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1 Introduction

In his thesis [6], Gutiérrez Garcia developed a common framework for different approaches to

lattice-valued uniform spaces. These approaches comprise:

e generalizations of Weil’s entourage uniformities [27] such as Lowen’s fuzzy uniformities
[19] and Hohle’s L-uniformities [8], [9];

o generalizations of a uniform operator approach: Hutton’s L-uniformities [12] (see also

[29]). Classically this approach has not received wide attention. It appears briefly in [17].

In [23] it is argued that Hutton’s approach, though leading in the case that L = {0,1} to a
category of uniform spaces which is isomorphic to Weil’s entourage uniformities [27, 1] and
Tukey’s covering uniformities [13, 26], is for L # {0,1} different and more general. This
approach is, consequently, developed in [23] under fairly general conditions (e.g. no distributivity
requirements on the lattice L).

The approach in [7, 6] uses a more restricted lattice context but establishes links between
the aforementioned approaches of lattice-valued uniform spaces. In fact, based on the notion of
lattice-valued Hutton uniformity, all three aproaches are shown to be special cases of this gen-
eral framework. In order to accommodate Lowen’s [19] and Hohle’s [8, 9] approaches into the
new framework, the notion of L-uniformity is used. This L-uniformity is an L-filter satisfying
some natural axioms. The lattice context is chosen to be enriched cl-premonoids, where the
complete lattice (L, <) is enriched by two further “algebraic” operations * and ®, the first of
which distributing over arbitrary joins. It gives thus rise to a residual impication operator. If
L = {0, 1}, Gutiérrez Garcia’s L-uniformities can be viewed as entourage uniformities in the
definition of Weil [27].

In the classical case, the category of uniform spaces with uniformly continuous mappings as
morphisms is not cartesian closed. In order to have a “nicer” category to work with, Cook and
Fischer [2] (modified by Wyler [28]) defined a supercategory, the category of uniform conver-
gence spaces. This category is topological over SET (i.e. it allows initial constructions) and
cartesian closed (i.e. it has canonical function spaces) [18]. Cook and Fischer’s category, as
improved by Wyler [28], was generalised to a category of lattice-valued uniform convergence
spaces in [16]. The lattice context was that of a complete Heyting algebra. Also this category
of lattice-valued uniform convergence spaces is topological over SET and cartesian closed. Un-
fortunately, the restriction to complete Heyting algebras as underlying lattices misses several
important examples of Gutiérrez Garcia’s L-uniform spaces. We therefore generalise the lattice
context in this paper from complete Heyting algebras to enriched cl-premonoids as they are
used in [7]. We will show that a suitable adaptation of the definition of [16] again results in
a category which is topological over SET. Moreover, our new category contains many impor-

tant categories of L-uniform spaces as reflective subcategories. The generalised lattice context,
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however, has even wider applications. It allows us to view other categories of “many-valued”
uniform convergence spaces as natural examples of our definition: the probabilistic uniform
limit spaces of Nusser [20], [21]. Nusser’s spaces generalise the probabilistic uniform spaces of
Florescu [4], and they are explicitly based on a t-norm on [0, 1]. Our general setting allows us to
view Nusser’s category of probabilistic uniform convergence spaces as a coreflective subcategory
of our category of lattice-valued uniform convergence spaces when choosing the appropriate lat-

tice context.

The paper is organised as follows: in section 2, we collect the results about lattices and
lattice-valued sets that we will need later on, and we fix the notation. The next section is then
devoted to lattice-valued filters. We define product filters and inverses and compositions of
stratified L-filters on X x X. Further, we give criteria when these constructions again yield
stratified L-filters. In section 4 we define our new category of lattice-valued uniform convergence
spaces and show that this category is topological over SET. Here we also mention the forgetful
functor from our category to the category of lattice-valued convergence spaces [14]. Section 5
studies the most important example, namely Gutiérrez Garcia’s lattice-valued uniform spaces.
We show that under a mild condition on the underlying lattice, Gutiérrez-Garcia’s category
is isomorphic to a reflective subcategory of our category. Further, we mention the underlying
topological space of a lattice-valued uniform space and show that there are two ways of coming to
a lattice-valued convergence space when starting from a lattice-valued uniform space, and that
these two ways lead to the same space. One of these methods proceeds by forgetting the uniform
structure and embedding the resulting lattice-valued topological space into the category of
lattice-valued convergence spaces, while the other embeds the lattice-valued uniform space into
the category of lattice-valued uniform convergence spaces and then uses the underlying lattice-
valued convergence space. Section 6 is then devoted to showing that Nusser’s probabilistic
uniform limit spaces form a category which is isomorphic to a coreflective subcategory of our

category. Finally, we draw some conclusions.

