
New and Improved: Linda in Java

George C. Wells

Department of Computer Science, Rhodes University, Grahamstown, South Africa
G.Wells@ru.ac.za

Abstract

This paper discusses the current resurgence of interest in the Linda coordina-
tion language for parallel and distributed programming. Particularly in the Java
field, there have been a number of developments over the past few years. These
developments are summarised together with the advantages of using Linda for pro-
gramming concurrent systems. Some problems with the basic Linda approach are
also discussed and a novel solution to these is presented. The power and flexibility
of the proposed extensions to the Linda programming model are illustrated by con-
sidering a number of example applications, including a detailed case study of visual
language parsing.

1 Introduction

The Linda 1 coordination language was proposed and developed in the mid-
1980’s by David Gelernter at Yale[6]. There was a great amount of interest in it
as a model for parallel and distributed programming, but this waned through
the early 1990’s. In recent years there has been a considerable resurgence of
interest in Linda, particularly in the Java 2 community.

Linda is a language for distributed and parallel programming that has a very
appealing simplicity. It is based on a simple shared-memory paradigm and has
only a handful of operations. While this simplicity introduces other problems,
particularly with regard to performance and predictability[20], these are not
insurmountable and much research was done in the early days of Linda to
develop techniques to ameliorate these drawbacks[1,2,4].

The first section of this paper presents a brief overview of Linda. This is fol-
lowed by a survey of Java implementations of Linda, with an emphasis on the

1 Linda is a registered trademark of Scientific Computing Associates.
2 Java is a registered trademark of Sun Microsystems Inc.

Preprint submitted to Elsevier Science 15 March 2005



recent commercial developments in this area. Some of the problems that are
inherent in the Linda model are then discussed, followed by the presentation
of our solution to these problems. The power and flexibility of our solution is
highlighted by considering two examples of the use of our extensions to the
basic Linda programming model. Some limitations of our approach are also
considered.

2 Overview of Linda

Linda is a coordination language for parallel and distributed processing, pro-
viding a communication mechanism based on a logically-shared memory space
called tuple space. Thus, the Linda model can be categorised as a form of vir-
tual shared memory [12], in which the actual memory system may be physically
shared or distributed, but application programmers are provided with a sim-
ple, shared-memory model.

The tuple space is accessed using associative addressing to specify the re-
quired data objects, stored as tuples. An example of a tuple with three fields
is ("point", 12, 67), where 12 and 67 are the x and y coordinates of the
point represented by this tuple.

As a coordination language, Linda is designed to be coupled with a sequential
programming language (called the host language—in our case, Java). Linda
provides a programmer with a small set of operations. These operations may be
categorised as output and input operations. There is a single output operation,
used to place tuples into tuple space. This is called out, and is used as follows:
out("point", 12, 67). The input operations are used to retrieve tuples from
tuple space. The basic forms are in, which removes the tuple from tuple space,
and rd, which returns a copy of the tuple. The two input operations also have
predicate forms (inp and rdp), which do not block if the required tuple is not
present.

For the input operations, the specification of the tuple to be retrieved makes
use of an associative matching technique whereby a subset of the fields in the
tuple have their values specified and these are used to locate a matching tuple
in the tuple space. For example, the command in("point", ?x, ?y) might
be used to retrieve the example tuple above (or any other tuple with a similar
structure). The specification of the tuple used in an input operation is called
an antituple. On successful completion of this input operation the variables
x and y are bound to the values found in the matching tuple. The resultant
communication between two processes is illustrated in Figure 1.

This simple model provides for very easy inter-process communication, and



Fig. 1. A Simple Communication Pattern

common synchronisation operations are also easily implemented, using the
blocking forms of the input operations. A particular advantage of Linda is that
the processes involved in a distributed/parallel computation are completely
decoupled, both temporally and spatially. Temporal decoupling arises from
the fact that communication is asynchronous: the process that has generated
a tuple can continue without waiting, and may even have terminated when
the tuple is retrieved by another process. Spatial decoupling arises from the
fact that the communication is effectively anonymous: there is no need for
processes to be aware of the location of the other processing nodes in the
network, and no “addressing information” is required for two processes to
communicate. Further details of the Linda programming model may be found
in [3].

