


Abstract

In this thesis we study left-invariant control ufline systemns on the symmetry group of a model of hrperbolic
plane geometry, the matrix Lie group SO(1, 2)g. We determine that there are 10 distinct classes of such
control systems and for typical elements of two of these classes we provide solutions of the left-invariant
optiimal control preblem with quadratic costs. Under the identification of the Lic algebra so(1,2) with
Minkowski spacetime B'2, we construct a controllabilility criterion for all left-invariant control affine
systems on SO{1,2)y which in the inhomogeneous case depends only on the presence or absence of an
element in the image of the systemn’s trace in R1? which is identifiable using the inner product &. For the
solutions of both the optimal control problems, we provide explicit expressions in terms of Jacobi elliptic
functions for the solutions of the reduced extremal equations and determine the nonlinear stability of the

equilibrium points.

Key words and phrases: Hyperbolic plane geometry, (reduced) Minkowski spacetime, Lorentz
group, symmetry group, matrix Lie groups. left-invariant control affine systems. local detached

feedback equivalence, controllability, extremal equation, nonlinear stability, energy-Casimir method.



Acknowledgements

I am fortunate to owe too much to too many:

To my supervisor Dr Claudiu Remsing: for giving me much ol my space and your tine, your guidance
and discussions. Thank you.

To my fellow Master’s students Rory Biggs: for enthusiasm and the concept of detached feedback
equivalence, and Ross Adams: for your focused clarity in all our discussion groups.

To my mother: the wisdom with which you raised me is always present in my heart and thoughts,
and my father: [or unstinting support, both financial and otherwise, and Dr Helen Robinson: for my frsl
LMaths lessons.

To my twin, Katharine Rose: for going through the Master’s process with me, and being my support

at every step.

To Robert Rudniak: for all you've done for me.



Contents

1 Introduction

1.1 Background . . . . . .. ...
1.2 Control on a symmetry gronp . . . . . . . . ..o e
1.3 Overview . . . . . . L e
14 Contributions . . . . . . . ...

2 Two Models of Hyperbolic Plane Geometry

2.1 Reduced Minkowski spacetime R™2 . . . . . . .. .. ... ... ...,
2.2 The hyperboloid model . . . . . . . .. oL
2.2.1 The hyperboloid as a geometric surface . . . . . ... . ... ... ...
2.2.2 The symmetry groupof HL . . . . . . ... ... ... ... ...
2.3 The upper half-planemedel . . . . . . . . . . . oo Lo L
2.3.1 The upper hall-plane as a geometric surface . . . . . .. ... .. ..., .
2.3.2 The symmetry groupof HPP . . . . . . .. ..o Lo
2.4 Symmetry group isomorphisms . . . . . . ..o L e
3 SO(1.2)p and its Lie algebra
3.1 The matrix Lie group SO{1,2)g . . . . . . . . . .. . L o
3.2 The Lie algebra of SO(1.2)p . . . . . . . . . . .
3.3 Thebhat map . . . . . . . . . . e
3.4 Lie algebra antomorphisms . . . . . . . ... o
3.5 Adjoint and co-adjoint orbits . . . . . ... oL
3.5.1 Adjeintorbits. . . .. .. Lo
3.52 Co-adjoint orbits . . . . . . ... L
3.6 More properties of SO(1.2)p . . . . . . . ..o
4 Left-Invariant Control Systems
4.1 Ldfeclassification . . .. .o
4.1.1 Two-input homogeneous systems . . . . . . . . .. .. ... ... ...
4.1.2 Two-input inhomogeneous systems . . . . . . .. ... . ... .. ... ..
4.1.3 Single-input inhomogeneous systems . . . . . . ... 0oL L.
4.1.4 Three-input homogeneous and inhomogeneous systems . . . . . ... ...

- & W =

=]

13
13
16
27
27
28
37

41
41
42
46
50
a2
52
93
34



il

4.2 A controllability criterion . . . . . . .. ..o oL

4.2.1 Control on a connected, semisimple {matrix) Lie group

4.2.2 A controllability criterion on so(1.2} . . . . . .. .. ... ...

5 Optimal Control on 50(1.2)g

51 Introduction. . . . . . . . . . .
52 Thecase T={(E1,Ea) . . . . ... .. i,
5.2.1 Explicit integration of the extremal curve (p(:).g¢{(:)) . . . ...
5.2.2  Eaquilibrium peints and stability . .. ... ... .. .. ...
Thecase T'=({E3. Ea2) . ... ... ... . ... .. ... .. ...

5.3.1 Explicit integration of the extremal curve (p(-},g(:})) . . .. ..

[y |
9]

5.3.2 Equilibrium points and stability . .. ... ... .00,

6 Conclusion
Bibliography
Appendices

A Review of Prerequisites

Al Quadraticforms . ... ... . ...
A.2 Abstract and geometricsurfaces. . . . . . ..o Lo
A.3 Mdbius transformations . . . . . . . ..o L oL
A4 Models of hyperbolic geometry . . . . . . . . . oL
A5 Matrix Lie groups . . . . . . . . Lo e
A6 Iwasawa decomposition . . . . . . . ...
A7 Left-invariant control systems . . . . . . . . . ... ...
A.8 Equivalences of control systems . . . . .. ... ...,
A9 Uamiltonian formalism . . . . .. .. ... . ... ... ... ...
A10 Optimal control . . . . . . . . .
A.11 Elliptic functions . . . . . . . . ... oo
A2 Stability . . . ...

B Tables

C Mathematica codes

D Figures

116

120

121



Chapter 1

Introduction

1.1 Background

We discuss in a Lroad sense clements of the fields of geometric control theory and hyperbolic
geometry. Precise definitions of the terms and concepts used [rom these fields are provided in

Appendix A.

Control theory

Control theory is a relatively modern field of mathematics which originated from the seminal
work carried out in the 1950’s by L.S. Pontryagin and his co-workers. who developed the field in
response to problems of theoretical engineering. An advantage of control theory is its simultane-
ously theoretical and practical nature: it has applications in engineering, robotics and biology,
but also has the ability to give insight into problems of theoretical physics and the study of
ordinary differential equations. It is a fast-growing and active field.

Control theory concerns itself with the study of control sysiems. A control system is a
parametrized family of vector fields on an underlying manifoid. the state space, where the set
of parameters are known as controls. These controls are elements of the control space. The
trajectories of the control systemn are the integral curves of the vector field or concatenations of
these curves. At any state the control pararmeter may be changed, and correspondingly a new
trajectory chosen in the state space; thus the trajectories of the system are controlled by the
choice of the control parameter.

If the controls are changed according to a function on either the control space, the state space
or both, the system is said to have feedback given by this feedback function. If the feedback
function does not depend on the state space, then it is said to be detached.

Given two states in the underlying manifold, the control system fransfers one state to the
other if the two may be joined by a trajectory of the system. If any two states in the state space
may be joined by such a trajectory, the control system is controllable.

A given control system may procduce very similar families of trajectories in the state space

to another control system. If these similarities are great enough, we may wish to reduce to
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studying only one of the two systems with similar trajectories. This leads us to the problem of
classifying control systems, which can be done according to several criteria. In this thesis we
restrict ocurselves to a classification under detached feedback cquivalence.

We may wish to consider properties of the trajectories of these systems; particularly, given
two points of the state space, we could consider minimizing or maximizing a function of the
control variable along a trajectory which transfers the one state to the other. Such a preblem
is a problem of optimal control. This concept was first developed in the 1950's by Pontryagin,
resulting in the celebrated Pontryagin Mazrimum Principle which provides necessary conditions
for optimality.

In this thesis we discuss problems of controllability, equivalence classification and optimality
for a specific and widely applicable class of control systems, the control affine systerns, and
take as their state space the symmetry group of a2 model of hyperbolic geometry. Since hy-
perbolic metrics appear very naturally in theoretical physics, for example in the construction
of Minkowski spacetime, we consider that the results of this study may putatively give some

insight into physical problemns of special relativity.

Hyperbolic geometry

Euclidean plane geometry can be considered axiomatically, where the basic structures of points,

lines and angles are assumed and related to each other by the 5 azioms of Buclid:

1. For every two points p. g such that p # g, there exists a unique line £ that passes through
p and g.

2. For every line segment ab and every line segment ed there exists a unique point e such that

e is between o and b and ed is congruent to eb (in the sense that their lengths are equal).
3. For all points ¢ and b # a, there exists a circle centered at a with radius the length ab.
4, All right angles are congruent,

5. For every line £ and every point p ¢ £, there exists a unique line £ through p such that ¢

is parallel to ¢ {where parallelism is defined by £||f' & M =0).

For many centuries it was hypothesised that the fifth axiom was dependent on the first four,
and as such could be derived by a theorem assumiing only statements 1 to 4. However, in the
early 1800's the independent work of C. F. Gauss, N. Lobachevskij and J. Bolyai showed that
there exist spaces where the first four axioms are assumed and the fifth is negated, to give a
completely consistent geometry. This geometry was hyperbolic geometry, and it grew out of the
negation of Euclid's fifth axiom in this sense: “For every line £ and every point p ¢ ¢, there
exists more than one line through p that is parallel to .

In order to develop the concept of hyperbolic geometry, a model of this geometry was re-

quired. The first identified hyperbolic mode!l. (inadvertently) discovered by the Dutch physicist
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C. Huygens in 1639 was the pseudosphere, for which the most natural parametrization showed
a constant Gaussian curvature K = ~1.

When the geodesics of the pseudosphere were calculated, they were found to be extendible

infinitely in both dircctions, a property which was subscquently formalised as geodesic com-
pleteness. 1t was later discovered that all geodesically complete surfaces with constant Gaussian
curvature -1 are models of hyperbolic geometry.
An extention of the concept of surfaces is the notion of an abstract surface, or 2-dimensional
manifold. In the 1860°s the work of B. Riemann led to the concept of a Riemannien metric, a
variable distance measure on the tangent bundle of an abstract surface which allows for various
expressions of the curvature of the surface, and equips it as a geometric surface. An immersion
of an abstract surface into B3 is a mapping from the surface to R3 with an injective tangent
map. If a Riemannian metric is assigned to an abstract surface, an immersion is wsometric if
the metric is preserved under the immersion. A theorem of D. Hilbert states that no geodesi-
cally complete surface of constant negative curvature can be isometrically immersed ‘n R3. In
consequence, the only geodesically complete surfaces of constant negative curvature that exist
in three dimensions cannot be discussed in a Euclidean environment.

Since geometric surfaces are geometric objects independent of embedding in any ambient
space, they are thus essential to the realization of hyperbolic models, which however have not
been formalized as abstract surfaces. This thesis begins by establishing independently two hy-

perbolic models as abstract surfaces with their groups of isometries.

1.2 Control problems on the symmetry group of a model of

hyperbolic plane geometry

In this thesis we will approach the problems of geometric control theory in two distinct ways.
Firstly, by considering the state space as a symmetry group of a model of hyperbolic plane
geometry, we may access control theoretical results by considering the structure of the space
on which it acts. Secondly, if the action of the symmetry group is determined to be transitive,
then by a result of Myers and Steenrod (1951), it is what is terined a Lie transformation group
(of dimension < 3), and so, particularly, is a Lie group. Thus on determination of transitivity
of action of the symmetry group, we may determine its expression as a Lie group and use the
structure of its Lie algebra to access other aspects of control theory on the group.

In each case, the most direct approach is to start by considering a space (set) on which
there is 2 metric structure. Thus, in the geometric approach, we will attempt to establish the
symmetry groups of models of hyperbolic plane geometry, beginning with an abstract surface
structured with a negative-curvature metric. We then endeavour to use this metric and abstract
surface to establish the hyperbolic model as a geometeric surface, in each case contructing its
symmetry group independently of maps to or from any other models. This approach differs

from the usual approach (see [7], [31], {32}, [25]}, which relies heavily on maps between models
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or analogy from one to the other to establish the geodesics and symmetry groups. There are five
models of hyperbolic plane geometry in current nse; that is, the Poincaré disk, the Klein disk, the
upper half-plane, the hemisphere and the hyperboloid. In this thesis we choose to work chiefly
with this last model, due to its interelation with the rich structure of Minkowski spacetime. We
also consider the upper half-plane model, which has the simplest metric of the five. Since the
hyperboloid model is a surface which is not contained within a 2-dimensional plane, we do not
work with the hemisphere, which would provide no additional geometric insights, and which we
established shares a symmetry group with the upper half-plane. Equally, we do not wish to
introduce the symmetry group of the Poincaré disk, which is different to that of the upper half-
plane and the hyperboloid model, and the coverage of which would have made this thesis too
broad. The metric of the Klein disk also provided unnecessary broadening of topic, due to the
natural expression of its symmetries in terms of structures of projective geometry. Establishing
the two symmetry groups of the models and aspects of the actions of their symmetry groups
completely separately, particularly transitive action, we will then consider group isomorphisms
between them so that structural aspects which are more accessible in one symmetry group might
be mapped to structures in the other.

On establishing transitivity, we will choose the group with the most direct representation

and easily-accesible stuctures, establish it as a matrix Lie group and construct and discuss its
Lie algebra. Consideration of its group-theoretical and topological properties will provide more
insight when we consider control problems developing on the group as a smooth manifold. We
will also construct the adjoint and co-adjoint orbits of the chosen group’s Lie algebra. These
play a role in the discussion of optimal control problems on the group.
In order to discuss the control problem of optimality, we will consider only full-rank control
affine systems, which we wish to group together into classes which share similar properties in
terms of optimality and control. In order to do this, we will use the councept of local detached
feedback egquivalence (5]. This equivalence relates two control systems as equivalent if, at least
locally, the trajectories of the first system way be mapped smeothly to the trajectories of the
second. This mapping is dependent only on the control variable. Thus, if one element of
a class produces trajectories optimising the control problem, then for all systems within the
class a smooth mapping of their control variables exist, which will map their trajectories to
the optimizing trajectory. In this way, optimality results for one representative of the class are
shared by all elements of that class.

To determine the equivalence classification will require the use of the group of Lie algebra,
automophisms for the chosen Lie algebra {cf. [5]).

We next wish to consider the problem of controllability of systems ([29], [2], [30]). Tn this
thesis we restrict to left-invariant control affine systems with piecewisce-constant controls. Ap-
plying some of the known conditions for controllability of such systems ([29], [30]} on Lie groups,
we will attempt to constuct a controllability criterion for these systems on our chosen symmetry
group. At all times our approach considers the structure of the symmetry group brought about

by the constant-curvature metric of the space on which it acts.
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Using the classification results, we will consider the optimal control problem with quadratic
costs for representatives of certain classes in this classification. In order to determine the op-
timal Hamiltonians we will use the Pontryagin Maximum Principle (PMP) as stated in [13].
This principle provides a set of necessary conditions for a trajectory to be optimal, in the form
of a system of differential equations. Following [13], we will work in the trivialization of the
cotangent bundle of the state space. This trivialization expresses the cotangent bundle as a
direct product of the group itself with the dual space of its Lie algebra. In this setting, the
differential equations set up by the PMP become a Hamiltonian system with this direct product
as its phase space. The solution of this Hamiltonian system is termed an extremal curve. We
will set up the reduced eztremal equations (which are the projections onto the dual space of
the Lie algebra of the Hamiltonian system generated by the PMP), and attempt to solve these
to find the projection of the extremal curve onto the dual space. We consider the extremal
curves as developing on the intersection of the level surfaces of their optimal Hamiltonians and
a Casimir function, and use this approach to express the development of the projections of these
extremal curves on the dual space of the Lie algebra and on the group itself. We investigate the
possibilities of expressing the solutions of the reduced extremal equtions in terms of the Jacobi
elliptic functions.

In analogy with the Euclidean case, we will consider a possible alternative to the expression
of curves in SO(3) in terms of Euler angles to determine the projection of the extremal curves
onto SO(1,2).

Finally, we will consider the (nonlinear) stability of the equlibrium points of the solutions,
which serve as a good indication of the local behaviour of these optimal trajectories (that is,
they give an indication of how great a fluctuation from the optimal trajectory may cccur for
the trajectory to remain at least “approximately” optimal). To determine the nonlinear sta-
bility properties, we will use the energy-Casimir method as stated by [17], and if this provides
indeterminate cases we will use the extended energy-Casimir method due to Ortega, Ratiu and
Planas-Bielsa [23].
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1.3 Overview

¢ Chapter 2: Section 2.1. R!Y? as an inner product space; planes I' in R"? and the
restriction Jlp. Section 2.2. Constructs the geometric surface HI. and represents its
symmetry group as the matrix group SO({1.2)y. Trasitivity of SO(1,2)q. Decomposition
SO(1.2)p = BK. Section 2.3. Constructs the geometric surface HP and its symmetry
group Sym(HP). Represents the symmetry group as the matrix group PGL(2, R). Trasitiv-
ity of Sym(HP). Section 2.4. Constructs the group isomorphisms between the symmetry

groups of HL and HF and their representations as matrix groups.

e Chapter 3: Section 3.1. SO(1.2)p is a connected, non-compact matrix Lie group.
Section 3.2. Constructs the Lie algebra so(1.2) and its commutator relations; so{l.2)
is simple and semisimple with trivial centre; the Killing form; adjoint operators. Section
3.3. The Lorentz cross product 3; the hat map so(1,2) — ]Ri'z; interrelation of i_» with
@: RY? is a Lie algebra. Section 3.4. Constructs the Lie algebra automorphisms of
so(1.2) and ]R}:’?‘. Section 3.5. Adjoint and co-adjoint orbits of so(1.2) expressed in
R}i‘?. Section 3.6. Action of SO(1.2)y on the structures of R?; SO(1.2)g is simple, not

simply-connected; Iwasawa decomposition of SO(1,2).

e Chapter 4: Section 4.1. The classification of full-rank control affine systems on SO(1, 2)5
under local detached feedback equivalence. This is achieved using the hat map of s6(1. 2) to
Ri‘,g to send the trace T to I'; properties of the restriction of the metric J|r. Section 4.2.
Preliminary results for controllability of left-invariant contrel affine systems on SO(1. 2}
and the image hatT' = T' € R of the trace; the controllability criterion for all such

systems, using the hat map.

e Chapter 5: Section 5.1. Constructs a Casimir functicn and expresses the representation
s0(1,2) = &"(s0(1,2)*). Section 5.2. Reduced extremal equations for 5_‘.?‘0); explicit
solution of extremal curve on so(l,2) in terms of Jacobi elliptic functions; projection
onto SO(1.2)p of the extremal curves as solution to a system of differential cquations;
equilibrium points of reduced extremal equations, nonlinear stability of equilibrium points.

)

Section 5.3. Reduced extremal equations for Eéz’g ; explicit solution of extremal curve
on s0(1,2) in terms of Jacobi elliptic functions; projection onto SO(1. 2}y of the extremal
curves as selution to a systemn of differential equations; equilibriunt points of reduced

extremal equations, nonlinear stability of equilibrium points.

¢ Chapter 6: Discusses and summarizes the results; conclusion.
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1.4

Contributions

To our knowledge, we present these original contributions:

HIL as a geometric surface (PROPOSITIONS 2.2.1-2.2.3; 2.2.24; 2.2.26). HP as a geometric
surface {(PROPOSITION 2.3.2; 2.3.18).

Action of $SO(1.2) on R:? {PROPOSITIONS 3.6.6; 3.6.7); the map hat : so(1,2) — ]th‘2
(DEFINITION 3.3.6); R is a Lie algebra (PROPOSITION 3.3.5, THEOREM 3.3.7); automor-
phism group Aut(Rg:) (PROPOSITIONS 3.3.9, 3.4.1-3.4.3)

L.d.fe. classification of full-rank homogeneous 2-input control affine systems (LEMMA
4.1.6; PROPOSITIONS 4.1.8-4.1.9, THEOREM 4.1.10); l.d.fe. classification of full-rank 2-
input control affine inhomogeneous systems ( THEOREMS 4.1.12, 4.1.14, 4.1.19, 4.1.20,
4.1.26- 4.1.27, PROPOSITIONS 4.1.16,4.1.18, 4.1.23- 4.1.25 and COROLLARY 4.1.13); L.d.f.e.
classification of single-input control affine sytems (PROPOSITIONS 4.1.30-4.1.34).

Spacelike, lightlike and timelike elements of s0(1.2) and their properties {PROPOSITIONS
4.2.2-4.2.5, LEMMA 4.2.6); controllability criterion for all control affine systems on SO(1. 2}
(PROPOSITION 4.2.1, THEOREMS 4.2.7- 4.2.9).

Optimal control and optimal Hamiltonian for control problemn with quadratic costs on
Zgz,o) [252‘0)] (THEOREM 5.2.1) [THEOREM 5.3.1]; projection of extremal curves onto
50(1.2)" in terms of Jacobi elliptic functions or trigenometric functions (THEOREM 5.2.2)
[THEOREMS 5.3.2-5.3.3]; projection onto SO(I,2)p of extremal curve as a solution of a
system of differential equations (THEOREMS 5.2.3-5.2.4) [THEOREM 5.3.4]; equilibrium
points of the system of reduced extremal equations classified nonlinear stable/unstable
(THEOREM 5.2.5) [THEOREM 5.3.5).
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2.1.1

Chapter 2

Two Models of Hyperbolic Plane

Geometry

We choose to concentrate our study on the hyperboloid and upper half-plane models and their
symmetry groups. In order to discuss the hyperboloid model (which can be considered as a
submanifold of reduced Minkowski spacetime R equipped with the induced metric) we consider

properties of R as an inner product space.

2.1 Reduced Minkowski spacetime R!?

Minkowski spacetime refers to the 4-dimensional real space R* equipped with the the symmetric,

nondegenerate bilinear produet &, called the Lerentz product,
©:R* >R p o= -pia +pege + pags + paga

This structure RM? = (R?, ) is the geometric setting of special relativity: the points in R'® are
considered as physical events taking place at a point within a frame of reference {eq, €2, e3,e4},
where the ez, e3 and e, directions relate the events spatially and the ei-direction relates them

in time. In this thesis we snppress one spatial dimension.

DeriNITION. The reduced Minkowski spacetime R'? is the 3-dimensional real space R3

equipped with the Lorentz product,

2R 5 R, P& q= —-p1q1 + p2g2 + pags.

mn
We henceforth identify p = (p1. ..., p,) with the column matrix
Pn
We may express the Lorentz product in the matrix form
-1 0 0 |;
p'Ja= [’Pl m Pa} 0 1 0f g
0 01 d3
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2.1.6
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2.1.8

10 CHAPTER 2. TWO MODELS OF HYPERBOLIC PLANE GEOMETRY HCH

Particularly, if we consider the quadratic forms p' Jp, then R1? = (R3. ) becomes an inner
product space as in (A.1.5). The Lorentz product is not positive-definite, and p < p can take

positive, negative or zero values.
ReEMARK. By a slight abuse of notation, we associate the symmetric bilinrear forms
ds?|p : TpRY x ToR? 5 R,  ds?|p = —dz?|p + dy?|p + d2°)p

with @. Here, T,R? is an isomorphic copy of R®. We may express ds?|, in matrix form as

-1 0 0 w1
viJw= [vl Vg 1:3} 0 1 0| |ws (2.1.1)
0 01 w3

; 3 ; — g B A a
where v and w are vectors in R associated to the tangent vectors v = vy 5|p + 225 [p + a5 |p
and w = wlB%‘P -+ TJUQB%lp + wgﬁlp in the fibre TpR3 of TR3. Since ds?|, acts on the tangent
vectors vl m |p + V2 |p + Vazs|p and w i |p 4 we ik |p + wage|p to give —viwy + vowy + vzws

(which is exactly the matrix product v J w) this association is justified.

DEFINITION. An element p = (p1,p2.p3) of R1? is timelike if p®p < 0, lightlike if pGp =10
and spacelike if pw>p > 0.

DEeFINITION. The Minkowski length ie the mapping

Il REXR® 5 R, [[p] = sgn(p)/Jp ' p)
where sgn(p) = 1ifp 2p > 0,sgn(p)=-1lifpc p-20. and sgn(p)=0if pop =0.

Note that this mapping is not positive-definite.

DEFINITION. A timelike vector p = (p1,p2.p3) € RY? is positively-oriented if p; > 0 and
negatively-oriented if py < 0.

PROPOSITION. Orientation of timelike vectors is an orientation relation on this subset of R2.

Proor. We show that this relation is an equivalence relation. Note that if p is timelike, then
p1 # 0, s0 py is either positive or negative. Firstly, if p) > O[p; < 0], then p is positively-oriented
[negatively-oriented| and in each case p ~ p. Secondly, if p ~ q, thenp; > 0,q1 > 0[p1 < 0.1 <
0], and in each case q ~ p. Finally,if p~qand q ~s, thenp; > 0,q1 > 0and ¢; > 0,5, >0
[p1 > 0,g: > 0 and g1 > 0,51 > 0] and in both cases it follows that p ~ s. Since either p; > 0

or p1 < 0, there are exactly two equivalence classes. The result follows. O

PROPOSITION. [22] Given a basis {e),ea.....e,} for an n-dimensional real vector space V on
which is defined a nondegenerate symmetric billinear form x* : V. x V 5 R, x*(e;.e;) = 0 for
i # 7, then the number of basis vectors e; for which x*(e;,e;) = —1 is the same for any such

basis.

COROLLARY. If {e1, ez €3} is an orthonormal basis for RM?, then ezactly one of e1, ey or e3 is

timelike.
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REMARK. This result is not generally true of bases which are not orthonormal; indeed, we may

construct a timelike basis
{(1.0,0),(2,1,0). (3,2, 1)} (2.1.2)

for RM2,
PROPOSITION. A nonzero vector of RY? orthogonal to a timelike vector must be spacelike.

Proor. We will show that a timelike vector cannot be orthogonal to a timelike vector or a
(nonzero ) null vector. Given a timelike vector p = (p1,p2.pa) and a (nonzero) null or timelike
vector Q = (q1, ¢z, ¢3), then p > p = —p? + p + p2 < 0 and also the product q > q = —¢% +
@ +¢3 < 0. Thus prgd > (p3 -+ p2) - (g7 + ¢3) > (p2qe + paga)®, where the second inequality
follows from the Cauchy-Schwartz inequality on (IR?, ), where o is the usnal dot product. Thus
lp1gi| > ip2g92 + p3gsl, and particularly prgr # 0. Thus p© g # Q. m

We now consider as in {A.1.14) the restriction to a hyperplane T' in RY2 of the inner product
®, which we denote by p' Jp. In the next 5 statements we refer to (A.1.1)-(A.1.16) for the

necessary resnlts from the theory of quadratic forms on vector spaces.

PROPOSITION. The restriction J|r of the Lorentz product to o hyperplane I' in RM acting as
quadratic form has signature (0,1,1),(0,2.0) or (1,1.0}) only.

PrOOF. Let a.b and ¢ be real. Given a hyperplane T = {ax + by + ¢z = h|z,y. 2 € R} of R1?,
then firstly taking a # 0 , we may write & = —%y — L2+ h. Thus dz = —%dy —~ 2dz, and ds?

az™

restricted to I' can be expressed as

2 b 4 2 v gt — (1 b a1 2\ o 2be
dslr._w ’yfa-z +y+?}-— —a—2 ’y+ _a,_2 dz—?dydz.

a

As a quadratic form, making the association of ds®|p with Jr, then

2 —oc
T e [m pg] ( ;gfﬁ) E%*Cz) lpll.

2 (1 -2 e
2 2 s
Using Mathematica {C.1), J|r has eigenvalues Ay = 1, Ay = %ﬁ. The eigenvalue A; is

clearly always positive, while Az may take both positive and negative real values. Taking b # 0,

we may write y = — 3T — {2+ A, and so dy = — §dz — §dz, and
20 g2 a4 2 Q2 = I a’ 4 c? 2, 2ac
d’lp = —da? + (~do - Sdz) +de? = (14 35 ) de?+ (14 5 ) o+ Tdadz

As a guadratic form,

PTJQI‘P = [pl PQ} ac (i N 1)
b2
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Jir has eigenvalues

a4 - \/(14 + (202 + )2 + a2 (—4D? + 22) a2 + e 4 yfat + (202 + ) 4 o2 (—4b? + 2¢2)

1= 21,2 : 2= 252

from (C.1). The eigenvalue Ay clearly always has a positive real part. Finally, taking ¢ # 0,

Ly - "Efy, and

o

then we may express z = — %z — I—c’y +h, and so dz = —

2 2 2
a b e b 2ab

[ C

As a quadratic form,
a? ub
T (:f - 1) & v
p Jirp= [Pl pz] 52 1) -

J|r has eigenvalues

a2 + b2 — 1/ad + 202 (b2 — 2¢?) + (b? + 2¢2)° a® + 0% + Jat + 202 (b2 — 2¢2) + (B + 2¢2)°

Ay = 2c2 . 2 = o902

from (C.1). The eigenvalue A clearly always has a positive real part. Thus in each case by

(A.1.9), these quadratic forms have signature (0.1.1).(0.2,0) or (1,1.0) only. |

We make the definition

2.1.12 DEFINITION. A hyperplane T' in R!? is said to be elliptic if the restriction of the scalar product
® to I' is & quadratic form with signature (0,2,0). I’ is parabolic if the restriction of © to T
is a quadratic form with signature (1,1,0). T is hyperbolic if the restriction of ® to ' is a

quadratic form with signature (0,1.1).

By ProOPOSITION 2.1.11, these classes partition the family of all hyperplanes of R? into three
distinct classes: the elliptic, hyperbolic and parabolic classes. Particularly, the 2-dimensicnal

linear subspaces are partitioned into classes of elliptic, hyperbolic and parabolic subspaces.

2.1.13 DEFINITION. Anelement p = a+u(l’b1+ ...u?bi of 2 hvperplane I' = a+{by, .... by) is a timelike
[spacelike, lightlike] vectorif pOp<0[pop>0. pop=0]

2.1.14 PROPOSITION. Given any two 2-dimensional linear subspaces T'; and Te of R12 of the same
type (elliptic, parabolic or hyperbolic), there erists an element of the group of inner product

space isometries of RM? which maps Ty to Ty bijectively.

Proor. Since J|r, = Jlr,, then the subspaces I'; and I'; are (inner product space) isometric,
and so by WITT’S THEOREM (A.1.16} they lie within the same orbit (A.1.13) in R%2. Thus there

exists an inner product space isometry of R1'? which maps the one to the other bijectively. D

We now state and prove a simple result concerning the visualization of the subsets of spacelike,

timelike and lightlike vectors in R,
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PROPOSITION. The lightlike elements of RM? e on Ky : {(z.y. 2) e R® © —2? + 2 + 2% = 0},
the cone with azis of roletion the ei-azis. The spacelikc elements lie on the hyperboloids of one
sheet HY : {(z,y,2) e R} : —o? 4 4% + 2% = ,,.2}_ The timelike elements lie on the hyperboloids
of two sheets HE: {{z,y.z) e R? : 2 —y? — 22 = r?},

ProoF. Consider the spacelike element p € SO(1,2)o; then p & p = —p? + p3 + p = 0 and
(p1,p2,p3) € K1,. Taking p spacelike, then p® p = —p? + pZ + p2 = ||p||? and thus p € HIIIPII'
Similarly, taking q timelike, then q©q = —¢}{ +¢5 +q3 = llall? < 0. Consider the vector p such
that |lpl|* > 0, [[plI* = ~llq|®. Then ~¢? + ¢ +¢§ = —|Ip|*, and q € Hf ;. -

2.2 The hyperboloid model

2.2.1 The hyperboloid as a geometric surface

Given the open subsets of R%, U = (—00,00) x (0,2r) and Uy = (—20,00) x {—m, ), then the
mappings

el Uy o Ry el{w.v) = (coshwu.sinhwcos v, sinh usinw)
and

€2 Uy — R, ez(u,v) = (coshu,sinh % cos v, sinh usinv)

are continuous and injective since each of their compeonent functions are continuous and injec-
tive. We consider the set HL = {(x.y,2) € R® : 2* —¢* — 2% = 1,2 > 0} equipped with the
symmetric bilinear form (A.2.15) ds? = —dx? + dy? + dz? acting on the tangent bundle THL.

PROPOSITION. HL is an abstract surface: that is, the union Uj=1‘2(ff. U;) covers HL, and the

transition maeps between the two patches are smooth.

ProOOF. Given {r,y.2) € U,:l'z(f"".Ug), then {(7.9.2) = ¢;{n. 1) = (coshu,sinhu cos . sinusin)
and —x24-y%+ 22 = — 1. Thus U= 26, Us) € HL. We show that the condition —pf+pi+pf = -1
on p = (p1,p2,pa) € HL defines a pair (ug.vp) such that p lies either in the patch (e,.U;) or
(5. Uz). Consider (p1.pa.p3) € R such that —p? + p2 + p2 = —1. Clearly, there exists some
ug = cosh™ (py) such that p; = coshup. Then p? = cosh®up and p? — p3 — pd = 1, so thus
22 a2 : pi+py _ Pi+PE
p3 + p§ = sinh®ug. Further, since iy = 7% = 1, then
1

<1

l 2 Z‘ D2 <1 and ' 73 :' P3

. . 2 ; .
and so we can find a preimage v; in (0,27) or (-, 7) of . under cos and a preimage vo in

(0.27) or (—m,m) of ﬁﬁﬁ under sin. Since

2 2
(P_z . (i_) .
Vri+r; Vet + 7
then v; = va = vg in (0,27) or (—m, 7). Thus pz = sinhugcosvy and p3 = sinhugsinvg for

some (ug.vp) iu Uy or Uy such that (p1.p2.p3) = (coshug.sinhugcosvy. sinh ugsinvg). Then
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(p1.p2.pa) lies in either the patch {e;.U1) or the patch (e2.Uz). Thus HL C J;_q o(ei. Us).
Since

1 0 0 cosh u cosh u
0 cosm —sinn| (sinhucosv| = |sinhucos(v -+ 7)
0 sinm cosw sinhusinv sinhusin{v + )

then the transition maps (¢!)~!o¢? and (¢2)~! o ¢! are smooth rotations about the origin. Thus

by {A.2.1), the patches (¢!.0/1), (€2, Uz) express HL as an abstract surface. a

We have stated that we equip HL with the bilinear form ds? = —dz? + dy? + dz2. As in the

previous section, we express ds® as

-1

0 T
PTqu[m D2 'Ps] 0 1
0

g2
q3

= O O

PROPOSITION. FEach element of each tangent plane TpH L is spacelike.

ProoF. Consider an element v € ToHL where p = €'(up.vg). Then by definition v is an
element of (el (g, vo}. €} (g, vp)). But €l (up,vg) = {sinhug, cosh g cosvo, coshugsinvg) and
€ (ug,vo) = (0. — sinhugsin vy, sinhugcoswp). Since p = (cosh up, sinh up cos vg, sinh wgsinvyg),

then
p &€ (ug, vg) = {coshug, sinh 1g cos vy, sinh ug sinvg) © (sinh ug, cosh ug cos vy, cosh ug sin vg) = 0
and

p @ € (ug, vo) = (coshug, sinh ug cos vg, sinhup sinvg) & {0, ~ sinh ug sin vg. sinh ug cosvg) = 0

and v = ael, (up. vo) +bet, (up, vp) is perpendicular to the timelike vector p € HL by the bilinearity
of & But from ProposiTiON 2.1.10, any vector perpendicular to a timelike vector must be

spacelike. The result follows. )
PROPOSITION. HL is a geometric surface.

PROOF. Since we showed in PrRoOPOSITION 2.2.1 that HL is an abstract surface, we require only
to show that ds? = —dx? + dy? + d22 acts on the tangent spaces of HL as a pseudo-Riemannian

metric. Identifying the tangent vectors v, v with triplets v and w, we express ds? in matrix form

-1 0 0 w
VTJW=[L‘1 Up 'U3:l ¢ 1 0| |we
c 1 I}

1. Bilinearity follows immediately from the linearity of the matrix product.

2. By the symmetry of the matrix J, the bilinear form v ' Jw is symmetric.
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3. By PROPOSITION 2.2.2, the vectors of each tangent plane to H.L are spacelike. Thus the

restriction of ds? to each tangent space of HL is positive-definite.

Then ds? fulfils the requirements of a Riemannian metric (A.5.28) on HL. ]

DEFINITION. The geometric surface HL equipped with the Riemannian metric ds? is the hy-
perboloid model HL = (HL, ds?).

THEOREM. The hyperboloid model has a constant Gaussion curvature K = —1,

ProOF. From (A.2.52), K is a function of £ = (¢}, €}), F = (€},,¢}) and G = (¢}, €.}, where in
this case (-,-) = —da® + dy? + d2?. Since the derivatives €/, = (sinhwu.cosv coshw, cosh usinv)
and ¢, = (0, —sinvsinhu, cosvsinhu) for i = 1,2, then £ = 1, F = 0 and G = sinhv in each
of the two patches. Since F = 0 in both the patches ¢! and €2, then in each case the Gaussian

curvature is given by (A.2.53)

<=5l (73) * % (v35))
2VEG \ 0u \\VEG hw\VEG//]
In both patches E, = 0,G, = Vsinhv?; thus substitution into (A.2.53) of E,F and G using
Mathematica (6) shows that in each patch

2cosh v sinh[t]?  2eoshv? _ Zsinhu®
{sinhiv2)?/? /sinh 12 Visinh 2 . (2 sinh U) - _1

—1
2+/'sinh v2 - 2sinhv O

K=

It is well known (see [25]) that the family G of geodesics on a surface contains the family of all
distance-minimising curves on that surface: that is, there exists a subfamily of G of curves which
solve the Riemannian problem (A.2.47). As described in (A.2.47), we use the Euler-Lagrange
equations (A.2.46) to solve the Riemannian problem on HL, and so establish a subfamily of

geodesics for HL.
PrOPOSITION. The paths v = {(cosht.sinhtcosf.sinhtsing) : ¢ € R} are geodesics of HL.

PrOOF. From the definition in (A.2.25}, the pullback of ds? = —dz?+dy” +d=z? by the patches ¢!
and €? is given by Edu?+ 2Fdudv + Gdv?, From the calculation of E. F and G in PROPOSITION
2.2.5, this pullback is given by —du? -+ sinh® udv? in both cases. Thus the Lagrangian for the

Riemannian problem is £(w.v) = —i2 4 sinh? «i?, and using the partial derivatives
{ % = 2 coshusinh u(v?) { %—% = 2(sinhu)%®
8L _ P 9L _
7c = 2 o =0

we determine the Euler-Lagrange equations (A.2.50}

or d /oL . Y .
o (E) = 2{sinhwucoshu)d + 2i =0 (2.2.1)

oL _d (9
v dt \ ov

I

2(sinhu)*® = k. (2.2.2)
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which we solve in the particular case v = . From {2.2.1), taking v = %, then —2ii = 0 and so
u = at + b for some a.b € R. Thus the paths 99 = {(coshu.sinhu.0) : « € R} are geodesics
of HLL, since they are images of the maps which solve the Riemannian problem and thus are
distance-minimising. Since from PROPOSITION 2.2.9 the Euclidean rotations about the e;-axis

are isometries of HL, it follows from (A.2.42) that for each &, the image
v = {{coshu,sinhucosf,sinhusinf) : u € R}

of this curve under rotation is similarly a geodesic of HIL. |

PROPOSITION. Given any point p on HL, there exists a geodesic of the form + passing through
(1,0,0) and p.

ProOF. The path g in HL has a direction vector v in the tangent plane to HE at (1.0,0). But
using the parametrization of H£ in terms of patches e! and €2, the tangent plane at el(u,v) =

(1,0,0), which occurs at (u,v) = (0,0) is the span of orthogonal vectors
€1(0,0) and ¢€(0,0), where ¢(0,0) = (0.1,0) and ¢L{0.0)=(0,0,1).

Thus the plane e; + (eq.e3) is tangent to HL at the point (1,0,0}. Then under the Euclidean
rotations about the e;-axis, the direction vector v of g is mapped to the direction vector Rgv
of . Thus there exists a geodesic of the form v passing through (1,0, 0} in the direction of every
tangent vector to HL at (1.0,0). Stated differently, given any p in HL, there is a geodesic of
the form ~ passing through (1,0.0) and p. O

2.2.2 The symmetry group of HL

In order to find the isometries of HL, we consider first the iuner product space isometries of R1:2
and then restrict these isometries to those preserving the abstract surface H£. We then show
that all isometries of ML are linear transformations which preserve the scalar product @. For
the initial propositions 2.2.9-2.2.11 we follow a similar approach to [10].

For any bilinear bijections ¢ : R* — R} we use the standard basis {e1.ez.e3} to make the

identification of ¢ with the 3 x 3 matrix [g;;], where the j-th column [glj 925 93| = dley).

REMARK. Given an inner product space isometry of R!? identified with the matrix g, then
for each standard basis element e;.e; of R3, (ge;)" @ ge; = e;-rgTJgej = e;r.fej = .Jij. Then

(ge:)' @ ge; = Zi:l ik = e;rJej = Ji;, and it follows that

3 3 3

Yoho1 GKIOEL  Dope OE1Gk2 2k Gk1Gk3
: 3 3

Zi;l Jk20k1 Zk:l Gr20k2 Zk:l grdrs | = 9J9T~
3 3 3

Zg:l JE39k1 Zk:l Qk30k2 Zk:1 Gk3dk3

J

Thus all inner product space isonietries of B2 may be expressed as matrices in R¥%3 satisfying

the property g € R**3 g7 Jg = J.
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1 0
0 I

PrROOF. The condition gJg' = J can be expressed equivalently as g7 J g = J, since the diagonal

T ¢ q’
THEOREM. gJg' =J = g=

T for Rg € O(2).c c Rt , q € R2.
q qq

matrix J is symmetric. For p.q € R%,p = (p1.p2). @ = {¢1.92) and ¢ € R, we may express these
conditions as

P | e P Bl | P N R PO

respectively. Muitiplying out, then

[—c2+qTq —cp’ +qu] N [—1 0} ond [—cz +p'p —cq’ +meT} B [_1 01

cp+tm'q —-pp' +m'm 0 1 —cq+pm  —-qq’ +mm 0 1
and thus
—*+q'q = 1=—c"+p'p (2.2.3)
cp = qn' (2.2.4)
cq = pm (2.2.5)
m'm—pp' = 1= mm' —qq" (2.2.6)

where 2.2.6 implies that m is symmetric and positive-definite and 2.2.3 implies that |¢] > 1.

Then m has a polar decomposition (A.5.7) m = sRp where IRy is in O(2), and since m is

positive-definite, then s is symmetric positive-definite. Thus s = sh(sh)T = mmT = qqT + 1.
But

qu _ [ fh? ngz

giy2 43

where by (A.5.10), the characteristic polynomial of qq" is A2~ Atr(qq")+det{qq"). But clearly
det(qq") = ¢¥q3 — (q1¢2)% = 0, and, since

G% qQidz| |41 a1
) = |l
q192 43 g2 g2

then qq' has an eigenvalue 0 and an eigenvalue ||q|] = ¢ - 1 which has a corresponding
cigenvector g. Thus the matrix 52 = 1 +qq" has the eigenvalues 1 and ¢ = ||q|| +1 . Thus we
have the cases

Case 1: ¢ = /1 +|q)?

We have shown that s has an eigenvalue ¢ and q's = ¢s. Then q'm = q ' sRp = eq' Ry. But
by (2.2.4), cpT =q'm. Thus q' Ryp = p', and so

c p' ¢ q' Ry N c q 1 0
q m q sRy a' Vi+aq'| |0 Ry

Case 2: c=—+/1 + |q|®

We have shown that ' s = /1 + ||q]|?q. Then —q"s = —/1 + [[qfi2q and so in this case ¢ s =
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—¢q'. Then q'm = q'sHg = (—cq )Ry. But by (2.2.4), q"m = ¢pT. Thus (—eq" )Ry =
ep’ = (-q" )Ry =p, and so

; c p' c (—q)h _ —c —q -1 0
. == = q pm— .
q m q sHg -q V14+aqq'| |0 Ry
Then taking ¢ = /||q|? + 1,
-2 (qM)h ol q’ -1 0
g= =
—q sRy 1+qq'| |0 Hp
where ¢/ > 0. O

REMARK. In THEOREM 2.2.9 we showed that the isometries ¢ of R12 can be expressed as one

of four matrix products of the form

1 0

RgecO(2),ceR.c>0
0 Ry

C qT
qa V1+aqq'

which indicates that these isometries fall into four disjoint subsets:

{Rp € O(2) : det Ry <0, 1 as upper-left entry in orthogonal matrix} (2.2.7)
{Rp € O(2) : det Ry < 0, —1 as upper-left entry in orthogonal mnatrix} (2.2.8)
{Rg € SO(2) : det Rg > 0, 1 as upper-left entry in orthogonal matrix} (2.2.9)

{Rg € SO(2) : det Ry > 0, —1 as upper-left entry in orthogonal matrix} (2.2.10)

We denote (2.2.8) by SO(1,2)~ and (2.2.9) by SO(L, 2)p.

In DEFINITION 2.1.5, we expressed the orientation of a vector in RM?, which in PROPOSITION

2.1.6 we showed is indeed an orientation on R"? as defined in (A.2.31). We now prove

PROPOSITION. Given an isometry g in one of (2.2.7) to (2.2.10) such that e] ge; = g1, > 0,
then g preserves the orientation of all timelike vectors in RM . Conversely, if g preserves the

orientation of all timelike vectors in RY?, then e] ge1 = g11 > 0.

PROOF. Express g € G as the matrix of row vectors ¢ = (1. g2, 93). Then particularly, taking
91 = (911,912, 913), then it follows that ~gf; + (¢35 + gf3) = —1. since g1.Jg] = —1 by the
property gJg' = J. Acting with g on some timelike vector a, then the first component of ga is

given by (az,aa) ® (912, g13) + (g1101), where by the Cauchy-Schwartz inequality on (R?, e),

((az,a3) ® (912, 13))% < ll(az. a3) ¥l {g12, ;13)|% = o}{g?, — 1) < 3¢}

where a? # 0 since a is timelike. Thus (ag. az) @ (g12. g13) has the same sign as a,. since g;; > 0:
that is, a7 > 0. Thus if g1 > 0, then g maps positive timelike vectors to positive timelike vectors
and similarly negative timelike vectors to negative timelike vectors.

Conversely, if ¢ preserves the orientation of all timelike vectors, then particularly g preserves
the orientation of e; and thus gey = (g11,921,931) is timelike and positively-oriented: that is,
g11 > 0. m]
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PROPOSITION. The elements of (2.2.7) and (2.2.9) preserve the orientation of the e;-azis; the
elernents of (2.2.8) and (2.2.10) reverse the orientation of the e)-axis.

ProoF. Given an element g in (2.2.7) or (2.2.9), then

1
0 Ry

+
C R,
T{ a4 e e =c > 0.

.
el 981 = el
—-q V1+qq'

Thus by PROPOSITION 2.2.11, g preserves the orientation of all timelike vectors and thus specif-

ically preserves the orientation of the ej-axis. Given an element g in (2.2.8) or (2.2.10), then

1 0
l we1=—0<0.

TI|—¢ qTRG‘
0 Rg

.
el ge_‘[ = el
-q +1+qq’

Thus by PROPOSITION 2.2.11, g reverses the orientation of all timelike vectors and thus specifi-

cally reverses the orientation of the e;-axis. O

REMARK. Reversing the orientation of the ej-axis will send the subset {(r.y.2) € R? : 2 > 0}
to the subset {(z,y,z) € R® : z < 0}. Thus the elements of the sets (2.2.8) and (2.2.10) send
HL = {{z.y,2) eR? : 22—y —22=1z2>0} to {(zy2)eR} : a? 4% 22=11< 0},
while the elements (2.2.7) and (2.2.9) preserve HL.

PROPOSITION. The union SO(1,2)o USO™(1.2) is the set
50(1,2) = {g eR¥™ . gJg" = J, det g = 1} .
PROOF. We proved in THEOREM 2.2.9 that all matrics ¢ such that ¢Jg' = J are of the form

C qT

q Vv1+qq'

1 0
0 Rp

“ RgEO(z).CER“}

and so are elements of (2.2.7) to (2.2.10). Further, the matrices in (2.2.7) and (2.2.10) have
determinant -1, since from the proof of THEOREM 2.2.9 ¢i/1 +aq' =1 + [iq/| and so

qT

q vV1+qq'

-1 0

det g =
g 0 Rp

= (1+llal® ~ lal®)(=1|Rel) = -1

while those in (2.2.8) (SO (1,2)) and 3 (SO(1,2})y) have determinant +1 , since

qT

q V1+aqq'

1 0

— 2-‘ 9 _
o r, |~ Ol - lalP)alR) = 1

det g =

Thus SO(1,2) € SO(1,2)o U SO7(1.2). Since any matrix g in SO (1,2) or SO(1.2)q satsifies
gJg' = J, then SO(1,2)y USO™(1.2) € SO(1.2), and the result follows. =]

PROPOSITION. The set SO(1.2)g may be writien as

SO(1.2) = {g cR¥™3 : gJgT =J efge; > 0. det g = 1}.
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PRroOF. Since SO(1.2)p is subset {2.2.9), then if g € SO{1.2)y, gJg" = J. From PROPOSITION
2.2.12, e-lrgel > 0. From the proof of PROPOSITION 2.2.14, it follows that for the element g
in 50(1,2)p, then det g = 1. Thus SO(1.2}¢ C {g e R¥*3 . gJg" = . e?gel >0,det g = 1}.
But any element g of the group {g cR¥>? . gJgT = J,det g = 1, e ge; > O} is an isometry of
R*? which by THEOREM 2.2.9 belongs to subset (2.2.9}. Thus g is an element of SO(1.2)q and
{g¢€ R2*? : gJgT = J,e1ge; > 0,det g = 1} C 50(1,2)g. The result follows. O

PROPOSITION. SO(1,2)0 is a group under matriz multiplication.

