at the hardware level on the CPU. These are sometimes referred to as
read-modify-write primitives and some of the more common examples are listed below [7].

• Atomic Registers: Atomic registers are read-write registers for which the read and write
operations are linearisable. Read operations on the register return the last value written
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and write operations are performed atomically, thereby preventing any in-between values
from being read. Unfortunately, atomic registers are not suitable for implementing lock-
free concurrent data structures and the atomic synchronisation primitives that follow are
preferred [55, 56].

• Fetch-and-Increment and Fetch-and-Decrement: Fetch-and-increment and fetch-and-

decrement are special atomic instructions that either increment or decrement the value
stored in a register and return the old value. These instructions are particularly useful for
implementing counting semaphores. A slight variation on these instructions is fetch-and-

add, which atomically adds the specified increment amount to the value in a register and
returns the old value [7, 56].

• Test-and-Set (TAS): The test-and-set instruction operates on a single byte in memory
holding a boolean value. The instruction atomically sets the value to true and returns the
old value. This instruction can be used to implement a simple test-and-set spinlock [56].

• Compare-and-Swap (CAS): The compare-and-swap instruction is implemented by sev-
eral modern CPU architectures. The CAS instruction takes an expected value and an
updated value as arguments. It then compares the current value of the register to be up-
dated with the expected value and if they are equal, it replaces the value in the register
with the updated value, otherwise it leaves the current register value as is. The operation
then returns whether or not it successfully updated the register [7, 56]. This ensures that
the swap only occurs if the register has not been updated by another thread or process.

However, the CAS instruction can fall victim to the so-called ABA problem, whereby the
instruction returns successfully when it should fail. This occurs when a thread reads a
value A from a shared memory location and in between the read and the CAS instruction,
another thread updates the location, setting it to the value B and then back to A. The
CAS instruction from the first thread checks the value at the target location and sees
that it matches the old value (A) and continues to update it, returning that the operation
was successful. But it has failed to detect the change to the value B, resulting in an
invalid modification to the memory location that could result in a corrupted object. Other
solutions should be investigated if this is likely to occur for a given concurrent object [56,
125].

• Load-Linked/Store-Conditional (LL/SC): Load-linked and store-conditional are sepa-
rate instructions that are combined to perform an atomic read-modify-write operation on
a memory location. The LL instruction reads and returns the value from the target mem-
ory location. The SC instruction then checks if the memory location has been modified
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since the thread issued the LL instruction. If it has been modified, the SC instruction fails,
otherwise it succeeds and stores the new value in the target location. The SC instruction
may also fail if there has been a context switch or if another LL instruction has been ex-
ecuted [54, 56]. Unlike CAS, LL/SC is non susceptible to the ABA problem as the SC
instruction checks whether or not the memory location has been modified, and not if the
value in the memory location matches the old value. The LL/SC instructions are typically
found on the Alpha, PowerPC, MIPS, and ARM architectures [56].

A consensus number represents the maximum number of concurrent threads or processes for
which a particular object or data structure can solve a simple consensus problem [55]. In [55],
Herlihy shows that it is impossible to implement wait-free objects with a particular consensus
number from objects with lower consensus numbers. He also provides consensus numbers
for some of the above atomic primitives: atomic registers have a consensus number of one (1),
fetch-and-increment, fetch-and-decrement and test-and-set have a consensus number of two (2),
and compare-and-swap has an infinite consensus number [55].

2.5.3 Locking Strategies

There are two basic locking strategies that can be enforced by mutexes and semaphores to
prevent threads from proceeding past the lock. The first strategy causes a thread to spin, where
it essentially remains active (wasting CPU cycles) and repeatedly polls the lock while doing no
useful work. When the lock eventually becomes available, the thread will detect this and attempt
to acquire the lock for itself so that it can proceed past the lock. This is referred to as spinning

or busy-waiting and locks using this strategy are commonly referred to as spinlocks [20, 54, 56,
105]. Spinlocks are best used for short critical sections where threads only wait for a short time
to acquire the lock as costly scheduling operations are avoided. If threads have to wait for a
long time, however, resources are wasted [8, 56].

A variation on spinning is the technique known as local spinning, whereby the lock attempts
to spin in cache or local memory. This provides significant performance benefits over normal
test-and-set spinlocks, especially for distributed shared-memory systems such as CC-NUMA.
When threads spin using TAS, they broadcast on the shared bus and invalidate the cached copies
of the lock for all processors with threads spinning on that lock. This results in cache misses for
each spinning thread, which then has to fetch a new, yet unchanged value from memory. Local-
spinning, using a test and test-and-set lock, avoids this by using a read-only loop to check the
state of the lock and only using the TAS instruction when the lock appears to be free. Since
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spinning threads have a locally cached copy of the lock, they do not generate bus traffic until
the lock is released (which invalidates the cached locks) and they attempt to acquire the lock for
themselves [8, 7, 56].

The second strategy forces a thread to block or sleep when it fails to acquire the lock, which
involves the operating system’s scheduler descheduling the thread, thereby putting it to sleep.
When the lock becomes available, it signals the scheduler to reschedule the appropriate blocked
thread, thus waking it up and allowing it to continue execution. Locks employing this strategy
are called blocking locks and are most applicable when threads are likely to wait for long periods
of time. Blocking locks with short wait times cause undesirable scheduling overhead as the
scheduler is kept busy descheduling and rescheduling threads [8, 56]. Adaptive or hybrid locks,
which spin for a short while and then block, try to balance the advantages and disadvantages of
the two locking strategies and are found in certain operating systems [56].

2.5.4 Types of Locks

There are several different types of locks that can be used to provide mutually exclusive access
to resources or critical sections. Each type of lock is suited to specific scenarios and as such, it
is necessary to understand how these locks operate to make better informed decisions regarding
which lock to use in a particular situation. The list of locks presented below is not exhaustive,
however, it does provide a reasonable overview of some commonly used locks.

Spinlock Mutex

The simple TAS-based spinlock mutex, as described in Section 2.5.3, is one type of spinlock im-
plementation. The Filter lock is another spinlock implementation, which is a generalisation of
the two-thread Peterson lock for n-threads, which has multiple levels or “waiting rooms” where
threads compete to gain access to the lower levels until the critical section is reached. Lamport’s
Bakery lock and the Ticket lock provide first-come-first-served access to threads attempting to
acquire the lock, making them fair alternatives to the TAS spinlock [20, 56, 105].

Queue Lock

Queue locks overcome some of the issues associated with implementing scalable spinlocks.
Instead of having threads spin on a single shared memory location, which can cause excessive
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cache-coherence traffic, threads form a queue and are notified directly by their predecessor
when it is safe for them to continue. This provides lower latency access to the critical section
since threads are notified as soon as they are permitted to access the critical section. It also
reduces cache-coherence traffic as each thread spins in a different memory location, improving
the performance of the lock. First-come-first-served fairness is provided, much like the Bakery
lock mentioned above [56, 105, 123].

Readers-Writers Lock

Readers-writers locks allow for increased concurrency if the majority of threads accessing an
object protected by a critical section are only performing read operations, with fewer threads
attempting to modify the object. There is no reason for multiple reader threads to be denied
concurrent access to the critical section as they do not make any changes and pose no risk of
causing a race condition. However, should a thread wish to modify an object in the critical
section, the writer should be given exclusive access until it has completed its changes [56].

The readers-writers lock provides two lock objects: a read lock and a write lock. Threads
requiring only read access acquire the read lock, whereas threads wishing to update the shared
object acquire the write lock. While the read lock is held, other threads may also acquire the
read lock, but no thread may acquire the write lock. The write lock may not be acquired if
either the read lock or the write lock are currently held by another thread. This can result in the
writer threads having to wait a long time to acquire the lock. Therefore, priority can be given
to writers by preventing new readers from acquiring the read lock until existing readers have
released their locks and the waiting writer thread has acquired and released the write lock [56].

Hierarchical Lock

Hierarchical locks attempt to take into account the hierarchical nature of distributed memory
systems and the associated differences in access times. Hierarchical locks try to maintain node
locality for lock acquisitions, only transferring the lock to remote nodes to avoid starvation and
to keep some level of fairness. This results in much lower inter-node communication due to
lock handover, thereby improving performance scalability. Backoff techniques can be used to
achieve this by giving local nodes shorter backoff times compared to remote nodes. Queue-
based hierarchical locks, implemented using local queues and a single global queue, can be
used to ensure a degree of fairness [56, 123].
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Semaphore

As described in Section 2.2.5, a semaphore is a synchronisation data structure that restricts
simultaneous access to a shared resource to a certain number of threads or processes at any one
time. A semaphore has a value or capacity, stored as an internal counter, that represents how
many units of a particular resource are available. Aditionally, a semaphore provides methods for
atomically increasing or decreasing the value of the semaphore. Resources are released using
the V or acquire() method of the semaphore, which atomically increments the counter. Access
to a resource is requested using the P or release() method, which atomically decrements the
counter if the value is greater than zero, otherwise it causes the requestor to wait until resources
are released by other threads [20, 56, 124].

A counting semaphore is a semaphore with a capacity greater than one, whereas a binary

semaphore only has a capacity of one (restricting the value to either zero or one) [124]. Bi-
nary semaphores are similar to simple mutexes as they provide mutually exclusive access to a
particular resource instead of a section of code. Counting semaphores are used when mutual
exclusion is not necessary, but controlled access to a finite resource is required.

Monitors and Conditions

A monitor is a data structure that provides inbuilt synchronisation for its public methods by
maintaining its own internal lock, which is used to enforce mutually exclusive access to the
monitor and its methods. This ensures that there is only ever one thread accessing the mon-
itor at any one time and thus alleviates the need for threads to handle the mutual exclusion
themselves [20, 56].

Condition variables provide a means for threads to wait or sleep until a specific condition is met.
Once the condition has been met, the waiting threads are notified or signalled to wake up and
continue executing. Condition variables can be combined with monitors to provide conditional
access to the monitor, allowing for threads to surrender their access to the monitor object until
a required condition has been met [20, 102, 56].

Barrier

Although barriers have been adequately covered in Section 2.2.6, there are a number of different
mechanisms for determining when threads can leave the barrier and how to notify these threads
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that they need to wake up and continue executing. Barriers such as the sense-reversing barrier

and other simple busy-waiting implementations can suffer from memory contention, but they
tend to provide uniform notification time to waiting threads [56]. Tree-based mechanisms such
as the combining tree barrier and static tree barrier reduce memory contention by spreading
memory accesses across multiple barriers, but increase notification latency [56, 105].

Scoped Locks

While not strictly a separate type of lock, a scoped lock is a lock with an interface that enforces
the scoped locking pattern. The scoped locking pattern utilises the contructor and destructor
methods, provided by objects in object-oriented languages such as C++, to acquire and release
the lock. This is achieved by placing the critical section code into a scoped block and declaring
and initialising a scoped lock object at the start of the block, passing a mutex as an argument to
the lock object’s constructor. The lock object’s constructor attempts to lock the mutex, spinning
or blocking until successful, resulting in an instantiated lock object. Once the scoped block has
been exited, the lock object’s destructor is automatically called, releasing the lock on the mutex.
Scoped locks are beneficial in that they do not require the programmer to remember to release
the lock and locks are released when exceptions are thrown outside of the scoped block [125].

2.6 Software Metrics

Measurement is an important part of both scientific investigation and everyday life. Through
the measurement of specific properties of objects, we can describe those objects in terms of
the measured properties and perform meaningful comparisons between objects that share the
same properties. These measurements can then be used to answer questions about how objects
relate or compare to other objects, whether it be measuring the length of one’s foot to determine
which shoe size is likely to provide the best fit or measuring the execution time of a program
on different processors to determine which processor upgrade will provide the greatest speedup
for that program [31, 83].

An entity is an object or event that we wish to describe and an attribute is a characteristic feature
or property of an entity that can be used to distinguish entities from one another. This leads us
to the definition of measurement as the process of assigning numbers or symbols (a measure

or metric) to attributes of entities according to a clearly defined set of rules. The quantification
of attributes can be categorised as being either a direct quantification, where the attribute is
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measured and quantified directly, or an indirect quantification, where other measurements are
combined in some way to reflect a particular attribute using calculation [31, 83].

Software metrics refer to the activities involving the measurement of the internal and exter-
nal attributes of software products (artifacts or deliverables such as code and documentation),
processes (software-related activities), and resources (entities required by software processes).
This includes aspects such as data collection, cost and effort estimation, performance evalua-
tion, and structural and complexity metrics. Internal attributes refer to the characteristics of an
entity that can be measured by examining the entity itself. These internal attributes can typically
be measured statically, such as the number of lines of code in a program. External attributes

refer to the characteristics or behaviour of an entity in relation to its environment. External
attributes are usually measured dynamically as the entity interacts with its environment, such as
measuring the execution time of a program for a given computer system [1, 31, 83]. Through
the careful selection and use of software metrics, we can quantify attributes of interest and ob-
jectively compare the code of several different implementations of a program without resorting
to subjective evaluations, thereby ensuring a more rigorous empirical investigation [31, 85].

In the remainder of this section, we go on to describe the internal product attributes and metrics
relevant to our investigation, specifically those relating to length and complexity. Some external
product attributes and metrics can be found in Section 2.3, which discusses performance metrics
and models.

2.6.1 Code Size and Complexity

Software code is written by programmers in a particular programming language to perform a set
of functions specified by the software requirements. This code is made up of a mixture of dec-
larations, statements, expressions, comments, and whitespace. As such, code is an entity with
measurable attributes such as size and complexity that can be measured statically. Code length,
typically measured in lines of code, is the most apparent measure of size, although alternative
measures such as those described in Halstead’s software science are also available [31, 51, 83].
However, the application of these measures is not always as straightforward as their conceptual
simplicity makes them out to be.

Lines of Code

Lines of code (LOC) is the most common measure of code length and represents the number
of lines of source code in a program’s source files. The fundamental problem with the LOC
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measure is the definition of what actually constitutes a line of code. Program code can consist of
non-executable elements, such as comments, compiler directives, and blank lines. Additionally,
in some programming languages, it is possible to have multiple statements or instructions on a
single line. Treating multi-statement lines as single lines belies the difference in effort involved
in writing the multi-statement lines over the simpler single statement lines [31, 108, 146].

Blank lines and other formatting whitespace are typically added by the programmer to improve
readability, but they do not require significant effort from the programmer to write, unlike state-
ments and, to a certain extent, comments. Therefore, the removal of blank lines from the LOC
counting scheme is usually justifiable. The same cannot be said for comments as they do require
some effort from the programmer, although not as much as program statements, and it would be
remiss to exclude them without further thought. Other elements such as non-executable decla-
rations, headers, and compiler directives also serve to confuse matters as there may or may not
be grounds to exclude them from the LOC counting scheme. The manner in which these cases
are treated can have a significant effect on the resulting LOC value [31].

If the goal of the investigation is to determine the extent to which a particular program is com-
mented, it is necessary to count both the total lines of code, including comments, and the number
of comment lines on their own to be able to calculate the comment density. Therefore, the in-
tended use of the LOC measure determines what should and should not be counted, resulting in
many different counting schemes for the LOC measure. As such, any measurement of program
length using lines of code must be explicit in stating what program elements contribute to the
LOC measure and how they are counted [31, 85].

The most widely accepted definition for a line of code is any program statement, excluding
comments and blank lines. However, it is recommended that this measure be referred to as
NCLOC to highlight this definition and that a separate measure for comment lines be recorded as
defined below. The program length is then an indirect measure of the sum of the non-comment
and comment lines [31].

NCLOC = non-comment lines of code (excluding blank lines)
CLOC = comment lines of code

program length (LOC) = NCLOC+CLOC

The Software Engineering Institute further defines the LOC count to include all executable code
and non-executable declarations and compiler directives. Additionally, the manner in which
the code was produced is also considered, whether it be programmed, generated, reused, or
modified [31]. The measurement of reuse and modification is important in the context of our
investigation and is discussed further later on in this section.
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Halstead’s Software Science

Halstead’s software science, developed by Maurice Halstead [51], provides alternative measures
for program length and complexity. Instead of interpreting a program as lines of code in a source
file, Halstead’s metrics view program code as a combination of tokens that can be classified as
either operators or operands. These tokens are then measured to provide the basic metrics
defined below [31, 51, 52, 108, 145, 148].

µ1 = number of distinct operators
µ2 = number of distinct operands
N1 = total number of operators
N2 = total number of operands

As with the LOC measure, the question of whether or not certain language constructs should
be counted arises. The definition of the Halstead metrics excludes comments and blank lines
as they do not contain program statements, and therefore, they count as neither operators nor
operands. However, for certain tokens or constructs, it is not immediately clear whether they
should be classified as operators or operands, or whether they should be included at all [52, 148].
Some examples of this are class and method declarations, as well as type qualifiers. The clas-
sification of such tokens then comes down to the interpretation of the user or the developers of
automatic measurement tools [148]. It is, therefore, important to define how each construct is
classified for the programming language being measured. When using an automatic measure-
ment tool, the definitions used by the tool should be evaluated to ensure that they are consistent
with the goals of the investigation.

From these metrics, Halstead defines a number of indirect measures relating to program length
and complexity, some of which are defined below [31, 83, 108, 145].

• Length N is defined to be the sum of the total number of operators and the total number
of operands as shown below.

N = N1 +N2

Since length is based on the number of operators and operands, it is less sensitive to code
layout, such as multi-statement lines, than the LOC measure [108].

• Vocabulary µ is defined to be the sum of the number of distinct operators and the number
of distinct operands.

µ = µ1 +µ2
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• Volume V corresponds to the amount of computer storage required to represent the pro-
gram and is similar to the number of mental comparisons required to write the program.
The definition for program volume is given below.

V = N log2 µ

• Program difficulty D is a measure of how easy it is to comprehend the program, which
is proportional to the number of distinct operators.

D =
µ1N2

2µ2

• Program level L is the inverse of the program difficulty.

L =
1
D

• Effort E is the estimated mental effort required to write the program, which is propor-
tional to the volume and difficulty of the program.

E = DV

Since effort is concerned with the process of writing the program and not the attributes of
the program code itself, it is classified as a process measure [108].

Halstead’s metrics have been criticised for not providing clear enough definitions of the basic
program attributes and their associated measures. In addition, many of the calculated met-
rics, namely programming time, intelligent content, and delivered bugs (not described above),
have been criticised due to insufficient statistical backing for their relationship with the real
world [31, 52, 83]. However, some of Halstead’s metrics are still of practical use, particu-
larly length and volume, which show a closer relationship to programming time than Halstead’s
original definition using the effort metric [52].

Code Complexity

The cyclomatic complexity metric was first proposed by Thomas J. McCabe in 1976 [104] as
a means for calculating the complexity of a program. It has since seen widespread application
in the software industry, particular by those involved with software testing. The cyclomatic
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number v(G) measures the number of linearly independent paths through the control flow graph
G of a program. It is calculated using the number of edges e and number of nodes n of the
directed control flow graph and the number of connected components p, as defined in (2.10) [1,
104, 83, 85, 147].

v(G) = e−n+2p (2.10)

Nodes in the graph correspond to groups of sequential statements in the program or method.
Directed edges connect a node to other nodes that could possibly execute after it, thus corre-
sponding to the decision points or conditional statements in the program, such as the if-then

and while statements. For a single program or method, there can only be one connected com-
ponent; otherwise, the number of connected components is equal to the number of programs,
classes, or methods being measured [104].

McCabe also proposed some applications for the cyclomatic number to be used during develop-
ment and testing, such as his testing methodology that involves testing each linearly independent
path through the program. The number of required test cases to achieve full test coverage then
corresponds to the cyclomatic number of the target program or module [104]. Limiting the cy-
clomatic complexity of program modules during development, which has achieved widespread
support from the software industry, is another of his proposed applications. McCabe’s recom-
mendation was that the cyclomatic complexity of a module be limited to 10, failing which, the
module should be split into smaller, less complex modules [31, 104, 151].

However, further research indicates that there is little evidence to support the notion of Mc-
Cabe’s cyclomatic complexity as a definitive measure of program complexity. Statistical anal-
ysis shows that cyclomatic complexity exhibits a greater correlation to code size and metrics
such as LOC and Halstead’s length measure, than it does to code complexity [1, 83, 85]. The
benefit of using cyclomatic complexity over other metrics such as LOC, however, is that it is
less sensitive to the programming language and code layout.

While there are many other measures for complexity, such as Fan-In Fan-Out Complexity and
McCabe’s data complexity measures, they have been excluded from discussion as they have
little applicability to our investigation.

Code Reuse and Modification

The repetitive nature of many programming tasks leads to varying levels of code reuse. This
reuse of existing code ranges from copying segments of code from a previous project to making
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use of external libraries and utilities. Productivity is increased with code reuse as programmers
are able to focus on new features and problems instead of duplicating existing work. Code qual-
ity is also improved because defects are less likely to be introduced when previously developed
and tested methods or functions are reused. Therefore, it is necessary to account for code reuse
when analysing program length and programmer effort, especially for this investigation where
existing program implementations are modified to improve parallelism [31].

As stated previously, there are varying levels of code reuse and the subsequent modification of
the copied code. To account for this, we measure the extent of reuse as the ratio of the number
of modified lines to the total number of reused lines. The reused code can then be classified
according to the extent of reuse: reused verbatim refers to code that was reused without mod-
ification, slightly modified code has less than 25 percent lines modified, extensively modified

refers to code with more than 25 percent of the lines modified, and new code refers to code that
has not been reused or adapted from elsewhere [31].

2.6.2 Concluding Remarks

The field of software metrics attempts to provide valid and useful measures for program size,
complexity, and programmer effort. Unfortunately, many of the proposed measures are either
ill-defined or lack a strong correlation to the desired attribute. However, the measures for lines
of code, length, and volume from Halstead’s software science, and McCabe’s cyclomatic com-
plexity do appear to have strong correlations with program size. They are also the easiest metrics
to calculate automatically. For our purposes, these metrics, along with the extent of code reuse,
provide a sufficient measure of programmer effort.

2.7 Summary

In this chapter, we have covered a range of concepts, all of which are necessary to gain a firm
understanding of the many factors affecting parallel programming. We defined a number of par-
allel computing terms and concepts to aid in further discussions on the topic. We then presented
some performance measures and models for assessing the performance and speedup of paral-
lel programs. Such measures are necessary to gauge the effects of our software optimisation
efforts.

Our discussions regarding computer organisation and the related hardware characteristics serves
to highlight the factors that affect software performance. It is of critical importance that a full
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understanding of the underlying computer system is gained, as it pertains to the performance
of parallel programs. In particular, we noted the importance of cache memory for improving
overall memory acess time, which is vital to achieving good application performance.

We also presented descriptions of the various mechanisms for ensuring mutual exclusion. This
is necessary as program correctness is equally as important as program performance. Finally,
we introduced some measures of program complexity and programmer effort to aid in our in-
vestigation of parallel programming APIs and libararies.



Chapter 3

Parallel Programming Tools

3.1 Introduction

A vast range of software development tools exist for a variety of programming languages and
software development tasks. These tools are designed to improve the programmer’s productiv-
ity and assist the programmer with common development tasks such as identifying and locating
bugs, assessing program performance, and identifying code regions that are suitable for paral-
lelisation.

For the purposes of our investigation, we provide a survey of popular software development
tools for the C and C++ programming languages on modern multicore Linux computer systems.
We begin by introducing the C and C++ languages. We introduce and describe several estab-
lished parallel programming APIs and libraries for shared-memory multiprocessors. Then, we
introduce some popular C/C++ compilers and integrated development environments. Finally,
we introduce several debugging, program analysis, and profiling tools. It is important to note
that this survey is by no means extensive and other relevant tools may have been excluded for a
variety of reasons, such as system compatibility or licensing costs.

3.2 C and C++

The C programming language was developed in 1972 by Dennis Ritchie and Ken Thompson
at AT&T Bell Laboratories for Unix and the DEC PDP-11 computer [90, 130]. It is a high-
level, statically typed, procedural language originally designed for systems programming, but

57
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also widely used for general-purpose application programming. C has a very minimal and
concise syntax and it supports structured programming through scoped code blocks and func-
tions, which contain all the executable code. The C standard libraries include the more complex
functionality such as string handling and I/O functions. C also includes a pre-processor that sup-
ports file inclusion, conditional inclusion of code segments, and the definition of substitution
macros [40, 90, 130].

C provides low-level access to memory and its constructs map closely to the underlying machine
instructions, giving it a very thin layer of abstraction compared to other high-level languages
such as Java. For this reason, it is sometimes referred to as a “middle-level” programming
language. The low-level capabilities of C, coupled with its high-level constructs, make it a very
powerful language, but also one prone to subtle programming errors. Despite the low-level
characteristics of the language, standard C code is portable due to the widespread availability
of C compilers for most computer platforms and architectures [40, 90, 130].

Initially, there was no formal standard for the C language and implementation details were left
to the compiler writers. However, in 1983, the American National Standards Institute (ANSI)
and International Organization for Standardization (ISO) began the standardisation process,
which was completed in 1989. This resulted in the C89 standard, which is the most commonly
implemented version of the language. The standard was revised in 1999 to include new features,
some of which were borrowed from C++, resulting in the C99 standard [130].

C++ was developed in 1979 by Bjarne Stroustrup at Bell Laboratories based on the C language.
It is an enhanced version of C, supporting object-oriented programming. Stroustrup designed
C++ as a superset of the C language, which means that most C programs can be compiled using
a suitable C++ compiler. Essentially, C++ is a statically typed, multi-paradigm (supporting both
procedural and object-oriented programming), general-purpose programming language. Much
like C, C++ supports both high-level and low-level language features, making it suitable for
a wide range of applications such as systems software, device drivers, application software,
computer games, and networking programs [40, 60, 130, 133].

Some of the primary features added to the language include classes, templates (support for
generic classes), multiple inheritance, operator overloading, exception handling, and improve-
ments to the type system. As with C, C++ also went through a number of revisions and standard-
isation by a joint ANSI and ISO committee. The first draft of the C++ standard was proposed
in 1994, but the standard was later revised to include the Standard Template Library (STL) as
well as many other new features and small changes. The STL is a powerful library that includes
a variety of generic data structures and algorithms. The C++ standard, referred to as Standard
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C++, was finalised by the ANSI/ISO C++ committee in late 1997 and released in 1998, with a
subsequent update in 2003 [81, 130, 133].

Neither C nor C++ natively support parallel programming through inbuilt parallel constructs;
relying instead on external threading libraries to provide the necessary parallel features [59].
However, this is set to change with the upcoming C++0x standard.

3.2.1 C++0x

An updated standard for the C++ programming language, known as C++0x, is currently in
development by the International Electrotechnical Commission (IEC) and ISO. The new stan-
dard extends the core language and the C++ standard library, incorporating a number perfor-
mance and usability enhancements, as well as new library features. Despite all the additions
and changes, the C++0x standard is meant to be mostly compatible with existing Standard C++
code. Some of the more notable additions to the language and standard library include lambda
functions, regular expressions, atomic operations, tuple types, and most importantly, threading
facilities [12].

3.3 Concurrent Programming Environments

Once the programmer has identified the potential parallelism within a program, a concurrent
programming environment is required to exploit this parallelism for improved speedup. Con-
current programming environments can be implemented as parallel libraries that are accessed
from sequential languages or as language extensions and compiler APIs. They can also vary in
the level of abstraction, from low-level multithreading techniques, to higher level abstractions
such as Threading Building Blocks [103].

Pthreads [114] and Boost Threads [152] provide low-level interfaces to threads, conditions,
and synchronisation constructs. However, this means that the programmer is responsible for
thread management issues, such as synchronisation and load balancing. Unfortunately, this
also introduces more opportunities for common parallel programming errors, including data
race conditions, deadlock, and starvation. In contrast, OpenMP [116], Threading Building
Blocks [125], and Cilk [135, 74] provide easy-to-use parallel abstractions that take care of
many of the low-level aspects, such as thread management and load balancing.
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3.3.1 POSIX Threads

The POSIX Threads (Pthreads) library is based on an international standard (IEEE Standard
1003.1, 2004 Edition) and supports explicit parallelism by providing methods and data-structures
for the creation, joining, and termination of threads. It also provides data structures and meth-
ods for synchronisation (mutexes, reader-writer locks, semaphores, and condition variables) and
signaling [20, 59, 60, 114, 124]. However, Pthreads was originally designed as a library for C,
so it is more suited for use in pure C programs. While it is still possible to use pure Pthreads in
C++ programs, it does not conform with the C++ object-oriented programming style and care
must be taken when implementing such a solution [20, 59, 114, 124]. Pthreads is primarily
supported on Unix-like platforms (Linux, Solaris, and BSD), but there are compatible versions
for other operating systems such as Pthreads-w32 for Windows.

Pthreads functionality is made available through the inclusion of the “pthread.h” header file in
the target program. The Pthreads library provides a set of data types, functions, and constants
for implementing multithreaded C programs, all of which are prefixed with “pthread_”. The
Pthreads interfaces are categorised in Table 3.1 [20, 59, 60, 114, 124]:

Table 3.1: Pthreads interface categories.

pthread_ Basic threads functionality and related functions
pthread_attr_ Thread attributes objects
pthread_mutex_ Mutexes
pthread_mutexattr_ Mutex attributes objects
pthread_cond_ Condition variables
pthread_condattr_ Condition attributes objects
pthread_key_ Thread-specific data storage
pthread_rwlock_ Reader-writer locks
pthread_barrier_ Synchronisation barriers

Threads are declared using the pthread_t opaque data type and created with the
pthread_create (thread, attr, thread_function, arg) function. Thread attributes,
such as whether a thread is joinable, and thread priority, are declared using the
pthread_attr_t opaque data type and initialised with the pthread_attr_init (attr) func-
tion. Threads are terminated by calling pthread_exit (status) within the thread function
or cancelled by another thread using the pthread_cancel function. Thread attributes are de-
stroyed with pthread_attr_destroy (attr). Threads can be synchronised using
pthread_join (...) and detached with pthread_detach [20, 59, 60, 114, 124].

Other synchronisation mechanisms include Pthreads mutexes and conditions. A mutex is de-
clared with the pthread_mutex_t type and initialised either statically with
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PTHREAD_MUTEX_INITIALIZER, or dynamically with the pthread_mutex_init () function.
It is also possible to set mutex attributes, much like thread attributes. A mutex can be locked
using either pthread_mutex_lock (mutex), which blocks while the mutex is locked, or
pthread_mutex_trylock (mutex), which attempts to lock the mutex and returns an error
code if the lock is already held by another thread. A mutex is unlocked with the
pthread_mutex_unlock (mutex) routine. However, the programmer must be careful to avoid
priority inversion, whereby a thread with a lower priority executes before a thread with higher
priority due to an unfavourable ordering of synchronisation operations [20, 59, 60, 114, 124].

Condition Variables allow threads to synchronise based on specific values or conditions, avoid-
ing having to poll for the condition. Condition variables are used in conjunction with mu-
texes. A condition variable is declared with the pthread_cond_t type and initialised either
statically with PTHREAD_COND_INITIALIZER, or dynamically with the pthread_cond_init

() function. They are destroyed using the pthread_cond_destroy (condition) routine.
Threads then call the pthread_cond_wait (condition, mutex) routine while the mutex is
locked to block until the specified condition is met or signaled. The pthread_cond_signal

(condition) routine signals to a waiting thread that it is able to wake up. The
pthread_cond_broadcast (condition) function is used to signal multiple threads waiting
on the condition [20, 59, 60, 114, 124].

An example Pthreads program demonstrating the creation and joining of threads, as well as the
use of mutexes, is presented in Listing 3.1.

3.3.2 Boost Threads Library

The Boost C++ libraries provide a wealth of functionality, including the Boost Threads library,
which is a C++ threading library based on platform specific threading libraries, such as Pthreads
and Win32 Threads. As with Pthreads, Boost Threads enables low-level threading, with explicit
creation and termination of threads and mutexes. However, Boost Threads expands upon the ca-
pabilities of Pthreads with additional mutex types, lock functions, barriers, and more advanced
conditional variables. Unlike Pthreads, Boosts Threads is designed for object-oriented program-
ming, making use of C++ templates and function objects (functors), and therefore promotes a
better object-oriented programming style [88, 152].

Boost Threads includes interfaces for thread management, synchronisation, mutexes, lock types
and functions, condition variables, barriers, futures, and thread-local storage. The library is
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1 #include <pthread.h>
2 #include <stdio.h>
3 #define NTHREADS 4
4

5 pthread_mutex_t m;
6 int id_sum = 0;
7

8 void* thread_worker(void* thread_id) {
9 pthread_mutex_lock (&m);

10 id_sum += (int)thread_id;
11 printf ( " Thread i d : %d and c u r r e n t sum : %d \ n " , (int)thread_id , id_sum);
12 pthread_mutex_unlock (&m);
13

14 pthread_exit (NULL);
15 }
16

17 int main(void) {
18 pthread_t* thread_id = new pthread_t[NTHREADS];
19 pthread_mutex_init (&m, NULL);
20

21 for (int i = 0; i < NTHREADS; i++)
22 pthread_create ( &thread_id[i], NULL , thread_worker , (void*)i );
23 for (int i = 0; i < NTHREADS; i++)
24 pthread_join ( thread_id[i], NULL );
25

26 pthread_mutex_destroy (&m);
27 pthread_exit (NULL);
28 }

Listing 3.1: Simple Pthreads example.

accessible through the inclusion of the boost/thread.hpp header. The thread class is re-
sponsible for launching and managing threads and a thread object represents a single thread.
Boost Threads also makes it easier to manage pools of threads through the thread_group class.
Threads are launched by passing a function or a functor to the thread constructor. The join()
member function causes the parent to thread wait until the execution of the child thread has
completed [88, 152].

Boost Threads supports a variety of mutex types, with both recursive and non-recursive ver-
sions, as well as shared and exclusive ownership semantics. The primary Boost lock types,
listed in order of efficiency, are mutex, try_mutex, timed_mutex, recursive_mutex,
recursive_try_mutex, and recursive_timed_mutex. Boost Threads also supports scoped
locks, which implement the resource acquisition is initialization (RAII) idiom for locking and
unlocking a mutex. The Boost Threads library supports condition variables through the
condition_variable class and its associated members. Thread-local storage is also provided
through the thread_specific_ptr feature, which gives each thread its own private data stor-
age that is protected from concurrent access [88, 152].

An example Boost Threads program demonstrating the creation and joining of threads, as well
as the use of the scoped lock, is presented in Listing 3.2.
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1 #include <iostream >
2 #include <boost/thread.hpp>
3 #define NTHREADS 4
4

5 int id_sum = 0;
6 boost::mutex m;
7

8 class Worker {
9 private:

10 int thread_id;
11 public:
12 Worker (tid)
13 : thread_id(tid)
14 {}
15 ~Worker () {}
16

17 void operator ()() {
18 boost::mutex::scoped_lock lock(m);
19 id_sum += (int)thread_id;
20 std:cout << " Thread i d : " << thread_id << " and c u r r e n t sum : " << id_sum << " \ n " ;
21 }
22 };
23

24 int main (void) {
25 boost::thread_group threads;
26 for (int t = 0; t < NTHREADS; t++) {
27 threads.add_thread(new boost::thread(Worker , t));
28 threads.join_all();
29 return 0;
30 }

Listing 3.2: Simple Boost Threads example.

3.3.3 Threading Building Blocks

Intel Threading Building Blocks (TBB)1 is a C++ template library that provides high-level,
task and data parallel multithreading features targeted at improving multicore performance [71,
125]. It makes use of common C++ templates and coding style to facilitate multithreaded
programming. The library also provides a set of highly-efficient parallel algorithm templates,
such as parallel_for and pipeline, which further assist the programmer. Since TBB is a runtime
library, it can be used with any suitable C++ compiler. It is also supported on a wide variety of
operating systems and platforms making it portable [17, 71, 125].

TBB has a sophisticated thread management system that provides for a higher-level parallel
programming abstraction. The creation, termination, and scheduling of threads is hidden from
the programmer, allowing him to focus on the algorithm instead of thread management. The
TBB scheduler assigns tasks to threads at runtime and can re-assign tasks through its “task
stealing” mechanism to load-balance threads, while preserving cache locality and maximising

1http://www.threadingbuildingblocks.org/
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speedup. The TBB library provides a variety of parallel algorithms, concurrent containers,
memory allocators, task scheduling features, and synchronisation primitives. Some examples of
the provided parallel algorithms include the parallel_for, parallel_sort, parallel_scan,
parallel_reduce, parallel_do, and pipeline templates. TBB is thread-safe, which means
that, with a bit of care, it can be combined with other parallel programming libraries [17, 71,
86, 125].

There are a number of aspects to the implementation of a parallel program using TBB. First,
the task scheduler is initialised by declaring and instantiating a task_scheduler_init object.
The task scheduler also allows the programmer to specify the number of threads to be used
in the thread pool. For simple loop parallelisation, the parallel_for, parallel_scan, and
parallel_reduce templates can be used. This involves the creation of a function object with
an overloaded () operator, the required data members, and a copy constructor, much like Boost
Threads [125]. However, the introduction of lambda function support in some modern com-
pilers means that it is no longer necessary to define a new class as the function object can be
implemented inline [86, 73].

To parallelise a for loop, the instantiated function object is passed to the parallel_for tem-
plate, along with an iteration space argument. The blocked_range template is an example of
an iteration space that splits the defined range into segments according to the specified grain

size. This results in the creation of tasks for the segments of the splittable range, which are then
scheduled for execution by the TBB runtime system. The selection of grain size tends to be a
manual process that is very specific to the nature of the program. Selecting too large a grain size
can limit parallelism, whereas small grain sizes increase overheads and reduce performance.
However, TBB includes an auto_partitioner object that uses heuristics to select a grain size
automatically and the use of this automatic partitioner is the default approach [17, 125].

More advanced, stream-based parallel algorithms, such as the pipeline and parallel_do

templates, are also available. The pipeline template allows the programmer to define a num-
ber of processing stages or filters that work on independent tasks in parallel, much like an
assembly line. Another important feature of TBB is the inclusion of concurrent, thread-safe
containers for use in high-performance parallel programs. Example containers include the
concurrent_queue and concurrent_vector template classes. TBB also provides mutexes
and other synchronisation primitives for managing shared resources [86, 125].

An example Threading Building Blocks program is presented in Listing 3.3.
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1 #include "tbb/task_scheduler_init.h"
2 #include "tbb/blocked_range.h"
3 #include "tbb/parallel_for.h"
4 #define NTHREADS 4
5

6 double sarray [100];
7

8 class Worker {
9 public:

10 Worker () {}
11 ~Worker () {}
12

13 void operator()( const blocked_range <int>& range ) const {
14 for (int i = range.begin(); i != range.end(); ++i)
15 sarray[i] = sarray[i] * sarray[i];
16 }
17 };
18

19 int main(void) {
20 task_scheduler_init init(NTHREADS);
21 Worker worker;
22

23 for (int i = 0; i < 100; ++i)
24 sarray[i] = i;
25 parallel_for( blocked_range <int>(0, 100), worker , auto_partitioner() );
26

27 return 0;
28 }

Listing 3.3: Short TBB parallel program example.

3.3.4 OpenMP

OpenMP2 is a portable API for parallel programming on shared-memory computer systems.
The OpenMP API is defined and updated by the OpenMP Architecture Review Board (ARB),
which consists of major hardware and software vendors. OpenMP augments C, C++, and For-
tran by extending the languages with parallel directives. These directives can be added to spe-
cific loops or sections of code by the programmer to instruct the compiler to parallelise these
so-called parallel regions. It also defines a number of environment variables for controlling
the execution of OpenMP programs and includes a runtime library consisting of additional
OpenMP functionality such as low-level access to locks. Since OpenMP is an API specification
that must be implemented by the compiler, the performance of the resulting OpenMP programs
is dependent on the compiler [21, 116, 127, 124, 129]. OpenMP is targeted at shared-memory
multiprocessors such as the multicore CPUs found in modern computer systems. It does not,
however, provide the means for managing the affinity of tasks on NUMA systems, although
projects such as ForestGOMP aim to add NUMA support [18].

2http://openmp.org/wp/
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Earlier versions of OpenMP focused primarily on data parallelism and coarse, function-level
parallelism, however, with the release of OpenMP 3.0 came improved support for nested par-
allelism and the introduction of task parallelism through the omp task directive [21, 106, 116].
OpenMP includes a number of work-sharing, mutual exclusion, and synchronisation directives,
each of which accepts a number of clauses. An OpenMP directive applies to a succeeding state-
ment, compound statement, or OpenMP directive. The OpenMP work-sharing constructs have
an implied barrier at the end of the construct, but these barriers can be suppressed to improve
performance if it is safe to do so. The compiler then uses these directives to generate a con-
current version of the program following the fork-join programming model. OpenMP makes it
easy to add parallelism incrementally and it is possible to recompile an OpenMP program to
execute sequentially for debugging purposes [21, 116, 124].

The OpenMP compiler directives are listed and described below [21, 116].

#pragma omp parallel [clause[[,] clause]...]

