
Security of Almost ALL Discrete Log Bits

C.P. Schnorr

Fachbereich Mathematik/Informatik
Universität Frankfurt, Germany

and
Bell Laboratories

Murray Hill, New Jersey
schnorr@cs.uni-frankfurt.de

February 18, 1999

Abstract

Let G be a finite cyclic group with generator α and with an encoding so that multiplication
is computable in polynomial time. We study the security of bits of the discrete log x
when given expα(x), assuming that the exponentiation function expα(x) = αx is one-
way. We reduce he general problem to the case that G has odd order q. If G has odd
order q the security of the least-significant bits of x and of the most significant bits of
the rational number x

q ∈ [0, 1) follows from the work of Peralta [P85] and Long and

Wigderson [LW88]. We generalize these bits and study the security of consecutive shift
bits lsb(2−ix mod q) for i = k + 1, ..., k + j. When we restrict expα to arguments x such
that some sequence of j consecutive shift bits of x is constant (i.e., not depending on x)
we call it a 2−j-fraction of expα.

For groups of odd group order q we show that every two 2−j-fractions of expα are
equally one-way by a polynomial time transformation: Either they are all one-way or
none of them. Our key theorem shows that arbitrary j consecutive shift bits of x are
simultaneously secure when given expα(x) iff the 2−j-fractions of expα are one-way. In
particular this applies to the j least-significant bits of x and to the j most-significant bits
of x

q ∈ [0, 1).
For groups of order 2sq with odd q we show that the j least-significant bits of bx/2sc,

as well as the j most-significant bits of x
q ∈ [0, 1), are simultaneously secure iff the 2−j-

fractions of expα′ are one-way for α′ := α2s

. For groups of order 2sq with prime q we show
that all except the first s bits of x are individually secure when given expα(x) provided
that expα is one-way. This result relies on the method of Håstad, Näslund [HN98].

We use and extend the models of generic algorithms of Nechaev (1994) and Shoup
(1997). We determine the generic complexity of inverting fractions of expα for the case
that α has prime order q. As a consequence, arbitrary segments of (1− ε) lg q consecutive
shift bits of random x are for constant ε > 0 simultaneously secure against generic attacks.
Every generic algorithm using t generic steps (group operations) for distinguishing bit
strings of j consecutive shift bits of x from random bit strings has at most advantage
O((lg q) j

√
t (2j/q)

1
4).

Keywords. Hard bit, secure bit, discrete logarithm, exponentiation, fractions of exponenti-
ation, simultaneous security of bits, one-way function, generic network, generic one-wayness.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hochschulschriftenserver - Universität Frankfurt am Main

https://core.ac.uk/display/14504242?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

An interesting problem for a one-way function f(x) is to locate the hard/secure bits in the
n-bit argument x which cannot be predicted from the function value f(x) in polynomial time
with success probability 1

2 + 1/poly(n). Blum and Micali [BM84] introduced the notion of
hard bits, respectively hard-core predicates. Goldreich and Levin [GL89] have shown that
every one-way function f has logarithmically many one-bit predicates that are simultaneously
secure for given f(x).

Specifically, the exponentiation function expα(x) = αx of a finite cyclic group G with
generator α is a well known candidate one-way function that gives rise to various cryptographic
applications. Let P be a prime such that (P − 1)/2s is an odd integer and let G = Z∗P be the
multiplicative group of integers modulo P . Peralta [P85] shows that the O(dlg lg P e) least-
significant bits of bx/2sc are simultaneously secure when given expα(x) ∈ Z∗P provided that
expα is one-way. Long and Wigderson [LW88] show that the O(dlg lg P e) most-significant
bits of the rational number x

q ∈ [0, 1) are secure when given expα(x) ∈ Z∗P . Kaliski [K86]
showed that individual bits of the elliptic curve group addition problem are hard (in the
Blum Micali sense) using a novel oracle proof technique applicable to any finite Abelian
group. Hastad, Schift, Shamir [HSS93] prove that n/2 bits of an n bit discrete log are
simultaneously secure for G = Z∗N with a random Blum modulus N provided that factoring
Blum integers is hard. A Blum integer is a product of two primes that are both congruent
3 mod 4. Proving simultaneous security of more than logarithmically many discrete log bits
is still an open problem for general groups.

In this paper we study the discrete logarithm for arbitrary cyclic groups G with an en-
coding so that multiplication is computable in polynomial time, polynomial time refers to the
bit length n of the order of G. We generalize the least-significant bits of x mod q and the
most-significant bits of x

q and we study the security of consecutive shift bits lsb(2−ix mod q)
for i = k + 1, ..., k + j when given expα(x). We reduce the general problem to the case that
the group G has odd order q. When we restrict expα to arguments x such that some sequence
of j consecutive shift bits of x is constant in {0, 1}j (i.e., does not depend on x) we call it a
2−j-fraction of expα.

For groups of odd order q we prove in Section 3 that all 2−j-fractions of expα are equally
one-way by polynomial time transformations: Either they are all one-way or none of them.
We prove in Theorem 5 that arbitrary j consecutive shift bits of x are simultaneously secure
when given expα(x) iff the 2−j-fractions of expα are one-way. In particular this applies to the
j least-significant bits of x as well as to the j most-significant bits of x

q . We note that if expα

is one-way and the group order q is prime then all individual bits of x are secure when given
expα(x). This follows from the proof method of Håstad, Näslund [HN98].