ProoF. Since for all g € SO(1,2)g, det g = 1, then SO(1, 2}y is clearly a subset of GL(3.R).
Thus in order to check that SO{1, 2} is 2 group under matrix multiplication, we require only to
show that it is a subgroup of GL(3.R). We use the defining properties ngT =.J.det g=1and
e/ ge1 > 0 of PrROPOSITION 2.2.15. Given any two elements g, g’ € SO(1,2)p, then

(99)T I (99") = (6) T {gTg")d = (¢") T g = J.

Since eirgel > 0, e?g’el > 0, then by PROPOSITION 2.2.11. g and ¢ preserve the orientation of
all timelike vectors and so the orientation of the e; axis. But then the product gg’ preserves
the orientation of the ej-axis, and it follows from 2.2.11 that efgg’el > 0. Thus gg' € SO{1, 2)g
and it is closed under matrix multiplication.

Further, given any element g € SO(1.2)p, then gg™! = ¢7'g = 1 and so immediately
(997" (gg™)T = J. But (gg~")J(gg )T = (¢"NgJy (97")T = J, and s0 (¢71)" J g~} = J,

1 1

since gJg' = J. Similarly, det{gg™®) =1 = 1-det g~ = 1. Assume that

1 i

and thus det g~

e-lr g 'ey < 0; that is, g7' reverses the orientation of the e; axis. But g preserves the orientation
of the ej-axis, and thus g~'g must reverse this orientation. But e-lrgflgel = 1> 0, and so by
PRrOPOSITION 2.2.11, g~ g is orientation-preserving, a contradiction. Thus eIg le; > 0 and

g1 € 50(1,2)p. Thus SO(1,2)g is closed under the taking of inverses. 0
COROLLARY. S0(1,2) is a group under matriz multiplication.

PROOF. By definition, g € SO(1,2) = ¢Jg' = J and det g = 1. Thus clearly $SO(1,2) is a
subset of GL(3,R). But in the proof of THEOREM 2.2.16, we showed that given g such that
gJgT = J and det g = 1, then (g~ 1)J(¢~1)T = J and det ¢g=! = 1. Similarly, given ¢’ such that
¢J(¢)T = J and det ¢’ = 1, then (¢'¢).J(g'g) " = J and det(g'g) = 1. Thus SO(1,2) is a subset
of GL(3.R) which is closed under the matrix product and the taking of inverses, and the result

follows. 0

We shall now show that all syminetries of HL are linear. In order to do this, we require a
(topological) metric (A.2.44) on HL.

PROPOSITION. The mapping d(-.-) : HL x HL — R, d(p,q) = cosh ™' (p = q), is a (topological)

metr.c on HL.
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PRrooFr. Consider the curve 4g(-} = {cosh(-).sink{-),0) parametrizing the geodesic 7o of PROPO-
SITION 2.2.6. For eachu € R, 4p{u)>4(u) = 1. Thus the parametrization of HL in PROPOSITION
2.2.1is in terms of arc length along the geodesics 7o, and so (A.2.45) d(v0(0}. vo{ug)) = ug. From
THEOREM 2.2.27 (which does not depend on this result or any which follow from it) the isome-
tries SO(1.2)p act transitively on #L. Thus given any p.q € HL, not necessarily lying on the
geodesic yg, there exists a g € SO(1.2)g such that g(p) = (1.0,0). Then g(q) = q', where by
PROPOSITION 2.2.7 there exists a geodesic of the form ~y{u) passing through (1,0.0} and q'.
Thus for some 8 € R,

g(p) =70(0) =(1,0,0}) and g(q) = vyolup) = (coshug.sinh ug cos &, sinh ug sin #)
and

pPOa = g 'v(0)®g o)
= 70(0) © voluo)
= {1.0,0) ® (coshug,sinhug cos ¢, sinh 1y sin #)
= coshup
= cosh(d{70{0), v0(uo)))
= cosh(d(g{p). 9{q))) (2.2.11)
= cosh{d(p.q)).

where (2.2.12) follows from THEOREM 2.2.9: g™(ds?) = ds®, and so i g*(ds) = [;° ds. Thus

d(p.q) = cosh™}(p ® q) for cach p.q € HL, and we have established a (topological) metric on
HL. |

THEOREM. All isometries of HI. are lineur transformations which preserve the Lorentz product.

PROOF. In PROPOSITION 2.2.18, we derived d(-,:) : HL x HL — R. For each isometrv p
of HL, d(p(p). p(q)) = d(p.q), since g*(ds?) = ds*, and so [;° g*(ds) = [;°ds. In (2.1.2)
we constructed a basis {&i,&y,&3} of R1? consisting entirely of timelike vectors, and so by
PROPOSITION 2.1.15 elements of HL. For some isometry g of HIL, i = 1,2, 3, define the linear
map g taking &; to p(&;). Since {&;.,89, &3} are spanning for RM2, then g is uniquely defined.
We express each standard basis element e; = {1.0.0}.ez = (0.1.0} and ez = {0,0.1) in terms

of the basis {&), 82,83} &; = I)_,a;8; for a; € R.4.j =1.2.3. Then
glei) Dgles) = g(Sioiaumd) © g(Tioiah8)
= T} anp(é) © E,a0(8)
= T} 1mkio(€r) © p(&r) (2.2.12)
= Zi,zzﬂlikaﬂ cosh(d(p(€x). p(&)) (2.2.13)
= X} o10ika cosh(d((8). (&)
= T m10ik0518 © &
= I} jauér O T aq8)

= & ey



2.2.20

2.2.21

22 CHAPTER 2. TWO MODELS OF HYPERBOLIC PLANE GEOMETRY HCH

where {2.2.12) follows from the linearity of @, and (2.2.13) follows from the definition {A.2.44)
of a (topological) metric. Thus g is an isometry of R!2, and thus the composition g~ o p is an

isometry of R!?, and for any p € RY2, then

g op(p)@er = p(p) @ Tj_1ai€;
= Zouup(P) O p(&;) (2.2.14)
= %2_ 0y cosh(d(p(p). p(&;))) (2.2.15)

= LJ_,ai; cosh(d(p, &))

= POI] a8

= pdey.
where (2.2.14) follows from the fact that the isometry g is linear, and {2.2.15) follows from the
fact that p is an isometry. Since this is true for ¢ = 1 to 3, then it must be that g=! o p(p) = p
for each p € RM2. Then ¢! o p = ¢, the identity transformation, and it follows that p = ¢: thai
is, p is a linear isometry. 0O
We require the next three lemmas to prove the major result of this section.

cosh(¢) sinh(?)
sinh(¢) cosh(?)

L 4
<Va f>
R
V2 V2

ProoF. Direct computation using the the characteristic polynomial 1 — 2z cosh{r) + 2%, which

LEMMA. The matriz l :| has an eigenspace

A A

and eigenvolues e* and e™".

has roots z; = e* and zo = e, where the eigenvector (1,1} corresponds to x; and the
p 1

eigenvector (1,—1) corresponds to z3. Thus particularly the eigenspace can be expressed as

L 1

<\/i‘ V2 > m
1 1
val L V2

.

¢
LEMMA. The maltricn = [ d has an eigenspace

a V1-+qq’

{E4SbARN)

and eigenvalues e e~ 1, where p € R? such that /pep =1 and p s orthogonal to q, where

the eigenvectors form an orthonormal basis for R3.

PRoOOF. In the proof of THEOREM 2.2.9, we showed that q is an eigenvector of (1 4 qq’)

corresponding to the eigenvalue ¢?. Consider a value d € R such that

T d
q l+qq q

1}
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In order to solve for d, we set up the system of 2 equations

Vi4+aq'q+dg = A (2.2.17)

qqted = M (2.2.18)

But in the proof of THEOREM 2.2.9, we showed that /1+qq’q = ¢q and ¢ = /[[q|2 + 1.
Thus substituting +/1+qq’ -q = ¢q inte (2.2.17} and ¢ = /||q||* + 1 into (2.2.18), this system

of equations simplifies to

(c+d)g = Mg (2.2.19)
(=D +ed = M. (2.2.20)

Since q # 0, from (2.2.19} we have A = ¢ +d. Substituting this into (2.2.20}, then
P —1+ed=(c+d)-d = d=c*-1.

Thus, since A = ¢+ d, then

{)\1 =c+VE-1 for d=+/c2—-1

M =c—Ve2-1 for d=—ve? -1

Since ¢ > 1and Mhe = (c+vVe? —1){c—vVeE - 1) =1, weset A=1InA =In{c+ V2 1) >0,
which then implies that -A = InAs. Then Ay = ¢* and Ay = ¢~*. Thus the corresponding

eigenvector of {2.2.16) is given by

-

q q q q
and so
A =1
V2 V2

J— ’ J—
V2iqj| v2llail

are eigenvectors. If we take p € R® normal and (Euclidean) orthogonal to q, then

o v o} o

and we may associate to the eigenvalue 1 the eigenvector (0,p). Then indeed the matrix n has

1 -1
v 75 0
an eigenspace < V2 , ‘gi \ [ ]> consisting of orthonormal vectors. O
Valal] [ Veiai] (P

4]
(] i8 a matrmz [
1

|}"

=3
< S-S

1

2.2.22 LEMMA. The product [ V2

0
9
Vilal  Valal p]

| <
Lt 8]

Sl

0
}, where Ry € 50(2).
¢
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Proor. By matrix multiplication,

L L g
A =1 0 ve V2
V2 V2 =L L g =
9. 9. p V22
vlall  V2lal 0 0 1

where the matrix [W?TII

Pep = 1 and p is orthogonal to q. But in {A.5.5), we no
of elements of O(2): thus [qu p] is in O(2}. Since Wgﬂ

[all

THEQHREM. Fuach element of SO(1,2)g can be expressed as

and p are orthogonal and of norm 1, then it follows that [hlq p] ¢ S0(2).

0 0

b & o

q
(lall

p] has two columns that are orthonormal vectors, since by definition

ted that this was a defining property
P i = 1 by the fact that the vectors

O

the product bk where

-
1 0 0 coshfy simhés O] {1 0 0
beB= 0 cosf; —sindy| |sinhf; cosh@y 0| |0 cos@y —sind,| |f1.f2€R
0 sinf; cost 0 0 1] 10 sinfy cos#;
and -
1 0 0
keK=<¢ 10 costhy —sinfs| |03 €R
0 sinfs cosly |
that 15, SO(1,2)g = BK.
Proor. Since from LEMMA 2.2.20,
A 1 1 . 1 17
[e 0 } _|\vi & [cosh A sinh )\:l I A
A =1 1 ; -1 1
0 e = 7 sinh A cosh A = 7
then for 8; € R,
“6 0 0 L0 hoy sinhéy 0] [% 4 o]
e v A coshf, sinhé, 5
0 en ol = 6,-% 715 0| |sinh#; cosh¢; 0 &% 71-3 0
0 0 1 0 0 1 0 0 1 0 0 1
Thus by LEMMA 2.2.21, the matrix n can be expressed as the matrix product
n S %’5 %’E 0| |coshd, siohé, 0 71-5 ﬁ 0 1 0 -1
Vi V2 =1 L 0| lsinng, coshsy 0| |22 L o0 Vi V2
q a9 pl| V2 V2 1 1 vz - & p
valal  VE|all 0 0 1 0 0 1 0 0 1 VZlall  VZlall
which by LEMMA 2.2.22 simplifies to
coshé, sinhé; 0
1 0 _ 1 0
sinh#, cosh# O -
0 Ry, ) N U S
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1 0
for Ry, € SO(2). But by THEOREM 2.2.9, g =n lO } for g € SO(1,2)g. where Ry, € SO(2).

3
Thus
coshf; sinh& O
ll } iy o ol PO [1 0
g= sinh; coshth -
0 Ryg, ) 0 ) 0 Ry | |0 Ro,
for Rg,. Ry, € SO(2}. O

The transformations k(@) € K are the Euclidean rotations of #£. The transformations
b(01) € B are generally referred to as the Lorentz boosts.
In the subset of Lorentz boosts of SO(1,2)p we denote particularly

cosht sinht O
sinht cosht 0] = b1. (2.2.21)
0 0 1

We will denote the matrix diag{—1.—1,1) by gs.

COROLLARY. Any element of SO(1.2) may be written as o product

COShBl sinh91 0

O Y B FRRCR RPN
8111 COS

0 R, 01 0110% 0 Ry |

where Rg,, Rp, € 50(2).

ProorF. In PROPOSITION 2.2.14, we expressed SO(1,2) as the union SO(1,2)qU S0~ (1,2). But

S0O7(1,2) is the set of all matrices
e q' -1 0
a V1+aq"| |0 Ry

where Ry, € O(2),det Ry, = —1. We show firstly that each element in O(2)\SO(2} is of the form
Rg, g2 where det Ry, = 1. Given Ry, € SO(2), then det Rg, = 1 and so det(Rp, g2) = 1-—1 = -1,
and {Ry, 2|61 € R} C O(2)\50(2). Further, consider some element Rz € O(2)\SO(2). Then
det Az = —1 and thus det(Ragg) = 1 and so Rj g2 = Ry, where Ry, € SO(2). But then
Rg = Ry, g2 and it follows that Rz € {Ro,g2 : 61 € R}. Thus O(2)\SO(2) C {Ry, g2 : 6, € R}.
Since we have both containments, it follows that O(2)\SO(2) = 4,92 : 0; € R} and thus each

element of SO7(1.2) is a product

-1 0 0
[c q’ } 1 0 10
l1+qq’| |0 R
q qq 8, 0 1
where Ry, € SO(2). But in THEOREM 2.2.23 we expressed
T cosh® sinhé; 0O
c q 1 0 1 , 1 0 1 0
= sinh#; coshf; 0O T .
q 1+qq'} |0 Ry, 0 Rg, 0 0 ! 0 RGz 0 Ry,
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where Ry, € SO(2). Thus

cosh#, sinhé; 0

€ q 1 0 10 . ng 0 1 0 1 0
g2 = sinht/y coshth g2
a’ V1taqT] [0 R 0 Ra) | o 4|10 R]{0 R
and the result follows. O

COROLLARY. Given any two orthonormal bases {e].ef. ey} and {ef, e, e} of R1? positively-

oriented in time, there exists an element g € SO(1,2)g such that (e1), g(ez), g(es)} = {e, ). e}}.

ProoF. Consider the standard orthonormal basis {e;, ez. ez} of R1-2. By the conditions eT gep >
0,gJg' = J,det g = lon g€ SO(1.2)q, as in PROPOSITION 2.2.15, each element of SO(1. 2)g can
be considered as a matrix g = {gl 92 93} where g1. g2. g3 are Minkowski-orthonormal column
vectors, and the basis is positively-oriented in time since ¢gy1 > 0. Further, from PROPOSITION
2.2.15, we see that any matrix g = [g; 92 93] where gy.¢g9. 93 are Minkowski-orthonormal
column vectors must fulfil the property gJg' = J, and so is an element of O(1,2). Since the
vectors are orthonormal, then det g = 1, and finally since the orientation of the vectors comiplies
with the positive timelike orientation of R1%, then g, is such that g1, > 0, and so e] ge; > 0:
that is, g € SO(1, 2)g.

Thus given any 3 vectors €;.€p and €3 on HL which are Minkowski-orthonormal and give
an orthonormal basis positivelv oriented in time, then [él ) é3] is an element g € SO(1, 2}y.
But then there exists a product bk € SO(1,2)¢ such that bk = g. Thus (bk)"!g = 1, and &,
is mapped to e;, €; is mapped to e; and €3 is mapped to e). Similarly, [é’l éh é’a] ig an
element g’ of SO(1,2)g such that ¢’ = ¥'k". Thus (J'k') " '¢’ = 1, and &/ is mapped to ey, &, is
mapped to ez and &5 is mapped to eg. Then the composition of elements (b'%')(bk)~! maps the

orthonormal basis {&;.8&y,83} to the orthonormal basis {&].&5, &3}, and the result follows. O

PROPOSITION. If a linear transformation of R1"? fizes each element of an orthonormal basis for

RY2, then it is the identity transformation.

ProoF. Consider the linear transformation A such that for the orthonornial basis {e;.e;. ez},

then k(e1) = ey, h(ez) = ez and h{e3) = e3. Since a = a;e; + a1ez + azes, then
h(a) = h{a1e1 + azez + ages) = arh{er) + agh(es) + ash(es) = a1e1 + user + azeg = a

by assumption. Since a was arbitrarily chosen, then h fixes each elenient of R1? and so must be

the identity transformation. a
PROPOSITION. SO(1,2)p acts transitively on HL.

ProoF. Take p and q any two points in HL. Then for some (u,,.vm) € U; (un.v) € Uy,
P = €{Um.VUm) and q = ¢(u,,v,) in the patches ¢'(u.v) or €{u.v). Since in the proof of

PROPOSITION 2.2.1 the transition maps are Euclidean rotations about the ej-axis , we can
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assume that the two points lie within the same patch €. Thus there exists a Euclidean rotation
k(vn — vy} such that

1 0 0 COSh Uy, cosh uy,
0 cos(vn — vm) —sin{vy —vy)| |sinhwg, cosvn | = |sinhu,, cosv,
0 sin{vp —vp) cos{vg — Up) sinh ty, sin vy, sinhup, sin vy

and a Lorentz boost by (un — 1) such that

cosh{un, — wm) sinh(u, —um) 0 cosh U, cosh g,
sinh (tr — ) cosh(u, — ) 0] |sinhug,cosv,| = [sinhw, cosuy,
0 0 1t !sinh,, sine, sinh u, sin v,
Thus the composition k(u, — ) 0 by (v, — va)(p) = Q. 0

2.2.28 ProprosiTiON. The elements of SO(1,2)g are orientation-preserving isometries on HIL.,

PROCF. Since each g € SO(1.2)q is linear, then the Jacobian matrix J, = g. But clearly since
g € 50(1.2)g, then det g = 1. Thus det J, = 1 and by (A.2.35), g is orientation-preserving. O

2.2.29 THEoREM. SO(1,2) is the symmetry group Sym(HL).

ProoF. From PROPOSITION 2.2.28, the elements g € SO(1, 2)g are clearly orientation-preserving
isometries of ITL and so are symmetries. In PROPOSITION 2,2.19 we showed that all isometries of
HI, are linear. Assume that there exists some linear symmetry i of HL which is not an element
of SO(1.2)y. Since h is a symmetry of HL, it sends the positively-oriented orthornormal basis
{e1,e2,e3} to {h(e1), h{es), h(es)} = {e], e3. e3}. But from PROPOSITION 2.2.25, there exists g
in SO(1, 2)p such that (e;), g(ez), gles}} = {e}.e5, e4}. Thus

g ohle) =er g oh(ex) = ez and g oh(es) = eg

and so g"! o f is a linear transformation of R"? which fixes the orthonormal basis {e1, e, e3}).
But by PROPOSITION 2.2.26, then g 'oh = 1. Thus gg~loch =g = h = g and so h € SO(1, 2)g.
The result follows. O

2.3 The upper half-plane model

2.3.1 The upper half-plane as a geometric surface

Define the open subset HP = {(u,'f') cR? > 0} C R?. Since HP is an open subset of R?
parametrized by the identity map ¢ : R — R?, «(z,y) = (x.y), then by (A.2.35), HP is an

abstract surface.

2.3.1 DErINITION. The abstract surface HP equipped with the syminetric nondegenerate bilinear
2 2
form ds? = du—:rdv— is the upper half-plane model HP = (HP, ds?).
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2.3.2 PROPOSITION. The upper half-plane HP is a geometric surface.

PRrROOF. Since HP is an abstract surface, we require only to show that the metric ds? is a

Riemannian metric (A.2.18). In order to show this, we express each dszl(uu‘.,.o) in matrix form

1
0
T 2 qQ1
P Qlugwed = {p1 p2| | °
o [ ] 0 | |o

vé

as in (2.1.1) where p and q are the vectors p = (p:.p2) and q = {g1.¢2) in R? associated to
the tangent vectors p = p; %*(uo-vn} + pg%[(uwu) and g = ‘h%huo,vn) + q%%kﬂo-vo) in the fibre
T(up o) P of THP. Then

1. Bilinearity follows immediately from the linearity of the matrix product.
2. By the symmetry of the matrix @, the quadratic forms qTQ|(u0‘UU)q are symmetric.

3. For each (ug, vg) the matrix Q) is diagonal with a double eigenvalue U—]'g' which is positive for
4]

every (ug.vo) € HP. Thus by (A.1.8), the quadratic forms q' Qq are positive-definite. O

2.3.2 The symmetry group of [P

Since (A.2.42) any isometry of an abstract surface is necessarily geodesic-preserving, we attempt
to find the isometries of HP by first constructing maps of HPP that map geodesics to geodesics

and which preserve HP.

2.3.3 PROPOSITION. The intersections with HP of the lines {v = ¢ : u € R} perpendicular to the u-
azris and the Buclidean circles {’U2 +(u—-k)? = ;]'2' creRr#0, (uv) € ]Rz} centered on the

u-azis which intersect that axzis perpendicularly are geodesics of HIP.

PRrROOF. Since F = 1—}2 =, F =0, then E, = G, = F and the identity map is a v-Clairaut
patch (A.2.50). Then by CLAIRAUT’S THEOREM (A.2.51), the paths v = {(u(v),v) : v € RY},

where u(v) solves the equation

du _ r N /du—/ rdv (2.3.1)
dv :l:f;’lgfrz :tf'l_}!__rg o

for some r € R, are geodesics of HP. Taking r = 0, this equation reduces to du = 0, and so the
equation (A.2.42) has a solution v = ¢ for ¢ € R. Taking r # 0, then

fdu:f% = —vy/h -1t =dr(u-k).

/-
= ol +(u-k)? =%,

fork.c € R. Thusthecurves {u=c¢ : w € R} and {v2 +(u—k)= ;]'g‘ creRr#0,ueR,ve R+}
are geodesics of HIP. O
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THEOREM. The geodesics {(u.v) € HP : u =0} and {(v.v) e HP : v? + (v — k)2 = L.c # 0}
are eractly the geodesics of HEP.

PrOOF. We have shown (PROPOSITION 2.3.3) that the intersection of these paths with HP are
geodesics of HP. In order to show that there exist no other geodesics, we will show that through
every point p of HP and in the direction of every unit tangent vector in TpHP, there exists a
geodesic of the form {u=1c : wve R} or {(uv.v) € HP : v’ + (u—k)?> = 5.7 £ 0}. Then we
have found all geodesics of HIP, since from {A.2.40), a geodesic v is uniquely defined by a point
p € v and the unit direction vector v tangent to v at p.

The tangent plane ToHP to any point p = (ug, vp) in HIP is isomorphic to 2-dimensional real
space R?. Thus any unit-length tangent vector q at p has the form q = (cos6.sin#) for some
# € R. A (Euclidean) circle C passing through p in the direction of {cos#,sin{/) is such that
(cosd,sin ) is perpendicular to the radius of C at its point p of intersection with . This radius

is a {Euclidean) line that is perpendicular to (cos 8,sin#) and passes through p, with equation

defined for all # # wk. This line intersects the u-axis at the point g = gg;g’ljg + up, which is

defined for all @ # Tk. But then \/ (g + (ug — 33)“"59)2 is the radial length of the {Euclidean)

sin &

circle centered at g that passes through p tangent to (sin 8. cos 8); thus this circle exists and is
uniquely defined.

In the case of § = $k, then = = wup is the unique Euclidean line passing through p in the
direction of the vector (cosfl,sinf} = (0,1}, while in the case of § = wk, then (cosd,sinf) =
(1,0), and the radius is the line {(u,v) €R? : u = up}: thus the circle with radius of length
vy and centre wuq is the unique geodesic passing through (up.vp) in the direction of cos . siné).
We have thus constructed a unique geodesic passing through p in the direction of every unit

tangent vector (cosf,sinf) € Ty HP. O

Using the well-known vector space isomorphism ¢ : R? = C, ¢{x.v) = u-+1v, in the next sections
where it will simplify calculations we are free to use the complex number z = u +iv where v = 0
to express a point (u,v) in the upper half-plane HP.

Having defined in (A.3.1) the complex projective line CP! = C U {o0} , we may identify
HP with the subset {Im(z} > 0 : z € CP'}. Thus we can act on HP with the Mobius trans-
formations p(z) = {a”ﬁ aw — vl # 0} which from (A.3.10) map the family of Euclidean lines

wztw?

and circles to itself, and thus are possibly geodesic-preserving on HP. We use the basic Mobius

transformations of (A.3.3) to express each p as a composition of simpler transformations.

PROPOSITION. The basic Mdbius transformations 6o for Re(a) < 0 and 75 for Iin(8) < 0 do

not preserve HP.

ProoF. Consider the dilation d, : z — @z where a = a; + e and Re{a) = a1 < 0. Then the
image under &, of i € HP is §,(i) = @i = i{ar + ie2) = —az + a1# which is not an clement of
HP, since Im(5,()) < O.
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Similarly, given any # € C, 5 = b1 + ibg, then for any v = v +iv € HP, 73(v) = (b1 + ) +
i(ba +v), where Im(7g(v)) < 0 if by < —v. Since there exists at least one point in HP such that
by < -~ for any negative by (consider the element (b1.b2) = (b1.2+ 1)), then it follows that 75
does not preserve HP. a

We note that by taking 8 € R, then all translations 73 preserve H7. We introduce the
restricted Mdébius transformations

az +b
cz+d

p(z) = where a.b,e,d€ R and ad—bc#0.

These are compositions 7 o 5o gg1 00,070, where 7, : 2 — z + b (translations), §.: z — ¢z
(dilations), and og1 : 2 — % (inversions), and specifically 7 and § are the translations
7(2) = £ + 2 and dilations 5(z) = (bc — ad)z, respectively. Note that if a < 0, then from

ProOPOSITION 2.3.5, &, : 2 — az does not preserve H'P. However,

PROPOSITION. If a < 0, then the conjugate 5, = aZ preserves HP.

ProOOF. Consider the transformation §, = aZ where a < 0. Then for each z € 7P, that is,
z = u+iv where v > (, then Su(z) = alu — iv) = u — iav, where Im(ga(z)) = —av > 0. Then
the imaginary part of the image of each element of %P under &, is strictly positive, the result
follows. O

REMARK. We will thus consider the restricted Mébius transformations which are compositions

Fodoagyod. 0108 of the basic restricted M&bius transformations

by | k=t

miz—az+b deizeocz (¢>0), d:iz—cez (c<0) and oggy:izy (2.3.2)

for 7(z) = & + = and §(g) = (be - ad)z.
PROPOSITION. Fach restricted Mébius transformation of (2.5.2) preserves HP.

PRrROOF. Consider the arbitrary element 2 = u + 41 € HP: that is, Re(z}) = v > 0. Then
() = (w + b) + v and Re(7p(z)) =y > 0. Similarly, given ¢ > 0, then §.(z) = cu + icv, and
Re(d.(z)) = cv > 0, while given ¢ < 0, then §.(z) = cu — icv, and Re(d.(z}) = —cv > 0. Finally,

o012} = 1%"}, and Re(op(2)) = ﬁg > 0. The result follows. D

From (A.3.14), the (restricted) Mébius transformations are conforinal. Thus they will preserve

the property of perpendicularity to the u-axis. We prove further that

PROPOSITION. The restricted Mdabius transformations send geodesics to geodesics.

PRrooF. Since all Mébius transformations arc conformal (A.3.14) and preserve the family of
Euclidean lines and circles (A.3.10), thus particularly the restricted Mébius transformations
preserve the class of Euclidean lines and circles perpendicular to the u-axis. Since they send
real numbers to real numbers, they preserve the real axis of € and so will map Euclidean circles

centrered on the u-axis to Euclidean circles centered on the u-axis. The result follows. O
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PrROPOSITION. The composition 4 = T 0 8o g0.1 © 8e © Ty © b, of basic restricted Mébius trans-
formations of (2.5.2) has the form pA(z) = “f“’ where be — ad < 0, or p(z) = %j_‘g where
be —ad > 0.

ProoF. Applying 7o 5o gp198.0mp0d, to 2 € C, then

) 00Ty 00.(2) be - ad +a be - ad + alcz + d) acz+bc+ad—ad  az+b
o . = — _
Todoop00:0Tpo 0l clez+d) ¢ clcz + d) clez + d) et d

Since 6. appears twice in the expansion ¥ oo 0g) 06,07 0§, and conjugation is idempotent,
then the sign of ¢ can be neglected. Thus we will take the conjugate of z twice where be—ad < 0

(once from ¢ and once from §) and once where be — ad > 0 (from o). The result then follows

from the idempotency of conjugation. O
. g 3 . b _ -
THEOREM. The restricted Mdbius transformations ,u(V) = 2210 ad - be > 0 and fi(z) = %g,

.,

2 of HP.

2 2
ad — be < 0 preserve the metric ds® = du 3;‘“’

PROOF. We express the restricted Mabius transformations u(z) = L"’g for ad — bc > 0 in
complex coordinates by p(z) = p(u + i) = 2’ = v’ + iv’. Then

, _az+b acu® + adu+ beu + acv? +bd  (ad - be)v
FA

= —_ ) + Lt
cz+d lez + d)* ' lez + d|? w
:_acu + adu. +bcu+acv + bd do = {ad — bc)v
where u oz + d| and v’ —m—
In complex variables,
dzdZ Az d — bedz
d52 — Z|22 - dzf:w,dzz-(i—c);
3 Z (CZ + d)
_ (ad — bc)dz (ad — bc) dzd? _ (ad — be)?dzd3z

and correspondingly d2 = NCEYIE Thus dz'dz’ = (Grlard)? =

,_ {ad = bo)’dz'dz’  dzdZ |ez+d|' _ dzdz
~ {ad - b)2(¥)? ez +d* WP v
Thus p*(ds?) = ds?, and from (A.2.26) it follows that x is an isometry of HP. The case of [

lez +4d* and
50

follows identical steps. 0

PRrRoOPOSITION. The union {,u(z) = %j_'g : ad — be > 0} U {ﬁ(z) = fzfig s ad —be < 0} of all re-

stricted Mdbius transformations, forms e group under the operation of compositon.

PROOF. Since (A.3.13), the Mobius transformations form a group, then we require only to show

that this set of restricted Mébius transformations is closed under composition aud the taking of

inverses. In (A.3.12) we stated that given two Mdobius transformations u, y', where p = ﬁ::ﬂ
and p' = 3::]:5: then their composition p' o u is the Mébius transformation #‘:ig where the

complex coefficients A, B, T, Q2 are such that
a Blija A A B
v owl||v W T Q
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Thus particularly where y = % and i = %* a.b.c.d € R, then the composition p' o p is
the Mdbius transformation f"rziﬁ where

A B aa’ +be' ab + bd'

T & ca' +de b +dd|

E g ! '
Thus x’ o i has the form p” = Eﬁgfizif%ziggbb,ﬂg,g, which is a restricted Mobius transformation

since aa’ + be'. ab’ + bd'. ca’ + dc’. el + dd’ € R. Further, since

a b

¢ o

aa’ + be'  ab’ + bd'
ca' +dc! o +dd

a b

c d

then (aa’ + b/ ){cl’ + dd’) — (abl’ + bd){ca’ + dc’) > 0, and the resticted Mobius transformation
2%’;—3 and g’ = ‘C*,' g;i'g: then the coefficients of o u' are

given by aa’ + bc', el + bd'.ca’ + d¢’.cb' + dd’ € R, and so this transformation is a restricted

is of the required form. Similarly, if ji =

Mobius transformation. Then
(aa’ + b (eb + dd') — (ab’ +bd)(ca’ + dc') = {ad — be)(d'd — ') > 0

and the resticted Mobius transformation is of the required form. Finally, if p = ﬁ and
~7 __ u'ED

i = %%y, then the coefficients of uo p' are given by aa’ + be’,al’ 4+ bd', ca’ + de.clf 4 dd' in

R, and so this transformation is a restricted Mobius transformation. Further, the coeflicients
(aa’ 4+ bc'}{cb' +dd") — (ab + bd')(ca’ +dc') = {ad — be)(a’'d’ — b'c’) < 0, and the resticted Mobius

transformation is of the required form. We show that this set is closed under inversion. For

any restricted Mohius transformation p of the form p = g:ig, then ;~! has the coefficients

A, B, 01, T where since pou~! =,

-
d _
[A B _g [a. h} g [a b} _ |:—d_a. v —Gd_bbc}
T Q c d ¢ d s A

where ad ~ be > 0. Then g~ ! is the transformation z — _dj:_ba, which is a restricted Mobius
transformation. Secondly, for any restricted Mobius transformation & of the form g = ggib,
then Z~! has the coefficients A. B.Q.T where since o i~ ! =,
-1
[A Bl _gle v ::“5_:[(1 b} :[aﬁm T—_IEJ
T O ¢ d c d T i

dz+b

—zir’

transformation of the required form. We have then shown that this set is closed under the taking

where ad — be < 0. Then i~! is the transformation z — which is a restricted Mobius

of inverses. The result follows.

COROLLARY. Any composition of basic restricted Mobius transformations is o transformation

az+b
cz+d

-, oi+b
or iz g

of the form p: z —

ProofF. Clearly, the basic restricted Mobius transformations &, @1 and 73 are all transforma-

tions of the form p: z — gjjg, where ad—be > 0,0r iz — ;—‘%, where ad — bc < 0: §,. 7y have
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the form g, while gg 1 has the form fi. But we have shown in PROPOSITION 2.3.12 that the set
of all such transformations is closed under the taking of compositions. Thus any composition of

basic restricuted Mabius transformations has the form p or 4. O

COROLLARY. The set of restricted Mdbius transformations {,u(z) =22 ad—he > 0} forms a

group under the operation of compositon.

ProoF. From PROPOSITION 2.3.12, the composition of p(z) = 2:;'_'3 and p = %—g—: is the

restricted Mobius transformation
g lad' + b))z + (ab -+ bd")
" e’ + d)z + (b + dd')

where it follows that the coefficients (ea’ +b¢'}{cl' +dd’) — (ab’ +0d")(ca’ + d¢') = (ad — be)(a'd’ —

V¢/) > 0. Thus this set is closed under the taking of compositions. Similazly, for any u of

the form p = %, then we showed that p~! is the transformation p : z ~ fg_"’u, where

ad — be = da — ¢b > 0 and so this set is closed under the taking of inverses. The result follows.O

THEOREM. The basic restricted Mobius trensformations §:z— az.a >0 and7p: z— 2+ b are

orientation-preserving for all elements b € R, while the basic restricted Mdbius transformations
1

0a 2+ aZ, a <0 andog : z— ; are orientetion-reversing.

Proor. The transformation op1 : 2 — ;l can be expressed in complex coordinates as the

transformation og; : w + v v mu_vﬁ’ + zm = i + 1?, which has the Jacobian matrix
v w2 —2uv —('U2 _ 'U.z)(‘UQ _ u2) _ 4’(121’2
R A Ul IR Pl A = -1
g1 —~ 2y w12 7o, :

WA e (u? 4 )2

Thus by (A.2.35), the transformation &g, is orientation-reversing. In complex coordinates, 7,

can be expressed as the transformation 7 : u +4v — (u+ b) + ¢, which has the Jacobian matrix

10
Jp, = = det Jp, =1
0 1

and 73 is orientation-preserving. The transformation 6, : z v+ az for a > 0 can be expressed
in terms of complex coordinates as the transformation &, : u + iv — au + {av, which has the
Jacobian matrix
Js, = [a 0} = det Jy, = a?
0 a
which is positive for all ¢ € R and thus the transformation d, is orientation-preserving. The
transformation &, : 7z —+ aZ for a < 0 can be expressed in terms of complex coordinates as the

transformation 8, : u + iv « au — iav which has the Jacobian matrix

Jgn:{a O] = detJ(;-a:—a,2
0 -a

which is negative for all @ € R and thus the transformation &, is orientation-reversing. a
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COROLLARY. The restricted Mébius transformation u: C —» C.  p(z) = ‘3“13 ad —be > 0

are exactly the orientation-preserving isomelries of HP.

PROOF. In PROPOSITION 2.3.10 we expressed u as the composition g = 7o do 019 0:0Ty0d,
or Fodo 0p,1 © 5. 0 Tp o 0, where the cocfficients ad ~ be > 0, and 7 as the composition i =
Fodo 0p1000Tp o0, OF F0 §o Tp,1 0 .o 0, where the coefficients ad — be < 0.

Firstly, consider the case of . Where ¢ > 0 the Jacobian matrix of x4 has determinant given
by the product det J, = det J; - det J; - det Jy, - det Jy, - det Js, which by ProposITION 2.3.15
is the product of two negative and four positive determinants. Where ¢ < 0, then the Jacobian
matrix of 7 has determinant det J; = det J; - det JS - det Jgﬂ ~det Jy, - det J; and so is the
product of four negative and two positive determinants. Thus in both cases det J,, > 0, and the
transformation is orientation-preserving.

Secondly, consider the case of . Where ¢ > 0 the Jacobian matrix of i has determinant
det J, = det J; - det J; - det J5, - det Jy, - det J5. which by PROPOSITION 2.3.15 is the procuct
of one negative and five positive determinants. Where ¢ < 0, then the Jacobian matrix of & has
determinant det .J; = det Jy-det J;-det J5 -det .J; -det J5 and sois the product of two positive
and three negative determinants. Thus in both cases det J; < 0, and so the transformation is
orientation-reversing. Since each restricted Mobius transformation is of the form p or i, the

result follows. A

PROPOSITION. Let C; and C be two geodesics in HP and z1 an element of C1, za an element of
Co. Then there exists an isometry p or & of HP which takes C1 to Co and 2y to zo.

PRoOF. We will show that there exists a transformation y taking the arbitrary circle C; to V,
the v-axis, and z; to i. Then there exists an isometry u’ taking the arbitrary circle C; to ¥ and
z9 to i, and so the composition (u')~1 o u takes C; to Cz and z; to zo.

Assume initially that Ci is a Euclidean line through ¢ on the u-axis. Then the translation
T_q, maps C1 to ¥V and 21 to some point b on V. Then the transformation § 1 maps bi to ¢ and
preserves V, and it follows that the composition g = ¢ 10 T_q maps Cy to V and z; to 1.

We then assume that C; is a Euclidean circle which intersects the u-axis perpendicularly in
the points ¢ and b. But by {A.3.9), the circle inversion o, ; will map C; to a Euclidean line
which intersects the w-axis perpendicularly. But then we have already shown that there exists

an isometry g’ which maps o,,(C1) to V and oy,(z1) to i. The result follows. 0

For the next proof, we set up the (topological) metric d : HP x HP — R as in (A.2.44). We do

not explicitly express this metric.

PROPOSITION. An isometry p of HP which fizes a geodesic which s a Buclidean circle will
either preserve the interior of the fized geodesic or interchange it with the exterior. Simalarly.
an isometry p of HP which fizes a geodesic which is o Fuclidean line will either preserve or

interchange the two half-planes of the fived geodesic.
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ProorF. Let p be an isometry of HIP which fixes the Euclidean line £. Assume that p does not
preserve or interchange the half-planes of £: that is, there exists at least one point p within one
half-plane £ of ¢ which remains in £ if p interchanges all other such points (if we assume
that p interchanges one point and fixes all others, the proof follows identical steps). Consider
the family of geodesics of HP which pass through the point p. By (A.2.40), given any point on
¢ there exists a unique geodesic which passes through p and that point. Consider the point s on
¢ such that the unique geodesic which passes through p and s is of minimal arc length within
this family of geodesics, as defined by the (topological) metric d. Denote this minimal distance
d(p.s) by d. Within the half-plane £*, choose a point g such that d{p,q) = d < d. Such a
point always exists: consider for example p itself. Assume that the isometry p maps g to the
half-plane £~. Since p is an isometry, then d(p.c) = d(p(p).plc)) = d > d' = d(p(p). p(q)).
But since p(q) lies in £7, then d{p(p). p(q)) > d, since d is the minimal distance from p to ¢, a

contradiction. Thus p either preserves or interchanges the half-planes of £, O

PROPOSITION. Any isometry o of HIP which fizes the v-azis V and the geodesic Gy centered at

the origin with raidus 1 pointwise is the identily fransformation (.

Proor. For any p € HP, by THEOREM 2.3.4 we can define V', the unique geodesic passing
through p and perpendicular to V, and €', the unique geodesic passing through p and perpen-
dicular to Cp1. Let q and s be the intersections of V' with ¥V and €’ with Cp,;, respectively. But
by definition p(q) = q and p(s) = s, so p(V') =V’ and p(C’) = C' as V' and C’ are the unique
geodesics passing through q and s and perpendicular to V and €y ;. Since the arbitrary point p
is the (unique) point of intersection of V' and €', thus for each p € HP, p(p) = p. That is, p is
the identity transformation on HP. 0

PROPOSITION. Any isometry p of HP such that p(V) =V and p(Co1) = Cp,1 15 either the identity

transformation, the transformation v(z) = —Z, g1 or op, 0 v(z) = _?1

PRroOOF. Since p fixes Cp,1, then by PrROPOSITION 2.3.18, p may cither fix or interchange Zp,
with £y 1. But then either p or oy,1 0 p fixes V,Cp,1 and the interior Zg 1 of the semicircle Cp;: if
p maps Ty 1 to £p,1, then the circle inversion g1 will map the set p(Zp 1} exterior to g to Zp ),
by (A.3.7).

Further, defining the region A = {z € HP : Re(z) > 0}, the half plane to the right of V,
then either p.og1 0 p,vopor vooyy op fixes V.01, Tpy and A: if p fixes V,Cpy and g,
then by PROPOSITION 2.3.18 p may either fix or interchange A with —A. But if p interchanges
these two half-planes, then v o p will map A to A. Similarly, if og; o p fixes V,Cp1 and I,
then opj c p may either fix or interchange A with —A. But if 0p,; o p interchanges these two
half-planes, then v ¢ gp; o p will map A to A.

In any case, let § be this isometry. Then p fixes cach point of Cy 1 because there is a unique
point of Cp1 at any given distance d > 0 from ¢ in the region .A. Similarly, p fixes each point
of V. Hence, p is the identity by PROPOSITION 2.3.19. Then p = t,0p10p = t,vop = ¢ or

vooprop=t thusp=t.p=cpg1.p=vorpg=roog:. O
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THEOREM. Every isomeiry of HP has the form p or [

ProOOF. Let p be any isometry of HP. By PROPOSITION 2.3.17, there is an isometry g that is
a composite of elementary isometries and which takes p(i) to 7 and p(V) to V. Then, pop is
an isometry that fixes V and ¢. As Cp1 is the unique geodesic intersecting V perpendicularly
at i, po p fixes Cg1. But by PROPOSITION 2.3.15, then go g is one of four compositions of the
basic transformations: gop=1¢, poep=o0p1, pop=ror pop=wroapi, and it follows that

1

p=1t0p"}, p=op1 op Y p=vop lorp=vooag: op~ 1., Thus p is a composition of the basic

linear fractional transformations and so from COROLLARY 2.3.13, it has the form g or . C

THEOREM. The symmetry group of HP is exactly the subgroup of restricted Mébius transforma-

tions

az +b
2+

Sym(HP) = {,u.(z): o a,b.c,dER,ad—bc>O}.

C

L]

ProOF. In PROPOSITION 2.3.21 we showed that all isometries of HIP are of the form p: z — %1'7{’,

azi+b
ci+d?

2.3.16 that each transformation in this family of restricted hMobius transformations are exactly

where ad —be > 0 or i : 2 — where ad — be < 0. Further, we proved in PROPOSITION

the orientation-preserving transformations of HP. Thus the transformations g : z — ‘C‘—jﬁb,

where ad — be > 0 are exactly the symmetries of HP. m]

We now express the symmetry group of HP as a matrix group.

THEOREM. The map

o - a b Haz+b
L DR cx+d

is @ continuous group homomorphism from GL(2,R) to Sym(HP).
PROOF. Firstly, 9, is surjective, since given any p = %‘_’1? € Sym(HP), then there exists

a b =1}
h = in GL(2,R) such that ¢ (h) = 22 +0 Secondly, fromn the proof of PROPOSITION
L d} (2,R) 1(h) oz +d p

cz +
! /
2.3.12 the composition of two restri &bi formati aztb ong 0y T2tb
3 e composition of two restricted Mébius transformations z v d and z — et d

dz+b

in Sym(HP) is a restricted Mobius transformation o

b=all +bd, & =ca' + dd, d = c¥ + dd’, where

a b a b| |a ¥ s sl
s g = s alle o and ad —6c#£ 0.

a b |la V . |a b _&z+5_ i by, la b. a v
g L d} [c’ d’}—wl [E J1_62+d~—u(~) we) = L d] n L’ d’]

and the map ¥; from GL(2.R) to Sym(HP) sends the group operation of matrix multiplication

which lhas coefficients @ = ad’ + b,

Thus

to the group operation of composition. Thus 1; is a surjective group homomorphism.
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Finally, we note that the transformation y: 2z — {joo is the identity element of Sym(HP). But

then given any k € R. k # 0, ¥ (k1) = !0':12 =1 (1), and {k1 : k£ € R\{0}} C ker(y1): thus

i1 is not injective. Taking h in GL(2.R) such that ¢y (h) = 245 = Z40 then

ax 40
2 4 d

=z & aztb=z(cz+d) (2.3.3)

must be true for all z € HP such that cz+ d # 0. But then particularly taking z = 0 in {2.3.3),
it follows that b = az+b = z(cz +d) = 0 and thus & = 0. Since ad —bc > 0, then consequentially
ad > 0. Taking z = 1 in {2.3.3), it follows that az = z(cz + d) and thus ¢ = ¢ + d. Similarly,
taking z = —1, then —a = c¢—d. Thusc=a—d =d—a and so ¢ = 0. Since ad > 0, and
by ¢ = 0 then a = d, it follows that ¢ > 0 and thus a € R\ {0}. Thus we have shown that
if h € ker(y), then h € {k1 : k € R\ {0}}, and so ker(¢1) C R*\ {0}. Since we showed that
{k1 : k€ R\ {0} C ker{y1), then it follows that ker(11) = {k1 : k € R\ {0}}.

We show that 1)1 is continuous. Consider some convergent sequence in GL{2,R),

t bt, L bt b
ht = “ such that lim “ = ¢ =l
et t=oo | ot gt e od

: t _ ; to_ ; to_ : t _ ; ty — alzpb! aztb _
Then tl_ﬂga = a*tl_l'rgﬂb = b.t]l)H;cC = C,tl_lglod = d, and :lhngowl(h ) hm Eﬁ? = 228 = i {h).
Thus q preserves the limits of convergent sequences and so must be continuous. The result

follows. O
2.3.24 COROLLARY. There exists a continuous isomorphism mappping GL(2.R)/ {k1 : k € R} to Sym(HP).

PROOF. In PROPOSITION 2.3.23, we defined the group homomorphism v/ : GL(2. R} —» Sym(HP)
such that ker(yy) = {k1: k€ R}, Then Sym(HP) = GL(2,R)/{k1 : k € R} by (A.5.8),
and thus it follows that i; is a continuous isomorphism between GL(2,R)/{kl : k € R} and
Sym(HP). O

GL(2.R)/ {k1 : k € R} is the projective general linear group PGL(2.R).

2.4 Symmetry group isomorphisms

In Appendix A,(A.4.1) - (A.4.4), we introduced the projections between the hyperboiic model
HL and the projective disk model PD as well as between HP and PID. In this section we use
these mappings to establish the isometries between the symmetry groups we have defined in
SECTIONS 2.1 and 2.2. We refer to the definition (A.4.1) of the alternate Minkowski spacetime
2! and the hyperboloid model HL used in [7] and construct the mapping ¢ : R%! — R12, given

by C(pla PZ:PB) = (Ps.'pz.pl).
2.4.1 PROPOSITION. The map ¢ : R?*! — R!? is continuous Riemann isometry mapping HL fo HL.

