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Abstract 
This study examines the use of age-structured maximum likelihood and Bayesian approaches for 
stock assessment of the Namibian monkfish, Lophius vomerinus, resource with questionable data, in 
which time series are short, abundance indices are variable, and research data conflict with 
commercial data. Bayesian approaches with both noninformative and informative priors are 
investigated to determine if they enhance estimation stability. Three data scenarios are assessed: 
commercial and research survey data, research survey data only, and commercial data only. Both 
statistical approaches show that resource abundance has decreased with exploitable biomass 
estimated at approximately 44% of pristine levels. The maximum likelihood and the Bayesian 
approach with noninformative priors result in similar estimates. As the abundance data contained 
little information pertaining to possible density dependence within the stock–recruit relationship, 
only a Bayesian approach with informative priors reduces uncertainty in the steepness parameter h. 
Estimated management quantities are sensitive both to the set of data sources and whether prior 
information was informative or not. The strengths of the Bayesian approach include the integration 
of prior information with uncertain data, the exploration of data conflicts, and the ability to show the 
uncertainty in estimates of management parameters. Its weakness is that estimation stability is 
dependent on the choice of priors, which alters some posterior distributions of management 
quantities.  
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1. Introduction 
Effective fisheries management depends largely on the ability of managers to determine levels of 
fishing effort, catch, and gear selectivity required for sustainable harvesting. Increasingly complex 
quantitative methodologies have developed for this determination (Quinn and Deriso, 1999), along 
with the development of methods to evaluate possible consequences of alternative harvesting 
policies (Francis, 1992, Hilborn et al., 1993 and Rosenberg and Restrepo, 1994). Considering that 
these evaluations are important “inputs” to resource managers, it is now advocated that they be 
incorporated into some form of probabilistic framework to account for uncertainties.  



Commonly applied assessment models use a maximum likelihood approach, whereby the model is 
fitted statistically to the available abundance and/or catch-at-age data using a likelihood function. 
Likelihood methods can be extended to also incorporate a priori beliefs in the reliability of data 
sources through various weighting schemes (Merritt and Quinn, 2000). A Bayesian approach to 
stock assessment goes further by incorporating expert judgment, ancillary information, and 
(possibly) common sense into the modeling framework (Punt and Hilborn, 1997). A Bayesian 
approach formalizes the expression of a priori beliefs about an unknown quantity (in the form of 
prior probabilities) and then modifies them in light of available data (via the likelihood function) to 
arrive at some posterior probability of that quantity.  

Furthermore, problems arise in stock assessment when data are questionable. By this we mean that 
data are too short (say, <5–10 years in length), or abundance indices do not reflect the response of 
the stock to harvesting pressure, or the data have large amounts of sampling and non-sampling 
errors, or multiple data sources have different trends or conflicts. Examples include a constantly 
declining trend in abundance data, also referred to as “one-way downhill trip” data that leads to 
negatively biased estimated levels of stock productivity (Polacheck et al., 1993) or temporally 
invariant indices that do not reflect the response of a population to harvesting pressure. Maximum 
likelihood methods tend to fail with questionable data, whereas Bayesian methods can often stabilize 
parameter estimation by the statistically correct inclusion of prior information (McAllister et al., 
2001), as opposed to the ad hoc weighting or penalized maximum likelihood approaches.  

Monkfish (Lophius spp.), targeted by the monkfish and sole directed fishery and caught in lesser 
amounts as bycatch in the hake (Merluccius spp.) directed trawl fishery, is an important resource in 
Namibia contributing approximately US$ 100 million in export value annually (Ministry of Fisheries 
and Marine Resources, Namibia, unpublished data). Two sympatric monkfish species are present in 
Namibian waters Lophius vomerinus and L. vaillanti. L. vomerinus is the more important of the two 
in terms of abundance (99%), landings and value. The three sources of abundance data available for 
assessing the resource are of varying quality and length (Table 1). The monkfish-directed biomass 
survey is fairly precise and shows a clear decline in abundance over its short time period. The other 
abundance data series, commercial catch rate data and the hake-directed biomass survey data, are 
longer but for the former shows high interannual variability and the latter shows relatively low 
precision compared to the monkfish-directed biomass survey. Catch-age data from research surveys 
and commercial catches are extremely limited (see below).  

 

Table 1.  

Total catch, standardized catch-per-unit effort research survey estimates of relative abundance for monkfish Lophius 
vomerinus between 1974 and 2005 in Namibia (from Kirchner and Schneider, unpublished)  

Year Catch 
(×103 t) 

Standardized CPUE 
(kg h−1) 

Hake-directed survey biomass 
(×103 t ± S.E.) 

Monk-directed survey biomass 
(×103 t ± S.E.) 

1974 0.3 – – – 

1975 1.1 – – – 

1976 0.9 – – – 



Year Catch 
(×103 t) 

Standardized CPUE 
(kg h−1) 

Hake-directed survey biomass 
(×103 t ± S.E.) 

Monk-directed survey biomass 
(×103 t ± S.E.) 

1977 5.7 – – – 

1978 7.4 – – – 

1979 3.5 – – – 

1980 3.2 – – – 

1981 15.6 – – – 

1982 16.3 – – – 

1983 12.9 – – – 

1984 8.5 – – – 

1985 8.5 – – – 

1986 13 – – – 

1987 11.7 – – – 

1988 5.0 – – – 

1989 6.6 – – – 

1990 1.5 – – – 

1991 4.6 77.64 – – 

1992 8.1 119 – – 

1993 9.2 123.55 – – 

1994 12.2 151.76 34.85 ± 4.54 (February)  

   22.34 ± 2.62 (May)  

   25.44 ± 2.89 (November)  

1995 10.1 125.99 13.13 ± 1.71 (May) – 

1996 9.8 94.58 21.75 ± 2.69 (February) – 

   11.37 ± 1.46 (October)  

1997 10.4 – 11.38 ± 1.27 (February) – 

1998 16.6 172.18 11.16 ± 1.46 (February) – 

1999 14.1 114.99 25.83 ± 4.62 (February) – 

2000 14.4 96.58 – 49.00 ± 9.80 (November) 

2001 12.4 79.41 – 56.00 ± 11.20 (November) 



Year Catch 
(×103 t) 

Standardized CPUE 
(kg h−1) 

Hake-directed survey biomass 
(×103 t ± S.E.) 

