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ON THE STRUCTURE OF P (n)∗P ((n)) FOR p = 2

CHRISTIAN NASSAU

Abstract. We show that P (n)∗(P (n)) for p = 2 with its geometrically in-
duced structure maps is not an Hopf algebroid because neither the augmenta-
tion ε nor the coproduct ∆ are multiplicative. As a consequence the algebra
structure of P (n)∗(P (n)) is slightly different from what was supposed to be
the case. We give formulas for ε(xy) and ∆(xy) and show that the inver-
sion of the formal group of P (n) is induced by an antimultiplicative involution
Ξ : P (n)→ P (n). Some consequences for multiplicative and antimultiplicative
automorphisms of K(n) for p = 2 are also discussed.

1. Introduction and statement of the results

Let BP denote the Brown-Peterson spectrum for p = 2 and recall that BP∗ =
Z(2)[v1, v2, . . . ] with |vn| = 2(2n−1). As usual we let v0 = 2. BP is a commutative
ring spectrum and there are related ring spectra P (n) = BP/(v0, v1, . . . , vn−1),
n ≥ 1, which are connected by the Baas-Sullivan cofiber sequences

Σ|vn|P (n) ·vn−−−−→ P (n)
ηn−−−−→ P (n+ 1) ∂n−−−−→ Σ|vn|+1P (n).

From the Baas-Sullivan cofiber triangles one obtains Bockstein operations Qn−1 =
∂n−1ηn−1 : P (n)→ Σ|vn−1|+1P (n).

There are essentially two multiplications m, m on P (n) that are worth con-
sideration. These are characterised recursively by the fact that they make P (n)
into a P (n − 1) algebra spectrum (cf. [W1] with corrections in [N]). Here we
let P (0) = BP . Both of them are noncommutative: one has m = mT , where
T : P (n)∧P (n)→ P (n)∧P (n) is the switch map. More explicitly their relation is
given by (cf. [M])

m = m+ vnm(Qn−1 ∧Qn−1).(1)

Furthermore Qn−1 is a derivation with respect to both products. For all this the
reader is referred to [R1], [R2], [W1] and [W2].

We prove the following lemma in section 2 which also contains a formula for
∆(xy).

Lemma 1. Let ε : P (n)∗(P (n)) → P (n)∗ be the augmentation defined by ε =
π∗(m). Then for all x, y ∈ P (n)∗(P (n)) we have

ε(xy) = ε(x)ε(y) + vnε(Qn−1x)ε(Qn−1y).(2)
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Recall from [KW] the elements ai, 0 ≤ i < n, in P (n)∗(P (n)) with |ai| = 2i+1−1.
Recall also that BP∗(BP ) = BP∗[t1, t2, t3, . . . ] with |ti| = 2(2i−1). We will denote
the image of ti under the canonical map BP∗(BP )→ P (n)∗(P (n)) again by ti. Let
P (n) denote the spectrum P (n) with multiplication m.

Lemma 1 leads immediately to the following modification of the main result of
[KW].

Theorem 2 ([KW]). P (n)∗(P (n)) and P (n)∗(P (n)) are polynomial algebras over
P (n)∗ on the generators

{ a0, a1, . . . , an−1 } ∪ { ti | i > n }.
There are relations

a2
i =

{
ti+1 + vi+1 in P (n)∗(P (n)),
ti+1 in P (n)∗(P (n)).

Here vk is to be interpreted as 0 if k < n.

For commutative ring spectra E and X that satisfy Kronecker duality it is well
known that Kronecker duality sets up a one-to-one correspondence between mor-
phisms of ring spectra X → E and algebra morphisms E∗(X) → E∗. Lemma 1
shows that this is no longer true for the spectra P (n) since the augmentation ε is
the Kronecker dual of the identity id : P (n)→ P (n). We investigate this problem
in section 3 and prove the following two theorems.

Theorem 3. There is an antimultiplicative involution Ξ : P (n)→ P (n) which on
Euler classes of complex line bundles L is given by e(L) 7→ e(L−1).

