
POINTFREE PSEUDOCOMPACTNESS REVISITED

THEMBA DUBE AND PHETHIWE MATUTU

Abstract. We give several internal and external characterizations of pseudocompactness in

frames which extend (and transcend) analogous characterizations in topological spaces. In the

case of internal characterizations we do not make reference (explicitly or implicitly) to the reals.

1. Introduction

In the context of pointfree topology, the notion of pseudocompactness first appeared in 1991 in

Baboolal and Banaschewski [1] where the authors state that their adopted definition (not making

use of homomorphisms from the frame of opens of the reals) is an internal characterization which

was established by C. Gilmour. Subsequent to that, Banaschewski and Pultr [7] gave some char-

acterizations within the category of completely regular frames in 1993. Further characterizations

within the class of completely regular frames were obtained by Marcus [12], Walters-Wayland [18]

who showed, amongst other things, that a completely regular frame is pseudocompact if and only

if it admits only precompact uniformities, and by Hlongwa [9] who compared pseudocompactness

to other weaker forms of compactness; namely, feeble compactness and countable compactness.

The first extensive characterizations in arbitrary frames appeared in Banaschewski and Gilmour

[4]. Our aim in this paper is to establish a number of internal and also external characterizations

of pseudocompactness for general frames. We remark that some of these are pointfree extensions

of analogous characterizations in topological spaces that were given by Stephenson [16].

What distinguishes our proofs in the case of internal characterizations from those of Stephenson

is that, whereas he uses “external” artifacts (maps into the reals) in certain instances, all our

proofs are “internal” in the sense that they use only things residing within the frames in question.

We record our deep indebtedness to Dona Strauss for helpful discussions (with the second-

named author) pertaining constructions of homomorphisms from the frame of opens of the reals.

2. Preliminaries
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In this section we recall a few definitions that we shall need and refer to Johnstone [11] for general

background on frames. For a more algebraic treatment of this engaging subject, see Pultr [14].

A frame is a complete lattice L in which the distributive law

a ∧∨
S =

∨{a ∧ x | x ∈ S}

holds for all a ∈ L and all S ⊆ L . We denote the top element and the bottom element of a frame

by 1L and 0L respectively; omitting the subscript if no confusion may arise. The frame of open

subsets of a topological space X will be denoted by OX.

A cover C of a frame is a subset with
∨

C = 1. A cover C refines a cover D if for each c ∈ C

there exists d ∈ D such that c ≤ d. A subset S of a frame is locally finite if there is a cover C such

that each element of C meets only finitely many elements of S. In this case we say C finitizes S.

A frame is paracompact (resp. countably paracompact) if each cover (resp. each countable cover)

has a locally finite refinement. It is compact (resp. countably compact) if each cover (resp. each

countable cover) has a finite subcover.

A frame L is regular if, for each a ∈ L, a =
∨{x ∈ L | x ≺ a}, where x ≺ a means that

there exists s ∈ L such that x ∧ s = 0 and s ∨ a = 1. This is equivalent to x∗ ∨ a = 1 for the

pseudocomplement x∗ =
∨{w ∈ L | w ∧ x = 0} of the element x. It is completely regular if, for

each a ∈ L, a =
∨{x ∈ L | x ≺≺ a} where x ≺≺ a means that there is a scale (cq|q ∈ Q ∩ [0, 1])

such that x = c0, a = c1 and cq ≺ cp whenever q < p. It is normal if whenever a ∨ b = 1, then

there are elements u and v such that u ∧ v = 0, u ∨ a = v ∨ b = 1. An element x of a frame is

dense if x∗ = 0.

A frame homomorphism is a map between frames that preserves finite meets, including the top

element, and arbitrary joins, including the bottom element. A frame homomorphism is dense if

it maps only the bottom to the bottom. A quotient of a frame L is a frame M that admits an

onto frame homomorphism L → M .

A cozero element of a frame L is an element of the form ϕ(R\{0}) for some frame homomorphism

ϕ : OR→ L. The set of all cozero elements of L is called the cozero part of L and is denoted by

Coz(L). We remark that, in the definition of cezero elements, OR can be replaced by the frame

of reals LR which is generated by the ordered pairs (p, q) of rational numbers p, q ∈ Q subject to

the relations:

(i) (p, q) ∧ (s, t) = (p ∨ s, q ∧ t)

(ii) (p, q) ∨ (s, t) = (p, t) whenever p ≤ s < q ≤ t
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(iii) (p, q) =
∨{(s, t) | p < s < t < q}

(iv) 1LR =
∨{(p, q) | p, q ∈ Q}.

