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Abstract 

Cheminformatic approaches have been employed to optimize the bis-coumarin scaffold 

identified by Onywera et al. (2012) as a potential hit against the protease HIV-1 protein. The 

Open Babel library of commands was used to access functions that were incorporated into a 

markov chain recursive program that generated 17750 analogues of the bis-coumarin 

scaffold. The Morita-Baylis-Hillman accessible heterocycles were used to introduce 

structural diversity within the virtual library. In silico high through-put virtual screening 

using AutoDock Vina was used to rapidly screen the virtual library ligand set against 61 

protease models built by Onywera et al. (2012). CheS-Mapper computed a principle 

component analysis of the compounds based on 13 selected chemical descriptors. The 

compounds were plotted against the principle component analysis within a 3 dimensional 

chemical space in order to inspect the diversity of the virtual library. The physicochemical 

properties and binding affinities were used to identify the top 3 performing ligands. ACPYPE 

was used to inspect the constitutional properties and eliminated virtual compounds that 

possessed open valences. Chromene based ligand 805 and ligand 6610 were selected as the 

lead candidates from the high-throughput virtual screening procedure we employed. 

Molecular dynamic simulations of the lead candidates performed for 5 ns allowed the 

stability of the ligand protein complexes with protease model 305152. The free energy of 

binding of the leads with protease model 305152 was computed over the first 50 ps of 

simulation using the molecular mechanics Poisson-Boltzmann method. Analysis structural 

features and energy profiles from molecular dynamic simulations of the protein–ligand 

complexes indicated that although ligand 805 had a weaker binding affinity in terms of 

docking, it outperformed ligand 6610 in terms of complex stability and free energy of 

binding. Medicinal chemistry approaches will be used to optimize the lead candidates 

before their analogues will be synthesized and assayed for in vivo protease activity. 
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Chapter 1: Literature Review 
 

 

1.1. OVERVIEW OF HIV-1  

1.1.1. Origins and Epidemiology 

Human immunodeficiency virus (HIV) is described as the causative agent of an acquired 

immune deficiency syndrome (AIDS) (Sharp & Hahn, 2010). This arises as a result of an 

untreated HIV infection that leaves the victim susceptible to opportunistic infections and 

cancers caused by bacteria, viruses, fungi and parasites (Sepkowitz, 2001; Teni, 2014). If the 

HIV infection is left untreated these infections can prove to be lethal resulting in death due 

to the health complications associated with the compromised immunity (Fenner et al., 2013; 

Lawn, Török, & Wood, 2011). According to the World Health Organisation (WHO), 

approximately 1.4 – 1.9 million people are said to have died due to AIDS-related illnesses in 

2012, of which 75% of these deaths occurred in sub – Saharan Africa which experienced a 

50% decline in AIDS-related deaths since 2004 (Teni, 2014; WHO, 2014). The WHO 

attributed the drop in AIDS-related mortality to the increased availability of antiretroviral 

drugs and the reduction of infection rates since their peak in 1997.  

Despite significant advancements in the development and distribution of anti-retroviral 

drugs  together with social interventions aimed at reducing infection rates, a growing 

concern in the fight against AIDS is the emergence of drug resistant viral strains (Aitken et 

al., 2013). HIV drug resistance (HIVDR) has been attributed to HIV's high mutation rate 

which affects drug-specificity and limits the effectiveness of anti-HIV drugs on their drug 

targets (Kozal, 2009; A. M. Wensing et al., 2014). The existence of drug resistant variants 

within the infected individual can lead to eventual treatment failure in the presence of anti-

HIV drugs that create a selection pressure on the virus (Cambiano et al., 2014). A multi-site 

study of drug resistance viruses within anti-retroviral naive adults estimated that of the 3.9 

million infected people in sub – Saharan Africa that are said to be on anti-HIV treatment 

approximately 5.6 % prevalence of resistance was believed to persist prior to treatment 

(Hamers et al., 2011). Haŵeƌs’ studǇ foĐused oŶ iŶdiǀiduals iŶ KeŶǇa, Nigeƌia, “outh AfƌiĐa, 

Uganda and Zimbabwe and showed that roll-out of antiretroviral therapy (ART) in Africa was 

the principal agent on the emergence of primary drug resistance within the population.   
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HIV, the causative viral agent of AIDS, was first identified in 1986 by Françoise Barré-Sinoussi 

and Luc Montagnier who were awarded the Nobel Prize in Physiology or Medicine in 2008 

for their work  (Lever & Berkhout, 2008). There are 2 known types of HIV virus, type 1 and 

type 2 that are known to infect humans (Hemelaar, 2012). It is thought that HIV-2, the first 

to be discovered, is less virulent than the more transmissible type 1 virus (De Cock, Jaffe, & 

Curran, 2012; Sharp & Hahn, 2010). Phylogenetic analyses suggest that this virus version 

originated in sooty mangabey, Cercocebus atys, a West African primate and thereafter 

crossed into human populations. Major transmission points gave rise to the HIV-2 A and B 

groups that are widespread in human populations compared to the other 6 HIV-2 lineage 

subtypes C, D, E, F, G and H (Damond et al., 2004). Type 1 strains appear to have emerged in 

human populations after crossover events with viruses that infect the Pan troglodytes 

chimpanzees (Gao et al., 1999; Sharp & Hahn, 2010). The majority of the prevalent HIV-1 

strains  belong to the M group while the N and O subgroups have remained restricted within 

Cameroon and west-central Africa respectively, with low levels of exponential growth since 

their transmission (Lemey et al., 2004; Louis, Aniana, Weber, & Sayer, 2011).  

The independent transmission event that gave rise to the M subgroup of HIV type 1 has 

been shown to account for more than 90% of HIV/AIDS cases (Kumar & Herbein, 2014). 

Genetic variability and rapid evolution due to high mutation and recombination rates of HIV-

1 have resulted in a rich diversity of genetic variability. Within the major M group there are 

9 genetically distinct clades of HIV-1 namely A, B, C, D, F, G, H, J and K, which share up to 

92% sequence similarity and up to 42% sequence variation between themselves depending 

on the subtype genome (Hemelaar, 2012; Tatem, Hemelaar, Gray, & Salemi, 2012). 

Recombination of different viral subgroups gives rise to temporary hybrid viruses described 

as ͞ĐiƌĐulatiŶg ƌeĐoŵďiŶaŶt foƌŵs͟ (Hemelaar, 2012; Korber et al., 2001). There were at 

least 48 forms identified as circulating in the global human population in 2011 and an 

increase of the participation of resistant strains in recombination will contribute significantly 

in the persistence of these forms increasing viral diversity (Tebit & Arts, 2011).  
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The global distribution map produced by Hemelaar using data obtained from the WHO 

between 2004 and 2007 shows that HIV-1 subtype C accounted for 48% of all global 

infections and was shown to predominate in sub-Saharan Africa, East Africa, Australia and 

India, Figure 1-1. Sub-type B accounted for only 11% of global infections within this time 

period and was dominant in North, Central and South America; Western Europe and 

isolated parts of North Africa. Central Africa showed the highest subtype diversity with rare 

subtypes such as G and H observed in large proportions within the populations. There are 

significant differences observed between different regions in Africa compared to the 

differences observed between the whole of the Americas, Asia or sub-Saharan Africa. It can 

be thought that this diversity can be attributed to the reduced population mixing in these 

regions due to cultural separations, state boundaries, language barriers and transport 

infrastructure (Tatem et al., 2012; Tebit & Arts, 2011). Increased travel and mobility will 

continue to contribute significantly towards the diversification of the HIV epidemic and the 

spread of drug resistance by increasing the genomic variability (Tatem et al., 2012). 

Figure 1-1: Global distribution of HIV-1 sub-types and circulating recombinant forms. Pie-charts of 

sub-type distributions within that population between 2004 - 2007 are superimposed over the 

shaded region of map. The colours indicate the dominant subtypes (Hemelaar, 2012). 
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The HIV-1 virus has a high mutability rate due to the lack of proof-reading mechanisms in its 

viral RNA reverse transcriptase machinery (Kumar & Herbein, 2014). Its mutability is 

enhanced by a rapid viral turn-over rate ensuring that enough viral copies are present that 

contain non-synonymous mutations that are functional (Das & Arnold, 2013; Korber et al., 

2001). The viral genome is described as containing 9 gene encoding regions (gag, pol, env, 

vif, vpr, vpr, vpu, rev, tat and nef) where each of these regions has different genetic diversity 

because they vary at different rates (Kosakovsky Pond & Smith, 2009). For example the gene 

coding for gp120 varies up to 20 times more than the gag pol genes (Korber et al., 2001). 

These genes encode for 15 proteins (matrix, caspid proteins, nucleocapsid proteins, p6, 

proteases, reverse transcriptases, integrases, gp120s, gp41s, virion infectivity factors (vif), 

viral protein r (vpr), viral protein u (vpu), trans-activator of transcription (tat), regulator of 

expression of virion proteins (rev), and negative factor (nef)) that are involved in different 

stages of the viral life cycle (Sainski, Cummins, & Badley, 2014).  

 

1.1.2. Life-cycle 

The HIV-1 viral life-cycle is divided into 2 main phases, an early and a late phase (Ott & 

Verdin, 2013). The early phase is associated with viral entry and integration while the late 

phase consists of the processes that occur after integration resulting in the release of 

mature infectious viral progeny (Murray, Kelleher, & Cooper, 2011). The virus can undergo 2 

types of dormancy or latency where replication is absent (Ott & Verdin, 2013; Williams & 

Greene, 2007). They can undergo the less clinically significant pre-integration latency which 

results in incomplete reverse transcription of viral RNA. Post-integration HIV latency has 

been shown to account for the long-term persistence of HIV in actively treated patients 

(Abbas & Herbein, 2012). Its exact mechanism is not well understood although it is clear 

that this latency is associated with resting cells (Ott & Verdin, 2013).  
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The main steps necessary for a mature virion to infect and be virulent as illustrated in Figure 

1-2 are: 

i) attachment to host CD4 and CXC chemokine receptor type 4 (CXCR4) or CC 

chemokine receptor type 5 (CCR5) receptors by viral gp120 proteins,  

ii) injection of HIV-1 viral core (single strand positive sense RNA, tRNA primers, viral 

protease, retrotranscriptase, and integrase) into host cell cytoplasm,  

iii) reverse transcription of viral RNA forming viral DNA, 

iv) viral DNA within the pre-integration complex is translocated into the host nucleus 

through microtubule and dynein mediation before its integration into the 

translatable portions of dormant host cell's DNA, 

v) the completion of transcription and translation of viral genes to proteins under the 

direction of host transcription machinery, viral transactivator (tat) and regulatory 

proteins (rev) after activation of host cells,  

vi) formation of large immature HIV-1 precursor proteins,  

vii) maturation through proteolytic processing of precursor proteins and budding of 

mature infectious viral particles (Abbas & Herbein, 2012).  

Figure 1-2: HIV-1 life-cycle and key stages that are manipulated during treatment strategies (Abbas & 

Herbein, 2012). 
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1.1.3. Treatment strategies  

The majority of treatment strategies for HIV infections aim to intercept the viral life-cycle 

and thus reduce the number of infectious viral particles within the infected individual 

(Hemelaar, 2012; Palmer, Alaeus, Albert, & Cox, 1998). The US National Institute of Allergy 

aŶd IŶfeĐtious Diseases ͞Reference guide for prescription HIV-1 ŵediĐatioŶs” divides most 

HIV-1 drugs available into 7 categories depending on their target and mechanism of action. 

These categories are nucleoside reverse transcriptase inhibitors (NRTIs), non-nucleoside 

reverse transcriptase inhibitors (NNRTIs), protease inhibitors (PIs), fusion inhibitors, 

integrase strand transfer inhibitors (INSTIs), CCR5 antagonists and combination 

antiretrovirals (NIH, 2014).  

Reverse transcriptase (RT) is the primary target for the majority of antiviral drugs and is 

responsible for most antiviral drug resistance (V. Johnson et al., 2013). This is because RT 

lacks an efficient proof-reading mechanism which endows it with an error-rate of 0.2-2 

mutations per genome per cycle (Kumar & Herbein, 2014). NRTIs such as Zidovine (AZT/ZDV) 

and Abacavir (ABC) inhibit reverse transcription by the introduction of a modified analogous 

nucleoside prematurely terminating its DNA synthesis (Das & Arnold, 2013). NRTI's have 

been associated with increased levels of mitochondrial toxicity resulting in neuromuscular 

and cardiac effects such as myopathy, peripheral neuropathy and hypertophic 

cardiomyopathy (Gerschenson et al., 2009; Medina, Tsai, Hsiung, & Cheng, 1994). Evidence 

supporting this was observed in the incorporation of these analogues as substrates for 

mitochondrial DNA polymerase giving rise to mitochondrial dysfunctions (A. A. Johnson et 

al., 2001). NNRTI's such as nevirapine (NVP) and delavirdine, interact directly with the viral 

reverse transcriptase inhibiting its activity by binding to allosteric sites averting the toxicities 

associated with nucleoside analogue NRTIs (Das & Arnold, 2013). Despite improvements in 

mitochondrial toxicity, NNRTI's have been associated with liver toxicity coupled with 

depression and alcohol abuse associated with neuro-psychiatric side-effects (Al-Khindi, 

Zakzanis, & van Gorp, 2011; Nakimuli-Mpungu et al., 2012; Usach, Melis, & Peris, 2013). 

First generation PIs such as ritonavir (RTV) and second generation PIs such as darunavir 

(DRV) prevent viral maturation by inhibiting the cleavage of precursor proteins with 

protease (Sainski et al., 2014; Walmsley, 2007). Inhibitor activity is achieved predominantly 

through competitive peptidomimicry of the protease substrate (Wensing, van Maarseveen, 

& Nijhuis, 2010). Side-effects associated with PI incorporating ART treatment regimens have 
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been shown to relate to drug metabolism complications due to secondary interactions with 

cytochrome P450 enzymes (Walmsley, 2007). Fusion inhibitors such as enfuvirtide (T-20) 

and maraviroc are designed to prevent HIV-1 binding, fusion, and viral entry into host cell 

CD4 cells (Lieberman-Blum, Fung, & Bandres, 2008). 

Maraviroc is known as a CCR5 antagonist that binds to this receptor preventing strong 

interactions with viral gp120 protein which is necessary to initiate conformational changes 

required for viral entry (Kumar & Herbein, 2014). In rare cases that resistance arises, the 

virus utilises a non-CCR5 host receptor to enter the host cell. Side-effects occur if maraviroc 

interacts with CXCR4 receptors on immune cells of host while others associated with 

hepatotoxicity have been reported (Kumar & Herbein, 2014; Lieberman-Blum et al., 2008). 

Enfuvirtide inhibits covalent hairpin formation which catalyzes the fusion of the virus with 

the host membrane. Resistance is attributed to the rapid mutability of the viral gp41 protein 

(Bai et al., 2013; Murray et al., 2011).   