PROOF. Firstly, note that ¢ is a linear map: given p, q € R**, A € R, then for any sum (p+Aq),
((p+ Aq) = (p1 + Aq1.p2 + Ag2,p3 + Agz) = (p3.p2.p1) + Alas. ¢2.q1) = {(p) + X((q). By the
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linearity of ¢, then d((p)}{v) = ((v) for each v = (v1.vp,v3) € Tp(ﬂz), and it follows that

G(verw) = ¢(v)2¢(w). But for each v.w ¢ TP(T’ZZ), Viov = vywy + viwy — tgwsy, whereas

1 0 0 Wy
C(vOW) = ((v)O((w) = ['va () 'Ul] 0 1 0| {wy| =-—t1w1-+vows +vawz =vE w.
00 -1 un

Thus ¢ is a Riemann isometry mapping HL to HL by (A.2.27). Since ( is linear, then it is

continuous. The result follows. 0

PROPOSITION. The projections m; :HL > PD of (A.4.3), given by mi(x,y.2) = %} =u 4+ iv,

and m : PD = HP of (A.4.4), given by m(2) = fztli, are continuous. Sinilarly, their inverses
— . n ap? L — i \
77 (u+ ) = (l_uz;‘__uz, o if:f_’ﬂ,) and my'(2) = £ are continuous.

PROOF. We consider the component functions of my : HL — PD, where r1(z.y, 2) = (35, 15)-

Since each component function is a rational function, then it is a continuous map. Thus it foilows

that 7y is continuous. Further, the component functions of the projection 7 L.pD o HL,

_1 - Qu 2v 14+ o
T (m,v) = 1 — 2 — 92 ] —2 — 27 ] =2 g2

where

are each rational functions which are defined on PD = {(u, v) e R? ¢ w402 < 1} and so are

* is continuous, and the result follows for ;.

z+1
1z—1

continuous maps. Thus m

Similarly, since 7y : 2 is a rational function which is defined on PD = {z € R? : |2| < 1},

then it is a continuous map o : PD - HP, and my 1. € — C is the rational function

7y t(z) = 2+ and so continuous. The result follows for m. ]

We use these projections in conjunction with the map ¢ to prove the next theorem.

THEOREM. There exists a continuous group isomorphism mapping GL(2, R}/ {k1 : k€ R"} o
SO(1,2)p.

PROOF. From PROPOSITION 2.4.4, the projection 7 of (A.4.3) is a continuous Riemann isometry
between the geometric surface HL and the projective disk PID. Since in PROPOSITION 2.4.1 we
defined a continuous Riemann isometry ( taking HL to HL, then Comy LY PD o HL s a
continuous Riemann isometry between HL and PI). Further, from (A.4.4), ny is a Riemann
isometry from PID to HP. Thus for any symmetry j € Sym(HP), then ?T1_1 ) 7r2‘2 opomyom is a
symmetry of HL. Further, the composition ( o 172_2 opomom ol =(u) is a svmmetry of
HL, and so by THEOREM 2.2.29 an element of SO{1.2}y. The map 2 is a group homomorphism,

since given two elements y; and pp of Sym(HP), then

Lomy2opsomom o( ! = pi(u)ei(pa)

wi1{py o pg) = Cowl_lowz_zoplo'rrgowloC“logoﬂ'l_
Further, assume that g € ker(ypg). Then

pir(p) =ComlomyPopomomo(Tt =t p=mome(toroComylont =,
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and so ker(y1) € {t}. But clearly ¢ C ker(¢), and thus ker{¢;) = {+}. Thus ¢ is a continuous
group isomorphism, and Sym(HP) = SO(1.2). Since by PROPOSITION 2.4.4 w3 and Ti'z_l are
continuous on their domains, then as the composition of continuous functions is continuous,
it follows that 3 is a continuous group isomorphism. But in THEOREM 2.3.24 we defined
the continuous group isomorphism ¢ : GL{2,R)/{k1 : k € R} — Sym{(HP). Thus the map
w2 =Y 0 : GL(2,R)/{k1 : k € R} = SO{1.2)p is a continuous group isomorphism, and the

result follows. O

COROLLARY. There exists a continuous group homomorphism oy mapping GL(2.R) to SO(1.2)g,
where ker(ps) = {k1 : k€ R}

PRrROOF. From THEOREM 2.4.3, the map ¢ : Sym{HP) — SO(1,2)y is a continuous group
isomorphism. But in THEOREM 2.3.23 we defined the continuows group homomorphism 1
mapping GL(2,R) to Sym(HP) such that ker(yy) = {k1 : k € R}. Thus the composition of
maps @2 = w1 0 : GL(2.R) — SO(1.2)g is a continuous group homomorphism, where the
kernel ker(gp2) = {k1 : k€ R}. O
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3.1.1

Chapter 3

The Matrix Lie Group S0(1,2); and
its Lie Algebra

3.1 The matrix Lie group SO(1,2)g
The matrix group
SO(1,2) = {g eR¥3 . gJg " =J det g=1, e] ge1 > O}

is by THEOREM 2.2.29 the symmetry group of the model HL of hyperbolic plane geometry. We
show that it is a Lic group and find its Lic algebra. for which we determine several propertics.
From these results, we may then derive further properties of SO(1, 2)g, including its Iwasawa
decomposition. Following [13], we estabiish a map between the Lie algebra so(1,2) and R}2
equipped with a Lie algebra structure », which has an interesting interrelation with the Lorentz
product, which we discuss in detail. We then establish the adjoint and co-adjoint orbits of

s0(1.,2), using its representation in R}l‘.z.
THEOREM. S0(1,2)y ¢s a matriz Lie group.

PrOOF. By (A.5.3), we require to show that SO(1,2)p is a closed subgroup of GL(3,R). From
PROPOSITION 2.2.16, SO(1, 2)g is a subgroup of GL(3,R): thus we show that SO(1, 2}y is closed
in GL(3,R). Consider a convergent sequence g' in SO(1. 2). Then th_glc (g') = ¢ for some matrix
g. We show that g satisfics the three defining conditions gJgT = J.det ¢ = 1 and el ge; > 0 of
an element of SO(1,2)p. Define the continuous function f(g*) = gii-g{j + géiggj + g‘é,iggj. Since
¢' satisfies the property (g*) T J ¢* = J for every ¢, and it follows that

3 ¢ i 3 .t t 3 .t 4
Emgm.lgml Emgmlgmié E?rngmlgm(i
T _ 3 .t ot 3t ot _
ng - Emgnﬂgml E'mgm,anﬁ zg-m(igm? - J

3 ! i K 3 i i
Emgmiigmi E171.57711.30"7"2 Emgmiigmfi

and thus f(g') = jij, and f(g) = lin (f(¢")) = lim (97,91, + g4:93;) = Jim jij = iy, since con-
tinuous functions preserve the limits of convergent sequences. Since det is a continwous function,
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then lim{det g*) = det g, where lim (detg') = lim 1 = 1 = det g. Finally, e (lim g‘) e =
t—roo oo t—oo t—00

tl_i}rn (e] g'er) = Ll_i+m (g%,), where by the definition of SO(1.2)p, g{; is a contiunous function
(e o] oo

such that for each t, g}, = |¢!;|. But then it follows that particularly tlim (g%1) = tlim g =

—co —00

|rIim (¢5) = lg11], and g1; > 0. Then we have shown that g = ’li{n g* fulfils the three properties
—roo oo

defining an element of SO(1.2)y and so r1_'1+m (g") € SO(1,2)g. Thus SO(1,2)e contains all its

o0
limit points and so is a closed subset of GL(3, R). ]

3.1.2 THEOREM. SO(1,2)q is connecled.
PrROOF. From THEOREM 2.2.23, we may express any element g € S0(1,2)g as the matrix
coshfs sinhfy 0
1 0 he 0e 0 1 0 1 0
g= sinh cos
0 Ry 0 ? 0 : 0 Rgir 0 Rga

1
for 8,,8,03 € R, Define the curve g(-) : [0, 1] — SO(1.

product

o where for each ¢ € [0, 1],

1 0}
0 g,

1

.
¢ Ry

1 0

g(t) =
0 Hgyy

sinh02(t)  coshfy(f)

2)
coshfs(¢) sinhéa(t) 0
} 0

0 0 1

and &;(-) = [0,1] — [0,6;],% = 1.2,3 are continuous maps 63(1}) = #;(1) = #2(1) = 0 and
63(0) = 63, 62(0) = 03, 61(0) = 6;. Clearly, g(1} = 1 and g(0) = g for this curve. Thus from
(A.5.12), SO(1,2)p is connected. O

3.1.3 THEOREM. SO(1,2)q is not compact.

ProoF. From THEOREM 3.1.1, SO(1,2)g is a closed subgroup of GL(3,R), which from (A.5.16)
is a finite-dimensional vector space equipped with the matrix norm ||g|| = m . Thus
SO(1,2)p is compact if and only if it is bounded. Consider the element g of SO(1.2)q,
cosh() 0 sinh(f)
g= 0 1 0
sinh(t) 0 cosh(#)

Then
cosh®t +sinh®t 0 2
tr(gg ') =tr 0 1 0 = 2(cosh®# + sinh®£) + 1.
2 0 cosh®t +sinh®t

Since SO(1, 2)g is a closed subgroup of GL(3, R), then tll'm {¢g) € SO(1.2)g. But we then see that
I tgm (Dl = Li}m llgll = oo. Thus SO(1.2)y cannot be bounded. The result follows. O

3.2 The Lie algebra so(1,2)

3.2.1 THEOREM. The Lie algebra s0{1.2) of SO(1.2)q s the vector space
s0(1,2) = { X € R¥? . XTJ 5 JX =0}

of 3 x 3 real matrices equipped with the matriz commutator [-. -].
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PrOOF. From (A.5.18), we require to show that T150(1.2}y = {X eR3 . XTJ4+JX = 0}.
Consider the arbitrary curve g(-) : {a,b) = SO(1.2)p such that g(0) = 1. Then for all ¢ € (a,b),
g(t)T Jg(t) = J, and

FgTONgE) =0 = BT Jglt) +9()Tg(t)li=0 = %J
= g(0)TJ + J3(0) = 0.

Since by ( A.5.14), §(0) € T1SO(1. 2)o, then clearly T1S0(1.2) € {X e R®*3 . XTJ + JX =0}.
Define the curve g(-) : (a,b) = GL(3.R). g(t) = exp(tX) where X "J + JX = 0, or equivalently
JXTJ = X. Then it follows that

exp(tX) = exp(—tJXTJ) & exp(tX) = Jexp(—tX )J (3.2.1)
& Jexp(tX) = exp(—tX')J (3.2.2)

& exp(tX ) Jexp(tX) = J (3.2.3)

& (exp(tX))TJ exp(tX) = J (3.2.4)

where (3.2.1) follows from (A.5.30), and so g(t) = exp(tX) is a curve in SO(1,2). But since
g(0) = X where ¢g(0) = 1, then by (A.5.18), §(0) is an element of T150(1,2)s. Thus the set
{Xe R3S . XTj4IX =0} C T150(1.2). From (A.5.15), T1SO(1.2) is a vector space.
The result follows. a

3.2.2 REMARK. Given some 3 x 3 matrix X = [z}, the condition XJ +JX T = 0 is equivalent to the
conditions z11 = w92 = ©33 = 0,711 = T33, T2y = —%T32 and w1z = T2y, by matrix multiplication.

Thus each element of so(1,2) has the form

0 =z12 =13
ziz 0 —T3

z13 T2 O

and we take
00 © 0 0 1 010
Er=10 0 1], Ee= |0 0 0 and Ea= |1 0 0
01 0 1 00 0 00

as the standard basis for so(1.2). The set 1. E3. B3} of basis elements has the commutator

relations

{ELEZJ =—E;3. [E2.E3]=FE; and [E3.Ei ] = —Es. (3.2.5)

We use this basis to establish the algebraic results of so(1.2).

3.2.3 THEOREM. The centre 3(so(1.2)) of se(1.2) is {O}.
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Proor. Let X = aE; + bEs + ¢E3 be an arbitrary element of 3(s0(1,2)). Then from (A.5.52),
[aB1 + bEy + cF3, Ey| = 0 for n = 1,2, 3, and particularly

[aE; =+ bEQ =+ CE3, B']_] =0 = b(Ea) + C(—Ez) =0 (326}
{CLE]. + bFy + cEs, Eg] =0 = CZ(E(}) + C(—El) =0 (327)
[G.El + bFy + CE;;‘ Eg] =0 = Q(Ez) + b(EL) =0 (328}

Since Ey. Es and Ej are linearly independent elements, then from (3.2.6) and (3.2.8) it follows
that b(Fs3) -+ ¢{—E2) = 0 = a(Eq) + b(E1) = & =0, and ¢ = ¢, and from (3.2.7) and (3.2.8),
a(E3) +c(—F1) = 0 = a(Fy) + 0{E}) it follows that e =0 and b = —~¢. Thus a = b=¢ =0, and
so every arbitrary X € 3(so{1,2) is zero. Thus 3(so(1,2)) C {0}. Since clearly {0} C 3(s0(1,2)),

the result follows. O
THEOREM. so(l.2) is simple.

PROOF. Assume so(1,2) is not simple: that is, there exists a non-trivial ideal i of 50(1,2). Then
there exists some nonzero X € i, X = aFy + bEy 4+ cE3y where for all ¥ € s0(1,2),[X,Y] € 1.
Fixing any two of a,b, or ¢ zero, then a[E|. Ej] +b[Eq. F\] +¢[F3. Ej] € i, and by the commutator
relations (3.2.5), E; € i for ¢ = 1,2 or 3. But then [Fy. Eq] € 1. [E;, Eg] € i and [E;, B3] € i, and
considering the commutator relations of so(1,2) , this implies that F;. Fy and Ej3 in i. Thus
(F1,Eq, E3) = s0(1,2) Ciand the ideal i is trivial. Consider the case where at least two of a, b

and ¢ are nonzero. Then

[X.Eqh] €i bEs —cEp €1
[X.FEs] €i = a{—FE3) + c(—E1) €1
[X. E3] €i a(Ez) + b(Ey) €.

But since i is closed under the taking of the Lie bracket, it then follows that

[bEa — cEy, El] Ei [bEg — cEs. Eg] € [bE3 —cks. Eg] €i
[—G’-E;] — ¢l El} ci [*(LE;; — (‘E]_,Eg] ei [—&Eg — (‘E]. E3] €1
[aEz + bFy, El] €i [aEz + bEI,Ez] €1 [G.Eg + bk, E;]] c i,

and particularly by the commutator relations

aFy €1 bE; €1 cE; €1
—aly el —bE; €1 —cEr e (3.2.9)
(bEz +CE3) €i (ZEI —cEze i (—(J.El - bEQJ €1,

where at least two of a, b or ¢ are nonzero. Then directly, if all of a, b and ¢ are nonzero, it
follows that E;.E7 and E3 are in i. If one of a, b or ¢ is zero, then by substituting into the
equations (3.2.9) we see that two of E;, Fy or Ky are ini. But since i is closed under the taking
of the Lie bracket, then bv applying the commutator relations this implies that all of E;. By and
Ej are in i. Thus in both cases {F1. Eq, B3) = 50(1,2) C i, and i is trivial. The result follows.O

We use the next result to prove the nondegeneracy of the Killing form (A.5.60) on so(1. 2).
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3.2.5 PrOPOSITION. The adjoint operators of Ey, FE; and Eg are erpressible as the matrices

3.2.6

3.2.7

0 00 1
000 and -1
1 00 0

respectively.

ProOOF. To find the matrix representation of the adjoint operators (A.5.35), consider the values

given by the commutator relations:

adg, B1 = 0, adp, By = —Es, adp, By = Ej
adpmEr = By, adp By = 0, adj, B3 = I
adg,E1 = —Ej, adg, Er = —Ey, adg, B3 = 0.

Taking X = aE| + bE; + ¢E5 an arbitrary element in so(1. 2), then

adg, X = adg(eF) +bEy+cE3) = (—a)By+(-b)E
adp, X = adg,(eEy+0Ey +cBy) = ()E1+(a)Es
adp, X = adw (aBy+bEy+cE3) = (—0)E3 + (c)Ea.
Thus
adg, X = (0,¢,-0), adg,X =(c,0e) and adg,X =(-b,—0a.0)
and since X is arbitrarily chosen, the result follows. g

We now consider the properties of the Killing form x on se{1.2).

PrROPOSITION. The Killing form x : g x g = R. k{A, B) = tr{ada o adg) is symmetric and

biltnear.

PROOF. Since ad is a Lie algebra automorphism (A.5.40), it is linear. Further, since the trace
is linear and composition of two linear maps is bilinear, thus « is bilinear. Further, from the
relation exp(tr(A)) = det A of (A.5.29), then

exp(tr{ads o adp)}) = det(ad4 c adg) = det{adp o ads) = exp(tr(adg o ady)).
Thus tr{ad4 o adp) = tr(ady; o ad ) for all A, B € se(1,2), and « is symmetric. O
In (A.5.61) we defined the orthogonal complement of a subset of a semisimple Lic algebra.
PROPOSITION. The orthogonal complement so(1.2)* of s0(1.2) is an ideal of s0(1.2).

ProoF. Firstly we note that 0 € so(1,2)*, since [0,E;] = 0 for ¢ = 1,2.3. Assume that
X €50(1.2)+, X #0. Then [X, E;} =0 € s0(1.2)* fori = 1,2,3. But then for each B € 50(1,2)
we express B = b1 E) +b3Ey + b3 E3 and it follows that [X. B] = [X, b1 E1] + [X. by E1) + [X, b1 E4]
is in 50(1,2)1. Thus s0(1.2)* is an ideal of s0(1.2). G
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PROPOSITION. « is nondegenerate on 50(1,2).

PROOF. From PROPOSITION 3.2.7, s0{1,2)% is an ideal of s0(1,2). But so{1,2) is simple: thus
s0(1,2)1 must be either s0{1,2) or {0}. But using the expression of adg, from PROPOSITION
3.2.5, we see that tr(adg, o adp,) = 2 # 0. Thus Ey ¢ so(1,2)*, and s0(1.2)% # s0(1.2). It
follows that so(1,2)~ = {0}: that is,  is nondegenerate on so(1.2). O

3.3 The hat map

DEFINITION. The Lorentz cross product is the map 5 : RM? x RY2 5 R1L? given by

1 0 0
a@®b=10 -1 0|aAb=-JaAb.
0 0 -1

Analagous to the case of R? which is equipped with both the {Euclidean) scalar and vector

1,2

products  and A simultaneously, we consider R.;",

the reduced Minkowski spacetime equipped
with the Lorentz cross product.

In ProPoOSITIONS 3.3.2 - 3.3.5 we determine properties of the Lorentz cross product (' on [Ri_jz.
The results PROPOSITION 3.3.2 and 3.3.3 are stated by Ratcliffe [27], while the others are original

and analogous to properties of A on R?.
PROPOSITION. Given a.b,c € ]Ré.’,z, thena (bl c)=(bOcla—(aC c)b.

PROOF. Direct computation. Consider the elements a = (a1, 0g.a3),b = (by.bp. b3) and
c=(c1,c,03) € IR};;Z. Then

(a o b) c= (—Czﬂzbl —csaghy + coniby 4 esarby. —crasby + eyarbe — c3azby

+ caaby, —crasby + caazbs + c1a1bs — coanbs) (3.3.1)

But a® ¢ = (—cyay + coas + c3a3) and b ® ¢ = (—e1by + c2bp + cabs), and thus

{atme)b = {-cia1b1 + caasby + czazhy. —baciay + baczas + c3agbe, —bsciaq + byezoz + baesas)
(bocla = (—caib + coarbs + czarbs, —azc1by + caagby + ageabs, —aserhr + ageabs + c3azby)
and so

(b®c)a— (aC c)b = (—cauzby — cauzby 4+ coarbe + caurba, —cra0by + c1e1by — ezasbs

+ caaghs, —crasby + caazbe + crarbsy — cpigbs)
But by (3.3.1), this is the same as (a - b) {*¢. The result follows. a
PROPOSITION. Given any a.b,¢ € R, then

ay dz Ay
ac(boe)=—|b b Iy

1 C2 3
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Proor. Direct computation:

1 0 0 Uboey — cobs
b_c=|0 -1 0 byer - biea

0 —1 bl Cy — 1 b2
and thus

ap| |bacs — cabz
aG(bic) = |ag| |bres — b3y

az| |c1ba — Dieg

I

ar(baca — ¢3ba) + az(bica — bact) + az{eiba — bica)

a; Gz 03
=—1 b1 b b3
i €3 €3 O

3.3.4 PROPOSITION. Let a be a timelike vector and b a spacelike vector. Then a-2b = ¢, where ¢ is

spacelike and Minkowski-orthogonal to a and b.

ProOOF. Firstly, we note that the timelike vector a and the spacelike vector b must be linearly-
independent: if a = Ab, then a® a = A?b ® b where b is spacelike and thus b ® b is positive.
But a is timelike and so a © a < 0, a contradiction. We then show that a > b is Minkowski-
orthogonal to a and to b and is nonzero: then by THEOREM 2.1.10, ¢ = a > b is a nonzero
vector Minkowski-orthogonal to the timelike vector a and so ¢ must be spacelike.

Firstly, assume that ¢ is zero. Then using PROPOSITION 3.3.2, it follows that for each basis

¢lement e;,
(aob)oe =(a®e)lb—-(bCela=0 ¢ ate;,.bte=0 forall i & a=b=0.

which contradicts that a is timelike and b is spacelike. Thus ¢ cannot be the zero vector.

Secondly, using PROPOSITION 3.3.3, then

a az ag ap az 4as
a@(a':"b)z— bl b2 bg =0=- bl bz b3 =b®(a,b)
a1 Gz a3 by by U3

by the fact that the determinant of any singular matrix is preserved under elementary row

reductions. Thus a (- b is Minkowski-orthogonal to a and b. )

As in the case of R3 equipped with A, R%’,z has additional structure:

3.3.5 PROPOSITION. R}? is a Lie algebra.
Proor. We show that O satisfies the properties 1-3 of A.5.17. Firstly, given p,q € R}_jz, then

POq = {(—paga+D203. —P3q1+P1g3. P2h —P1G2) = — (Page—Pog3- PAGL—P1¢3. —D2gi+P1¢a) = ~QOP
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and -3 is skew-symmetric on IR,.IU'Q. Secondly, for A1. A2 € R, then from the bilinearity of J,
(Mp+A2q) s = —J{((AMP+ A2q) As) = M(~J)(p/s) +Ae(=J){qAs) = Aip s+ Aq s by
the fact that R? equipped with A is a Lie algebra. Finally, from PROPOSITION 3.3.2, the sum

po(g3s)+q(s®p)+sC(plg) = (POqs—-(pOs)g+(q@s)p-(q@p)s
Hpos)jg+(sOplg—(s@q)p
= 0
by the symmetry of ©. The result follows. O

In (A.5.18), we expressed R? as a Lie algebra with a Lic bracket given by the cross product
A. The commntator relations on this Lie algebra are given by e; Aey = e3, ex Aeg = g
and e3 A e; = ey, which correspond to the commutator relations [Ey, Fy] = E3, [Ea. E3] = E)
and [E3, E1] = E> of 50(3). The so-called hat map ™ : R* — 50(3), & = E; is a Lie algebra
isomorphism which is often used in mechanics (eg. [17], [13]). We will follow [13] in that for us
hat map is described by the inverse of the map which we originally stated: ™ : s50(3) — R,
such that E = e;. We use analogy with this case to deline a corresponding hat map on the Lie

algebra so0(1,2).
3.3.6 DErFINITION. The hat map is the map hat : s0(1,2) — R}:j? defined by

0 =z g
hat |z 0 —z] =(z.9.2).
y z 0

We will denote the image hatA by A wherever this convention is appropriate.

3.3.7 THEOREM. The hat map hat : 50(1,2) — Rif is ¢ Lie algebra isomorphism.

PROOF. Firstly, the hat map is linear: for each A, B € s0(1, 2},

¢ a3 as 0 by be 0 az + Abg a2+ Aba
hat a3 0 —ai| +A by 0 - = hat a3+ A3 0 —ay — Abg
az ai 0] bo by 0] an + Aby a1 + Aby 0

= (a1 + Aby.ag + Abg, ag + )\bg)
= (a1, 02.a3) + A (b1, b2, b3)
0 a3 a 0 a3 a
=hat jag 0 —aj| +Ahat a3 0 -a
az a1 0 as ap 0
Secondly,
[EL Eg] =e ey =(—-J)eiAex = —e3 = [E;. E}]
B3, B3] = ep ey = (~J)ez Aeg = e = [E;. E}]

[B3. By =es e =(-J)esne = —ep = [ﬁ]
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———

from the commutator relations of so(1.2). By the linearity of hat, then (A, B] = [A, Blfor each
A, B € s0(1,2). 0

Dencte the matrix

1 0 0
P=10 -1 0
0o 0 1

PROPOSITION. Giuven any two elemenis A,B € s50(1,2) and their corresponding images a, b
under the hat map, then (PAP)b=aJb.

Proor. Direct computation. Consider the elements

0 a3 ay 0 b3 b
A= az 0 —-o and B = bg 0 —bl
az a; 0 by by O

Then A\: (alra2f (13),§ = (bl-b21 b3)1 and

1 0 0 0 a3 o 1 0 0|,y —boag + asbs
0 -1 0| tag 0 —a1] |0 =1 Q) |ba] = |[—bras+ aib;
0 0 1| |aa e O 0 0 1| |bs biag — a1by
=aghb. .

PROPOSITION. The elements g € SO(1,2) preserve & on RY?: that is, for cach a,b € R«*l;iz and
g € SO(1.2), then g(a ¢ b) = (ga) & (gb).

PrOOF. Given two arbitrary elements a.b in R1::2? then for any ¢ in Rl:?,? and any ¢ € SO(1.2)
it follows from PROPOSITION 3.3.3,

gc© (ga-gb) = —det(yc ga gb)
= —det(g(c a b))
= —detgdet(c a b)
= —det{c a b)
= c@(adhb)
= gecwglai b)), (3.3.2)

where (3.3.2) follows from the fact that g preserves @. Since ¢ was arbitrarily chosen, it may

1 1 i

be taken sucessively to be the basis elenients g~ ez and ¢ te;. Thus it follows that

e1.g
e; ©(galgb) =e; € glalb)fori=123, and so each component of the vectors (ga . gb)

and g(a b} is equal. Thus ga_- gb =g(a> b) for all g € SO(1.2). 0
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3.4 Lie algebra automorphisms

We refer to (A.5.31) and (A.5.38)-(A.5.40) to determine the Lie algebra automorphisms of

s0(1,2) using its image Rgz under the hat map.

3.4.1 PRrROPOSITION. The Lie algebra automnorphisms of]R,lt’,2 are exactly the elements of SO(1, 2) acting

on RY? by left matriz multiplication.

PROOF. By PROPOSITION 3.3.9, each element g € SO(1, 2) preserves .- on ]Ré’?, and so for each
a,b e ]R?g?, then g(a . b) = {(ga) 0’ {gb). Since the left action of SO(1.2) on ]le,z is linear,
then it follows by (A.5.31) that each g € SO(1.2}) is a Lie algebra automorphism of Rl‘z. Thus
S0O(1,2) C Aut(R,lf). Consider a Lie algebra automorphism g € Aut(R‘l;:g). By definition, g
is linear on IR,T-_‘? and for each basis element {e;.eqz.e3} of R"2, gle; & e} = ge; © ge; for

i,7=1,2,3. But then

g(ei ;‘ej)’\'-gek =
= g{(ei Oeyle; — (e; Cer)es) =
= (e; G er)ge; — (e Ceplger =

= (e; @er) =

ge; - ge;) . gex

(
{{ge: © gex)ge; — (ge; © gex)ge;)
(ge: © gex)ge; — (ge; © gex)ge;

(

ge; Dgex). (ej ex) = (ge; O ger) (3.4.1)

where (3.4.1) follows from the linear independence of e;.e; and e and the nondegeneracy of

©. Since e, © e; = Jy;, then from (3.4.1),

e e, = geOge; = J; = —gugy+ 9292 + 93:93;

= gJg' =

3 3
STho1 k10K PR OKIOR2 Db Ok1GKS
3
S gkag SonOkaGk2 D Okagk3
SR gkagr1  SonGr3Gke  3s OR3OK3

= J

Thus gb @ gc=b Zc forall b.c e ]R,Bz. But by assumption gb = gc = g(b . ¢). Thus using

PROPOSITION 3.3.9,
ga® (gb 0 gc} =ga®g(b lc)

for any a € R};‘,z. But by ProPOSITION 3.3.3,

=a®(b.c)=—-det(a b ¢)

ga @ (gb > gc) = —det{ga gb gc) = —det gdet(a b c).

Thus we see that —detgdet(a b ¢) = —det{a b c¢), and so det g = 1. But then it follows
from PROPOSITION 2.2.14 that g € SO(1,2): thus Aut(R,l-",Q) C 50(1,2). Since we have shown

both containments, then Aut(Rég) = 50(1.2).

a

3.4.2 PROPOSITION. The two groups 50(1,2) and Aut{so(1.2)) are Lie group isomorphic. Particu-
larly, for each g € SO(1,2) = Aut(R{:z), there erists a unique clement ¢, € Aut(so(1,2)) such

thet for each a € R,l;iz, then g(a) = hat¢,(a).
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PROOF. Given g € Aut(R,l__Tz), consider the map hat™! o g o hat : s0(1,2) — 50(1,2). Let ¥ be
the map ¥ : g — hat™' o g o hat and ¢y = ¥(g). Then for each basis element Ej, E;,

(69 Fi. 6 Ey] = hat ™ [go E;, go By] = hat " (ge; ge;) = hat Tog(eiie;) = ¢g (|Ei. Ey]) . (3.4.2)

Since hat and ¢ are both linear, the composition ¢, is linear, and so [¢gA4.¢,B8] = ¢4[A. B|
for each A, B € 50(1,2) from equation (3.4.2). Thus ¢, is clearly an automorphism of so(1,2).
Consider g € Aut(Rgz) such that ¥(g) = 1. Then g = hatolohat™! = 1, and ker(¥) = {1}.

Thus ¥ is injective. Given an arbitrary ¢ € Aut(so(1.2}), then for e;, e, in the standard basis,
(hat o ¢ o hat ™ 'e;)Cx(hat o ¢ o hat'e;} = hat ([¢(E.), ¢(E;)]) = hatogo{F;. E;] = hatogohat !(e,_e;)

and so by linearity of ¢, (hat o¢go hat_]a) D (hat ogo hat_lb) = hat o ¢ o hat™! (a > b) for all
arbitrary a,b € Ri!‘?. Thus hat o ¢ o hat™! is an automorphism g of ]R}.:2 such that U(g) = ¢,
and the map is surjective. Given g1.92 € Aut(R}f), then

DPyrys = hat™ 0 g; 0 gp o hat = hat™* 0 g; o hat o hat ™! ¢ g o hat = Py, © Dy

and ¥ : Aut(Ré;z) — Aut(s0(1,2)) is a group isomorphism. From THEOREM 3.3.7 hat is a Lie
algebra isomorphism. Thus it is linear and so a differentiable map. Then ¥ is a composition of
differentiable maps and it foliows that it is itself differentiable. Thus from (A.5.9), ¥ is a Lie

group isomophism. For any arbitrary A € so0(1,2), we note that

hg(A) = hat"'ogohat A = hat~!{ga) = (ga)hat (¢g(A)). O

3.4.3 PROPOSITION. The subgroup Inn(so(1.2)) of Aut(so(l1,2)} corresponds to the subgroup SO(1, 2)q
of Aut(]Réz) under U,

Proor. By (A.5.40), for any matrix Lie group G, Inn(g) is the connected component of Aut(g).
We show that the connected component of SO(1.2) is SO(1.2}y, and then use the home-
omorphism ¥ between Aut(so(l,2)} and SO(1.2) to show that Inn(se(l.2)) corresponds to
50(1,2)p. From PROPOSITION 2.2.14, the group SO(1,2) is the union of two components,
SO(1,2)” U 50(1,2)g, where since 50(1,2)~ corresponds to subset (2.2.8), then each of its

elements has the form

-1 0
Ro e 0(2), det Rg<0, ceR'
0 Ry

¢ q'

L{ 1+qq"
and so for each element of SO(1,2)7, g11 < 0, and so g ¢ SO(1, 2)p. Thus the two components
are disjoint. We show that the component SO{1.2) is not connected. By (A.5.12), a matrix Lie
group is connected if and only if for every g € G there exists a curve g(-) : (a.b) -+ G such that
g(0) = g and g(1) = 1. But 1 € SO(1.2)\SO(1,2)", since SO(1.2)y by PROPOSITION 2.2.16 is &
subgroup of SO(1, 2) and so contains 1, while SO(1, 2}y and SO(1,2)" are disjoint. Thus for any
g € SO(1,2)” there exists no curve g(-) : (a,b) — SO(1,2)~ such that g(0) = ¢ and g(1) = 1

which is contained in SO{1.2)~, and so it cannot be connected.
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But by THEOREM 3.1.2, SO(1, 2) is connected: thus SO(1,2)p is the connected component
of SO(1,2). Further, by {A.5.56) each curve in Aut{so(1.2)) is an image of a curve in SO(1, 2),
T(g(-)) : (a,b) = Aut(so(1.2)) . Thus since ¥ is continuous, ¥(SO(1,2)g) is the connected
component of Aut(se(1.2}) and so ¥(S0(1,2)p) = Inn(s0(1.2)) by (A.5.40). O

3.5 Adjoint and co-adjoint orbits

3.5.1 Adjoint orbits

In (A.5.34) we defined the adjoint action of a matrix Lie group G on its Lie algebra g. In this

section we construct the adjoint orbits (A.5.42) of so(1,2).

THEOREM. The adjoint orbits O = {AdgA : g € SO(1,2)p} of s0(1,2) are the tmages under
hat ™! of the subsets in Ré’z:

(i) The upper or lower sheets of the cone Kp = {(z.y.z) e R? : —z? + 4% + 22 =0},

(i) The upper or lower sheets of the hyperboloids ‘Hﬁa“ ={{z.y.2) e R : 2 — 42— 22 = ||a|?}

of two sheets,
(iti) The hyperboloids Hjj, = {(z,y.z) € R® ¢ ~2® +3? + 2% = lali®} of one sheet,

{iv) The point (0.0.0).

PROOF. In PROPOSITIONS 3.4.2-3.4.1, we proved that for every Ady € Aut(so(1,2)) there exists
an element ¢’ € SO(1,2)q such that for every A € so(1.2) and its corresponding image a under
the hat map, hat (Ady(A)) = y’a. Thus it follows that for each A € s0(1.2), then under the hat
map, A = a and @4 = {hat (AdgA) : g€ 50(1,2)0} = {g'a : ¢ € SO{1,2)g} = Oa. Since the
Minkowski product for a in RM? can be positive, negative or zero for nonzero a, we have the
cases

(iy If a()a =0 for a nonzero element a, then by PROPOSITION 2.1.15, a lies on either the
upper or lower sheet of the light cone Kr, = {(x.y.2) € R3 : —z? 442422 = 0}. In PROPOSI-
TION 3.4.3, we showed that the elements Ad, € Aut(se(1.2) correspond under ¥ to the elements
¢ € SO(1,2)g. But in PROPOSITION 3.6.6 we showed that SO(1.2)q acting by left multiplica-
tion preserves the upper and lower sheets /‘CI": and K of this cone and also that the action on
these sheets is transitive. Thus if a is in £} [K[], then given any b € K} [K[], there exists
g € SO(1,2)p such that ga = b, and s0o Op = {ga : g € SO(1,2)y} is the sheet }CZ [K7] of the
light cone that contains a.

(ii) If a() a > 0, then by PROPOSITION 2.1.15, a lies on a hyperboloid of one sheet expressed
as the set 'Hﬁa” ={(z.y.2) € R3 : —z?+ 9%+ 2% = I|a||2}. In ProposITION 3.4.3, we showed
that the elements Ad, € Aut(so(l,2) correspond under ¥ to the elements ¢' € SO(1, 2}p. But in
PROPOSITION 3.6.6 we showed that SO(1,2)¢ acting by left multiplication preserves the hyper-

boloids of one sheet in R'2, and from PROPOSITION 3.6.6 that this action is transitive. Then
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givenany b € ’H.’ﬁa”, there exists g € SO(1.2)p such that ga = b, and so Op = {galg € SO(1.2)¢}
is the whole of the hyperboloid of one sheet Hﬁa“.

(iii) If a(Da < 0, then by PROPOSITION 2.1.13, a lies either on the upper sheet ’Hﬁ:” or
the lower sheet ’Hﬁ;n of the hyperboloid ’Hﬁa" ={(z.9.2) e R : —z® + 9% 4+ 2% = ~||a]?}. In

PROPOSITION 3.4.3, we showed that the elements Ad, € Aut(so(1.2} correspond under ¥ to the
elements ¢’ € SO(1.2)p. But in PROPOSITION 2.2.27 we proved that SO(1,2)p acting by left
multiplication preserves these sheets, and from PROPOSITION 3.6.6 that this action is transitive.
Thus given a in 'Hﬁ;'" ['Hﬁ;”], then for any b ¢ 'Hﬁ:“ ['Hﬁ;”], there exists g € SO(1,2)g such that
ga = b, and so the orbit Oy = {ga : g € SO(1,2)g} is the whole sheet € ’Hﬁ;’” or ’Hﬁ;” of the
hyperboloid ’Hﬁa” containing a.

(iv) Using the decomposition SO(1,2)p = BK (THEOREM 2.2.23), we see by matrix multi-

plication that SO(1,2)y fixes (0.0,0). Thus Oy = {g(0.0,0) : g € SO(1,2)p} = {0}. O

3.5.2 Co-adjoint orbits

We use the nondegenerate Killing forin on so{1.2) of PROPOSITIONS 3.2.6 to 3.2.8 to construct
a map between so(1.2) and its dual space sol.2)*. This allows us to find the co-adjoint orbits

of 50(1.2)" as images of the adjoint orbits under this map.
PROPOSITION. The map & : 50(1,2) = 50*(1,2), k" (A) = k(A.") is a bijection.
ProoF. Taking arbitrary elements Y, Z € so(1,2), then for each X € s0(1, 2),

Y #2Z otriady oadx) # tr(adzoady) & k(Y X) #8(Z.X) & £ £

since the identity holds for all X. Thus s’ is well-defined and injective. Further, since by
PROPOSITION 3.5.1, & is bilinear, then «” is linear. Thus &’ is an injective linear map between
two wector spaces of dimension 3, and so is a surjection. Thus &’ : 50(1.2) — 50%(1,2) is &

bijection. -

REMARK. Thus the Killing form identifies with each p € so(1,2)* a unique element P € so(1,2),
where (P, X) = p(X) for all X € s0(l,2).

Using the map " between s0*(1,2) and 50(1,2}, we define the dual of the adjoint action:

DEFINITION. Given the action Ady : s0(1,2) — s0(1,2), the co-adjoint action of SO(1,2)g on
s0*(1,2) is its dual, given by

Ad* :s0(1.2)" = s0(1,2)". Ad}-ip(X) = p(Ady-1 X) = & (P. Ady-1(X))
for p € s0*(1.2), P € s0(1,2) such that s*(P) = p, and X € s0(1,2).

PROPOSITION. For any Lie algebra automomorphism ¢, then ¢goadx o ¢~ = ad, X.
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ProOF. By the definition (A.5.34} of ady, then for every Y € so0(1.2), it follows that the
composition goady o ¢~ HY) = ¢[X. ¢ (V)] = [¢(X),¥] = adg(X)Y. Since Y was arbitrarily

chosen, the result follows, O

We use the map " : s0(1,2) = s0(1,2)* of PROPOSITION 3.5.2 and the hat map to prove

THEOREM. The co-adjoint orbits 5;, = {Ad;p : g €50(1, 2)0} of 50(1.2}* are the imeges un-

der the composition x” c hat™! of the subsets in ]R{."‘)':
(i) The upper or lower sheets of the cone Kp = {{z.y.2) € R® : —z% + 32 + 2 =0},

(ii) The upper or lower sheets of the hyperboloids ¥, = {(z.y.2) € R? : 2% — 42 — 2% = |a|?}
of 2 sheets,

(111) The hyperboloids Hﬁa” ={(z,p.2) eR? . —2? + 2 + 2 = [|a||*} of one sheet,

{iv) The point (0.0,0).

PrOOF. From (A.5.39), Ad, is a Lie algebra homomorphism. Thus from PROPOSITION 3.5.5,
k(AdyA,AdyB) = tr{(Ad,)"ada(Ad,) o (Ad,) tadp(Ady)) = tr(ada o adp) = k(A. B) and &
is Ad-invariant. Since Adj_.(p}(4) = k(P Ady-1 A) = x (Ady P, AdyAd,-1 A) = k (Ad,P, A),
then as from PROPOSITION 3.2.8, x is nondegenerate on so(1,2), it follows that for each p in
s0(1,2)%, Adjp = Kk’ (AdgP). Since

k" {AdgP : g€ 50(1,2)0} = {f;b(Ang) L g€ 50(1,2)0} = {Ad;p : g€ SO(L.2)o}.

by the adjoint-invariance of «' (PROPOSITION 3.5.5), it follows that «*(OQp) = (O,), where
p=x"(P). Thus hat o "~ : 50(1,2) — Ri‘z are the subsets 1 to 4 of THEOREM 3.5.1, and the

result follows. [}

3.6 More properties of SO(1,2),

THEOREM. SO(1,2)q is simple.

ProOF. In THEOREM 3.2.6, we showed that s0{1.2) is simple, and in THEOREM 3.1.2 that
SO(1.2)g is connected. Thus from (A.5.50), SO(1. 2}y is a simple Lie group. i

In {(A.5.55) we stated that given an n-fold cover ¢, of a Lie group G by G with a path ¢ in G
having initial point ¢, and g a point in G over ¢, then the path o has a unique lift & in E, such

that &(0) = g and ¢, o & = . We use this result to prove

PrRoOPOSITION. Given ¢ : G— G an n-fold cover of G by a,suppose that o and 3 are paths in
G from g to h, and o is homotopic to 8 with endpoints fired. The the lift & of o with initial
point § and final point h is homotopic to the lift B. with endpoints fized.
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PrROOF. From {A.5.53), we note that & = ¢p(¢) and g = ¢n(3) are the unique preimages of
« and B in G where § = ¢,(g) = ¢n(a(0)). Define the homotopy d : [0.1] x {0,1] = G from «
to 8. The fact that the path « is a continuous function from [0.1] into G allows us to divide
[0,1] into a finite number of closed subintervals i1 = [0. k1], ia = (k1. k2], ... 3n = [kn=1, 1], where
a(0) = g = s1.a(k1) = s2...a(kn—1) = sp and we restrict each i; such that a(é;) = [s,-1.54]
lies within the open neighbourhood N; of s; that is mapped bijectively and bicontinuously by
the homeomorphism ¢, onto some open neighbourhood ¢; (N} = A in G. We define the
restrictions of a to each 4; and denote them by ;. We may similarly restrict the homotopy d
to maps d;, the deformations d; : [0, 1] x [kj—1. %] — G.

We then consider the composition ¢7' od: [0.1] X [ki_1. k] — G which deforms each &, to
B;’. Since ¢, and its inverse are continuous, we note that the preimages ¢, [s;_;. s;| are closed
subsets of G which have a union [s1,$o) U [$2. 53] U ... U [Sn—1. 8] = [81. 8n] = [7,h]. Thus the
concatenation of the paths &; in G is the lift & of o with initial point g and final point o(1) = R
which is deformed continuously by d : [0.1][0, k1]U[ky, k2] U...[kn1, 1] to B(t) such that 3(0) = §
and 5(1) = k. 0

THEOREM. SO(1,2)q is not simply-connected.

PRrROOF. In PROPOSITION 2.4.4 we defined the homomorphism 2 : GL(2,R) — SO(1,2)y. Since
2 was shown to be continuous, it is a local homeomorphism. Consider a path & in GL(2,R)
such that &(0) = al, &(l) = b1 for a,b € R*, a # §. The image a = ¢(a) is a closed path in
SO(1, 2)p, since w2(al) = pa(b1) and thus a(0) = «(1).

Assume that SO(1, 2)g is simply-connected. Then it follows that a(s) is homotopic to a point,
where this homotopy keeps al fixed. By lifting this homotopy to GL(2,R) as in PROPOSITION
3.6.2, it must be that the path a(s) in GL(2,R) can be homotopically deformed to a point,
keeping its endpoints al and b1 fixed. But this is impossible, since al and bl are distinct points
in GL(2.R). Thus SO(1, 2)p cannot be simply-connected. ]

PROPOSITION. The group SO{1,2}q acting on RY? by left multiplication preserves the upper sheet
and lower sheets of the light cone Kp. SO(1,2)y acting on RY2 by left multiplication preserves
the hyperboloids of one sheet H} = {(:c.y.z) eRY . —2l4y? 4= a}.

PrRoOOF. We show in each case that given a in one of the required subsets, then its image g(a)
remains in that subset. Given any element a of Rb® which lies on the light cone K;, then
a% + a% = a?, and so a@a = 0. But then for any g € SO(1,2)0, a®a = ga Dga = 0, and
g(a) € Kp. Thus SO(1,2)¢ preserves the light cone. Any element a on the upper sheet of X},
lies in the space {(:E,y. 2YeR 2> 0} and so is such that ae e = a; > 0, and any element
b on the lower sheet of K lies in the space {(z.y.z) € R® : x < 0} is such that bee; = b, < Q.
But by Proposition 2.2.12, each g € SO(1,2)g preserves the orientation of the e(-axis, and
thus if @y, then gaee; > 0.

Similarly, for any b such that be; < 0, then gbee; < 0. Given any clement ¢ of R}?

which lies on a hyperboloid of one sheet #., then —c? + ¢ + ¢2 = ¢ ® ¢ = o. But then for any
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g2 50(1.2)p, c@c = gc®gc = a, and g(c) =€ HL. Thus SO(1,2) preserves the hyperboloids
of one sheet 7£}. The result follows. 0

PROPOSITION. We may parametrize the cone Ky by patches (¢!*{z.8), U™} and (¢'2(z.0),U'2),
where €''(2,8) = (2,zco80,zsin8) and U = R x (—m,m), U'? = R x (0,27), the hyper-
boloids of one sheet HL by the patches (¢21(z,0),U%) and (e22(z,0),U?2), where €%(r,6) =
(asinhr. acoshrcosf, acoshrsing) and U = R x (—m.7), U?? = R x (0.27), and the hy-
perboloids of two sheets H2 by the patches (3 (z.8),UY) and (e32(2.6).U*2), where €3(r.6) =
(sinh 7, coshrcos @, coshrsinf) and U*! = R x (—m. ), U%? = R x (0.27). In each cuse the

transition maps between the two patches are rotations k(m) about the e)-axis.

PrROOF. We consider first the case of the hyperboloids of one sheet H.. In either patch it is
clear that for (z.y.2} € U, (', U"), then

(z.y.z) = ¢*(r,0) = (asinhr,acoshreosf,acoshrsingd) and —22 4+ +22=a.

Thus |J;_1 (e, Ui) € HL. We show that the condition ~p? + p§ + p§ = o on p = (p1.p2, p3)
in H} defines a pair (rq, fp) such that p lies either in the patch (£).41) or (eg.U2). Consider
(p1, 02, p3) € RY? such that *pf +p2+ pg = a?. Clearly, there exists some ry = sinh"l({’l—l) such

that & = sinhry. Then pr = o? sinh? ry and P2 — pi — pi = —a?, so thus p2 + P4 = a?cosh? rp.
Further, since _patrs Eﬂ?i% =1, then
’ e?cosh?rg ~ ai+pf
pig ;
_pz_ <1 and p—32 <1
a? cosh® g a2 cosh” rg

and so we can find a preimage ¢ in {0, 27) or (-7, ) of ——&2—) under cos and a preimage

o cosh®(rg

8y in (0, 2m) or (—m,m} of m under sin. Since

et o -

ay/pi + p3 ay/pi +pj

then 8y = 82 = 6 in (0.27) or (—m,m). Thus p» = acoshrycosfy and p3 = @ coshrgsin by for
some (rg, #o) in U or Uy such that (py, pa, p3) = (asinhry, a cosh rg cos g, a cosh rg sin 8g). Then
(p1, P2, p3) lies in either the patch (e!!,241!) or the patch (¢!%,2/'%). Thus H} C UT-=1‘2(6”,L{“).
Thus the patches (¢!!, U1, (¢!? 14'?) parametrize H1.

Since
1 0 0 asinhr cesinhr
0 cosm —sinw| lacoshrcos®| = |@coshrcos(d + )
0 sinm cosw «coshrsin g o coshrsin(é + )

11

then the transition maps (¢'})~! o ¢1? and (¢1%)~1 o ¢!! are smooth rotations about the origin.

