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Abstract

Some theorems on the existence of continuous real-valued functions on a topological space (for example,
insertion, extension, and separation theorems) can be proved without involving uncountable unions of
open sets. In particular, it is shown that well-known characterizations of normality (for example the
Katgtov-Tong insertion theorem, the Tietze extension theorem, Urysohn's lemma) are characterizations
of normal a -rings. Likewise, similar theorems about extremally disconnected spaces are true for a -rings
of a certain type. This cr-ring approach leads to general results on the existence of functions of class a.
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1. Introduction

hi this paper we shall show that some important theorems on the existence of real-
valued functions on a topological space remain valid if uncountable unions of open
sets are not available. For instance, the proof of Urysohn's lemma depends upon
constructing a countable family of open sets {Ur : r e Q} such that Ur C Us if r < s.
This involves the operation of closure, hence a not necessarily countable intersection.
But one can easily overcome this topological ingredient by requiring the existence of
a countable family of closed sets {K : r e Q] such that Ur C Kr c Us whenever
r < s. hi fact, an intervention of this type has already been done by Speed [15] who
thus proved that a normal topology on a set can be replaced by a normal a-ring.

We shall show that the other well-known characterizations of normality (that is,
the KatStov-Tong insertion theorem [4, 16] and the Tietze extension theorem) are
characterizations of normal a -rings. In fact, we shall do that for their abstract versions:
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the insertion theorem of Blair [ 1 ] and Lane [ 10], the extension theorem of Mr6wka [11],
and the Urysohn extension theorem of Gillman and Jerison [3]. Also, similar theorems
about extremally disconnected spaces are shown to be true for sets equipped with
extremally disconnected a-rings (that is, a -rings in which each two disjoint members
are contained in disjoint complements of members of the ring).

However, the most important advantage of those observations is that one can substi-
tute for a a -ring the sets of additive class a in a perfect space and obtain corresponding
theorems about real-valued functions of class a on a perfect space. In fact, those the-
orems (insertion, extension, and separation theorems) are characterizations of a wider
class of spaces which will be called sfa-normal (the case a = 1 was discussed in [5]
under the name FCT-normal spaces, where a Urysohn type lemma and a Tietze type
theorem have been obtained directly). Another corollary is a classical theorem about
insertion of a real-valued function of class a between two comparable upper and lower
measurable functions of class a [14].

We note that the question of when a real-valued function other than a (uniformly
[13]) continuous one (for example [1, 4, 9, 10, 16]) can be inserted between two
comparable real-valued functions has rarely been investigated, especially for functions
of higher classes with the notable exception of [5]. Results of similar type for class
one functions of a real variable can be found, for instance, in [12].

This work was done while the second author was visiting Rhodes University as an
F. R. D. and Hugh Kelly Research Fellow. Support from both these institutions is
acknowledged with appreciation, also by the first author.

2. Notation and terminology

Our reference on rings of subsets and measurable functions is Sikorski [14]. One
good reference for generating real-valued functions by monotone families of sets is
Kutateladze [8]. For easy reference we recall some basic concepts and a few relevant
facts about generating real-valued functions.

A subfamily s/ c £?(X) (the power set of a set X) is a ring on X if s/ is closed
under finite unions and finite intersections, and contains 0 and X. If sf is a ring, so
is s/c = {X\A : A € s/}. A ring is a a-ring if it is closed under countable unions.
If S c X, then s/\S = [A D S : A e s/} is a a-ring on S whenever s/ is a a -ring
on X. A ring si is a 8-ring if s/c is a a-ring. For s/ a ring, s/a (respectively
s/s) is the a-ring (respectively 5-ring) consisting of all countable unions (respectively
intersections) of members of s/.