INSTIs such as raltegravir (RAL) are designed to target the HIV-1 integrase enzyme and 

prevent the integration of the viral reverse transcribed genetic material into the host 

genome (Kumar & Herbein, 2014; Thompson et al., 2010). They are described as interfacial 

inhibitors as they interact with the vDNA, intergrase catalytic magnesium cations and 

residues within the integrase activity site in order to stabilize an intermediate which inhibits 

completion of the DNA integration (Métifiot, Marchand, & Pommier, 2013). Single point 

mutations within viral integrases have been shown to be sufficient to introduce resistance in 

some integrase inhibitors, thus combinatorial ART is essential to maintain their efficacy 

(Peat, Dolezal, Newman, Mobley, & Deadman, 2014). 
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1.2. HIV-1 PROTEASE AS A DRUG TARGET 

1.2.1. Protease 

HIV-1 protease is a viral protein that is produced in the late stage of an HIV-1 viral infection 

(Sainski et al., 2014). It is  described as being an aspartyl mediated protease responsible for 

the cleavage and processing of viral proteins critical for maturation (Kumar & Herbein, 

2014). As a consequence of its absence after the early stage of infection the protease itself 

is formed through autoprocessing, because HIV-1 protease is translated as part of the gag-

pol polyprotein, a protease substrate (Louis et al., 2011). Because polyprotein cleavage is 

such a vital part of the HIV-1 viral life-cycle and is important for the production of infectious 

viral particles, PIs are regularly used in ARV therapy and detailed knowledge of its structure 

aides in the design of  novel protease inhibitors (A. Wensing et al., 2010). Due to the highly 

variable nature of the HIV-1 virus and the rapid mutability of the gag-pol genome, drug 

resistance rapidly arises as reflected in its plasticity and large number of protease 

polymorphisms (Louis et al., 2011; Rhee et al., 2006).  

HIV-1 protease has been identified as a non-specific protease which recognises its 

substrates based on their shape and their ability to optimize their conformation and 

contacts with catalytic residues in its active site through diffusion and orbital steering (C. 

Chang, Trylska, Tozzini, & McCammon, 2007). Protease identifies viral poly-protein 

substrates yielding MA, CA, NC and p6 products from the gag substrate and PR, RT and IN 

enzymes from the gag-pol substrate (Trylska, Tozzini, Chang, & McCammon, 2007; A. 

Wensing et al., 2010). It has been characterized as existing in a homodimer conformation  

with C2 symmetry enclosing a conserved Asp-Thr-Gly triad within its active site, Figure 1-3 

(C. Chang et al., 2007). Coarse-grained MD simulations of HIV-1 protease showed that the 

flap regions that cover the active site are dynamic and their opening can allow the entry of 

substrates into the active site. Entry of the ligands into active site was shown to be 

dependent on an interaction with the protein-substrate interaction which was shown to 

make fluctuations of flaps more frequent and more stable (Trylska et al., 2007). It is known 

that sub-type C PR possesses 8 polymorphisms which are known to indirectly affect flap 

mobility by increasing its flexibility compared to its subtype B homologue (Coman et al., 

2008). 
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Although the HIV-1 PR mechanism has not been unambiguously determined, growing 

consensus supports a mechanism of action that manipulates the protonation state of the 

ASP residues within the active site (Kipp, Hirschi, Wakata, Goldstein, & Schramm, 2012). The 

protease catalytic mechanism is generally accepted as being a concerted acid-base 

dependant electrophilic attack mediated proteolysis generating 2 intermediates and 3 

transition state species, Figure 1-4 (Brik & Wong, 2003; Shen et al., 2012). 

 

Figure 1-3: Ribbon representation of mature protease model showing the location of highly 

conserved regions under drug pressure (gold and black lettering)(25), regions of natural 

variability in PR among the four groups M, N,O, and P (gray), and naturally conserved regions 

where major DRMs are selected under drug pressure (green). Numbered red circles indicate 

the positions of major DRMs, as defined in the Stanford database. (Louis et al., 2011). 
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The protease active site and mechanism has been manipulated in inhibitor design and it is 

common for a water molecule to play an important role in aspartyl protease inhibitor 

binding (Babine & Bender, 1997; Schramm, 2013). Saquinavir and indinivar contain a 

hydroxyethylamine and hydroxyethylene transition state isostere respectively and they are 

examples of mechanism based inhibitors. When their inhibitor carbonyls within the vicinity 

of the ASP residues are hydrated they create stable hydrogen bonding networks, analogous 

to the TS1 (Figure 1-4) transition-state, due to the enhanced electrophilic properties, Figure 

1-5 (Brik & Wong, 2003; Kipp et al., 2012).  

Figure 1-4: Proposed catalytic mechanism of the HIV-1 protease's acid-base catalyzed concerted 

proteolysis. Structures are labelled as follows 1. PR substrate complex, 2. Transition state (TS) of 

water attack, 3. Di-ol intermediate (INT), 4. protonation TS, 5. Protonated INT, 6. Cleavage of 

substrate bond, 7. PR product complex. Green arrows and text refers to bonds and bond lengths. 

(Kipp et al., 2012). 



  Page 

11 

 

  

 

 

1.2.2. Drug Resistance and Molecular Dynamics  

The inevitability of resistance results in the persistence of a PR polymorphism that is 

resistant to PI therapy despite incorporating ART in a combinatorial approach reducing the 

likelihood of survival of this polymorphism (Hemelaar, Gouws, Ghys, & Osmanov, 2006; 

Shafer, 2006). Detailed structural insights into the topology of the mutant polymorphism 

allows for the development of novel PI which inevitably undergo a similar phasing out due 

to resistance (Wensing et al., 2014).  

Despite the changes that occur within the PR affecting active site topologies, most PR 

proteolytic functionality is conserved because of selection pressures (Cambiano et al., 2014; 

Kipp et al., 2012). In the development of novel inhibitors it is important to understand the 

mechanism driving resistance of a persistent polymorphism. When an I84V mutation in sub-

type B was investigated it was seen from electrostatic potential maps that although the 

substrate had an identical transition state in wild-type as the mutant, resistance to a 

previously potent TS mimic was due to changes elsewhere in the protein (Kipp et al., 2012). 

When a T80V mutation induced saquinavir resistance the DR mutant showed decreased 

proteolytic activity although the virus maintained infectivity. In silico molecular dynamic 

simulations suggested that the changes affected the internal dynamics of flaps resulting in 

Figure 1-5: Proposed mechanism of inhibitor binding showing the influence of hydration 

on the interaction of the inhibitor with catalytic residues. (Brik & Wong, 2003). 
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low drug-protein interactions (Foulkes et al., 2006). Coupling NMR relaxation observations 

with MD simulations allowed MD atomic detail to be validated with experimental 

observations of overall protein dynamics of DR polymorphs that had mutations in the 

primary autoproteolysis sites (Cai, Yilmaz, Myint, Ishima, & Schiffer, 2012).  

B sub-type developed ART are known to achieve sufficient viral suppression in non-subtype 

B circulating HIV-1 strains (Kosakovsky Pond & Smith, 2009). However a study in 1998 

showed that non-subtype B infected individuals that had previously been exposed to a 

potent ARV, ZDV, developed resistance to this drug while no resistance was observed with 

patients that had the B-subtype (Palmer et al., 1998). Based on inhibition studies it has been 

shown that certain active site mutations are more influential in the development of 

resistance in C subtypes than in B subtypes (Mosebi, Morris, Dirr, & Sayed, 2008). A follow-

up study using simulated dynamics of these polymorphisms showed that the C-SA subtypes 

had increased flap movements compared to the B subtypes helping to account for the 

different responses to DR mutations (Ahmed et al., 2013).   

Due to the rapid mutability of the HIV virus and the ability of B sub-type developed PIs 

inducing DR in non-B subtypes there is thus a growing need for the development of novel 

PIs that are subtype specific.  

 

1.2.3. Novel sub-type specific PI scaffolds 

HIV-1 drug design work at Rhodes University within the synthetic medicinal chemistry 

research group and the computer aided drug discovery group work aims to generate novel 

lead compounds targeted toward non-B subtype PR strains. Onywera, 2012, undertook an 

͞in silico investigation into the influence of non-synonymous sequence mutations on the 

architecture of HIV-1 clade C protease receptor sites͟. The binding energies of compounds 

synthesized in the medicinal chemistry research group with 58 subtype PR homology models 

were evaluated by using docking.  
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Onywera identified the bis-coumarin moiety as a novel scaffold for further investigation 

based on its high affinity for the PR active sites across the 59 models, Figure 1-6 (Onywera, 

Lobb, & Tastan Bishop, 2012). The coumarin fragments that make up this scaffold are 

examples of benzannulated heterocycles that are accessible by applications of the Morita-

Baylis-Hillman reactions extensively studied in the RU medicinal chemistry research group. 

 

 

Figure 1-6: Pre-exposure docking Energy maps of 1357 docking experiments of Homology Models (59) and ligand 

test sets (23). Binding energy is represented by heatmap colour coded in legend. Strong binding (dark, black) and 

Weak binding (light, Yellow). Models are shown on x-axis while y-axis shows inhibitors. 6 digit values identify the 

models built from sequences of patients after their exposure to the drug with the 5th and 6th digits describing the 

duration of exposure to ART treatment. 4 digit values describe the model generated from the sequence obtained 

from the patient before ART treatment. (Onywera et al., 2012). 

Figure 1-7: Bis-coumarin based novel scaffold identified as having PI potential. 
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1.3. MORITA-BAYLIS-HILLMAN HETEROCYCLES 

The MBH reaction is a versatile condensation reaction that involves the coupling of an sp2 

hybridised carbon electrophilic centre, such as carbonyls and aldimines, with an electron 

deficient centre such as an alkene Figure 1-8. In 1968 Morita catalysed this reaction with a 

tertiary phosphine (PR3) catalyst while Baylis and Hillman achieved a similar condensation 

using 1,4-diazabicyclooctane, DABCO (NR3) catalyst (Baylis & Hillman, 1972; Morita, Suzuki, 

& Hirose, 1968).  

 

O

R H

+
CH2

EWG
OH

R
EWG

CH2

OH
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CH2
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3

Baylis and Hillman,

 1972
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3

Morita,
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MBH Adduct 

Figure 1-8: The Morita-Baylis-Hillman reaction and formation of the MBH adduct. EWG = electron 

withdrawing group.  

 

The MBH reaction is an important carbon-carbon bond-forming reaction because it has a 

high atom efficiency, requires mild reaction conditions, avoids heavy-metal pollution and 

has flexible and multi-functional MBH adducts (Zhao, Wei, & Shi, 2011). It suffers however 

from having poor reaction rates restricting its practicability in general synthetic routes (Wei 

& Shi, 2013). Despite these setbacks the versatility of the MBH reaction affords various 

opportunities for transformation of the adduct giving rise to the construction of numerous 

benzannulated heterocyclic systems with various applications (Nyoni, Lobb, & Kaye, 2013; 

Peng, Huang, Jiang, Cui, & Chen, 2011). Its practicality can be increased by improving the 

reaction rates by carefully considering the nature of the substrate, the catalyst used, the 

reaction temperature, pressure and solvent (Zhao et al., 2011). Coumarins, quinolones and 

chromenes are examples of some of the benzannulated heterocycles accessed by the MBH 

reaction in the Rhodes University medicinal chemistry research group, Figure 1-9. 
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Figure 1-9: The versatility of the MBH reaction and the opportunities of transformation of the MBH 

adducts. 
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1.4. PROJECT MOTIVATION 

1.4.1. Knowledge gap 

Despite the topological active site conservation, mechanistic similarities and drug 

susceptibilities C subtype and B subtype HIV-1 viral strains, they display subtle differences in 

the drug responses and development of resistance in their proteases (Ahmed et al., 2013; 

Kosakovsky Pond & Smith, 2009; Mosebi et al., 2008; Palmer et al., 1998). Because of the 

inevitability of the resurgence of drug resistance there is a growing need for the 

development and incorporation of novel subtype specific PIs in cART (Tatem et al., 2012).  

 The time it takes to develop a new drug has on average been shown to take between 10 to 

15 years, with the average cost of development being higher than $1.2 billion USD. These 

facts are startling if we consider that only 2 out of 10 marketed drugs return revenues that 

match or exceed Research and Development costs (PhRMA, 2013). Computer aided drug 

discovery aims to speed up the screening process, reduce costs associated with lead 

identification and optimisation by employing targeted de novo ligand design with improved 

specificity coupled with in silico virtual screening and efficient structure based techniques 

(Nicolaou, 2014; Zhang, 2011).   

Onywera, 2012, investigated the architecture of HIV-1 clade C protease receptor sites of PR 

sequences obtained from infants who were experiencing treatment failure to FDA approved 

PIs. By employing in silico approaches to investigate ligand binding PR model susceptibility 

he examined the influence of key protease residues that were useful for targeting resilient 

HIV-1 assemblages in cART and identified a novel scaffold (Onywera et al., 2012).   

 

1.4.2. Problem statement 

Identifying a novel scaffold allows the identification of a ligand backbone that interacts with 

the target active site architecture in a manner that optimizes binding reducing its activity 

(Nicolaou, 2014; Sinko, Lindert, & Mccammon, 2013). This scaffold undergoes various 

optimizations in order to identify a satisfactory hit with the lead potential showing improved 

specificity and binding consistent with quantitative structure activity relationships (G. 

Sliwoski, Kothiwale, Meiler, & Lowe, 2014).  

Our research is concerned with whether we can efficiently, accurately and precisely employ 

in silico approaches in order to optimize the scaffold into a hit or lead candidate that can be 
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synthesised using application of the Morita-Baylis-Hillman reaction. Although we are limited 

by time our biggest limitation in this regard will be our computational resources. It is our 

hope that our modest 94 processor computer cluster will allow for an appropriate pilot test 

of our methodology and design.  

 

1.4.3. Objectives 

The aims and objectives of the research problem which will allow us to conduct a pilot study 

to access protease subtype specific lead candidate are outlined below:  

1. Generate a synthetic library  

Based on the bis-coumarin scaffold that utilises MBH benzannulated heterocycles we 

aim to synthesize over 5000 unique compounds that allow us to exhaustively search 

a narrow chemical space.  

2. Perform high-throughput virtual screening 

In order to identify a series of hits from the synthetic library that show optimised 

binding interactions across all the 61 Onywera protease models, rapid and efficient 

in silico screening methods will be utilised.  

3. Perform molecular-dynamics simulations  

In order to investigate receptor-ligand solution interactions of the lead candidates 

across the Onywera models, protease-hit molecular dynamics will be simulated in 

explicit water solvent. 
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Chapter 2: Construction of a Virtual Library based on 

the bis-Coumarin scaffold 

 

2.1. INTRODUCTION 

The bis-Coumarin ligand identified by Onywera et al. (2012), was chosen as a novel scaffold 

on which to build a virtual library of related analogues that could be searched in order to 

identify a plausible lead candidate for chemical synthesis.  

Since the 1960s various cheminformatic approaches have been utilised in order to estimate 

the stoichiometric combinations of electrons and atomic nuclei in all possible topological 

isomers, defined as the chemical space universe (Lederberg, 1965; Reymond & Awale, 

2012). This chemical space represents the accessible landscape of small molecules for lead 

identification in drug-discovery applications. An estimate of organic molecules containing C, 

N, O, S and the halogens up to 17 atoms yielded an estimate of over 160 billion drug-like 

molecules available in the chemical universe (Ruddigkeit, Van Deursen, Blum, & Reymond, 

2012). As of January 2015, the Chemical Abstracts Service, who build and maintain a 

collection of molecular substances and their publicly disclosed substance information, had 

registered more than 91 million unique organic and inorganic chemical substances in its 

registry (ACS, 2015). These represent less than 0.1% of the searchable chemical space 

available from the GBD-17 drug-like molecules (Ruddigkeit et al., 2012). There is a growing 

trend in drug-discovery projects to explore the chemical space made available by chemical 

universe databases in order to identify novel scaffolds that possess improved selectivity and 

ADMET profiles (Reymond & Awale, 2012; Gregory Sliwoski, Kothiwale, Meiler, & Lowe, 

2014).  
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By building over 5000 MBH accessible benzannulated systems it was our hope that we 

would exhaustively search the chemical space available to analogues of the bis-Coumarin 

moiety for applications as novel PIs lead candidates.  