Monk-directed survey biomass 
(×103 t ± S.E.) 

2002 15.3 74.07 – 39.00 ± 8.58 (November) 

2003 12.2 95.37 – 21.00 ± 4.20 (November) 

2004 9.0 71.48 – 35.00 ± 5.95 (November) 

2005 6.8a 85.95 – 26.00 ± 4.42 (November) 

The month in which the survey occurred is indicated in parentheses. 
a Preliminary catch. 

 

The main goal of this paper is to present a case study that determines whether Bayesian population 
modeling is more advantageous than a strictly maximum likelihood approach when some of the data 
sources are questionable (as defined earlier). We develop models for the population dynamics of the 
L. vomerinus component of the monkfish resource off Namibia within both maximum likelihood and 
Bayesian statistical frameworks. Because the abundance indices and age data cover varying time 
periods and have different precision, it is not clear which data sources should be used in the model. 
We address the relative importance and sensitivity of the various data sources to the assessment, 
together with including of noninformative and informative prior information in estimating several 
management quantities.  

2. Material and methods 

2.1. Available data 

Available data for the assessment are a time-series of annual Lophius spp. catches from 1974 to 
1999, a monkfish catch rate (CPUE) data series (standardized with a general linear model) from the 
commercial monkfish-and-sole directed fleet between 1991 and 1999, L. vomerinus-specific swept 
area biomass indices obtained from hake-directed biomass surveys between 1994 and 1999, and L. 
vomerinus-specific swept area biomass  

indices obtained from monkfish-directed biomass surveys between 2000 and 2005. The hake-
directed surveys were conducted onboard the RV Dr. Fridjof Nansen, and the monkfish-directed 
surveys were conducted onboard the RV Welwitchia (Table 1).  

Research catch-at-age data (Table 2) are of reasonable quality as L. vomerinus could be identified 
during routine surveys. The age composition of the survey catches was estimated by transforming 
the annual length frequency data using a single age-length key constructed from 1997 to 1998 data. 
Age data from the commercial fleet data (Table 3) are questionable. Size category data were 
obtained from the industry between 1994 and 1999 and converted to ages from a single age-size 
category key constructed from 1997 to 1998 data (Maartens, 1999).  

 



Table 2.  

Relative proportion of Lophius vomerinus caught at age during hake-directed research surveys on the RV Dr. Fridjof 
Nansen between 1994 and 1999 (from Maartens and Booth, 2001)  

Year Proportions caught at age 

 1 2 3 4 5 6 7 8 9 Total number (×103)

February 1994 0.046 0.161 0.244 0.128 0.157 0.126 0.095 0.031 0.008 35.405 

May 1994 0.022 0.109 0.175 0.123 0.181 0.176 0.151 0.042 0.017 17.153 

November 1994 0.036 0.135 0.169 0.127 0.185 0.157 0.129 0.042 0.015 18.996 

May 1995 0.024 0.086 0.220 0.135 0.182 0.163 0.136 0.036 0.014 12.210 

February 1996 0.121 0.123 0.173 0.162 0.163 0.115 0.098 0.030 0.011 22.382 

October 1996 0.060 0.279 0.199 0.086 0.129 0.114 0.095 0.026 0.008 12.719 

February 1997 0.097 0.249 0.274 0.095 0.088 0.085 0.077 0.023 0.009 13.234 

February 1998 0.083 0.351 0.239 0.109 0.079 0.057 0.061 0.013 0.006 19.381 

February 1999 0.036 0.188 0.273 0.158 0.155 0.096 0.068 0.019 0.006 25.386 

 

Table 3.  

Relative proportion Lophius spp. caught at age aggregated over both the hake directed, and monkfish and sole directed 
fisheries between 1994 and 1999  

Year Proportions caught at age 

 1 2 3 4 5 6 7 8 9 Total number (×106) 

1994 0.186 0.228 0.166 0.132 0.1 0.083 0.038 0.028 0.028 19.230 

1995 0.173 0.28 0.193 0.145 0.075 0.063 0.027 0.019 0.019 18.865 

1996 0.133 0.123 0.166 0.164 0.141 0.118 0.053 0.039 0.039 11.315 

1997 0.259 0.278 0.164 0.116 0.065 0.054 0.023 0.016 0.016 22.126 

1998 0.255 0.285 0.194 0.149 0.044 0.037 0.014 0.009 0.009 40.746 

1999 0.249 0.217 0.177 0.152 0.072 0.06 0.025 0.018 0.018 27.617 

Values reflect the L. vomerinus-specific component of the catch by reducing the total monkfish catch by 1% (from 
Maartens and Booth, 2001). 

 



2.2. Population dynamics model 

It is not desirable to use a simple production model for this study, because it would not take 
advantage of the available age-structured data from the research survey and the commercial fishery. 
However, the lack of annual age-structured data makes it is impossible to apply a complete age-
structured model with annual estimates of recruitment (Quinn and Deriso, 1999, Chapter 8). As a 
middle ground, we model the dynamics of the resource by using a simplified age-structured model 
with deterministic recruitment from a stock–recruit relationship (Punt, 1994, Punt and Japp, 1994 
and Booth and Punt, 1998).  

