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ABSTRACT 

Compari son of po 1 iov irus stra ins was carr ied out to determine 

the origin of the virus in two isolates obtained during the 1982 

outbreak of poliomyelitis in Gazankulu. Comparisons of the 

outbreak isolates with vaccine and wild-type strains of the same 

poliovirus type were carried out using four biochemical tech-

niques. SDS-polyacrylamide gel electrophoresis (SDS-PAGE), two-

dimensional thin-layer chromatography (TLC) and reversed-phase 

high-performance liquid-chromatography (RP-HPLC) were used for 

comparing viral capsid proteins. Comparison of poliovirus 

strains at a genetic level was carried out using two-dimensional 

oligonucleotide mapping of viral RNA. Results showed the type 1 

poliovirus isolate, 5061, to be a novel wild-type po li ovirus. 

The type 2 isolate, 5068, was closely related to the poliovirus 

type 2 Sabin vaccine strain, P712. It was concluded that the 

intrinsic variability of poliovirus strains was responsible for 

the appearance of isolate 5068. 

.' 
! 
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CHAPTER ONE 

INTRODUCTION 

Between May and September 1982 an epidemic of poliomyelitis 

occurred in Gazankulu, a self-governing National State in north-

eastern South Africa. Paralytic poliomyelitis occurred in 260 

cases. A case fatality rate of 13.8% was recorded, and 92% of 

patients were 0 - 5 years old. Vaccination rates appeared to 

have been low: 69% of the patients said that they had not been 

vaccinated while 15% were unsure 95 

The aetiological agent responsible for the outbreak was found to 

be poliovirus type 1 (determined initially by serology and later 

by virus isolation, primarily from stool specimens). No type 2 

or 3 isolates were made during May and June, the first two 

months of the epidemic. During July poliovirus type 2 was 

isolated from four samples while one isolate each of type 2 and 

type 3 poliov irus was made in August 95 

Type 2 and 3 virus was only isolated after initiation of an 

extensive immunization programme using the Sabin trivalent oral 

poliovaccine (TOPV) 48. Consequently, vaccine stocks were reca

lled from the field in order to be tested for potency. Of the 

recalled vaccine samples, 8 out of 17 were found to be below the 

minimal required potency of 300 000 TCID 50/dose (tissue culture 

infective dose required for destruction of 50% of the cell 

monolayer), rang ing from 240 000 TCID 50 down to 4 823 

TCID 50/dose 48 
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The loss of potency had ocurred in the field, presumably due to 

breaks in the cold chain. This was proved by testing TOPV 

produced by the National Institute of Virology on 13 sero 

negative ch i ldren aged between 1 and 5 years old . All developed 

antibodies to type 2 poliovirus after one dose of TOPV and 30% 

became seropositive to all three serotypes 48 

the vaccine was effective. 

indicating that 

Because of the temporal association between adm i ni s t r ation of 

the vaccine and isolation of type 2 and 3 poliovirus stra i ns, it 

was suspected that the type 2 and type 3 isolates were vaccine 

related . Experimental work using polyac rylamide gel electropho

resis and two-dimensiona l mapping of t r yp t ic peptides carried 

out by Martin (1984) and Eve (1985) indicated that the polio-

virus type 2 strain isolated was vaccine related . The type 

outbreak strain did not appear to be vaccine related. Type 3 

poliovirus from the outbreak was not available for comparison 

with the wild and vaccine type 3 strains. 

This study was carried out in order to investigate the origin of 

the isolates obtained from the Gazankulu poliomyel i tis outbreak 

of 1982. It was hoped that the results would give a clear 

indication of the relationship between the Gazankulu outbreak 

poliovirus strains and the at t enuated vaccine strains. 

1.1. Classification and General Characteristics of Poliovirus 

Poliovirus is a member of the Picornaviridae, a family of small, 

ether resistant, polyhedral RNA-containing viruses which infect 

man and animals 66 The name Picornaviridae refers to the size 

3 



(pico meaning small) and nucleic a cid component (nucleic acid is 

RNA) of the members of this virus family 62 

1.1.1. Physico-Chemical Characteristics 

The physical and chemical properties of polioviruses are shown 

in table 1.1. The capsid consists of 32 capsomeres 33,93 and 

contains four structural proteins comprising 70% by mass of the 

virion 91. Myristic acid is present, bound covalently to the N-

terminus of the VP4 capsid protein 17 It is genera 11 y 

accepted that the proteins are not glycosylated 88. The single 

strand of linear RNA is of a positive polarity and contains all 

the genetic information. A poly-adenylic acid (poly-A) region 

of variable length is present at the 3' end. Conflicting 

evidence exists as to the necessity of the poly-A region for 

infectivity 33,88,97,99 

The 5' end of the RNA terminates in pUp instead of m7GS'pppS'NP. 

A sma 11, v irus encoded protein, des igna ted VPg (v irus prote in 

genome-linked), is covalently linked to this. VPg is necessary 

for initiation of RNA replication 22,33,88,97, and antibodies to 

VPg prevent de novo synthesis of poliovirus RNA in an in vitro 

system 77 

A single polyprotein, NCVPOO (Molecular weight 247 000), is 

translated off the RNA and accounts for 95% of the virus genome. 

Post-translational cleavage into structural and non-structural 

proteins occurs. To date 26 cleavage products have been detec

ted 83 In addition to the 60 molecules each of structural 

4 



Table 1. 1 : Physico-Chemical Characteristics of Polioviruses 4 

* 

** 

Diameter of virion 

Diameter of internal core 

Diameter of capsomere 

Molecular weight of RNA 

Base composition (C+G) 

Mo lecular weight of virion 
VP1 
VP2 
VP3 
VP4 
VPg 

Sedimentation coefficient 

Particle mass of virion 

Molecular weight of virion 

proteins ** 

of virion 

27-30nm 

16nm 

6nm 

2.5 x 1 0 6 

( 7 . 7 Kb) 

46 moles % * 

35 x 10 3 

28 x 10 3 

24 x 10 3 

6 x 10 3 

-7 x 10 3 

157-160 S 20 

1,1 x 10- 17g 

8-9 x 10 6 

composition is closely similar for all three types 

virion proteins 1 - 4 are present in equal molar amounts 
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proteins VP1, VP2, VP3 and VP4 found in the capsid, there may be 

two molecules of VPO, the precursor to VP2 and VP4 93 

1.2. Disease Aspects 

Poliovirus is primarily an enterovirus, infecting the gastro

intestinal tract and generally causing a mild or sub-clinical 

illness. In approximately 1-2% of cases the virus infects the 

central nervous system, where the release of virus particles 

causes cell lysis 62. Subsequent lesions in the brain tissue 

(figure 1.1) result in the characteristic paralytic disease 

associated with poliovirus infections. 

Th ree distinct immunologic types of poliovirus exist, each of 

which causes paralytic poliomyelitis. The three serotypes, 

referred to as types 1,2 and 3, may be recognised by neutraliza

tion, complement fixation (CF) or ger~·diffusion precipitation 

reactions with type-specific sera 33. Cross-hybridisation 

experiments between virion RNA and replicative forms of RNA from 

infected cells show that base compositions of the three sero

types are very similar: 36% to 52% of the nucleotide sequences 

are shared 33 

Polioviruses have a limited host range, and man is the only 

known natural host. Infection of other primates, generally by 

direct inoculation of the brain or spinal cord, is possible 66. 

I n the case of chimpanzees and cynomolgus monkeys infection by 

the oral route is also effective 33 The disease is generally 

subclinical in chimpanzees, and the animals become intestinal 

carriers. Most polio virus strains can be grown in primary or 

6 



FIGURE 1.1. Lateral view of the human bratn stem and the mid-sagittal surfdce of 
the brain stem . Black dots: usual distribution of les ions . (Badian, 
O. in Ginsberg. 1980). 
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continuous cell lines derived from a variety of human tissues or 

from monkey kidney, testis or muscle 66 

Currently two poliovirus vaccines exist - the Salk and the Sabin 

vaccines, introduced in 1954 and 1959 respectively. Use of 

these vaccines has resulted in a radical decrease in the number 

of cases of poliomyelitis. Over 12 years the incidence of polio

myelitis in the USSR, 23 other European countries, the United 

States, Australia, Canada and New Zealand decreased by 99% -

from over 76 000 cases in 1955 to 1 0 1 3 caSes in 1967 66 

Currently, fewer than ten cases of paralytic poliomyelitis occur 

annually in most developed countries. 

1.3. Poliovirus Vaccines 

1.3.1. Inactivated Salk Vaccine 

The first vaccine to be used against poliovirus was developed by 

Jonas Salk and was first used on a wide scale in 1954. Polio-

virus was incubated for about week at 37 0 C with 1:4 000 

formalin, pH7, after which the virus was inactivated but still 

antigenic. There were some serious initial problems with this 

vaccine, largely because the inactivation curve of crude virus 

tails off rapidly. The procedure has since been modified by 

carrying out inactivation at SOOC in the presence of 1M 

magnesium chloride. This also inactivates any adventitious 

viruses (such as SV 40) that may be present in monkey cell 

cultures. The resultant vaccine is safe and effective, with an 

immunization rate of 70% - 90% 33 
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The Salk inj ected pol iovirus vaccine (IP V) contains a 11 three 

poliovirus serotypes. Three subcutaneous (SC) injections are 

administered over 3 to 6 months. Antibody levels fall to about 

20% within two years then decline slowly, and booster injec

tions every five years are recommended. Infection of the oropha

ryngeal mucosa and tonsils is prevented, blocking transmission 

by oropharyngeal secretions 33 Despite vaccination, re-

infection of the alimentary tract may occur. This may result in 

a vaccinated individual acting as a "carrier" of the disease 66. 

Administration of the Salk vaccine requires trained medical 

personnel. This increases the costs and difficulty of ensuring 

an effective vaccination programme. The IPV may however be 

incorporated into other injected vaccines such as the DPT 

(diptheria, pertussis, tetanus) vaccine for ease of administra

tion 57. Rare side effects such as anaphylaxis or neurological 

illness such as Guillain-Barre syndrome 57 may occur as a result 

of use of the Salk IPV. 

1.3.2. Live Attenuated Sabin Vaccine 

Three different sets of live attenuated poliovirus were indepen

dently selected by Cox, Koprowski and Sabin by multiple passage 

in a foreign host (usually tissue culture). The attenuated 

poliovirus strains developed in 1956 by Albert Sabin were chosen 

by the US Public Health Service for commercial production of 

vaccines. 

Neurovirulent type 1 strain Mahoney virus was isolated from 

three healthy children in 1941. Attenuation was achieved by 50 
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in vitro and 24 in vivo passages of the virus. Initially 14 in 

vivo passages and 2 i n vitro monkey tissue culture passages were 

carried out. These we re followed by 31 in ~it r o passages 

(t h r ough both the CNS of whi te mice and monkey ce 11 cu 1 tures) 

a nd 10 in vivo passages through cynomolgus or rhesus monkey skin 

alternating with 10 in vitro tissue culture passages. Further 

in vitro passages were carried out , resulting in the attenuated 

poliovirus strain LSc 2ab/KP 2• This was used for the production 

of vaccine stocks against poliovirus type 1 96 

P712 was a natura l ly occurring type 2 poliovirus strain found to 

hav e a low viru lence for cynomolgus and rhesus monkeys. After 

four in vitro passage s in cynomolgus monkey kidney cells and 

three plaque passages a single in vivo passage in chimpanzees 

was carried out. This was followed by si x in vitro passages. 

The resultant vi rus was used for the attenuated Sabin type 2 

poliovirus vaccine, P712 Ch2ab/KP 3 96. 

Type 3 strain P3/Leon/37 was isolated from the brain and spinal 

co rd of a fatal case of paral y tic poliomyelitis . This was the 

neurovirulent progenitor of attenuated vaccine strain Leon 

12 a1b/KP3. Attenuation was achieved by passaging the virus 

through unnatural hosts, 53 times in vitro interspersed with 21 

in vivo passages intracerebrally through rhesus monkeys 96 

Ini tia 11 y the three Sabin v irus types were admini s tered mono-

valently. Interference with one another upon simultaneous 

administration of the three v accine types was not, however, 

found to occur. The three types are now administered together 

10 



as the trivalent oral polio vaccine (TOPV). Interference is 

minimized by having type 1 present in the greatest concentration 

and type 2 in the lowest 3 3. Usually interference may be 

overcome by giving three dos es of the vaccine at 6_week 

intervals 57 

Because the Sabin vaccine is live it can be given orally, 

following the route of infection by wild-type virus. As a 

resu 1 t, trained med ica 1 personne 1 are not requi red for the 

administration of the vaccine. This is an advantage in under -

developed countries suffering from a lack of medical personnel 

in rural areas 66 Because the vaccine is given orally, on a 

sugar cube, it may be more acceptable to the public than the 

in jected Salk vaccine 6 

voluntary vaccination. 

This could lead to a higher rate of 

In addition to triggering the production of humoral antibodies 

the Sabin· vaccine induces the production of IgA, which is 

secreted into the gut. This results in resistance of the intes

tinal tract to infection by wild-type poliovirus. Spread of the 

virus through the population is thus blocked. 

A higher than expected degree of vaccination has been observed 

in populations vaccinated with the Sabin TOPV. It is thought 

that the live vaccine may spread within the population in much 

the same way as the wild-type virus. This results in "passive" 

vaccination and herd immunity 6,58,66 Consequent 1 y, it is not 

necessary to have such a high vaccine acceptance rate within the 

population as with the Sa l k vaccine 66 
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Despite the greater safety of the Salk vaccine, it has generally 

been replaced by the Sabin TOPV, which is cheaper to produce, 

easier to administer and results in induction of gut immunity 

and herd immunity 35. ' The Salk inactivated vaccine is still 

popular in several countries, and some notable success has been 

achieved in the prevention of poliomyelitis. Exclusive use of 

the Salk IPV in Holland, Finland and Sweden has apparently 

eliminated paralytic poliomyelitis 66. However, these countries 

have an excellent public health service and a vaccine acceptance 

rate of at least 90% 57,58 

In certain conditi on s use of the Sabin vaccine is contra

indicated, and the Salk vaccine is used. In immunosuppressed 

individuals 6,66 and in some tropical areas with a high 

incidence of enteric viruses, the Sabin vaccine fai Is to induce 

a satisfactorily high level of antibodies 66. General use of 

the Salk IPV is, however, unlikely because of its production 

costs and administration requirements. 

Vaccines containing one strain of each serotype of poliovirus 

have proved highly effective in controlling poliomyelitis. This 

implies that immunization with one serotype induces immunity to 

all viruses of the same serotype, and that polio viruses are 

unable to avoid host immunity by antigenic drift, as is seen 

with influenza virus 71. There was, however, a sma 11 outbreak 

of poliomyelitis (with nine cases of paralysis) in Finland 

between August 1984 and January 1985. This involved a type 3 

polio virus having an unusual antigenic nature 63. It therefore 

appears that occasionally antigenic drift may occur in vivo. 
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Certainly, antigenic drift has been detected in vitro 22 

1.4. Epidemiology 

Three ma jo r epide miological phases of poliomyelitis exist -

endemic, epidemic and postvaccination. In areas where the stan

dard of living is low and sanitation poor, the disease appears 

to be endemic. It is st ill primarily a disease of infants 

(hence " infantile paralysis"), and vi rtua lly all children over 

the age of four years are immune. Antibody levels to the virus 

are generally high throughout the population, resulting in 

protection of infants by maternal antibodies. Additionally, 

infants and young children are most likely to have an inapparent 

infection, rendering them immune to poliovirus . Consequently 

paralytic poliomyelitis tends to be rare 66 

Since the 1900's, living conditions and sanitation have improved 

greatly. In the 75 y ears preceeding widespread vaccination 

programmes in the 1 960's, poliomyelitis changed from being 

endemic to epidemic. Concurrently the age distribution of the 

disease and its severity increased as it appeared in young 

adults 33 

Increased levels of hygiene appear to be responsible for the 

increase in poliomyelitis epidemics. Improved sani ta t ion 

prevented individuals from being infected while still protected 

by the maternal antibodies. Increasing numbers of individuals 

encountered the virus for the first time in later childhood or 

in adult life, when the disease is more likely to take on the 
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paralytic form. The delay in exposure to the virus resulted in 

the build-up of susceptibles in the population. Once a critical 

numbe r sufficient to support wide and rapid circulation of the 

virus existed, an epidemic was more likely 66 

At present, in well vaccinated parts of the world , the post

vaccine epidemiological patterns of po l iomyel itis are emerging. 

These pa t terns are high I y var iab I e. Isolations of poliovirus 

are rare, with wild-type virus generally being imported from 

other countries 66. In most developed countries with a good 

vaccination programme, the majority of poliomyelitis cases are 

those occurring within vaccinees and their contacts 6,98. These 

cases are the result of reversion to neurovirulence by the 

attenuated Sabin vaccine. 

Little is yet know n about the nature and extent of the changes 

involved in virus attenuation but it probably occurs by a 

series of mutational steps 52. Reversion to neurovirulence pro-

bably results from a similar series of steps. Under immune 

pressure in vitro the poliomyelitis vaccine appears to be highly 

mutable 70,72, although Yoneyama et al (1981) found low in vitro 

mutability of the Sabin type 2 vaccine. The capacity for back

mutation by the live vaccine has been used by Dr J. Salk and 

others in arguing against use o f the Sabin vaccine. 

Fortunately in ~ reversion appears to occur only at a very 

low rate, suggesting that the vaccine is stable in vivo. 

Figures available support this in the United States 

approximately one case of paralytic poliomyelitis occurs per 
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11.5 million vaccinees and one case per 3.9 million vaccinee 

contacts 66 

Most cases of poliomyelitis temporally associated with adminis

tration of the TOPV involve polio viruses of type 2 and) 98. 

The attenuated type) virus, in particular, may attain a high 

level of neurovirulence very early in the course of infection 

and requires only a single nucleotide change at a specific 

position to attain increased neurovlrulence 26. Despite the 

possibility of reversion, the World Health Organization (WHO) 

considers the TOPV to be one of the safest vaccines currently 

available 112 

1.4.1. Identification of Vaccine Related Strains of Poliovirus 

Several tests have been developed in order to monitor the chara

cteristics of polio viruses recovered from individuals suspected 

of ha v ing vaccine-re lated pol iov irus infections. One problem 

has been positive identification of vaccine-related poliovirus 

strains. 

In 1981, the World Health Organization organized a collaborative 

study to compare various markers of poliovirus, both antigenic 

and phenotypic. Antigenic marker tests with cross-adsorbed 

immune sera were the most dependable for differentiating between 

wild-type strains and those of vaccine origin 112. Aluminium 

hydroxide (Al(OH))) gel elution marker tests were useful for 

characterising type 1 and) isolates. The rct/40 marker test, 

which tests for the presence of a genotypic marker controlling 

the ability to replicate at elevated temperature (40 o C), gave 
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highly variable results 112 

Biochemical methods have also been widely used for differentia-

ting between wi ld-type and vaccine-re lated cases of 

poliomyelitis. Such tests include the use of monoclonal 

antibodies (MoAb) 71 mapping of trypsin-generated peptides in 

two dimensions 52, polyacrylamide gel electrophoresis (PAGE) 52, 

high performance liquid chromatography (HPLC) 43,44 

hybridization experiments using DNA complementary to the virus 

RNA 115, and two-dimensional mapping of RNase T1 resistant 

oligonucleotides 13,51,63,80. Of these methods, RNase T1 oligo

nucleotide mapping is probably the most widely used. 

1.5. Scope of This Study 

In this study four biochemical techniques were used for compa-

ring the Gazankulu outbreak strains, vaccine strains and wild-

type strc;ins of poliovirus. Comparison of the capsid proteins 

of poliovirus strains should show which capsid proteins are the 

most subject to alteration and the degree of relatedness between 

virus capsid proteins. Studies of the RNAs of different polio-

virus strains should indicate the extent of genetic differences 

between strains. The biochemical techniques used were compared 

in order to find which was the most rapid, easy to perform and 

cost-effective. Viral capsid proteins were compared using SDS-

polyacrylamide gel electrophoresis (SDS-PAGE) and mapping of 

trypsin-generated peptides by two-dimensional thin-layer 

chromatography (TLC) and reversed-phase high-performance liquid

chromatography (RP-HPLC). The fourth technique, two-dimensional 
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mapping of oligo-nucleotides produced by digestion of v ira l RNA 

with Aspergill us RNase T1 , indicated the degree of related-

nes s between poliovirus strains a t a genetic level. 

~iscontinuous polyacrylamide gel electrophoresis in sod ium 

dodecyl sulphate-containing gel s (SOS-PAGE) is a powerful tool 

for the separation of polypept i de chains in biological systems. 

The high r esol ving power of d isco nti nuous gel electrophores is is 

combined with the capabi 1 i ty of the anionic detergen t, SOS, to 

b r e ak proteins into individual polypeptide chains 54,78 

Radiolabelling of proteins, followed by digestion with an enzyme 

such as trypsin , and mapping of the subsequent peptides b y TLC 

or RP-HPLC, allows for a comparison of proteins at the amino 

acid le v e 1. Such mapping can also give a more accurate indica-

tion of relatedness than can SOS-PAGE, with proteins differing 

by as little as one amino acid giving different maps 59 

Mapping the o ligonucleotides obtained by the digestion of viral 

RNA allows comparison of the entire genome of the virus, and not 

merely the proteins that it codes for. "Fingerprint" mapping of 

oligonucleotides produced by specific nuclease cleavage of RNA 

is carried out by electrophoresis in two dimensions. 

Oligonucleotide mapping is most frequently applied as an analy

tical technique for comparing genomes of RNA viruses 3,12,15,51. 

Secause the enzymatic cleavage is selective, a specific collec-

tion of RNA fragments are formed. Comparisons are based on the 

principle that large, structurally unique oligonucleotides 
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separate into patterns, or "fingerprints", which are highly 

characteristic of the original RNA sequence. The genetic rela

tionships of different virus strains may thus be compared 51 

Since the characteristic oligonucleotides originate from all 

regions of the RNA , the distribution of similarities and 

differences is surveyed over the entire RNA. This allows 

comparison of the whole genome. Although oligonucleotide 

fingerprinting does not a llow for the sequence of oligo-

nuc 1 eot ides to be determined, the technique is simp 1 e and 

permits fairly rapid comparison of RNAs 51 

It was hoped that comparison of the Gazankulu outbreak strains 

of poliovirus with the Sabin vaccine strains and wild-type 

strains using SDS-PAGE, TLC, RP-HPLC and oligonucleotide mapping 

would lead to: 

1. Confirmation of the causative agents of the Gazankulu polio 

myelitis outbreak of 1982. 