The extended reals with usual ordering are denoted by R. All functions considered
in this paper are real-valued, that is R- or Re-valued (the latter are called finite
functions). For / a function on X and a e Re, [/ > a] = [x 6 X : f(x) > a] and
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[/ < a] = {x e X : f(x) < a}. Also, [/ > a] = X \ [ / < a], etcetera. We write
/ < g if f(x) < g(x) for all* in X.

Let sf be a cr-ring on X. A function / on X is called /ewer (respectively upper)
&/-measurable if [/ > a] e ^ (respectively [/ < a] € .e/) for each a e Re. We say
that / is s/-measurable if it is both lower and upper .e^-measurable. We shall say that
two subsets A and B of X are completely si'-separated if there is an ^-measurable
function / on X such that A c [/ < a] and B c [/ > b] for some a < bin Re.

Each increasing family & = {Fr : r e Q} C <9*(X) is called a sca/e on X. For
future use we quote the following well-known facts.

PROPOSITION 2.1. Let & be a scale on X. Then the following hold.

(1) For each x e X, f(x) = inf{r G Q : x e Fr} defines an R-valued function on
X. (We shall say / is generated by «^.)

(2) / / / is generated by &, then [f < a] = \J{Fr : r < a] and [/ < a] = f]{Fr :
r > a] for alia € Re.

(3) If g and h are generated by <S and Jf, respectively, then g < h if and only if
Hr c Gs whenever r < s.

(4) If f is generated by &', then f(x) > — oo [respectively < +oo] for all x e X if
and only ifd^ = 0 [respectively \J & = X].

(Therefore a scale & satisfying both P) & = 0 and (J & = X will be called a
yin/re scale,)

3. Insertion and extension of a measurable function

We shall use the machinery developed by KatStov [4].
A binary relation p on &{X) will be called a K-relation if it satisfies the following

conditions:

(i) If AipBjil < i < m, 1 < j < n), then there exists C e &(X) such that
AipC and CpBj for all those i and j .

(ii) ApB implies A C B.
(iii) A c B implies ApB, where ApB if and only if BpC implies ApC, and Dp A

implies DpB for any C, D e ^(X)

We note that (iii) is equivalent to the following statement:

(iv) If C C A, ApB, and fi c D, then CpD for every A, B,C,D e ^»(X)

LEMMA 3.1. (Katetov [4]). Let p be a K-relation on 3>(X). LetV = ( G r : r e Q }
and JV = {Hr : r e Q} be such that HrpGs, HrpHs, and GrpGs whenever r < s.
Then there exists ^ = { F r : r e Q ) with HrpFs, FrpFs, and FrpGs whenever r < s.
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REMARK 3.2. We shall deal only with the case when ^ and Jg" are increasing
(scales). Then the conditions GrpGs and HrpHs (r < s) hold trivially. Also, we
shall only require & to satisfy Hr c Fs, FrpFs, and Fr C Gs if r < s.

DEFINITION 3.3. Let si be a ring on X. An arbitrary relation p on &>{X) is called
an ^-separating relation if for every A, B e &{X), ApB implies there exist C € si
and 9 e s/c such that A c C C B and A c D c B.

Note that p is ^-separating if and only if it is ^-separating.

EXAMPLE 3.4. (1) If si is a topology on X, then A is in an ^-separating relation
to B if and only if A and X\B are topologically separated (that is, A c B and
A C Int B).

(2) For s/ a a-ring on X, the relation p on ^(X) defined by ApB if and only if A
and X\B are completely .^-separated is an ^-separating #-relation. [Indeed, since
A C [/ < 0] C [/ < 1] C B with / ^-measurable, hence (ii) and (iv) hold trivially.
If AipBj and ftj (1 < i' < m, 1 < j < n) are the corresponding ^-measurable
functions, then g = inf, sup; fa is ^-measurable and satisfies A, c [g < 0] C [g <
1] C Bj for all / and j . Therefore AtpCpBj with C = [g < |].]

LEMMA 3.5. Ifsf is a a-ring on X, & is a scale, and p is an s/-separating relation
on £?(X) such that FrpFs whenever r < s, then the function f generated by & is
si-measurable.