3 Recent Linda Developments in Java

During the last few years a number of Linda implementations have been de-
veloped by research groups and commercial companies using Java as the host
language. This paper considers the commercially-developed products, namely
JavaSpaces, GigaSpaces, AutevoSpaces and TSpaces.

3.1 JavaSpaces

JavaSpaces[5] is a complex product and relies heavily on a number of other
technologies developed by Sun Microsystems. As a result, configuring the Java-
Spaces system and its applications is a very complex process.

JavaSpaces supports the basic Linda operations, although with slightly dif-
ferent names. Tuples (called entries in JavaSpaces) are created from classes
that implement the Jini Entry interface, and only public fields that refer to
objects are considered. Tuples are transmitted across the network using a non-
standard form of serialisation. Matching of tuples is performed using byte-level
comparisons of the data, not the conventional equals() method, and use is
made of object-oriented polymorphism for matching sub-types of a class. Tuple



storage is centralised on a single server, and this may become a performance
bottleneck in large systems.

JavaSpaces provides some extended functionality, especially in areas such as
support for transactions and leases, which are important for commercial ap-
plications.

3.2 GigaSpaces

GigaSpaces[9] was developed as a commercial implementation of the Java-
Spaces specification. As such, it is compliant with the Sun specifications, while
adding a number of new features. These include operations on multiple tu-
ples, updating, deleting and counting tuples, and iterating over a set of tuples
matching an antituple. There are also distributed implementations of the Java
Collections List, Set and Map interfaces, and a message-queuing mechanism.

Considerable attention has been paid to the efficient implementation of Gi-
gaSpaces. This includes the provision of facilities such as buffered writes, and
indexing of tuples.

There is also support for non-Java clients to access GigaSpaces through the
use of the SOAP protocol over HTTP. Lastly, there is support for web servers
to make use of GigaSpaces to share session information.

3.3 AutevoSpaces

Like GigaSpaces, AutevoSpaces is a commercial implementation of the Java-
Spaces specification. The focus of AutevoSpaces is on enterprise systems re-
quiring high availability, including fail-over, recovery and load-balancing mech-
anisms. They claim that their “High Availability solution is the only commer-
cially available implementation that provides semantic consistency with the
JavaSpaces reference implementation. This consistency is essential to ensuring
the correctness and flexibility of large, distributed, mission-critical applica-
tions”[10]. AutevoSpaces makes use of a distributed tuple space implementa-
tion to provide scalability and the high availability features.

3.4 TSpaces

TSpaces is a Linda system developed by IBM’s alphaWorks research divi-
sion[8,19]. It is considerably extended from the original Linda model, par-



ticularly in terms of support for commercial applications. The TSpaces im-
plementation is extremely simple to setup and configure in comparison to
JavaSpaces—all that is required is that a single server process be running on
the network.

TSpaces supports a large number of operations, including new operations for
the input and output of multiple tuples, and operations that specify tuples by
means of a “tuple ID” rather than the usual associative matching mechanisms.
There is also the rhonda operator, which performs an atomic synchronisation
and data exchange operation between two processes. Lastly, there is an event
mechanism, providing notification when a specified tuple is written to the
tuple space or deleted from it.

In addition to the usual associative matching mechanism, TSpaces allows tuple
input using so-called “indexed tuples”. In this case, fields may be named,
ranges of values may be used, and AND and OR operations may be specified.
It is also possible to perform matching on XML data contained in tuples.

Tuples may have an expiration time set (similar to the lease mechanism in
JavaSpaces), and there is also transaction support. Furthermore, access control
mechanisms are provided, providing functionality similar to UNIX file system
permissions.

3.4.1 XMLSpaces

XMLSpaces is a research project, built on TSpaces to extend the limited facil-
ities that it has for matching XML data[14]. The XML support in XMLSpaces
is provided by subclassing the Field class used by TSpaces. The new XML-

DocField class overrides the matching method used by TSpaces to provide
matching on the basis of the XML content of the field. The matching method
may be provided by the application programmer, providing a great deal of
flexibility for XML matching operations. A number of matching operations
are supported, including the use of XML query languages such as XPath[18].

Further details of these Java implementations of Linda and other related re-
search projects may be found in [17].