2. Determina tion of the relatedness of Gazankulu outbreak, 

vaccine and wild-type poliovirus strains at protein and nucleic 

acid levels. 

3. Development of a rapid, inexpensive and relatively easy to 

perform technique for the comparative identification of polio

v irus strains. 
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CHAPTER TWO 

MATERIALS AND METHODS 

2.1. Propagation and Purification of Virus Strains 

2.1.1. Virus and Cell Stocks 

Wild-type polioviruses type 1 LS-a, type 2 Lansing and type 3 

Leon III were all obtained from the American Type Culture 

Collection, Rockville, Maryland USA. Sabin live-attenuated 

virus type 1 LS-c TL1 3, type 2 P712 TL13 and type 3 Leon 3 were 

a ll kindly donated by Professor B. Schoub, Director of the 

National Institute of Virology (NIV;Johannesburg, South- Africa) 

while Gazankulu outbreak isolates type 1 (strain 5061) and type 

2 (strain 5068) were kindly donated by Professor J. Moodie, 

Virology Department, University of Cape Town, South Africa. No 

outbreak type 3 was received. 

With the exception of poliovirus type 1 strain LS-c, all virus 

strains were grown in HeLa S3 cells. Because the virus yield is 

very poor when poliovirus strain LS-c is used to infect HeLa S3 

cells, this strain was grown in vero cells, derived from the 

African Green Monkey (Cercopithecus aethiops). Both cell lines 

were kindly donated by Professor B. Schoub, NIV. 

2.1 . 2. Propagation of Virus 

Cells were grown to monolayer in 75cm2 Falcon flasks containing 

Eagle's Minimal Essential Medium (MEM)23. (Sigma Chemical 

Company, st. Louis, USA) supplemented with 10% foetal calf serum 

(FCS; State Vaccine Institute Cape Town), with penicillin (0.1 
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mg/ml) and streptomycin (0.2 mg/ml). 

Once cell s had formed a confluent monolayer the culture medium 

was poured off. This was replaced with 5ml of serum-free medium 

containing penicillin, streptomycin, fungi zone and 0.22% sodium 

bicarbonate. Sodium bicarbonate is a requirement for Sabin 

vaccine strain virus growth. Freshly harvested high-titre virus 

stock (0.2ml) was added to each of 150 to 200 flasks, represen

ting an infectivity of approximately 10 4pfu (plaque forming 

units) per cell. One flask was left uninfected as a control. 

High-titre virus stocks were prepared by infecting 10 7Scm 2 

Falcon flasks with a high multiplicity of infection (O.Sml virus 

stock per flask). This high-titre stock virus was never more 

than S passages from the original stock. 

Infected cells were incubated at 37 0 C in a Gallenkamp orbital 

incubator for 16 - 24 hours. Cells were visually examined using 

a Zeiss inverted 1 ight microscope. Once gross cytopathic 

effects (cpe), involving rounding-up and granulation of the 

infected cells prior to cell lysis, had been noted and the cells 

had lifted off the surface of the flask, the contents of the 

flasks were pooled and stored at 40 C until thorough cooling had 

occurred. This ensured lysis of infected ce lIs and consequent 

release of virus. 

2.1.3. Extraction and Purification (see fig.2.1) 

2.1.3.1. Ammonium sulphate precipitation 

After storage at 40 C for approximately one hour, the pooled MEM 
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Figure 2.1. Flow chart showing stages in the purification of 
po l iovirus. 

Pooled infected cells in MEM 
Cooled at 40 C for 1 hour 

1 
Spin off cell debris - 4 OOOg, 10 min. 

~ ~ 
Discard ce l l debris Make supernatant 50% 

saturated ( I, H4)2S04 

1 
Precipitate proteins 
at 40 C 

1 

with 

overnight 

Pellet proteins 4 OOOg, 10 min. 

~ 
Resuspend pellet in 30ml O.OlM 
tris-HCI, pH 7.5 

1 

~ 
Discard supernatant 

Remove insoluble debris - 3 OOOg, 5 min --~)Discard pellet 

1 . 
Pellet virus protelns - 205 OOOg, 90 min 

! 
Resuspend pellet overnight 
in 600ul tris-HCl,pH 7.5 

! 
Clarify with 10% SDS. 
Pellet insoluble debris - 1 OOOg, 5 min 

1 
Layer 200ul on each of three gradients 

--~)Discard supernatant 

- 15%-45% sucrose in O.OlM tris-HCI, pH 7.5 

Centrifuge for }10 min at 127 OOOg. 
Fractionate gradients. 

21 



c ontai n ing poliov i rus was centrifuged in a Sorvall RC- S Super 

Spee d refrigerated centrifuge at 4 OOOg for 10 minutes. This 

pe ll eted the cellular debris present in the medium. The pelleted 

debris was then discarded. Delaying the removal of cellular 

debris for l onger than one hour resulted in reduced virus yields 

d ue to the adsorption of virus particles onto cellular 

membranes. 

The s upernatant from the 4 OOOg spin was made 50% with a mmon ium 

su l phate (saturated at room temperature) and stored overnight a t 

40 C. This precipitated the soluble proteins which were t he n 

pelleted by centrifuging for 10 minutes at 4 OOOg in the Sorvall 

centrifuge. The supernatant was discarded and the pellet resus

pended in 30ml of 0.01 M tris-HCI buffer, pH 7.5. After centri-

fugation at 3 OOOg for 5 minutes, to remove any insoluble 

contaminants, the clarified supernatant was spun at 205 OOOg for 

90 minutes. The pellet was macerated in 600ul of O.OlM tris-HCI 

buffer pH 7.5 and left to resuspend overnight at 40 C, after 

which sucrose density gradient centrifugation was carried out. 

2.1.3.2. Sucrose density gradient centrifugation 

Purification by sucrose density gradient centrifugation (SDGC) 

was carried out within 24 hours of pelleting the virus. This 

minimized viral loss through adsorption to the walls of the 

centrifuge tube. Solutions of 15 and 45% (w/v) sucrose were 

made up in O.OlM tris-HCl pH 7.5, and made O.SM with sodium 

chloride. The addition of 0.5M NaCl to the sucrose enhanced 

virus yield by preventing virus aggregation, ensuring uniform 

sedimentation of virus through the gradient. 
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Prior to sucrose density g radie nt centri fugati on , 1 0% sodi um 

dodecyl sulphate (SDS) was added to the resuspended virus pellet 

to a final concentration of 1 %. This separated the vi r us from 

cell debris that might be present. Once clarification had taken 

place the resuspended pe llet was centr ifuged for 5 minutes at 1 

OOOg to pellet insoluble debris. Three gradients containing 11m l 

o f 15 - 45% sucrose in buffer were prepared in polyallomer tubes 

and 200ul of the r esus pended virus was carefully layered onto 

each of the gradients before being centrifuged for 210 minutes 

at 127 OOOg. 

2.1.3.3. Fractionation o f purified vi rus 

After centrifugation, the sucrose gradient was fractionated 

using an ISCO Model 640 Density Gradient Fractionator set at a 

flow rate of 3ml min- 1 and a trace of absorbance at 254nm 

obtained using an ISCO UA-5 Absorbance/Fluorescence monitor set 

at a sensitivity of 0.5 A. Fractions 0.6ml in volume were 

collected in sterile, silanized glass tubes of 6ml volume and 

those containing the virus peak were pooled in a sterile, 

s i 1 ani zed McCartney bot tie. Figure 2.2 ill ustra tes a typica 1 

trace of poliovirus purified by SDGC. 

recovered in fractions 11 and 12. 

2.2. Phenol Extraction of RNA 

2.2.1 Extraction of Viral RNA 

Virus was generally 

A modified version of the method of Palmiter (1974) was used for 

the extraction of poliovirus RNA. Pooled SDG fractions contai-

ning virus were diluted with 2 volumes of 0.1M sodium acetate 
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buffer pH 5.0, and made 1 % with SOS. An equal volume of 0.1 ~l, 

pH 5.0 sodium acetate buffer-saturated phenol, con taining 0.1 % 

8-hydroxyquinoline was added. After mixing on a Sorvall whirli

mixer for 2 minutes the sample was centrifuged at 3 OOOg for 5 

minutes to separate the phases. 

It was important to extract the RNA from the purified vi rus as 

soon a s poss ible after fractionation in order to prevent sample 

loss due to vi ral adsorpt ion to the walls of the glass 

tubes/McCartney bottle. 

The lower (phenol) phase was removed and retained for protein 

extraction, along with insoluble proteinaceous material which 

collected at the phenol interface. The aqueous phase was extra

cted once more with an equal volume each of buffer-saturated 

phenol and chloroform. The second phenol phase, and any 

material at the organic/aqueous interface, was discarded. 

2.2.1.1. Calculation of viral RNA yield 

Initially the amount of RNA present after phenol extraction was 

calculated by UV spectrophotometry using a Pye-Unicam SP8-400 

UV/VIS spectrophotometer and carrying out a scan of UV 

absorbance from 320 to 220 nm. 

The aqueous phase, containing viral RNA, was washed twice with 

ether (rapid agitation for 2 minutes, after which the sample was 

left to stand for one minute so that separation of ether and 

aqueous phases could take place) in order to remove trace 

amounts of phenol dissolved in the buffer. A volume correspon

ding to 1/100 of the aqueous phase i.e. approximately SOul, was 
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removed, diluted up to 1 ml with dist illed water and an 

absorbance scan carried out. 

From the absorbance at 26 0nm and knowing that 40ug/ml of RNA has 

an abso rbance of 1 . 0 at 260nm it was possibl e to calculate the 

amoun t o f viral RNA present, and thus the concentration of the 

RNA in the aqueous phase. 

Yields of RNA were found to be l ower than expected, presumab ly 

due to sample loss during the ether washes. For this r eason 

these washes were not carried o ut in later extractions. The 

p r esence of residual phen o l rend ered spectrophotometr y of the 

extracted RNA impossible . Consequently, approximate yields of 

RNA had to be calculated from the ISCO absorbance traces 

obtained after SDGC purification. 

At 254nm, the wavelength at whi ch the ISCO monitor was set, RNA 

absorbance is almost the same as that at 260nm. Protein absor 

bance is minimal. Consequently the UV absorbance trace obtained 

is primarily an absorbance trace o f RNA. 

Assuming the absorbance peak plotted by the ISCO chart recorder 

to be symmetrical and essentially linear, the area under the 

c urve may be calculated as follows: 

height x base x 0.5 (to compensate for the slope 

of the peak) 

with "height" being the maximum absorbance at 254nm and "base" 

being the volume of the fractions containing the virus peak. To 

ca 1 cu 1 a te the concen tra tion of the RNA present the absorbance 
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value is multiplied by 40, for an absorbance valu e of 1.0 at 

260nm indicat es an RNA concentration of 40ug ml - 1 . The answe r 

obtained from the above calculation give s the approximate 

concentration of the RNA obtained in ug ml- 1• 

Thi s calcu lation does not, unfortunately, take into account any 

loss of RNA that may occur during the extracti o n procedure. 

However all p r ecautions were taken to minimize the ris k of RNase 

contamination and thus limit RNA loss during all stages of 

extraction. Gloves were worn a nd all glassware and buffer solu

tions (where possible) were autoclaved. The efficiency of such 

precautions was sh ow n by the fact that RNA samples stored i n 95% 

etha n o l at -20 0 C could still be used several mo nths after 

initial preparation with no degradation apparent. 

2.2.2. Extraction of BHK RNA For Use as Carrier RNA 

Baby hamster kidney cells used for the production o f carrier RNA 

(cRNA) were o btained from the state Vaccine Institute, Cape 

Town. Cells were grown in Glasgow's modification of Eagle's 

medium supplemented with 10% FCS and antibiotics. Ten 75ml 

Falcon flasks containing BHK-21 cell monolayers were drained 

and 5ml of phenol saturated with O.lM sodium acetate buffer, pH 

5.0, and containing 8-hydroxyquinoline, was added t o the first 

flask. The cell monolayer was disrupted using a rubber police

man and the contents poured into the next flask. This procedure 

wa s followed for all ten flasks. 

The extract was poured into a sterile, silan i zed McCartney 

bottle and 5ml of O.lM sodium acetate buffer, pH 5.0, added. 
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After mixing for 5 minutes using a vortex mixer the mixture was 

centrifuged at 3 OOOg for 5 minutes . The aqueous phase was 

removed , made 1% with SOS and re-extracted twice with phenol , 

centrifuging at 3 OOOg each time in order to separate the 

phases. 

Following the removal of the phenol phase, the aqueous phase was 

washed three time s with an equal volume o f ether. As SOS may 

inhibit separation of the phases 84, centrifugation at 3 OOOg 

for 5 minutes was carried out. The ether was discarded and RNA 

precipitated by the addition of 2.5 volumes of chilled 95% 

ethanol followed by storage for at least 24 hours at -20oC. 

It should be noted that the SDS was added after the first phenol 

extraction to prevent ONA contamination of the RNA 84. 

2.2.2.1. Calculation of BHK RNA concentration 

After precipitation at -20 oC, the RNA was spun at 27 OOOg for 30 

minu tes to pellet it. The supernatant was discarded and the 

pellet carefully drained before vacuum drying. Once dry, the 

pellet was resuspended in SOOul of 0.1 M acetate buffer, pH 5.0, 

and SOul removed in order to carry out UV spectrophotometry. 

The remaining buffer and RNA was transferred to a 1.Sml sterile, 

silanized Eppendorf tube, mixed with 2.5 volumes of 95% ethanol 

and precipitated by overnight storage at -20 oC. 

The SOul of RNA solution was diluted up to lml with distilled 

water and a scan of UV absorbance from 320-220nm (fig.2.3.) 

carried out using a Pye-Unicam SP8-400 UV/VIS spectrophotometer. 

The RNA concentration could then be calculated as mentioned in 
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section 2.2.1.1. Additionally, the steepness of the peak slope 

indicated the purity of the RNA and whether it had been degraded 

or not. 

2.2.3. Storage of RNA 

Ethanol precipitated RNA was pelleted at 27 OOOg for 30 minutes 

and the pellet carefully drained and vacuum dried. The RNA was 

resuspended in O.Sml of O.lM sodium phosphate buffer, pH 5.0, 

and 2.5 volumes of 95% ethanol added. 

As the concentration of the viral RNA was known, having been 

calculated from the ISCO trace at 254nm, the RNA solution was 

divided up into aliquots each containing approximately Sug of 

RNA. These were stored at -20 o C in sterile, silanized O.Sml 

Eppendorf tubes. This eliminated the necessity of constantly 

re-opening a single stock of viral RNA and risking RNase conta

mination of the entire stock. 

2.3. Extraction of Virus Protein From Phenol 

2.3.1. Extraction of V ira 1 Protein 

The first phenol phase from the RNA extraction was made O.lM 

with ammonium acetate (NH 40AC) and 1 % jl-mercaptoethanol (ft-Me). 

After thorough mixing, 6 volumes of chilled 95% ethanol were 

added and the sample stored at -20 o C in a silanized McCartney 

bottle. Storage for at least 12 hours at -20 oC was required for 

protein precipitation. 

2.3.1.1. Calculation of protein concentration 

The concentration of the virus protein obtained by SDGC was 
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calculated from the ISCO trace u sing the f ormula E260 1 % = 77 93 

Alternative l y , once t he RNA concentration had been calculated 

the virus protein yield cou ld be calculated on the basis that 

the ratio of RNA to prote in, in po l iovirus , is 30 : 70 . 

2.4. Polyacrylamide Gel Electrophoresis 

2.4.1 . POlyacrylamide Gel Preparation 

Gels contain ing 10% (resolving gel) or 4% (stacki ng ge l ) acryl

amide were prepared acc ording to the method of Laemmli (197 0) , 

f ro m a stock s o lution of 30% (w/v) acrylamide and 0.8% (w/v) 

N, N'-bi s-methy lene acrylamide. The resolving gel was made 0.375M 

with respect to tris-HCl, pH 8.8, and SDS was added to a concen-

tration of 0.1 %. Polymerization was carried out chemically by 

add ing 0.025% (v/v) tetramethyl ethylene-diamine (TEMED) and 

0.0 75% ammonium persulphate. TEMED accelerates the polymeriza

tion reaction catalysed by ammonium persulphate. 

Concentrations in the stacking gel were 0.125M tris-HCl (pH 

6.8), 5.33% (v/v) glycerol and 0 . 1% SDS. Chemical polymerization 

was carried out by adding 0.13% (v/v) TEMED and 0.07% ammonium 

persulphate. Care was taken when handling acrylamide because of 

its neurotoxicity. Even fully polymerized gels may have up to 

15% monomeric reactants 36 

Once the 27ml stacking gel had polymerized, the surface was 

rinsed with distilled water in order to remove any unpolymerized 

acrylamide. The gel surface was then carefully dried and over

laid with 7ml of stacking gel and a slot-forming comb inserted 
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to form 10 wells each of 50ul capacity. 

After complete polymerization of the stacking gel the comb was 

carefully removed and the wells and upper and lower reservoirs 

of the electrophoresis apparatus filled with electrophoresis 

buffer (0.303% Tris (w/v), 1.44% glycine (w/v) and 0.1% SOS 

(w/v)). Protein samples were layered onto the bottom of the 

wells using a 50ul Hamilton microsyringe. The wells at either 

end of the gel were loaded with 50ul of dissociation buffer (10% 

SOS (w/v), 10% fl-Me (v/v), 15% glycerol (v/v), 0.01% 

bromophenol blue (w/v) in 1M tris-HCl pH 6.8) in order to ensure 

a constant ionic strength across the gel and prevent distortion 

("smi 1 ing") of protein bands. 

2.4.2. Sample Preparation 

Phenol-extracted virus protein, stored in 95% ethanol at -20 oC, 

was pelleted by centrifugation at 27 OOOg for 30 minutes. The 

pellet was carefully drained and vacuum dried, before being 

resuspended in 50ul of dissociation buffer. This was heated at 

100 0 C for 5 minutes in order to dissociate the virus prior to 

protein separation on polyacrylamide gels containing sodium 

dodecyl sulphate (SOS-PAGE). 

Sufficient viral protein (concentration calculated as described 

in section 2.3.1.1) was applied to the gel for there to be 

approximately 10ug of each of the viral capsid proteins. 

Virus proteins were co-electrophoresed with molecular weight 

marker proteins (table 2.1). Markers were prepared according to 
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TABLE 2.1. Molecular weights of Sigma marker proteins used 
in SOS-PAGE. 

PROTEIN 

Bovine serum albumin (BSA) 

Ovalbumin (Ov) 

Glyceraldehyde-3-phosphate 
dehydrogenase (GPO) 

Carbonic anhydrase (CA) 

Trypsinogen (T) 

Trypsin inhibitor, soybean (TI) 

~-Lactalbumin (L) 

33 

MOLECULAR WEIGHT 

66 000 

45 000 

36 000 

29 000 

24 000 

20 100 

14 200 



manufacturer's instructions (Sigma Chemical Co., St.Louis, USA) 

and stored at -20 0 C in 40ul fractions. 

2.4.3. Electrophoresis 

Proteins were resolved by electrophoresis in a Bio-Rad Model 220 

dual vertical slab gel electrophoresis cell (Hoeffer Scientific 

Instruments). Electrophoresis was carried out at 100V using a 

Gelman Instrument Company powerpack for 4.5 to 5 hours. Wh en 

the ionization front had migrated off the bottom of the gel and 

the bromophenol blue band was 2mm from the end of the gel 

electrophoresis was ended. During electrophoresis the tempera-

ture of the gels was controlled by circulating water through the 

apparatus. 

2.4.4. Staining and Storage of Gels 

Following electrophoresis gels were removed from the apparatus 

and protein bands were fixed and stained with Coomassie blue 

(0.2% coomassie brilliant blue R250 (w/v), 10% acetic acid 

(v/v), 45% methanol (v/v)) for 1.5 hours at 370 C in a Gallenkamp 

orbital incubator. For effective staining of gels 10 gel-

volumes of stain or more were used to eliminate competition for 

stain between SDS in the gel and protein 106 

Destaining was carried out at 37°C using several changes of 

destain (45% methanol (v/v), 7% acetic acid (v/v)) until the 

protein bands could be clearly visualised and the background was 

almost colourless. Gels were vacuum dried onto Whatman no. 1 

paper at 8g0C for 1.5 hours using a Model SE 540 Slab Gel Dryer 
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(Hoeffer Scientific Instruments) attached to a vacuum pump. 

They could then be stored indefinately. 

2. 5. Tryptic Peptide Mapping of Poliovirus Proteins 

2.5.1. Production of Radiolabelled Peptides 

2.5.1.1. Preparation of gel slices 

Virus proteins were resolved using SDS-PAGE, and individual 

protein bands were cut out of the gel using a sterile scalpel 

and placed in separate beakers. One gel slice per protein was 

u sed, and each slice contained approximately 10ug of protein. 

Gel slices were washed extensively to remove SDS and other 

contaminants which might interfere with the labelling and diges

tion processes. The initial wash was in 11 25% iso-propanol 

and the second in 11 10% methanol. In each case the gel slice 

was washed for at least one hour, with constant stirring. After 

washing, the gel slices were dried in sterile iodination tubes, 

either overnight at 37 0 C or for 2 hours under vacuum. 

2.5.1.2. Iodination of proteins in gel slices. 

Proteins to be used for either two-dimensional thin-layer 

chromatography (TLC) or reversed-phase high-performance liquid

chromatography (RP-HPLC) were iodinated with 125 1 (Amersham 

International plc, England). Iodination was carried out with 

the proteins still in the gel slice using the chloramine-T 

method as used by Greenwood et al (1963) and modified by Elder 

et ~ (1977). 

The chloramine-T reaction has a pH optimum of about 7.5, and 

125 1 from Amersham is supplied in NaOH, pH 8-10. The pH of the 
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125 I was adj usted to 7.5 with 180ul O.SM sodium phosphate 

buffer. Addition of the sodi um phosphate buffer also diluted 

the 125 I from 100uCi/ul to its working concentration of 

10uCi/ul. 

