A common framework for lattice-valued uniform spaces and probabilistic uniform limit spaces

Andrew Craig
Department of Mathematics, Rhodes University, 6140 Grahamstown
South Africa

 ${\it Gunther J\"{a}ger~*}$ Department of Statistics, Rhodes University, 6140 Grahamstown South Africa

October 6, 2008

Abstract: We study a category of lattice-valued uniform convergence spaces where the lattice is enriched by two algebraic operations. This general setting allows us to view the category of lattice-valued uniform spaces as a reflective subcategory of our category, and the category of probabilistic uniform limit spaces as a coreflective subcategory.

Keywords: L-uniform convergence space, L-uniform space, probabilistic uniform limit space, L-convergence space, L-filter.

^{*}Corresponding author. E-mail: g.jager@ru.ac.za, Tel: +27 46 6038346, Fax: +27 46 6222723

1 Introduction

In his thesis [6], Gutiérrez García developed a common framework for different approaches to lattice-valued uniform spaces. These approaches comprise:

- generalizations of Weil's entourage uniformities [27] such as Lowen's fuzzy uniformities [19] and Höhle's L-uniformities [8], [9];
- generalizations of a uniform operator approach: Hutton's L-uniformities [12] (see also [29]). Classically this approach has not received wide attention. It appears briefly in [17].

In [23] it is argued that Hutton's approach, though leading in the case that $L = \{0, 1\}$ to a category of uniform spaces which is isomorphic to Weil's entourage uniformities [27, 1] and Tukey's covering uniformities [13, 26], is for $L \neq \{0, 1\}$ different and more general. This approach is, consequently, developed in [23] under fairly general conditions (e.g. no distributivity requirements on the lattice L).

The approach in [7, 6] uses a more restricted lattice context but establishes links between the aforementioned approaches of lattice-valued uniform spaces. In fact, based on the notion of lattice-valued Hutton uniformity, all three approaches are shown to be special cases of this general framework. In order to accommodate Lowen's [19] and Höhle's [8, 9] approaches into the new framework, the notion of L-uniformity is used. This L-uniformity is an L-filter satisfying some natural axioms. The lattice context is chosen to be enriched cl-premonoids, where the complete lattice (L, \leq) is enriched by two further "algebraic" operations * and \otimes , the first of which distributing over arbitrary joins. It gives thus rise to a residual impication operator. If $L = \{0, 1\}$, Gutiérrez García's L-uniformities can be viewed as entourage uniformities in the definition of Weil [27].

In the classical case, the category of uniform spaces with uniformly continuous mappings as morphisms is not cartesian closed. In order to have a "nicer" category to work with, Cook and Fischer [2] (modified by Wyler [28]) defined a supercategory, the category of uniform convergence spaces. This category is topological over SET (i.e. it allows initial constructions) and cartesian closed (i.e. it has canonical function spaces) [18]. Cook and Fischer's category, as improved by Wyler [28], was generalised to a category of lattice-valued uniform convergence spaces in [16]. The lattice context was that of a complete Heyting algebra. Also this category of lattice-valued uniform convergence spaces is topological over SET and cartesian closed. Unfortunately, the restriction to complete Heyting algebras as underlying lattices misses several important examples of Gutiérrez García's L-uniform spaces. We therefore generalise the lattice context in this paper from complete Heyting algebras to enriched cl-premonoids as they are used in [7]. We will show that a suitable adaptation of the definition of [16] again results in a category which is topological over SET. Moreover, our new category contains many important categories of L-uniform spaces as reflective subcategories. The generalised lattice context,

however, has even wider applications. It allows us to view other categories of "many-valued" uniform convergence spaces as natural examples of our definition: the probabilistic uniform limit spaces of Nusser [20], [21]. Nusser's spaces generalise the probabilistic uniform spaces of Florescu [4], and they are explicitly based on a t-norm on [0, 1]. Our general setting allows us to view Nusser's category of probabilistic uniform convergence spaces as a coreflective subcategory of our category of lattice-valued uniform convergence spaces when choosing the appropriate lattice context.

The paper is organised as follows: in section 2, we collect the results about lattices and lattice-valued sets that we will need later on, and we fix the notation. The next section is then devoted to lattice-valued filters. We define product filters and inverses and compositions of stratified L-filters on $X \times X$. Further, we give criteria when these constructions again yield stratified L-filters. In section 4 we define our new category of lattice-valued uniform convergence spaces and show that this category is topological over SET. Here we also mention the forgetful functor from our category to the category of lattice-valued convergence spaces [14]. Section 5 studies the most important example, namely Gutiérrez García's lattice-valued uniform spaces. We show that under a mild condition on the underlying lattice, Gutiérrez-García's category is isomorphic to a reflective subcategory of our category. Further, we mention the underlying topological space of a lattice-valued uniform space and show that there are two ways of coming to a lattice-valued convergence space when starting from a lattice-valued uniform space, and that these two ways lead to the same space. One of these methods proceeds by forgetting the uniform structure and embedding the resulting lattice-valued topological space into the category of lattice-valued convergence spaces, while the other embeds the lattice-valued uniform space into the category of lattice-valued uniform convergence spaces and then uses the underlying latticevalued convergence space. Section 6 is then devoted to showing that Nusser's probabilistic uniform limit spaces form a category which is isomorphic to a coreflective subcategory of our category. Finally, we draw some conclusions.

2 Preliminaries

Throughout this work, we will consider (L, \leq) to be a complete lattice with \top , the top element, and \bot the bottom element such that $\top \neq \bot$. The triple $(L, \leq, *)$ is called a *quantale* [24] if

- (Q1) (L,*) is a semigroup,
- (Q2) * is distributive over arbitrary joins, i.e.

$$\left(\bigvee_{i\in J}\alpha_i\right)\ast\beta=\bigvee_{i\in J}(\alpha_i\ast\beta)\quad\text{ and }\quad\beta\ast\left(\bigvee_{i\in J}\alpha_i\right)=\bigvee_{i\in J}(\beta\ast\alpha_i).$$

As consequence of the distributivity we have that when $\alpha, \beta \in L$ are such that $\alpha \leq \beta$, then for any $\gamma \in L$ we will have $\alpha * \gamma \leq \beta * \gamma$. When we have that * is \wedge , the quantale (L, \leq, \wedge) is also called a *complete Heyting algebra*.

A commutative quantale, $(L, \leq, *)$, is *divisible* if for every inequality $\beta \leq \alpha$ there exists $\delta \in L$ such that $\beta = \alpha * \delta$ [24]. A quantale that is commutative, strictly two-sided (\top is the unit with respect to *) and divisible is called a GL-monoid [10].

In a commutative quantale we have the *implication operator*:

$$\alpha \to \beta = \bigvee \{ \lambda \in L : \alpha * \lambda \le \beta \}.$$

This operator has the property that $\delta \leq \alpha \to \beta \iff \delta * \alpha \leq \beta$.

Lemma 2.1 [11] Let $(L, \leq, *)$ be a GL-monoid and $\alpha, \beta, \delta, \alpha_i, \beta_i \in L$. Then the following properties hold:

(i)
$$\alpha \to \beta = \top \iff \alpha \le \beta$$
,

(ii)
$$\alpha \to \left(\bigwedge_{i \in I} \beta_i\right) = \bigwedge_{i \in I} (\alpha \to \beta_i),$$

(iii)
$$\left(\bigvee_{i\in I}\alpha_i\right)\to\beta=\bigwedge_{i\in I}(\alpha_i\to\beta),$$

(iv)
$$\alpha * \left(\bigwedge_{i \in I} \beta_i \right) = \bigwedge_{i \in I} (\alpha * \beta_i),$$

(v)
$$(\alpha \to \delta) * (\delta \to \beta) < (\alpha \to \beta),$$

(vi)
$$\alpha \leq \beta \Longrightarrow \delta \to \alpha \leq \delta \to \beta$$
,

(vii)
$$\alpha \leq \beta \Longrightarrow \beta \to \delta \leq \alpha \to \delta$$
,

(viii)
$$\alpha \to (\beta \to \delta) = (\alpha * \beta) \to \delta$$
,

(ix)
$$\alpha * (\alpha \to \beta) = \alpha \land \beta$$
,

(x)
$$(\alpha \to \beta) * (\delta \to \gamma) \le (\alpha * \delta) \to (\beta * \gamma),$$

(xi)
$$\alpha * (\beta \to \gamma) \leq \beta \to (\alpha * \gamma),$$

(xii)
$$\bigwedge_{i \in I} (\alpha_i * \beta_i) \ge (\bigwedge_{i \in I} \alpha_i) * (\bigwedge_{i \in I} \beta_i).$$

A triangular norm [25] or t-norm is a binary operation * on the unit interval [0, 1] such that the following are satisfied:

(T1)
$$\alpha * \beta = \beta * \alpha$$
 (commutativity)

(T2)
$$\alpha * (\beta * \delta) = (\alpha * \beta) * \delta$$
 (associativity)

(T3)
$$\alpha * \beta \le \alpha * \delta$$
 whenever $\beta \le \delta$ (monotonicity)

(T4)
$$\alpha * 1 = \alpha$$
 (boundary condition)

The pair ([0,1],*) can be considered as a quantale if the t-norm is left-continuous. The three most commonly used (left-continuous) t-norms are:

- minimum: $\alpha * \beta = \alpha \wedge \beta$,
- product: $\alpha * \beta = \alpha \cdot \beta$.
- Lukasiewicz: $\alpha * \beta = (\alpha + \beta 1) \vee 0$.

The triple (L, \leq, \otimes) is a *cl-premonoid* [11] if:

- (CL1) (L, \leq) is a complete lattice,
- (CL2) the binary operation \otimes on L satisfies the isotonicity axiom:

$$\alpha_1 \leq \alpha_2$$
, $\beta_1 \leq \beta_2 \implies \alpha_1 \otimes \beta_1 \leq \alpha_2 \otimes \beta_2$,

- **(CL3)** for each $\alpha \in L$, $\alpha \leq \alpha \otimes \top$ and $\alpha \leq \top \otimes \alpha$,
- (CL4) the operation \otimes is distributive over non-empty joins, ie: for $J \neq \emptyset$,

$$\left(\bigvee_{i\in J}\alpha_i\right)\otimes\beta=\bigvee_{i\in J}(\alpha_i\otimes\beta),\quad\beta\otimes\left(\bigvee_{i\in J}\alpha_i\right)=\bigvee_{i\in J}(\beta\otimes\alpha_i).$$

An enriched cl-premonoid [11] is a quadruple $(L, \leq, \otimes, *)$ where:

- **(E1)** (L, \leq, \otimes) is a *cl*-premonoid,
- **(E2)** $(L, \leq, *)$ is a GL-monoid,
- **(E3)** the operation * is dominated by \otimes . That is, for all $\alpha_1, \alpha_2, \beta_1, \beta_2 \in L$:

$$(\alpha_1 \otimes \beta_1) * (\alpha_2 \otimes \beta_2) < (\alpha_1 * \alpha_2) \otimes (\beta_1 * \beta_2).$$

A consequence of the domination is that $\alpha * \beta \leq \alpha \otimes \beta$.

Examples 2.2

• If (L, \leq, \wedge) is a complete Heyting algebra, then $(L, \leq, \wedge, \wedge)$ is an enriched cl-premonoid.

• If $(L, \leq, *)$ is a quantale, then $(L, \leq, \land, *)$ is an enriched *cl*-premonoid.

A GL-monoid $(L, \leq, *)$ is said to have square roots [10] if there exists a unary operator $S: L \longrightarrow L$ with the following properties:

(S1) for all
$$\alpha \in L$$
, $S(\alpha) * S(\alpha) = \alpha$,

(S2)
$$\beta * \beta \leq \alpha \Longrightarrow \beta \leq S(\alpha)$$
.

If $(L, \leq, *)$ is a GL-monoid with square roots, then the monoidal mean operator, $\circledast : L \times L \longrightarrow L$, is defined by $\alpha \circledast \beta = S(\alpha) * S(\beta)$. If $(L, \leq, *)$ also satisfies:

(S3)
$$S(\alpha * \beta) = (S(\alpha) * S(\beta)) \vee S(\bot)$$
 for all $\alpha, \beta \in L$

then if we use the monoidal mean operator as the cl-premonoid operation we get an enriched cl-premonoid: $(L, \leq, \circledast, *)$.

All of the t-norms mentioned earlier are left-continuous, and have square roots satisfying (S3). Thus we can use the monoidal mean operator to form an enriched cl-premonoid where for the minimum t-norm $\alpha \circledast \beta = \alpha \wedge \beta$. For the product t-norm we get $\alpha \circledast \beta = \sqrt{\alpha \cdot \beta}$, the geometric mean, and for the Lukasiewicz t-norm $\alpha \circledast \beta = \frac{\alpha + \beta}{2}$, the arithmetic mean.

Lemma 2.3 Let $(L, \leq, \otimes, *)$ be an enriched cl-premonoid and let $\alpha, \beta, \delta \in L$. If $\alpha \leq \alpha \otimes \alpha$, then

$$(\alpha \to \beta) \otimes (\alpha \to \delta) \leq \alpha \to (\beta \otimes \delta).$$

PROOF: This form of the proof was suggested in communication with Javier Gutiérrez García. We will use Lemma 2.1 (ix) and the fact that the * operation is dominated by the \otimes to show

$$((\alpha \to \beta) \otimes (\alpha \to \delta)) * \alpha \leq ((\alpha \to \beta) \otimes (\alpha \to \delta)) * (\alpha \otimes \alpha)$$
$$\leq ((\alpha \to \beta) * \alpha) \otimes ((\alpha \to \delta) * \alpha)$$
$$= (\alpha \land \beta) \otimes (\alpha \land \delta)$$
$$\leq \beta \otimes \delta.$$

The desired result can easily be seen from the property of the implication operator.

For the monoidal mean operator, we will clearly have $\alpha \circledast \alpha = S(\alpha) * S(\alpha) = \alpha$. Also, for the Heyting algebra case $(L, \leq, \wedge, \wedge)$ we have $\alpha \wedge \alpha = \alpha$. So clearly the above lemma will be valid for all $\alpha \in L$ for these cases.

Let $(L, \leq, \otimes, *)$ be an enriched *cl*-premonoid. If the equation:

$$(\alpha_1 * \beta_1) \otimes (\alpha_2 * \beta_2) = ((\alpha_1 \otimes \alpha_2) * (\beta_1 \otimes \beta_2)) \vee ((\alpha_1 \otimes \bot) * (\beta_1 \otimes \top)) \vee ((\bot \otimes \alpha_2) * (\top \otimes \beta_2))$$

is satisfied for all $\alpha_1, \alpha_2, \beta_1, \beta_2 \in L$ then $(L, \leq, \otimes, *)$ is *pseudo-bisymmetric* [11]. In the case where $\otimes = *$ and the case of the monoidal mean operator, as well as $(L, \leq, \wedge, *)$ and $(L, \leq, \wedge, \wedge)$, we have pseudo-bisymmetry.

Let $(L, \leq, \otimes, *)$ be an enriched *cl*-premonoid and X be a set. We denote the L-sets on X by $a, b, c, \ldots \in L^X$. For L-sets a, b, a_j $(j \in J)$, we extend the operations from $(L, \leq, \otimes, *)$ pointwise by

$$\left(\bigwedge_{j\in J} a_j\right)(x) = \bigwedge_{j\in J} (a_j(x)),$$
$$\left(\bigvee_{j\in J} a_j\right)(x) = \bigvee_{j\in J} (a_j(x)),$$
$$(a\otimes b)(x) = a(x)\otimes b(x),$$
$$(a*b)(x) = a(x)*b(x).$$

To extend the order relation, we say $a \leq b$ if for all $x \in X$ we have $a(x) \leq b(x)$. For any $\alpha \in L$ and $A \subset X$ we denote

$$\alpha_A(x) = \begin{cases} \alpha & \text{if } x \in A \\ \bot & \text{else.} \end{cases}$$

Two special cases of this are the characteristic function of A, \top_A , and the zero function, \bot_X . If $\varphi: X \longrightarrow Y$ is a mapping and $a \in L^X$, $b \in L^Y$, then we denote $\varphi^{\to}: L^X \longrightarrow L^Y$ the mapping $\varphi^{\to}(a)(y) = \bigvee_{x: \varphi(x) = y} a(x)$ (with $\bigvee \emptyset = \bot$) and $\varphi^{\leftarrow}: L^Y \longrightarrow L^X$ the mapping $\varphi^{\leftarrow}(b) = b \circ \varphi$.

3 Stratified L-filters

Definition 3.1 [11] Let X be a set and $(L, \leq, \otimes, *)$ an enriched cl-premonoid. A map \mathcal{F} : $L^X \longrightarrow L$ is a stratified L-filter on X if \mathcal{F} satisfies:

(LF0)
$$\mathcal{F}(\top_X) = \top$$
, $\mathcal{F}(\bot_X) = \bot$,

(LF1)
$$a_1, a_2 \in L^X, a_1 \leq a_2 \Longrightarrow \mathcal{F}(a_1) \leq \mathcal{F}(a_2),$$

(LF2)
$$\mathcal{F}(a_1) \otimes \mathcal{F}(a_2) \leq \mathcal{F}(a_1 \otimes a_2)$$
 for all $a_1, a_2 \in L^X$,

(LFS) for all
$$\alpha \in L$$
, for all $a \in L^X$, $\alpha * \mathcal{F}(a) \leq \mathcal{F}(\alpha_X * a)$.