2 Preliminaries

Throughout this work, we will consider (L, <) to be a complete lattice with T, the top element,
and L the bottom element such that T # L. The triple (L, <, ) is called a quantale [24] if

(Q1) (L, ) is a semigroup,

(Q2) = is distributive over arbitrary joins, i.e.

(\/ai> sB=\/(;xB) and Sx (\/ai> =\ (Bxa).

i€J i€J i€J i€J
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As consequence of the distributivity we have that when «, 8 € L are such that o < 3, then for
any v € L we will have avxy < 3% v. When we have that * is A, the quantale (L, <, A) is also
called a complete Heyting algebra.

A commutative quantale, (L, <,x), is divisible if for every inequality 5 < « there exists § € L
such that = ax§ [24]. A quantale that is commutative, strictly two-sided (T is the unit with
respect to *) and divisible is called a GL-monoid [10].

In a commutative quantale we have the implication operator:
a—>ﬁ=\/{)\€L cax A< 3}
This operator has the property that 6 < a — [ < J*xa < [.

Lemma 2.1 [11] Let (L,<,*) be a GL-monoid and «, 3,6, a;, 3; € L. Then the following
properties hold:

(i) a—=-p=T<=a<g,

(i) a—(AB)=Ae-5),

i€l i€l
(iii) (\/ai) — 8= N\(a—B),
i€l el
@) ax(AB)= A8,
i€l i€l

(V) (@=8)*(@E—p) <(a—0),

(vi) a<f=d—-a<di—p

(vii) a<pf=p-5<a—2J,

(viii) o — (8- 0) = (axf) — 4,

(ix) ax(a—=p)=anp,

(x) (a=p)x(@0—7)<(axd) = (B*7),
(xi) ax(B—7) < B—(axy),

(Xii) /\(Oéi *ﬁz) Z (/\ Oéi) * (/\ﬁz)
i€l iel iel
A triangular norm [25] or t-norm is a binary operation * on the unit interval [0, 1] such that

the following are satisfied:
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(T1) axf=0x« (commutativity)
(T2) ax(B*0)=(axP)*d (associativity)

(T3) a*f < ax*d whenever 3 <4¢ (monotonicity)

(T4) axl=« (boundary condition)

The pair ([0, 1], %) can be considered as a quantale if the t-norm is left-continuous. The three

most commonly used (left-continuous) t-norms are:
e minimum: a*x 3 =aAf,
e product: axf=«a- [,
e Lukasiewicz: ax 8= (a+5—1)VO0.
The triple (L, <, ®) is a cl-premonoid [11] if:
(CL1) (L, <) is a complete lattice,

(CL2) the binary operation ® on L satisfies the isotonicity aziom :

a1 <az, i <P = a1®P < a2® P,
(CL3) foreacha e L,a<a®Tanda < T ® a,
(CL4) the operation ® is distributive over non-empty joins, ie: for J # 0,
(\/ai> ®8=\(ep), B (\/ai> =\/(Bew).
ieJ ieJ ieJ ieJ
An enriched cl-premonoid [11] is a quadruple (L, <, ®, *) where:
(E1) (L, <,®) is a cl-premonoid,
(E2) (L, <, %) is a GL-monoid,

(E3) the operation  is dominated by ®. That is, for all a1, ag, 1,02 € L:

(1 ® B1) * (a2 @ B2) < (a1 * ag) ® (B1 * B2).

A consequence of the domination is that a* § < a ® (.

Examples 2.2

o If (L, <, A) is a complete Heyting algebra, then (L, <, A, A) is an enriched cl-premonoid.
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o If (L, <, %) is a quantale, then (L, <, A, ) is an enriched cl-premonoid.

A GL-monoid (L, <, *) is said to have square roots [10] if there exists a unary operator S :

L — L with the following properties:
(S1) for all « € L, S(a) * S(a) = «,
(S2) BB <a= B <S(a).