We then consider the case of the light cone Kz. In either patch it is clear that given (z,y. z)
in U;_, 5(¢",U:), then

(z,v.2) = €(2.0) = (z,2cos0.zsin0) and 4+ 2% = 22



HCH SECTION 3.6. MORE PROPERTIES OF 50(1,2)q 57

Thus Ui=1'2(£2“ Uy € HL We show that the condition —p%+p§+p% =0onp={p1,p2.p3) €Ky
defines a pair (zg, ) such that p lies either in the patch (¢*},44%1) or (egp.U4??). Consider
{p1,p2,p3) € RY? such that —p? + p2 + p4 = 0. Clearly, there exists some 2y = p; in R. But
2 2 2
75 + v2 = p}, and thus gg + 5 = 1. Thus we may express g? = cosfg for g in (0,27) or
a
2
(—m,m) and %}i = sinfly for 6y in (0,2%) or (—m.m). Then there always exists zp € R and
(i}
By € (0,2m) L (=7, 7) such that (p1,p2.73) = (20.26cosby, 2p5inby), and so (p1.p2.ps) lies in
either the patch (¢21.242') or the patch (€22.2422). Thus Kp, C J;_1 2(¢*.24%).Thus the patches
(€21, 121), (¢%2,14??) parametrize K.

Since
1 0 0 Z z
0 cosm —sinw| [zcosé| = |2cos(d + )
0 sinm  cosmw zsind zsin{f + )

then the transition maps (e2')~! 0 €% and (¢%2)~! o €!! are smooth rotations about the origin.
Finally, we consider the case of the hyperboloids of two sheets HZ. In either patch it is clear

that given (z,¥,2) € [J,—; o(¢¥.24%), then
(z.y.2) = €(u,v) = (acoshr,asinhrcosf, asinhrsingd) and —z2+32+22= qa.

Thus |J;—; o(¢%'.U%) C H2Z. We show that the condition —pf +p3 +pj = —® on p = (p1.p2.p3)
in H2 defines a pair (ro.fy) such that p lies either in the patch (e31.24%!) or (¢*2,143%). Consider

(p1. P2, p3) € RM2 such that —p?+p2+p3 = —a?. Clearly, there exists some rg = cosh™! (=) such

that % = coshrg. Then p'f = a? cosh? rg and p% — p% - pg = —a?, so thus p% + pg = o2 cosh? rp.
2 2 2 2
- pa+ps  _ piip}
Further, since 32_;?}?}570 = 522-1-_12% =1, then
a? sinh” rg o? sinh® rg
and so we can find a preimage ¢ in (0.27) or (—7.7) of EET:}TW under cos and a preimage

B3 in (0.27) or (—m, m) of Fuf;’flrf(m under sin. Since

() ()

a+/p; + pj c\/p3 + p3

then 81 = 62 = 65 in (0,2r) or (—m.7). Thus py = asinhrycosty and p; = asinhrysindy for
some (7o, 8p) in Uy or Uz such that (p).p2. p3) = (acoshrp. cesinh rg cos g, e sinh rg sin fp). Then
(1. p2, p3) lies in either the patch (c31.4%1) or the patch (¢32,4432). Thus H) C U,-=1.2(e3"‘,?/{3i}.
Thus the patches (€31.14%1), (¢32.1432) parametrize HZ.

Since
1 0 0 acoshr acoshr
0 cosm —sinm| |asinhrcosf| = |asinhrcos(d + m)
0 sinm cosmw asinhrsinf acsinhrsin(¢ + )

then the transition maps (e31)7! 0 €32 and (¢32)7! o ¢*! are smooth rotations about the origin.O
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ProrosITION. The group SO(L,2) acts transitively on the upper sheet of the light cone K.
Similarly, SO(1,2)y acts transitively on HL = {(.Lyz) ERY . —x?4ytaa?= a}, the hy-
perboloids of one sheet, and 'Hg = {(.’Ly.z) eR3 : 12—y — 2% = a}, the hyperboloids of two

sheets.

Proor. In ProrosiTION 3.6.5, we determined parametrizations for Xy, ?—fé and ?{g.

Given two points p, q € K, then we may assume that p and q lie in the same patch (¢!, /1%),
since the transition maps between the two patches are rotations. Then p = €'{#,,.z2,) and
q¥ = €'¥(0y, z) on K, and there exists a Buclidean rotation k{(#, - #,) and a Lorentz boost
b1(2, — ) such that

E(0n — 0m)(€Y (0m, 2m)) = € (0, 2m)  and  b1{zn — 22) (€ (00, 2n)) = € (B0, 20).

Thus b1(z, — zm)k(0r — O ){(p) = q for any p,q on Ky

Similarly, taking p’,q' two points in H., then we may assume that p’ and g lie in the
same patch (e2.14/%"), since the transition maps between the two patches are rotations. Then
p’ = ¢%(rm.0n) and @' = €% (r,.0,) on HE, and there exists a Euclidean rotation k{8, - 6,,)

and a Lorentz boost by (rp, — 7m) such that
k(gn - gm)(ﬁﬂ(em- Tm)) = '521.('9711 Tm) and I (""n - 'rm)(fzi(om rm)) = 521.(‘911; Tn)-

Thus b1 (7, — Tm)k{(fn — 0m)(P") = @' for any p’.q’ on HL.

Finally, taking p, q two points in H2, then we may assume that p and q lie in the same patch
(¢3*,14%), since the transition maps between the two patches are rotations. Then p = ¢%(r,, 6;,)
and q = e3i(rn, fr) on H§, and there exists a Euclidean rotation k(f, — #,,) and a Lorentz boost

bi(rn — rm) such that
E(fn — 0m) (€ (U rm)) = € (0n ) and  by(ra — 7)) (€3 (Bn ) = €3 (6, 7a).
Thus b1(rp — Tm}k(8n — 0m)(P) = q for any p,q on Hj. a

PROPOSITION. The Lorentz boosts by in SO(1.2)g preserve the hyperbolic hyperplanes gy
given by Ty = ceg + {e1, e2) in RY2. The Buclidean rotalions k in SO(1,2)q preserve the
elliptic hyperplanes T g oy given by Tgigy = aer + (e2. €3) in RV,

ProOF. Firstly, lies = (0,0.1) = e3, biey = (cosht.sinht.1) and b1ey = (sinht.cosht, 1} by

matrix multiplication. Since the boosts by are linear, then it follows that
b1(Tr(ey) = bi(aes + {e1,e2)) = abi(ea) + (bi{e1). bi(e)) = «(e3) + (e1.e2) = Ty(q)-

Similarly, ke3 = (0, - sinf.cos8), ke; = (1.0,0) = e; and key = (cos#,sinét. 1), and since the

EBuclidean rotations k are linear, then

E(Tg(a)) = k(cey +{ea. e3)) = ck(e1) + (k{e2), kies)) = a(e1) + {e2, e3) = Lgyqy. !
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Finally, we refer to (A.6.1) - (A.6.8) in order to obtain an Iwasawa decomposition (A.6.7) of
SO(1, 2)g.

PROPOSITION. There exists a direct sum decomposition $0(1,2) = £ O a O n where t = (F))
is a compact subalgebra, a = {F3) is an Abelian subalgebra and n = (E) — E3) is a nilpotent

subalgebra.

Proor. Firstly, £, a and n are subalgebras of so(1,2), since for any a,b € R, [aF},bE;] = 0 and
thus £ is closed under the Lie bracket, [aFy, bE2] = 0 and thus a is closed under the Lie bracket,
and {a(F1 — E3).b(E1 — E3)] =0 and thus n is closed under the Lie bracket.

Secondly, any element X € so(1.2) may be written asasum K+ A+ N where K € £, A€ a
and N € n: for X € 50(1,2), X =aF; +bFEy+ cEs=(a+c)FE1+ 0Bz + (—c)(Ey — Fj3).

Thirdly, we show that the subalgebras . a and n intersect only in the zero element. Assume
that there is a nonzero intersection M a. Then there exists some X € so0(l,2) such that
X € £, X € a. But then X = aFy = bF;, which implies that ¢ = b = 0 by the fact that F;
and E5 are linearly independent, and thus X = 0. Similarly, consider some X € an. Then
X = aFp = b(E| — E3), which implies that a = b = 0 by the fact that Ey, Fs, E3 are linearly
independent, and thus X = 0. Finally, consider some X € N n. Then X =uE; = b(E, — F3),
which implies that ¢ = b = 0 by the fact that £ and E3 are linearly independent, and thus
X =0.

We have then proved that so(1,2} = #& a®n is a direct sum decomposition. We then show
that E is a compact Lie algebra. In PROPOSITIONS 3.2.6 and 3.2.8 we showed that the Killing
form &(-) = tr{ad(-) o ad(-}) is a nondegenerate symmetric bilinear form on so(1.2). We show
that  is negative-definite on € Given any K € b, then K = {E; for some { € R, and

0 0
tr(ady cady) = tr 0 0 #10 O
0

0
t| | = -2t
—t 0 0

—t

which is negative for all t € R. Thus by (A.2.17), & is negative-definite on t. Thus by (A.6.1), b
is a compact subalgebra. Given any elements A; and Az of a, then

31 0 0 ¢ 0 0 t;+1; 0 0 tetiy
MAr=10 0 oflo o ol=] 0 o o =] 0 o 0 |=a4
t, 0 O t 0 O ti+t2 0 0 to+& 0 0

and thus by (A.6.2), a is an Abelian subalgebra. Finally, any element NV of n has the form

0 —t 0 t2 0 2 0 -t 0
N=|-t 0 -t|=N=J0 0 o0||-¢t 0 —t|=0
0 t 0 ~t2 0 ~t*[ |0 ¢t 0
Thus by (A.6.3), nis a nilpotent subalgebra. .|

Let KAN be an Iwasawa decomposition of the semisimple Lie group G. We will denote the

diffeomorphic multiplication map K x A x N — KAN of (A.6.6) by ¢, and prove from (A .6.6),
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COROLLARY. Given KAN en fwasawa decomposition of the semisimple Lie group G, then for
any g € G, there is a unique ezpression g = kan fork € K,a € A andn € N.

PrOOF. Consider g € G. By the surjectivily of the map ¢ thereexist k€ Klac AandneN
such that g =k a n. Assume that g = k1 - a; -n1 = k2 - aa - np. Then by the injectivity of ¢,

kl -a1 My =Ko -ap ng = (kl,a]_,'n]_) = (kg,ag,nz) cKxAxN

where KNA = ANN=KNN = {1}, Thus &; = ko,a; = ay and n) = ny, and g is uniquely

expressible as a product k-a - n. ]
THEOREM. (IWASAWA DECOMPOSITION OF SO(1,2}o) Given the one-parameter subgroups
K= {exp(tE1) : t€ R}, A={exp(tEs) : tcR} and N = {exp(t(E| - Ep)) : teR}

of SO(1,2)o, then SO(1.,2)g = KAN in the sense that for each g € SO(1.2)g, then there exist
unique elements ke K.a e A andn € N such that g =k -a - n.

PrOOF. In PROPOSITION 3.6.11, we expressed s0{1.2) as the direct sum of its subalgebras
50(1,2) = ¢t D a&n where b is compact, o is Abelian and n is nilpotent. The one-parameter
subgroups K, A and N as expressed in the statement of the theorem respectively have b, a and
n as their Lie algebras. Thus by THEOREM A.6.6 the map K x A x N — SO(1, 2); given by
(k,a.n) — kan is a diffeomorphism onto. Thus by CoroLLARY 3.6.9, for each g € SO(1.2),
there exists a unique k¥ € K,u € A and n € N such that g = kan. The result follows.

REMARK. We express the connected subgroups K, A and N:

P

1 0 0
K = {exp(tE;) : teR} =1 |0 cost —sint{f€R (3.6.1}

L 0 sint cost

_cosht 0 sinht
A = {exp(tEy) : teR}=¢(| 0 1 0 cteR (3.6.2)
Lsinht 0 cosht

Lz+Y) —t £
N = {exp(t(EL— E3)) : teR} = —t 1 —t teR) (3.6.3)
2
-7t (28

using Mathematica (C.2).
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4.1.1

4.1.2

Chapter 4

Left-Invariant Control Systems on

SO(1,2)g

4.1 Classification under local detached feedback equivalence

We refer to (A.8.3 ) for the definition of local detached feedback equivalence (l.d.f.e.}. In this

section we will classify all affine left-invariant control systems on SO{1.2)g under l.d fe.

DEFINITION. A system Y is a reparametrization of a system % if their corresponding traces
= {=2(1.u) : ue Rf} and I = {é(l.u} TS Rf} are equal (as sets).

If the two systems ¥ and T are both homogeneous [inhomogeneous|. we will say that they have

the same homogeneity.

REMARK. By (A.8.5), the two left-invariant control systems & and % on G are L.d.f.e. if there
exist open neighbourhoods A and A} of 1 and a diffeomorphism @ : A} — A5 such that for
each u € RY, T, ® - Z(1.u) = Z((1),%(z)) where ¢ is an affine map v : R — R’. Since clearly
I'={5(1.u) : ue R‘?} = {Z(1,¢(u)) : ue ]RE}, this is equivalent to stating that two left-
invariant control systems £ and SonGareldfeifTisa reparametrization of & which is local

state-space equivalent (A.8.2) to 3: that is.
there exists a Lie algebra automorphism ¢ such that ¢(I') = T (4.1.1)
This observation will provide our method of showing l.d.fe.

In the rest of this section, we identify the traces I' of systems % in so(1,2) with the affine
subspaces I' in R}f under the hat map. We denote the image Z(1.u) by Z,,, and will use this
simplified notation where convenient throughout this thesis .

We will use the group of Lie algebra automorphisms of R.l;j‘? established in PrRoPOSITION 4.1.4
to determine distinct classes of l.d.f.e. systems using the method stated in (4.1.1). Note that we
limit this classification to systems of full rank. The systems which can be l.d.f.e. are restricted
by

62
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PROPOSITION. If two systems ¥ and S are Ld.fe., then their traces T and [ have the same

dimension and the same homogeneity.

Proor. If ¥ is Ld.fe. to f], then by (4.1.1) there exists a Lie algebra isomorphism ¢ such that
) = L. But ¢ is bijective and bilinear. Consider the expansion I' = A + (B;...B,), where
T = ¢(I) = ¢(A) + (¢(BL)...¢(Be)) and ¢(A) = 0 & A = 0. Thus T and T have the same
homogeneity. Similarly, ¢(B;) = 0 & B; = 0, and since dim(I") is given by the number of
nonzero linearly independent elements By. By... By, then dim(F) = dim({T)) = dim(f) and the

result follows. O

We may thus restrict our investigation of equivalent systems to systems which have the same
homogeneity and input number. We begin with systems & having traces I' whose images T

under the hat map are 2-dimensional linear subspaces of R.l."_z.

4.1.1 Two-input homogeneous systems

We refer for the terminology of elliptic, hyperbolic and parabolic planes to DEFINITION 2.1.12,
Define the hyperplanes Ty (q), T gy and Tp(py in RY2, where Tyyoy = {(z.y.2) € RY, : z =0}
is hyperbolic, since ds?|r Hoy = —dx? + dy? is represented by a quadratic form with signature
(1,1,0), gy = {{z,y,2) € R? . z =0} is elliptic, since d52|p5wj = dy? + d2” is represented by
a quadratic form with signature (0,2,0), and T pyyy = {{:c, y,z) ER 1z —y= O} is parabolic,
since ds?|p oy = dz* is represented by a quadratic form with signature (0.1,1). These planes
can be expressed as the spans I' gy = (e1, €2}, I'g(p) = {ez2.e3} and T'p(g) = (€1 — ez, e3). From
PROPOSITICN (2.1.14), we prove

LEMMA. Each 2-dimensional linear subspace of ]Rﬁ_jz can be mapped to one of the subspaces

Ty Tey or Tpp) by an element of O(1,2).

PrRoOOF. From PROPOSITION 2.1.11, a hyperplane of R may be either parabolic, hyperbolic or
elliptic, where we noted that these clasess are distinct. That is, an arbitrary linear subspace is
a hyperplane I'g, 'y or T'p, where the subscripts E, H and P denote an elliptic, hyperbolic or
parabolic plane, respectively. If T is elliptic, then by COROLLARY 2.1.14 there exists amn element
of O(1,2) which maps I" to T yp). Similarly, if I' is hyperbolic, then by this corollary there exists
an element of O(1, 2) which maps I to I'gy(p), and fiually if T is parabolic, then by this corollary
there exists an element of O(1,2) which maps I' to I'py. The result follows. O

LEMMA. The matrices g1 = diag(—1.1.1) and g3 = diag{—1,—1.—1) are elements of O(1.2).

PROOF. By definition, O(1,2) = {g e R3*3 : ¢JyT = J}. But

1 00][-100][ 100 10 0
o Ja=]0 1o/lo 10/|lo 1ol=|0 10=J
0o o1f]lo o0 1l]o 01 0 0 1
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and
-1 0 0 -1

g;r.]gz =0 -1 0
o 0 -1
Thus M, 82 € 0(1.2). O

LEMMA. Any arbitrary 2-dimensional linear subspace T' of R}Dz can be maopped to one of the
subspaces T g0y, T go) or Tpry by an element of SO(1,2).

ProoF. From ProrosiTION 2.1.11, T" must be either eiliptic, hyperbolic or parabolic. From
LeMMA 4.1.4, any arbitrary hyperbolic plane I'y may be mapped to I'y) by an element
g € 0(1.2): that is, g (Tg) = Ty(p). Assuming that det g = 1, then g € SO(1.2) and there
is nothing to prove. Thus assume det g = —1. We note that ¢ (FH(O)) = Iy, since by
the linearity of g1, g1(Ta(p) = (g1(e1), g1(e2)) = (e1.ez). Then Iy = g1(Tg), and so
q19(Cx) = Tyg), where det{g1g) = ~1-det g > 0. Thus there exists an element ¢’ = g1¢ in
50(1,2) such that ¢'(Tx) = Ty, and the result follows for hyperbolic planes.

Similarly, by LEMMA 4.1.4 any arbitrary elliptic plane I'g may be mapped to T'gg) by
an element g € O(1,2). Assume that det g = —1. But T'ggy = g1{I'g(g)), since the image
91 {Tpy) = {g1(e2).g1{e3)) = (e2,e3) by the linearity of g;. Thus there exists ¢' = g1g €
SO(1,2) such that ¢'(I'g) = ), and the result follows for elliptic planes.

Finally, by LEMMA 4.1.4 given any arbitrary parabolic plane I'p. it may be mapped to
Tp(y by an element g € O(1,2). Assume det g = —1. But Ipry) = (e; — e2.e3) is invariant
under g3, since g3(T'py) = {(g3(e1) — galez). g2{e3)) = (e1 - ez.e3) by the linearity of g3. Then
LCpy = 93(C'p(g)), and so g3g(T'p) = I'p(g), where det{gsg) = —1-det g > 0. Thus there exists
an element ¢’ = gzg € SO(L,2) such that ¢'(Tp) = T'p(p), and the result follows for parabolic

planes.

REMARK. We use the hat map to identify (ey,ey) with (E, Ey). {eq.e3) with (K3, F3) and
(e3 4+ ey, e3) with (F3, Ey — Eo). But for any system with trace (E3, E1 — Fy), then

[E1 - Eg, E]_ - Ez] = 0, [Eg.Eg] =0 and [El - Ez, E3] = E2 - E]_. (412)

Thus Lie(l') C {(E;] — Eq, E3) C ]R,z‘z, and systems with trace I' = (£ — Ey, E3) are not full

-

rank. Consequently under all Lie algebra automorphisms ¢, the images ¢(I'p(p)) = I'p cannot

be full rank: thus we do not consider the class of parabolic planes in this classification.

PROPOSITION. Each full-rank 2-input control affine left-invariant homogeneous system L is

l.d.f.e to a system 2(12‘0) where the parametrization map E(Z‘UJ(I, u) = u1 Fp + uoEy or q system

252'0) where the parametrization moap Eéz‘u)(l.u) = u1 B3 + uabs.

PROOF. Given the full-rank system & = (SO(1, 2)y, =) with trace I' = (By, Ba) € 50(1,2), then

under the hat map, T’ = (a.b} is an arbitrary 2-dimensional linear subspace in Rl{z, which by
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4.1.1) and (4.1.2) is either hyperbolic or elliptic. By LEMMA 4.1.6 there exists g € SO(1.2
Y Y g
such that
g(I‘) = (eg.el) or (](I‘) = <E3.62) .

Under the inverse of the hat map, hat "1(¢(I'}) = (4. E1) ot hat " (g(I')) = (F3. E»). Thus given
the abitrary 2-input homogeneous control affine system £ with trace I' = (Bj. Ba) € s0(1.2), it
follows from PROPOSITION 3.4.2 that there exists a Lie algebra automorphism ¢4 = ¥(g) such
that ¢q([') = ui Bz + up By or ¢g(I') = uy F3. ua Ea. The result follows. O

PROPOSITION. In PROPOSITION 4.1.8. each full-rank 2-input control affine left-invariant homo-

) )

geous system T = (SO(1,2)0.Z) is @5 Ld.f.e to ezactly one of system Egz.u or system 252‘0 .

ProOF. Assume there exists a system Z = (50(1, 2)p, Z) which is Ld.f.e to both systems )352‘0)
and E‘(qz‘n)- Then there exists a Lie algebra automorphism ¢, such that ¢, (') = (), E2), and a
second such automorphism ¢ such that ¢2(I") = (E2. E3). Thus by PROPOSITION 3.4.2, there
exists an automorphism g in SO(1.2) such that g(I') = {e;,e2), and an automorphism ¢’ in
S0(1,2) such that ¢’ (I') = (e2, es}. Then it follows that

T'=g "({er,e2)) = (9} " ((e2. €3))

and so g o (¢')7! is a symmetry of RZ such that g o (¢')~! ({ez.e3}) = {e;.ez). But this is
impossible, since the restriction of ds? to the hyperbolic plane {e1.ep) is —dr? + dy? which
corresponds to a quadratic form of signature (1,1,0), while the restriction of ds? to the elliptic
plane {e3,e3) is given by dy? + dz? which corresponds to a quadratic form of signature {0, 2,0},

and thus these two planes cannot be isometric, a contradiction. The result follows. i

We state the results PROPOSITION 4.1.8 and 4.1.9 together as

THEOREM. Under l.d.f.e, there ezist two distinct classes of full-rank 2-input control affine left-

invariant homogeous systems & = (SO(1,2)o.E), represented by the systems Eg‘z,o) and Egz,o)‘

4.1.2 Two-input inhomogeneous systems
We refer to (A.3.15)- (A.3.20) for a definition and statement of some general properties of conics.

REMARK. For the cone Ky = {(z.y.2) € R?® : 2% = 4% + 22}, the angle 8, of (A.3.20) is 7.
Then sinfl, = % and (A.3.20) the eccentricity of the projective conics is e = v/2sin fy where
fp (measured in the direction of positive e; from the positive eg-axis) is the angle between the

plane containing the conic and the plane {(es.e3) of rotation of Ky,

In the remaining sections it will be necessary for us to make a distinction between displacement
vectors of Réz, which are the vectors ab = (by — a1,by — az. by — a3) where (a1, 09, a3) is the
initial point of the displacement vector and (by,be, b3} is its final point, and the vectors a,b
identified with the points (a1.as,a3) and (b1, be, b3) in R}:‘z. In cases where the displacement

vector is a unit mormal vector to a given plane, we will denote it by 7., where n gives the
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direction as normal to the given plane and the fact that the vector is unit-length, and a gives
the initial point of the unit normal.

We continue to consider the images I' under hat of the traces [’ of arbitrary systems I.
Firstly we discuss the case where I' is a parabolic plane, and then discuss the hyperbolic and

elliptic cases together. We express some resuits of projective geometry in the context of R12,

PrOPOSITION. An elliptic plane of DEFINITION 2.1.12 intersects the light cone K}, in an elliptic
conic. A parabolic plane of DEFINITION 2.1.12 intersects the light cone K, in a parabolic conic.

Proor. Consider the arbitrary plane T’ and the intersection of the direction subspace I'Y of
I' with the plane I'z = {(a:‘y.z) eER?: z= O}. Since I'’ passes through the origin, then it
always has a nonempty intersection with 'z, which is a line £ = (sinf,e; + cos,ez) where 8, is
the angle between the plane (ez,es) and the plane I'. Since {sinf,e; + cos#eq) C I'% then the

vector(r sin @p, 7 cos 6p, 0) is an elemnent of I'0 for all € R . We consider the Minkowski product
(r sin 6p. 7 cos fp, 0) © (rsinfp, 7 cos . 0) = r°cos 9;3 — r?sin 632,

where clearly f(6,) = 7% cos Hf, —r2sin 93 is a monotonic decreasing function of 8, on the interval
6, € [0, ] which is zero at 8, = 7, since cos # is monotonic decreasing on this interval, and sin @
is monotonic increasing.

Consider first the case when T is a parabolic plane I's. Then by DEFINITION 2.1.12, the
restriction ds?lr, = d32|r?, is represented by a quadratic form with siganture (0, 1,1): that is,
forall q € F?,, q®q > 0. But then if I'} makes an angle of 8, € (%, 5] with the plane (eg, e3),

it follows that I“,}, contains the vector {rsinfy, rcosfy,0), where

2

(rsinBy. T cos By, 0) o (rsinf,,7 cos 8. 0) = rcosfZ — r?sin 9‘; < 0. (4.1.3)

But then I'}, admits a timelike vector, a contradiction of the fact that ds?| ry, is represented by
a quadratic form with siganture (0,1, 1). Thus it follows that I' p intersects Ky, in an elliptic or

parabolic conic. Assume I'p intersects X, in an elliptic conic; that is, the angle £, between I“},

m
E .
rotation (e, es} of K, and the normal vector of I‘?;. is strictly greater than %, and so the normal

and the plane of rotation of K, is strictly less than . But then the angle between the plane of
vector is a vector (7 sin fp, 7 cos 8. 0) such that 6, € (7. 71, which by (4.1.3) makes it timelike.
But then by PROPOSITION 2.1.10, every vector of T'p is spacelike, and ds?|p » Is represented by
a quadratic form with siganture (0.2,0), a contradiction. Thus the angle ¢, between I'}, and
the plane of rotation of Ky, is exactly %, and I'p intersects Kf in a parabolic conic.

Next consider the elliptic planes I'y. Since ds?|r, is represented by a quadratic form with
siganture (0, 2,0), then every vector of I‘% is spacelike and so I‘% admits two spacelike orthonor-
mal vectors s.s’. Thus by COROLLARY 2.1.8 there exists a timelike vector t such that {s.s'.t}
is an orthonormal basis for R? such that t is timelike. Since this vector is normal to s and s/,

then it is normal to to I‘% and may be represented by a vector (rsin#. v cosé,0) where

(rsind,rcosf,0) @ (rsin@.rcosd,0) = cosf* —sinf? < 0.
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Thus the angle & between the plane of rotation of KCp and the normal vector t of I‘% is strictly
greater than § and so the angle ¢, between the plane of rotation {e;, e3) of K1 and I‘% is strictly

less than T. Thus I'g intersects Kz in an elliptic conic. O
3

COROLLARY. The angle 0, between the plane (e, e3) and any spacelike vector s is elways in the

interval {0, 7).

Proor. We begin by noting that the angle between the spacelike vector e and the plane
{eg.e3) is zero, and so lies in the interval [0, 7). But we showed in PROPOSITION 2.1.15 that all
spacelike vectors lie on hyperboloids of one sheet H}, and in PROPOSITION 3.6.6 that SO(1, 2)g
acts transitively on these hyperboloids. Thus for each b € H}, there exists an element g
in SO(1,2)o such that b = ges. Further, the elements g in SO(1,2)y are isometries and so
conformal transformations; thus the angle between b and g({ey.e3)) is zero. But g(({ej.ea)) is
also an elliptic plane, by PROPOSITION 2.1.14. Thus the angle between g(({ez,e3)) and (e2, e3)
is in the interval [0, §), and so it follows that the angle between b and (e, e3} similary lies in

this interval. The result follows. 0

We use this result to prove

PROPOSITION. A hyperbolic plane of DEFINITION 2.1.12 intersects the light cone K;, in a hy-

perbolic conic.

ProoF. Given the hyperbolic plane T'y, the restriction dszlr“,{, is represented by a guadratic

form with signature (1,1.0). Thus I'}; admits a timelike vector t. Since the normal vector 7

to I‘?{ at the origin must, be perpendicular to every vector in I'y;, it follows from PrROPOSITION

2.1.10 that 7y is a spacelike vector s. But then by COROLLARY 4.1.13, the angle ¢ between s

and the plane {3, e3) must lie in the interval [0, §). But s is normal to every vector in T';: thus

the angle between (ez, e3) and every vector admitted by T'}; must be given by —# + % and so
o

lies in the interval (I, Z]. Thus the angle 6, between I'%; and (eq, e3) lies in this interval, and

so from (A.3.20), I'y intersects Ky, in a hyperbolic conic. m|

Parabolic planes

REMARK. From PROPOSITION 4.1.12, the parabolic planes are those planes having rulings par-
allel to one of the generators of the cone X, or alternately, the parabolic planes have normal

vectors which are perpendicular to one of the generators of Kj,

PRoOPOSITION. Fach parabolic plane U'p has a unique lightlike normal vector which lies on the

cone Ky,

ProoF. From PROPOSITION 4.1.12, the plane I'p intersects K in a nondegenerate parabolic
conic and as we stated in the previous remark is parallel to a generator £ of ;. Further, the

axis of the parabola of intersection is a line £ T T'p parallel to the generator ¢, while then the
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tangent to the parabola of intersection at its turning point p is perpendicular to & and is tangent
to the parallel of the cone Kj at p. But in PrRoPOSITION 3.6.5, we parametrized the cone Kp,
by the patches (e!*,24), i = 1,2, where €¢'*(0,2) = (z.zcos8.zsinf) for i = 1,2. Thus for all
z € R and some 8y € R, we see that

€5(z,80) ® €(2,6y) = (0, —zsinfy, zcosfy) e (2. zcosfp, zsinfg) = 0

and the generating line €'(z.8g)|,er of the cone through a point €*(zp, p) is always perpendicular
to the tangent of the parallel at that point. Thus the generator £/ of Ky at p is perpendicular
to the tangent line #. The generator ¢’ cannot be parallel to the generator ¢ since rotations
preserve the orgin and all generators intersect at the origin. Thus ¢” is perpendicular to € and
lies on the cone K ;. But then the unit direction vector of ¢/ at p is the unique normal to T'p

at p and lies on the cone K. |

Since the pair (ﬁp, p) together can be used to construct I'p, and for any parabolic plane I'p,
the point p of PROPOSITION 4.1.16 uniquely identifies the pair (ﬁp,p), it follows that each
parabolic plane T'p can be uniquely identified with the lightlike vector p on K described in
Prorosition 4.1.16.

PROPOSITION. The transformation ga = diag(—1,—1,1) is an element of SO(1,2).

PROOF. By definition, SO(1,2) = {g € R**3 . gJgT = J det g = 1}. But

-1 ¢ 0Oj|-1 00l|-1 0O O -1 0 0
g Jga=10 -1 0|0 1 o0f|0 -1 0= 1 0l =J
0 0 1|0 01 0 1 01
. -1 0
and also expanding aleng the bottom row, then det g = ‘ . (1)=1 O

PROPOSITION. For any parabolic plane 'p, there ezists some element g € S0{1,2) such that
g(T'p) = I'p(1), where I'pg) = {(z.y.2)eR? 1 z—y= 1}.

PROOF. Since we have identified each parabolic plane I' p with the lightlike element p of PrROPO-
SITION 4.1,16 which uniquely defines the pair (ﬁp.p) where ﬁp is lightlike, then we uniquely
identify Tppy = {(z.1,2) € R® : v —y =1} with the element (5. 3%.0) = p;. But from
PROPOSITION 3.6.6, SO(1,2) acts transitively on the two sheets of Xr. Thus if p lies on the
upper sheet, there exists some g € SO(1, 2) such that g(p) = p;. Further, from the decomposi-
tion of PROPOSITION 2.2.15 of SO(1,2}, then if p lies on the lower sheet, the image ga(p) lies
on the upper sheet and there exists some g € SO(1,2)g such that g{ga(p)) = (5. 3.0). Since
g is linear, 1t follows that ¢(T'p) is a hyperplane containing ¢g{p). But the unique lightlike unit
normal vector 7,, of T'p is sent to a unit vector passing through g(p) and lying within the cone
K. Since g is conformal, then g(ﬁp) is normal to the image hyperplane g{I'p), and so g{T'p)
is a hyperplane passing through g(p) = p; with the unique lightlike normal vector ﬁpl . By the
uniquness of the parabolic plane I'p(;y determined by the pair (?fpl .{p1)), the result follows.O
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THEOREM. FEach full-rank 2-input control affine left-invariant inhomogeous system ¥ with trace
I' such that the image T of I" under the hat map is a parabolic plane in RY2, is Ld.fe to the
system T2 = (SO(1,2)0, %), where 23 = By + w1 (F) — E2) + ugEs.

PrOOF. Given the parabolic plane I' = a + (b1, by} corresponding to the trace T of %, then by
PROPOSITION 4.1.18 there exists ¢ € SO(1, 2) such that g(I'} = e, + (e3,e; — e3). Under the
inverse of the hat map, hat~t(g(I")) = E; + (Es. E1 — E2). Thus by PROPOSITION 3.4.2 there
exists a Lie algebra automorphism ¢4 such that ¢4(T') = E1+ui{E) — Ea) +u2E3 = hat ™ (g(T)).

The result follows. O

Hyperbolic and elliptic planes

Given a hyperbolic or an elliptic hyperplane T' in R, we show that we can always construct

the unique hyperboloid to which the plane is tangent. In the next proof we use Mathematica

(C.3)

PROPOSITION. An arbitrary hyperbolic plane T'y is o tangent plane to ezactly one hyperboloid
of one sheet HL. An arbitrary elliptic plane is a tangent plane to ezactly one hyperboloid of 2
sheets HZ.

PROOF. Denote the hyperplane {(:c,z,y) € R® : 2 =0} by ['z. We show that every arbitrary
hyperbolic hyperplane 'y is tangent to exactly one hyperboloid #], by showing that [y N Ty
has the same gradient as exactly one generator H. N T'z of an H!,, considered as a surface of
rotation about the ej-axis, at a point of intersection. We use identical steps for the case of T'g
and H2.

In the case that T is hyperbolic, T'y = {(rc,y.z) €ER3 : ez +by+ecz= h}, then the inter-
section T'yy Mz = {(;L',-y, ) €ER3 : ar+by= h}, where by PROPOSITION 4.1.14, the gradient
of Ty NT'z is such that the angle of inclination of 'y to the y — 2 plane is # radians, T < 0 < 3:1—“.
Thus the gradient 3* of 'y NT'z is such that tan (%) < & < tan (%’r)

The hyperboloids H. considered as surfaces of revolution have as generators the hyperbolas

=HNTz = { z2 4 y? =a? : (z.y) € R?} and axes of rotation the e;- axis. The pradients

y

of these generators are given by :—E{- = £ = ﬁ, which lies in the interval (—1,1): the

T 3

codomain of tan({f/) where # € (%,5). Thus we may equate the gradients of - with the
gradients of 'y N Tz,

a _W_ e here the T = o?a? or T = _Qza?
oriZ v Y R ) IV (e y

which are both defined, since 3% € (~1.1) and thus b > a. We choose here to consider the case
where the intersection lies on the positive branch of the hyperboela, and so choose the solution
L‘!Qu

T =/ way However, if we chose the negative square root, we could find the value o® which

uniquely defines 7! using identical calculations.



4.1.21

70 CHAPTER 4. LEFT-INVARIANT CONTROL SYSTEMS HCH

We solve for y by substituting into the equation of HNTz, togivey = /a2 — (—;52_—(‘:23. Then
we substitute back into the equation of Ty NI’z to give the unique value of a2, o? = ﬁ‘%

Thus we have defined the unique hyperbeloid

212 212
H. = .z e R : —; 24 =
o {(a:y )€ Tt + Yy + Tl 2R T

at which I'y; has the same gradient as H) at a point of intersection. Then it follows that T'j; is
tangent to HL at that point.

In the case that T is elliptic, Tg = {(x,¥.2) € R® : ax + by + ¢z = A}, then the intersection
NIz = {(:r:,y,z) eR3: az+ by = h}, where by PROPOSITION 4.1.12, the gradient of T'; N
I'z is such that the angle of inclination of I'g to the y — z plane is # radians, where 0 < # < 3

or §4£ < # < =. Thus the gradient * of [y NIz is such that 3* < tan (%) or tan (%’1) < 55

The hyperboloids H2 considered as surfaces of revolution have as generators the hyperbolas
Yo =HLNTz = {:1:2 —y*=a?: (z,9) € ]R""} and axes of rotation the e;-axis. The gradients
of these generators are given by % = ﬁ
the codomain of tan(#) where 6 € (0, 2)U (3F. 7). Thus we may equate the gradients of v, with

= _:I:—;—v’_g:d_?’ which lies in the interval (—oo. —1}U({1. o),

the gradients of Ty NIz,

T dy -—a here th x2a? a2g?
—_——— = = —, wher en T = —_— Tr= — —_—
Voo dz b e (@2 55 *F (aZ- 82

which is always defined, since 3* € (oc. —1}U(1,00) and thus a > b. We choose here to consider
the case where the intersection lies on the positive branch of the generating hyperbola 9, and
so choose the solution x = 1/{7'52_;‘;-5. However, if we chose the negative square root, we could

find the value o which uniquely defines H2 using identical caleulations.

We solve for v by substituting into the equation of HLNI'z, to give y = (—;;-’;% — a?. Then
we substitute back into the equation of I gNI'z to give the unique value of o2, o? = ﬁ"f%.

Thus we have defined the unique hyperboloid

b2h? — a2h2
'H?x={(-’ﬂ,y,z)€R3 cat oyt 2= e }

—ad — 2q2p2 _ p4

for which T’ has the same gradient as H2 at a point of intersection. Then it follows that 'k is
tangent to 2 at that point. 0

REMARK. For any given hyperbolic or elliptic plane I' = {(2,y.2) € R® : azx + by + cz = h} in
R,-lh-’,z' in order to find the point p, of tangency to the hyperboloids of revolution of ProposiTION
4.1.20, we substitute the calculated values for 2 and y in terms of « into the equation of T', giving
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one of the four points

a2a? ala? \ h—a 5%2_&25 b (—%—2—)7(}2
B2 a2\ 2 —a?) as. P {4.1.4)

ala? axZal? h+a [f‘ :’ b (br,'-'_a: - a? .
Vo Vwoa c {4.1.5)

(4.1.6)

- a?a? c:za'z
\/ ala? \/ a?a? ) h “\/E‘-"—? + b\/(
- — G~

@ -a =)

in the case of the hyperbolic planes I'y;, or one of the four points

(4.1.8)

252 Za2
( a?a? \/ a?g? o2 h— a\/(_a%r) - b\/(ﬁ—_br —af
( ' c

(az_bz)’_ az_bz) -

\/ a2a? \/ a2a? ) h+ Y. ua:sz* - b\/ (aai:’szﬁ) - ‘12)
— [0 S
-

_\/ Y — }”"“\/buz—“g“’\/ (@17
G M T R .

@ -\ W -y ~ (4.1.9)
a2a? a2 , h—ayf 5o — b'\/(_a‘f—i:ﬁ a2

@2 -2\ (a2 —02) o, - (4.1.10)
?a? gl h+ﬂ\/ o +b\/{ afa’ g2

N @@ (@ a?, (4.1.11)

in the case of the elliptic planes I'g, where in both cases the positive and negative signs of
the z-coefficients derive from whether the point lies on the positive or negative branch of the
hyperbola of revolution, as in the proof of PROPOSITION 4.1.20.

Thus particularly to each elliptic or hyperbolic plane we can uniquely associate the point of
tangency po to the appropriate hyperboloid H. The point p, uniquely determines the pair
given by (7 p,. Pa) Where @y, is the unit normal vector to H!, at the point ps. This pair in
turn uniquely identifies T", since given (W\Pn,pa) we may construct the unique plane passing

through p, with normal ﬁpn, which is the plane T

But this gives us a direct way to classify all systems whose traces correspond to the hyperbolic

and elliptic planes in ]R:l;jz. In order to express this classification, we need

4.1.22 PROPOSITION. The hyperboloids HY, = {(:L‘,y. NeRd o —zx? 4?42 = az} have tangent planes
wey + (e1,e2) and the hyperboloids H2 = {(m.y.z} ERY 22—y -2 = 02} have tangent
planes aes + {es.e3) for a € R.

PROOF. As in PROPOSITION 3.6.5, we may parametrize the hyperboloids of two sheets H2 by
the patches (€% (z.8),U3!) and (¢*2(z. 0).U3?), where €% (r. @) = (coshr.sinhr cos 8. sinh 7 sin §)
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and U3 = R x (—m, ), U3? = R x (0,27). The tangent plane at (u.v) = (0.0) is the span of

orthogonal vectors
e31(0,0) and  €31(0,0), where €31(0,0) =(0,1,0) and €'(0,0) = (0,0,1)

and the plane passes through ¢21(0.0) = (2. 0.0). Thus the plane ce; + (es. e3) is tangent to H2
at the point {c.0,0). In PROPOSITION 3.6.5, we parametrized #} by the patches (e2!(z, §),?!)
and (e22(z.0),U*?), where ¢*(r,0) = (asinh7, a coshr cos#, a coshrsin §) and U = Rx (-1, 7),

1?2 = R x (0, 27). Thus the tangent space at (u,v) = (0,0) is spanned by the orthogonal vectors
e2'(0,0) and €2*(0.0), where €'(0,0)=(1,0,0). and €2'(0.0)=(0,0.1)

and the plane passes through the point €2*(0.0) = (0, . 0). Thus the plane ey + (e;. e3) is
tangent to 1. at the point (0, x.0). o

Denote the specific hyperbolic planes ey + {e).es) by [y (q). and the specific elliptic planes
ae; + (e2,e3) by Ty

PROPOSITION. Any hyperbolic [elliptic] hyperplane of R.ll;z may be mapped by an element of
S0(1,2) to ezactly one of the planes I'gq) U pia)/ where o > 0.

PRoOOF. In PROPOSITION 4.1.20 we showed that each hyperbolic [elliptic] plane is tangent to
exactly one hyperboloid H! [H2], and denoted the point of tangency by ps ( 4.1.4)-(4.1.11).
But by the transitivity of SO(1,2)p on H, [H2] by PROPOSITION 2.2.27, [PROPOSITION 3.6.6],
there exists an element g of SO(1,2)p mapping ps to the point {,0,0) [(0,a.0)] on this hy-
perboloid. We note that we may restrict to values a > 0, since if g(T") intersects H2 [H]] in the
point (—a.,0,0) [(0, -, 0)] for positive «, then the reflection g, of PROPOSITION 4.1.17 maps
(-, 0,0) to {«,0,0,) [(0, -, 0) to (0..0)], where gog € SO(1,2) is an automorphism of IR,E‘?.
Sinee SO(1,2) is linear, then the images g{I'} and g o g(I"} of " are hyperplanes of R'?, where
g(T') contains g(pq) and gog(I') contains gag{pPa), and either g(pa) or g2g9(pa) is the point
(a,0,0) [(0,,0)] for positive a. Finally, by the linearity of g and gog and the fact that they
preserve the hyperboloid #2 [H]], it follows that

g(HZNT) = g(H2)Ng(T) = {g9(pa)} and g2g(HaNT) = gog(Ha) Ngag(T) = {g1 0 9(pa)}

that is, either g(I'} or g2g(T") is tangent to H {H2] at (.0.0) {{0..0)] for positive c. But the
tangent plane to H} [H%] at («,0,0) [(0.«.0)] is unique, and by PROPOSITION 4.1.22 it is the
hyperplane we; + (3, e3) [aez + (€1, e3)]. Thus g(T') = ae; + {e3,e3} [ ¢(T') = ey + {ey, e3)] or
g2og(I") = e + (ez.e3) [ g2 g(I') = ces + (e1. e3)] and it follows that there exists an element
of SO(1,2) mapping I' to one of the planes I g4y [T pa)] where « > 0. a

We use this result to prove

PROPOSITION. Any full-rank 2-input inhomogeneous control affine left-invariant system T hav-
ing a trace I' such that the image T’ of I' under the hat map is a hyperbolic or an elliptic plane
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is lLd.f.e to one of the systems of the family 2(2 = = (50(1, 2)y. _.22&1)) where the dynamics

u(zzal) = B3 4+ u1 Ea + us By, or of the family 2(2 - = (SO(1.2)p, _32&1)) where the dynam!ics

g3 = aB) + w1 By + wFy fora e RY,

Proor. Given the hyperbolic [elliptic] plane T' = a + (b;, bz) corresponding to ', then by
PROPOSITION 4.1.23 there exists g € SO(I,2) such that ¢{T') = ae3 + {e;.e3) [ae; + {eq, e3)].
Under the inverse of the hat map, hat™1(g()) = aEs+(E;. E2) (hat ! (g(T')) = k) + (E3. E3}),
and so by PROPOSITION 3.4.2 there exists an clement ¢, = ¥(g) € Aut(so(l,2) such that
@q(T) = a3 + (£, Ep) = hat =2 (g(I)) [ ¢4(T) = aEy + (Ey, E3) = hat*l(g(I‘))]. The result
follows. -

PROFOSITION. In PROPOSITION 4.1.27. each full-rank 2-input conirol affine left-invariant in-
homogeous system L = (SO(1.2)p.E) is is l.d.f.e to exactly one of system 2(2 D 2(2 Y oor 2(2 b,

PrRoOF. The representation of the restrictions ds'2|pH(n), ds®|rg,,, and ds? as quadratic

er(l
forms have signatures (1,1,0), (0.0.2) and (0,1,1), respectively. Assume intizi]ly that there
exists a system £ = (S50(1, 2)0,Z) which is Ld.f.e to both a system 2(12‘&1) and 2(22011) Then there
exists a Lie algebra automorphism ¢; such that ¢;{I'} = aF3 + (E), E3), and a second such
automorphism ¢2 such that ¢2(T'} = o’ E} + (Es. E3), .’ > 0. Then by PROPOSITION 3.4.2,

there exist elements g. g’ € SO(I, 2) such that

g(T) = ces + {e,e3) and ¢ (T) = d'e; + ez, e3).

~1is a symmetry of RZ such

Then T' = g{ae3 + (e1.e2)) = g’ (¢’e; + {ea,€3)), and so g o (g')
that g o (¢') 7! (e; + {e2,e3) = oeg + (e1,ez).

But this is impossible, since the restriction of ds? to the hyperbolic plane wes + (e, e} is
given by —dz? + dy® which is represented by a quadratic form of signature (1,1,0), while the
restriction of ds? to the elliptic plane o’eq +{es. e3) is given by dy?+dz? which is represented by a
quadratic form of signature (0, 1, 1). Thus these two planes cannot be isometric, a contradiction.
The remaining cases (E( D is Ldfe to Egzﬂl) or E(Z D is 1d.fe to 2(2 1)) follow identical steps.

Secondly assume that Egzﬂ) is l.d.fe. to 2(2 U for .o/ € R*,a # o, Then there exists a
g € SO(1.2) such that q:(fal) = ug;,) and so ¢ (I') = ae3 + (e1,e3) = o’ez + {e1.ez). Then
particularly goez = a’ez, where |laes|| = o? # (a')? = a'es| since «. ¢’ > 0, # «'. But this
contradicts the fact that g is an isometry. Thus Z(l?c'x cannot be Ld.fe. to Z (2, 1) if « # o, The
case of the family Z( U follows identical steps. |
We may then state the results of PROPOSITION 4.1.26 and PROPOSITION 4.1.25 together as

THEOREM. Any full-rank 2-input inhomogeneous control affine left-invariant system L having
o trace I such that the imaege T' of T under the hat map is a hype'rbolic or an elliptic plane is

l.d.f.e to exactly one of the systems of the family 2(2 u = (S0(1.2)p,= ~2 o }) where the dynamics
—(2.1)

5. = aE3+u Ex+usEy, or one of the systems of the family 2(2 - = (50(1, 2)q. _g . )) where

the dynamics :g?al) = aF1 + u B3 +usEy for a € RY,
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We collect the results of THEOREMS 4.1.19 and 4.1.26 in

THREOREM. Any full-rank 2-input inhomogeneous control affine left-invariant system X is Ld.f.e

to one of the systems of the family Eg&o) the family Egz,;lo) or the system % for o € R,

ProoF. From PROPOSITION 2.1.11, the image T of the trace I' of an arbitrary full-rank 2-
input inhomogeneous control affine system ¥ is a hyperplane of R*? not passing through the
origin which is exactly hyperbolic, elliptic or parabolic. If T' is hyperbolic or elliptic, then by
THEOREM 4.1.26, & = (50(1,2)0,Z) is l.d.f.e to one of the systems E‘(fc‘?) or E_gff) . Similarly,
if T is parabolic, then by THEOREM 4.1.19 it follows that ¥ = (50(1.2)p,=) is L.d.fe to the

systemn 252‘0), where 5(12‘0) = B, + (E3. By — E2). The result follows. |

4.1.3 Single-input inhomogeneous systems

REMARK. In THEOREMS 4.1.10 and 4.1.27 we showed that all hyperplanes of R12 are of the form
9T H(a)- 9T E(a) 9T ), 9T s (o) ©F 9T g0y, Where @ > 0 and g € SO(L.2). From PROPOSITION
2.2.24, each element of S0(1,2) is a product bkge or bk, and each element of SO(1,2)p is a
product bk. Consider the hyperplanes gT'y (o) and gL (), where o > 0. Taking g € SO(1, 2),
then

glaer + {ea, e3)) = agler) + (g(ez), gles)))

where ag(e;) lies on the upper sheet of the hyperboloid #2, since by REMARK 2.2.13 the elements
of SO(1,2)p preseve the sheets of these hyperboloids. Since this is true for all g € SO(1,2),,
then the only element of SO(1,2) which sends cg(e;) to the lower sheet of H2 is the element
g2. Thus given the plane I'g(,) expressed as cer + (eg,e3) where o > 0, the image g{T E(a)) =
a’e; + (e, e3) where o < 0 is possible if and only if g = bkgs € 50(1,2). Thus we may obtain
all elliptic planes as images g(T g(o)) where g € SO(1,2)q if and only if we allow « € R.