The set of all stratified L-filters on X is denoted by $\mathcal{F}_L^S(X)$.

Examples 3.2

- The point filter $[x]: L^X \longrightarrow L, a \longmapsto a(x)$ is a stratified L-filter for every $x \in X$.
- For $A \subset X$, the mapping $[A]: L^X \longrightarrow L, a \longmapsto \bigwedge_{x \in A} a(x)$ is a stratified L-filter on X.

A partial ordering can be defined on the set of all stratified L-filters on X by:

$$\mathcal{F} \leq \mathcal{G} \iff \mathcal{F}(a) \leq \mathcal{G}(a) \quad \forall \ a \in L^X.$$

Here we say that \mathcal{F} is coarser than \mathcal{G} , or \mathcal{G} is finer than \mathcal{F} . For a collection of stratified L-filters on X, $\{\mathcal{F}_i : i \in I\}$, the greatest lower bound is defined [6] for $a \in L^X$:

$$\left(\bigwedge_{i\in I}\mathcal{F}_i\right)(a) = \bigwedge_{i\in I}\mathcal{F}_i(a)$$

and
$$\bigwedge_{i \in I} \mathcal{F}_i \in \mathcal{F}_L^S(X)$$
.

It is clear that for $A \subset X$ we have $[A] = \bigwedge_{x \in A} [x]$. Further, [X] is the coarsest stratified L-filter on X [11]. The least upper bound of two stratified L-filters does not always exist but it has been shown [7] that an upper bound for two L-filters will exist when they satisfy certain conditions.

Proposition 3.3 [7] Let $(L, \leq, \otimes, *)$ be an enriched cl-premonoid that is pseudo-bisymmetric. Further let \mathcal{F} and \mathcal{G} be two stratified L-filters on X. If $\mathcal{F}(a_1) * \mathcal{G}(a_2) = \bot$ for all $a_1, a_2 \in L^X$ such that $a_1 * a_2 = \bot_X$, then there exists an upper bound for both \mathcal{F} and \mathcal{G} .

Gutiérrez García [7] has shown that if $\otimes = *$ and the condition above is satisfied, then the least upper bound of two stratified *L*-filters is given by:

$$(\mathcal{F}\vee\mathcal{G})(a) = \bigvee \{\mathcal{F}(a_1)*\mathcal{G}(a_2) \mid a_1,a_2 \in L^X \text{ and } a_1*a_2 \leq a\}.$$

Let X and Y be sets, $\varphi: X \longrightarrow Y$ and $\mathcal{F} \in \mathcal{F}_L^S(X)$. The image of \mathcal{F} under $\varphi, \varphi^{\rightarrow}(\mathcal{F}): L^Y \longrightarrow L$, is always a stratified L-filter on Y and is defined [11] for $a \in L^Y$:

$$\varphi^{\rightarrow}(\mathcal{F})(a) = \mathcal{F}(\varphi^{\leftarrow}(a)) = \mathcal{F}(a \circ \varphi).$$

From this definition it is straightforward to deduce that $\varphi([x]) = [\varphi(x)]$.

Let X and Y be sets, and suppose $\varphi: X \longrightarrow Y$ and let $\mathcal{F} \in \mathcal{F}_L^S(Y)$. For $a \in L^X$ define [11] $\varphi^{\leftarrow}(\mathcal{F}): L^X \longrightarrow L$ by

$$\varphi^{\leftarrow}(\mathcal{F})(a) = \bigvee \{\mathcal{F}(b) \mid \varphi^{\leftarrow}(b) \le a\}.$$

The mapping $\varphi^{\leftarrow}(\mathcal{F})$ is a stratified *L*-filter on *X* if and only if, for $b \in L^Y$, $\mathcal{F}(b) = \bot$ whenever $\varphi^{\leftarrow}(b) = b \circ \varphi = \bot_X$ [14].

If we have X, Y and Z as sets, and $\mathcal{F}, \mathcal{G} \in \mathcal{F}_L^S(X)$, $\varphi : X \longrightarrow Y$ and $\psi : Y \longrightarrow Z$, then it is easy to see that $(\varphi \circ \psi)^{\rightarrow}(\mathcal{F}) = \varphi^{\rightarrow}(\psi^{\rightarrow}(\mathcal{F}))$, and $\varphi(\mathcal{F}) \wedge \varphi(\mathcal{G}) = \varphi(\mathcal{F} \wedge \mathcal{G})$. As a consequence, if we have φ and \mathcal{F}, \mathcal{G} as above with $\mathcal{F} \leq \mathcal{G}$, then $\varphi(\mathcal{F}) \leq \varphi(\mathcal{G})$.

Lemma 3.4 Let X and Y be sets and $\varphi: X \longrightarrow Y$. With $\mathcal{F} \in \mathcal{F}_L^S(X)$ and $\mathcal{G} \in \mathcal{F}_L^S(Y)$ the following hold:

(i)
$$\varphi^{\leftarrow}(\varphi^{\rightarrow}(\mathcal{F})) \in \mathcal{F}_L^S(X)$$
 and $\varphi^{\leftarrow}(\varphi^{\rightarrow}(\mathcal{F})) \leq \mathcal{F}$,

(ii) if
$$\varphi^{\leftarrow}(\mathcal{G}) \in \mathcal{F}_L^S(X)$$
, then $\mathcal{G} \leq \varphi^{\rightarrow}(\varphi^{\leftarrow}(\mathcal{G}))$,

(iii) if
$$\mathcal{G} \leq \varphi^{\rightarrow}(\mathcal{F})$$
 then $\varphi^{\leftarrow}(\mathcal{G}) \in \mathcal{F}_L^S(X)$.

PROOF: the proofs for (i) and (ii) are straightforward, while (iii) follows from (i) and the fact that $\varphi^{\leftarrow}(\mathcal{G}) \leq \varphi^{\leftarrow}(\varphi^{\rightarrow}(\mathcal{F}))$.

From here on, we consider our lattice L to be an enriched cl-premonoid $(L, \leq \otimes, *)$ that is pseudo-bisymmetric. The pseudo-bisymmetry is required as it will guarantee the existence of upper bounds (see Proposition 3.3), and this is required in the definition of a product L-filter.

Consider now the projection mappings:

$$P_1: \begin{cases} X \times Y \longrightarrow X \\ (x,y) \longmapsto x \end{cases}$$
 and $P_2: \begin{cases} X \times Y \longrightarrow Y \\ (x,y) \longmapsto y. \end{cases}$

Definition 3.5 Let X and Y be sets and let $\mathcal{F} \in \mathcal{F}_L^S(X)$ and $\mathcal{G} \in \mathcal{F}_L^S(Y)$. We define their product $\mathcal{F} \times \mathcal{G}$ by:

$$\mathcal{F} \times \mathcal{G} = P_1^{\leftarrow}(\mathcal{F}) \vee P_2^{\leftarrow}(\mathcal{G}).$$

Proposition 3.6 The mapping $\mathcal{F} \times \mathcal{G}$ is a stratified L-filter on $X \times Y$.

PROOF: Here we use the result of Proposition 3.3. That is, we must show that $P_1^{\leftarrow}(\mathcal{F})(a) * P_2^{\leftarrow}(\mathcal{G})(b) = \bot$ for all $a, b \in L^{X \times Y}$ such that $a * b = \bot_{X \times Y}$. This will show that there exists an upper bound for $P_1^{\leftarrow}(\mathcal{F})$ and $P_2^{\leftarrow}(\mathcal{G})$, and hence there must exist a least upper bound as the meet of all upper bounds.

Suppose that $a, b \in L^{X \times Y}$ are such that $a * b = \bot_{X \times Y}$. Then

$$\begin{split} &P_1^{\leftarrow}(\mathcal{F})(a)*P_2^{\leftarrow}(\mathcal{G})(b) \\ &= \bigvee \left\{ \mathcal{F}(c) \mid c \in L^X, P_1^{\leftarrow}(c) \leq a \right\} * \bigvee \left\{ \mathcal{G}(d) \mid d \in L^Y, P_2^{\leftarrow}(d) \leq b \right\} \\ &\leq \bigvee \left\{ \mathcal{F}(c)*\mathcal{G}(d) \mid c \in L^X, d \in L^Y, P_1^{\leftarrow}(c)*P_2^{\leftarrow}(d) \leq \bot_{X \times Y} \right\}. \end{split}$$

Now, $P_1^{\leftarrow}(c)(x,y) = c \circ P_1(x,y) = c(x)$. Similarly $P_2^{\leftarrow}(d)(x,y) = d(y)$. Therefore

$$P_1^{\leftarrow}(\mathcal{F})(a) * P_Y^{\leftarrow}(\mathcal{G})(b) \leq \bigvee \big\{ \mathcal{F}(c) * \mathcal{G}(d) \mid c(x) * d(y) = \bot, \ \forall \ x \in X, \ \forall \ y \in Y \big\}.$$

Now we note that if $c(x) * d(y) = \bot$ for all $x \in X, y \in Y$, then since * is a quantale operation, and using (Q2) we get

$$\bot = \bigvee_{x \in X} \bigvee_{y \in Y} \left(c(x) * d(y) \right) = \left(\bigvee_{x \in X} c(x) \right) * \left(\bigvee_{y \in Y} d(y) \right).$$

Together with (LF1), this yields

$$P_1^{\leftarrow}(\mathcal{F})(a)*P_2^{\leftarrow}(\mathcal{G})(b) \leq \bigvee \big\{\mathcal{F}(\alpha_X)*\mathcal{G}(\beta_Y) \mid \alpha*\beta = \bot\big\}.$$

Now, using (LFS), the stratification of the L-filters \mathcal{F} and \mathcal{G} , we have that for all $\alpha, \beta \in L$,

$$\mathcal{F}(\alpha_X) * \mathcal{G}(\beta_Y) \le \mathcal{F}(\alpha_X * (\mathcal{G}(\beta_Y))_X).$$

Then consider

$$\begin{aligned} \left[\alpha_X * \left(\mathcal{G}(\beta_Y)\right)_X\right](x) &= \alpha_X(x) * \left(\mathcal{G}(\beta_Y)\right)_X(x) \\ &= \alpha * \mathcal{G}(\beta_Y) \\ &\leq \mathcal{G}(\alpha_Y * \beta_Y) \\ &= \mathcal{G}(\bot_Y) = \bot. \end{aligned}$$

From this we get that $\mathcal{F}(\alpha_X) * \mathcal{G}(\beta_Y) \leq \mathcal{F}(\bot_X) = \bot$. Therefore, since

$$P_1^{\leftarrow}(\mathcal{F})(a) * P_2^{\leftarrow}(\mathcal{G})(b) \le \bigvee \left\{ \mathcal{F}(\alpha_X) * \mathcal{G}(\beta_Y) \mid \alpha * \beta = \bot \right\}$$

we get that $P_1^{\leftarrow}(\mathcal{F})(a) * P_2^{\leftarrow}(\mathcal{G})(b) = \bot$.

Lemma 3.7 [16] Let X and Y be sets and let $\mathcal{F}, \mathcal{G} \in \mathcal{F}_L^S(X), \mathcal{H}, \mathcal{K} \in \mathcal{F}_L^S(Y)$. If $\mathcal{F} \leq \mathcal{G}$ and $\mathcal{H} \leq \mathcal{K}$ then $\mathcal{F} \times \mathcal{H} \leq \mathcal{G} \times \mathcal{K}$.

Lemma 3.8 [15] Let $\mathcal{F} \in \mathcal{F}_L^S(X \times Y)$. Then $P_1^{\rightarrow}(\mathcal{F}) \times P_2^{\rightarrow}(\mathcal{F}) \leq \mathcal{F}$. Further, if $\mathcal{G} \in \mathcal{F}_L^S(X)$ and $\mathcal{H} \in \mathcal{F}_L^S(Y)$ then $P_1^{\rightarrow}(\mathcal{G} \times \mathcal{H}) \geq \mathcal{G}$ and $P_2^{\rightarrow}(\mathcal{G} \times \mathcal{H}) \geq \mathcal{H}$.

Now we propose the definition of a new mapping from $L^{X\times X} \longrightarrow L$, one that is in fact a stratified L-filter on the product space $X\times X$. This is later used when inducing a stratified L-limit space from a stratified L-uniform convergence space.

Definition 3.9 Let X be a set, $\mathcal{F} \in \mathcal{F}_L^S(X), x \in X$. We define $\mathcal{F}_x : L^{X \times X} \longrightarrow L$ by

$$\mathcal{F}_x(d) = \mathcal{F}(d(\cdot, x)), \text{ for } d \in L^{X \times X}.$$

Proposition 3.10 Let X be a set, $\mathcal{F} \in \mathcal{F}_L^S(X)$ and $x \in X$. Then $\mathcal{F}_x \in \mathcal{F}_L^S(X \times X)$.

The proof is left to the reader.

Lemma 3.11 [16] Let X be set and $(L, \leq, \wedge, \wedge)$ a complete Heyting algebra. If $\mathcal{F} \in \mathcal{F}_L^S(X)$ and $x \in X$, then

$$\mathcal{F}_x = \mathcal{F} \times [x].$$

Lemma 3.12 Let $x, y \in X$ and $\mathcal{F}, \mathcal{G} \in \mathcal{F}_L^S(X)$ and let $\varphi : X \longrightarrow Y$. Then

- (i) $[x]_y = [(x, y)],$
- (ii) $\mathcal{F}_x \wedge \mathcal{G}_x = (\mathcal{F} \wedge \mathcal{G})_x$,
- (iii) $(\varphi \times \varphi)^{\rightarrow}(\mathcal{F}_x) = \varphi^{\rightarrow}(\mathcal{F})_{\varphi(x)}$.

PROOF: We show only (iii) as (i) and (ii) are straightforward. Let $a \in L^{Y \times Y}$. Then

$$(\varphi \times \varphi)^{\rightarrow}(\mathcal{F}_{x})(a) = \mathcal{F}_{x}(a \circ (\varphi \times \varphi))$$

$$= \mathcal{F}((a \circ (\varphi \times \varphi))(\cdot, x))$$

$$= \mathcal{F}(a(\varphi(\cdot), \varphi(x)))$$

$$= \mathcal{F}(a(\cdot, \varphi(x)) \circ \varphi)$$

$$= \mathcal{F}(\varphi^{\leftarrow}(a(\cdot, \varphi(x))))$$

$$= \varphi^{\rightarrow}(\mathcal{F})(a(\cdot, \varphi(x)))$$

$$= \varphi^{\rightarrow}(\mathcal{F})_{\varphi(x)}(a).$$

For a stratified L-filter $\mathcal{F} \in \mathcal{F}_L^S(X \times X)$ and $d \in L^{X \times X}$, define $\mathcal{F}^{-1}(d) = \mathcal{F}(d^{-1})$, where $d^{-1}(x,y) = d(y,x)$ for $(x,y) \in X \times X$. From [16] we know that $\mathcal{F}^{-1} \in \mathcal{F}_L^S(X \times X)$.

Lemma 3.13 [16] Let X and Y be sets, $\varphi: X \longrightarrow Y$ and $\mathcal{F}, \mathcal{G} \in \mathcal{F}_L^S(X \times X)$. If $\mathcal{F} \leq \mathcal{G}$ then

- (i) $(\mathcal{F}^{-1})^{-1} = \mathcal{F}$,
- (ii) $\mathcal{F}^{-1} \leq \mathcal{G}^{-1}$,
- (iii) $(\varphi \times \varphi)^{\rightarrow}(\mathcal{F}^{-1}) = ((\varphi \times \varphi)^{\rightarrow}(\mathcal{F}))^{-1}.$

Let $\mathcal{F}, \mathcal{G} \in \mathcal{F}_L^S(X \times X)$. We then define the mapping $\mathcal{F} \circ \mathcal{G} : L^{X \times X} \longrightarrow L$ by:

$$\mathcal{F} \circ \mathcal{G}(d) = \bigvee \left\{ \mathcal{F}(a) * \mathcal{G}(b) : a, b \in L^{X \times X}, a \circ b \leq d \right\}$$

with
$$a \circ b(x,y) = \bigvee_{z \in X} a(x,z) * b(z,y)$$
. We call $\mathcal{F} \circ \mathcal{G}$ the composition of \mathcal{F} and \mathcal{G} .

Below we will give a condition that, when satisfied, will give us $\mathcal{F} \circ \mathcal{G} \in \mathcal{F}_L^S(X \times X)$. In order to prove the main condition which ensures that the composition $\mathcal{F} \circ \mathcal{G}$ is a stratified *L*-filter, we will make use of the following results.

Lemma 3.14 Let $f, g, \bar{f}, \bar{g} \in L^{X \times X}$ and $a, b \in L^{X \times X}$. If $f \circ g \leq a$ and $\bar{f} \circ \bar{g} \leq b$, and with $\alpha \in L$, we have

- (i) $(f \otimes \bar{f}) \circ (g \otimes \bar{g}) \leq a \otimes b$,
- (ii) $(f \otimes \bot_{X \times X}) \circ (g \otimes \top_{X \times X}) \leq a \otimes b$,
- (iii) $(\perp_{X\times X}\otimes \bar{f})\circ (\top_{X\times X}\otimes \bar{g})\leq a\otimes b$,
- (iv) $(\alpha_{X\times X}*f)\circ g\leq \alpha_{X\times X}*a$.