Thus defined, without classical reals, the external facts we use stay in the pointfree context too.

A useful characterization is that a ∈ Coz(L) if and only if a =
∨

an where ak ≺≺ ak+1 for each

k. For further properties of the cozero part of a frame see [2] or [4].

3. External characterizations

We start our study by recalling that for a frame L, a frame homomorphism h : OR→ L is said to

be bounded if there exist p, q ∈ R such that h(p, q) = 1L. The frame is then called pseudocompact

in case all frame homomorphisms OR → L are bounded. Quite clearly, every subframe of a

pseudocompact frame is pseudocompact.

We shall frequently use the following result from [4].

Proposition 3.1. The following are equivalent for any frame L:

(1) L is pseudocompact.

(2) Any sequence a1 ≺≺ a2 ≺≺ . . . such that
∨

an = 1L in L terminates; that is, ak = 1L for

some k.

(3) The σ-frame Coz(L) is compact.

Next we collect some properties of the kinds of frames we shall use in characterizing pseudo-

compact frames externally.

Lemma 3.2. A normal paracompact frame is pseudocompact iff it is countably compact.

Proof. Obviously any countably compact frame is pseudocompact. Conversely, let {a1, a2, . . .}
be a countable cover of a normal paracompact frame L. By [8] (the corollary on p.97) there

are elements bn such that bn ≺ an for each n and
∨

bn = 1L . Now by normality we have that

bn ≺≺ an, and therefore there are cozero elements cn such that bn ≺ cn ≺ an for each n. Thus

{cn | n ∈ N} is a cover of the σ-frame Coz(L). By pseudocompactness there are finitely many cn

that have join 1L, and so there are finitely many an that cover L. ¥



4 THEMBA DUBE AND PHETHIWE MATUTU

In view of the fact that Boolean frames are normal and paracompact (the latter proved in [17],

Proposition 6), we immediately obtain the following fact.

Corollary 3.3. A Boolean frame is pseudocompact iff it is countably compact.

For a background on metrizable frames, which we refer to in the next result, we recommend

Pultr [13].

Lemma 3.4. A metrizable frame is compact iff it is countably compact.

Proof. The one implication is trivial. Conversely, let M be a metrizable frame which is countably

compact. Then, as was shown by Sun [17], M is paracompact. Being a regular frame that is

paracompact and pseudocompact, M is compact ([7], Corollary 1). ¥

We now give some external characterizations of pseudocompactness.

Proposition 3.5. The following are equivalent for any frame L:

(1) L is pseudocompact.

(2) If h : M → L is a one-to-one frame homomorphism, then M is pseudocompact.

(3) If h : M → L is a one-to-one frame homomorphism with M normal and paracompact, then

M is countably compact.

(4) For every metrizable frame M , if h : M → L is a one-to-one frame homomorphism, then M

is compact.

(5) For any composition OR → M → L of frame homomorphisms where the first map is onto

and the second one-to-one, M is compact.

Proof. (1) ⇒ (2). Let a1 ≺≺ a2 ≺≺ · · · in M with
∨

an = 1M . Then h(a1) ≺≺ h(a2) ≺≺ · · · in

L, and
∨

h(an) = 1L. Since L is pseudocompact, there exists an index k such that h(ak) = 1L.

Since h is one-one, ak = 1M .

(2) ⇒ (3). Follows from Lemma 3.2.
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(3)⇒ (4). Metrizable frames are regular and paracompact, and therefore normal by Proposition

3.4 in [15]. So the result follows from Lemma 3.4.

(4) ⇒ (5). This is so since OR is metrizable and quotients of metrizable frames are metrizable.