For parabolic planes, g{Ae; + {e; + ez, €3)) = Agles) + {¢{e1 + ez), g{ea)) where A = %1, g
in SO(1.2)p and where g(e1) lies on the positive branch of the hyperbola of revolution of H2,
since we noted in REMARK 2.2.13 that the elements of SO(1.2)p preseve the sheets of these
hyperboloids. Since this is true for all g € SO(1,2)g, then the only element of SO{1,2) which
sends g(e;) to the lower sheet of ?—t% is the element go. Given I'p(;) = e1 +{e; + ez, e3), then the
image g(T p(1)) = —e1 + (e1 + ez, e3) where o' < 0 is possible if and only if ¢ = bkga € SO(1,2).
Thus we may obtain all parabolic planes as images g(T'p(3)) or g(I'p(_y)) where g € SO(1, 2)o.

For the hyperbolic planes, the element &(7) maps ez to —ez, and so all hyperbolic planes
are images g(I g(o)) where g € SO(1,2)g and a > 0.

Thus we may modify the statements of THEOREMS 4.1.10 and 4.1.27 to state that all hyperplanes
of RY? are of the form 91 (a)- 9T (e, 9L p(1y 07 gL p(—1) where a € R and g € SO(1,2)y. We

will use this alternative classification in the proofs of this section.

In order to begin classification of single-input systems using this classification of 2-input systems,

we require the well-known result of Euclidean geometry, that
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PROPOSITION. In R3, any line £ = a -+ (b) can be expressed as the intersection of two hyper-

planes.

We then use the expression as images gI'y (o). 9T g(a)- 9T p(1) OF 9L p(_1) where o € R and
g € SO(1.2)g of hyperplanes in RY? as in REMARK 4.1.28 to establish

PROPOSITION. Any line ¢ in R1? can be mapped by an element of SO(1,2)y to one of the

intersections
(Case 1)1 T'giay) Ng{TE(g) (Case 4):  T'p(a1) N g(Tp(a))
(Case 2): FH(C:) ﬂg(I‘H(ﬁ)) (Case 5)1 F_F‘(:i:l) M g(I‘E(a))
(Case 3):  T'py(wy Ng(L i) (Case 6} T'p(x1) Ng(Tpy)

for some . 8 € R. g € S0(1,2)g.

ProOOF. By PROPOSITION 4.1.29, each line ¢ C R}u{g may be expressed as the intersection of two
hyperplanes I'; and ['z. But as we noted in the previous remark, by ProposITIONS 4.1.18 and
4.1.23 there exist elements g, g’ € SO(1.2)p such that

[y = g(Ty) 9(CE@)) or ¢ (Tpay) and  Ta=¢' Ty o' (Tee) or ¢ (Tpayy)

where .8 € R. Let Iy denote g~!(Ty) and 'y denote (¢')~! (T'2). Thus it follows that the
intersection ¢ = g{Ts;) N¢'(Tn) = ¢'{g’""1gTps N 'n). Thus there exists g = ¢'~1¢g € SO(1.2)
such that the image ¢’ '(¢) = ¢” (Tp) NTv. But then since Fas = T yy(qy, T oy o Tpeany and
similarly Iy == Tggy, Tgg) or Tp(s1), it follows that there exists an element g” of SO(1, 2)g

such that ¢”(#) lies in one of the given intersections. O

We find explicit expressions for the lines in each of the 6 cases.

Case 1-I'gyNg (FH(ﬁ))

From THEOREM 2.2.23 each element in SO(1,2)p is a product bk where b is some Lorentz
boost in a plane containing e; and k is a Fuclidean rotation about the eq-axis. Further, in
PROPOSITION 3.6.7 we showed that the planes I3y are preserved by by. Thus the intersection
Chtey M 9(Tpgy) will not vary if g = 0y Since from THEOREM 2.2.23 each Lorentz boost
is a product k 'b1k, we consider the case g = k only since the image of I'g(ey under all
other Lorentz boosts may be found by applying &, and then k=% to the images k (PH(u))-
The plane & (FH(H)) = P(k(ea)) + (k{e1). k(e2)) can be expressed as the image given by set
k(Thu) = {{(z.y.2) €R? : zcos —ysin® =x} where § # nr (for k = £1, then & (T g)
is parallel to I'gq)). Thus

acosf - 3

(z,y.2) €k (Tu(a) NTy(e) & —ysind=p-acosf = y= —
sin
cos -3

Thus the line I’ H(a) Nk ((I‘ H(ﬁ))) passes through the point (O. & Snd - a) with direction vector

(0, —sind,cos ) A (0,0.1) = (- sin#,0.0). Thus the line f = (0, "msg_ﬁ.a) + {ey). However,

sin @

using Mathematica (C.3) to apply a rotation k((}‘) to £, then

k(6)(£) = (¢, cos8(—B + acosB)cseh — asin 6. acosf + (—3 + acos@)csef sin 0)|ecr.
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In the code {C.3) we note that for each a. 3 € R there exists 6, € R such that the image under
k{6) of ¢ is

(L.cos 52(—/3 + a cos B)cscd — asin 8. a cos Bz + (=8 + acosf)esed sin 52)|te]g =te; + esier.

Thus there always exists a g € SO(1,2)p such that g(¢) = g(Tpa) N g (Tyg)) is the line
g{f) = cey + (ey), for c € R.

Case 2-T'go Mg (I‘E(ﬁ))

As in the previous case, we express each element of SO(1,2) as bk. Since from PROPOSITION
4.1.19 the planes I' gy, are preserved by any Euclidean rotation k, then the intersection IgieN
g(Tg(g) will not vary if g = k. Thus we consider g as a Lorentz boost only, particularly the case
where b is the Lorentz boost by of DEFINITION 3.1.12, since the image of T'g¢g) under all other
Lorentz boosts can be seen from THEOREM 2.2.23 to Le obtained by applying first a rotation & to
T';(9), then applying by and finally k%, We express by (L) = B(bi(e1)) + (br(e2), ba(es)) as
the set by (PE(;@)) = {(a:,y,z) € R3 : coshfz —sinhfy = 6}, where & # 0 (since if by = 1 and
then by (T'g(g)) is parallel to Tg(qy). We express the plane Tgy = {(z.y.2) € R® : z =3},
Thus it follows that

_ Beoshf — o

(.y.2) € i(TE@ey) Mgy &  —sinhfy+coshff=a = sinh 6

and the line T'geoy N by (T g(g)) passes through the point (ﬁ, %Bg_—“, 0) with direction vector

(coshd,sinh&,0) A (1.0,0) = (0,0, —sinh@). Thus { = ( ,@%.O) + {(e3). Consider the
image b1(8)(£) = (Bcoshf + (—a + B cos B)csch sinh 8, (—cv + 3 cos 8) cosh fesch + Bsinh b, ) |seg.
Using Mathematica (C.3), we note that for each «, 3 there exists either 51 € & such that

(3 cosh 8, + {(—o + S cosf)cscf sinh g;. (—c + 3 cos B) cosh 01csch + Bsinh 51, t)|ter = (e3) + cey
or
{3 cosh 8y + (—a + B cos B)cscf sinh B, (—a + 3 cos ) cosh facsch + Bsinh fy. tYier = (e3) + ey

and further that these angles 51 and §2 never exist simultaneously for the same combination of
@,f. Thus there always exists a ¢’ € SO(1,2)g such that ¢'(f) = Ty Ny (I‘E(g)) is the line
ce; + {e3), or des + {e3) for ¢, ¢’ € R.

Case 3 - T'jy(0) N g (Tgep)

In PROPOSITION 4.1.19, we showed that the planes I' () are preserved by any Euclidean rotation
k, and so the intersection I'g(q) N g(FE{ﬁ)) will not vary if ¢ = k. Thus we consider g only
as the Lorentz boost b1. The image of I'g(y) under all other Lorentz boosts from THEOREM
2.2.23 may be obtained by applying first & to T g(g), then applying b; and finally k~1. The plane
by (Tesy) = A(bi(er))+(brez).biles)) is the set by (Tagy)) = {(2.y.2) € B? : coshfz - sinhfy = 3}.
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Since Ty = {(x.9.2)€R? : z=a}, then k(5)(Thw) = {(z.v.2) eR : y=a},
where the corresponding intersection k (%)(FH(Q)) N g{Tg(s)) can be mapped by the element
k(—%)of SO(1,2) to the intersection Tggy Nk (—%) W) = Tirgay N 9'(T i) for g,g" ar-
bitrary elements of SO(1,2). Thus considering the intersection of g (T’ E( ﬁ)) with the image set
k(%) (T g (o)) does not change the case. Then it follows that for each point in the intersection,
_ a—{3sinh@

@.v:7) € k(3) (Crw N9(Tae) & coshéw o psinhd = coshi

and the line § = k& (%) (I‘H(u))ﬂg (I‘E(ﬁ)) passes through the point (%@, o, 0) with direction

vector (0,1,0) A (cosh#,sinh8,0) = (0,0,cosh#). Thus the line { = c(”‘—uﬁ':ﬁ-%h—@,a,O) + (es).

Consider the image
b1(6)(¢) = (cosh fsecf(c — Fsind) + asinh 6, a coshf + sech(a — Fsin ) sinh 8, t)|icr.
Using Mathematica (C.3), we note that for each ¢, 8 there exists either 8, € R such that
(cosh §1sec9(a — Bsiné) + asinh 0, coshf; + secf(x — Fsinf)sinh &, )|ier = (e3) + cey
or 8z,
(cosh 5‘28&09(& —~ fBsinf) + asinh 6. cxcosh By + secf(ax — Fsinf) sinh [9},1)|E5R = {e3) + ey

and further that these angles 51 and (;"2 never exist simultaneously for the same combination of
«, 3. Thus there always exists a g’ € SO(1,2)p such that ¢'(£) = Ty N g (I‘E(B)) is the line
ce; + (ea), or c'ey + (es) for ¢,¢’ € R.

Case 4 - Tpay) N9 (Thay)

From PROPOSITION 3.6.7, the planes I'p(qy are preserved by the Lorentz boost b;. Thus the
intersection I'p(y N g (I‘H(g)) will not vary if ¢ = b;. Since from THEOREM 2.2.23 each Lorentz
boost is a product k~lbik, we consider the case g = k only, since the image of T H(p) under
all other Lorentz boosts may be found by applying b1 and then k~! to the image & (I‘ H{Q)).
The plane k(T y(q)) = Bk(es) + (k(er). k(ez)) = {{z.y.2z) € R? : zcos# - ysind = @} and the
planes Cpy1y = {(z.4,2) €R : z+y+1=0}. Thus (z.y,2} € UpeyNk (Ty(e) if and only
if 2co86 — (z £ 1)sin# = a. This introduces two cases: § = 521}31 or § # &”—;lh

Case 4a (9 = (ZL;M

Taking ¢ = P—”T",_L)", then k(Tgay) = {(z,y,2) € R® : y=a}, and Tpyy Nk (Ty(a)) passes
through (& + 1,0,0) = (c,0,0) with direction vector (1.1,0) A (0. —sin £*. cos ) = (0.0.1).
Similarly, I'p¢_y Nk (I‘H(a)) passes through (& + 1.« 0) with direction vector (0,0, —1). Thus

t=TpnyNk (I‘H(Q)) is the span (o + 1., 0) + (es}. Consider the imnage of the line ¢,
b {8)(€) = ((1 + &) cosh @ + wsinh 8, a cosh 8 + (1 + o) sinh 8. Dlier-
Using Mathematica (C.3), there exist 51, gg € R such that

{cosh 51sec9(a — Bsin8) + asinh 51, acosh 51 + secf(a — Bsinf) sinh 51. t)|ier = (e3) + cey
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or
(cosh 5gse06(a — fsinf) + asinh 8y, cccosh B + secf(cx — Bsin#) sinh 65, tier = {e3) + e

and further these angles g, and 52 never exist simultaneously for the same combination of «, 3.
Thus there always exists a ¢’ € SO(1, 2)o such that the image ¢'(¢) = g (T p(4y) Nk(G) (I‘H(Q)))
for § = (2"—;’1)3 is a line g'(£) = ce; + (e3), or ¢'(£) = c'eq + (e3) for ¢, ¢’ € R.

Case 4b (9 # (—23'5;)”)

Taking # € R, 8 # Kz—”;r—lk, then the set k(0)(Ty(ay) = {{z.y.2) R} : z = cosd +ysinf},
and so £ = Tpiy NE(O)(They) = {(t.1 -t ccosl+ (1 —t)sinf) : t € R}. Thus ¢ passes
through (1,0, @ cos @) with direction vector (0, —sinf,cos #) A(1,1,0) = (cos &, cos8,sind). Thus
the line £ = Lp(1y Mk(#) (Thqa)) = (1.0, cos8) + {cos 8, cos 8, sin 6). Using Mathematica (C.3),
then

coshd 0 sinhé|{ |cosd cosf cosh 8 -+ sinésinh 8
0 1 0 cosf| = cosf
sinhd O coshd| |sind cosh@sinf + cos#sinh @

where there always exists a value 51 of 8 such that cosh 51 sin # + cos @sinh 51 = 0. Taking this
value of 8, then

coshd sinh@ 0| |cosécosh @_1 + sin @ sinh 51 cos 8 cosh 5]2 + {cos g + cosh ¢, sin é’) sinh &,
sinh® coshd 0 cosf = | sinfsinh gf + cos 6 cosh 6; (1 + sinh&; )
0 0 1 0 t]

where cos 6 cosh 5% + (cos 6 + coshfysind)sinhf; = sin#sinhf? + cosf cosh §; (1 + sinh6,) for
some value of 8;. Correspondingly, under b; (4'9”) and bz(al), the point a = (1,0, ccos §) is mapped

to
(cosh f1(cosh 8 + acosdsinh §), (coshf + o cosfsinh §) sinhf, o cos  cosh & + sinh 0).

But the transformations n(t) = exp(t{E; — E2)) in 50(1,2)p preserve the sum e; + e;. Thus
the homogeneous part of the intersection is invariant under n(fy), and a is mapped to a vector

with es-term
( cos f cosh 6 + sinh 8 — 85 cosh (cosh 6 + «cosfsinh 5) + §g(cosh g + & cos@sinh 5) sinh 6y

where there always exists a value of g2 such that this value is zero. For the e; and ey entries
of this image, we may subtract the sccond entry from the first, to deterinine that a is a sum
% cosh § + asinh 8(cos 8 cosh#y — cos#sinhfy). Thus there always exists some ¢ € SO(1.2)

such that the intersection ¢'(f) is the line ce; + (&1 + e2). The result follows.

Case 5 - Fp(i]_) Mg (PE(C\))
Since from PROPOSITION 3.6.7 the planes I'g(,) are preserved by any Euclidean rotation k, then
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the intersection I'pr1yNg (Tyy(g) will not vary if g = k. Thus we consider g as a Lorentz boost
only, particularly the case where b is the Lorentz boost b;. The image of I,y under all other
Lorentz boosts can be seen from THECREM 2.2.23 to be obtained by applying first a rotation k
to I' g(a), then applying b; and finally k=, The plane b (I‘E(u)) = (b1 (e1)) + {bi(en). bi(es))
is the set by (T'p(s)) = {(z.y.2) € R® : coshfz — sinhfy = o} and the planes I'(+1) are the
sets Cpiy = {(z,9,2) ER : s —y—1=0} and Tp_y) = {(z.y.2) €R : 2 —y+1=0}, re-
spectively. Thus for each point

o +sinh @

cosh @
and the lines ¢ = T'p1q) Ny (T g(ay) pass through the point (aLsinh€ o 0) with direction vector

cosh @

(—1,1,0) A {cosh &,sinh ¢.0) = (0,0, — sinh § — cosh#). Thus the lines { = (“fj‘s‘gga a,0) + (e3).

Using Mathematica (C.3), consider the image of ¢ under the Lorentz boost b, (f), given in that

(.4.2) €TpeyNbi1(Tp) & coshfr=a+sinab(ztl) & o=

appendix. For each &, 3 we show in (C.3) that there exists either 61 € R such that

~ (o +sinhf ~ (e & sinhd ,
b1(0) (W,Q,O) =cey or (0 (COST,O:,O) =ces

and further that these angles never exist simultanecusly for the same combination of a, 3. The
boosts b1(0) preserve the span (es} in each case. Thus there always exists a ¢’ in SO(1,2)q
such that g'(£) = ¢'(Tp(a1) N g (TEe))) is the line g'(£) = ce1 + (e3), or ¢'(£) = ey + (ea) for
c.d e R.

Case 6 - I'p(11) 0 g(Tp+1))

We note firstly that since clearly pi;y N g(T'p_1y) = g9~ 1I‘pm NI p(_1y), then it is necessary
only to consider the cases I'p(11) N g(I'pr1)). We will consider first the case I'pyiy N g(Tpany)
and then the case I'p¢_x1) N g(Tpeary).

Note that the Lorentz boost by sends the normal vector (1,1,0} of I'py = (€1 — eg, e3) to the

normal vector
(0,0,1) A (sinh @ + cosh d.sinh & + cosh8.0) = (—sinhé — cosh ,sirh 8 + cosh @, 0)

and thus sends I‘?J(l) to by (I‘0 1)) = (e2 — e;.e3). Thus b preserves the paralielness of the
parabolic planes T p(yy and I'pq)Nb1 (' p(1y) = @ or the whole plane I'p(py. Since from THEOREM
2.2.23 each Lorentz boost is a product k~1bk, we consider the case g = k only, since the i image
of T P(3) under all other Lorentz boosts may then be found by applying b; and then £~} to the
image & (Cpy)-

The image of the plane I'p(51y under k(#) has normal vector (-1, ~ cos #, — sin §) and passes
through the point (A1.0,0}. Thus the intersection £ = I'p(y1) N &(0) (I‘p(,\l)) has normal vector
(1.1,0) A(--1,— cos . —sinfl) = (- sind,sinf, 1 — cosd) and passes through the point (A1.0,0)
common to both T'p(yyy and k() (I‘p{,\l)). Thus the line of intersection £ is given by Aey +
{(sin(—8),sin @, 1 — cos@)). Using Mathematica (C.3), we take the product

1 0 0 —sinf —sind
0 cosf —sinf sinf | = [-sind+ sin(§+ t)

I

0 sind cosf | |1-cosf cos ! — cos(f + 6)
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where there always exists some value 6 such that cosf; — cos(gl +8) = 0 or some value of &
such that — sinf + sin{ag + 8) = 0. Thus we may always take either the es or the e; terms
of the direction vector to be zero. Since e is invariant under the transformations k(#}, then it
follows that the intercept is always e;. We then apply the transformation

coshf sinhd 0 —sinf, —coshsinGsind + (- sin§; + sin(d; + 6))sinh§
sinh@ coshd 0] |-sinf + sin{d, +6)| = | coshf(—sinb; + sin(0; + §)) — sin(f) sinh §
0 ¢ 1 0 0

where (C.3) there exists a value 65 of § such that cosh 8(— sin 8; +sin(f, +8)) —sin(6)sinh; = 0,
and no value for § such that — cosh gsin6+(— sin 6; +sin(§1 +8)) sinh@ = 0. Under by, the image
of the intercept is (A cosh 02, Asinh 8, 0), and thus there always exists some g = bl(@;)k(ﬁl) such
that the intersection £ is sent to g(f) = Acosh ggel + (e3).

We now consider the case of the intersection £ = T'pyyy N k(0) (I‘p(_,\l)). The image of
the plane T'p(y;y under £(f) has normal vector (-1, —cosf, —sin#) and passes through the
point {A1,0,0). Thus (1,1,0) A (-1, - cosf,—-sinf) = (—sind,sind,1 — cosd) is the nor-
mal vector of the line of intersection £ = T'p(_x) N k(8) (Tp(ryy). Expressing Upay =
{(z.9,2) €R? : z—y=-A} and k(0) (Tpuy) = {(z.9.2) €R® : 2+ ycost + zsind = A},
it follows that these two planes intersect in the point (y - A, M) = (0, A,0) at

sin @

¥ = A. Thus the line of intersection £ = {0,A,0) + ¢(—~sin®,sinf,1 — cos)|;cp. Taking the

image N N N N
coshf sinhé 0 ~sin@ —coshf@sinf +sinf — cosfsinh g
sinh6 coshd 0 sin @ = sinf
0 0 1| {1 - cosf cosh ) — cosf cosh — sin @ sinh &

where (C.3) there always exists a value #, such that — cosh #1 sin 6 + sinh 81 — cos@sinh 6, =0.
So thus we may use an eg- prescrving transformation to get the ej-entries to zero. We may then

take the image of this vector (0, sin @, cosh 6; — cos  cosh 51 — sin#sinh 51) under k(#), to get

0
(—1 + cos ) cosh 6 sin @ + sin 8(cos 8§ + sin § sinh 1)
—cos#(—1 4 cos @) cosh 51 + sin #(sin § — cos & sinh 51)

and determine 85 such that (—1+ cos ) cosh f1 sin 8y + sin f(cos 89 + sin 672 sinh 51) = 0. Thus we
may immediately take the direction subspace as {e3) . But the image of the intercept under k(gz)
is given by (0, A cos 8. Asin 52) Thus there always exists some ¢’ = bz(ag)k(gl) in SO(1, 2}y such
that the intersection ¢ is sent to ¢'(¢) = ez + {e3).

We use these expressions of cases 1-6 to show

PROPOSITION. Each line ¢ of RY'? may be mapped by an element of SO(1.2) to one of the lines

ces + {e1), cea + (e3), ce1 + (e3) or ez + {e; + ez) where ¢ >- 0.

Proor. In PROPOSITION 4.1.30 we stated that the arbitrary line £ could be mapped by an

element of SO(1,2)p to one of the lines of cases 1-6, which we expressed as the lines ces + {e1),
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ceq + {e3), ce; + {(e3) and ez + (e; + e3), where ¢ € R. Consider now the element g, € SO(1.2).
Taking ¢ > 0, the image

g2(cez + (e1)) = cga(e2) + {ga(e1)) = —cez + {e1) = c'ez + (e1)
where ¢’ < 0. Similarly, for ¢ > 0,

g2(ces + (e3)) = cga(e) + (g2(es)) = —cey + (e3) = c'ex + (e)
where ¢ < 0 and finally for ¢ > 0, then

g2(cer + (e3)) = cya(er) + (ga(es)) = —cer + (e3) = ‘e + {es)

where ¢ < 0 . Thus it follows that for any line ¢ there exists an element ¢’ = g2g € SO(1,2)
such that ¢'(£) = cep + {e;}, cez + {e3), ce; + {eg) or ez + (g1 + e2). O

ReEMARK. Consider the images under the inverse hat map ¢Ez+ (E1), cEo+(E3) ,cE1-+(E3} and
E3 +{E1 + E5) of the lines ces + (e}, res + {e3} . ce; + (e3) and ez + (e + e3) in PROPOSITION
4.1.31. Then in the case cE + (E)), the Lie bracket of elements of the span [Es, E1] = Ej3, and
thus any system X with trace I' = &y + (£y) for some ¢ is full rank, since E;, Ey, E3 € Lie(T).

Similarly, in the case cE; + (E3), the Lie bracket of elements of the span [Ey, E3] = Ej, and
thus any system £ with trace I' = ¢Eo + (E3) for some ¢ is full rank, since £, Ey. E3 € Lie(I').

In the case cFy + {E3), the Lie bracket of elements of the span {E. F3] = E», and thus any
system L with trace ' = ¢Ey + (E3) for some c is full rank, since Eq. £y, E3 € Lie{I).

Finally, in the case cEq+{E1 + E3), the Lie bracket of elements of the span [Ey, By +Ey) = Ej,
and thus any system I with trace I' = cEy + (E1 + EFq) is full rank, since Ey. Ey, E3 € Lie(I').
Thus each of the lines ces+ {e1), ces + (e3) . ce; + {e3) and ez + (&1 + e2) of PROPOSITION 4.1.31

correspond to full-rank systems under the hat map.

PROPOSITION. Fach full-rank single-input control affine left-invariant inhomogeneous system

11 ) o =(1
. ) which has parametrization map :£|Cl)(1. u) = cky+uky,
.':."(1v1)

a system of the family Eg&l) which has parametrization map 2 ' (1.u) = cEy + uFE3, a system

of the family Egﬂ‘:l) which has parametrization map Egc‘l)(l. u) = cEy + uFs or a system E&l’l)

is L.d.f.e to a system of the family Eg

which has parametrization map Egl'l)(l, u) = Eo + u(E; + E»). In each case c € RY.

PRrROOF. Consider the image I' of the trace I of the arbitrary single-input system £, given by
F'=a+{b) in R}f’,z. Then by PROPOSITION 4.1.30, there exists some g € SO(1, 2)g such that
¢(T") is in one of the cases 1-6. In PROPOSITION 4.1.31, we expressed each of these cases as
g(T) = cea + {e}, g(T') = cez + (e3}, g(T') = ce; + {e3) and g(I') = e2 + (e; + e3) where c € R*
and g € SO(1.2). Then by PROPOSITION 3.4.2 there exists W(g) = ¢4 € Aut(so(1.2)) such that
9y(T) is one of cBy + wEy, ¢Sy + uEs. ey + uE3 or Es +u(E| + Ep). The result follows. O

THEOREM. Each full-rank single-input control affine left-invariant inhomogeous system Y. is is

l.d.fe to exactly one of the systems in the families Eﬁl)‘ Eggl). Eg;l) or Eil‘l}.
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PRrRoOOF. Consider the image I' of the trace I' of the arbitrariy single-input system Z. Initially,
we let the image g(T") be in each of the Cases 1-3 and 5b sucessively, and express ds2jg(l—~).
Firstly, for g(T") in case 1, then

g(T) = {(z,y.2) € R? : (z.y,2) = (tc 0} = d52|g(r) = —dt?
for ¢(T") in case 2, then
g(T) ={(z,9,2) € B* : (z,9,2) = (0,c.t)} = ds?|ypy = dt?
for g(T") in case 3, then
g(T) = {(:E,y,z) eR®: (z,y,2) = (c,0.t)} = dsz|g(r) = at?
and finally, for g(T') an intersection of the form of case 4, then
9(T) = {(z,9,2) € R® : (m.y,2)=(t,1+¢,0)} = ds°|yp) =0

Thus the lines of cases 1 and 2, 1 and 3 and 1 and 5b cannot be isometric: that is, there exists
no element g € 50(1,2) which maps a line in one of the cases to another. Similarly, lines of
cases 2 and 3 cannot be isometric to 5b, which means that it is only possible for lines of cases 2
and 3 to be isometric. But the lines of case 2 admit exactly the vectors (0, ¢, t}, while those of

case 3 admit exactly the vectors (c, 0,¢), where for ¢ < ¢,
(c,0.1)C (¢.0,8) = —c* + 2 < 0

and so the lines of case 3 admit timelike vectors. However, for every vector (0, ¢, ) of the lines

of case 2,

(0,0,8) ®(0.c,8) =c* +t2 > 0.

Since no element of SO(1.2) may map a timelike vector to a spacelike vector, thus there exists no
bijective isometry ¢’ € SC(1, 2) which maps a line of case 2 which admits only spacelike vectors
to a line of case 3 which admits spacelike and timelike vectors. Thus no line I may be isometric
to a line which is not in the same case as T, as there exists no element ¢’ € SO(1,2) which
maps I to a line in another of the cases 1-3, 5b. But then corrrespondingly by PROPOSITION
3.4.2, there exists no clement ¥(g") = ¢y € Aut(so(1.2)) which maps a system of one family to
another.

L1
P

Secondly, assume for example that ngr‘_,]} is L.d.fe. to E(l

for ¢, € RY, ¢ # ¢’. Then there
exists a g € SO(1, 2) such that QEE‘;U = EST;) and so g (T') = cgea + (ge1) = cea + {e;). Then
particularly cgez = c’ey, where {|ces|| = ¢ #.(¢')? = ||c'es|| since c.¢/ > 0.¢ # ¢’. But this
contradicts the fact that g is au isometry. Thus 2(1};,1) cannot be Ld.fe. to E(llc,l} if ¢ £ ¢'. The

cases of the families Zggl) and 2:(,%‘;1) follow identical steps. a
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4.1.4 Three-input homogeneous and inhomogeneous systerns

For any arbitrary three-input control affine system ¥ with trace I' = A + (B, By, B3), the
elements B, B and By are linearly independent (A.7.4) and thus we may express the drift term
A (which may be zero or nonzero) as A = 21B; + azB, + a3B3. Thus in any case A is in the
span {Bi.Bs. B3), and I' = a1 By + a2 B2 + a3 B3 + (B1. B2, B3) = (B1. Ba. B3). Thus we may

consider the homogeneous and inhomegencous cases simultaneously. We establish

THEOREM. Any homegeneous or inhomogeneous three-input control affine left-invariant system
T = (SO(1,2)0, E) is Ld.f.e to the control system TG = (SO(1.2). ZC1)) with parametrization
maep 5(3'1)(1. uw) = ugy + uz B + ugEs.

Proor. We have shown that any arbitrary 3-input homogeneous or inhoniogeneous system I
has trace T' = {B. Ba2. B3). But then ' = (B, By, B3) = 50(1.2) = (Ey, E», E3) = I‘(3'1), and
the trace T is mapped to the trace T'3:)) by the Lie algebra automorphism 1 € 50(1,2). Thus
T is Ld.fe. to T3, i

4.2 A controllability criterion for systems on SO(1,2),

4.2.1 Control on a connected, semisimple {(matrix) Lie group

In this section we refer to the definitions and results (A.7.1)-(A.7.20). Firstly we note that from
(A.7.18) we already have a necessary and sufficient condition for controllability of homogeneous

affine systems:

PROPOSITION. All homogeneous control affine systems £ = (SO(1,2)y. Z) are controllable if and

only if they are full rank.

ProoF. From PROPOSITION 3.1.2, the group SO{1.2)y is connected. From (A.7.18), a sym-
metric system on connected matrix Lie group is controllable if and only if it is full rank. Since
each homogeneous system has a trace I' = (B, By, Bs) for at least one B, nonzero, i = 1,2.3,
then ' = {By,Bg,Bs) = (—DB1,—-Bs,—B3) = —-1(B1, B, B3} = -T, and from (A.7.17) cach
such system is symmetric. Thus each homogeneous system is controllable if and only if it is full
rank. o

Next, we derive some properties of SO(L, 2)p from its Iwasawa decomposition (THEOREM 2.5.10).
PROPOSITION. Any map of the form
t s exp ({(xaglig ")) g€ 5S0(1.2)0. ¢ € RT

is periodic.
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ProOF. In (3.6.1) we expressed the elements of K = {exp(tEi) : t € R}, which allows us to

express a trajectory of the form {exp(t £ «E;) : t € Rt} as a curve in K:

1 0 0
k():RY - K, k()= |0 cos(xat) -—sin(+at)| for cach t € RT
0 sin{faf) cos(4)

which is periodic, since for any ty > 0,

1 0 0 1 0 0
0 cos(daty) -—sin(xaty)| =k= |0 cos{taty+ %{;) — sin{d:aty + %) =k
0 sin(tatg) cos(todp) 0 sin(+ato+ 2Z)  cos(taty + &)

by the periodicty of sin and cos. But then for any g € SO(1. 2)g, each point g(tg) of the trajectory
{exp (t(gE1g™") : € [0,T].g € SO(1.2)p} is given by

1 0 0 1 0 0
9|0 costato —sintoty| g =gkg™' = g |0 cos(tato+ L) —sin(tate+ 21| g7t = gkg™',
0 sintats costatn 0 sin(taty + 2 cos(+atg + 2%

and it follows that any trajectory of the form {exp(t +agEig™")  tel0,T],g¢ SO(l,Z)o} is

periodic. a

PROPOSITION. In the Iwasawa decomposition of SO(1,2)y, the generators in s0{1,2) of the sub-

U under exponentation have a timelike image under the hat map; those of

group K = gKg~
A = gAg~! have a spacelike image under the hat map, and those of N = gNg~! have a lightlike

image under the hat map.

ProoF. From THEOREM 3.6.10, K, A and N are subgroups intersecting only in identity. Con-
sider first the case of K. For the generator By of K, E = e; = (1.0.0) which is timelike in
R':2. Further, given the generator gE19~ ! of K for any g € SO(1, 2)o, then from PROPOSITION
3.4.2 there exists an element g’ of SO(1,2)y such that hat (gElg"l) = g'e; = ¢’(1.0,0), which
is timelike, since g € SO(1,2) is an isometry of R2.

Similarily for the generator I of A, By =e; = (0,1,0) which is spacelike in R12. Further,
given the generator gEsg™! of A for any g € SO(1.2)g, then from PROPOSITION 3.4.2 there
exists an element g’ of SO(1,2)g such that the image hat (gEzg'l) = g'es = ¢'(0,1,0), which is
spacelike, since ¢’ € SO(1,2) is an isometry of R"2.

Finally, for the generator (E} — E3) of N, hat{E; — E3) = (e; — e3) = (1.0,—1) which
is lightlike im R2. Further, given the generator g(E; — E3)g ! of N for any g ¢ SO(1,2)q,
then from PROPOSITION 3.4.2 there exists an element ¢’ of SO(1,2)p such that the image
hat (g(E1 — E3)g™!)} = g'(er — e3) = ¢'(1.0,—1), which is lightlike, since g’ € SO(1.2) is an

isometry of R}2. 0

We will henceforth refer to the elements 7" of so{1, 2} such that T =t for t timelike as timelike
elements of the Lie algebra, the elements S of s0(1,2) such that S=sfors spacelike as spacelike

elements, and the elements N of s0(1.2) such that N=nforn lightlike as lightlike elements.
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PROPOSITION. Any spacelike elements of s0(1.2) have the form agEag~! for some g € SO(1.2)q.
Any lightlike elements of 50(1,2) have the form £g(E) — E3}g~! for some g € SO(1,2)g, v € R.
Finally, any timelike elements of so0(1.2) have the form +agE1g™! for some g € SO(1.2)g,
aeRY.

PROOF. In PROPOSITION 2.1.15 we showed that all timelike elements of R lie on the upper and
Jower sheets of the hyperboloids of two sheets H2, all spacelike elements lie on the hyperboloid
of one sheet 7{}, and all lightlike elements lie on the upper and lower sheets of the cone K. But
in PROPOSITION 3.6.6 we showed that SO(1, 2)q acts transitively on the upper and lower sheets
of ’Hg and K1, and on H1.

Thus firstly given any spacelike elenent s € R%J‘z, there exists an element g € SO{1,2)y such
that g(s) = @ep. Thus s = ag~!(ez), and it follows from PROPOSITIONS 3.4.2 and 3.4.1 that
there exists some ¢’ € SO(1, 2} such that under the hat map § = agy (E2) = aAdy(Es).

Similarly, given any timelike element t ¢ ]R\l_-i, then t lies on either the upper or the lower
sheet of H2. If t lies in H2*, then there exists an element g € SO(1,2)q such that g(t) = ae;.
Further, if t lies in H2™, then there exists an element g € SO(1,2)g such that g(t) = —ce;.
Thus

t=ag '(er) or t=-ag '{e)

and it follows from PROPOSITIONS 3.4.2 and 3.4.1 that there exists some g’ € SO(1.2)y such
that the image under the hat map, T' = ¢, (E1) = aAdy(E1) ot T = — ¢y (E1) = —aAdy(Ey).

Finally, given any lightlike element n & R}f, then n lies on either the upper or the lower
sheet of K. If n lies in K7, then there exists an element g € SO(L, 2)p such that g(n) = e; — e3.
Further, if n lies in X7, then there exists an element g € SO(1,2)p such that g(n) = —(e; — e3).
Thus

n=g 'eg—e3) or n=-g '(eg - e3) o

and it follows from PROPOSITIONS 3.4.2 and 3.4.1 that there exists some g’ € SO(1,2)g such that
under the hat map, N = ¢, (E1—E3) = Ady(E1 - E3) or T = — ¢ (E1 — E3) = —Ady (E1 — E3).

PROPOSITION. Given any inhomogeneous left-invariant affine system X = (S0(1,2)p,Z), then
the image I' in R}J‘z of the trace T admits at least one spacelike vector: that is, there exists some

u € R such that s = hat (S(1,u)) is spacelike.

ProOF. For the 3-input case, the result is clear, since we showed in THEOREM 4,1.35 that for
each 3-input system X the trace I’ has the form (Bi, Ba. B3) which is clearly full rank and
therefore the image I" admits an orthonormal basis {e;,es,e3} where e;, i = 2,3 are spacelike
from PROPOSITION 2.1.7 and COROLLARY 2.1.8.

Consider the 2-input [l-input] inhomogeneous systems ¥ such that T is a plane [line] not
parallel to the plane {es,e3). Each such ' has both [either] an es-intercept Ajes and [or] an

ej-intercept Agez, for Aj. Ae real scalars which cannot both be zero since ¥ is inhomogeneous.
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Then there exist some w,u’ € R?[R] such that Ajep = =4 and [or] Azes = =2, But since Ajey,

Ages are spacelike (Aes () dep = )@, A€z () doey = ,\%) , then T admits a spacelike vector.
Consider the 2-input [l-input] inhomogeneous systems £ such that I" is a plane [line] parallel

to the plane (es, e3). Then I is a plane [ruling of a plane] I'yr = a’e; + {eq. e3), which intersects

any hyperboloid of one sheet H, (& > 0) in the set

Ho T =Co g = {(a', Vo F (@) cos(8), Vo + ()Esin(0)) : 0 R}

of spacelike vectors. If I" is the plane I'y, then it admits a spacelike vector, since there exists
some u € R such that s = =% € Cor oo Assume that T' is an arbitrary ruling of this plane,
I = {{, :—‘3’5;'—“"’, r3) : r3 € R}, where b? + % # 0. We assume here that b # 0, but the proof
in the case that ¢ # 0 follows identical steps. If a is zero, then this line passes through the centre

(o/,0,0) of Cy o and so it intersects the circle Cy , a8t the spacelike point

se o eV + (@) Vi2/a + ()2
I 7 2y - N 7y '

- 2 - N
where cos(tan™! (§)) = 7%:7,51n(tan LN = 57%' From the parametrization of T", there

exists some u € R such that s = 2 and so T admits a spacelike vector. If g # 0, then the line

T intersects Cyr o in the point (o, ﬁab_ﬂ,mé) where

—acod — \/UAa+ b2cla — a?b2 ()2 + b4 (a')? + b2c2()?
b+ c? 0

I
Iy =
PEPYAY)
and we choose « such that ¢ > % or ¢ < __,‘/;__'__({%,‘, so that this value is real. But each
D
element of Cy o is spacelike. Thus the element s = (o, =% z4) in T is spacelike, and there

exists some u € R such that s = Z2, Thus I’ admits a spacelike vector.

LEMMA. No element k(8) = exp(8E;) € SO{1.2)y for 8 € R can be expressed as a finite product
of the exponentials of spacelike and lightlike elements of s0{1.2).

Proor. Consider k& = k(61) = exp(01E;) for some #; € R and assume that there exists a
finite product of exponentials of spacelike and lightlike elements g1, gs,...gp in SO(1, 2)p such
that &k = g192...9p. But by the KAN-decomposition of SO(1.2)g, the elements gy, 9¢s,...g, can
each be expressed as products g; = kjayni. g2 = kaupno...gp = kpayn,, where a;n; # 1 for any
i = 1.2...p, since we have assumned that the elements are exponentials of spacelike or lightlike

elements. Then

k= kiaing - keagna. .. - kpapny (4.2.1)
kit ko= aim - keagng... - kpapny (4.2.2)
kTN k= (@) keasna... - kp(aimn) "N apnp, ). (42.3)
= ki'k = kyohny... - kylap ). (4.2.4)
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where in (4.2.4) &} = (am)ki(eim)™! o} = (arm)adarni)™ 7} = (a1ni)mi(eing) ! and

from the group property of AN (A.6.8), the element u, n,, introduced in (4.2.3) such that

(a1mi) " ap, np,) = apnp always exists: ap,ny, = a1710,7,. Then similarly

kTt ok = kpagng.. - ky(alny), {4.2.5)
= (kg) kit k= apng. R;,(a,,n) (4.2.6)
ﬁ(ké)_lkl_l‘k = (‘12”2 (02"12)—1(%2”112)- (4.2.7)

We continue until we obtain (k;“")‘l-...(k;)“lkgl-k(ﬁl) = ag, Ny, (f2), which exists since a;m; # 1
"ot -1 _ "o -1 — _

()" o] < 05) Do [k st = v

where u; are the finite upper bounds of {(k" “)=1(t) : t € R}, which are compact one-parameter

subgroups . Using Mathematica (C.3),

for i = 1,2...p. But

1{((2 4 02) cosh@f3 + 02sinh03)  —2c%207 + sinh —P3g,
ap, (03)ny, (02) = eﬁ#i + sinh 4 cosh 03 ~ 103 cosh#3  —162sinhé; - %0,
— b o 1

and so ||a,, (83)71p, (82)]| = \/1 + e~ 1202 + 5 (1 + 9%)2. Let 61.65. 63 be continuous, mono-

tonic increasing functions of ¢, 8;(') : R — R. Then it follows from the from the equality

H’ f

(k=)L - (k)L kY- E(81) = gy, (f3)np, {02) that
tim [[(6-) k7RO = Em g, O, 0] = w1y = o0

which is impossible, since each of uy, us...uy are finite and we have assumed that p is finite. Thus
it follows that k cannot be expressed as a finite product of exponentials of spacelike or lightlike

elements of so(1.2)p. O

4.2.2 A controllability criterion on so(1, 2}

We are now in a position to state and prove

THEOREM. An inhomogeneous conirol affine system L = (50(1.2)0,Z) is controllable if and

only if the image I' C RY“? of its trace I under the hat map admits at least one timelike vector.

PRrROOF. (=) In order to show that the image under the hat map of the trace of any controllable
systemn & admits a timelike vector, we prove the equivalent statemient that if T' admits no
timelike vector, then ¥ cannot be controllable. Asswme ¥ is such a system: that is, there exists
no u® € R? such that t € I".t = hat (5(1, uo)) is timelike. Equivalently, every element 4; € [ is
either lightlike or spacelike. Particularly, E; ¢ T

In {A.7.16), we stated that each element of the attainable set A is expressible as a finite
product of exponentials ¢ = exp(tpAn})...exp(t14;1),4; € I'. But in LEMMA 4.2.6 we showed
that the element exp(tE7) is not expressible as a finite product of exponentials of spacelike or
lightlike elements A;. Then since Ey ¢ I'. it follows that for each ¢t € RT, k = exp(tE]) ¢ A.
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From the Iwasawa decomposition SO{1,2)p = KAN (THEOREM 3.6.10), then ANK = {1}, and
thus 4 ¢ SO{1,2)g. Thus from {(A.7.13), X cannot be controllable on SO(1.2)g.

(<) We stated in (A.7.20) that for a system X on SO(1.2)g to be controllable, the trace I' must be
full rank, and there must exist some u° € R¢ such that the trajectory {exp(tE(l,-uU)) Lt > 0}
is pericdic. We assume the image I" of the trace I' of ¥ admits a timelike vector and show how
both of these conditions is met by the presence of a timeiike vector in T'.

In PROPOSITION 4.2.5, we showed that for each inhomogeneous system T the image T of
the trace I' admits a spacelike vector s. Since we have assumed that T admits a timelike vector
t, then t {* s is an element of Lie(I') and from PROPOSITION 2.1.10 is a spacelike vector s
orthogonal to s. Thus {s.s’, t} is an orthogonal basis of R}?, and (s,s',t}) = Rgz. Then under
the Lie algebra isomorphism hat™!, it follows that $..5'. T are in Lie(T'), and (5,8, T) = so(1.2).
Thus T is full rank. By assumption, therce exists some «® € RY such that t = hat (E(1,u%)) €
T is timelike. Correspondingly, under the inverse of the hat map, then T = =(1,u°%) € T,
where by PROPOSITION 4.2.4, =(1,u%) = agEig™! for some a € R*,g € SO(1,2)5. Then
taking u = u®, the trajectory {ets(l'“o) = R+} = {exp(t(agE1g™Y)) : te€ R*} is periodic
by PROPOSITION 4.2.2. m]

Thus with PROPOSITION 4.2.1 we have necessary and sufficient conditions for the controllability

of any afline control system on SO(1. 2)g:

THEOREM. A homogeneous control affine system ¥ = (SO(1,2)0, 2} is controllable if and only
if it is full rank.

ProoOF. Firstly, since I' = {By, ..., Bg} = (B1,.... Be) = (B1, ... Bg) = —T', then all homogeneous
systems are symmetric. Thus since by THEOREM 3.1.2 SO(1, 2)p is connected, it follows from
PROPOSITION 4.2.1 that these systems are controllable on SO(1,2)g if and only if they are full
rank. O

We state THEOREM 4.2.7 and Theorem 4.2.8 together as

THEOREM. (A CONTROLLABILITY CRITERION ON SO(1.2)g) An inhomogencous control affine
system L = (50(1,2)0,Z) is controlluble if and only if the image T C RY? of its trace I’
under the hat map admits at least one timelike vector. A homogeneous control affine system
¥ = (S0(1.2)0, E) 15 controllable if and only if it is full rank
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Chapter 5

Optimal Control on SO(1,2)g

5.1 Introduction

Using the classification results of CHAPTER 4, we consider the optimal control problem with
quadratic costs ( A.10.6)

§=9Z(1,u), g€SO(1,2). (u1,up) € R?
9(0) =go. g(T)=gr

1T
J = 5/ (c1ud(t) + coud(?)) dt -+ min, ¢1,c2> 0
0

where in THEOREMS 5.2.2-5.2.5 we consider Egz’o)(l,u) = w &y + u9F; and in THEOREMS
5.3.1-5.3.5 Egg'o)(l,u) = u1 E3 + upEs , the two representative systems of all 2-input homoge-
neous control affine systems on SO(1.2)g (THEOREM 4.1.10). We establish the reduced extremal
equations (A.10.9) and their solutions the extremal pairs (g(-). p(-), u(-)} by working in the triv-
ialization {A.5.28) T*SO(1,2)q = SO(1, 2)p x 50{1,2)* of the cotangent bundle, and express the
projections of the extremal curves on so(l,2)* in terms of Jacobi elliptic functions, and the
projection g(-) of the extremal curve onto SO(1,2)y as a product of exponentials such that for
each t € [0,T]
g(t) = exp (¢3(t) N) exp(¢2(t) Ea) exp(¢1 () Er)

for ¢;(-) : 10,7] — R continuous functions of t. This expression follows fromi the Iwasawa
decornposition (3.6.8) of SO(1. 2)g.

While expression in terms of Jacobi elliptic functions can be used analagously to give solutions
for each of the 10 typical systems under l.d.fe. classification, we have found that the solutions
which arise in the inhomogeneous cases are unintuitive and unhelpful in terms of applications,
and so we choose to concentrate only on the homogeneous cases in this thesis.

Note that as the PMP gives a set of necessary conditions for a trajectory to be optimal, it
provides us with only a family of possible candidates for optimal controls and their corresponding
optimal trajectories. However, since in both cases (THEOREMS 5.2.1, 5.3.1) the PMP gives rise

to exactly one optimal control, for the purposes of this thesis we will assume that there always

90
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exists an optimal trajectory in the family of the projections of extremals onto SO(1,2)g, and
that it is the projection of the extremal curve which arises using the given control.