Let K(n) denote the nth Morava K-theory at p = 2. It inherits two mul-
tiplications from P (n) of which each is the opposite of the other. Let Mult+

(resp. Mult−) denote the set of all multiplicative (resp. antimultiplicative) automor-
phisms of K(n). Then Mult± := Mult+ ∪Mult− is a group. Recall from [Y] that
the map Z 3 k 7→ [k]Fn(x) ∈ End(Fn) extends to an isomorphism Z2

∼= End(Fn),
where Fn is the formal group law associated to K(n), End(Fn) is the endomorphism
ring of Fn (considered as a formal group over the graded ring K(n)∗) and Z2 is the
ring of 2-adic integers.

Theorem 4. The canonical map Mult± → Aut(Fn) is an isomorphism of groups.
Mult+ (resp. Mult−) corresponds to those x ∈ Z∗2 that are congruent to 1 (resp. −1)
modulo 4.

This paper is a condensed version of my Diplomarbeit [N] which I wrote under
the supervision of Professor R. Kultze. I want to take this opportunity to thank
him for paying close attention to certain parts of that work. I also thank the
Studienstiftung des Deutschen Volkes for support during my studies. Finally, my
thanks also go to Andrey Lazarev and the referee for pointing out some minor
inconsistencies.

2. Proofs

Regard n as fixed and write v instead of vn, Q instead of Qn−1. Choose once and
for all an admissible multiplication m : P (n) ∧ P (n) → P (n). We will repeatedly
make use of the following fact, mostly without explicitly mentioning it.
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Useful fact. Left and right multiplication by v, denoted Lv and Rv, agree, that
is we have m(v ∧ id) = m(id∧v) as maps P (n)→ P (n).

Proof. Suppressing the coherent chain of identifications S ∧P (n) ∼= P (n) ∼= P (n)∧
S ∼= S ∧P (n) from the notation we can write m(v ∧ id) = mT (id∧v) = m(id∧v) +
vm(Q∧Qv). But Qv = 0 since v is in the image of the canonical map BP∗ → P (n)∗
and Q = ηn−1∂n−1 annihilates this (∂n−1 already does).

The benefit of this observation is that we don’t have to worry about the nonco-
mutativity of the multiplication as long as one factor is vn.

We can now prove Lemma 1. The proof is straightforward: just draw the relevant
diagrams and check that they commute. This diagramatic reasoning is, however,
not very enlightening. (Such proofs were given in [N], and anybody who had a
glimpse of that will agree instantly. This is especially true for the proof of Lemma
5 which would require at least A3 paper.) The simple facts behind it become much
clearer when written out using fictitious elements of our spectra as placeholders as
in the following

Proof of Lemma 1. Recall that the Pontrjagin product of x, y ∈ P (n)∗(P (n)) is the
composite of x ∧ y : S ∼= S ∧ S → P (n) ∧ P (n) ∧ P (n) ∧ P (n) with

P (n) ∧ P (n) ∧ P (n) ∧ P (n) id∧T∧id−−−−−→ P (n) ∧ P (n) ∧ P (n) ∧ P (n)
and

P (n) ∧ P (n) ∧ P (n) ∧ P (n) m∧m−−−−→ P (n) ∧ P (n).

So ε(xy) = π∗(m)(xy) is naturally given as a composite of x ∧ y : S → P (n)∧4

and a certain map φ from P (n)∧4 to P (n) which is made up of multiplications
and transpositions only. Fictitious elements a, b, c, d ∈ P (n) can be used to keep
track of these multiplications and transpositions; then, for example, ε is given by
(a, b) 7→ ab and the Pontrjagin product of x = (a, b) and y = (c, d) is (ac, bd). In
this notation φ becomes

P (n)∧4 3 (a, b, c, d) 7→ (a, c, b, d) 7→ (ac, bd) 7→ acbd ∈ P (n).

We compare this with ε(x)ε(y). This can be decomposed similarly as ψ(x∧ y) with
ψ : P (n)∧4 → P (n) given by

(a, b, c, d) 7→ (ab, cd) 7→ abcd.

Writing (1) as cb = bc+ vQ(b)Q(c) we obtain

φ(a, b, c, d) = ψ(a, b, c, d) + vψ(a,Q(b), Q(c), d).