(5) ⇒ (1). Let f : OR → L be a frame homomorphism. Consider the factorization OR →
f [OR] → L where the first map maps as f (and is therefore onto) and the second map is the

inclusion. The hypothesis says f [OR] is compact. Now {f(−n, n) | n ∈ N} is a cover of f [OR];

so by compactness there exists k ∈ N such that f(−k, k) = 1L. Thus L is pseudocompact. ¥

4. Internal characterizations

A filter base F in a frame L is called completely regular if for each x ∈ F there exists y ∈ F

such that y ≺≺ x. As in spaces we say a filter base F clusters if
∨{x∗ | x ∈ F} 6= 1. A cover

C is co-completely regular if for each c ∈ C there exists d ∈ C such that c ≺≺ d. We shall say a

subset S of Coz(L) is locally finite in Coz(L) if it is finitized by a cover of Coz(L); that is, if it is

finitized by a countable cover of L consisting of cozero elements.

Proposition 4.1. The following are equivalent for any frame L:

(1) L is pseudocompact.

(2) Every subset of Coz(L) which is locally finite in Coz(L) is finite.

(3) Every countable completely regular filter base in L clusters.

(4) Every countable co-completely regular cover of L has a finite subcover.

Proof. (1) ⇒ (2). If not, there is a countably infinite set B = {b1, b2, . . .} ⊆ Coz(L) which

is locally finite in Coz L and consisting of nonzero elements. Let C be a cover of Coz(L) that

finitizes B. Now define elements an, for n ∈ N, as follows:

an =
∨
{x ∈ C | x ∧ bk = 0 for all k ≥ n}.

Then we clearly have that an ≤ an+1 for each n, and each an is in Coz(L) because it is a join

of countably many cozero elements. Furthermore, if c ∈ C then c ≤ ak for some k since c meets

only finitely many elements of B. Thus A = {an | n ∈ N} is a cover of Coz(L). Since Coz(L)

is compact, A has a finite subcover. This implies that ak = 1L for some k; whence bk = 0 since
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bk = bk ∧
∨{x ∈ C | x∧ bi = 0 for all i ≥ k} ≤ ∨{bk ∧ x | x∧ bk = 0}. This contradiction proves

the result.

(2) ⇒ (3). Let F = {x1, x2, . . .} be a completely regular filter base in L. For each n let

yn = x1∧· · ·∧xn and note that yn 6= 0 since F is a filter base, and yn ≥ yn+1. Now let q ∈ N. Find

xn1 , . . . , xnq in F such that xn1 ≺≺ x1, . . . , xnq ≺≺ xq. Then xn1 ∧ · · ·∧xnq ≺≺ x1∧ · · ·∧xq = yq.

If we let m = max{n1, . . . , nq}, then ym = x1∧· · ·∧xm ≤ xn1∧· · ·∧xnq ≺≺ yq; so that ym ≺≺ yq.

We can therefore extract a subsequence (ymk
)k∈N from (yn) such that ymk

≤ yk for each k and

· · · ym2 ≺≺ ym1 ≺≺ y1.

Thus there are cozero elements c1, c2, . . . and cozero elements d1, d2, . . . such that

· · · ymk
≺ ck ≺ ymk−1

≺ · · · ≺ ym2 ≺ c2 ≺ ym1 ≺ c1 ≺ y1

and

y∗1 ≺ d1 ≺ y∗m1
≺ d2 ≺ y∗m2

≺ . . . ≺ y∗mk−1
≺ dk ≺ y∗mk

. . .

Since yn ≤ xn for each n, we have x∗n ≤ y∗n for each n. Hence if we can show that
∨

y∗n 6= 1L we shall

be done. Suppose, by way of contradiction, that
∨

y∗n = 1L. Then D = {dn | n ∈ N} is a cover of

Coz(L). We claim that it finitizes C = {cn | n ∈ N}. Given any k ∈ N choose n(k) and l(k) in

N such that dk ≺ y∗n(k) and cl(k) ≺ yn(k). Since the sequence (cn) decreases and y∗n(k) ∧ yn(k) = 0,

it follows that dk has nonzero meet with at most c1, . . . , cl(k)−1. This shows that the set C is

locally finite in Coz(L) and is therefore finite by the hypothesis. Say C = {cp1 , . . . , cps} with

cp1 ≥ · · · ≥ cps . Now
∨

i∈N
c∗i ≥

∨

i∈N
y∗mi

=
∨

n∈N
y∗n = 1L.

But
∨

c∗i = c∗ps
; so c∗ps

= 1L, which implies that cps = 0 and hence yk = 0 for some k. This is a

contradiction.