Creates a team of threads and marks a region for parallel execution. The programmer
must be careful where this construct is placed as the creation and termination of thread
teams creates performance overheads. Accepts the following clauses: if, num_threads,
default, private, firstprivate, shared, copyin, and reduction.

#pragma omp for [clause[[,] clause]...]

Specifies that loop iterations will be distributed and executed by an available team of
threads. Accepts the following clauses: private, firstprivate, lastprivate, reduction,
schedule, collapse, ordered, and nowait. It can also be combined with the parallel
construct for a single work-sharing loop.

#pragma omp single [clause[[,] clause]...]

Specifies that only one thread in the team will execute the associated block, but not nec-
essarily the master thread. Accepts the following clauses: private, firstprivate, copypri-
vate, and nowait.

#pragma omp master

Specifies that only the master thread will execute the associated block. No implied entry
or exit barrier.

#pragma omp sections [clause[[,] clause]...]

{
[ #pragma omp section ]

block
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[ #pragma omp section

block ]

...
}
Allows for the specification of section blocks that are distributed and executed by the
thread team. Accepts the following clauses: private, firstprivate, lastprivate, reduc-
tion, and nowait. It can also be combined with the parallel construct for a single work-
sharing region.

#pragma omp task [clause[[,] clause]...]

Defines an explicit independent task for execution by the thread team. Accepts the fol-
lowing clauses: if, untied, default, private, firstprivate, and shared.

#pragma omp taskwait

Creates a barrier that waits on the completion of child tasks.

#pragma omp flush [(list)]

Enforces memory consistency for the list of variables.

#pragma omp critical [(name)]

Creates a named critical section, enforcing mutual exclusion for the associated block.

#pragma omp barrier

Creates an explicit barrier for threads in the team.

#pragma omp atomic

Ensures that a variable or location is modified atomically. The assignment operator or
expression can be one of the following: x binop = expr, x++, ++x, x--, or --x.

#pragma omp ordered

Enforces a strict ordering for the associated block within a loop, according to the order of
the loop iterations. This limits potential parallelism and should be used with care.

The clauses supplied to an OpenMP directive allow for the modification of data sharing at-
tributes, thread management, and barriers, as described in Table 3.2 [21, 116].

Static scheduling splits the iteration space equally between threads. Dynamic scheduling splits
the iteration space according the the supplied chunk size, much like TBB’s grain size. Guided

starts with larger chunks, and gradually reduces the chunk size as it progresses through the
iteration space. The auto scheduling argument lets the OpenMP runtime system select the
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Table 3.2: Clauses for OpenMP directives.

if(condition) Specifies conditional parallel execution of
the associated parallel region.

num_threads(int expr) Sets the number of threads to be created
in the thread pool.

default(shared | none) Sets the default data sharing attributes for
variables in the parallel region.

private(list) Specifies that the listed variables are pri-
vate to a task.

firstprivate(list) Specifies that the listed variables are pri-
vate to a task and that they must be ini-
tialised with the value of the original.

lastprivate(list) Specifies that the list variables are pri-
vate to a task and that the original variable
must be updated with the final value at the
end of the region.

copyprivate(list) Broadcasts the values of the listed vari-
ables from one implicit task to other tasks
in the same parallel region.

shared(list) Specifies that the listed variables are
shared by threads in the parallel region.

copyin(list) Copies the listed threadprivate vari-
ables from the master thread to the other
worker threads.

reduction(operator:list) Specifies that the listed variables be accu-
mulated using the defined operator.

schedule(kind[,chunk_size]) Specifies the scheduling algorithm to be
used.

collapse(n) Collapses the iteration spaces of n nested
loops into one large iteration space.

ordered Indicates that a for loop contains an or-
dered directive.

nowait Suppresses the implied barrier at the end
of a work-sharing constuct.
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appropriate scheduling algorithm, while runtime scheduling allows the scheduling algorithm to
be specified at runtime through the OMP_SCHEDULE environment variable [21, 116].

There are also a number of runtime library functions that allow the programmer to query and
modify various aspects of the OpenMP runtime system. The runtime library also includes
locks and timing routines. In addition to the runtime library, OpenMP makes use of a number
of environment variables that allow for the specification of various runtime aspects, such as
scheduling and the number of threads to be used [21, 116].

An example OpenMP program is presented in Listing 3.4.

1 #include <omp.h>
2

3 int id_sum;
4

5 int main (void) {
6 int i, n = 100;
7 id_sum = 0;
8

9 #pragma omp parallel default(none) shared(n, id_sum) private(i)
10 {
11 #pragma omp for
12 for (i = 0; i < n; ++i)
13 {
14 int tid = omp_get_thread_num();
15

16 #pragma omp critical
17 {
18 id_sum += tid;
19 std:cout << " Thread i d : " << tid << " and c u r r e n t sum : " << id_sum << " \ n " ;
20 }
21 }
22 }
23 return 0;
24 }

Listing 3.4: Short OpenMP parallel program example.

3.3.5 Cilk, Cilk++, and Cilk Plus

Cilk is a multithreaded programming language, developed at Massachusetts Institute of Tech-
nology, that extends the ANSI C language with high-level parallel constructs [38, 135]. Cilk
adds five keywords, cilk, spawn, sync, inlet, and abort, which are translated, along with the
rest of the program, to a valid C program called the serial elision. The serial elision implements
the semantics of the parallel Cilk program and calls an efficient runtime system to handle issues
such as parallel execution, resource management, scheduling, and communication. The Cilk
scheduler makes use of an efficient “work-stealing” policy to ensure effective load balancing
between multiple processors [38, 135].
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An improved, commercial version of Cilk, called Cilk++, was under development by Cilk Arts.
Cilk++ improved support for loops and shared data objects, as well as adding C++ support [39].
However, Cilk Arts was acquired by Intel Corporation in 2009. Intel refined Cilk++ and released
it as Intel Cilk Plus3, along with a specification and runtime application binary interface (ABI)
for implementation in other compilers. Cilk Plus is currently only supported by the Intel C/C++
compiler on both 32- and 64-bit Windows and Linux platforms [73, 74].

Intel Cilk Plus introduces a set of C and C++ keywords for fine-grained task parallelism, as
well as an improved array notation and elemental functions for data parallelism. These simple
extensions make the implementation of parallel algorithms easy for both new and existing appli-
cations. It also includes a library for managing shared variables, called reducers, which create
separate views for each task and reduces them back to the shared variable. The task parallel
constructs are well suited to divide and conquer algorithms [73, 74, 44].

Cilk Plus only has three keywords, which are listed and described below. Two of these are also
demonstrated in Listing 3.5 [73, 74].

• cilk_spawn specifies that a function call can be executed in parallel with the calling
function.

• cilk_sync acts as a barrier, waiting for all spawned children tasks to be completed
before progressing.

• cilk_for specifies that the iterations of a for loop can be executed in parallel.

1 #include <cilk/cilk.h>
2

3 void sample_qsort(int* begin , int* end) {
4 if (begin != end) {
5 --end; // Exclude last element (pivot)
6 int* middle = std::partition(begin , end, std::bind2nd(std::less <int>(),*end));
7 std::swap(*end, *middle); // pivot to middle
8 cilk_spawn sample_qsort(begin , middle);
9 sample_qsort(++middle , ++end); // Exclude pivot

10 cilk_sync;
11 }
12 }

Listing 3.5: Cilk Plus parallel quicksort example [73].

The array notation introduced by Cilk Plus makes it easy to express array operations that can
be executed in parallel as demonstrated by the element-wise multiplication example below.

3http://software.intel.com/en-us/articles/intel-cilk-plus/
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Elemental functions allow the programmer to define their own functions that operate on inde-
pendent array elements [73, 44].

1 // Parallel multiplication
2 mul_res[:] = mul_a[:] * mul_b[:];
3

4 // Elemental function
5 __declspec (vector) double elemental_func (double x, double y) {
6 return 2 * x * y;
7 }
8

9 // Syntax 1
10 cilk_for (int i = 0; i < N; ++i) {
11 elem_res[i] = elemental_func(elem_a[i], elem_b[i]);
12 }
13 // Syntax 2
14 elem_res[:] = elemental_func(elem_a[:], elem_b[:]);

Listing 3.6: Cilk Plus array notation and elemental functions [73, 44].

3.3.6 Parallel Performance Libraries

While the above parallel programming models allow the programmer to implement his/her own
parallel algorithms, there are a variety of high-performance, multithreaded libraries that imple-
ment common scientific, data processing, signal processing, and multimedia functionality.

Intel Performance Libraries

• Intel Integrated Performance Primitives (IPP)4 is a library of multithreaded, highly-
optimised, low-level functions for multimedia, data processing, matrix operations, com-
munications, and cryptography. IPP is supported on Windows, Linux, and Mac OS X
running on x86 and x86-64 compatible platforms. The functions provided by the IPP
library provide a stateless interface, allowing them to be integrated into C and C++ pro-
grams with ease. IPP functions are optimised to take advantage of advanced SSE instruc-
tions and parallelism. Function categories include video and audio encoding and decod-
ing, computer vision, cryptography, data compression, image conversion and processing,
signal processing, speech recognition and coding, and vector and matrix mathematics
operations.

4http://software.intel.com/en-us/articles/intel-ipp/
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• Intel Math Kernel Library (MKL)5 is a library of extensively threaded and optimised
mathematics functions for science, engineering, and financial applications. MKL is sup-
ported on x86 and x86-64 compatible platforms, and Windows, Linux, and Mac OS X
based operating systems. MKL is supported natively in C, C++, and Fortran programs
and can be used in C# and Java via code wrappers. Core library functionality includes lin-
ear algebra functions (BLAS, LAPACK, and ScaLAPACK), direct and iterative solvers
for large sparse linear systems of equations, vector mathematics and random number
generators, and fast Fourier transform functions. All functions are highly-optimised with
extensive use of SSE instructions and parallelised using OpenMP.

• Intel Array Building Blocks (ArBB)6 is a new C++ template library for taking advan-
tage of data parallel problems on multiprocessor computer systems. The library uses
standard C++ extensions, so it is widely compatible with standard C++ compilers and
IDEs, and its associated runtime library supports Windows and Linux. ArBB provides
generalised vector parallel algorithms that are highly scalable and optimised for paral-
lel and SIMD (SSE) capable CPUs, while preventing deadlock and data race conditions.
Intel ArBB is currently in beta testing and will be available as a part of Intel’s Parallel
Building Blocks suite, which includes Cilk Plus and Thread Building Blocks.

AMD Performance Libraries

• AMD FrameWave7 is an open source library developed by AMD consisting of opti-
mised, low-level functions for image processing, signal processing, and video applica-
tions, as well as basic arithmetic functions. FrameWave is similar to Intel IPP, but it
is optimised for AMD processors. However, it supports all x86 and x86-64 compatible
CPUs running Windows, Linux, and Solaris based operating systems. The library is op-
timised to make use of SSE instructions and uses multithreading for improved parallel
performance.

• AMD LibM8 is a C99 library of optimised basic mathematical functions for x86-64 based
platforms. The library features 104 optimised scalar and vector maths functions that can
be used in place of the standard maths routines for improved performance and accuracy.

5http://software.intel.com/en-us/articles/intel-mkl/
6http://software.intel.com/en-us/articles/intel-array-building-blocks/
7http://developer.amd.com/cpu/Libraries/framewave/Pages/default.aspx
8http://developer.amd.com/cpu/Libraries/LibM/Pages/default.aspx
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• SSEPlus9 is an open source library that provides optimised emulation of SSE instructions
and SIMD algorithms with the intent of simplifying the development of SIMD-optimised
applications. The emulation of SIMD instructions allows for a single program implemen-
tation to take full advantage of multiple target architectures and updates to the library
automatically take advantage of new instruction sets without the need to update the pro-
gram itself.

• AMD String Library10 provides a subset of the standard C library string functions that
are optimised for AMD CPUs. These functions, ffsll, strchr, strrchr, memchr, strlen,
strnlen, index and rindex, replace those provided by the standard libraries and are de-
signed to take advantage of AMD processors and the SSE4a instruction set. AMD String
Library is support on x86-64 versions of Linux running on compatible AMD CPUs.

3.4 Compilers

Programs written in high-level languages such as C++ and Java need to be translated into the
appropriate machine code for the target platform before they can be executed. This is the re-
sponsibility of the compiler or a set of compiler programs. A compiler translates source code
from the source language to its equivalent representation in the target language. Programming
languages are typically characterised as being either compiled or interpreted. Compiled lan-
guages are translated into machine code for a specific platform, producing executable binaries
or object code. Interpreted languages are compiled into platform-independent bytecode, which
is then interpreted by a platform-specific virtual machine (VM) for the language. The VM trans-
lates the bytecode to the appropriate machine code while the program is executing [5]. Both
C and C++ are compiled languages with a variety of different compilers for a vast number of
platforms.

The parsing and compilation process is typically divided into a number of phases. The front-end
includes the pre-processing of source code files, lexical analysis (the identification of tokens),
syntax analysis (the identification of syntactic structures), and semantic analysis (type checking
and other semantic checks). The middle-end contains the majority of the code optimisation
stages, and the back-end is responsible for code generation. The code optimisation phase per-
forms a number of transformations on the code to produce a faster, yet functionally equivalent
version of the program. The types and degrees of optimisation are dependent on the compiler

9http://developer.amd.com/cpu/Libraries/sseplus/Pages/default.aspx
10http://developer.amd.com/cpu/Libraries/AMDStringLibrary/Pages/default.aspx
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being used and include transformations such as removing unreachable code, function inlining,
loop vectorisation and other loop transformations, and in some cases, automatic parallelisa-

tion [5, 34, 89, 139].

Automatic parallelisation is becoming an increasingly important feature for modern compilers
given the rise of the multicore CPU. A compiler with automatic parallelisation attempts to gen-
erate multithreaded code from the original sequential code, thereby relieving the programmer
of this error-prone and often tedious process [15, 61, 98, 140]. The primary targets for the par-
allelisation effort are the looping structures since the majority of a program’s execution time is
typically found within these structures. This requires extensive data dependence analysis and
alias analysis to ensure that it is safe to execute the loop iterations in parallel and determine
which shared variables need to be protected. However, this is a particularly difficult task for
the compiler and the automatic parallelisation may fail to parallelise loops with complicated
dependency issues [15, 34, 41, 61, 89, 98, 122].

Other significant optimisations include interprocedural optimisation (IPO) and profile-guided
optimisation (PGO). IPO analyses the entire program, instead of focusing on single functions or
blocks of code, and attempts to optimise frequently used procedures. This is usually achieved
by inlining small functions that are called frequently, removing dead code branches, and re-
ordering code to improve memory access [23, 34, 50, 89]. PGO is performed in stages: first,
the program is instrumented and compiled; the program is then executed and profiling data is
gathered; and finally, the program is recompiled using the profiling data to guide the optimisa-
tion process [24, 107].

3.4.1 GNU Compiler Collection

The GNU Compiler Collection (GCC)11 is an open-source compiler distribution with support
for a wide variety of platforms and architectures. At the time of writing, the latest stable release
of GCC is version 4.5.2. GCC includes compilers for a number of programming languages,
including Ada, C, C++, Fortran, Java, and Objective-C, among others. The C compiler is in-
voked with the gcc command and the C++ compiler is invoked with g++ [43]. Several important
compiler options for the GCC C/C++ compilers are described in Appendix A.1.

Each language has its own front-end that parses the input source files and translates into an in-
termediate tree representation that is then passed to a common, language-independent “middle-
end” and back-end. The majority of the code optimisation occurs in the middle-end, where a

11http://gcc.gnu.org/
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variety of compiler optimisations transform the program to produce a faster version, which is
then passed to the back-end. The back-end then finalises the register allocations and generates
the architecture-specific machine code [43].

GCC supports a number of more advanced optimisations such as interprocedural optimisa-
tion, profile-guided optimisation, automatic vectorisation, and limited automatic parallelisa-
tion through the Graphite framework. GCC also supports the generation of parallel code using
OpenMP 3.0 compiler directives [41, 42, 43].

3.4.2 Intel C and C++ Compilers

Intel C++ Compiler XE 201112 (previously known as the Intel C++ Compiler Professional
Edition) is a commercial C and C++ compiler for Linux, Mac OS, and Microsoft Windows
based operating systems, running on IA-32 (32-bit Intel Architecture / i386), x86-64 (AMD64
and Intel 64), and Itanium 2 compatible processors. It is included in the Intel C++ Composer XE
2011, Intel C++ Studio XE 2011, Intel Parallel Studio XE 2011, and Intel Cluster Studio 2011
suites of optimising compilers, high-performance libraries, and software development tools. A
Fortran compiler (Intel Fortran Composer XE 2011) is also available [70, 72, 73]. However,
unlike GCC which is freely available, the Intel development tools have expensive licensing
costs depending on the type of license and number of users13. Discounted academic and non-
commerical licenses are, however, available, as well as limited-time evaluation versions for
testing.

The Intel C and C++ compilers support an extensive array of optimisations and the included
libraries are themselves highly optimised. Some of the advanced optimisations include highly
effective automatic vectorisation using SSE instructions, automatic parallelisation, IPO, PGO,
and other high-level optimisations such as loop interchange, loop unrolling, loop fusion, and
data prefetch to name but a few. In addition to the automatic vectorisation and parallelisa-
tion features, the Intel compilers support parallelisation using OpenMP 3.0 and Intel Cilk Plus,
which is an updated version of the Cilk++ parallel programming language (described in Sec-
tion 3.3.5) [15, 34, 72, 73, 69, 139]. The Intel compilers are also capable of producing debug-
ging and profiling information in standard formats that are compatible with common debuggers
and profilers, as well as Intel’s own debugging and profiling tools [72, 73].

The Intel compilers and some of the Intel performance libraries are criticised for explicitly
optimising programs for better performance on Intel CPUs compared to compatible non-Intel

12http://software.intel.com/en-us/articles/intel-sdp-products/
13http://software.intel.com/en-us/articles/buy-or-renew/
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variants such as those produced by AMD and VIA. The primary difference between programs
running on an Intel CPU and a non-Intel CPU when compiled with the Intel compiler relates to
the use of the SSE instruction sets for vectorisation and other SSE-based optimisations. When
compiling a program with SSE support (using the -axSSEn compiler option), such as SSE3,
Supplemental SSE3 (SSSE3), or SSE4, the Intel compiler generates multiple code paths for
functions containing SSE instructions. These code paths differ in the level of SSE instruc-
tions used, from a generic version with minimal or no SSE support, to the fully optimised
version using the highest SSE instruction set as specified during compile-time. Additionally,
the compiler integrates an automatic runtime CPU dispatcher into the program executable that
detects which SSE instruction sets the current CPU supports and executes the appropriate code
path [33, 34, 79, 100].

However, the CPU dispatcher also checks whether the program is running on an Intel CPU.
If not, the dispatcher selects the generic code path regardless of the capabilities of the CPU,
thereby limiting the performance of the program on non-Intel CPUs. There are several meth-
ods for circumventing the CPU dispatcher and allowing for optimal execution on non-Intel
processors. However, the method for permanently removing the dispatcher requires modifi-
cations to the Intel compilers and libraries, which is against the end-user licensing agreement
(EULA) [33, 34, 79, 100]. Despite this, the Intel compilers and libraries produce highly opti-
mised code and are recommended for performance critical applications [34].

The C compiler is invoked with the icc command, while the C++ compiler is invoked with
the icpc command or using icc with the -x c++ compiler option specified before each C++
file [72, 73]. Several important compiler options for the Intel C/C++ compilers are described in
Appendix A.2.

3.4.3 Low Level Virtual Machine (LLVM)

The Low Level Virtual Machine (LLVM)14 is a modular, language-agnostic compiler infras-
tructure designed for code optimisation using its own intermediate code form. LLVM supports
front-ends for a number of languages, including C and C++. The primary front-ends for C
and C++ are llvm-gcc (and dragonegg for GCC 4.5), llvm-g++ and Clang15. The GCC based
front-ends replace the GCC code generator with an LLVM implementation, while Clang is a
new, native LLVM compiler that supports C, Objective-C and C++. Clang provides faster com-
pile times, more expressive diagnostics and tighter IDE integration along with a static analyser

14http://llvm.org/
15http://clang.llvm.org/



3.5. INTEGRATED DEVELOPMENT ENVIRONMENTS 77

that is capable of automatically identifying certain bugs in the user’s source code. While these
compilers are very promising, they are in constant development are not yet mature enough for
reliable and accurate performance analysis compared to GCC and the Intel compiler suite.

3.5 Integrated Development Environments

Integrated development environments (IDEs) are applications that combine various software
development tools and features for one or more programming languages into a single program-
ming environment or user interface with the aim of improving programmer productivity com-
pared to that using separate editing, building, and debugging tools. Common elements found in
IDEs include a source code editor, automated build tools, compilers for the specified language
or interfaces to system compilers, and various debugging and analysis tools. Modern IDEs
typically provide a source code editor with syntax highlighting, code completion, inline error
highlighting, and various code refactoring features. The debugging and program analysis tools
tend to be tightly integrated into the editor, thereby making it easier to identify issues in the
code. Some IDEs even include visual GUI editors, which greatly simplify the task of creating
and modifying an application’s user interface [58, 95, 117, 149].

For larger projects, particularly applications written in object-oriented languages, advanced
IDEs provide multiple views or browsers for navigating and inspecting the application’s mod-
ules, classes, and files. Integrated version control support is another feature that is typically
found in modern IDEs [117, 149]. All of the above features combine to make programmer’s
job easier by automating many software development tasks and improving access to important
tools [58].

Two popular IDEs for C and C++ development on Linux are introduced below.

3.5.1 Eclipse

Eclipse16 is a highly extensible, open source software development platform primarily written
in Java. At its core, Eclipse is a basic IDE with a generic text editor, which is coupled to
a powerful plug-in system. The IDE and editor are then extended and augmented to support
particular programming languages and additional software development tools using plug-ins,
such as the Java Development Toolkit (JDT) for Java programming and the C/C++ Development

16http://www.eclipse.org
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Toolkit (CDT) for C and C++ programming. However, the Eclipse platform is not limited to
programming languages and there are a variety of plug-ins for other tasks such as typesetting
using LATEX [149].

The CDT17 plug-in for Eclipse provides a fully featured IDE for C and C++ software develop-
ment. Eclipse CDT provides support for project creation and navigation, as well as automated
project build tools using a variety of build toolchains. The source code editor supports features
such as syntax highlighting, code completion and code templates, refactoring, and code format-
ting. In addition to the build tools, support for various visual debugging and profiling tools is
provided [138]. Many of the Intel software development tools for Linux, such as the C/C++
compiler, Intel debugger, and VTune performance analyser, provide plug-ins for integration
with the Eclipse platform.

An example screenshot of the Eclipse CDT IDE is provided in Figure 3.1.

3.5.2 NetBeans IDE

NetBeans18 is an opensource, modular IDE written in Java. It provides support for software
development in various languages, including Java, C/C++, and PHP among others. The Net-
Beans IDE Bundle for C/C++19 features support for C and C++ projects with tools to create
and manage build configurations, as well as version control. As with most advanced IDEs,
the NetBeans C/C++ editor features syntax highlighting, code formatting, code templates, and
code assistance through code completion and refactoring. It also features advanced class and
file navigation capabilities for efficient navigation through complex projects [117]. Figure 3.2
shows a screenshot of the NetBeans C/C++ IDE.

NetBeans also integrates software development tools such as a runtime profiler, GNU Debugger
support with close editor integration, and support for a variety of popular compilers and the
configuration thereof. Furthermore, it integrates tools for creating and modifying GUIs based
on the Qt application framework20 [117]. The Oracle Solaris Studio21 software development
environment is based on the NetBeans IDE.

17http://www.eclipse.org/cdt/
18http://netbeans.org/features/index.html
19http://netbeans.org/features/cpp/index.html
20http://qt.nokia.com/
21http://www.oracle.com/technetwork/server-storage/solarisstudio/
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Figure 3.1: The Eclipse C/C++ Development Toolkit IDE.

Figure 3.2: The NetBeans C/C++ IDE. Taken from [117].
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Oracle Solaris Studio

Oracle Solaris Studio (formerly Sun Studio) is a suite of software development tools for So-
laris and Linux operating systems. It features an extended version of the NetBeans IDE, which
integrates additional tools for debugging and optimising programs on multicore CPUs, as well
as support for the Oracle Sun Studio C/C++ compilers. These compilers are highly-optimised
for Oracle Sun hardware and feature automatic parallelisation capabilities and OpenMP 3.0
support. Solaris Studio includes a more advanced, fully integrated debugger and a thread ana-
lyzer, which are capable of detecting memory leaks and threading errors such as race conditions
and deadlock. Profiling support has also been improved with the Solaris Studio Performance
Analyzer, which is capable of identifying program hotspots and providing performance tun-
ing advice [118]. Oracle Solaris Studio is heavily focused towards development for the Oracle
Solaris operating system and Oracle Sun hardware (SPARC processors).

3.6 Debugging and Profiling Tools

Debugging is the process of detecting, reproducing, locating, analysing, and fixing program-
ming defects present in a particular program. There are various techniques for debugging soft-
ware depending on the needs of the developer. Print or tracing debugging is a manual debug-
ging process that involves the insertion of print statements into the program source code to
indicate state and program flow. This can be tedious, so the use of an interactive, source-level
or symbolic (as opposed to machine code-level) debugger tool is recommended. Post-mortem
debugging involves the analysis of the program’s trace information or memory dump after the
program has crashed. Static code analysis tools are also available and feature the ability to
analyse the program source code and locate semantic errors that could lead to program de-
fects [17, 126, 128, 154].

Interactive symbolic debuggers are tools that allow the developer to debug the program while it
is still running. They typically feature the ability to monitor and inspect program state (such as
variables), set breakpoints that pause execution when a particular condition or program region
is encountered, single-step through the program one statement at a time (at the source code
level), and alter certain aspects of the program while it is executing. This makes debuggers
incredibly powerful tools for locating and diagnosing defects. Many debuggers are integrated
into the programmer’s development environment, making them easier to use [126, 128, 154].

Software profiling is concerned with the measurement and analysis of the execution character-
istics of a program as opposed to static code analysis, which analyses the program structure
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without actually running the program. Profiling allows the programmer to identify performance
issues and optimisation opportunities within a program based on call counts, execution times,
and performance impacting events, such as cache misses and branch mispredictions. Profil-
ing data can be captured using either instrumentation or sampling, or a combination of the
two [17, 25, 34, 36, 113].

Instrumentation involves adding instructions to the program that record the characteristics being
examined, such as call counts and execution time. Instrumentation can be carried out manually
by inserting source-level profiling instructions or directives, or automatically using instrumen-
tation tools or special compiler options. Binary instrumentation adds profiling instructions to
the compiled binary, whereas runtime instrumentation instruments code just prior to execution
using an intermediary execution supervisor. However, the added instrumentation instructions
often introduce overheads that affect the performance of the target program [17, 34, 36, 113].

Sampling involves a statistical analysis of profiling events, such as hardware performance
counter events. The profiler uses interrupts to periodically check and record the state of the
performance counters and timing information and associates this data with the instructions be-
ing executed at that time. Therefore, performance degrading instructions are more likely to be
recorded by the profiler as they will trigger performance events more frequently. The profiler
is then able to build up a statistical summary of those sections of code associated with per-
formance events. Sampling is a low-overhead profiling technique that has little effect on the
program execution time, but it is less accurate [17, 36, 113]. However, there are techniques for
compensating for the effect of overhead as a result of instrumentation and profiling [101].

Below, we present a short survey of commonly used free and commercial debugging and pro-
filing tools.

3.6.1 GNU Debugger (GDB)

GNU Project debugger22, commonly referred to as “GDB”, is an open source, command-line
interface (CLI), symbolic debugger. Its primary features include the ability to start, monitor, and
control the execution of a program running on either the local computer or a remote host. It is
also possible to attach GDB to a program that is already running. GDB allows the programmer
to monitor and change the values of a program’s internal variables, pause program execution
by setting breakpoints on specific lines of code or functions, and step through program execu-
tion line-by-line. More importantly, GDB has support for debugging multithreaded programs,

22http://www.gnu.org/software/gdb/
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including: automatic notification of new threads, the ability to inquire about existing threads,
switching the current focus to another thread, and setting thread-specific breakpoints [17, 36].

One of the primary drawbacks of GDB is that it does not include a user-friendly GUI by default.
However, there are several front-ends, such as the Data Display Debugger (DDB)23, and it is
also integrated into certain IDEs such as Eclipse. GDB can debug programs written in a variety
of languages, including Ada, C, C++, Objective-C, and Pascal, with partial support for many
others. It is available for most Unix variants, such as Linux and Solaris, as well as Microsoft
Windows and is currently at version 7.2 [36, 150].

3.6.2 Intel Debugger (IDB)

Intel Debugger (IDB) for Linux is a commercial symbolic application debugger that forms part
of Intel Composer XE 2011 for Linux. IDB supports debugging for programs compiled with
the Intel and GCC compilers (C, C++, and Fortran) on IA-32 and x86-64 compatible platforms.
However, the Intel compilers provide enhanced debugging information for use with IDB. IDB
supports typical debugging features such as attaching to one or more running processes (local or
remote), breakpoints, execution stepping, variable inspection and modification, variable watch
lists, and support for language-specific features such as C++ templates and the STL [65, 9].

More advanced features include the ability to debug optimised code and support for parallel
programs, which include multithreaded applications that use Pthreads and OpenMP. IDB pro-
vides detailed information about thread states and interactions, as well as details of OpenMP
locks, threads, and teams. It also allows for switching focus between threads and setting thread-
specific breakpoints. Additionally, IDB can detect thread data sharing events in programs that
use Pthreads, OpenMP, Intel Cilk Plus, and Intel Threading Building Blocks [65, 9].

IDB comes with both a command line interface and a GUI based on the Eclipse platform as
shown in Figure 3.3.

3.6.3 Intel Inspector XE 2011

Intel Inspector XE 2011 (formerly Intel Thread Checker)24 is a memory and thread error check-
ing tool for Windows and Linux found in the Intel Parallel Studio XE 2011 tool suite. It features

23http://www.gnu.org/software/ddd/
24http://software.intel.com/en-us/articles/intel-inspector-xe/
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powerful error checking capabilities for serial and parallel programs written in C, C++, and For-
tran. It is applicable to parallel programs that make use of Pthreads, Thread Building Blocks,
OpenMP, and Cilk Plus. Its memory checking feature is able to detect memory leaks, memory
corruption, memory allocation and de-allocation issues, and inconsistent memory API usage.
The thread checking feature is able to identify data race conditions, deadlocks, memory ac-
cesses between threads, and incorrect threading API usage. It is also capable of locating the
causes of these problems, right down to the actual lines of source code responsible for the er-
rors. Intel Inspector XE is even able to detect non-deterministic errors regardless of whether or
not the specific error condition arose during execution [17, 75].

Intel Inspector XE makes use of dynamic binary instrumention, which means that it is not
necessary to adjust the application’s build configuration before using the tool. This, coupled
with the intuitive standalone GUI, makes it very easy to use throughout development [75]. An
example screenshot is provided in Figure 3.4.

3.6.4 GNU Profiler (gprof)

The GNU Profiler (gprof)25 is an open source, command line, statistical profiler that is dis-
tributed with many Linux systems. Gprof requires that the target program be compiled with
profiling support enabled, using, for example, the -pg option of GCC. The program must then
be executed with the usual arguments, run to completion, and exit successfully. This produces
a file in the current working directory, named ‘gmon.out’, which contains the profiling data.
Profiling adds some overhead, in the region of five to thirty percent, to the program’s execution
time [17, 37, 47].

The profiling data is then analysed using gprof, which produces a flat profile, dynamic call
graph, or annotated source code. The flat profile shows how many times each function was
called and how much time was spent executing the function. The call graph summarises which
functions called other functions and gives an estimate of the amount of time spent in a function,
including calls to other functions. Finally, gprof is also able to produce annotated source code
listings with execution count details. However, gprof only produces textual output using a
command line interface, making it inconvenient to use for large projects. It also does not handle
multithreaded programs, which makes it unsuitable for parallel programs using thread-based
libraries [37, 47, 49].

25http://sourceware.org/binutils/docs/gprof/index.html
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Figure 3.3: The Eclipse-based IDB graphical user interface.

Figure 3.4: Intel Inspector XE 2011.
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3.6.5 OProfile

OProfile26 is a low overhead, system-wide profiler for Linux released under the GNU General
Public License (GPL). It makes use of a kernel driver and a daemon to collect sample data
from a variety of hardware performance counters on the CPU. It also supplies several tools
for analysing and reporting on the resulting sampling data [27, 97]. OProfile is supported by
most modern Linux kernels (through a loadable kernel module) running on a variety of CPUs,
including those produced by Intel and AMD. OProfile does not require any special compiler
support besides the inclusion of debug symbols if source code annotation is desired [97].

OProfile makes use of sampling to gather its profiling data. The profiling data can then be
analysed and summarised using the provided opreport and opannotate tools, which produce
flat profiles, call-graphs, and annotated source code listings. This information can then be used
to identify performance hotspots, poor cache utilisation, and other performance issues. OProfile
does not include a GUI for controlling and analysing profiling runs, however, Eclipse provides
integrated profiling support using OProfile [97, 119].

3.6.6 Valgrind

Valgrind27 is an open source software development tool suite for detecting and locating memory
related errors, as well as profiling and thread-related error detection. It is supported by most
major Linux distributions, running on x86, x86-64, and PowerPC based platforms. Valgrind
began as a memory error-checking tool for Linux, but it has since advanced to become an
extensible framework for dynamic program analysis tools. The Valgrind tool suite features
command line tools for the automatic detection of memory and threading related bugs, many of
which are difficult to discover manually, as well as performance profiling [49, 111, 113, 112,
143, 142]. The tools report their findings using a command line interface and only the Callgrind
and Cachegrind tools have a GUI interface for displaying results [49].

Valgrind uses heavyweight dynamic binary instrumentation, which means that the program’s
build configuration does not need to be modified prior to analysis. It also means that Valgrind
can be used for programs written in any language, however, it is primarily aimed at C and C++
due to the nature of memory management in these languages. Essentially, Valgrind translates the
machine code of the target program into an intermediate representation (IR) that is then instru-
mented by the Valgrind tool plug-in. This instrumented IR is then recompiled in a just-in-time

26http://oprofile.sourceforge.net
27http://valgrind.org/
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fashion and collects the relevant profiling and debugging data during execution. Unfortunately,
this comes with a significant overhead and execution times are substantially higher than those
of the original program [111, 113, 112, 143, 142].

Memcheck

Memcheck (--tool=memcheck) is a memory error detection tool for detecting out-of-bounds
memory accesses, undefined values, incorrect allocation and de-allocation of memory, and
memory leaks. Memcheck inserts extensive instrumentation into the target program and re-
places the standard memory allocators with its own heavily instrumented version, thereby keep-
ing track of all memory reads and writes, allocations, and de-allocations. This allows it to detect
discrepancies in the target program’s memory management code [49, 143].

Callgrind and Cachegrind

Cachegrind (--tool=cachegrind) is a cache usage and branch prediction profiler that simu-
lates the L1, I1, and last-level (LL) caches. Since the caches are simulated, Cachegrind is able
to produce very detailed profile data for cache reads, writes, and misses for the varying levels
of cache memory, as well as branch mispredictions. Summary statistics and annotated source
code listings can be generated with the cg_annotate command [27, 49, 113, 142].

Callgrind (--tool=callgrind) is a call-graph profiling tool that collects instruction execution
counts, function call counts, and function call relationships. It also features cache and branch
prediction simulation similar to that of Cachegrind. The resulting profile data is summarised
and displayed on the command line. The callgrind_annotate command takes the profile
data, prints a sorted list of profiled functions, and annotates the supplied source code for the
target program [113, 142].

Unlike many of the other Valgrind tools, the Callgrind and Cachegrind tools produce profile
data that can be analysed using the GUI-based KCachegrind program. KCachegrind provides
graphical visualisations of the profile data, which are much easier to interpret than the text-based
output of the command line tools [49, 113].

DRD and Helgrind

Helgrind (--tool=helgrind) and DRD (--tool=drd) are Valgrind tools for detecting errors
in multithreaded programs that are written in C and C++ using Pthreads, or Pthreads-based
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thread abstractions. DRD features improved support for the Boost Threads library and pro-
grams parallelised using OpenMP. These tools are capable of detecting data race conditions,
potential deadlock situations, and misuses of the Pthreads API. The detection algorithms use a
combination of static and dynamic analysis to improve speed and accuracy, but they are prone
to false positives, which can be suppressed using special configuration files [111, 143].

3.6.7 AMD CodeAnalyst for Linux

AMD CodeAnalyst28 is an open source, system-wide, GUI-based statistical profiler for x86 and
x86-64 based systems running Windows and Linux. CodeAnalyst for Linux is based on OPro-
file and shares the basic features of OProfile. CodeAnalyst features time-based profiling (TBP),
event-based profiling (EBP), and instruction-based profiling (IBS). IBS and some of the EBS
features rely on specific hardware support provided by AMD CPUs, and are therefore not avail-
able on non-AMD platforms. TBP identifies the performance hotspots in the program, which
are the parts of the program with the highest execution time. EBP is used to diagnose specific
performance issues within a hotspot, such as cache misses, using hardware event counters. IBS
is a more advanced and more accurate form of sampling, supported by AMD Family 10h pro-
cessors and up, that precisely associates performance events with the responsible instructions,
thereby aiding the diagnosis of performance issues [3, 28, 29].

The CodeAnalyst GUI provides a number of features to assist in profiling, such as offering a
number of predefined profiling configurations using either TBP, EBP, or IBS. It also provides
data aggregation and performance summaries using tables and charts, along with the ability to
drill down from a system-wide overview to the source code or instruction level. Multithreaded
program analysis is supported with the ability to generate thread profiles, thereby assisting in
the diagnosis of processor core affinity, memory locality, and memory access issues. Profiling
data can be imported from the OProfile command line tools, allowing for scripted profiling. It
also allows the user to compare different profiling runs in a session to assess the impact of any
optimisation efforts [3, 28, 29].

An example screenshot of the CodeAnalyst for Linux GUI is provided in Figure 3.5.

28http://developer.amd.com/cpu/CodeAnalyst/Pages/default.aspx
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3.6.8 Intel VTune Amplifier XE 2011 for Linux

Intel VTune Amplifier XE 2011 (formerly Intel VTune Performance Analyzer with Intel Thread
Profiler)29 is a kernel-level (loadable kernel module), system-wide, statistical profiler for 32-
bit and 64-bit Windows and Linux systems. It incorporates the functionality of Intel VTune
Performance Analyzer, Intel Parallel Amplifier, and Intel Thread Profiler, as well as a number of
additional improvements, such as better support for Intel Core i7-based CPUs. VTune supports
both Intel and non-Intel CPUs, however, certain hardware-specific features are only supported
on genuine Intel processors. VTune Amplifier XE for Linux features both a command line
interface and a very powerful and user-friendly GUI interface based on the Eclipse platform [17,
66, 67, 78].

VTune requires little or no changes to the target program’s build configuration and supports
C/C++, Fortran, and assembly based programs, built with the normal compiler and optimisation
flags. It can even be attached to running programs. The profiler uses accurate, low-overhead,
event-based sampling techniques to gather the relevant profile data, with optional overhead
compensation [66, 78, 101].

VTune provides a number of easy-to-use performance analysis wizards and pre-defined EBS
profiling experiments, such as the call-graph wizard and the basic sampling wizard, which
identifies hotspots in terms of the number of unhalted clock cycles. Other pre-defined pro-
files include cache miss, TLB miss, and branch misprediction analysis. VTune also features
thread profiling capabilities, such as thread timeline visualisation and lock analysis. The re-
sulting profile information is summarised and presented in a variety of formats using tables,
graphs, timelines, and annotated source code listings. These results can be filtered to highlight
particular areas of interest and the interface allows the user to drill down from a high-level,
system-wide overview to the source code level. VTune even highlights optimisation and paral-
lelisation opportunities and provides appropriate suggestions [17, 66, 78, 101].

An example screenshot of the VTune for Linux GUI is provided in Figure 3.6.

29http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/
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Figure 3.5: AMD CodeAnalyst for Linux.

Figure 3.6: Intel VTune Amplifier XE 2011 for Linux.



Chapter 4

Parallel Programming Techniques

4.1 Introduction

The process of optimising a program or application to improve its performance requires dili-
gence and a methodical approach. Simply attempting to optimise every minor piece of code
only leads to wasted time and energy for insignificant performance gains, or even performance
degradation [25]. In this chapter, we present a common approach to performance analysis and
tuning, which describes a straightforward, iterative approach to both sequential and parallel
optimisation. We then describe a number of high-level sequential optimisations that assist in
the tuning of a sequential program before attempting parallelisation. Parallel programming is
not a new phenomenon. As such, there is a wealth of information and experience available
relating to the creation of high-performance parallel programs. A number of parallel program-
ming patterns and models have emerged that provide a structured approach to creating parallel
programs [103]. We describe some of these patterns and, finally, we briefly discuss several
optimisations for improving parallel performance.