To each dried gel slice, 20ul of O.SM sodium phosphate buffer, 

pH 7.5, followed by 100uCi of 125 I and 5ul of freshly prepared 

chloramine-T (1mg/ ml)(May and Baker Ltd., Dagenham, England) was 

added . Gel slices were allowed to absorb the reagents for 1 

hour at room temperature. The reaction was terminated by the 

addition of 1ml of fresh sodium metabisulphite (1mg /m l)(BDH 

Chemicals Ltd., Poole, England). After 15 minutes the sodium 

metabisulphite was poured off and the gel slices washed 

(separately) overnight in three 11 changes of 10% methanol, with 

continuous stirring. The washing served to elute unreacted 125 I 

from the gel slices, and the radioactivity of the methanol after 

the final wash was less than 1% that of the original wash. 

After washing the gel slices were put individually into sterile 

1.5ml Eppendorf tubes and dried for 2-3 hours under vacuum. 

2.5.1.3. Trypsinization of proteins 

Immediately prior to tryptic digestion of the radiolabelled 

proteins, 60ul of 0.1 M sodium iodide was added to the gel slices 

in order to oxidise any remaining free 12S I 10. Trypsinization 

was carried out by the addition of SOug of 1mg/ml DPCC (diphenyl 

carbamyl chloride) treated trypsin (Sigma Chemical Co.) in O.Sml 

of 0.1 M ammonium hydrogen carbonate, pH 8.0, followed by 

incubation for 24hr at 37 0 C. In order to prevent bacterial 
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contamination 20ul of toluene was added. After 24 hours, a 

further 20ug of trypsin was added and digestion allowed to 

continue for 2 hours , at 37 o C, to ensure complete d i gestion. 

The supernatant was carefully withdrawn and dried under a gentle 

stream of sterile air in sterile O.5ml glass tubes. 

During all stages of radiolabelling and trypsinization care was 

taken to ensure that there was no contact with the gels which 

could result in the labelling of contaminating proteins. 

Additionally, the introduction of proteolytic enzymes could 

cause non-specific proteolyt ic cleavage of the proteins. 

2.5.2. Controls 

Similar controls were run for both thin layer chromatography 

(TLC) and reversed-phase high-performance liquid-chromatography 

(RP-HPLC). In the first control a "blank" slice of poly

acrylamide gel was excised from an area which contained no 

proteins and was distant from tracks which did contain proteins. 

This was treated in the same manner as those slices which 

contained proteins, and mapped by TLC and RP-HPLC. In the 

second control trypsin was electrophoresed using 50S-PAGE. A 

gel slice containing 10ug of trypsin excised then radiolabelled 

and digested before being mapped. 

As an additional control, reproducibility of the results 

obtained by mapping radiolabelled peptides was determined. Two 

samples of ovalbumin, resolved using 50S-PAGE, were labelled and 

digested before being subjected to TLC. Two samples of bovine 
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serum albumin (BS A) were treated in the sam e manner and their 

peptides mapped using RP-HPLC. 

2. 5. 3. Two -Dimensional Thin Layer Chromatography (TLC) 

2. 5.3.1. Preparation of TLC plates 

TLC analysis of 125 1 labelled tryptic peptides was carried out 

on cellulose TLC plates , 20cm x 2 0cm with a 100um layer of 

cellulose (Merck, Da r mstadt , Germany). Two marks were made on 

the underside of the plate 3cm f r om opposite sides of the plate 

and 2.5cm from the shared edge. Ove r one of the marks luI of 

marker dye (2 % orange G (w /v ) and 1% acid fuchsin (w/v) i n a 1 :1 

ratio) 24 was applied. Radiolabelled peptides, resuspended in 

10u l of deionized, "polished" water, were applied over the 

opposite mark. 

In order to ensure good peptide resolution, spot size was min i-

mized (approximately 3mm in diameter) by repeated applications 

o f less t h:an 0 .1 ul of sample, and by allowing the spot to dry 

comple tel y between applications. Drying was assisted by placing 

a lamp below the plate, at a sufficient distance to warm t he 

p late without without heat damaging the peptides. Back lighting 

a lso showed up the position of the application spot. 

2.5.3.2 Electrophores is 

Electrophoresis was carried out at room temperature in a Shandon 

tank fitted with a cooling plate. Electrophoresis buffer consis

ted of 15% acetic acid and 5% formic acid in distilled water, 

adjusted to pH 1.4 with additional formic acid 24. In order to 

preven t gra vita tiona 1 di stortion of the peptide migration 
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patterns, the cooling plate, on which the TLC plate rested , was 

carefully levelled before electro- phoresis. 

The TLC plate was carefully positioned in the tank and sprayed 

lightly with electrophoresis buffer to ensure uniform current 

flow. Electrical contact was made with the aid of buffer-

mo istened strips of Whatman no . 1 paper (20cm x Scm), laid along 

opposite sides of the TLC plate and 2cm in from the edges. To 

prevent dehydration of the plate during electrophoresis, a gl ass 

cover plate sprayed with electrophoresis buffer was placed over 

the TLC plate. The cover plate was supported 2cm above the TLC 

plate by weights holding the paper wicks in place (fig. 2.4). 

Electrophoresis was carried out at 10 watts for 70 minutes using 

an LKB Bromma 2197 power supply. Electrophoresis was monitored 

by the progress of the acid fuchsin and orange G dye markers and 

ended when the lead component of the acid fuchsin reached the 

sample origin. At a pH of 1.4 the ma rker dyes moved from the 

cathode to the anode while the peptides, which are positively 

charged at this pH, migrated from the anode to the cathode. 

After electrophoresis, plates were dried overnight at room 

temperature in a horizontal rack under a fume hood. 

2.5.3.3. Asce nding chromatography 

Ascending chromatography was carried out in the second dimension 

using the buffer system described by Gentsch and Fields (1981). 

This consisted of butanol, pyridine, acetic acid and distilled 

water in the ratio 15:10:3:12. The atmosphere within the 

chromatography tank was saturated with buffer vapour by lining 
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the tank with Whatman no.1 paper moistened with buffer. 

Chromatography was at right angles to the direction of electro

phoresis (figure 2.5.b), with plates placed vertically in the 

chromatography tank and the buffer reaching O.5cm up from the 

lower edge of the plate. 

Pept ides were chroma tographed un ti 1 the so 1 ven t front was 1 cm 

from the top edge of the plate (figure 2.5.b). The chromatogram 

was removed and dried horizontally under a fume hood overnight 

at room temperature. Figure 2.5.a shows a photograph of a TLC 

plate after completion of electrophoresis and chromatography. 

2.5.3.4. Autoradiography 

A sheet of Cronex-4 medical X-ray film (IE Du Pont de Nemours), 

19cm x 20cm, was placed on the TLC plate and held in place by a 

second glass plate. The assembly was wrapped in two sheets of 

aluminium foil, and exposure of the film was allowed to proceed 

for 24 hours to two weeks. Development and fixation of auto

radiographs was carried out using Kodak GBx developer and fixer. 

The film was soaked in each for 5 minutes with periodic 

agitation and washed for 2 minutes in water before and after 

fixing. The autoradiograph was then hung to dry in a cool, dust

free environment. 

2.5.4. Reversed-Phase High-Performance Liquid-Chromatography 

(RP-HPLC) 

2.5.4.1. Apparatus 

Trypsin digests of proteins were separated using a slurry-packed 
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FIGURE 2.5.a. Photograph of TL C plate after completion of electrophoresis and 
chromatography . 

Chromatograp ie front 
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FIGURE 2.5.b. Diagrammatic representation of a TLC plate. showing directions of 
electrophoresis and chromatography . Dye marker origin indicated by 
(.). sample origin by (oJ. Acid fuchsin components shown by CD . 
orange G components by Iillii . 



stainless steel column 300mm x 3.9mm (internal diameter) protec

ted by a 40mm x 4mm (internal diameter) stainless steel guaLd 

c o lumn c ontaining 200u diameter glass beads (Sigma Chemical Co). 

The reverse phase consisted of microparticulate octacecyl silane 

(ODS) packing material ITechsil C-18; HPLC Technology, UK), with 

an aveLage particle size of 10um. Packing of both columns was 

carri e d out at the Rhodes University School of Pharmaceuti c al 

Science. 

The high pressure chromatography system consisted of a Phillips 

Pye Unicam PU 40 1 0 dual-piston pump. Peptide samples weLe 

introduced into the system using a Rheodyne injection port with 

a 100ul sample loop. Eluate was collected in scintillation 

vials loaded onto an LKB 2112 Redirac fraction collector. The 

collection time fOL each fraction was 12 seconds. Total radio 

activity, in counts peL minute (cpm), of each fraction was 

determined using a Beckman Model 310 gamma counter fitted with 

the 125 1 isoset. 

Absorbance of the eluate at 220 nm was monitored constantly 

using a Phillips Pye Unicam PU 4020 adjustable UV detector set 

at a sensitivity of 0.16 AUFS (absorbance units full scale) and 

recorded using a Hitachi QPO 54 chart recorder. 

2.5.4.2. Sol vents 

Acetonitrile and methanol used during chromatography runs were 

Hi Per Solv grade (BOH Chemicals Ltd). PhosphoLic acid, 

analysis grade, was purchased from Merck. High grade deionized 
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"po l ished" water was produced in the laboratory using a Milli-Q 

reagent system (Millipore S.A., Molesheim, France). 

So l vent solutions were made up freshly on the day of use and 

f i ltered under vacuum through a 0.45um Millipore membrane filter 

prior to use. Vacuum filtration also served to degas solutions, 

preventing the build up of bubbles in the piston heads. This 

would result in fluctuations in the pressure of the system and a 

potential decrease in resolving power of the column due to 

damage to the ODS packing material. 

In order to further protect components of the HPLC system, the 

delivery tube from the gradient maker was fitted with a 2um 

stainless steel filter. A Sum in-line stainless steel filter was 

fitted upstream of the sample injection port. 

2.5.4.3. RP-HPLC of trypsin-generated peptides 

Tryptic digests of radiolabelled proteins which had been dried 

under a stream of sterile, dry air, were rehydrated with 25ul of 

deionized "polished" water and lui removed in order to calculate 

the total radioactivity of the sample. Using a Hamilton series 

7000 microsyringe of 25ul capacity the digest was injected into 

the system and gradient elution initiated. Activity of the 

sample injected was between 2.5 x 105 and 3.5 x 105 counts per 

minute (cpm). 

Peptides were eluted at room temperature using a linear 

gradient. Optimal elution conditions consisted of a gradient of 

5% 40% acetonitrile containing 0.1 % phosphoric acid. 

Gradients were formed using a glass gradient maker constructed 
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in the laboratory. This consisted of two cylindrical reservoirs 

each with a capacity of 50ml, connected at their base. A tap 

between the two reservoirs prevented solvent mixing prior to 

gradient initiation. Solvent mixing was carried out by the 

action of a magnetic stirrer bar in the first reservoir, from 

which a delivery tube led to the HPLC pump. Every attempt was 

made to ensure standardization of elution conditions but it was 

not possible to produce identical gradients. 

ween gradients were, however, minor. 

Differences bet-

The gradient was initiated immediately after the injection of 

the sample, as was fraction collection. Gradients were run for 

60 minutes at a flow rate of 1.0 ml min- 1 , during which time 250 

fractions were collected. 

After each RP-HPLC run the column was reconditioned by pumping 

through 40 % ace toni tri le containing 0.1 % phosphoric acid for 5 

minutes, followed by 5% acetonitrile with phosphoric acid. The 

5% acetonitrile/phosphoric acid was pumped through the column 

until the absorbance at 220 nm had returned to zero, indicating 

that all of the 40% acetonitrile (which has a higher UV 

absorbance than 5% acetonitrile) had been flushed out. 

2.5.4.4. Column storage 

If the column was to be out of operation overnight or longer, 

40% methanol in deioni zed "po 1 i shed" water was pumped through 

the system at 1.0ml min- 1 for 30 minutes. This ensured that any 

remaining acetonitrile and phosphoric acid, which could cause 

deterioration of the ODS packing material, had been fully dis-
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placed. Methanol at a concentration of 40% was used rather than 

pu r e water to prevent the growth of microorganisms within the 

system. 

2.6. RNase T1 Oligonucleotide Mapping 

2.6.1. SO-End Labelling of RNA Oligonucleotides 

2.6.1.1. Preparation of RNA 

RNA extracted from purified poliovirus and stored in 9S% ethanol 

at -20 o C was centrifuged at 27 OOOg for 30 minutes. The pellet 

was drained and dried thoroughly under vacuum before in yitro 

SO-end labelling using ~32p_ATP as described by Pederson and 

Haseltine (1980). 

2.6.1.2. Digestion of viral RNA 

Dried RNA (approximately Sug) in a O.Sml Eppendorf tube was 

resuspended in 1ul sterile distilled water. To this was added 

1ul 40mM tris-HCl (pH 8.0) containing 0.2 units Aspergillus 

oryzae RNase T1 (Boehringer Mannheim, Germany) and 2x10- 4 units 

Echerichia coli Type III N alkaline phosphatase (BAP; Sigma 

Chemical Co.) for each microgram of RNA. Incubation was carried 

out for 30 minutes at 37 oC. 

2.6.1.3. Radiolabelling of oligonucleotides 

Immediately after incubation the polynucleotide kinase (PNK) 

reaction was initiated by adding SOul of PNK reaction mix and S 

units of PNK, obtained from ~ coli infected with T4 phage 

(Bethseda Research Laboratories, USA). The PNK reaction mix was 

prepared by vacuum drying SOuCi ~32_p ATP (>4 000 Ci/mmol; ICN 

Radiochemicals, Irvine, USA) in a O.Sml Eppendorf tube and 
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dissolving the labelled ATP in SOul of the following solut ion: 

1 0mM K2 HP0 4 - K3P0 4 (pH 9 .5), 1 0mM magnesium acetate , smM 

d ithio-threitol. The 10mM phosphate in the PNK reaction mix 

inh i bited contaminating phosphatase 85 This eliminated 

possible charge and/or migration he terogeneity due to partia l 

dephosphorylation . 

Labell ing wa s ca rried out at 37 0 C for 12 hours and the reaction 

terminated by the addition of SOul of 0 .6M ammonium aceta te and 

100ug of carrier RNA (prepared as described in section 2.2. 2 . ) . 

Prec ipi ta t ion of carr ier RNA and 01 igonuc 1 eotides was carr ied 

out by adding 300ul cold (-20 o C) 95% ethanol and chilling at 

- 20 o C for 20 minutes. The precipitate was collected by centrifu

gation in a Beckman Microfuge B for 1 5 minutes at 4o C, washed 

with 400ul of cold 95% ethanol and microfuged for 5 minutes at 

4 o C. The ethanol was careful ly poured of f and the cRNA, with 

radiolabelled oligonucleotides, vacuum dried. 

2 .6.2. Two-Dimensional Electrophoresis of Oligonucleotides 

2.6.2.1. Apparatus 

Ge ls were cast between 0.3cm-thick glass plates (36cm x 16.scm 

and 38cm x 36cm for the first and second dimensions, 

respectively). One plate o f each set had a notch 2.0cm deep cut 

in it which extended to within 3cm of either end of the top 

edge. Spacers at either side of the gels consisted of O.lscm 

thick "Perspex" strips, 38cm long and 3cm wide. 

Wells (0.7scm wide and 1.scm deep) in the first-dimension gel 
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were f o r med usi n g three teeth of a tefl o n we l l f o r me r fr om th e 

La emmli PAGE apparatus . 

P l a t e s were assembled with a spacer at each side, a nd were held 

together by a plastic clamp running the length of the glass 

p l ates. The spacers were lightly coated with grease (for 

example "Vaseline") before putting them in place. This e ns ured 

g o o d sealing of the plates. To prevent leakage of the f i rst

dimension gel d uring po l ymerization, the assembl y , notched pl a te 

uppermost, was tilted at 15 0 and the base of the plates placed 

in a 1.5cm deep trough which was then filled with 4% agar. 

During polymerization of the second-dimension gel, the assembly 

was placed in the second-dimension electrophoresis tank, notched 

plate up, at a 30 0 angle. The tank was filled with buffer until 

the level was almost up to the top of the gel plates. This 

ensured that hydrostatic pressure prevented leakage of the gel, 

while the buffer kept the gel cool during polymerization 60 

Electrophoresis was carried out in two Perspex electrophoresis 

tanks, built by the Rhodes University Department of Physics and 

Electronics (see fig. 2. 6 . and 2.7.). During operation the 

first-dimension gel assembly was held in place by stainless 

steel clips, while the second-dimension assembly was held in 

place by two "G"-clamps which fastened it to the electrophoresis 

tank. 

2.6.2.2. First-dimension gel electrophoresis 

2.6.2.2.1. First-dimension polyacrylamide gel preparation 

The acrylamide used was Electran grade (BDH Chemicals Ltd.), 
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FIGURE 2.6.a. FIrst-dImension electrophoresis apparatus used for 
olIgonuc leotIde mapping of poliovirus RNA . 
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FIGURE 2.7.~.Second-dimenslon electrophoresis apparatus used for RNase T( 
oligonucleotide mappIng of poliovirus RNA. 
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while N-N'-bis-methylene acrylamide was Synthesis grade (Merck). 

All other chemicals were AnalaR (BDH Chemicals Ltd.). De-

ionized, "po lished ll water was obtained in the laboratory using a 

Nilli-Q reagent system (Millipore S.A.). 

Gels containing 8% acrylamide were prepared from acrylamide 

stock (40% acrylamide, 0.5% N-N'-bis-methylene acrylamide), 

mixed with 9M urea to a final concentration of 6M urea, and the 

pH adjusted to 3.3 with citric acid, saturated at room 

temperature. 

The catalysts of Jordan and Raymond (1969)(ferrous sulphate, 

ascorbic acid and hydrogen peroxide) were used for polymerizing 

the gel (table 2.2.). Care was taken to ensure that the cata-

lysts were added in the order shown in the table. 

Table 2.2. Stock solutions for the first-dimension gel system 51 . 

COMPONENT 

Acrylamide:Bis (40:0.5) 
Urea, 9M 
Deionized water 
Saturated citric acid 
FeS04.7H20 (0.16% (w/v)) 
Ascorbic acid (1% (w/v) 
Hydrogen peroxide (30%) 

VOLUME REQUIRED 
FOR ONE GEL 

18.0ml 
60.0ml 

8.5ml 
0.7-1.0ml 

0.5ml 
2.0ml 
75ul 

The FeS04.7H20 (in 0.5ml aliquots) and ascorbic acid (in 2ml 

fractions) were stored at -20°C, after filtration through a 45um 

Millipore filter. Hydrogen peroxide was stored at 4°C. 
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Gel was poured into the first-dimension gel assembly, with the 

liquid l evel up to the notch in the upper glass plate. A teflon 

well-forming comb was inserted to a depth of approximately lcm . 

Any bubbles present were removed by tapping the glass plate 

until they floated to the surface. 

After polymerization, which took approximately 30 minutes, the 

well former was removed and the plate assembly removed from the 

agar-filled trough. Any agar adhering to the bottom of the gel 

was carefully removed using a sterile syringe needle. The 

plates were fastened into place and the top and bottom reser

voirs of the electropheresis apparatus filled with electro

phoresis buffer (25mM citric acid adjuated to pH 3.3 with solid 

sodium hydroxide). Care was taken to ensure that no bubbles 

were trapped at the bottom of the gel, as these could result in 

poor electrophoresis. 

2.6.2.2.2. Sample preparation 

Prior to electrophoresis, vacuum dried oligonucleotides and cRNA 

were resuspended in 20ul of sample buffer (4.5M urea, 50% 

glycerol (v/v)) containing two dye markers (bromophenol blue 

(BPB) and xylene cyanol (XC), each at a concentration of 0.5% 

(w/v)). Protonation of adenine and cytosine residues by urea 

prevented aggregate formation 19. Markers were used to monitor 

the progress of electrophoresis. In order to calculate the 

radioactivity luI of the sample was removed. The remaining 

sample was carefully layered onto the bottom of the central well 

using a sterile, silanized disposable 10ul micropipette. 
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2.6.2.2.3. Electrophoresis 

Electrophoresis was carried out at a constant potential of 450V 

(approximately 7mA) using a n LKB Bromma 2197 power supply. The 

power setting did not exceed 3.2W because of excessive heat 

production above this wattage. The e lectrophoresis run was 

terminated when the bromophenol blue marker dye (green at pH 

3 . 3 ) had mig rated 25cm from the origin. This took 7.5 to 8.25 

hours. The XC migrated more slowly than the BPB, moving through 

the gel with the larger oligonucleotides. 

2.6.2 .3 Second-dimension gel electrophoresis 

2.6.2.3.1. Preparation of the first-dimension gel strip for 

second-dimension electrophoresis 

After electrophoresis in the first dimension was complete, the 

notched glass plate was removed. Using a 3cm x 38cm perspex 

template as a guide, a gel strip containing the migration lane 

of the oligo-nucleotides was cut out with a rotary pastry 

cutter. The ends of the gel strip were removed 22cm above and 

7cm below the lower edge of the BPB marker spot, resulting in a 

strip 29cm long - the width of the second-dimension gel. 

The first -dimension gel strip was removed carefully from the 

glass plate in order to avoid stretching it and soaked twice for 

five minutes in 100ml second-dimension electrophoresis buffer 

(50mM tris-borate, pH 8.2). This se rved to elute urea which 

would otherwise inhibit polymerization at the interface of first 

dimension and connecting gels. 

After soaking, the gel strip was drained and placed in position 
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parallel to, and 1 - 2 mm from, the short (36cm) edge of the un

notched second-dimension electrophoresis plate . After the 

positioning of a spacer at each end of the strip (in contact 

with the ends of the strip and perpendicular to it) the second 

glass plate was put in place. Clamps were attached and the 

assembly placed upright with the lower edge resting on the 

bottom of the glass trough. 

In order to remove any bubbles between the gel and plate 10ml of 

second dimension electrophoresis buffer was poured in and the 

plates pressed against the gel. After 10 minutes the buffer was 

poured off and the gel strip overlayed with 5ml of connecting 

gel . The chamber was tipped from side to side to ensure good 

coverage of the first dimension gel strip. The low cross-linked 

connecting gel (10% acrylamide (40:0.5 acrylamide:bis stock) 

0.1r1 tris-borate pH 8.2, 0.25% TEMED (v/v) and 0 .124% ammonium 

sulphate (using a 10% w/v stock)) formed a sea lent and junction 

between the first and second dimension gels 51 

was complete within 5 minutes. 

Polymerization 

2.6.2.3.2. Second dimension polyacrylamide gel preparation 

The second-dimension gel consisted of 22% polyacrylamide 

prepared from a stock of 15 : 1 acrylamide : bis in 50mM tris 

borate pH 8.2. (Electran grade acrylamide; BDH Chemicals Ltd. 