In Section 4 we consider groups G of even order 2sq. We show that given expα(x) the j
least-significant bits of bx/2sc as well as the j most-significant bits of x

q are simultaneously
secure iff the 2−j-fractions of expα′ are one-way for α′ := α2s

. Note that expα′ is associated
with the subgroup G′ ⊂ G of 2s-powers which has generator α′ and order q. We transform
the given y = expα(x) ∈ G in poly-time into some y′ ∈ G′ such that the (s + i)-th bit of
logα(y) coincides with the i-th bit of logα′(y′).

In Section 5 we prove one-wayness of 2−j-fractions of expα in the model of generic algo-
rithms, i.e., for algorithms that do not depend on the encoding of the group. Models of generic
algorithms have been introduced by Nechaev [Ne94] and Shoup [Sh97], we further extend
these modelsby enlarging the class of group operations. The Nechaev, Shoup generic lower

2

bounds for the discrete logarithm extend to small fractions of expα. For groups of prime order
q we determine the generic complexity of inverting fractions of expα. As a consequence almost
all discrete log bits are simultaneously secure against generic attacks. Generic one-wayness
of fractions of expα is the best result we can hope for, as the known complexity lower bounds
for the discrete logarithm are bound to the generic model. We have the same evidence for
the hardness of the discrete logarithm problem and for the simultaneous security of almost all
discrete log bits. In the non-generic setting these problems are completely open. For generic
algorithms these problems are equivalent by Theorems 11 and 13.

2 Preliminaries

Notation. We use for computation the model of probabilistic poly-time Turing machines
(pptm for short) running in time poly(n) where n is the length of the input. We let lg denote
the logarithm with base 2. If S is a set and D a distribution on S then by x ∈D S we mean
an x chosen at random according to the distribution D. If D is the uniform distribution we
write x ∈R S.

A probability PrD refering to a distribution D on S is called negligible if PrD < n−c
S for

all constants c > 0 and for all sufficiently large nS . Here the set S is variable refering to a
family of sets. A one-way function is a poly-time computable function f such that for every
pptm M the probability that f(M(f(x))) = x is negligible. The probability is taken over
the random x and M ’s random coin flips.

Let D,D′ be distributions on the same space S. We call D,D′ poly-time indistinguishable
if for all pptm D |Prs∈DS [D(s) = 1]− Prs′∈D′S [D(s′) = 1]| is negligible.

Let G be a cyclic group with generator α and order 2sq with an odd integer q and s ≥ 0,
0 < 2sq < 2n. If y = expα(x) = αx then x = logα(y) is the discrete logarithm of y. Discrete
log’s range over the ring Z2sq = Z/2sqZ of integers modulo 2sq. We represent elements x ∈ Z2sq

by their least non-negative residue [x]2sq in the interval [0, 2sq). We use [x]2sq for arithmetic
expressions over Z while the arithmetic for x ∈ Z2sq is always modulo 2sq. Except for Section
4 we let the group order be odd, |G| = q. In Section 4 we reduce the general problem to the
case of odd group order.

Least-significant, most-significant and shift bits. The binary representation x =
[x]q =

∑n
i=1 lsi(x)2i−1 uses lsi(x) := b[x]q/2i−1c, also called the i-th least-significant bit of

x. Let Lj(x) denote the integer
∑j

i=1 lsi(x)2i−1 of the first j ls-bits of x. The bits msi(x) of
the binary representation 1

q [x]q =
∑∞

i=1 msi(x)2−i ∈ [0, 1) are also called the most signif-
icant bits of x [LW88]. Identifying true = 1, false = 0 we have ms1(x) = ”x > q/2” and
msi(x) = ”[2i−1x]q > q/2” = ”[2ix]2q > q” for i = 1, 2,

Definition. We call lsb(2−ix) := ls1([2−ix]q) for arbitrary integers i the i-th shift bit of x.
Note that [2−ix]q is the integer in [0, q) that represents 2−ix mod q where we divide modulo
q by 2i.

We have lsb(2ix) = msi(x) for i = 1, 2, ... because 1
q [x]q > q/2 iff `(2x) = 1.

Lemma 1 shows that the bits lsb(2−ix) for i = 0, ..., j − 1 are equivalent to the first j ls-bits
of x. Thus the shift bits of x generalize at the same time both the ls-bits and the ms-bits of
arbitrary shifts of x ∈ Zq.

Lemma 1. [2−jx]q = 2−j([x]q +
∑j−1

i=0 lsb(2−ix) 2i q) for j = 1, 2,

3

Proof by induction on j. For j = 1 we have [12x]q = 1
2([x]q +lsb(x)q), which describes

binary division for Zq, see figure 1. This holds because we have [12x]q = 1
2 [x]q for even [x]q

and [12x] = 1
2([x]q + q) for odd [x]q. The claim for j > 1 follows by induction applying the

case j = 1 with x replaced by 2−j+1x. ¤

0 q

0 q
s

s s

[x]q

lsb(x) = 1lsb(x) = 0

[12x]q [12x]q

² ? ^
1
2q

figure 1: binary division

By multiplying the equation of Lemma 1 with 2j and taking it modulo 2j we get

[x]q = −∑j−1
i=0 lsb(2−ix)2iq mod 2j . (1)

Thus the bits lsb(2−ix) for i = 0, . . . , j−1 are equivalent to the first j ls-bits of x. In particular
Lj(x) and lsb(2−ix) for i = 0, . . . , j − 1 are equivalent by poly-time transformations.