These proofs are technical, but not difficult and so are omitted.

Proposition 3.15 Let $\mathcal{F}, \mathcal{G} \in \mathcal{F}_L^S(X \times X)$ and let $(L, \leq, \otimes, *)$ be a pseudo-bisymmetric enriched cl-premonoid. For any $f, g \in L^{X \times X}$, the following are equivalent:

- (i) the mapping $\mathcal{F} \circ \mathcal{G} \in \mathcal{F}_L^S(X \times X)$,
- (ii) if $f \circ g = \bot_{X \times X}$, then $\mathcal{F}(f) * \mathcal{G}(g) = \bot$.

Proof:

Suppose (i) and let $f \circ g = \bot_{X \times X}$. From (**LF0**) we have $\mathcal{F} \circ \mathcal{G}(\bot_{X \times X}) = \bot$. This will only be the case if

$$\perp = \bigvee_{\substack{h,k \in L^{X \times X} \\ h \circ k = \perp_{X \times X}}} \mathcal{F}(h) * \mathcal{G}(k).$$

Since
$$\mathcal{F}(f) * \mathcal{G}(g) \leq \bigvee_{\substack{h,k \in L^{X \times X} \\ h \circ k = \bot_{X \times X}}} \mathcal{F}(h) * \mathcal{G}(k)$$
, we get $\mathcal{F}(f) * \mathcal{G}(g) = \bot$.

Conversely, suppose (ii). We check the axioms for a stratified L-filter.

LF0: It is easily checked that $\top_{X\times X} \circ \top_{X\times X} \leq \top_{X\times X}$. With this we conclude that $\mathcal{F} \circ \mathcal{G}(\top_{X\times X}) = \top$. Further we have

$$\mathcal{F} \circ \mathcal{G}(\bot_{X \times X}) = \bigvee_{f \circ g = \bot_{X \times X}} \mathcal{F}(f) * \mathcal{G}(g)$$
$$= \bigvee_{f \circ g = \bot_{X \times X}} \bot \quad \text{by (ii)}$$
$$= \bot.$$

LF1: This is easy and is left to the reader.

LF2: Let $a, b \in L^{X \times X}$. Then

$$\begin{split} \mathcal{F} \circ \mathcal{G}(a) \otimes \mathcal{F} \circ \mathcal{G}(b) = & \Big(\bigvee_{\substack{f \circ g \leq a \\ \bar{f} \circ \bar{g} \leq b}} \mathcal{F}(f) * \mathcal{G}(g) \Big) \otimes \Big(\bigvee_{\bar{f} \circ \bar{g} \leq b} \mathcal{F}(\bar{f}) * \mathcal{G}(\bar{g}) \Big) \\ = & \bigvee_{\substack{f \circ g \leq a, \\ \bar{f} \circ \bar{g} \leq b}} \left(\left(\mathcal{F}(f) * \mathcal{G}(g) \right) \otimes \left(\mathcal{F}(\bar{f}) * \mathcal{G}(\bar{g}) \right) \right) = P. \end{split}$$

The above equality is as a result of the distributivity of the \otimes operation over non-empty joins. We now use the property of a pseudo-bisymmetric subset to produce the following inequality.

$$P \leq \bigvee_{f \circ g \leq a, \bar{f} \circ \bar{g} \leq b} \left(\left(\left[\mathcal{F}(f) \otimes \mathcal{F}(\bar{f}) \right] * \left[\mathcal{G}(g) \otimes \mathcal{G}(\bar{g}) \right] \right)$$

$$\vee \left(\left[\mathcal{F}(f) \otimes \bot \right] * \left[\mathcal{G}(g) \otimes \top \right] \right)$$

$$\vee \left(\left[\bot \otimes \mathcal{F}(\bar{f}) \right] * \left[\top \otimes \mathcal{G}(\bar{g}) \right] \right) \right)$$

$$= \bigvee_{f \circ g \leq a, \bar{f} \circ \bar{g} \leq b} \left(\left(\left[\mathcal{F}(f) \otimes \mathcal{F}(\bar{f}) \right] * \left[\mathcal{G}(g) \otimes \mathcal{G}(\bar{g}) \right] \right)$$

$$\vee \left(\left[\mathcal{F}(f) \otimes \mathcal{F}(\bot_{X \times X}) \right] * \left[\mathcal{G}(g) \otimes \mathcal{G}(\top_{X \times X}) \right] \right)$$

$$\vee \left(\left[\mathcal{F}(\bot_{X \times X}) \otimes \mathcal{F}(\bar{f}) \right] * \left[\mathcal{G}(\tau_{X \times X}) \otimes \mathcal{G}(\bar{g}) \right] \right)$$

$$= Q.$$

The equality above comes as a result of the fact that both \mathcal{F} and \mathcal{G} are stratified L-filters and from property (**LF0**) described earlier. We can further produce another inequality by, instead of taking the join over a single small set, we take the join of the joins of three larger

sets:

$$Q \leq \bigvee_{f \circ g \leq a, \bar{f} \circ \bar{g} \leq b} \left(\left[\mathcal{F}(f) \otimes \mathcal{F}(\bar{f}) \right] * \left[\mathcal{G}(g) \otimes \mathcal{G}(\bar{g}) \right] \right)$$

$$\vee \bigvee_{f \circ g \leq a, \bar{f} \circ \bar{g} \leq b} \left(\left[\mathcal{F}(f) \otimes \mathcal{F}(\bot_{X \times X}) \right] * \left[\mathcal{G}(g) \otimes \mathcal{G}(\top_{X \times X}) \right] \right)$$

$$\vee \bigvee_{f \circ g \leq a, \bar{f} \circ \bar{g} \leq b} \left(\left[\mathcal{F}(\bot_{X \times X}) \otimes \mathcal{F}(\bar{f}) \right] * \left[\mathcal{G}(\top_{X \times X}) \otimes \mathcal{G}(\bar{g}) \right] \right) = R.$$

Now we use the results from Lemma 3.14 to choose larger sets for each of the joins shown above:

$$R \leq \bigvee_{(f \otimes \bar{f}) \circ (g \otimes \bar{g}) \leq a \otimes b} \left(\left[\mathcal{F}(f) \otimes \mathcal{F}(\bar{f}) \right] * \left[\mathcal{G}(g) \otimes \mathcal{G}(\bar{g}) \right] \right)$$

$$\vee \bigvee_{(f \otimes \bot_{X \times X}) \circ (g \otimes \top_{X \times X}) \leq a \otimes b} \left(\left[\mathcal{F}(f) \otimes \mathcal{F}(\bot_{X \times X}) \right] * \left[\mathcal{G}(g) \otimes \mathcal{G}(\top_{X \times X}) \right] \right)$$

$$\vee \bigvee_{(\bot_{X \times X} \otimes \bar{f}) \circ (\top_{X \times X} \otimes \bar{g}) \leq a \otimes b} \left(\left[\mathcal{F}(\bot_{X \times X}) \otimes \mathcal{F}(\bar{f}) \right] * \left[\mathcal{G}(\top_{X \times X}) \otimes \mathcal{G}(\bar{g}) \right] \right)$$

$$= S.$$

Now we again choose larger sets by allowing any f, g, \bar{f} or \bar{g} instead of $\bot_{X\times X}$ and $\top_{X\times X}$.

$$S \leq \bigvee_{\substack{(f \otimes \bar{f}) \circ (g \otimes \bar{g}) \leq a \otimes b}} \left(\left[\mathcal{F}(f) \otimes \mathcal{F}(\bar{f}) \right] * \left[\mathcal{G}(g) \otimes \mathcal{G}(\bar{g}) \right] \right)$$

$$\vee \bigvee_{\substack{(f \otimes \bar{f}) \circ (g \otimes \bar{g}) \leq a \otimes b}} \left(\left[\mathcal{F}(f) \otimes \mathcal{F}(\bar{f}) \right] * \left[\mathcal{G}(g) \otimes \mathcal{G}(\bar{g}) \right] \right)$$

$$\vee \bigvee_{\substack{(f \otimes \bar{f}) \circ (g \otimes \bar{g}) \leq a \otimes b}} \left(\left[\mathcal{F}(f) \otimes \mathcal{F}(\bar{f}) \right] * \left[\mathcal{G}(g) \otimes \mathcal{G}(\bar{g}) \right] \right).$$

Since each of these sups is the same, we have:

$$S = \bigvee_{\substack{(f \otimes \bar{f}) \circ (g \otimes \bar{g}) \leq a \otimes b}} \left(\left[\mathcal{F}(f) \otimes \mathcal{F}(\bar{f}) \right] * \left[\mathcal{G}(g) \otimes \mathcal{G}(\bar{g}) \right] \right)$$

$$\leq \bigvee_{\substack{(f \otimes \bar{f}) \circ (g \otimes \bar{g}) \leq a \otimes b}} \left(\mathcal{F}(f \otimes \bar{f}) * \mathcal{G}(g \otimes \bar{g}) \right)$$

$$\leq \bigvee_{\substack{h \circ k \leq a \otimes b}} \left(\mathcal{F}(h) * \mathcal{G}(k) \right)$$

$$= \mathcal{F} \circ \mathcal{G}(a \otimes b).$$

LFS: This follows from Lemma 3.14(iv).

We have thus provided a condition that, if satisfied, will guarantee that the composition of two stratified L-filters will again be a stratified L-filter. We now show some further results relating to the composition of L-filters that will be needed later on.

Lemma 3.16 Let X and Y be sets and let $\mathcal{F}, \mathcal{G}, \mathcal{H}, \mathcal{K} \in \mathcal{F}_L^S(X \times X)$ and $\mathcal{M}, \mathcal{N} \in \mathcal{F}_L^S(Y \times Y)$. Further suppose that $\mathcal{F} \leq \mathcal{H}$ and $\mathcal{G} \leq \mathcal{K}$ and that $\varphi : X \longrightarrow Y$. Then

(i) if
$$\mathcal{H} \circ \mathcal{K} \in \mathcal{F}_L^S(X \times X)$$
, then $\mathcal{F} \circ \mathcal{G} \in \mathcal{F}_L^S(X \times X)$ and $\mathcal{F} \circ \mathcal{G} \leq \mathcal{H} \circ \mathcal{K}$,

(ii)
$$(\varphi \times \varphi)^{\rightarrow}(\mathcal{F}) \circ (\varphi \times \varphi)^{\rightarrow}(\mathcal{G}) \leq (\varphi \times \varphi)^{\rightarrow}(\mathcal{F} \circ \mathcal{G}),$$

(iii)
$$(\varphi \times \varphi)^{\leftarrow}(\mathcal{M} \circ \mathcal{N}) \leq (\varphi \times \varphi)^{\leftarrow}(\mathcal{M}) \circ (\varphi \times \varphi)^{\leftarrow}(\mathcal{N}).$$

PROOF: The proof of (i) can be found in [16]. For (ii), we first show that for $d_1, d_2, a \in L^{X \times X}$, if $d_1 \circ d_2 \leq a$, then

$$(d_1 \circ (\varphi \times \varphi)) \circ (d_2 \circ (\varphi \times \varphi)) \le a \circ (\varphi \times \varphi).$$

Suppose $d_1 \circ d_2 \leq a$ and let $(x, y) \in X \times X$. Then

$$(d_1 \circ (\varphi \times \varphi)) \circ (d_2 \circ (\varphi \times \varphi))(x, y) = \bigvee_{z \in X} d_1 \circ (\varphi \times \varphi)(x, z) * d_2 \circ (\varphi \times \varphi)(z, y)$$

$$= \bigvee_{z \in X} d_1(\varphi(x), \varphi(z)) * d_2(\varphi(z), \varphi(y))$$

$$\leq \bigvee_{w \in Y} d_1(\varphi(x), w) * d_2(w, \varphi(y))$$

$$= (d_1 \circ d_2)(\varphi(x), \varphi(y))$$

$$\leq a(\varphi(x), \varphi(y))$$

$$= a \circ (\varphi \times \varphi)(x, y).$$

Now we let $b \in L^{Y \times Y}$ and show that

$$((\varphi \times \varphi)^{\rightarrow}(\mathcal{F}) \circ (\varphi \times \varphi)^{\rightarrow}(\mathcal{G}))(b) = \bigvee_{\substack{d_1, d_2 \in L^{Y \times Y} \\ d_1 \circ d_2 \leq b}} ((\varphi \times \varphi)^{\rightarrow}(\mathcal{F}))(d_1) * ((\varphi \times \varphi)^{\rightarrow}(\mathcal{G}))(d_2)$$

$$= \bigvee_{\substack{d_1, d_2 \in L^{Y \times Y} \\ d_1 \circ d_2 \leq b}} \mathcal{F}(d_1 \circ (\varphi \times \varphi)) * \mathcal{G}(d_2 \circ (\varphi \times \varphi))$$

$$\leq \bigvee_{\substack{c_1, c_2 \in L^{X \times X} \\ c_1 \circ c_2 \leq b \circ (\varphi \times \varphi)}} \mathcal{F}(c_1) * \mathcal{G}(c_2)$$

$$= (\mathcal{F} \circ \mathcal{G})(b \circ (\varphi \times \varphi))$$

$$= ((\varphi \times \varphi)^{\rightarrow}(\mathcal{F} \circ \mathcal{G}))(b).$$

For (iii), as a first step consider $m, n \in L^{Y \times Y}$. Then with $(x, y) \in X \times X$, we have

$$\begin{split} (\varphi\times\varphi)^{\leftarrow}(m)\circ(\varphi\times\varphi)^{\leftarrow}(n)(x,y) &= \bigvee_{z\in X} m(\varphi(x),\varphi(z))*n(\varphi(z),\varphi(y)) \\ &\leq \bigvee_{u\in Y} m(\varphi(x),u)*n(u,\varphi(y)) \\ &= m\circ n(\varphi(x),\varphi(y)) \ = \ (\varphi\times\varphi)^{\leftarrow}(m\circ n)(x,y). \end{split}$$

With this we conclude

$$\begin{split} (\varphi \times \varphi)^{\leftarrow} (\mathcal{M} \circ \mathcal{N})(a) &= \bigvee_{(\varphi \times \varphi)^{\leftarrow}(d) \leq a} \mathcal{M} \circ \mathcal{N}(d) \\ &= \bigvee_{d: (\varphi \times \varphi)^{\leftarrow}(d) \leq a} \left(\bigvee_{b \circ c \leq d} \mathcal{M}(b) * \mathcal{N}(c) \right) \\ &\leq \bigvee_{b, c: \\ (\varphi \times \varphi)^{\leftarrow}(b) \circ (\varphi \times \varphi)^{\leftarrow}(c) \leq a} \mathcal{M}(b) * \mathcal{N}(c) \\ &\leq \bigvee_{b, c: \\ (\varphi \times \varphi)^{\leftarrow}(b) \circ (\varphi \times \varphi)^{\leftarrow}(c) \leq a} \mathcal{M}(b) * \mathcal{N}(c) \\ &\leq \bigvee_{h, k: \\ h \circ k \leq a} \left(\bigvee_{\substack{b, c: \\ (\varphi \times \varphi)^{\leftarrow}(b) \leq h \\ (\varphi \times \varphi)^{\leftarrow}(c) \leq k}} \mathcal{M}(b) * \mathcal{N}(c) \right) \\ &= \bigvee_{h, k: \\ h \circ k \leq a} \left(\bigvee_{\substack{b, c: \\ (\varphi \times \varphi)^{\leftarrow}(b) \leq h \\ (\varphi \times \varphi)^{\leftarrow}(b) \leq h}} \mathcal{N}(c) : (\varphi \times \varphi)^{\leftarrow}(c) \leq k \right) \\ &= \bigvee_{h, k: \\ h \circ k \leq a} \left((\varphi \times \varphi)^{\leftarrow}(\mathcal{M})(h) * (\varphi \times \varphi)^{\leftarrow}(\mathcal{N})(k) \right) \\ &= (\varphi \times \varphi)^{\leftarrow}(\mathcal{M}) \circ (\varphi \times \varphi)^{\leftarrow}(\mathcal{N})(a). \end{split}$$

4 Lattice-Valued Uniform Convergence Spaces

Here we propose a new definition of a lattice-valued uniform convergence structure on a set X, generalising the work of Jäger and Burton [16]. We show that our category is topological over SET and we present the induced stratified L-limit structure. It is then shown that we can define a forgetful functor to the subcategory SL-LIM [14] that will preserve the initial structures. Unless otherwise stated, our lattice L will be a pseudo-bisymmetric enriched cl-premonoid.