REMARK. We identify so(l,2) with so(1,2)* via the pairing x(P, X) = p(X). Particularly,
#(E) = E}, k" (Ey) = E} and k*(I3) = E3 where {E}, E3,E3} is the dual basis. Thus the
projection p(-) : [0,T] — s0(1,2)* of each extremal curve may be identified with a curve P(-)
in s0(1,2): x(P(-),X) = p(-)X. Expressing p(-) = p1{-)ET + p2(-)E5 + pa(-)Ej, then for every
t € 0,77,

& () = & (01(8)) B + &’ (p2(t)) B2 + £ (p3(1)}Es = P1() 1 + Pa(t) Bz + Py(t)E3 = P(t)
where P(+) is a curve in s0(1,2). Thus in both of the remaining sections we consider the image
P(-} in s0(1,2) of p(-) in the discussion of the solutions of the reduced extremal equations.
Particularly, since from (A.9.7} B(-) = p{-)(E:) = Hg,(p(-)), we may then use (4) in (A.9.4) to
write {F;. Pj} = {HEi,HEj} = Hig, g,- Thus the image {Pi, R} = —P3,{P2. P3} = P, and
{P3, P} = — P, which we use to set up the system (A.10.9) of reduced extremal equations.
PROPOSITION. The function K :50"(1.2) - R, K (p) = ~—%p§ + %p%-k %pg 3 a Casimir function,
ProoF. If for each co-adjoint orbit 5p, K(ﬁp) = const. then for all p € s0(1,2),

K({Adj(p) : g€ SO(1,2)p}) = const. = (Ady(p)) : g € SO(1.2)o}
and so for each p € s0(1,2)*, g € 50(1,2)o, K(Ady{p)) = const. and K is a Casimir function

(A.10.13). Thus we reguire only to show that K is constant on every co-adjoint orbit. For every

vector a € ]Réf,
-1
a=ae; + ageg + azey = (H‘.b) a=mE] + PQEE + p3E3

since (nb)-l o hat is a linear map. Thus for any p € s0*(1. 2}, the co-adjoint orbit 61, through
p of THEOREM 3.5.6 is given by —p? + p} + p% = const. Then for any p’ € O, K(p') = Lconst.

Thus K is constant on 6,,, and the result follows. O

REMARK. In PROPOSITION (5.1.2) we determined the Casimir function K(p) = —1p? + Lp? 4
%pg. As we stated in the previous remark, in the proofs of THEOREMS 5.2.2 and 5.3.3 we
will consider the image of K.+ under the map k", which for each P € s50(1.2) is given by
K(P) = P—%Pf‘ + %Pz‘? + %Pg Clearly, this function is constant on the images under &” of the
co-adjoint orbits in so(1,2)*, which by THEOREM 3.5.6 are the adjoint orbits of se(1, 2).

5.2 The case I' = (E4, Ey)

THEOREM. Given the left-invariant control problem (. L, (g0, 91, T))
g =glw1Ex +u2Ey), g € SO(1.2)g, (u1.uz) € R?
90 =g0. g(T)=9r

I
J = 5/ (c;u%(t) +czu%(t)) dt — min, c¢1,c2 >0
0
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then the optimal controls are

P P
uy=— and up=—
€1 &
and the optimel Hamilionian is , ,
1Py Ff
H= 3 (61 + E;) (5.2.1)
where P; and P are solutions of the reduced extremal equations
F 1
PL = ——PhP (5.2.2)
C1
. 1
{ o= =P (5.2.3)
c2
. c2+c
Py= - ( : ”) PPy, (5.2.4)
\ 1€z

PROOF. By (A.10.1}, the control Hamiltonian of the optimal control problem is
H= ﬁ% (clu% + czu%) + p(u1 By + ug En).
As we have stated, we may identify P, = p(E;) via the Killing form; then
H= —% (cluf + czu%) +ur P 4 us Py (5.2.5)

By the PMP, the optimal Hamiltonian satisfies

OH 1

Fun =-—cqu+H=0 & uyu=—~8~ (5.2.6)
U] c1

oH 1

— =s + =0 & uy=-—01. (5.2.7)

BU2 Co

Thus uy and ug are the optimal controls, and the optimal Hamiltonian is given by
n=(E A
2 C1 Cc2

by substitution of (5.2.6) and (5.2.7) into {5.2.3). Then from (A.10.1), the system of reduced

extremal equations is given by

Pl = PZ{PI-%}-FPI{PI-%} = #E}L{ng;;
P2 = Pz{PQ,i—Dlz}-l—P]{Pg,%} = éplpa,
Dy = P, Al erte
po= minglen{pg) - -(52)An ]

5.2.1 Explicit integration of the extremal curve (p(-},g(-))

In PROPOSITION 5.1.2 we determined a Casimir function X which we have noted we may express
in s0(1,2) as K = -3 Pf + %Pzz + $PZ. In the next theorem we use this function in conjunction
with the optimal Hamlitonian # to determine the solutions of system (5.2.3), (5.2.2), (5.2.4),
as described in the introductory section. Note that the values of K may be positive, negative
or zero. This separation of the level surfaces of the Casimir function K appears naturally in the

process of solving the reduced extremal equations, as we illustrate in fig. C.31.
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5.2.2 THEOREM. The reduced ezivemnal equations can be solved in terms of Jacobi elliptic functions by
Case 1 (K <0)

v

Pit) = ACpyf82 +02 (su (C1. 2))?
| Rl = -G \/a2 — b2 (sn (Ct, 2))"
L Py(t) = b-sn(Ct, 2

or

Pult) = ACay/t + b (cd (C1.2))°
{ R} = —/‘\Cx\/az—bz(cd(Ct,g))2
[ P3(t) = b-cd(Ct.2)

where & = WG TIK, b= WO =2 C1 = [l (o = it C = i ond
A= 1,
Case 2 (K=0)

Pt) = ACn/t2 4 2 (sn(CL. 1))
Bt) = —/\Cl\/t; —b? (si: (Ct, %))2
P{t) = b-sn(Ct. g)

or

@) = Acz\/l;2+b2(cd(01,%))2
Pot) = -ACiya? - (cd (C1, 2))?
Py(t) = b-cd (C1,2)

where a = AV2Hey + 2K, b = A/2He - 2K, C), = LA c1+(2 m’ g \/c‘icz and

A = %1, or finally

Case 3a (if K > 0, EICLICZPf < P%)

.

Pi(t) = /\Cz\/b? (nd (Ct, —‘/f‘aE))E — b2

Pa(t) = —ACyy/a? - b2 (nd (Gt \/;:_—bsz))fl
Py(t) = b-nd cf,jaa@)

ar

{ Pty = )\Cg\/a.z (dn (Ct, @))2 b

) Bt = —Acl\/azwaz(dn(c M))g
Ps{t) =a-dn(Ct.,—‘/E’-a;4_b§)

\

where o = 2Hea + 2K, b = AV2K — 2He . C1 = \/ Tate) c1+c2 \/—(qiqjsc = ;7::5:'2 and

A==1, or

Case 3b  (if K > 0, (EIZEEZPI-?) > P?)

Pit) = ACay/t + 02 (sn (C1.2))°
B(t) = -G \/a2 — 82 (sn (Ct, 2))?
Py(t) = b-sn(Ct. %)
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or

Il

Pl(t) ACQ\/b2+b2 (Cd (th %))2
P2(t) = —ACl \/‘;— b2 (Cd (Ct, %))2
Py(t) = b-cd(Ct, 2)

where a = AV2Hea + 2K, b = A/2He - 2K,C1 = \/ C|+62 Cz RVA cH cz)’ -

A= =1

and

th.

Proor. From (A.10.13), the extremal curves lie in the intersection of the level surfaces of the
optimal Hamiltonian (5.2.1) with the level surfaces of the Casimir function K. We use this fact to
express the variables P| and Pe in terms of the variable P;. From the optimal Hamiltonian, then
c1 PP = 2c1coH — coPZ. But PZ = P2+ P§ — 2K from the Casimir function K of PROPOSITION
5.1.2 expressed in s0(1.2). Thus ¢1(P} + P? ~ 2K) = 2c100H — e P, Solving for P2, then

P} = ( i ) (2K + 2Hey — P2) (5.2.8)
c1+¢

Also from the optimal Hamiltonian, cp P = 2¢ico¥ — ¢ P2, But P} = 2K + P? — PZ from the
Casimir function. Thus co(2K + P12 - Pg) = 2c109H — clf’f. Solving for Pf, then

2 2 2
= P: — 2K).
P; (Cl n Cz) (2Hey + P ) (5.2.9)

Substituting (5.2.8) and (5.2.9) into the extremal equation (5.2.4), then

: {1 + Cz) (e1+ 02)2 ¢acy 2 9
p? =t % pip?_ 2K 4+ 2Heg — PYY(2Hey + P2 - 2K
3 c%c% 142 c%c% (Cl 02}2 ( 2 3 )( ¢1 3 )

and we have the system of equations

P2 — K +2Hey — P 2.1
2 (61+Cz)( c2 — I§) (5.2.10)
{ p2 = [ 2 )2?{ P2 - 2K 2.
3 (CI+CZ {(2Hcy + Py ) (5.2.11)
Byl = (Clc )(2K+2chﬁP3)(2’Hc1+P§—2K) (5.2.12)
\ 142

where from {5.2.12)

2
(ﬁ) - (Ci) (2Hey + 2K — P2)(2Hey + PE - 2K)
1C2

dt
dt VC102
- — =
dPs V/(2Hea + 2K — PPY{(2He + P§ — 2K)
¢ P dPs
= [ dr = /e /
/o "2 Jo V(2Hea + 2K - P2)(2Her + PP - 2K)

and thus
dP;

P
t = Jeie
i /o J@  POFL- 1)
where a? = (2Hco + 2K) and b? = (2K — 2%c;). Using equations (5.2.8) and (5.2.9), then

(5.2.13)

P2 = _a (2K+27—ch—P3) & 2K+2HC2:P§+(01+C2 P} =4?
¢+ =
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Pr=(—22_)(2He1 + P} —2K) & 2K —2Hci =P}~ ate P =V
o1+ co €2

and thus

2> 0 @_(C_k:_‘?)p§<P§ and >0 @(“:CZ)P3<P§.
1 2

Note that since ¢3.¢2 > 0, then the condition — (‘{tﬁ) P22 < Pg for «® > 0 is always satisfied;

thus we consider the two cases

€1 €2 1+
_ ( - ) Pi < PZ, and (T) Pl < P} (5.2.14)
_fc+c P22 < P2, and cLt+c2 P12 > Pg (5.2.15)
1 c2

where correspondingly we express {5.2.13) as an elliptic integral

B £ dPs

t = \/0102/0 N YR (5.2.16)
B Fs dPy i

t = \/0102[.‘ S - P& - D) (5.2.17)

where in the first case b% = 2K — 2Hc¢q, and in the second case b? = 2He; — 2K.

We have already stated that the Casimir function K may take positive or negative values or
may be zero (corresponding to when the level surfaces of K take the form of hyperboloids of
one sheet, hyperboloids of two sheets or the right cone, respectively). We consider each of
the cases K > 0,K < 0 and K = 0 separately. However, since in case (5.2.14) condition
b% > 0 corresponds to requiring that 2K — 2Hc; > 0 and H and ¢; are everywhere positive, this
circumstance is possible only where K > 0. Thus for the cases X < 0 and K = 0 we use only
the value b2 = 2He; — 2K and express (5.2.13) as clliptic integrals of the form (5.2.17). Note
also that the requirement a > P3 > b (A.11) for expressing the solutions in terms of the elliptic

functions dc and ns (A.11) gives the condition
a>b = 2Hc+2K>2K-2Hcey = ¢ > —c

which is always satisfied since ¢1. ¢a > 0 by definition. For the elliptic functions c¢n and sn (A.11),
the requirements a > 0,5 > 0 (A.11) arc always satisfied when we choose a? = 2Heg + 2K, 0% =
2He; — K and K < 0, since H, ¢; and ¢ are always positive. Thus we have the full solutions

Case 1 (K <0, - (%2) P? < P}, (222) PP > PY)

—___dF
to=vanf N )
Y P b
- C(J].lc2 sn - (_ba’a)
= P =b-sn( ,——“fcz.g)
or
't ,fclc f —._d;p\'}.__

= Yo% ¢ (%‘)

— al b
=P = ( c;c‘u)
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where a2 = 2Heo + 2K, b? = 2Hc, — 2K, and we take the square roots a = A\/2Hcy + 2K and
b= AV2Hcy — 2K where A = *1, since we require the modulus k = g to be positive.

Case 2 (K=0,4(9$2)P22<P32, (C+C)P2>P3)

(%

—_.3_.
¢ = /h1c2 fO (a2 P2)(b?—P2)
Lt (3,1)

= Iy =b-sn( ad ,%)

%’
5
B
i~

oT

b i
t = ,/C1C2 fPS \/72—%27;(—&!——’62;
\/Cz_c ed1 (& b)

Ba

=Py =b- cd(ﬁ-; ¢)

where a® = 2Hep + 2K, b = 2He — 2K and we take the square roots ¢ = A\/2Hes + 2K and
b= AV/2He, — 2K where A = +£1, since we require the modulus k = g— to be positive.

Case 3a (K>O,—(°+C)P2<P2 (El:;ﬂ)P12<P32)

F’ dPs
to=van Vi I
\/(1( nd-1 ( o

143

=P =b- nd(\/cl—cz ——a@)

or

/ Y & B
i c1c2 JP;; {(a%— PZ)(PQ 52)

z\/cl—c,dn_l(_a m)
a a’ a

NI
where a? = 2Hceg + 2K, b* = 2K — 2He; and we take the sqnare roots o = 2Heg + 2K and
b= A/2K — 2Hc, where A = +1, since we require the modulus k = ——"“u‘b to be positive.

= Py =a-dn( A U’E_bz)

Case 3b (K >0, — (9:%2) P < 1§, (2£2) PP > PP)

P __ dh

i c1C2 fo 4 I—‘_az ;3-2)(1)2 PZ)
v Py b
— Vvee sn ( 7 ’E)

a

= P =b-sn( at_ b

ciez’ @
or
4Py
= VO fr, T
. Ve —1¢Py &b
= L0 ()
b

€

P =b cd(

Jarer a)
where a? = 2Hcg + 2K, b? = 2Hcy — 2K and we take the square roots a = A\/2Hcy + 2K and
b= Av2Hcr — 2K where A = %1, since we require the modulus & = -g to be positive.
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In order to solve for Py and P,, we subsitute back into equations (5.2.9) and (5.2.8). But then
Py = MCa/(2Hey + P — 2K). Py = AC1+/(2K + 2Hey — P3), where A; = £1,)y = +1. In

order to find which solutions are valid, we make a simplifying assumption on a and b in the

expressions of P;, P2 and Pi, and subsitute these values for P and £ back into the equation
f (Pl,ng:g) = Py — %,:—L_:RPl P, in order to see which sign combiuations {the values of A; and
Az) are valid, that is, for which combinations P — %ZPIPQ = (. Since the two alternative
elliptic functions (cd and dn, or sn and c¢d) for each case each represent the same solution and
thus parametrize the same portions of the intersection of the level surfaces of K and H, we may
consider only one of the two alternatives in order to find the combinations of A1 and Ay for that

solution.

Cases 1,2 and 3b: Let @ — 1,6 — 1. Then by (A.11.3), the modulus & = g -+ 1, and corre-
spondingly sn(t, k) — tanht. Thus at the limit, we have the functions P; = A1/ 1 + tanh?®¢,
P3 = tanht, Ps = AC2V/1 — tanh?¢ = AgCasecht and thus Py = sech?t. Then

. + /
Py + (C]::‘F Cz) PP = Secth + (‘3_1___‘33) ()\ICI 1+ tanh? i’) ()\QCQSBCht)

1C2 C1C2

= secht (secht + (m) ()\1C‘1V 1 + tanh? t) (AgC’g)) )

C1Ca

Since secht > 0 for all t € R, this value may be zero if and only if Ajds < 0 X = -X3 = A,
and the valid solutions are as stated.

Case 3a: Leta — 1,6 — 0. Then by (A.11.3), the modulus k = EZ—ZE — 1, and correspondingly
dn(t, k) — secht. Thus at the limit, we have the functions P = A\;Cyv/1 + tanh?t, Py = secht,
Py = MCav/1 — sech?t = AyCh tanht and thus P = secht tanh¢. Then

Py + (Clct”) PP, = sechitanht + (cl i '32) ()\101 V14 tanh%) (A2C tanht)
162

Il

CiCz
= tanht (secht + (CIC-:CE) ()\101\/ 1 + tanh? t) ()\202)) )
1C2

Since secht > 0 for all ¢ € R, this value may be zero if and only if AjAz < 0 Ay = =4y = A,

and the valid solutions are as stated. O

In PROPOSITION 3.4.2 we proved that the two groups SO(1,2) and Aut(so(1.2)) are Lie group
isomorphic, and particularly, for each ¢ € SO(1,2) = Aut(Ri}z), there exists a unique element
¢g € Aut(so(1,2)) such that for each x € Rll.f, then g(x) = hat (¢y(x)}). In the next lemma we
apply this result to the automorphism Adepr); we require the image of this automorphism
to determine the projection g(t} onto SO(1.2)p of the extremal curves of THEOREMS 5.2.1 and
5.2.2.

LEMMA. Foreach X € so(1,2) the adjoint action exp(p(t) E1) X exp(¢(t)E1) " maps to (¢(t)E1)x

under the hat map.
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ProoOF. In PROPOSITION 3.4.2 we defined the map ¥ : SO(1.2) — Aut(so(1.2)), where further,
from PROPOSITION 3.4.3 it follows that ¥ : SO(1,2)y — Inn(so(1,2)) is a bijection. Thus the
image under the hat map of Adexps;) is some g(t) € SO(1,2)o for every t. But from (A.5.39)
Ad : SO(1,2)0 — Inn(so(1,2}), Ad : g — Ady is a group isomorphism, and so Adypz,) 5 2
one-parameter subgroup of Inn(so(1, 2)).

Since ¥ is a group homomorphism, then the image hat ({Adcxp(t By ¢ oter =(t) 1 t€R})
is a one-parameter subgroup of SO(1,2);. But from the Iwasawa decomposition 3.6.10, the
one-parameter subgroups up to conjugacy of SO(1.2)g are K, A and N. Thus (¢) : ¢ € R} must
coincide with a subgroup gKg !, gAg ! or gNg~! for some g € SO(1.2)y. But we note particu-
larly that for every t € R, then

1 0 0 0 0 O 1 0 0 0 0 0
exp(tFB1)Fexp(tE1) ™' = [0 cost —sint| |0 0 -1| |0 cost sint| =0 0 -1
0 sint cost 01 0 0 —sint cost 01 0

Thus under the hat map, Adecp(z,) must correspond to an element in SO(1, 2)p which preserves
e;. But from the decomposition SO(1,2)p = BK, the only elements of SO(1, 2)p which preserve

e; are the Euclidean rotations k(t) = exp(t£;) themselves.

Thus for ¢,t' € R, U(exp(tEy)) = Adeyxpg,). But under the hat map,

hat (Adeep ) Ei) = exp(tEn)e;, i=1.2,3.

Thus

00 0]

hat (exp(t'E1)E1exp(t'E;)") =hat [0 0 —1| = exp(~t'E)e
01 0O

0 _sint’ cost'|

hat (exp(t' E1)E; exp(t'Ey)™!) = hat |- sint’ 0 0 = exp(-t'Er)e;
cost’ 0 0

0 cost’ sint]
hat (exp(t'E1)E3 exp(t’'E1) 1) = hat |cost’ 0 0 = exp(—t'Er)es.

sint' 0 0 |

Since the linear map exp(t£1) is uniquely determined by its image on each element of an or-
thonormal basis, it follows that hat (Adcxp(t’E])X) = exp(—tE1)x = exp(—tE;)"x for each
x € RYM2, D

THEOREM. The projection g(-) onto SO(1,2)p of the extremal curve (g{-).p(:)) of the lefi-
invariant control problem of THEOREMS 5.2.1 and 5.2.2 can be expressed as the product

g(t) = exp(¢3(t)N) - exp(¢a2(t)Er) - exp(¢1(t) )
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where N = B — Eq and ¢1.¢2 and o3 solve the system of differential equalions

; P Pl?‘ tan ¢1
$1 = 2} + o P — e Py tan ¢
by = P P3sec ¢y
2 T oA - coPtang
cﬁ o Py tan ¢4 )
3 = CZ(P:} & tanqbl)

PROOF. In SECTION 5.1, we expressed the projection g(t) of the extremal pair (g(-}, p(-}) as the
product g(t) = exp (¢3(t)N)}exp(d2(t)Fe) exp(#(t})Er1). For ease of notation, we will supress
the #’s in the expression of ¢;(t). Since N is not linearly dependent on Ey, then the derivative
of g(t} is given by

§(t) = S(exp(aN) - exp(gekn) - exp(d1E1))
= (@ exp(#a ) ) exp(d2E2) exp(dr Br) + exp(ds )V )(exp(6252)da ia) exp(ds Fr)
+ exp(¢3 V) exp(¢s Ez) (exp(¢1 B1)d1 B )
= (($3N)g(t) -+ g(t) exp(—¢1 B1 g2 F2) exp(d1 Br) + 9(t)(d1.E1)

= 9(t) (9(t) (s N)g(t) + exp( 1 B1)(d2 Ez) expl(1 1) + 61 B )

where for a given ¢, g(t)‘l(q'ng)g(t) + exp(—qblEl)(quEg) exp{¢d) o) + g{}lEl is an element of
50(1,2). We may apply the hat map to this element, where by PrROPOSITION 3.4.1 for every
t € R there exists an element g'(¢) € SO(1,2)g such that hat (g(t)“l(q'ng)g(t)) = g(t)(¢3m).
Then, using PROPOSITION 5.2.3, it follows that

g(1) ($3n) + exp(¢1 E1) T (d2e2) + dre1 = (dah + exp(E161) " (d2e2) + dre

where n is the arbitrary lightlike element n = [ e; + I»es + [%e3. Then

(¢311) + exp(¢1E1) 7 (dae2) + d1e1 (5.2.18)
= (¢3(Pie1 + Paey + Paez) + exp(¢1F1) " (¢oe2) + drey (5.2.19)
= ((d3P1L + d1)er + (d3 P2 + exp(¢1E1) " do)en + dales. (5.2.20)
Further, since
1 0 0

exp (¢1E1) = |0 cos¢r —singy
0 sing; cos¢

then exp(qblE;r)ez = cos ¢r1ex+sin ¢res. Note that for this system, Z(1.4) = wy Fy+usF). Thus
taking u; = %Pg,u;g = éPl so that g(t) corrresponds to the optimal trajectory of the control
problem of THEOREM 5.2.1, then %PgEl + éPl E5 is an element of I'. and correspondingly

1

1
- FPe; + —Piep (5.2.21)
C1 [52]
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is an element of I Equating the two expressions (5.2.20) and (5.2.21) for this element of R2

and rearranging, then
- : - . 1 1
(¢3P1 + d1)er + (3 P2 + docosgr)es + (dosingy + ¢sPi)es = aplez + C—Pzez
1

and thus by the linear independence of e, e; and e3, it follows that

$3PL+ G = $P2 (5.2.22)
¢3Py + dacosy = épﬁ (5.2.23)
$asing + $3Py = 0. (5.2.24)
From (5.2.22), we find .
¢ = PQ%IIPM (5.2.25)

and from (5.2.23), .
(P1 — colaga) sec ¢y

¢ = 5 (5.2.26)
finally, substituting for ¢ from (5.2.26) in (5.2.24) and solving, gives
. Py tang
= - 5.2.27
¢3 Cz(P3 — Py tan ¢71) ( )
and substituting (5.2.27) back into (5.2.25) and (5.2.26) for ¢3 gives
X P PZtan ¢, : I’ Pysec g
= — d = 2.
4 1 2Py — co P tan ¢y an ¢2 coPs — coPytan g, (5 2 28)

respectively, and the result follows. Equations (5.2.25) to (5.2.28) were determined using Math-
ematica (C.4). 0

5.2.2 Equilibrium points and stability

We find the equilibruim points for the system of reduced extremal equations (5.2.3},(5.2.2) and
(5.2.4). We then investigate the non-linear stability of each of the equilibrium points using the
extended energy-Casimir {A.12.4) method as well as (A.12.6).

THEOREM. (Given the left-invariant control problem of THUEOREM 5.2.1, then the equilibrium

points of the system of the reduced extremal equations are
PM = (M,0,0), BM=(0,M,0) and Py =(0,0,00 M ecR\{0}
where Fp, and P;‘f are nonlinear stable and PJ;[ is unstable.

Proor. The equilbrium points of the system of reduced extremal equations (5.2.3), {5.2.2) and
(5.2.4) are the solutions of the system

lpp, =
1pp =
(m) PP, = 0

c1eg
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which are exactly the points
(M,0.0). (0,M.0), (0.0.0) and (M.N.0)|e,=—c,

where A, N € R\ {0}. Note that since we require that ¢; > 0,c2 > 0, we do not consider the
equilibrium points (M, N, 0)|¢,=—¢,. The matrix corresponding to the linearized operator of the

system of extremal equations is
0 0 —+ P
0 0 S hi)
- (—1; B - % Pi(t) 0

At the equilibrium points P, then

es

3 M
0 0 —=P 0 0 -
0 0 PRt =)10 0 0
~2h —2B() 0 -7 0 o
which has the real eigenvalues A = 0,4y = %,Ag = -%. Since for M > 0, A2 > 0, and for

M < 0, then Az > 0, the linearized system always has one positive eigenvalue and so the points

PGI;’ are linearly unstable by { A.12.5). Thus by (A.12.6), the equilibrium points Pe[;’ are unstable.

We use the extended energy-Casimir method (A.12.4) to show that the equilibrium points Pe“l"'
are nonlinear stable. Construct the function L = 2¢coH + 2K = (1 + 5‘1‘) P? + P?. Then

dL = [0 2 (1+ 53)132 2P3]

and so dL - PE“;’ = 0. The Hessian of L is given by

0 0 0

&L = |0 2(1+£2) 0
5]

0 0 2

where dH = 1P 1P, 0f, and ker(dH) - P}y = (ez,ea). Also, dK = [~p1 P P3], and
ker{dK) - P;‘f = (ep.e3). Then W = ker(dH - PM) nker(dK - PM) = (e, e3), and we consider
the restriction of dI.? to W x W, which is given by

2(1+§§) 0
0 2

& Llwxw = =Q.
The quadratic form p'Qp is clearly positive-definite since € has two positive eigenvalues
(A.1.10). Thus there exist constants Ag = 2¢2, Ay = 2 such that L = \yH + A K fulfils the

requirements of the extended energy-Casimir method and the points P;."]d are nonlinear stable,
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Finally, we use the extended energy-Casimir method to show that the equilibrium point F,, is
nonlinear stable. Construct the function L = 2e0H + K = %P{" + (% + %f) Pi+ %Paz Then

ie=[n (1+2)p A

and so dL - P, = 0. The Hessian of L is given by

10 o0
&L= |0 (1+%‘jﬂ) 0
o 0 1

<1

where since dH = %pl 1p, 0] , we see that ker(dH-P,,) = R3. Similarly, dK = [—Pl P, P;{f,

and ker(dK - P.,) = R®. Then W = ker(dH - P.;) Nker(dK - P.,) = R3, and we consider the

restriction of dL? to W x W, which is given by

1 0 o0
ELiwnw = [0 (1+22) ol =@,
o 0 1

]

The quadratic form p' @ p is clearly positive-definite since Q has three positive eigenvalues
(A.1.10). Thus there exist constants Ag = 2c9, A; = 1 such that L = AgH + A} K [ulfils the re-

quirements of the extended energy-Casimir method, and so the equilibrium point Fe, is nonlinear

stable.

5.3 The case I' = (E3, Ey)

THEOREM. Given the left-invariant control problem (£, L, (go, g2, T))
g = g{u1 E3 + ug Ea), g € SO(1,2)g, (u1.u2) € R?
9(0) = g0, 9(T)=gr
1 (T
J = §/ (cluf(t) + coud(t)) dt = min, ¢1,e0 > 0
0

then the optimal controls are

Py Py
uy=— and Uz = —
1 €2
and the optimal Hamiltonian is
1/P: P2
H=-| =+—-
2\ a 2

where Py and P are solutions of the reduced extremal equalions
) (Cz — Cl) PP
CiCa
. 1
P = —PBh
C1

: 1
Py = - =P
Ca

fl

N

(5.3.1)

(5.3.2)
(5.3.3)

(5.3.4)
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Proor. By (A.10.1), the control Hamiltonian is
1
H= —5(611‘% + caud) + p(u1Es + upEy).

As we have stated, we may identify P; = p(E;) via the Killing form; then

1
H = fi(clu% + Czug) +ur s + ual%. (5.3.5)
By the PMP, the optimal Hamiltonian satisfies
oM 1
e cqur+ =0 U] o 3 (536)
dH 1
;9——- =—nut+P=0 & u=-—~F (537)
ug Co

Thus u; and ug are the optimal controls, and the optimal Hamiltonian is given by

’H__—__]L _113.2.+P_§
2\ Ca

by substitution of (5.3.6) and (5.3.7) into (5.3.5). From (A.10.9), the system of extremal equa-
tions is given by

B o= r{n2l+n{n 2} = (22)Rn

5 P Pl

Py = PP 3 +P{Pk¢ = ZPBP

By = PP B+ PP 22y = —App o

5.3.1 Explicit integration of the extremal curve (p(-), g(:))

THEOREM. Under the condition ¢y = co = ¢, the reduced extremal equations (5.8.2), (5.3.3) end

(5.8.4) can be solved in terms of trigenometric functions to give

D)y = Pl(O
Pt) = os(ct)+P3(0 sm(Plt)
Pi(t) = -Pz 0 sm(%t + P3(0) cos (..J.t)

ProoF. Taking ¢; = ¢z = ¢, then the system of reduced extremal equations (5.3.2), (5.3.3) and
(5.3.4) collapses to

. . 1 . 1

P=0, P= EPSPl and P3= —-E.Pzpl

These equations can be expressed in matrix form by
B|
Py

where by (A.7.15), the Cauchy problem P = AP, P(0) has the solution P(t) = exp(tA)P(0).

Thus using Mathematica (C.3) to calculate the matrix exponential,

0 Iip
=lp 0

c

Py
V&

P = ex 0 Eclt P(0)| cos(%t) sm(%t) P3(0)
Pl v —ﬁr_.’*t 0 | | P3(0) a —sin("—}t) cos (£t} | | P5(0)

Since Py = 0, then Py is the constant curve P;(0), and the result follows. m]
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We illustrate this case in fig.C.34.

Again using the intersection of the optimal Hamlitonian H and the Casimir function K to give
the solution curves, the values of K may be positive, negative or zero. This separation of the
level surfaces of the Casimir function K appears naturally in the process of solving the reduced

extremal equations, as we illustrate in figs. C.32 and C.33.

THEOREM. Under the condition c1 # ¢, the reduced estremal equations (5.3.2), (5.8.3) and
(5.8.4) can be solved in terms of Jacobi elliptic functions to give
Case I (K <0)
Case 1o (e3> ey, (95%) P} < PP, - (952) PE < P})
Pi(t) = b-nd(Ct YE=)
Bo(t) = )\Cl\/bznd (ct wLL"’) g

Dty = ,\’ca,\/a2 — 2nd (C‘t V“Lb’)

or
Pi(t) = a-dn (Ct P—_b’)

2
Py(t) = x\Cl\/azdn(Ct. e f;bﬁ) — b2

2
Pt = A"Cg\/az ~ a%dn (Ct L”’)

where o = /2Hey — 2K,b = AV2He — 2K, Ch =, /(C—EI‘:_;},CQ = (?;%T’C = ﬁ;
and A= £1,N = —
or
Case 1b (e > o, (959 ) P2 < PP, — (259 ) PR < P?)

Pit) = b nd(Cr )

2
P(t) = ,\Cg\/bznd (Ct,@) oy
2
Pi(t) = A’Cl\/a2 - bnd (Ct, Y2

ar
() = a dn(Cr EE)

Pty = )\Cg\/azdn (ct, V’az-bﬁ) g

Pty = )\’Cl\/a2—a2dn (Ct VA _b)

where a = v/Fer — 2K, b= A\2Ho — 2K, C1 = \ /95,0y = [ 0= o
and A= £1, ) = -,
Case 2 (K =0)
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Case 2a  (ca > ey, (Q%CZ

or

where a = A2Heg — 2K, b= A 2?—[01—21(,01:\/ (c2— c15 Ca = icac—zcli’cz

and A = £1, ¥ = =,
or
Case 2b  (c1 > ca, (

ar

where a = +/2Hc1 — 2K ,b = A/2Hes — 2K, C1 = | JI?C'_lc—ﬂ,Cg = ‘/(C—lﬂ_?a,(:':

gnd A=+1, M = -\ .
Case 3 (K >0)

Case 3a  (ca > c, (%) P? < P}, - (

or

L

ca—C1
2

LY

-

Pi(t)
B (t)

Ps(t)

Pi(t)
Py(t)

Ps(t)

I

b nd (Ct

VPR < Pp - (a5 ) PR < PY)

ACT \/Eznd (

Ay \/a2 bznd

adn(

1

a— b2)
(:I.'2 b2 )Q_bz
£)2
[+

=)

,\cl\/a%ln (Ct m)z 2

XNy \/ a?

)P2<P2,—(C

[ P

Pa(t)

P

[ P()

By (t)

P3it)

Pi(t)
B(t)

Py(t)

II

— a’dn (Ct, —@)2

P < P})

o %)

\.,_/

3

d
,\02\/

Ct, Y= b)z—zﬂ

/\’Cl\/
an (ct,

bznd

azb)

73

m)z

)\CQ\/(LZdn (Ct m)z s

NCy \/a2 — a2dn (Ct, @)2

€1 —Cp
c2

P? < P?)

SN

\/EQ—_b?)

a
:;(,'1(:2

V102
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where @ = /2Hea — 2K, 0 = A\/2He, - 2K.Cy, =, /(c—;lc—ﬁ,cg = *(c_:—zﬁ)f = ﬁ
and A = £1, ) = -,

or Case 8b  (e1 > ca. (EZ&CL) P? < P% - (Qfl) P} < P?)

([ Pi(t) =b. nd(c “—b)

{ Pot) = ,\C‘z\/;zn Ct, Q-——b)

2
Pty = NG \/02 — b2nd (Ct V"Lbz)

or

([ P(t) = a-dn (Ct, \fﬂ’—bz)
{ Pt) = )\Cz\/azdn (Ct V“Lb ) — b2

2
B{t) = XG \/a2 — aZdn (Ct, 5@)
where @ = V2Hey, = 2K, b= Av2He, —2RCh = V ({1 —cg) V c1 2}
and A =1, XM = =),

ar
Case 3c (e cn (250) PR < P, = (552) PR > )

€1

cxcz

Pty = b-sn(Ct.2)
Pyt) = MC1y/b? — b2 (Ct, L)
Pa(t) = MaCay/a® - % (C1, B)°

or

Pty = b-cd(Ct 2)

b
Pty = AzCz\/;lz — b2cd (Ct, %)2
where a = AV2Hcey — 2K,b = M\/2K — 2Hc. C) = \/T?—‘m Coy = (—cgch).c = _Cf:cz
and)\:j:l,)\’—_— —,\7
or
Case 3d (cy > ca, (szc—z_u) PZ< P?, - (%1) P} > P2

’

Pty = a-sn(Ct. g)

< Pg(t) = )\10’2\/&,7_, a?sn (Gt,g)2
B0 = XCiy/at - atn (C1.3)°

or
Pi(t) = b-cd(Ct. 1)

| P3(t) = Azcl\/az — b2ed (Ct, 3)2

whema:’\v2?{cl_2K=b:A 2}'{-2’)"‘(3 uCIZ \/ iClc—C;:, 3
A==1, A\ =1 and Ay =

.

61 Cz \/clc
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ProoF. Irom (A.10.13) the extremal curves lie in the intersection of the level surfaces of the
optimal Hamiltonian (5.3.1) with the level surfaces of the Casimir function of PROPOSITION
5.1.2, which we express in so(1, 2) via the Killing form. We use this fact to express the variables
P; and Pj in terms of Py. From (5.3.1), then caP? = 2cic0H — c1 P§. But P = 2K + P? — P}
from the Casimir function. Thus ¢2(2K + P2 — P#) = 2cicoH — ¢, P¢. Solving for PZ, then

P2 = ( 2 ) (2K + P? — 2Hcy). (5.3.8)

Cyp — 1

Also from (5.3.1), e1 P2 = 2cicaM — c2P?. But «i{2K + P2 — P?) = ¢ P2 from the Casimir
function. Thus ¢ (2K + Pf - P32) = 2c100H — cng. Solving for Pg, then

PZ = ( a ) (2Hey — PE - 2K). (5.3.9)
C2 — (1
Substituting (5.3.8) and (5.3.9) into the reduced extremal equation (5.3.4), then
2 2
prolee—a) pape (@ c)' @a  on b2 og oy p2_
1 C%C% 243 C?C% (CQ"CL)Z( + 0 Her)(2Hey Pf - 2K)

and we have the system of equations

)
P - ( 2 ) (2K + P? - 2Hey) (5.3.10)
Ca—cCy
! p2 = ( i ) (2Hes — P2 - 2K) (5.3.11)
Cz — C1
. 1
Bl = (?C_) (2K + P2 - 2Hc ) (2Hey — P2 — 2K). (5.3.12)
\ 102
From (5.3.12)
dP? 1 2 9 .
231 o {22} (2K + P2 — 2He)(2Hes — P2 —
= () ex P -2 - P2 - 210
dt 1
= — = ./cic
P "2 /@K + P? - 2Hey)(2Hes — PR - 2K)
: Py dPy
= dr = +/cic f
fo o V@K + P - 2He)(@Hes - P - 2K)
and thus
t = Jeies fpl by (5.3.13)
S Vi@ PRP -5 -

where a2 = (2Hey - 2K), b2 = (2Hey — 2K).
Using equations (5.3.8) and (5.3.9), we see that

g —C1

sz( “ )(2?{@1332}() & 2Hep 2K = PZ 4+ P}

C2—0C1 C1

R}:( & )(21&'-}-}312"2?{121) & 2?{01—2K=P12—(02_01)P22
oy — 1 €

and thus

¢y — Cg

a?> 0 <:>( - )P32<P12 and B >0 @—(CIC_CQ)P§<P3.
1 2
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Then we have the cases

PZ < P, and PZ < P} 5.3.14
3 1

) (57)

(Cl - Cz) P> P2 and (C? z Cl) P2 < p? (5.3.15)
) (=57)
)

(Cl—c"l‘"i P2 < P, and P> p? (5.3.16)

("'1 — CQ) P}>P? and (.:2 —a\pz> p? (5.3.17)

€1

where we consider the corresponding elliptic integrals

v [ e o518
@fﬂ \/_2_251 =) (5.3.19)
| \/ﬁ_c*szl N ;jgpl(bz 7 (5.3.20)
\/cl—cfpl NG _Z';Pl(bz 20l (5.3.21)

where in (5.3.18), = /¥y - 2K, b? = /2Te, — 2R, in (5.3.19), a? = 2K — 2%cy, b% =
V2Hey - 2K, in (5.3.20), a? = 2Hez - 2K, b? = /2K —~ 2Hcp and finally in (5.3.21), o2 =
V2K = THeg, b? = 2K — 2He,.

Consider the condition of (A.11) for these integrals, # < P} < a:
b<a = P<o? = 2Ha-2K<2MHea—2K = ¢ <o

Under this condition ¢; < ¢z, we note that conditions (5.3.14) and (5.3.16) are satisfied, while
(5.3.15) and (5.3.17) are invalid, since in this case ¢; — ¢ < 0. Thus we consider the cases
(5.3.18) and (5.3.20) only. Note that if we swap ¢; and cg, we interchange a and b, and so the
cases (5.3.18) and (5.3.21) are swapped. Similarly so are the cases (5.3.19) and (5.3.20), and the
condition b < a is preserved. Thus we may immediatly state the solutions in the case ¢g < 1
by swapping ¢; and eg in the solutions given for ¢; < cg.

We have already stated that the Casimir function K may take positive or negative values or
may be zero {corresponding to when the level surfaces of K take the form of hyperboloids of one
sheet, hyperboloids of two sheets or the right cone, respectively). We consider each of the cases
K >0,F < 0and K = 0 separately. However, since a? = 2Hcy — K and b% = 23¢, — K, where
H and ¢; are everywhere positive, we note that where K < 0. K = 0, the conditions a? > 0 and
b > 0 of (A.11) for the elliptic integrals ns~!.dc™!,dn™" and nd™! are satisfied everywhere.
Thus we require to consider the possibility (5.3.19) only where K > 0. Thus for the cases K < 0
and K = 0 we use only the value b* = 2%Hc; — 2K and express (A.12.1) as an elliptic integral of
the form (5.3.18). We then have the solutions
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Case 1 a, Case 2a, Case 3a (¢ > cy, (Elc_—lcz) P} < P?, - (C ‘CQ) P? < P}

P dP
t :«/0102,1131\/((“2 Pf";(P? =

-pd™? (EL \/Z?—b_?)

clc B 2

2

= }21 =b-nd (:7?T?§ z
or

dpP
t =4/Cle2 fP{ (a2 le(p’z b
et -t (5 )
> P —ado (g T
where a? = 2Hcp — 2K, b2 = 2Hc; — 2K and we take the square roots @ = /2Hca — 2K and
b= A/2Hcy — 2K where A = %1, since we require the modulus k = ¥ “a'b2 to be positive.

Case 3¢ (c2 > 1. (ﬂfl) P} < P? - (ﬂfz) Fi > PR

to=vae fa JEFDE

- JmEk snt (5. 2)

=P =b-sn(\/%.g)

or

— P dP
t = 4/C1C2 JO ' m
= Jacy od™ (. 2)
= P, =b-cd(——.2)_

Ccica @

where a? = 2Hcy — 2K.b0% = 2K — 2Hc, and we take the square roots a = A/2Hes — 2K and
b= M/2K — 2Hc, where A = *1, since we require the modulus k = % to be positive.

Cases 1b, 2b and 3b follow directly from 1a, 2a and 3a by swapping ¢ and cz. Similarly,
case 3d follows from case 3¢ by swapping ¢; and ¢a.

In order to solve for P, and Ps, we subsitute back into equations (5.3.8) and (5.3.9). But then

2
P = ,\1\/ (2K + PE - 2He), P = /\2\/ - (2Hea - P2 _2K)

a2 —C1 c2 —

where Ay = %1, Ag = £1.

In order to And which solutions are valid, we make a simplifying assuption on a and b in
the expression of P;. P and P3 and subsitute these values of P, and P back into the equation
f (Pl,Pz, P) =P - —gﬁngF'd in order to see which sign combinations (the values of A; and
Az) are valid: that is, for which combinations P - JLELP2P3 = 0. Since the two alternative
elliptic functions (nd or dn, and sn or cd) for each case each represent the same solution, and
thus parametrize the same portions of the intersection of the level surfaces of X and H, we may
consider only one of the two alternatives in order to find the combinations of Ay and A for that

solution.
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Cases la, 2a and 3a: Let a — 1,b = 0. Then by (A.11.3), the modulus & = % — 1, and
correspondingly dn — secht. Thus at the limit the functions Py = secht, P3 = A\;C1V/1 + sech?t
and Py = ACvV'1 - sech?t = A\yCh tanht and thus Py = secht tanh¢. Then

P1 — (Cz — CI) PPy = sechttanhi - (Cz - Cl) (/\202 tanh t) (}\101 V142 t)
c1C2 Ci1C3
tanht (secht + (Czc—ccl) (A2Ca) ()\101 V142 t)) )
12

I

Since secht > 0 for all ¢t € R, this value may be zero if and only if AyAa > 0 A = Ay = A, and
the valid solutions are as stated. Cases 1b, 2b and 3b follow directly from 1a, 2a and 3a by
swapping c¢; and cg.

Case 3c: Leta —» 1,6 = 0. Then by (A.11.3), the modulus k = "‘2—;‘2 -+ 1, and correspondingly
sn —+ tanht¢. Thus at the limit we have the functions P} = tanht, P3 = )\Iclm and
Py = }\Qsz = —AgChsecht and thus P, = ~t2. Then

Pl — ((‘2 _ Cl) PP = —secht? + (5?__:.(:_1) (AgCqsech) ()\1 v+ tanhzt)

¢1Ce c1C2

= —gech (secht — (c-_;_ _ cl) (A2C4) ()\101\/ 1+ tanhzt)) .

£1C3

Since secht > 0 for all t € R, this value may be zero if and only if MjAs > 0 A = Ag = A, and

the valid solutions are as stated. Case 3d follows from Case 3¢ by swapping c; and es. a

5.3.4 THEOREM. The projection g(t) onto SO{1.2)y of the extremal curve (g{-).p(")) of the left-
inverient control problem of THEOREMS 5.5.1 and 5.3.2 can be expressed as the product

g(t) = exp(¢3(t)N) - exp(da(t) Ez) - exp(¢1(t) Ey)
where N = E| — E3 and ¢1. ¢ and ¢3 solve the system of differential equations

—eoP1 Py + ¢i Py P tan ¢y
e19l%3 — c1ea s tan
$ qb - (Cl — Cz)PgP;; sec gbl
27 cog(P— Prtan¢r)
Qlﬁ - @Pg—clpgtanq&l)_
([ 73 cica(P3 — Pytangy)

¢ =

PROOF. In the introduction, we expressed the projection g(-) of the extremal curve (g(-),p())
onto SO(1,2)o as the product g(t) = exp (¢#3(t)N) exp(da(t)Fa) exp(¢1(t}E1). For ease of nota-
tion we supress the ¢ in ¢;(t). Since NV is not linearly dependent on E,, then the derivative of
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g(i) is given by
§(t) = S(exp(¢sN) - exp(d2Ey) - expl¢1 B )))

= (QBSN exp(¢3N)) exp(doFn) exp(¢1 E1) + exp(¢sN ) (exp(ba Ea)da E2) exp(¢1 Fr)

+ exp(dalN) exp(¢2Ea){exp(d1E1)) b1 Er)
= ((¢3N)g + g(t) exp(—1 E1)$2E2) exp(¢1 E1) + 9(t)($1Er)

= 9(t) (90" (9aV)g(t) + exp(~$1E1) (o Ba) exp(1 Br) + $1.B1 )

where for a given ¢, then g(t)‘l(c/');;N)g(t) + exp(*¢1E1)(Q‘52E2) exp(¢1 Eq) + é1Ey is an element
of s0(1,2). We may apply the hat map to this element, where by ProroSsITION 3.4.1 for every
t € R there exists an element g¢'(t) € SO(1,2)p such that hat (g(t)‘l(qﬁgN)g(t)) — g(t) (dsm),

and by PROPOSITION 5.2.3, then hat (exp(~E1¢=1) (qngg)) =exp (1 E) (dbgeg). Thus
(9(t) )T (dan) + exp(¢1 EY )(dzea) + drer = (¢ahi +exp(Ei1dr) " (doea) + dres

where 1 is an arbitrary lightlike element, n = Pie; + Psez + Pses. Then

($a8) + exp(¢1E1) 7 (d2e2) + drey (5.3.22)
= (da(Pre1 + Paey + Faes) + exp(d1 F1) 7 (dae2) + dres (5.3.23)
= ((daP1 + d1)er + (d3Pz + exp(¢1 E1)  do)es + dis Paes. (5.3.24)
Further, since
1 0 0

exp(¢1Ef )= [0 cosgy —sing,
0 sing; cosgn
then exp(¢ E] Jea = cos¢res + sinpjes. Note that for this system, Z(1,u) = u1F3 + usEo.

Thus taking uy, = épg,'u.z = %Pz so that g(t) corrresponds to the optimal trajectory of the

control problem, then %P3E3 + éPgEg is an element of I', and correspondingly
1 1
—Fez + —Faes (5.3.25)
4] [

is an element of I'. Equating the two expressions (5.3.24) and (5.3.25) for this element of R1-2
and rearranging, then

. . . . 1 1
{(¢3P1 + d1)er + (P3Po + g cosgy)ea + (Pasingt + g3 Psles = EI’P393 + C—Pzez-
2

From the linear independence of e, e and e3, it follows that

¢aPL+¢1 = 0 (5.3.26)
. . 1
¢3b% + gacos gy = apz {5.3.27)
; : 1
pasing1 + d3P3 = —Fa. (5.3.28)
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From (5.3.26), we find
¢1 = -Piés (5.3.29)

and from (5.3.27), .
. _ (P2 caPads)secén

%2 (5.3.30)
C2
finally, substituting for ¢; from (5.3.29) in (5.3.28) and solving, gives
(C2P3 — 1Py tan gbl)
= 5.3.31
3 C]_Cg(P;g — Prtan qbl) ( )
and substituting (5.3.31) back into (5.3.29) and (5.3.30) gives
. —co Py Pz + 1 P Py tan : ¢1 — ) Pa Py sec
b = —2alst oAb ¢1 d¢2_(1 2) P2 Py sec by (5.3.32)

cicaPy — cica Py tan ~ crea(Ps — Paptan ¢1)

respectively. The result follows. Equations (5.3.29) to (5.3.32) were determined using Mathe-
matica (C.3). O
5.3.2 Equilibrium points and stability

We find the equilibruim points for the system of reduced extremal equations {5.3.2),(5.3.3) and
(5.3.4). We then investigate the non-linear stability of each of the equilibrium points using the
energy-Casimir ( A.12.3) and extended energy-Casimir (A.12.4) methods as well as (A.12.6).