Replacing in Lemma 1 x by 2jx we get

0 ≤ 1
q [x]q −

∑j
i=1 lsb(2ix)2−i < 2−j ,

∑j
i=1 lsb(2ix)2−i = b2j

q [x]qc,
which again shows that lsb(2ix) = msi(x). We resume these equivalences:

Proposition 2. The following entities are computationally equivalent for given q :
• Lj(x) = x mod 2j,
• lsi(x) for i = 1, ..., j, the first j ls-bits of x,
• lsb(2−ix) = msj−i(2−jx) for i = 0, . . . , j − 1 the first j ms-bits of 2−jx.

Corollary 3. Let G have odd order q. Given expα(x) every two shift bits lsb(2−ix) and
lsb(2−jx) of random x ∈ Zq are equally secure by poly-time transformations.

Proof. Let y = expα(x) ∈R G. The i-th shift bit lsb(2−ix) of x coincides with the j-th shift
bit lsb(2−jx′) of x′ = 2j−ix. We can attack lsb(2−ix) as the j-th shift bit of x′ when given
expα(x′). We get y′ = expα(x′) as y′ := yz with z := 2j−i mod q. The transformation
y 7→ y′ permutes G in polynomial time. It is not assumed in the theorem that the discrete
logarithm problem for G is hard. ¤
Writing discrete Log’s with all bits equally secure. If we encode the discrete logarithm
x into the bit sequence lsb(2−ix) for i = 1, ..., n then the individual bits of the encoding are
equally secure when given expα(x). From the encoding we easily get x via Equation 1.

4

3 Simultaneous security of discrete log bits, odd group order

Let G be a cyclic group with odd order q and generator α. We introduce the notion of 2−j-
fraction of the exponentiation function expα. Our key Theorem 5 shows that j consecutive
shift bits of the discrete logarithm x ∈ Zq are simultaneously secure when given expα(x)
iff the 2−j-fractions of expα are one-way. All 2−j-fractions of expα are equally one-way by
poly-time transformations. Moreover the first j ls-bits and the first j ms-bits of x are equally
secure when given expα.

We call the bits lsb(2−ix) for i = k + 1, ..., k + j simultaneously secure if the bit string
(lsb(2k+1x), ..., lsb(2j+k+1x)) is poly-time indistinguishable from random z ∈R {0, 1}j when
given expα(x) ∈R G. Formally, for every pptm D the difference

|Pr[D(expα(x), (lsb(2k+1x), ..., lsb(2j+k+1x))) = 1]− Pr[D(expα(x), z) = 1] |
must be negligible where the probability is over random x, z and D’s coin flips.

2−j-fractions of the exponentiation function. We call a part of expα – where j con-
secutive shift bits of x are restricted to some constant 0,1-vector – a 2−j-fraction of expα. A
2−j-fraction of expα – defined by a 0,1-vector (c1, ..., cj) and a integer k ∈ Z – is the restriction
of expα to arguments x satisfying lsb(2k+ix) = ci for i = 1, ..., j.

Clearly, if expα is one-way and j = O(lg n) then some 2−j-fraction of expα must be one-
way. However, if 2j is not polynomially bounded it is conceivable that no 2−j-fraction is
one-way.

We next normalize in various ways the problem whether a 2−j-fraction of expα is one-way.
The various 2−j-fractions of expα are all equally one-way by polynomial time transformations:
Either all 2−j-fractions of expα are one-way or none of them. In particular the one-wayness of
a random 2−j-fraction of expα – where j consecutive shift bits of x are set to a random vector
(c1, ..., cj) ∈R {0, 1}j – and that of the particular 2−j-fraction – where j consecutive shift bits
of x are set to zero – are equivalent by polynomial time transformations. Propositions 2 and
4 will be used throughout the reminder of the paper.

Proposition 4. The following problems are polynomial time equivalent :
• given expα(x) and arbitrary j consecutive shift bits of random x, find x.
• given expα(x) for random x with x = 0 mod 2j, find x.
• given expα(x) for random x with x < q2−j, find x.

Proof. The shift bits lsb(2k−ix) i = 0, . . . , j−1 coincide with the first j shift bits lsb(2−ix′)
i = 0, . . . , j − 1 of x′ := 2kx mod q. We easily get expα(x′) := expα(x)z with z = 2k mod q
from expα(x).

The case that lsb(2−ix) for i = 0, . . . , j− 1 are given is by Proposition 2 equivalent to the
case that the first j ls-bits of x are given.