 

 

 

Analogues of the bis-Coumarin moiety were to be built by using derivatives of the linker 

regions, heterocyclic portions and the small substituents. In assembly the linker regions 

would then either be butyldiamine, pentyldiamine or a hexyldiamine while the heterocyclic 

portion chromenes, thiochromens, coumarins, quinolines quinolones and indozoline MBH 

accessible heterocycles. The small substituents were to be CH3, Cl, F, H, NH2, and OH.  

 

2.2. METHODOLOGY 

Open Babel is a cheminformatics software system that was initially developed to facilitate 

interconversion of multiple chemical file formats but has become a useful program library 

for organic chemistry, drug discovery, materials science and computational chemistry 

;O’BoǇle et al., ϮϬϭϭͿ.  

A C++ program that incorporates Open Babel commands was written in order to construct in 

silico analogues. The different portions were saved as fragments with the hydrogens acting 

as level identifiers. Each fragment was prepared using Discovery Studio Visualizer and saved 

in .xyz format. For each fragment all the hydrogen atoms were deleted after the aromaticity 

is corrected and only the hydrogens to be substituted were drawn before the fragment is 

saved.  

Figure 2-1: Bis-coumarin scaffold with fragments for derivatization illustrated as highlighted 

portions. Linker region (Green), the heterocyclic portion (Purple) and the small substituents (Red).  
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For each molecule a single procedure was called as a recursive procedure until all core 

hydrogen atoms were replaced. The layer 1 hydrogen atoms present on the core 

substituents were replaced in a similar manner by the small substituents, Figure 2-2.  

A. B. C. 

 

 

This procedure was implemented in a discrete-time Markov chain process that looped 

through all the linkers, heterocycles and substituents. All possible combinations of the 

fragments were prepared and the resulting molecules constituted the members of the 

virtual library.   

One issue that had to be resolved was the placement of the fragments at levels 1, 2 and 3. 

In order to do this the bond vector representing the H to be replaced was established, 

 

 

Figure 2-2: Bis-coumarin analogue construction using recursive procedure. Stage A: Butylamine linker with Core 

hydrogens (white spheres). Stage B: Substitution of Core hydrogens by coumarin heterocyclic with Layer 1 

hydrogens (yellow spheres). Stage C: Substitution of Layer 1 hydrogens by small chloride (green rods) 

substituents.  

procedure elaborate(moleculetype molecule) 
    if(corehydrogens) 
          foreach corehydrogen 
                  foreach heterocycle (chromene,thiochromene,coumarin,…) 
                              newmolecule = molecule + heterocycle  
                              elaborate (newmolecule) 
    else if (layer1hydrogen) 
         foreach layer1hydrogen 
                   foreach smallsubstituent 
(hydroxide,chloride,methide,…) 
                               newmolecule = molecule + smallsubstituent  
                               elaborate (newmolecule) 
   else 
   # molecule is complete 
         savemolecule() 
 
if(linker) 
    foreach linker (butyldiamine, pentyldiamine, ...) 
        molecule = linker 
        elaborate (molecule)  

 

Figure 2-3: Pseudo-code for the generation of a virtual library of compounds from linker, heterocycle and 

small substituent fragments by recursive sequential hydrogen substitution. 
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together with the bond vector for the incoming fragment. These two vectors were aligned 

and the new bond distance appropriately set before deletion of the two hydrogen atoms 

completed the substitution. 

In silico approaches to analyse the chemical space of the virtual library where performed 

using CheS-Mapper 2.0 (Gütlein, Karwath, & Kramer, 2014). The Java Web Start application 

was downloaded and installed before the 3D viewer of small molecule data sets was 

accessed locally through the user interface. The compound libraries were compressed into 

multiple compound .sdf file formats using babel, prior to manipulation in CheS-Mapper. The 

wizard was used to access different steps necessary for dataset preprocessing before 

visualization in the 3D viewer. After selecting the dataset, in large dataset format, 3D 

structures within the dataset are preserved before CDK features for extraction such as 

XLogP and Molecular weight were selected for clustering and embedding in 3D within CheS-

Mapper. The dataset was clustered and embedded without cluster alignment before 

preprocessing and displaying the dataset in 3D space. The features chosen for rendering and 

embedding were apol (sum of atomic polarizabilities), bpol (absolute value of apol for 

bonded atoms), nHBAcc (hydrogen bond acceptors), nHBDon (hydrogen bond donors), 

nAromBond (aromatic bonds of molecule), XLogP (atom type specific prediction of partition 

ĐoeffiĐieŶt, log PͿ, Rule of ϱ ĐoŵpliaŶĐe ;failuƌes of LipiŶksi’s ƌule of ϱͿ aŶd AT“ŵϭ-5 

(Moreau-Broto autocorrelation descriptors based on atomic weight) (Steinbeck et al., 2003). 

The models generated using the recursive methodologies were curated within Open Babel 

in order to eliminate any imperfections and inconsistencies associated with hybridization, 

substitution, bonding and optimized aromaticity. Duplicates were removed before models 

were saved using simplified molecular-input line entry system (SMILES) identifiers. 

Images of the models were generated by the Discovery Studio Visualizer application 

program interface (API) which automated appropriate rotations and transformations of the 

models within the dataset before they were saved. The convert function of ImageMagick 

Studio was used in order to format the images to change their size and include labels while 

montage program generated a tiled composite image of the dataset for publication 

(ImageMagickStudio, 2015).   
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2.3. RESULTS AND DISCUSSION 

The procedure successfully produced 17732 separate ligand structures with the intended 

diversity of structure and substitutions for Morita-Baylis-Hillman analogues. The diversity in 

molecular mass (due to variation in linker region, masses of the separate ring systems and 

the substituents) is shown in Figure 2-4.  

 

 

 

The ligand with the largest molecular mass had a mass of 788 Da while the smallest mass 

was 543 Da. The most popular mass was 687 Da from 540 ligands, while the mean mass of 

our virtual library set was 675.7 Da. The diversity in the number of hydrogen bond 

donors/acceptors is shown in Figure 2-5.  

Figure 2-4: Molecular masses distribution of 17750 ligands present in virtual dataset. 



  Page 

23 

 

  

 

 

From Figure 2-5 9 compounds had 6 (lowest number) hydrogen bond donors and acceptors 

while 5589 compounds 11 had about 11 donors and acceptors. Compounds in the virtual 

data set had 10.8 hydrogen bond donors and acceptors on average with 1458 compounds 

having as many as 13. 

A random sample of 3512 compounds was extracted from the virtual dataset and analysed 

using CheS-Mapper. Figure 2-6 shows a 3D chemical space plot of this random dataset with 

clustering based on a principle component analysis considering 13 chemical descriptors 

from the CDK toolkit.  

 

Figure 2-5: Distribution of the Hydrogen bond donors/acceptors in the virtual library data set. Insert 

shows ligands with 5, 6 and 7 hydrogen bond donors or acceptors.   
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Figure 2-6: Sample virtual library (3512) displayed in 3D Chemical Space embedded according to CDK 

chemical descriptors. A. Data set coloured according to the Rule of 5 compliance with compound 

1018 selected. B. Dataset coloured according to predicted XLogP with compound 2076 selected. 

Histogram describes the population distribution of feature. Table ranks clusters according to feature. 

A. 

B. 



  Page 

25 

 

  

Figure 2-6 A illustrates the distribution of ligands within the dataset that have failed the rule 

of 5 compliance. When the colouring is based on the Lipinski tests it can be seen that there 

are 2 major classes within our sample data set. Of the 5 major Lipinksi factors the majority 

of the compounds, 3088, in this sample have failed at most 2 factors with all of them having 

failed at least once. Rule of 5 compliance with respect to molecular weights defines that 

drug-likeness is best achieved by masses between 180 and 500 Da (Hann & Oprea, 2004). 

Considering the distribution shown from Figure 2-4, it is unsurprising that all compounds fail 

at least once. Rule of 5 compliance with regards to solubility defines the partition coefficient 

range of drug likeness to be between -0.4 and 5.6 (Hann & Oprea, 2004). The majority of the 

compounds within our database possess poor predicted XLogP profiles. Ligand 1018 for 

example had a predicted Lipinski value of 1 and an XLogP value of 4.23 while ligand 2076, 

however, had a failure value of 2 and a predicted XLogP value of 8.79. Should the lead 

compounds identified from the screening possess poor drug likeness with regards to the 

rule of 5 compliance by considering their adsorption, distribution, metabolism and 

elimination profiles medicinal chemistry approaches will be implemented to optimize them.  

Figure 2-7 compares the diversity of the sample data set with 1555 compounds from the 

approved set of drugs extracted from the DrugBank database. In order to remove any bias 

the 2 datasets were coupled together and loaded into the CheS-Mapper tool.  
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Coupling the virtual library into a dataset that contains a list of the approved drugs obtained 

from the DrugBank database allows us to monitor the exhaustiveness of our sample 

database and thus virtual library. When considering the predicted solubility term it is 

evident that the majority of the DrugBank compounds possess an XLogP value of 1.4 

characteristic of optimum ADME pharmacokinetic properties of orally administered drugs 

(Hann & Oprea, 2004). Indications of thorough exhaustiveness can be seen from the 

distribution of our sample dataset in space. It is important to note that computation of 

chemical space coordinates are performed considering the influence of 13 descriptors 

selected. Clustering is indicative of the degree of similarity while dispersion indicates 

dissimilarity. By manipulating the CheS-Mapper viewer we observe that the MBH analogues 

 

Figure 2- 7: Sample virtual library (3512) coupled with approved drugs (#1555) from the 

DrugBank database. 
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aggregate together within the clusters that are present in the coupled dataset, as indicated 

by green box. This clustering in the presence of the drug-bank dataset indicates to us that 

we are exhaustively searching for a lead candidate within a finite chemical space. This 

approach has benefits in its ability to find elusive candidates by searching within a well 

defined region of chemical space, but however it can be limiting if the ideal ligand possesses 

properties dissimilar to those within the dataset. By searching within a smaller region of 

space one is likely to miss this individual. We would recommend using this approach to 

generate a library of analogues only if the scaffold has been shown to possess antiviral 

potential as in our case.  

A random sample snapshot of the virtual library that is based on the bis-coumarin scaffold 

identified by Onywera et al. (2012) as being a likely hit is illustrated in Figure 2-8.  
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Figure 2-8: Sample snapshot of the Virtual library of bis-coumarin analogues generated by recursive 

methodology.  
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2.4. CONCLUSION 

A virtual library of 17732 analogues was created by utilizing an algorithm that systematically 

substitutes specific hydrogen atoms in the linker region, heterocyclic region or the 

substituent region by calling a substitution function in a recursive manner. Each of the 

17732 compounds was rapidly curated in silico by considering incomplete bonding, 

unsatisfactory hybridization and optimized aromaticity before being stored in the virtual 

library. Execution of the program to generate the compounds was time inefficient. It is 

suspected that exponential duplication occurred during substitutions despite using SMILES 

format as a storage identifier to prevent similar compounds being present in dataset. 

Optimisation of this program is necessary before it can be incorporated in the construction 

of larger and more diverse datasets.    

Due to memory restraints on the workstation available, 20 % of the virtual dataset was 

extracted at random for analysis. The DSV API, ImageMagick and Montage were used to 

display the sample dataset into a collage for inspection. CheS-Mapper 2.0 was used to 

inspect the drug-likeness and likelihood of the identification of a lead candidate that had 

near optimal pharmacokinetic drug like properties. The majority of the compounds in our 

database show poor solubility features which may need to be optimized for the lead 

candidate in order to improve its ADME profile. 

The use of cheminformatic approaches allowed the rapid and systematic generation of a 

suitably large virtual library for applications in the identification of a potent lead candidate 

using high-throughput screening methodologies. In silico approaches to investigate 

pharmacokinetic properties are promising for applications in large datasets.   
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Chapter 3: High-throughput Virtual Screening 
 

3.1. INTRODUCTION 

Incorporation of high-throughput screening (HTS) in the lead identification process is a rapid 

method of identifying a lead compound from a library consisting of a large number of 

compounds that show pharmacological potential. The incorporation of miniaturization and 

robotic handling in HTS allows for the efficient and rapid screening of chemical compounds 

but has limitations in its applicability (Stanley et al., 2012). Limitations in HTS that occur in 

the early lead discovery stages are those due to the high-rate of false positives, the 

tendency of molecules to aggregate when purified as well as the limited scope of the 

compound library to identify all possible leads (Hann & Oprea, 2004). The process 

dependant limitations can be mitigated by practical enhancements in order to minimize 

errors and improve specificity (Stanley et al., 2012). The incorporation of computer-aided 

drug discovery and high-throughput virtual screening has been shown to be able to give 

access to Virtual collections which allow the expansion of the lead-like compound space for 

identification of a suitable hit (Lipinski, Lombardo, Dominy, & Feeney, 2012; Medina-Franco, 

Giulianotti, Welmaker, & Houghten, 2013). The target specific limitation of empirical 

screening associated with the existence of an unknown target and the dramatic increase in 

pharmaceutically relevant targets has allowed the growth in the incorporation of in silico 

approaches, such as high-throughput virtual screening (HTVS), in the drug discovery lead 

identification pipeline (Nicolaou, 2014; Gregory Sliwoski et al., 2014).  

Automated docking with reliable scoring functions in structure-based screening approaches 

can expand the searchable chemical space in drug discovery protocols (Park, Lee, & Lee, 

2006). Autodock is a docking program that estimates the binding energy of a ligand in a 

receptor and predicts its likely binding mode (Goodsell, Morris, & Olson, 1996). By 

integrating the Autogrid program it pre-calculates grid points of interaction within the 

receptor active sites estimating the atom specific interaction energies incorporated by the 

AMBER forcefield during docking calculations. The docking simulation is performed by the 

Autodock program which extracts the binding positions from the grid affinity potentials by 

using a Lamarckian genetic algorithm (Morris et al., 2009).   
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Despite having a superior scoring function over other docking programs the Autodock 

program is not ideal for applications in HTVS with large datasets. This is due to the need of 

calculation of interaction energy maps for each unique ligand set (Park et al., 2006). 

Scripting approaches allow the extraction of atom types within the dataset which can then 

be used to rapidly calculate the maps, improving the computation costs.   

For rapid screening of large ligand datasets against multiple targets we decided to use 

Autodock Vina. Vina is a better choice because it achieves faster computation and improved 

aĐĐuƌaĐǇ of ďiŶdiŶg ŵode pƌediĐtioŶ ďǇ iŶĐoƌpoƌatiŶg a ͞ŵaĐhiŶe-leaƌŶiŶg͟ ďased sĐoƌiŶg 

function which combines knowledge-based potentials and empirical information in the 

optimization algorithm for conformation-dependant terms of the function (Trott & Oslon, 

2010). Further optimizations which allow the implementation of parallelism of processes 

over multiple central processing units (CPU) and CPU cores help to speed up the run-time. 

By limiting artificial restrictions such as torsions and the size of the search space available 

Vina improves its accuracy and is thus ideal for applications in High-throughput virtual 

screening applications over multiple CPU clusters (M. W. Chang, Ayeni, Breuer, & Torbett, 

2010).  

 

3.2. METHODOLOGY 

The database of 17750 compounds generated using the in silico approaches in Chapter 2 

were screened using Autodock Vina in order to select highly active lead candidates against 

the 59 HIV-1 protease homology models generated by Onywera et al. (2012). The 59 

homology models were built from HIV-1 sequences obtained from infants that were 

experiencing treatment failure to FDA approved drugs. 

3.2.1. Database Screen (Vina)  

In order to identify a lead candidate that has high activity across the entire model series in 

an efficient manner it was decided that the bulk dataset of 17750 compounds needed to be 

trimmed. In order to trim the dataset a Consensus C homology model built by Onywera et 

al. (2012) from an HIV-1 protease subtype C consensus sequence obtained from Stanford 

UŶiǀeƌsitǇ’s HIV Dƌug ResistaŶĐe Dataďase was selected as a target for database screening. 