PROOF. For r < s, let Crs and Drs be the corresponding members of s/ and s/c,
respectively, such that Fr c Crs C Fs and Fr c Drs c Fs. Clearly, \J{Fr : r < a] =
\J{Crs : r < s < a] € s/ and f|{^V : r > a] = f}{Drs : 5 > r > a} 6 s/c for all
a 6 Re. By Proposition 2.1(2), / is ^-measurable.

THEOREM 3.6. (Insertion Theorem). Let si be a a-ring on X. Let g < h be two
R-valued functions on X. The following statements are equivalent

(1) There exists an s/-measurable R-valued function f on X such that g < f < h.
(2) For each a < b in Re, [h < a] and [g > b] are completely si-separated.
(3) There exist scales <& and JV generating g and h, respectively such that Hr and

X\GS are completely si-separated whenever r < s.
(4) There exist scales & and Jif generating g and h, respectively, and an s/-

separating K-relation p on &(X) such that HrpGs ifr < s.

PROOF. (1) implies (2) is trivial.
(2) implies (3): for each r e Q, put Gr = [g < r] and Hr = [h < r].
(3) implies (4): by Example 3.4(2).
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(4) implies (1): byLemma3.1 (see also Remark 3.2), there exists^" = {Fr : r e Q]
such that FrpFs (hence & is a scale by (ii)), Hr C Fs, and Fr C Gs if r < 5. Thus,
by Proposition 2.1(3), the function / generated by & satisfies g < f < h. Since p is
^-separating, / is ^-measurable by Lemma 3.5.

REMARK 3.7. Of course, if g and h are finite functions, so is / . For this case
and with si a topology on X (then .e^-measurability = continuity), the equivalence
of (1) and (2) in Theorem 3.6 was proved by Blair [1, 3, 5], and (1) if and only if
(2) if and only if (3) was proved independently by Lane [10, Theorem 2.1]; (4) if
and only if (1) is in Lane [9, Theorem 1]. Note in passing that Lane [9, 10] uses
the concept of lower indefinite cut sets: if / is an Re-valued function on X and
[/ < a] C A(f, a) C [/ < a] for all a G Re, then A(f, a) is called a lower indefinite
cut set of / at a. Of course, {A(f, /•) : r e Q) is a finite scale that generates / . Also,
any other scale generating / , {Fr : r e Q] say, must satisfy [/ < r] C Fr C [/ < r]
for all r e Q. Therefore, Lane's families of cut sets are actually finite scales.

Note also that Theorem 3.6 partially improves [13, Theorem 3.4], which in turn is
an R-valued version of the mentioned results of Blair [1] and Lane [10].

The following extension theorem for bounded functions is an immediate con-
sequence of Theorem 3.6. We include a proof (whose technique is well-known) for
completeness.

THEOREM 3.8. (Mrowka Extension Theorem). Let si be a a -ring on X and S C X.
Let f : S -*• [0, 1] be (s/\S)-measurable. Then the following are equivalent:

(1) / has an si-measurable extension over X.
(2) If a < b in [0, 1], then [f < b] and [f > b\ are completely si-separated.

PROOF. (1) implies (2): let g be an extension of / . Then [/ < a] C [g < a] and
[/ > b] C [g > b], that is, g separates these sets.

(2) implies (1): define g, h : X -+ [0, 1] by g = h = f on 5, g = 0 on X\S,
and h = 1 on X\S. Then [g > b] = [f > b] if b > 0, and [h < a] = [f < a]
if a < 1. Therefore if a < b in [0, 1], then [h < a] and [g > b] are completely
^-separated, that is, Statement 3.6(2) holds. Since g < h, by Statement 3.6(1) there
exists an .ef-measurable function /* on X such that g < f* < h, which is therefore
the required extension of / .