The details of the resource dynamics and likelihood function used in the analysis are given in the 
Appendix A. Several parameters in the model (natural mortality, selectivity, maturity and growth), 
obtained from Maartens and Booth (2001), are fixed in this application (Table 4) for parsimony and 
to focus on the estimation of management quantities (see following section). We also focus on the 
three catchability parameters qHAKE-RES, qMONK-RES and qCOM for the hake-directed research survey, 
monkfish-directed research survey and commercial fishery, respectively, because they play a 
fundamental role in both the prior and likelihood distributions.  

Table 4.  

Fixed parameter values used in the analyses from Maartens and Booth (2001)  

Parameter description Parameter symbol Parameter value 

Asymptotic length L∞ (cm) 95.04 

Brody's growth coefficient K (year−1) 0.10 

Age at zero length t0 (year) −0.31 

Length–weight relationship constant γ (g) 0.011 

Length–weight relationship exponent (g cm−1) 3.06 

Natural mortality rate M (year−1) 0.3 

Plus-group Max (year) 10 

Age at 50% maturity (year) 4.12 

Inverse rate of maturation δm (year−1) 0.99 

Age at 50% selection by the commercial trawl gear (year) 1 

Inverse rate of commercial selection δcom (year−1) 0.08 

Age at 50% selection by the research trawl gear (year) 1.92 

Inverse rate of research selection δsurv (year−1) 0.39 



The model is deterministic and has two parameters; EB0 – pristine exploitable biomass in 1974, and 
h – the “steepness” parameter from the Beverton-Holt stock–recruitment relationship (see the 
Appendix A).  

2.3. Management quantities 

Five management-related quantities are used to assess the status, productivity, and potential yield of 
the monkfish resource. They are EB0, h, maximum sustainable yield MSY, Depletion (the ratio of 
the spawner biomass at the start of 2005 to that at the start of 1974), and EB2005/MSYL (the ratio of 
exploitable biomass in 2005 to the exploitable biomass at the MSY level).  

2.4. Estimation of variability and posterior probability density functions 

Estimates of parameter variability are calculated from the inverse Hessian matrix. This approach 
assumes that the parameter values are asymptotically normally distributed and involves replacing the 
log-likelihood surface at the maximum likelihood solution by the quadratic form of the Hessian.  

Marginal probability density functions for each management quantity are obtained by integrating 
each quantity out from the joint posterior probability density function (Lee, 1997). The joint 
posterior probability distribution is estimated using the Metropolis-Hastings Markov Chain Monte-
Carlo algorithm (Gelman et al., 1995). One hundred thousand parameter vectors were generated, 
with a “burn-in” of 1000 vectors, and every 25th vector saved. Geweke's (1992) diagnostic 
confirmed that all chains converged (p values > 0.47). The range of h values is 0.21 (as h = 0.2 is 
undefined) to 1.00, and EB0 is bounded between 135 000 and 1 000 000 t. These values represent the 
smallest population size that is extant to a population size that is almost an order of magnitude 
larger. All analyses were conducted using AD Model Builder (Otter Research Ltd., 2000).  

2.5. Data scenarios 

Three data scenarios are considered: one where all available data (commercial and research) are 
included in the likelihood), one in which only the research CPUE and catch-age data are included, 
and one in which only the commercial CPUE and catch-age data are included. The latter two 
scenarios are common in data-limited fisheries. These two scenarios also constitute a sensitivity 
study of the influence of the data sources.  

2.6. Prior information 

Central to any Bayesian analysis is the specification of prior information. In this study, we first use 
noninformative priors for the parameters EB0, qHAKE-RES, qMONK-RES, qCOM, and h. In an alternative 
scenario, we replace them with their informative equivalents to explore the sensitivity of prior 
specification.  

For noninformative priors, EB0, h and the catchability coefficients qHAKE-RES, qMONK-RES, and qCOM 
are considered to be uniformly distributed over their values.  

For informative priors, the Beverton-Holt stock–recruitment curve ‘steepness’ parameter is normally 
distributed with a mean of 0.9 and a coefficient of variation of 20%, or p(h) = N(0.9, (0.9 × 0.2)2). 
Because no data are available on the “steepness” parameter for other Lophius species, a normal  



distribution is chosen to provide most weight close to, but not equal to 1, and to assign little weight 
to small values (Myers et al., 1995). The hake-directed research survey catchability coefficient, 
qHAKE-RES, is assumed to be normally distributed with a mean of 0.4 and a coefficient of variation of 
20%, or p(qHAKE-RES) = N(0.4, (0.4 × 0.2)2). The mean is taken from the estimated catchability 
coefficient for the Cape hake (Merluccius spp.) resource off Namibia (Rademeyer, 2003). The 
monkfish-directed research survey catchability coefficient, qMONK-RES, is assumed to be normally 
distributed with a mean of 0.8 and a coefficient of variation of 40%, or p(qMONK-RES) = N(0.8, 
(0.8 × 0.4)2). We presume that the monkfish-directed biomass index would be close to, but not quite 
equal to, the absolute exploitable biomass. This is motivated by the demersal habits of monkfish and 
that the survey gear using “tickler” chains on the leading footrope to chase fish up into the net. 
Informative priors for qCOM or EB0 are constructed by assuming that they are uniform across their 
logarithmic values. These priors are improper, proportional to their inverse, and assign less 
probability to high resource abundance (McAllister and Kirkwood, 1998).  

We assume that all the prior probabilities are independent of each other, and hence, the joint 
probability is  

No prior probabilities were placed on the management quantities MSY, Depletion or 
EB2005/MSYL. 
 