In order to transform a random x with given Lj(x) into a random x′ with x′ = 0 mod 2j

replace the unknown x by x′ = x− Lj(x), and replace expα(x) = αx by αx−Lj(x).
We transform an unknown x with x = 0 mod 2j into x′ with x′ < q2j in that we replace

expα(x) by expα(x)z with z = 2−j mod q. ¤

Theorem 5. Arbitrary segments of j consecutive shift bits of random x are simultaneously
secure when given expα(x) iff the 2−j-fractions of expα are one-way.

5

Proof. Due to Proposition 4 the particular location of the j consecutive shift bits of x does
not matter. Moreover we can choose a particular 2−j-fraction of expα.

If the 2−j-fraction of expα is not one-way then j consecutive shift bits of x cannot be
simultaneously secure for given random expα(x). This is because we can distinguish j con-
secutive shift bits of x from truly random bits by inverting the corresponding 2−j-fraction of
expα i.e., we reconstruct x from expα(x).

Now suppose that for given random expα(x) the first j ls-bits of x are not simultaneously
secure, i.e. we can distinguish in probabilistic polynomial time and with non-negligible ad-
vantage δ the initial segment Lj(x) of x from a truly random z ∈R [0, 2j). (The advantage
δ is non-negligible in the bit length n of q, δ ≥ 1/poly(n). By Proposition 2 the first shift
bits and to the first ls-bits of x are equivalent.) By Yao’s argument, see [K97, section 3.5,
Lemma P1], there exists an integer j′ with 0 ≤ j′ < j and a probabilistic polynomial time
oracle Oj′ which predicts lsj′+1(x) when given Lj′(x), expα(x) :

Prx,w[Oj′(Lj′(x), expα(x)) = lsj′+1(x)] ≥ 1
2 + ε,

where the advantage ε is at least δ/j and the probability is taken over x ∈R Zq and Oj′ ’s
random coin flips.

How to invert expα when given Lj′(x). We invert the 2−j′-fraction of expα corresponding
to the given Lj′(x) in probabilistic ploynomial time. A main task is to determine lsj′+1(x).

Determining lsj′+1(x). Pick random xi ∈R Zq for i = 1, . . . ,m := 2nε−2. For every i the
equation

Oj′
(
Lj′(x + xi), expα(x + xi)

)
= lsj′+1(x + xi) (2)

holds with probability at least 1
2 + ε. Here we easily get expα(x + xi) = expα(x) expα(xi).

Moreover we have Lj′(x + xi) = Lj′(x) + Lj′(xi) − σLj′(q), where σ is 1 if [x]q + [xi]q ≥ q
and σ = 0 otherwise. We show below how to get σ with error probability at most ε

2 . Given
σ and lsj′+1(x + xi) we get lsj′+1(x) from the equations

Lj′+1(x + xi) = Lj′(x + xi) + 2j′ lsj′+1(x + xi)
= Lj′(x) + Lj′(xi) + 2j′(lsj′+1(x) + lsj′+1(xi))− σq mod 2j′+1. (3)

As we get lsj′+1(x + xi) with advantage ε and σ has error probability ε
2 we get lsj′+1(x) with

advantage ε
2 . We guess lsj′+1(x) for each of the m = 2nε−2 independent xi and we determine

lsj′+1(x) by majority decision over the m guesses. Consider the error probability of that
decision.

As the xi for i = 1, ..., m are independent so are the guesses for lsj′+1(x). Using Chernoff’s
bound for the deviation of mutually independent identically distributed random variables the
error probability of the majority decision of lsj′+1(x) is at most exp(−2m(ε

2)2) = exp(−n) <
1
2n for n ≥ 2. Here we use a particular form of the Chernoff bound which is due to Hoeffding
[H63], see exercise 4.7 of [MR95]. Let Xi be the 0,1-error variable of the i-th prediction of
lsj′+1(x) based on Equations 2,3. The Xi are independent with mean value µ ≤ 1

2 − 1
2ε. Then

we have
Hoeffdings bound. Pr[1

m

∑m
i=1 Xi ≥ µ + 1

2ε] ≤ exp(−2m(1
2ε)2).

Finding σ. In order to find σ = “[x]q + [xi]q ≥ q” we guess initially the 1 + lg ε−1 first
ms-bits of x. We try all 2ε−1 possible bit strings running the inversion procedure 2ε−1 times.
The ms-bits of x determine an interval I ⊂ [0, 1) of length ε

2 that contains x. The interval I
and xi determine σ except that q− [xi]q ∈ I. As xi is random the except case has probability
ε
2 . Thus we get σ with error probability ε

2 .

6

Iteration. Once we have found lsj′+1(x) we replace the unknown [x]q = x by xnew :=
1
2([x]q − lsb(x)). For this we replace the corresponding expα(x) = αx by (αx−lsb(x))z with
z := 2−1 mod q – note that we know lsb(x) = ls1(x) from Lj′(x). We iterate the procedure to
find lsj′(x), ..., ls1(x). For each iteration we get Lj′(xnew) from Lj′(xold) and lsj′+1(xold), and
we update the first 1 + lg ε−1 ms-bits of xnew = 1

2([x]q − lsb(x)); this is easy as we are given
lsb(x) = ls1(x). Each iteration decreases the bit length of x. We are done after n iterations.