From the 17,750 docking experiments evaluated with a Vina exhaustiveness of 1, 200 

ligands were selected as candidates to be explored thoroughly across the model set.  
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3.2.2. Exhaustive Screen 

The top 200 performing ligands that had affinity for the Consensus C homology model were 

screened against the entire model data set in order to extract the top performers. By 

increasing the exhaustiveness to 4 the probability of not finding a global minimum that is far 

from the native conformation was decreased while the time for each experiment increased.  

Lead identification incorporated the statistical analysis of the predicted binding affinities 

across the protease model set. Binding interactions of the top ligands with specific models 

were analysed by using the Ligplot and Discovery Studio Visualizer.  

3.2.3. Pharmacokinetic and physicochemical screening  

The in-silico pharmacokinetic interrogation was performed in CheS-Mapper 2.0. The 200 

ligand dataset obtained from the Consensus C screen was loaded with their binding modes 

preserved. The 3D structure algorithm selected was the CDK structure generator that used 

the molecular mechanics forcefield (MM2) in order to optimize the 3D structures from the 

dataset. This was followed by the selection of 13 molecular descriptors that were calculated 

by OpenBabel and CDK feature calculators. Clustering was applied by utilising the Cascade k-

Means algorithm with machine-learning through the Waikato Environment for Knowledge 

Analysis (WEKA). The minimum number of clusters chosen was 2 while the maximum was 

set at 5. The WEKA clustering was incorporated during the principle component analysis 

(PCA) 3D embedding stage after all the descriptors are calculated. Default maximum 

attributes of 5 and variance of 0.95 were unchanged. Compound alignment calculations 

were permitted before embedding. The maximum common subgraph (MCS) of each cluster 

ǁas ĐalĐulated ďefoƌe eaĐh ĐoŵpouŶd ǁithiŶ the Đlusteƌ’s oƌieŶtatioŶ ǁas aligŶed ǁith the 

common substructure.  

In order to evaluate the exhaustiveness and diversity of the chemical space of the 200 

selected ligands, in a second calculatioŶ the ϮϬϬ ďiŶdeƌs’ dataset ǁas Đoupled ǁith the 

Drugbank dataset of approved ligands in order to compare its diversity. This hybrid dataset 

was exported in big data mode and visualized in CheS-Mapper. In this case, the original 

structures were preserved while no attempt was made to perform alignment calculations of 

the compounds.  

The Antechamber Python parser interface, ACPYPE, was used to validate the constitutional 

integrity of the selected models. ACPYPE generates topologies and their topology 

parameters of small non-nucleic acid, organic molecules, by considering the charge, net 
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charge, multiplicity and atom types according to a suitable quantum mechanics forcefield 

(Silva, Alan, & Vranken, 2012). For atoms with open valences, due to inaccurate 

connectivity, ACPYPE fails to generate a suitable topology and thus can be used to verify 

constitutional integrity.  

 

3.3. RESULTS AND DISCUSSION 

The binding energies of individual ligands from the virtual library were obtained from the 

Vina docking experiment against the Consensus C homology model, Figure 3-1.  

 

 

 

The best 200 binders have a binding of less than -11 Kcal mol-1 against the Consensus C 

model. The majority of the library had binding greater than -9 Kcal mol-1, with some 

interactions as poor as -4 Kcal mol-1. By using the CheS-Mapper tool, it was possible to have 

a glance at the predicted pharmacokinetic properties of the 200 best performing ligands 

against the Consensus C model.  

The population distribution of the refined dataset of 200 lead candidates was investigated 

for their predicted XLogP, Hydrogen bond acceptors and Hydrogen donor chemical 

properties. The results obtained from the CheS-Mapper dataset are described below.  

 

Figure 3-1: Population Distribution of the Binding Energies of the Virtual library against the Consensus C 

Homology model. The best 200 binders (Red) are highlighted in order to contrast the Virtual Library.    
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Figure 3-2 displays the predicted XLogP partition coefficient of each compound. The 

computed value uses an atom-additive calculation of the octanol/water partition coefficient 

and estimates its solubility (Wang, Fu, & Lai, 1997). 

 

 

 

 

 

 

 

Virtual library sub-set: 

 

Distinct groups = 1068 Min = 2.98 Median = 6.43 Std. Dev. = 1.20 Max = 9.71 

 

Drugbank approved data-set: 

 

Distinct groups = 1241 Min = 33.52 Median = 1.42 Std. Dev. = 2.24 Max = 11.44 

 

Top ϮϬϬ biŶders’ data-set:  

 

Distinct groups = 195 Min. = 3.86 Median = 6.53 Std. Dev. = 1.16 Max = 9.27 

 

Figure 3-2: Predicted XLogP of compounds in virtual library sub-set, DrugBank dataset and the top 

200 Consensus C binders. 
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The Top 200 binders have a bias between 3.8 and 9.3 with the majority having an XLogP 

value greater than 5.6 which is the limit of drug-likeŶess defiŶed ďǇ LipiŶski’s ƌule of ϱ 

(Amidon, Lennernäs, Shah, & Crison, 1995). A large XLogP is indicative of the tendency of 

toxic build up in fatty tissues and would have to be mitigated before a viable drug candidate 

can be selected for (Plika, Testa, & van de Waterbeemd, 1996; Testa, Crivori, Reist, & 

Carrupt, 2000).  

Figure 3-3 shows the computation of the number of Hydrogen bond acceptor groups of 

compounds present in the virtual library sub-set, the Drugbank data-set and the top 200 

binders. Despite having a compound with 191 Hydrogen bond acceptor groups the majority 

of the compounds in the Drugbank data-set have 4 hydrogen bonds. The top 200 binders by 

comparison, are spread between 3 and 9 hydrogen bond acceptors with a median of 5, 

consistent with a median spread in the Drugbank dataset. The top 200 binders set was 

biased by the inclusion of the linker fragment that ensured the presence of at least 3 

Hydrogen bond acceptors. Based on the molecular properties that influence oral 

bioavailability of drug candidates it is known that increasing permeation and bioavailability 

of drug candidates is consistent with low hydrogen bond counts (Veber et al., 2002). This 

preference for compounds that have high permeability needs to be abated with compounds 

that maintain large numbers of hydrogen bonds which have been shown to stabilise 

intermolecular interactions which stabilize ligand conformations. Removal of either 

acceptors or donors have been shown to influence binding affinity and thus attempts at 

improving permeability will have to exclude the removal of hydrogen bond acceptors (Kuhn, 

Mohr, & Stahl, 2010).    
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Virtual library sub-set: 

 

Distinct groups = 9 Min. = 3.0 Median = 5.0 Std. Dev. = 1.62 Max = 11.0 

 

Drugbank approved data-set: 

 

Distinct groups = 41 Min. = 0.0 Median  = 4.0 Std. Dev. = 7.37 Max = 191.0 

 

Top ϮϬϬ biŶders’ data-set:  

 

Distinct groups = 7 Min. = 3.0 Median = 5.0 Std. Dev. = 1.58 Max. = 9.0 

 

Figure 3-3: Computed number of Hydrogen Bond acceptors of compounds in virtual library 

sub-set, Drugbank dataset and the top 200 Consensus C binders. 
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The top 200 binders were embedded on a 3D plot that used co-ordinates obtained from a 

computation of the principle component analysis of the 13 selected chemical descriptors, 

Figure 3-4.  

i ii 

 

Figure 3-4: Pharmacokinetic profile plot of the 200 best performing ligands selected based on binding 

with the Consensus C homology model. A. i, 3D plot obtained from profile using CDK descriptors and 

coloured by predicted XLogP. ii, 4 clusters observed using the predicted XLogP feature. B. 3D plot of Top 

200 ligands coupled with 1555 Drugbank compounds. Ligand 805 is selected (blue cube) within the 200 

binder aggregation cluster (green oval).   

A. 

B. 

1 

3 

4 

2 
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Figure 3-4 A describes the data-set coloured by the XLogP values. The data has 4 clusters 

defined as having a variance of at least 0.95. Cluster 3 and Cluster 1 appear to dominate the 

dataset with values greater than 5.94 and less than 8.40. By computing the maximum 

common subgraph (MCS) of each cluster the compounds within each cluster can be aligned 

and displayed in Figure 3-4 A, ii. This clustering is alternative way of displaying the dataset 

within the chemical space. Figure 3-4 B, highlights the exhaustiveness of the procedure we 

are employing in order to identify a synthetic PI candidate. A 3D plot of the hybrid dataset 

shows that the 200 bindeƌs’ data-set is localized within a narrow region as opposed to the 

sparse chemical space exploited by the Drugbank dataset. The influence of anyone feature 

was limited by exporting data in big-data mode, omitting alignment calculations and using 

up to 13 features to compute the PCA. Clustering, green oval, thus implies physicochemical 

similarities between the binders which form a cluster of aggregates.  

 

These top 200 Consensus C model binders were evaluated for their effectiveness against the 

entire set of 62 protease models and the population distribution of the ligand model 

interactions are plotted in Figure 3-5. The Top 200 interactions are highlighted in the 

negatively skewed normal distribution plot.  

 

 

Figure 3-5: Population distribution showing the interactions of the top200 binders (Figure 3-1) across the 

protease model dataset. Population distribution of the Top 200 interactions are plotted in red. The complete 

ligand protease interactions are plotted in green.  
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The mean binding interaction is -9.5 Kcal mol-1 while the Top 200 interactions are above -11 

Kcal mol-1. Across the model set the top 20 ligands and their ligand vs model binding 

interactions were plotted in a heat map, Figure 3-6.  

 

 

 

In Figure 3-6, desirable binding affinities are reflected by dark colours while light colours are 

indicative of reduced affinities of the ligands with the receptor in question. It can be seen 

that the 5261 model (solid red) has the highest susceptibility to the ligand set. When 

compared to the 3051 model there is a consistent trend across the ligand set. From the 

CASTp plot (Figure 3-11), the 3051 mutant model showed an increase in surface area and 

volume while the 5261 mutant had a surface area and volume contraction. There is a 

possible trend between cavity size and drug susceptibility.  

In most instances there was a decrease in binding affinity between the native and the post-

treatment mutant for both the contracted and expanded scenarios. Instances when the 

Figure 3-6: Heatmap of the Top 20 performing ligands and their protease model interaction energies. Binding 

energies in Kcal mol
-1 

are colour coded as shown by legend. The 5261 (red) and 3051 (yellow) models are highlighted 

with their associated mutants after 12 months of FDA treatment (dashed box) indicated. Prevailing worsening of 

binding is symbolized by arrow, while the reverse scenario is asterisked. 

Docked 

Ligands 

Protease Models 

* 

* 

* 
* 

* 
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reverse scenario of increased binding after mutation was maintained are highlighted with 

asterisks in Figure 3-6. It is unclear whether the mutations influenced topological changes 

contributing to the direct influence on binding specificity. Our search aims to identify 

candidates that maintain significant affinity with the models despite the introduction of 

drug-resistant mutations within the protease. 

A statistical analysis was performed in order to assess the performance of the ligands 

further equipping us with data to support the choice of the most likely lead candidate. 

Figure 3-7 shows a histogram of the top 11 ligands selected from the interaction of the top 

200 Consensus C binders with the 62 protease model dataset. The ligands were selected 

based on their mean and median binding energies across the 62 protease models.  

 

 

 

From Figure 3-7 we can see that ligands 6610, 7440 and 805 were the 3 ligands that had the 

best affinity profiles. Although ligand 103 had a high median binding energy which was 

comparable to that of ligand 7440 and ligand 805, it had a significantly lower mean binding 

energy which disqualified it from pharmacokinetic and constitutional screening.   

The 3 ligands had their pharmacokinetic and constitutional properties interrogated in detail. 

Table 3-1 summarizes their properties and results.    

Figure 3-7: Statistical analysis of interactioŶ eŶergies for Top ϭϭ ligaŶds froŵ the ϮϬϬ biŶders’ dataset 
across the model data set.   
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Table 3-1: Pharmacokinetic and constitutional analysis of top 3 lead candidates.  

 

Characteristic Top 3 Docked Ligands 

Structure    

Constituents 

(substituents; 

heterocycles; 

and linkers) 

1 x F, 1 x Cl, 1 x CH3, 4 x H, 

1 x OH; 

 2 x Chromenes; 

Butyldiamine 

2 x F, 1 x Cl, 3 x H, 2 x OH;  

2 x Chromenes; 

Butyldiamine  

2 x F, 1 x Cl, 3 x CH3, 2 x H;  

2 x Chromenes; 

Butyldiamine  

apol 95.94 93.53 101.21 

nHBacc 5 7 3 

nHBDon 3 3 3 

Lipinski 2 2 2 

XLogP 6.34 5.38 7.68 

ACPYPE  Yes  No  Yes 

 

The atomic polarizabilites were calculated within the CDK toolkit of CheS-Mapper and gave 

an indication of the relative polarity of the molecule which influences its partitioning and 

stability. The lower the polarity the greater the tissue, brain, affinity of the compound, while 

polar compounds have a higher tendency to be hydrophilic and thus have less efficient 

distribution (Hou & Xu, 2003).  For our applications ligand 805 has less optimum apol 

properties compared to ligand 7440 and ligand 6610, 93.5 and 95.9 respectively. With 

regards to hydrogen bond acceptors (HBacc) and donors (HBDon), ligand 7440 outperforms 

the rest with 10, 7 and 3 groups respectively, while ligand 6610 has 8 groups and ligand 805 

has 6 groups. Due to their large size and their positive apol, which influences their predicted 

XLogP, all 3 ligands do not fare well with regards to Lipinski properties that indicate drug 

likeness. Despite this, ligand 7440 has the best partition coefficient of 5.38 which is 

consistent with its polarizability. Ligand 6610 with a coefficient of 6.34 and ligand 805 with 
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7.68, have better constitutional integrity over ligand 7440 with regards to the ACPYPE 

conversion. ACPYPE generated topologies for ligand 805 and ligand 6610 satisfactorily, 

whilst ligand 7440 generated an error associated with valences. Ligand 7440 was thus 

excluded from further analysis. 

Binding data of the best performing, ligand 6610, across the entire protease model data set 

was extracted and the binding energies were plotted in Figure 3-8.  

 

Figure 3-8: Binding energies of ligand 6610 with the protease model data set. The energies in Kcal mol
-1

 

are annotated. Models with energies less than -11 Kcal mol
-1

 (green) and greater than -9.0 Kcal mol
-1

 (red) 

were identified and formatted.   
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From Figure 3-8 it can be seen that model 5261 ( -11.2 Kcal mol-1), model 305152 ( -11.3 Kcal 

mol-1), model 302112 ( -11.3 Kcal mol-1) and model 5046 ( -11.2 Kcal mol-1) with its post 

treatment mutant 504612 ( -11.3 Kcal mol-1) had strong affinities for ligand 6610. However 

the 12 month post-treatment mutant model of 5086 ( -10.3 Kcal mol-1), model 508612 (-8.3 

Kcal mol-1), had the lowest binding affinity for ligand 6610. Figure 3-9 shows the location of 

ligand 6610 within the active site.  

 

From Figure 3-9 we can see that within this pose, interactions with the symmetric protease 

model do not impel the conformation of the ligand. The heterocyclic groups interact with 

Chain A while the phenyl rings are positioned within the Chain B pocket. The ligand and 

receptor interactions of ligand 6610 with the 5086 and 508612 models are displayed in 

Figure 3-10. 