If one observes that (a,Q(b)) = Q∗(x) and (Q(c), d) = Q(y) this can be rephrased
as saying that

ε(xy) = ε(x)ε(y) + vnε(Q∗(x))ε(Q(y)).(3)

This is (2) except that we have Q∗(x) instead of Q(x). But we shall see later
that Q∗ : P (n)∗(P (n)) → P (n)∗(P (n)) and Q : P (n)∗(P (n)) → P (n)∗(P (n)) are
identical, so this finishes the proof.

The categorically minded reader will probably (and rightly so) frown on these
“elements” since obviously their sole purpose is to hide some general nonsense facts
about monoidal categories. I could not find a convenient reference, however, and it
wouldn’t really have improved the exposition.
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Next we show how Lemma 1 afflicts the algebra structure of P (n)∗(P (n)).

Proof of Theorem 2. Following the proof of Theorem 1.4 in [KW] up to the middle
of page 199 one finds that the additive structure of P (n)∗(P (n)) and enough of
the multiplicative structure have been determined to leave open only the question
whether a2

n−1 = tn or a2
n−1 = tn + vn. It is shown that

a2
n−1 =

{
tn if ε(a2

n−1) = 0,
tn + vn if ε(a2

n−1) = vn.

In Lemma 2.2 the authors also observed that Qn−1(an−1) = 1, and a similar argu-
ment shows that Qn−1∗(an−1) = 1, too. From (3) it follows that

ε(a2
n−1) = ε(an−1)2 + vnε(Qn−1∗(an−1))ε(Qn−1(an−1)) = vn,

so that a2
n−1 = tn + vn in P (n)∗(P (n)).

To prove the claim about the structure of P (n)∗(P (n)) we will first prove that

x ? y = x ? y + vnQ∗(x) ? Q∗(y)(4)

for x, y ∈ P (n)∗(P (n)). Here Q = Qn−1 and (just for this proof) ? (resp. ? )
denotes Pontrjagin multiplication in P (n)∗(P (n)) (resp. P (n)∗(P (n))). This is
easily accomplished using fictitious elements again. With x = (a, b), y = (c, d) we
have

x ? y = (a, b) ? (c, d) = (ac, db), x ? y = (a, b) ? (c, d) = (ac, bd).

Using (1) we get

(ac, db) = (ac, bd) + vn(ac,Q(b)Q(d)) = x ? y + vnQ∗(x) ? Q∗(y).

From this we get an−1 ? an−1 = tn + vn + vn = tn as claimed. (4) shows also
that x ? y = x ? y whenever x or y lies in the subalgebra generated by a0, . . . , an−2

and the ti; since this subalgebra comes from P (n− 1)∗(P (n− 1)) it is annihilated
by Q and Q∗. So the rest of the multiplicative structure is not affected.

Note that both Q : P (n)∗(P (n)) → P (n)∗(P (n)) and Q∗ : P (n)∗(P (n)) →
P (n)∗(P (n)) are derivations. In the proof just given we noted that they agree on
the algebra generators of Theorem 2, so we obtain another

Useful fact. Q,Q∗ : P (n)∗(P (n))→ P (n)∗(P (n)) are equal.

This has been used in the proof of Lemma 1 above and will be used henceforth
without explicit reference.

To give a formula for ∆(xy) we first have to recall the definition of the coproduct

∆ : P (n)∗(P (n))→ P (n)∗(P (n))⊗P (n)∗ P (n)∗(P (n)).

There are two ingredients: firstly the map

∆ : P (n)∗(P (n)) ∼= π∗(P (n) ∧ S ∧ P (n))
π∗(id∧i∧id)−−−−−−−−→ π∗(P (n) ∧ P (n) ∧ P (n)),

where i : S → P (n) is the unit. Secondly

χ : P (n)∗(P (n))⊗P (n)∗ P (n)∗(P (n))→ π∗(P (n) ∧ P (n) ∧ P (n))

which is given by x ⊗ y 7→ (id∧m ∧ id)(x ∧ y) and which is an isomorphism since
P (n)∗(P (n)) is P (n)∗-flat. ∆ is defined to be χ−1∆.
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Recall that P (n)∗(P (n)) is a bilateral P (n)∗-module, courtesy of the left and
right unit maps ηL, ηR : P (n)∗ → P (n)∗(P (n)). The “⊗”s above are to be under-
stood with respect to this bimodule structure. Luckily, vn is invariant in P (n)∗, so
we don’t need to discriminate between vnx⊗ y, xvn ⊗ y, x⊗ vny and x⊗ yvn.