Time bounds. The time for the computation of x is O(nmT + ε−1) = O(n2ε−2T) =
O(n2j2δ−2T), where T is the time of oracle Oj′ . (Guessing the 1 + lg ε−1 first ms-bits of x
requires O(ε−1) steps. As the calls of oracle Oj′ do not depend on these ms-bits the O(ε−1)
workload only adds to the overall workload.) The probability of success of the computation
is at least 1

2 as each iteration fails with probability at most 1
2n . ¤

Security of individual ls-bits. Are individual bits lsj(x) secure when given expα(x) ? By
Proposition 4 lsj(x) is at least as secure as an arbitrary sequence of j consecutive shift bits.
By Theorem 5 lsj(x) is secure if the 2−j-fractions of expα are one-way. This one-wayness is
problematic for large j.

Håstad, Näslund [HN98] give a direct method to prove security for individual bits lsj(x).
The [HN98]-method was first developed for the RSA-function EN (x). Subsequent attempts to
extend the method to the exponentiation function encounter two problems. The HN-method
requires that we can in poly-time transform expα(x) into its square root

√
expα(x), and into

powers expα(x/a), expα(ax) for various integers a. For groups of even order there is no square
root algorithm, for groups of odd composite order q we cannot perform general divisions x/a
modulo q.

However, if the group order q is prime these transformations are obviously poly-time.
This is because

√
expα(x) = expα(x)

1
2
modq and 2 is invertible modulo q. Therefore [HN98]

implies that all individual bits lsj(x) are secure1 when given expα(x) iff expα is one-way.
Interestingly, this security result holds for all groups of prime order q no matter how the
group is presented. It holds for prime order subgroups of Z∗M , the multiplicative group of
integers modulo an arbitrary integer M as well as for elliptic curves of prime order.

4 Simultaneous security of discrete log bits, even group order

Let G be a cyclic group of order 2sq with an odd integer q and an s ≥ 1. Let α be a generator
of G. It is well known that the first s ls-bits of x can easily be obtained from expα(x). We show
that the next j bits lss+1(x), ..., lss+j(x) are secure when given expα(x) iff the 2−j-fractions of
expα′ with α′ := α2s

are one-way. Note that α′ generates the subgroup G′ ⊂ G of 2s-powers
of G. The claim for G follows from that for G′ proven in Theorem 5. Moreover the bit strings
lss+1(x), ..., lss+j(x) and ms1(x), ..., msj(x) are equally secure when given expα(x).

Computing the first s of the ls-bits of x. Given the group order, the generator α and
αx = expα(x) we easily get the first s ls-bits of x, i.e. we get Ls(x) = [x]2s = x mod 2s. We
have ls1(x) = 0 iff αx is a square in G, i.e. iff αx 2s−1q = 1G. Continuing recursively we see for
i ≤ s that lsi(x) = 0 iff (αx−Li−1(x))2

s−iq = 1G.

Reduction to odd group order. Let G′ ⊂ G be the subgroup of all 2s-powers of G. This
subgroup has odd order q and generator α′ := α2s

. Given y = expα(x) ∈ G we get Ls(x) and
1We disregard “trivial” advantage in distinguishing a bit due to bias.

7

y′ := y/ expα(Ls(x)) ∈ G′ in poly-time. We have

blogα(y)/2sc = logα′(y′), lss+i(logα(y)) = lsi(logα′(y′)) for all i ≥ 1. (4)

By Theorem 5 this reduction yields:

Theorem 6. The bits lss+1(x), ..., lss+j(x) are simultaneously secure when given expα(x) iff
the 2−j-fractions of expα′ are one-way.

Square roots and principal square roots. Let expα(x) ∈ G be a square, i.e., ls1(x) = 0.
As G has even order 2sq there are two square roots ± expα([x]2sq/2). Here we let 1 ∈ G
denote the neutral element and let −1 ∈ G be the square root of 1 other than 1. It is well
known that given a generator α square roots can be computed in polynomial time.

We call expα([x]2sq/2) the principal square root of expα(x). By definition the discrete log
of the principal square root of y = expα(x) is half the discrete log of y. The two square roots
of y differ by the factor −1 = α2s−1q, if ±y′ are the two square roots of y then | logα(y′) −
logα(−y′) | = 2s−1q. As q is odd logα(±y′) differ in the lss-bit. The equality of that bit with
lss(logα(y)) characterizes the principal square root y′ of y, we have :

Lemma 7. 1. Let y ∈ G be a square with square roots ±y′ then y′ is the principal square
root of y iff lss(logα y′) = lss+1(logα y).
2. Let y′ be a random square root of a random y ∈R G. Deciding with advantage ε whether
y′ is principal for the given y is equivalent to predicting lss+1(logα y) with advantage ε.

The complexity of deciding the principal square root. Theorem 6 and Lemma 7
characterize the complexity of deciding whether a random square root of a random square in
G is a principal. Deciding principality with a non-negligible advantage is as hard as inverting
expα in prob. poly-time, a result which is due to Blum, Micali [BM84]. By Theorem 6
with j = 1 the bit lss+1(x) is secure for given expα(x) or else the 2−s−1-fractions of expα

can be inverted in probabilistic poly-time. As we easily get Ls(x) from expα(x) this means
that lss+1(x) is secure provided that expα is one-way. By Lemma 7 the problem to decide
principality of a square root of y is equivalent to predicting lss+1(logα y), so we get the [BM84]
result.