THEOREM. Given the left-invariant control problem of THEOREM 5.3.1, then the equilibrium

points of the reduced extremnal equations are
PM(0,0,M), PX = (0, M,0), Py = (0,0,0) and PNN(0,M,N)|e,=e;, M,N € R\ {0}

. . MN
where P,, is nonlinear stable and P, PN and P;™" are unstable.

PROOF. The equilbrium points of the system of reduced extremal equations (5.3.2),(5.3.3) and
(5.3.4) are the solutions of the system
thh-LtRp =
PP =
—éPQP]_ = 0
which are exactly the points

Pf,’ﬁ{ Z(O,O,M), ‘PSAZJZ(O~M10)! PE:_«]:(O‘O!O) and Pe}r[!N=(O’M1N)|C1=Cz

where M, N € R\ {0}. The matrix corresponding to the linearized operator of the system of

reduced extremal equations is
1 _1
0 s Py o P



HCH SECTION 5.3, THE CASE T = (Ea, Ez) 113

At the equilibrium point ng AV , then

0 ip -ip 0 b -a
ips 0 0 |=b 0 0
-ip 0 0 —a 0 0

which has eigenvalues Ay = 0,72 = ——"’—"‘”CN,Aa = —‘ES'E Since M? 4+ N?% > 0 for all
M,N € R\ {0}, then all roots are real and A3 = @ > 0. Then the linearized system
always has one positive real eigenvalue and so the points Peﬁf’N are linearly unstable by (A.12.5).
Thus by ( A.12.6) the points P27 are unstable.

At the equilibrium points Pt,ﬂld , then

0 iP -1P 0 X0
1 _ | M
e 0 0 |=|¥ 0 o0
1
kan 0 0 0 0 O
which has eigenvalues A; = 0,3 = ~% and Ag = % Since all roots are real and Ay > 0

for M < 0, while A3 > 0 for M > 0, then the linearized system always has one positive real
eigenvalue and so the points (0,0, M) are linearly unstable by (A.12.5). Thus by ( A.12.6) the

points Pf are unstable. At the equilibrium points Pj‘f , then

0 im -1p 0 o -H
=B 0 0 =10 0 0
1 M
-&P 0 0 -5 0 0
which has eigenvalues Ay = 0. Ay = _1(\:_21 and Az = % Since all roots are real and Ay > 0 for

M < 0, while A3 > 0 for M > 0, then the linearized system always has one positive eigenvalue
and so the points Pef“f are linearly unstable by (A.12.5). Thus by (A.12.6) the points Pg:’ are
unstable. Finally, we use the energy-Casimir method {A.12.3) to show that the point P, is

nonlinear stable. Construct the energy-Casimir function

P B 1o 1o 1.5
= o3 4 T2 _CPZ4yiP2y P
Hy 261+262+¢ 21+22+23
for ¥ € C*°(R,R). The first variation of Hy, is given by
d {1 , 1 .
= |- — 5
OHy dt (2«1(9“ )+ gy (Pt dat) ) I
L4 (¢(~1(P +5t)2+1(P +5t)2+1(P + 632)°
7 g 1+a g 2+ 02 g (3103 -

1 1 1 1 1
= —83Py+ 5P+ (=61 P + 6P+ 53P3) ¢ (——Pf +=Pi+ P}.
1 co 2 2 2

At the equilibrium point Py, then §H {00y = 0- % {0) = 0. Thus the first variation is zero at
the equlibrium peint for any function 1, and we may take 1 (0) = C for any C € R. The second



114 CHAPTER 5. OPTIMAL CONTROL ON 50(1,2) HCH

variation 62H, = 6(6H,) is then given by

d
(SQHw = = ( 83(P5 + 63t) + —(52 P+ (5215))

t=0

d
dt ( (51(P1 + (51t) + 52(132 + 52t) + 53(]33 + Jgt))

¢(_1uﬁ+&nz+—ua+®ﬂ2+ﬁU%+5ﬁV>

t=0
1

= c—6§ —52+( 52+52+63)w( P1+ P2+ P3>
3

+ (=01 Py + 62 P2 + 63 Py)* o (_§P12 + §P22 + §P32) :
At the equlibrium point F,,, then
8% Hylw0,00) = f;é% + ;_1;63 + (07 + 63 + 63)¥ (0)
where additionally v (0) is any real number C. Thus
ﬁmem=éﬁ+é£+cpﬁ+g+g)
which can be written as the quadratic form

¢ 0 o | [a
[51 5 53] 0o Lic o 5
0 0 Lyc| |4

which by (A.1.8) is positive-definite if C < 0,|C] < X and |C| < . Choosing ¢; > ci, the

€1 [55]
negative real number — ( = +1) fulfils this requirement; similarly, choosing ¢; > ¢z, then the

negative real number — ( +1) fulfils this requirement. Then in the case r9 > ¢; we choose 9

to be the function ¥ (z) = Cz for C = — (m), and the energy-Casimir function Hy satisfies
the conditions of the energy-Casimir method, while in the case ¢; > ¢, we choose the function
P{x) = Cx for C = — (?I%) and the energy-Casimir function H,, satisfies the conditions of the
energy-Casimir method. Thus in each case we have found a function Hy which satisfies these

conditions, and so the equilibrium point F,; is nonlinear stable. |
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Chapter 6

Conclusion

In this thesis, we have used two distinct approaches to the problems of geometric control theory
on a matrix Lie group. Firstly, we considered the group structure of the state space as a
symmetry group of a model of hyperbotic plane geometry. Since in both cases we determined
that the model was a homogeneous space of its symmetry group (the symmetry group’s action
was found to be transitive) this allowed us to access the control-theoretic results in a geometric
way. Secondly, since by this transitive action of the symmetry group it is a matrix Lie group
(Myers and Steenrod (1951)), we accessed these results via the structure of its Lie algebra. In
both approaches, we began with a metric on a particular structured space - in the first the
abstract surface HL or HP, and in the second the Lie algebra, where the symmetric bilinear

form @ estabilished with @ on its imnage under the hat map made it an inner product space.

In the initial approach, we established two models of hyperbolic geometry as geometric
surfaces HIL and HP, beginning with the space itself and a metric of constant negative Gaussian
curvature K = —1. The spaces HL and HP we expressed as abstract surfaces. We then used the
metric to construct the symmetry group, in the case of HL explicitly, and in the case of HP by
constructing its family of geodesics and then using the well-established theorems of projective
geometry to construct the symmetry group, considering geodesics as paths invariant under the
action of this group. We established in both cases a matrix representation of the symmetry
group.

We extended this metric approach by considering the Lie algebra of the symmetry group
S0(1, 2)¢ of the hyperboloid model HIL. We determined its topological and structural properties
as well as properties of its action on HIL. Many of these properties, for example the simply-
connectedness result of THEOREM 3.6.3 were referred back to properties of the homogeneous
space of the group and the isomorphism with PGL(2. R). This isomorphism itself was established
as a result of the projections between the two homogeneous spaces of these groups.

We went on to discuss an Iwasawa decomposition of the group SO(1.2)s. The hat map
between so(1, 2) and Rt’,z linked the partitioning of Minkowski spacetime into spacelike, lightlike
and timelike vectors and the Iwasawa decomposition of the symmetry group’s Lie algebra into

elements conjugate to elements in Abelian, nilpotent and compact subalgebras. This result was
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determined as a consegence of the transitive action of the symmetry group on the given model.
We used this decomposition extensively in the construction of the controlability criterion for
control affine systems on this group. As in the seminal work of Milnor [20], we chose to consider
the Lie algebra as an inner product space. This was done indirectly via the hat map between
50(1,2) and Rgz, where  is the Lie bracket on R-2. We chose to do this because of the
rich and well-established terminology and theorems already in place for Minkowski spacetime,
which made expressing the results more simple and direct, and gave a geometric intuition to the
problems.

Using the structures of Minkowski spacetime, the interpretation of Witt's theorem as ex-
pressed by Berger [4] and some results of projective geometry, we were able to develop a simple
and intuitive classification up to local detached feedback equivalence of all full-rank control affine
systems on SO(1,2)p. Here, the traces of the control affine systems were considered as corre-
sponding under the hat map to lines and planes in Minkowski spacetime. The restriction of the
Minkowski metric to the affine subsets corresponding to hyperplanes I" gave three distinct types
of hyperplanes, depending on the signature of the restriction of ©. We termed elliptic, hyper-
bolic and parabolic planes those for which the restriction Jp had signature (0,2,0), (1,1,0) and
(0,1,1), respectively. In correlation with projective geometry, these planes were seen respectively
to correspond to the planes which intersect the light cone in elliptic, hyperbolic and parabolic
conics. Using Witt’s theorem on the orbits of vector subspaces under the action of the isome-
try group of an inner product space, we were able immediately to classify all full-rank 2-input
systems (whose traces correspond to 2-dimensional vector subspaces under hat) into elliptic

) and 222’0). Results drawn from projective

and hyperbolic classes represented by systems 252.0
geometry which determined & correlation between the elliptic, hyperbolic and parabolic hyper-
planes with the planes intersecting the light cone Ky, in elliptic, hyperbolic and parabolic conics
allowed for the classification of the 2-input inhomogeneous and l-input inhomogeneous cases.
For the 2-input inhomogeneous systems we deterniined a classification into 2 infinte families of
classes represented by Egi':), E:(ful ) and a class represented by the system 252,1) whose traces
have images under hat which are parabolic, hyperbolic and elliptic hyperplanes, respectively.
For the l-input inhomogeneocus systems we determined a classification into 3 infinte families of
classes represented by the system E{ﬁj).ﬂgi).ﬂgc‘:) and a class represented by system Esl'l).
The 3-input inhomogeneous and homogeneous systems were determined always to be equivalent
to cach other under Ld.fee., and we determined one class of these systems, represented by 39},
These results are recorded in table B.1.

The metric approach was used to good effect in determining a controllability criterion on all
control affine systems on SO(1,2)y. Using a result of Jurdjevic and Sussman [30] requiring the
periodicity of a trajectory of any controllable system, we were able to determine that it is both
sufficicnt and necessary for the controllability of any inhomogencous system that there exists in
the image T of its trace I" under the hat map a timelike element of R1, In the homogeneous
case, this condition could be extended to the requirement that I' admit two linearly independent

vectors of any kind. This requirement is similarly necessary and sufficient for controllability.
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Using the l.d.f.e. classification of all full-rank control affine systems, we then considered
the optimal control problem with quadratic costs on the two representative systems 252'0} and
Eém) of the 2-input homogeneous systems. We used the Pontryagin Maximum Principle to
determine the optimal cost-extended Hamiltonians. Following Jurdjevic [13], we then worked in
the trivialization of the cotangent bundle TG* = G x g* to set up and solve reduced extremal
equations to find the projection onto so(1,2)* of the extremal pairs (g(¢}, p(t). u(¢)) in both cases.
These solutions were determined in terms of Jacobi elliptic functions. We consequently made
use of the Iwasawa decomposition SO(1, 2}y = KAN to determine the projection of the extremal
curve onto SO(1, 2)g, which we expressed as the solution to a system of differential equations.
In the course of proving this result we made use of the homeomorphic group isomorphism ¥
established between the groups Aut(so(1,2)) and Aut{lR}?) in order to express these differential
equations in a simple way.

While the necessary condition of the Pontryagin Maximum Principle provides us with only a
family of possible candidates for optimal controls and their corresponding optimal trajectories,
in the case of both systems 252,0) and 252‘0) the principle gave rise to exactly one control
candidate, which we assumed to be the optimal control. We note that in the inhomogeneous
cases, the expressions obtained in terms of Jacobi elliptic functions proved to be very complex
and obscured rather than clarified the underiying geometry, and so were not included in this
thesis. Considering the separation of cases which naturally occured in correlation with the
intersection of different level surfaces of the optimal Hamiltonian and the Casimir function as
shown in figs. D.1-D.15, we suspect that this was due to the much more complex intersections
resulting from the intersection of level surfaces of optimal Hamiltonians of these systems which

were parabolic cylinders or parabolic sheets, with the level surfaces of the Casimir function.

Finally, we established the nonlinear stability properties of the equilibrium points of the
reduced extremal equations of each of the 10 l.d.f.e. classes of systems on the Lorentz group.
This was done using the energy-Casimir and extended energy-Casimir methods. In this thesis
we provided explicit calculations of these results for the 2-input homogeneous control affine sys-
tems, while the results for the other 8 systems are provided in tabular form in tables B.2-5. For
the 2-input homogeneous systems we determined that the system of reduced extremal equations
of 252‘0) has 2 infinite families of equilibrium points, where the infinite family on the timelike
axis of R12 and the equilbrium point at the origin are stable and the infinite family covering the
spacelike eg-axis is unstable. The system of reduced extremal equations of 252'0) has 3 infinite
families of equilibrium points on the span of the spacelike axes of R"? , all three of which are
unstable, and a stable equilibrium at the origin. The distribution of the unstable equilibrium
points, in each case on or in the span of the ey. e3-axes, may also give insight into which of the
choices of expression in terms of Jacobi elliptic functions is most suitable for use in computation;
the function sn solves a differential equation involving elements on the spacelike axes, which are
unstable, while the functions cn and dn solve differential equations involving variables on the
spacelike axis ez, which is unstable, and the timelike axis e;, which is a stable axis. These

considerations leave room for further research.
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In this thesis we discussed the problems of controllability, equivalence classification and optimal-
ity of left-invariant control affine systems on SO(1. 2)p in the geometric context, cstablishing first
the properties of SO(1,2)y as a symmetry group of a model of hyperbolic plane geometry, and
then expressing the Lie algebra as an inner product space via the hat map, an expression which

we used to discuss the problems of controliability, equivalence classification and optimality.

r Topic Results
Hyperbolic plane geometry Expression of HI. and HP as gecmnetric surfaces
Equivalence classification L.d.fe. classification of control affine systems
Controllability of affine systems Controllability criterion for all control affine systems
Optimal control of affine systems | Extremal curves for optimal control problem on 252'0) and 252,0)
Stability of equilbrium points of reduced extremal equations
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Appendix A

Review of Prerequisites

A.1 Quadratic forms

References used include 1] and {4]. Let V be an n-dimensional (real} vector space, and Q = [gy]
be a symmetric matrix. Here, R"*" denotes the set of all real n X n matrices, and R* the set

of all real numbers strictly greater than 0.

A.1.1 DEFINITION. A quadratic form associated to the symmetric matrix @ is a functiong:V - R
defined by

n
¢(p)=p ' Qp= ) uypip;-
ij=1

We define a basis {er,...,ep,} on V and express each element p € V as p = (py,...,pn). We
™m
henceforth identify (pi1. ..., pr) with the column matrix

Pn

A.1.2 DeFNITION. The group of all invertible n x n real matrices is denoted by
GL(n,R) = {Q €R™™ : det Q #0}.
A.1.3 DEFINITION. A quadratic form ¢ is nondegenerate if g(p) = 0 implies that p = 0.

If ¢ is nondegenerate, then the matrix @ is an element of GL({n, R).

A.1.4 DEFINITION. An inner product is a symmetric bilinear form ¢ : V x V — R such that if
#(p,q) =0 for all g € V, then p =0.

Particularly, we associate the nondegenerate quadratic form ¢ with the inner product
¢:VxV-R,  ¢p.q =p'Qq
where clearly ¢(p.p) = ¢(p) for each p € V.

A.1.5 DEFINITION. A vector space V equipped with a nondegenerate quadratic form ¢ is called an
inner product space, denoted by (V, g).
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A1.12

A1.13
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A115
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PROPOSITION. (SYLVESTER'S LAW OF INERTIA) Given a symmetric square matriz (), then there
ezists some S such that () is similar to a diagonal matriz SQS™1 = D having along the diagonal
ng eniries which are 0, n+ entries which are +1 and n— which are —1 . The triple (n. . n, ng)
depends only on () and not on the basis used to define it: that is. for any matriz Q' similar to
Q there exists some S’ such that S'Q'(S")"! = D.

DEFINITION. In Sylvester’s law, the triple (n_,ny,ng) is the signature of the quadratic form

q associated to the symmetric matrix Q = [g;;)-

PROPOSITION, The quadratic form ¢ has signature (n.0.0) if and only if all the eigenvalues of
Q are negative. The quadratic form q has signature (k,0.m) if and only if all the eigenvalues of

@ are non-positive.

COROLLARY. If Q has one positive eigenvalue, then the quadratic form q has signature (ny. no. ny)
where n; € N, ng # 0.

DEFINITION. A quadratic form ¢ with signature (n,0,0) is said to be negative-definite (on
V). The quadratic form g with signature (0,n,0) is positive-definite.

DEFINITION. A linear bijection ¢ : V — V’ such that ¢*(¢') = ¢ is said to be isometric.
DEFINITION. The orthogonal group of (V. g) is the group
O(V,q) = {g € GL(V) : ¢"(Q) =@}

DEFINITION. Given an n-dimensional vector space V., and a subspace W of V, then for each
v € V, we define the set g(W) = {gv : v € V}. Then the subset

Ow = {gW : g€ O(V.Q}}

is the orbit of W under the action of O(V. Q).

DEFINITION. The restriction of the quadratic form ¢ to a subspace W of V is the inner product
space (W, glw)-

DrrFINITION. Two vector subspaces W, W' of (V. g) are isometric subspaces if glw = g|w'.

We will correspondingly call two planes I' and I isometric if their direction subspaces are

isometric.

THEOREM. {WITT’s THEOREM) The orbits of the set of subspaces of V under the action of
O(V, Q) are ezactly the sets of (inner product space) isometric subspaces of (V. Q).
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A27
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A.2 Abstract and geometric surfaces

References used include [8], [29], [16], [18], [25] and [31].

DEFINITION. An abstract surface is a set § equipped with a countable collection of injective

functions ¢, : U/ —» & indexed by o € A such that

1. U, is an open subset of R?
2. U, eaUa) =8

3. Given a and b in A and €,(U,) Nep(Up) = Vap € S # 0, then the composition given by
et oep(e) egl(Vab) — ¢7!(Vap) is & smooth map.

The injective functions ¢, are the surface patches of S. The map €; ! o ¢(-) is the transition

map between these open sets of R2,

DEFINITION. The function z; : €, (H,) = R, &; = u; 0 e;l is the i-th coordinate function,

and (), z2) is the system of local coordinates on S.

DEFINITION. The differentiable map o) = e(u{-),v(-)) : {e,U) = S is a curve on the abstract

surface S.

We will refer to the image set o = {a(t) : ¢ € (a,b)} as a path in §.

DEFINITION. Given the curve a(-) = e(u(-),v(:}) : (u.l) =+ S, let &{0) = p and f be a function

on & differentiable at p. The tangent vector to the curve () at p is the function

df oc
a(0)(f) = ——| -
dt |,

DEFINITION. For each p € S, the tangent space to & at p is the set of all tangent vectors to

curves in § at p, denoted by TpS.

DEFINITION. Two subsets &1 € R™ and S; € R" are homeomorphic to one another if there
exists a continuous bijective map ¢ : §; = Sa. The map ¢ which satsifies these propertics is a
homeomorphism. If in addition ¢ and ®~1 gre smooth, then S; and Ss are diffeomorphic
to one another and @ is a diffeomorphism. & is a local diffeomorphism if there exists a
neighbourhood of any point of 51, restricted to which & is a diffeomorphism onto its image. @
is a local homeomorphism if there exists a neighbourhood of any point of S, restricted to

which @ is a homeomorphisin onto its image.

DEFINITION. The tangent bundle of the abstract surface S is the disjoint union |, s TpS.

DerinrrioNn. A vector field X on an abstract surface S is a map X : & — TS such that
X(p) € TpG. If the map X is smooth, then X is a smooth vector field. The real vector space
of all smooth vector fields on & is denoted by X(S).
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DEFINITION. Suppose @ is a smooth mapping @ : G; — Gz between two abstract surfaces &
and &;. The tangent map of @ is the linear mapping d® : TS; — T8 such that for each
p € S and any map o) : (a.b) = &1, @(0) = p, then the map d®(g) : TpS1 — Typ)S2 is
given by d®(p) (#(0)) = Fle—o®(a(t)).

DEFINITION. The pushforward of a vector field X by ® is the map &, X ($(m) = 4¢(p)- X (p).
The pullback of a vector field X by ® is the map &*X = (&7}).(X).

DEFINITION. A covariant tensor field of degree r on the abstract surface S is a multilinear
map x : X(S) x X(S) x ... x £(S) = R such that

X(Xl...aiYi + b; X, ...,X,-) = aix(Xl, vy Yig e X,-) + biX(Xij s Xiy oy Xp)
for each a;,b; € R and X; € X(8)}.

DEFINITION. A covariant tensor of degree r at p in the abstract surface & is a multilinear
map X : TpM x TpS x ... x TpS — R such that

XV @wWi + v, V) = X (Vi Wi Ve ) b bix (Ve e Vi V)

for each a;,b; € R and v;, w; € TpM.

DEFINITION. A covariant tensor field of degree 2 on § is a symmeteric bilinear form x* if

XX, Y) = x*(Y, X) for each X.Y € X(S5), where the superscript s denotes symmetry.

REMARK. We may define using this covariant tensor field x* a tensor xj, on each tangent space
TpS: for v,w € TpS, then xj (v, w) = x*(X. Y}(p), where X, Y € X arc any vector fields on S
chosen such that X(p) = v and Y (p) = w.

DEFINITION. A symmetric bilinear form x” on § is nondegenerate if x;, is nondegenerate on

each tangent space TpS for each p € §: that is, if x3(v, w) = 0 for all w € T,8, then v = 0.
DEFINITION. A nondegenerate symmetric bilinear form is a pseudo-Riemannian metric.

We may denote the Riemannian metric by (-, -}, and xp, by (-} |p.

DEFINITION. A symmetric bilinear form is positive-definite on TpS if xji(v,v) > 0 for all
v € TpS. Similarly, a symmetric bilinear form is negative-definite on TpS if xj(v.v) < 0 for
all v e TpS.

DEFINITION. A symmetric bilinear form is a Riemannian metric on S if x"p is positive-definite

on TpS for each p € §.



A.219

A.2.20

A22]

A.2.22

A.2.23

A.2.24

A225

A.2.26

AL2.27

126 APPENDIX A. REVIEW OF PREREQUISITES HCH

DEFINITION. Let ¢, : 4, + S be a patchon S, e, = (z1.72) and p € S where p = ¢, (ug. vp).
Then the functions a_?c'- (50.50) : °°(8) — R such that for each f € C*(S8),
* Hun,vo
of| _ 9o
81:-;' p a'l‘.h' {uo.vp)

are the elements of the local basis for the tangent space TS5, given by

il
dx; b '

ReEMARK. Using the local basis { 9 .—-‘9—} for TS |, denote g;; = <% o > The local basis

" ug duwg /-

a
p 3:‘51

{dz1,dzs} of T*S corresponds to the local basis {%, 32—2} of TS in the sense that dz; (%) =
51;_7'.

THEOREM. The metric (,-) can be ezpressed as ds® = ) 7 ) gijdzidz;.

DEFINITION. The functions g;; = <d% B‘;’—) are the components of the metric ds? in the local
i b

coordinate system {z1,z3}.

DEFINITION. An abstract surface S equipped with a Riemannian metric ds? = {.,} is a geo-

metric surface § = (S,dsz).

DEerFNITION. Given a diffeomorphism @ : &7 — 52 between two geometric surfaces $; and §;
with Riemmanian metrics {-,-}, and (-, ),, respectively, then the pullback of (-}, by & is

the metric ®* (...}, on &' given by

©* (v1,va)y = (d®(p) - (V1) d®(p) - (v2)),

for each p € &) and tangent vector vy, ve € T,S).

Note that in the ds®-notation we may write $*ds?(vy. vy) = ds?(d®(p) - (v1),d®(p) - (v2)).

THEOREM. (iven a chart ¢ : R? — S of the geometric surface S = (S, (-, ")) where {-.-) has
component functions gij, then gio¢t = E, gizoet = F, go1oe! = F and gyp 0 ¢* = G where
E = (e,e), F={c,c), G= (e, e) and u and v are the standard basis elements u = (1,0)
and v = (0.1) of R2. The pullback of the Riemannian metric {-,-) by the patch ¢!(:) : R> - S is
given by ¢*(g11dz? + gradz1dTy + gndridTe + goodrd) = Edu? + 2Fdudv + Gdv.

DEFINITION. A local isometry & between two geometric surfaces $§1 and $» with Riemannian
metrics ds% = (-,-}; and ds% = (-, )z, respectively, is a map ® : 5 = &3 such that for all v, w in
the tangent space TpS1, the pullback & (v.w), = (d- &{p)(v),d  &(p)(w)); = (v.w);: that
is, the pullback ®*(dsq) = ds;.

DEFINITION. An Riemann isometry ¢ between two geometric surfaces 8§ and S; with Rie-
mannian metrics ds? and ds3, respectively, is a map ® : §; - Sq that is simultaneously a local

isometry and a local diffeomorphism.
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DeFINITION. The group of all Riemann isometries between S and itself is the isometry group
of §, Isom({S).

DerFINITION. Given a diffeomorphism ¢ : &; — Sz such that

®(p) = ®(p1,p2) = (f(p1), flp2) = (P1.72),

then the Jacobian matrix of © is the matrix

Uihn U@

Jo— | o0 Om

052 Op2

apy  dpy
DEFINITION. In an n-dimensional abstract vector space V for which there is no canonical basis,
two bases {e1,ea,...,e,} and {€;,€,,...,€,} are consistently oriented if the transition matrix

|Bi;] such that e; = [By;l€; has a positive determinant.

PROPOSITION. Orientation is an equivalence relation on the set of all ordered bases of V; there

are exactly two equivalence classes.

DErFINITION. An orientation on V is the eguivalence class of all positively-oriented bases on

V. V equipped with this equivalence class is said to be an oriented vector space.

DEFINITION. For a smooth abstract surface S, the pointwise orientation of S is the choice

of orientation of each tangent space TS at p.

DEFINITION. A transformation © : V — V of the vector space V is orientation-reversing if
® is such that given a basis {e1,es} of V, then {e;, ez} and {®(e1), &{e2)} are not consitently
oriented, The transtormation @ is orientation-preserving if ® is such that {e;,es} and

{®(e1), P(e2)} are consistently oriented for each basis {e1, ez} of V.

PROPOSITION. Given a diffeornorphisin @ : & — § such that det Jo > 0, then @ is orientation-

preserving. If det Jo < Q, then it is orientation-reversing.

DEFINITION. If a map & : § — & is both angle-preserving and orientation-preserving, then it is
conformal.
DEFINITION, Given a surface patch € : Uy — S of 8 = (S,ds?) where ds? = gy1dz? +

2g1odzidze + gggdﬂ,‘% as in (A.2.22), the Christoffel symbols relative to the patch ¢ are the
functions f)ffj :§ = R,

,Y-?C, — 122 6gﬂj Dgnk _ agjk -
W} 2 =1 BIA. 62-7- 3:1:”

THEOREM. Given a surface patch ¢t : U — S of S, then 'Y:E, oe = I“i”J

DEFINITION. Given a surface patch €' : U; = S of S, then the geodesics on § are the paths
v C 8 of the curves v(-) = e(u(-), v(-)) which solve the geodesic equations

il

i(t) + T3 a(t) 4 20u(t)o(t) + [iao(t)
B(t) + T u(t) + 2T2%a(t)0(t) + T3,0(t)

0 (A.2.1)
0. (A.2.2)

i
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THEOREM. Given any point p € § and any tengent vector v € TS, then there exists a unique
geodesic () of S passing through p in the direction v.

COROLLARY. Given any 2 points p,q € S, there exists a unique geodesic v such that p € v,q €
5.

PROPOSITION. The isometries of a geometric surfoce § map geodesics of S to geodesics of S.

DEFINITION. The subgroup of Isom(S) of all orientation-preserving Riemann isometries of § is

its symmetry group Sym(S).

DerFINITION. The arc length of a curve () : (¢,0) = S in § = (8,ds?) is the integral
Jods = J; o (ds).

DEFINITION. A (topological) metric d(:, ) : §x5 — Ron Sis the integral d(p,q) = f; v*(ds)
where v(-) is a map parametrizing the unique geodesic of (A.2.41) which passes through p and
q for all p,q € &.

THEOREM. (THE EULER-LAGRANGE EQUATIONS) On the set X, given a functional F which
1
acts on a function a of a real argument t, F(a) = [ L(t, aft), &(t))dt where : [to,t1] = X is a

to
differentiable function such that a(tg) = po. (t1) = p1, and L : [tg. t1] x X xTX = R, then F is
manitnised between py and p1 along the paths o whose curves a(-) satisfy the Euler-Lagrange

equations L,(t, a, &) — %Ea(t»f,d’) =0.

DEFINITION. Given surface patches (€'(u,v).l;) on § = (S,ds?), the Riemannian problem
for 8 consists of finding the paths o = {ei(u(t), v(t)) : ¢t € (a,b)} such that given any two points
po = €'(u(ty), v(to)) and p; = €' (u(t1). v(t1)) in S, their curves a(t) have the minimal arc length
(A.2.44) between pg and py .

PROPOSITION. The Riemannion problem may be solved using the Fuler-Lagrange eguations,
where the Lagrangian is given by L(t,u(t).v(t).4(t).o(t)) = Eu? + 2Fu0 + Go?.

DEFINITION. A curve «(-) of arc-length (A.2.44) 1, is an arc-length parametrized curve.
The parametrization (e, U) of S such that a(-) is an arc-length curve is said to be an arc-length

parametrization for the curve a(:).

DEFINITION. Given a surface patch € : U — S of S, then €' is a v-Clairaut patch if the
coefficients £, = G, = F =0,

THEOREM. (CLAIRAUT’S THEOREM) Let € : U — S be a v-Clatraut paich of . Then a path v

n S, y= {ei(u(v),v) P U E (a.,b)}, is a geodesic if and only if there exists a constant v € R

such that
du G
koY A
& T VEI-rE
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PROPOSITION. The Gaussian curvature K of a geometric surface S is the product

"‘%Ev'u + Fu.v - %Gu‘u %Eu Fu - %E‘U 0 %Ev %Gu
F, - }G, E F -\ 3B, E F
K — iG, F G 6, F ¢
- EG - F?

PROPOSITION. Given a surface patch ¢! 1 U; — S of § such that I' = 0, then the equation for

the Gaussian curvature of S reduces to

s (8 ()5 ()
T oJ/EG \Ou\VEG,) Ow\VEG/)’
A.3 Mébius transformations

References used include [5], [11} and [32].

DEFINITION. Denote the value % by co. The complex projective plane CP! is the union
C U oo

DEFINITION. Given o, 3,w,v € € such that av — fw # 0, a Mdbius transformation is a

az+f
wr+u '

function p : CP* — CP! such that for each z € CP', u: 2z —

DEFINITION. The transformations

: I 1 . .
m(2z) =2+ (translation), 6,(z}) =wz (dilation) and o0g1(z) == (inversion)
are the basic Md&bius transformations.
PROPOSITION. The Mdbius transformation p(z2) = S;jﬂ can be expressed as the composition

Fodo 00,100, 07300, of basic Mdbius transformations, where 7(z) = £+ 2 and 5(3) = (fw—oav)z.

DEFINITION. Let £, denote the composition &, o 74 for r € R*. Then the composition of
transformations g;}, 0 09,1 0 &y, is a circle inversion o, in the circle C,, with centre « and

radius 1.
PROPOSITION. The cirele inversions oq» are involutions.

COROLLARY. A circle inversion oo, maps the interior Iy r of Co s to the exterior £, of Cay,

maps Eur to Loy, and preserves the circle Co r.

PRroPOSITION. (IMAGES OF EUCLIDEAN LINES UNDER CIRCLE INVERSIONS) Given a Fuclidean

line £ and o circle inversion oo ¢ in the circle Cor, then

1. If € does not pass through «, the image of £ under o, is o Fuclidean line which passes

through o
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2. If £ passes through «, it is mapped to itself under gq;.

PROPOSITION. (IMAGES OF EUCLIDEAN CIRCLES UNDER CIRCLE INVERSIONS) Given a Fuclidean

cirele C and a circle inversion o4 in the circle Co ., then

1. If C does not pass through o, the image of C under oo r i8 @ Fuclidean circle which passes

through o

8. If C passes through «, it is mapped to o Euclidean line which does not pass through o.

REMARK. By {(A.3.8) and (A.3.9), the circle inversions can be seen to preserve the family of

Euclidean lines and Euclidean circles, although they may map lines to circles or vice-versa.

PROPOSITION. Chircle inversions preserve intersections within the family of Fuclidean lines and

Fuclidean circles.

PROPOSITION. The composition po [z} transformations pu(z) = 3_”;15 and fi(z) = g—ﬁ% gives

the transformation ~
() = 2lod +@f) +{ef+B0) _Az+ B
VU wE4 )+ (wh o) Q24T

‘3;1"‘? are expressed by the

which is again a Mobius transformation. The coefficients of p'(2) =

a Blla g
w vl (& Tl

THEOREM. The Mdbius transformations form a group under composition.

matriz product

A B
Q7T

We denote this group by Msb. Note that the requirement av — fw # 0 corresponds to the
condition on the determinant of the elements of the complex general linear group (77}. Indeed,

Méb can be identified with GL(2.C) acting on CP', where the action {-,-) : Méb — GL(2,C) is

az+f
wztv”

given by (A.z) =

THEOREM. All Mébiug transformations are conformal transformations of CPt,

DEFINITION, Given p,q € R%, a (projective) cone is any surface of revolution in R? with

generator a (Euclidean) line £ = {p) and axis of rotation the Euclidean line (q).

DEFINITION. A conic in R? is the subset of R® which is the intersection of a projective cone
with a hyperplane I' = {av + by + cz =k : (7,y,2) € R*}.

A conic has an equation of the form axz® + bxy + cy? + dz + ky = h for a,b,¢,d, k, h € R, where
a4+ b*+c? £0.

DEFINITION. The eccentricity of a conic {{u,v) € Rju2+cv?+kv=h}isgiven by e = 1 —c.
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DEFINITION. A conic for which ¢ > 1 is a hyperbola; a conic for which e < 1 is an ellipse and a

conic for which e = 1 is a parabola.

THEOREM. A conic is either an ellipse, a parabola or a hyperbola: that is, these classes of conics

do not intersect.

THEOREM. Given a cone K with generator the Euclidean line £ = (p) and azis of rotation the
Euclidean line £ = (q) such that 6, i3 the angle between the generator and the plane of rotation
of the cone (the unique plane orthogonal to £ and passing through the origin), the eccentricity of
¢ conic that is the intersection of K with a plane 8, degrees from the plane of rotation is given

__ sindp
by e = sinf. -

A.4 Models of hyperbolic geometry

References used include 7] and (32]. We discussed the history and some of the major results of
hyperbolic geometry in CHAPTER 1. Here, we state the Riemann isometries (A.2.27 ) between
the geometric surfaces representing three hyperbolic models HL, HP and PI, where we discuss
HL and HP in CHAPTER 2. Since the reference [7] uses a different inner product for reduced
Minkowski spacetime to the one used in this thesis (which is more widely used in applications

in physics), we make

DEFINITION. Alternate reduced Minkowski spacetime R%! is the 3-dimensional real space
R3 equipped with the alternate Minkowski metric ds® = dz?+dy® —dz2. Particulaly, we may
define a hyperboloid model HL analagously to the hyperboloid model HI. discussed in section
2.1, which is the hyperboloid HL = {22 + 42~ 22 = -1 : (z,%,2) € R*} equipped with the
induced metric ds? = dz? + dy? — dz? of R%1.

DEFINITION. The open subset PD = {(u,v) CR? : wl4?c 1} of R? eqnipped with the
4(du® + dv?)

Poincaré metric tensor ds? = iy
(1—u—v*)

is the Poincaré disk model PD = (PD, ds?)

PROPOSITION. The projection mp : R? — R%!

2z p) 1+ 22 447
71'1(1'»'5!,0) = ( L 4 )

1—22— 42 1 -2 —y2" 1 — 2% — 2

is a Hiemann isometry mapping FD to ]ﬁ]lj, where. The inverse of this map is the projection
T 1. R2! 5 R2

-1 . &L Y .
(@) = (z+1.z+1w)

which is a Riemann isomelry mapping HIL to PD.

PROPOSITION. The projection mg : C — C
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is a Riemann isometry mapping PD to HP. The inverse of this map is the projection vy : C = C

z—1
z+1

'n'é'l(z) =

which i5 a Riemann isometry mopping PD to HP.

A5 Matrix Lie groups

References used include [33], [13], [9], [3], [16] and {28]. Let R™*" demnote the set of all real n xn
matrices. R™*" is a normed vector space equipped with the (matrix) norm ||g|| = /tr(g"g).
GL(n,R) is an open subset of R™*". We denote the n x n identity matrix by 1.

DEFINITION. A Lie group is a smooth manifold G which is also a group such that the mappings

1

G xG,{g1,92) > g192 and G x G, g +» g~ are smooth.

PROPOSITION. The real general linear group GL(n.R) is a Lie group.
DEFINITION. A matrix Lie group is a closed subgroup of GL{n, R).

It can be shown that any matrix Lie group is a Lie subgroup of GL(n,R). Let G denote a

(matrix) Lie group.
ExaMPLES. The following (matrix) Lie groups are used in this thesis:
(i) The complex generatl linear group GL(n,C) = {A € C**" : det A # 0}.
(ii) The projective general linear group PGL(n,R) = GL(n,R)/ {k1 : k € R}.
(iii) The orthogonal group O(n) = {g e Rv*n ; gTg= 1}.

(iv) The special orthogonal group SO(n) = {g € R**" : gTg=1.det g= 1}.

REMARK. The property g' g = 1 for each g in O(n) is equivalent to stating that for each element
g = [gi;] in O(n), then %Z_, gkigr; = &;j: that is, the orthogonal group O(n) may equivalently
be considered as the group of all n x n real matrices whose columns [g;1]. {g:a). ... [gi.n] are

orthonormal vectors.

The matrices g € O(n) are referred to as orthogonal matrices.

DEFINITION. The matrices g € GL{n.R} are positive-definite if their eigenvalues A;. Ag,.... A, €
R*. The matrices ¢ € GL(n.R) are positive semi-definite if their eigenvalues A;. Ag. ..., A, are

all real and either positive or zero.

DEFINITION. Given A € GL(n,R), a polar decomposition of A expresses A as the product

A =UP, where U is orthogonal and P is symmetric positive (semi)-definite.
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THEOREM. {THE FIRST ISOMORPHISM THEOREM) Given any two groups G.H and an n-to-I
group homomorphism @ : G = H, then H &2 G/ ker(®), and © is a group isomorphism between
H and G/ ker(®).
DEFINITION. Given any two Lie groups G,H, amap ¢ : G —+ H is a Lie group homomorphism
if it is simultaneously a group homomorphism and a differentiable map. A map #: G =2 Hisa
Lie group isomorphism if it is simultaneously a group isomorphism and a differentiable map.
PROPOSITION. If A € R?*?, then its characteristic equation charg(A) = det(A — A1) has the
form

char4{A) = A? — (tr A)A + det A.
DEFINITION. Let [ € R be an interval. A curve in a matrix Lie group G is a map «(-): I —
R™ ™ such that for every t € I, a(t) € G.
We use the term path to refer to the image set o = {a(¢) : t € I}
DEFINITION. G is connected if for any g € G, there exists a continuous curve () : [0,1] = G
such that a(0) = g and a(1) =1.
DEFINITION. Given a smooth curve « in G, then &{0) = J11,’irr11} a“*’—’ﬁ_'{(ﬁ € R™*” is the tangent

-

vector to G at «(0).
DEFINITION. For each g an element of G, the tangent space to G at g is the set of all tangent
vectors to G at g1 TyG = {&(0) : o a smooth curve in G, «(0) = g}.
PROPOSITION. The tangent space T G of G is a vector subspace of R™*™.
DEFINITION. The dimension of G is the dimension of its tangent space T1G.
DEFINITION. A (real) Lie algebra g is a real vector space equipped with a product [, -] : gxg -

g, (X,Y) r» [X,Y], such that for A\;, A\ €e Rand X,Y,Z € g, then
L [X.Y]=-[V.X]
2. [MmX + MY, Z] = M[X, Z] + XY, Z]
3. [X.[Y,Z]|+ Y. (Z, X]|+ [Z,[X, Y]] =0

The product {-,+] is the Lie bracket on g.

ExaMPLES. The following Lie algebras are referred to in this thesis:

(i) The vector space R™™™ equipped with the matrix commutator [X.Y] = XY - Y X for
all X, Y e R**™,

(ii) The vector space R® equipped with the cross product p Aq = [p,g] = (p2gs — P3¢2. P13 —
193, P12 — paqn) for all p = (p1.p2.pa).q = (q1.2.93) in R®.
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PROPOSITION. The tengenl space at identify T1G eguipped with the matriz commutator, is a

Lie algebra.

DEFINITION. The Lie algebra of the Lie group G is its tangent space at identity TG

equipped with the matrix commutator.

We will denote the Lie algebra of G by g.

DEFINITION. The map L, : G = G, g : z — gz denotes the action of left translation on G
by g€ G. The map R, : G = G, g : x — gz denotes the action of right translation on G by
g € G.

PROPOSITION. The tangent map of a lefl translation L, is invertible: in particular, the map
dLlg: g —= TG, X — dLyX is a linear isomorphism.

DEeFINITION. Yor any vector space V, the dual space of V, denoted V*, is the space of all

linear functionals on V.

Particularly, for any g € G, (T;G)* is the dual space of T4G.

DEeFINITION. Tor a linear mapping F': V — W between vector spaces, the dual mapping of F
is given by F* : W* — V* such that F*(w)v = wo F(v) for each v,w c V.,

DErFINITION. The dual of the left translation is the map Lg : G* = G* such that for each
y* € G* and z € G, then (L3(y"))(z) = v*(Ly(x)) = v*(g) .

DEFINITION. The cotangent bundle of G is the disjoint union J . ¢(T,G)".

PRrROPOSITION. The tangent map of the dual of the left translation Ly is invertible: in particular,
given dLj : TG — T3G, then dL}_, : g* = T,G, where (dL;“l(Y)) (Xy) = Y (dL71(X,)) is

a linear isomorphism.

REMARK. (THE TRIVIALIZATION OF THE COTANGENT BUNDLE)

Since the tangent map of the dual of the left translation GUL!“;_1 maps T7G to TG bijectively,
then every fibre of TG* is the image under dL;_ , of some Y € g, and so we can make the
identification of every dL;fl(Y) € TgG C T*G with (¢.Y) for g € G.Y € TG and so express
TG = G x g*.

DerFINITION. The matrix exponential of X € R™" is the (invertible) matrix exp(X) =
§ LX*. The exponential mapping is the map exp : R*** — GL(n.R) defined by exp : X

k=0
exp(X).

PrROPOSITION. For each X.Y € R™*™ agnd ¢ € R,

1. %exp(tX) = Xexp(tX) = exp(tX)X.
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2. If X and Y commaute, then exp(X +Y) = exp(X) exp(Y).
3. det exp(tX) = exp(tr(X)).

4. Yexp(X)YY 1 =exp(YXY!).

DEFINITION. For two Lie algebras g; and gs, the linear mapping ¢ : gy — g2 such that
¢([X,Y]) = [6(X),¢(Y)] for each X,Y € g; is a Lie algebra homomorphism. If in ad-
dition ¢ is a bijection, then ¢ is a Lie algebra isomorphism. If g1 = g; = g, then the Lie

algebra isomorphism ¢ : g — g is a Lie algebra automorphism.

PROPOSITION. Let © be a smooth group homomorphism © : Gy — Go between Gy and Gy which
have Lie algebras g1 and ga, vespectively. Then the tangent map d® : g1 — g2 5 ¢ Lie algebra

homomorphism.

If & : Gy = Gs is a linear map, then d® = ¢. Note that from (A.5.32), smoothly isomorphic Lie

groups have isomorphic Lie algebras.

PROPOSITION. The conjugation map Lg o R;l G =G, Lyo R;l(h) = ghg™! is a smooth

group isomorphism.

DEFINITION. For any g in G, the tangent map of the conjugation map Ly o R 1 is the adjoint
action of g on g, Ady : g — g, where AdyX = gXg~! for all X € g.

DEFINITION. For any X € g, the derivative of the adjoint map is given by adx : g — g,
adxY = [X,Y] for all X,Y € g. adx is the adjoint operator of X.

PROPOSITION. For each g € G, Adg : g — p 15 a Lie algebra aufomorphism.

DEFINITION. The group of all isomorphisms ¢ : G = G of G is its the automorphism group
Aut(G). The subgroup {Lyo Ry-1 : g € G} of Aut(p) is the group of inner automorphisms
Inn(G).

DEFINITION. The group of all Lie algebra isomorphisms ¢ : g — g of g is its automorphism
group Aut(g). The subgroup {Ad, : g € G} of Aut(g) is the group of inner automorphisms
Inn(g).

PROPOSITION. The mapping Ad : G = Aut(g) such that Aut{g) = Ady, is a smooth group

homomorphism.
PROPOSITION. If g is semisimple, then Inn(g) = Aut(g)o, the connected component of Aut(g) .

DEFINITION. For each g € G, the co-adjoint action of g on g* is the map Ad;‘1 ' g — gsuch
that (Ad;~'p)(X) = p(Ady(X)) for all X € g.

DeFINITION. The set Ox = {AdgX : g € G} is the adjoint orbit of G through X € g.
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DEFINITION. The set 5,, = {Ad;_lp = G} is the co-adjoint orbit of G through p € ¢*.

DEFINITION. A subspace i of a Lie algebra g is a ideal of g if for each X € g, Y € i, then
[X.,Y] et

DEFINITION. An ideal i of g is Abelian if for each X.Y €, then XY =Y X.

DEFINITION. A semisimple Lie algebra is a Lie algebra for which there are no nonzero Abelian

ideals.
DEFINITION. A semisimple Lie group is a Lie group G with a semisimple Lie algebra.
DEFINITION. A simple Lie algebra is a non-Abelian Lie algebra with no non-trivial ideals.

DEFINITION. A (connected) simple Lie group is a connected non-Abelian Lie group for which

there are no non-trivial normal subgroups.

PROPOSITION. A connected matriz Lie group is simple if its Lie algebra is simple.
PROPOSITION. A simple Lie group G is semisimple.

DEFINITION. The centre of a Lie algebra gis theset 3(g) = {Ac g : [4, X] =0 for all X € g}.

DEFINITION. A homotopy of a path o to a path 3 in a group G is a continuous function
d: [0.1] x [0,1] = G such that for each ¢t € [0.1], d(0,%) = a(t) and d(1.t) = 5(¢).

DEFINITION. G is simply-connected if it is connected, and for any two paths o« and 3 where
a(0) = g,a(1) = h and B(0) = g.3(1) = h there is a homotopy d of the path a to the path 3
such that d(s,0) = g and d(s,1) = h: that is, the endpoints are preserved.

DEFINITION. A cover of a group G by a group G is a local homeomorphism @ G—> G
which is also a group homomorphism. Particularly, if the local homeomorphism @ is an n-to-1
homomorphism, then @ is an n-fold cover of G by G. The preimages g € G of g € G under
$ are said to be over g € G. Particularly, a 2-to-1 local homeomorphism between matrix Lie

groups G and G is a double cover of G by G.

THEOREM. Given ®:G — G an n-fold cover of G by E, suppose that « is ¢ path in G with initial
point g, and ¢ is a point in G over g. Then there is a unique path & in G such that @(0) =g

and Po & = .

DEFINITION. In (A.5.56), the unique path & in the n-fold cover G of G such that (0) =g and
$ o = « is the lift of the path a.

DEFINITION. A vector field X on G is left-invariant if dL,(X} = gX for each X € g and each
g € G.
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DEFINITION. The integral curve of a smooth vector field X on G with initial condition g € G
is a curve g(-) : (a,b) — G such that g(0) = gg and §{t) = X(g(t)) for all ¢ € {a,b).

The integral curve of X is often referred to as the flow of X.

DEFINITION. The Killing form of g is the symmetric bilinear mapping s : g x g such that
k(X,Y) =tr(adx o ady) for each X.Y € g.

DEFINITION. Let g be equipped with a Killing form. Then for any subset S C g, the orthogonal
complement to the subset S is St = €g : x(X,Y)=0.¥Y e S} Cg.