 

3. Results 

 

3.1. Maximum likelihood estimation 

In all data scenarios investigated there is a general decrease in resource abundance over time (Fig. 1; 
Table 5), with the largest decrease occurring with the high catches during the 1980s. The decrease in 
catches in the early 1990s was associated with a short period of stock rebuilding. Catches, however, 
have increased steadily in recent years from 1500 t in 1990 to 15 300 t in 2003, with corresponding 
decreases in estimated abundance.  



 

Fig. 1. Maximum likelihood and Bayesian posterior estimates of exploitable biomass (top panel) and 
Depletion trajectories (bottom panel) between 1974 and 2005. The horizontal lines in the top panels 
refer to the exploitable biomass level at MSY. Results have summarized for three data scenarios: 
using both the commercial and research survey data (—), using only the research survey data (- - -) 
and using only commercial data (· · ·).  

 
Table 5.  

Maximum likelihood estimates and their Hessian-based asymptotic coefficients of variation in parentheses, along with 
their log-likelihood components  

 Research and commercial data Research data only Commercial data only 

EB0 (×103 t) 173.15 (7.79%) 180.58 (15.92%) 177.33 (9.21%) 

h 1.00 (0.67%) 0.47 (41.28%) 1.00 (0.74%) 

MSY (×103 t) 11.39 (7.8%) 6.14 (31.62%) 11.66 (9.22%) 

Depletion 0.41 (15.52%) 0.16 (30.91%) 0.43 (16.64%) 

qHAKE-RES 0.18 (13.84%) 0.21 (17.56%) 0.17 (15.98%) 



 Research and commercial data Research data only Commercial data only 

qMONK-RES 0.49 (22.12%) 0.94 (28.35%) 0.46 (24.72%) 

qCOM 1.12 (16.87%) 1.57 (20.46%) 1.06 (19.19%) 

EB2005/MSYL 1.31 (15.55%) 0.38 (33.78%) 1.38 (16.68%) 

−ln(λCOM) −14.64 – −14.75 

−ln(λHAKE-RES) −3.73 −3.88 – 

−ln(λMONK-RES) −4.33 −6.46 – 

−ln(λCOM CAA) −29.69 – −29.62 

−ln(λRES CAA) −18.21 −17.55 – 

−ln L −70.6 −27.89 −44.37 

Results have been summarized for three data scenarios: using both commercial and research survey data, using only the 
research survey data, and using only the commercial data. 

 

The exploitable biomass trends are similar for the data scenarios in which the commercial data are 
included. In the research data only scenario a rapid depletion in exploitable biomass occurs. The 
depletion trend, the ratio of exploitable biomass in each year to pristine levels, mirrors the 
exploitable biomass trend, and is highest for the commercial data only scenario, and lowest for the 
research data only scenario. The combined data scenario likelihood is dominated by the commercial 
data. Depletion in 2005, the Depletion management quantity, is estimated at 16% and 43% for these 
two data scenarios, respectively. Depletion is estimated at 41% when all data are included in the 
analyses. The data scenarios including the commercial data show the current exploitable biomass to 
be over 30% higher than MSY levels. By contrast, the research data only scenario results in an 
overfished resource with current exploitable biomass at 70% of levels required to achieve MSY.  

The contributions of the different biomass indices to the log-likelihood differ considerably (Table 5). 
Commercial CPUE is the longest series and provides the greatest contribution. The weakest datasets 
are the hake-directed biomass surveys. The strong decline noticeable in the monkfish-directed 
surveys accounts for its strength in the research data scenario. Owing to its length of only 5 years, it 
is not particularly influential when all data are included in the analysis. By contrast, the catch-at-age 
data are reasonably informative (Table 5).  

The maximum likelihood models for the three data scenarios fit the various data sources very well 
(CPUE and research survey, Fig. 2; research survey catch-at-age, Fig. 3; commercial catch-at-age, 
Fig. 4). The maximum likelihood estimates of management quantities and their coefficients of 
variation are summarized in Table 5. There is little evidence for density dependence in the Beverton-
Holt stock recruitment relationship, with h estimated at 1.00 for both data scenarios that include 
the commercial data, and 0.47 for the research only data scenario. Estimates of variability are 
particularly low for the commercial data scenarios (CVs < 1%) and high for research data scenario 
(CV = 41%). The former result is a consequence of the Hessian-based approach to estimating 



parameter variability, because the parameter h was constrained by an upper bound of 1. Maximum 
sustainable yield and Depletion is strongly (ρ = 0.99) correlated with EB0 and ranges between 6000 
and 12 000 t.  

 

 

 

Fig. 2. Observed relative abundance indices and corresponding estimates from the maximum 
likelihood model. Three data scenarios are presented: using both the commercial and research survey 
data (—), using only the research survey data (- - -) and using only commercial data (· · ·). Model 
estimates have been scaled, through the different catchability coefficients, to be compatible with the 
abundance indices.  

 

 

 



 

 

 

 

 

Fig. 3. Observed research survey catch-at-age and corresponding estimates from the maximum 
likelihood model for two data scenarios: using commercial and research data (—) and using only the 
research survey data only (- - -). (Research data were not used in the other scenario.)  



 

Fig. 4. Observed commercial catch-at-age and corresponding estimates from the maximum likelihood model for two data 
scenarios: using commercial and research indices (—) and using only commercial data (· · ·). (Commercial data were not 
used in the other scenario.)  

 

Parameter variability is linked to how informative are the data included in the analyses (Table 5). 
That is, the coefficients of variation for the noninformative research data only scenario are all >15%.  