We next extend the BM-result proving simultaneous security of the first j ms-bits of x.
Clearly there is a proof similar to that of Theorem 5, the difference is that in the iteration
we multiply x by 2 instead of using division by 2.

Lemma 8. The bit strings lss+1(2jx), ..., lss+j(2jx) and ms1(x), ...,msj(x) are equivalent by
polynomial time transformations when given expα(x).

Proof. The equation [2x]2sq = 2[x]2sq −ms1(x)2sq yields by induction on j

[2jx]2sq = 2j [x]2sq − (
∑j

i=1 msi(x)2j−i) 2sq, and thus

Ls+j(2jx) = 2jLs(x)− (
∑j

i=1 msi(x)2j−i) 2sq mod 2s+j . (5)

We get expα(2jx), Ls(x) and Ls(2jx) in poly-time from expα(x). Given Ls(x) and Ls(2jx),∑j
i=1 lss+i(2jx)2s+i and (

∑j
i=1 msi(x)2j−i) 2sq mod 2s+j are equivalent by Equation 5. Here

we use that q is odd, so we can invert q modulo 2s+j . ¤

Theorem 9. The bits ms1(x), ...,msj(x) are simultaneously secure when given expα(x) iff
the 2−j-fractions of expα′ are one-way.

8

Proof. Suppose that the bit string ms1(x), ...,msj(x) is poly-time distinguishable from ran-
dom z ∈R {0, 1}j when given expα(x) ∈R G. We show how to distinguish via Lemma 8 the
bit string lss+1(2jx), ..., lss+j(2jx) from random z.

Given expα(2jx)lss+1(2jx), ..., lss+j(2jx) we get a random 2j-root expα(x), and via Equa-
tion 5 we get the corresponding bit string ms1(x), ...,msj(x) in poly-time. Thus using the
distinguishing algorithm for the ms-bits we can also distinguish the ls-bits from random z.
Therefore by Theorem 6 the 2−j-fractions of expα′ cannot be one-way. This proves one direc-
tion of the claim, the converse is obvious. ¤

Equal security of the ms- and the ls-bits. In particular Lemma 8 shows that the security
results of [P85] and those of [LW88] are equivalent. This equivalence of [P85] and [LW88] is
not apparent from these papers.

Security of individual ls-bits. In Section 3 we explained that the [HN98]-method proves
that all bits of x are individually secure for given expα(x) provided that expα is one-way and
α has prime order q. We extend this result to the case that α has order 2sq where q is prime.
Again, the argument does not use the representation of the group. For instance the group can
be an elliptic curve. Consider Equation (4) where α′ = α2s

and y′ = y/ expα(Ls(x)). Equation
4 shows that the bits lss+j(logα(y)) and lsj(logα′(y′)) coincide. Also y′ is random in G′ if y
is random in G. By [HN98] the individual bits lsj(logα′(y′)) are secure when given y′ ∈R G′.
We conclude that the bits lss+j(logα(y)) are individually secure when given y′ ∈R G′. Now y
and y′ only differ by αLs(x) which is statistically independent of lss+j(logα(y)). As expα and
expα′ are equally one-way this proves

Theorem 10. Let α be generator of an arbitrary group of order 2sq where q is prime. If
expα is a one-way function then the individual bits lss+j(x), msj(x) for j ≥ 1 are secure when
given expα(x).

5 Generic networks, one-wayness of fractions of expα

The important question is whether the exponentiation function and its fractions are one-
way. No complexity lower bound is known for the discrete logarithm for Turing machines
or Boolean networks. But for generic algorithms Nechaev [Ne94] and Shoup [Sh97] have
shown an exponential lower bound. The significance of this lower bound is that important
classes of discrete log algorithms are generic. The known algorithms for the discrete logarithm
in general groups, specifically elliptic curves, are all generic. The number field sieve and the
quadratic sieve are non-generic but they only apply to particular groups. For this section let
G be a group of prime order q.

We establish a complexity lower bound for generic networks computing the discrete loga-
rithm of a 2−j-fraction of the exponentiation function. Every generic network that computes
logα for a 2−j-fraction of expα has to perform at least

√
q 2−j+1 −O(1) group operations.

We conclude that almost all bits of the discrete logarithm are simultaneously secure against
generic attacks.

Generic algorithms/networks. The idea of a generic algorithms for the computation of
discrete logarithms of cyclic groups goes back to Nechaev [Ne94]. A full model of generic
algorithms has been presented by Shoup [Sh97]. We extend these models. Generic net-
works perform a straight-line computation with unbounded fan-in and fan-out, whereas the

9

Nechaev merely uses trees. The non-uniform model is more powerful, similarly as Boolean
networks are more powerful than Turing machines. Our generic steps are general multivari-
ate exponentiations, while [Ne94], [Sh97] merely use multiplication/division in groups. Unlike
[Sh97] we distinguish between the generic group operations and the non-generic steps without
using a random encoding for the group elements. Our probabilities do not depend on such a
random encoding.