 

Figure 3-9: Predicted binding pose of protease model 5086 in complex with ligand 6610 within the 

active site. Ligand 6610 (-10.3 Kcal mol
-1

) has a solvent surface coloured by the atomic charge. Chain A is 

coloured purple while B is coloured by secondary structure. Images produced by Discovery Studio 

Visualizer 4.1.  
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5086 

 

508612 

A: Model 508612 

(-8.3 Kcal mol-1) 

B: Model 5086 

(-10.3 Kcal mol-1) 

C: Model 5086 and Model 508612 overlapped 

Figure 3-10: Ligand receptor interactions of predicted binding poses of ligand 6610 within the 

5086 and the 508612 model cavity. A. LigaŶd ϲϲϭϬ’s ďiŶdiŶg pose ǁith pƌotease ŵodel 508612; 

B. LigaŶd ϲϲϭϬ’s ďiŶdiŶg pose ǁith pƌotease ŵodel ϱϬϴϲ; C. Oǀeƌlap of the ϱϬϴϲ ďiŶdiŶg poses 
of ligand 6610.  
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Despite the significant overlap observed from Figure 3-10 C, the pose adopted by ligand 

6610 within the vicinity of model 5086 (B) allows the possibility of a non-bonded carbon 

interaction with the catalytic aspartic acid of Chain A (Qian, Xu, Li, & Frontera, 2003). These 

electrostatic forces are absent within the vicinity of the pose of model 508612 bound to 

ligand 6610 and could contribute to the lower binding affinity within this pose. It is known 

from the CASTp analysis that model 508612 experiences a drop in surface area and volume 

from the native 5086 model.  The drop in the binding affinity experienced from the 5086 -> 

508612 mutation can be explained by 2 phenomena, the ligand orientation affecting the 

ability to interact with the active site aspartyl while an active site contraction contributes to 

ligand protease interactions experienced.   

 

 

 

Interactions of ligand 6610 and 805 with models of 3051 (expansion) and 5261 (contraction) 

were visualized using LigPlot. The results are shown in Figure 3-12 and Figure 3-13.

 Figure 3-11: Computed Atlas of Surface Topography of proteins (CASTp) plot for the protease models. 

Onywera et al. (2012). 

* 

* 

* 
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Figure 3- 12: Ligplot analyses of ligand 6610 with expansion mutation model 3051 and contraction mutation 

model 5261. 
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Figure 3- 13: Ligplot analyses of ligand 805 with expansion mutation model 3051 and contraction mutation 

model 5261. 
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3.4. CONCLUSION 

The virtual data set of 17750 compounds has been screened in order to identify a suitable 

lead candidate for synthesis and optimization. After high-throughput virtual screening that 

implemented the rapid Auto Dock Vina scoring function the best 200 binders to a Consensus 

C homology model were chosen from the initial in-silico dataset.  An exhaustive screen 

across the entire protease model data set allowed the identification of 11 hits that showed 

potential to be lead candidates based on their mean and median binding energies. Ligand 

6610, 7440 and 805 were selected as having the most optimal binding energies. In silico 

pharmaco-profiles obtained from the PCA of chemical descriptors which were computed in 

CheS-Mapper 2.0 were used to generate the 3D plot of chemical space exploited by our 

library.  

Although ligand 7440 had the best pharmacy-profile in terms of polarisation, hydrogen 

bonding, XLogP and aromatic bonding, it had improper connectivity which resulted in 

failures during the ACPYPE test for constitution and structural integrity. Ligand 6610 was 

assumed to have closed valences and despite its poor partition coefficient was selected as 

the lead candidate from our virtual dataset.  

Sub-optimal binding of ligand 6610 was observed against the 508612 model and closer 

inspection revealed that the pose lacked an interaction that integrated the catalytic aspartic 

acid 25 residue within its complex.  Simulating the dynamic solution behaviour of the ligands 

with the model sets in suitable solvent will give insight into the stability of the ligand-protein 

complexes. Understanding the forces involved in stabilizing the receptor-ligand complex will 

help to identify portions that can be modified in order to optimize the oral bioavailability 

and perhaps improve the potency of their interaction with the active site.  
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Chapter 4: Molecular Dynamic Simulations 

 

4.1. INTRODUCTION 

Originating in physics, molecular dynamics is the application of computational approaches 

to the simulation of molecular perturbations. By calculating their trajectories based on 

solǀiŶg NeǁtoŶ’s eƋuations of motions and if resources allow quantum-mechanical laws, 

simulations of molecular behaviour that approximates reality can be achieved (Feyman, 

1985; Rahman, 1964). Developments in the understanding of the influence of microscopic 

simulations on macroscopic properties through the implementation of statistical mechanics 

lead to the application of MD in the study of thermodynamic and kinetic behaviour of 

biological systems (Wereszczynski & McCammon, 2012).  

Successes of MD simulations are limited because of the incorporation of assumptions and 

approximations to the calculation of forces affecting molecular perturbations. In molecular 

mechanics force-fields, electronic polarization is ignored and thus atoms are given 

permanent partial charges which neglect quantum effects. Incorporation of quantum 

mechanic calculations allows transition metal effects and catalytic mechanisms to be 

modelled at the cost of computational time. Due to their high-computational demands 

simple molecular mechanic approximations have relatively short simulation times which 

overlook the effect of conformational shifts. There is a consensus surrounding the dynamic 

state and druggability of pharmacologically relevant targets. In the absence of ligands these 

proteins, such as the acetylcholine-binding protein, sample through conformational states 

which posses numerous binding modes that can be stabilized by inhibitors (Bourne, Talley, 

Hansen, Taylor, & Marchot, 2005). By not sampling all possible conformations in the 

simulations relevant binding modes may not be identified and exploited in target specific 

drug discovery. 

There has been growing frustration from incoherent reduction in the number of approved 

drugs despite the increase in drug development costs. The escalation of computing power 

has allowed the incorporation of computational approaches such as MD simulations into 

drug discovery pipelines (Durrant & McCammon, 2011). The information contained in MD 

simulations can be exploited for drug discovery by identifying elusive cryptic binding sites as 
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in the development of the HIV integrase inhibitor raltegravir (Hazuda et al., 2004). 

Optimisation of conformational sampling is achieved through the application of a relaxed 

complex scheme. In this approach multiple conformations obtained from simulations are 

used to obtain a multi-spectrum docking score for a ligand with a receptor thus improving 

the approximation of the ligand binding energy and the identification of true binders 

(Schames et al., 2004). MD simulation based methods of calculating the binding of a ligand 

to its receptor such as thermodynamic integration, single-step as well as free energy 

perturbation approaches have been devised in order to obtain accurate estimates of ligand 

potency (Adcock & McCammon, 2006; Kim et al., 2006; Schwab & van Gunsteren, W. F. 

Zagrovic, 2008).  

The Groningen Machine for Chemical Simulations (GROMACS) was used to perform MD 

simulations of models of the protease enzymes with lead candidates that showed 

pharmacological potential. Analysis of the simulations will give us a more accurate 

prediction of the binding energy and stability of the protein ligand complexes. By 

implementing a Message Passing Interface, GROMACS is able to efficiently utilise multiple 

processors by splitting its tasks to speed up longer simulations (Berendsen, van der Spoel, & 

van Drunen, 1995).  

 

4.2. METHODOLOGY 

We used GROMACS version 4.5.7 installed on a Centos 5.10 Linux server. Ligand-Protein 

complexes of ligand 6610 and ligand 805 across the model data set were solvated and 

allowed to proceed for 5ns of simulations. A block diagram that illustrates the 

implementation of the GROMACS programmes that produced the trajectories is described 

below. Python scripts were written in order to automate the execution of the simulations. 

The script is outlined in Appendix A.3.  
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pdb2gmx

acpype

genbox neutralization

minimization

heat

equilibration

production analysis

merge
editconf

grompp

grompp

grompp

grompp

grompp

 

Figure 4-1: Block diagram of the implementation of GROMACS MD simulation protocol for protein-

ligand interaction studies.  

 

The antechamber python parser interface (ACPYPE) was used to generate topologies for the 

lead candidates by using the generalized amber force field (GAFF) to assign the net charges 

and force field parameters of atoms within a ligand that did not have any open valences.  

Protein topologies were created by the pdb2gmx program before the ligand pdb and the 

protein pdb files were merged using UNIX commands. The protein topology file was 

appended with the ligand name before a simulation box was prepared by editconf. The 

protein was placed in the box before it was soaked with solvent waters by running the 

genbox script. The solvation GROMACS structure file (.gro) and its corresponding topology 

output file (.top) specifying the ligand, protein and water system was neutralized by 

replacing 6 water molecules with 6 chloride ions during the genion dynamic run after a 

neutralization preprocess step was initiated. Relaxation of the neutralized system to remove 

steric clashes and inappropriate geometries is prompted by a 2000 step steepest descent 

energy minimization simulation after preprocessing. The minimimized structure files 

(em.gro) and topology files are prepared for heating in order to couple them to the heat 

bath. Over 5000 steps of simulation, temperature coupling and relaxation to the new 

conditions were executed.  



  Page 

52 

 

  

After heating, the pressure of the system is increased during the equilibration simulation 

step by pressure coupling. This 5000 step equilibration stage utilizes position restraining 

forces in order to restrain all non-hydrogen atoms whilst optimising the water solvent with 

the solutes in order to achieve an accurate density. The equilibrated system is prepared for 

production simulation by a preprocessing step. Due to restricted computational resources 

the production simulations were allowed to proceed for 5ns in order to interrogate 

structural fluctuations within the complexes. The extraction of binding free energies based 

on the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method was 

computationally expensive (Houa, Wangb, Lia, & Wang, 2011; Miller et al., 2012). We thus 

repeated the production dynamics over 50 ps in order to extract initial binding free energy 

approximations.   

The results of the MD investigations are described and discussed below.  
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4.3. RESULTS AND DISCUSSION 

MD simulations of the ligand 805 and ligand 6610 lead candidates were analysed in order to 

ascertain the quality of the simulations and the structural behaviours that are perturbed as 

a result of the simulation. In order to reinforce our selection of ligand 6610, an investigation 

that interrogated the ligand stability within 305152 protease model was followed. Figure 4-2 

is an illustration of the convergence and stability of the density and temperature during 

simulation as a result of the pressure and temperature coupling respectively.  

 

A.  B.  

 

 

From Figure 4-2 we can see that during the 5 ns of simulation the systems pressure and 

temperature were stable as a result of the efficient preparation steps, that allowed the 

energy terms to converge and stabilize prior to production. During the simulations the 

ligand and protein atoms undergo fluctuations associated with the stability and flexibility of 

the protein domains and the strength of the interactions with the ligands. A plot 

representing the stability of a complex can be traced by calculating the root-mean square 

fluctuation, RMSF, of the protein and the ligand atoms about an average position 

throughout the simulation, Figure 4-3.  

Figure 4-2: Analysis of GROMACS energy terms during the production dynamics, for ligand 

6610 and ligand 805 within protease model 305152. 
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A.  

B.  

 

 

There are minimal distinguishing features between the protein model when it is in complex 

with either ligand 805 or ligand 6610 in terms of its RMSF fluctuation during the simulation. 

Analysis of the ligand fluctuations in more detail showed that atoms within ligand 6610 

fluctuate marginally more than atoms within ligand 805, Figure 4-3.  

Figure 4-3: RMSF of protein atoms (A) and ligand atoms (B) 
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Ligand 6610 Ligand 805 

 

 

Perhaps due to the increased volume due to methyl groups the ligand 805 heterocyclic 

systems are more stable compared to the largely less substituted ligand 6610 systems with 

the hydroxyl group as main entities. 

When the deviation between the starting conformation and a conformation extracted 

during the simulation is calculated via the root mean squared deviation, RMSD, Figure 4-5 is 

obtained. The RMSD is expected to increase and eventually stabilize during the simulation.  

From Figure 4-5 A, we can see that the protein RMSD expands to 0.2 after 1.3 ns of 

simulation in protein in complex with ligand 6610 but continues to show large fluctuation, 

while protease model in complex with 805 expands to 0.18 in the same time frame remains 

relatively unchanged over the next 2 ns. 

 

 

 

 

 

 

Figure 4-4: Average ligand conformations coloured by isotropic displacement obtained from B-Factors. Blue 

represents high fluctuation while red represents mildly fluctuating.  
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From Figure 4-5 protein in complex with ligand 6610 experiences an instability after 2.5 ns 

possibly associated with the relaxation of steric clashes that were introduced by the 

simulations. From Figure 4-5 B, ligand 805 has a larger deviation from its starting structure 

than ligand 6610. This deviation occurs sharply after 200 ps and is as a result of the ligand 

traversing an energy barrier allowing it to obtain a conformation with a lower energy that 

Figure 4-5: RMSD plot of the protein behaviour and the ligand interactions during 5 ns of MD 

simulation.  

A. 

B. 
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was more stable than the binding mode identified by docking simulations. It is important to 

consider that docking simulations only allow the ligand to be flexible while the protein is 

maintained in a rigid manner. Thus the conformation maintained as the optimum binding 

mode applies only to the protein in that conformation. Flexibility and thus fluctuations of 

the protein as shown by the protein RMSD convergence, Figure 4-5 A, may introduce 

energetically unfavourable interactions with the ligand which will result in the abrupt 

change in conformation observed after 200 ps of simulation, Figure 4-5 B. A change in 

conformation is observed for the ligand 6610 and can be seen at 4.4 ns in the simulation. 

Based on the observations of the ligand 6610 change in RMSD after 4.4 ns, it would be 

advisable for production dynamics to proceed for longer than the 5 ns in order to ensure 

that the structure has accessed its equilibrium conformation within the protein active site.  

Evolution of the radius of gyration, Figure 4-6, is less drastic compared with the changes 

associated with atomic distances.  

 

 

 

Figure 4-6: Convergence of the radius of gyration observed from the protein ligand complexes 

during 5 ns of MD simulation.   
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From Figure 4-6 we can see that there is a change of 0.04 nm in the predicted hydrodynamic 

radius for the protease in complex with ligand 805. The complex with ligand 6610 has a 

similar change although it appears to have a higher radial convergence of 1.79 nm while 

ligand 805 is converging at 1.78 nm.   

Figure  4-7 highlights the difference between ligand 6610 and ligand 805 in the protein-

ligand hydrogen bond network in terms of the number of bonds at specific time intervals.  

 

 

 

Figure 4-7: Protein ligand hydrogen bonding network maintained within the protein ligand 

complexes during the 5 ns of simulation.  

B. 

A. 
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From Figure 4-7 A we can see that a strong hydrogen bond network was established 

between ligand 6610 and the protease model between 1.2 ns and 3.2 ns. This network 

allowed 2 or 3 hydrogen bonds to persist between the ligand and the protein model. 

However, this apparent stability was not permanent and it was followed by a long term 

instability in terms of the hydrogen bonds forming between the ligand and the model. It is 

our hope that we would modify the lead candidate in such a way that these intermediate 

states can be selected for and maintained in order to improve the duration of potent 

binding and while minimizing unstable binding.  

From 4-7 B, the ligand 805 complex rarely accesses intermediates that possess more than 1 

hydrogen bond with the protein model. A consequence of this would be the observed lower 

binding energy over the duration of simulation and thus decreased binding affinity and 

potency of the lead candidate. It appears as though this single hydrogen bond is consistently 

maintained throughout the majority of the simulation, from inspection of the MD trajectory. 

Closer observations from the trajectory confirms the hydrogen bonding between the ligand 

805 and protease model as being the same single hydrogen bond throughout the  majority 

of the 5 ns of simulation. In comparison to the intermittent bond network observed in the 

6610 model the periods of destabilisation are longer. Ligand 805 appears to be a better lead 

candidate than ligand 6610 despite having a higher predicted binding energy from docking.  