Definition 4.1 Let X be a non-empty set, and $(L, \leq, \otimes, *)$ a pseudo-bisymmetric enriched cl-premonoid. A mapping $\Lambda : \mathcal{F}_L^S(X \times X) \longrightarrow L$ is called a stratified L-uniform convergence structure if Λ satisfies the following:

(LUC1) for all $x \in X$, $\Lambda([(x, x)]) = \top$,

(LUC2)
$$\mathcal{F} \leq \mathcal{G} \Longrightarrow \Lambda(\mathcal{F}) \leq \Lambda(\mathcal{G}),$$

(LUC3)
$$\Lambda(\mathcal{F}) \leq \Lambda(\mathcal{F}^{-1}),$$

(LUC4)
$$\Lambda(\mathcal{F}) \wedge \Lambda(\mathcal{G}) \leq \Lambda(\mathcal{F} \wedge \mathcal{G}),$$

(LUC5)
$$\Lambda(\mathcal{F}) * \Lambda(\mathcal{G}) \leq \Lambda(\mathcal{F} \circ \mathcal{G})$$
 whenever $\mathcal{F} \circ \mathcal{G}$ exists.

The pair (X, Λ) is called a stratified L-uniform convergence space.

The original definition proposed by Jäger and Burton [16] was for the case where L is a complete Heyting algebra. Their (**LUC1**) stated that for all $x \in X$, $\Lambda([x] \times [x]) = \top$. For the case of L a complete Heyting algebra, it can be seen from Lemmas 3.11 and 3.12(i) that $[x] \times [x] = [x]_x = [(x,x)]$, for all $x \in X$, and so we see how the new definition is a generalisation of the previous one. In addition, the (**LUC5**) given in [16] stated $\Lambda(\mathcal{F}) \wedge \Lambda(\mathcal{G}) \leq \Lambda(\mathcal{F} \circ \mathcal{G})$. For the Heyting algebra case, $*= \wedge$, and so the above definition is thus a useful generalisation as it includes the specific case that was investigated in that work.

Definition 4.2 [16] Let (X, Λ) and (Y, Σ) be stratified L-uniform convergence spaces. A mapping $\varphi: (X, \Lambda) \longrightarrow (Y, \Sigma)$ is uniformly continuous if for all $\mathcal{F} \in \mathcal{F}_L^S(X \times X)$, we have:

$$\Lambda(\mathcal{F}) \le \Sigma ((\varphi \times \varphi)^{\to}(\mathcal{F})).$$

Proposition 4.3 [16] Let (X, Λ) , (Y, Σ) and (Z, Γ) be stratified L-uniform convergence spaces. Then:

- (i) The mapping $id_X:(X,\Lambda)\longrightarrow (X,\Lambda)$ is uniformly continuous.
- (ii) If $\varphi:(X,\Lambda)\longrightarrow (Y,\Sigma)$ and $\psi:(Y,\Sigma)\longrightarrow (Z,\Gamma)$ are uniformly continuous, then $\psi\circ\varphi:(X,\Lambda)\longrightarrow (Z,\Gamma)$ is uniformly continuous.

RESULT: We have the concrete category SL-UCS, where the objects are stratified L-uniform convergence spaces, and the morphisms are the uniformly continuous mappings.

If we have two different stratified L-uniform convergence structures, Λ and Λ' , on a set X, we can order them in the following manner:

 $(X,\Lambda) \leq (X,\Lambda')$ if and only if, for all $\mathcal{F} \in \mathcal{F}_L^S(X \times X)$, $\Lambda'(\mathcal{F}) \leq \Lambda(\mathcal{F})$. In this case we say $\Lambda \leq \Lambda'$.

Example 4.4 ([16] for L a complete Heyting algebra) The indiscrete stratified L-uniform convergence structure Λ_i is defined:

$$\Lambda_i(\mathcal{F}) = \top$$
 for all $\mathcal{F} \in \mathcal{F}_L^S(X \times X)$.

Example 4.5 ([16] for L a complete Heyting algebra) For $\mathcal{F} \in \mathcal{F}_L^S(X \times X)$, we define the discrete stratified L-uniform convergence structure Λ_d by:

$$\Lambda_d(\mathcal{F}) = \begin{cases} \top & \text{if } \mathcal{F} \ge \bigwedge_{x \in E} [(x, x)] \text{ for some finite } E \subset X \\ \bot & \text{else.} \end{cases}$$

Cook and Fischer [2] showed that the classical uniform convergence spaces form a topological category, and Jäger and Burton [16] showed the analogous result for Heyting algebra-valued uniform convergence spaces. Now we show this same result for the case where L is a pseudo-bisymmetric enriched cl-premonoid.

Proposition 4.6 [16] The category SL-UCS is a topological category (in the sense of Preuss [22]).

PROOF: First we will show the existence of initial structures. Consider a family $\{\varphi_i: i \in I\}$ such that $X \xrightarrow{\varphi_i} (X_i, \Lambda_i)$ for all $i \in I$.

For $\mathcal{F} \in \mathcal{F}_L^S(X \times X)$, define:

$$\Lambda(\mathcal{F}) = \bigwedge_{i \in I} \Lambda_i \Big((\varphi_i \times \varphi_i)^{\rightarrow} (\mathcal{F}) \Big).$$

We show that $(X, \Lambda) \in |SL\text{-}UCS|$, but only present here **(LUC1)** and **(LUC5)** as the proofs of the other axioms are similar to those in [16].

LUC1: From the definition of the image of a stratified *L*-filter, we can see that $(\varphi \times \varphi)^{\rightarrow}([(x,x)]) = [(\varphi(x), \varphi(x))]$. Now,

$$\Lambda([(x,x)]) = \bigwedge_{i \in I} \Lambda_i \Big((\varphi_i \times \varphi_i)^{\rightarrow} ([(x,x)]) \Big)
= \bigwedge_{i \in I} \Lambda_i \Big[(\varphi_i(x), \varphi_i(x)) \Big]
= \top.$$

LUC5: From Proposition 3.16 we see that

$$(\varphi_i \times \varphi_i)^{\rightarrow} (\mathcal{F} \circ \mathcal{G}) \ge (\varphi_i \times \varphi_i)^{\rightarrow} (\mathcal{F}) \circ (\varphi_i \times \varphi_i)^{\rightarrow} (\mathcal{G}).$$

Now we use that result to show

$$\begin{split} &\Lambda(\mathcal{F} \circ \mathcal{G}) = \bigwedge_{i \in I} \Lambda_i \big((\varphi_i \times \varphi_i)^{\rightarrow} (\mathcal{F} \circ \mathcal{G}) \big) \\ &\geq \bigwedge_{i \in I} \Lambda_i \Big((\varphi_i \times \varphi_i)^{\rightarrow} (\mathcal{F}) \circ (\varphi_i \times \varphi_i)^{\rightarrow} (\mathcal{G}) \Big) \\ &\geq \bigwedge_{i \in I} \Big(\Lambda_i \big((\varphi_i \times \varphi_i)^{\rightarrow} (\mathcal{F}) \big) * \Lambda_i \big((\varphi_i \times \varphi_i)^{\rightarrow} (\mathcal{G}) \big) \Big) \\ &\geq \bigwedge_{i \in I} \Lambda_i \big((\varphi_i \times \varphi_i)^{\rightarrow} (\mathcal{F}) \big) * \bigwedge_{i \in I} \Lambda_i \big((\varphi_i \times \varphi_i)^{\rightarrow} (\mathcal{G}) \big) \\ &= \Lambda(\mathcal{F}) * \Lambda(\mathcal{G}). \end{split}$$

Therefore we have that $(X, \Lambda) \in |SL\text{-}UCS|$.

Let $(Y, \Sigma) \in |SL\text{-}UCS|$ and let $\psi : Y \longrightarrow X$ such that for all $i \in I$, $\varphi_i \circ \psi : (Y, \Sigma) \longrightarrow (X_i, \Lambda_i)$ is uniformly continuous. Thus for all $i \in I$ we have

$$\Sigma(\mathcal{F}) \leq \Lambda_i \Big(\big((\varphi_i \circ \psi) \times (\varphi_i \circ \psi) \big)^{\rightarrow} (\mathcal{F}) \Big) = \Lambda_i \big(((\varphi_i \times \varphi_i) \circ (\psi \times \psi))^{\rightarrow} (\mathcal{F}) \big),$$

and consequently

$$\Sigma(\mathcal{F}) \leq \bigwedge_{i \in I} \Lambda_i ((\varphi_i \times \varphi_i)^{\rightarrow} ((\psi \times \psi)^{\rightarrow} (\mathcal{F}))) = \Lambda ((\psi \times \psi)^{\rightarrow} (\mathcal{F})).$$

Therefore $\psi: Y \longrightarrow X$ is uniformly continuous. Now we have that $\psi: (Y, \Sigma) \longrightarrow (X, \Lambda)$ is uniformly continuous if and only if $\varphi_i \circ \psi: (Y, \Sigma) \longrightarrow (X, \Lambda_i)$ is uniformly continuous. Further, we show the *fibre-smallness* of SL-UCS. Since each stratified L-uniform convergence structure is a mapping $\Lambda: \mathcal{F}_L^S(X \times X) \longrightarrow L$ we have that the class of all possible stratified L-uniform convergence structures on a set X, is a subset of $\{0,1\}^{L^{\mathcal{F}_L^S(X \times X)}}$ and so it is a set.

Lastly, in order to show the terminal separator property, consider $X = \{x\}$ and hence $X \times X = \{(x,x)\}$. Since there is only one element in $X \times X$, the only L-sets that exist (i.e. elements of $L^{X \times X}$) are the constant maps $\alpha_{X \times X}(x,x) = \alpha$ for each $\alpha \in L$. By the stratification property (**LFS**) we have $\mathcal{F} \geq [(x,x)]$ for all $\mathcal{F} \in \mathcal{F}_L^S(X \times X)$. Now $\Lambda([(x,x)]) = \top$, but $\Lambda(\mathcal{F}) \geq \Lambda([(x,x)])$ and so $\Lambda(\mathcal{F}) = \top$ for all $\mathcal{F} \in \mathcal{F}_L^S(X \times X)$.

Example 4.7 Let $(X, \Lambda), (Y, \Sigma) \in |SL\text{-}UCS|$ and consider the projections mappings P_1 and P_2 . Then the product L-uniform convergence structure, $\Lambda \times \Sigma$ on $X \times Y$ is defined by using the initial uniform convergence structure for the projection mappings. That is, for a stratified $L\text{-}filter \ \mathcal{F} \in \mathcal{F}_L^S((X \times Y) \times (X \times Y))$:

$$(\Lambda \times \Sigma)(\mathcal{F}) = \Lambda((P_1 \times P_1)^{\rightarrow}(\mathcal{F})) \wedge \Sigma((P_2 \times P_2)^{\rightarrow}(\mathcal{F})).$$

In the case of L a complete Heyting algebra, the category SL-UCS has canonical function spaces.

Proposition 4.8 [16] Let L be a complete Heyting algebra. Then SL-UCS is cartesian closed.

Remark 4.9 From the stratified L-uniform convergence structures described earlier, it is possible to generate stratified L-limit structures. The stratified L-limit spaces are then sets equipped with a map $\lim(\Lambda): \mathcal{F}_L^S(X) \longrightarrow L^X$. That is, for each $x \in X$, $\lim(\Lambda)\mathcal{F}(x)$ is the degree to which \mathcal{F} converges to x.

The pair (X, \lim) is a stratified L-limit space [14] if $\lim : \mathcal{F}_L^S(X) \longrightarrow L^X$ satisfies the following axioms:

- **(L1)** for all $x \in X$, $\limx = \top$,
- (L2) $\mathcal{F} \leq \mathcal{G} \Longrightarrow \lim \mathcal{F} \leq \lim \mathcal{G}$,
- **(L3)** $\lim \mathcal{F} \wedge \lim \mathcal{G} < \lim (\mathcal{F} \wedge \mathcal{G}).$

If (X, \lim_X) and (Y, \lim_Y) are stratified L-limit spaces, then $\varphi : X \longrightarrow Y$ is continuous [14] if for all $x \in X$ and for all $\mathcal{F} \in \mathcal{F}_L^S(X \times X)$, $\lim \mathcal{F}(x) \leq \lim_Y \varphi^{\rightarrow}(\mathcal{F})(\varphi(x))$.

RESULT: SL-LIM is a concrete category, where the objects are stratified L-limit spaces and the morphisms are the continuous mappings defined above. For $(X,\Lambda) \in |SL\text{-}UCS|$ we can define a stratified L-limit structure $\lim(\Lambda): \mathcal{F}_L^S(X) \longrightarrow L^X$ by:

$$\lim(\Lambda)\mathcal{F}(x) = \Lambda(\mathcal{F}_x).$$

Using Lemma 3.12 (i) and (ii), the proof of the axioms is straightforward. Further, if we have $\varphi:(X,\Lambda)\longrightarrow (Y,\Sigma)$ uniformly continuous, then $\varphi:\big(X,\lim(\Lambda)\big)\longrightarrow \big(Y,\lim(\Sigma)\big)$ is continuous. This proof will follow from Lemma 3.12(iii).

RESULT: We can define a forgetful functor

$$F: \begin{cases} SL\text{-}UCS \longrightarrow SL\text{-}LIM \\ (X,\Lambda) \longmapsto \big(X, \lim(\Lambda)\big) \\ \varphi \longmapsto \varphi \end{cases}$$

Let X be a set and for all $i \in I$, let $(X_i, \lim_i) \in |SL\text{-}LIM|$. For an SL-LIM source $\varphi_i : X \longrightarrow (X_i, \lim_i), i \in I$, the initial stratified L-limit structure on X for $\mathcal{F} \in \mathcal{F}_L^S(X)$ is defined [14] by:

$$\lim \mathcal{F}(x) = \bigwedge_{i \in I} \lim_{i \neq j} (\varphi_i(x)) \Big(\varphi_i(x) \Big).$$

With this definition, it has been shown [16] that if $\varphi_i : X \longrightarrow (X_i, \Lambda_i)$ is a source in SL-UCS and Λ is the initial SL-UCS structure on X, then $\lim(\Lambda)$ is the initial SL-LIM structure with respect to the source $\varphi_i : X \longrightarrow (X_i, \lim(\Lambda_i)), i \in I$.

Result: The forgetful functor F preserves initial structures.

5 Example: Lattice-Valued Uniform Spaces

The diagonal of a product $X \times X$ is defined as $\Delta = \{(x, x) \mid x \in X\}$. From this we can define the diagonal L-filter on $X \times X$. Let $a \in L^{X \times X}$:

$$[\Delta](a) = \bigwedge_{x \in X} a(x, x) = \bigwedge_{x \in X} [(x, x)](a), \text{ so } [\Delta] = \bigwedge_{x \in X} [(x, x)]$$

Definition 5.1 [6], [7] Let X be a non-empty set and \mathcal{U} a stratified L-filter on $X \times X$. If \mathcal{U} satisfies the properties below it is called a *stratified L-uniformity* on X.

(LU1)
$$\mathcal{U} \leq [\Delta]$$
,

(LU2)
$$U \leq U^{-1}$$
,

(LU3)
$$\mathcal{U} \leq \mathcal{U} \circ \mathcal{U}$$
.

The pair (X, \mathcal{U}) is called a *stratified L-uniform space*.

Definition 5.2 [6] Let (X, \mathcal{U}) and (Y, \mathcal{V}) be stratified L-uniform spaces and $\varphi : X \longrightarrow Y$. Then φ is uniformly continuous if $(\varphi \times \varphi)^{\rightarrow}(\mathcal{U}) \geq \mathcal{V}$.

RESULT: We have the category SL-UNIF [6], where the objects are stratified L-uniform spaces, and the morphisms are the uniformly continuous maps.

Here we will show that SL-UNIF is a reflective subcategory of SL-UCS. In order to do this we will first introduce the category of principal stratified L-uniform convergence spaces (SL-PUCS), a subcategory of SL-UCS. Then we will proceed by showing that SL-UNIF is categorically isomorphic to SL-PUCS.

Definition 5.3 [16] The pair $(X, \Lambda) \in |SL\text{-}UCS|$ is a principal stratified L-uniform convergence space if there exists a stratified L-filter $\mathcal{U} \in \mathcal{F}_L^S(X \times X)$ such that:

$$\textbf{(LUCP)} \ \ \Lambda(\mathcal{F}) = \bigwedge_{a \in L^{X \times X}} \big(\mathcal{U}(a) \to \mathcal{F}(a) \big) \quad \text{ for all } \mathcal{F} \in \mathcal{F}_L^S(X \times X).$$

The following lemma shows that from any principal stratified L-uniform convergence space, we can get a stratified L-uniform space.

Lemma 5.4 [16] Let $(X, \Lambda) \in |SL\text{-}PUCS|$ where:

$$\Lambda(\mathcal{F}) = \bigwedge_{a \in L^{X \times X}} (\mathcal{U}(a) \to \mathcal{F}(a)).$$

Then $(X, \mathcal{U}) \in |SL\text{-}UNIF|$.

PROOF: This can easily be adapted from that given in [16].

Below we show that from any stratified L-uniform space we can generate a principal stratified L-uniform convergence space.

Lemma 5.5 [16] Let $(X, \mathcal{U}) \in |SL\text{-}UNIF|$, and define:

$$\Lambda^{\mathcal{U}}(\mathcal{F}) = \bigwedge_{a \in L^{X \times X}} (\mathcal{U}(a) \to \mathcal{F}(a)).$$

Then $(X, \Lambda^{\mathcal{U}}) \in |SL\text{-}PUCS|$.