Definition of generic networks. A generic network has two types of inputs, group inputs
and auxiliary inputs. Possible group inputs are public parameters as the generator α, the
unit element 1G ∈ G and particular group elements. The actual inputs are random group
elements, e.g. random y = expα(x) ∈ G. Possible auxiliary inputs are the bit length q of the
group order, the group order |G|, the prime factor decomposition of the group order and so
on. Via the auxiliary inputs we get algorithms/networks that are generic for classes of groups
that are defined by additional knowledge on G, the order of G and so on. This largely extends
the [Sh97] model, where the group G is fixed.

The computation consists of generic steps that perform arbitrary multivariate exponenti-
ations mexa : Gd → G, (g1, ..., gd) 7→ ga1

1 · ... · gad
d with given a = (a1, ..., ad) ∈ Zd and

arbitrary, unbounded d ∈ N.
The ν-th generic step of the network either computes an input group element or it performs

a group operation mexa, a = (a1, ..., aν−1), using the previously computed group elements
F1, ..., Fν−1. The result of the ν-th step is Fν := F a1

1 ·...·F aν−1

ν−1 . The exponents a1, ..., aν−1 ∈ Z
are determined by – and depend arbitrarily on

• the round number ν

• the set COν−1 =def {(i, j) | Fi = Fj , 1 ≤ i < j ≤ ν − 1} of previous collisions
• the auxiliary inputs.
The output of the network is an arbitrary bit string or integer that is determined by – and
depends arbitrarily on – the set of all collisions COt and the auxiliary inputs.

Generic steps mexa are counted at unit costs, the other operations, arbitrary functions
of the auxiliary inputs and equality tests for group elements, are for free. The length t of a
generic algorithm is the number of input group elements plus the number of the generic steps
mexa.

All probabilities refer to the random input (but not to the random encodings of the
group elements as in [Sh97]). Generic networks do not need internal coin flips as we can
fix an optimal coin flip due to non-uniformity. There are no oracles for the group operations
as in [Sh97]. Instead, only a generic step accesses the group elements for group operations
and equality tests. The next theorem extends Nechaev’s lower bound to fractions of the
exponentiation function and to generic networks.

Theorem 11. Every generic network A of length t which inverts expα for a 2−j-fraction of
expα succeeds for at most a (

(t
2

)
+ 1)2j/q-fraction of the arguments.

Proof. Let F1 denote the input y = expα(x) and F2, F3, ..., Ft the results of the group
operations of A. The ν-th step of A, its group operation mexa with exponents a1, ..., aν−1,
only depends on the set COν−1 = {(i, j) | Fi = Fj , i < j ≤ ν − 1} of previous collisions (and
the auxiliary inputs). A’s output xout ∈ Zq depends only on COt. The probability calcula-
tion below shows that, except with probability

(t
2

)
2j/q, COt is constant, i.e. independent of

10

the input y. If xout does not depend on y then it is correct with probability at most 2j/q
as y ranges uniformly over a set of size q2−j . Hence A’s probability of success is at most
(
(t
2

)
+ 1)2j/q.

Probability calculation. We assume w.l.o.g. that there are no collisions Fi = Fj , i 6= j,
that do not depend on the input yas such collisions are useless and are easy to eliminate from
A. By the assumption we have COν = ∅ or else COν depends on y. Next we show that

Pry[Fi = Fν , COν−1 = ∅] ≤ 2j/q for i = 1, . . . , ν − 1.

If Fi = Fν then by the assumption the group element Fi F
−1
ν depends on the input y. As

Fi F
−1
ν results from a multivariate exponentiation depending on y it permutes G when y ranges

over G. (A multivariate exponentiation acts as a permutation on G if all except one input
are fixed. Here we use that G has prime order q.) It is assumed that y ranges randomly
over a subset of G of cardinality q 2−j , e.g. over { expα(x) |with x = 0 mod 2j }. Hence
Pry[Fi F

−1
ν = 1G | COν−1 = ∅] ≤ 2j/q. We finally get

Pry[COt 6= ∅] ≤ ∑t
ν=1

∑ν−1
i=1 Pry[Fi = Fν , COν−1 = ∅] ≤ (t

2

)
2j/q. ¤

Conclusions. By Theorem 11 a generic algorithm for logα that succeeds for a 2−j-fraction
of expα must have length t ≥ √

q2−j+1 − 2. This lower bound is tight up to a factor 2. By the
Shanks baby step giant step method we can compute discrete logarithms of 2−j-fractions of
expα using O(lg(q 2−j)

√
q 2−j) Turing steps. This algorithm is, essentially, generic. It yields

a generic algorithm of length 2 b√q 2−jc for the discrete logarithm of a 2−j-fraction of expα.
(The complexity decreases from counting Turing steps to counting generic steps. We get the
intersection of two sets of group elements at zero generic costs as equality tests are for free.)

Corollary 12. The minimal length t of generic networks that invert a 2−j-fraction of expα

is Θ(
√

q2−j).

Theorem 13. Every generic network A of length t with input y = expα(x) ∈ G distinguishes
Lj(x) and random z ∈R [0, 2j) at most with advantage

δ := | Pry[A(Lj(x), expα(x)) = 1]− Pry,z[A(z, expα(x)) = 1] | ≤ O(n j
√

t (2j/q)
1
4).