If (L, <, %) is a G L-monoid with square roots, then the monoidal mean operator, ® : LxL — L,
is defined by a ® 8 = S(«) * S(0). If (L, <, ) also satisfies:

(S3) S(a*pB) = (S(a)*S(B)) VS(L) forall a, B€ L

then if we use the monoidal mean operator as the cl-premonoid operation we get an enriched

cl-premonoid: (L, <, ®, *).

All of the t-norms mentioned earlier are left-continuous, and have square roots satisfying
(S83). Thus we can use the monoidal mean operator to form an enriched cl-premonoid where
for the minimum t-norm a ® 8 = a A 8. For the product t-norm we get a ® § = v« - 3, the

geometric mean, and for the Lukasiewicz t-norm a ® 3 = #, the arithmetic mean.

Lemma 2.3 Let (L, <,®,#) be an enriched cl-premonoid and let o, 3,6 € L. If a« < a ® a,
then
(a—=pB)e(a—0) < a—(Bx0H)

PROOF: This form of the proof was suggested in communication with Javier Gutiérrez Garcia.

We will use Lemma 2.1 (ix) and the fact that the x operation is dominated by the ® to show

(a—=B)@@—0d)*xa < ((a—p3)@(a—0))*(a®a)
(a—=B)xa)® ((a —0) xa)
(aNB)@(aAd)

< B®0.

IN

The desired result can easily be seen from the property of the implication operator.
|

For the monoidal mean operator, we will clearly have a ® o = S(a) * S(a) = «. Also, for the
Heyting algebra case (L, <, A, A) we have a A a = a. So clearly the above lemma will be valid

for all o € L for these cases.
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Let (L, <,®,*) be an enriched cl-premonoid. If the equation:

(1% B1) @ (g % Ba) = ((Oq ® az) * (B ®52)) \ ((Oq ®@L)* (41 ® T)) vV ((L ® ag)* (T ®52))

is satisfied for all ay, a9, 81,82 € L then (L, <, ®, x) is pseudo-bisymmetric [11]. In the case
where ® = x and the case of the monoidal mean operator, as well as (L, <, A, x) and (L, <, A, A),

we have pseudo-bisymmetry.

Let (L, <,®, *) be an enriched cl-premonoid and X be a set. We denote the L-sets on X
by a, b, ¢, ... € LX. For L-sets a, b, a; (j € J), we extend the operations from (L, <,®, *)

pointwise by

jeJ JjeJ
( \/ aj)(x) = \/ (aj(x)),
jeJ JjeJ

(e @ b)(x) = a(z) ® b(),
(a*b)(x) = a(z) * b(x).
To extend the order relation, we say a < b if for all x € X we have a(z) < b(z). For any o € L

and A C X we denote

aifze A
aa(z) =
1 else.

Two special cases of this are the charateristic function of A, T 4, and the zero function, | x.

If o : X — Y is a mapping and a € LX, b € LY, then we denote o~ : LX — LY
the mapping ¢ (a)(y) = V.. p(a)=y (@) (with V@ = 1) and ¢~ : LY — LX the mapping
(b)) =boep.

3 Stratified L-filters

Definition 3.1 [11] Let X be a set and (L, <,®,*) an enriched cl-premonoid. A map F :
LX — L is a stratified L-filter on X if F satisfies:

(LFO) F(Tx)=T, F(Lx)=1,

(LF1) ay,a2 € LY, a; < as = F(a1) < F(az),

(LF2) F(a1) ® F(az) < F(ay @ az) for all ay,as € LY,
(LFS) foralla € L, for all a € LY, a*F(a) < Flax *a).

The set of all stratified L-filters on X is denoted by F7 (X).
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Examples 3.2
e The point filter [z] : LX — L,a +—— a(x) is a stratified L-filter for every z € X.
e For A C X, the mapping [A] : LX — L,a+— Nzca a(z) is a stratified L-filter on X.
A partial ordering can be defined on the set of all stratified L-filters on X by:
F<G <= F(a) <G(a) Vae LX.

Here we say that F is coarser than G, or G is finer than F. For a collection of stratified L-filters
on X, {F; : i € I}, the greatest lower bound is defined [6] for a € L*:

(A Fi)(a) = \ Fi(a)
iel i€l
and /\ F; € 7 (X).
iel
It is clear that for A C X we have [A] = A . [z]. Further, [X] is the coarsest stratified
L-filter on X [11]. The least upper bound of two stratified L-filters does not always exist but

it has been shown [7] that an upper bound for two L-filters will exist when they satisfy certain

conditions.