 

3.2. Bayesian estimation 

3.2.1. Scenarios with noninformative priors 

The Bayesian approach with noninformative priors results in similar estimates to those from the 
maximum likelihood approach (Fig. 1; Table 5 and Table 6). The main difference lay with a more 
thorough investigation of the posterior surface around a broader range of values for h. As a 
consequence h is estimated between 0.64 and 0.81 with corresponding higher estimates of EB0. The 
estimates of MSY and Depletion mirror the general productivity of the resource, as measured by h 
and EB0. The results show that the resource has been depleted to between 36% and 44% of pristine 
levels, and that estimated MSY is between 9000 and 11 000 t.  

 



Table 6.  

Marginal posterior expected values and coefficients of variation (in parentheses) for five management quantities and 
three catchability coefficients from the Bayesian approach with both noninformative and informative priors 

 Noninformative priors Informative priors

Research and commercial data 

 EB0 (×103 t) 201.58 (12.04%) 177.85 (6.95%) 

 h 0.81 (22.7%) 0.88 (12.33%) 

 MSY (×103 t) 10.74 (14.89%) 10.27 (8.83%) 

 Depletion 0.44 (17.03%) 0.36 (16.45%) 

 qHAKE-RES 0.17 (15.85%) 0.20 (10.97%) 

 qMONK-RES 0.48 (23.67%) 0.64 (19.75%) 

 qCOM 1.08 (18.73%) 1.35 (14.06%) 

 EB2005/MSYL 1.21 (19.99%) 1.04 (18.54%) 

 

Research data only 

 EB0 (×103 t) 225.07 (36.77%) 165.83 (7.08%) 

 h 0.64 (51.43%) 0.83 (17.67%) 

 MSY (×103 t) 8.62 (35.78%) 9.05 (10.22%) 

 Depletion 0.36 (51.94%) 0.25 (26.11%) 

 qHAKE-RES 0.18 (31.59%) 0.24 (10.43%) 

 qMONK-RES 0.66 (50.82%) 0.95 (22.83%) 

 qCOM – – 

 EB2005/MSYL 0.92 (56.18%) 0.70 (28.7%) 

 

Commercial data only 

 EB0 (×103 t) 221.71 (21.53%) 201.39 (13.17%) 

 h 0.78 (27.17%) 0.87 (13.56%) 

 MSY (×103 t) 11.18 (18.47%) 11.49 (13.29%) 

 Depletion 0.48 (19.52%) 0.46 (17.35%) 

 qHAKE-RES – – 



 Noninformative priors Informative priors

 qMONK-RES – – 

 qCOM 0.96 (24.12%) 1.06 (19.82%) 

 EB2005/MSYL 1.31 (21.77%) 1.31 (18.91%) 

The results are presented for three data scenarios: using both commercial and research survey data, 
using only the research survey data, and using only the commercial data. 

 

 

 

3.2.2. Scenarios with informative priors 

The inclusion of the informative priors has a directional, and stabilizing, effect on the posterior 
distributions when compared to the use of noninformative priors (Fig. 5; Table 6). The inclusion of 
the informative prior for qMONK-RES effectively places additional weight on the monkfish-directed 
trawl survey data by assuming that the survey biomass is close to total biomass. In this scenario, the 
outlook for the monkfish resource is more pessimistic with lower Depletion levels, lower predicted 
MSY and with exploitable biomass in 2005 being at, or slightly over, the biomass required to 
achieve MSY.  



 

Fig. 5. Marginal posterior density functions for the parameters EB0 and h, the management quantities 
MSY, Depletion and EB2005/MSYL and the catchability coefficients qHAKE-RES, qMONK-RES and qCOM. 
The results have been presented for three data scenarios: using both the commercial and research 
survey data, using only the research survey data and using only commercial data. Open symbols 
refer to the use of noninformative priors and filled symbols refer to the use of informative priors.  

 



The inclusion of informative priors within the research data only scenario increases estimation 
precision considerably. For the other data scenarios that included the commercial data, there is only 
a marginal effect on improving parameter precision, because there is sufficient information 
contained in the likelihood not to be influenced by the priors. The inclusion of informative priors 
suggests that the resource has been fished to between 25% and 46% of pristine levels, and that 
estimated MSY lies between 9000 and 11 000 t.  

4. Discussion 
Trends in exploitable biomass and depletion were qualitatively similar, no matter what statistical 
approach was used or which data sources (Fig. 1). The results of the assessment provide evidence for 
a decrease in monkfish abundance from the 1970s to the late 1980s, a weak recovery in the early 
1990s when catches were the lowest, and then a further decrease in abundance as catches increased 
with an expansion of the industry in year after Namibia's independence from South Africa. The only 
issue is the relative magnitude of the population decline (and other related parameters), which is 
estimated to be larger for the research only data scenario than the scenarios with commercial data. If 
commercial data are used in the assessment, then the monkfish resource appears to be healthy, with 
exploitable biomass above the MSY level and MSY near 10 000 t, regardless of whether research 
data are used.  

The data sources and most of the other parameters were well-estimated by either the maximum 
likelihood approach or the Bayesian approach (Fig. 2, Fig. 3 and Fig. 4 and Table 5 and Table 6). 
Uncertainties in parameter estimates from the likelihood approach and the Bayesian approach with 
noninformative priors were similar, as expected. The Bayesian approach with informative priors 
produced lower uncertainties in general. However, misspecification of the priors would lead to 
biases in parameter estimates and uncertainties. Furthermore, there have been several studies that 
note that catchability in commercial CPUE often increases over time due to increases in fishing 
knowledge and technological development. Because this potential increase could not be estimated in 
this model due to data limitations, an increase in catchability would create a direct and 
nonconservative bias in all parameter estimates. Finally, the sensitivity to the choice of priors (Fig. 
5) suggests that considerable uncertainty remains in the knowledge of Namibian monkfish.  