PROOF: Again we show only (LUC1) and (LUC5).

LUC1: From **(LU1)** we know that for all $x \in X$ and for all $a \in L^{X \times X}$, $\mathcal{U}(a) \leq a(x, x)$. Therefore

$$\Lambda^{\mathcal{U}}([(x,x)]) = \bigwedge_{a \in L^{X \times X}} (\mathcal{U}(a) \to [(x,x)](a))$$
$$= \bigwedge_{a \in L^{X \times X}} (\mathcal{U}(a) \to a(x,x))$$
$$= \top$$

LUC5: By definition we have that

$$\Lambda^{\mathcal{U}}(\mathcal{F} \circ \mathcal{G}) = \bigwedge_{a \in L^{X \times X}} (\mathcal{U}(a) \to \mathcal{F} \circ \mathcal{G}(a)).$$

Now since $(X, \mathcal{U}) \in |SL\text{-}UNIF|$ we use **(LU3)** to give

$$\Lambda^{\mathcal{U}}(\mathcal{F} \circ \mathcal{G}) \ge \bigwedge_{a \in L^{X \times X}} \left(\left(\bigvee_{d_1 \circ d_2 \le a} \left(\mathcal{U}(d_1) * \mathcal{U}(d_2) \right) \right) \to \mathcal{F} \circ \mathcal{G}(a) \right) \right) \\
= \bigwedge_{a \in L^{X \times X}} \bigwedge_{d_1 \circ d_2 \le a} \left(\mathcal{U}(d_1) * \mathcal{U}(d_2) \to \mathcal{F} \circ \mathcal{G}(a) \right),$$

using property (iii) of Lemma 2.1 in the equality. From the definition of the stratified L-filter $\mathcal{F} \circ \mathcal{G}$ we have

$$\bigwedge_{a \in L^{X \times X}} \bigwedge_{d_1 \circ d_2 \le a} \left(\mathcal{U}(d_1) * \mathcal{U}(d_2) \to \mathcal{F} \circ \mathcal{G}(a) \right)$$

$$\ge \bigwedge_{a \in L^{X \times X}} \bigwedge_{d_1 \circ d_2 \le a} \left(\mathcal{U}(d_1) * \mathcal{U}(d_2) \to \mathcal{F}(d_1) * \mathcal{G}(d_2) \right) = Q.$$

Here we use Lemma 2.1 (x) in the first step, and properties of infima thereafter, to get

$$Q \geq \bigwedge_{a \in L^{X \times X}} \bigwedge_{d_1 \circ d_2 \leq a} \left(\left(\mathcal{U}(d_1) \to \mathcal{F}(d_1) \right) * \left(\mathcal{U}(d_2) \to \mathcal{G}(d_2) \right) \right)$$

$$\geq \bigwedge_{d_1 \in L^{X \times X}} \left(\bigwedge_{d_2 \in L^{X \times X}} \left(\left(\mathcal{U}(d_1) \to \mathcal{F}(d_1) \right) * \left(\mathcal{U}(d_2) \to \mathcal{G}(d_2) \right) \right) \right)$$

$$\geq \bigwedge_{d_1 \in L^{X \times X}} \left(\mathcal{U}(d_1) \to \mathcal{F}(d_1) \right) * \bigwedge_{d_2 \in L^{X \times X}} \left(\mathcal{U}(d_2) \to \mathcal{G}(d_2) \right)$$

$$= \Lambda^{\mathcal{U}}(\mathcal{F}) * \Lambda^{\mathcal{U}}(\mathcal{G}).$$

That is, we have $\Lambda^{\mathcal{U}}(\mathcal{F} \circ \mathcal{G}) \geq \Lambda^{\mathcal{U}}(\mathcal{F}) * \Lambda^{\mathcal{U}}(\mathcal{G})$.

Lemma 5.6 [16] Let $(X, \mathcal{U}) \in |SL\text{-}UNIF|$. Then for $a \in L^{X \times X}$,

$$\mathcal{U}(a) = \bigwedge_{\mathcal{F} \in \mathcal{F}_{I}^{S}(X \times X)} (\Lambda^{\mathcal{U}}(\mathcal{F}) \to \mathcal{F}(a)).$$

We have shown that there is a one-to-one relationship between the class of objects of SL-PUCS and SL-UNIF, and now do the same for the class of morphisms.

Lemma 5.7 [16] Let $(X, \mathcal{U}), (Y, \mathcal{V}) \in |SL\text{-}UNIF|$ and let $\varphi : X \longrightarrow Y$ be a mapping. Then the following are equivalent:

- (i) $\varphi:(X,\mathcal{U})\longrightarrow (Y,\mathcal{V})$ is uniformly continuous,
- (ii) $\varphi: (X, \Lambda^{\mathcal{U}}) \longrightarrow (Y, \Lambda^{\mathcal{V}})$ is uniformly continuous.

Corollary 5.8 [16] The categories SL-PUCS and SL-UNIF are categorically isomorphic.

Having shown the above result, we now proceed to show that SL-PUCS is a reflective subcategory of SL-UCS. This will then give us the corollary that SL-UNIF is isomorphic to a reflective subcategory of SL-UCS.

In order to prove that SL-PUCS is a reflective subcategory of SL-UCS we follow a suggestion of J. Gutiérrez García and consider the subset of L:

$$L^{\otimes} = \{ \alpha \in L : \alpha \le \alpha \otimes \alpha \}.$$

Clearly, for $\otimes = \wedge$ and $\otimes = \circledast$ we have $L^{\otimes} = L$. The result where we must consider this subset is the one below, where we will show that from any stratified L-uniform convergence space, we can define a stratified L-filter. This will then in turn be used to generate a principal stratified L-uniform convergence space. This fact will then give us that the stratified L-filter defined below is in fact a stratified L-uniformity.

Lemma 5.9 Let $(L, \leq, \otimes, *)$ be a pseudo-bisymmetric enriched cl-premonoid and let $(X, \Lambda) \in |SL\text{-}UCS|$ such that $\Lambda(\mathcal{F}_L^S(X \times X)) \subseteq L^{\otimes}$. We define the mapping $\mathcal{U}_{\Lambda} : L^{X \times X} \longrightarrow L$ for $a \in L^{X \times X}$ by:

$$\mathcal{U}_{\Lambda}(a) = \bigwedge_{\mathcal{F} \in \mathcal{F}_L^S(X \times X)} (\Lambda(\mathcal{F}) \to \mathcal{F}(a)).$$

Then \mathcal{U}_{Λ} is a stratified L-filter on $X \times X$.

Proof:

LF0: $\mathcal{U}_{\Lambda}(\bot_{X\times X}) = \bigwedge_{\mathcal{F}\in\mathcal{F}_{L}^{S}(X\times X)} \Lambda(\mathcal{F}) \to \mathcal{F}(\bot_{X\times X})$. Now we can take $x\in X$ and consider the stratified L-filter [(x,x)], where $\Lambda([(x,x)]) = \top$. In this case, $\Lambda([(x,x)]) \to [(x,x)](\bot_{X\times X}) = \top \to \bot = \bot$, and so we have $\mathcal{U}_{\Lambda}(\bot_{X\times X}) = \bot$.

Now consider
$$\mathcal{U}_{\Lambda}(\top_{X\times X}) = \bigwedge_{\mathcal{F}\in\mathcal{F}_{L}^{S}(X\times X)} \Lambda(\mathcal{F}) \to \mathcal{F}(\top_{X\times X})$$
. Clearly, for all $\mathcal{F}\in\mathcal{F}_{L}^{S}(X\times X)$ we have $\mathcal{F}(\top_{X\times X}) = \top$. Now, for any $\mathcal{F}\in\mathcal{F}_{L}^{S}(X\times X)$ we have that $\Lambda(\mathcal{F})\to \top=\top$ and therefore $\mathcal{U}_{\Lambda}(\top_{X\times X})=\top$.

LF1: straightforward.

LF2: Let $a, b \in L^{X \times X}$.

$$\mathcal{U}_{\Lambda}(a) \otimes \mathcal{U}_{\Lambda}(b) = \Big(\bigwedge_{\mathcal{F} \in \mathcal{F}_{L}^{S}(X \times X)} \left(\Lambda(\mathcal{F}) \to \mathcal{F}(a) \right) \Big) \otimes \Big(\bigwedge_{\mathcal{F} \in \mathcal{F}_{L}^{S}(X \times X)} \left(\Lambda(\mathcal{F}) \to \mathcal{F}(b) \right) \Big)$$
$$\leq \bigwedge_{\mathcal{G} \in \mathcal{F}_{L}^{S}(X \times X)} \left(\left(\Lambda(\mathcal{G}) \to \mathcal{G}(a) \right) \otimes \left(\Lambda(\mathcal{G}) \to \mathcal{G}(b) \right) \right).$$

Now with Lemma 2.3 we have that

$$\mathcal{U}_{\Lambda}(a) \otimes \mathcal{U}_{\Lambda}(b) \leq \bigwedge_{\mathcal{G} \in \mathcal{F}_{L}^{S}(X \times X)} \Big(\Lambda(\mathcal{G}) \to \big(\mathcal{G}(a) \otimes \mathcal{G}(b) \big) \Big).$$

We can then use $(\mathbf{LF2})$ of the stratified L-filters to get

$$\mathcal{U}_{\Lambda}(a) \otimes \mathcal{U}_{\Lambda}(b) \leq \bigwedge_{\mathcal{G} \in \mathcal{F}_{L}^{S}(X \times X)} \left(\Lambda(\mathcal{G}) \to \mathcal{G}(a \otimes b) \right)$$
$$= \mathcal{U}_{\Lambda}(a \otimes b).$$

LFS: Let $\alpha \in L$ and $a \in L^{X \times X}$. Then using Lemma 2.1(xi) and (LFS) of each $\mathcal{F} \in \mathcal{F}_L^S(X \times X)$, we get

$$\alpha * \mathcal{U}_{\Lambda}(a) = \alpha * \bigwedge_{\mathcal{F} \in \mathcal{F}_{L}^{S}(X \times X)} \left(\Lambda(\mathcal{F}) \to \mathcal{F}(a) \right)$$

$$= \bigwedge_{\mathcal{F} \in \mathcal{F}_{L}^{S}(X \times X)} \left(\alpha * \left(\Lambda(\mathcal{F}) \to \mathcal{F}(a) \right) \right)$$

$$\leq \bigwedge_{\mathcal{F} \in \mathcal{F}_{L}^{S}(X \times X)} \left(\Lambda(\mathcal{F}) \to \left(\alpha * \mathcal{F}(a) \right) \right)$$

$$\leq \bigwedge_{\mathcal{F} \in \mathcal{F}_{L}^{S}(X \times X)} \left(\Lambda(\mathcal{F}) \to \mathcal{F}(\alpha_{X \times X} * a) \right)$$

$$= \mathcal{U}_{\Lambda}(\alpha_{X \times X} * a).$$

Now that we have shown that \mathcal{U}_{Λ} is a stratified L-filter on $X \times X$, we can proceed with the main result.

Lemma 5.10 Let $(L, \leq, \otimes, *)$ be an enriched cl-premonoid and let $(X, \Lambda) \in |SL\text{-}UCS|$ such that $\Lambda(\mathcal{F}_L^S(X \times X)) \subseteq L^{\otimes}$. Then SL-PUCS is a reflective subcategory of SL-UCS.

PROOF: For any $(X, \Lambda) \in |SL\text{-}PUCS|$ it is clear that $(X, \Lambda) \in |SL\text{-}UCS|$. Therefore we can consider the embedding functor

$$E: \begin{cases} SL\text{-}PUCS \longrightarrow SL\text{-}UCS \\ (X,\Lambda) \longmapsto (X,\Lambda) \end{cases}.$$

$$\varphi \longmapsto \varphi$$

Now we let $(X, \Lambda) \in |SL\text{-}UCS|$ and define:

$$\mathcal{U}_{\Lambda}(a) = \bigwedge_{\mathcal{F} \in \mathcal{F}_L^S(X \times X)} \left(\Lambda(\mathcal{F}) o \mathcal{F}(a) \right).$$

From the previous lemma we have that \mathcal{U}_{Λ} is a stratified *L*-filter on $X \times X$. Moreover, for $x \in X$ we have $\mathcal{U}_{\Lambda}(a) \leq \Lambda([(x,x)]) \to [(x,x)](a) = [(x,x)](a)$ and so we find $\mathcal{U}_{\Lambda} \leq [\Delta]$. Also

$$\mathcal{U}_{\Lambda}(a) \leq \bigwedge_{\mathcal{F} \in \mathcal{F}_{L}^{S}(X \times X)} (\Lambda(\mathcal{F}^{-1}) \to \mathcal{F}^{-1}(a))$$

$$= \bigwedge_{\mathcal{F} \in \mathcal{F}_{L}^{S}(X \times X)} (\Lambda(\mathcal{F}) \to \mathcal{F}(a^{-1}))$$

$$= \mathcal{U}_{\Lambda}(a^{-1}) = \mathcal{U}_{\Lambda}^{-1}(a),$$

showing that $\mathcal{U}_{\Lambda} \leq \mathcal{U}_{\Lambda}^{-1}$. Lastly, using Lemma 3.16, we get $\mathcal{U}_{\Lambda} \circ \mathcal{U}_{\Lambda} \in \mathcal{F}_{L}^{S}(X \times X)$, since for any $x \in X$ we have $\mathcal{U}_{\Lambda} \circ \mathcal{U}_{\Lambda} \leq [(x,x)] \circ [(x,x)] \in \mathcal{F}_{L}^{S}(X \times X)$.

We define now

$$I_{\Lambda} = \{ \mathcal{G} \in \mathcal{F}_{L}^{S}(X \times X) : \mathcal{G} \leq \mathcal{U}_{\Lambda}, \ \mathcal{G} \leq \mathcal{G} \circ \mathcal{G} \}.$$

Then $I_{\Lambda} \neq \emptyset$, as the coarsest stratified L-filter on $X \times X$, $[X \times X] = \bigwedge_{(x,y) \in X \times X} [(x,y)]$ is in I_{Λ} . We further define

$$\mathcal{U}_{\Lambda}^* = \bigvee_{\mathcal{G} \in I_{\Lambda}} \mathcal{G}.$$

Clearly, $\mathcal{U}_{\Lambda}^* \in \mathcal{F}_L^S(X \times X)$ and $\mathcal{U}_{\Lambda}^* \leq \mathcal{U}_{\Lambda}$. Moreover

$$\mathcal{G} \leq \mathcal{G} \circ \mathcal{G} \leq \mathcal{U}_{\Lambda}^* \circ \mathcal{U}_{\Lambda}^*$$

for any $\mathcal{G} \in I_{\Lambda}$ and therefore also $\mathcal{U}_{\Lambda}^* \leq \mathcal{U}_{\Lambda}^* \circ \mathcal{U}_{\Lambda}^*$. Hence \mathcal{U}_{Λ}^* satisfies (**LU3**). Also, from $\mathcal{U}_{\Lambda}^* \leq \mathcal{U}_{\Lambda} \leq [\Delta]$ we see that (**LU1**) is satisfied. For $\mathcal{G} \in I_{\Lambda}$ we have

$$\mathcal{G}^{-1} \leq \mathcal{U}_{\Lambda}^{-1} = \mathcal{U}_{\Lambda}$$

and

$$\mathcal{G}^{-1} < (\mathcal{G} \circ \mathcal{G})^{-1} = \mathcal{G}^{-1} \circ \mathcal{G}^{-1}.$$

Therefore $\mathcal{G}^{-1} \in I_{\Lambda}$ and hence

$$\mathcal{U}_{\Lambda}^* \geq \bigvee_{\mathcal{G} \in I_{\Lambda}} \mathcal{G}^{-1} = (\mathcal{U}_{\Lambda}^*)^{-1}.$$

From this it follows $(\mathcal{U}_{\Lambda}^*)^{-1} \geq ((\mathcal{U}_{\Lambda}^*)^{-1})^{-1} = \mathcal{U}_{\Lambda}^*$ and also **(LU2)** holds for \mathcal{U}_{Λ}^* . We define now

$$\Lambda^*(\mathcal{F}) = \bigwedge_{a \in L^{X \times X}} (\mathcal{U}^*_{\Lambda}(a) \to \mathcal{F}(a)).$$

Then, by Lemma 5.5, $(X, \Lambda^*) \in |SL\text{-}PUCS|$. Moreover

$$\Lambda^*(\mathcal{F}) = \bigwedge_{a \in L^{X \times X}} (\mathcal{U}_{\Lambda}^*(a) \to \mathcal{F}(a))
\geq \bigwedge_{a \in L^{X \times X}} (\mathcal{U}_{\Lambda}(a) \to \mathcal{F}(a))
\geq \bigwedge_{a \in L^{X \times X}} ((\Lambda(\mathcal{F}) \to \mathcal{F}(a)) \to \mathcal{F}(a))
\geq \Lambda(\mathcal{F}).$$

Therefore $\Lambda^* \leq \Lambda$. Let now $\widetilde{\Lambda} \leq \Lambda$ satisfy

$$\widetilde{\Lambda}(\mathcal{F}) = \bigwedge_{a \in L^{X \times X}} \left(\mathcal{U}(a) \to \mathcal{F}(a) \right)$$

with some stratified L-filter $\mathcal U$ such that $(X,\widetilde\Lambda)\in |SL\text{-}PUCS|.$ Then

$$\mathcal{U}(a) = \bigwedge_{a \in L^{X \times X}} \left(\widetilde{\Lambda}(\mathcal{F}) \to \mathcal{F}(a) \right) \le \bigwedge_{a \in L^{X \times X}} \left(\Lambda(\mathcal{F}) \to \mathcal{F}(a) \right) = \mathcal{U}_{\Lambda}(a).$$

By the maximality of \mathcal{U}_{Λ}^* we then conclude that $\mathcal{U} \leq \mathcal{U}_{\Lambda}^*$ and hence

$$\widetilde{\Lambda}(\mathcal{F}) \geq \bigwedge_{a \in L^{X \times X}} (\mathcal{U}^*_{\Lambda}(a) \to \mathcal{F}(a)) = \Lambda^*(\mathcal{F}).$$

In other words, $\widetilde{\Lambda} \leq \Lambda^*$ and therefore Λ^* is the finest SL-PUCS-structure on X which is coarser than Λ . Now, let $\varphi:(X,\Lambda)\longrightarrow (Y,\Sigma)$ be a morphism in SL-UCS. We want to show that $\varphi:(X,\Lambda^*)\longrightarrow (Y,\Sigma^*)$ is a morphism in SL-PUCS. To this end it is sufficient to show $\mathcal{U}^*_{\Sigma} \leq (\varphi \times \varphi)^{\to}(\mathcal{U}^*_{\Lambda})$.