4 Problems with Linda

The simple associative matching mechanism used for the retrieval of tuples in
Linda works very well in many situations. One-to-one and one-to-many com-
munication patterns are trivial, and implementing semaphores, barrier syn-



chronisation, and other coordination and interprocess communication models
is simple. However, situations do arise where the simple associative matching
technique is not adequate.

As a simple example, consider a set of tuples, where an application needs to
locate the tuple with the minimum value of some field. Using Linda to solve
this problem is possible, but is not efficient. The application would need to
retrieve all of the tuples, using repeated inp operations. These tuples would
then need to be searched for the one with the minimum value. The tuples
would then be returned to the tuple space (including the tuple with the min-
imum value, if the overall effect is to be that of a rd operation). During this
procedure the tuples are not accessible by other processes, potentially restrict-
ing the degree of parallelism possible. Furthermore, in an implementation with
a distributed tuple space, there is a large volume of network traffic generated
by this solution.

While this is a simple example, it illustrates a general problem, namely that
some applications may need a “global view” of the tuples in tuple space.
Other examples include finding tuples with values “close to” some specified
value, or lying within a specified range of values. These types of problems
cannot be solved efficiently using the standard Linda associative matching
technique. While some of the Linda systems described above, notably TSpaces,
have provided extensions to the associative matching mechanism, none has
addressed these issues.

5 The eLinda System

In an attempt to address the problem described in the preceding section, an
alternative, flexible matching mechanism is proposed. We call this the Pro-
grammable Matching Engine (PME), and our Linda implementation eLinda.

The eLinda system is based closely on the standard Linda model. A number
of different implementations of eLinda were developed in the course of the
author’s PhD research[15]. The most complex of these uses a fully-distributed
tuple space model where any tuple may reside on any processor/node. The
others use a centralised tuple space, with optional local caching of certain
tuples. The fully-distributed model poses particular problems for matching,
in that many processing nodes may be required to participate in a matching
operation.

In addition to the programmable matching facilities, eLinda contains exten-
sions to support the development of distributed multimedia applications. Fur-
ther details of the eLinda system and its other features can be found in [15].



5.1 The Programmable Matching Engine

The Programmable Matching Engine allows the use of more flexible criteria
for the associative addressing of tuples. This is useful in situations such as
that exemplified above (finding the tuple with the minimum value for some
field). As has already been noted, such queries can be expressed using the
standard Linda associative matching methods, but will generally be quite
inefficient. If the tuple space is distributed, searching for a tuple may involve
accessing the sections held on all the processors. Ideally, this should be done
in parallel. This problem is handled efficiently in eLinda by distributing the
matching engine so that network traffic is minimised, and moving the necessary
computation out of the application and into the matcher. For example, in
searching for the minimum tuple, each section of the tuple space would be
searched locally for the smallest tuple, which would then be returned to the
node that originated the operation. The originating matcher would then select
the smallest of all the replies received. This process is completely transparent
to the application, which simply inputs a tuple, using a specialised matcher.
From an application programmer’s perspective this could be expressed simply
as in.minimum(?field1, ?=field2). The notation that is used is to follow
the Linda input operation with the name of the matcher to be used 3 . The
field (or fields) to be used by the matcher is denoted by ?=.

In addition to this simple usage, matchers may also perform aggregated oper-
ations where a tuple is returned that in some way summarises or aggregates
information from a number of tuples. For example, a matcher might calculate
the total of numeric fields in some subset of the tuples in tuple space. It is also
possible to write matchers that return multiple tuples, similar to the TSpaces
“scan” operations.

New matchers are written as Java classes that implement a specific interface.
This requires the implementation of two methods. One of these is used when
checking all the tuples that are already in tuple space for a possible match.
The other is used when the input operation has blocked and individual tuples
need to be checked as they are added to the tuple space. These matching
methods can make use of a simple library that provides controlled access to
tuple space and communication between the distributed matchers.

3 Note that this is an idealised syntax, such as might be supported by a Linda
preprocessor. In practice the usual style of Java method calls is used.



5.2 Possible Applications of the Programmable Matching Engine

The simple examples of matchers given above may have hinted at possible
applications, but have focussed on common numeric applications for simplicity.
Some other examples of matchers that emphasise the power and flexibility of
the Programmable Matching Engine are given below.

• A string matcher could match string fields using some alphabetic measure of
“closeness”, regular expressions, or even approximate homophonic match-
ing.