The hydrogen bonding data is summarized in Table 4-1.  

 

Table 4-1: Hydrogen bonding network during 5 ns of simulation for the ligand 805 and ligand 6610 protease 

complex 

Number of Hydrogen 

Bonds 

Ligands 

805 6610 

0 285 960 

1 2211 1155 

2 3 358 

3 0 27 

Ave. 0.89 0.78 

 

Table 4-1 in addition to the hydrogen bond network, it was found that ligand 805 has 3 

binding modes that possess more than 1 hydrogen bond compared to ligand 6610 which 
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experienced more than 1 hydrogen bond in 385 modes during the 5 ns of simulation. In 

ligand 6610, 27 of these modes boasted 3 hydrogen bonds which could potentially be 

modified to stabilise this system. Despite this flattering number of bonds, on average across 

5 ns of simulation, the average number of bonds in the ligand 805 complex was 0.89 which 

exceeded that for the ligand 6610 complex with 0.78 hydrogen bonds on average.  

Calculations of binding free energies using molecular dynamics based calculations are 

computationally expensive. We implemented the MMPBSA approach at calculating the 

binding free energy for 50 ps of simulations for each of the 62 protease models with ligand 

805 and ligand 6610 (Miller et al., 2012). Table 4-2 summarises the binding energies for 

ligand 805 and ligand 6610 with protease model 305152. This data was only extracted for 

the 2 cases due to time constraints and available processing resources.  

 

Table 4-2: Binding energies of ligand 805 and ligand 6610 protease complexes from docking and MD.  

 

Ligand 
Method 

Vina MD – MMPBSA 

805 -10.7 -33.94 kcal mol-1 

6610 -11.3 -29.16 kcal mol-1 

 

 

When the static binding energy is considered, ligand 6610 appears to be able to access a 

binding mode with a free energy of -11.3 kcal mol-1 that is more stable than the binding 

mode accessible to ligand 805 with -10.7 kcal mol-1. Over 50 ps of simulation when the 

solvent behaviour and receptor flexibility are accounted for, the average binding mode 

maintained within the ligand 805 complex has a free energy of binding of -34 kcal mol-1. This 

valuable is more favourable than that obtained by the proposed lead candidate ligand 6610 

with a binding energy of -29.1 kcal mol-1.  

It would be premature to state that ligand 805 is in actual fact a more potent lead candidate 

than ligand 6610 based on the evidence obtained. From Figure 4-5 and Figure 4-6 we can 

certainly see that the conformations obtained during the first 50 ps were not stable 

conformations. After 5 ns of simulation the complexes had not yet achieved their 

equilibrium conformations and thus estimating binding energies during this early stage 
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could be flawed. This calculation however represents the gross approximation of docking 

approaches to the calculation of binding energies. Although ligand 6610 does appear to 

possess stronger hydrogen bonding networks within the first 5 ns of simulation it is plausible 

to assume that its binding free energy might be superior to that of ligand 805.  

Future studies that aim to resolve the binding stability of ligand 6610 would benefit from 

incorporating a polarised protein special charge obtained from utilising quantum mechanics 

levels of theory to solve for the solvent surface charges which estimates the electrostatic 

potential (Yang, Jiang, & Jiang, 2013).  

The ligand interactions observed during the average conformations of the complexes are 

displayed in Figure 4-8. The average complexes show more ligand bonding interactions with 

the proteases complexes than the starting structures, which are conformations obtained 

from binding modes predicted by docking with Vina. The docking binding modes have more 

hydrophobic contacts than the average complexes.  
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Figure 4-8: Ligplot diagrams of the binding modes obtained from Molecular Dynamics (average complex) and docking 

(start complex). 
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4.4. CONCLUSION 

The binding stability of the lead candidate ligand 6610 and ligand 805 were compared and 

interrogated using MD simulations and MD based approaches to calculating the binding 

energies. GROMACS was used to produce 5 ns of protein-ligand complex simulations in the 

presence of water solvent. The system was prepared appropriately by neutralizing the 

charges and coupling the water and pressure to a water bath using equilibration and 

minimization steps. 

Analysis of the simulations revealed that atoms within ligand 6610 experienced larger 

magnitudes of fluctuations than the ligand atoms within the complex with ligand 805 across 

the 5 ns simulation. An investigation into the hydrogen bonding networks maintained during 

the simulations revealed that ligand 6610 frequently accessed modes that possessed up to 3 

hydrogen bonds. This many bonds were absent in the ligand 805 complex which only 

possessed 2 hydrogen bonds 3 times during the 5 ns of simulation. Despite these shortfalls 

on average throughout the simulation ligand 805 maintained more hydrogen bonds than 

ligand 6610. We could not perform a thorough investigation on the nature of the hydrogen 

bonds that were observed throughout the simulation because of time constraints.  

When the binding energies of the first 50 ps of simulation were computed, ligand 805 

appeared to have a better affinity for the protease model than ligand 6610. The binding 

energies appeared to be much lower than those observed from docking experiments. In 

order to further refine the computed binding energy incorporation of electrostatic 

potentials is anticipated to improve the precision in a later study. Experimental data would 

assist in the validation of the simulation approach, justifying the protocol we observed to 

select the lead candidate and interrogate its stability.  
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Chapter 5: Conclusion and Summary 

 

Onywera et al. (2012) through an hit-identification experiment identified a bis-coumarin hit 

as a potential hit for optimisation as a protease inhibitor. This hit can be expanded into a 

library of analogues based on functionalised heterocycles. The Morita-Baylis-Hilman 

reaction gives rise to a variety of heterocyclic systems. By incorporating these MBH 

accessible heterocycles a wide diversity of analogues can be accessed. Synthesis of this vast 

array of analogues is nearly impossible given the size of the library and time constraints ever 

present in drug discovery pipelines.  

Cheminformatic approaches allowed us to rapidly construct a virtual library of 17752 

analogues based on the MBH accessible analogues. The Open Babel suite gave access to 

commands that were used to identify suitable sites and make necessary substitutions in a 

program that employed a markov chain recursive procedure. CheS-mapper 2.0 was utilized 

in order to analyze the chemical space being explored by the virtual library by employing up 

to 13 CDK toolkit chemical descriptors into a principle component analysis (PCA) that 

defined the 3D space coordinates. When the DrugBank database was coupled with a 

random sample of our virtual library it was evident from the clustering that we were 

undertaking an exhaustive search of analogues that possessed optimum potential as 

protease inhibitors.  

In silico high-throughput virtual screening was employed in order to screen the virtual 

databse for ligands that had strong affinity for the protease model dataset. HTVS of the 

17750 ligands was performed by Autodock Vina on a cluster of 96 processors. Automated 

docking experiments were performed against a homology model built from the Stanford 

database Consensus C protease sequence in order to select the top 200 performing ligands. 

An exhaustive screen was employed over the entire model data set in order to reduce the 

200 top performing ligands to 3 that could be visually inspected for their constitutional 

integrity and optimum pharmacological profile. 

Ligand 805 and ligand 6610 in Figure 5-1 were identified as potential lead candidates based 

on a statistical comparison of their binding affinities across the entire data set of protease 

models.  
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Although binding affinities from docking experiments identified ligand 6610 as the superior 

lead candidate, molecular dynamic studies that analysed the stability of ligand-protein 

complexes showed that ligand 805 formed stable complexes. Protein and ligand atom 

fluctuations, protein and ligand deviations from the starting structures, hydrogen bonding 

network stabilities and binding free energy calculations confirmed this proposal.  

Chemical synthesis of ligand 805 and ligand 6610 would allow in vivo analysis before 

medicinal chemistry techniques could be applied to optimise their pharmacokinetic 

properties such as solubility and metabolism.  

In conclusion, our approach allowed us to rapidly diversify the bis-coumarin hit in order to 

further search the chemical space within its vicinity before high-throughput screening was 

used to identify a few lead candidates. Simulations were incorporated in order to further 

analyse the ligand-protein complexes.   

Ligand 805 Ligand 6610 

Figure 5-1: Ligands identified as potential lead candidates for future development as protease 

inhibitors. 
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Appendix 
 

APPENDIX A – SCRIPTS 

1. Library Construction (Authors K. Lobb and L. Sigauke) 

 
#include "multiple.h" 
 
MoleculeList corelist; 
MoleculeList backbonelist; 
MoleculeList layer1list; 
 
//MoleculeIterator corelistiterator; 
//MoleculeIterator backbonelistiterator; 
//MoleculeIterator layer1listiterator; 
 
///////////////////////////////////////////////////////////////////////////////////
///// 
///////////////////////////////////////////////////////////////////////////////////
///// 
///////////////////////////////////////////////////////////////////////////////////
///// 
class result 
{ 

//this class contains a molecule and an array telling about the Hydrogens 
public: 
   result(){resetall();}; 
   ~result(){}; 
 
   OpenBabel::OBMol themolecule; 
   int accounting[1000]; 
 
   void setacc(int value,int index){accounting[index]=value;} 
   int getacc(int index){return accounting[index];} 
   void resetall(); 
   int count(int level); 
   void print(); 
   result & operator= (result &other); 
   void add(OpenBabel::OBMol &other, int hydrogenatomtodelete, int level); 
   void save(); 
}; 
///////////////////////////////////////////////////////////////////////////////////
///// 
///////////////////////////////////////////////////////////////////////////////////
///// 
///////////////////////////////////////////////////////////////////////////////////
///// 
///////////////////////////////////////////////////////////////////////////////////
///// 
 
void fix(result thisresult,int depth) 
{ 
   int number1 = thisresult.count(1); 
   int number2 = thisresult.count(2); 
 
   if(number1>0) 
   { 
      int theatom=0; 
      for(OpenBabel::OBMolAtomIter a(thisresult.themolecule);a;++a) 
      {   
           if(((*a).IsHydrogen())&&(thisresult.getacc(theatom)==1)) 
           { 
                MoleculeIterator corelistiterator;  
                corelistiterator = corelist.begin(); 
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                while(corelistiterator != corelist.end()) 
                { 
                  OpenBabel::OBMol newsubst=(*corelistiterator); 
                  result newresult; 
                  newresult=thisresult; 
                  newresult.add(newsubst,theatom,2); 
                  fix(newresult,depth+1); 
              corelistiterator++; 
            }        
           } 
           theatom++; 
      }       
   } 
   else if(number2>0) 
   { 
      int theatom=0; 
      for(OpenBabel::OBMolAtomIter a(thisresult.themolecule);a;++a) 
      {   
           if(((*a).IsHydrogen())&&(thisresult.getacc(theatom)==2)) 
           { 
                MoleculeIterator layer1listiterator;  
                layer1listiterator = layer1list.begin(); 
                while(layer1listiterator != layer1list.end()) 
                { 
                  OpenBabel::OBMol newsubst=(*layer1listiterator); 
                  result newresult; 
                  newresult=thisresult; 
                  newresult.add(newsubst,theatom,3); 
                  fix(newresult,depth+1); 
              layer1listiterator++; 
            }        
           } 
           theatom++; 
      }       
   } 
   else 
   { 
     for(OpenBabel::OBMolAtomIter a(thisresult.themolecule);a;++a) 
      {   
           if((*a).IsHydrogen()) 
           { 
              thisresult.themolecule.DeleteAtom(&*a); 
           } 
      }       
      thisresult.themolecule.PerceiveBondOrders(); 
      //thisresult.themolecule.ConnectTheDots(); 
      thisresult.themolecule.DeleteHydrogens(); 
      thisresult.themolecule.AddHydrogens(); 
      thisresult.themolecule.PerceiveBondOrders(); 
      thisresult.themolecule.ConnectTheDots(); 
 
      //thisresult.themolecule.AddHydrogens(); 
 
      thisresult.print(); 
      thisresult.save(); 
   } 
} 
 
 
int main() 
{ 

 
  OpenBabel::OBConversion obconversion; 
  OpenBabel::OBMol core1,core2,core3,core4,core5,core6,core7; 
  OpenBabel::OBMol backbone2,backbone3,backbone4; 
  OpenBabel::OBMol 
layer11,layer12,layer13,layer14,layer15,layer16,layer17,layer18,layer19; 
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  obconversion.SetInFormat("xyz"); 
  obconversion.ReadFile(&core1,"project/core/chromenes_core.xyz");   
  obconversion.ReadFile(&core2,"project/core/indolizine_A_core.xyz");   
  obconversion.ReadFile(&core3,"project/core/quinolone_core.xyz"); 
  obconversion.ReadFile(&core4,"project/core/coumarin_core.xyz"); 
  obconversion.ReadFile(&core5,"project/core/indolizine_core.xyz"); 
  obconversion.ReadFile(&core6,"project/core/thiochromene_core.xyz"); 
  obconversion.ReadFile(&core7,"project/core/quinoline_core.xyz"); 

   
  obconversion.ReadFile(&backbone2,"project/backbone/2_chain.xyz"); 
  obconversion.ReadFile(&backbone3,"project/backbone/3_chain.xyz"); 
  obconversion.ReadFile(&backbone4,"project/backbone/4_chain.xyz"); 
 
  obconversion.ReadFile(&layer11,"project/layer1/BrH.xyz"); 
  obconversion.ReadFile(&layer12,"project/layer1/CCOH.xyz"); 
  obconversion.ReadFile(&layer13,"project/layer1/ClH.xyz"); 
  obconversion.ReadFile(&layer14,"project/layer1/FH.xyz"); 
  obconversion.ReadFile(&layer15,"project/layer1/OH.xyz"); 
  obconversion.ReadFile(&layer16,"project/layer1/CCH.xyz"); 
  obconversion.ReadFile(&layer17,"project/layer1/CH.xyz"); 
  obconversion.ReadFile(&layer18,"project/layer1/COH.xyz"); 
  obconversion.ReadFile(&layer19,"project/layer1/HH.xyz"); 
 
  // corelist 
  corelist.push_back(core1); 
  corelist.push_back(core2); 
  corelist.push_back(core3); 
  corelist.push_back(core4); 
  corelist.push_back(core5); 
  corelist.push_back(core6); 
  corelist.push_back(core7); 
  // backbonelist 
  backbonelist.push_back(backbone2); 
  backbonelist.push_back(backbone3); 
  backbonelist.push_back(backbone4); 
  // layer1list 
  layer1list.push_back(layer11); 
  layer1list.push_back(layer12); 
  layer1list.push_back(layer13); 
  layer1list.push_back(layer14); 
  layer1list.push_back(layer15); 
  layer1list.push_back(layer16); 
  layer1list.push_back(layer17); 
  layer1list.push_back(layer18); 
  layer1list.push_back(layer19); 
  
 
  result resultinitial; 
 
  resultinitial.resetall(); 
  resultinitial.add(backbone2,0,1); 
  resultinitial.print(); 
  fix(resultinitial,1); 
} 
 
 
/////////////////////////////////////////////////////////////////////////////// 
/////////////////////////////////////////////////////////////////////////////// 
/////////////////////////////////////////////////////////////////////////////// 
/////////////////////////////////////////////////////////////////////////////// 
/////////////////////////////////////////////////////////////////////////////// 
/////////////////////////////////////////////////////////////////////////////// 
/////////////////////////////////////////////////////////////////////////////// 
/////////////////////////////////////////////////////////////////////////////// 
/////////////////////////////////////////////////////////////////////////////// 
/////////////////////////////////////////////////////////////////////////////// 
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void result::save() 
{ 
  OpenBabel::OBConversion obconversion; 
  obconversion.SetOutFormat("smi"); 
  std::stringstream buffer; 
  obconversion.Write(&themolecule,&buffer); 

 
  std::string filepart; 
  buffer >> filepart; 
  std::string filename="product/"+filepart + ".pdb"; 
 
  std::cout << "now writing to file " << filename << std::endl; 
  obconversion.SetOutFormat("pdb"); 
  obconversion.WriteFile(&themolecule,filename); 
} 
 
 
void result::add(OpenBabel::OBMol &other, int hydrogenatomtodelete, int level) 
{ 