Let $\mathcal{G} \leq \mathcal{U}_{\Sigma}$ such that $\mathcal{G} \leq \mathcal{G} \circ \mathcal{G}$. We know from Lemma 5.7 and the continuity of φ : $(X, \Lambda) \longrightarrow (Y, \Sigma)$ that $(\varphi \times \varphi)^{\rightarrow}(\mathcal{U}_{\Lambda}) \geq \mathcal{U}_{\Sigma}$. Hence also $\mathcal{G} \leq (\varphi \times \varphi)^{\rightarrow}(\mathcal{U}_{\Lambda})$. By Lemma 3.4(iii) then $(\varphi \times \varphi)^{\leftarrow}(\mathcal{G})$ exists and, by Lemma 3.4(i), we get

$$(\varphi \times \varphi)^{\leftarrow}(\mathcal{G}) \leq (\varphi \times \varphi)^{\leftarrow}((\varphi \times \varphi)(\mathcal{U}_{\Lambda})) \leq \mathcal{U}_{\Lambda}.$$

Further, by Lemma 3.16(iii),

$$(\varphi \times \varphi)^{\leftarrow}(\mathcal{G}) \leq (\varphi \times \varphi)^{\leftarrow}(\mathcal{G} \circ \mathcal{G}) \leq (\varphi \times \varphi)^{\leftarrow}(\mathcal{G}) \circ (\varphi \times \varphi)^{\leftarrow}(\mathcal{G})$$

and hence $(\varphi \times \varphi)^{\leftarrow}(\mathcal{G}) \in I_{\Lambda}$. Thus $(\varphi \times \varphi)^{\leftarrow}(\mathcal{G}) \leq \mathcal{U}_{\Lambda}^*$ and by Lemma 3.4 (ii) we finally get

$$\mathcal{G} \leq (\varphi \times \varphi)^{\rightarrow}((\varphi \times \varphi)^{\leftarrow}(\mathcal{G})) \leq (\varphi \times \varphi)^{\rightarrow}(\mathcal{U}_{\Lambda}^*).$$

Hence, by arbitrariness of $\mathcal{G} \in I_{\Sigma}$ we conclude $\mathcal{U}_{\Sigma}^* \leq (\varphi \times \varphi)^{\rightarrow}(\mathcal{U}_{\Lambda}^*)$, and $\varphi : (X, \Lambda^*) \longrightarrow (Y, \Sigma^*)$ is continuous. Now that we know that the uniformly continuous mappings will remain morphisms, we can define a functor:

$$K: \begin{cases} SL\text{-}UCS \longrightarrow SL\text{-}PUCS \\ (X,\Lambda) \longmapsto (X,\Lambda^*) \\ \varphi \longmapsto \varphi \end{cases}$$

For $(X, \Lambda) \in |SL\text{-}PUCS|$ we have $K(E(X, \Lambda)) = (X, \Lambda)$ and since $\Lambda^* \leq \Lambda$ we know that $E(K(X, \Lambda)) \leq (X, \Lambda)$ for $(X, \Lambda) \in |SL\text{-}UCS|$.

This in turn means that $id_X:(X,\Lambda)\longrightarrow E(X,\Lambda^*)$ is continuous. Therefore, for $(X,\Lambda)\in |SL\text{-}UCS|$ we propose our E-universal map to be $(id_X,(X,\Lambda^*))$.

We show now that this is an E-universal map for (X, Λ) .

Let $(Z,\Gamma) \in |SL\text{-}PUCS|$ and $\psi:(X,\Lambda) \longrightarrow E((Z,\Gamma))$. We require a unique SL-PUCS morphism $\phi:(X,\Lambda^*) \longrightarrow (Z,\Gamma)$ such that the following diagram commutes:

$$(X,\Lambda) \xrightarrow{\psi} E((Z,\Gamma)) \qquad (Z,\Gamma)$$

$$id_X \downarrow \qquad \qquad \downarrow \phi$$

$$E((X,\Lambda^*)) \qquad (X,\Lambda^*)$$

It is clear that the mapping ϕ will be none other than $K(\psi) = \psi$.

In [16], a similar result to the one above was stated for the case where L is a complete Heyting algebra. The proof presented in [16] is unfortunately not correct. However, the result of Lemma 5.10 does then show that the result in [16] is in fact still valid. We are grateful to one of the reviewers for pointing out this inaccuracy.

Corollary 5.11 Let $(L, \leq, \otimes, *)$ be a pseudo-bisymmetric enriched cl-premonoid and let $(X, \Lambda) \in |SL\text{-}UCS|$ such that $\Lambda(\mathcal{F}_L^S(X \times X)) \subseteq L^{\otimes}$. Then SL-UNIF is isomorphic to a reflective subcategory of SL-UCS.

Remark 5.12 Now we show that for $(X, \mathcal{U}) \in |SL\text{-}UNIF|$ there are two ways of inducing a convergence function. What is remarkable is that these two pathways produce identical convergence structures.

It is shown in [6] that from a stratified L-uniformity we can define a stratified L-neighbourhood system for each $x \in X$:

$$\mathcal{N}_{\mathcal{U}}^{x}(a) = \bigvee \{\mathcal{U}(d) \mid d(\cdot, x) \leq a\}.$$

The stratified L-neighbourhood space $(X, (\mathcal{N}_{\mathcal{U}}^x)_{x \in X})$ is equivalent to a stratified L-topological space. From this stratified L-topological space it is shown in [11] that we can induce a stratified L-limit space by:

$$\lim(\mathcal{U})\mathcal{F}(x) = \bigwedge_{a \in L^X} (\mathcal{N}_{\mathcal{U}}^x(a) \to \mathcal{F}(a)).$$

We can also consider the stratified L-uniform space (X, \mathcal{U}) as a principal stratified L-uniform convergence space (X, Λ) where

$$\Lambda^{\mathcal{U}}(\mathcal{F}) = \bigwedge_{d \in IX \times X} (\mathcal{U}(d) \to \mathcal{F}(d)).$$

From here we can consider the induced stratified L-limit structure:

$$\lim(\Lambda)\mathcal{F}(x) = \Lambda(\mathcal{F}_x) = \bigwedge_{d \in L^{X \times X}} (\mathcal{U}(d) \to (\mathcal{F}_x)(d)).$$

The result below was proved in [16] for the case of L a complete Heyting algebra. Our proof for the case of L a pseudo-bisymmetric enriched cl-premonoid uses the same procedure, except that when considering the induced L-limit space, we make use of the filter \mathcal{F}_x on the product space.

Proposition 5.13 Let $(X, \mathcal{U}) \in |SL\text{-}UNIF|$. Then $(X, \lim(\mathcal{U})) = (X, \lim(\Lambda^{\mathcal{U}}))$.

Using the two routes of obtaining a stratified L-limit space that are described above, we can show the following diagram commutes when L is a pseudo-bisymmetric enriched cl-premonoid:

$$(X, \mathcal{U}) \xrightarrow{\text{(forget)}} (X, \tau(\mathcal{U}))$$

$$\downarrow^{\text{(embed)}} \qquad \qquad \downarrow^{\text{(forget)}}$$

$$(X, \Lambda^{\mathcal{U}}) \xrightarrow{\text{(forget)}} (X, \lim(\Lambda^{\mathcal{U}})) = (X, \lim(\mathcal{U}))$$

6 Example: Probabilistic Uniform Limit Spaces

In this section we shall consider the enriched cl-premonoid $([0,1], \wedge, *)$ where * is a left-continuous t-norm. We denote by $\mathbb{F}(X)$ the set of all classical filters on a set X. For $\Psi, \eta \in \mathbb{F}(X \times X)$ consider the filter $\Psi^{-1} = \{F^{-1} : F \in \Psi\}$ where $F^{-1} = \{(y,x) : (x,y) \in F\}$. Now for $F, G \subset X \times X$, we have $F \circ G = \{(x,y) | \exists z \in X \text{ such that } (x,z) \in F, (z,y) \in G\}$. The collection $\Psi \circ \eta = [\{F \circ G : F \in \Psi, G \in \eta\}]$ is a filter if and only if $F \circ G \neq \emptyset$, for all $F \in \Psi, G \in \eta$. We also consider the filter \dot{x} , generated by an element of X, where $\dot{x} = \{F \subset X : x \in F\}$.

Definition 6.1 [20], [21] For any $\alpha \in [0,1]$, consider \mathcal{L}^{α} , a non-empty collection of filters on $X \times X$. The collection $(\mathcal{L}^{\alpha})_{\alpha \in [0,1]}$ is a *probabilistic uniform limit structure* if it satisfies the following axioms

(UC1) for all
$$x \in X$$
, $\alpha \in [0, 1]$, $\dot{x} \times \dot{x} \in \mathcal{L}^{\alpha}$,

(UC2)
$$\Psi \in \mathcal{L}^{\alpha}$$
, $\Psi \leq \eta \Rightarrow \eta \in \mathcal{L}^{\alpha}$,

(UC3)
$$\Psi \in \mathcal{L}^{\alpha} \Rightarrow \Psi^{-1} \in \mathcal{L}^{\alpha}$$
,

(UC4)
$$\Psi, \eta \in \mathcal{L}^{\alpha} \Rightarrow \Psi \wedge \eta \in \mathcal{L}^{\alpha}$$
,

(P1)
$$\alpha \leq \beta \Rightarrow \mathcal{L}^{\beta} \subset \mathcal{L}^{\alpha}$$
,

(P2)
$$\mathcal{L}^0 = \mathbb{F}(X \times X)$$
,

(PULIM)
$$\Psi \in \mathcal{L}^{\alpha}, \eta \in \mathcal{L}^{\beta} \Rightarrow \Psi \circ \eta \in \mathcal{L}^{\alpha * \beta}$$
.

The pair $(X, (\mathcal{L}^{\alpha}))$ is called a probabilistic uniform limit space

Definition 6.2 [20], [21] A mapping φ , from one probabilistic uniform limit space to another, $\varphi: (X, (\mathcal{L}^{\alpha})) \longrightarrow (Y, (\mathcal{K}^{\alpha}))$ is said to be uniformly continuous if for all $\alpha \in [0, 1]$, $(\varphi \times \varphi)^{\rightarrow} (\mathcal{L}^{\alpha}) \subset \mathcal{K}^{\alpha}$.

Definition 6.3 A probabilistic uniform limit structure, $(\mathcal{L}^{\alpha})_{\alpha \in [0,1]}$, is *left-continuous* if whenever we have $\Psi \in \mathcal{L}^{\alpha}$ for all $\alpha \in A$, then $\Psi \in \mathcal{L}^{\vee A}$.

Note that if $\Psi \notin \mathcal{L}^{\alpha}$ when $(\mathcal{L}^{\alpha})_{\alpha \in [0,1]}$ is left-continuous, this implies that there exists $\epsilon > 0$ such that $\Psi \notin \mathcal{L}^{\alpha-\epsilon}$. The left-continuous probabilistic uniform limit spaces with the uniformly continuous mappings form a category $PULIM^*$.

In order to show that probabilistic uniform limit spaces are an example of our stratified L-uniform convergence spaces, we must define a method for moving between L-filters and classical filters. The following two constructions are special cases of definitions given in [5]. For $\mathcal{F} \in \mathcal{F}_{[0,1]}^S(X \times X)$ define

$$\Phi_{\mathcal{F}} = \{ A \subset X \times X : \mathcal{F}(\top_A) = \top \}.$$

Then $\Phi_{\mathcal{F}} \in \mathbb{F}(X \times X)$ [3].

Lemma 6.4 Let $\mathcal{F}, \mathcal{G} \in \mathcal{F}_{[0,1]}^S(X \times X)$ and consider the associated filters $\Phi_{\mathcal{F}}$ and $\Phi_{\mathcal{G}}$. Further, let $\varphi : X \longrightarrow Y$. Then

- (i) $\Phi_{[(x,x)]} = \dot{x} \times \dot{x}$,
- (ii) $\mathcal{F} \leq \mathcal{G} \Longrightarrow \Phi_{\mathcal{F}} \leq \Phi_{\mathcal{G}}$,
- (iii) $\Phi_{(\mathcal{F}^{-1})} = (\Phi_{\mathcal{F}})^{-1}$
- (iv) $\Phi_{\mathcal{F}\wedge\mathcal{G}} = \Phi_{\mathcal{F}} \wedge \Phi_{\mathcal{G}}$,
- (v) if $\mathcal{F} \circ \mathcal{G} \in \mathcal{F}_{[0,1]}^S(X \times X)$, then $\Phi_{\mathcal{F}} \circ \Phi_{\mathcal{G}} \in \mathbb{F}(X \times X)$ and $\Phi_{\mathcal{F} \circ \mathcal{G}} \geq \Phi_{\mathcal{F}} \circ \Phi_{\mathcal{G}}$,
- (vi) $(\varphi \times \varphi)^{\rightarrow}(\Phi_{\mathcal{F}}) = \Phi_{(\varphi \times \varphi)^{\rightarrow}(\mathcal{F})}.$

PROOF: Results (i) to (iv) follow easily from the definitions. For (v) it must first be shown that for $F, G \subset X \times X$ we have $1_F \circ 1_G = 1_{F \circ G}$. The reverse inequality appears only to be true for $L = \{\bot, \top\}$. For (vi) we use the fact that for $A \subset X \times X$, $(\varphi \times \varphi)^{\rightarrow}(1_A) = 1_{(\varphi \times \varphi)^{\rightarrow}(A)}$.