COROLLARY 3.9. (Urysohn Extension Theorem). For si a o-ring on X and S C X,
the following statements are equivalent:

(1) Each (si \S)-measurable function f : 5 -*• [0, 1] has an si-measurable exten-
sion over X.



300 Wesley Kotze and Tomasz Kubiak [6]

(2) Each two completely (si \S)-separated (in S) subsets of S are completely si-
separated in X.

PROOF. (1) implies (2): if / completely (si\S) -separates A and B in 5, and
if g is an ^-measurable extension of / , then A c [/ = O] C [g = 0] and
B c [ f = l ] C [ g = 1 ] .

(2) implies (1): let / : 5 -> [0,1] be (j2/|5)-measurable. Then for each a < b in
[0, 1], [/ < a] and [/ > b] are completely (si\S)-separated (by / ) . Therefore, /
has a continuous extension to X by Theorem 3.8.

REMARK 3.10. With si a topology on X, Theorem 3.8 is due to Mr6wka [ 11,4.11 ],
and Corollary 3.9 is known as the Urysohn Extension Theorem [3, 1.17].

4. Perfect rings, normal rings, and extremally disconnected rings

The concepts of normality and perfectness of a topology of a space can easily be
extended to rings of subsets. Recall that a perfect space is one in which each open set
isFff.

A ring si on a set X is normal if, given any two disjoint members of s/c, there
are disjoint members of si containing them respectively. A ring si is called perfect
if si c sica (that is, if each member of si is a countable union of complements of
si); equivalently, if sic C sis. We shall say that a ring si is extremally disconnected
if sic is normal. (We note that in [15] a ring si is called normal if the ring sic is
normal in the sense above. Such a terminology, however, is inconsistent with extremal
disconnectedness of general topology; see the example which follows.)

EXAMPLE 4.1. For (X, si) a topological space, X is normal [extremally discon-
nected] if and only if si is normal [extremally disconnected]. For further examples,
see Remarks 4.7 and 5.2, and Proposition 5.3. (Recall that a space is extremally
disconnected if and only if every open set has an open closure if and only if disjoint
open sets have disjoint closures, and the latter is clearly equivalent to the statement
that each two disjoint open sets are contained in disjoint closed sets.)

We now specialize Theorem 3.6 for the case when si is normal or extremally
disconnected.

LEMMA 4.2. Let si be a normal ring on X. Then the relation p on 9*(X), defined
by ApB if and only if there exist C € si c and D e si with AcCcDcB,isan
si-separating K-relation.
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PROOF. Each ̂ /-separating p satisfies (ii), and (iv) holds trivially. So, we verify (i).
For if AipBj, and C,y, Z?,y are the corresponding members of s/c and s/, respectively
(1 < i < m, 1 < j < n), then C = Uf=1 HU C'i ^s/c,D = | X i f)U D'J e *>
md U"=1 A,: c C c D c H"=i Bj- Since s/ is normal there exist Dx e s/ and
C] 6 J2̂ c such that C C D, c Ct C D. Therefore AipDxpBj for all those / and j .

COROLLARY 4.3. Le/ JZ/ be an extremally disconnected ring on X. Then the relation
p on ^(X), defined by ApB if and only if there exist C e si and D e s/c with
AcCcDcB,isan &/-separating K-relation.

PROOF. &/C is normal and s#cc = A, so Lemma 4.2 applies.

Note that this sort of 'duality' between normality and extremal disconnectedness,
discussed in [6], appears to be a very efficient source of deriving new results about
normality from extremal disconnectedness and vice versa. The following provides
examples of such dualities.

THEOREM 4.4. Let srf be a a-ring on X. Then the following statements are equi-
valent:

(1) A is normal (extremally disconnected).
(2) (Insertion) If g < h [respectively h < g] are real-valued functions on X such

that g is upper and h is lower #/-measurable, then there exists an srf-measurable
function f on X such that g < f < h [respectively g < f < h].