4.2 Performance Analysis and Tuning

For effective results, performance analysis and tuning requires a methodical, iterative approach
that relies on empirical performance analysis to guide optimisation efforts and implementa-
tion decisions. Premature optimisation, or optimisations based on the programmer’s guesses
as to the source of performance bottlenecks, often result in disappointment and can affect the
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correctness and maintainability of the program [13, 17]. Optimisation and tuning is possible
at a number of stages in the software development process: at the design stage where overall
program structure is defined, at the algorithm stage where the appropriate algorithms and data
structures are developed or selected, and at the source code level where code tranformations are
performed provided a suitable sequential program is available. The most important considera-
tion or goal when performing optimisations at any level is that the correctness of the program
must be maintained [13].

4.3 The Tuning Process

The performance tuning process is divided into a number of phases that are followed in or-
der. The process is repeated until the performance of the program reaches a satisfactory level
or the point of diminishing returns. The tuning process is described below and illustrated in
Figure 4.1 [17, 25, 67, 73].

1. Measure Performance Data: The first step to effective optimisation is performance mea-
surement and profiling using realistic workloads. The choice of performance metrics
should be appropriate to the nature of the program and provide a reliable and consistent
means for comparing the performance between different versions of the program. It is
important to capture baseline performance and profiling information so that quantitative
performance comparisons can be made. Overall performance indicators include metrics
such as total elapsed time, latency, and throughput. Performance events and code ex-
ecution times gathered through profiling provide invaluable information for identifying
performance issues and determining whether an optimisation has been effective [13, 73].
There is a wide variety of profiling tools available for various platforms. Some of the
more popular tools are listed and described in Section 3.6.

2. Analyse Data and Identify Performance Issues and Hotspots: If the measured perfor-
mance is unsatisfactory, the profiling information must be analysed to identify and locate
hotspots and performance issues. Hotspots are usually the best place to begin optimising
as they often provide the greatest overall performance improvement when optimised ap-
propriately. This follows the so-called “80-20” optimisation rule (also referred to as the
“90-10” rule), which states that 80 percent of a program’s execution time occurs in 20
percent of the code. The optimisation of hotspots may also resolve or expose other per-
formance issues. Thereafter, other performance issues, such as excessive cache misses
or branch mispredictions, can be analysed. It is advisable to focus on specific issues for
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optimisation instead of trying to resolve all the issues at once [13, 73]. How one analy-
ses the profiling data depends on the format of the profiler output and the functionality
of the profile analysis tools supplied with the profiler. GUI-based profilers, such as Intel
VTune and AMD CodeAnalyst, assist by summarising the performance data, highlighting
performance issues, and locating the source of the issues down to the source code level.
In some cases, they even provide optimisation advice [73, 78]. More in-depth analysis
techniques can be employed to highlight specific issues, such as loop-centric profiling to
identify parallelism and data profiling to identify cache bottlenecks [110, 120].

3. Devise Optimisations for a Specific Issue: Once a hotspot or performance issue has been
identified and selected for optimisation, devise a number of possible optimisations to re-
solve the issue. These optimisations can include using more aggressive compiler optimi-
sation options and compiler directives, making use of high-performance libraries, changes
to the algorithm or data structures to improve data access patterns and synchronisation,
manual source-level optimisations such as loop transformations and manual vectorisa-
tion, and parallelisation using implicit or explicit parallelisation. Compiler options and
directives can provide cheap, unobtrusive performance improvements. Intrusive source-
level optimisations require more effort, increase the likelihood of introducing errors, and
reduce portability. If parallelisation is the goal, hotspots provide a good starting point for
identifying potential parallelism [17, 73].

4. Implement the Optimisation: This involves making the changes to the program to im-
plement the desired optimisations, which might only require recompiling the program
with new compiler options, or it could require making changes to the code. Attempting
to implement multiple optimisations simultaneously is not advised since the effects of the
different optimisations can be obscured, limiting one’s ability to gauge the effectiveness
of specific optimisations. Therefore, small, incremental changes are suggested. OpenMP
supports incremental parallelisation due to the simple, directive-based approach, making
it a good choice for introducing parallelism into an existing application. It is also advis-
able to make use of a version control system so that changes can be reversed easily if they
are found to be ineffective [17, 21, 73].

5. Test and Debug the Program: Testing is a vital step in the process. Each optimisation
must be tested, both for effectiveness and correctness. Optimisations must not affect
the accuracy of results or correct functioning of the program. If errors are discovered,
they must be debugged and corrected before moving on to further optimisations. Error
checking tools such as Valgrind and Intel Inspector can assist in detecting memory and
threading errors. The effectiveness of the optimisation must also be evaluated and changes
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that do not produce acceptable improvements should be reverted, particularly if they affect
the maintainability of the program [17, 73]. The tuning process is then repeated until an
acceptable improvement in the overall performance level is achieved.

4.4 Sequential Optimisations

While it may seem odd to discuss sequential optimisation techniques in a chapter dedicated to
parallel programming techniques, many of these optimisations are beneficial to shared-memory
multiprocessor systems. For instance, performance issues resulting from inefficient cache usage
in a sequential program are likely to be amplified in the parallel implementation. Therefore, it is
necessary to start with an optimised version of the serial program when attempting to implement
parallelism [17, 21]. The optimisations discussed below are primarily high-level optimisations
targeted at the structure of the code and data, as opposed to low-level C and C++ optimisations,
which are beyond the scope of this thesis.
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4.4.1 Loop Optimisations

As described in Chapter 2, modern shared-memory multiprocessor systems have a hierarchi-
cal memory architecture. The smaller, faster levels of cache memory are located closer to the
processor cores on the CPU die, while the much larger and slower main memory is accessi-
ble via the system bus. This has obvious performance implications when attempting to write
optimal code as loading data from cache memory is magnitudes faster than acquiring the data
from main memory. Since data is loaded into the cache in fixed length cache lines, code should
be structured to exploit this by accessing data stored in contiguous sections of memory. Ap-
propriate structuring of data access can help ensure that data is available in the cache, thereby
reducing expensive cache misses [21, 27, 54, 89]. Many of the loop optimisations described
below are performed by good optimising compilers, such as the Intel C++ compiler [73, 80].
However, various structural issues, such as unnecessary loop-carried dependencies and loop in-
variant statements, may prevent the compiler from performing these optimisations. Therefore,
it is sometimes necessary to optimise and restructure the code manually to assist the compiler
in performing further optimisations [21].

Loop Interchange

Two-dimensional arrays provide a very clear example of caching effects. In C and C++, two-
dimensional arrays are stored in memory such that rows are arranged contiguously, where el-
ements in the same row are located adjacent to each other. This, coupled with the cache line
mechanism, makes it possible to optimise data access by ensuring that elements of the array are
accessed row by row (row-wise access), thereby improving spatial locality. Listing 4.1 demon-
strates optimal cache usage through row-wise access as the use of each cache line is maximised
before it is evicted to make way for new blocks [21, 27, 54, 89].

1 double matrix[MSIZE][MSIZE];
2 double sum_sq = 0.0;
3 init_matrix();
4

5 for (int row = 0; row < MSIZE; row++)
6 for (int col = 0; col < MSIZE; col++)
7 sum_sq += matrix[row][col]
8 * matrix[row][col];

Listing 4.1: Row-wise array access.

1 double matrix[MSIZE][MSIZE];
2 double sum_sq = 0.0;
3 init_matrix();
4

5 for (int col = 0; col < MSIZE; col++)
6 for (int row = 0; row < MSIZE; row++)
7 sum_sq += matrix[row][col]
8 * matrix[row][col];

Listing 4.2: Column-wise array access.
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Figure 4.2: Cache usage for row-wise (a) and column-wise (b) matrix access.

On the contrary, the code in Listing 4.2 shows inefficient column-wise access. For sufficiently
large matrices, this results in cache lines being discarded after reading a single element from
the line, only to fetch the same block at a later stage to read another element from the same row.
These long strides in memory make it hard for the cache controller to prefetch the next required
elements, resulting in excessive cache misses and cache line evictions [27]. This concept is
represented diagrammatically in Figure 4.2 and the performance of the two implementations is
summarised in Table 4.1 for MSIZE equal to 4096.

The loop interchange optimisation involves restructuring loops with column-wise access, as
shown in Listing 4.2, to make use of the more efficient row-wise access pattern demonstrated
in Listing 4.1. However, this optimisation cannot be applied blindly to all loops exhibiting
column-wise access. The programmer must be careful to ensure that the correctness of the
program is not affected [21, 89]. This involves analysing the array access patterns and applying
the following rule:

Table 4.1: Loop interchange performance summary.

Row-wise Column-wise
Wall clock time 0.205s 0.418s
Memory references 302,100,031 302,100,031
L1 data misses 4,195,850 18,875,914
L1d miss rate 1.39% 6.25%
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If any memory location is referenced more than once in the loop nest and if at least
one of those references modifies its value, then their relative ordering must not be
changed by the transformation [21].

This loop optimisation can vastly improve the performance of inefficient loops, particularly for
larger array dimensions, where cache evictions become more frequent.

Blocking or Loop Tiling

Blocking or loop tiling is an advanced loop transformation for dealing with large data sets and
bad memory access patterns. Blocking breaks the loop into smaller subsets, known as blocks or
tiles, which are able to fit into the cache and require fewer page tables, improving both cache
and TLB miss rates [21, 27, 34, 54, 89]. This technique can be used for loops where loop
interchange is ineffective due to a combination of both strided and sequential loop accesses as
demonstrated in Listing 4.3 [21, 89].

1 double res[MSIZE][MSIZE];
2 double orig[MSIZE][MSIZE];
3 init_matrix();
4

5 for (int col = 0; col < MSIZE; col++)
6 for (int row = 0; row < MSIZE; row++)
7 res[i][j] = orig[j][i]

Listing 4.3: Combined column-wise and row-wise array accesses.

Blocking is performed by replacing a single loop with two loops, the outermost of which is
incremented in appropriately sized chunks, as shown in Listing 4.4. The value of CHUNK is
dependent on cache size and determines the size of each tile. The result is that the two innermost
loops are constrained to a smaller section of the overall iteration space, thereby improving both
spatial and temporal locality [21, 27, 54, 89].

1 double res[MSIZE][MSIZE];
2 double orig[MSIZE][MSIZE];
3 init_matrix();
4

5 for (int tile = 0; tile < MSIZE; tile += CHUNK)
6 for (int row = 0; row < MSIZE; row++)
7 for (int col = 0; col < min(MSIZE - tile , CHUNK); col++)
8 res[i][tile + col] = orig[tile + col][i]

Listing 4.4: Loop tiling for matrix operations [21].
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Loop Unrolling

Loop unrolling is used for loops with a fixed number of iterations, where the loop body is
small and the loop execution overheads (loop control variable incrementation, completion test,
and branch to loop body) contribute a significant portion to the loop’s execution time. Loop
unrolling involves unpacking several loop iterations and duplicating the loop body such that a
single pass of the loop effectively executes multiple loop iterations. This increases the workload
of the loop body, thereby reducing the effect of the loop overheads, as well as improving cache
usage, branch prediction, and instruction-level parallelism. The number of iterations that are
unrolled is known as the unroll factor. Complete loop unrolling removes the loop overheads
entirely by removing the loop and duplicating the loop body by the total number of iterations.
For unroll factors that do not fully divide into the iteration count, an additional cleanup loop is
required to handle the remaining loop iterations. Manually unrolling loops is seldom required
as modern compilers are particularly good at performing this loop transformation [4, 21, 80,
89, 115]. Listings 4.5 and 4.6 show, respectively, the before and after code for loop unrolling.
However, loop unrolling must be balanced with code size reduction, which benefits instruction
cache usage [27].

1 for (int i = 0; i < ASIZE; i++) {
2 arr_a[i] = arr_a[i] * 2;
3 arr_b[i] = arr_a[i] + 2;
4 }
5

6

Listing 4.5: Loop before unrolling.

1 for (int i = 0; i < ASIZE; i+=2) {
2 arr_a[i] = arr_a[i] * 2;
3 arr_b[i] = arr_a[i] + 2;
4 arr_a[i+1] = arr_a[i+1] * 2;
5 arr_b[i+1] = arr_a[i+1] + 2;
6 }

Listing 4.6: Unroll factor of 2.

Unroll and Jam

Unroll and jam is an advanced form of loop unrolling for nested loops where the inner loop does
not benefit from loop unrolling, but the outermost loop does. In essence, the outermost loop is
unrolled by an appropriate unroll factor, and then the duplicated inner loops are combined or
jammed together to form one inner loop with a loop body consisting of the duplicated loop
bodies [21, 89].
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Loop Fusion

Loop fusion is a transformation that involves the merging of multiple loops that share the same
iteration space and, ideally, data. By combining the loop bodies of multiple loops, cache and
register re-use is increased, loop overheads are reduced, and instruction-level parallelism is
improved due to the increased workload of the loop body. However, care must be taken to
ensure that a valid ordering of data is preserved. An example of the before and after code for
loop fusion can be seen in Listings 4.7 and 4.8, respectively [21, 69, 89, 115].

1 for (int i = 0; i < ASIZE; i++) {
2 arr_a[i] = i * 2;
3 arr_b[i] = arr_a[i] + 2;
4 }
5 for (int i = 0; i < ASIZE; i++)
6 arr_z[i] = arr_a[i] * arr_b[i];

Listing 4.7: Loop before loop fusion.

1 for (int i = 0; i < ASIZE; i++) {
2 arr_a[i] = i * 2;
3 arr_b[i] = arr_a[i] + 2;
4 arr_z[i] = arr_a[i] * arr_b[i];
5 }
6

Listing 4.8: Fused loop.

Loop Fission

Loop fission is a technique used to split a loop into a number of separate loops, thereby im-
proving cache usage or enabling further optimisations that are hindered by the current loop
structure. It can be used to remove loop-carried dependencies, making it easier to parallelise
or vectorise the loops. It is also useful for large loop nests where the loop data does not fit
into the cache. Listings 4.9 and 4.10 demonstrate loop fission and the subsequent use of loop
interchange [21, 69, 89, 115].

1 for (int c = 0; c < MSIZE; c++) {
2 oscil[c] = (c % 9) - 4;
3 for (int r = 0; r < MSIZE; r++)
4 res[r][c] = src[r][c] * src[r][c];
5 }

Listing 4.9: Suboptimal loop structure
that cannot be interchanged.

1 for (int c = 0; c < MSIZE; c++)
2 oscil[c] = (c % 9) - 4;
3 for (int r = 0; r < MSIZE; r++)
4 for (int c = 0; c < MSIZE; c++)
5 res[r][c] = src[r][c] * src[r][c];

Listing 4.10: Loop fission and subse-
quent loop interchange.
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4.4.2 Aligning, Padding, and Sorting Data Structures

Cache usage can be improved through optimisation techniques such as ensuring natural align-
ment of data structures by padding and sorting data structure members. Data structure align-

ment refers to the way in which data structures are arranged in memory. A data structure is said
to be aligned if it is placed at a memory address that is a multiple of the largest power of two data
member size when allocated space in memory. Misaligned data access can have a significant
effect on performance, particularly if it results in data from the same structure being split over
cache line boundaries as two memory accesses are required instead of just one [4, 27, 34, 80].

Compilers typically align data members according to the word length, or their natural alignment,
which is based on the size of the data type. This is an important consideration when defining the
layout of a struct or class, as the ordering of data members may result in unused space where
a larger member is preceded by a smaller member that does not extend to the natural alignment
boundary of the larger data member. This is resolved by sorting the data members such that
the largest members are allocated first. It is possible to go a step further and pad the data
structure with unused data members such that the size of the data structure is a multiple of the
largest data member’s type size. When working with a collection of a particular data structure,
it may be necessary to pad the structure so that it fits the cache line better and does not result
in sections of the same structure being split over cache line boundaries. If only a few of the
data members of a particular structure are accessed frequently, cache usage can be optimised by
splitting the structure so that the frequently accessed members are stored sequentially, while the
remaining members are stored in a separate data structure [4, 27, 34, 80]. Data structure sorting
and padding is demonstrated in Listings 4.11 and 4.12.

1 struct unsorted {
2 int age; // 4 bytes
3 char gender; // 1 byte
4 // 3 unused bytes
5 double balance; // 8 bytes
6 char fname[11]; // 10 bytes
7 // 2 unused bytes
8 }; // 28 bytes total (5 unused bytes)

Listing 4.11: Unsorted struct resulting
in unused space.

1 struct sorted {
2 double balance; // 8 bytes
3 int age; // 4 bytes
4 char gender; // 1 byte
5 char fname[10]; // 10 bytes
6 char pad; // pad to 8 byte boundary
7 }; // 24 bytes total (1 unused byte)
8

Listing 4.12: Sorted struct allowing for
better data alignment.

The language specifications for C and C++ do not permit compilers to sort data structures, so
it is necessary to re-organise data structures by hand. However, many compilers allow the pro-
grammer to specify the alignment of a variable or data structure explicitly. The GNU C/C++
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Compiler supports this through the __attribute__ ((aligned(n))) directive, and other
compilers such as the Microsoft and Intel C/C++ compilers provide the __declspec(align(n))

directive for this purpose [4, 34, 80].

4.4.3 Avoid Branching

Modern CPUs are very good at exploiting instruction-level parallelism using deep instruction
pipelines, out-of-order execution, and speculative execution. However, speculative execution
relies on accurate branch prediction for the outcome of branch instructions, such as those gen-
erated by if and switch statements. The processor’s branch prediction mechanisms build up a
history of branch outcomes and use this history to improve the chance of correctly predicting
the outcome of a branch. A branch misprediction occurs when an incorrect branch outcome is
taken, resulting in stalls in the instruction pipeline as speculative results are discarded and the
correct branch is executed. This can have a significant effect on performance, especially if it
occurs in a critical loop [4, 21, 34, 80].

Branch mispredictions are typically the result of complex branch conditions, where the result is
fairly random, or many branches located very close together, particularly if the branches are in
the body of a loop. These factors hinder the processor’s ability to predict the correct outcome. If
profiling reveals that there is a high branch misprediction rate (10 percent or less is considered
normal) for a section of code, then it may be necessary to restructure the code to simplify the
branches, space them out by a few instructions, or remove them completely. It is sometimes
possible to remove a branch and replace it with bit-masking, which can provide additional
performance improvements if combined with loop unrolling and SSE vectorisation [4, 21, 34,
80].

4.4.4 Vectorisation

Vectorisation using SIMD instructions, such as those provided by the SSE instruction sets, can
provide significant speedup, particularly for computationally intensive loops and mathematical
calculations. SSE is particularly well-suited to multimedia and streaming applications. Vectori-
sation of suitable code can be performed either explicitly or automatically by a compiler that
supports automatic vectorisation, such as GCC and the Intel C/C++ compiler. SSE provides a
variety of 64-bit and 128-bit packed data types (vectors) that store multiple float, double, and
integer values in the XMM registers on the processor. The SSE instructions can then perform
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operations on all the vector elements simultaneously, thereby introducing additional instruction-
level parallelism. However, the use of SSE instructions requires that the vector data structures
be aligned by 16 bytes [4, 34, 80, 89].

Automatic vectorisation simply requires specifying the relevant compiler options when com-
piling the program (see A.1 and A.2). The compiler identifies sections of code that may ben-
efit from vectorisation and converts the code to make use of the appropriate SSE instructions.
The Intel C/C++ Compiler is particularly good at performing automatic vectorisation, how-
ever, certain conditions can prevent the compiler from vectorising a section of code that would
benefit from such an optimisation. For the compiler to perform vectorisation, the arrays and
data structures involved must be aligned to 16 bytes and it must be clear to the compiler that
any pointers or references do not alias. Data alignment is covered in Section 4.4.2. It is also
possible to tell the compiler that specific data structures are aligned by adding a compiler direc-
tive, #pragma vector aligned, above the relevant structures. The #pragma ivdep directive
and the restrict variable qualifier inform the compiler that pointers do not alias. Vectorisa-
tion of loops works best when the loop iteration count is a multiple of the number of vector
elements [4, 34, 80]. It is also possible to access compiler diagnostics for the vectorisation pro-
cess. Depending on the compiler, the diagnostics specify which loops were vectorised and the
reasons for not vectorising a loop (e.g., data dependencies) [34, 73, 89].

Explicit vectorisation is required for loops that the compiler is unable to vectorise. This involves
manually packing, shuffling, and unpacking the vectors and performing the appropriate SSE
operations using the SSE intrinsics functions provided by the compiler libraries1, as well as
unrolling the loops to the required level. This is also necessary for compilers that support SSE,
but not automatic vectorisation. Explicit vectorisation requires extensive code modifications
and adds a significant number of instructions to the program, which reduces the readability of
the code and increases the likelihood of introducing errors. Some compilers provide libraries
with classes that abstract away the low-level intrinsic functions. These classes make it easier to
implement SSE in the program, but it is usually advisable to seek alternatives such as existing
SSE-optimised libraries that implement the desired functionality [34, 80].

4.5 Parallel Programming Patterns

Parallel programming is often characterised as a difficult process, requiring extensive knowl-
edge and experience to achieve success. Therefore, a methodical and informed approach to

1These functions are typically prefixed with __mm_ and are named according to the type of operation and the
data types of the operands. Various packed data types are also provided for use with the intrinsic functions [34, 80].
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finding and expressing concurrency is necessary to enable and foster parallel programming abil-
ities in a wider range of programmers. Patterns and pattern languages have been used to great
effect in the object-oriented programming realm to assist software developers in the creation
of complex, modular software systems. Patterns describe good solutions to common software
development problems and encapsulate the thought processes and experience of domain ex-
perts [17, 102, 103, 125]. Mattson, Sanders, and Massingill [102] present a pattern language
for parallel programming that, when combined with the programmer’s understanding of the
problem domain, allows for the creation of a detailed parallel design and implementation. The
pattern language follows four key stages or design spaces, progressing from the design phase to
the implementation of parallelism in the program. Others have taken this concept a step further
and produced parallel algorithmic skeletons that make use of language features such as tem-
plates [30]. The design spaces of the parallel programming pattern language are summarised
below, however, for a more in-depth description, it is best to consult the original text [102].

4.5.1 Identifying Concurrency

In the Finding Concurrency design space, the primary problem is that of identifying and ex-
posing exploitable concurrency, as well as identifying and managing dependencies associated
with concurrency. This involves decomposing the problem into a collection of computationally
intensive tasks, working on mostly independent units of data. Accordingly, the key aspects of
the problem and its data need to be fully understood by the developer and there needs to be a
sufficient workload to justify parallelisation. If an existing program is being parallelised, the
hotspots identified through profiling are typically a good place to begin looking for exploitable
concurrency [102, 103].

Decomposition Patterns

The Task Decomposition and Data Decomposition patterns are concerned with dividing up the
problem so that it can execute concurrently.

• The Task Decomposition pattern addresses the problem of how one decomposes the
program into sequences of instructions or tasks that can be executed concurrently with
minimal interference from instructions in other tasks. This is achieved by analysing the
computationally intensive segments of the problem, the primary data structures, and the
interactions between the two. The problem is then broken up by defining a number of
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tasks and the manner in which these tasks access the data. It is important to define these
tasks to be largely independent to reduce the overheads of managing data and ordering
dependencies, while, at the same time, making sure that the tasks allow for good load
balancing over the available processors. It is best to start with as many tasks as can be
identified and merge tasks where appropriate. Examples of possible tasks include the
iterations of a loop, independent function calls (often referred to as functional decompo-

sition), and groups of sequential operations [17, 102, 124].

• The Data Decomposition pattern addresses the problem of how the data can be parti-
tioned into units or segments that can be operated on independently. The key concern in
this approach is the manner in which the data is produced and used to solve the problem.
This approach is appropriate as a starting point if computation centers around large data
structures or if similar, independent operations are performed on different parts of the
data. For a task-based design, the data decomposition will follow the data requirements
of the tasks. For a primarily data-based approach, the design follows the nature of the
data structures and how the data is to be distributed and processed as concurrent tasks.
Common data structures include large arrays of varying dimensions and recursive data
structures, such as trees. Data decomposition is a common approach for many scientific
applications [17, 35, 102, 124].

However, task and data decomposition are just different takes on the same basic problem decom-
position and one decomposition can often be expressed in terms of the other. The importance of
highlighting the distinction between the two and emphasising one approach over the other lies
in its ability to make the design easier to comprehend. The flexibility, efficiency, and simplicity
of the design must also be considered when addressing the problem decomposition as these
relate to the scalability and maintainability of the program [35, 102].

Dependency Analysis Patterns

The Group Tasks, Order Tasks, and Data Sharing patterns are usually applied in order and
provide approaches for grouping tasks and dependency analysis.

• The Group Tasks pattern addresses the problem of how the tasks can be grouped to
simplify the management of dependencies. This step takes the results of the task and data
decompositions and analyses the dependencies among tasks. While tasks are defined to
be as independent as possible, there is still a structure to the set of tasks that imposes
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certain constraints on concurrent execution, such as temporal dependencies and other
ordering constraints. By grouping tasks with similar constraints, it becomes easier to
perform dependency analysis and manage the constraints of whole groups instead of each
separate task. This is typically achieved by looking back at the decomposition process
and identifying tasks that can be grouped, followed by merging groups that share the
same constraint, and looking at the constraints between groups that could imply further
grouping. The larger the task groups, the greater the flexibility and scaling [102].

• The Order Tasks pattern solves the next problem of how the groups of tasks, as defined
above, are ordered to satisfy constraints between the tasks. This involves identifying the
temporal dependencies, requirements for simultaneous execution, and lack of constraints
between the tasks. These can usually be identified by analysing the data flows between
tasks and assessing external ordering constraints such as sequential I/O. The ordering of
tasks should be sufficiently restrictive as to ensure correctness, while avoiding unneces-
sary restrictions that negatively influence efficiency and flexibility [17, 60, 102].

• The Data Sharing pattern addresses the problem of how data is shared among tasks.
Although the data decomposition process identified chunks of data that are local to tasks,
there are usually situations where data must be shared, such as updates to global data
structures or when a task requires access to another task’s local data. The goal, therefore,
is to identify such data sharing situations and define mechanisms for efficiently managing
the shared accesses to avoid race conditions, using synchronisation constructs such as
locks and semaphores. Shared access can be read-only (no synchronisation required),
effectively-local due to partitioned access (no synchronisation required), or read-write
(mutual exclusion required) [17, 102].

Design Evaluation Pattern

The Design Evaluation pattern involves analysing the earlier design decisions and identifying
any weaknesses in the design so that they can be addressed before moving onto the algorithm
design. This step is important because it is often difficult to correct early design mistakes later
on in the development process. If multiple decompositions are possible, it may be necessary to
compare them to the current design and make adjustments where necessary. The design should
be evaluated on quality and suitability for the platform. Quality is defined by the design’s effi-
ciency, flexibility, and simplicity. Flexibility refers to how easy it is to adjust aspects of the de-
sign, such as the number of tasks, task scheduling, and data distribution granularity. Efficiency
is concerned with the effective utilisation of available resources, which involves minimising
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communication and synchronisation overheads, as well as achieving good load balancing. Sim-
plicity refers to how easy it is to maintain and debug the resulting design. Platform suitability
looks at how well the design maps to the number of available processors or execution units,
how data is shared between processors (shared memory or distributed memory), and the types
and speeds of the communication and synchronisation characteristics of the platform [35, 102].

4.5.2 Algorithm Structure

The Algorithm Structure design space takes the design from the Finding Concurrency space,
which includes the tasks, data, groups, and dependencies, and refines it to create a framework
for developing the parallel algorithm. The algorithm design process follows a simple decision
tree, which is based on the primary features of the problem, resulting in one of six algorithm
design patterns. In addition, the efficiency, simplicity, portability, and scalability of the design
must be considered and an appropriate balance must be struck between these conflicting design
considerations. Other considerations that must be taken into account include the target hardware
and software platforms, as well as the programming environment [102, 103].

Concurrency usually falls into one of three primary organisations: organisation by tasks, organ-
isation by data, and organisation by data flow. However, some algorithm designs may combine
aspects of more than one organisation, resulting in a design that combines the different algo-
rithm structures in some or other manner. The decision tree starts with the selection of an
appropriate organisation branch. Organise by tasks is appropriate when the tasks themselves
are the dominant feature of the problem decomposition. The Task Parallelism pattern is used
if the tasks can be gathered into a linear set and the Divide and Conquer pattern is used if the
problem is solved through recursive division of the problem into subproblems. The organise by

data decomposition branch is selected if the data or data structures are the dominant factor in
the problem. Linear decomposition of data in one or more dimensions results in the Geometric

Decomposition pattern, whereas a recursive data decomposition, involving recursive data struc-
tures, favours the Recursive Data pattern. Finally, the organise by data flow branch should be
chosen if the data flow between tasks imposes an ordering constraint on the groups of tasks.
A regular, static ordering follows the Pipeline pattern, whereas, the Event-Based Coordination

pattern is appropriate for an irregular, dynamic, and unpredictable flow of data [102].

• The Task Parallelism pattern is concerned with the development of task parallel algo-
rithms that are based on the tasks themselves. The tasks are typically associated with the
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iterations of a loop and may be known from the outset or they may arise dynamically dur-
ing execution. It is important to consider whether the tasks are completely independent
of each other and if the problem can be solved without completing all the tasks. Tasks
should be defined such that there are at least as many of them as there are processors
and each task should be sufficiently compute-intensive. Tasks need to be carefully struc-
tured to minimise overheads associated with managing dependencies such as ordering
constraints and shared data. Problems without dependencies between tasks are usually
referred to as embarrassingly parallel problems. However, it is sometimes possible to
remove or separate dependencies through code modifications, such as using thread-local
temporary variables and creating local copies of data that can be operated on indepen-
dently and then combined with the results of the other tasks. An example of this is the
reduction operation [102].

The assignment of tasks to execution units, known as scheduling, is another key factor in
algorithm design as it is responsible for effective load balancing of tasks. Static schedul-

ing uses a fixed allocation scheme where tasks are grouped into blocks according to their
execution time and assigned to execution units. It is a fairly low overhead approach, but it
can lead to load imbalance if the execution times of tasks vary significantly or if the capa-
bilities and current workloads of the processors vary. In such cases, dynamic scheduling

is preferred. Dynamic scheduling assigns tasks to a task queue, which is then emptied by
the execution units as they complete tasks and acquire new ones from the queue. Work

stealing is a variation on this that involves idle execution units stealing uncompleted tasks
from busy execution units [35, 102, 125].

• The Divide and Conquer pattern solves recursive problems by recursively splitting the
problem into smaller subproblems and merging the separate results back into the final
solution. This approach generates good potential concurrency since the subproblems are
solved independently. However, at some point, the overheads of splitting and merging the
subproblems may overcome the benefits, so it is advisable to switch over to a sequential
base case at an appropriate subproblem size. Divide and conquer is usually implemented
using a simple fork/join approach that forks off new tasks and joins them on completion.
Since the tasks are created dynamically and may not have equal workloads, a dynamic
load balancing approach using the master/worker strategy may be advisable. Depen-
dencies are uncommon in divide and conquer algorithms, but in certain cases, access to
shared data must be managed appropriately [35, 102].

• The Geometric Decomposition pattern is concerned with how the algorithm can be de-
signed to work with a data structure that has been decomposed into independent blocks
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or chunks. For linear data structures, this usually involves decomposing the structure into
contiguous subregions. Tasks are structured to perform operations on these subregions or
chunks, taking into account any data that is required from neighbouring chunks through
data sharing. It is also important to ensure that the data needed to update a particular
chunk is available when required. The granularity of the data decomposition has an ef-
fect on the scalability and efficiency of the program. Fine-grained decomposition results
in a large number of smaller chunks, improving scalability while increasing overheads.
Inversely, coarse-grained decomposition creates fewer, larger chunks, thereby reducing
overheads at the expense of scalability. The shape of the chunks can also have an effect
on performance due to memory access factors. Another key factor in this pattern is the
structuring of tasks and data accesses to ensure that non-local data is available before it is
required, reducing expensive execution stalls [35, 102].

• The Recursive Data pattern structures the tasks to expose parallelism in the recursive
structure of the data. This may involve looking at the structure in different ways to iden-
tify possible transformations on inherently sequential traversals that will allow for the
elements to be operated on concurrently without affecting correctness, which can be a
difficult task. Possible decompositions include decomposing the structure into individual
elements that are assigned to different threads, structural decompositions that involve a
loop where iterations perform operations on all elements or specific elements simultane-
ously, and synchronisation-based decompositions that involve simultaneously updating
all elements (SIMD is an example of this) [35, 102].

• The Pipeline pattern describes an approach to performing concurrent computations on a
stream of data by forwarding segments of the stream through a number of independent
stages. Each stage performs a specific computation and these stages are capable of parallel
execution using a number of threads, thereby allowing the different stages to perform
operations on different segments of the stream simultaneously. This kind of processing
is analogous to a manufacturing assembly line and common computing examples include
the processor’s instruction pipeline, vector processing, signal processing, and computer
graphics. This approach is suited to tasks that have a strong, regular ordering that is
amenable to pipelined execution. It is implemented by assigning each task or stage to a
thread and routing the output from earlier stages to the inputs of later stages. So, while
one stage is busy processing a segment of data, the previous stage is processing the next
segment of data in the stream. The stages in the pipeline can be structured to form both
linear and non-linear data flows through the pipeline. If the computational intensity of
the stages differs, it may be necessary to group stages together on a processor, or further
decompose the computationally intensive stages. Factors to consider when evaluating the
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performance of the implementation include the throughput and latency of the pipeline [35,
102, 124, 125].

• The Event-Based Coordination pattern is used for problems where groups of semi-
independent tasks interact in an irregular or unpredictable way. As with the pipeline
pattern, the data flow dictates the ordering of tasks. This problem can be solved by defin-
ing the data flow in terms of events that are generated by a particular task and processed
by another task. Therefore, the events define the ordering constraints and the data that
is to be processed by the tasks. Firstly, the tasks are defined according to the processing
requirements of the events. Then, the event flow between tasks is defined using an ap-
propriate communication mechanism such as message-passing or shared queues between
linked tasks. Factors such as deadlocks, effective task scheduling, and efficient commu-
nication all need to be dealt with to ensure that the implementation is both correct and
efficient [102].

4.5.3 Supporting Structures

The next stage in the process is the Supporting Structures design space, which addresses the
high-level constructs used to map the algorithms to the source code level. These constructs
include loop parallelism, boss/worker, single program multiple data (SPMD), fork/join, shared

data, shared queue, and distributed array. These constructs are used to convert the high-level
design into structures that can be implemented in source code. However, these patterns do not
represent exclusive program structures as they can be combined or implemented in terms of
each other. Factors such as the clarity of abstraction, scalability, efficiency, maintainability and
alignment with the target environment are all important considerations for the design of the
supporting structures. Certain structures are better suited to the constructs provided by certain
parallel environments, so this must be taken into account [17, 35, 102, 124].

• The Loop Parallelism pattern addresses the parallelisation of computationally intensive
loops where the iterations can be executed in parallel. This pattern structures the loop
execution such that it generates tasks for parallel computation. It is often used for in-
cremental parallelism to improve sequential programs by parallelising intensive loops.
This is achieved by identifying program hotspots and bottlenecks centered around loops,
eliminating or managing loop-carried dependencies, parallelising the loops, and optimis-
ing the scheduling of iterations. However, cache effects must be taken into account when
performing loop parallelisation as the memory access patterns can have a significant effect
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on performance. Loop parallelism is suited to task parallelism and geometric decomposi-
tion, but it is unable to represent the other approaches effectively [17, 35, 102, 124].

• The Master/Worker pattern involves a master thread that maintains a pool of worker
threads and a collection of tasks. The worker threads repeatedly request tasks from the
master thread and execute these tasks until all the tasks have been completed. This ap-
proach is particularly good for dynamic load balancing of unpredictable tasks. It is usu-
ally implemented by initialising the problem and creating a collection of tasks that are
typically stored in a shared queue structure according to the Shared Queue pattern. A set
of worker threads is spawned, each of which enters a loop that checks for the availability
of tasks in the shared task queue and terminates if no more tasks are available. The results
from the separate computations are then combined. Master/worker is a good approach to
task parallelism, but it is generally not suitable for the other approaches [17, 35, 102, 124].

• The Fork/Join pattern is used when one thread must split off or fork computations to
other threads and then join the child threads when they have completed their section of
the computation. This pattern is usually applicable to problems with dynamically created
tasks that cannot be structured using simple parallel loops, such as recursive tasks struc-
tures and irregular sets of connected tasks. This approach can be implemented as a fixed
pool of forked threads that perform computations on tasks taken from a task queue, and
terminate after all parallel computations have completed. A simpler approach is also pos-
sible. In this approach, threads are forked to perform specific tasks and are joined at the
end of the parallel region. However, there are overheads associated with frequently fork-
ing and joining threads, so the more complex approach may be required if the overheads
are unsatisfactory. Fork/join is particularly appropriate for divide and conquer, pipeline,
and event-based coordination algorithms [17, 35, 102, 124].

• The SPMD pattern addresses the situation where multiple threads all execute the same
instructions, function, or program, but on different sets of data. It is usually implemented
by initialising multiple threads, each with their own identifier; running the same program
or function on each thread while differentiating their execution based on their identifier;
distributing the data either through local replication or segmentation of global data; and
finalising the execution by combining results and cleaning up shared state. SPMD is
well suited to task parallelism and data decomposition, and to a lesser extent, divide and
conquer and pipeline algorithms [17, 35, 102, 124].

• The Shared Data pattern addresses the problem of sharing data between multiple tasks,
while maintaining correctness and performance. Its usage involves defining the set of
operations that are performed on the shared data structure. Then, these operations are
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encapsulated in a synchronisation construct that ensures correct, consistent updates and
accesses to the shared data. If possible, it attempts to segregate access so that different
tasks do not interfere with one another when using the shared data structure. It is also im-
portant to keep the size of critical sections to a minimum for performance reasons [102].

• The Shared Queue pattern represents a queue data type that allows for correct and safe
usage by multiple concurrent threads. A shared queue can be implemented as a normal
queue abstract data type, which is then modified according to the Shared Data pattern.
Dequeue calls to the queue can be either blocking or non-blocking, depending on the
requirements of the parallel algorithm. The simplest implementation locks the whole
structure for exclusive access by one thread. However, this can limit parallel performance,
so more efficient concurrency-control protocols may be required. An example of this
involves making use of the non-interfering nature of the enqueue and dequeue operations
to allow simultaneous access to the head and tail of the queue when the queue contains a
sufficient number of tasks. Distributed shared queues can also help improve performance
by taking the pressure off a single shared queue [17, 35, 102].

• The Distributed Array pattern is used for the decomposition of arrays with one or more
dimensions into sub-arrays that can be distributed among threads. The primary chal-
lenge is to structure array access so that elements required by each thread are located
nearby at the appropriate time during execution. The memory hierarchy must also be
taken into account when distributing segments of the array. There are a number of com-
mon array distributions that can assist in this process. One-dimensional block distribution
decomposes the array into contiguous segments that are assigned to tasks or threads. Two-

dimensional block distribution assigns each task or a thread a rectangular sub-block from
the array. Cyclic or block-cyclic distributions generate a number of blocks exceeding the
thread count, which are then assigned in a round-robin fashion [17, 35, 102].

4.5.4 Implementation Mechanisms

The last stage of the design process is the Implementation Mechanisms design space, which
deals with the language constructs and library routines for implementing parallelism in the
program. It includes constructs and routines for thread and process management, scheduling
adjustment, synchronisation, and communication. In this stage, the high-level concurrent de-
sign from the preceding stages is implemented in source code using the low-level operations
provided by the parallel programming environment to produce a parallel program. As such,
an appropriate parallel programming environment must be selected, including the language,
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supporting libraries, and parallel API or library. One important consideration when selecting
and using external libraries is the concept of thread-safety. A thread-safe library protects its
shared components using synchronisation mechanisms, allowing the library to be used by con-
current tasks without the possibility of race conditions. If a library is not thread-safe, access to
the library may need to be serialised to ensure correctness when executing multiple concurrent
tasks [17, 102, 103, 125].

There are two primary approaches to implementing parallelism at the source level using thread-
ing libraries: implicit threading and explicit threading. With implicit threading, the threading
library or API takes care of most of the details of thread management and synchronisation by
providing higher-level abstractions that make it easier for the programmer to implement par-
allelism, while reducing the flexibility and expressiveness somewhat. Some examples of im-
plicit threading are automatic parallelising compilers, OpenMP, Cilk, and Threading Building
Blocks. Explicit threading, on the other hand, forces the programmer to implement and manage
all aspects of thread creation and termination, scheduling and load balancing, synchronisation,
and communication. This improves expressiveness and flexibility at the expense of increased
difficulty, resulting in a greater possibility for errors. Examples of explicit threading libraries
include Pthreads, Windows Threads, and Boost Threads. A number of parallel programming
libraries are described in Chapter 3. Some parallel programming models or environments are
better suited to implementing certain supporting structures than others, so an appropriate model
must be selected based on the algorithm [17, 60, 124].