The most difficult parameter to estimate in this case study was the steepness parameter h in the stock 
recruitment relationship. The maximum likelihood method failed to estimate h or its uncertainly with 
any consistency (Table 5) In data-poor situations like Namibian monkfish, we suggest that an 
alternative resampling approach, such as bootstrapping, should be employed instead of the Hessian 
method, if a maximum likelihood framework must be used. The Bayesian approaches used in this 
study, with and without the inclusion of informative priors, produced more stable estimates of 
steepness and its uncertainty (Table 6). Furthermore, the use of informative priors produced higher 
estimated precision than noninformative priors. Nevertheless, estimation bias cannot be addressed in 
a case study, so that a definitive statement about which is better cannot be made.  

The standard stock assessment approach is to integrate all data sources about a population into a 
comprehensive model containing a likelihood function (Quinn, 2003). The use of the Bayesian 
approach is a natural extension, and one that is relatively straightforward to implement, because it 
generalizes model parameters to be random variables, which are initially specified as prior 
probabilities and then modified given the information available within the likelihood. The strength of 
a Bayesian (as opposed to a strictly maximum likelihood) approach lies with the explicit inclusion of 



these prior probabilities. Within a strict maximum likelihood context, there is no inclusion of a 
priori data. In the context of data-poor/limited situations or when available data are questionable, the 
use of prior specification is one of the few ways of dealing with such problems. In many cases, data-
limited fisheries only have one abundance index. By including some prior information into the 
modeling framework, biological plausibility can be enhanced.  

In many Bayesian analyses, the choice of priors can have a large effect on the outputs of the stock 
assessment model (Adkison and Peterman, 1996, Chen et al., 2000 and McAllister et al., 2001). In 
the absence of prior knowledge it has been common practice to seek an appropriate noninformative 
prior distribution, referred to as the reference prior. Both Lee (1997) and Millar (2002) note that flat, 
or uniform, priors are not necessarily noninformative, particularly if data are log-normally 
distributed or shape parameters such as variances are considered. The use of a Jeffreys’ prior 
(Jeffreys, 1961) has therefore been proposed as a general solution in fisheries data (Millar, 2002). 
Derivation of a reference prior is not a trivial task, particularly with respect to complex fisheries 
models. Millar (2002) notes that the Jeffreys’ prior for a simple biomass dynamic model, such as that 
used by Polacheck et al. (1993), cannot be written in closed form. In this study, as in both the 
biomass dynamic and sequential population analysis models outlined by Millar (2002), the 
catchability coefficients are independent of the other model parameters, so that the inverse priors 
used are therefore suitable. However, we were unable to construct Jeffreys’ priors for other 
parameters in our hybrid age-structured surplus production mode, because biomass in each year is 
dependent on the two model parameters h and EB0 and the previous year's spawner biomass (see 
Appendix A). There is usually a strong correlation between h and EB0, because increased prior 
density is given to higher values of h as EB0 increases. Alternatively, confidence distributions, as 
proposed by Schweder (1998) could be used in conjunction with other priors that exhibit desirable 
properties such as invariance and good coverage. A better set of reference priors for this model will 
be the subject of future work.  

There is both potential and danger in the use of Bayesian stock assessment models in data-poor 
situations. First, there may be a desire to obtain a constrained solution for a parameter or a 
management quantity. One concern is that the model could be “massaged” to obtain a preconceived 
solution and therefore the specification of priors requires careful justification and scrutiny. Second, 
some form of stock assessment model is frequently needed by managers to make some form of 
decision. In data-poor situations, the only available option may be to use “best guesses” explicitly 
specified as priors (and then updated as more data become available). But errors in these best 
guesses could affect decisions, because the choice of priors affects model results. Thirdly, decision 
analysis, a formal way of including all known (and unknown) states of nature within a framework of 
various management choices, could be the strongest use of the Bayesian approach. The key in this 
approach is to expose the uncertainties due to alternative states of nature being possible. Quantitative 
methods can then be brought in to attempt to achieve societal objectives.  

This study has shown that a biologically realistic stock assessment model can be developed in a 
‘questionable’ data situation using maximum likelihood and Bayesian methodology. Our case study 
shows that the Bayesian approach is complementary to (and a generalization of) the maximum 
likelihood approach. The development of plausible prior distributions in the Bayesian setting 
produced a more credible estimate of steepness than in the maximum likelihood setting, which led to 
more defensible estimates of management parameters.  



No longer is it particularly difficult to put together a stock assessment model that contains at least 
partial age structure information to estimate management quantities. The inevitable conflicts 
between different data sources can be explored by investigating different scenarios in which some 
data sources are omitted. Further, noninformative and informative priors can be explored within the 
same modeling context. While this approach cannot singularly identify which scenario is most 
appropriate, it can highlight the advantages and disadvantages of different choices, and in the spirit 
of openness in stock assessment modeling, to fully and explicitly identify the parameter and data 
uncertainties and model and data alternatives of our understanding of natural systems.  
 

Acknowledgments 
Funding to attend the symposium on the “Assessment and management of new and developed 
fisheries in data-limited situations”, held in Anchorage, Alaska in October 2003 was provided by the 
Joint Research Commission, Rhodes University and the National Research Foundation, South 
Africa. Mark Maunder and an anonymous reviewer are both thanked for their extremely helpful 
comments on a previous draft of the manuscript. Cordell Walker is thanked for his input. This paper 
came about thanks to a Fulbright fellowship to the senior author. The University of Alaska Fairbanks 
kindly supported his fellowship study.  
 

References 
Adkison and Peterman, 1996 M.D. Adkison and R.M. Peterman, Results of Bayesian methods 
depend on details of implementation: an example of estimating salmon escapement goals, Fish. Res. 
25 (1996), pp. 155–170.  