Lemma 5. For all x, y ∈ P (n)∗(P (n)) we have

∆(xy) = ∆(x)∆(y) + vn ([(id⊗Qn−1)∆(x)][(Qn−1 ⊗ id)∆(y)]) .

Proof. First note that there is an obvious algebra structure on π∗(P (n) ∧ P (n) ∧
P (n)). With elements (a, b, c) and (d, e, f) this is given by

(a, b, c) · (d, e, f) = (ad, be, cf).

∆ is given by (a, b) 7→ (a, 1, b) so it is obviously multiplicative.
χ, however, is not multiplicative. Let x = (a, b) ⊗ (c, d), y = (e, f) ⊗ (g, h) be

elements of P (n)∗(P (n))⊗P (n)∗ P (n)∗(P (n)). Then xy = (ae, bf)⊗ (cg, dh) and

χ(xy) = (ae, bfcg, dh).

On the other hand χ(x) = (a, bc, d), χ(y) = (e, fg, h) so that

χ(x)χ(y) = (ae, bcfg, dh).

Using fc = cf + vnQ(c)Q(f) we get

χ(xy) = (ae, bcfg, dh) + (ae, bQ(c)vnQ(f)g, dh)

= χ(x)χ(y) +Mvχ((id⊗Q)x)χ((Q∗ ⊗ id)y).
(5)

Here we used that (id⊗Q)x = (a, b)⊗ (Q(c), d) and (Q∗⊗ id)y = (e,Q(f))⊗ (g, h).
Mv denotes multiplication by vn in the middle.

Using (5) we can verify the formula for ∆(xy) given in the lemma: we have to
show that

χ (∆(x)∆(y) + vn ([(id⊗Q)∆(x)][(Q∗ ⊗ id)∆(y)])) = ∆(xy).

We compute

χ (∆(x)∆(y) + vn ([(id⊗Q)∆(x)][(Q∗ ⊗ id)∆(y)]))
= χ(∆(x)∆(y)) +Mvχ ([(id⊗Q)∆(x)][(Q∗ ⊗ id)∆(y)])
= χ(∆(x))χ(∆(y))
+ Mvχ ([(id⊗Q)∆(x)])χ ([(Q∗ ⊗ id)∆(y)])
+ Mvχ ([(id⊗Q)∆(x)])χ ([(Q∗ ⊗ id)∆(y)])
+ M2

vχ
(
[(id⊗Q)2∆(x)]

)
χ
(
[(Q∗ ⊗ id)2∆(y)]

)
= χ(∆(x))χ(∆(y)) (since Q2 = Q2

∗ = 0)

= ∆(x)∆(y)

= ∆(xy).

Using the identities (Q⊗ id)∆(x) = ∆(Qx) and (id⊗Q∗)∆(x) = ∆(Q∗(x)) one
can check that Lemma 5 says that ∆ is an algebra homomorphism

P (n)∗(P (n))→ P (n)∗(P (n))⊗P (n)∗ P (n)∗(P (n)).

This observation might at least mnemonically be useful.
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3. Multiplicative and antimultiplicative maps

To get at multiplicative or antimultiplicative maps P (n) → P (n) or K(n) →
K(n) we need to be able to characterise them in terms of their Kronecker duals.
The following lemma is a first step.

Lemma 6. Let E and X be ring spectra and suppose that the Kronecker homo-
morphism

E∗(X ∧X) −−−−→ HomE∗(E∗(X ∧X), E∗)

is an isomorphism. Assume that E∗(X) is a flat E∗-module. Then a θ : X → E is
multiplicative iff

ε(θ∗(xy)) = ε(θ∗(x)θ∗(y))(6)

holds for all x, y ∈ E∗(X).