• A spatial matcher could compare two fields, taken to be x and y coordinates,
in order to locate a tuple corresponding to a point in some two-dimensional
space (or, equivalently, in three or more dimensions). This possibility is
discussed in more detail in Section 5.4 below.

• A matcher could be written to locate tuples with fields corresponding to a
date or time in some range of temporal values.

• A matcher could make use of “fuzzy logic” to locate a tuple with some
associated degree of certainty of its suitability.

• A matcher could select a tuple at random from some subset of the available
tuples 4 .

• A matcher could be written to extract XML-formatted information from a
tuple and perform complex matching operations based on this (providing
an equivalent to the XML support in TSpaces).

5.3 A Simple Application: Video-on-Demand

As an initial illustration of the use of the Programmable Matching Engine (and
also the multimedia support provided by eLinda) a demonstration video-on-
demand system was developed. This consists of a server application that is
used by the supplier of video resources, and a client application that is used
by a customer wishing to view this material. A number of practical issues
such as security, payment verification, etc. are omitted from this application
for simplicity.

5.3.1 The Video Server Application

Thisprogram initially places the details of the available videos into a tuple
space called “videos”. The server then waits for a tuple to be placed into a
tuple space called “requests” with a matching supplier name. These request
tuples specify a unique access key for the video required, and also contain

4 By default, eLinda uses a FIFO queuing system.



Fig. 2. Control Flow in the Video Server Application

payment details. The payment details are verified, and, if successful, a tuple
is placed into a third tuple space, called “supplied”. This tuple contains the
unique key and a MultiMediaResource object that the client can retrieve in
order to view the video. This process, and the client’s interaction with the
tuple spaces, is shown diagrammatically in Figure 2.

5.3.2 The Video Client Application

The outline of the client program is shown in Algorithm 1 (this has been
expressed using a simple, procedural pseudocode notation for simplicity). This
program is a GUI, event-driven Java application that allows a user to select a
video and then view it. The user enters the title of a video, and the “videos”
tuple space is then searched for a tuple with a matching title. This makes
use of a PME matcher that retrieves the tuple with the minimum value in
the cost field. Alternative matchers might also be provided for this purpose,
which could take into account other issues, such as the quality of the video
and the network bandwidth available. If a matching tuple is found, the details
are presented to the user and they are asked if they wish to view the video.
If a positive response is received, the payment details are requested from the
user and the remainder of the interaction between client and server described
above is completed.

Algorithm 1
Get videoName from user
if videos.rdp.minimum(?supplier, videoName, ?key, ?=cost) then

Display video information
if video is requested then

requests.out(supplier, videoName, key, paymentDetails)
supplied.in(supplier, videoName, key, ?video)
video.play()

else
Display “Video is not available”



5.3.3 Discussion

While this example is a simple illustration of the principles involved in such
an application, and particularly of the use of the Programmable Matching
Engine and the multimedia features present in eLinda, it does provide a con-
vincing demonstration of these facilities. In particular, it shows how the unique
features of eLinda can simplify the development of such applications. Addi-
tionally, it highlights some of the benefits of the basic Linda programming
model, such as the spatially-decoupled nature of the communication: neither
the client nor the server have to be aware of each other’s location in the net-
work. The next section presents a larger, more complex example of the use of
eLinda.

5.4 Visual Language Parsing

As a more significant example, which highlights the flexibility and power of
the Programmable Matching Engine, we will consider the problem of parsing
visual languages in a little more detail. Visual languages are used in many
areas to depict situations or activities in a pictorial form which is often easier
for human beings to comprehend than a textual format. Examples abound,
not least in the field of Computer Science where notations such as flowcharts,
state transition diagrams, UML diagrams, etc. are widely used. If such graph-
ical models are to be “understood” by a computer system there is a require-
ment for parsing them in order to analyse their structure. This is directly
analogous to the parsing of textual computer programming languages. What
sets the parsing of visual languages apart is the increased complexity of the
relationships between the components. In a textual language there is a simple,
positional sequence relating the components (the keywords and other tokens
of the language). In the case of a visual language there is far more scope for
different relationships to exist between tokens in two dimensions (or, more
generally, in three or even more dimensions). For example, tokens may be re-
lated by inclusion, by contact, by position (e.g. one above another), and so
on.