Synthesis grade bis-acrylamide; Merck. All other chemicals were 

AnalaR; BDH Chemicals Ltd.) Polymerization was catalysed by the 

addi tion of TEMED and fresh 10% ammonium sulphate (table 2.3). 

The advantage of 50mM tris borate, pH 8.2 is that it produces 

ve ry little heat at the high voltages used for the second-
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dimension electrophoresis. As a result electrophoresis may be 

carried ou t at room temperature without the necessity for 

cooling 60 

Table 2.3. stock solutions for the second-dimension gel 

system 51 

COMPONENT 

Acrylamide:Bis (15:1) 
50mM Tris-borate pH 8.2 
TEMED 
Ammonium sulphate (10% (w/v}) 

VOLUME REQUIRED 
FOR ONE GEL 

209.0ml 
11 .0 ml 

0.1 ml 
0.4ml 

Gel was poured into the chamber till it was approximately 1/3 

full and the chamber was tilted in order to mix in any unpolyme-

rized connecting gel. The chamber was placed in the second-

dimension buffer reservoir and filled with gel solution which 

was then overlayed with 75% ethanol. Polymerization was 

complete within 30 to 40 minutes. 

2.6.2.3.3. Electrophoresis 

After polymerization had taken place the plate assembly was 

clamped to the upper reservoir of the electrophoresis apparatus. 

The upper and lower reservoirs were filled with second-dimension 

electrophoresis buffer. Electrophoresis was carried out at room 

temperature and at a constant power of 10 - 12 watts (600 V; 

about 1 6mA) using an LKB Bromma 2197 power supply. Regulation 
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of power allowed the voltage to rise during electrophoresis as 

resistance increased during the run, without an increase in 

temperature. 

When the major bromophenol blue component had migrated 20cm , 

which took 14 to 15 hours, electrophoresis was ended. Figure 

2.8 shows the relative positi on s of the SPS and XC spots after 

electrophoresis. 

2.6.2.4. Autoradiography 

After second-dimension electrophoresis the notched plate and 

spacers we re removed from the gel. Two laye rs of "Cl ing Film" 

plastic were wrapped round the gel and glass plate to prevent 

the ge l from dehydrating and protect the X-ray film from being 

damaged by the moist gel. Virtually no radioactivity is 

absorbed by the plastic film so results were not affected. 

A 30cm x 38cm Crone x 4 medical X-ray plate (I.E. Du Pont de 

Nemours) was laid ove r the gel, and a second glass sheet fixed 

over the X-ray plate in order to hold it in place and ensure 

good contact of the X-ray film with the gel surface. The entire 

assembly was wrapped in two layers of aluminium f o il and auto

radiography carried out for 24 hours. If, after 24 hours, the 

autoradiograph was found to be underexposed, autoradiography was 

carried out again, for up to 96 hours. Development and fixation 

of autoradiographs was carried out as described in section 

2.5.3.4. 
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CHAPTER THREE 

COMPARISON OF POLIOVIRUS CAPSID PROTEINS USING DISCONTINUOUS 

SDS-POLYACRYLAMIDE GEL ELECTROPHORESIS 

3.1. Introduction 

Proteins from different strains of poliovirus generally differ 

in their amino acid compost ion. These differences may be 

reflected in the electrophoretic mobility of the proteins after 

discontinuous SDS--polyacrylamide gel electrophoresis. Even 

slight differences can result in variations in mobility 52 

It was decided to exploit these differences and use SOS-poly

acrylamide gel electrophoresis to compare the relative 

mobilities of capsid proteins from wild-type, vaccine, and 

Gazankulu outbreak strains of poliovirus. It was hoped that 

results obtained would indicate the relationship between the 

Gazankulu outbreak strains and the vaccine and wild-type strains 

of the virus. 

Discontinuous polyacrylamide gel electrophoresis (disc-PAGE) was 

first introduced in 1964 by Ornstein and Davis, working 

independently 4. The polyacrylamide is in two parts, a high 

porosity "stacking gel" overlaying a low porosity "resolving 

ge l". The system is a multibuffer one, resulting in sharper 

bands and better sample resolution than conventional continuous 

phosphate gel electrophoresis. 

In 1963 Maizel discovered that sodium dodecyl sulphate (SOS) 

facilitated the electrophoresis of proteins in polyacrylamide 
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gels 4. It was later shown that the binding of 50S to proteins 

was accompanied by dissociation of oligomeric molecules into 

sub-units. ~ligration of these sub-units during electrophoresis 

depended on their polypeptide chain size 4 Laemmli (1970) and 

Neville (1971) combined discon-tinuous PAGE and 50S-PAGE, and 

two multiphasic systems for 50S-PAGE were developed. The 

slightly lower pH method of Laemmli, incorporating tris-glycine 

and tris-HCl buffers, is most frequently used today. 

Once polypeptides have been electrophoresed, several techniques 

are available for their visualisation. These include precipita-

tion with 2.5M potassium chloride 16, silver staining 37 

staining with Coomassie brilliant blue 4, and autoradiography of 

radiolabelled proteins 81. Though not the most sensitive 

technique, staining with Coomassie brilliant blue R250 is widely 

used 4. The stain forms electrostatic bonds with ammonium 

(NH3+) groups and non-covalent bonds with non-polar regions 4 

The detection limit is 0.1ug of protein 4,106 

Prior to electrophoresis samp l es to be used in this study were 

prepared using 50S and ~-mercaptoethanol. Treatment with 50S for 

three minutes at 100 0 C caused breaking of hydrogen bonds and 

coated the sample with a blanket negative charge. Simul

taneously, treatment with ft -mercaptoethano l reduced disulphide 

bonds and prevented protein aggregation. Complete and uniform 

binding of 50S to the polypeptides was ensured by the removal of 

conformational constraints 4. The overall uniform negative 

charge densities and lack of tertiary structure allowed electro-
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phoretic separation of the polypeptides according to molecular 

weight. 

The electrophoretic mobility of a polypeptide in discontinuous 

SDS-PAGE is inversely proportional to the logarithm of its 

molecular weight 4,99. This has allowed calculation of the 

molecular weight of many proteins, including those comprising 

the capsid of poliovirus. Using SDS-PAGE, the three larger 

capsid proteins of poliovirus give highly consistant results. 

The smallest protein, VP4, tends to give anomalous results 99. 

This is characteristic of polypeptides with a molecular weight 

of less than 15 000 106 

3.2. Resul ts 

Figures 3.1.a and 3.2.a show the results obtained when phenol

extracted capsid proteins of poliovirus were separated electro-

phoretically on polyacrylamide gels. By plotting migration of 

the marker proteins against the logarithm of their molecular 

weights a standard curve was produced (figures 3.1.b and 3.2.b). 

Molecular weights of the virus proteins were calculated (table 

3.1.) by plotting the distances migrated by the poliovirus 

capsid proteins on the standard curve. 

3.2.1. Comparison of Capsid Proteins of Type 1 Polioviruses 

There is a difference in the electrophoretic mobilities of 

capsid proteins VP1 and VP3 of the Gazankulu outbreak strain 

5061 and type vaccine strain LS-c (table 3.1). In contrast, 

the molecular weights calculated for VP1 and VP3 of the wild

type 1 strain LS-a are identical to those of the Gazankulu 
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Photograph of SOS-PAGE gel after electrophoresis of type 1 
po Ii ov i ruses. 
Tracks 4 and 8 - marker proteins; 
Tracks 1 to 3 - poliovirus type 1; Wild-type strain LS-a, 
vacci ne strain lS-c and Gazankulu outbreak strain 
respectively; 
Tracks 5 t o 7 - poliovirus type 2; Wild-type strain lansing, 
vaccine strain P712 and Gazankulu outbreak strain 
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FrGURE 3.1.b. Standard cu rve obtained by plotti ng log. molecular weight ( x 10 -3 ) 
of marker pro tei ns against distance migr ated . 
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FIGURE 3.2.a . Photograph of 50S-PAGE gel after electrophoresis of 
type 3 pol ioviruses . 
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Table 3. 1. :101ecular weight of poliovirus capsid prote i ns calculated 
after SDS-PAGE by plotting protein mi gration on standard 
c urve. 

VIR US TYP E VIR US STRAIN MOLECULAR WEIGHTS OF CAPSID PROT EI NS 

VPl VP2 VP3 

506 1 36 300 3 I 60 0 26 600 

LS- c 34 400 31 600 2 6 10 0 

LS - a 36 300 30 200 26 600 

5068 36 300 29 200 26 900 

2 P7 12 36 300 29 200 26 90 0 

Lansing 36 900 28 500 26 900 

3 Leon 3 37 200 30 000 27 200 

Leon III 38 000 30 000 27 200 
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outbreak strain of poliovirus type 1. 

An apparent similarity in electrophoretic mobility exists 

between the VP2 of both vaccine and Gazankulu outbreak strains. 

This cannot, however, be taken as an indication of relatedness 

because conservation of VP2 usually occurs between poliovirus 

strains 52,104 The results obtained thus suggest that there is 

little relationship between Gazankulu outbreak strain 5061 and 

Sabin vaccine strain LS-c. 

Although various workers 52,68 have reported anomalous migration 

characteristics of capsid proteins from poliovirus type 

vaccine strain LS-c, these were not apparent. Figure 3.1.a 

shows that separation of capsid proteins VP1, VP2 and VP3 of LS-c 

has occurred. The electrophoretic mobilities of VP1 and VP2 

are simi lar, due to the characteri s tic increase in mobil i ty of 

VP1 displayed by LS-c 80 

Little or no degradation of capsid proteins is apparent, despite 

the finding by Kew ~ ~ (1980) of an unexplained and poorly 

reproducible tendency towards degradation of LS-c VP1 during 

SDS-PAGE. A faint additional protein band, molecular weight 37.1 

x 10 3 , is present. This may be due to incomplete dissociation of 

capsid proteins or aggregation of dissociated proteins. As this 

protein was not always present it was assumed to be artefactual 

and no analysis of it was carried out. 

3.2.2. Comparison of Capsid Proteins of Type 2 Polioviruses 

In the case of the type 2 virus strains, the capsid proteins of 
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the Gazankulu outbreak strain, 5068, and those of the vaccine 

strain, P712, display identical electrophoretic mobilities 

(table 3.1). The similarity between VP1 of the two poliovirus 

strains is surprising - Yoneyama et ~l (1981) found that in 14 

out of 17 vaccine-related isolates of poliovirus tested, 

electrophoretic mobility of VP1 differed from that of the 

vaccine strain. 

The mobilities on SOS-PAGE of the capsid proteins of both type 2 

Gazankulu outbreak strain 5068 and type 2 vaccine strain P712 

differ from those of wild-type 2 strain Lansing. This suggests 

that the relationship between the Gazankulu and vaccine strains 

of type 2 poliovirus is closer than that between the Gazankulu 

outbreak strain and the wild-type strain. 

3.2.3. Comparison of Capsid Proteins of ~ 1 Polioviruses 

Electrophoretic mobilities of the capsid proteins of the two 

type 3 poliovirus strains tested are very similar. Capsid 

proteins VP2 and VP3 of the attenuated Sabin vaccine strain, 

Leon 3, display electro-phoretic mobilities identical to those 

of the neurovirulent wild-type strain Leon III. There is a 

difference in apparent molecular weight of 800 between VP1 of 

the two virus strains (table 3.1.). This noticeable difference 

in electrophoretic mobil i ty between vaccine and wi ld-type VP1 

capsid protein has also been reported by Minor (1982). 

3.3. Discussion 

Although Martin (1984, unpublished data) detected small amounts 

of VP4 from the Sabin type 2 and 3 vaccine strains of poliovirus 
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(P712 and Leon 3), this capsid protein was not detected for any 

of the virus samples. This was not surprising, for VP4 is known 

to stain poorly if at all. 

Because no VP4 was detected it was not possible to compare VP4 

of the poliovirus strains under study. Unpublished studies 

carried out by Kew using radiolabelled poliovirus proteins 

(cited in Kew et ai, 1980) have indicated that electrophoretic 

mobility of VP4 on SOS-PAGE is much less variable than that of 

VP1 and VP3. This is hardly unexpected, for VP4 is not a sur

face protein of the viral capsid. Consequently it would not be 

expected to be as prone to mutation as the surface proteins are. 

Comparison of electrophoretic mobilities of poliovirus capsid 

proteins (table 3.1.), shows that type 1 Gazankulu poliovirus 

outbreak strain 5061 differs from type 1 vaccine strain LS-c. 

In contrast, the electrophoretic mobilities of capsid proteins 

from type 2 Gazankulu outbreak strain 5068 are identical to 

those of poliovirus type 2 vaccine strain P712. Comparison of 

electrophoretic mobilities of capsid proteins indicate that the 

two outbreak strains have been correctly identified as type 1 

and type 2 polioviruses. Neither appears to bear any relation

ship to the type 3 polioviruses studied. 

As expected, variability between capsid proteins of vaccine and 

wild-type poliovirus strains was found to be greatest within 

VP1, which is the major surface protein and is the type-specific 

neutralizing antigen 16,25,29. A surprising conservation of 

electrophoretic mobility existed within VP3 of the type 2 and 
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type 3 vaccine and wild-type strains. VP3 lies in close 

proximity to VP1 52 and forms comp'exes with it when treated 

wi th bifunctional cross-linking agents 1 09 Because of its 

exposed position and association with VP1 , VP3 will probably 

also be considerably altered during attenuation 52,94. It is 

likely that, while differences between VP3 of the vaccine and 

wild-type strains do exist, SDS-PAGE was not sufficiently sensi 

tive to detect them. 

Within a poliovirus type, variability between capsid proteins is 

possibly due to relatively minor changes in the capsid proteins, 

probably amino acid substitutions 52. In the case of type 1 

polioviruses Mahoney (the neurovirulent parent strain to which 

strain LS-a is closely related) and vaccine strain LS-c 2ab, 

amino acid substitutions represent approximately 1% to 2% of all 

the residues 52. Between types, however, differences in molecu

lar weight of the capsid proteins may be due to amino acid 

deletions or additions as well as to substitutions 104 

Unfor tunately SDS-PAGE is a fairly crude technique, only capable 

of indicating differences in electrophoretic mobility between 

proteins. Such differences are not necessarily directly related 

to differences in the composition of the proteins 52. This 

applies particularly if closely related proteins differ due to 

slight chemical modification or due to artefactual proteolysis 

during preparation 14. Consequently, unambiguous identification 

of the relationship between specific proteins cannot be made on 

the basis of electrophoretic mobility alone. 
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CHAPTER FOUR 

COMPARISON OF POLIOVIRUS CAPSID PROTEINS BY MAPPING TRYPTIC 

PEPTIDES USING THIN-LAYER CHROMATOGRAPHY (TLC) AND REVERSED

PHASE HIGH-PERFORMANCE LIQUID-CHROMATOGRAPHY (RP-HPLC) 

4.1. Introduction 

SDS-PAGE indicated that similarities existed between the Gazan

kulu isolate and vaccine strain of poliovirus type 2 but not 

between those of poliovirus type 1. In an attempt to find a more 

sensitive method of comparing virus strains, tryptic peptide 

mapping of capsid proteins was carried out. 

Mapping of peptides produced after proteolytic digestion of 

purified proteins is an important technique used to characterise 

proteins, to compare amino acid sequences and to detect small 

differences in their primary structure 12. Because the peptide 

composition of a protein can be studied, an analysis of tryptic 

peptides should be considerably more sensitive than a comparison 

of molecular weights by discontinuous SDS-PAGE. 

Most polypeptide changes resulting from alterations in the RNA 

during attenuation of poliovirus strains occur in the capsid 

proteins 52,104. These proteins determine the ability of virus 

particles to bind to recognition sites on the surface of suscep

tible cells, initiating infection 88. Pathogenic reversion of 

vaccine strains is thus generally reflected in the capsid pro

tein amino acid sequence. Consequently it was decided to use 

tryptic peptide mapping of poliovirus capsid proteins for 
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comparing vaccine and Gazankulu outbreak strains of poliovirus. 

Several chromatographic techniques are available for the 

analysis of peptides. These include thin-layer chromatography 

(TLC), reversed-phase high-performance liquid -chromatography 

(RP-HPLC), ion-exchange chromatography (lEC), affinity chromato-

graphy and size-exclusion chromatography 28,90. Thin -layer 

chromatography and reversed-phase high-performance liquid-

chromatography were used in this study. 

Obtaining large enough amounts of protein for analysis was 

diff icul t. As a result, purification to homogeneity of each of 

the poliovirus capsid proteins was not feasable. To circumvent 

this problem, individual capsid proteins separated by SDS-PAGE 

were radiolabelled within gel slices as described in section 

2.5.1.2. of "M aterials and Methods" 24. This was followed by 

modified tryptic digestion as described by Elder et al (1977). 

1 25l_iodine has a half-life of 60 days and a considerably higher 

specific activity than many other radioisotopes. This allows 

rapid and easy detection of picogram amounts of protein 10. 

Because 125 I is a high energy ~ -emitter, no special sample 

preparation was required for counting 10. This was important 

because large numbers of samples were collected. 

Because no iodine is present in poliovirus proteins, in ~itro 

incorporation of 125 I using the chloramine-T reaction was chosen 

as the method of protein labelling. In vivo labelling using 3H ----
or 35S-methionine was not us ed because these isotopes have a 

lower activity than 125 I (75 times lower and 35 000 times lower, 
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respectively 10) and are more costly than 125 I . 

Chloramine-T is the sodium salt of the N- monochloro derivative 

of p-toluene sulphonamide and oxidises radioactive sodium 

iodide (Na 125 I). In the presence of the protein to be labelled 

this results in highly efficient incorporation of 125 I into 

tyrosine residues (figure 4.1.). Addition of sodium metabisul-

phite reduces excess chloramine-T, and free iodine is reduced to 

iodide. This is removed by adding excess u ~ ~ abelled sodium 

iodide or potassium iodide 10. In addition to tyrosine, 

histidine , tryptophan and sulphydryl groups (such as cysteine) 

may be labelled to a certain extent 10 

be labelled 24 

Phenylalanine may also 

Trypsin, the enzyme used for digestion of the capsid proteins, 

selectively catalyses hydrolysis of peptide bonds on the 

carboxy l side of the ba sic amino acids lysine and arginine 59. 

It is not an enzyme of first attack, and in several cases can 

only digest proteins after denaturation such as that resulting 

from SDS-PAGE 40 

4.2. Comparison of Poliovirus Capsid Proteins by Two-

Dimensional Thin-Layer Chromatography of Tryptic Peptides 

Polyacrylamide gel electrophoresis has been used for the mapping 

of peptides both in one-dimension 14 and two-dimensions 9,81. A 

more sensitive test of polypeptide identity involves peptide 

mapping using a thin layer of cel lulose or alumina a few hundred 

microns thick 87 
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Separation of trypt ic d igests i n two d i mensions on either paper 

or thin-layers was or iginall y developed by Ingram (1956). 

Electrophoresis was carried out in one direction and c hroma t o 

graphy in the other . Us ing a comb ina tion of techniques along 

the two axe s of t he p late , two-dimensional s eparation gives more 

in for mation than single dimension chr oma tography. Such a 

technique may be very sensitive, with less than 1 0ug of 125 I _ 

labelled p r otein giving a ve ry satisfactory r e su lt 4 

Generally, horizontal electrophoresis is carried out in the 

first dimension and a scending c hromatography in the second. 

Electrophoretic mig r at ion in the first dimension is dependant on 

the cha r ge of t he samples to be separated. Separation during 

ascending chr omatography is due to sample solubility in the 

solvents used 4 

Th in-la ye r chromatography (TLC) of 125 I and (35 S )-methionine 

labe ll ed proteins on cellulose has been used by Gentsch and 

Fields (1981). These workers carried out analysis of the oute r 

capsid proteins of mammalian reovirus serotypes 1,2 and 3. 

Lamb an d Choppin (1978) also used TLC of (35 S )-methionine 

label led tryptic peptides for comparison of the v iral poly-

peptides of Sendai virus. Polypeptides were labelled, then 

separated using SDS-PAGE, and digested. Peptide separation was 

carried out using electrophoresis followed by ascending 

chromatography. Similar techniques of two-dimensional TLC were 

used in this study for mapping radiolabelled peptides of polio

vi rus capsid proteins. 
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4.2.1. Results 

Photographs were taken of the autoradiographs produced after 

individual capsid proteins of the poliovirus strains were 

subj ected to peptide mapping. Drawings were then made and used 

for comparing the tryptic peptide maps of the different viral 

capsid proteins. 

4.2.1.1. Comparison of tryptic peptide maps of capsid proteins 

from poliovirus type 1 

Figure 4.2.a shows photographs of the tryptic peptide maps 

generated after radiolabelling and tryptic digestion of VP1 from 

Gazankulu outbreak strain 5061, Sabin vaccine strain LS-c a n d 

wild-type strain LS-a. A diagrammatic representation of the 

photographs is shown in figure 4.2.b, with only the major pep

tide spots indicated. 

When the maps of VP1 from type 1 Gazankulu outbreak strain 5061 

and that of vaccine strain LS-c are compared, severa 1 

differences are apparent. Two novel peptide spots are present on 

the LS-c map, while four of the tryptic peptides present on the 

map of 5061 VP1 have been lost. Two peptide spots on the map of 

VP1 from 5061 (spots 9 and 10) appear to have shifted on the map 

of LS-c. Such "shifting" is the result of minor alterations in 

amino acid composition and refers to slight changes in the 

position of peptide spots. Horizontal shift reflects a change in 

electrophoretic mobility, vertical shift a change in chromato

graphic mobility. 

From a comparison of the tryptic peptide maps of the three virus 
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strains are . shown by (~). Faint spots are indicated by a dot ted 
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strains it may be seen that the greatest similarities exist 

between VP1 of type 1 vaccine strain LS-c and wild-type strain 

LS-a. Two peptides missing when VP1 of type 1 Gazankulu out

break strain 5061 is compared with vaccine strain LS-c are also 

missing from wild-type LS-a. Additionally, both of the novel 

peptides apparent on the map for LS-c are shared with reference 

strain LS-a. The two peptides which have shifted on the tryptic 

peptide map of LS-c VP1 have also shifted on the map of LS-a. 