//rotation/translation tricky 
    if(themolecule.NumAtoms()>0) 
    { 

      //we need to know the CH (or NH vector that is proceeding) 
      OpenBabel::OBAtom * h = themolecule.GetAtom(hydrogenatomtodelete+1); 
      //h is easy, because we specify hydrogenatomtodelete 
      OpenBabel::OBAtom * c; 
      //go through the rest of the atoms in mol, and if not hydrogen and close to 
the 
      //hydrogen we know the other atom on the bond 
      for(OpenBabel::OBMolAtomIter a(themolecule);a;a++)  
      { 
        if(!((&*a)->IsHydrogen())&&(AtomDistance(&*a,h)<1.2)){c=(&*a);} 
      } 
      //now we know C and H that is going to be added to 
 
      //for the substituent you made it easy for me. The H is atom 1 
      //now look for the next atom 
      OpenBabel::OBAtom * hs = other.GetAtom(1); 
      OpenBabel::OBAtom * cs; 
      for(OpenBabel::OBMolAtomIter a(other);a;a++)  
      { 
        if(!((&*a)->IsHydrogen())&&(AtomDistance(&*a,hs)<1.2)){cs=(&*a);} 
      } 
      //At this point we have our substituent XH vector    
      //create vector from, and vector to 
      int contacts=badcontacts(&themolecule,&other); 
      std::cout << " we have bad contacts " << contacts << std::endl; 
      Vector3 from = Vector3(hs->GetX(),hs->GetY(),hs->GetZ()); 
      Vector3 to = Vector3(0.000,0.000,0.000); 
      //move the substituent to the origin before rotation 
      Translate(&other,from,to); 
 
      //Rotate the substituent appropriately using the CH and XH vectors 
      Vector3 main=Vector3(c->GetX()-h->GetX(),c->GetY()-h->GetY(),c->GetZ()-h-
>GetZ()); 
      main.normalize(); 
      Vector3 subst=Vector3(hs->GetX()-cs->GetX(),hs->GetY()-cs->GetY(),hs->GetZ()-
cs->GetZ()); 
      subst.normalize(); 
      Rotate(&other,main,-subst); 
 
       //translate to the appropriate place 
       to = Vector3(c->GetX()+0.297*(h->GetX()-c->GetX()),c->GetY()+0.297*(h-
>GetY()-c->GetY()),c->GetZ()+0.297*(h->GetZ()-c->GetZ())); 
       from = Vector3(-hs->GetX(),-hs->GetY(),-hs->GetZ()); 
       Translate(&other,from,to); 
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     int minimumangle=0; 
     int minimumbad=10000; 
 //    for(int i=20;i<=360;i+=20) 
 //    { 
 //      Vector3 axis=Vector3(hs->GetX()-cs->GetX(),hs->GetY()-cs->GetY(),hs-
>GetZ()-cs->GetZ()); 
 //      BondRotate(&other,axis,0.1); 
 //      
if(badcontacts(&themolecule,&other)<minimumbad){minimumangle=i;minimumbad=badcontac
ts(&themolecule,&other);} 
     //  if(badcontacts(&themolecule,&other)<5){i=400;} 
//     } 
//     std::cout << "the best bad contacts we get is " << minimumbad << "for angle 
" << minimumangle << std::endl; 
 
 //     Vector3 axis=Vector3(hs->GetX()-cs->GetX(),hs->GetY()-cs->GetY(),hs-
>GetZ()-cs->GetZ()); 
 //     BondRotate(&other,axis,(float)minimumangle); 
 
 
 
     } 

 
    int currentatom=0; 
    for(OpenBabel::OBMolAtomIter a(other);a;a++) 
    { 
      //std::cout << "Adding atoms to the molecule, atom number " << currentatom << 
std::endl; 
      if((currentatom>=1)||(level==1)) 
      { 
        OpenBabel::OBAtom newatom; 
        newatom.Duplicate(&*a); 
        themolecule.AddAtom(newatom); 
      } 
       currentatom++; 
    }    
    if(level>1)accounting[hydrogenatomtodelete]=-1; 
    currentatom=0; 
    for(OpenBabel::OBMolAtomIter a(themolecule);a;a++) 
    { 
      if(((&*a)-
>IsHydrogen())&&(accounting[currentatom]==0))accounting[currentatom]=level;    
      currentatom++; 
    } 
}; 
 
void result::print() 
   { 
      std::cout << "molecular mass " << themolecule.GetExactMass() << std::endl; 
      for(int i=0;i<50;i++)std::cout << accounting[i]; 
      std::cout << std::endl; 
   } 
  
void result::resetall() 
   { 
      for(int i=0;i<1000;i++)setacc(0,i); 
   } 
int result::count(int level) 
   { 
      int thevalue=0; 
      for(int i=0;i<1000;i++){if(accounting[i]==level)thevalue++;}; 
      return thevalue; 
   } 
 
result & result::operator= (result &other) 
   { 
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        themolecule=other.themolecule; 
        for(int i=0;i<1000;i++) 
        { 
           accounting[i]=other.getacc(i); 
        } 
        return *this; 
   }; 
 
 
void Translate(OpenBabel::OBMol * thesubst, Vector3 from, Vector3 to) 
{ 

  //subst_h will be translated to a point on the CH bond to create a longer bond 
for the new CC^M 
     Vector3 displacement = to-from; 
 
     for(OpenBabel::OBMolAtomIter a(thesubst);a;a++) 

     { 
            float x=a->GetX()+displacement.x; 
            float y=a->GetY()+displacement.y; 
            float z=a->GetZ()+displacement.z; 
            a->SetVector(x,y,z);            
     } 
} 
 
void Rotate(OpenBabel::OBMol * thesubst, Vector3 mainvector_norm, Vector3 
substvector_norm) 
{ 
   //vectors in opposite directions for main the CH vector, for subst the 
HC vector 
   Vector3 main=mainvector_norm; 
   Vector3 subst=substvector_norm; 
   main.normalize(); 
   subst.normalize(); 
   Matrix3 mymatrix; 
    
    Vector3 axis = Vector3::cross(main,subst); 
        axis.normalize(); 
        float angle = 
Math::radiansToDegrees(std::acos(Vector3::dot(main,subst))); 
    
   mymatrix.rotate(axis,180.0-angle); 
      
   for(OpenBabel::OBMolAtomIter a(thesubst);a;a++) 
     { 
        Vector3 atomvector=Vector3(a->GetX(),a->GetY(),a->GetZ()); 
        Vector3 finalvect=atomvector*mymatrix; 
        a->SetVector(finalvect.x,finalvect.y,finalvect.z);       
     } 
} 
 
int badcontacts(OpenBabel::OBMol * mol1,OpenBabel::OBMol * mol2) 
{ 
  int count=0; 
  for(OpenBabel::OBMolAtomIter a(mol1);a;a++) 
     { 
     for(OpenBabel::OBMolAtomIter b(mol2);b;b++) 
       { 
           if(AtomDistance((&*a),(&*b))<1.6)count++; 
       } 
     } 
  return count; 
} 
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void BondRotate(OpenBabel::OBMol * thesubst, Vector3 axis,float angle) 
{ 
 
   Matrix3 mymatrix; 
   OpenBabel::OBAtom * hs = thesubst->GetAtom(1); 
   Vector3 from = Vector3(hs->GetX(),hs->GetY(),hs->GetZ()); 
   Vector3 to = Vector3(0.000,0.000,0.000); 
   //move the substituent to the origin before rotation 
   Translate(thesubst,from,to); 
 
   axis.normalize(); 
   mymatrix.rotate(axis,180.0-angle); 
      
   for(OpenBabel::OBMolAtomIter a(thesubst);a;a++) 
     { 
        Vector3 atomvector=Vector3(a->GetX(),a->GetY(),a->GetZ()); 
        Vector3 finalvect=atomvector*mymatrix; 
        a->SetVector(finalvect.x,finalvect.y,finalvect.z);       
     } 
   Translate(thesubst,to,from); 
} 
 
double AtomDistance(OpenBabel::OBAtom * atoma,OpenBabel::OBAtom * atomb) 
{ 
 
     double deltax=atoma->GetX()-atomb->GetX(); 
     double deltay=atoma->GetY()-atomb->GetY(); 
     double deltaz=atoma->GetZ()-atomb->GetZ(); 
     deltax=deltax*deltax; 
     deltay=deltay*deltay; 
     deltaz=deltaz*deltaz; 
     double total=deltax+deltay+deltaz; 
     total=std::sqrt(total); 
     return total; 
} 
 

 

2. Optimized docking (L. Sigauke) 

a.  Vina docking of 61 protease models with 200 ligands.  
 
import os, sys, time 
 
#names=open("names_ligand.txt","w")  
 
protein_array=os.listdir('proteins') 
ligands_array=os.listdir('ligands') 
 
""" 
for protein in protein_array: 
    os.system('cp proteins/'+protein+' 
'+'newnameproteins/'+protein.split('.')[0]+'.pdbqt') 
""" 
 
for protein in protein_array: 
    if protein.endswith('.pdbqt'): 
        os.system('mkdir '+protein[:-6]) 
        os.chdir(protein[:-6]) 
        os.system('mkdir dockings') 
        os.system('mkdir logfiles') 
        for ligand in ligands_array: 



  Page 

82 

 

  

            if ligand.endswith('.pdbqt'): 
                 
                jobfile=open(protein[:-6]+'_'+ligand[:-8]+".job","w") 
                jobfile.write("#!/bin/csh\n#\n#\n") 
                jobfile.write("#PBS -N "+protein[:-6]+'_'+ligand[:-8]+"\n") 
                jobfile.write("#PBS -l nodes=1:ppn=1,walltime=1:00:00\n") 
                jobfile.write("#PBS -q batch\n") 
                jobfile.write("#PBS -d 
/home/lester/kev/HIV1/fresh_dock/complete_dock/optimized_docking/"+protein[
:-6]+"/ \n") 
         jobfile.write('vina --receptor ../proteins/'+protein+' --
ligand ../ligands/'+ligand+' --out dockings/'+protein[:-6]+'_'+ligand[:-
8]+'.pdbqt --center_x 22.560 --center_y 1.955 --center_z 10.232 --size_x 15 
--size_y 15 --size_z 15 --log logfiles/'+protein[:-6]+'_'+ligand[:-8]+'.log 
--cpu 4 --exhaustiveness 4\n\n') 
                jobfile.close() 
                os.system("qsub "+protein[:-6]+'_'+ligand[:-8]+".job") 
                time.sleep(2) 
        os.chdir('..') 
 
#names.close() 

 

b. Extraction of relevant data from Vina logfile 

 
import sys, os, re, heapq 
 
### what are the names of the folders that I created 
names = os.listdir('logfiles') 
 
################################################################# 
#Prepare dictionary of ligand binding energies 
d = {} 
 
for result in names: 
     
    if result.endswith('log'): 
        value = 0 
        log = open("logfiles/"+result,"r") 
        state = True 
        for line in log: 
             
            if line[:3] == '---': 
                state = False 
   
            if state == False: 
   
                if line[1] == " ": 
                    newline = re.split('\s*',line) 
       if value == 0: #nothing added yet 
          value = float(newline[2]) #first value from the logfile 
      elif float(newline[2]) >= value: # 
               value = value 
                    else: #  
   value = float(newline[2])     
      d[result] = value 
            if line[0] == "W": 
                state = True 
        log.close() 
 
################################################################# 
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#Sort through the dictionary 'd' to generate the top 100 ligands.  
 
from collections import Counter 
 
topset = open("topall_optimized.txt","w") 
for item in d.items(): 
    string = ' '.join(str(i) for i in item) 
    topset.write(string) 
    topset.write('\n') 
topset.close() 
 
             
                   
docs = dict(Counter(d).most_common()[:-200-1:-1]) 
top200 = open('top200_optimized.txt','w') 
for item in docs.items(): 
    string = ' '.join(str(i) for i in item) 
    top200.write(string) 
    top200.write('\n') 
top200.close() 
                     

c. Analysis of all log files to calculate docking statistics 
 
import os, sys, re 
 
interaction = open('topall_optimized.txt','r') 
energylist = [] 
keys = [] 
lists = {} 
element = [] 
d = {} 
 
for line in interaction: 
    separated = re.split('\s*',line) # e.g. 
['5046_fligand_6906_docked.log', '-10.3', ''] 
    name = separated[0][:-4] # e.g. 301812_fligand_8322_docked 
    ligand = name.split('_')[-2] # e.g 301812 
    energyvalues = float(separated[1]) # e.g. -9.00 
    
    if ligand in keys: 
        keys = keys 
        d[ligand] = d[ligand] + [energyvalues] 
         
    else: 
        keys.append(ligand) 
        #element= [energyvalues] 
        d[ligand] = [energyvalues] 
     
#print d 
 
      
 
  
    ###################### 
    #####  Preliminary Statistical analysis.  
    #energylist.append(float(separated[1])) # this is how to create a list 
of energy values.  
    #energylist.sort() 
    #print energylist 
 
import numpy 
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statsdoc = open("statsdoc.txt","w") 
statsdoc.write("#LigandName, #Med, #Mean, #StandardDeviation \n") 
for i in d: 
    med_value = numpy.median(d[i]) 
    mean_value = numpy.mean(d[i]) 
    std_value = numpy.std(d[i]) 
 
    statsdoc.write("%s, %.3f, %.3f, %.3f \n" %(i, med_value, mean_value, 
std_value)) 
statsdoc.close() 
 
                     