There are many different methods that may be used for specifying and for
parsing visual languages. A classification of visual languages that highlights
some of these differences can be found in [11]. The method that we will consider
here is the use of picture layout grammars (a variation on attributed multiset
grammars), as developed by Eric Golin[7]. Picture layout grammars provide
a particularly flexible and powerful way of expressing the syntax of visual
languages. Much of the following discussion is based on a course on visual
languages which can be found in [13].



Table 1
Picture Layout Grammar for State Transition Diagrams
1: STD → StateList
2: StateList → State
3: StateList → (State, StateList)
4: State → contains(circle, text)
5: State → leaves(State, Transition)
6: Transition → labels(Arc, text)
7: Arc → enters(arrow, circle)
8: DoubleCircle → contains(circle, circle)
9: FinalState → contains(DoubleCircle, text)
10: State → FinalState
11: GreyCircle → isgrey(circle)
12: StartState → contains(GreyCircle, text)
13: State → StartState

5.4.1 Picture Layout Grammars

A visual program is represented as an attributed multiset: an unordered col-
lection of attributed visual symbols. The class of a symbol corresponds to its
type (e.g. label, circle, etc.), while the attributes of a symbol specify its features
(e.g. text value, location, etc.). Visual languages are then sets of attributed
multisets.

The attributed multiset representation of a picture is a flat structure. If we
view the picture as an element of a visual language, then it has a complex
structure, described by the relationships between the symbols. This structure
is defined by the grammar productions of the language, for example:

State → contains(circle, text)

The operator (contains in the example above) specifies explicitly the kind
of relationship between the constituent elements. In certain situations it is
necessary for a production to include a symbol that is not part of the left
hand symbol, but which must be present as part of the context in which the
rule can be applied. This is usually shown by underlining the context symbols
to distinguish them from normal symbols.

A complete grammar for state transition diagrams is shown in Table 1. This
describes the common form of state transition diagram as exemplified in Fig-
ure 3. In the grammar in Table 1, the production for Arc (7) shows the use
of a context symbol: the circle symbol is not a part of an arc, but must be
present as the context in which the Arc production can be used.

Formally, an attributed multiset grammar can be defined as follows:

Definition 1 An attributed multiset grammar is a six-tuple(N, Σ, s, I, D, P )
where:



Fig. 3. An Example State Transition Diagram

N is a finite set of non-terminal symbols
Σ is a finite set of terminal symbols
s ∈ N is the start symbol
I is the attribute names
D is the attribute domains
P is a set of productions

Definition 2 A production is a triple, (R, SF , C) where:

R is a rewrite rule of the form A → M1/λ, where:
A ∈ N is the left hand side (LHS)
M1/λ is the right hand side (RHS)
M1 ⊂ (N ∪ Σ) is a multiset of ordinary symbols
λ ⊂ Σ is a multiset of context symbols

SF is a semantic function
C is the constraints on the application of R

We then introduce the concept that a picture M is analyzable.

Definition 3 M is analyzable if M has a derivation tree T where:

The leaf nodes of T spell out M
The root node of T is labelled by s
Each interior node n is labelled by a production p = (R, SF , C), where:

labels(RHS(R)) = labels(children n)
C(children n) = true
attributes n = SF(children n)

Essentially, a picture can be represented by a tree structure, where the leaf
nodes represent the terminal symbols. The interior nodes represent the non-



terminal symbols, with the child nodes fulfilling the constraints of the pro-
duction used to generate the non-terminal symbol, and the attributes of the
non-terminal symbol generated from the attributes of the child nodes by means
of the semantic function associated with the production.

The language S(G) recognised by a grammar G can then be formally defined
as follows:

Definition 4 S(G) = {M | M ∈ Σ∗ ∧M is analyzable over G}

Picture layout grammars are attributed multiset grammars, as defined above,
but with some simple restrictions.

While picture layout grammars are a powerful formalism for defining visual
languages they are difficult to parse efficiently. Golin reports a theoretical
complexity result of O(n9), although in practice the situation is seldom this
bad. The main cause of this complexity is that the first stage of the parsing
algorithm produces multiple possible results: the factored multiple derivation
structure (or FMD), essentially a tree structure with cross-links, giving a
directed acyclic graph (DAG). This data structure must then be checked to
remove invalid results, and then traversed again to pick a unique valid result.
As a result of this complexity, parsers for picture layout grammars can benefit
from a distributed or parallel implementation.