Conversely, if we let $\Psi \in \mathbb{F}(X \times X)$, we can define for $a \in L^{X \times X}$:

$$\mathcal{F}_{\Psi}(a) = \bigvee \big\{\alpha \in L \, : \, [a \geq \alpha] \in \Psi \big\} \ \text{ where } [a \geq \alpha] = \big\{(x,y) \, : \, a(x,y) \geq \alpha \big\}.$$

Lemma 6.5 Let $\Psi, \eta \in \mathbb{F}(X \times X)$ and consider the associated stratified L-filters \mathcal{F}_{Ψ} and \mathcal{F}_{η} . Further let $\varphi : X \longrightarrow Y$ be a mapping. Then

- (i) $\mathcal{F}_{\dot{x} \times \dot{x}} = [(x, x)],$
- (ii) $\Psi \leq \eta \Longrightarrow \mathcal{F}_{\Psi} \leq \mathcal{F}_{\eta}$,
- (iii) $\mathcal{F}_{\Psi^{-1}} = (\mathcal{F}_{\Psi})^{-1}$,

- (iv) $\mathcal{F}_{\Psi} \wedge \mathcal{F}_{\eta} \leq \mathcal{F}_{\Psi \wedge \eta}$,
- (v) if $\Psi \circ \eta \in \mathbb{F}(X \times X)$, then $\mathcal{F}_{\Psi} \circ \mathcal{F}_{\eta} \in \mathcal{F}_{[0,1]}^{S}(X \times X)$ and $\mathcal{F}_{\Psi} \circ \mathcal{F}_{\eta} \leq \mathcal{F}_{\Psi \circ \eta}$.
- (vi) $(\varphi \times \varphi)^{\rightarrow}(\mathcal{F}_{\Psi}) = \mathcal{F}_{(\varphi \times \varphi)^{\rightarrow}(\Psi)}.$

PROOF: For (i) to (iii) the proofs are straightforward and hence left to the reader. For (iv), let $a \in L^{X \times X}$, then

$$\mathcal{F}_{\Psi}(a) \wedge \mathcal{F}_{\eta}(a) = \bigvee \left\{ \alpha : [a \geq \alpha] \in \Psi \right\} \wedge \bigvee \left\{ \beta : [a \geq \beta] \in \eta \right\}$$

$$= \bigvee \left\{ \alpha \wedge \beta : [a \geq \alpha] \in \Psi, [a \geq \beta] \in \eta \right\}$$

$$\leq \bigvee \left\{ \alpha \wedge \beta : [a \geq \alpha \wedge \beta] \in \Psi, [a \geq \alpha \wedge \beta] \in \eta \right\}$$

$$\leq \bigvee \left\{ \gamma : [a \geq \gamma] \in \Psi, [a \geq \gamma] \in \eta \right\}$$

$$\leq \bigvee \left\{ \gamma : [a \geq \gamma] \in \Psi \wedge \eta \right\}.$$

Now for (v) we show that $\mathcal{F}_{\Psi} \circ \mathcal{F}_{\eta} \leq \mathcal{F}_{\Psi \circ \eta}$. From this the existence of $\mathcal{F}_{\Psi} \circ \mathcal{F}_{\eta}$ will follow. For $c \circ d \leq a$ we have

$$\mathcal{F}_{\Psi}(c) * \mathcal{F}_{\eta}(d) = \bigvee \left\{ \alpha * \beta : [c \geq \alpha] \in \Psi, [d \geq \beta] \in \eta \right\} \leq \bigvee \left\{ \alpha * \beta : [c \geq \alpha] \circ [d \geq \beta] \in \Psi \circ \eta \right\}.$$

For $(x,y) \in [c \ge \alpha] \circ [d \ge \beta]$ we have $z \in X$ such that $c(x,z) \ge \alpha$ and $d(z,y) \ge \beta$ and hence $c \circ d(x,y) \ge \alpha * \beta$. Consequently $(x,y) \in [c \circ d \ge \alpha * \beta]$. Therefore

$$\mathcal{F}_{\Psi}(c) \circ \mathcal{F}_{\eta}(d) \leq \bigvee \left\{ \alpha * \beta : \left[c \circ d \geq \alpha * \beta \right] \in \Psi \circ \eta \right\} \leq \mathcal{F}_{\Psi \circ \eta}(c \circ d) \leq \mathcal{F}_{\Psi \circ \eta}(a).$$

In order to show (vi) we use the fact that $[(\varphi \times \varphi)^{-1}(a) \ge \alpha] = (\varphi \times \varphi)^{\leftarrow}[a \ge \alpha]$ and also that $(\varphi \times \varphi)^{\leftarrow}[a \ge \alpha] \in \Psi$ if and only if $[a \ge \alpha] \in (\varphi \times \varphi)^{\rightarrow}(\Psi)$.

Lemma 6.6 Suppose $\mathcal{F} \in \mathcal{F}_{[0,1]}^S(X \times X)$ and $\Psi \in \mathbb{F}(X \times X)$. Then

- (i) $\mathcal{F}_{\Phi_{\mathcal{F}}} \leq \mathcal{F}$,
- (ii) $\Phi_{\mathcal{F}_{\Psi}} = \Psi$.

PROOF: To show (i), we let $a \in L^{X \times X}$ and see

$$\begin{split} \mathcal{F}_{\Phi_{\mathcal{F}}}(a) &= \bigvee \left\{ \alpha \ : \ [a \geq \alpha] \in \Phi_{\mathcal{F}} \right\} \\ &= \bigvee \left\{ \alpha \ : \ \mathcal{F}(1_{[a \geq \alpha]}) = 1 \right\} \\ &\leq \bigvee \left\{ \alpha \ : \ \alpha * \mathcal{F}(1_{[a \geq \alpha]}) = \alpha \right\}. \end{split}$$

Then, from the stratification of \mathcal{F} , we see

$$\mathcal{F}_{\Phi_{\mathcal{F}}}(a) \leq \bigvee \left\{ \alpha : \mathcal{F}(\underbrace{\alpha * 1_{[a \geq \alpha]}}) \geq \alpha \right\}$$
$$\leq \bigvee \left\{ \alpha : \mathcal{F}(a) \geq \alpha \right\} = \mathcal{F}(a).$$

For (ii), it is simple to show that

$$A \in \Phi_{\mathcal{F}_{\Psi}} \Longleftrightarrow \mathcal{F}_{\Psi}(1_A) = 1 \Longleftrightarrow \bigvee \left\{ \alpha : A = [1_A \ge \alpha] \in \Psi \right\} = 1 \Longleftrightarrow A \in \Psi.$$

For $(X, (\mathcal{L}^{\alpha})_{\alpha \in [0,1]}) \in |PULIM^*|$ we define

$$\Lambda_{\mathcal{L}}: \mathcal{F}^{S}_{[0,1]}(X \times X) \longrightarrow [0,1]$$

for $\mathcal{F} \in \mathcal{F}_{[0,1]}^S(X \times X)$ by

$$\Lambda_{\mathcal{L}}(\mathcal{F}) = \bigvee \Big\{ \alpha \in [0,1] : \Phi_{\mathcal{F}} \in \mathcal{L}^{\alpha} \Big\}.$$

Proposition 6.7 The mapping $\Lambda_{\mathcal{L}}$ is a stratified [0,1]-uniform convergence structure.

Proof:

LUC1: The filter $\Phi_{[(x,x)]} = \dot{x} \times \dot{x} \in \mathcal{L}^1$. Therefore $\Lambda_{\mathcal{L}}([(x,x)]) = 1$.

LUC2: If $\mathcal{F} \leq \mathcal{G}$ by Lemma 6.4(ii) we have that $\Phi_{\mathcal{F}} \leq \Phi_{\mathcal{G}}$. Now

$$\Lambda_{\mathcal{L}}(\mathcal{F}) = \bigvee \left\{ \alpha : \Phi_{\mathcal{F}} \in \mathcal{L}^{\alpha} \right\}
\leq \bigvee \left\{ \alpha : \Phi_{\mathcal{G}} \in \mathcal{L}^{\alpha} \right\}
= \Lambda_{\mathcal{L}}(\mathcal{G}).$$

LUC3: If $\Phi_{\mathcal{F}} \in \mathcal{L}^{\alpha}$, then by **(UC3)** and Lemma 6.4(iii), $(\Phi_{\mathcal{F}})^{-1} = \Phi_{(\mathcal{F}^{-1})} \in \mathcal{L}^{\alpha}$. Now

$$\Lambda_{\mathcal{L}}(\mathcal{F}) = \bigvee \left\{ \alpha : \Phi_{\mathcal{F}} \in \mathcal{L}^{\alpha} \right\}
\leq \bigvee \left\{ \alpha : \Phi_{(\mathcal{F}^{-1})} \in \mathcal{L}^{\alpha} \right\}
= \Lambda_{\mathcal{L}}(\mathcal{F}^{-1}).$$

 ${f LUC4}$: Here we have

$$\Lambda_{\mathcal{L}}(\mathcal{F}) \wedge \Lambda_{\mathcal{L}}(\mathcal{G}) = \bigvee \left\{ \alpha : \Phi_{\mathcal{F}} \in \mathcal{L}^{\alpha} \right\} \wedge \bigvee \left\{ \beta : \Phi_{\mathcal{G}} \in \mathcal{L}^{\beta} \right\} \\
= \bigvee \left\{ \alpha \wedge \beta : \Phi_{\mathcal{F}} \in \mathcal{L}^{\alpha}, \Phi_{\mathcal{G}} \in \mathcal{L}^{\beta} \right\}.$$

From (P1) we will then get

$$\Lambda_{\mathcal{L}}(\mathcal{F}) \wedge \Lambda_{\mathcal{L}}(\mathcal{G}) \leq \bigvee \left\{ \alpha \wedge \beta : \Phi_{\mathcal{F}} \in \mathcal{L}^{\alpha \wedge \beta}, \Phi_{\mathcal{G}} \in \mathcal{L}^{\alpha \wedge \beta} \right\} \\
\leq \bigvee \left\{ \gamma : \Phi_{\mathcal{F}} \in \mathcal{L}^{\gamma}, \Phi_{\mathcal{G}} \in \mathcal{L}^{\gamma} \right\}.$$

Now using (UC4) and Lemma 6.4 (iv) we see

$$\Lambda_{\mathcal{L}}(\mathcal{F}) \wedge \Lambda_{\mathcal{L}}(\mathcal{G}) \leq \bigvee \left\{ \gamma : \Phi_{\mathcal{F}} \cap \Phi_{\mathcal{G}} = \Phi_{\mathcal{F} \wedge \mathcal{G}} \in \mathcal{L}^{\gamma} \right\}$$
$$= \Lambda_{\mathcal{L}}(\mathcal{F} \wedge \mathcal{G}).$$

LUC5: Let $\mathcal{F}, \mathcal{G} \in \mathcal{F}_{[0,1]}^S(X \times X)$ and suppose that $\mathcal{F} \circ \mathcal{G}$ exists. By Lemma 6.4(v) we have that $\Phi_{\mathcal{F}} \circ \Phi_{\mathcal{G}}$ exists and that $\Phi_{\mathcal{F} \circ \mathcal{G}} \geq \Phi_{\mathcal{F}} \circ \Phi_{\mathcal{G}}$. By definition we have that

$$\Lambda_{\mathcal{L}}(\mathcal{F}) * \Lambda_{\mathcal{L}}(\mathcal{G} = \bigvee \left\{ \epsilon : \Phi_{\mathcal{F}} \in \mathcal{L}^{\epsilon} \right\} * \bigvee \left\{ \delta : \Phi_{\mathcal{G}} \in \mathcal{L}^{\delta} \right\} = \bigvee \left\{ \epsilon * \delta : \Phi_{\mathcal{F}} \in \mathcal{L}^{\epsilon}, \Phi_{\mathcal{G}} \in \mathcal{L}^{\delta} \right\}.$$

Using (PULIM) and then (UC2) we then see that

$$\begin{split} \Lambda_{\mathcal{L}}(\mathcal{F}) * \Lambda_{\mathcal{L}}(\mathcal{G}) &\leq \bigvee \left\{ \epsilon * \delta \ : \ \Phi_{\mathcal{F}} \circ \Phi_{\mathcal{G}} \in \mathcal{L}^{\epsilon * \delta} \right\} \\ &\leq \bigvee \left\{ \gamma \ : \ \Phi_{\mathcal{F}} \circ \Phi_{\mathcal{G}} \in \mathcal{L}^{\gamma} \right\} \\ &\leq \bigvee \left\{ \gamma \ : \ \Phi_{\mathcal{F} \circ \mathcal{G}} \in \mathcal{L}^{\gamma} \right\} \\ &= \Lambda_{\mathcal{L}}(\mathcal{F} \circ \mathcal{G}). \end{split}$$

Proposition 6.8 The map $\delta: PULIM^* \longrightarrow S[0,1]$ - $UCS, (X, (\mathcal{L}^{\alpha})) \longmapsto (X, \Lambda_{\mathcal{L}})$ is injective on objects.

PROOF: Consider $(X, (\mathcal{L}^{\alpha})_{\alpha \in [0,1]})$ and $(X, (\mathcal{K}^{\alpha})_{\alpha \in [0,1]})$ such that $(\mathcal{L}^{\alpha})_{\alpha \in [0,1]} \neq (\mathcal{K}^{\alpha})_{\alpha \in [0,1]}$. We must then have an α_0 such that $\mathcal{L}^{\alpha_0} \neq \mathcal{K}^{\alpha_0}$ and therefore there must exist Ψ such that $\Psi \in \mathcal{L}^{\alpha_0}$ but $\Psi \notin \mathcal{K}^{\alpha_0}$.

From the left continuity of $(\mathcal{K}^{\alpha})_{\alpha \in [0,1]}$ we have therefore that $\Psi \notin \mathcal{K}^{\alpha_0 - \epsilon}$ for some $\epsilon > 0$.

For Ψ and $a \in L^{X \times X}$ we have $\mathcal{F}_{\Psi}(a) = \bigvee_{[a \geq \alpha] \in \Psi} \alpha$ and $\mathcal{F}_{\Psi} \in \mathcal{F}_{[0,1]}^{S}(X \times X)$. Further, $\Phi_{(\mathcal{F}_{\Psi})} = \Psi$.

Now $\Lambda_{\mathcal{L}}(\mathcal{F}_{\Psi}) = \bigvee \left\{ \alpha : \Phi_{(\mathcal{F}_{\Psi})} = \Psi \in \mathcal{L}^{\alpha} \right\} \geq \alpha_0 \text{ and } \Lambda_{\mathcal{K}}(\mathcal{F}_{\Psi}) = \bigvee \left\{ \alpha : \Phi_{(\mathcal{F}_{\Psi})} = \Psi \in \mathcal{K}^{\alpha} \right\} < \alpha_0$. This second inequality is as a result of the fact that from **(P1)** we have that for $\beta \geq \alpha_0$ that $\Psi \notin \mathcal{K}^{\beta}$. Therefore we have shown that $(X, \Lambda_{\mathcal{L}}) \neq (X, \Lambda_{\mathcal{K}})$.

Proposition 6.9 The mapping δ preserves morphisms.

PROOF: Let $\varphi: (X, \mathcal{L}^{\alpha}) \longrightarrow (Y, \mathcal{K}^{\alpha})$ be uniformly continuous. That is, for all $\alpha \in [0, 1]$ we have $(\varphi \times \varphi)^{\rightarrow}(\mathcal{L}^{\alpha}) \subset \mathcal{K}^{\alpha}$. In order to show that φ is a morphism in S[0, 1]-UCS we must show that for all $\mathcal{F} \in \mathcal{F}_{[0,1]}^S(X \times X)$ we have $\Lambda_{\mathcal{L}}(\mathcal{F}) \leq \Lambda_{\mathcal{K}}((\varphi \times \varphi)^{\rightarrow}(\mathcal{F}))$.

We know that $\Lambda_{\mathcal{L}}(\mathcal{F}) = \bigvee \{\alpha : \Phi_{\mathcal{F}} \in \mathcal{L}^{\alpha}\}$. If $\Phi \in \mathcal{L}^{\alpha}$ then by Lemma 6.4(vi) we get $(\varphi \times \varphi)^{\rightarrow}(\Phi_{\mathcal{F}}) = \Phi_{(\varphi \times \varphi)^{\rightarrow}(\mathcal{F})} \in \mathcal{K}^{\alpha}$. Hence we can see that $\{\alpha : \Phi_{\mathcal{F}} \in \mathcal{L}^{\alpha}\} \subset \{\alpha : \Phi_{(\varphi \times \varphi)^{\rightarrow}(\mathcal{F})} \in \mathcal{K}^{\alpha}\}$ and therefore $\Lambda_{\mathcal{L}}(\mathcal{F}) \leq \Lambda_{\mathcal{K}}((\varphi \times \varphi)^{\rightarrow}(\mathcal{F}))$.

Using the above propositions, we define an embedding functor for L = [0, 1]:

$$\delta: \begin{cases} PULIM^* \longrightarrow S[0,1]\text{-}UCS \\ \left\{ (X, (\mathcal{L}^{\alpha})_{\alpha \in [0,1]}) \longmapsto (X, \Lambda_{\mathcal{L}}) \\ \varphi \longmapsto \varphi \end{cases}$$

Proposition 6.10 The functor δ is full. That is, $mor\Big(\big(X,(\mathcal{L}^{\alpha})_{\alpha\in[0,1]}\big),\big(Y,(\mathcal{K}^{\alpha})_{\alpha\in[0,1]}\big)\Big)=mor\big((X,\Lambda_{\mathcal{L}}),(Y,\Lambda_{\mathcal{K}})\big).$

PROOF: Let $\varphi: (X, \Lambda_{\mathcal{L}}) \longrightarrow (Y, \Lambda_{\mathcal{K}})$ be uniformly continuous. That is, for all $\mathcal{F} \in \mathcal{F}^S_{[0,1]}(X \times X)$ we have $\Lambda_{\mathcal{L}}(\mathcal{F}) \leq \Lambda_{\mathcal{K}}((\varphi \times \varphi)^{\rightarrow}(\mathcal{F}))$. Now if we let $\Psi \in \mathbb{F}(Y \times Y)$, $\alpha_0 \in [0,1]$ and $\Psi \in (\varphi \times \varphi)^{\rightarrow}(\mathcal{L}^{\alpha_0})$ then there must exist some $\eta \in \mathcal{L}^{\alpha_0}$ such that $(\varphi \times \varphi)^{\rightarrow}(\eta) \leq \Psi$.

For \mathcal{F}_{η} we have $\Phi_{(\mathcal{F}_{\eta})} = \eta$ and therefore $\Lambda_{\mathcal{L}}(\mathcal{F}_{\eta}) = \bigvee \left\{ \alpha : \Phi_{(\mathcal{F}_{\eta})} = \eta \in \mathcal{L}^{\alpha} \right\} \geq \alpha_{0}$. Hence $\Lambda_{\mathcal{K}}((\varphi \times \varphi)^{\rightarrow}(\mathcal{F}_{\eta})) \geq \alpha_{0}$.