3. Protein Ligand Molecular Dynamics (L. Sigauke) 

 
import os, sys 
 
os.system('mkdir jobfiles') 
os.system('mkdir pythonscripts') 
os.system('mkdir outputs') 
os.system('mkdir errors') 
#### define a function: 
def dynamic_process(protein): 
     
    if protein[-4:] == '.pdb': 
    ### creates a job 
        name = protein[:-4] 
        os.system('mkdir '+name) 
        os.chdir(name) 
        jobfile = open('../jobfiles/'+name+'_ligprot.job','w') 
        jobfile.write('#!/bin/bash \n') 
        jobfile.write('#PBS -V \n') 
        jobfile.write('#PBS -N '+name+'\n') 
        jobfile.write('#PBS -q tf \n') 
        jobfile.write('#PBS -d .\n') 
        jobfile.write('#PBS -e 
/home/lester/kev/HIV1/dynamicstudies/lig_prot/errors/'+name+'_error.txt  
\n') 
        jobfile.write('#PBS -o 
/home/lester/kev/HIV1/dynamicstudies/lig_prot/outputs/'+name+'_output.txt 
\n') 
        jobfile.write('#PBS -l 
nodes=1:ppn=24,walltime=99:00:00,mem=16gb\n') 
        jobfile.write('python pythonscripts/'+name+'_ligprotdyn.py \n')  
        jobfile.close()        
    ### creates a script 
        python = open('../pythonscripts/'+name+'_ligprotdyn.py','w') 
        python.write('import os, sys, time \n') 
        python.write('\n') 
        python.write('\n') 
        python.write('name = '+"'"+name+"'"+'\n') 
        python.write('os.system("mkdir "+name+"/dynamics_ligprot")\n') 
         
        python.write('os.system("cp -r mdp "+name+"/dynamics_ligprot")\n')  
         
        python.write('os.chdir(name+"/dynamics_ligprot")\n\n') 
        python.write('moldyn = "../.."\n') 
        python.write('echothing = "6610h 1" \n') 
        python.write('os.system("cp ../../6610/6610h.acpype/6610h_GMX.itp 
6610h.itp")\n') #create topology for ligand 
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        python.write('os.system("cp ../../6610/6610h.acpype/6610h_NEW.pdb 
.")\n') #bring _NEW.pdb into visibility 
        python.write('os.system("mkdir equil heat em prod ions")\n') 
        python.write('os.system("g_pdb2gmx -f 
"+moldyn+"/protease_models/"+name+".pdb -o "+name+"_proc.pdb -water spce -
ff amber03")\n') 
        python.write('os.system("grep -h ATOM "+name+"_proc.pdb 
6610h_NEW.pdb > complex.pdb") \n')#merge the 
        python.write('os.system("sed -i \'/#include 
\\"amber03.ff\/forcefield.itp\\"/a \#include \\"6610h.itp\\"\' 
topol.top")\n')  
        python.write('os.system("echo "+echothing+" >> topol.top")\n') 
#echo 
        python.write('os.system("g_editconf -f complex.pdb -o 
"+name+"_box.gro -c -d 1.0 -bt cubic")\n')    #simulation box - g_editconf 
        python.write('os.system("g_genbox -cp "+name+"_box.gro -cs 
spc216.gro -o "+name+"_solv.gro -p topol.top")\n') #solvate the box - 
g_genbox 
        python.write('os.system("g_grompp -f mdp/ions.mdp -c 
"+name+"_solv.gro -p topol.top -o ions/ions.tpr")\n') # Neutralization 
g_grompp 
        python.write('os.system("echo 15 | g_genion -s ions/ions.tpr -o 
ions/"+name+"_ions.gro -p topol.top -pname NA -nname CL -nn 1")\n') #echo 
15 
        python.write('os.system("g_grompp -f mdp/em.mdp -c 
ions/"+name+"_ions.gro -p topol.top -o em/em.tpr")\n') #Minimize the system 
g_grompp 
        python.write('os.system("g_mdrun -v -deffnm em/em")\n') # rn 
minimization g_ 
        python.write('os.system("g_grompp -f mdp/heat.mdp -c em/em.gro -p 
topol.top -o heat/heat.tpr")\n') #Heat the system g_ 
        python.write('os.system("g_mdrun -deffnm heat/heat")\n') # rn 
heating g_ 
        python.write('os.system("g_grompp -f mdp/equil.mdp -c heat/heat.gro 
-t heat/heat.cpt -p topol.top -o equil/equil.tpr")\n') #g_short 
equilibration 
        python.write('os.system("g_mdrun -deffnm equil/equil")\n') #g_ru 
        python.write('os.system("g_grompp -f mdp/500ps_prod.mdp -c 
equil/equil.gro -t equil/equil.cpt -p topol.top -o 
prod/500ps_prod.tpr")\n') #g_Longer dynamics 
        python.write('os.system("g_mdrun -deffnm prod/500ps_prod")\n') #g 
run 
        python.write('os.system("echo 1 | g_trjconv -f prod/500ps_prod.trr 
-s prod/500ps_prod.tpr -o prod/500ps_prod.pdb)")\n') #g_trjconv 
               
        python.close() 
        #check path situation 
        os.chdir('../') 
        return 
 
  
proteinlist = os.listdir('protease_models') 
 
for model in proteinlist:  
    if model != '': 
                                                   #### loop through a list 
of proteins 
        dynamic_process(model)                                              
### call the function for each one. 
        os.chdir('pythonscripts') 
        os.system("chmod 777 "+model[:-4]+"_ligprotdyn.py") 
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        os.chdir('../') 
        os.system("qsub jobfiles/"+model[:-4]+"_ligprot.job")               
# submit a job to the cluster 
      
 
    ###  
 
 

4. Analysis of Molecular Dynamic simulations (L. Sigauke) 

a. Quality and Structural features 
 
import os, sys 
 
 
os.system('mkdir qualityash') 
os.system('echo 14 | g_energy -f prod.edr -o qualityash/temperature.xvg') 
os.system('echo 22 | g_energy -f prod.edr -o qualityash/density.xvg') 
os.system('echo 1 | g_mindist -f prod.xtc -s prod.tpr -od 
qualityash/minimal-periodic-distance.xvg -pi') 
os.system('echo 1 | g_rmsf -f prod.xtc -s prod.tpr -o qualityash/rmsf-all-
atom.xvg -ox qualityash/average.pdb -oq qualityash/bfactors.pdb') 
os.system('echo 13 | g_rmsf -f prod.xtc -s prod.tpr -o qualityash/rmsf-
lig.xvg -ox qualityash/average_lig.pdb -oq qualityash/bfactors_lig.pdb') 
os.system('echo 1 1 | g_rms -f prod.xtc -s prod.tpr -o qualityash/rmsd-all-
atom-vs-start.xvg') 
os.system('echo 3 3 | g_rms -f prod.xtc -s prod.tpr -o qualityash/rmsd-
backbone-vs-start.xvg') 
os.system('echo 1 1 | g_rms -f prod.xtc -s qualtiyash/average.pdb -o 
qualityash/rmsd-all-atom-vs-average.xvg') 
os.system('echo 3 3 | g_rms -f prod.xtc -s qualityash/average.pdb -o 
qualityash/rmsd-all-atom-vs-average.xvg') 
os.system('echo 13 13 | g_rms -f prod.xtc -s prod.tpr -o qualityash/rmsd-
ligand-vs-start.xvg') 
os.system('echo 13 13 | g_rms -f prod.xtc -s qualityash/average_lig.pdb -o 
qualityash/rmsd-lig-vs-average_lig.xvg') 
os.system('echo 1 | g_gyrate -f prod.xtc -s prod.tpr -o qualityash/radius-
of-gyration.xvg') 
os.system('echo 13 | g_gyrate -f prod.xtc -s prod.tpr -o qualityash/radius-
of-gyration_ligand.xvg') 
os.system('mkdir structural') 
os.system('echo 1 1 | g_sas -f prod.xtc -s prod.tpr -o structural/solvent-
accessible-surface.xvg -oa structural/atomic-sas.xvg -or 
structural/residue-sas.xvg') 
os.system('echo 1 1 | g_hbond -f prod.xtc -s prod.tpr -num 
structural/hydrogen-bonds-intra-protein.xvg') 
os.system('echo 1 13 | g_hbond -f prod.xtc -s prod.tpr -num 
structural/hydrogen-bonds-protein-lig.xvg') 
os.system('g_saltbr -f prod.xtc -s prod.tpr -t 1.0 -sep') 
os.system('g_rama -f prod.xtc -s prod.tpr -o structural/ramachandaran.xvg') 
os.system('') 
os.system('mkdir dynamic_prop') 
os.system('echo 4 4 | g_covar -s prod.tpr -f prod.xtc -o 
dynamic_prop/eigenvalues.xvg -v dynamic_prop/eigenvectors.trr -ascii 
dynamic_prop/covariances.dat') 
#os.system('mkdir binding') 
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b. Binding Energy via mmpbsa 
 
import os, sys 
 
os.system('mkdir pythonscripts') 
os.system('mkdir outputs') 
os.system('mkdir errors') 
 
#### define a function: 
def dynamic_process(protein): 
     
    if protein[-4:] == '.pdb': 
        name = protein[:-4] 
        os.system('mkdir '+name) 
        os.chdir(name) 
    ### creates a script 
        python = open('../pythonscripts/'+name+'_ligprotdyn.py','w') 
        python.write('import os, sys, time \n') 
        python.write('\n') 
        python.write('\n') 
        python.write('name = '+"'"+name+"'"+'\n') 
        #python.write('os.system("mkdir "+name+"/dynamics_ligprot")\n') 
 
        pathtoprod = 
'/home/lester/kev/HIV1/dynamicstudies/lig_prot/50ps/805_lig/'+name+'/dynami
cs_ligprot/prod' 
        python.write('os.chdir("'+name+'")\n') 
        python.write('os.system("cp -r '+pathtoprod+'/*.xtc 
'+pathtoprod+'/*.tpr '+pathtoprod+'/*.gro ../'+name+'")\n') 
        #python.write('os.system("ssh tf")\n') #change to the tf shell 
        pathto = 
"/home/lester/kev/HIV1/dynamicstudies/lig_prot/50ps/805_analysis/"+name # 
enter the proteins folder 
        python.write('os.system("echo q | g_make_ndx -f prod.gro -o 
prod.ndx")\n') # make .ndx file 
        python.write('os.system("echo 1 13 | g_mmpbsa -f prod.xtc -s 
prod.tpr -n prod.ndx -pdie 2 -decomp")\n') # calculation of potential 
energy in vacuum 
        python.write('os.system("echo 1 13 | g_mmpbsa -f prod.xtc -s 
prod.tpr -n prod.ndx -i ../polar.mdp -nomme -pbsa -decomp")\n') # 
calculation of polar solvation energy 
        python.write('os.system("echo 1 13 | g_mmpbsa -f prod.xtc -s 
prod.tpr -n prod.ndx -i ../apolar_sasa.mdp -nomme -pbsa -decomp -apol 
sasa.xvg -apcon sasa_contrib.dat")\n') # calculation of SASA-only non-polar 
solvation energy 
        python.write('os.system("cp ../MnPbSaStat.py .")\n') 
        python.write('os.system("python26 MnPbSaStat.py -m energy_MM.xvg -p 
polar.xvg -a sasa.xvg")\n') 
        
python.write('os.chdir("/home/lester/kev/HIV1/dynamicstudies/lig_prot/50ps/
805_analysis/")\n') 
        #python.write('os.system("exit")\n') 
               
        python.close() 
        #check path situation 
        
os.chdir('/home/lester/kev/HIV1/dynamicstudies/lig_prot/50ps/805_analysis/'
) #get out of protein folder 
        return 
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proteinlist = os.listdir('../805_lig/protease_models') 
modellist = os.listdir('.') 
 
#print modellist 
 
for model in proteinlist: #### loop through a list of proteins 
    if model != '': 
        if model[:-4] in modellist: 
            pass 
        else: 
            dynamic_process(model)                                              
### call the function for each one. 
            os.system("chmod 777 "+model[:-4]+"_ligprotdyn.py") 
            os.system("python pythonscripts/"+model[:-4]+"_ligprotdyn.py")            
             
                                                 
 

APPENDIX B – RAW DATA 

 

1. Docking Data 

a. Sample from top 200 protein – Ligand Interactions 
 

5014_fligand_536_docked.log -11.4 

5046_fligand_16219_docked.log -11.3 

5261_fligand_5043_docked.log -11.2 

514412_fligand_9533_docked.log -11.1 

514412_fligand_13509_docked.log -11.1 

5045_fligand_13509_docked.log -11.3 

501424_fligand_513_docked.log -11.5 

302112_fligand_392_docked.log -11.6 

3021_fligand_7839_docked.log -11.1 

305152_fligand_3000_docked.log -11.0 

504612_fligand_805_docked.log -11.2 

5046_fligand_16404_docked.log -11.1 

52423_fligand_5043_docked.log -11.1 

5166_fligand_3206_docked.log -11.5 

5045_fligand_15733_docked.log -11.2 

3051_fligand_3206_docked.log -11.0 

305152_fligand_8973_docked.log -11.2 

508012_fligand_5411_docked.log -11.1 

501424_fligand_8560_docked.log -11.3 

5242_fligand_8560_docked.log -11.1 

5207_fligand_805_docked.log -11.3 

503252_fligand_6071_docked.log -11.3 

302112_fligand_1758_docked.log -11.6 

1HXB_RenumberedResidue_fit_fligand_7440_docked.log -11.0 

305152_fligand_6130_docked.log -11.3 

509424_fligand_15965_docked.log -11.2 

5014_fligand_12957_docked.log -11.1 

5166_fligand_1758_docked.log -11.6 

509424_fligand_16879_docked.log -11.1 

5261_fligand_14631_docked.log -11.5
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b. Statistical analysis 
 

#LigandName, #Med, #Mean, #StandardDeviation 

15454, -9.100, -9.068, 0.880 

8626, -9.700, -9.544, 0.806 

10069, -9.700, -9.605, 0.898 

137, -9.700, -9.579, 0.781 

6724, -9.350, -9.318, 0.839 

8014, -9.600, -9.448, 0.805 

9773, -9.600, -9.390, 0.929 

17258, -9.600, -9.363, 0.869 

691, -9.700, -9.644, 0.788 

12679, -9.300, -9.235, 1.071 

11388, -9.300, -9.327, 0.671 

13565, -9.600, -9.521, 0.724 

16315, -9.800, -9.845, 0.721 

542, -9.600, -9.573, 0.795 

12174, -9.400, -9.352, 0.907 

11466, -9.500, -9.489, 0.761 

17277, -9.700, -9.703, 0.712 

5065, -9.300, -9.308, 0.968 

3837, -9.300, -9.134, 1.119 

16464, -9.600, -9.594, 0.612 

8921, -9.750, -9.603, 0.845 

9066, -9.400, -9.329, 0.775 

16469, -9.500, -9.469, 0.863 

671, -9.650, -9.597, 0.790 

1152, -9.400, -9.221, 1.033 

10206, -9.850, -9.655, 0.972 

122, -9.600, -9.497, 0.812 

10205, -9.700, -9.585, 0.883 

5990, -9.450, -9.365, 0.788 

7043, -9.550, -9.561, 0.761 

9989, -9.400, -9.232, 0.806 

11573, -9.300, -9.263, 0.879 

6096, -9.700, -9.668, 0.833 

7440, -10.000, -10.008, 0.682 

2552, -9.500, -9.442, 1.125 

3561, -9.400, -9.361, 0.753 

7445, -9.450, -9.292, 0.799 

6657, -9.600, -9.348, 0.824 

6564, -9.800, -9.626, 0.866 

16879, -9.800, -9.665, 0.856 

15696, -9.200, -9.173, 0.885 

4103, -9.500, -9.305, 1.115 

12383, -9.450, -9.342, 0.887 

536, -9.300, -9.300, 0.908 

10056, -9.700, -9.589, 0.817 

299, -9.400, -9.345, 0.817 

11479, -9.750, -9.600, 0.790 
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2. Molecular Dynamics  

 

a. Binding Energy analysis of 6610 with protease model 305152 
 
 
#Complex Number:    1 
=============== 
   SUMMARY    
=============== 
 
 
 van der Waal energy      =        -296.401   +/-   10.049 kJ/mol 
 
 Electrostattic energy    =         -81.661   +/-   13.459 kJ/mol 
 
 Polar solvation energy   =         284.878   +/-   11.103 kJ/mol 
 
 SASA energy              =         -28.951   +/-    0.892 kJ/mol 
 
 SAV energy               =           0.000   +/-    0.000 kJ/mol 
 
 WCA energy               =           0.000   +/-    0.000 kJ/mol 
 
 Binding energy           =        -122.135   +/-   14.430 kJ/mol 
 
=============== 
    END      
=============== 
 

c. Binding Energy analysis of 805 with protease model 305152 
 
 
 
#Complex Number:    1 
=============== 
   SUMMARY    
=============== 
 
 
 van der Waal energy      =        -318.640   +/-   17.987 kJ/mol 
 
 Electrostattic energy    =        -104.061   +/-    8.387 kJ/mol 
 
 Polar solvation energy   =         309.489   +/-   13.767 kJ/mol 
 
 SASA energy              =         -29.252   +/-    0.952 kJ/mol 
 
 SAV energy               =           0.000   +/-    0.000 kJ/mol 
 
 WCA energy               =           0.000   +/-    0.000 kJ/mol 
 
 Binding energy           =        -142.464   +/-   20.194 kJ/mol 
 
=============== 
    END      
=============== 
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