Proof. The given generic network A of length t and advantage δ yields by Yao’s argument
[K97, section 3.5, Lemma P1] for some j′ < j a generic prediction algorithm Oj′ of length t
which, for given Lj′(x) and expα(x), predicts lsj′+1(x) with advantage ε ≥ δ/j. By Proposi-
tion 2 Lj′(x) is equivalent to the first j′ shift bits of x. Theorem 5 yields a generic algorithm for
the inversion of the 2−j-fraction of expα corresponding to the known Lj(x) which uses oracle
Oj′ as subroutine with t generic steps. Each iteration of the inversion algorithm of Theorem
5 performs an additional generic step to transform expα(x) into expα(xnew). Each oracle call
Oj′

(
Lj′(x + xi), expα(x + xi)

)
requires one further generic step to compute EN (x + xi). So

we get a generic inversion algorithm of length O(n2δ−2j2t). By Corollary 12 we must have
O(n2δ−2j2t) = Ω(

√
q 2−j) hence δ = O(n j

√
t (2j/q)

1
4). ¤

Conclusions. Given random expα(x), Lj(x) is generically indistinguishable from random
z ∈R [0, 2j) provided that j < (1 − β) lg q for fixed β > 0. This is because such j satisfies
2j/q < qβ, and thus the advantage of Theorem 13 becomes negligible for t ≤ poly(n). Hence,
all except an arbitrarily small β-fraction of the bits of x are simultaneously secure against
generic attacks. Note that β can converge to 0 as q increases, it is sufficient that β is

11

large enough so that limq→∞ β lg q
lg lg q = ∞. This result is nearly optimal since no fraction of

1−O(lg lg q
lg q) bits of x can be simultaneously secure, because the remaining bits can be guessed

in polynomial time 2O(lg lg q) = (lg q)O(1).

Corollary 14. For groups G of prime order q, almost all bits of the discrete log of random
y ∈R G are simultaneously secure against generic attacks.

5.1 Acknowledgement

I wish to thank J. H̊astad for pointing out the difficulties that the [HN98]-method encounters
when applied to the discrete log problem.

References

[BM84] M. Blum and S. Micali: How to Generate Cryptographically Strong Sequences
of Pseudo-random Bits. Siam J. Comp. 13, (1984), pp. 850-864.

[GL89] O. Goldreich and L.A. Levin: Hard Core Bit for any One Way Function. Proc. of
ACM Symp. on Theory of Computing (1989) pp. 25-32.

[HN98] J. H̊astad and M. Näslund: The Security of Individual RSA Bits. Proc. of IEEE
Symp. on Foundations of Computer Science (1998).

[HSS93] J. H̊astad, A.W. Schrift and A. Shamir: The Discrete Logarithm Modulo a
Composite Hides O(n) bits. J. of Computer and Systems Sciences 47 (1993),
pp. 376-404.

[H63] W. Hoeffding: Probability in Equalities for Sums of Bounded Random Vari-
ables. J. Amer. Stat. Ass. 58 (1963), pp. 13-30.

[K86] B.S. Kaliski: A pseudo-random bit generator based on elliptic logarithms.
Proceedings Crypto’86, LNCS 263 (1987), pp. 84-103. Springer LNCS

[K97] D.E. Knuth: Seminumerical Algorithms, 3rd edition, Addison-Wesley, Reading,
MA (1997).

[LW88] D.L. Long and A. Wigderson: The Discrete Logarithm Hides O(log n) bits.
Siam J. Computing 7 (1988), pp. 363-372.

[Ne94] V.I. Nechaev: Complexity of a Determinate Algorithm for the Discrete Loga-
rithm. Mathematical Notes 55 (1994), pp. 165-172.

[MR95] R. Motwani and P. Raghavan: Randomized Algorithms. Cambridge University
Press Cambridge UK, 1995.

[N94] NIST: ”Digital Signature Standard (DSS), Federal Information Processing
Standard” PuB 186, 1994 May 19.

[P85] R. Peralta: Simultaneous Security of Bits in the Discrete Log. Proceedings
Eurocrypt’85, Springer LNCS 219 (1986), pp. 62-72.

12

[R79] M.O. Rabin: Digital Signatures and Public Key Functions as Intractable as
Factorization. TM-212, Laboratory of Computer Science, MIT, 1979.

[RSA78] R.L. Rivest, A. Shamir and L. Adleman: A Method for Obtaining Digital
Signatures and Public Key Cryptosystems. Comm. ACM, 21 (1978), pp. 120-
126.

[S91] C.P. Schnorr: Efficient Signature Generation for Smart Cards. Journal of Cryp-
tology 4 (1991), pp. 161-174.

[Sh97] V. Shoup: Lower Bounds for Discrete Logarithms and Related Problems. Proc.
Eurocrypt’97, LNCS 1233 (1997), Springer Berlin, pp. 256-266.

[VV84] U.V. Vazirani and V.V. Vazirani: Efficient and Secure Pseudo-Random Number
Generation. In Proc. 25th Symp. on Foundations of Computing Science (1984)
IEEE, pp. 458-463.

[Y82] A.C. Yao: Theory and Application of Trapdoor Functions. Proc. of IEEE
Symp. on Foundations of Computer Science (1982), pp. 80-91.

13