We have that

$$\Lambda_{\mathcal{K}}\big((\varphi\times\varphi)^{\rightarrow}(\mathcal{F}_{\eta})\big) = \bigvee\big\{\beta\,:\,\Phi_{\big((\varphi\times\varphi)^{\rightarrow}(\mathcal{F}_{\eta})\big)} = (\varphi\times\varphi)^{\rightarrow}\big(\Phi_{(\mathcal{F}_{\eta})}\big) = (\varphi\times\varphi)^{\rightarrow}(\eta)\in\mathcal{K}^{\beta}\big\}.$$

This then gives us $\bigvee \{\beta : (\varphi \times \varphi)^{\rightarrow}(\eta) \in \mathcal{K}^{\beta}\} \geq \alpha_{0}$. Now if we consider $A = \{\beta : (\varphi \times \varphi)^{\rightarrow}(\eta) \in \mathcal{K}^{\beta}\}$, then $(\varphi \times \varphi)^{\rightarrow}(\eta) \in \mathcal{K}^{\beta}$ for all $\beta \in A$. By left-continuity we then get $(\varphi \times \varphi)^{\rightarrow}(\eta) \in \mathcal{K}^{\vee A}$. Since $\bigvee A \geq \alpha_{0}$ we have that $\mathcal{K}^{\bigvee A} \subset \mathcal{K}^{\alpha_{0}}$ and hence $(\varphi \times \varphi)^{\rightarrow}(\eta) \in \mathcal{K}^{\alpha_{0}}$.

In order to show that we can also generate a probabilistic uniform limit space from a stratified L-uniform convergence space for $\Psi \in \mathbb{F}(X \times X)$ and $\alpha \in [0, 1]$, we define

$$\Psi \in \mathcal{L}^{\alpha}_{\Lambda} \iff \Lambda(\mathcal{F}_{\Psi}) \geq \alpha.$$

Proposition 6.11 If $(X, \Lambda) \in |S[0, 1] - UCS|$, then $(X, (\mathcal{L}^{\alpha}_{\Lambda})_{\alpha \in [0, 1]})$ is a probabilistic uniform limit space.

UC1: By Lemma 6.5(i), $\mathcal{F}_{\dot{x}\times\dot{x}}=[(x,x)]$ and $\Lambda([(x,x)])=1$, we have $\dot{x}\times\dot{x}\in\mathcal{L}^{\alpha}_{\Lambda}$ for all $\alpha\in[0,1]$.

UC2: Suppose $\Psi \leq \eta$ and $\Psi \in \mathcal{L}^{\alpha}_{\Lambda}$. Then clearly $\Lambda(\mathcal{F}_{\psi}) \geq \alpha$. From Lemma 6.5(ii) and (**LUC2**) $\Lambda(\mathcal{F}_{\eta}) \geq \Lambda(\mathcal{F}_{\Psi}) \geq \alpha$ and thus we see $\eta \in \mathcal{L}^{\alpha}_{\Lambda}$.

UC3: If $\Psi \in \mathcal{L}^{\alpha}_{\Lambda}$ then $\Lambda(\mathcal{F}_{\Psi}) \geq \alpha$. By **(LUC3)** and Lemma 6.5(iii) we have $\Lambda(\mathcal{F}_{(\Psi^{-1})}) = \Lambda((\mathcal{F}_{\Psi})^{-1}) \geq \alpha$ and therefore $\Psi^{-1} \in \mathcal{L}^{\alpha}_{\Lambda}$.

UC4: If $\Psi, \eta \in \mathcal{L}^{\alpha}_{\Lambda}$ then clearly $\Lambda(\mathcal{F}_{\Psi}) \geq \alpha$ and $\Lambda(\mathcal{F}_{\eta}) \geq \alpha$. Using first **(LUC2)** and Lemma 6.5(iv), followed by **(LUC4)** we get

$$\begin{split} \Lambda(\mathcal{F}_{\Psi \wedge \eta}) &\geq \Lambda(\mathcal{F}_{\Psi} \wedge \mathcal{F}_{\eta}) \\ &\geq \Lambda(\mathcal{F}_{\Psi}) \wedge \Lambda(\mathcal{F}_{\eta}) \\ &\geq \alpha \wedge \alpha \\ &= \alpha. \end{split}$$

Hence $\Psi \wedge \eta \in \mathcal{L}^{\alpha}_{\Lambda}$.

P1: Suppose $\alpha \leq \beta$ and $\Psi \in \mathcal{L}$. This gives us $\Lambda(\mathcal{F}_{\Psi}) \geq \beta \geq \alpha$. Therefore $\Psi \in \mathcal{L}_{\Lambda}^{\alpha}$.

P2: If $\Psi \in \mathbb{F}(X \times X)$ then $\Lambda(\mathcal{F}_{\Psi}) \geq 0$ and therefore $\Psi \in \mathcal{L}_{\Lambda}^{0}$. Hence $\mathcal{L}_{\Lambda}^{0} = \mathcal{F}(X \times X)$.

PULIM: Suppose $\Psi \in \mathcal{L}^{\alpha}_{\Lambda}$ and $\eta \in \mathcal{L}^{\beta}_{\Lambda}$, and that $\Psi \circ \eta$ exists. Then by Lemma 6.5(v) $\mathcal{F}_{\Psi} \circ \mathcal{F}_{\eta}$ exists and $\mathcal{F}_{\Psi} \circ \mathcal{F}_{\eta} \leq \mathcal{F}_{\Psi \circ \eta}$. Now $\Lambda(\mathcal{F}_{\Psi}) \geq \alpha$ and $\Lambda(\mathcal{F}_{\eta}) \geq \beta$ and therefore by **(LUC5)** we have $\Lambda(\mathcal{F}_{\Psi} \circ \mathcal{F}_{\eta}) \geq \Lambda(\mathcal{F}_{\Psi}) * \Lambda(\mathcal{F}_{\eta}) \geq \alpha * \beta$.

Axiom (LUC2) then gives us $\Lambda(\mathcal{F}_{\Psi \circ \eta}) \geq \alpha * \beta$ and hence $\Psi \circ \eta \in \mathcal{L}_{\Lambda}^{\alpha * \beta}$.

Proposition 6.12 If $\varphi: (X, \Lambda) \longrightarrow (Y, \Sigma)$ is uniformly continuous, then $\varphi: (X, (\mathcal{L}^{\alpha}_{\Lambda})_{\alpha \in [0,1]}) \longrightarrow (Y, (\mathcal{L}^{\alpha}_{\Sigma})_{\alpha \in [0,1]})$ is uniformly continuous.

PROOF: If $\alpha \in [0,1]$ and $\Psi \in \mathcal{L}^{\alpha}_{\Lambda}$ then $\Lambda(\mathcal{F}_{\Psi}) \geq \alpha$. Since φ is uniformly continuous, $\Sigma((\varphi \times \varphi)^{\rightarrow}(\mathcal{F}_{\Psi})) = \Sigma(\mathcal{F}_{(\varphi \times \varphi)^{\rightarrow}(\Psi)}) \geq \alpha$, and therefore $(\varphi \times \varphi)^{\rightarrow}(\Psi) \in \mathcal{L}^{\alpha}_{\Sigma}$.

As a consequence of the previous two results we can now define a functor:

$$K: \begin{cases} S[0,1]\text{-}UCS \longrightarrow PULIM^* \\ \left\{ (X,\Lambda) \longmapsto \left(X, (\mathcal{L}^{\alpha}_{\Lambda})_{\alpha \in [0,1]} \right) \\ \varphi \longmapsto \varphi. \end{cases}$$

Proposition 6.13 For $(X, (\mathcal{L}^{\alpha})_{\alpha \in [0,1]}) \in |PULIM^*|$ and for all $\alpha \in [0,1]$ we have $\mathcal{L}^{\alpha} = \mathcal{L}^{\alpha}_{(\Lambda_{\mathcal{L}})}$. In other words, $K(\delta(X, (\mathcal{L}^{\alpha})_{\alpha \in [0,1]})) = (X, (\mathcal{L}^{\alpha})_{\alpha \in [0,1]})$.

PROOF: Let $\Psi \in \mathcal{L}^{\alpha}$. Then $\Lambda_{\mathcal{L}}(\mathcal{F}_{\Psi}) = \bigvee \left\{ \beta : \Phi_{(\mathcal{F}_{\Psi})} = \Psi \in \mathcal{L}^{\beta} \right\} \geq \alpha$ and so $\Psi \in \mathcal{L}^{\alpha}_{(\Lambda_{\mathcal{L}})}$.

On the other hand, $\Psi \in \mathcal{L}^{\alpha}_{(\Lambda_{\mathcal{L}})}$ if and only if $\Lambda_{\mathcal{L}}(\mathcal{F}_{\Psi}) \geq \alpha$. By definition, this will only be the case if $\bigvee \left\{ \beta : \Phi_{(\mathcal{F}_{\Psi})} = \Psi \in \mathcal{L}^{\beta} \right\} \geq \alpha$. If we denote $A = \left\{ \beta : \Psi \in \mathcal{L}^{\beta} \right\}$, then we have $\Psi \in \mathcal{L}^{\beta}$ for all $\beta \in A$ and hence by left continuity $\Psi \in \mathcal{L}^{\vee A} \subset \mathcal{L}^{\alpha}$.

Proposition 6.14 The identity mapping $id_X : (X, \delta(K(X, \Lambda))) \longrightarrow (X, \Lambda)$ is continuous. In other words, $(X, \Lambda) \leq \delta(K(X, \Lambda))$.

PROOF: For $\mathcal{F} \in \mathcal{F}_{[0,1]}^S(X \times X)$,

$$\begin{split} \Lambda_{(\mathcal{L}^{\alpha}_{\Lambda})}(\mathcal{F}) &= \bigvee \left\{ \alpha \ : \ \Phi_{\mathcal{F}} \in \mathcal{L}^{\alpha}_{\Lambda} \right\} \\ &= \bigvee \left\{ \alpha \ : \ \Lambda(\mathcal{F}_{(\Phi_{\mathcal{F}})}) \geq \alpha \right\} \\ &\leq \bigvee \left\{ \alpha \ : \ \Lambda(\mathcal{F}) \geq \alpha \right\} \\ &= \Lambda(\mathcal{F}). \end{split}$$

Proposition 6.15 $PULIM^*$ is a coreflective subcategory of S[0,1]-UCS.

PROOF: Let $(X, \Lambda) \in |S[0, 1]\text{-}UCS|$. Then $id_X : \left(X, \delta\big(K(\Lambda)\big)\right) \longrightarrow (X, \Lambda)$ is a morphism. For a further space $\left(Y, (\mathcal{K}^{\alpha})_{\alpha \in [0, 1]}\right) \in |PULIM^*|$, and a morphism $\varphi : \left(Y, (\mathcal{K}^{\alpha})_{\alpha \in [0, 1]}\right) \longrightarrow (X, \Lambda)$ we have that $\bar{\varphi} : \left(Y, K\big(\delta(\mathcal{K}^{\alpha})_{\alpha \in [0, 1]}\big)\right) \longrightarrow \left(X, K(\Lambda)\right)$ is a morphism in $PULIM^*$ since $\left(Y, K\big(\delta(\mathcal{K}^{\alpha})_{\alpha \in [0, 1]}\big)\right) = \left(Y, (\mathcal{K}^{\alpha})_{\alpha \in [0, 1]}\right)$. Clearly, $id_X \circ \bar{\varphi} = \varphi$.

Now to show the uniqueness of $\bar{\varphi}$, assume that $\hat{\varphi}: (Y, (\mathcal{K}^{\alpha})) \longrightarrow (X, K(\Lambda))$ such that $id_X \circ \hat{\varphi} = \varphi$. This would imply that we have $id_X \circ \hat{\varphi}(y) = id_X \circ \bar{\varphi}(y)$ and hence for all $y \in Y$, $\hat{\varphi}(y) = \bar{\varphi}(y)$. Hence $\hat{\varphi} = \bar{\varphi}$.

7 Conclusions

We have generalised the category of lattice-valued uniform convergence spaces, previously defined in the restricted case of complete Heyting algebras, to more general enriched lattices. The resulting category, SL-UCS, was shown to be a topological category in the definition of Preuss [22]. Moreover we could show that Gutiérrez García's L-uniform spaces [6] and Nusser's probabilistic uniform limit spaces [20], [21] can be viewed as natural examples of our spaces. This shows that our category is a suitable framework for studying various lattice-valued concepts of uniformities.

A question that remains open is whether or not our category is also cartesian closed. We encountered problems in generalising the function space structure defined in [16] to our more general setting. Also, it would be intersting to know if Nusser's category of probabilistic uniform limit spaces can also be reflectively embedded into our category. We will have a look into these questions in our future work.

References

- N. Bourbaki, General topology, Chapters 1-4, Springer Berlin, Heidelberg, New York, London, Paris, Tokyo 1990
- [2] C.H. Cook and H.R. Fischer, Uniform convergence structures, Math. Ann. 173 (1967) 290

 306.
- [3] P.V. Flores, R.N. Mohapatra and G. Richardson, Lattice-valued spaces: fuzzy convergence, Fuzzy Sets and Systems 157 (2006) 2706 2614.
- [4] L.C. Florescu, Structures syntopogènes probabilistes, Publ. Math. Debrecen 28 (1981) 15 24.
- [5] J. Gutiérrez García, I. Mardones Pérez and M.H. Burton, The relationship between various filter notions on a *GL*-monoid, J. Math. Anal. Appl. 230 (1999) 291 302.
- [6] J. Gutiérrez García, A unified approach to the concept of a fuzzy L-uniform space, Thesis, Universidad del Pais Vasco, Bilbao, Spain 2000.
- [7] J. Gutiérrez García, M.A. Prada Vicente and A.P. Šostak, A unified approach to the concept of a fuzzy *L*-uniform space, in: S.E. Rodabaugh, E.P. Klement (Eds.), Topological and algebraic structures in fuzzy sets, Kluwer, Dordrecht, 2003, 81 114.
- [8] U. Höhle, Probabilistic uniformization of fuzzy uniformities, Fuzzy Sets and Systems 1 (1978) 311 332.
- [9] U. Höhle, Probabilistic topologies induced by L-fuzzy uniformities, Manuscripta Math. 38 (1982) 289 323.
- [10] U. Höhle, Commutative, residuated l-monoids, in: U. Höhle, E.P. Klement (Eds.), Non-classical Logics and Their Applications to Fuzzy Subsets, Kluwer, Dordrecht, 1995, 53 106.
- [11] U. Höhle and A.P. Šostak, Axiomatic foundations of fixed-basis fuzzy topology, in: U. Höhle, S.E. Rodabaugh (Eds.), Mathematics of fuzzy sets: logic, topology and measure theory, Kluwer, Dordrecht, 1999, 123 272.
- [12] B. Hutton, Uniformities on fuzzy topological spaces, J. Math. Anal. Appl. 58 (1977) 559 571.
- [13] J.R. Isbell, Uniform Spaces, Amerc. Math. Soc. 1964.
- [14] G. Jäger, A category of L-fuzzy convergence spaces, Quaest. Math. 24 (2001) 501 517.

- [15] G. Jäger, Subcategories of lattice-valued convergence spaces, Fuzzy Sets and Systems 156 (2005) 1 24.
- [16] G. Jäger and M.H. Burton, Stratified L-uniform convergence spaces, Quaest. Math. 28 (2005) 11 – 36.
- [17] W. Kotzé, Uniform Spaces, in: U. Höhle, S.E. Rodabaugh, Mathematics of Fuzzy Sets, Logic, Topology and Measure Theory, Kluwer, Boston/Dordrecht/London 1999, 553 580.
- [18] R.S. Lee, The category of uniform convergence spaces is cartesian closed, Bull. Austral. Math. Soc. 15 (1976) 461 465.
- [19] R. Lowen, Fuzzy Uniform Spaces, J. Math. Anal. Appl. 82 (1981) 370 385.
- [20] H. Nusser, A generalization of probabilistic uniform spaces, Applied Categorical Structures 10 (2002) 81 98.
- [21] H. Nusser, Completion of probabilistic uniform limit spaces, Quaest. Math. 26 (2003) 125 140.
- [22] G. Preuss, Theory of topological structures, D. Reidel Publishing Company, Dordrecht -Boston - Lancaster - Tokyo, 1988.
- [23] S.E. Rodabaugh, Axiomatic foundations for uniform operator quasi-uniformities, in: S.E. Rodabaugh, E.P. Klement: Topological and Algebraic Structures in Fuzzy Sets, Kluwer, Dordrecht/Boston/London 2003, 199 234.
- [24] K.I. Rosenthal, Quantales and their applications, Pitman Research Notes in mathematics, 234, Longman, Burnt Mill, Harlow, 1990.
- [25] B. Schweizer and A. Sklar, Probabilistic metric spaces, North Holland, New York, 1983.
- [26] J.W. Tukey, Convergence and uniformity in topology, Princeton 1940.
- [27] A. Weil, Sur les éspaces à structure uniforme et sur la topologie générale, Act. Sci. et Ind., 551, Hermann, Paris, 1937.
- [28] O. Wyler, Filter space monads, regularity, completions, TOPO 1972 General Topology and its Applications, Lecture notes in Mathematics, Vol. 378, Springer-Verlag, Berlin - Heidelberg - New York, 1974, 591 - 637.
- [29] Dexue Zhang, Stratified Hutton uniform spaces, Fuzzy Sets and Systems 131 (2002), 337 – 346.