Variability between the VP2 peptide maps of the three type 1 

pol iovirus strains (f igure 4.3.a and b) is more pronounced than 

that between the VP1 peptide maps. VP2 of vaccine strai n LS-c 

lacks two of the peptides apparent on the map for type 1 Gazan

kulu outbreak strain 5061 and has gained six new peptide spots. 

Six differences between VP2 of 5061 and vaccine strain LS-c are 

common to wild-type r eference strain LS-a. Of the novel LS-c 

peptides, four are shared with LS-a VP2 , while the two peptides 

missing from the LS-c map are also missing from the LS-a map. 

Variations are also apparent upon comparison of the tryptic 

peptide map of VP3 of each of the viral strains (figure 4.4.a 

and b). VP3 of the Gazankulu outbreak strain, 5061, displays 

several differences from that of vaccine strain LS-c. Three 

tryptic peptides are apparent· on the 5061 map but not that of 

LS-c, which has three new peptides. Of the novel features 

apparen t on the tryptic peptide map for type 1 vaccine strain 

LS-c, three are common to wild-type reference strain LS-a. The 

shared differences (loss of two peptides and the gain of one 

novel peptide) comprise all of the differences between LS-a and 
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Maps produced after TLC of peptides from VP2 of poli ovi rus type 
strains. A - Gazankulu outbreak strain 5061; B - Sabill vaccine straill 
LS -c; C - wild-type strain LS - a. 
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Maps produced after TLC of peptides from VP3 of poliovi r us type 1 
strains . A - Gazankulu outbreak strain 5061; B - Sabin vaccine strain 
LS - c; C - wild-type strain LS- a. 
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5061. Several apparent tryptic peptides (fig. 4.4.a) are not 

shown on the drawn representations (fig. 4.4.b). These were not 

reproducible and were presumably artefactual. 

Variability between VP1 and VP3 of the Gazankulu outbreak strain 

and the vaccine strain is considerably greater than that between 

the outbreak strain and the wild-type strain. Differences 

between the Gazankulu outbreak strain and vaccine strain are 

frequently shared by the vaccine and wild-type reference strain 

(see table 4.1). This suggests that there is little relation

ship between the poliovirus type 1 outbreak strain and Sabin 

vaccine strain. In contrast, relationship appears to exist 

between the vaccine strain and the wild-type strain. 

4.2.1.2. Comparison of tryptic peptide maps of the capsid 

proteins of type 2 polioviruses 

Photographs of the autoradiographs resulting from TLC mapping of 

tryptic peptides of the capsid proteins from the type 2 polio

viruses used in this study (Gazankulu strain 5068, Sabin vaccine 

strain P712 and reference strain Lansing) are shown in figures 

4.5.a, 4.6.a and 4.7.a. Diagrammatic representations of the 

photographs are shown in figure 4.5.b, 4.6.b and 4.7.b. 

A clearly visible pattern is apparent between the tryptic pep

tide maps of VP1, with maps from all three strains having a 

similar appearance (fig. 4.5.a and b). Differences do, however, 

exist. Type 2 vaccine strain P71 2 displays one novel peptide 

when compared with Gazankulu outbreak strain 5068, and lacks 

four others. 
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Table 4.1. Comparison of tryptic peptide maps of capsid proteins 1,2 
and 3 of poliovirus type 1 Gazankulu outbreak strain 
5061 with similar maps of vaccine strain LS-c and wild
type 1 strain LS-a. 

CAPSID 
PROTEIN 

VIRUS 
STRAIN 

TOTAL NOVEL 
SPOTS'" SPOTS 

LOST MOVED 
SPOTS 

TOTAL SHARED+ 
DIFF 'S'* 

5061 16 

VP1 LS-c 14 2 4 2 8 
6 

LS-a 1 6 2 2 2 6 

5061 13 

VP2 LS-c 17 6 2 0 8 
6 

LS-a 16 6 3 10 

5061 12 

VP3 LS-c 12 3 3 0 6 

* 
** 

+ 

3 
LS-a 11 2 0 3 

Number of dominant spots used for comparison of peptide maps. 

Total number of differences apparent between peptide maps of 
outbreak strain poliovirus capsid proteins and vaccine/wild 
type strain maps. 

Number of differences from outbreak strain map that are common 
to vaccine and wild-type strains of poliovirus . 
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Maps produced after TLC of peptides from VPl o f poli ov irus type 2 
strains. A - Gazankulu outbreak strain 5068; B - Sabin vaccine strail) 
P712; C - wild-type strain Lansing . 
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The differences between peptide maps of VP1 of 5068 and vaccine 

strain P712 are all common to both P712 and wild-type Lansing. 

There are, howe v er, se veral features unique to the VP1 tryptic 

peptide map of Lansing. These include four spots shared with 

neither P712 nor 5068, and the absence of three peptide spots 

present o n both the outbreak and vac-cine strain maps. The 

similarity between the VP1 tryptic peptide maps of Gazankulu 

outbreak strain 5068 and vaccine strain P712 is thus greater 

than that between 5068 and wild-type Lansing. 

Comparison of the tryptic peptide maps for VP2 of the three type 

2 poliovirus strains (fig.4.6.a and b), shows that considerable 

similarity exists between type 2 Gazankulu outbreak strain 5068 

and vaccine strain P712. Three peptide spots present on the map 

of 5068 VP2 have disappeared from that of P712. Two spots 

(numbers 16 and 18) have shifted their positions slightly, but 

no new peptide spots are apparent on the map for VP2 of vaccine 

strain P7"2. This contrasts strongly with the differences 

apparent between type 2 Gazankulu out-break strain 5068 and 

wild-type strain Lansing. Four novel peptides have appeared on 

the Lansing map, while seven peptides are missing. The chromato

graphic mobility of spot 22 appears to have increased, resulting 

in a vertical shift of that peptide. Of the differences between 

VP2 of Gazankulu outbreak strain 5068 and vaccine strain P712, 

only the loss of peptides 2 and 19 are shared by P712 and 

Lansing. 

Greater differences exist between VP2 of Gazankulu outbreak 

strain 5068 and wild-type 2 strain Lansing than between 5068 and 

85 



A 

FIGURE 4.6 . a 

( 

• 

Maps produced after TLC of peptides from VP2 of poliovirus type 2 
strains . A - Gazankulu outbreak strain 5068; B - Sabin vaccine strain 
P712 ; C - wild-type strain Lansing . 
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vaccine strain P712. This indicates t hat the VP2 proteins of 

P712 and 5068 have a number of common sequences not shared by 

the wild-type strain, Lansing. 

The peptid e sequence of VP3 of all three of the type 2 polio

viru s strains appears to be more conserved than either VP1 or 

VP2. All of the 15 major peptide spots appearing on th e map for 

VP3 of Gaz a nkulu ou tbreak strain 5068 are shared by vaccine 

strain P712, with no shifting of spots (f : 1.7.a and b). There 

is, how e v er, one new peptide spot apparent on the P712 map. 

This spot i s also apparent on the VP3 map for wild-type strain 

Lansing, which differs from the maps of both 5068 and P712 in 

th e los s of two peptides. The tryptic peptide maps thus 

indicate a g r eater similarity between VP3 of Gazankulu outbreak 

strain 5068 and vaccine strain P712 than between 5068 and wild

type strain Lansing. 

From table 4.2 it may be seen that for all three of the capsid 

proteins mapped there are similarities between Gazankulu out

break strain 5068 and vaccine strain P712. At the same time, 

considerable differences exist between the Gazankulu outbreak 

strain and the wild-type 2 poliovirus strain. 

4.2.1.3. Comparison of tryptic peptide maps of the capsid 

proteins of type 3 polioviruses 

Few differences exist between the tryptic peptide maps of VP1 

from poliovi rus type 3 vaccine strain Leon 3 and the wild-type 

strain Leon III (fig. 4.8.a and b). Only one spot is unaccounted 

for on the map of VP1 from the wild-type strain, Leon III, while 
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Maps produced after TLC of peptides from VP3 of poliovirus type 2 
strains . A - Gazankulu outbreak strain 5068 ; 8 - Sabin vacc i ne st r ain 
P712 ; C - wild-type strain Lansing. 
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Table 4.2. Comparison of tryptic peptide maps of capsid proteins 1,2 
and 3 of poliovirus type 2 Gazankulu ou tbreak strain 
5068 with similar maps of vaccine strain P712 and wild
type 1 strain Lansing. 

CAPSID 
PROTEIN 

VIRUS 
STRAIN 

TOTAL NOVEL 
SPOTS* SPOTS 

LOST MOVED 
SPOTS SPOTS 

TOTAL SHARED+ 
DIPP'S** 

VP1 

VP2 

VP3 

• 

•• 

+ 

5068 14 

P712 13 4 0 5 
5 

5068 14 7 7 0 1 4 

5068 22 

P712 19 0 3 2 5 
2 

Lansing 19 4 7 12 

5068 15 

P712 16 0 0 

Lansing 14 2 0 3 

Number of intense peptide spots used for comparison of peptide 
maps • 

Total number of differences apparent between peptide maps of 
outbreak poliovirus capsid proteins and vaccine/wild-type 
5 train maps. 

Number of differences from outbreak strain map shared by 
vaccine and wild-type strains of poliovirus. 
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Maps produced after TLC of peptides from VPl of poliovirus type 3 
strains . A - Sabin vaccine strain Leon 3; B - wild-type strain 
Leon III . 
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two novel peptides have appeared. One spot, 11, has shifted 

vertically, indicating a decrease in chromatographic mobility. 

The tryptic peptide maps for VP2 of the two virus strains show 

that this protein is also highly conserved. One peptide spot 

has disappeared from the map of VP2 from wild-type strain Leon 

III and a single new peptide spot is present (fig.4.9.a and b). 

Within the VP3 of type 3 vaccine strain Leon 3 and wild-type 

strain Leon III, changes have also taken place at a low 

frequency. Two novel spots are apparent on the map of wild-type 

reference strain Leon III and a single peptide has disappeared. 

One peptide spot, number 5, displays an altered electrophoretic 

mobility, being displaced away from the origin (fig.4.10.a and 

b) • 

As shown by comparison of table 4.3 with tables 4.1 and 4.2, 

conservation between the two type 3 poliovirus strains is 

considerably greater than that between any other wild-type and 

vaccine strains. With respect to the type 1 poliovirus strains, 

conservation is greatest between vaccine strain LS-c and wild

type strain LS-a. Between the type 2 poliovirus strains 

considerable similarity exists between Gazankulu outbreak strain 

5068 and vaccine strain P712. 

As expected, no similarity exists between tryptic peptide maps 

of the two outbreak strains and those of the type 3 poliovirus 

strains, indicating that neither has been mis-identified. 
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Maps produced after TLC of peptides from VP2 of poliovirus type 3 
strains. A - Sabin vaccine strain Leon 3; B - wild-type strain 
Leon III. 
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Maps produced after TLC of peptides from VP3 of poli ovirus type 3 
strains . A - Sabin vaccine -strain Leon 3; B - wild-type strain 
Leon III. 
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Table 4.3. Comparison of tryptic peptide maps of capsid proteins 
1 ,2 and 3 of poliovirus type 3 vaccine strain Leon 3 
with similar maps of wild-type 3 strain Leon III. 

• 

•• 

CAPSID VIRUS TOTAL NOVEL LOST MOVED TOTAL 
PROTEIN STRAIN SPOTS SPOTS SPOTS SPOTS DIFF'S 

VP1 Leon 3 1 6 

Leon III 1 7 2 4 

VP2 Leon 3 1 4 

Leon III 1 4 0 2 

VP3 Le on 3 10 

Leon III 1 1 2 4 

Number of intense peptide spots used for comparison of peptide 
maps . 

Total number of differences apparent between peptide maps of 
vaccine strain capsid proteins and wild-type strain maps. 
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4.2.2. Results of Control Experiments Carried Out to Determine 

Accuracy and Reproducibility of Two-Dimensional TLC of Tryptic 

Peptides 

As may be seen from figure 4.11., no peptides were present after 

TLC mapping of a blank gel slice. This indicates that neither 

the trypsin used for protein digestion nor components within the 

gel were labelled. Maps obtained after digestion and mapping of 

two ovalbumin samples (fig.4.12.) show the reproducibility of 

TLC peptide mapping. 

Figure 4.13.a shows the tryptic peptide map obtained after 

digesting a radiolabelled sample of trypsin, resolved using SDS

PAGE. The pattern of peptides (fig.4.13.b) does not co rrelate 

with any of the maps for capsid proteins of the poliovirus 

strains studied. This further indicates that trypsin was not 

radiolabelled during digestion of virus capsid proteins. 

Only the most intense spots apparent on photographs of the 

tryptic peptide maps were used for comparing the maps. Faint 

peptide spots were not always reproducible, and may have been 

artefactual. The original autoradiographs were referred back to 

if photographs were not c l ear. 

On some maps a series of 1 to 3 spots is visible, arranged 

vertically in line with, or close to, the sample origin. These 

had a poor reproducibility and were probably artefactual. It is 

possible that they were caused by some contaminant , or even 

peptide aggregates, with a poor electrophoretic mobility. 
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FIGURE 4.11. 
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FIGURE 4 . 12 . Maps produced after TLC of peptides from two s~les of ovalbumin 
resolved using SDS-PAGE and labelled with I I, showing repro
ducibility of peptide maps. Origin indicated by (x). 



FIGURE 4.13.a. Map produced after a sample of trypsin, resolved using 50S-PAGE, was 
radiolabelled with ,.51 and digested with trypsin. 
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FIGURE 4.13.b. Diagrammatic representation of intense spots on peptide map of 
trypsin. Sample origin (0) is in lower right hand corner . 



4.3. Comparison of Poliovirus Capsid Proteins by Reversed-Phase 

High-Performance Liquid-Chromatography of Tryptic Peptides 

Two-dimensional TLC proved to be an effective means of mapping 

tryptic peptides of poliovirus capsid proteins. Problems lay in 

the inte rpretation of the data obtained, and deciding which 

peptide spots were significant. Consequently, an alternative 

tec hnique of tryptic peptide mapping, using reversed -~hase high

performance liquid-chromatography (RP-HPLC), was tried. It was 

hoped that the results would support those obtained using TLC , 

although RP-HPLC results were expected to be more precise and 

conclusive. RP-HPLC and TLC results would be similar in that 

only peptides susceptible to labelling with 125 1 by the 

ch loram ine-T reaction could be mapped. 

RP - HP LC is a highly sensitive and rapid technique. Sample 

separation may be achieved within 10 to 60 minutes and detection 

o f pi cog ram amounts of peptides is possible 34. During chromato

graphy continuous partitioning of the solute between the rigid 

stationary phase and the liquid mobile phase occurs. Separation 

is dependant on the hydrophobicity of the solute relative to the 

polarity of the two phases 90 Hydrophobic compounds bind 

reversibly to the hydrophobic stationary phase and, as a result, 

move more slowly than hydrophilic compounds 74 

The system is "reversed-phase" because the stationary phase is 

non-polar while the mobile phase is polar (generally consisting 

o f an organic solvent in buffer or water). This is in contrast 

to the polarity of the older solid-liquid chromatography 
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systems. 

Because chromatog raphic runs are rapid, high pressures (36 - 360 

atmospheres) are generated. Consequently the stationary phase 

must be highly stable. Stationary phase materials consist of an 

inorganic (generally silica) backbone to which organic groups 

(frequently carbon ch a ins of specific length) ar e bound 

(fi g.4.14.) . Octadecyl 3ilica ( ODS ) stationary phases, 

consisting of C18 chains bonded o nto microparticulate silica 

beads, a re widely used. 

Chromatography may either be isocratic ( i .e. the composition of 

the eluting solvent remains constant), or the percentage of the 

o rganic phase can be increased, resulting in a solvent grad ient. 

This progressively elutes more tightly bound fractions from the 

stationary phase. Isocratic elution profiles are ideal because 

of the ease of duplication and because column reconditioning is 

unnecessary between chromatographic runs. Nevertheless, linear 

gradients are frequently used 34 

Elution of hydrophobic solutes requires a reduction in polarity 

of the mobile phase and/or increase in polarity of the solute. 

Generally polarity of the mobile phase is decreased by 

increasing the concentration of the organic solvent. One of the 

most widely used solvents for RP-HPLC of peptides and proteins 

is the non-polar solvent, acetonitrile 90. Ion-pairing agents 

bind with solute molecules and alter their hydrophobicities, 

improving resolution and sample recovery 41 

Phosphate and perchlorate are both very powerful ion-pairing 
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agents 74. Retention times of peptides containing free amino 

groups may be drastically reduced by addition of 0.1% phosphoric 

acid to water-acetonitrile gradients 38. Because phosphoric acid 

is non-absorbent in the range of 195 - 220nm, it is compatible 

with the sensitive variable wavelength UV monitors used in RP-

HPLC. 

RP-HPLC has recently emerged as a significant technique for the 

analysis and separation of un-derivatized amino acids and pep

tides 41. Peptide mapping often detects subtle differences in 

the primary structure of closely related proteins. Application 

of RP-HPLC with hydrophilic ion-pairing agents allows rapid and 

reproducible peptide "fingerprints" using only picomole amounts 

of peptide 41. Analysis times may be kept short by using small 

columns (typically 4mm x 300mm) and small particle sizes (less 

that 10um in diameter). Use of closed, reusable columns allows 

hundreds of samples to be resolved without column re-packing 39 

While fingerprint analysis of peptides (including tryptic pep

tides) using RP-HPLC has been carried out 5,21,75,76,111, RP

HPLC is still a relatively novel technique in virus research. 

Virus proteins studied to date include those of herpes simplex 

virus 107, Sendai virus 108, influenza virus 86, murine lukaemia 

virus 42 tick borne encephalitis virus 110, and poliomyelitis 

virus 43,44 Little work has been carried out using RP-HPLC for 

finger-printing tryptic peptides of viral proteins. Kinney and 

Trent (1982), however, have reported mapping the tryptic pep

tides of viruses in the Venezuelan equine encephalitis complex. 
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The extreme ly high hydrophobici ty of po 1 iov ira 1 proteins, 

coupled with the compactness of the virus, makes RP-HPLC of 

poliovirus difficult. Work carried out to date has tended to 

make use of high concentrations (60%) of formic acid for virus 

dissoc i ation , and large-pore disposable HPLC columns 43,44 

Because disposable HPLC columns are costly, a reusable chromato

graphy column was used in this study. Mapping of poliovirus 

capsid proteins was carried out by producing trypsin-generated 

peptides of the proteins and subjecting them to RP-HPLC. 

4.3.1. Results 

After RP-HPLC of the tryptic peptides produced by digesting 

radiolabelled poliovirus capsid proteins, radioactivity traces 

were plotted. These were used for comparing the different viral 

capsid proteins. 

4.3.1.1. Comparison of tryptic peptide maps of capsid proteins 

of type 1 polioviruses 

Figure 4.15. shows the radioactivity traces for tryptic peptides 

of VPl from the three type 1 poliovirus strains. There are 18 

major peptides present on the radioactivity trace for VPl from 

Gazankulu outbreak strain 5061. The majority of these peptides 

are clearly differentiated. The peptides labelled 4 and 5, and 

those labelled 9 and 10 occur close together, overlapping to a 

certain extent. 

Differences are apparent between VPl of Gazankulu outbreak 

strain 5061 and Sabin vaccine strain LS-c. Five peptides are 

missing from the map of LS-c VPl when compared to 5061 while 
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FIGURE 4.15. 

Radioactivity traces obtained after RP-HPLC of tryptic peptides of 
radiolabelled VPl from poliovirus type 1 strains . A - Gazankulu 
outbreak strain 5061; B - Sabin vaccine strain LS-c; C - wild-type 
strain LS-a. On maps of LS-c and LS-a VPl only missing peptides , 
indicated by ( V) are numbered, while novel peptides are indicated by 
(*) . Roman numerals indicate peptides common to vaccine and wild-type 
strains only . 
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three novel peptides are present. Comparison of VP1 tryptic 

pe ptide maps from Gazankulu outbreak strain 5061 and wild-type 

strain LS-a shows that four peptides are absent from the LS-a 

map and three new peptides are present. Two of the new peptides 

a re common to vaccine type 1 strain LS-c and wild-type strain 

LS-a. All of the peptides absent from the map of LS-a VP1 are 

also missing from that of vaccine strain LS-c. Clearly, greater 

similarity exists between vaccine strain LS-c and wild-type LS- a 

than between outbreak strain 5061 and LS-c. 

Upon comparison of the RP-HPLC maps of 125 r labelled tryptic 

peptides of VP2 of the type 1 poliovirus strains (figure 4.1 6.) 

a pattern is again a pparent, although the similarity between the 

three strains is reduced. On the map obtained for 5061 VP2 , 13 

peptides are present. The majority of these appear on the VP2 

map for vaccine strain LS-c. 

Thre e tryptic peptides present on the VP2 map of Gazankulu 

outbreak strain 5061 are missing from the map of the vaccine 

strain LS-c. Nine new peptide peaks, including one very large 

one, are apparent. The large peptide is probably the result of 

internal substitutions increasing the number of amino acids 

susceptible to labelling. 

Several differences exist between the peptide maps obtained 

after RP-HPLC o f VP2 from the Gazankulu outbreak strain and 

wild-type strain LS-a. The map for wild-type strain LS-a is 

missing four peptides present on the map for Gazankulu outbreak 

strain 5061 while seven additional peptides are present. 
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FIGURE 4 . 16. 

Radioa~ivity traces obtained after RP-HPLC of tryptic peptides of 
radiolabelled VP2 from poliovirus type 1 strains. A - Gazankulu 
outbreak strain 5061; B - Sabin vaccine strain LS-c; C - wild-type 
strain LS-a. On maps of LS-c and LS-a VP2 only missing peptides , 
indicated by (V) are numbered, while novel peptides are indicated by 
(*) . Roman numerals indicate peptides common to vaccine and wild-type 
strains only . 
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There is a considerable degree of similarity between the VP2 

tr yptic peptide maps of vaccine strain LS-c and wild-type strain 

LS-a . Fi v e peptides are exclusive to LS-c and LS-a, while all 

of the peptides missing from the LS-c map are also absent from 

that of LS - a. Such similarity is not shared by 5 0 61 and LS-c -

only peptide 12 is exclusive to their VP2 maps. 

Differences are also apparent when the radioactivity traces for 

the e l uted peptides of VP3 of the different strains are compared 

(fig.4.17.). Of the 12 peptides present on the VP3 map for type 

Gazan k ulu outbreak strain 5061, nine are shared with the 

vaccine strain LS-c. Five new pep tides have appeared on the map 

for LS-c. Comparison of the VP3 tryptic peptide map obtained 

for Gazankulu outbreak strain 5061 with that of wild-type LS-a 

shows that two pep tides are missing. The two missing peptides 

are also absent from the map of VP3 from vaccine strain LS-c. 