4.6 Parallel Optimisations

There are several performance issues that arise from the parallel execution of multithreaded pro-
grams on shared-memory multiprocessor computer systems, particularly when multiple physi-
cal CPUs are involved. As described in Section 2.4, processor cores are able to communicate
through either shared on-chip caches or via the system bus or processor interconnect network.
Data that is shared between processors or cores needs to be kept consistent and overall cache co-
herence must be maintained to ensure that multiple processors modifying the same data all see
the correct values. The synchronisation and cache coherence mechanisms required to maintain
a valid memory state create the potential for contention, negatively affecting performance and
reducing potential parallelism if the contention is not managed carefully [153]. Additionally,
good parallel performance and scaling can only be achieved if all of the available processors
are kept sufficiently busy. Therefore, concurrent tasks must be distributed across the available
processors according to their workload using load balancing techniques [17, 80, 124].
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4.6.1 Data Sharing

While modern multicore CPUs with large shared data caches do allow for cheap sharing of data
between threads running on different cores, sharing of frequently modified data should be kept
to a minimum. As per the MESI cache coherence protocol implemented by most commodity
multicore CPUs, when a thread attempts to access data that is in a modified state in the L1 cache
of another processor core, the modified cache line must first be evicted and written back to main
memory before reading it into the L1 cache of the requesting core. This introduces a perfor-
mance penalty over reading the data straight from the L1 or L2 data cache and creates cache and
bus contention if evictions occur frequently. Therefore, data sharing between processors should
be kept to a minimum, particularly for data that is modified frequently. For large shared data
structures, techniques such as blocking can improve locality and reduce contention for data in
the same region of memory. Data sharing bottlenecks can also be dealt with at the design stage
by devising implementations that partition shared data between threads so that minimal sharing
occurs [69, 80, 153].

The above situation is typically referred to as true sharing, where the sharing of data is in-
tentional. On the other hand, false sharing occurs when two or more separate pieces of data,
modified by threads running on different cores, happen to share the same cache line. This causes
frequent cache line evictions for each core as they issue request for ownership (RFO) messages
for the cache line, even though the specific data being accessed has not been modified by the
other threads. This can incur a significant performance penalty if the same cache line is updated
frequently, particularly when multiple physical processors are involved [4, 21, 69, 80, 124, 125].
Data sharing and false sharing bottlenecks can also be identified through profiling by focusing
on data-related performance events. Intel CPUs provide a number of useful events for identi-
fying occurrences of false sharing. Code inspection can then be used to identify the specific
data structures causing the false sharing [69, 120]. False sharing can be reduced by padding or
aligning data structures and arrays to cache line boundaries. The use of thread-local copies of
data can also help to reduce the chance of false sharing. It is also important to ensure that syn-
chronisation variables are alone on a cache line to prevent false sharing as a result of frequently
accessed locks and data sharing cache lines [4, 80].

4.6.2 Reduce Lock Contention

Contention over shared data has been discussed in Section 4.6.1, but partitioning of shared data
is not always possible. In such cases, it necessary to implement mutual exclusion or other
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synchronisation mechanisms to ensure that no race conditions arise as a result of simultaneous
access to shared data. However, mutual exclusion serialises access to the critical section. If
the critical section is short or if threads do not attempt to access the critical section frequently,
the impact on performance may be minimal. However, if the critical section takes a significant
amount of time to traverse and other threads are kept waiting, the impact on performance and
scaling can be significant, especially if the critical section is in a performance hotspot [45, 69,
137].

Lock contention can be reduced by ensuring that critical sections are as short as possible, are
specific to the data being protected, and do not encompass computational intensive sections of
code that are safe to execute in parallel (fine-grained locking). A simple demonstration of this
concept can be seen in Listings 4.13 and 4.14. However, mutexes and other synchronisation
constructs are not without their own overheads. Excessive use of small critical sections can also
reduce performance due to the overhead of checking and updating the state of the lock. If the
overhead of using multiple critical sections exceeds the performance benefits of fine-grained
locking, it may necessary to revert to coarse-grained locking [45, 69, 137]. Barriers are another
type of synchronisation that should be avoided if possible. Barriers act as a synchronisation
point for groups of threads, forcing threads to wait until all the threads in the group reach that
point, limiting scalability. Unnecessary barriers, such as the implied barriers at the end of certain
OpenMP constructs, should be removed or suppressed (using the nowait clause in OpenMP) to
allow threads to continue with useful work [21].

1 function perform_work() {
2 lock(mutex1);
3

4 update_data(shared_data1);
5

6 other_work();
7

8 process(shared_data2);
9

10 compute();
11

12 unlock(mutex1);
13 }

Listing 4.13: Coarse-grained locking.

1 function perform_work() {
2 lock(mutex1);
3 update_data(shared_data1);
4 unlock(mutex1);
5

6 other_work();
7

8 lock(mutex2);
9 process(shared_data2);

10 unlock(mutex2);
11

12 compute();
13 }

Listing 4.14: Fine-grained locking.

Lock contention can also arise from suboptimal algorithm or lock type choices. A program with
shared data that is frequently accessed by multiple readers and modified infrequently by a single
writer will perform poorly if a spin mutex is used, as each reader must acquire an exclusive lock
on the data, which is not always necessary because the data is only being read. In this case, a
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reader-writer lock is more appropriate as multiple readers can access the data simultaneously
until the writer thread attempts to modify the data. Wait-free or non-blocking algorithms may
also be possible, reducing contention (cache contention may still exist) and improving scalabil-
ity [56, 105, 137]. However, the synchronisation routines provided by the available threading
libraries should be used instead of developing and using custom synchronisation routines, par-
ticularly if the target program is intended to be run on a range of different platforms. It is often
difficult to implement correct, portable, and efficient lock routines for multiple platforms unless
one is an expert in the field, so this task is best left to the parallel library developers [69].

4.6.3 Load Balancing

Efficient parallel performance is dependent on keeping all available processors busy performing
useful work. Uneven workload distribution and resource contention leads to processors sitting
idle. Load balancing attempts to minimise idle processor time by ensuring that work is dis-
tributed equally amongst the available processors and that there is no over- or under-subscription
of worker threads. However, load balancing is dependent on a variety of program and system
factors, including the number of processors, workload size, work distribution policy, and the
nature of the problem [17, 21, 35, 69, 125].

For existing implementations, many of the listed factors have already been specified or de-
termined, meaning that the algorithm or work distribution policy may need to be modified to
achieve better load balancing. For new programs, it is important to design the algorithms and
work distribution policies to ensure good load balancing and maximise processor utilisation.
Parallel APIs and libraries such as OpenMP and Threading Building Blocks provide methods
for controlling the distribution of work between tasks or threads. Static workloads, where each
unit of work takes roughly the same amount of time, are fairly easy to load balance as each
processor can be given an equal sized chunk of the workload. Static scheduling is the default
for OpenMP, whereas Threading Building Blocks divides the workload into smaller chunks
that are allocated to tasks. Uneven workloads are more difficult to schedule efficiently as the
execution time varies between units of work. In such situations, dynamic or guided schedul-
ing is more appropriate as smaller chunks of work are easier to load balance during execution.
However, dynamic scheduling typically incurs slight performance overheads compared to static
scheduling [17, 21, 69, 125].

For explicit threading using Pthreads or Boost Threads, all the workload scheduling and load
balancing must be implemented by the programmer. Static scheduling is easy to implement as
it merely requires splitting the workload between the available threads or processors. Dynamic
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scheduling requires more thought. Task queues or master/worker style workload distribution
can be reasonably effective if implemented efficiently, but scalability may be limited for larger
processor counts owing to increased communication and synchronisation. Overlapping of I/O
and computation must also be used wherever possible to hide the latency of I/O operations.
OpenMP and Threading Building Blocks manage the creation and termination of threads, in-
cluding how many threads are used, unless explicit thread counts are specified. For explicit
threading, the number of threads used is controlled by programmer. Therefore, the programmer
must be careful to avoid over-subscription, where the number of threads exceeds the number
of logical processors, resulting in context switch overheads, and under-subscription, where the
number of threads is lower than the processor count resulting in the under-utilisation of available
resources [17, 21, 69, 125].



Chapter 5

Methodology

The first three research goals have already been addressed in Chapters 2, 3, and 4, leaving
the fourth and final research goal for the remaining chapters of this thesis. Unlike the previous
chapters, which focused on the relevant parallel programming literature, the fourth goal requires
an empirical evaluation of selected parallel programming APIs and libraries. This evaluation
takes a two-fold approach: an analysis of parallel programming models and compilers based
on performance and an analysis of parallel programming models based on programmer effort
for each of the sample problems. The research design for achieving this goal is presented
below, together with a description of the system specifications and the use of an automated
benchmarking tool for collecting performance data.

5.1 Research Design

The aims of this research require that various parallel programming models, tools, and op-
timisations be evaluated to gauge their effectiveness at improving software performance on
multiprocessor computer systems. Accordingly, the investigative technique is that of a formal
experiment, in which a controlled investigation of the impact of the different parallel models
and compilers is undertaken.

For the performance analysis, the independent variables are the parallel programming model
and the compiler, whereas, the second experiment only has one independent variable, the par-
allel programming model. In both cases, the experimental objects are the optimised sequential
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programs and their related source code, which include the classic matrix multiplication algo-
rithm, the Mandelbrot set algorithm, and a deduplication kernel developed by Princeton Univer-
sity. The treatments, represented by the independent variables, that are applied to each exper-
imental object include the Intel Composer XE 2011 and GNU Compiler Collection compilers,
and the OpenMP, Threading Building Blocks, automatic parallelisation, Cilk Plus, Pthreads, and
Boost Threads parallel programming models. In both cases, the experimental subject is the au-
thor, who represents a novice-level parallel programmer. The response variables or performance
metrics for the investigation are the wall clock timing (includes initialisation and finalisation
routines) and parallel speedup for the execution of the parallel program or experimental object.
The response variables or code metrics for the second investigation are the number of modified
lines of code, Halstead’s volume and length metrics, and the cyclomatic code complexity. The
experiments follow a crossed design where each treatment factor is tested in conjunction with
every other treatment factor. Thereafter, the ratio of speedup to additional programming effort
for each of the parallel programming models and compilers is calculated and used to provide
recommendations regarding the selection of parallel programming model.

The approach taken to optimising and parallelising each program follows the methodologies
and techniques described in Chapter 4. First, the sequential programs are optimised using the
iterative performance tuning approach. Exploitable parallelism is identified and decomposed to
produce a suitable parallel design that is then implemented using each of the parallel program-
ming models. All code is placed under version control using Subversion to allow for changes
to be reverted and different versions of the code to be compared. Since the cognitive process
of exposing parallelism is common to all the implementations of the same program, the pro-
grammer effort is constrained to the task of actually implementing the design using the specific
parallel programming models. As such, the basic attribute of code size, measured using lines of
code and Halstead’s volume metric, can provide a sufficient estimation of programmer effort.

5.2 System Specifications and Software Versions

All profiling, debugging, and performance measurements are performed on a computer system
with the hardware specifications given in Table 5.1, running the versions of software listed
in Table 5.2. To ensure that the testing platform remains as consistent as possible, all power
saving features are disabled and CPU frequency scaling is set to maximum performance for
each processor core. The Intel Turbo Burst feature is also disabled for the CPU to prevent
certain cores from attaining higher clock speeds as a result of minimal load on the other cores.
Final benchmarking runs are performed with the bare minimum set of programs running on the



5.3. AUTOMATED BENCHMARKING TOOL 118

system to ensure that the performance results are not influenced by the execution of external
programs. This means that the X Windowing system and any other unnecessary services are
terminated.

Table 5.1: System hardware specifications.

Component Description
CPU model Intel Core i5-750
Number of cores 4
Core frequency 2.67GHz
L1 data cache size (per core) 32KB
L1 instruction cache size (per core) 32KB
L2 unified cache size (per core) 256KB
L3 unified cache size (shared) 8192KB
Set-associativity L1d: 8-way, L1i: 4-way, L2: 8-way, L3: 16-way
RAM 4GB TEAM Xtreem DDR3 1333MHz
RAM modules 2 x 2GB
RAM timings (tCL-tRCD-tRP-tRAS) 7-7-7-18
Cache line size 64B
Motherboard MSI P55-GD65
Hard disk Western Digital Black 500GB SATA2

Table 5.2: System software specifications.

Software Version
Operating System Fedora Core 13
Kernel Linux 2.6.34.7-66.fc13.x86_64
GNU Compiler Collection 4.5.1
Intel C/C++ Compiler Intel Composer XE 2011 (12.0.0.084)
Glibc 2.12.2-1
OpenMP 3.0 for both GCC and Intel C/C++
Threading Building Blocks 3.0
Boost Threads 1.41.0-11
Intel MKL 10.3
Intel IPP 7.0.1

5.3 Automated Benchmarking Tool

Owing to the repetitive nature of testing and benchmarking changes, as well as the number of
different test cases, an automated benchmarking tool is used. This ensures that the benchmark-
ing process remains consistent and is less tedious.
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Instead of developing an automated benchmarking tool from scratch, an existing tool was found
and subsequently modified. The Computer Language Benchmarks Game [46] is a website
that compares language implementations using a variety of benchmark programs. To automate
the process of benchmarking dozens of language implementations for each test program, the
author of the site, Isaac Gouy, developed a benchmark tool written in Python [46]. The source
code for the benchmark tool is available under the 3-clause BSD license, thus allowing it to be
downloaded and freely modified to meet our additional requirements related to result logging.

The tool repeatedly (given a user-specified repetition count) executes and measures the bench-
mark program’s CPU time, elapsed time (wall clock time), resident memory usage, and CPU
load while the program is running and generates raw measurement data files in the comma-
separated values (CSV) file format. This data can then be analysed by the user to compare the
performance of different program implementations and compiler optimisation options. It also
generates basic result summaries for each program implementation by averaging the results
over each run for a particular program input value. These summaries can be used to quickly
evaluate the effect of changes without having to perform a full data analysis. To ensure that
each program implementation executes correctly, the resulting output of each program run is
compared with other implementations. Any inconsistencies are reported to the user and the
offending execution runs are flagged as invalid in the measurement data files [46].

5.3.1 Extensions to the Benchmarking Tool

Better result and run information logging has been implemented, such that instead of overwrit-
ing previous results and run logs, the measurements and logs for each run are stored according
to the date and time of the run. Additional information is also recorded for each run, such as
the environment and build options used for the run. All the files for the benchmark tool and the
test programs are added to a Subversion (SVN) repository to allow for version control of the
benchmark suite and its associated configuration files. The SVN revision information is then
recorded along with the logs for each run. This provides a number of useful features, such as
the ability to revert to a specific set of changes to replicate a test run and compare source code
files to identify code that has changed between runs. The tool has also been configured to allow
for the testing of different compiler options using the same compiler.



Chapter 6

Implementation

6.1 Introduction

This chapter describes the actual steps taken during the process of profiling, analysing, opti-
mising, parallelising, and testing the three target programs. Three progressively more complex
programs are used as the basis of our investigation: a classic matrix multiplication example
(Section 6.2) for demonstration purposes, a Mandelbrot Set algorithm (Section 6.3) to highlight
load balancing issues, and a deduplication kernel (Section 6.4) as an example of pipeline par-
allelism. For each program, we perform an initial analysis of the baseline performance data,
apply any relevant sequential optimisations, and measure the performance and profiling data
again to ensure that the optimisations have had the desired effect.

Next, we decompose the problem for parallel execution and formulate an appropriate paral-
lel design. The design is then implemented using each of the selected parallel programming
models, which include automatic parallelisation, Boost Threads, Cilk Plus, OpenMP, Pthreads,
and Threading Building Blocks, where applicable. The parallel implementations are checked
for threading and memory errors and the output is compared to the original sequential version.
Profiling is also performed to identify any threading-related performance issues. Once the pro-
grams have been optimised sufficiently, a final benchmarking run is performed and the code
metrics are measured.

For each of the parallel implementations, we have defined the number of threads to be adjustable
at compile-time by specifying -DNTHREADS=<n> as a compiler preprocessor option, where n is
the desired number of threads (four threads is the default if the option is not specified).

120
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6.2 Matrix Multiplication

Matrix multiplication is used extensively in scientific computing, particularly for applications
that must solve linear algebra problems. As the matrix multiplication algorithm is very amenable
to parallel execution, as we shall see, it provides a simple test case for demonstrating the various
parallel programming models. The matrix multiplication operation is defined in (6.1), where
two square matrices, A and B, are multiplied together and stored in matrix Res. The subscripts
represent the row and column indices of the element being addressed in that particular matrix,
while dim is the dimension of the matrices [102]. The relevant sections of the baseline sequen-
tial program code, called matrixmul are given in Listing 6.1, while the full program source
code can be found in Appendix B.1.

Resr,c =
dim−1

∑
k=0

Ar,k ·Bk,c (6.1)

1 double** matrix_a; // matrix a
2 double** matrix_b; // matrix b
3 double** matrix_res; // result matrix
4

5 void mul_matrices(void) {
6 // multiply matrix a and matrix b and store in result matrix
7 for (int r = 0; r < dimension; r++) {
8 for (int c = 0; c < dimension; c++) {
9 double sum = 0.0;

10 for (int k = 0; k < dimension; k++) {
11 sum = sum + matrix_a[r][k] * matrix_b[k][c];
12 }
13 matrix_res[r][c] = sum;
14 }
15 }
16 }
17

18 int main(int argc , char** argv) {
19 ...
20 init_matrices();
21 mul_matrices();
22 ...
23 }

Listing 6.1: Classic matrix multiplication algorithm (matrixmul).

6.2.1 Initial Profiling and Analysis

The first step in the performance tuning process is to measure the baseline performance of the
matrix multiplication program. The matrixmul program was compiled using GCC with -O0
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-g as compiler options and the timing measurements were repeated five times with dimension

equal to 2048. The initial timings are summarised in Table 6.1. The program was profiled using
Valgrind with the Cachegrind tool and Intel VTune, as well as being checked for memory errors
using Intel Inspector and Valgrind’s Memcheck tool. However, no memory access errors or
leaks were detected by either tool. VTune reported an L3 cache miss rate of 0.531%, execution
stall rate of 0.39%, and a high cycles per instruction (CPI) measurement of 1.221. Cachegrind
confirmed these results and indicated an L1 data cache miss rate of 8.2%. These results indi-
cate the need for optimisations to improve the instruction and data access characteristics of the
program. As expected, the vast majority of the execution time and memory accesses are linked
to the innermost loop statement.

Table 6.1: Runtime performance of the original, unoptimised sequential matrixmul program.

Mean Wall clock time Geometric Mean Standard Deviation
161.0396s 161.0388s 0.5706

6.2.2 Sequential Optimisations

The first attempt to improve the performance of the program centers around the use of compiler
optimisation options (Table 6.2), which do not require any programming effort and can often
provide good speedup. In all cases, speedup is measured against the original sequential program
results listed in Table 6.1.

Table 6.2: Performance of matrixmul with sequential optimisations.

Wall clock time (seconds)
Compiler g++ -O1 g++ -O2 g++ -O3 icpc -O0 icpc -O2 icpc -O3
Mean 131.8142 130.6012 130.8114 159.3842 130.2306 130.0406
Geo. Mean 131.8095 130.5957 130.803 159.3821 130.2284 130.0390
Std. Dev. 1.240314 1.336184 1.650024 0.9266608 0.85369 1.773753
Speedup 1.222x 1.233x 1.231x 1.01x 1.236x 1.238x

Using the Intel C/C++ compiler with the -opt-report option reveals that loop interchange
was not performed due to an imperfect loop nest and that the innermost loop was not vectorised
as the compiler deemed it to be inefficient. However, loop unrolling was performed on the
innermost loop, so this optimisation should not be applied manually. Since the compiler was
unable to perform the loop interchange, the loops have been restructured manually to remove
the temporary sum and improve the access pattern as shown in Listing 6.2. The resulting timings
are presented in Table 6.3.
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1 void mul_matrices(void) {
2 // multiply matrix a and matrix b and store in result matrix
3 for (int r = 0; r < dimension; r++) {
4 for (int c = 0; c < dimension; c++) {
5 for (int k = 0; k < dimension; k++) {
6 matrix_res[r][k] = matrix_res[r][k] + matrix_a[r][c] * matrix_b[c][k];
7 }
8 }
9 }

10 }

Listing 6.2: Matrixmul with improved array access pattern.

Table 6.3: Performance of matrixmul with improved array access.

Wall clock time (seconds)
Compiler g++ -O0 g++ -O3 icpc -O0 icpc -O3
Mean 79.4798 14.5112 105.938 41.138
Geo. Mean 79.47977 14.5119 105.938 41.138
Std. Dev. 0.07340095 0.1531992 0.05404165 0.01781853
Speedup 2.026x 11.1x 1.52x 3.914x

The correctness of the resulting implementation is tested by outputting and comparing the full
result matrix against the output of the original program. This introduces significant I/O over-
head, which obscures the results of the optimisations. Therefore, the full check is only per-
formed once for each optimisation or change. Thereafter, the check is substituted with a state-
ment that only outputs a single element of the result matrix to prevent aggressive compiler
optimisations from eliminating the matrix calculations entirely (because the result is unused).

Profiling shows that the L1 data cache miss rate has been reduced to 0.5% from 8.2%, but
the number of data references increased by 50%. Fortunately, this increase in references does
not impact peformance as the vast majority of these references can be served from the cache.
The Intel compiler appears to have poor performance compared to GCC, however, the situation
changes when interprocedural optimizations (IPO) (icpc: -ipo, g++: -fwhole-program) are ap-
plied (see Table 6.4). This seems to indicate that GCC performs more aggressive IPO than the
Intel compiler at optimisation level -O3.

Table 6.4: Performance of matrixmul with interprocedural optimisations.

Wall clock time (seconds)
Compiler g++ -O3 w/ IPO icpc -O3 w/ IPO
Mean 14.5128 8.6408
Geo. Mean 14.51279 8.640792
Std. Dev. 0.01400714 0.01329286
Speedup 11.096x 18.637x
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These compiler optimisations provide a vast improvement in performance, with the Intel com-
piler giving an 18.637x speedup over the original sequential version. Profiling of the IPO opti-
mised programs shows that the L1 data miss rate has increased to 8.1%. But, this is coupled with
a decrease in the instruction reference count to 4.82% and a decrease in the data reference count
to 6.75% compared with the previous version, which explains the improvement in performance.
The data cache miss count is the same as in the previous version, indicating that these are most
likely compulsory misses. Loop tiling was attempted, but it severly degraded the performance
when compiling with the Intel compiler and only provided a minor performance increase with
GCC. Therefore, the change was reverted and the sequential code from Listing 6.2 was used for
parallelisation.

Profile-guided optimisation (PGO) is another compiler-based optimisation that can improve
program performance by tuning the optimisation process according to the runtime profile gen-
erated by executing the instrumented version of the program binary. Results show that PGO was
able to improve the performance of the GCC-compiled program by two seconds, but there was
no improvement with the Intel compiler, and the use of PGO on the parallel implementations
either had no effect or degraded performance for both compilers. Therefore, it was decided that
PGO would not be used in further testing of the matrixmul program.

6.2.3 Parallel Implementations

Matrix multiplication is an example of an embarrassingly parallel problem where the parallel
decomposition is fairly straightforward and efficient. As such, we will not discuss the parallel
design in too much detail. The problem can be organised as tasks, where a task is represented
by the loop body of the outermost loop. This leads to the Task Parallelism pattern supported by
the loop parallelism structure. The data decomposition uses a simple Geometric Decomposition
that divides the data according to the rows of matrix_a and matrix_res. There are no ordering
constraints and no data sharing constraints since the two input matrices are only accessed with
read operations and write access to the result matrix is partitioned by row, which means that
shared access to the result matrix is considered effectively-local. Since the workload is the same
for each row, load balancing can be achieved using a simple static scheduling approach that
distributes the data in equal size groups of contiguous rows. The parallel implementations for
each of the parallel programming models are presented below. The speedups listed are relative
to the best sequential performance for that specific compiler. All further implementations are
compiled with IPO and -O3 compiler optimisation flags enabled.
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Automatic Parallelisation

The successful automatic parallelisation of a program by the compiler is a very desirable out-
come as it does not require the programmer to formulate and implement a parallel design and,
therefore, requires very little effort. However, the automatic parallelisation capabilities in GCC
and the Intel compiler are limited to simple loop structures [69]. GCC was unable to generate
a program that produced any speedup over the original version, whereas the Intel compiler pro-
vided only a marginal benefit. Following the advice provided by the Intel compiler’s diagnostic
reports yielded no improvement. In some cases, the suggested compiler directives used to as-
sist auto-parallelisation interfered with the process, resulting in worse speedup than without the
directives. Although not mentioned previously, automatic vectorisation was attempted for the
baseline sequential program, however, neither compiler was able to perform effective vectorisa-
tion. Compiler diagnostics reveal that the inner loop was identified as a target for vectorisation,
but that the compiler (icpc in this case) deemed the vectorised version to be too inefficient to
warrant performing the optimisation. Unlike the sequential version, the automatically paral-
lelised program (as well as the other parallel implementations) benefits greatly from automatic
vectorisation. The performance summary is presented in Table 6.5, where “auto-parallel” refers
to the automatically parallelised program and “ + SSE4.2” refers to the inclusion of automatic
vectorisation using the SSE4.2 extended instruction set.

Table 6.5: Performance of matrixmul with automatic parallelisation and vectorisation.

Wall clock time (seconds)
Compiler icpc auto-parallel icpc auto-parallel + SSE4.2
Mean 6.7788 2.4858
Geo. Mean 6.7788 2.485796
Std. Dev. 0.03453549 0.004816638
Speedup 1.275x 3.476x

OpenMP

The OpenMP implementation (OMP) uses a straightforward parallel for construct with static
scheduling as shown in Listing 6.3.

Performance testing reveals a significant speedup for both compilers (Table 6.6). However, the
Intel compiler appears to produce a more efficient parallel program, achieving a linear speedup
with the number of processor cores.
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1 void mul_matrices(void) {
2 // multiply matrix a and matrix b and store in result matrix
3 #pragma omp parallel for num_threads(NTHREADS) default(none) \
4 shared(matrix_a , matrix_b , matrix_res , dimension)
5 for (int r = 0; r < dimension; r++)
6 for (int c = 0; c < dimension; c++)
7 for (int k = 0; k < dimension; k++)
8 matrix_res[r][k] = matrix_res[r][k] + matrix_a[r][c] * matrix_b[c][k];
9 }

Listing 6.3: Parallel matrix multiplication using OpenMP.

Table 6.6: Performance of OpenMP matrixmul with and without automatic vectorisation.

Wall clock time (seconds)
Compiler g++ OMP g++ OMP + SSE4.2 icpc OMP icpc OMP + SSE4.2
Mean 4.1328 3.9666 2.1316 0.9346
Geo. Mean 4.132594 3.966441 2.1316 0.934591
Std. Dev. 0.04616492 0.03963963 0.0005477226 0.004615192
Speedup 3.511x 3.66x 4.054x 9.25x

The program output was compared against the sequential version and found to be correct. The
program was then analysed for memory and threading errors using Valgrind and Intel Inspector
XE. Intel Inspector found no problems with memory access, which was confirmed by Valgrind’s
Memcheck tool. No threading errors were identified by Intel Inspector XE, whereas Valgrind’s
Helgrind tool identified 545 data race errors. However, these can be ignored as an inspection of
the code reveals that they are false positives resulting from the unprotected, yet safe accesses
to the shared matrices. Profiling of the OpenMP implementation revealed a high level of con-
currency with minimal waiting times, which is evident from the linear speedup achieved by the
icpc-compiled program.

Thread Building Blocks

For the Threading Building Blocks implementation (TBB), the mul_matrices function has
been replaced with an inline lambda function within the program’s main function. Lambda
function support is only available in compilers that implement parts of the C++0x standard.
Both GCC and the Intel C++ compiler support lambda functions and this functionality is en-
abled when the -std=c++0x compiler option is specified. The TBB parallel_for template
is used to parallelise the outer loop and the grain size is managed automatically by the runtime
system using auto_partitioner(), as shown in Listing 6.4.
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1 #include "tbb/task_scheduler_init.h"
2 #include "tbb/blocked_range.h"
3 #include "tbb/parallel_for.h"
4

5 int main(int argc , char** argv) {
6 ...
7 task_scheduler_init init(NTHREADS);
8

9 init_matrices();
10 parallel_for( blocked_range <int>(0, dimension),
11 [](const blocked_range <int>& range){
12 // multiply matrix a and matrix b and store in result matrix
13 for (int r = range.begin(); r != range.end(); r++)
14 for (int c = 0; c < dimension; c++)
15 for (int k = 0; k < dimension; k++)
16 matrix_res[r][k] = matrix_res[r][k] + matrix_a[r][c] * matrix_b[c][k];
17 }, auto_partitioner() );
18

19 ...
20 }

Listing 6.4: Parallel matrix multiplication using Thread Building Blocks.

Table 6.7: Performance of TBB matrixmul with and without automatic vectorisation.

Wall clock time (seconds)
Compiler g++ TBB g++ TBB + SSE4.2 icpc TBB icpc TBB + SSE4.2
Mean 4.1468 3.995 3.4854 3.422
Geo. Mean 4.146472 3.994981 3.485086 3.421326
Std. Dev. 0.05797586 0.01360147 0.05248619 0.07638063
Speedup 3.5x 3.632x 2.479x 2.53x

The TBB library appears to be the limiting factor for performance when compiling with the Intel
compiler. The speedup for the GCC-compiled executable differs only marginally compared to
the OpenMP implementation. Both Memcheck and Intel Inspector XE detected memory leaks
in the TBB library, but these are beyond the scope of the application itself. As with OpenMP, In-
tel Inspector does not find any threading errors, while Helgrind produces false postives for data
race issues. Profiling reveals that the TBB parallel implementation has good thread concur-
rency and near ideal CPU usage despite the lackluster speedup for the icpc-compiled program,
while memory and instruction access characteristics are mostly unchanged from the sequential
version.

Pthreads

The Pthreads implementation requires more extensive code modifications than the previous
parallel programming models. Within the program’s main function, a pool of threads is defined
and spawned, passing the thread’s identification number as an argument to the thread function.
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The main thread waits until the spawned threads are joined before proceeding. The thread
function, mul_matrices, calculates the chunk size and loop bounds based on the number of
threads and the thread identifier, as seen in Listing 6.5.

1 #include <pthread.h>
2

3 void* mul_matrices(void* thread_id) {
4 // calculate loop bounds from the thread id
5 const long r_block = (long)ceil((double)dimension / NTHREADS);
6 const long r_lower = (long)thread_id * r_block;
7 const long r_upper = std::min(((long)thread_id + 1) * r_block , (long)dimension);
8

9 // multiply matrix a and matrix b and store in result matrix
10 for (int r = r_lower; r < r_upper; r++)
11 for (int c = 0; c < dimension; c++)
12 for (int k = 0; k < dimension; k++)
13 matrix_res[r][k] = matrix_res[r][k] + matrix_a[r][c] * matrix_b[c][k];
14

15 return (NULL);
16 }
17 int main(int argc , char** argv) {
18 ...
19 pthread_t thread_id[NTHREADS];
20 init_matrices();
21

22 for (int i = 0; i < NTHREADS; i++)
23 pthread_create( &thread_id[i], NULL , mul_matrices , (void*)i );
24 for (int i = 0; i < NTHREADS; i++)
25 pthread_join( thread_id[i], NULL );
26 ...
27 }

Listing 6.5: Parallel matrix multiplication using Pthreads.

Table 6.8: Performance of Pthreads matrixmul with and without automatic vectorisation.

Wall clock time (seconds)
Compiler g++ Pthread g++ Pthread + SSE4.2 icpc Pthread icpc Pthread + SSE4.2
Mean 4.187 3.968 1.9412 0.7666
Geo. Mean 4.186804 3.967959 1.940252 0.7665936
Std. Dev. 0.04539273 0.02014944 0.06882732 0.003507136
Speedup 3.465x 3.657x 4.453x 11.272x

This simple Pthreads implementation provides exceptional performance as evidenced by the
superlinear speedup of the icpc-compiled executable (Table 6.8). This superlinear speedup can
be explained by the memory hierarchy of modern CMPs, which afford multicore CPUs greater
cache space than singlecore CPUs [21, 35]. Error checking reveals that there are no memory or
threading related errors besides the false positives reported by Helgrind. Profiling indicates that
the program has good concurrency and CPU usage and further attempts to improve performace
merely add overheads that outweigh the benefits of the more sophisticated load balancing.
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Boost Threads

The Boost Threads implementation follows much the same structure as the Pthreads version,
except that the blocks and loop bounds are calculated in the program’s main function as opposed
to in the function object. The function object that performs the matrix multiplication is defined
as a struct with an overloaded operator() function, as shown below in Listing 6.6.

1 #include <boost/thread.hpp>
2

3 void mul_matrices(const int r_lower , const int r_upper) {
4 // multiply matrix a and matrix b and store in result matrix
5 for (int r = r_lower; r < r_upper; r++)
6 for (int c = 0; c < dimension; c++)
7 for (int k = 0; k < dimension; k++)
8 matrix_res[r][k] = matrix_res[r][k] + matrix_a[r][c] * matrix_b[c][k];
9 }

10 int main(int argc , char** argv) {
11 ...
12 boost::thread_group threads;
13 int r_lower = 0;
14 const int r_block = (int)ceil((double)dimension / NTHREADS);
15 init_matrices();
16

17 for (int t = 0; t < NTHREADS -1; t++) {
18 int r_upper = r_lower + r_block;
19 threads.add_thread(new boost::thread(mul_matrices , r_lower , r_upper));
20 r_lower = r_upper;
21 }
22 mul_matrices(r_lower , dimension);
23 threads.join_all();
24 ...
25 }

Listing 6.6: Parallel matrix multiplication using Boost Threads.

Table 6.9: Performance of Boost Threads matrixmul with and without automatic vectorisation.

Wall clock time (seconds)
Compiler g++ Boost g++ Boost + SSE4.2 icpc Boost icpc Boost + SSE4.2
Mean 4.1588 4.0204 3.4946 3.3778
Geo. Mean 4.158518 4.020274 3.494116 3.377628
Std. Dev. 0.05440772 0.03564828 0.06480972 0.03819293
Speedup 3.49x 3.61x 2.472x 2.558x

The Boost Threads implementation suffers from the same performance limiting factors that af-
fected the TBB implementation using the Intel compiler. A dynamic load balancing version
using the Master/Work approach yields little additional speedup, so it appears that the static
load balancing is not at fault. Again, error checking reveals that there are no memory or thread-
ing related errors besides the false positives reported by Helgrind. Profiling information shows
that the Boost Threads implementation exhibits similar characteristics to the TBB implemen-
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tation, with near ideal concurrency and good CPU usage. This conflicts with the measured
speedup attained using the Intel compiler (Table 6.9), indicating that the performance issue is
not within the program itself, but most likely stems from the compiler and optimisation flags
used to compile the Boost library.

Cilk Plus

The Cilk Plus implementation is very straightforward, only requiring the outermost for state-
ment to be replaced with cilk_for. Finer task granularity can be achieved by changing the
inner loops to use cilk_for. However, the overheads of the finer granularity result in descreased
performance, so the implementation found in Listing 6.7 is more appropriate. A Divide and
Conquer approach is also possible using the cilk_spawn and cilk_sync keywords. This would,
however, require more extensive code modifications and the performance of the current imple-
mentation is already very good. As such this alternative approach is excluded from considera-
tion. Unfortunately, Cilk Plus is currently only supported by the Intel compiler.

1 #include <cilk/cilk.h>
2

3 void mul_matrices(void) {
4 cilk_for (int r = 0; r < dimension; r++)
5 for (int c = 0; c < dimension; c++)
6 for (int k = 0; k < dimension; k++)
7 matrix_res[r][k] = matrix_res[r][k] + matrix_a[r][c] * matrix_b[c][k];
8 }

Listing 6.7: Parallel matrix multiplication using Cilk Plus.

Table 6.10: Performance of Cilk Plus matrixmul with and without automatic vectorisation.

Wall clock time (seconds)
Compiler icpc Cilk icpc Cilk + SSE4.2
Mean 1.9924 0.7736
Geo. Mean 1.991722 0.773534
Std. Dev. 0.05846623 0.01128273
Speedup 4.338x 11.171x

Again, we see superlinear speedup from one of the parallel implementations, which is due, in
part, to the efficient Cilk scheduler and to the cache memory effects (Table 6.10). Intel Inspector
XE found no memory related errors, while Memcheck located a number of issues in the Cilk
libraries, which are beyond the control of the programmer. Runtime profiling with VTune and
Valgrind shows that the Cilk Plus implementation exhibits good concurrency with no significant
performance issues.
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Intel MKL

We have demonstrated that it is possible to achieve good speedup with our own parallel imple-
mentations. However, as stated in Section 3.3.6, highly optimised solutions for many problems
already exist and matrix multiplication is one such problem. The Intel Math Kernel Library pro-
vides routines for basic linear algebra, including a variety of matrix multiplication routines [77].
The MKL BLAS routines are accessible via a Fortran interface, however, CBLAS provides a
C/C++ wrapper for the BLAS routines. MKL also provides routines for the aligned allocation
of memory [77]. Our implementation of matrix multiplication simply initialises the matrices
and calls the appropriate MKL routine to perform the multiplication as shown in Listing 6.8.

1 #include <mkl.h>
2

3 void init_matrices(void) {
4 // initialise the matrices with random values
5 matrix_a = (double*)mkl_malloc(sizeof(double)*dimension*dimension , 128);
6 ...
7 }
8 int main(int argc , char** argv) {
9 ...

10 init_matrices();
11 // call MKL routine to multiply two matrices of doubles
12 cblas_dgemm(CblasRowMajor , CblasNoTrans , CblasNoTrans , dimension , \
13 dimension , dimension , 1.0, matrix_a , dimension , \
14 matrix_b , dimension , 1.0, matrix_res , dimension);
15 ...
16 mkl_free(matrix_a);
17 return 0;
18 }

Listing 6.8: Parallel matrix multiplication using MKL.

Table 6.11: Performance of MKL matrixmul with and without automatic vectorisation.

Wall clock time (seconds)
Compiler g++ MKL + SSE4.2 icpc MKL + SSE4.2
Mean 0.6022 0.7362
Geo. Mean 0.6021775 0.7361903
Std. Dev. 0.00580517 0.004207137
Speedup 24.1x 11.737x

As shown in the performance summary in Table 6.11, it is clear that the use of existing libraries
has the potential to provide very good speedup with minimal effort.
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6.3 Mandelbrot Set Algorithm

The Mandelbrot set is a mathematical set of points in the complex plane, named after the math-
ematician, Benoît Mandelbrot, who studied the set and published significant research on it. The
boundary of this set of points forms a fractal pattern, which is often referred to as the “Man-
delbrot fractal”. A complex number, c, is in the Mandelbrot set if the absolute value of zn,
starting with z0 = 0, never exceeds a certain value, regardless of the size of n. The value of zn

is calculated by iterating the equation defined in (6.2) repeatedly [10, 26].

zn+1 7→ z2
n + c (6.2)

The “escape time” algorithm is the simplest algorithm for generating points in the Mandelbrot
set. In this algorithm, the calculation is iterated for each x,y point in the desired plot area until
an escape or bailout condition is reached. The Mandelbrot set is only interesting between -
1.0 and 1.0 on the imaginary axis (y-axis) and between -2.0 and 1.0 on the real axis (x-axis),
therefore, the points on the plot must be scaled to fit within this region [10, 26]. The escape
condition can vary in complexity depending on the method chosen for calculating the bailout
point. The method chosen for our algorithm uses a more computationally complex algorithm
that detects the escape condition sooner than other simple escape conditions. This is achieved
by using the Pythagorean theorem to calculate the distance from the origin and bailout if the
distance is greater than two (no complex number with either part greater than two can form part
of the Mandelbrot set). In addition to this escape condition, an iteration limit is used to control
the depth or detail of the fractal [10, 26]. This variation in the number of iterations performed
for each point creates a simple and easily reproducible example of an uneven workload that
requires careful load balancing in concurrent implementations.

The relevant sections of the baseline sequential program code, named mandelbrot, are shown
in Listing 6.9, while the full program source code can be found in Appendix B.2. The source
code for this program is based on various versions of the program code for the Mandelbrot
benchmark from The Computer Language Benchmarks Game [46].