Proposition 3.3 [7] Let (L, <,®,*) be an enriched cl-premonoid that is pseudo-bisymmetric.
Further let F and G be two stratified L-filters on X. If F(ay) * G(az) = L for all a1, as € LX
such that ay * ao = Lx, then there exists an upper bound for both F and G.

Gutiérrez Garcia [7] has shown that if ® = % and the condition above is satisfied, then the least

upper bound of two stratified L-filters is given by:
(FVG)(a)= \/{.7-'(@1) xG(az) | a1, a2 € LX and a1 xas < a}.
Let X and Y be sets, ¢ : X — Y and F € F7(X). The image of F under ¢, ¢~ (F) : LY —
L, is always a stratified L-filter on Y and is defined [11] for a € LY
¢ (F)a) = F (¢ (a)) = Flaop).

From this definition it is straightforward to deduce that ¢([z]) = [¢(x)].

Let X and Y be sets, and suppose ¢ : X — Y and let F € F7(Y). For a € L define [11]
@ (F): L*X — L by
o~ (F)a) = \/{F®) ¢~ () <a}.
The mapping ¢~ (F) is a stratified L-filter on X if and only if, for b € LY, F(b) = 1 whenever
e (b)) =boyp = Lx [14].
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If we have X, Y and Z as sets, and F,G € ff(X), p: X —Yandy:Y — Z, then it is
easy to see that (¢ o )7 (F) = ¢~ (¢ (F)), and ¢(F) Ap(G) = (F AG). As a consequence,
if we have ¢ and F, G as above with F < G, then ¢(F) < ¢(G).

Lemma 3.4 Let X and Y be sets and ¢ : X — Y. With F € F7(X) and G € F7(Y) the
following hold:

(1) ¢~ (¢~ (F)) € FL(X) and ¢~ (97 (F)) < F,
(ii) if p=(9) € F7(X), then G < ¢~ (97 (G)),
(iii) if G < ¢~ (F) then p—(G) € F5(X).
PROOF: the proofs for (i) and (ii) are straightforward, while (iii) follows from (i) and the fact
that 9= (G) < ¢~ (¢ (F)).
n

From here on, we consider our lattice L to be an enriched cl-premonoid (L, < ®,*) that is
pseudo-bisymmetric. The pseudo-bisymmetry is required as it will guarantee the existence of

upper bounds (see Proposition 3.3), and this is required in the definition of a product L-filter.

Consider now the projection mappings:

XxY — X XxY —Y
P and P»:

(z,y) — (z,y) — .

Definition 3.5 Let X and Y be sets and let F € F7(X) and G € F£(Y). We define their
product F x G by:
FxG=P(F)VP;(G).

Proposition 3.6 The mapping F X G is a stratified L-filter on X x Y.

PROOF: Here we use the result of Proposition 3.3. That is, we must show that Py~ (F)(a) *
Ps=(G)(b) = L for all a,b € L*X*Y such that a*b= L xxy. This will show that there exists an
upper bound for Py (F) and P5; (G), and hence there must exist a least upper bound as the

meet of all upper bounds.

Suppose that a,b € L¥*Y are such that a * b= L xxy. Then

P (F)(a) * Py (G)(b)
=V {F() |ee L¥,P{ (c) <a}+\/{G(d) | d € L, P5(d) < b}
<V {FO =G| ceL¥ de LY, Pr(c) « Py (d) < Lxxy}.
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Now, P (¢)(z,y) = co Py(z,y) = c¢(z). Similarly Ps~ (d)(z,y) = d(y). Therefore
P (F)(a) * Py (G)(b) < \/ {.7:(0) xG(d) | c(x)*xd(y) =1L, Ve e X,Vy € Y}.

Now we note that if ¢(z) x d(y) = L for all x € X,y € Y, then since x is a quantale operation,
and using (Q2) we get

1= \/ \/ (c(z) = d(y)) = ( \/ c(z)) = ( \/ d(y)).

zeX yey zeX yey

Together with (LF1), this yields
P (F)(a) « Ps=(G)(b) < \/ {Flax) «G(By) |axp = L}.
Now, using (LFS), the stratification of the L-filters F and G, we have that for all a, 3 € L,
Flax) +G(By) < F(ax+ (9(8r)) ).