(3) ⇒ (4). If not, there is a countable co-completely regular cover C which has no finite

subcover. Let G = {∧x∗(x ∈ F ) | F is a finite subset of C}. We claim that G is a filter base.

Let c1, . . . , cm be finitely many elements of C. We need only show that c∗1 ∧ · · · ∧ c∗m 6= 0. If this

meet were 0, then for d1, . . . , dm in C with ci ≺≺ di we would have c1∨ · · · ∨ cm ≺≺ d1∨ · · · ∨ dm,

whence (c1∨· · ·∨cm)∗∨(d1∨· · ·∨dm) = 1L and therefore d1∨· · ·∨dm = 1L since (c1∨· · ·∨cm)∗ =

c∗1 ∧ · · · ∧ c∗m = 0. But then this would mean C has a finite subcover. Now let g = x∗1 ∧ · · · ∧ x∗m

be an arbitrary element of G. Pick yi ∈ C such that xi ≺≺ yi for each i. Then y∗i ≺≺ x∗i for each
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i. Thus y∗1 ∧ · · · ∧ y∗m is an element of G which is completely below g. Therefore G is a completely

regular filter base which is countable. But now we have a contradiction since, for each c ∈ C, c∗

is in G and hence
∨
x∈G

x∗ ≥
∨
c∈C

c∗∗ = 1L,

contradicting the hypothesis.

(4) ⇒ (1). Let (an) be a sequence such that a1 ≺≺ a2 ≺≺ · · · and
∨

an = 1L. Then

{an | n ∈ N} is a countable co-completely regular cover. So there exist integers n1 < · · · < nk

such that an1 ∨ · · · ∨ ank
= 1L. This implies that ank

= 1L. ¥

Recall that a frame is almost compact if every cover has a finite subset the join of which is

dense. Hong [10] has shown that a frame is almost compact if and only if every filter in it clus-

ters. Now if a filter base does not cluster, then the filter it generates also does not cluster. From

the characterization above we therefore have the following result.

Corollary 4.2. Every almost compact frame is pseudocompact.

An element x of a frame is called regular in case x = x∗∗. Note that regular elements are

precisely those that are pseudocomplements. The semi-regularization of a frame L is the sub-

frame Ls generated by the regular elements of L.

Corollary 4.3. A frame is pseudocompact iff its semi-regularization is pseudocompact.

Proof. Let L be a frame with a pseudocompact semi-regularization, and let F be a countable

completely regular filter base in L. The set G = {x∗∗ | x ∈ F} is easily checked to be a filter base

in Ls in light of the identity a∗∗ ∧ b∗∗ = (a ∧ b)∗∗. Now if x ≺ y in L and t is an element of L

witnessing this fact, then x∗∗ ∧ t∗∗ = 0 and t∗∗ ∨ y∗∗ = 1; whence x∗∗ ≺ y∗∗ in Ls. Thus, for any z

and w in L, if z ≺≺ w then z∗∗ ≺≺ w∗∗ in Ls. So G is a countable completely regular filter base

in Ls. Denote by ( )~ the pseudocomplementation in Ls. Therefore
∨{g~ | g ∈ G} 6= 1Ls = 1L.

Now, for any a ∈ Ls, we clearly have a~ ≤ a∗. On the other hand, in view of the fact that

x ∧ y = 0 if and only if x∗∗ ∧ y = 0, we have that a∗ ≤ ∨{x∗∗ | x ∈ L and x ∧ a = 0} ≤ a~.

Consequently,
∨{x∗ | x ∈ F} =

∨{g∗ | g ∈ G} because of the identity u∗ = u∗∗∗. Thus L is
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pseudocompact. ¥

Remark. We have chosen to establish the foregoing result in the rather longwinded manner

we did because, being an internal characterization, we wanted to prove it without reference to the

reals. In fact this result follows from the following observation: If L is a frame and M a subframe

of L such that Im(h) ⊆ M for each frame homomorphism h : OR→ L, then L is pseudocompact

if and only if M is. Indeed, given any frame homomorphism f : OR→ L, let f̃ : OR→ M map

as f . Then the boundedness of f̃ clearly implies that of f . Now if we let Lc be the subframe of L

generated by Coz(L), then we have Lc ⊆ Ls because every cozero element is a join of regular ele-

ments as x ≺≺ a implies x∗∗ ≤ a. Furthermore, the image of any frame homomorphism OR→ L

is contained in Lc since all elements of OR are cozero and frame homomorphisms preserve cozero

elements. Consequently we have that a frame L is pseudocompact iff Ls is pseudocompact iff Lc

is pseudocompact.