DerFiNiTION. If gt = {0}, then the Killing form & on g is nondegenerate.

ProprosITION. If g is semisimple, then the Killing form x is nondegenerate.

A.6 Iwasawa decomposition

References used include [15]. Let G be a semistmple matrix Lie group and g its Lie algebra.

DEFINITION. A subalgebra t of g is a compact subalgebra if the Killing form & of g is negative-

definite on E.
DEFINITION. A subalgebra a of g is an Abelian subalgebra if [A{, A2] = 0 for any A,.4; € a.
DEFINITION. A subalgebra n of g is a nilpotent subalgebra if the series
n 2 [nn] 2 [[n.n],n] 2 {{[n.n].nj.n]...
terminates in zero.

DEFINITION. A direct sum decomposition g = & a$n where £ is a compact subalgebra of g, a is
an Abelian subalgebra of g and n is a nilpotent subalgebra of g is an Iwasawa decomposition

of the (semisimple) Lie algebra g.

THEOREM. An [fwaesewa decomposition of the Lie algebra g is unigue up to conjugacy: that is,

the subalgebras £,0 and n are unique up to an inner automorphism of g.

THEOREM. Given an Jwasawa decomposition of the Lie algebra g =t D adin of G, let K be a
subgroup of G with Lie algebra £, A be a subgroup of G with Lie algebra a and N be a subgroup
of G with Lie algebra n. Then the multiplication map K x A x N — G given by (k,a,n) — kan

is o diffeomorphism onto.

DEFINITION. A decomposition G = KAN of (A.6.6) is an Iwasawa decomposition of the

(semisimple) Lie group G.

PROPOSITION. In any fwasawa decomposition G = KAN, the product AN is a subgroup of G.
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A.7 Left-invariant control systems

References used inchude {30],(29], [2], [13] and [14] . Let G be a {matrix) Lie group, and g its Lie
algebra.

DEFINITION. An admissible control is a piecewise-constant mapping u(-) : [0, Ty| — RE.
The components u1(-), wa('), ..., ue(-} of u(:) will be referred to as input functions.

DEFINITION. A control system T (on G) is a pair & = (G,=), where Z : G x Rf - TG is a

smooth mapping.

We refer to = as the dynamics of the system 2.

DEFINITION. The control system X is left-invariant if the dynamics is invariant under left

translation: that is, for all g € G, E(g.u) = g Z(1,u).

We refer to the map 2(1,:) : R — g as the parametrization map. Where convienient, we

denote the image Z(1,u) by =,.

DEFINITION. A control affine left-invariant system 2 is a left-invariant control system

such that for each u € RY the parametrization map has the form Z(1,u) — A + P B; (the

i

elements By, Bs, ..., By are assumed to be linearly independent).

In the classical notation, we express such a system X as

4
g=y (A + ZuiBi) , g€G. u=(u,ua. ..., uf) € RE,
i=1
DEFINITION. The trace of T is the imageset [ = {Z,, : u€ R} Cg.

Let ¥ = (G,Z) be a control affine left-invariant system. We express the trace as T = A +
(B1,....Bey=A+ o,

DEFINITION. The system ¥ is homogeneous if 4 is linearly dependent on Bj, ..., By; otherwise,

2 is inhomogeneous.

Let Lie(I") denote the Lie algebra generated by the trace I

DEFINITION. A full-rank system is a system I such that Lie(I') = g.

DEFINITION. A trajectory of a left-invariant control system 2 on G is the absolutely-continuous
curve g(-) : [0, 7] — G such that g(-) satisfies g{t} = = ({g(¢},u(¢))) almost everywhere for some
admissible control u(.) : [0,7] — RE.

DEFINITION. The attainable set for £ from g € G is the set .A{g) of all points reachable along
trajectories of £ from g for positive time: A(g) = {g(T) : g(-} a trajectory of I, g(0) = g, T > 0}.
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PROPOSITION. For any left-invariant control system & = (G, E), A(g) = g.A(1)

For the left-invariant control systems - = (G,Z) we denote A(1) by A and refer to it as the
attainable set of Z.

PROPOSITION. For any left-invariant control system & = (G, 2}, A is a subsemigroup of G.

DEFINITION. A left-invariant control system £ is controllable if given any gp, g1 € G, there
exists ¢ > 0 such that g; € A{go).

ProrosiTioN. A left-invariant control system £ is conirollable if given any g € G, then the
attainable set A(g) = G.

DerFINITION. The set O(g) = {g(t) : g(t) a trajectory of £, t € R, g(t) € G, g(0) = g} is the
orbit of £ through g € G.

PROPOSITION. The Cauchy problem ¢ = gA, g(0) = 1 has the solution g(t) = exp(tA).

PrOPOSITION. Given e left-invariant control affine systern ¥ with piecewise-constant controls
expressed in the classical notation as § = g{A+ EiﬂukBk), u € R, with trajectory g(-) -
[0,T] = G, g(0) = go, then there exist N € N, real numbers 71,72, ..., 7n > 0 and A1, Ay, ..., Ap €
[ such that for eacht € (0,7, g(t) is the product of matriz exponentials

g{t) = goexp TN AN...exp TR Ao exp 1 4y
where 1 +T+ ...+ v =T.
DEFINITION. The system X is called symmetric if I' = -I".
Let G be a connected matrix Lie group.
THEOREM. A symmetric system % = (G, =) is controllable if and only if it is full rank.

DEFINITION. A map af-): J — G is periodic (in t) if there exists some p € R such that for any
to € R, afty) = go, then a(ty + p) = go.

THEOREM. The full-rank system & = (G,Z) is controllable if there ezists some u° € RY such
that the map t — exp(t=(1,u")) is periodic.

A.8 Equivalences of control systems

The reference used is [5]. Let ¥ = (G,E) and T = (E,é) be two control systems, where
dim(G) = dim(G).

DEFINITION. % and 3 are local state-space equivalent (1s.s.e.) if for every g € G, § € G
there exists a local diffeomorphism @ : &/ = N {where A and N are neighbourhoods of g and
3, respectively) such that the tangent map d®(1) - Z(g.u) = Z(§, v} for all v € R%.
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THEOREM. & and % are l.s.s.e. if and only if there exists a Lie algebra isomorphism ¢ such
that for each u € RY, ¢(Z(1,u)) = Z(1,u).

DEFINITION. & and 3 are local feedback equivalent (l.f.e.) at points g and 7 if there exists
a local diffeomorphism @ : A/ x Rf — N xR (where N and N are neighbourhoods of g and g,
respectively) such that ®(g,u) = (#{g). ¥(g.v)) = (§.u) and d®{g) - E(g. v) = E((g).¥(g. ).

DEFINITION. £ and ¥ arc local detached feedback equivalent (l.d.f.e.) at points g and §
if there exists a local diffeomorphism @ : N x Rf — N x R (where N and N are neighbour-
hoods of g and §, respectively) such that ®(g,u) = (¥(g), ¥(u}) = (g, %) and d®(g) - Z(g,u) =
E(¢(g), ¥(w))-

PROPOSITION. Two control systems 3 = (G,Z) and 5= (G, Z) are Ld.fe. at 1,92 € G if and
only if they are l.d.f.e at 1 € G.

A.9 Hamiltonian formalism

References used include [26] and [17].

DEerINITION. A Poisson bracket on a vector space V is a bilinear operator {-,-} on C*(V)
such that for all F,G,H € C*®(V), {FG,H} - {F,H}G — F{G,H} = 0. The vector space V
equipped with the Poisson bracket {-,-} is a Poisson space, denoted by (V, {-,-}).

Let H be a function in C*°(V) and (V,{:, }) be a Poisson space.

DErFintTion. The vector field H defined by F{)[F] = {H,F} for all F € C*(V) is a Hamilto-

nian vector field associated to H.

We will refer to H as the Hamiltonian function of the vector field }T{) associated to it.

DErFINITION. A Hamilton-Poisson system is a triple (V, H, {-,-}).

PROPOSITION. Let (V. H. {-.-}} be a Hamilton-Poisson system with flow ¢, = exp(tﬁ). Then
1. Hody=H
2 3(Fog)={F Hto¢={Fo¢.Hog}={Fo¢ H}

3. The Lie bracket of two Hamiltonian vector fields ?, E is a Hamiltonian vector field, and

|#.3)={F.G}

4. If Hx and Hy are Hamiltonian functions on T*G which correspond to smooth vector fields
X and Y, then {Hx,Hy} = H[X‘y].

We will denote %(F o¢;) by F. Let G be a (matrix) Lie group and g its Lie algebra.
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A.9.5 EXAMPLE. The dual space g* equipped with the Lie-Poisson bracket {F, G} (p) = —p|dF(p).dG(p)]
for all p € g*, F, G € C°°(V) is a Hamilton-Poisson system.

A.9.6 REMARK. Given a basis {E1, ..., By} for g, the dual basis { E], ES,.... E}} is the set of elements
E} € g* such that E¥(E;) = d;;. We may thus express any p € g* as the sum p1 E} + po ES +
o+ paBy.

A.9.7 DEFINITION. For each left-invariant vector field X on a matrix Lie group G, we define the
corresponding Hamiltonian function Ay by Hx (p) = p(X(g)) for each g € G, p € g*. Hx is the

reduced Hamiltonian of X.

A.10 Optimal control

References used include [13] and [17]. Let G be a matrix Lie group with Lie algebra g and go. gr

arbitrary fixed points in G, and X = (G, Z} a left-invariant control affine system.

A.10.1 DeFINITION. If u(-) is an admissible control and g(-} is the corresponding trajectory, then
(9(-),u(-)) is a trajectory-control pair of £.

Given go, g7 € G, a trajectory-control pair transfers the point gy to g if there exists an interval

[0,T] contained in the domain of (g,u) such that g(0) = go, 9(T) = gr.

A.10.2 DerFINITION. The cost of the transfer of go to gr by a trajectory-control pair (g(-).%(.)) is the
functional .7 = [ L{g(t),u(2))dt.

A.10.3 DEFINITION. A trajectory-control pair (g{-).u(:}) is eptimal with respect to the given points
go and g7 if g(0) = go and ¢(T") = gr and if for any other trajectory-control pair (g’(-).%/(-))
which transfers gp to gr, it follows that 7' = foj L{g' (£}, ' (£))dt > f‘;‘r L{g(t),u(d))dt = 7.

L is the Lagrangian of thig optimization.

A.10.4 DEFINITION. A Lagrangian £ € C®(G x RY) is left-invariant if L(gagy, %) = L{g1,u) for all
g1, 92 in G.

Note that a left-invariant Lagrangian £ is constant over G and depends only on the controls.

A.10.5 DEFINITION. If the Lagrangian has the form £ = Zf_ c;u?, then J = jg‘ﬁ(g(t),'u(t))dt is a

quadratic cost.

In this thesis we will always use quadratic costs.

A .10.6 DEFINITION. In this thesis an optimal conirol problem on G associated with the control
system ¥ = (G, Z) is the problem of finding the trajectory-control pair (g(-).u(-)} relative to the
given points go, gr such that

g=g=(1,u), geSO0, 2. (u,ug. ..., u) € R’
g(0) = go. g(T)=gr

1 T
T = 5/0 (cluf(t) + Czu%(t) + ...+ Cgu%(t)) dt — min ¢, cg,...,c0 > 0.
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We denote this contrel problem by (Z, £, (g0, 97.T)).

DEFINITION. A left-invariant control problem is an optimal control problem for which both

the Lagrangian £ and the control sysiem & = (G, E) are left-invariant.
Note that the optimal control problem of (A.10.6) is left-invariant.

REMARK. (LIFTING THE CONTROL PROBLEM TO T*G) Given the particular contro! problem of
(A.10.6), we may determine the Hamiltonian for this problem as in (A.9.7): for each u & R?,
the reduced Hamiltonian H of the left-invariant vector field 5, = A + EleuiBi is given by
the function H{ps) = py (g(A + % usB;)). By the trivialization (A.5.28), we express each
pg € T{G CT"G by py, =dL; p = (g,p): then

H(g,p) = dL’-1(p) (g (A + zfﬂuiB.i)) = p{g7g(A 2§=1u.,-3.5))

=7 (A + EE=1U1'BT:)

where then H is a linear function on g* only.
The Hamiltonian of the left-invariant optimal control problem (A.10.6) is the function

HAp,u) = ~AL(w) + p (A + T uiB;) (A.10.1)

where pe g*, v e R and A =0, 1.
From (A.9.6), the component functions p; satisfy p; = {pi, ’H’\}.

DEFINITION. The reduced extremal equations for the optimal control problem (A.10.6) with

Hamiltonian H* is the system of differential equations p; = { Di. ’HA}.

PROPOSITION. Suppose that (g(-),p(:)) i3 an integral curve of the Hamiltonian vector field
?_{})‘(p,u(-)) for some control function u(-}, with H (p,u) = —AL{u) +p (A -+ EfﬂuiB,-). Then
d=g (Q%{ (2. u)) and p(t) = Ad;(t)p(O), for some p(0) € g*. Consequently, for each t € (e,b),
p(t) is contained in the co-adjoint orbit of G through p(0).

COROLLARY. For each integral curve (g9{-),p(")) of H(p,u(t)), Ady,y-1p(t) is constant.
DEFINITION. A function K is Adg-invariant if K (p) = K(Adg(p)) for all g € G and p € g".
DEFINITION. A Casimir function is any Adg-invariant smooth function K on g*.

ProrosiTiON. A Casimir function is a constant of motion for any Hamiltonian function H on
g*. thet is, {H,K(p)} =0 for allp € g*.

REMARK. Since from (A.10.10) the integral curves p(-) of the reduced extremal equations de-
velop on the co-adjoint orbits 57,(0) (which are the level surfaces of the Casimir function X) and
from (A.9.4) (1) it follows that 4% H(p(t)) = 0, then the extremal curves lie on the intersections
of the level surfaces H, g, N Kyp)-
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We now give a statement of the Pontryagin Maximum principle (PMP), which gives a set of

necessary conditions for a trajectory to be optimal.

THEOREM. (PMP) If{g(-),u(-)) is an optimal trojectory-control pair of the left-invariant opti-

mal control problem associated to system % on an interval [0,T), then g(-) is the projection of
_)

the integral curve (g(-), p(-)) of the Hamiltonian vector field H*, X = 0,1, such that

1. If =0, then (g(),p(-)) is not identically zero on [0,T].
2. HMg(), p(),u()) = H{(g(-),p(-),w)) for any u € R! and a.e. t € [0,7]
8. H Mg(+), p(),u(")) is constant for allt € [0, T].

DEFINITION. A pair of curves {g{-),p(-),u{)}) € Gxg* x Rf on an interval [0,T) is an extremal
pair if (9{-), p(-)) is an integral curve of 74{}" for either A = 0 or 1 such that the first two statements
of the PMP hold. A projection (g(-),p(:)) of the extremal pair is called an extremal curve.
The extremal curves corresponding to A = 1 are normal extremals, while those corresponding

to A = are abnormal extremals.

Note that in this thesis we will always restrict to normal extremals, and so refer to the normal
— —
extremals as extremal curves. Thus we denote the Hamiltonian vector field H* by # and its

Hamiltonian function by H.

A.11 Elliptic functions

References used include [34] and [19].

DEFINITION. For a real k& € (0,1), the Jacobi elliptic functions sn(-, k), cn{-. k) and dn(-, k)

are defined as the solutions to the system of differential equations
f=yz. y=-zr and 2= —k’zy
satisfying initial condtions sn(0, k) = x(0) = 0, en(0, &) = ¥(0) = 1 and dn(0, k) = z(0) = 1.

The real parameter £ € (0,1) is the modulus of the elliptic function. Nine other elliptic

functions are defined by taking reciprocals and quotients:

ns(-, k) = ﬁ, nc(-. k) = C_n(l?,ﬂ; nd{-. k) = m
_ sk _ o). . _ dug

so(nk) = GneRs bk = @ dstR) = G
k dn(t.k) .

(b = G an = EE saeh - R

Of the given elliptic functions, only 6 (sn,cd, dc.ns.nd and dn) are used in this thesis.

PROPOSITION. The derivatives of the Jacobi elliptic functions sn.cn and dn are given by

%Sn(t’k) = cn(d, k)dn{d, k), %cn(t,k) = —dn(d, k)sn(d, k), gt-dn(t, k) = k*cn(d, k)sn(d, k).
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The derivatives of the other 9 elliptic functions may be obtained from these via the product and

quotient rules.
A.11.3 PROPOSITION. As k approaches 0 from the right, correspondingly
sn(t. k) — sin{f), cu(t, k) — cos(t) and dn(f.k) — 1.
As k approaches 1 from the left, correspondingly
sn(t,k) — tanh(f), en{t. k) = (¢) and dn(t, k) — (¢).
The convergence is uniform on compact sets.

A.11.4 DEFINITION. An elliptic integral is an integral of the form [ J(t. P(t))dt where R is a rational
function, P is the square root of a polynomial of degree three or four with no repeated roots,

and ¢ € R is a constant.

In this thesis, we make use of the elliptic integrals

/-‘0 at = ( ) 0<z<bxa
o V-2 - B) =T

b

t _ 1 -1 T b

/z\/(ahtﬁ)(bﬂ-tz) - (b’a) nersbee
@ dt 1, fz b |
/a \/(tQ_QQ)(t2_bQ) = EdC (E a) b<aSI
/oo dt = l115 I(E E) b<a<z

z /(1% = a?)(t? - b?) a b a =

& ,/ ]

a —b ) b<e<a

/u. dt
x /(a2 —2)(t? - b?) a

’ dt e
./b V@& -2 and (b’

A.12 Stability

References used include [17], [26] and [23]. Let V be a real vector space and W C V open. Given
a smooth map X : W — V, consider the differential equation

b = X(p). (A.12.1)
. d
Here, p denotes E-

A.12,1 DEFRINITION. A equilibrium point of the differential equation (A.12.1) is a point p, such that
X(pe) =0.

A.12.2 DEFINITION. An equilibrium point p, is nonlinearly stable if for every neighbourhood A of
Pe, there exists a neighbourhood N2 of p, such that the trajectories p(-) passing through p, and
intially in A3 never leave A. If the point pe is not nonlinearly stable, then it is (nonlinearly)

unstable.
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The energy-Casimir method gives sufficient conditions for the nonlinear stability of equilib-

rinm points of a differential equation of the form (A.12.1):

THEOREM. (THE ENERGY-CASIMIR METHOD) Let (V,{-,-}, H) be a Hamilton-Poisson system,
and p. be an equilibrium point of the system p = {p, H}. Then

1. Find a family of constants of motion for the Hamiltonian system. These are generally

Casimir functions.

2. Select a constant of motion K from the family determined in step I such that the energy-

Casimir function H + K has a critical point at p..
3. Determine the second derivative of the energy-Casimir function at pe.

If the second derivative of the energy-Casimir function is positive-definite or negative-definite at

Pe, then pe is nonlinearly stable. If not, the test is inconclusive.

An extention of this method by Ortega, Ratiu and Planas-Bielsa [23] also gives sufficient condi-

tions for nonlinear stability for a differential equation of the form (A.12.1):

THEOREM. (EXTENDED ENERGY-CASIMIR, METHOD) Let (M, {-,-} ,H) be a Hamilton-Poisson
system, pe be an equilibrium point of the system p = ﬁ(p) and C1,CYy, ..., Cy conserved quan-
tities, that is, {C;. H} =0 fori = 1,2.... k. If there exist constants Ag. A, .... A, such that for
the function L = AgH + A\ C1 + AeCo+. ..., ApCy, then

dL(pe) = d(AgH + M C1+ 202 + .+ ACr)(pe) = 0
and the quadratic form
d*Llwxw (pe) = d*(\H + MC1 + 2C + .. + MCOi)lw xw(pe) = 0
is posilive-definite, where
W = ker(dH(pe)) N ker(dC1(pe)) N ... N ker(dCi(pe))

then pe is non-linear stable.

DEFINITION. An equilibrium point pe of the system p = X(p) is linearly stable at p, if
the eigenvalues of dX(p.) have no positive real parts. If p. is not linearly stable, then it is

(linearly) unstable.

PROPOSITION. Nonlinear stability implies linear stabilily. IHowever, linear stability does not

necessarily imply nonlinear stability.

By the contrapositive, (A.12.6) will provide our method for showing that equilibrium points are
unstable, since if a point is linearly unstable, then it is nonlinearly unstable. We will refer to

linearly unstable points as unstable.
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Tables

Type Representative controllability
l-input (inhomogeneous) a{Es) + uFE controllable
aFs +uFy not controllable
b+ ukEs controllable
E3+u(E) + E3) controllable
2-input homnogeneous ui By + ua ) controllable
u By + us by controllable
2-input inhomogeneous B3 + u1Fo + un B controllable
aE] +ui By FusEs controllable
Ey + ui1Es +ua(E) + E3) controllable
3-input (homogeneous) ui By + ug g + uaEy controllable

Table B.1: Classification of left-invariant control affine systems under Ld.f.e. and controllability of the

representative elements.

(Results used: CHAPTER 4, THEOREMS 4.1.10, 4.1.27, 4.1.34 and 4.1.35, the controllability
criterion THEOREM 4.2.9.)

Representative | Equilibrium points | Stability value

w1 Es + us Ey (0,0.0) stable
(M,0.0) stable

(0,M,0) unstable
w1 B3 + ug By (0,0.0) stable

(0,0, M) unstable

{0, M.0) unstable

(0, M, N)|c;=co unstable

Table B.2: Stability of equilibrium points: 2-input homogenous systems. In each case M € R\ {0}.

{(Results used: THEOREMS 5.2.5 and 5.3.5.)
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Representative Equilibrium points Stability value
aFy+uly (0, M, 0} ar<o stable
(0. M.0)| g0 unstable
(M, —aer, 0)||mi<era stable
(M, —acr, 0)|M|>e1a unstable
(0,0,0) stable
oF| +ufs (0, M. 0)|pms0 unstable
(0. M,0)|pr<0 stable
(—ae1. 0, M)|[|M)>ea stable
(—oer. 0, M) |y e unstable
{0.0,0) unstable
alls + uks (0. M. 0} ni>0 unstable
(0, M, 0)|pm<o stable
(0, cc1. M) | M50 stable
(0, aer, M)\ M| crar unstable
(0,0,0) unstable
—E3 +u(Ey + E) (M, —eM - M. 0) unstable
(M, vieM - M.O) |M>§ unstable
(M, veM - M,O) |0<M<g stable
(c,0,0) stable
(0,0,0) unstable

Table B.3: Stability of equilibrium points: 1-input (inhomogenous) systems. In each case M € R\ {0}.
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Representative Equilibrium points Stability value
aFs 4+ u Fy +usEy (0,0,0) unstable
(0.0. M) | a0 stable
(0,0. M) |pr<o unstable
(M, 0. —ce2)l|M|>ac stable
(M, 0. —a2}l|M|<an unstable
(0, M. ceer)||m] -aeey unstable
aF] + u1Ey +ua By (0.0,0) stable
(M,0,0) stable
(—aet, 0, MY mps e stable
(—aecr, 0, M) a1 cae unstable
(—aec2. 0, M)liarisac, stable
(—ac2,0. M) in1cacs unstable
(acy, M, N}ey=cs unstable
—Ep + u1E3 + ug( By + E2) (0,0,0) unstable
(0,¢2,0) unstable
(M, —+veoM — M,0) unstable
(M, /oM — M,0) unstable

Table B.4: Stability of equilibrium points: 2-input inhomogenous systems. In each case M, N ¢ R\ {0}.

Representative Equilibrium points | Stability value
w1 By + ugFa + usFy (0,0,0) stable
(A,0.0) stable
{0.0,C) unstable
(0. B.0) unstable
(0, B.C)ep=cq unstable

Table B.5: Stability of equilibrium points: 3-input systems. In each case A, B,C € R\ {0}.
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Mathematica

C.1

The codes used in Chapter 2

Code used to find the eigenvalues in THEOREM
2111

Eigenvalues[{{1 — (4"2/a"2), (—bc)/a’2},
{(=bc)/a"2,1 — (c*2/a’2)} Y%
Eigenvalues{{{(a"2/0"2) — 1, {ac) /¥*2},
{(ac) /"2, (c"2/672) + 1} 1%
Eigenvalues[{{(a"2/c"2) — 1, (ab)/c"2},
{{ab}/c 2, (b"2/c 2} + 1} 1%

Codes used to find the Gaussian curvatures in
THEOREMS 2.1.15 and 2.3.3

e = —(Sinh[v])"2

f=0

g=1

sl = dy9

82 = Jye

k = (1/(25qrtleg])) (Bu(s1/Sartleg])
—8y(s2/3qrt[eg]))

Il

—Sinh[v]?
0
1

codes

0
—2Cosh(v]Sinh[v]

2Cash[2]128inh[v]? |  2Coshiu]? 2Sinh{v]?
(-sinbfej2)3? T VTSmh[e]? |/ Sinhp)?
24/~ Sinh[v}2
QCaah[u]’sngt;}? + \;c:mh[u]i‘2 " 28inhfu]?
FuliSi . (—8inh{v]3) —S8inh[v]?  +/—Sinh[v]Z
implify 2+/—Sinh[u}?

-1
e=1/v"2
31 = aug
82 = Jye
Sqrt[eg]
1/(Sart[eg])
k = (1/(28artleg])) (Bu(s1/Sartleg))

—8y(s2/Sartleg]))
1
wZ
0

2
T

1

2y
FullSimplify L
2y
—1
C.2

The codes used in Chapter 3

149
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¥ = ArcCos L }
‘/u2+uzCot[0]2—20,500&[8]03::[9]+Li?Csc{H]2

Code used to find the matrix exponentials in

F oy —ArcCas [~ v/ 22 Cot]6]? 2o Cot (#]Cac(t]+ 12 Cacs]2 ]}

REMARK 3.6.11 Va2 talCot[#]2 —2a pCot[¥]Cse )+ B2 Cac[0]2

{E—+ ArcCos [ " 12Cat{#]? - 2a g Cot[#)Cacl®]+ 52 Cac(#]? :[}
El = {{01 01 0}! {0! 0: —1}, {01 110}} \jr:;+ % Cot(8)2 ~ 2y Cot ] Cacld] 452 Coclo]?

_ 2 Cot{¥}2 - 2a f Cot[8]Cse 0]+ 52 Coc 9]
E2 = {{0, 01 1}1 {01 0) 0}} {1) 0) 0}} {6‘ =+ —AreCos [\/ai+32co' 19]2 — 2aCet[B]Cea{d]+ 42 Cselw]? ]}
. ¥ Cat[#]% — 2o A Cot{#]Csc|] + 52 Cuc[#)2

E3 = {{0,1,0}, {1,0,0},{0,0,0}} { ~ ArcGos [ e v e [HWC“W]}}
FullSimplify[MatrixExp[tE1]]
FullSimplify[MatrixExp[tE2]]
FullSimplify[MatrixExp[tE3]]

Code used to determine the line £ in Case 2 of

{{0,0,0},{0.0,—1}.{0,1,0}}
{{0,0,1},{0,0,0}.{1,0,0}}

{{0,1,0},{1,0,0},{0,0,0}} )
Solve|fCosh[OverTilde[6]] + (—a -+ BCos|0
41,0, 0,0, Cosft], ~Sinlt]}, {0. Sinit]. Cos{f]}} 00 ve[gin(ljls[o[vereTril;e[;]{] ”2:) g;frﬂdj[a]])l

{{Cosh[t],0, Sinh[t]}, {0, 1,0}, {Sinh[¢], 0, Cos h[t]}g o+ BCosl6N) CoshlOverTildelgllCs
{{Coshlt], Sinh[s], 0}, {Sinh]t], Coshit], 0}, {0.0, 1}#811[1(}1[0;& 11de[[63])] _—(.JS:{) overlmdlzg ; c[6]

VrZCot[#)2 2adCos[¥]Cac(t]+ o2 Ceelv]2
\/ 8% +52Cot (8]2 — 20 #Cot{8)Csc|#) 4o 2Csc[8}2:|}
y 42 Cot(#]% —2a K Cot[¢]Csc 8]+ a2 Cac(#)2

=52 +52Cat[9]? - 20 1/ Cot[#]Cacl¢] 0 2Cse (612 ”
#2Cot[#)2 — 20 FCot[9]Cael0)+n 2 Coc[w)2

The codes used in Chapter 4 { - chom[\/ F2487Cot[0)2 20 pCot[d]|Csc[tl+uCac(o]? U

ProrosiTiON 4.1.30
"Case 211

{{6 —+ —ArcCosh I}

C.3

& — ArcCosh {

7 ArcCosh [‘/ :zczcge]? _: + ACot[1]Cseld)+a2 Cec[#]2 ]}}
#2452 Cot[#]2 - 2a HCot [#]Cac[¢) + = TCsc[t]2

v — ATCLOH izl
Code used to find the expression of the unique {{0 oo hee h[ /1% =52 Cot (912 + 2 Got (6] Cre[6] - 312}}’
hyperboloids in PROPOSITION 4.1.20 {§ - A‘CC"““[ JoE R G ren ,ﬂ;t[,,,c g zCSc[,,]z”
Solve a\/(tA2GA2)/(ﬂA2 — bAz) {§ = —ArcCesh [\/,s? A2Cot{d]2 +2a ngnt[HICsc[H 20;-::[9]2]}

A A2 /\2_ A2 —_— A2:::: {"—) reCos [ d

+b\/ ? 2a )/(a b ) ¢ h’t]% # 7 ArcGost v’ﬁ?—ﬂ?cmw]?n xBCot[#]Cuc[2] - ol Csc[p)2 !
Solve |a+/(t72a72)/ (b2 — a/2) In this code we note immediately that in the

+0/([t72a72)J(P°2 — a’2) + 172 == ht]%  denominator

v/ =82 + B2Cot]f]? - 2a8Cot[8]Cse[d] + a2Csc[6)?

Code used to determine the line ¢ in Case 1 of common to all the first set of solutions, the in-
ProrosiTion 4.1.30 terior of the square root is exactly the negative
Case 1 of the interior of the square root in the denom-
Solve[Cos[OverTilde[f]](—B + aCos[])Cse[f]  inator

—aSin{OverTilde[f]] == 0,0verTilde[#]]
Solve[aCos[OverTilde[f]] + (-8 + aCos[f])
Csc[f]Sin|OverTilde[f]] == 0,0verTilde[6]]

{{5# — ArcCos [—

v/ 87 — B2Cot{6]? + 2a5Cot f]Cscld] — a>Cscl6]?

common to all the second set of solutions, Thus

Vo2 +n2Gosle)2 - zaacCorimGact +n2Ceei | [ 7 if the solutions in the first set are real, the so-

# —+ ArcCos | — < \ : : :
A 05[ \/a2+o'20m‘.[9]2A2&ﬂCot[ﬂ]Csc[a]Jrﬂ'zCsu{s]'zJ Jutions in the second set must be the image

g — —ArcCos

Lx . : . .
[ N I P TS CMP]}- under ArcCosh of an imaginary number, which
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is not real. Thus there is no real  which solves

both the first and the second equation simulta-  Solve[aCosh[OverTildeld]] 4 (1 + a)

neously. Sinh[OverTilde[f]] == 0, OverTilde|[§]]
Solve[(1 + a)Cosh[OverTilde[f]}+
oSinh[OverTilde[f]] == 0, OverTilde[d]]

Code used to find the unique transformation by {{OverTﬂde[B] — —ArcCosh [ %] }

in THEOREM 4.1.30 {OverTildels) — ArcCosh |- Yi3Zatel| |

= Solve[Cosh[OverTilde[f]]Sec[¢](a — BSin|¢]) {OverTilde[B] s —ArcCosh [ 1 12-;'.!21& ]}

{ {6-. . [_ \/u_?7Q2Sec[9]2+2u{4;cc|9]'rnn[9]—ﬂzTnnlU]z:I}' {0verTilde[9] — ArcCosh [ 1+12f21;a ]}}

— ArcCosh L8
\/ 2 a?5ec]8]2 430 #Sec(8]Tan(0] - 52 Tan{p)2

— —ArcCosh A8 .
\/ 2 —e25ec[f]2 42 #5ec|¥] Tan{#] - 72 Tanlv]?

— ArcCosh

)
[\/a gn25ec{9]2+2uﬁbnc[Uann[9] 52 Tan [H]QJ}
ArcCosh rsm»;ﬂ 20e S ec |#)Tan[#]+#2 Tanl#| 2
= ATC
a2+a?Secidl? 2upSecid]Tan(¥]+H2Tan[¢)2
5 — ArcCosh ‘/ 25eec[9]2 - 2&550:[6‘]'J.‘an[vl-}-ﬁz‘l‘on[ﬂ]z
‘/_{)2-1-02513c[€i]2 21:1.C!Sec[(i]']{‘m'a[ﬂ]i-.fl!'I\nn[li]2
F3 2_ 2 2
_ AreCash Va2Sec8]? — 20 8 Sec () Tan|#]+ 52 Tan(#]
J- 21 a2 Sec[R)2 - 20 ysm-gn|'ran[u]+,~ﬂ-rm[u}2

{
¢
{
(-
-

nZSecMZ -2a/48ac[0)Tan|t]+ 42 Tan|#)? }
2+n25cc[6}2 2y .uSm:|9]me[8]+.Uz'I‘nn[612

& — ArcCosh [

In this code we note immediately that in the
denominator

Ve

common to all the first set of solutions, the in-

— a?Sec|f]? + 2e8Sec[t| Tan[t)] — F2Tan]4]?

terior of the square root is exactly the negative
of the interior of the square root in the denom-

inator

v —a? + a?8ec[f]? — 2a8Sec[8]Tan|6] + B2Tan(0]2

common to all the second set of solutions. Thus
if the solutions in the first set are real, the solu-
tions in the second set must be the image under
ArcCosh of an imaginary number, which is not
real. Vice versa, if the solutions in the second
set are real. then the solutions in the first set
are not real. Thus there is no real § which
solves both the first and the second equation

simultaneously.

Code used to determine the line £ in Case 4 a

of ProPoOSITION 4.1.30

{OverTilde[s] - — ArcCosh [ ==}

{

{OverTﬂde — ArcCosh [~7=‘1“_=20]} )
{OverTllde[H — —ArcCosh [
LA

OverTilde[f] — ArcCosh [

e
—-1-2cx !

[h

\/120

Code used to determine the line £ in Case 4b
of ProrosITION 4.1.30

MatrixExp[{{0,0,0}, {0, 0, —OverTilde[6] },

{0, OverTilde[6], 0}} —{{0, 0, OverTilde{6]},

{0, 0,0}, {OverTilde[d], 0, 0}}]

{1 (0+7) -5.-0}.{F.

FullSimplify|
25} {84(2-7).-7)

({3217 .-

{-6,8,1}.{1,1,0}]

2 1

} A-0.8.1}}

{1,1,0}

{% (2 + 52) - afCosld]. %2 — afCos[8], -4 + aCos[()]}
Solve[— + aCos[f] == 0, 6]

{{6 — aCos[]}}

8 = aCos|f]

{% (2 + 0~2) — a§Cos[B], Q—; — afBCos[d],

—8 + aCos{f]}

aCos|6]

{—a?Coslf]? + 3 (2 + a*Cos[0)?) . - La?Cos{6)?, 0}
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{—02(303[6]2 + % (2 4 02005[9]2) )

FullSimplify [—a2Cos[f]? +
(—3*Cos[d}?)]
1

3 (2+ a?Cosld]?) -

Code used to determine the line £ in Case 5 of

PROPOSITION 4.1.30

Solve

Sinh[E)verTilde[G]] (=1 + Sech[f](a — Sinh[A]))+
Cosh[OverTilde[6}|Sech[f](a — Sinh[@]} ==

0, OverTilde[d]]

Solve[Cosh[OverTilde[f]](—1 + Sech{f](c — Sinh[#]))

+-Sech[f]Sinh[OverTilde{#]](c — Sinh[f]) ==
0, OverTilde[6)]

(v’—j+2u5nch[0]—2"[‘snh[€])

- {v( 1+30Sech[v)+2xSech[§] Tanh[s] Tanb(¢)®})
{{G —+ —ArcCosh [-— {th —» ArcCos [

1+2n Sech 8]+ 208cch|[¢] Tanh[#] — Taah|#]?)

{E — ArcCosh {— (‘/(_

(v =TF3a5ech P~ 2Tanh(?])
7 _ ArcCosh {v{=1-4+2Bech[#]+20Sech [¢) Tanh[8] ~ Tanh(¢)3} )
{V/~TF3~Seon[]- 2 Tankl})
- (‘,/(—1+2|:Sech[9 +2eSech{#}Tanh(p) Tanh[a]?)
{9 aArLCosh[ (v TF7aSechlr] 'Z'T‘anh[e])

-~

§ —+ —AreCosh [, %

I i25ech[#]? +2¢rSech[#)Tanh[#] ~ Taan(0]2
V1 =2aSnch{d)+2Tanh{e) '

7 o ArcCosh | — %

{_ a28cch(8]2 4 2aSech[8] Tanh([8] - Tanh[4]2
/1= 2a8ech[8]+2Tanh[#] ’

— —a28ech(#]2 +2a8ech[¢] Tank[#] — Tanh([#]?
{# =+ —ArcCosh [\/ (e [ f

1 —Z2uScch(#] +ITanh([d]

%+ ArcCosh [ y/—x2Gech V]2 + 2aBech[#] Tanh [¢]— Tanhi#]? ] }}

+/i— 2o Sach[@]+TLank[#]

In this code we note immediately that in the

denominator

v/ —1+ 2aSech[f] — 2Tanh[f]

common to all the first set of solutions, the in-
terior of the square root is exactly the negative
of the interior of the square root in the denom-

inator

v/1 — 2a8ech[f] 4 2Tanh[f]

common to all the second set of solutions. Thus
if the solutions in the first set are real, the solu-

tions in the second set mmst be the image uuder

—%az(]os[ﬂ]:z, Q@rcCosh of an imaginary number, which is not

real. Vice versa, if the solutions in the second
set are real, then the solutions in the first set
are not real. Thus there is no real § which
solves both the first and the second equation

simultaneously.

Code used to determine the line ¢ in Case 6 of
ProrosiTion 4.1.30
Note- in this code, t10 and t11 denote f.

{~Sin[§], - Sin[t10] + Sin[t10 + 8],

Cos[t10] — Cos[t10 + 6]}
Solve[Cos[t10] — Cos{t10 + 8] == 0,t10]
£10 =+ —ArcCos |— Sinl#]
frag = Ao [ \/1-2C05[81+COSIH]2+Sinl9]2]}
Sin{#]

T /1=9Caeld]+ Coslo]? 1 Sinle]2
3in[s]
W1 2Cas[¥]+Cos[0]2 +8in[6)?
Sinlé] 1}

EﬂlSimpry[{1{_(%}3;{12[:;(:10;[},:3;;]%;1 1],0%,

{Sinh[t11], Cosh[t11], 0}, {0,0,1}}.

{—Sin[6], —Sin[t10] + Sin[t10 + §],0}]
{—Cosh|[t11]Sin[f] + (—Sin[t10]+
Sin[t10+6})Sinh([t11], Cosh[t11]{—Sin[t10]+Sin[t10+
8]) — Sin[f]Sinh{t11],0}

Solve[—Cosh(t11}Sin[6] + (—Sin[t10]

+Sin[t10 + 6])Sinh[t11] == 0,

£11]

t10 &+ —ArcCos |:

510 = AreCos

{{t11 =+ - ArcCosh I:—

\/— sm[zloj2+2$in[t10]5in[t.10+6]—Sin[elo+8)2

\,"—Sin[m:-]2 +8in[#]2+28in[e10)Sin{t 10+#] —Sin[t104+#)2 ]
\/—sm{ua]z +28in{t 10]Sin{t:0+9] - Sin[tlo4+4]2

\/— Sin[t10)2 +8in[#]2 4 25in (£ 10)Sin[t10+46] - Sin[c104-0]2 ] }
1/~ 5in{t10)2 4 2Sin[s 10]Sin[t10 48] — Sin[L10+#]2

\/— Sin[t10]% +5in[8]2 4 25in[:10)8in|t 104 #] - Sinfe 104 8)% ] }

\/—Sin[tmjz +2Sin(t10)Sin[+204+#] — Sinfe 1o-4+¢#]2
\/—Sin[tml'z +8in{#]%+25in{t10]3in[t 10+ #]) — Sin(t10+0}2

Solve[Cosh[t11}(—Sin[t10] + Sin[t10 + 6])
—Sin[#]Sinh[t11] ==
t11)

{tl! — ArcCosh [f

{tll - —Archsh[

t1l — ArcCosh [

{{tt1 =+ — ArcCosh [— Sinf#¢]
\/—Si"itZU]1+Siniﬂi2+29in[t10]51n[t10+~|_Sin[no.,.u]‘z

{Ll] — ArcCash [7 Sinfo]
\/—Einitm]‘l+5in|8]2+25in[th]Sin[r.10+H}-Sin[t10+\9]2

t1l —+ —ArcCosh [

Sin[#)
\/—smguoj‘l +8in[#]24-25in]£10).in[£ 10+ 0] — Sin[t1046]?
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Sin[#]

{!.ll — ArcCosh

But immediately we note that the numerator
of t11 in the first set of solutions is always neg-

ative or zero, since in the function

£(0) = 2sin wsin(2x+8)—sin(27+0)2—sin(27)2,

= —2 and

—2, and since these

maxg — sin(27 + #)2 — sin(27)?
maxg2sinwsin(27w 4 6) =
two maxima occur at the same value 8, then
maxg f(f!) = 0. Since arccosh is not defined at
0, then t1l in the first set of solutions is never
a real number. Thus only the second set of
solutions is valid.
FullSimplify[{{Cosh[t11], Sinh[t11}, 0},
{Sinh[t11], Cosh[t11],0}, {0,0,1}}.
{»,0,0}]
{ACosh[t11], ASinh[t11], 0}
FullSimplify[{{Cosh[t10], 0, Sinh[t10]},
{0, 1,0}, {Sinh{t10], 0, Cosh[t10]} }.
{—Sinl[d], Sin[f],1 — Cos[f]}] {—-Cosh[t10]Sin[¢]+
Sinh(t10] — Cos[6)Sinh[t10],
Sin[#], Cosh[t10]—Cos[#]Cosh|[t10]— Sin[#]Sinh{t10]}
Solve[—Cosh[t10}Sin[6] + Sinh[t10]
—Cos[#]Sinh[t10] == 0, t10]
{{m Ao [_ v —l+201:s2{;f‘:ls!;(:+[-2i‘[ﬁlz ]}
fro-s o[- s
o e | s )

— 1+2Cos{#]} - Coaip]2

\/ = 14-2Cos{#] — Cos{¢]? +Sin[4)2 ] }
FullSimplify[{{1, 0, 0}, {0, Cos|t11], —Sin[t11]},

{0, Sinft11), Cesft11]}}.{0, Sinfd],

Cosh[t10] — Cos[f]Cosh[t10] — Sin[f]Sinh[t10]}]%
Solve[(—1 + Cos[#])Cosh[t10]Six[t11] + Sin[d]
(Cos[t11] + Sin[t11]Sinh[t10}) == 0,t11]%
FullSimplify{{{1,0, 0}, {0, Cos[t11], —Sinft11]},
{0, Sin[t11], Cos[t11]} }.{0, X, 0}]

{0, ACos[t11], ASin[t11]}

{!.10 — ArcCosh [

Code used to express the product an and find
the Limit of ||anl]F as t = oo in LEMMA 4.2.6

[  ~Sin[t10]2 +Sin(0]2 4 28in|10}Sinft104-8] - Sin[t10+0)2 |

PyliSimplify|
Sart

T

{{ (2+ 45%),
{ 712 (2 ¢52 ’
{—¢5,¢5,1}}.
Transpose|
{{@+e5%), -5, g5},
{823 2- 05%) ,—05},
{—#5,¢5, 111111

V3 T 4652 + ¢i?

g5,
¢5},

MatrixForm|
FullSimplify|
{{Cosh[t10}, Sinh[t10], 0},
{Sinh[t10], Cosh[t10],0},
{0,0,1}}.

{12+ —5, g5},
{44 (2- 95 ,-¢5},
{—¢5,5,1}}]|%
FullSimplify|

Sqrt[

Tx[

{{3 ((2+ ¢5%) Cosh][t10}+
$5%Sinh[t10]) ,

- 310452 + Sinh[t10],
—atil ¢5} ,

{52 + sinhlt10],
Cosh[t10]—
$¢5Cosh(t10}—
+¢57Sinh[t10],

—et10¢5} , {95, ¢5,1}} .
Transpose|

{{% ((2 + ¢57) Cosh[t10]+
$5?8inh[t10])

—1et1%952 + Sinh[t10],

_ et10¢5} ,

{55 + sinblt10],
Cosh[t10]—
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1 $5%Cosh[t10]—

L $5%Sinh[t10],

—etl0 ¢5} ,

{—¢5, ¢5, 1}}]]]]

v (1 210 | 9952 4 2110 1+ ¢552)2)
Limit[

v (1 4 e~ 210 4 93524

£2410 (1 +¢52)2) :

£10 — Infinity)

v (1+ q552)200
Limit [1/ (1+ ¢52) %00,

#5 — Infinity]

[o.a]

C.4

The codes used in Chapter &

Code used to express the trajectories in THE-
OREM 5.2.4

Solve[¢3P1 + ¢pl==(1/c1)P2, ¢1]
Solve[¢p3P2 + ¢2Cos[dl]==(1/c2)P1, ¢2]

{{¢1 N P2_(::11P1¢3}}

{{4?2 N gpl-czpch;a)sec[gu] }}
Solve [(Mzg’”“iﬂ) Sin¢1] + ¢3P3==0, ¢3]

P1Tan[g1
{{¢3 = ~ EPI-peTanleIl }}

_ (P1—c2P243)Sec$1]
FullSimplify P2—-c1P1( 24 )]

cl

P2 P1{—P1+c2P2¢3)5ec[p1]
ol + c2

FullSimplify [(P"“”*(-a(%z?—‘n'%m))s«[ml]
C.

P1P3Scc(gl
@Pd—c2P2Tan|$1]

Code used to express the matrix exponential in

THEOREM 5.3.4

MatrixExp{{{(1/c1)P1,0}, {0, (—1/¢2)P1}}]

{{e.0} {o.c )}

Code used to express the trajectories in THE-

OREM 5.2.4

Solve[$3P1 + $1==0, §1]
Solve[$3P2 + $2Cos[¢1]==(1/c2)P2, $2]

{{¢1 = -P143}}
[{g2 o —(P2eerPagseon )
Solve(¢2Sin{¢1] + ¢3P3== (1/c1)P3, $3]

{{ss - Pelen})
FullSimplify [_Pl (Lﬁﬁéi—“@)]

_ (-P2capa( Ba=stezgimien ))sec1¢1]]

FullSimplify
_P1, Plo2Sin[g1]

cl P3
P2((-3 + &) Seclp1) + #%ale])

c2

C.5

A sample of the codes used to generate figures
D1 to D15

Code used to generate Figure D1
cl =0.5;

c2 =6;

h=1,

E=1;

Cap = ParametricPlot3D|

{ VAbsTHSinb u),
+/Abs[k]Cosh|[u]Cos]6],
\/KIT[Ic]Cosh[u]Sin[B]} ,

{8, —m, 7}, {u, 2,2},
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Mesh — 10};

HHa = ParametricPlot3D|
{z, VAcICos[], Msm[o]} ,
{8,0,7},{z,—2.5,2.5},

Mesh - 8];

H = ParametricPlot3D[
{mCos[el, vhc2Sin{g), z} ,
{8, —m, 7}, {2,—2.5,2.5},
Mesh — 8];

VView = {2Pi, Pi/4,0};
VViewv = {1,1,1};
Opts = {ViewVertical - VViewv,
ViewPoint & VView, Axes — True,
BoxRatios — {1,1,1},
PlotRange —
{{-3.3},{-3,3}{-3,3}},
Boxed — False,
ImageSize = Medium,
AxesLabel — {"E1*", "E*", "FE3*"},
LabelStyle —
Directive{Medium}};
Show[Cap, H]

"Case1l-K < 0"
vBA2" Plot[2t-2,{t,-10,10}]
"AMN2"Plot[2t + 2,
{t,-10,10}]
Plot[{2 -t,2t + 2},
{t,-10,10}]
cl=2
c2=5
H=1
K=-1
a = Sqrt[2 H ¢2 + 2 K]
b = Sqrt[2H cl - 2K]



Appendix D

Figures

Here we include Mathematica plots of the Hamiltonian and Casimir functions of the cases 1-3b of
THEOREM 5.2.2 and 1-3d of THEOREMS 5.3.2-5.3.3. For each case, we also plot the solution using
Mathematica’s functions JacobiSN[], JacobiND[] and JacobiDC[], and then use the function
¥DSclve[] to give the numerical solution of the appropriate reduced extremal equations. A

sample of the codes used to produce the plots is given in (C.5).
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