C.P. Schnorr: Security of $\mathbf{2}^{t}$-Root Identification and Signatures,

 Proceedings CRYPTO'96, Springer LNCS 1109, (1996), pp. 143-156page 148, section 3 , line 5 of the proof of Theorem 3.
Correction. The proposed factoring method
Check whether $\left\{\operatorname{gcd}\left(Y^{2^{i}} \pm Z^{2^{i+\ell}}, N\right)\right\}=\{p, q\}$ holds for some i with $0 \leq i<t$
fails if $Y^{2^{i}}=-Z^{2^{i+\ell}}$ holds for some i with $0 \leq i<t$, otherwise it factors N with probability $\frac{1}{2}$. In the first case continue the factoring algorithm as follows until it factors N with probability $\frac{1}{2}$:
Supplemental steps to the factoring algorithm. Repeat the entire algorithm using independent coin flips and construct independent pairs (Y, Z) with $Y^{2^{t}}=Z^{2^{t+\ell}} \bmod N$ until either of the following two cases arises.
Case I. $Y^{2^{i}} \neq-Z^{2^{i+\ell}}$ for all i with $0 \leq i<t$ holds for some (Y, Z). Then terminate as the proposed factoring method succeeds using Y, Z with probability $\frac{1}{2}$.

Case II. $Y^{2^{i}}=-Z^{2^{i+\ell}}$ holds for two independent pairs $(Y, Z),\left(Y^{\prime}, Z^{\prime}\right)$. Then replace these pairs by $\left(Y_{\text {new }}, Z_{\text {new }}\right)$ with $Y_{\text {new }}:=Y Y^{\prime}, Z_{\text {new }}:=Z Z^{\prime}$. If $Y_{\text {new }}^{2^{\text {new }}}=-Z_{\text {new }}^{2^{\text {new }}+\ell}$ holds for some $i_{\text {new }}$ then we have $i_{\text {new }}<i$, otherwise terminate (as the proposed factoring method succeeds using $Y_{\text {new }}, Z_{\text {new }}$ with probability $\frac{1}{2}$).
Continue the repetitions of the entire algorithm using idependent coin flips and continue to decrease i until the algorithm either terminates in Case I or enters Case II with $i=1$. In the latter case the proposed factoring method succeeds using $Y_{\text {new }}, Z_{\text {new }}$ with probability $\frac{1}{2}$, in particular $\left\{\operatorname{gcd}\left(Y_{\text {new }} \pm Z_{\text {new }}, N\right)\right\}=\{p, q\}$ holds with probability $\frac{1}{2}$.

With the supplemental steps the algorithm factorizes N with probability $\frac{1}{2}$. The supplemental steps increase the time bound for factoring by a factor $O(\ell)$. The correctness proof of the amended factoring method uses the following observation

We see from $Y^{2^{t}}=Z^{2^{t+\ell}} \bmod N$ that $Z^{2^{\ell}} / Y$ is a 2^{t}-root of $1 \bmod N$. This root is not necessarily uniformly distributed over all 2^{t}-roots of $1 \bmod N$. But it is uniformly distributed within certain cosets.

Fact. Let $Y=Y\left(Z^{2^{t}}\right)$ be a function of $Z^{2^{t}}$ that solves $Y^{2^{t}}=Z^{2^{t+\ell}} \bmod N$ with $\ell<t$. Then $Z^{2^{\ell}} / Y$ takes the roots in $c_{0} R_{N}\left(2^{t}\right)^{2^{\ell}}$ with equal probability for all $c_{0} \in R_{N}\left(2^{t}\right)$, where $R_{N}\left(2^{t}\right)$ denotes the group of 2^{t}-roots of $1 \bmod N$ and $R_{N}\left(2^{t}\right)^{2^{\ell}} \subset R_{N}\left(2^{t}\right)$ denotes the subgroup of 2^{ℓ}-powers.

All subsequent factoring algorithms in the paper have to be amended in the same way.