Two new tryptic peptides are present on the wild-type LS-a map, 

both of which are common to vaccine strain LS-c. 

The Gazankulu outbreak strain of type 1 poliovirus, 5061, 

differs from vaccine strain LS-c in all three of the capsid 

proteins compared. These differences are considerably greater 

than those between vaccine strain LS-c and wild-type strain 

LS-a. This indicates that relationship between type 1 Gazankulu 

outbreak strain 5061 and Sabin vaccine strain LS-c is unlikely. 

4.3.1.2. Comparison of tryptic peptide maps of capsid proteins 

of type 2 polioviruses 

Similarities exist between the tryptic peptide maps obtained by 
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FIGURE 4 . 17 . 

Radioactivity traces obtained after RP-HPLC of tryptic peptides of 
radiolabelled VP3 from : poliovirus type 1 strains. A - Gazankulu 
outbreak strai n 5061; , 8 - Sabin vaccine strain LS-c ; C - wild-type 
strain LS-a. ·On maps of LS-c and LS-a VP3 only missing peptides. 
indicated by (~) are numbered. while novel peptides are indicated by 
(*) . Roman numerals indicate peptides common to vaccine and wild-type 
strains only . 
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RP-HPLC of VP1 of the type 2 poliovirus strains studied (figure 

4.18.). Of the 16 peptides on the map for VP1 of Gazankulu 

outbreak strain 5068, all but four are shared with the VP1 map 

of vaccine strain P712. There are four peptides on the P712 map 

which do not appear on the map for 5068. 

Some of the differences between 5068 and vaccine strain P712 are 

shared by P712 and wild-type reference strain Lansing. Three 

tryptic peptides are exclusive to VP1 from P712 and Lansing, 

while three of the peptides missing from the P712 map are absent 

from that of Lansing. Several additional features are unique to 

Lansing. These include four novel peptides and the loss of 

three peptides present on both the outbreak and vaccine strain 

maps. 

The results indicate that greater similarities exist between VP1 

tryptic peptide maps of Gazankulu outbreak strain 5068 and Sabin 

vaccine strain P712 than between either strain and the wild-type 

reference strain, Lansing. 

Differences between the tryptic peptide maps of VP2 of the three 

type 2 virus strains also exist (fig.4.19.). Of the 21 pepUdes 

appearing on the map for VP2 of type 2 Gazankulu outbreak strain 

5068, 16 are common to vaccine strain P712. Two new peptides 

are present on the peptide map of P712 VP2. 

Differences between VP2 tryptic peptide maps of Gazankulu out

break strain 5068 and type 2 reference strain Lansing are 

greater than those between 5068 and vaccine strain P712. There 

are five new peptides on the map for Lansing, while seven 
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FIGURE 4. 1 8 . 

Radioactivity traces obtained after RP-HPLC of tryptic peptides of 
radiolabelled VPl from poliovirus type 2 strains. A - Gazankulu 
outbreak strain 5068; B - Sabin vaccine strain P712; C - wild-type 
strain Lansing. On maps of P112 and Lansing VPl only missing peptides, 
indicated by <~) are numbered, while novel peptides are indicated by 
<*) . Roman numerals indicate peptides common to vaccine and wild-type 
strains only . 
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FrGURE 4.19 , 

Radioactivity traces obtained after RP-HPLC of tryptic peptides of 
r adiolabelled VP2 from poliovirus type 2 strains. A - Gazankulu 
outbreak strain 5068; 8 - Sabin vaccine strain P712; C - wild-type 
strain ' Lansing . On maps of P712 and Lansing VP2 only missing peptides . 
indicated by (V) are numbered, while novel peptides are indicated by 
(*). Roman numerals indicate peptides common to vaccine and wild-type 
strains only. 
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peptides present on the 5068 map have been lost. 

Few features are exclusive to vaccine strain P712 and reference 

strain Lansing alone. One of the two novel peaks on the P712 

VP2 map is shared, as is the loss of peptides 13 and 18. From 

this it is clear that greater similarities in VP2 exist between 

5068 and P712 than between either strain and wild-type strain 

Lansing. 

Of the three capsid proteins, VP3 shows the least variation 

between the three virus strains. There are 17 radiolabelled 

peptides on the tryptic peptide map for type 2 Gazankulu out

break strain 5068 (fig 4.20.). All but one of these peptides 

are apparent on the VP3 map for vaccine strain P712. There is 

one new peptide present on the P712 map. Comparison of the VP3 

map of type 2 Gazankulu outbreak strain 5068 with that of wild

type reference strain Lansing shows that two peptides have been 

lost while one new peptide is present. The new peptide is the 

only feature which is exclusive to vaccine strain P712 and wild

type strain Lansing. 

Within the type 2 poliovirus strains studied, the greatest 

similarity in capsid proteins occurs between type 2 vaccine 

strain P712 and type 2 Gazankulu outbreak strain 5068. This 

indicates that 5068 may be vaccine related. 

4.3.1.3. Comparison of the tryptic peptide maps of capsid 

proteins of type 3 polioviruses 

The radioactivity traces obtained after RP-HPLC of tryptic pep

tides of VP1 from Sabin vaccine strain Leon 3 and wild-type Leon 
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FIGURE 4.20. 

Radioactivity traces obtained after RP-HPLC of tryptic peptides of 
radiolabelled VP3 from poliovirus type 2 strains. A - Gazankulu 
outbreak strain 5068; B - Sabin vaccine strain P712; C - wild-type 
strain Lansing . On maps of P712 and Lansing VP3 only missing pep~ides , 
indicated by (V ) are numbered, while novel peptides are indicated by 
(*> . Roman numerals indicate peptides common to vaccine and wild-type 
s~rains only. 
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III are shown in figure 4.21. The peptide composition appears 

to be highly conserved, with only three differences between the 

maps for VP1 of the tHO strains. On the tryptic peptide map of 

wild-type Leon III one peptide has disappeared , while a single 

new pep tide is present. 

Comparison of maps of VP2 from vaccine and wild-type strains 

(Fig.4.22.) shows that there is little variability between the 

two strains. Wild -ty pe strain Leon III i s missing one peptide 

present on the VP2 map for vaccine strain Leon 3, while three 

new peptides have appeared. 

A similar degree of conservation is apparent between VP3 of the 

two type 3 poliovirus strains (fig.4.23.). Two peptides present 

on the VP3 tryptic peptide map for vaccine strain Leon 3 have 

disappeared from the map for wild-type strain Leon III. Two 

novel peptide peaks are present on the map for the wild-type 

strain. 

The degre e of conse rvat ion between the two type 3 poliovirus 

strains is extremely high in all three of the capsid proteins 

compared . Only within VP3 of the type 2 poliovirus Gazankulu 

outbreak and vaccine strains does greater peptide conservation 

exist. 

4.3.2. Results of Control Experiments Carried Out to Determine 

Accuracy and Reproducibility of RP-HPLC of Tryptic Peptides 

Figure 4.24. shows the radioactivity trace obtained when a 

polyacrylamide gel slice con t aining no protein was radiolabelled 
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with 125 I and treated with trypsin. Over 95% of the rad io-

activity recovered did not bind to the stationary phase and was 

el u ted in the first 20 fractions after the void volume. 

The remaining radioactivity forms a constant low level 

background, with no significant radioactive peaks appearing. 

El d er et ~l (1977) have noted that certain lots of acrylamide 

contain a diffusable contaminant which is radio iodinated at l ow 

le vels. This was probably the reason for the background radio

acti v ity. 

In order to check the reproducibility of the results obtained 

using RP-HPLC, two different samples of bovine serum albumin 

(BSA) were resolved using 50S-PAGE and digested. The two traces 

obtained after mapping the digests are shown in figure 4.25. As 

expected, both traces display the same pattern of peptide peaks. 

The good peptide separation indicates an efficient solvent 

system. There are slight differences in elution times between 

the two traces due to the fact that a home-made gradi~nt maker 

was used. These differences are not great, and do not seriously 

affect the maps obtined. 

The trace obtained when a radiolabelled and digested sample of 

trypsin was mapped using RP-HPLC (figure 4.26.a) shows clearly 

defined peaks of radioactivity. These do not correspond to 

patterns obtained for the viral capsid proteins, indicating that 

viral protein digests were not contaminated by radioactive pep

tides of trypsin. 

A close correlation exists between the traces of radioactivity 
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and eluate absorbance at 220nm for the digest of trypsin (fi g . 

4.26.a and b). Of the 15 peptide peaks obtained after plotting 

radioactivity of the eluate, all but one appear on the trace of 

a bsorbance at 220nm. There are 15 peptides which are present on 

the a bsorbance trace only . This indicates that 47% of the 

tryptic peptides were labelled, i .e. contained amino acids that 

were labelled during the chloramine-T reaction. Differences in 

the height of the peptide peaks were presumably due to differing 

amounts of labelled amino acids within the peptides. 

Approximately 50% of the recovered radioactivity elutes 

immediately after the void volume - the first 12 - 13 fractions (a 

volume of 2.Sml) (fig.4.26.a). This peak probably contains 

hydrophilic amino acids, such as lysine, which readily elute 

from the column 53. The quantity of radioactivity eluted is, 

however, too great for this to be the only explanation. Possibly 

125 r has been cleaved off the peptides, or peptides have not 

adsorbed to the column efficiently. 

The low level of background radioactivity indicates that peptide 

degradation has not occurred 52, implying that the elution 

conditions are not excessively harsh. Cleavage of 125 r from the 

peptides is thus unlikely. The second explanation is more 

likely, for the trace of UV absorbance at 220nm (figure 4.26.b) 

shows that a large amount of material, optically dense at 220nm, 

has eluted immediately after the void volume. 

50S contamination of the tryptic digest due to incomplete 

removal of SDS from proteins after 50S-PAGE probably caused the 
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excessive peptide elution. Because of its properties as an 

anionic detergent, 50S alters the hydrophobicity of those pep

tides to which it remains bound. Resultant "masking" of tryptic 

peptides may have prevented their asdorbtion to the RP-HPLC 

co 1 umn. Evidence for this is provided by figure 4.27. This 

shows the peptide map of trypsin which was not prepared using 

50S-PAGE. A digestion mixture was prepared in the normal manner, 

but no gel slice was included. After incubation, the mixture 

was air dried and the trypsin autodigestion products mapped 

using RP-HPLC. As can be seen, on the plot of absorbance at 

220nm the initial peak is considerably reduced in size. 

In the case of all proteins separated using 50S-PAGE before 

peptide mapping by RP-HPLC, between 50% and 75% of the radio

label elutes immediately after the void volume. As may be seen 

from the two radioactivity traces of BSA peptides (fig.4.25.) 

the effect is not selective, and causes a variable but minor 

reduction in the height of the radioactivity peaks. The overall 

pattern of the tryptic peptide map is not affected. 

4.4. Discussion of Results Obtained After Mapping Tryptic 

Peptides of Poliovirus capsid Proteins 

Various workers 56,89,104 have carried out sequence studies. 

These allow calculation of the theoretical number of radio

labelled peptides generated after tryptic digestion of proteins 

labelled with 125 1 by the chloramine-T method. Figure 4.28. 

shows the amino-acid sequence for the capsid proteins of the 

Sabin virus strains. Sites at which trypsin cleaves, and 
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FIGURE 4.28. Amino acid sequences for capsid proteins of all three Sabin vaccine 
strains of poliovirus. Only amino acids differing from lS.c are shown 
on the sequences for P712 and leon 3. Shared amino acids are Indicated 
by shOrt hor i zonta 1 bars (Toyoda et aJ. 1984). Tyros I ne res I dues (Y) are 
indicated in red. histidine (H). cysteIne (e). tryptophan (W) and 
phenylalanine (F) in blue. Trypsin cleavage sItes are shOwn in black. 
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residues labelled with 125 I after chloramine- T treatment, 

marked . 

are 

Table 4.4 shows theoretical results following 125I-labelling and 

trypsin digestion of capsid proteins from wild-type and Sabin 

vaccine poliovirus strains . Also indicated are the number of 

radiolabelled peptides expected to be resolved after mapping the 

digests using TLC or RP-HPLC. 

In most TLC peptide maps the number of intense spots (i.e. those 

used for comparison) exceeded the theoretical number of tryptic 

peptides. The same applies to the number of peptides generated 

after RP-HPLC . Protein digestion may have been carried out for 

an excessive period of time , allowing peptide degradation. This 

degradation may have been caused by low levels of contaminating 

proteases. Alternatively , hydrolysis of capsid proteins may have 

been incomplete. This is unlikely because of the high concen-

tration of trypsin and the length of digestion time. 

Generally the number of peptides resolved using RP-HPLC exceeded 

the number of dominant spots present on TLC maps. These 

additional peptides probably correlated to spots on the TLC maps 

which were not judged to be intense enough to be used for pep-

tide comparison. Control experiments show that the additional 

peptides were not due to either radiolabelled impurities in the 

gel or to the trypsin becoming labelled and digested. The map 

produced after a gel slice containing no protein was labelled, 

treated with trypsin and mapped shows no labelled peptides after 

TLC (f ig.4.1 1.) or RP-HPLC (fig.4.24.). Tryptic peptide maps 
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Table 4.4. Radiolabell~d peptides expected for each radio-

labelled virus capsid protein after digestion by 

trypsin, determined using sequence data (Toyoda et 

~l, 1984+; La Monica et ~l, 1986*; Racaniello and 

Baltimore, ** 1981++; stanway et aI, 1984 ). 



VIRUS VIRUS CAPSID PEPTIDE TOTAL PEPTIDES WITH: EXPECTED RADIO-
TYPE STRAIN PROTEIN NUMBERo. TYR b H,e,W,F e TYR ACTIVE PEPTIDES 

5061 No sequence data available 

LS-c+ 1 32 16 8 9 17 
2 17 1 1 4 9 1 3 
3 21 8 5 6 11 

~1ahoney++ 1 31 16 8 9 17 
2 18 1 1 4 8 1 2 
3 19 8 4 6 10 

5068 No sequence data available 

2 P712+ 1 32 16 9 9 18 
2 19 11 6 9 15 
3 1 7 9 4 6 10 

Lansing • 1 31 16 8 9 17 
2 20 11 6 9 15 
3 16 9 3 6 9 

3 Leon 3+ 1 31 16 8 9 17 
2 21 14 4 10 14 
3 15 8 4 6 10 

Leon 111*· 1 31 16 8 9 17 
2 21 1 4 4 10 14 
3 15 8 4 6 10 

a _ number of peptides produced by complete trypsin digestion o f 
capsid protein i.e . the number of sites at which arginine or lysine 
appear . 

b _ total number of tyrosine residues occurr i ng in sequence 

c _ number of peptides which 
pre sence of h i stidine (H), 
t ryptophan (\.1). 

are labelled at a low level due to the 
cysteine (el , phenylalanine (F) and 
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produced after labelling and digesting trypsin (fig.4. 13 .a and 

4.26.a) correspond to none of the peptide maps o f virus caps i d 

proteins . 

In the c ase of VP1 fro m po lioviru s t y pe 2 vaccine strain P712 

and wild-type Lansing, TLC peptide maps show fewer than the 

expected number o f radio-labelled peptides. A large spot 

(labelled 13) is present (fig.4.5.b), and may c o nt a in two o r 

more co-migrating peptides. Evidence is provided by the RP-HPLC 

maps of VP1 from Lansing and P712 (fig.4. 18.), where the number 

of tryptic peptides obtained corresponds closely to the e xpected 

number. Additionally, no single peptide on the RP-HPLC ma p 

contains t he very high levels of radioactivity expected if one 

peptide constitutes spot 13. 

Changes on RP-HPLC maps of capsid protein tryptic peptides 

generally correlate well with those on TLC maps. In some cases 

a tentative identification of specific peptides may be made. 

For example, all the RP-HPLC maps of VP1 of the t ype 1 polio

vi ruses contain one very large peptide peak, designated 14 

(fig.4.15.). This peak probably contains the same peptides as 

spo t number 11, the most intense spot on the polio v irus type 1 

TLC maps for VP1 (fig.4.2.b). 

Results obtained by both TLC and RP-HPLC mapping of radio

labelled tryptic peptides of poliovirus capsid proteins are 

simi lar. There are fewer similarities between the t ype 1 Gazan

kulu outbreak strain 5061 and type vaccine strain LS-c than 

between LS-c and wild-type LS-a. In contrast, similarity within 
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TABLE 4.5 . 

VIRUS CAPSID 

Number of peptides found to be shared by capsid proteins 
of poliovirus strains within poliovirus types 1 and 2. 
Results obtained using both TLC and RP-HPLC for peptide 
mapping are given. 

NO. OF PEPTIDES SHARED BE- NO.OF PEPTIDES SHARED 
TYPE PROTEIN TWEEN OUTBREAK STR. AND BY VACCINE STRAIN AND 

WILD-TYPE STRAIN 

VACCINE STR. WILD-TYPE STR. 

12 1 3 14 1 4 14 15 

2 11 10 10 9 16 14 

3 9 9 10 10 10 1 1 

2 10 12 7 10 8 12 

2 19 16 15 1 4 14 1 2 

3 15 16 13 15 14 15 

bold face results obtained using thin-layer chromatography (TLC). 

norma l type - results obtained using reversed-phase high- performance 
liquid chromatography (RP-HPLC). 
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the type 2 poliovirus strains studied appears to be greatest 

be tween Gazankulu o utbreak strain 5068 and vaccine stra i n P712. 

Ta ble 4.5. shows a comparison of tryptic peptides shared between 

the Gazankulu outbreak and vaccine strain of poliovirus and 

between these two strains and the wild-type strains of polio

vir u s. These results indicate that while it is unlikely that 

t y pe 1 Gazankulu outbreak strain 5061 is related to vacci n e 

strain LS-c, type 2 outbreak strain 5068 is probably related 

to vaccine strain P712. 

Co mparison of the tryptic peptide maps shows that the general 

pattern of peptides for a particular capsid protein is 

apparently type specific. Consequently, each peptide map 

provides identification of the poliovirus type to which the 

strain u nder study belongs. Comparison of all of the tryptic 

peptide maps indicates that outbreak strains 5061 and 5068 have 

been correctly identified as being type 1 and type 2 polio

viruses, respectively. 

Wild-type strains are included in the comparison of poliovirus 

strains primarily to show whether the Gazankulu outbreak and 

wild-type strains are related. Additionally, comparison of 

wild-type and vaccine strains gives an idea of the relative 

'~istance" between a vaccine strain and the neurovirulent wild-

type strain. This acts as a reference when determining the 

importance of differences between Gazankulu outbreak and vaccine 

strains. 

The need for such a reference becomes clear when comparing the 

136 



type 2 poliovirus strains. Several differences exist between 

the capsid proteins of outbreak strain 5068 and vaccine strain 

P712. These differences could lead to the belief that there is 

only limited relatedness between the Gazankulu isolate and 

vaccine strain. Comparison of the Gazankulu and vaccine strains 

with wild - type 2 strain Lansing shows that the differences 

between 5068 and P712 are less than those between either strain 

and Lansing. This indicates that Gazankulu strain 5068 is 

related to vaccine strain P712. 
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CHAPTER FIVE 

COMPARISON OF POLIOVIRUS RNA BY RNase Tl OLIGONUCLEOTIDE 

MAPPING 

5.1. Introduction 

Mapping capsid proteins by TLC and RP-HPLC of 12 5I-labelled 

pept ides was a sensitive means of comparing poliovirus strains. 

The technique was limited in that only capsid proteins could be 

compared, and during attenuation numerous changes occur in 

regions of the RNA not coding for capsid proteins 56 ,89,100,104. 

It is probable that biochemica l determinants of attenuation are 

not restricted to the coat protein 8, which only represents 

approximately 40% of the genome 94. In the case of poliovirus 

type 3 vaccine strain Leon 3, for example, pathogenic reversion 

results from a single change, from uridine to cytosine, at 

position 472 in the non-coding region 26 

In order to detect changes in both the non-coding and coding 

regions of the viral RNA, comparison of viral strains at a 

genetic level was carried out. This entailed two-dimensional 

mapping ("fingerprinting") of oligonucleotides generated by 

Ribonuclease T, (RNase T,). 

Because highly characteristic RNase T, oligonucleotide maps may 

be prepared, fingerprinting has been used in several lines of 

virus research. Examples include characterization of defective 

interfering viral genomes 7 comparison of intertypic 

recombinant viruses '03 and estimation of the degree of sequence 
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divergence between closely related viral strains 3 The compa

ri s on of RNAs from closely related vi ral strains 22,31,45,71,92 

has been one of the most important used of oligonucleotide 

fingerprinting. 

To produce o ligonuc leotides for fingerprinting studies RNA 

molecules we r e digested enzymatically u sing ribonuclease T1 

(RNase T1 ). This enzyme, d~rived from the fungus Aspergillus 

oryzae , specifical ly cleaves phosphodiester bonds adjacent to 

guanosine (G) residues. Guanosine 3'-phosphate (Gp) and a set of 

oligonucleot ide s a ll terminating in Gp are produced 51 The 

other known single base-specific RNases also .cleave at G 102 

t hus confer no advantage over RNase T1• 

Prior to electrophoresis oligonucleotides were radiolabelled to 

enable their detection by autoradiography. Although stains s uch 

as methylene blue may be used to detect electrophoresed oligo

nucleotides 20 their sensitivity is low and they are rarely 

u sed. Radiolabelling may be carried out either in v ivo or in 

vitro. 

In vivo labelling of foot-and-mouth-disease virus (FMDV) 11,92 

and coxsackie B3 virus 31 with 32p has been successful, but not 

all RNA species incorporate ortho-(32p)-phosphate at a high 

enough level for fingerprint studies. Because most mRNAs and 

some major groups of RNA v iruses fall within this category 30 

this study incorporated in vitro radiolabelling of oligonucleo

tides. In vitro labelling can be performed rapidly and require s 

substantially lower inputs of radioisotope than in vivo 
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labelling. Only small quantities (1ug or less) of chemically 

pu re v iral RNA are required 51, although fingerprint quality is 

lower. 

l.!! .'!:itro labelling was carried out accordi n g to the procedure 

developed by Frisby (1 977 ). T4 polynucleotide kinase (PNK) was 

used to transfer radi opho sphate from ( (5'_32 p )-A TP (fig. 5 .1.) 

to the free 5 '- hyd rox y l groups of RNase T1-generated o ligo -

nucleotides. All 3'-terminal phosphates were removed from the 

ol i gonucleotides by the action of bovine alkaline phosphatase 

(BAP). The combined effects of BAP and PNK catalysed the net 

transfer of phosphate from the 3'- to the 5'-ends of the oligo

nuc leotides , resulting in the incorporation of 32p 30,51 

Once radiolabelling was complete, oligonucleotides were 

separated by electrophoresis in two dimensions. Such separation 

wa s first proposed in 1962 by Raymond and Aurell and has s ince 

been widely used for the fractionation of complex RNA mixtures. 