6.3.1 Initial Profiling and Analysis

The baseline performance of the original sequential Mandelbrot set program is presented in
Table 6.12. The mandelbrot program was compiled using GCC with -O0 -g as the compiler



6.3. MANDELBROT SET ALGORITHM 133

1 void mandelbrot(char* data , int* nbyte_each_line , int dimension , int width_bytes) {
2 const int iterations = 100;
3 const double limit = 2.0 * 2.0;
4 double Cimag , Creal , Zreal , Zimag;
5

6 for (int y = 0; y < dimension; ++y) {
7 char* pdata = data + (y * width_bytes);
8

9 // scale y to -1.0, 1.0 on the imaginary axis
10 Cimag = ((double)y * 2.0 / dimension) - 1.0;
11 bool le_limit;
12

13 for (int x = 0; x < dimension; ++x) {
14 // scale x to -2.0, 1.0 on the real axis
15 Creal = ((double)x * 3.0 / dimension) - 2.0;
16 Zreal = Creal;
17 Zimag = Cimag;
18

19 le_limit = true;
20 // iterate z = z^2 + c until iteration cutoff or limit is reached
21 for (int i = 0; i < iterations && le_limit; ++i) {
22 double Zrealtemp = Zreal;
23 Zreal = (Zreal * Zreal) - (Zimag * Zimag) + Creal;
24 Zimag = 2.0 * Zrealtemp * Zimag + Cimag;
25

26 le_limit = ((Zreal * Zreal) + (Zimag * Zimag) <= limit);
27 }
28

29 // mark whether or not the pixel is within the mandelbrot
30 // set in the pdata array.
31 }
32 }
33 }

Listing 6.9: Escape time Mandelbrot set algorithm (mandelbrot).

options and the timing measurements were repeated five times with dimension equal to 16000.
For the purposes of profiling, a dimension of 8000 is used for convenience when profiling with
tools such as Valgrind, which add considerable performance overheads. As in the previous
example, profiling is performed using Callgrind (a Valgrind tool) and VTune, and the imple-
mentations are checked for memory and threading errors using Memcheck, Helgrind, and Intel
Inspector XE. Profiling reveals that 95.37% of the CPU time is spent in the innermost loop of
the algorithm (lines 21 to 27 of Listing 6.9), indicating that this region is the primary hotspot.
Both Callgrind and VTune report a 0% miss rate for all levels of the cache. This is to be ex-
pected as the Mandelbrot set algorithm does not consume input data and only accesses data that
is calculated during execution, which will be present in the local cache due to temporal local-
ity. VTune also reports an operation retire stall rate of 0.4%, resulting from execution stalls
and instruction starvation, which are likely caused by the system running at full capacity (as
suggested by VTune). This indicates that the base sequential algorithm does not suffer from
any significant performance issues. No memory leaks or access errors were detected by either
Memcheck or Intel Inspector XE.
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Table 6.12: Performance of the original, unoptimised mandelbrot program.

Mean Wall clock time Geometric Mean Standard Deviation
81.937 s 81.937 s 0.01923538

6.3.2 Sequential Optimisations

A variety of simple compiler optimisation options have been tested and measured, as shown
below. However, it appears that optimisation levels beyond -O2 do not result in any noticeable
speedup. The -ffast-math optimisation for GCC was also tested, along with the equivalent
options for the Intel compiler. These floating point mathematical optimisations improved the
performance by roughly four seconds, but since they affect the accuracy of certain floating
point calculations, the resulting program output from these optimised versions was incorrect.
Therefore, these optimisations were excluded from further testing. The speedups presented
in Table 6.13 are measured against the original sequential program performance as given in
Table 6.12.

Table 6.13: Performance of mandelbrot with sequential optimisations.

Wall clock time (seconds)
Compiler g++ -O2 g++ -O3 icpc -O0 icpc -O2 icpc -O3
Mean 45.5754 45.5786 85.8382 41.5824 41.581
Geo. Mean 45.5754 45.5786 85.83072 41.5824 41.581
Std. Dev. 0.01013903 0.01101363 1.275116 0.008988882 0.01534601
Speedup 1.78x 1.8x 0.955x 1.97x 1.971x

In addition to the above compiler optimisations, IPO and PGO were tested with the results
presented in Table 6.14. The only significant performance increase from this set of optimisation
options is the profile-guided optimisation performed by GCC, which brings its performance in
line with the Intel compiler. PGO is not used in further optimisation testing for the sake of
convenience.

Table 6.14: Performance of mandelbrot with IPO and PGO compiler optimisations.

Wall clock time (seconds)
Compiler g++ w/ IPO g++ w/ PGO icpc w/ IPO icpc w/ PGO
Mean 45.5926 41.8018 41.6232 41.5578
Geo. Mean 45.59259 41.8018 41.62318 41.5578
Std. Dev. 0.02808558 0.01377316 0.04600217 0.01265701
Speedup 1.8x 1.96x 1.97x 1.97x
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Profiling reveals an increase in the cache miss rates. However, the actual miss counts are same,
while the number of memory references have been decreased dramatically, causing the per-
ceived increase in the miss rates. Therefore, it was not deemed necessary to attempt to optimise
the cache access. The Callgrind summary data for the execution of the unoptimised (icpc -O0

-g) and optimised (icpc -O3 -ipo -prof-use -g) binaries are shown in Figures 6.1 and
6.2, respectively, for dimension equal to 4000. Again, no memory related errors were detected
by VTune and Memcheck.

D refs: 10,295,210,137 (7,790,125,991 rd + 2,505,084,146 wr)
D1 misses: 73,152 ( 40,015 rd + 33,137 wr)
LLd misses: 37,607 ( 5,076 rd + 32,531 wr)
D1 miss rate: 0.0% ( 0.0% + 0.0% )
LLd miss rate: 0.0% ( 0.0% + 0.0% )

Figure 6.1: Callgrind summary for unoptimised mandelbrot program.

D refs: 3,357,904 ( 853,223 rd + 2,504,681 wr)
D1 misses: 73,595 ( 40,413 rd + 33,182 wr)
LLd misses: 37,739 ( 5,177 rd + 32,562 wr)
D1 miss rate: 2.1% ( 4.7% + 1.3% )
LLd miss rate: 1.1% ( 0.6% + 1.3% )

Figure 6.2: Callgrind summary for optimised mandelbrot program.

The Intel C/C++ compiler optimisation diagnostics, accessed via the -opt-report and
-vec-report options, reveal that a variety of loop optimisations, such as loop interchange,
loop unrolling, and loop vectorisation, are not possible due to loop carried dependencies and
unsupported loop structures. An inspection of the code confirms this. None of the loops contain
loop invariant statements that can be moved out of the loops and the inner loops contain loop
carried dependencies that cannot be removed because they are required by the algorithm. As
with the matrix multiplication example, all further Mandelbrot implementations are compiled
with the respective IPO and -O3 compiler optimisation flags enabled, icpc -O3 -ipo and g++

-O3 -fwhole-program, respectively.

Vectorisation

While the compilers are unable to perform automatic vectorisation of the loop structures, it is
possible to manually implement SSE vectorisation using the intrinsics functions provided by the
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compiler. The double precision floating point variables and calculations within the nested loops
have been converted to SSE packed data types and vector operations. The loop over x has also
been unrolled to allow for two loop iterations to be executed simultaneously since the packed
data types store two double values, which are then processed as a vector [34]. The resulting
code is presented in Listing 6.10 and performance measurements in Table 6.15. The program
output has also been checked for correctness against the previous non-SSE implementation.
Unfortunately, this optimisation affects the readability and portability of the code, but since
the target platform is primarily commodity x86-based multicore CPUs, most of which support
SSE3 and up, portability is not a primary concern.

1 #include <pmmintrin.h>
2

3 void mandelbrot(char* data , int* nbyte_each_line , int dimension , int width_bytes) {
4 const int iterations = 100;
5 __m128d val1 = _mm_set1_pd (1.0);
6 __m128d val2 = _mm_set1_pd (2.0);
7 __m128d limit = _mm_set1_pd (4.0);
8 __m128d scale_y = _mm_set1_pd (2.0 / dimension);
9 __m128d scale_x = _mm_set1_pd (3.0 / dimension);

10

11 for (int y = 0; y < dimension; ++y) {
12 char* pdata = data + (y * width_bytes);
13

14 // scale y to -1.0, 1.0 on the imaginary axis
15 __m128d Cimag = _mm_set1_pd(y);
16 Cimag = _mm_sub_pd(_mm_mul_pd(Cimag , scale_y), val1);
17

18 for (int x = 0; x < dimension; x += 2) {
19 // scale x to -2.0, 1.0 on the real axis
20 __m128d Creal = _mm_set_pd(x, x + 1);
21 Creal = _mm_sub_pd(_mm_mul_pd(Creal , scale_x), val2);
22

23 __m128d Zreal = Creal;
24 __m128d Zimag = Cimag;
25 __m128d Treal = _mm_mul_pd(Creal , Creal);
26 __m128d Timag = _mm_mul_pd(Cimag , Cimag);
27

28 int result = 3;
29 int i = 0;
30 while ( (result != 0) && (i++ < iterations) ) {
31 Zimag = _mm_add_pd(_mm_mul_pd(_mm_mul_pd(Zreal , Zimag), val2), Cimag);
32 Zreal = _mm_add_pd(_mm_sub_pd(Treal , Timag), Creal);
33

34 Treal = _mm_mul_pd(Zreal , Zreal);
35 Timag = _mm_mul_pd(Zimag , Zimag);
36 __m128d delta = _mm_cmple_pd(_mm_add_pd(Treal , Timag), limit);
37

38 int mask = _mm_movemask_pd(delta);
39 result &= mask;
40 }
41

42 // mark whether or not the pixel is within the mandelbrot
43 // set in the pdata array.
44 }
45 }
46 }

Listing 6.10: Vectorised Mandelbrot set algorithm.
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Table 6.15: Performance of mandelbrot with SSE vectorisation.

Wall clock time (seconds)
Compiler g++ SSE4.2 icpc SSE4.2
Mean 22.212 22.8114
Geo. Mean 22.21199 22.81138
Std. Dev. 0.01872165 0.02961925
Speedup 3.704x 3.592x

As can be seen from the results, the increased instruction-level parallelism has almost doubled
the speedup. Profiling shows that there has been no significant change in the execution and
memory access characteristics of the program, indicating that no performance issues have been
introduced and that the optimised version is still making full use of the capacity of the CPU
cores. This vectorised implementation is the new baseline for the mandelbrot program and all
parallelisation efforts will be based on it.

6.3.3 Parallel Implementation

The Mandelbrot set algorithm is another example of a problem that is very amenable to parallel
execution. As with the matrix multiplication example, the problem is primarily organised by
tasks, leading to the Task Decomposition pattern of the Identifying Concurrency design space.
The primary task is to determine whether, for each point in the desired plot area, a particular
point falls within the Mandelbrot set. This can be further decomposed into the task of perform-
ing the iterative calculation to update z and the task of determining whether the value of z falls
within the appropriate limits. The inner loops of the algorithm (Listing 6.9) are responsible
for carrying out these tasks and are identified as the execution hotspots through profiling and
performance analysis in Section 6.3.1. Other tasks include scaling the points to the appropriate
range on the imaginary and real axes and storing the result in the output data structure.

With the relevant tasks identified, the next step is to apply the dependency analysis patterns.
The Group Tasks and Order Tasks patterns specify that tasks must be grouped and ordered ac-
cording to their temporal and ordering constraints. There is an ordering constraint on the tasks
that perform the update calculations for z and determine whether z is within limits, as the limit
check relies on the results of the calculation. Additionally, each successive iteration of the z

update calculation and subsequent limit check is dependent on the results of the previous itera-
tion, which introduces an ordering constraint. Therefore, the calculation and limit check tasks
are grouped and an ordering constraint is placed on the iterations of the task group. Another
ordering constraint is the requirement that the co-ordinates of the point be scaled to the ap-
propriate range before starting with the calculations for that point. Since these tasks must be
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performed in order and the only computationally intensive tasks are the repeated calculations
and limit checking, the tasks for a particular point can be grouped into one large independent
task. The only data sharing aspect of the problem is the storing of the results in a shared result
array. However, each task writes to an exclusive section of the array, making the shared accesses
effectively-local, which means that no explicit synchronisation is required.

Since the problem is organised as a linear set of tasks (task for each point on the plot), the
Task Parallelism pattern from the Algorithm Structure design space is used. The tasks are
associated with the iterations of the loops and are known from the outset. However, unlike the
matrix multiplication problem, each task does not necessary have the same computation time as
another task due to the nature of the iterative calculations and escape conditions. This results
in uneven workloads, which means that static scheduling is unlikely to produce an efficient
workload distribution. Therefore, a dynamic scheduling approach is the best choice for this
problem. Static scheduling versions of the implementations will be developed in addition to
the dynamic versions to demonstrate the effect of bad load balancing. The Loop Parallelism,
Master/Worker, and Shared Queue patterns from the Supporting Structures design space are,
therefore, required to support the parallel design. According the Loop Parallelism pattern, the
iteration space of the outer loop is partitioned into chunks that are executed concurrently by
multiple processors. The size of these chunks is dependent on the scheduling algorithm. For
static scheduling, the iteration space is divided equally, whereas, with the dynamic scheduling
approach using the Master/Worker pattern, a larger number of smaller chunks are added to a
shared task queue (which must be implemented by the programmer according to the Shared
Queue pattern for explicit threading approaches).

Finally, the above parallel design must be implemented in code using the appropriate language
constructs and parallel libraries, as per the Implementation Mechanisms design space. The
implementations for automatic parallelisation, OpenMP, Threading Building Blocks, Pthreads,
Boost Threads, Cilk Plus, and the shared task queue are presented and described below. Perfor-
mance libraries such as Intel Math Kernel Library and Intel Integrated Performance Primitives
do not provide any relevant functions for implementing the Mandelbrot program. The speedups
listed are relative to the best sequential performance for that specific compiler.

Automatic Parallelisation

As with the matrix multiplication problem in Section 6.2.3, automatic parallelisation of the se-
quential program has been attempted. Yet again, the automatic parallelisation feature within
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GCC (g++ -floop-parallelize-all -ftree-parallelize-loops=4) was unable to im-
prove the performance of the Mandelbrot program. On the other hand, the Intel C/C++ com-
piler (using icpc -parallel -par-schedule-auto) was able to generate an efficient parallel
version of the program after placing the #pragma parallel above the outermost loop. The
performance summary is shown in Table 6.16.

Table 6.16: Performance of auto-parallelised mandelbrot.

Wall clock time (seconds)
Compiler g++ auto-parallel icpc auto-parallel
Mean 22.2954 5.8472
Geo. Mean 22.29539 5.846668
Std. Dev. 0.02235621 0.0887733
Speedup 0.996x 3.902x

OpenMP

The OpenMP (OMP) parallel for construct has been used to parallelise the outermost for state-
ment of the Mandelbrot set algorithm as shown in Listing 6.11. The schedule(static) clause
indicates that this implementation makes use of static scheduling.

1 void mandelbrot (...) {
2 ...
3 #pragma omp parallel for default(shared) schedule(static) num_threads(NTHREADS)
4 for (int y = 0; y < dimension; ++y) {
5 ...
6 for (int x = 0; x < dimension; x+=2) {
7 ...
8 }
9 ...

10 } /* end of omp parallel for */
11 } /* end of void mandelbrot (...) */

Listing 6.11: Parallel mandelbrot using OpenMP with static scheduling.

However, as discussed in the parallel design stage, the workload of the Mandelbrot algorithm
is unbalanced. Therefore, a more effective OpenMP implementation using dynamic scheduling
(with a chunk size based on the input dimension divided by 64, which was chosen through
manual experimentation) was also developed and is presented in Listing 6.12. Table 6.17 shows
the performance summary for the static and dynamic implementations.

The dynamic scheduling implementations provide a clear performance improvement over their
static scheduling counterparts. Additionally, it appears that GCC produces a slightly faster pro-
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1 void mandelbrot (...) {
2 ...
3 #pragma omp parallel for default(shared) schedule(dynamic ,dimension >> 6) \
4 num_threads(NTHREADS)
5 for (int y = 0; y < dimension; ++y) {
6 ...
7 } /* end of omp parallel for */
8 } /* end of void mandelbrot (...) */

Listing 6.12: Parallel mandelbrot using OpenMP with dynamic scheduling.

Table 6.17: Performance of OMP mandelbrot with static and dynamic scheduling.

Wall clock time (seconds)
Compiler g++ OMP static g++ OMP dynamic icpc OMP static icpc OMP dynamic
Mean 8.646 5.6788 9.014 5.8074
Geo. Mean 8.645974 5.678797 9.013996 5.8074
Std. Dev. 0.02382226 0.006760178 0.009539392 0.002701851
Speedup 2.569x 3.911x 2.531x 3.928x

gram executable, but the performance difference is minor (approximately 2%). Profiling reveals
that the dynamically scheduled implementation has good concurrency and CPU usage, with no
significant performance issues. The statically scheduled version shows poor CPU utilisation,
resulting from the unbalanced workload (Figure 6.3). Neither implementation has any thread-
ing and memory access issues (potential data race issues reported by Valgrind are false positives
related to the effectively-local writes to the result array).

Thread Building Blocks

Unlike OpenMP, Thread Building Blocks (TBB) requires more extensive modifications to the
original code to implement parallelism. The Mandelbrot algorithm code has been moved into

Figure 6.3: VTune concurrency profiling for the statically scheduled OpenMP mandelbrot.
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its own class, MandelPar, and placed within an overloaded operator() function, along with
the required data elements, which are declared and initialised as private data members within
the class.

The only change that needs to be made to the algorithm itself involves modifying the loop
bounds for the outer for loop such that it uses r.begin() for the initial value and r.end()

for the loop termination boundary, where r is the TBB blocked_range object supplied as an
argument to the operator function [125]. The call to the mandelbrot function has been replaced
with a call to the TBB parallel_for template.

In the program’s main function, the TBB task scheduler is initialised along with the MandelPar
instance to be used with the parallel_for. The TBB parallel_for template is then called
with the MandelPar instance and an instance of the blocked_range template initialised with
the iteration space and block size (similar to OpenMP’s chunk size) set to the input dimension
divided by 64. In addition to the explicit block size implementation, an implementation using
TBB’s auto_partitioner feature was also tested [125]. Listing 6.13 shows the TBB man-
delbrot implementation using an explicit block size. The performance summary for these two
implementations is presented in Table 6.18.

1 #include "tbb/task_scheduler_init.h"
2 #include "tbb/blocked_range.h"
3 #include "tbb/parallel_for.h"
4 using namespace tbb;
5

6 class MandelPar {
7 private:
8 char* data;
9 int* nbyte_each_line;

10 int width_bytes , dimension;
11 public:
12 MandelPar(char* d, int* nb, int dim, int wb)
13 : data(d), nbyte_each_line(nb), dimension(dim), width_bytes(wb) {}
14

15 void operator()( const blocked_range <int>& r ) const {
16 ...
17 for (int y = r.begin(); y != r.end(); ++y) {
18 ...
19 for (int x = 0; x < this->dimension; x += 2) {
20 ...
21 }
22 ...
23 } } }; /* end of MandelPar class */
24

25 int main(int argc , char** argv) {
26 ...
27 task_scheduler_init init(NTHREADS);
28 MandelPar mpar (data , nbyte_each_line , dimension , width_bytes);
29 parallel_for (blocked_range <int>(0, dimension , dimension >> 6), mpar);
30 ...
31 } /* end of int main(...) */

Listing 6.13: TBB parallel_for implementation with MandelPar class.
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Table 6.18: Performance of TBB mandelbrot with and without the auto-partitioner.

Wall clock time (seconds)
Compiler g++ TBB g++ TBB auto-part. icpc TBB icpc TBB auto-part.
Mean 5.8478 5.8766 5.9832 5.8948
Geo. Mean 5.847364 5.875111 5.98273 5.894466
Std. Dev. 0.0799356 0.1482845 0.08400714 0.07051383
Speedup 3.799x 3.781x 3.813x 3.87x

From the results, we can see that there is very little difference in performance between the im-
plementations and the two compilers. Profiling reveals that both the explicit and auto-partitioner
implementations exhibit good CPU usage with no performance issues. Error checking with Val-
grind and Intel Inspector XE confirm that there are no threading errors or memory access issues,
although, Intel Inspector identifies a memory leak in the TBB library.

Cilk Plus

The Cilk Plus implementation is very straightforward. The outermost for statement is replaced
with cilk_for and the number of worker threads is set in the program’s main function, as shown
in Listing 6.14. Since Cilk Plus is only supported by the Intel compiler, the performance sum-
mary in Table 6.19 only lists the performance details using icpc.

1 #include <cilk/cilk.h>
2 #include <cilk/cilk_api.h>
3

4 void mandelbrot(char* data , int* nbyte_each_line , int dimension , int width_bytes) {
5 ...
6 cilk_for (int y = 0; y < dimension; ++y) {
7 ...
8 for (int x = 0; x < dimension; x += 2) {
9 ...

10 }
11 ...
12 } }
13

14 int main(int argc , char** argv) {
15 ...
16 char nworkers[5];
17 sprintf(nworkers , "%d " , NTHREADS);
18 __cilkrts_set_param( " n w o r k e r s " , nworkers);
19

20 mandelbrot(data , nbyte_each_line , dimension , width_bytes);
21 ...
22 } /* end of int main(...) */

Listing 6.14: Cilk Plus mandelbrot implementation.

Although the performance of the Cilk Plus implementation is slightly inferior to the perfor-
mance of the other parallel implementations, the measured speedup is still very good. Profiling
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Table 6.19: Performance of Cilk Plus mandelbrot.

Wall clock time (seconds)
Compiler icpc Cilk
Mean 6.0174
Geo. Mean 6.016267
Std. Dev. 0.1304964
Speedup 3.792x

reveals that CPU utilisation and concurrency are good, but are very close to being classified as
poor by VTune. There are no other performance issues or memory access errors, but Valgrind
and Intel Inspector report a possible data race relating to accesses to the nbyte_each_line ar-
ray. This issue was corrected by inserting a cilk_sync statement after the call to the mandelbrot
function to ensure that all Cilk threads are synchronised before outputting the result.

Shared Task Queue

While the implicit threading models, such as OpenMP and Threading Building Blocks, have
built-in thread scheduling mechanisms, the explicit threading models require the programmer
to implement such scheduling manually. For Pthreads and Boost Threads, static scheduling does
not require any complex supporting structures. However, for dynamic scheduling, a shared task
queue is required to support the Master/Worker threading pattern.

As such, we have developed a simple, specialised queue data structure to store tasks and allow
threads to retrieve new tasks when their current task has been completed. The abridged source
code for the thread_data and worker_node structs, as well as the WorkQueue class, is given in
Listing 6.15. The thread_data struct stores the loop bounds for each task. The worker_node
struct (queue node data structure) contains pointers to the preceding and following nodes and
a pointer to that node’s task data. The WorkQueue class keeps track of the head and tail nodes
and provides public functions for pushing nodes to the tail of the queue (WorkQueue::push)
and popping nodes off the head and returning the popped task data (WorkQueue::pop).

Unfortunately, this initial implementation is not thread-safe and it does not perform any memory
management, as evidenced by the data race and memory leak issues detected by Valgrind and
Intel Inspector XE. Sample threading and memory issue reports from Intel Inspector are given
in Figures 6.4 and 6.5 respectively.

The WorkQueue class was modified to make it thread-safe and resolve the memory leak. The
memory leak was resolved by implementing an appropriate de-constructor and deleting the
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Figure 6.4: Data race error detected by Intel Inspector in the shared task queue.

Figure 6.5: Memory leak detected by Intel Inspector in the shared task queue.
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1 typedef struct {
2 int start;
3 int end;
4 } thread_data;
5

6 struct worker_node {
7 worker_node* next;
8 worker_node* prev;
9 thread_data* data;

10 };
11

12 class WorkQueue {
13 private:
14 worker_node* head;
15 worker_node* tail;
16

17 public:
18 WorkQueue() {
19 this->head = NULL;
20 this->tail = NULL;
21 }
22

23 thread_data* pop() {...}
24

25 void push(thread_data* data) {...}
26 };

Listing 6.15: Shared task queue data structure for dynamic scheduling.

worker nodes once they have been popped off the queue. The data race issue was resolved
by implementing mutual exclusion within the methods of the class itself, making it a kind of
monitor object, although it would also be possible to implement the mutual exclusion in the
“client” program. Making the data structure thread-safe instead of relying on client programs
to implement mutual exclusion means that application programmers do not have to remember
to protect accesses to the structure, however, it does limit portability. For the Pthreads version,
a private class member of type pthread_mutex_t was added (named qlock) and initialised in
the constructor. The Pthreads lock and unlock functions were then used to protect changes to
the data structure as shown in Listing 6.16.

1 thread_data* pop() {
2 pthread_mutex_lock (&(this->qlock));
3 // return NULL if queue is empty , else pop and
4 // return head node of the queue
5 pthread_mutex_unlock (&(this->qlock));
6 return res;
7 }
8

9 void push(thread_data* data) {
10 ...
11 pthread_mutex_lock (&(this->qlock));
12 // add new node to the tail of the queue
13 pthread_mutex_unlock (&(this->qlock));
14 }

Listing 6.16: Protecting concurrent access to the task queue using Pthreads mutex.
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For the Boost Threads version, a private class member, named qlock, of type boost::mutex

was added to the task queue class. The Boost Threads scoped lock object was used to protect
changes to the data structure as shown in Listing 6.17.

1 thread_data* pop() {
2 {
3 boost::mutex::scoped_lock lock(this->qlock);
4 // return NULL if queue is empty , else pop and
5 // return head node of the queue
6 }
7 return res;
8 }
9

10 void push(thread_data* data) {
11 ...
12 {
13 boost::mutex::scoped_lock lock(this->qlock);
14 // add new node to the tail of the queue
15 }
16 }

Listing 6.17: Protecting concurrent access to the task queue using Boost Threads mutex and
scoped lock.

While our task queue structure has been implemented from scratch for the explicitly threaded
program implementations, it is entirely possible to use generic queue data structures from ex-
ternal libraries or reuse existing queue implementations, provided that the data structures are
thread-safe. The final implementation for the Pthreads version of the shared task queue can be
found in Appendix C.1 (Listing C.1).

Pthreads

Pthreads (PT) is an explicit threading model that requires the programmer to manage threading
details such as thread creation, scheduling, and termination. There are two different implemen-
tations using Pthreads: one based on a simple static scheduling approach, and the other making
use of the shared task queue and dynamic scheduling.

The statically scheduled Pthreads mandelbrot was implemented as follows. A thread pool con-
sisting of NT HREADS threads is declared and initialised and an array of size NT HREADS is
declared for the storage and communication of thread specific data to the respective threads.
For each thread, the thread specific data, such as the start and end bounds for the parallel loop
(the chunk size is calculated by dividing the input dimension by the number of threads), and
common data, such as the plot dimension, are stored in the respective array element data struc-
ture (of type struct mandelbrot_data). Then the threads are spawned or created, passing in
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a void pointer to the appropriate array element as the thread’s argument. Finally, the threads
are joined once they finish executing their share of the workload. This creates a thread for each
processor, assigns each thread an equal chunk of the plot to process (but not an equal share of
the computational workload) and joins the threads before outputting the result. The source code
for the program’s main function is provided in Listing 6.18.

1 #include <pthread.h>
2

3 typedef struct {
4 int start;
5 int end;
6 int dimension;
7 int width_bytes;
8 int* nbyte_each_line;
9 char* data;

10 } mandelbrot_data;
11

12 int main(int argc , char** argv) {
13 ...
14 pthread_t thread_id[NTHREADS];
15 static mandelbrot_data thread_data_array[NTHREADS];
16 int cur_start = 0;
17 int chunk = (int)ceil((double)dimension / NTHREADS);
18

19 for (int i = 0; i < NTHREADS; i++) {
20 thread_data_array[i].data = data;
21 thread_data_array[i].dimension = dimension;
22 thread_data_array[i].nbyte_each_line = nbyte_each_line;
23 thread_data_array[i].width_bytes = width_bytes;
24 thread_data_array[i].start = cur_start;
25

26 int cur_end = std::min(cur_start + chunk , dimension);
27 thread_data_array[i].end = cur_end;
28 cur_start = cur_end;
29

30 pthread_create(&thread_id[i], NULL , mandelbrot_worker , (void*) &thread_data_array[i]);
31 }
32 for (int j = 0; j < NTHREADS; j++)
33 pthread_join(thread_id[j], NULL);
34 ...
35 } /* end of int main(...) */

Listing 6.18: Pthreads mandelbrot main function using static scheduling.

The Pthreads worker function implementation is shown in Listing 6.19. The worker function
takes the thread argument and casts it back to a pointer to a mandelbrot_data struct and uses
the start and end data structure members as the bounds for the outermost loop. Other common
data, such as the input dimension, is also retrieved from the data structure.

As with OpenMP, a dynamic scheduling solution is also possible with Pthreads. The implemen-
tation is somewhat more complex than the static scheduling version above. Our implementation
makes use of the Master/Worker threading approach and a shared task queue (6.3.3) that stores
uncompleted tasks, which are created by dividing the iteration space into chunks of work and
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1 void* mandelbrot_worker(void* threadarg) {
2 mandelbrot_data* my_data = (mandelbrot_data*)threadarg;
3 ...
4 for (int y = my_data ->start; y < my_data ->end; ++y) {
5 ...
6 for (int x = 0; x < my_data ->dimension; x += 2) {
7 ...
8 }
9 ...

10 }
11 return NULL;
12 } /* end of void mandelbrot_worker (...) */

Listing 6.19: Pthreads mandelbrot_worker function using static scheduling.

pushed onto the queue. The program’s main function is presented in Listing 6.20, which shows
the declaration of the thread pool and common thread data, the instantiation of the the task
queue (line 17), the filling of the task queue by dividing the input dimension into a larger num-
ber of small chunks (lines 19 to 25), and the creation and joining of the threads in the thread
pool.

1 typedef struct {
2 int dimension;
3 int width_bytes;
4 int* nbyte_each_line;
5 WorkQueue* workload;
6 char* data;
7 } mandelbrot_data;
8

9 int main(int argc , char** argv) {
10 ...
11 pthread_t thread_id[NTHREADS];
12 static mandelbrot_data thread_data_static;
13 thread_data_static.data = data;
14 thread_data_static.dimension = dimension;
15 thread_data_static.nbyte_each_line = nbyte_each_line;
16 thread_data_static.width_bytes = width_bytes;
17 thread_data_static.workload = new WorkQueue();
18

19 int block = dimension >> 6;
20 for (int k = 0; k < dimension; k += block) {
21 thread_data* new_load = new thread_data();
22 new_load ->start = k;
23 new_load ->end = (k + block > dimension) ? dimension : k + block;
24 thread_data_static.workload ->push(new_load);
25 }
26

27 for (int i = 0; i < NTHREADS; i++)
28 pthread_create(&thread_id[i], NULL , mandelbrot_worker , (void*)&thread_data_static);
29 for (int j = 0; j < NTHREADS; j++)
30 pthread_join(thread_id[j], NULL);
31 ...
32 } /* end of int main(...) */

Listing 6.20: Pthreads mandelbrot main function using dynamic scheduling.
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The dynamic scheduling version of the Pthreads worker function, mandelbrot_worker, dif-
fers from its static counterpart in that the loop bounds are taken from the currently assigned
task. The worker function has been modified to include an infinite while loop that repeatedly
requests and processes tasks from the task queue and exits when there are no longer any tasks
to process. The workload is fixed and tasks are added to the queue before the worker threads
begin executing, so it is not necessary to implement thread signalling to inform threads of new
tasks or the end of the tasks. Threads can simply terminate once the task queue is empty. The
mandelbrot_worker is shown in Listing 6.21 and the performance summary for both the static
and dynamic implementations is presented in Table 6.20.

1 void* mandelbrot_worker(void* threadarg) {
2 mandelbrot_data* my_data = (mandelbrot_data*)threadarg;
3 thread_data* my_work;
4 ...
5 while (true) {
6 my_work = my_data ->workload ->pop();
7 if (my_work == NULL) {
8 pthread_exit(NULL);
9 break;

10 }
11 else {
12 for (int y = my_work ->start; y < my_work ->end; ++y) {
13 ...
14 for (int x = 0; x < my_data ->dimension; x += 2) {
15 ...
16 }
17 ...
18 }
19 delete my_work;
20 } }
21 return NULL;
22 }

Listing 6.21: Pthreads mandelbrot_worker function using dynamic scheduling.

Table 6.20: Performance of Pthreads (PT) mandelbrot with static and dynamic scheduling.

Wall clock time (seconds)
Compiler g++ PT static g++ PT dynamic icpc PT static icpc PT dynamic
Mean 8.6718 5.654 8.8572 5.8258
Geo. Mean 8.671697 5.653992 8.85717 5.825791
Std. Dev. 0.04705529 0.01067708 0.02549902 0.01118928
Speedup 2.561x 3.929x 2.575x 3.916x

The Pthreads performance results are similar to the OpenMP results, showing excellent speedup
for the dynamically scheduled implementation and significantly inferior performance for the
statically scheduled implementation. Profiling information for the statically scheduled imple-
mentation reveals that the CPU is not fully utilised throughout the program’s execution due to
the unbalanced workloads of the loop iterations assigned to each thread. This results in poor
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speedup. There is no significant lock contention resulting from the locks required by the shared
task queue. Neither implementation has any performance issues and there are no memory access
or threading errors according to VTune and Valgrind.

Boost Threads

The threading approach behind the Boost Threads implementations is essentially the same as
for Pthreads, so the only significant difference is the library functions and constructs used to
implement parallelism. The statically scheduled program is implemented by initialising a thread
pool (using Boost’s thread_group class), instantiating an object of the Mandelbrot_Thread

class, dividing the iteration space into equal sized chunks, creating a Boost thread (passing it
a reference to the Mandelbrot_Thread object) and adding it to the thread pool, and finally,
joining all the threads upon completion. The source code for the statically scheduled Boost
implementation’s main function is provided in Listing 6.22.

1 #include <boost/thread.hpp>
2

3 int main(int argc , char** argv) {
4 ...
5 int cur_start = 0;
6 int block = (int)std::ceil((double)dimension / NTHREADS);
7 boost::thread_group threads;
8 static Mandelbrot_Thread m(dimension , width_bytes , data , nbyte_each_line);
9

10 for (int t = 0; t < NTHREADS; t++) {
11 int cur_end = std::min(cur_start + block , dimension);
12 threads.add_thread(new boost::thread(boost::ref(m), cur_start , cur_end));
13 cur_start = cur_end;
14 }
15 threads.join_all();
16 ...
17 }

Listing 6.22: Boost Threads mandelbrot main function with static scheduling.

As with the TBB implementation in Section 6.3.3, the Mandelbrot worker function is moved to
an overloaded () operator of a function object, Mandelbrot_Thread, along with copies of any
necessary data [152]. The loop bounds for the outermost loop are then taken from the arguments
passed to the function object, as shown in Listing 6.23.

In the dynamically scheduled implementation’s main function (Listing 6.24), thread pool and
Mandelbrot_Thread objects are instantiated, but instead of dividing the iteration space equally,
the iteration space is divided into smaller chunks and pushed onto a shared task queue (lines 6
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1 class Mandelbrot_Thread {
2 private:
3 int dimension;
4 int width_bytes;
5 char* data;
6 int* nbyte_each_line;
7

8 public:
9 Mandelbrot_Thread(int dim, int wb, char* d, int* nb)

10 : dimension(dim), width_bytes(wb), data(d), nbyte_each_line(nb) {}
11

12 void operator()(const int start , const int end) {
13 ...
14 for (int y = start; y < end; ++y) {
15 ...
16 for (int x = 0; x < this->dimension; x += 2) {
17 ...
18 }
19 ...
20 } } };

Listing 6.23: Boost Threads Mandelbrot_Thread class with static scheduling.

to 12). Then, the threads are spawned and added to the task pool and joined upon completion
(lines 14 to 17).

1 #include <boost/thread.hpp>
2

3 int main(int argc , char** argv) {
4 ...
5 boost::thread_group threads;
6 static Mandelbrot_Thread m(dimension , width_bytes , data , nbyte_each_line);
7

8 int block = dimension >> 6;
9 for (int k = 0; k < dimension; k += block) {

10 thread_data* new_load = new thread_data();
11 new_load ->start = k;
12 new_load ->end = (k + block > dimension) ? dimension : k + block;
13 m.add_job(new_load);
14 }
15

16 for (int t = 0; t < NTHREADS; t++) {
17 threads.add_thread(new boost::thread(boost::ref(m)));
18 }
19 threads.join_all();
20 ...
21 } /* end of int main(...) */

Listing 6.24: Boost Threads mandelbrot main function with dynamic scheduling.

For the dynamically scheduled function object (Listing 6.25), the Mandelbrot algorithm has
been moved to within an infinite while loop. For each iteration of the loop, a new task is
popped off the shared task queue (accessed via a private class member that is a pointer to the
WorkQueue object). If there are no more tasks to process, the loop is terminated with a break
statement, otherwise the Mandelbrot algorithm is executed using the loop boundaries provided
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by the newly acquired task (lines 24 to 29).

1 class Mandelbrot_Thread {
2 private:
3 int dimension;
4 int width_bytes;
5 int* nbyte_each_line;
6 WorkQueue* workload;
7 char* data;
8

9 public:
10 Mandelbrot_Thread(int dim, int wb, char* d, int* nb)
11 : dimension(dim), width_bytes(wb), data(d), nbyte_each_line(nb) {
12 this->workload = new WorkQueue();
13 }
14 ~Mandelbrot_Thread() {
15 delete this->workload;
16 }
17 void add_job(thread_data* data) {
18 this->workload ->push(data);
19 }
20

21 void operator()() {
22 thread_data* my_work = NULL;
23 ...
24 while (true) {
25 my_work = this->workload ->pop();
26 if (my_work == NULL)
27 break;
28 else {
29 for (int y = my_work ->start; y < my_work ->end; ++y) {
30 ...
31 for (int x = 0; x < this->dimension; x += 2) {
32 ...
33 }
34 ...
35 }
36 delete my_work;
37 } } } }; /* end of Mandelbrot class */

Listing 6.25: Boost Threads Mandelbrot_Thread class with dynamic scheduling.

The runtime performance summary for both the statically and dynamically scheduled imple-
mentations is given in Table 6.21. As with the OpenMP and Pthreads implementations, there
is a clear difference in performance between the static and dynamic versions of the program,
with static scheduling exhibiting mediocre speedup compared to dynamic scheduling, which
has near linear speedup.

Profiling information for both versions of the program indicate that there are no instruction or
memory access issues, but the statically scheduled version exhibits poor CPU usage as depicted
in Figure 6.6. We can see that for the majority of the program’s execution, only two threads
are performing any work, which is caused by the uneven workload. Error checking reveals that
there are no memory access or threading errors within the program itself, but Intel Inspector
detects a memory leak in the Boost Threads library (Valgrind’s Memcheck tool does not detect
this error).
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Table 6.21: Performance of Boost Threads mandelbrot with static and dynamic scheduling.

Wall clock time (seconds)
Compiler g++ Boost static g++ Boost dynamic icpc Boost static icpc Boost dynamic
Mean 8.6414 5.6578 8.8854 5.8676
Geo. Mean 8.641356 5.657799 8.88538 5.86754
Std. Dev. 0.03084315 0.003962323 0.02131431 0.02970354
Speedup 2.57x 3.926x 2.567x 3.888x

Figure 6.6: VTune CPU usage summary for the statically scheduled Boost Threads mandel-
brot.
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6.4 Deduplication Kernel

The deduplication kernel, dedup, was developed by Princeton University and forms part of
the Princeton Application Repository for Shared-Memory Computers (PARSEC) benchmark
suite [14]. Deduplication is a compression method for compressing a data stream using a com-
bination of global and local compression, thereby removing redundant data segments to achieve
high compression ratios [155]. The deduplication kernel provided by the PARSEC benchmark
suite1 makes use of a pipelined programming model that mimics real-world implementations,
such as the new-generation disk-based deduplication storage systems used for enterprise data
protection [14, 155].

The pipeline consists of five stages or pipeline filters that are responsible for performing the
deduplication process on an input stream and producing the deduplicated output. The first
stage, DataProcess, is responsible for breaking the input stream into coarse-grained chunks
for further processing. The second stage, FindAllAnchors, further segments the data into fine-
grained blocks based on the content of the data using rolling fingerprints. The third stage,
ChunkProcess, computes the SHA1 hash value for each segment. If the hash already exists in
the global hash table, the segment is marked as a duplicate, the data is replaced with the hash
value, and the segment is sent to the output stage (bypassing the compression stage). If the
hash is not found in the hash table, an entry is created for it and the data segment is sent to
the compression stage. The compression stage, Compress, compresses the data segment using
the Ziv-Lempel algorithm (GZIP) and updates the segment’s entry in the hash table before
passing the segment on to the output stage. Finally, the output stage, SendBlocks, assembles the
deduplicated output in the correct order from the segments it receives using the hash values and
compressed data associated with the corresponding entries in the global hash table [14].

The dedup source code is significantly longer than the previous examples and consists of multi-
ple files, so only small segments of code are provided to highlight those aspects of the program
under discussion. An abridged version of the encoding function (Encode) for the sequential
dedup program is provided in Listing 6.26.