5.4.2 The Use of eLinda for Parsing Picture Layout Grammars

The eLinda system is ideally suited to a problem like the parsing of picture
layout grammars. The symbols are simply represented by tuples, which contain
the class and the attributes as fields. In practice, the terminal symbols of a
particular picture need to be kept in two separate data stores: one from which
symbols are consumed as they are used (or reduced) by the application of
productions, and one in which the symbols remain for use in determining the
context for other productions. Again, this can easily be solved by placing the
initial terminal symbols (the output of a graphics editor, or a visual “lexical
analyser”) in two separate tuple spaces, which we will refer to as the reduction
tuple space and the context tuple space.

The application of the production rules in a picture layout grammar is a
task that can easily be done in parallel, as there is no clear sequential as-
sociation betweensymbols, and exhaustive searching is required to determine
the relationships between symbols. This can be handled using a “replicated
worker” pattern[5], where each worker obtains a symbol from the reduction
tuple space, then searches for a production rule that can be applied, retriev-
ing any other symbols used by the production rule as required, and checking
the constraint functions (this involves searching the context tuple space). The



("circle", 10, 10, 5)

("text", "A", 7, 7)

Fig. 4. Two Example Tuples during Visual Parsing

constraint functions themselves are ideally suited to implementation as spe-
cialised matchers in the Programmable Matching Engine (a library of useful
spatial functions such as “contains”, “enters”, “touches”, etc. could be written
to support the common features of visual languages).

As a concrete example, consider a parser for the language of state transition
diagrams, using the grammar in Table 1. One simple step in parsing a state
transition diagram is to apply the production rule stating that a State com-
prises a Circle and a Text object, with the constraint that the Text is contained
within the Circle (rule 4 in Table 1). Let us assume that the two tuples shown
in Figure 4 describe two such symbols, where the Circle is attributed with the
coordinates of the central point (here, x = 10 and y = 10) and the radius
(5). The Text object is attributed with the value of the text ("A") and the
coordinates of the top left corner of the bounding box.

Using the approach outlined above, a worker process might retrieve the tuple
describing the Circle and begin to search for productions which could be ap-
plied. One production which could be applied is the production describing a
Double Circle as a circle contained within another circle (rule 8). This might
be tried and discarded if no other circle is found with a common centre point.
Continuing a search through the productions the process will eventually get to
the production describing a State. The tuple corresponding to the Text object
could then be retrieved using the Programmable Matching Engine matcher for
the “contains” function. At this stage a new tuple can be added to the reduc-
tion tuple space, describing the State symbol. This would contain references
to the constituent Circle and Text symbols, in order to build up the FMD
structure. This process continues until the set of symbols in the reduction
tuple space contains only the start symbol.

This parsing stage is then followed by a checking stage. This is required as
the parsing process generates many redundant or illegal paths in the FMD.
Fortunately, the checking can also be easily parallelised, using the same simple
replicated worker pattern.

In implementing the visual parsing application using eLinda, four specialised
matchers were developed, as, at a number of points, there is a need to use
complex criteria to specify the tuples to be retrieved from tuple space. Of
these matchers, two are general-purpose, and may be useful in other applica-
tions. While not an accurate metric of code complexity, the number of lines of
code does give an approximate indication of the complexity of a matcher, and
has been given below for each of the matchers written for the visual parsing



algorithm, together with a brief description of the purpose of the matcher.

RHSMatcher (130 lines of code) This matcher is the most complex of those
used in the visual language parsing application. It is used to search the
tuple space containing the grammar rules, looking for a rule that could be
applied to reduce a given symbol X. This requires searching through the
rules looking for the symbol X in the right hand side of a rule. If the rule is of
the form A → X then the matcher additionally checks the constraints (this
is straightforward in this case, as there is only the one symbol to consider).

ConstraintMatcher (114 lines of code) This matcher is used when applying
rules of the form A → X Y or A → Y X to locate suitable Y symbols
to reduce with the current symbol X. In order to do this it has to check
the constraints of the attributes of the available Y symbols (usually in con-
junction with the attributes of the symbol X). It returns multiple matching
tuples, using a Java Vector.