Proof. θ is multiplicative iff θmX = mE(θ ∧ θ). Both are maps from X ∧X to E,
so by Kronecker duality this is equivalent to

ε((θmX)∗(z)) = ε((mE(θ ∧ θ))∗(z))

for all z ∈ E∗(X ∧ X). Since E∗(X) is a flat E∗-module, the exterior homology
product ∧ : E∗(X) ⊗E∗ E∗(X) → E∗(X ∧ X) is an isomorphism. Hence we can
assume that z = x∧ y for x, y ∈ E∗(X). The lemma follows because θ∗(x∧ y) =
θ∗(x)∧ θ∗(y), xy = (mX)∗(x∧ y) and θ∗(x)θ∗(y) = (mE)∗(θ∗(x)∧ θ∗(y)).

For the P (n) this gives

Lemma 7. Let θ : P (n) → P (n) be any map and denote its Kronecker dual by θ̄.
Then θ is multiplicative iff

θ̄ : P (n)∗(P (n))→ P (n)∗
is an algebra homomorphism. It is antimultiplicative iff

θ̄ : P (n)∗(P (n))→ P (n)∗.

is an algebra homomorphism.

Proof. We prove the assertion about multiplicative maps only, the antimultiplica-
tive case being completely analogous.

According to Lemma 6 θ is multiplicative iff (6) holds. Using (2) this may be
rewritten

ε(θ∗(xy)) = ε(θ∗(x))ε(θ∗(y)) + vnε(Qθ∗(x))ε(Qθ∗(y)).(7)

Let ? denote the multiplication in P (n)∗(P (n)). We recall from the proof of Theo-
rem 2 that x ? y = xy+ vnQ(x)Q(y). So θ̄ : P (n)∗(P (n))→ P (n)∗ is multiplicative
iff

ε(θ∗(xy + vnQ(x)Q(y))) = ε(θ∗(x))ε(θ∗(y)).(8)

From both (7) and (8) we can conclude that

ε(θ∗(x))ε(θ∗(y)) = ε(θ∗(xy)) if Qx = 0 or Qy = 0.(9)

So to show the equivalence of (7) and (8) we may assume (9). But from (9) it
follows easily that

vnε(Qθ∗(x))ε(Qθ∗(y)) = vnε(θ∗(Q(x)Q(y))),
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which is the difference between (7) and (8). (Use that QQ = 0 and Qθ∗ = θ∗Q.)

To prove Theorems 3 and 4 we have to recall the relation of the P (n) to for-
mal group laws. [R1], especially Appendix 2, is a good reference for most of this
material.

(P (n)∗, P (n)∗(BP )) inherits from (BP∗, BP∗(BP )) an Hopf algebroid structure.
Recall that P (n)∗(BP ) is the P (n)∗-subalgebra of P (n)∗(P (n)) generated by the
ti. For a ring R of characteristic 2 the set of ring homomorphisms P (n)∗ → R
may naturally be identified with the set FGn(R) of all 2-typical formal group laws
of height ≥ n over R. Similarly, the ring P (n)∗(BP ) corepresents the set SIn(R)
of triples (F, f,G) with F,G ∈ FGn(R) and f : G → F a strict isomorphism.
Given φ : P (n)∗(BP )→ R the triple (F, f,G) is obtained as follows: F (resp. G) is
the formal group law classified by φηL (resp. φηR). The isomorphism f(x) is then
defined by

f−1(x) = x+F

∑F

i≥1

φ(ti)x2i .

Proof of Theorem 3. We are particularly interested here in the natural transfor-
mation FGn(R) 3 F 7→ (F, [−1]F (x), F ) ∈ SIn(R). This is induced by a ring
homomorphism δn : P (n)∗(BP ) → P (n)∗. These δn are obviously compatible as
n varies and, obviously again, δnηL = δnηR = id, so δn is P (n)∗-linear. If we can
extend this to an algebra map

δn : P (n)∗(P (n))→ P (n)∗

its Kronecker dual Ξ : P (n) → P (n) will be antimultiplicative by Lemma 7 and
will by construction have the stated effect on Euler classes.

We don’t have much choice in extending δn: since |ai| is odd for every i and
P (n)∗ does not have nonzero odd dimensional elements we have to let δn(ai) = 0,
so the required multiplicativity implies that there is at most one such extension.
All we have to do is to check that this is consistent with the relations a2

i = ti+1,
0 ≤ i < n − 1 and a2

n−1 = tn + vn. So we have to show that δn(ti) = 0 for
1 ≤ i ≤ n− 1 and that δn(tn) = vn.