Booth and Punt, 1998 A.J. Booth and A.E. Punt, Evidence for rebuilding in the panga stock on the 
Agulhas Bank, South Africa, Fish. Res. 34 (1998), pp. 103–121.  

Chen et al., 2000 Y. Chen, P.A. Breen and N.L. Andrew, Impacts of outliers and mis-specification of 
priors on Bayesian fisheries-stock assessment, Can. J. Fish. Aquat. Sci. 57 (2000), pp. 2293–2305.  

Francis, 1992 R.I.C.C. Francis, Use of risk analysis to assess fishery management strategies: a case 
study using orange roughy (Hoplostethus atlanticus) on the Chatham Rise, New Zealand, Can. J. 
Fish. Aquat. Sci. 49 (1992), pp. 922–930.  

Francis et al., 2003 R.I.C.C. Francis, R.J. Hurst and J.A. Renwick, Quantifying annual variation in 
catchability for commercial and research fishing, Fish. Bull. 101 (2003), pp. 293–304.  

Gelman et al., 1995 A. Gelman, J. Carlin, H. Stern and D. Rubin, Bayesian Data Analysis, Chapman 
and Hall, New York (1995).  

Geweke, 1992 J. Geweke, Evaluating the accuracy of sampling-based approaches to the calculation 
of posterior moments. In: J.O. Berger, J.M. Bernardo, A.P. Dawid and A.F.M. Smith, Editors, 
Bayesian Statistics 4: Proceedings of the Fourth Valencia International Meeting, Clarendon Press, 
Oxford (1992), pp. 169–193.  



Hilborn et al., 1993 R. Hilborn, E.K. Pikitch and R.I.C.C. Francis, Current trends in including risk 
and uncertainty in stock assessment and harvest decisions, Can. J. Fish. Aquat. Sci. 50 (1993), pp. 
874–880.  

Jeffreys, 1961 H. Jeffreys, Theory of Probability (3rd ed.), Oxford University Press, London (1961).  

Lee, 1997 P.M. Lee, Bayesian Statistics: An Introduction, Oxford University Press, New York 
(1997).  

Maartens, 1999 Maartens, L., 1999. An assessment of the monkfish resource of Namibia. Ph.D. 
Thesis. Rhodes University, Grahamstown, South Africa.  

Maartens and Booth, 2001 Maartens, L., Booth, A.J., 2001. Assessment of the Lophius vomerinus 
resource off Namibian waters, in: Payne, A.I.L., Pillar, S.C., Crawford, R.J.M. (Eds.), A Decade of 
Namibian Fisheries Science. S. Afr. J. Mar. Sci. 23, 275–290.  

McAllister and Kirkwood, 1998 M.K. McAllister and G.P. Kirkwood, Bayesian stock assessment: a 
review and example application using the logistic model, ICES J. Mar. Sci. 55 (1998), pp. 1031–
1060.  

McAllister et al., 2001 M.K. McAllister, E.K. Pikitch and E.A. Babcock, Using demographic 
methods to construct Bayesian priors for the intrinsic rate of increase in the Schaefer model and 
implications for stock rebuilding, Can. J. Fish. Aquat. Sci. 58 (2001), pp. 1871–1890.  

Merritt and Quinn, 2000 M.F. Merritt and T.J. Quinn II, Using perceptions of data accuracy and 
empirical weighting of information: assessment of a recreational fish population, Can. J. Fish. 
Aquat. Sci. 57 (2000), pp. 1459–1469.  

Millar, 2002 R.B. Millar, Reference priors for Bayesian fisheries models, Can. J. Fish. Aquat. Sci. 
59 (2002), pp. 1492–1502.  

Myers et al., 1995 R.A. Myers, J. Bridson and N.J. Barrowman, Summary of worldwide spawner 
and recruitment data, Can. Tech. Rep. Fish. Aquat. Sci. 2024 (1995) 327 pp.  

Otter Research Ltd., 2000 Otter Research Ltd., An Introduction to AD Model Builder Version 4: For 
Use in Nonlinear Modelling and Statistics, Otter Research Ltd., Sydney, Canada (2000).  

Polacheck et al., 1993 T. Polacheck, R. Hilborn and A.E. Punt, Fitting surplus production models: 
comparing methods and measuring uncertainty, Can. J. Fish. Aquat. Sci. 50 (1993), pp. 2597–2607.  

Punt, 1994 A.E. Punt, Assessments of the stocks of Cape hakes (Merluccius spp.) off South Africa, 
S. Afr. J. Mar. Sci. 14 (1994), pp. 159–186.  

Punt and Hilborn, 1997 A.E. Punt and R. Hilborn, Fisheries stock assessment and decision analysis: 
the Bayesian approach, Rev. Fish. Fish Biol. 7 (1997), pp. 35–63.  

Punt and Japp, 1994 A.E. Punt and D.W. Japp, Stock assessment of the kingklip Genypterus 
capensis off South Africa, S. Afr. J. Mar. Sci. 14 (1994), pp. 133–149.  



Quinn, 2003 T.J. Quinn II, Ruminations on the development and future of population dynamics 
models in fisheries, Nat. Res. Model. 16 (2003), pp. 341–392.  

Quinn and Deriso, 1999 T.J. Quinn II and R.B. Deriso, Quantitative Fish Dynamics, Oxford 
University Press, New York (1999) p. 542.  

Rademeyer, 2003 Rademeyer, R.A., 2003. Assessment of and management procedures for the hake 
stocks off southern Africa. M.Sc. Thesis. Univ. Cape Town, Cape Town, 209+xxxvi pp.  

Rosenberg and Restrepo, 1994 A.A. Rosenberg and V.R. Restrepo, Uncertainty and risk evaluation 
in stock assessment advice for U.S. marine fisheries, Can. J. Fish. Aquat. Sci. 51 (1994), pp. 2715–
2720.  