6.4.1 Initial Profiling and Analysis

The original dedup kernel provided by the PARSEC benchmarking suite is written in C. Since
some of the parallel programming libraries only support C++, all of the C code files were

1http://parsec.cs.princeton.edu/index.htm
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1 void Encode(config * conf) {
2 // open input and output files
3

4 //queue allocation & initialization:
5 // only one queue between stages for sequential implementation
6 const int nqueues = 1;
7 anchor_que = (struct queue *)malloc(sizeof(struct queue) * nqueues);
8 send_que = (struct queue *)malloc(sizeof(struct queue) * nqueues);
9 int threads_per_queue = 1;

10 ...
11 //call queue_init with threads_per_queue
12 queue_init(&anchor_que[0], QUEUE_SIZE , 1);
13 queue_init(&send_que[0], QUEUE_SIZE , threads_per_queue);
14 ...
15 DataProcess(nqueues , fd); // enqueues chunks to the anchor queue
16

17 //do the processing: the serial implementation combines the FindAllAnchors ,
18 // ChunkProcess , and Compress stages for cache efficiency. Dequeues chunks
19 // from anchor queue , processes them , and enqueues segments to send queue
20 SerialIntegratedPipeline (0);
21

22 SendBlock(nqueues , conf); // dequeues from send queue and produces output
23

24 queue_destroy(&anchor_que [0]);
25 queue_destroy(&send_que [0]);
26 ...
27 }

Listing 6.26: Deduplication encoding function for dedup kernel.

renamed to C++ files and any compilation issues resulting from the conversion were resolved.
The code was also modified to comply with our own benchmarking tool and PARSEC specific
code was removed.

The dedup kernel program was compiled using G++ with -O0 -g as compiler options and the
timing measurements were repeated five times with a 184 MB data file (dataset184.dat) as the
input. The initial timings and profiling results are summarised in Table 6.22. The program was
profiled with a 31 MB data file (dataset31.dat) using Callgrind and Intel VTune Amplifier XE,
as well as being checked for memory errors using Intel Inspector and Valgrind’s Memcheck tool.
Both VTune and Callgrind reported an L3 cache miss rate of less than 0.5%, while Callgrind
reported a 0% L1 instruction miss rate and a 3.0% L1 data miss rate. Both Callgrind and VTune
indicated that there was a high branch misprediction rate, with significant execution stalls.

However, drilling down into the profiling information using VTune revealed that most of these
performance events originated from other modules, such as libz (compression), which accounts
for 49.8% of the events, libc (memory allocation and copying), and libcrypto (SHA1 hash
generation), with only 4.9% of the hardware performance events originating from the dedup
code. These profiling results indicate that there is very little room for improving the original
code through manual optimisation, since most of the performance issues are within libraries
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Figure 6.7: Memory errors detected by Intel Inspector in dedup.

provided by the system. This conclusion is supported by the high level optimisation report
(-opt-report compiler option) produced by the Intel C++ compiler. Hotspot analysis shows
that the sub_Compress function of the Compress stage accounts for the majority of CPU time.
However, this CPU time is being spent inside libz’s GZIP compression function.

Memory access error checking using Valgrind’s Memcheck tool and Intel Inspector XE revealed
several memory leaks in the original program (Figure 6.7). Some of these leaks were quite se-
vere and resulted in over 600 MB of memory leakage by the dedup program. Intel Inspector’s
easy-to-use graphical interface proved indispensable in locating and resolving the memory is-
sues. The Intel debugger was also found to be very useful in tracking down the memory issues
through its single-stepping and variable watching features. The full version of the corrected
serial pipeline implementation can be found in Appendix B.3.

Table 6.22: Runtime performance of the original, unoptimised sequential dedup program.

Mean Wall clock time Geometric Mean Standard Deviation
12.2234 s 12.22339 s 0.01645600

6.4.2 Sequential Optimisations

Since manual optimisations are unlikely to provide worthwhile benefits relative to the amount
of effort required to implement them, only automatic compiler optimisations have been evalu-
ated. The dedup program code was compiled using both the GNU C++ compiler and the Intel
C++ compiler with increasing levels of optimisation enabled (-O1, -O2, and -O3). The perfor-
mance summary for these compiler optimisations, using the GNU compiler (g++) and the Intel
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compiler (icpc), is given in Table 6.23. In all cases, speedup is measured against the original
sequential program results (Table 6.22).

Table 6.23: Performance of dedup with increasing compiler optimisation levels.

Wall clock time (seconds)
Compiler g++ -O1 g++ -O2 g++ -O3 icpc -O1 icpc -O2 icpc -O3
Mean 10.814 10.8406 10.8206 10.6156 10.6252 10.615
Geo. Mean 10.81398 10.84060 10.82059 10.61559 10.62519 10.615
Std. Dev. 0.021012 0.011216 0.0175585 0.0183657 0.01467 0.001581
Speedup 1.13x 1.128x 1.13x 1.151x 1.15x 1.152x

In addition to the standard optimisations tested above, other advanced compiler optimisations
such as interprocedural optimisation and profile-guided optimisation were tested. IPO was en-
abled for G++ using the -O3, -fwhole-program, and -flto compiler flags. The -flto option
enables link-time optimisations, which expands the scope of interprocedural optimisations to
multiple object files. IPO was enabled for the Intel compiler using the -O3 and -ipo com-
piler flags. PGO was enabled using -fprofile-generate and -fprofile-use for G++, and
-prof-gen and -prof-use for the Intel C++ compiler, along with the IPO and -O3 compiler
flags. The timing results with IPO and PGO enabled are given in Table 6.24.

Table 6.24: Performance of dedup with interprocedural and profile-guided optimisations.

Wall clock time (seconds)
Compiler g++ w/ IPO g++ w/ IPO + PGO icpc w/ IPO icpc w/ IPO + PGO
Mean 10.8066 10.7588 10.618 10.6042
Geo. Mean 10.80660 10.7588 10.618 10.6042
Std. Dev. 0.005899 0.0031145 0.004848 0.002588
Speedup 1.131x 1.136x 1.151x 1.153x

The performance results for the additional compiler optimisations show minor improvements
over the original unoptimised version. Performance does not improve noticeably beyond the
first optimisation level for each compiler (-O1). However, the highest performance is achieved
using -O3, IPO, and PGO, even if the performance increase from -O1 is minor. The Intel
compiler produces a slightly faster executable (15.3% improvement) compared to GCC (13.6%
improvement). Profiling of the optimised executables shows only minor improvements over the
initial analysis for performance events such as instruction retire stalls. The -O3, IPO, and PGO
compiler options are used for all further testing.

Automatic vectorisation using the SSE4.2 compiler options (-msse4.2 -mfpmath=sse for
G++ and -xSSE4.2 for the Intel compiler) was also tested. Unfortunately, there was no per-
formance improvement from automatic SSE vectorisation, with the G++ compiled executable
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giving a wall clock time of 10.8206 s and the icpc compiled executable taking 10.6148 s. The
vectorisation report from the Intel compiler (-vec-report) revealed that the loops in the pro-
gram did not provide worthwhile vectorisation or had loop carried dependencies that prevented
vectorisation.

To ensure that the disk subsystem is not affecting the performance of the program, the data
files were copied to and accessed from a ram-disk (storage space located in RAM), thereby
eliminating the potential bottleneck of the system’s slower hard disks. Then, the program was
timed using each of the available data file sizes (10 MB, 31 MB, 184 MB, and 672 MB data
files) and compared to the timing runs with the data files accessed from the hard disk. There was
no difference in performance when using the ram-disk, which indicates that the disk subsystem
does not impose a bottleneck on the program’s performance.

Intel Integrated Performance Primitives

As noted in Section 6.4.1, calls to the libz compression library are a significant performance
hotspot in the dedup kernel program. The Intel Integrated Performance Primitives (IPP) li-
brary provides an optimised drop-in replacement (no need to modify function calls) for the
libz library [76]. To make use of the IPP library compression functions, the libz library was
recompiled with IPP support (patches provided by Intel) and the IPP libz library was linked
to the target program at compile time. The dedup kernel was benchmarked using the IPP
libz library and compared to the performance of the program with the original libz library. To
make use of the IPP libz library, the compiler linking options were changed to the following:
-lipp_z -lippcore -lippdc -lipps -liomp5 -lpthread. Performance analysis reveals
that the IPP version did not improve performance, which is likely due to the small segment sizes
not providing enough computational work for each call to the compression function, thereby
limiting any potential speedup. Additionally, the program output differs between the two ver-
sions. Therefore, the IPP optimised version of dedup has been excluded from further analysis.

6.4.3 Parallel Implementation

Unlike the previous two example programs, which were loop based task parallel problems, the
deduplication kernel is implemented as a pipeline where data passes through several processing
filters before the output emerges at the end of the pipeline. Deduplication favours the Data
Decomposition pattern of the Identifying Concurrency design space, since the focus is on the
data and how it is segmented and processed. The pipeline stages have already been described
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in Section 6.4, which details the segmentation of the data by each pipeline stage and the use
of a hash table to store compressed segments. Each pipeline stage can be viewed as a task that
performs processing on a segment of data as it passes through the pipeline. Dependency analysis
is straightforward as data segments can be processed independently by parallel instances of the
same pipeline stage. However, there is a clear ordering dependency between adjacent stages in
the pipeline. There is also an ordering constraint on the I/O operations as the data must be read
and written in the correct order. Therefore, the pipeline stages can be grouped and ordered using
the Group Tasks and Order Tasks patterns, with the input and output pipeline stages requiring
sequential execution. The Data Sharing pattern is particularly important as adjacent stages
communicate via shared producer-consumer style queues. The global hash table is also shared
between all the tasks. These shared data structures must be protected using the appropriate
synchronisation constructs.

As noted previously, deduplication organises tasks by data flow and, therefore, follows the
Pipeline pattern of the Algorithm Structure design space. The deduplication pipeline has a
primarily linear data flow (the compression stage can be skipped if the data associated with a
particular hash value has been compressed previously) and since the computational intensity of
the stages differ, the pipeline filter tasks can be grouped together on the same processor. The
deduplication pipeline makes use of a wide variety of structures from the Supporting Struc-
tures design space. A combination of the Fork/Join and SPMD patterns is used to fork a pool
of threads for each of the parallel pipeline stages, which follow the SPMD pattern and exe-
cute the same instructions on different data segments. The threads are joined once all of the
data segments have been processed and the results have been combined and reordered. Since
multiple threads are forked for each parallel stage, load balancing is handled by the operating
system [14]. The Shared Data and Shared Queue patterns are also applicable as the global hash
table must be protected from concurrent access through mutual exclusion and the appropriate
care must be taken to protect the shared queues between pipeline stages. Conditional variables
can be used to prevent busy-waiting by blocking threads while they wait for more data, thereby
allowing other threads to continue until the sleeping threads are signalled that there is more data
to process.

Finally, the parallel design described above must be implemented using the appropriate lan-
guage constructs and parallel libraries, bringing us to the Implementation Mechanisms de-
sign space. The attempts at implementing the design using automatic parallelisation, OpenMP,
Threading Building Blocks, Pthreads, Boost Threads, and Cilk Plus are presented below. How-
ever, certain parallel libraries are better suited to the implementation of the Pipeline pattern,
while others do not provide all the necessary features for an effective implementation. The
speedups listed for each implementation are relative to the best sequential performance for that
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specific compiler.

Automatic Parallelisation

Automatic parallelisation proved unsuccessful for both the GNU C/C++ and Intel C/C++ com-
pilers. In the case of the Intel compiler, the performance was worse than the sequential ver-
sion. Consulting the compiler diagnostics and guided auto-parallelisation (-par-report and
-guide) features of the Intel compiler revealed that there are very few loops that are suitable
for automatic parallelisation and the loops that can be parallelised create performance overheads
that outweigh the potential benefit of parallelisation.

Pthreads

The PARSEC benchmark suite provided an existing parallel implementation of the dedup ker-
nel program using Pthreads that closely matches the parallel design described above [14]. Their
implementation uses a separate thread pool for each parallel pipeline stage, where each thread
pool contains at least as many threads as the number of available processor cores (originally
specified at runtime, but modified so that it is specified at compile time using a preprocessor
symbol). This allows any particular stage to make full use of the CPU if required [14]. Lock
contention is avoided by scaling the number of queues between stages according to the number
of threads and by giving each hash table entry its own lock. The Encode function is responsi-
ble for creating the queues and forking and joining the appropriate number of threads for each
pipeline stage function as shown in Listing 6.27.

1 void Encode(config * conf) {
2 const int nqueues = (conf ->nthreads / MAX_THREADS_PER_QUEUE) +
3 ((conf ->nthreads % MAX_THREADS_PER_QUEUE != 0) ? 1 : 0);
4 ... // Queue allocation
5 int threads_per_queue;
6 for(int i = 0; i < nqueues; i++) {
7 if (i < nqueues -1 || conf ->nthreads %MAX_THREADS_PER_QUEUE == 0) {
8 //all but last queue
9 threads_per_queue = MAX_THREADS_PER_QUEUE;

10 } else //remaining threads work on last queue
11 threads_per_queue = conf ->nthreads %MAX_THREADS_PER_QUEUE;
12 queue_init(&chunk_que[i], QUEUE_SIZE , threads_per_queue);
13 queue_init(&anchor_que[i], QUEUE_SIZE , 1);
14 queue_init(&send_que[i], QUEUE_SIZE , threads_per_queue);
15 queue_init(&compress_que[i], QUEUE_SIZE , threads_per_queue);
16 }
17

18 // Variables for 3 thread pools and 2 pipeline stage threads.
19 // The first and the last stage are serial (mostly I/O).
20 pthread_t threads_anchor[MAX_THREADS], threads_chunk[MAX_THREADS],
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21 threads_compress[MAX_THREADS], threads_send , threads_process;
22

23 struct thread_args data_process_args;
24 .. // Set file handle and nqueues for data_process_args
25 pthread_create(&threads_process , NULL , DataProcess , &data_process_args);
26

27 int i;
28 struct thread_args chunk_thread_args[conf ->nthreads];
29 for (i = 0; i < conf ->nthreads; i ++) {
30 chunk_thread_args[i].tid = i;
31 pthread_create(&threads_chunk[i], NULL , ChunkProcess , &chunk_thread_args[i]);
32 }
33 struct thread_args anchor_thread_args[conf ->nthreads];
34 for (i = 0; i < conf ->nthreads; i ++) {
35 anchor_thread_args[i].tid = i;
36 pthread_create(&threads_anchor[i], NULL , FindAllAnchors , &anchor_thread_args[i]);
37 }
38 struct thread_args compress_thread_args[conf ->nthreads];
39 for (i = 0; i < conf ->nthreads; i ++) {
40 compress_thread_args[i].tid = i;
41 pthread_create(&threads_compress[i], NULL , Compress , &compress_thread_args[i]);
42 }
43

44 struct thread_args send_block_args;
45 // Set conf and nqueues for send_block_args
46 pthread_create(&threads_send , NULL , SendBlock , &send_block_args);
47

48 /*** parallel phase -- join all threads ***/
49 pthread_join(threads_process , NULL);
50 for (i = 0; i < conf ->nthreads; i ++)
51 pthread_join(threads_anchor[i], NULL);
52 for (i = 0; i < conf ->nthreads; i ++)
53 pthread_join(threads_chunk[i], NULL);
54 for (i = 0; i < conf ->nthreads; i ++)
55 pthread_join(threads_compress[i], NULL);
56 pthread_join(threads_send , NULL);
57 ... // Destroy queues
58 }

Listing 6.27: Encoding function for parallel dedup using Pthreads.

The shared queue structure is manipulated using the enqueue and dequeue functions, which
must ensure that only one thread is able to access a particular queue at a time. An example of the
mutual exclusion constructs provided by Pthreads (mutex and condition variables) can be seen
in Listing 6.28, which shows the queue initialisation and the dequeue function. A simple mutex
in combination with a condition variable is sufficient for ensuring mutual exclusion without
high lock contention. Reader-writer locks are not appropriate for the queue data structure as
any accesses to the queue require both reads and writes.

The runtime performance of the Pthreads implementation using the GNU and Intel C/C++ com-
pilers is shown in Table 6.25. While there is a definite performance improvement over the se-
quential version, the speedups of between 2.1x and 2.2x fall very short of linear speedup with
the number of processors. This can be attributed to the sequential input and output stages. This
is confirmed by profiling as illustrated in Figure 6.8, which shows how the wait times associated
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1 void queue_init(struct queue * que, int size , int threads) {
2 pthread_mutex_init(&que->mutex , NULL);
3 pthread_cond_init(&que->empty , NULL);
4 pthread_cond_init(&que->full , NULL);
5 ... // Other queue data members
6 }
7

8 int dequeue(struct queue * que, int * fetch_count , void ** to_buf) {
9 pthread_mutex_lock(&que->mutex);

10 while (que->tail == que->head && (que->end_count) < que->threads)
11 pthread_cond_wait(&que->empty , &que->mutex);
12 if (que->tail == que->head && (que->end_count) == que->threads) {
13 pthread_cond_broadcast(&que->empty);
14 pthread_mutex_unlock(&que->mutex);
15 return -1;
16 }
17 for ((*fetch_count) = 0; (*fetch_count) < ITEM_PER_FETCH; (*fetch_count )++) {
18 to_buf[(*fetch_count)] = que->data[que->tail];
19 que->tail++;
20 if (que->tail == que->size) que->tail = 0;
21 if (que->tail == que->head) {
22 (*fetch_count )++;
23 break;
24 }
25 }
26 pthread_cond_signal(&que->full);
27 pthread_mutex_unlock(&que->mutex);
28 return 0;
29 }

Listing 6.28: Thread-safe queue using Pthreads mutexes and condition variables.

Table 6.25: Performance of Pthreads dedup implementation.

Wall clock time (seconds)
Compiler g++ Pthreads icpc Pthreads
Mean 4.8526 4.9878
Geo. Mean 4.85174 4.980707
Std. Dev. 0.1023562 0.3016947
Speedup 2.218x 2.126x

with the sequential stages affect concurrency. It is unlikely that this problem can be resolved
without greatly increasing the program’s complexity with more sophisticated thread schedul-
ing. Profiling also reveals that there are no performance issues within dedup itself and that data
sharing performance is good (data segments are copied between stages to ensure local access).
The output produced by the Pthreads program is identical to the output for the sequential ver-
sion. Error checking with Valgrind and Intel Inspector XE confirm that there are no threading
or memory related problems.
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Figure 6.8: VTune thread concurrency analysis of Pthreads dedup.

Boost Threads

The Boost Threads implementation follows the same structure as the Pthreads version, replacing
the Pthreads data types and function calls with Boost Threads objects and member functions.
Boost simplifies certain aspects of the implementation by providing classes for thread groups
and allowing function arguments to be passed directly to the function when creating threads as
opposed to using void pointers and additional data structures. The Encode function is responsi-
ble for creating the queues and forking and joining the appropriate number of threads for each
pipeline stage function as shown in Listing 6.29.

Examples of the mutual exclusion constructs provided by Boost (mutex, scoped locks, and
condition variables) can be seen in Listing 6.30, which shows the queue initialisation and the
dequeue function. The use of scoped lock objects prevents deadlock if an exception is thrown
while a lock is held.

Since the Boost Threads version follows the same design as the Pthreads version, the perfor-
mance is essentially the same, as evidenced by the performance results in Table 6.26. The
profiling results also indicate that there is very little difference in terms of the performance
counters data. The output produced by the Boost Threads program is identical to the output
for the sequential version and Valgrind and Intel Inspector XE did not detect any threading or
memory related errors.
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1 void Encode(config * conf) {
2 ... // Open data file
3 ... // Queue allocation & initialization
4

5 // Variables for 3 thread pools and 2 pipeline stage threads.
6 // The first and the last stage are serial (mostly I/O).
7 boost::thread_group threads_anchor , threads_chunk , threads_compress;
8 boost::thread * threads_send = NULL;
9 boost::thread * threads_process = NULL;

10 int i;
11

12 // Thread for first pipeline stage (input)
13 threads_process = new boost::thread(DataProcess , nqueues , fd);
14 // Create 3 thread pools for the intermediate pipeline stages
15 for (i = 0; i < conf ->nthreads; i++)
16 threads_chunk.add_thread(new boost::thread(ChunkProcess , i));
17 for (i = 0; i < conf ->nthreads; i++)
18 threads_anchor.add_thread(new boost::thread(FindAllAnchors , i));
19 for (i = 0; i < conf ->nthreads; i++)
20 threads_compress.add_thread(new boost::thread(Compress , i));
21 // Thread for last pipeline stage (output)
22 threads_send = new boost::thread(SendBlock , nqueues , conf);
23

24 /*** parallel phase -- join all threads ***/
25 (*threads_process).join();
26 threads_anchor.join_all();
27 threads_chunk.join_all();
28 threads_compress.join_all();
29 (*threads_send).join();
30

31 ... // Destroy queues
32

33 delete threads_send;
34 delete threads_process;
35 }

Listing 6.29: Encoding function for parallel dedup using Boost Threads.

OpenMP

In the previous examples, OpenMP has been shown to be an easy to implement alternative to
explicit threading. However, OpenMP does not provide native support for pipeline based pro-
cessing, which makes implementing such a design more difficult. Research is underway to
add pipeline or stream based processing support to OpenMP, but these features are not part of
the current standard and are only supported in experimental builds of the GNU C/C++ com-
piler [121]. As such, the approach to implementing an OpenMP version of dedup is similar
to that of Pthreads and Boost Threads. The OpenMP version uses the same queue structures
between the pipeline stages and spawns OpenMP tasks for each pipeline stage as shown in
Listing 6.31.

As with the Boost Threads and Pthreads implementations, access to the queue structures is pro-
tected via mutual exclusion using locks as demonstrated in Listing 6.32. The OpenMP runtime
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1 void queue_init(struct queue * que, int size , int threads) {
2 que->mutex = new boost::mutex;
3 que->empty = new boost::condition_variable;
4 que->full = new boost::condition_variable;
5 ... // Other queue data members
6 }
7

8 int dequeue(struct queue * que, int * fetch_count , void ** to_buf) {
9 boost::unique_lock <boost::mutex > lock(*que->mutex);

10 while (que->tail == que->head && (que->end_count) < que->threads) {
11 que->empty ->wait(lock);
12 }
13 if (que->tail == que->head && (que->end_count) == que->threads) {
14 que->empty ->notify_all();
15 return -1;
16 }
17 for ((*fetch_count) = 0; (*fetch_count) < ITEM_PER_FETCH; (*fetch_count )++) {
18 to_buf[(*fetch_count)] = que->data[que->tail];
19 que->tail++;
20 if (que->tail == que->size) que->tail = 0;
21 if (que->tail == que->head) {
22 (*fetch_count )++;
23 break;
24 }
25 }
26 que->full ->notify_one();
27 return 0;
28 }

Listing 6.30: Thread-safe queue using Boost Threads mutexes and condition variables.

Table 6.26: Performance of Boost Threads dedup implementation.

Wall clock time (seconds)
Compiler g++ Boost Threads icpc Boost Threads
Mean 4.9458 4.9156
Geo. Mean 4.94401 4.910308
Std. Dev. 0.1491147 0.2597697
Speedup 2.176x 2.16x

provides lock types (omp_lock_t) and functions for locking (omp_set_lock) and unlocking
(omp_unset_lock) these locks. However, OpenMP does not provide condition variables. This
functionality was replicated by spinning on a locally cached copy of a shared variable and flush-
ing memory to receive updated values for the variable. The lock is released while the thread
spins and is acquired again when the thread is signalled to continue.

Performance testing reveals improved speedup over the Pthreads and Boost Threads implemen-
tations for both compilers (Table 6.27). This is likely due to the improved task scheduling
implemented by the OpenMP runtime system. However, the scaling is still far from perfect.
The GNU OpenMP implementation shows significantly better performance than the Intel im-
plementation in this case.
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1 void Encode(config * conf) {
2 ... // Open data file
3 ... // Queue allocation & initialization
4

5 #pragma omp parallel default(none) shared (fd, conf)
6 {
7 #pragma omp single nowait
8 {
9 int i;

10 #pragma omp task firstprivate(fd)
11 DataProcess(nqueues , fd);
12

13 for (i = 0; i < conf ->nthreads; i++) {
14 #pragma omp task firstprivate(i)
15 FindAllAnchors(i);
16 }
17 for (i = 0; i < conf ->nthreads; i++) {
18 #pragma omp task firstprivate(i)
19 ChunkProcess(i);
20 }
21 for (i = 0; i < conf ->nthreads; i++) {
22 #pragma omp task firstprivate(i)
23 Compress(i);
24 }
25

26 #pragma omp task firstprivate(conf)
27 SendBlock(nqueues , conf);
28 } }
29 ... // Destroy queues
30 }

Listing 6.31: Encoding function for parallel dedup using OpenMP.

The output from the OpenMP dedup kernel is identical to the output for the sequential version,
so there are no apparent defects in the parallel implementation of the program. Since condition
variables have been approximated, it is very important to ensure that there are no deadlock
or data races problems. Fortunately, this is the case as Intel Inspector XE did not detect any
threading errors.

Cilk Plus

As with OpenMP, Cilk Plus is better suited to data and simple task based parallelism. Unfor-
tunately, Cilk Plus does not provide any explicit mutual exclusion constructs, which makes it
unsuitable for implementing a Cilk Plus version of the dedup kernel program. While the queue
structure can be implemented using Cilk Plus reducers [73], the locks and condition variables
required by the hash table are not supported. It is possible to use the mutex constructs provided
by other threading libraries such as Threading Building Blocks and Pthreads [73], but it was
decided such a path would skew the validity of the experiment.
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1 void queue_init(struct queue * que, int size , int threads) {
2 omp_init_lock(&que->mutex);
3 que->empty = 0;
4 que->full = 0;
5 ... // Other queue data members
6 }
7

8 int dequeue(struct queue * que, int * fetch_count , void ** to_buf) {
9 omp_set_lock(&que->mutex);

10 while (que->tail == que->head && (que->end_count) < que->threads) {
11 omp_unset_lock(&que->mutex);
12 #pragma omp flush
13 while (que->empty != 1) {
14 #pragma omp flush
15 }
16 omp_set_lock(&que->mutex);
17 que->empty = 0;
18 #pragma omp flush
19 }
20 if (que->tail == que->head && (que->end_count) == que->threads) {
21 #pragma omp flush
22 que->empty = 1;
23 #pragma omp flush
24 omp_unset_lock(&que->mutex);
25 return -1;
26 }
27 for ((*fetch_count) = 0; (*fetch_count) < ITEM_PER_FETCH; (*fetch_count )++) {
28 to_buf[(*fetch_count)] = que->data[que->tail];
29 que->tail++;
30 if (que->tail == que->size) que->tail = 0;
31 if (que->tail == que->head) {
32 (*fetch_count )++;
33 break;
34 }
35 }
36 #pragma omp flush
37 que->full = 1;
38 #pragma omp flush
39 omp_unset_lock(&que->mutex);
40 return 0;
41 }

Listing 6.32: Thread-safe queue using OpenMP locks.

Thread Building Blocks

The Threading Building Blocks implementation of dedup differs substantially from the other
implementations described above. TBB provides explicit support for pipeline based processing
through its pipeline template. A TBB pipeline is implemented by defining filter classes to rep-
resent the stages of the pipeline. These filter classes must provide an overloaded operator()

function that accepts an input token from a previous stage and returns a token to the following
stage. This means that there is no longer a need for the shared queues used by the other imple-
mentations as this is handled by the Threading Building Blocks runtime system. As shown in
Listing 6.33, an instance of each pipeline filter class is declared and added to the pipeline object
in the appropriate order. The pipeline is then instructed to begin execution by calling its run
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Table 6.27: Performance of OpenMP dedup implementation.

Wall clock time (seconds)
Compiler g++ OpenMP icpc OpenMP
Mean 3.3894 4.0978
Geo. Mean 3.382169 4.096963
Std. Dev. 0.2554981 0.09353983
Speedup 3.181x 2.588x

function with the desired number of simultaneous tokens. This allows the programmer to spec-
ify how many tokens the pipeline can have in flight at any one time, thereby limiting the number
of tokens produced by the input stage until a token has reached the end of the pipeline [125].
This ensures that the pipeline is never oversubscribed. After the pipeline execution has com-
pleted, the filters are cleared and the program can exit.

1 void Encode(config * conf) {
2 ... // Open data file
3

4 tbb::task_scheduler_init init; // initialise the TBB scheduler
5 tbb::pipeline pipeline; // create the TBB pipeline
6

7 // create and add the data processing / file reading stage to the pipeline
8 DataProcessFilter data_process_stage(fd);
9 pipeline.add_filter(data_process_stage);

10

11 // create and add the find all anchors stage to the pipeline
12 FindAllAnchorsFilter find_anchors_stage;
13 pipeline.add_filter(find_anchors_stage);
14

15 // create and add the chunk process stage to the pipeline
16 ChunkProcessFilter chunk_process_stage;
17 pipeline.add_filter(chunk_process_stage);
18

19 // create and add the compress stage to the pipeline
20 CompressFilter compress_stage;
21 pipeline.add_filter(compress_stage);
22

23 // create the send block stage to the pipeline
24 SendBlockFilter send_block_stage(conf);
25 pipeline.add_filter(send_block_stage);
26

27 // start the pipeline and clear the filters when done
28 pipeline.run(conf ->nthreads);
29 pipeline.clear();
30 }

Listing 6.33: Encoding function for parallel dedup using TBB.

Since the TBB implementation no longer makes use of the queue structures between filter
stages, the implementation of the filter functions had to modified to support the updated pipeline
design. An example filter is provided in Listing 6.34, which shows the ChunkProcess stage im-
plemented as a TBB filter class. The filter class inherits from tbb::filter and implements
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the overloaded operator() function that accepts an input token from the previous stage. The
initialisation statement, tbb::filter(false), in the class constructor indicates that this stage
can execute in parallel. This is set to true in the input and output stages to prevent parallel
execution [125]. Also shown in the example is the use of the mutex and scoped lock constructs
provided by TBB to protect access to the shared hash table. While the TBB implementation
of dedup required extensive modifications to the original code, it is the subjective opinion of
the author that the TBB version of the program would be easier to implement than the other
versions if the various parallel versions of the program were being implemented from scratch.
This is echoed by similar research carried out by Kegel et al. [86, 87].

1 class ChunkProcessFilter: public tbb::filter {
2 private:
3 send_buf_item * sub_ChunkProcess(data_chunk chunk) {
4 send_buf_item * item; send_body * body = NULL;
5 u_char * key = (u_char *)malloc(SHA1_LEN);
6 Calc_SHA1Sig(chunk.start , chunk.len, key);
7

8 struct hash_entry * entry;
9 /* search the cache */

10 tbb::mutex *ht_lock = hashtable_getlock(cache , (void *)key);
11 tbb::mutex::scoped_lock lock (*ht_lock);
12 if ((entry = hashtable_search(cache , (void *)key)) == NULL) {
13 // Cache miss: put it in the hashtable and flag for compression
14 } else {
15 // Cache hit: flag as a fingerprint and exclude from compression
16 }
17 if (chunk.start) MEM_FREE(chunk.start);
18 return item;
19 }
20 public:
21 ChunkProcessFilter() : tbb::filter(false) {}
22

23 void * operator()(void * itemm) {
24 anchored_data_chunks * inchunks = (anchored_data_chunks *)itemm;
25 send_buf_list * ret;
26 ret = (send_buf_list *)malloc(sizeof(send_buf_list));
27 ret->size = inchunks ->size;
28 ret->items = new send_buf_item *[inchunks ->size];
29

30 for (int i = 0; i < inchunks ->size; i++) {
31 data_chunk chunk;
32 chunk.start = inchunks ->chunks[i]->start;
33 chunk.len = inchunks ->chunks[i]->len;
34 chunk.cid = inchunks ->chunks[i]->cid;
35 chunk.anchorid = inchunks ->chunks[i]->anchorid;
36

37 ret->items[i] = sub_ChunkProcess(chunk);
38 MEM_FREE(inchunks ->chunks[i]);
39 }
40 delete [] inchunks ->chunks;
41 MEM_FREE(inchunks);
42 return ret;
43 }
44 }; // end of ChunkProcessFilter class

Listing 6.34: ChunkProcess filter class for parallel dedup using TBB.
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The performance of the TBB implementation (Table 6.28) is significantly better than that of the
other parallel implementations with a speedup close to 3.4x, which is acceptable given the serial
input and output stages. The Intel compiler produces a slightly faster program, but the difference
is negligible. The improved performance can be attributed to Threading Building Blocks’s
explicit pipeline support and efficient runtime scheduler [125]. Error checking reveals that the
output is correct and analysis with Intel Inspector XE confirms that there are no threading issues.

Table 6.28: Performance of TBB dedup implementation.

Wall clock time (seconds)
Compiler g++ TBB icpc TBB
Mean 3.1722 3.1594
Geo. Mean 3.171457 3.158701
Std. Dev. 0.07759317 0.07503533
Speedup 3.392x 3.357x



Chapter 7

Results

The runtime performance results and static code metrics for matrixmul, mandelbrot, and
dedup are presented below, along with an analysis and discussion of the results. The Hal-
stead Length (N) and Volume (V) and McCabe’s cyclomatic complexity (v(G)) metrics were
measured using Crystal FLOW for C++1. For matrixmul and mandelbrot, the source lines
of code (SLOC) measurements were calculated by hand. The line counts and code differences
for dedup were gathered using the Unified CodeCount (UCC)2 tool due to the much larger
code size of the program compared to the previous examples. Performance measurements were
gathered using the benchmarking tool described in Section 5.3.

The compiler options used to compile each program for the respective compilers, optimisation
levels, and parallel programming model are listed below. Modifications to the listed options
for a particular program or implementation are described in the respective sections. For the
sequential compiler optimisations, the speedup for each test is calculated against the G++ com-
piler with optimisations disabled (-O1). Whereas for the parallel implementations, the speedup
for each test is calculated against the fastest sequential performance using the same compiler as
was used for the compilation of the parallel program. This is to ensure that the speedup is not
affected by the performance difference between compilers.

• Common compiler options – -fomit-frame-pointer -fno-builtin -pipe

• O1 – g++: -O1
icpc: -O1

1http://www.sgvsarc.com/Prods/CFLOW/Crystal_FLOW.htm
2http://sunset.usc.edu/research/CODECOUNT/
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• O2 – g++: -O2
icpc: -O2

• O3 – g++: -O3
icpc: -O3

• IPO – g++: -fwhole-program
icpc: -ipo

• SSE – g++: -msse4.2 -mfpmath=sse

icpc: -xSSE4.2

• PGO – g++: -fprofile-generate / -fprofile-use

icpc: -prof-gen / -prof-use

• Auto-parallelisation – icpc: -parallel -par-runtime-control

-par-schedule-auto -par-num-threads=<n>

• Boost Threads – g++: -lboost_thread-mt -DNTHREADS=n

icpc: -lboost_thread-mt -DNTHREADS=n

• Cilk Plus – icpc: -DNTHREADS=n

• OpenMP – g++: -fopenmp -DNTHREADS=<n>

icpc: -openmp -DNTHREADS=<n>

• Pthreads – g++: -pthread -DNTHREADS=<n>

icpc: -pthread -DNTHREADS=<n>

• Intel TBB – g++: -ltbb -std=c++0x -DNTHREADS=<n>

icpc: -tbb -std=c++0x -DNTHREADS=<n>

• Intel MKL – g++: -lmkl_intel_ilp64 -lmkl_gnu_thread -lmkl_core

-fopenmp -lpthread

icpc: -mkl
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7.1 Matrix Multiplication

7.1.1 Runtime Performance

A runtime performance summary of the sequential compiler optimisations using the GNU
C/C++ (g++) and Intel C/C++ (icpc) compilers for matrixmul is given in Table 7.1, while the
performance of the various parallel implementations, with number of threads (n) equal to four,
is given in Table 7.2. All measurements were taken with a matrix dimension of 2048x2048.
Figure 7.1 shows a set of boxplots comparing the performance of the parallel implementations
and C/C++ compilers. The parallel programs were compiled with the O3, IPO, and SSE options
in addition to the options listed for the respective parallel model or library. An analysis of the
results is performed in Section 7.1.3.

Boxplots of Wall Clock Times for Parallel matrixmul
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Figure 7.1: Runtime performance for parallel implementations of matrixmul using the GNU
and Intel C/C++ compilers.
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7.1.2 Code Metrics

Table 7.3: Static code metrics for the implementations of the matrixmul program.

Implementation SLOC Added Removed Modified N V v(G)

Sequential 48 – – – 645.03 180 10

Auto-parallelisation 48 0 0 0 645.03 180 10

Boost 62 15 1 2 877.06 216 11

Cilk Plus 58 9 0 1 747.20 191 9

Intel MKL 33 3 18 14 533.57 141 5

OpenMP 52 4 0 0 727.44 190 10

Pthreads 63 16 1 2 913.73 226 12

Intel TBB 57 17 10 1 821.85 207 9

7.1.3 Discussion

It is clear from the sequential performance results (Table 7.1) that the increasing levels of com-
piler optimisations are very effective at improving the runtime performance of the matrixmul
program. However, the GNU C++ compiler appears to perform more effective optimisations
than the Intel compiler without interprocedural optimisations (IPO) enabled. With IPO en-
abled, the Intel compiler takes the lead, almost doubling the speedup attained by the respective
G++ compiled executable. This indicates that the G++ compiler performs more aggressive sin-
gle file optimisations at the standard optimisation levels. Other compiler-based optimisations
such as automatic SSE vectorisation and profile-guided optimisation (PGO) had little effect on
performance and in the case of the Intel compiler, PGO substantially reduced the performance
relative to just using IPO. The remaining characteristics, such as memory usage and CPU load
(25% usage represents one processor core with 100% load), are essentially the same between
compilers.

The performance of the parallel implementations vary quite substantially between parallel mod-
els and, in some cases, between the compiler used for a particular parallel programming model
or library. The overall best performance is achieved using the Intel Math Kernel Library (MKL),
which is an optimised mathematics library as opposed to a parallel programming model. This
shows that it is worthwhile looking for the required functionality in existing optimised libraries
instead of developing custom solutions. Of the two compilers, the GNU C/C++ compiler has the
best performance when used in conjunction with MKL. Beyond the MKL library, it is clear that
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the Intel compiler is the best choice for parallel implementations of matrixmul. This is likely
due to the improved SSE vectorisation performed by the Intel compiler, which, in combination
with favourable caching effects, resulted in speedups far in excess of linear speedup. As stated
in Section 6.2.2, SSE vectorisation was only effective for the parallel implementations and had
no effect on the sequential code. The Boost Threads and Threading Building Blocks implemen-
tations do not appear to have benefited from automatic vectorisation, which is likely due to the
use of C++ templates affecting the ability of the compiler to perform the vectorisation, since
Boost and TBB are the only libraries that make use of templates.

Of the parallel programming models, Pthreads and Cilk Plus had the best runtime performance.
If we compare Boost Threads and Pthreads using G++, we find that their performance is effec-
tively the same. This is to be expected as Boost Threads essentially provides an object-oriented
interface for Pthreads in C++. Another particularly interesting result is that of the automatic
parallelisation by the Intel compiler (automatic parallelisation using G++ was ineffective and
excluded from analysis), which produced excellent speedup for little to no additional effort. The
CPU load characteristics indicate that many of the parallel implementations make good use of
the available processor cores.

The code metrics for the various implementations of the matrixmul program show that the
explicit threading approaches (Boost Threads and Pthreads) required more substantial changes
and resulted in a more complex program when compared to the other threading approaches.
This indicates that the lower level of abstraction provided by these explicit threading libraries
results in more programming effort required to implement the respective parallel implemen-
tations. However, it must be noted that for the Cilk Plus implementation, the code required
to limit the number of available threads artificially increases the extent of modification com-
pared to the other implementations where such functionality fits seamlessly into other required
modifications. Despite this, the high level of abstraction provided by Cilk Plus results in a
lower program complexity and minimal increase in program volume compared to other par-
allel implementations. As mentioned previously, automatic parallelisation requires additional
programming effort to implement as the compiler performs all the work.



7.2. MANDELBROT SET ALGORITHM 178

7.2 Mandelbrot Set Algorithm

7.2.1 Runtime Performance

A runtime performance summary of the sequential compiler optimisations using the GNU
C/C++ (g++) and Intel C/C++ (icpc) compilers for mandelbrot is given in Table 7.4, while
the performance of the various parallel implementations, with number of threads (n) equal to
four, is given in Table 7.5. All measurements were taken with an input dimension of 16000.
Figure 7.2 shows a set of boxplots comparing the performance of the parallel implementations
using each of the C/C++ compilers.