(3) (Separation) Each two disjoint A and B in &/c [respectively s/] are completely
&/-separated.

(4) (Extension) For every S e srfc [respectively &/] each {sf\S)-measurable func-
tion f : S —> [0, 1] has an stf-measurable extension to all ofX.

PROOF. (1) implies (2): define Gr = [g < r] and Hr = [h < r] for all r e Q.
Clearly, {Gr} and [Hr] are scales generating g and h (finite scales if g and h are finite
functions), respectively. Also, Hr C Gs (respectively Gr C Hs) if r < s. And since
Hr e sic, Gr e s/ for all r, in fact, HrpGs [respectively GrpHs] if r < s, where p is
the relation of Lemma 4.2 (respectively Corollary 4.3). Thus, by Theorem 3.6(4), there
exists an ^-measurable function / such that g < f < h (respectively h < f < g).

(2) implies (3): if A, B e s/c (respectively &/) are disjoint, then \A < XX\B, XA
is upper (respectively lower) and XX\B is lower (respectively upper) ^/-measurable.
Then the ^-measurable function / between XA and XX\B has the required property.

(3) implies (4), for s/c: for any a < b in [0, 1], [/ < a] and [/ > b] are in (s/\S)c.
Since S € s/c we have (s/\S)c C s/c . By Theorem 3.8, / has an ^/-measurable
extension.
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(3) implies (4), for s/: let a < b in [0, 1]. If a < c < d < b, then C = [f < c]
and D = [f > d] are in s/\S and &/\S C J^ since S e / Thus C and D are
completely ^-separated and so are [/ < a] c C and [/ > b] c D. By Theorem 3.8,
/ is extendable to an ^/-measurable function.

(4) implies (1): for each two disjoint A and B in s/c (respectively s/\ the function
/ from S = A U B to [0, 1], defined by and / = 0 on A and / = 1 on B,
is (^|5)-measurable, hence extendable to an ^-measurable function /*. Clearly,
A c [/* < | ] and B C [/* > \] (respectively A c [/* < \] and B C [/• > f ]),
which proves the assertion.

REMARK 4.5. (1) First note that (4) above is easily obtainable from (2) by avoid-
ing (3) and, thus, Theorem 3.8 as well. Indeed, g and h defined as in the proof
of Theorem 3.8 are, respectively, upper and lower (respectively lower and upper)
^-measurable whenever 5 e s/c (respectively si/). Therefore the .^-measurable
function, which does exist by Theorem 4.4(2), is the required extension. In other
words, one can derive extension from insertion by avoiding separation.

(2) If sf is an extremally disconnected topology, then (1) if and only if (2) for finite
functions is in Lane [9, Corollary 4], and (1) if and only if (3) if and only if (4) is in
Gillman and Jerison [3, l.H].

(3) That (1) if and only if (3) for s/ a normal cr-ring is proved by Speed [15,
Theorem 3.1] (cf. 4.1) by modifying the usual Urysohn's procedure (see Section 1).

(4) Of course, if si is a normal topology, the statements (2), (3), and (4) become,
respectively, the Kat&ov-Tong theorem [4, 16], Urysohn's lemma, and the Tietze
extension theorem.

REMARK 4.6. Another area which is covered by the normality case of Theorem 4.4
are Fa -normal spaces of [5] (this class of spaces includes all perfect spaces, that is well-
behaved spaces in the terminology of [5]): a topological space is called Fa-normal
if for each two disjoint Gj-sets there exist two disjoint Fff-sets containing them. In
other words, a space is Fa-normal if and only if &a, the a-ring of all FCT-sets, is
normal. With s? = &„, the normality cases of (1) if and only if (3) and (1) if and
only if (4) of Theorem 4.4 become Theorem 2.3 and 2.10 of [5], respectively. Note
that real valued &a -measurable functions are class one functions. Those two results
of [5] are of course simple consequences (compare Remark 4.5(1)) of the following
insertion theorem (that is, (1) if and only if (2) of Theorem 4.4 with sf = &a ): A
topological space X is Fa-normal if and only if, whenever g < h are upper and lower
&a -measurable functions on X respectively, there exists a class one function f on X
such that g < / < h. (In [5], upper and lower &a-measurable functions are called
upper semi-̂ Tt and lower semi-K!, respectively.) These ideas can be performed for
cr-rings of (higher than 1) additive class a in a topological space, at least in a perfect
space.
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5. Insertion and extension of functions of class a