Banaschewski [3] calls a frame M a singly-generated extension of a frame L if L is a subframe of

M and there is an element c ∈ M such that L ∪ {c} generates M . Such an element is called a

generator of M over L. He goes on to show that in such a case every element of M is expressible

as x = x1 ∨ (x2 ∧ c) with x1 ≤ x2 in L. Furthermore, if c is dense, then the pseudocomplement

of x in M coincides with the pseudocomplement of x2 in L. Therefore, if x ≺ y in M then

x∗ ∨ y = 1M implies that x#
2 ∨ y2 = 1L since y ≤ y2, where ( )# denotes pseudocomplementation

in L. Consequently, if x ≺≺ y in M then x2 ≺≺ y2 in L.

Now seeing that “extension” in frames has subsequently been used differently (namely, M is

an extension of L if there is a dense onto frame homomorphism M → L), we prefer to say M is

a singly-generated expansion of L if the above holds. This latter nomenclature of course comes

from topology.

Corollary 4.4. Let M be a singly-generated expansion of L with a dense generator. Then

M is pseudocompact iff L is pseudocompact.

Proof. Only one implication needs to be proved. So let L be pseudocompact and c be a dense

generator of M over L. Let C be a countable co-completely regular cover of M . Using the
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notation of the discussion above, for each x ∈ C choose any x2 and put C̃ = {x2 | x ∈ C}.
Since x ≤ x2 for each x, we have that C̃ is countable cover of L which is co-completely regular

in view of what we observed above and the fact that C is co-completely regular. Therefore C̃

has a finite subcover, say, D. Now for each d ∈ D find yd in C such that, for some u ≤ d in L,

u ∨ (d ∧ c) ≺≺ yd. This is possible since C is co-completely regular. But now this implies that
(
u ∨ (d ∧ c)

)∗ ∨ yd = 1M ; whence d# ∨ yd = 1M by the Banaschewski result mentioned above.

Thus d ≤ yd; and consequently {yd | d ∈ D} is a finite subcover extracted from C. ¥

5. Other properties

In their extension of the concept of C-embedded subspaces to pointfree topology, Ball and Walters-

Wayland [2] say an onto frame homomorphism h : L → M is a C-quotient map in case for every

frame homomorphism g : OR → M , there is a frame homomorphism f : OR → L such that

h ◦ f = g.

Proposition 5.1. If L is a pseudocompact frame then L admits no C-quotient map L → ON.

Proof. If not, let h : L → ON be a C-quotient map. For each n ∈ N let bn = {1, . . . , n}.
Then each bn is a cozero element of ON since ON is Boolean. Furthermore

b1 ≺≺ b2 ≺≺ · · · and
∨

bn = 1ON.

Thus, in the language of [2], B = {bn | n ∈ N} is a cozero tower in ON. So by Theorem 7.2.7 (6)

in [2] there is a cozero tower S in L such that h[S] refines B. Since L is pseudocompact and S

is an increasing sequence of cozero elements each completely below the next, there exists s ∈ S

such that s = 1L. So 1ON = h(s) ≤ bm for some m ∈ N. This implies that bm = 1ON; which is

false. ¥

Proposition 5.2. Let L be a frame with the property that for all a, b ∈ Coz(L) with a∨b = 1L, ↑a
or ↑b is compact. Then L is pseudocompact.

Proof. Suppose, by way of contradiction, that there is an unbounded frame homomorphism

h : OR → L. For any t ∈ R, if h(x, t) = 0L for all x < t and h(t, z) = 0L for all z > t,
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then h(t,∞) = h(−∞, t) = 0L; whence h(−∞, t + 1) = h(t − 1,∞) = 1L since 1L = h(R) and

R = (−∞, t + 1)∪ (t,∞), and similarly for the other case. So we may assume that for each t ∈ R
there exists s > t such that h(t, s) 6= 0L. A similar argument holds if we assume that for each

t ∈ R there exists s < t such that h(s, t) 6= 0L. Now fix q ∈ R and choose an increasing sequence

(tn)n∈N inductively in R as follows: t1 = q, and, with tn having been chosen, choose tn+1 such

that h(tn + 1, tn+1) 6= 0L. Next define elements a and b in L by

a = h
(
(−∞, q + 1) ∪

⋃
n even

(tn, tn+1 + 1)
)

and b = h
( ⋃

n odd

(tn, tn+1 + 1)
)
.