The first requirement follows easily from dimensional considerations. To see that
δn(tn) = vn recall that with Araki’s vk we have

[2]F (x) = 2x+F v1x
2 +F v2x

4 +F · · ·+F vkx
2k +F · · ·

for the formal group law F of BP . For the formal group Pn of P (n) this gives
[2]Pn(x) = vnx

2n+ higher terms. Comparing coefficients in [−1]Pn(x)+Pn [2]Pn(x) =
x then gives the result.

That Ξ is an involution is quite clear: since Ξ2 is multiplicative its Kronecker
dual ε is an algebra homomorphism P (n)∗(P (n))→ P (n)∗. Since it is the identity
on Euler classes of complex line bundles its restriction to P (n)∗(BP ) agrees with
ε. Since ε and ε both are multiplicative extensions of this restriction, uniqueness
implies ε = ε, i.e. Ξ2 = id.

To prove Theorem 4 we first have to carry over some of the results on P (n) to
K(n). Let K(n)∗ = F2[vn, v−1

n ] as a module over P (n)∗. Then X 7→ K(n)∗ ⊗P (n)∗

P (n)∗(X) =: K(n)∗(X) is a homology theory on the stable homotopy category and
X 7→ HomK(n)∗(K(n)∗(X),K(n)∗) a cohomology theory, and both are represented
by the same spectrum K(n). The two multiplications m and m on P (n) give similar
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ring spectrum structures on K(n) that will be denoted by the same symbols. The
Bockstein Qn−1, too, carries over to K(n) and (1) still holds. If we denote the
augmentation of K(n)∗(K(n)) again by ε then (2) continues to hold, too. Let K(n)
have the obvious meaning.

To get at the structure of K(n)∗(K(n)) and K(n)∗(K(n)) let

Σn = K(n)∗ ⊗P (n)∗ P (n)∗(BP )⊗P (n)∗ K(n)∗

be the nth Morava stabiliser algebra (cf. [R1], ch. 6). The following lemma follows
easily from Theorem 2 and the definitions.

Lemma 8. We have

K(n)∗(K(n)) = Σn[a0, . . . , an−1]

with relations a2
i = ti+1 + vi+1 for 0 ≤ i ≤ n− 1 and

K(n)∗(K(n)) = Σn[a0, . . . , an−1]

with relations a2
i = ti+1 for 0 ≤ i ≤ n− 1.

Lemma 7 carries over, too, as does its proof.

Lemma 9. Let θ : K(n)→ K(n) be any map and denote its Kronecker dual by θ̄.
Then θ is multiplicative iff

θ̄ : K(n)∗(K(n))→ K(n)∗

is an algebra homomorphism. It is antimultiplicative iff

θ̄ : K(n)∗(K(n))→ K(n)∗.

is an algebra homomorphism.

Finally recall (and there will be no more recollections, I promise) that graded ring
homomorphisms Σn → K(n)∗ classify strict graded automorphisms of the canonical
formal group law Fn overK(n)∗ and that the group Aut(Fn) of such automorphisms
is isomorphic to Z∗2, the isomorphism being given by Z∗2 3 k 7→ [k]Fn(x) ∈ Aut(Fn).

Proof of Theorem 4. For each φ ∈ Aut(Fn), φ : Σn → K(n)∗, we have to provide
a multiplicative extension to either K(n)∗(K(n)) → K(n)∗ or K(n)∗(K(n)) →
K(n)∗. As in the proof of Theorem 3, an extension to the former will exist (and
be unique) iff φ(ti) = 0 for 1 ≤ i ≤ n − 1 and φ(tn) = vn. The first condition
is automatically satisfied for dimensional reasons. Similarly, an extension to the
latter exists iff φ(tn) = 0. Since 0 and vn are the only elements in K(n)∗ of degree
|tn| exactly one of these conditions is fulfilled. (We leave it to the interested reader
to verify that φ(tn) depends on the congruence class of φ modulo 4 in the way
claimed.) Thus we obtain a well-defined map

Aut(Fn)→ Mult±

which is an inverse to the geometrically defined map

Mult± → Aut(Fn)

that gives the effect on Euler classes. Since the latter is obviously a group homo-
morphism, we are done.
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