SetMatcher (111 lines of code) This matcher is used by the workers to re-
trieve a symbol (next) from tuple space for consideration. Due to some
complexities introduced by the parallelisation of the algorithm, this sym-
bol needs to be chosen from a specified set of symbols. This matcher could
be also used by any other application that had a similar requirement to
match tuples where a field has one of a set of defined values. The sets are
handled using the java.util.Set interface within the matcher, allowing
considerable flexibility.

AllMatcher (67 lines of code) This matcher can be used to retrieve all the
tuples matching a given anti-tuple (in the same way as the scan operation
provided by TSpaces). It is employed during the checking phase of the visual
parsing application. Again, this matcher could be used by any application
that needed to retrieve the set of all tuples meeting some criterion. It returns
the multiple tuples in a Java Vector.

5.4.3 Discussion

Parallelising the visual parsing algorithm presented some interesting opportu-
nities to utilise the unique features of the eLinda system. The nature of the
algorithm makes it simple to parallelise. In particular, the fact that the first
phase constructs the FMD structure with a degree of redundancy and delays
checking to a second, separate phase, allows the worker processes to perform
the construction phase with little communication or synchronisation.

It appears that there may be slightly more redundancy in the FMD structures
created by the parallel parser than in those produced by the serial version of
the algorithm. This would lead to a slightly increased workload in the second,
checking phase.



A major advantage of the use of eLinda in this application is that attributed
multisets map very naturally to tuple spaces. Additionally the use of the Pro-
grammable Matching Engine simplified the parallel version considerably. More
importantly, this problem would be very difficult to parallelise using the stan-
dard Linda programming model, due to the need to retrieve tuples subject to
arbitrary constraints.

More generally, the use of the Linda model also simplified other aspects of
the application, such as the barrier synchronisation required between the two
phases of the parsing process.

5.5 Limitations of the Programmable Matching Engine

There are some limitations to the kinds of matching operations that are sup-
ported by the PME. Notably, some matching operations may require a com-
plete, global view of the tuple space (e.g. where a tuple is required that has
the median value of some field). In such situations the use of the PME may
not be ideal, as all the tuples involved must be examined in order to find the
result. However, it is important to note that such problems are handled no less
efficiently than if the application were forced to handle them directly, using a
conventional Linda system.

Furthermore, the use of the PME may help to minimise the network bandwidth
requirements in such cases. For example, taking the example of finding the
tuple with the median value of some field, the distributed matchers could
return lists containing only the specified field values to the requesting node.
These lists could be combined to calculate the median value, and then the
matching tuple could be requested from the node that held it. In this way, both
the number of network transactions and the network bandwidth requirements
are minimised in comparison to the standard Linda model. With a centralised
tuple space, the improvements are even more dramatic, as only the required
result tuple needs to be transmitted across the network to the requesting node.
Of course, this comes at the price of higher computational requirements of the
server itself.

6 Results and Conclusions

The visual language parser discussed above is a complex application that
serves as a very good demonstration of the power and flexibility of eLinda
and the Programmable Matching Engine.



Testing has shown that the performance of eLinda is on a par with that of other
Java Linda systems such as JavaSpaces, TSpaces and GigaSpaces[17], which is
remarkable considering that these other systems are commercially developed
products. The testing also revealed the fact that Java is not an ideal platform
for fine-grained parallel processing applications on conventional networks[16]
(however, the performance of the Java Virtual Machine has been the focus
of ongoing development, and this situation is improving). For coarser-grained
distributed programming problems, the inherent simplicity of the Linda pro-
gramming model is highly desirable and has led to the increasing interest in
Linda-based approaches, particularly in the Java community.

One of the weaknesses of the simple associative matching mechanism used
in the original Linda programming model is that it is limited for some ap-
plications. The Programmable Matching Engine developed for eLinda offers a
solution that is both simple and elegant, and caters for a range of different im-
plementation strategies. The benefits of the Programmable Matching Engine
have been confirmed through its use in a number of different application areas,
with both fully-distributed and centralised tuple space implementations.

Future work will focus on the application of the principles introduced in eLinda
to the field of web services. The distributed nature of the extensions in eLinda
and the increasing use of web services for the transparent provision of informa-
tion across wide area networks suggest that this may be a fruitful application
area for a system based on the Linda model and incorporating the flexible
matching approach of the Programmable Matching Engine.