For the presented performance data, “Dynamic (Dyn.)” refers to dynamic thread scheduling
and “Static” refers to static thread scheduling. All tests are compiled with SSE enabled (due
to the explicit use of SSE intrinsic functions) and the parallel programs are compiled with O3
and IPO in addition to SSE and the listed options. The results for the mandelbrot program are
analysed and discussed in Section 7.2.3.
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Boxplots of Wall Clock Times for Parallel mandelbrot
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Figure 7.2: Runtime performance for parallel implementations of mandelbrot using the GNU
and Intel C/C++ compilers.
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7.2.2 Code Metrics

Table 7.6: Static code metrics for the implementations of the mandelbrot program.

Implementation SLOC Added Removed Modified N V v(G)

Sequential 63 – – – 208 914.05 9

Auto-parallelisation 64 1 0 0 209 921.00 9

Boost Static 87 25 1 8 263 1233.82 10

Boost Dynamic 152 90 1 4 412 2027.03 25

Cilk Plus 73 9 0 1 220 1004.16 8

OpenMP Static 67 4 0 0 214 955.70 9

OpenMP Dynamic 67 4 0 0 217 976.46 9

Pthreads Static 96 34 1 8 309 1438.07 11

Pthreads Dynamic 159 97 1 8 455 2221.67 23

TBB Explicit Partioning 82 19 0 9 241 1104.98 9

TBB Auto Partitioner 82 19 0 9 239 1093.36 9

7.2.3 Discussion

Unlike matrixmul, the performance difference between compilers and optimisation levels for
mandelbrot from level -O1 and higher are marginal, excluding PGO, which once again results
in reduced performance. That being said, the GNU C++ compiler produces faster executables
in terms of sequential runtime performance compared to the Intel compiler. It is immediately
apparent from the performance comparison of the various parallel implementations (Figure 7.2)
that the dynamically scheduled versions perform markedly better than their statically scheduled
counterparts. Comparing the CPU load between implementations (Table 7.5) shows that the
statically scheduled versions only use two thirds of the available processing power, whereas
dynamic scheduling makes full use of the four processor cores. Additionally, the dynamically
scheduled programs use less RAM during runtime as threads work on smaller chunks of the
workload. The performance comparison also shows that the GNU C++ compiler produces
faster, more consistent performance compared to the Intel compiler.

Excluding the statically scheduled implementations, the runtime performance of the different
parallel implementations is essentially the same when using G++, while the Pthreads imple-
mentation is the fastest of the executables compiled with the Intel compiler. Once again, the
automatic parallelisation feature of the Intel compiler was able to produce an efficient parallel
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program with minimal programmer intervention. The Cilk Plus implementation was also able
to produce respectable, if slightly slower, performance in comparison to the other implementa-
tions. In respect of the two Threading Building Blocks implementations, the choice of whether
or not to auto_partitioner() for the parallel_for construct is dependent on the compiler
as the Intel compiler favours manual block size selection for our example program, whereas
G++ produces better performance using automatic range partitioning.

For embarrassingly parallel problems such as the Mandelbrot set algorithm and matrix multi-
plication problems examined here, it is apparent from the speedups achieved by our parallel
program implementations that Amdahl’s pessimistic outlook on scaling does not apply as these
programs are able to approach or even exceed linear speedup. However, the results for the
dedup kernel (Section 7.3.1) reveal that this is certainly not the case for all problems types.

Regarding other parallel software development tools, the Valgrind, Intel Inspector XE, and Intel
debugger (IDB) error checking and debugging tools were found to be helpful in detecting and
locating data race and memory leak issues in the shared queue data structure that was developed
for the dynamically scheduled Boost Threads and Pthreads implementations.

Once again, code metrics reveal that automatic parallelisation requires the least programming
effort to implement. It is followed by OpenMP, Cilk Plus, Threading Building Blocks, and the
statically scheduled Boost Threads and Pthreads implementations, which are presented in order
of increasing effort. While the dynamically scheduled Boost Threads and Pthreads implementa-
tions produce very good performance, they require significantly more effort to implement than
the statically scheduled versions. This is as a result of the need for a task queue for delegating
smaller chunks of work to the threads. While we implemented our own queue structure, it is
possible to make use of existing data structures provided that they are thread-safe or can be
made thread-safe by enclosing access to the data structure in critical sections using the appro-
priate lock constructs. Regardless of this, implementing dynamic scheduling using low-level
threading libraries requires more thought and effort in comparison to simple static scheduling
approaches. In contrast, switching between static and dynamic scheduling in OpenMP is trivial
and can be done at compile time or even runtime by modifying the appropriate environment
variables. These initial findings, along with similar research [86, 87], show that the use of
implicit parallel programming models, such as Cilk Plus, OpenMP, and Threading Building
Blocks, requires less programming effort and results in lower program complexity compared to
explicit threading using low-level libraries such as Boost Threads and Pthreads.
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7.3 Dedup Kernel

7.3.1 Runtime Performance

The compiler options used for dedup differ slightly from the previous two examples. The
options that differ are listed below. The parallel programs are compiled with the IPO and SSE
options in addition to the parallel library specific options.

• Common compiler options – -fomit-frame-pointer -fno-builtin -pipe

-fno-strict-aliasing -D_XOPEN_SOURCE=600 -lcrypto -lz

• IPO – g++: -flto -fwhole-program

icpc: -ipo

The runtime performance summary of the sequential compiler optimisations using the GNU
C/C++ (g++) and Intel C/C++ (icpc) compilers for dedup is presented in Table 7.7. The per-
formance of the four parallel implementations, with number of threads (n) equal to four, is
given in Table 7.8. All test runs were performed using a 672 MB data file. Previous testing
(Section 6.4.2) revealed that the performance of the disk subsystem did not have an effect on
the performance of the program and that it was not necessary to make use of a ram-disk These
results are analysed and discussed in Section 7.3.3.
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Boxplots of Wall Clock Times for Parallel dedup
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Figure 7.3: Runtime performance for parallel implementations of dedup using the GNU and
Intel C/C++ compilers.
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7.3.2 Code Metrics

Table 7.9: Static code metrics for the implementations of the dedup program.

Implementation SLOC Added Removed Modified N V v(G)

Sequential 1837 – – – 5443 26641.85 354

Boost 2013 217 41 0 6068 30735.85 385

OpenMP 2041 245 41 0 6158 31116.11 388

Pthreads 2044 257 50 0 6316 32003.83 390

Intel TBB 1867 203 173 9 5383 26828.43 338

7.3.3 Discussion

The sequential performance results for the dedup program (Table 7.7) do not reveal any in-
teresting differences between the two compilers, with the Intel C++ compiler producing only
marginally faster program executables compared to G++. However, the parallel performance
results given in Table 7.8 and illustrated in Figure 7.3 show a distinct difference in performance
between the various parallel programming models.

The first and most obvious observation that can be drawn from the results is that the Thread-
ing Building Blocks implementation is significantly faster than the other parallel models. This
is due to the nature of the dedup kernel, which is implemented using a pipeline architecture.
TBB provides a powerful high-level abstraction for implementing stream or pipeline processing
parallel designs where the other parallel programming models do not. Surprisingly, OpenMP
exhibits a distinct performance improvement over the explicit threading approaches despite its
lack of a pipeline processing abstraction. The improved performance is likely due to OpenMP’s
more sophisticated thread scheduling capabilities. The Boost Threads and Pthreads implemen-
tations rely on the operating system scheduler to manage thread execution, which can lead to
suboptimal performance if the threads associated with less computationally intensive pipeline
stages interfere with the execution of threads associated with the compression stage. There is
no significant performance difference between the explicit threading approaches as they both
suffer from the same thread concurrency issue. The only case where performance differs signif-
icantly between compilers is the OpenMP based implementation where the GNU C++ OpenMP
runtime appears to outperform Intel’s OpenMP implementation.

Further analysis of the data shows that none of the implementations make full use of the CPU
during program execution and the effect of this can be seen on the parallel speedup of the various
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programs implementations. From the speedup values, one can calculate the value for the parallel
fraction f of each implementation and predict program speedup for increasing processor counts.
However, the lack of appropriate hardware to test such predictions prevents us from performing
an in-depth investigation.

The effect of not providing appropriate parallel abstractions for pipeline architectures is evident
in the code metrics for dedup (Table 7.9). For parallel programming models without a pipeline
abstraction (Boost Threads, OpenMP, and Pthreads), the program length and complexity in-
creased by roughly 10%. Whereas, for Threading Building Blocks, the length and complexity
actually decreased due to the more natural mapping of the pipeline design to the capabilities of
the library. The way this affected the code metrics was that the TBB implementation no longer
needed the queue data structure and its associated methods, so that code was removed. The
pipeline stages were also simplified as they no longer had to interact with the queue and could
simply take the next segment of work from the function argument. During development, it was
noted that the lack of appropriate synchronisation constructs in OpenMP resulted in a program
that was more complex, despite the simplified thread pool and pipeline initialisation.

On a more subjective note, with the increased complexity of the dedup program compared
to the previous examples, the value of easy-to-use parallel software development tools, such
as Valgrind, Intel Inspector XE, Intel VTune Amplifier XE, and the Intel debugger (IDB), be-
came apparent and these tools were found to be indispensable. This was particularly true for
Valgrind’s Memcheck and Helgrind tools, as well as Intel Inspector, as debugging the com-
plex memory allocation patterns and extensive use of mutual exclusion would likely have been
difficult without such tools to aid the process.

7.3.4 Overall Findings

By taking the ratio of the parallel program length (V) against the original sequential program
length, we derive a measure for the additional effort required to implement the parallel program
relative to the original sequential program. This allows us to compare different programs with
vastly different program lengths. Furthermore, we can take the parallel speedup for each par-
allel programming model as a normalised measure of performance that can be compared to the
speedups for other sample programs provided the performance is measured on the same com-
puter system with the same number of processor cores. Then, we take the geometric means3 of
the speedups and of the additional effort ratios for the sample programs in respect to the parallel

3The geometric mean is used as gives us a more consistent number with which to perform comparisons [115].
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programming model and compiler used. The geometric means of the program speedups are
then divided by the geometrics mans of the effort ratios to produce a value that can be used to
rank the parallel programming models accordingly.

The results of our analysis of the programs and parallel programming models described above
are given in Table 7.10. In the case of the mandelbrot program, the dynamically scheduled im-
plementations were selected as they had the best performance. The auto_partitioner TBB
implementation was selected over the manual partitioning approach as it is more flexible with
regards to input size. For the automatic parallelisation approach (Auto-parallel), a speedup of
1 was used to indicate that the parallelisation effort did not yield any improvement and that the
program was effectively the same as the sequential version. The results for the Cilk Plus imple-
mentation are only valid for simple loop-based task parallelism as the only implementations of
Cilk Plus are for the matrixmul and mandelbrot programs.

Our preliminary analysis of the performance to effort ratio indicate that OpenMP is the best
choice when it comes to selecting a parallel programming model as it provides consistently
good performance and typically requires far less programming effort compared to the other par-
allel programming models. The next best choice is Threading Building Blocks as it provides
reasonable performance in conjunction with powerful parallel programming abstractions that
are well-suited to solving a range of parallel problem types. These results confirm that it is
usually better to select a parallel programming model with a higher level of abstraction. An-
other implication of these results is that automatic parallelisation should always be attempted as
it has the potential to provide good performance improvements with little to no programming
effort required should the target program make use of computationally intensive loop struc-
tures. However, the proposed parallel design must be taken into consideration along with these
recommendations as certain parallel programming models are simply not suited to particular
parallelisation approaches. This is evident with Cilk Plus, which is better suited to recursive
task-based parallelism and task-parallel loops and does not provide an abstraction for pipeline
or explicit mutual exclusion constructs. While Boost Threads and Pthreads have the lowest per-
formance to effort ratio, they are also the most flexible parallel models due to their low-level
threading functionality.
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Chapter 8

Conclusion

While it is clear that parallel computers are now seeing use in almost all aspects of modern com-
puting thanks to the widespread availability of multicore processors, it is certainly not the case
that all software is capable of harnessing the ever increasing parallel computing power avail-
able in modern and upcoming CPUs. Harnessing this power is important as the CPU power
wall has put an end to free software performance increases resulting from higher clock speeds.
However, creating efficient parallel software is difficult for the novice parallel programmer as
parallel programming models require a different mindset and approach compared to the tra-
ditional sequential programming methodology. Parallel programming also requires a greater
understanding of both the hardware and software factors that affect the performance of parallel
programs, such as the effect of cache memory and memory bus bandwidth on programs that
share data between processors. In addition to this, a wide variety of parallel programming mod-
els and software development tools are available and it may be necessary for a programmer
to master more than one of these to able to successfully parallelise different types of problem.
Without the appropriate software tools and knowledge, it is exceedingly difficult to develop the
high performance parallel software required in our age of parallel computing.

As such, we set out to address the needs of the novice parallel programmer by highlighting and
condensing the required background information, presenting a selection of software develop-
ment tools and parallel programming models, and recommending an approach to performance
tuning and parallel software design. Finally, we aimed to assist in the selection of an appropriate
parallel programming model by presenting an analysis of the performance of different parallel
programming models relative to the amount of programming effort required. This was achieved
by presenting an extensive array background of information, which included summaries of the
key parallel programming concepts, as well as the impact of the hardware organisation and ar-
chitecture on the performance of parallel programs. This provides a solid theoretical grounding

192
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to inform later parallel software development efforts. Thereafter, we presented a short survey of
commonly available commercial and free software development tools that support multithread-
ing. The survey also included introductions to the various parallel programming models that
were used later in our investigations.

One of the key realisations during our study was the importance of a structured and method-
ical approach to software performance tuning and parallel program design. To this end, we
presented an iterative approach to software tuning that relies on the gathering of relevant per-
formance data to inform optimisation efforts and verify the effectiveness and correctness of the
implemented optimisations. We also introduced and discussed a number of manual code optimi-
sations and the situations in which they can be applied. The development of an effective parallel
program design has a large effect on the efficiency and scalability of the resulting program. As
such, we presented a descriptive summary of a structured approach to parallel design that makes
uses pattern language to capture and express the expertise of experienced parallel programmers.
The resulting patterns are then selected according to the nature of the problem and applied in
a specific order to build up an appropriate parallel design for the target problem. However,
the variety of problem types and parallel designs, along with the limitations each parallel pro-
gramming model, highlighted the problem with selecting a parallel programming model based
entirely on the performance and programming effort of the models. The implication of this is
that the choice of parallel programming model may be limited by the capabilities of the parallel
model in relation to the requirements of the parallel design. Nevertheless, the evaluation of
parallel programming models in terms of performance and effort is still a worthwhile pursuit
for problems where the design does not limit the choice to a single library or API.

Our investigation into the performance and programming effort of the various parallel program-
ming models was carried out as an experiment whereby three different sequential programs were
parallelised using each of the selected parallel programming models where such a parallelisa-
tion was possible. The ratio of runtime performance (speedup) to the additional programming
effort required to implement the parallel program based on program length was calculated for
each implementation. This provided us with performance to effort index. The results showed
that high-level parallel programming models provide the best combination of performance to
programming effort and that explicit threading approaches can provide good performance in
certain circumstances, but require markedly more programmer effort to implement efficiently.
Once again, it is important to note the recommendations from our analysis should be used in
conjunction with an appropriate parallel design as the problem type and parallel design affect
the suitability of certain parallel programming models.

The work carried out in this thesis represents an initial investigation into the effectiveness of
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parallel programming models relative to programming effort. As such, there are opportuni-
ties for future work to expand upon and improve the observations presented here. First and
foremost, a more rigorous statistical analysis is required, which includes a larger sample of
potential parallel programs with a range of different problem characteristics, the inclusion of
several novice parallel programmers as experimental subjects, and a more in-depth analysis of
the performance data and code metrics. Secondly, there is a range of other parallel programming
models that have not been examined, such as FastFlow and QuickThreads for instance, as well
as parallel libraries and APIs for other programming languages and environments. The study
could be expanded to include these additional parallel programming models. Additionally, an
investigation into the most effective approaches to load balancing and thread scheduling can be
undertaken to provide recommendations for particular type of scheduling problems.



Bibliography

[1] A. Abran, M. Lopez, and N. Habra. An Analysis of the McCabe Cyclomatic Complexity
Number. In 12th International Workshop on Software Measurement - IWSM2004, pages
391–405, Königs Wusterhausen, Germany, 2004. Shaker Verlag.

[2] ACM. The ACM Computing Classification System [1998 Version] [online]. October
2009. URL: http://www.acm.org/about/class/ccs98-html [cited 29 November
2009].

[3] Advanced Micro Devices. AMD CodeAnalyst Performance Analyzer for Linux [online].
2010. URL: http://developer.amd.com/cpu/CodeAnalyst/codeanalystlinux/
Pages/default.aspx [cited Dec. 27, 2010].

[4] Advanced Micro Devices. Software Optimization Guide for AMD Family 10h and 12h
Processors. Technical report, Advanced Micro Devices, December 2010. URL: http:
//support.amd.com/us/Processor_TechDocs/40546.pdf.

[5] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley, 2nd edition edition, 2006.

[6] M. Aldinucci, M. Meneghin, and M. Torquati. Efficient smith-waterman on multi-core
with fastflow. In Proceedings of the 2010 18th Euromicro Conference on Parallel, Dis-
tributed and Network-based Processing, PDP ’10, pages 195–199, Washington, DC,
USA, 2010. IEEE Computer Society.

[7] J. H. Anderson, Y. Kim, and T. Herman. Shared-memory Mutual Exclusion: Major
Research Trends Since 1986. Distrib. Comput., 16(2-3):75–110, 2003.

[8] T. E. Anderson. The Performance of Spin Lock Alternatives for Shared-Memory Multi-
processors. IEEE Trans. Parallel Distrib. Syst., 1:6–16, January 1990.

[9] B. Andersson, S. Blair-Chappell, and R. Mueller-Albrecht. Intel R© Debugger for
Linux*. Tutorial, Intel Corporation, Developer Products Division, 2010. URL: http:
//software.intel.com/en-us/articles/idb-linux/.

[10] Anonymous. The Mandelbrot Set [online]. 2010. URL: http://warp.povusers.org/
Mandelbrot/ [cited Jan. 13, 2011].

195



BIBLIOGRAPHY 196

[11] B. Barney. Introduction to Parallel Computing [online]. Oct. 12, 2010. URL: https:
//computing.llnl.gov/tutorials/parallel_comp/ [cited Nov. 10, 2010].

[12] P. Becker. Working Draft, Standard for Programming Language C++. Technical Report
N2369=07-0229, ISO/IEC JTC 1, Information Technology, Subcommittee SC 22, Pro-
gramming Language C++, November 2010. URL: http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2010/n3225.pdf.

[13] J. L. Bentley. Writing Efficient Programs. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1982.

[14] C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton University,
January 2011.

[15] A. J. C. Bik, D. L. Kreitzer, and X. Tian. A Case Study on Compiler Optimizations for
the Intel R© CoreTM 2 Duo Processor. Int. J. Parallel Program., 36(6):571–591, 2008.

[16] G. E. Blelloch, R. A. Chowdhury, P. B. Gibbons, V. Ramachandran, S. Chen, and
M. Kozuch. Provably Good Multicore Cache Performance for Divide-and-Conquer Al-
gorithms. In SODA ’08: Proceedings of the nineteenth annual ACM-SIAM symposium on
Discrete algorithms, pages 501–510, Philadelphia, PA, USA, 2008. Society for Industrial
and Applied Mathematics.

[17] C. Breshears. The Art of Concurrency: A Thread Monkey’s Guide to Writing Parallel
Applications. O’Reilly Media, Inc., 2009.

[18] F. Broquedis, N. Furmento, B. Goglin, P.-A. Wacrenier, and R. Namyst. ForestGOMP:
An Efficient OpenMP Environment for NUMA Architectures. International Journal of
Parallel Programming, May 2010.

[19] K. Carlson. SD West: Parallel or Bust [online]. Mar. 7, 2008. URL: http://www.ddj.
com/hpc-high-performance-computing/206902441 [cited Jun. 2, 2009].

[20] R. H. Carver and K.-C. Tai. Modern Multithreading: Implementing, Testing, and De-
bugging Multithreaded Java and C++/Pthreads/Win32 Programs. Wiley-Interscience,
2005.

[21] B. Chapman, G. Jost, and R. v. d. Pas. Using OpenMP: Portable Shared Memory Parallel
Programming (Scientific and Engineering Computation). The MIT Press, 2007.

[22] E. G. Coffman, M. Elphick, and A. Shoshani. System Deadlocks. ACM Comput. Surv.,
3(2):67–78, 1971.

[23] K. D. Cooper, K. Kennedy, and L. Torczon. Interprocedural Optimization: Eliminating
Unnecessary Recompilation. SIGPLAN Not., 21:58–67, July 1986.

[24] A. Das, J. Lu, H. Chen, J. Kim, P.-C. Yew, W.-C. Hsu, and D.-Y. Chen. Performance
of Runtime Optimization on BLAST. In Proceedings of the International Symposium
on Code Generation and Optimization, CGO ’05, pages 86–96, Washington, DC, USA,
2005. IEEE Computer Society.



BIBLIOGRAPHY 197

[25] S. Debray. Writing Efficient Programs: Performance Issues in an Undergraduate CS
Curriculum. SIGCSE Bull., 36(1):275–279, 2004.

[26] Digital Equipment Corporation. Introduction to the Mandelbrot Set, January 1997.
Order Number: AA-Q62LC-TE. URL: http://www.mun.ca/hpc/hpf_pse/manual/
hpf0019.htm [cited Jan. 13, 2011].

[27] U. Drepper. What Every Programmer Should Know About Memory, 2007. URL: http:
//www.akkadia.org/drepper/cpumemory.pdf.

[28] P. J. Drongowski. Instruction-Based Sampling: A New Performance Analysis Tech-
nique for AMD Family 10h Processors. Technical report, Advanced Micro Devices, Inc.,
Boston Design Center, November 2007. URL: http://developer.amd.com/assets/
AMD_IBS_paper_EN.pdf.

[29] P. J. Drongowski. An introduction to analysis and optimization with AMD
CodeAnalystTM Performance Analyzer. Technical report, Advanced Micro Devices, Inc.,
Boston Design Center, September 2008. URL: http://developer.amd.com/Assets/
Introduction_to_CodeAnalyst.pdf.

[30] J. Falcou, J. Sérot, T. Chateau, and J. T. Lapresté. QUAFF: efficient C++ design for
parallel skeletons. Parallel Comput., 32(7):604–615, 2006.

[31] N. Fenton and S. L. Pfleeger. Software Metrics: A Rigorous and Practical Approach (2nd
edition). PWS Publishing Co., Boston, MA, USA, 1997.

[32] M. Flynn. Some Computer Organizations and Their Effectiveness. IEEE Transaction on
Computers, 21(C):948–960, 1972.

[33] A. Fog. Intel’s "cripple AMD" function [online]. October 12, 2010. URL: http://www.
agner.org/optimize/blog/read.php?i=49 [cited Dec. 27, 2010].

[34] A. Fog. Optimizing software in C++: An optimization guide for Windows, Linux
and Mac platforms [online]. September 25, 2010. URL: http://www.agner.org/
optimize/optimizing_cpp.pdf [cited Dec. 27, 2010].

[35] I. Foster. Designing and Building Parallel Programs: Concepts and Tools for Parallel
Software Engineering. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1995.

[36] Free Software Foundation. Debugging with GDB: the GNU Source-Level Debugger
[online]. Dec., 27 2010. URL: http://sourceware.org/gdb/current/onlinedocs/
gdb/ [cited Dec. 27, 2010].

[37] Free Software Foundation. GNU gprof, December 2010. URL: http://sourceware.
org/binutils/docs/gprof/index.html.

[38] M. Frigo. Multithreaded Programming in Cilk. In PASCO ’07: Proceedings of the 2007
International Workshop on Parallel Symbolic Computation, pages 13–14, New York, NY,
USA, 2007. ACM.



BIBLIOGRAPHY 198

[39] M. Frigo, P. Halpern, C. E. Leiserson, and S. Lewin-Berlin. Reducers and other Cilk++
hyperobjects. In Proceedings of the twenty-first annual symposium on Parallelism in al-
gorithms and architectures, SPAA ’09, pages 79–90, New York, NY, USA, 2009. ACM.

[40] M. Gabbrielli and S. Martini. Programming Languages: Principles and Paradigms.
Springer Publishing Company, Incorporated, 1st edition, 2010.

[41] GCC Team. Automatic parallelization in Graphite [online]. August 17, 2009. URL:
http://gcc.gnu.org/wiki/Graphite/Parallelization [cited Dec. 27, 2010].

[42] GCC Team. Autopar’s(in trunk) Algorithms [online]. May 26, 2009. URL: http:
//gcc.gnu.org/wiki/AutoparRelated [cited Dec. 27, 2010].

[43] GCC Team. Using the GNU Compiler Collection: GCC 4.5.2 Manual [online]. Decem-
ber 18, 2010. URL: http://gcc.gnu.org/onlinedocs/gcc-4.5.2/gcc/ [cited Dec.
27, 2010].

[44] R. Geva. Elemental functions: Writing data-parallel code in C/C++ using Intel R© CilkTM

Plus. White paper, Intel Corporation, Month 2010.

[45] B. Goetz. Threading lightly, Part 2: Reducing contention [online]. Sept., 5
2001. URL: http://www.ibm.com/developerworks/java/library/j-threads2.
html?ca=drs- [cited Apr. 3, 2009].

[46] I. Gouy. Computer Language Benchmarks Game [online]. May 2009. URL: http:
//shootout.alioth.debian.org/u32q/faq.php [cited 28 May 2009].

[47] S. L. Graham, P. B. Kessler, and M. K. McKusick. gprof: a Call Graph Execution Profiler.
SIGPLAN Not., 39:49–57, April 2004.

[48] J. L. Gustafson. Reevaluating Amdahl’s Law. Communications of the ACM, 31:532–533,
1988.

[49] R. Hackney, L. Momii, C. Riggs, and A. Dingle. Profiler Tools Selection for Curricular
Support. J. Comput. Small Coll., 21(1):177–182, 2005.

[50] M. W. Hall, K. Kennedy, and K. S. McKinley. Interprocedural Transformations for Par-
allel Code Generation. In Proceedings of the 1991 ACM/IEEE conference on Supercom-
puting, Supercomputing ’91, pages 424–434, New York, NY, USA, 1991. ACM.

[51] M. H. Halstead. Elements of Software Science (Operating and programming systems
series). Elsevier Science Inc., New York, NY, USA, 1977.

[52] P. G. Hamer and G. D. Frewin. M.H. Halstead’s Software Science - A Critical Ex-
amination. In ICSE ’82: Proceedings of the 6th international conference on Software
engineering, pages 197–206, Los Alamitos, CA, USA, 1982. IEEE Computer Society
Press.

[53] B. Hayes. Computing in a Parallel Universe. American Scientist, 95:476–480, 2007.



BIBLIOGRAPHY 199

[54] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach
(4th edition). Morgan Kaufmann, September 2006.

[55] M. Herlihy. Wait-Free Synchronization. ACM Trans. Program. Lang. Syst., 13:124–149,
January 1991.

[56] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann,
March 2008.

[57] M. P. Herlihy and J. M. Wing. Linearizability: A Correctness Condition for Concurrent
Objects. ACM Trans. Program. Lang. Syst., 12:463–492, July 1990.

[58] D. Hou and Y. Wang. An Empirical Analysis of the Evolution of User-Visible Features in
an Integrated Development Environment. In Proceedings of the 2009 Conference of the
Center for Advanced Studies on Collaborative Research, CASCON ’09, pages 122–135,
New York, NY, USA, 2009. ACM.

[59] C. Hughes and T. Hughes. Parallel and Distributed Programming Using C++. Prentice
Hall Professional Technical Reference, 2003.

[60] C. Hughes and T. Hughes. Professional Multicore Programming: Design and Implemen-
tation for C++ Developers. Wrox Press Ltd., Birmingham, UK, UK, 2008.

[61] C. S. Ierotheou, H. Jin, G. Matthews, S. P. Johnson, and R. Hood. Generating OpenMP
code using an interactive parallelization environment. Parallel Comput., 31(10-12):999–
1012, 2005.

[62] Intel Corporation. Intel Research Advances ’Era Of Tera’ [online]. Febru-
ary 2007. URL: http://www.intel.com/pressroom/archive/releases/2007/
20070204comp.htm [cited Dec. 27, 2010].

[63] Intel Corporation. Intel R© CoreTM2 Extreme Quad-Core Processor QX6000∆ Sequence
and Intel R© CoreTM2 Quad Processor Q6000∆ Sequence Datasheet. Intel Corporation,
August 2007. URL: http://download.intel.com/design/processor/datashts/
31559205.pdf [cited Sept. 21, 2010].

[64] Intel Corporation. Intel R© CoreTM2 Extreme Processor QX9000∆ Series, Intel R© CoreTM2
Quad Processor Q9000∆, Q9000S∆, Q8000∆, and Q8000S∆ Series Datasheet. Intel
Corporation, August 2009. URL: http://download.intel.com/design/processor/
datashts/318726.pdf [cited Sept. 21, 2010].

[65] Intel Corporation. Intel R© Debugger: Command Reference. Intel Corporation, 2009.
Document number: 319698-009US.

[66] Intel Corporation. Intel R© VTuneTM Performance Analyzer 9.1 for Linux. Online, 2009.

[67] Intel Corporation. Using Intel R© VTuneTM Performance Analyzer to Optimize Software
on Intel R© CoreTM i7 Processors. Online, February 2009. URL: http://software.
intel.com/file/15529.



BIBLIOGRAPHY 200

[68] Intel Corporation. Avoiding and Identifying False Sharing Among Threads [on-
line]. February 2010. URL: http://software.intel.com/en-us/articles/
avoiding-and-identifying-false-sharing-among-threads/ [cited Dec. 17,
2010].

[69] Intel Corporation. Intel Guide for Developing Multithreaded Applications [on-
line]. March 2010. URL: http://software.intel.com/en-us/articles/
intel-guide-for-developing-multithreaded-applications/ [cited Dec. 27,
2010].

[70] Intel Corporation. Intel Software Development Product List [online]. 2010. URL:
http://software.intel.com/en-us/articles/intel-sdp-products/ [cited Dec.
27, 2010].

[71] Intel Corporation. Intel Thread Building Blocks [online]. December 2010. URL: http:
//software.intel.com/en-us/articles/intel-tbb/ [cited Dec. 27, 2010].

[72] Intel Corporation. Intel R© C++ Compiler 11.1 User and Reference Guides. In-
tel Corporation, 2010. Document number: 304968-023US. URL: http:
//software.intel.com/sites/products/documentation/hpc/compilerpro/
en-us/cpp/lin/compiler_c/index.htm.

[73] Intel Corporation. Intel R© C++ Compiler XE 12.0 User and Reference Guides. In-
tel Corporation, 2010. Document number: 323273-120US - Intel C++ Composer
XE 2011 - Linux* OS. URL: http://software.intel.com/sites/products/
documentation/hpc/composerxe/en-us/cpp/lin/index.htm.

[74] Intel Corporation. Intel R© CilkTM Plus: A Simple Path to Parallelism. Technical re-
port, Intel Corporation, 2010. URL: http://software.intel.com/sites/products/
evaluation-guides/docs/cilk-plus-evaluation-guide.pdf.

[75] Intel Corporation. Intel R© Inspector XE Thread and Memory Checker [online]. 2010.
URL: http://software.intel.com/en-us/articles/intel-inspector-xe/
[cited Dec. 27, 2010].

[76] Intel Corporation. Intel R© Integrated Performance Primitives for Intel R© Ar-
chitecture Reference Manual. Intel Corporation, 2010. Intel IPP 7.0.
URL: http://software.intel.com/sites/products/documentation/hpc/
composerxe/en-us/ippxe/ipp_manual_lnx/index.htm.

[77] Intel Corporation. Intel R© Math Kernel Library Reference Manual. In-
tel Corporation, 2010. Document number: 630813-031US. URL: http:
//software.intel.com/sites/products/documentation/hpc/compilerpro/
en-us/cpp/lin/mkl/refman/index.htm.

[78] Intel Corporation. Intel R© VTuneTM Amplifier XE Performance Profiler. Online, Novem-
ber 2010. URL: http://software.intel.com/sites/products/collateral/XE/
vtune_amplifier_xe_brief.pdf.



BIBLIOGRAPHY 201

[79] Intel Corporation. Optimization Notice [online]. 2010. URL: http://software.
intel.com/en-us/articles/optimization-notice/ [cited Dec. 17, 2010].

[80] Intel Corporation. Intel R© 64 and IA-32 Architectures Optimization Reference Manual.
Intel Corporation, January 2011. Order Number: 248966-023a. URL: http://www.
intel.com/Assets/PDF/manual/248966.pdf.

[81] N. M. Josuttis. The C++ Standard Library: A Tutorial and Reference. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[82] N. P. Jouppi. Superscalar vs. Superpipelined Machines. SIGARCH Comput. Archit. News,
16:71–80, June 1988.

[83] S. H. Kan. Metrics and Models in Software Quality Engineering. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2nd edition, 2002.

[84] V. Kazempour, A. Fedorova, and P. Alagheband. Performance Implications of Cache
Affinity on Multicore Processors. In Euro-Par ’08: Proceedings of the 14th international
Euro-Par conference on Parallel Processing, pages 151–161, Berlin, Heidelberg, 2008.
Springer-Verlag.

[85] J. P. Kearney, R. L. Sedlmeyer, W. B. Thompson, M. A. Gray, and M. A. Adler. Software
Complexity Measurement. Commun. ACM, 29(11):1044–1050, 1986.

[86] P. Kegel, M. Schellmann, and S. Gorlatch. Using OpenMP vs. Threading Building Blocks
for Medical Imaging on Multi-cores. In Euro-Par ’09: Proceedings of the 15th Interna-
tional Euro-Par Conference on Parallel Processing, pages 654–665, Berlin, Heidelberg,
2009. Springer-Verlag.

[87] P. Kegel, M. Schellmann, and S. Gorlatch. Comparing programming models for medical
imaging on multi-core systems. Concurrency and Computation: Practice and Experi-
ence, 2010.

[88] B. Kempf. The Boost.Threads Library. j-CCCUJ, 20(5):6–??, May 2002. URL: http:
//www.drdobbs.com/cpp/184401518.

[89] K. Kennedy and J. R. Allen. Optimizing Compilers for Modern Architectures: A
Dependence-Based Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2002.

[90] B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice Hall Press,
Upper Saddle River, NJ, USA, 1988.

[91] B. Kuhn, P. Petersen, and E. O’Toole. OpenMP versus threading in C/C++. Concurrency
- Practice and Experience, pages 1165–1176, 2000.

[92] C. Kyriacou, P. Evripidou, and P. Trancoso. Cacheflow: Cache Optimisations for Data
Driven Multithreading. Parallel Process. Lett., 16(2):229–244, 2006.



BIBLIOGRAPHY 202

[93] C. Lameter. Local and Remote Memory: Memory in a Linux/NUMA System. Techni-
cal report, Linux Kernel, 2006. URL: http://www.kernel.org/pub/linux/kernel/
people/christoph/pmig/numamemory.pdf.

[94] J. Laudon and L. Spracklen. The Coming Wave of Multithreaded Chip Multiprocessors.
Int. J. Parallel Program., 35(3):299–330, 2007.

[95] I. Lee. Integrated environments. SIGSOFT Softw. Eng. Notes, 8:60–62, March 1983.

[96] J. Lee and V. J. Mooney, III. A Novel Deadlock Avoidance Algorithm and Its Hardware
Implementation. In CODES+ISSS ’04: Proceedings of the 2nd IEEE/ACM/IFIP interna-
tional conference on Hardware/software codesign and system synthesis, pages 200–205,
New York, NY, USA, 2004. ACM.

[97] J. Levon. OProfile [online]. November 2009. URL: http://oprofile.sourceforge.
net/about/ [cited Apr. 28, 2010].

[98] S.-W. Liao, A. Diwan, R. P. Bosch, Jr., A. Ghuloum, and M. S. Lam. SUIF Explorer: An
Interactive and Interprocedural Parallelizer. SIGPLAN Not., 34:37–48, May 1999.

[99] M. L. Liu. Distributed Computing Principles and Applications. Addison-Wesley, 2004.

[100] M. Mackey. Intel’s compiler: is crippling the competition acceptable? [online]. 2005.
URL: http://www.swallowtail.org/naughty-intel.shtml [cited Dec. 27, 2010].

[101] A. D. Malony and S. S. Shende. Overhead Compensation in Performance Profiling.
Parallel Process. Lett., 15(1-2):19–35, 2005.

[102] T. Mattson, B. Sanders, and B. Massingill. Patterns for Parallel Programming. Addison-
Wesley Professional, 2004.

[103] T. Mattson and M. Wrinn. Parallel programming: can we PLEASE get it right this time?
In DAC ’08: Proceedings of the 45th annual conference on Design automation, pages
7–11, New York, NY, USA, 2008. ACM.

[104] T. J. McCabe. A Complexity Measure. In Proceedings of the 2nd international confer-
ence on Software engineering, ICSE ’76, pages 407–, Los Alamitos, CA, USA, 1976.
IEEE Computer Society Press.

[105] J. M. Mellor-Crummey and M. L. Scott. Algorithms for Scalable Synchronization on
Shared-Memory Multiprocessors. ACM Trans. Comput. Syst., 9:21–65, February 1991.

[106] D. A. Mey, S. Sarholz, and C. Terboven. Nested Parallelization with OpenMP. Int. J.
Parallel Program., 35(5):459–476, 2007.

[107] Microsoft Developer Network. Profile-Guided Optimizations [online]. 2010. URL:
http://msdn.microsoft.com/en-us/library/e7k32f4k(v=VS.100).aspx [cited
Dec. 27, 2010].



BIBLIOGRAPHY 203

[108] E. E. Mills. Software Metrics SEI Curriculum Module. Technical Report SEI-CM-12-
1.1, Software Engineering Institute Carnegie Mellon University, Seattle, Washington,
December 1988.

[109] J. C. Mogul and K. K. Ramakrishnan. Eliminating Receive Livelock in an Interrupt-
driven Kernel. ACM Trans. Comput. Syst., 15(3):217–252, 1997.

[110] T. Moseley, D. A. Connors, D. Grunwald, and R. Peri. Identifying Potential Parallelism
via Loop-centric Profiling. In CF ’07: Proceedings of the 4th international conference
on Computing frontiers, pages 143–152, New York, NY, USA, 2007. ACM.

[111] A. Mühlenfeld and F. Wotawa. Fault Detection in Multi-Threaded C++ Server Applica-
tions. Electron. Notes Theor. Comput. Sci., 174:5–22, June 2007.

[112] N. Nethercote and J. Seward. Valgrind: A Framework for Heavyweight Dynamic Binary
Instrumentation. In Proceedings of the 2007 ACM SIGPLAN conference on Program-
ming language design and implementation, PLDI ’07, pages 89–100, New York, NY,
USA, 2007. ACM.

[113] N. Nethercote, R. Walsh, and J. Fitzhardinge. Building Workload Characterization Tools
with Valgrind. IEEE Workload Characterization Symposium, 0:2, 2006.

[114] B. Nichols, D. Buttlar, and J. P. Farrell. Pthreads programming. O’Reilly & Associates,
Inc., Sebastopol, CA, USA, 1996.

[115] L. Null and J. Lobur. Essentials of Computer Organization and Architecture. Jones and
Bartlett Publishers, Inc., USA, 1st edition, 2003.

[116] OpenMP Architecture Review Board. OpenMP Application Program Interface, 3.0 edi-
tion, May 2008. URL: http://www.openmp.org.

[117] Oracle Corporation. NetBeans IDE 6.9 Features: C and C++ Development [on-
line]. 2010. URL: http://netbeans.org/features/cpp/index.html [cited Dec.
27, 2010].

[118] Oracle Corporation. Oracle Solaris Studio Features [online]. 2010. URL:
http://www.oracle.com/technetwork/server-storage/solarisstudio/
overview/index-jsp-138069.html [cited Dec. 27, 2010].

[119] P. Panchamukhi. Smashing performance with OProfile: Identifying performance bot-
tlenecks in real-world systems [online]. October 2003. URL: http://www.ibm.com/
developerworks/linux/library/l-oprof.html [cited Dec. 27, 2010].

[120] A. Pesterev, N. Zeldovich, and R. T. Morris. Locating Cache Performance Bottlenecks
Using Data Profiling. In EuroSys ’10: Proceedings of the 5th European conference on
Computer systems, pages 335–348, New York, NY, USA, 2010. ACM.

[121] A. Pop and A. Cohen. A Stream-Computing Extension to OpenMP. In Proceedings of
the 6th International Conference on High Performance and Embedded Architectures and
Compilers, HiPEAC ’11, pages 5–14, New York, NY, USA, 2011. ACM.



BIBLIOGRAPHY 204

[122] K. Psarris. Program analysis techniques for transforming programs for parallel execution.
Parallel Computing, 28(3):455–469, 2002.
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Appendix A

Relevant Compiler Options

A.1 GNU C/C++ Compiler

A number of important debugging and optimisation compiler flags for C and C++, on i386 and
x86-64 based computer architectures, are described below [43].