It is used more frequently than mapping in one dimension 18,105 

which is generally not capable of effectively resolving the 

large number of "diagnostic" oligonucleotides (those longer than 

about 13 residues) present after digestion. 

Oligonucleotide mapping was carried out using the two-

dimensional technique developed by De Wachter and Fiers (1972). 

Electrophoresis was first carried out at a pH of 3.5, where the 

differences in charge of the different bases was greatest 19 

Electrophoretic mobilities of nucleoside monophosphates are 

related to net negative charge and increase in the order 
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Cp<Ap<Gp<Up . Use of a large pore gel maximized the effect of 

charge on mobility 51 

Second -dimension electrophoresis was carried out at pH8, with 

migration through the gel due to the size and shape of the 

oligonucleotide molecule 20. Figure 5.2. shows the theoretical 

pattern of oligonucleotide distribution after two dimensiona l 

e l ectrophoresis. Ol i gonucleotide s are in a graticulated pattern 

formed by a series of bands curving from the o r igin of first 

d i mension e l ectrophoresis. Bands form according to their uracil 

content with those nearest the origin containing no uracil 20 

RNA oligonucleotide mapping has been used for examining isolates 

of FNDV 3,92 and the vesicular stomatitis virus (VSV) subgroup': 

It has been used to study the evolution of multiple genome 

mutations during persistant infections of VSV 4S, and has been 

widely used for studying molecular variation in vaccine strains 

of poliovirus 7,22,71,80. I n several cases, oligonucleotide 

mapping ha s shown isolates of viru s from cases of paralytic 

po liomyeliti s to be closely related to the poliovirus vaccine 

strains 13,67,69,114. Cc. .1 sequently, it was hoped that oligo

nucleotide mapping would be a highly sensitive technique for 

compar ing vaccine and Gazankulu outbreak strains of poliovirus. 

5.2. Resu 1 ts 

Photographs of the oligonucleotide maps produced after two

dimensional electrophoresis of RNA digests from the poliovirus 

strains studied are shown in figures S.3.a, S.4.a and 5.S.a. 

Diagrammatic representations of the photographs are presented in 
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1 

chain 
length 

3 

FiGURE 5.2. Th eoretical pattern of oligonucleotide distr ibution after two
dimensi onal electrophoresis . Oligonucl eotide position as a function of 
base composit ion and chain length. The curves mar ked 0, 0.5 , I, 2, 3, 
connect all the positions corresponding to these C.A/U.G ratios. Th e 
curves marked 2 - 10 connect the positions corresponding to these chain 
lengths (de Wachter and Fiers, 1982 ). 
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figures s.3.b, s.4.b and s.s.b. 

Only the oligonuceotide spots in the lower 1/3 to 1/2 of the 

maps were used for RNA comparison. These were the diagnostic 

spots used for identification purposes . The presence of 

"constellations" of spots on the oligonucleotide maps allowed 

comparison of the maps, and individual spots were identified by 

comparing corresponding constellations. 

Comparison of the different poliovirus strain RNAs was carried 

out using the c l earest and/or most highly reproducible oligo

nucleotides present on the maps. When photographs were not 

clear, the original autoradiographs were referred back to. 

Faint spots, with a poor reproducibility, were speculated to be 

artefactual. Such spots may have resulted from oligonucleotide 

degradation by contaminating RNases present at low l evels during 

sample preparation. 

5.2.1. Comparison of RNA oligonucleotide maps of type 1 polio

v irus strains 

Figure 5.3.a shows photographs of the oligonucleotide maps 

obtained for type 1 poliovirus strains 5061, LS-c and LS-a. The 

photograph is represented diagrammatically in figure 5.3.b. 

The oligonucleot ide map obtained from type 1 Gazankulu outbreak 

strain 5061 differs considerably from that of vaccine strain 

LS-c. Of the diagnostic spots, LS-c lacks 10, while 19 new 

oligonucleotide spots are present. Alteration in mobility 7,22 

has occurred in three oligonucletides - vertical shift indicates 

alteration in guanine residues, lateral shift alterations in 
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FIGURE 5.3, a, Oligonucleotide maps of RNA fr om poliovirus type 1 str.l. i ns . A -
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51 
cytosine, adenine or uracil residues 

Comparison of the maps obtained for Gazankulu outbreak strain 

50 6 1 and wild-type reference strain LS-a shows that these two 

strains also differ considerably. Of the diagnostic oligo

nucleotides, 13 are absent from the LS-a map, while 14 new ones 

have appeared. In contrast, a great deal of similarity exists 

between oligonucleotide maps of vaccine strain LS-c and wi Id

t ype strain LS-a. 

Of the oligonucleotides missing from the map of vaccine strain 

LS-c upon comparison with that of Gazankulu outbreak strain 

5061, 17 are also absent from the map of reference strain LS-a. 

Eleven oligonucleotide spots (indicated by Roman numerals) are 

shared by the vaccine and wild-type strains of poliovirus alone. 

In comparison, only five oligonucleotides are exclusive to the 

maps of type 1 Gazankulu outbreak strain 5061 and vaccine strain 

LS-c. Thi.s indicates that 5061 is not likely to be vaccine 

related. 

5.2.2. Comparison of RNA oligonucleotide maps of type 2 polio-

v irus strains 

Figure 5.4.a shows photographs of the oligonucleotide maps 

obtained for the type 2 poliovirus strains. Diagrammatic 

representations of the maps are given in figure 5.4.b. 

The pattern of oligonucleotide spots on the map for type 2 

Gazankulu outbreak strain 5068 is very similar to that of 

vaccine strain P712. Comparison of the two maps shows that 7 

oligonucleotides are missing from the map of P712. Ten 
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additional oligonucleotides are present, while oligonucleotide 

51 has shifted horizontally. 

Comparison of the oligonucletide map of Gazankulu outbreak 

st ~~ in 5068 with that of wild-type reference strain Lansing 

shows that 20 oligonucleotide spots are missing from the map of 

Lansing. Three oligonucletides display an altered electro

phoretic mobility and there are 25 new spots. Of these new 

oligonucleotides, only four are shared with the attenuated Sabin 

vaccine strain, P712. In contrast,a total of 16 oligonucleo

tides are exclusive to Gazankulu outbreak strain 5068 and 

vaccine strain P712. 

From these results it is clear that similarity exists between 

the RNA of type 2 Gazankulu outbreak strain 5068 and vacine 

strain P712. This similarity is considerably greater than any 

between Lansing, the wild-type reference strain, and either 5068 

or P712. Consequently, it appears that relationship exists 

between the type 2 Gazankulu outbreak strain, 5068, and the 

Sabin vaccine strain, P712. 

5.2.3. Comparison of RNA oligonucleotide maps of type 3 polio

virus strains 

Oligonucleotide fingerprints of the two type 3 polioviruses 

studied are very similar. Photographs of the maps obtained are 

shown in figure 5.5.a, while figure 5.5.b shows diagrammatic 

representations of the maps. 

Six of the diagnostic spots on the map of Sabin vaccine strain 

150 



A 

~ 

en 
~ 

c 
0 ." • c • • " 0 

" C 
N 

• 

• 

• • 
• 

1st Dimension 

FIGURE 5.5.a. 

8 

• 

Oligonucleotide maps of RNA from poliovirus type 3 stra i ns. A - Snblll 
vaccine strain Leon 3; B - wild- type strain Leon Ill . 



~ 

'-" 
N 

.A. u~ \J v 0 '-J '-./ 

o 0 D hS o () 
____ " (J () (\ \j (\\)o C) 0 0 

rtlJ" ,,~ 0 \j (j °0 () 

G 

~ t),;--, 0 <:::J 0 0 
",<, <tJ! W'- 0 0 

tJ.. "" ?2l itrn- a 0 0 @.7 eJu f fPq ... ;;.,~ .. 0 0., IJj '<Pn "'-_ 
OH ., ([J]JH ----

IDlJ fZ) CZ) 41 dn:0 """'..... ------
~ ~ ~'(fLilJ ~I' 

vp" ~o .~:1 ~ Q (/}u 
J "" @lJ 1£iY,~ Jf e 1 ' G;U" ~h 0 'J 

0"", 0" 
~tr ctlZ>1.O 

00-

th([) 'iii 0 " 

",' 17)" 

0, Cf 
0 ,. 

0 ·, 

o ' 
7 o,or .,. ~, , 

1/lJJ1 
dJ, 

B " CJ \j (J V \J '---'0 0 ~ 
_ • __ __ __ ,~ Q ~<0 ~\::) a\:) c> \J 

",- "I:) _ ~ ' " r----- 0 0° c> 0 0 
% 0 '~OO D 

CD ~ (} 0 .... ~~o <:) 
(jil 0 0 ® 0 " 

e· 
'" '" dJ([) .,@e;, Wl", • 

ft/J".lt'O 0 cO~0. 
'" d! (/) 'IL!J1 (f) 

"'" 0 ... ><11 )(J2 
• . ' f'l!) 

<Z> 

x, ([) .~0 f{J (JJ) • 

C!l X5 

o® 

@ 

(b 

« 

tJ) 

(J 

- ---

(l) .>0: " 

FI GlJRE 5. 5 . b, Diagrammatic representation of oligonucleotide maps of RNA fr om 
poliovirus type 3 strains. A - Leon 3 ; B - Leon III. Numbering o t 
spots on the map of Leon 3 is arbitrary. On map of Leon I II onl y 
missing spots (x) are numbered . Novel spots are i ndi c a ted by 
(.). Faint spots are indicated by a dotted o utline . Spots ClllIUIIUIl t o 
both stLains aLe indicated by (@). The pLesence of poly- A is indicated 
by a streak at the lower edge of the diagram. On l y oligonucleotide 
spots belo~/ the dotted line are d i agnost ic and used for cumparison o( 
oligonucleotide maps. Sample origin is below the left -Iland corlle r of 
the maps, 



Leon 3 have disappeared from the map of neurovirulent wild-type 

3 strain Leon III. Seven novel spots are apparent on the oligo

nucleotide map of the neurovi r ulent wild-type reference strain. 

None of the oligonucleotides on the Leon III map display 

mobility differing from that on the map of Leon 3. 

5.3 . Discussion 

Results obtained by two dimension mapping of RNase T1 ge ne rated 

oligonuc leo tides of poliovirus strains are similar to those 

obtained u sing SDS-PAGE and tryptic peptide ma pping. Little 

similarity exists between the type 1 Gazankulu outbreak po lio

viru s isolate, st rain 5061, and type 1 vaccine strain LS-c. 

Similarity between oligonucleotide maps of 5061 and wild-type 

stra in LS-a is also low. Considerable similarity exists between 

vaccine strain LS-c and wild-type strain LS-a, as expected from 

nucleotide sequences 89. These results indicate that, while 

5061 is probably not vaccine related, it does not appear to be 

closely related to wild-type reference strain LS-a either. 

Comparison of the oligonucleotide map from the type 1 Gazankulu 

outbreak strain with tho se of the type 2 and 3 polioviruses 

shows a complete lack of similarity between them. No relation

ship exists between 5061 and the type 2 and 3 poliovirus 

strains, proving that outbreak strain 5061 has not been 

incorrectly serotyped. 

In contrast, the oligonucleotide map of the type 2 Gazankulu 

outbreak isolate, strain 5068, is similar to that o f type 2 

vaccine strain P712. Considerably less similarity exists between 
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5068 and wild-type Lansing. A similar degree of difference 

exists between the RNA of P712 and Lansing. This is not 

surprising in view of the large number of differences in nucleo

tide sequence between the two 56,104. The fact that the greatest 

similarity between the type 2 polioviruses studied exists 

between the outbreak and vaccine strains strongly indicates a 

relationship between 5068 and P712. The similarity is shown 

clearly in table 5.1. 

Several differences exist between the oligonucleotide maps of 

type 3 attenuated Sabin vaccine strain Leon 3 and its neuro-

virulent parent, wild-type 3 poliovirus strain Leon III. 

Assuming that each nucleotide change results in alteration of 

one oligonucleotide, at least seven changes must have occurred 

in diagnostic oligonucleotides during attenuation. These oligo

nucleotides represent only 5% to 10% of the RNA sequence 69. 

Consequently, a total of between 70 and 140 nucleotide changes 

appear to have taken place during attenuation of wild - type 3 

strain Leon III. 

Comparison of the nucleotide sequences of the two poliovirus 

type 3 strains 103,104 shows that 10 differences exist between 

attenuated vaccine strain Leon 3 and its neurovirulent parent. 

Only two occur in diagnostic oligo-nucleotides. The level of 

genome conservation between the two virus strains is thus much 

greater than that indicated by the experimental results. 

Comparison of the ol i gonucleotide maps with those obtained by 

other wor kers 50,51,69,71 indicated that differences existed 

primarily in the map for the vaccine strain, Leon 3. 
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Table 5.1. Number of oligonucleotides found to be shared be tween RNA 
of poliovirus strains within poliovirus types 1 and 2 . 

VIRUS 
TYPE 

1 

2 

NO. OF OLIGONUCLEOTIDES SHARED 
BETWEEN OUTBREAK STRAIN AND: 

VACCINE STR. WILD-TYPE STR. 

35 33 

46 35 
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NO.OF OLIGONUCLEOTIDES 
SHARED BETWEEN VACCINE 
STRAIN AND WILD-TYPE 
STRAIN. 

4 1 

34 



The additional spots on the vaccine strain Leon 3 map are 

possibly due to nuclease contamination of the polynucleotide 

kinase 30. However, a similar level of artefactual secondary 

spots is not apparent on any of the other oligonucleotide maps. 

This indicates that the PNK was not contaminated. 

The type 3 poliovirus vaccine strain is known to be highly 

unstable in vivo 71. Possibly mutation ocurred during in vitro 

passage of the virus, resulting in contamination of the vaccine 

stock by a novel virus sub-population. This would result in an 

increase over the expected number of oligonucleotide differences 

appearing between the vaccine and wild-type maps. 

Although RNA viruses show a high frequency of mutation 22 

poliovirus is considered to be fairly stable because of its low 

mutation rate in cell culture 22,79. During 20 years of in ~itro 

passage of three poliovirus type 1 Mahoney strains, only one 

oligonucleotide alteration occurred 22 It seems reasonable to 

expect that a much higher rate of mutation of the type 3 vaccine 

stock in ~itro is unlikely. The fact that virus used in this 

study was never more than six passages away from the original 

stock further decreases the likelihood of in ~itro mutation. 

Alternatively, the Sabin type 3 virus stock could have been 

contaminated with a sub-population of type 3 virus responsible 

for the anomalous oligonucleotide map 69 
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CHAPTER SIX 

COMMENTS ON TECHNIQUES USED IN THIS STUDY 

One aim of this study was to find a suitable technique for 

comparative identification of poliovirus strains. It was hoped 

that this technique would be rapid, inexpensive and relatively 

easy to perform. Of the four techniques studied, none fulfilled 

all of these criteria, and each had advantages and 

disadvantages. 

The simplest and most rapid technique was discontinuous SDS

PAGE, which was used both preparatively and analytically. In a 

preparative context SDS-PAGE was effective in resolving the 

individual coat proteins of poliovirus. The capsid proteins 

were then used for tryptic peptide mapping. As an analytical 

technique SDS-PAGE was useful for rapid comparison of the coat 

proteins of different strains of poliovirus. 

Comparison of poliovirus capsid proteins was fairly crude, and 

only indicated differences in electrophoretic mobility of the 

proteins. Electrophoretic mobility is controlled by several 

variables, such as amino acid composition and polypeptide size. 

Amino acid substitutions within a protein may alter its 

composition without affecting its electrophoretic mobility. 

Alternatively, relatively minor changes in amino acid 

composition may have a significant effect on the electrophoretic 

mobility 52 

These factors were probably responsible for the difference 
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between the results obtained experimentally and those predicted 

from sequence data. SOS-PAGE indicated that between vaccine and 

wild-type poliovirus strains, the greatest variability in amino 

acid sequence occurs in VP2. Sequence data 56,89,104, however, 

show that VP2 is highly conserved between poliovirus strains. 

Because alterations in amino acid composition have a variable 

effect on electrophoretic mobility of polypeptides, a conclusive 

assessment of relatedness between vaccine and outbreak strains 

of poliovirus was not possible. 

Oespite its drawbacks, SOS-PAGE was a useful analytical tool for 

comparing viral proteins 52,68. A problem with analysis of the 

capsid proteins was that results only indicated changes 

occurring in the portion of the genome coding for these 

proteins. Sensitivity of SOS-PAGE may be improved by comparing 

intracellu lar proteins produced by cells infected with pol io-

virus 50,69. This produces more detailed results than those 

obtained by comparison of capsid proteins. 

Of the techniques studied, SOS-PAGE of viral polypeptides was 

the fastest and simplest comparative technique. It was 

relatively inexpensive and time-effective, and results were 

highly reproducible. For accurate determination of viral 

relatedness, however, it must be used in conjunction with other 

more sensitive techniques. 

Mapping of trypsin generated peptides of viral coat proteins 

using TLC and RP-HPLC gave more detailed results than SOS-PAGE. 

Both techniques were relatively rapid, and did not require a 
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great deal of technical skill. 

Tryptic peptide mapping using thin layer chromatography (TLC) 

was a useful technique for protein comparison. Results were more 

detai led than those obtained using SDS-PAGE, and the technique 

was not too difficult or time consuming. Problems with TLC 

mapping of peptides included difficulty of data interpretation 

and determina t ion of s igni f icant pept ide spots. The maps 

obtained were, however, highly reproducible, increasing the ease 

of comparison. 

Reversed-phase high-performance liquid-chromatography (RP-HPLC) 

was also used for mapping tryptic peptides of poliovirus capsid 

proteins. In virus research RP-HPLC has been primarily involved 

with the characterization of complete proteins 43,86,107. A 

certain amount of work has been carried out in the analysis of 

peptides, both viral 53 and non-viral 1,5 

Although potentially the RP-HPLC detection limit for peptides is 

in the picomole range 41, in this study study sensitivity was 

considerably lower. Two factors contributed to this decrease in 

sensitivity - the high trypsin concentration and the gradient 

elution technique. 

A high trypsin concentration was necessary for efficient 

digestion of proteins in gel slices 24, and during digestion, 

generation of peptides of trypsin occurred. Because of the high 

concentration of trypsin peptides, their absorbance trace 

completely masked that of the capsid protein peptides. Such 

masking could have been prevented by carrying out digestion at a 
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high protein to trypsin ratio. 

Without SDS-masking, sensitivity would still have been limited 

due to the fact that gradient elution of peptides was carried 

out. At 220nm, 40% acetonitrile has a higher absorbance than 5% 

acetonitrile, resulting in baseline shift during a chromato

graphic run. At sensitivities of 0.02 AUFS (absorbance units 

full scale) or less, the baseline shift during a chromatographic 

run crossed the full absorbance scale. 

Because of these factors, radiolabelling of viral proteins was 

necessary to detect peptides after RP-HPLC. 125 1 was chosen as 

the labelling isotope for both TLC and RP-HPLC, despite the fact 

that up to 50% of the peptides generated could not be detected 

(see table 4.4.). 

In order for an accurate trace of radioactivity to be plotted 

after RP - HPLC, a large number of samples had to be collected. 

Sample collection and subsequent calculation of radioactivity 

were time consuming. One of the major advantages of RP-HPLC, 

which is speed, was thus lost. In addition, detection of radio

labelled peptides was not as sensitive as peptide detection 

using absorbance at 220nm. 

A problem with RP-HPLC was the length of time that it took to 

develop an operational chromatography system. Additionally, 

equipment and chemicals were expensive. A great deal of 

technical expertise on the part of an operator was not, however, 

necessary. Overall, RP-HPLC appeared to be an accurate and 

fairly rapid technique for the comparison of viral capsid 
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proteins. 

Although RP-HPLC was more costly than TLC, it has great 

potential sensitivity. In addition, the potential for 

production of maps of unlabelled peptides exists. This would 

allow comparison of the entire peptide complement of capsid 

proteins. Alternatively, methods other than 125 1 labelling 

using chloramine-T could be employed. 

An advantage that tryptic peptide mapping of capsid proteins had 

over oligonucleotide mapping o f RNA was that individual capsid 

proteins could be studied. Comparison of capsid proteins from 

different polio vi rus strains may allow determination of which 

capsid proteins undergo the greatest variation during 

attenuation and reversion. 

Oligonucleotid e mapping was a highly sensitive technique, 

allowing comparison of vi ral strains at a genetic level. Single 

nucleotide changes may result in clearly visible differences 

between maps of different viral strains 71. Unfortunately the 

characteristic oligonucleotides used for comparing RNAs only 

comprise 5% - 10% of the genome 69 Accurate comparison of 

different poliovirus strains was possible because they are 

spread through the entire genome, and are representative of the 

complete RNA. 

Comparison of experimental and theoretical maps was carried out 

to determine the accuracy of oligonucleotide mapping. Charges 

have been assigned to each nucleotide by Minor et ~l (1986). 

Using nucleotide sequence data 56,61,89,104, maps could be 
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produced by plotting oligonucleotide mass against charge/mass. 

Theoretical oligonucleotide maps were plotted for the wild-type 

and vaccine strains of poliovirus used in this study. The 

nucleotide sequence data for the Mahoney strain of poliovirus 

type 1 was used in place of that of LS-a, for which sequence 

data was not obtained. 

An example of a theoretical map may be seen in figure 6.1.a. 

Close correlation exists between the theoretical map and the map 

obtained under experimental conditions (fig.6.1 .b.and c.). Such 

correlation indicates the accuracy of oligonucleotide mapping. 

Good correlation also exists between the expeiimental results 

and those published by other workers 50,51,69,71,79,105 

With the exception of genome sequencing, oligonucleotide finger

print mapping is the most sensitive technique for detecting 

genetic differences between viral strains. Other approaches, 

both molecular and serological, are less sensitive but can 

detect more distant relationships 51. Despite this, oligo

nucleotide mapping had several disadvantages. RNA had to be 

handled very carefully in order to prevent RNase contamination. 