As mentioned in Remark 4.6, each result of Section 4 goes over to measurable
functions of class a on a perfect space; also see Remark 5.4. Therefore recall that
the classification of Borel sets in a metric space is still valid in a perfect space (see
[2, 1.7.5]). In fact, the same classification can be performed in a set equipped with a
perfect a -ring as actually done in [14, Chapter V, Section 9]:

Let si be a perfect cr-ring on a set X, let si0 = si and 38$ = s/c, and let for each
countable ordinal a > 0, sia = (\Jp<a &p)<> and &« = (U/j<a *fp)t>- Then f o r e a c h

a > 0

(I) s/a is a cr-ring and 3§a = (s/a)c (hence a 5-ring).
(II) If 0 < /3 < a, then ^ U ^ c < n 3§a.

Note that the above construction does not use the perfectness of si except for proving
that si c sia and sic C 3§a for each a > 0, that is for proving a part of (II) with fi
= 0. Therefore the following definition makes sense.

DEFINITION 5.1. A CT-ring s/ on X is s/a-normal (a > 0) if jz/a is a normal ring,
that is, for any two disjoint members of S8a there exist disjoint members of sfa

containing them.

REMARK 5.2. Of course, a topological space (X, s/) is normal (respectively Fa-
normal) if and only if s/ is s/o-noxrm\ (respectively ^[-normal). As proved in [5],
each perfect space is s/\ -normal. In fact each perfect a -ring (in particular, each perfect
space) is ^-normal for any a > 0, as follows from the following observation.

PROPOSITION 5.3. Each perfect a-ring si on a set X is sia-normal for arbitrary
countable a > 0.

PROOF. [7, Theorem 2, p. 350] shows, in particular, that in a metric space X, every
two disjoint members of 38a are contained in disjoint members of sia (a > 0). (In
fact, they are contained in disjoint members of sia D 3Sa , but this is irrelevant for
our purposes.) The argument for proving this uses merely the fact that open sets of X
form a perfect a-ring.

REMARK 5.4. In addition to Remark 4.6, note that the normality case of Theorem 4.4
characterizes sia-normal spaces (a > 0) too. In particular, since each perfect space
(X, si) is sia-normal (a > 0) and s/a-measurable functions on a perfect space are
just functions of class a, Theorem 4.4 provides properties of perfect spaces in terms of
inserting and extending functions of class a as well as in terms of separating disjoint
sets of multiplicative class a by functions of class a (a > 0). We state one of them
explicitly.
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THEOREM 5.5. If X is a perfect space and a > 0 is a countable ordinal, then every
class a function from a subset of multiplicative class a to [0, 1 ] has a class a extension
to the whole of X.

REMARK 5.6. The above theorem partially improves one classical result of [7, The-
orem, p. 434], in which X is a metric space and the function takes values in a complete
separable metric space. Note that the proof of [7] is not valid for nonmetrizable
spaces.

With a = 1, Theorem 5.5 is [5, Corollary 2.11].

REMARK 5.7. For sf aperfect cr-ring on a set X, the normality case of the Insertion
Theorem of Theorem 4.4 was previously known under the hypothesis that there
exists a ring 32 of real-valued functions on X such that each lower (respectively
upper) ̂ -measurable function on X is a pointwise limit of an increasing (respectively
decreasing) sequence of functions from ^? (see [14, Chapter V, 10.1]).
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