-fno-builtin Disables the generation of special code to handle certain built-in functions.

-pipe Use operating system pipes instead of temporary files for communication between com-
pilation stages.

-mtune=cpu-type Tune the generated code to cpu-type without limiting the set of available
instructions.

-march=cpu-type Generate instructions exclusively for the machine type cpu-type.

-mfpmath=unit Generate floating point instructions for unit, where unit is one of:

• ‘387’: Use the 387 floating point co-processor present in the majority of CPUs.

• ‘sse’: Use the scalar floating point instructions present in the SSE instruction set,
which is supported by the Pentium 3 and newer CPUs.

• ‘both’: Attempt to utilise both floating point instruction sets.

-mmmx, -msse, -msse2, -msse3, -mssse3, -msse4, -msse4a, -msse4.1, -msse4.2 Enable the use
of instructions in the MMX, SSE, SSE2, SSE3, SSSE3, SSE4.x, and SSE4A extended in-
struction sets.

-O0 Disable optimisations, easing debugging and reducing compilation time (the default).

-O, -O1 Optimise the code by attempting to reduce code size and execution time. This in-
creases memory usage as well as increasing compilation time slightly.
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-O2 Optimise the code even further, increasing both the performance of the program and the
compilation time (-O2 includes the optimisations from -O1).

-O3 Perform even more optimisations, including those from -O2, as well as several more ag-
gressive code optimisations.

-Os Optimise the program for code size, including optimisations from -O2 that do not increase
size, as well as additional code size reduction optimisations.

-ffast-math Enable a number of additional mathematical optimisations that yield faster code,
but may result in incorrect output (not included by any of the -O flags).

-g Compile the program so that it produces debugging information in the operating system’s
native format for use by debuggers such as GDB.

-pg Instrument the program to produce profiling information suitable for profile analysis pro-
grams such as gprof.

--coverage Compile and link program code which is instrumented for code coverage analysis
by programs such as gcov.

-pthread Enable support for multi-threading with the Pthreads library.

-fopenmp Enable OpenMP #pragma omp directives in C and C++ and causes the compiler to
generate parallel code according to the OpenMP standard (implies -pthread).

-floop-parallelize-all Use the Graphite data dependence analysis to identify and parallelise
loops that do not contain loop carried dependences.

-ftree-parallelize-loops=n Parallelise loops with independent loop iterations such that the it-
erations are split to run in n threads (implies -pthread).

-fwhole-program Enable more aggressive optimisations by the interprocedural optimisers.

-flto Enable link-time optimisations. Expands the scope of interprocedural optimisations.

-fprofile-generate, -fprofile-use Compile the program to produce profiling information for use
by the PGO feature. PGO is invoked with -fprofile-use after executing the program
to generate the profiling data.
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A.2 Intel C and C++ Compilers

Important debugging and optimisation options for the Intel C and C++ compilers for Linux are
described below [72, 73].

-fno-builtin Disable inline expansion of intrinsic functions.

-pipe Use operating system pipes instead of temporary files for communication between com-
pilation stages.

-axSSE2, -axSSE3, -axSSSE3, -axSSE4.1, -axSSE4.2 Enable the use of instructions in the
SSE2, SSE3, SSSE3, SSE4.1, and SSE4.2 extended SIMD instruction sets, as well as
generating generic IA-32 instructions (use -xSSEcode to exclude the generic code).

-O0 Disable optimisations. Makes debugging somewhat easier.

-O1 Optimise the code for improved speed.

-O, -O2 Optimise the code for maximum speed (the default).

-O3 Optimise the code for maximum speed and enable more aggressive optimisations that may
not benefit all programs.

-Os Enable speed optimizations that do not increase code size for small speed improvements.

-fast Enable -O3, -ipo, -static, -xHost, and additional mathematical optimisations that
yield faster code, but affect accuracy.

-xHost Generate instructions for the highest instruction set and processor available on the com-
pilation machine.

-ipo Enable multi-file interprocedural optimisation between files.

-prof-gen, -prof-use Compile the program for generating PGO profiling information. PGO is
invoked with -prof-use after executing the program to generate the profiling data.

-restrict Enable the restrict keyword for disambiguating pointers.

-static Prevent linking with shared libraries.

-g Produce symbolic debug information in the resulting object file.

-guide=n Set the level (1–4) of guidance for auto-vectorisation, auto-parallelisation, and data
transformation (default is 4).

-p, -pg Compile and link for function profiling with gprof tool.

-tcheck Enable the analysis of threaded applications (requires Intel Thread Checker).

-pthread Enable support for multi-threading with the Pthreads library.



A.2. INTEL C AND C++ COMPILERS 210

-openmp Enable the compiler to generate multithreaded code based on the OpenMP directives.

-cilk-serialize Run a Cilk program as a C/C++ serialised program.

-parallel Enable the auto-paralleliser to generate multithreaded code for loops that can be
safely executed in parallel.

-par-schedule-auto Let the compiler or runtime system determine the scheduling algorithm.

-par-num-threads=n Set the number of threads to be used by the auto-paralleliser.

-par-reportn, -openmp-reportn Control the auto-paralleliser (n=0–3) and OpenMP (n=0–2)
diagnostic level.

-vec-reportn, -opt-report n Control the amount of vectoriser (n=0–5) and optimisation (n=0–
3) diagnostic information.
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Baseline Program Source Code

B.1 Matrix Multiplication

1 #include <cstdlib >
2 #include <iostream >
3

4 static int dimension;
5

6 double** matrix_a; // matrix a
7 double** matrix_b; // matrix b
8 double** matrix_res; // result matrix
9

10 void init_matrices(void) {
11 // initialise the matrices with random values
12 matrix_a = new double*[dimension];
13 matrix_b = new double*[dimension];
14 matrix_res = new double*[dimension];
15 for (int r = 0; r < dimension; r++) {
16 matrix_a[r] = new double[dimension];
17 matrix_b[r] = new double[dimension];
18 matrix_res[r] = new double[dimension];
19 for (int c = 0; c < dimension; c++) {
20 matrix_a[r][c] = (double)rand() / RAND_MAX;
21 matrix_b[r][c] = (double)rand() / RAND_MAX;
22 matrix_res[r][c] = 0.0;
23 }
24 }
25 }
26

27 void mul_matrices(void) {
28 // multiply matrix a and matrix b and store in result matrix
29 for (int r = 0; r < dimension; r++) {
30 for (int c = 0; c < dimension; c++) {
31 double sum = 0.0;
32 for (int cc = 0; cc < dimension; cc++) {
33 sum = sum + matrix_a[r][cc] * matrix_b[cc][c];
34 }
35 matrix_res[r][c] = sum;
36 }
37 }
38 }
39

40 int main(int argc , char** argv) {
41 dimension = 512;
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42 if (argc > 1) {
43 dimension = atoi( argv[1] );
44 }
45 std::cout << " M a t r i x m u l " << " \ n " << dimension << " x " << dimension << " \ n " ;
46

47 init_matrices();
48 mul_matrices();
49

50 // ouput full result matrix for correctness checking
51 for (int r = 0; r < dimension; r++) {
52 for (int c = 0; c < dimension; c++)
53 std::cout << matrix_res[r][c] << " \ t " ;
54 std:cout << " \ n " ;
55 }
56

57 // prevent optimisations from eliminating code that modifies the
58 // result matrix when the result is not used (2x2 minimum dimension assumed)
59 std::cout << matrix_res [1][1] << " \ n " ;
60

61 for (int i = 0; i < dimension; ++i) {
62 delete [] matrix_a[i];
63 delete [] matrix_b[i];
64 delete [] matrix_res[i];
65 }
66 delete [] matrix_a;
67 delete [] matrix_b;
68 delete [] matrix_res;
69

70 return 0;
71 }

Listing B.1: Classic matrix multiplication program.

B.2 Mandelbrot Set

1 #include <cstdio >
2 #include <cstdlib >
3

4 void mandelbrot(char* data , int* nbyte_each_line , int dimension , int width_bytes) {
5 const int iterations = 100;
6 const double limit = 2.0 * 2.0;
7 double Cimag , Creal , Zreal , Zimag;
8

9 for (int y = 0; y < dimension; ++y) {
10 int byte_count = 0;
11 int bit_number = 0;
12 char byte_accumulator = 0;
13 char* pdata = data + (y * width_bytes);
14

15 // scale y to -1.0, 1.0 on the imaginary axis
16 Cimag = ((double)y * 2.0 / dimension) - 1.0;
17 bool le_limit;
18

19 for (int x = 0; x < dimension; ++x) {
20 // scale x to -2.0, 1.0 on the real axis
21 Creal = ((double)x * 3.0 / dimension) - 2.0;
22 Zreal = Creal;
23 Zimag = Cimag;
24

25 le_limit = true;
26 for (int i = 0; i < iterations && le_limit; ++i) {
27 double Zrealtemp = Zreal;
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28 Zreal = (Zreal * Zreal) - (Zimag * Zimag) + Creal;
29 Zimag = 2.0 * Zrealtemp * Zimag + Cimag;
30

31 le_limit = ((Zreal * Zreal) + (Zimag * Zimag) <= limit);
32 }
33

34 byte_accumulator = (byte_accumulator * 2) | (le_limit);
35 if (++bit_number == 8) {
36 pdata[ byte_count++ ] = byte_accumulator;
37 bit_number = byte_accumulator = 0;
38 }
39 }
40

41 if (bit_number != 0) {
42 byte_accumulator <<= (8 - (dimension & 7));
43 pdata[ byte_count++ ] = byte_accumulator;
44 }
45 nbyte_each_line[y] = byte_count;
46 }
47 }
48

49 int main(int argc , char** argv) {
50 int dimension = 200;
51 if (argc == 2) {
52 dimension = atoi( argv[1] );
53 }
54 printf( " P4 \ n%d %d \ n " , dimension , dimension);
55

56 int width_bytes = (dimension/8) +1;
57 char *data = (char*)malloc( width_bytes * dimension * sizeof(char) );
58 int* nbyte_each_line = (int*)calloc( dimension , sizeof(int) );
59

60 mandelbrot(data , nbyte_each_line , dimension , width_bytes);
61

62 char* pdata = data;
63 for (int y = 0; y < dimension; y++) {
64 fwrite( pdata , nbyte_each_line[y], 1, stdout);
65 pdata += width_bytes;
66 }
67

68 free(data);
69 free(nbyte_each_line);
70

71 return 0;
72 }

Listing B.2: Mandelbrot Set program.

B.3 Deduplication Kernel

1 #include "util.h"
2 #include "dedupdef.h"
3 #include "encoder.h"
4 #include "debug.h"
5 #include "hashtable.h"
6 #include "config.h"
7 #include "hashtable_private.h"
8 #include "rabin.h"
9 #include "queue.h"

10 #include "binheap.h"
11 #include "tree.h"
12
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13 #define INT64(x) ((unsigned long long)(x))
14 #define MSB64 INT64(0x8000000000000000ULL)
15 #define INITIAL_SIZE 4096
16

17 extern config * conf;
18

19 /* The pipeline model for Encode is:
20 * DataProcess ->FindAllAnchor ->ChunkProcess ->Compress ->SendBlock
21 * Each stage has basically three steps:
22 * 1. fetch a group of items from the queue
23 * 2. process the items
24 * 3. put them in the queue for the next stage.
25 */
26

27 //We perform global anchoring in the first stage and refine the anchoring
28 //in the second stage. This array keeps track of the number of chunks in
29 //a coarse chunk.
30 u_int32 chunks_per_anchor[QUEUE_SIZE];
31 struct queue *anchor_que , *send_que; //The queues between the pipeline stages
32 int filecount = 0, chunkcount = 0;
33 send_buf_item * headitem; //header
34 int rf_win;
35 int rf_win_dataprocess;
36

37 static int write_file(int fd, u_char type , int seq_count , u_long len, u_char * content) {
38 if (xwrite(fd, &type , sizeof(type)) < 0){
39 perror( " x w r i t e : " );
40 EXIT_TRACE( " x w r i t e t y p e f a i l s \ n " );
41 return -1;
42 }
43 if (xwrite(fd, &seq_count , sizeof(seq_count)) < 0)
44 EXIT_TRACE( " x w r i t e c o n t e n t f a i l s \ n " );
45 if (xwrite(fd, &len, sizeof(len)) < 0)
46 EXIT_TRACE( " x w r i t e c o n t e n t f a i l s \ n " );
47 if (xwrite(fd, content , len) < 0)
48 EXIT_TRACE( " x w r i t e c o n t e n t f a i l s \ n " );
49 return 0;
50 }
51

52 void sub_Compress(send_buf_item * item) {
53 send_body * body = (send_body*)item ->str;
54 u_long len;
55 byte * pstr = NULL;
56

57 //compress the item
58 if (compress_way == COMPRESS_GZIP) {
59 unsigned long len_32;
60 len = body ->len + (body ->len >> 12) + (body ->len >> 14) + 11;
61 if(len >> 32) {
62 perror( " compress " );
63 EXIT_TRACE( " compress ( ) f a i l e d \ n " );
64 }
65 len_32 = len & 0xFFFFFFFF;
66 pstr = (byte *)malloc(len);
67 if(pstr == NULL)
68 EXIT_TRACE( " Memory a l l o c a t i o n f a i l e d . \ n " );
69 /* compress the block */
70 if (compress(pstr , &len_32 , item ->content , body ->len) != Z_OK) {
71 perror( " compress " );
72 EXIT_TRACE( " compress ( ) f a i l e d \ n " );
73 }
74 len = len_32;
75

76 u_char * key = (u_char *)malloc(SHA1_LEN);
77 if(key == NULL)
78 EXIT_TRACE( " Memory a l l o c a t i o n f a i l e d . \ n " );
79 memcpy(key, item ->sha1 , sizeof(u_char)*SHA1_LEN);
80

81 struct hash_entry * entry;
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82 /* search the cache */
83 if ((entry = hashtable_search(cache , (void *)key)) == NULL) {
84 //if cannot find the entry , error
85 MEM_FREE(key);
86 printf( " E r r o r : Compress hash e r r o r \ n " );
87 exit(1);
88 } else {
89 //if cache hit, put the compressed data in the hash
90 struct pContent * value = ((struct pContent *)entry ->v);
91 value ->len = len;
92 value ->content = pstr;
93 value ->tag = TAG_DATAREADY;
94 hashtable_change(entry , (void *)value);
95 }
96 body ->len = SHA1_LEN;
97 MEM_FREE(item ->sha1);
98 MEM_FREE(item ->content);
99 item ->content = key;

100 }
101 return;
102 }
103

104 send_buf_item * sub_ChunkProcess(data_chunk chunk) {
105 send_buf_item * item;
106 send_body * body = NULL;
107 u_char * key;
108

109 key = (u_char *)malloc(SHA1_LEN);
110 if(key == NULL)
111 EXIT_TRACE( " Memory a l l o c a t i o n f a i l e d . \ n " );
112

113 Calc_SHA1Sig(chunk.start , chunk.len, key);
114 struct hash_entry * entry;
115 /* search the cache */
116 if ((entry = hashtable_search(cache , (void *)key)) == NULL) {
117 // cache miss: put it in the hashtable and the queue for the compress thread
118 struct pContent * value;
119 value = (struct pContent *)malloc(sizeof(struct pContent));
120 if(value == NULL)
121 EXIT_TRACE( " Memory a l l o c a t i o n f a i l e d . \ n " );
122 value ->len = 0;
123 value ->count = 1;
124 value ->content = NULL;
125 value ->tag = TAG_OCCUPY;
126 if (hashtable_insert(cache , key, value) == 0)
127 EXIT_TRACE( " h a s h t a b l e _ i n s e r t f a i l e d " );
128 item = (send_buf_item *)malloc(sizeof(send_buf_item));
129 body = (send_body *)malloc(sizeof(send_body));
130 if(item == NULL || body == NULL)
131 EXIT_TRACE( " Memory a l l o c a t i o n f a i l e d . \ n " );
132 body ->fid = filecount;
133 body ->cid = chunk.cid;
134 body ->anchorid = chunk.anchorid;
135 body ->len = chunk.len;
136 item ->content = (u_char * )malloc(body ->len + 1);
137 if(item ->content == NULL)
138 EXIT_TRACE( " Memory a l l o c a t i o n f a i l e d . \ n " );
139 memcpy(item ->content , chunk.start , body ->len);
140 item ->content[body ->len] = 0;
141 item ->sha1 = (u_char *)malloc(SHA1_LEN);
142 if(item ->sha1 == NULL)
143 EXIT_TRACE( " Memory a l l o c a t i o n f a i l e d . \ n " );
144 memcpy(item ->sha1 , key, sizeof(u_char)*SHA1_LEN);
145 item ->type = TYPE_COMPRESS;
146 item ->str = (u_char *)body;
147 } else {
148 // cache hit: put the item into the queue for the write thread
149 struct pContent * value = ((struct pContent *)entry ->v);
150 value ->count += 1;
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151 hashtable_change(entry , (void *)value);
152 item = (send_buf_item *)malloc(sizeof(send_buf_item));
153 body = (send_body *)malloc(sizeof(send_body));
154 if(item == NULL || body == NULL)
155 EXIT_TRACE( " Memory a l l o c a t i o n f a i l e d . \ n " );
156 body ->fid = filecount;
157 body ->cid = chunk.cid;
158 body ->anchorid = chunk.anchorid;
159 body ->len = SHA1_LEN;
160 item ->content = key;
161 item ->sha1 = NULL;
162 item ->type = TYPE_FINGERPRINT;
163 item ->str = (u_char *)body;
164 }
165 if (chunk.start) MEM_FREE(chunk.start);
166 return item;
167 }
168

169 /*
170 * Integrate all computationally intensive pipeline
171 * stages to improve cache efficiency.
172 */
173 void * SerialIntegratedPipeline(int tid) {
174 const int qid = tid / MAX_THREADS_PER_QUEUE;
175 data_chunk * fetchbuf[MAX_PER_FETCH];
176 int fetch_count = 0;
177 int fetch_start = 0;
178

179 u32int * rabintab = (u32int *)malloc(256*sizeof rabintab [0]);
180 u32int * rabinwintab = (u32int *)malloc(256*sizeof rabintab [0]);
181 if(rabintab == NULL || rabinwintab == NULL)
182 EXIT_TRACE( " Memory a l l o c a t i o n f a i l e d . \ n " );
183

184 data_chunk * tmpbuf;
185 int tmpsend_count = 0;
186 send_buf_item * senditem;
187 send_buf_item * tmpsendbuf[ITEM_PER_INSERT];
188 while (1) {
189 data_chunk item;
190 //if no item for process , get a group of items from the pipeline
191 if (fetch_count == fetch_start) {
192 int r = dequeue(&anchor_que[qid], &fetch_count , (void **)fetchbuf);
193 if (r < 0)
194 break;
195 fetch_start = 0;
196 }
197

198 if (fetch_start < fetch_count) {
199 //get one item
200 item.start = fetchbuf[fetch_start]->start;
201 item.len = fetchbuf[fetch_start]->len;
202 item.anchorid = fetchbuf[fetch_start]->anchorid;
203 MEM_FREE(fetchbuf[fetch_start]);
204 fetch_start = (fetch_start + 1)%MAX_PER_FETCH;
205

206 rabininit(rf_win , rabintab , rabinwintab);
207

208 u_char * p;
209 u_int32 chcount = 0;
210 u_char * anchor = item.start;
211 p = item.start;
212 int n = MAX_RABIN_CHUNK_SIZE;
213 while(p < item.start+item.len) {
214 if (item.len + item.start - p < n)
215 n = item.len +item.start -p;
216 //find next anchor
217 p = p + rabinseg(p, n, rf_win , rabintab , rabinwintab);
218 //insert into anchor queue: (anchor , p-src+1)
219 tmpbuf = (data_chunk *)malloc(sizeof(data_chunk));
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220 if(tmpbuf == NULL)
221 EXIT_TRACE( " Memory a l l o c a t i o n f a i l e d . \ n " );
222 tmpbuf ->start = (u_char *)malloc(p - anchor + 1);
223 if(tmpbuf ->start == NULL)
224 EXIT_TRACE( " Memory a l l o c a t i o n f a i l e d . \ n " );
225 tmpbuf ->len = p-anchor;
226 tmpbuf ->anchorid = item.anchorid;
227 tmpbuf ->cid = chcount;
228

229 chcount++;
230 chunks_per_anchor[item.anchorid] = chcount;
231 memcpy(tmpbuf ->start , anchor , p-anchor);
232 tmpbuf ->start[p-anchor] = 0;
233 senditem = sub_ChunkProcess(*tmpbuf);
234 MEM_FREE(tmpbuf);
235

236 if (senditem ->type == TYPE_COMPRESS)
237 sub_Compress(senditem);
238 tmpsendbuf[tmpsend_count] = senditem;
239 tmpsend_count ++;
240 if (tmpsend_count >= ITEM_PER_INSERT)
241 enqueue(&send_que[qid], &tmpsend_count , (void **)tmpsendbuf);
242 anchor = p;
243 }
244

245 //insert the remaining item to the anchor queue
246 if (item.start + item.len - anchor > 0) {
247 tmpbuf = (data_chunk*)malloc(sizeof(data_chunk));
248 if(tmpbuf == NULL)
249 EXIT_TRACE( " Memory a l l o c a t i o n f a i l e d . \ n " );
250 tmpbuf ->start = (u_char *)malloc(item.start + item.len - anchor + 1);
251 if(tmpbuf ->start == NULL)
252 EXIT_TRACE( " Memory a l l o c a t i o n f a i l e d . \ n " );
253 tmpbuf ->len = item.start + item.len -anchor;
254 tmpbuf ->cid = chcount;
255 tmpbuf ->anchorid = item.anchorid;
256 chcount ++;
257 chunks_per_anchor[item.anchorid] = chcount;
258 memcpy(tmpbuf ->start , anchor , item.start + item.len -anchor);
259 tmpbuf ->start[item.start + item.len -anchor] = 0;
260

261 senditem = sub_ChunkProcess(*tmpbuf);
262 if (senditem ->type == TYPE_COMPRESS)
263 sub_Compress(senditem);
264 tmpsendbuf[tmpsend_count] = senditem;
265 tmpsend_count ++;
266 if (tmpsend_count >= ITEM_PER_INSERT)
267 enqueue(&send_que[qid], &tmpsend_count , (void **)tmpsendbuf);
268 }
269 MEM_FREE(item.start);
270 }
271 }
272 if (tmpsend_count > 0)
273 enqueue(&send_que[qid], &tmpsend_count , (void **)tmpsendbuf);
274

275 //count the number of compress threads that have finished
276 queue_signal_terminate(&send_que[qid]);
277 MEM_FREE(rabintab);
278 MEM_FREE(rabinwintab);
279 return NULL;
280 }
281

282 /*
283 * read file and send it to FindAllAnchor thread
284 */
285 void * DataProcess(int nqueues , int fd){
286 int qid = 0;
287 u_long tmp;
288 u_char * p;
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289 u_char * anchor;
290 u_char * src = (u_char *)malloc(MAXBUF*2);
291 u_char * left = (u_char *)malloc(MAXBUF);
292 u_char * newb = (u_char *) malloc(MAXBUF);
293 if(src == NULL || left == NULL || newb == NULL)
294 EXIT_TRACE( " Memory a l l o c a t i o n f a i l e d . \ n " );
295 u_long srclen = 0;
296 int left_bytes = 0;
297 char more = 0;
298 data_chunk * tmpbuf[ANCHOR_DATA_PER_INSERT];
299 int tmp_count = 0;
300 int anchorcount = 0;
301

302 u32int * rabintab = (u32int *)malloc(256*sizeof rabintab [0]);
303 u32int * rabinwintab = (u32int *)malloc(256*sizeof rabintab [0]);
304 if(rabintab == NULL || rabinwintab == NULL)
305 EXIT_TRACE( " Memory a l l o c a t i o n f a i l e d . \ n " );
306 rf_win_dataprocess = 0;
307 rabininit(rf_win_dataprocess , rabintab , rabinwintab);
308 u_long n = MAX_RABIN_CHUNK_SIZE;
309

310 //read from the file
311 while ((srclen = read(fd, newb , MAXBUF)) >= 0) {
312 if (srclen) more = 1;
313 else {
314 if (!more) break;
315 more =0;
316 }
317 memset(src, 0, sizeof(u_char)*MAXBUF);
318 if (left_bytes > 0){
319 memcpy(src, left , left_bytes* sizeof(u_char));
320 memcpy(src+left_bytes , newb , srclen *sizeof(u_char));
321 srclen+= left_bytes;
322 left_bytes = 0;
323 } else
324 memcpy(src, newb , srclen * sizeof(u_char));
325 tmp = 0;
326 p = src;
327

328 while (tmp < srclen) {
329 anchor = src + tmp;
330 p = anchor + ANCHOR_JUMP;
331 if (tmp + ANCHOR_JUMP >= srclen) {
332 if (!more)
333 p = src + srclen;
334 else {
335 //move p to the next 00 point
336 n = MAX_RABIN_CHUNK_SIZE;
337 memcpy(left , src+tmp, (srclen - tmp) * sizeof(u_char));
338 left_bytes= srclen -tmp;
339 break;
340 }
341 } else {
342 if (srclen - tmp < n)
343 n = srclen - tmp;
344 p = p + rabinseg(p, n, rf_win_dataprocess , rabintab , rabinwintab);
345 }
346

347 tmpbuf[tmp_count] = (data_chunk *)malloc(sizeof(data_chunk));
348 if(tmpbuf[tmp_count] == NULL)
349 EXIT_TRACE( " Memory a l l o c a t i o n f a i l e d . \ n " );
350 tmpbuf[tmp_count]->start = (u_char *)malloc(p - anchor + 1);
351 if(tmpbuf[tmp_count]->start == NULL)
352 EXIT_TRACE( " Memory a l l o c a t i o n f a i l e d . \ n " );
353 tmpbuf[tmp_count]->len = p-anchor;
354 tmpbuf[tmp_count]->anchorid = anchorcount;
355 anchorcount ++;
356 memcpy(tmpbuf[tmp_count]->start , anchor , p-anchor);
357 tmpbuf[tmp_count]->start[p-anchor] = 0;
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358 tmp_count ++;
359

360 //send a group of items into the next queue in round -robin fashion
361 if (tmp_count >= ANCHOR_DATA_PER_INSERT) {
362 enqueue(&anchor_que[qid], &tmp_count , (void **)tmpbuf);
363 qid = (qid+1) % nqueues;
364 }
365 tmp += p - anchor;//ANCHOR_JUMP;
366 }
367 }
368 if (tmp_count >= 0) {
369 enqueue(&anchor_que[qid], &tmp_count , (void **)tmpbuf);
370 qid = (qid+1) % nqueues;
371 }
372 //terminate all output queues
373 for(int i=0; i<nqueues; i++)
374 queue_signal_terminate(&anchor_que[i]);
375 MEM_FREE(rabintab);
376 MEM_FREE(rabinwintab);
377 MEM_FREE(src);
378 MEM_FREE(left);
379 MEM_FREE(newb);
380 return 0;
381 }
382

383 /*
384 * write blocks to the file
385 */
386 void *
387 SendBlock(int nqueues , config * conf) {
388 //NOTE: We *must* start with the first queue in order to get the header first
389 int qid = 0;
390 int fd = 0;
391 struct hash_entry * entry;
392

393 if (conf ->method == METHOD_STDOUT)
394 fd = STDOUT_FILENO;
395 else {
396 fd = open(conf ->outfile , O_CREAT|O_TRUNC|O_WRONLY|O_TRUNC);
397 if (fd < 0) {
398 perror( " SendBlock open " );
399 return NULL;
400 }
401 fchmod(fd, S_IRGRP | S_IWUSR | S_IRUSR | S_IROTH);
402 }
403

404 send_buf_item * fetchbuf[ITEM_PER_FETCH];
405 int fetch_count = 0, fetch_start = 0;
406 send_buf_item * item;
407

408 SearchTree T;
409 T = TreeMakeEmpty(NULL);
410 Position pos;
411 struct tree_element * tele;
412 struct heap_element * hele;
413

414 u_int32 reassemble_count = 0, seq_count = 0, anchor_count = 0;
415 send_body * body = NULL;
416 send_head * head = NULL;
417

418 head = (send_head *)headitem ->str;
419 if (xwrite(fd, &headitem ->type , sizeof(headitem ->type)) < 0){
420 perror( " x w r i t e : " );
421 EXIT_TRACE( " x w r i t e t y p e f a i l s \ n " );
422 return NULL;
423 }
424 int checkbit = CHECKBIT;
425 if (xwrite(fd, &checkbit , sizeof(int)) < 0)
426 EXIT_TRACE( " x w r i t e head f a i l s \ n " );
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427 if (xwrite(fd, head , sizeof(send_head)) < 0)
428 EXIT_TRACE( " x w r i t e head f a i l s \ n " );
429 MEM_FREE(head);
430

431 while(1) {
432 //get a group of items
433 if (fetch_count == fetch_start) {
434 //process queues in round -robin fashion
435 int r, i = 0;
436 do {
437 r = dequeue(&send_que[qid], &fetch_count , (void **)fetchbuf);
438 qid = (qid+1) % nqueues;
439 i++;
440 } while(r<0 && i<nqueues);
441 if (r<0)
442 break;
443 fetch_start = 0;
444 }
445 item = fetchbuf[fetch_start];
446 fetch_start ++;
447 if (item == NULL) break;
448

449 switch (item ->type) {
450 case TYPE_FINGERPRINT:
451 case TYPE_COMPRESS:
452 //process one item
453 body = (send_body *)item ->str;
454 if (body ->cid == reassemble_count && body ->anchorid == anchor_count) {
455 //the item is the next block to write to file , write it.
456 if ((entry = hashtable_search(cache , (void *)item ->content)) != NULL) {
457 struct pContent * value = ((struct pContent *)entry ->v);
458 if (value ->tag == TAG_WRITTEN) {
459 //if the data has been written , just write SHA -1
460 write_file(fd, TYPE_FINGERPRINT , seq_count , body ->len, item ->content);
461 MEM_FREE(item ->sha1);
462 MEM_FREE(item ->content);
463 MEM_FREE(item);
464 } else {
465 //if the data has not been written , write the compressed data
466 if (value ->tag == TAG_DATAREADY) {
467 write_file(fd, TYPE_COMPRESS , seq_count , value ->len, value ->content);
468 value ->len = seq_count;
469 value ->tag = TAG_WRITTEN;
470 hashtable_change(entry , (void *)value);
471 } else {
472 printf( " E r r o r : I l l e g a l t a g \ n " );
473 }
474 MEM_FREE(item ->sha1);
475 MEM_FREE(item ->content);
476 MEM_FREE(item);
477 }
478 } else
479 printf( " E r r o r : Cannot f i n d e n t r y \ n " );
480 MEM_FREE(body);
481 reassemble_count ++;
482 if (reassemble_count == chunks_per_anchor[anchor_count]) {
483 reassemble_count = 0;
484 anchor_count ++;
485 }
486 seq_count ++;
487 //check whether there are more data in order in the queue that
488 // can be written to the file
489 pos = TreeFindMin(T);
490 if (pos != NULL && (pos->Element)->aid == anchor_count) {
491 tele = pos->Element;
492 hele = FindMin(tele ->queue);
493 while (hele!=NULL && hele ->cid==reassemble_count && tele ->aid==anchor_count) {
494 if ((entry = hashtable_search(cache , (void *)hele ->content)) != NULL) {
495 struct pContent * value = ((struct pContent *)entry ->v);
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496 if (value ->tag == TAG_WRITTEN) {
497 write_file(fd, TYPE_FINGERPRINT , seq_count , hele ->len, hele ->content);
498 } else {
499 if (value ->tag == TAG_DATAREADY) {
500 write_file(fd, TYPE_COMPRESS , seq_count , value ->len, value ->content);
501 value ->len = seq_count;
502 value ->tag = TAG_WRITTEN;
503 MEM_FREE(value ->content);
504 hashtable_change(entry , (void *)value);
505 } else
506 printf( " E r r o r : I l l e g a l t a g \ n " );
507 }
508 } else
509 printf( " E r r o r : Cannot f i n d e n t r y \ n " );
510 MEM_FREE(body);
511 if (hele ->content) MEM_FREE(hele ->content);
512 MEM_FREE(hele);
513 seq_count ++;
514 DeleteMin(tele ->queue);
515

516 reassemble_count ++;
517 if (reassemble_count == chunks_per_anchor[anchor_count]) {
518 reassemble_count = 0;
519 anchor_count ++;
520 }
521 if (IsEmpty(tele ->queue)) {
522 T = TreeDelete(tele , T);
523 pos = TreeFindMin(T);
524 if (pos == NULL) break;
525 tele = pos->Element;
526 }
527 hele = FindMin(tele ->queue);
528 }
529 }
530 } else {
531 // the item is not the next block to write , put it in a queue.
532 struct heap_element* p;
533 p = (struct heap_element*)malloc(sizeof(struct heap_element));
534 if(p == NULL)
535 EXIT_TRACE( " Memory a l l o c a t i o n f a i l e d . \ n " );
536

537 p->content = item ->content;
538 p->cid = body ->cid;
539 p->len = body ->len;
540 p->type = item ->type;
541 MEM_FREE(item ->sha1);
542 MEM_FREE(item);
543 pos = TreeFind(body ->anchorid , T);
544 if (pos == NULL) {
545 struct tree_element* tree;
546 tree = (struct tree_element*)malloc(sizeof(struct tree_element));
547 if(tree == NULL)
548 EXIT_TRACE( " Memory a l l o c a t i o n f a i l e d . \ n " );
549 tree ->aid = body ->anchorid;
550 tree ->queue = Initialize(INITIAL_SIZE);
551 Insert(p, tree ->queue);
552 T = TreeInsert(tree , T);
553 } else
554 Insert(p, pos->Element ->queue);
555 }
556 MEM_FREE(body);
557 break;
558 case TYPE_HEAD:
559 break;
560 case TYPE_FINISH:
561 break;
562 }
563 MEM_FREE(item);
564 }
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565

566 //write the blocks left in the queue to the file
567 pos = TreeFindMin(T);
568 if (pos != NULL) {
569 tele = pos->Element;
570 hele = FindMin(tele ->queue);
571 while (hele!= NULL) {
572 if ((entry = hashtable_search(cache , (void *)hele ->content)) != NULL) {
573 struct pContent * value = ((struct pContent *)entry ->v);
574 if (value ->tag == TAG_WRITTEN) {
575 write_file(fd, TYPE_FINGERPRINT , seq_count , hele ->len, hele ->content);
576 MEM_FREE(hele ->content);
577 MEM_FREE(hele);
578 } else {
579 if (value ->tag == TAG_DATAREADY) {
580 write_file(fd, TYPE_COMPRESS , seq_count , value ->len, value ->content);
581 value ->len = seq_count;
582 value ->tag = TAG_WRITTEN;
583 hashtable_change(entry , (void *)value);
584 MEM_FREE(value ->content);
585 } else
586 printf( " E r r o r : I l l e g a l t a g \ n " );
587 }
588 } else
589 printf( " E r r o r : Cannot f i n d e n t r y \ n " );
590 seq_count ++;
591 DeleteMin(tele ->queue);
592 if (IsEmpty(tele ->queue)) {
593 T = TreeDelete(tele , T);
594 pos = TreeFindMin(T);
595 if (pos == NULL) break;
596 tele = pos->Element;
597 }
598 hele = FindMin(tele ->queue);
599 }
600 }
601 u_char type = TYPE_FINISH;
602 if (xwrite(fd, &type , sizeof(type)) < 0){
603 perror( " x w r i t e : " );
604 EXIT_TRACE( " x w r i t e t y p e f a i l s \ n " );
605 return NULL;
606 }
607 close(fd);
608 return NULL;
609 }
610

611 /*--------------------------------------------------------------------------*/
612 /* Encode
613 * Compress an input stream
614 * Arguments:
615 * conf: Configuration parameters
616 */
617 void Encode(config * conf) {
618 int32 fd;
619 struct stat filestat;
620 //queue allocation & initialization
621 const int nqueues = (conf ->nthreads / MAX_THREADS_PER_QUEUE) +
622 ((conf ->nthreads % MAX_THREADS_PER_QUEUE != 0) ? 1 : 0);
623 anchor_que = (struct queue *)malloc(sizeof(struct queue) * nqueues);
624 send_que = (struct queue *)malloc(sizeof(struct queue) * nqueues);
625 if( (anchor_que == NULL) || (send_que == NULL)) {
626 printf( " Out o f memory \ n " );
627 exit(1);
628 }
629 int threads_per_queue;
630 for(int i=0; i<nqueues; i++) {
631 if (i < nqueues -1 || conf ->nthreads %MAX_THREADS_PER_QUEUE == 0) {
632 //all but last queue
633 threads_per_queue = MAX_THREADS_PER_QUEUE;
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634 } else //remaining threads work on last queue
635 threads_per_queue = conf ->nthreads %MAX_THREADS_PER_QUEUE;
636 //call queue_init with threads_per_queue
637 queue_init(&anchor_que[i], QUEUE_SIZE , 1);
638 queue_init(&send_que[i], QUEUE_SIZE , threads_per_queue);
639 }
640 memset(chunks_per_anchor , 0, sizeof(chunks_per_anchor));
641

642 //initialize output file header
643 headitem = (send_buf_item *)malloc(sizeof(send_buf_item));
644 if(headitem == NULL)
645 EXIT_TRACE( " Memory a l l o c a t i o n f a i l e d . \ n " );
646 headitem ->type = TYPE_HEAD;
647 send_head * head = (send_head *)malloc(sizeof(send_head));
648 if(head == NULL)
649 EXIT_TRACE( " Memory a l l o c a t i o n f a i l e d . \ n " );
650

651 strncpy(head ->filename , conf ->infile , LEN_FILENAME);
652 filecount ++;
653 head ->fid = filecount;
654 chunkcount = 0;
655 headitem ->str = (u_char * )head;
656

657 /* src file stat */
658 if (stat(conf ->infile , &filestat) < 0)
659 EXIT_TRACE( " s t a t ( ) %s f a i l e d : %s \ n " , conf ->infile , strerror(errno));
660 if (!S_ISREG(filestat.st_mode))
661 EXIT_TRACE( " n o t a no rma l f i l e : %s \ n " , conf ->infile);
662 /* src file open */
663 if((fd = open(conf ->infile , O_RDONLY | O_LARGEFILE)) < 0)
664 EXIT_TRACE( "%s f i l e open e r r o r %s \ n " , conf ->infile , strerror(errno));
665

666 DataProcess(nqueues , fd);
667 //do the processing
668 SerialIntegratedPipeline (0);
669 SendBlock(nqueues , conf);
670

671 for(int i=0; i<nqueues; i++) {
672 queue_destroy(&anchor_que[i]);
673 queue_destroy(&send_que[i]);
674 }
675 /* clean up with the src file */
676 if (conf ->infile != NULL)
677 close(fd);
678 }

Listing B.3: Deduplication serial encoding pipeline.



Appendix C

Parallelised Program Source Code

The source code files for each implementation of the three programs can be found on my re-
search site located at http://taaaki.za.net/parsrc.tar.gz.

C.1 Shared Task Queue for Pthreads

1 typedef struct {
2 int start;
3 int end;
4 } thread_data;
5

6 struct worker_node {
7 worker_node* next;
8 worker_node* prev;
9 thread_data* data;

10 };
11

12 class WorkQueue {
13 private:
14 worker_node* head;
15 worker_node* tail;
16 pthread_mutex_t qlock;
17

18 public:
19 WorkQueue() {
20 this->head = NULL;
21 this->tail = NULL;
22 pthread_mutex_init(&(this->qlock), NULL);
23 }
24

25 ~WorkQueue() {
26 thread_data* my_work;
27 while (true) {
28 my_work = pop();
29

30 if (my_work == NULL) {
31 break;
32 }
33 else {
34 delete my_work;
35 }
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36 }
37 pthread_mutex_destroy (&(this->qlock));
38 }
39

40 thread_data* pop() {
41 thread_data* res = NULL;
42 pthread_mutex_lock (&(this->qlock));
43 if (this->head != NULL) {
44 worker_node* curr = this->head;
45 res = curr ->data;
46 this->head = curr ->prev;
47

48 if (this->head != NULL) {
49 this->head ->next = NULL;
50 }
51 else {
52 this->tail = NULL;
53 }
54 delete curr;
55 }
56 pthread_mutex_unlock (&(this->qlock));
57 return res;
58 }
59

60 void push(thread_data* data) {
61 worker_node* newjob = new worker_node();
62 newjob ->prev = NULL;
63 newjob ->data = data;
64

65 pthread_mutex_lock (&(this->qlock));
66 newjob ->next = this->tail;
67

68 if (this->head == NULL) {
69 this->head = newjob;
70 }
71 else {
72 this->tail ->prev = newjob;
73 }
74 this->tail = newjob;
75 pthread_mutex_unlock (&(this->qlock));
76 }
77 };

Listing C.1: Shared Task Queue using Pthreads mutex.