Then a and b are cozero elements of L satisfying a ∨ b = 1L. We show that neither ↑a nor ↑b is

compact. To see that ↑a is not compact, consider the set C = {a ∨ h(−∞, tn) | n ∈ N}. Clearly

C is a cover of the frame ↑a. However, for any n ∈ N, a∨∨
m≤n h(−∞, tm) 6= 1L because for any

odd integer r > n we have

h(tr + 1, tr+1) ∧
(
a ∨ h

( ⋃
m≤n

(−∞, tm)
))

= 0L

whilst h(tr + 1, tr+1) 6= 0L. Similarly, ↑b is not compact; and we thus have a contradiction. ¥

In [6] Banaschewski and Gilmour say a dense onto frame homomorphism h : M → L is a one-point

extension of L if there is a maximal element s ∈ M such that h induces an isomorphism ↓s → L.

They then prove that if
∨

: RJ(Coz(L)) → L is a one-point extension of L, where RJ(Coz(L)) is

the frame of regular ideals of Coz(L), then L satisfies the hypothesis in the preceding proposition.

We consequently have:

Corollary 5.3. If the Stone-Čech compactification of a completely regular frame is a one-point

extension, then the frame is pseudocompact.

Hlongwa [9] has shown that if x is a regular element of a pseudocompact completely regular

frame, then ↑x∗ is pseudocompact. In a general case we have the following result.

Proposition 5.4. Let L be a pseudocompact frame and a ∈ L be such that ↑(a ∨ a∗) is pseudo-

compact. Then ↑a∗ is pseudocompact.
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Proof. Let h : OR→↑a∗ be a frame homomorphism and let g :↑a∗ →↑(a∨a∗) be the frame homo-

morphism x Ã x∨a. Because ↑(a∨a∗) is pseudocompact, the composite g ◦h : OR→↑(a∨a∗) is

bounded and therefore there exists r ∈ R such that 1L = g(h(−r, r)) = h(−r, r) ∨ a. Now define

a map f : OR→ L by

f(U) = h(r,∞) ∧ h(U) ∧ a if r /∈ U, and f(U) = h(−r, r) ∨ h(U) otherwise.

One checks easily that f is a frame homomorphism. Since L is pseudocompact there exists s > r in

R such that f(−s, s) = 1L. Since r ∈ (−s, s), we have that 1L = f(−s, s) = h(−r, r)∨h(−s, s) =

h(−s, s). Therefore h is bounded as required. ¥

We end by proving the “countable” version of the Banaschewski-Pultr [7] result that we cited

in the proof of Lemma 3.4.; namely, a completely regular frame is compact if and only if it is

paracompact and pseudocompact. Hlongwa [9] has shown that a completely regular frame is

pseudocompact if and only if every countable cover has a finite subset with a dense join. The

latter is a pointfree enunciation of a property of topological spaces known to be equivalent to fee-

ble compactness, which in turn is equivalent to pseudocompactness in the category of completely

regular spaces.

Proposition 5.5. A completely regular frame is countably compact iff it is pseudocompact and

countably paracompact.

Proof. The forward implication is immediate. Conversely, let L be pseudocompact and countably

paracompact and A = {an | n ∈ N} be a countable cover. For each n let bn = a1 ∨ · · · ∨ an, and

note that the bn form an increasing cover of L. By countable paracompactness there is a cover

{cn | n ∈ N} such that cn ≺ bn for each n ([8], Proposition 7). In light of the fact that if x ≺ u

and y ≺ v then x ∨ y ≺ u ∨ v, we may assume that the cn increase because the bn increase. Now

pick k such that (c1 ∨ · · · ∨ ck)
∗ = 0. This implies that c∗k = 0, and therefore bk = 1. Thus A has

a finite subcover. ¥
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