Acknowledgements

This work was supported by the Distributed Multimedia Centre of Excellence
in the Department of Computer Science at Rhodes University, South Africa,
with funding from Telkom SA, Business Connexion, Comverse, Verso Tech-
nologies and THRIP. Financial support was also received from the National
Research Foundation (NRF) of South Africa, and from Rhodes University.
The author also wishes to acknowledge the valuable advice and support of
Alan Chalmers (University of Bristol) and Peter Clayton (Rhodes University)
over many years, and the constructive feedback of the anonymous referees,
both of the original PPPJ’04 paper and of this extended paper.



References

[1] S. Ahuja, N. Carriero, D. Gelernter, and V. Krishnaswamy. Matching language
and hardware for parallel computation in the Linda machine. IEEE Trans.
Computers, 37(8):921–929, August 1988.

[2] N. Carriero and D. Gelernter. The S/Net’s Linda kernel. Operating Systems
Review, 19(5):54–71, March 1985.

[3] N. Carriero and D. Gelernter. How to Write Parallel Programs: A First Course.
The MIT Press, 1990.

[4] N. Carriero and D. Gelernter. New optimization strategies for the Linda pre-
compiler. In G. Wilson, editor, Linda-Like Systems and Their Implementation,
Technical Report 91-13, pages 74–83. Edinburgh Parallel Computing Centre,
June 1991.

[5] E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces Principles, Patterns, and
Practice. Addison-Wesley, 1999.

[6] D. Gelernter. Generative communication in Linda. ACM Trans. Programming
Languages and Systems, 7(1):80–112, January 1985.

[7] E.J. Golin. A Method for the Specification and Parsing of Visual Languages.
PhD thesis, Brown University, 1991.

[8] IBM. TSpaces. URL:
http://www.almaden.ibm.com/cs/TSpaces/index.html.

[9] GigaSpaces Technologies Ltd. GigaSpaces. URL:
http://www.gigaspaces.com/index.htm, 2001.

[10] Intamission Ltd. AutevoSpaces: Product overview. URL:
http://www.intamission.com/downloads/datasheets/AutevoSpaces-Overview.pdf,
2003.

[11] K. Marriott and B. Meyer. The classification of visual languages by grammar
hierarchies. Journal of Visual Languages and Computing, 8(4):375–402, August
1997.

[12] S. Raina. Virtual shared memory: A survey of techniques and systems. Technical
Report CSTR-92-36, Department of Computer Science, University of Bristol,
December 1992.

[13] Jan Rekers. A course on visual languages, 1995. URL:
http://www.wi.leidenuniv.nl/CS/SEIS/vislang/VLcourse.html.

[14] R. Tolksdorf and D. Glaubitz. Coordinating web-based systems with documents
in XMLSpaces. URL:
http://flp.cs.tu-berlin.de/~tolk/xmlspaces/webxmlspaces.pdf, 2001.

[15] G.C. Wells. A Programmable Matching Engine for Application Development in
Linda. PhD thesis, University of Bristol, U.K., 2001.



[16] G.C. Wells, A.G. Chalmers, and P.G. Clayton. A comparison of Linda
implementations in Java. In P.H. Welch and A.W.P. Bakkers, editors,
Communicating Process Architectures 2000, volume 58 of Concurrent Systems
Engineering Series, pages 63–75. IOS Press, September 2000.

[17] G.C. Wells, A.G. Chalmers, and P.G. Clayton. Linda implementations in
Java for concurrent systems. Concurrency and Computation: Practice and
Experience, 16:1005–1022, August 2004.

[18] World Wide Web Consortium. XML Path language (XPath) version 1.0.
W3C Recommendation, URL: http://www.w3.org/TR/xpath.html, November
1999.

[19] P. Wyckoff, S. W. McLaughry, T. J. Lehman, and D. A. Ford. T Spaces. IBM
Systems Journal, 37(3):454–474, 1998.

[20] S.E. Zenith. A rationale for programming with Ease. In J.P. Banâtre and
D. Le Métayer, editors, Research Directions in High-Level Parallel Programming
Languages, volume 574 of Lecture Notes in Computer Science, pages 147–156.
Springer-Verlag, 1992.