Schweder, 1998 T. Schweder, Fisherian or Bayesian methods of integrating diverse statistical 
information?, Fish. Res. 37 (1998), pp. 61–75.  

Smith and Punt, 1998 Smith, A.D.M., Punt, A.E., 1998. Stock assessment of Gemfish (Rexea 
solandri) in Eastern Australia using maximum likelihood and Bayesian methods, in: Funk, F., Quinn 
II, T.J., Heifetz, J., Ianelli, J.N., Powers, J.E., Schweigert, J.F., Sullivan, P.J., Zhang, C.-I. (Eds.), 
Fisheries Stock Assessment Models. Alaska Sea College Program, AK-SG-98-01, pp. 245–286.  

 

Appendix A. The age-structured surplus production model 

A.1. Resource dynamics 

Population abundance, in numbers, is governed by the following equations: 

 
 
where Ny,a is the number of fish at age a at the start of year y, M the rate of natural mortality, Cy,a the 
numbers of fish caught at age a in year y, and max is the maximum age considered and treated as 
lumped plus-group.  

Trawl-based selectivity for gear i (for either commercial or research trawling) as a function of age a 

is described by a logistic function of the form where is the age 
at 50% selection and δ is the curvature parameter.  



The model is initiated in the year preceding fishing activity and the initial number of age-0 recruits, 
R0, is calculated from the mid-year exploitable biomass, the commercial selectivity at age a 
and EB0, and the exploitable biomass per-recruit such that 

 
 
Spawner biomass in year y, SBy, is defined as , with ψa the proportion of 
fish at age a that are sexually mature, calculated from the logistic function 

, and Wa the begin-year weight of a fish of age a, such that 
Wa=γ[L∞(1−e−K(a−t

0
))] , with L∞, K and t0 the von Bertalanffy growth equation parameters, γ and the 

length–weight parameters, and and δm, the logistic parameters.  

The stock recruitment relationship is reparameterized to contain a single “steepness” parameter h 
(that proportion of pristine recruitment when spawner biomass is reduced to 20% of pristine levels) 
such that 

 

 

A.2. Catches 

Annual catches are assumed to occur mid-year and estimated as 

 
 
where Wa+1/2 is the weight-at-age of a fish at the middle of the year and µy is the exploitation fraction 
for year y.  

A.3. The likelihood function 

The model is fitted to the commercial CPUE and research survey abundance indices, and the 
commercial and research survey catch-at-age data. The likelihood function is, therefore, composed 
of five components, such that L = λCPUE × λHAKE-RES BIOMASS × λMONK-RES BIOMASS × λCOM CAA × λRES 

CAA.  

A.3.1. Biomass data 

The first three likelihood components, λCPUE, λHAKE-RES BIOMASS and λMONK-RES BIOMASS, corresponding 
to the biomass indices, assume that each observed abundance index is log-normally distributed about 

its expected value such that , where and are the 



observed and model predicted biomasses for index i, qi the catchability coefficient for index i, is 
the standard deviation for index i in year y.  

To correct for possible negative bias in the estimates of variance, and prevent giving undue weight to 
either index, a lower variance bound ( ) was input into the model (Rademeyer, 2003), such that 

. This was specified at 0.15 for the commercial index and 0.20 for both 
biomass indices. Sampling error associated with each annual abundance estimate in index i in year y 
is also included in the annual variance estimate. For the commercial CPUE index a coefficient of 
variation of 15% is assumed (Francis et al., 2003). For the research surveys, the coefficient of 
variation associated with each annual survey was used.  

Each likelihood component is, therefore, expressed as 

 

The model estimates of biomass for the commercial indices are calculated as 

 

for the hake-directed research survey index as 

 

And for the monkfish-directed research survey index as 

 

where m is the month when the survey occurred and is the age-specific research survey 
selectivity at age a.  

The residuals are assumed to be homoscedastic such that . The standard deviation is then 
calculated as its maximum likelihood estimate as 

 

 

 



The catchability coefficients are replaced by their maximum likelihood equivalents, such that 

 

A.3.2. Catch-at-age data 

The third and forth components of the likelihood, λCOM CAA and λRES CAA, correspond to the 
commercial and research survey catch-at-age data, respectively.  

As with the biomass data, it is assumed that the proportion of fish of age a caught in year y, , are 
log-normally distributed about their expected value, , such that and a 

standard deviation of such that (Smith and Punt, 1998 and 
Rademeyer, 2003). This “adjusted” form the of the log-normal likelihood weights the residuals 
based on the expected proportions, thereby ensuring that undue importance is not placed on small 
proportions.  

The form of the likelihood for each series i is therefore: 

 

with the predicted proportions at age calculated as: 

 

 

 

 

The standard deviation is calculated as its maximum likelihood estimate as 

 



A.4. Estimating yield 

Yield, as a function exploitation fraction µ, was calculated as Y(µ) = YPR(µ) × R(µ), where YPR(µ) 
is the yield per recruit as a function of the exploitation fraction µ, and R(µ) is the equilibrium 
recruitment as a function of the exploitation fraction µ.  

Yield per recruit, as a function of the exploitation fraction, was estimated as 

 

where 

 

 

Equilibrium recruitment µ is calculated as 

 

 
where , and α and β the maximum likelihood estimates of the stock 
recruitment parameters.  

Yield is maximised iteratively by calculating the first and second finite difference numerical 
derivatives of Y(µ) with respect to µ. The first and second derivatives were calculated as 

 

and 

 

where h = 0.00001.  

The yield curve was maximised by updating µ iteratively as µi=µi−1−(f′/f″), where i is the ith iteration, 
until a tolerance of |(µi−µi+1)/µi+1|>0.00001 is reached.  

 



 

 

 