The radioisotope used for labelling the oligonucleotides, 32 p , 

had a half-life of only 14 days. Finally, the (~32p)_ATP 

required for in vitro labelling and the chemicals required for 

oligonucleotide mapping were expensive. 

Two other techniques show promise in determining the relatedness 

of poliovirus strains. These are direct comparison of RNA 

sequences for determining homology of viral RNAs, and the use of 
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monoclonal antibodies. 

Comparison of RNA sequ ence s has been carried out using 

complementary DNA (cDNA) probe s or by hybri d iz at ion of RNAs. 

Competition RNA hybridization can detect homologies be tween 

virus st rai ns sha r ing only 25% of their ov erall sequence 73. 

Comparison of typ e 1 ,2 and 3 wild-type s trains of poliovirus 

shows hom ol ogies of approximately 36% to 52% 115,116 

Calculation of homo logy be tween poliovi r us RNAs is based on the 

resistance o f double stranded RNA to RNase. Radioactive double 

stranded RNA is "me 1 ted" with DMSO (dimethy 1 su 1 phoxide) , then 

mixed with an excess of non-radioactive positive poliovirus RNA. 

This results in re-annealing of positive and negative stranded 

RNA s. Subsequent treatment with RNase cleaves the annealed RNAs 

at any single stranded (i.e. non-homologous) regions 116 

Com parison of the entire nucleotide sequence is the mos t 

accu rate means of determining the relatedness of poliovirus 

strains. cDNA:RNA hybrids from the virus under study are cloned, 

and a plasmid containing a complete copy of the genome produced. 

This is then digested and poliovirus specific fragments 

isolated. The largest of these are sequenced and the nucleot i de 

sequences compared 89,100. Determination of the nucleotide 

sequences allows accurate comparison of viral RNAs, and the 

positions on the genome at whi c h differences occur may be 

determined. 

Although nucleotide sequence comparison is the most accurate 

means of determining viral relatedness, the methods are 
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complicated, requiring technical expertise. Consequently, 

nucleotide sequence determination is limited to specialized 

laboratories 82. Because preparation of the DNA strands for 

sequencing is time consuming, rapid comparison of poliovirus 

strains is not possible. Additionally, the complexity of 

results necessitiates computer analysis 100 

Monoclonal antibodies (MoADS) have been widely used in the s tudy 

of poliovirus strains 25,29,46,63,82. Mice or rats are 

inoculated with highly purified poliovirus and their spleens 

removed once sufficient antibody levels are reached. Spleen 

cells are fused with myeloma cells, and the resulting hybridomas 

produce antibodies. Cultures producing antibodies to the virus 

are cloned and tested for poliovirus neutralizing activity 46. 

The antibodies produced by these murine lymphocyte hybridomas 

are monospecific, recognizing single epitopes on the polio 

virion 25 

To determine poliovirus strain relatedness, samples are reacted 

with a panel of monoclonal antibodies produced against a 

reference wild-type virus strain 46. Relatedness of the viral 

strains may then be calculated according to the number of MoAbs 

they react with 82 

Disadvantages of MoAbs include the technical expertise required 

for their production, and the time required for hybridoma 

production. However, once hybridomas have been produced they 

can be maintained, and a large panel of MoAbs obtained 82. 

Computerised comparison of results gives accurate and sensitive 
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comparisons of virus strains. As a result, MoAbs may be of use 

as diagnostic reagents for identification of vaccine-derived 

strains of poliovirus 29 

A combination of techniques would be best for determining the 

origin and relatedness of outbreak strains of poliovirus. For 

example, initial comparison could be carried out using SDS - PAGE . 

This would give a genera l idea of the relatedness of viral 

strains. Strains which appeared to be similar could then be 

compared by oligonucl eotide mapping of their RNAs in order to 

determine the degree of relatedness at a genetic level. 

Although only differences in the region of the RNA coding for 

capsid proteins can be detected using peptide mapping, Toyoda et 

~ (1984) found that the greatest variation between poliovirus 

strains ocu rs in the regions of the RNA coding for the capsid 

proteins. In this study patterns of relatedness between polio-

virus strains were found to be the same using peptide mapping 

and oligonucleotide mapping. This indicates that tryptic 

peptide mapping could be used as a less costly alternative to 

oligonucleotide mapping for virus comparison. 
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CHAPTER SEVEN 

GENERAL DISCUSSION 

Results obtained after comparing capsid proteins of poliovirus 

strains using four biochemical techniques were similar. SDS-PAGE 

indicated that poliovirus type 1 Gazankulu outbreak strain 5061 

and vaccine strain LS - c were not related. A possible relation

ship existed between 506 1 and wild-type reference strain LS-a. 

Electrophoretic mobilities of capsid proteins from poliov irus 

type 2 Gazankulu outbreak 5068 and vaccine strain P712 were 

identical, indicating a close relationship. Between 5068 and 

type 2 wild-type strain Lansing the relationship appeared to be 

minimal. Be cause SDS-PAGE is no t highly sensitive these results 

were not considered to be conclusive and tryptic peptide mapping 

was carried out using TLC and RP-HPLC. 

Tryptic pe ptide mapping of poliovirus capsid proteins indicated 

that little similarity existed between type 1 Gazankulu outbreak 

strain 5061 and vaccine strain LS-c. Consequently, it was 

probable that the outbreak strain was not vaccine related. 

Considerable similarity existed beween type 2 Gazankulu strain 

5068 and vaccine st rain P712, indicating a close relationship. 

Oligonucleotide mapping of the RNA was the only technique which 

allowed comparison of poliovirus strains at a genetic level. 

Results supported those obtained by peptide mapping and SDS

PAGE, which only allowed comparison of the capsid proteins. 

The oligonucletide map of RNA from type 1 Gazankulu outbreak 
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strain 5061 differed considerably from that of attenuated 

vaccine strain LS-c. Oligonucleotide maps of the type 1 

vaccine and wild - type strains were clearly similar. This 

confirmed the conclusion drawn from the techniques comparing 

viral capsid proteins that 5061 was not vaccine related. 

Similarity at a genetic level existed between type 2 polioivirus 

vaccine strain P712 and Gazankulu strain 5068. In contrast, 

there was a large difference between oligonucleotide maps of 

wild-type strain Lansing and attenuated vaccine strain P712. 

RNase T1 oligonucleotide mapping of the poliovirus strains thus 

provided confirmation of the relatedness between virus strains. 

Results indicated that type 1 Gazankulu outbreak strain 5061 

differed from both type 1 vaccine strain LS-c and wild-type 1 

strain LS-a. This implies that 5061 was a novel wild-type 

poliovirus strain, unrelated to LS-a. This is possible, for a 

large number of distinct poliovirus type strains exist 

worldwide 80. Outbreaks of paralytic poliomyelitis caused by 

biochemically and antigenically novel poliovirus variants which 

suddenly appear in a population 63 are, however, rare. Polio -

virus strains have considerable intrinsic variability, and new 

strains may readily arise in a single vaccinated individual 71 

This variability is generally responsible for the evolution of 

apparently novel poliovirus strains within a population. Gazan

kulu outbreak strain 5061 probably resulted from alterations in 

a poliovirus strain already present within the population. 

Although pol i ov i rus strains, particularly those of type 1 22 and 
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type 2 113 poliovirus, display a low level of in yitro muta

bility 22,79, their in ylYQ mutability is high 33,50,52,80. 

This is particularly true of strains of type 3 poliovirus 13 

Minor et ~ (1986) have highlighted poliovirus variability by 

studying the evolution of virus strains after primary 

vaccination of an infant using the Sabin type 3 vaccine strain. 

Poliovirus isolates were taken at various time intervals after 

vaccination, and RNase T1 oligonucleotide maps produced. 

Evolution of new strains of type 3 poliovirus occurred extreme ly 

rapidly. Within 8 hours of vaccination, maps of the virus being 

e xcret ed displayed significant alterations when compared with 

the map of the original type 3 vaccine strain 71 

While type 3 poliovirus strains are the most varable, multiple 

genetic changes can take place in all oral poliovaccine strains 

upon replication 50. This gives rise to the possibility of 

vaccine-related cases of paralytic poliomyelitis. The vast 

majority of such cases are caused by poliovirus type 3 

revertants 13, although pathogenic reversion of the type 2 Sabin 

vaccine, while rare, has been recorded 1 14. Type 1 poliovirus is 

least variab le 22, and vaccine reversion appears not to occur, 

though in vivo capsid protein changes have been detected 52 

Cases have occurred in which all 3 poliovirus types have been 

isolated from a primary vaccinee suffering from paralytic polio

myelitis 67 These are probably due to pathogenic reversion in 

a single vaccine strain, generally that of type 3 poliovirus. 

Unfortunately no Gazankulu outbreak strain of poliovirus type 3 
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was available for study. Biochemical techniques have shown a 

close relationship between certain type 3 poliovirus isolates 

and the Sabin vaccine strain 12,26,69,71, and many cases of type 

3 vaccine-derived poliovirus have been reported 13,29,30,67, 

Indeed, Evans et ~l (1985) showed that a single change, from 

uridine to cytosine at position 472 in the RNA, is sufficient to 

restore neurovirulence in the Sabin type 3 poliovaccine strain. 

These facts, coupled with the temporal association between type 

3 poliovirus isolation and extensive vaccine administration in 

Gazankulu, indicate vaccine reversion to neurovirulence. 

Despite the great intrinsic variability within poliovirus 

strains, reversion of Sabin vaccine strains to neurovirulence is 

rare. Paralysis due to pathogenic back-mutation only occurs in 

about 1 per 11.5 million vaccinees 66 This indicates that the 

great majority of mutations occuring in the RNA of vaccine 

strains during passage through a vaccinee do not result in 

pathogenic reversion. 

Reversion of poliovirus vaccine strains to neurovirulence in 

vivo occurs by mutation, in much the same way as attenuation 52. 

The poliovirus genome mutation that occurs in vitro is probably 

due to genetic drift. This indicates that the genome has the 

potential for ada ptation 22. Recombination between poliovirus 

strains, resulting in alteration of the RNA, is also possible. 

Within the RNA viruses recombination appears to be restricted to 

103 picornaviruses 

been detected 71 

and in vivo poliovirus recombination has 

Such recombination could result in excretion 

171 



of novel neurovirulent poliovirus strains by a vaccinee. 

Recombination of poliovirus strains 2,103 has been used for 

mapping the major determinants of neurovirulence 2 and may have 

potential in the production of safer poliovirus vaccines 101,10~ 

Ultrasensitive techniques, such as RNase T1 oligonucleotide 

mapping and mapping of tryptic peptides using RP-HPLC, show very 

clearly how great poliovirus variability is. Both have a great 

deal of potential in the study of poliovirus variation and 

recombination, but also have various drawbacks. 

Of the two techniques, oligonucleotide mapping is probably the 

most sensitive. Single nucleotide changes within the genome may 

result in clearly visible differences between maps of different 

viral strains 71. Unfortunately, only nucleotide alterations 

occurring in the diagnostic oligonucleotides (comprising 5% -

10% of the genome 69) can be detected. Sensitivity is still 

high, because the diagnostic oligonucleotides are distributed 

throughout the entire RNA and are thus representative of it 51 

The ultra-high sens i t i v i ty of 01 igonuc leotide mapping is, in 

fact, one of its major drawbacks. A large number of genomic 

alterations, although they may be detected using this technique, 

do not result in changes in the RNA translation products. Com

parison of sequence data of poliovirus strains 56,89,100,104 

shows that the majority of differences between RNA of different 

poliovirus strains are not expressed after translation. In the 

case of wild-type 2 strain Lansing 56 and Sabin vaccine strain 

P712 104, only about 10% of the genomic differences between the 
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two strains result in altered translation products. 

The hi gh level of non-expressed genomic alterations detected 

using oligonucleotide mapp ing could be misleading. Results 

might indicate that two poliovirus strains shared a distant 

relationship, whereas comparison of their translation products 

could show considerable similarity. In this study, for example, 

oligonucleotide maps of Sabin type 2 strain P712 and Gazankulu 

strain 5068 displayed several differences. 

capsid proteins were very similar. 

In contrast, their 

Oligonucleotide mapping is extremely useful in that it may be 

used to detect alterations in regions of the RNA other than 

those coding for the capsid proteins. These proteins only 

represent about 40% of the coding capacity of the RNA 94, and it 

is likely that some biochemical determinants of neurovirulence 

are coded for by other regions of the genome 8. This is parti

cularly obvious in poliovirus type 3 vaccine strain Leon 3 26 

Oligonucleotide mapping is very useful for plotting the evolu

tion of poliovirus strains during an epidemic 63,80, or even in 

individuals after vaccination 50,71. Studies of this sort may 

provide a great deal of information on the rate at which polio-

virus strains change. This would allow determination of which 

poliovirus strains are most prone to alteration, and would be of 

great use in the development of new attenuated poliovaccines. 

Monitoring using oligonucleotide mapping, similar to that 

carried out by Dreano et al (1985), could be used to ensure that 

in vitro alteration of vaccine strains in storage is minimal. 
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Because oligonucleotide mapping allows detection of minute 

changes at a genetic level, alteration in vaccine strains may be 

detected very early on. Often this may be before any difference 

is apparent using protein ana lysis t echniques 7,22,71,80 

Comparison of neurovirulent strains, attenuated vaccine strains 

and pathogenic revertants may allow calculation of the minimum 

number o f changes required in the RNA for vaccine reversion. 

Possibly the greatest potential of oligonucleotide mapping is in 

the study of recombinant poliovirus strains and the development 

o f safer attenuated poliovaccines. Recombination o f poliovirus 

strains does occur 2,101,103, albeit infrequently in vivo, and 

it is possible for recombinants to arise which are the progeny 

of two different poliovirus types 71,103 

Recombinants of vaccine strains (especially unstable ones such 

as type 3 vaccine strain Leon 3, which is most prone to patho

genic reversion 26,71) could be constructed using cDNA 101. 

Al though antigenically unchanged, these would be more stable 

than the current Sabin vaccine strains. 

Oligonucleotide mapping would prove invaluable in research into 

recombinant vaccines. Initially, oligonucleotides involved in 

neurovirulence could be identified by comparing oligonucleotide 

maps of pathogenic and non-pathogenic strains . Nucleotide 

sequencing could be used to check whether these oligonucleotides 

conta ined all the sequences coding for neurovirulence. After 

preparation of recombinants, oligonucleotide mapping would be 

used to check that recombination had been successful, and that 
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sequences determining neurovirulence were no longer present. 

Although this could all be done using nucleotide sequencing 56, 

oligonucleotide mapping is faster and less complex. It is also 

useful for giving a clear visual identification of the genetic 

constituents of a poliovirus strain 71 

Mapping of tryptic peptides using reversed-phase high

performance liquid chromatography (RP-HPLC) is also extremely 

sensitive, potentially able to detect picomole amounts of 

peptide 41,111. The major advantage of RP-HPLC over RNase T1 

oligonucleotide mapping is that protein is considerably easier 

to obtain and handle than RNA. 

Although in this study sensitivity was decreased by the need to 

radiolabel peptides with 125 I prior to RP-HPLC, potential does 

exist for the mapping of unlabelled peptides 5,21,38 This 

would greatly increase sensitivity, because all tryptic peptides 

present could be mapped. 

Tryptic peptide mapping of poliov irus coat proteins using RP

HPLC may, like oligonucleotide mapping, be used for monitoring 

the evolution of new poliovirus variants during an epidemic. 

RP-HPLC mapping of tryptic peptides may actually be more useful 

than oligonucleotide mapping for such monitoring because only 

capsid protein alterations are detected. While the RNA is 

highly variable, most of the genomic differences between strains 

are not expressed in the translation products 56,89,100,104. 

Tryptic peptide mapping allows the determination of phenotypic 

differences between strains, and actual changes in capsid 
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proteins may be monitored. 

Because capsid proteins are mappe d individually us ing RP-HPLC, 

it is possible to determine which undergo the greatest altera -

tion during attenuation or reversion. Although simi l ar studies 

could be carried out using serological techniques such as mono

clonal antibodies 25,63, tryptic peptide mapping of individual 

capsid proteins offers greater sensitivity. This sensitivity 

could be increased by combining RP-HPLC tryptic peptide mapping 

with protein sequencing. 

Combination of the two techniques would allow determination of 

amino acid sequences specific to coat proteins of neurovirulent 

strains. Once capsid proteins of a single virus strain had been 

sequenced in order to provide a reference, other strains could 

be compared with it using peptide mapping. Maps of pathogenic 

and non- pathogenic strains could be prepared, and the differing 

peptides (recovered after RP-HPLC) sequenced. Only these 

peptides need be sequenced, reducing complexity, time and cost. 

Tryptic peptide mapping using RP-HPLC would a l so be useful in 

monitoring recombinant poliovirus vaccines. Peptide mapping 

would show whether recombination had been successful and the 

capsid proteins contained the desired peptides . Although other 

techniques could be used for characterising capsid proteins 52, 

tryptic peptide mapping by RP-HPLC is very much more sensitive. 

Unlike oligonucleotide mapping, which allows comparison of the 

entire genome, RP-HPLC of tryptic peptides as used in this study 

only detects changes in the capsid proteins. Despite the fact 
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that capsid proteins only represent 40% of the coding capacity 

of the RNA 94 they generally reflect alterations in 

neurov iru lence. This is because the ability of virus particles 

to bind to receptor sites on the surface of susceptible cells, 

initiating infection, is controlled by the capsid proteins 88 • 

Tryptic peptide mapping of capsid proteins only is, neverthe -

less, limited. Pallansch et al (1984) detected 27 translation 

products of poliovirus RNA, of which only four are capsid 

proteins. Several of the other polypeptides control virus 

replication within a specific cell type and doubtless playa 

role in determining pathogenicity. The function played by some 

translation products has no t yet been determined 83 

may be involved with neurovirulence. 

and these 

Peptide mapping has been used to study the intracellular 

translation products of viruses 55, and such mapping using RP-

HPLC has great potential. Complete shut-off of host cell 

protein synthesis upon poliovirus infection occurs rapidly 62. 

Consequently the intracellular polypeptides produced during 

infection are exclusively viral in origin. It is possible that 

after extraction and purification of these polypeptides 50,69, 

RP-HPLC tryptic peptide mapping could be carried out. 

RP-HPLC tryptic peptide mapping of intracellular poliovirus 

polypeptides would be considerably more sensitive than oligo-

nucleotide mapping. These polypeptides account for 95% of the 

RNA coding capacity 83, while the diagnostic oligonucleotides 

used in RNA mapping constitute 5% - 10% of the genome 69 
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Comparison of tryptic peptide maps of intracellular polypeptides 

from different poliovirus strains would allow determination of 

the role played in neurovirulence by individual polypeptides. 

It would also be an extremely sensitive way of monitoring polio-

virus recombinants. Clearly this technique has a great deal of 

potential in the study and compar ison of polioviruses at a 

molecular level. 

Both RNase T1 oligonucleotide mapping and RP - HPLC mapping of 

tryptic peptides are highly sensitive techniques. While neither 

of them (as used in this study) provide a complete overvi ew when 

studying poliovirus strains , both are extremely valuable in 

comparative studies. Though they may also be used in diagnostic 

tests, other tests using phenotypic 112 or genotypic 29,46 

markers are more rapid, simpler and cheaper. 

Highly sensitive techniques such as oligonucleotide mapping and 

RP-HPLC mapping of tryptic peptides are useful for distingui

shing vaccine related from wild-type poliovirus strains, and 

determining relatedness between poliovirus strains. This allows 

the relative genetic "distance" between strains to be calcu

lated, and their relationships to one another may be plotted. 

This is particularly useful when monitoring evolution of polio

virus strains during an epidemic. 

Whi l e both oligonucleotide mapping and peptide mapping are of 

use in determining the relationship between poliovirus strains 

and in plotting the evolution of new strains, their greatest 

potential lies in research into new, safer recombinant vaccines. 
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Both techniques could be used for extremely sensitive monitoring 

of recombinants at a molecular level. In this respect, RP-HPLC 

peptide mapping of intracellular viral polypeptides has the 

greatest potential. Clearly, the possibilities for future 

research are considerable. 
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CHAPTER EIGHT 

SUMMARY 

The coat proteins and RNA of two Gazankulu outbreak poliovirus 

isolates were compared with those of Sabin vaccine and wild-type 

strains of the same serotype. The results obtained indicated 

that the causative agent in the initial stages of the Gazankulu 

outbreak was a wild-type 1 poliovirus strain. This was probably 

the result of the inherant variability of polioviruses causing 

gradual evolution of an apparently novel strain. 

Isolat i on of type 2 and type 3 poliovirus only occurred after 

initiation of a vaccination programme using the Sabin trivalent 

oral poliovaccine. Analysis of type 2 outbreak strain 5068 

showed that it was closely related to the type 2 vaccine strain. 

This was not surprising, for isolation of vaccine strains 

towards the latter period of an outbreak which has been halted 

by vaccine administration is very common. 

It is likely that type 2 Gazankulu poliovirus isolate 5068 

resulted from mutations in the attenuated vaccine strain. There 

was no reason to believe that it was a pathogenic revertant. No 

type 3 poliovirus isolate from the Gazankulu outbreak was 

available for analysis. 

Results obtained during this study confirmed that the two 

Gazankulu outbreak strains used had been correctly identified as 

type 1 and type 2 polioviruses. 
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Vaccine stocks recalled from the field after the Gazankulu 

poliomyelitis outbreak had a very low vaccine titre 48, 

resulting from breaks in the cold chain. The low vaccine titre 

probably allowed completion of several poliovirus replication 

cycles before the virus concentration triggered an antibody 

response. This would increase the likelihood of variation within 

the virus strains, resulting in novel vaccine-related poliovirus 

isolates. The sim i larit ies between type 2 vaccine strain P712 

and Gazankulu isolate 5068 indicate that such variation has 

occurred. In the case of type 3 poliovirus, which is 

particularly variable 71, this may have resulted in evolution of 

pathogenic revertants 26,13 

Incidents such as the Gazankulu outbreak highlight the problems 

inherent in the use of the live attenuated Sabin poliomyelitis 

vaccine. The importance of maintaining a high vaccination rate 

and good cold chain for vaccine storage and transport is 

emphasized. clearly, research into safer alternative polio

myelitis vaccines, such as sub-particle vaccines, is indicated. 
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