Then consider

lax * (G(By)) x| (x) = ax(x) * (G(By))  (x)
=ax*xG(fy)
< G(ay * fy)
=G(Lly)=1.

From this we get that F(ax)* G(8y) < F(Lx) = L. Therefore, since
Py (F)(a) « Ps~(G)(b) < \/ {F(ax)*G(By) |axp =1}
we get that P~ (F)(a) * Py (G)(b) = L.
]

Lemma 3.7 [16] Let X and Y be sets and let F,G € F7(X),H,K € FZ(Y). If F < G and
H<Kthen FxH<GxK.

Lemma 3.8 [15] Let F € Fy (X xY). Then P (F) x Py (F) < F. Further, if G € F£(X)
and H € F7(Y) then P (G x H) > G and P;”(G x H) > H.

Now we propose the definition of a new mapping from LX*X — L one that is in fact a
stratified L-filter on the product space X x X. This is later used when inducing a stratified

L-limit space from a stratified L-uniform convergence space.
Definition 3.9 Let X be a set, F € F7(X),z € X. We define F, : LX*X — L by

Fo(d) = F(d(-,x)), for d € LX*¥X.
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Proposition 3.10 Let X be a set, F € F7(X) and x € X. Then F, € F7 (X x X).
The proof is left to the reader.

Lemma 3.11 [16] Let X be set and (L, <, A, A) a complete Heyting algebra. If F € F7(X)
and x € X, then
Fr=F x [z].

Lemma 3.12 Let 7,y € X and F,G € F2(X) and let ¢ : X — Y. Then

() [=ly = [(=,9)],

(i) Fo NGo = (FAG)a,

(i) (o x9)7(Fa) = ¢~ (Fp(a)-

PROOF: We show only (iii) as (i) and (ii) are straightforward. Let a € LY *Y. Then

(o x )7 (Fu)(a) = Fu(ao (¢ x p))

For a stratified L-filter 7 € F7(X x X) and d € LX*X | define F~1(d) = F(d~1), where
d=1(z,y) = d(y, z) for (z,y) € X x X. From [16] we know that F~! € F7(X x X).

Lemma 3.13 [16] Let X and Y be sets, ¢ : X — Y and F,G € F7 (X x X). If F < G then
@ FH =7

() Ft<gt

-1

(i) (¢ x @)~ (F ) = ((px )7 (F))

Let F,G € F7(X x X). We then define the mapping F oG : LX*X — [ by:

FoG(d) z\/{]-'(a)*g(b):a,bELXXX,aobgd}
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with a o b(z,y) = \/ a(zx,z) *b(z,y). We call F oG the composition of F and G.
zeX

Below we will give a condition that, when satisfied, will give us F oG € F }? (X x X). In order
to prove the main condition which ensures that the composition F o G is a stratified L-filter,

we will make use of the following results.

Lemma 3.14 Let f,g,f,g € LX*X and a,b € LX*X. If fog < a and f og < b, and with

«a € L, we have

(@) (fefo(g®g) <a®b,

(i) (f® Lxxx)eo(9® Txxx) <a®b,

(iii) (Lxxx ® f)o(Txxx ®9) <a®b,

(iv) (axxx * f)og < axxx *a.

These proofs are technical, but not difficult and so are omitted.

Proposition 3.15 Let F,G € F7(X x X) and let (L,<,®,*) be a pseudo-bisymmetric en-

riched cl-premonoid. For any f,g € LX*X the following are equivalent:
(i) the mapping F oG € F7 (X x X),
(ii) if fog= Lxxx, then F(f) xG(g) = L.

PROOF:

Suppose (i) and let fog = Lxxx. From (LF0) we have FoG(Lxxx) = L. This will only be

the case if

L= \/  F(h)«G(k).

h,keLX*X
hok=1xxx
Since F(f) xG(g) < \/  F(h) = G(k), we get F(f) xG(g) = L.
h,keLX*X
hok=1xxx

Conversely, suppose (ii). We check the axioms for a stratified L-filter.
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LFO0: It is easily checked that Txxx o Txxx < Txxx. With this we conclude that F o
G(Txxx) = T. Further we have

FoG(lxxx)= \/  F(f)*G(g)

fog=lxxx
= \/ L1 by(i
fog=lxxx
=1.
LF1: This is easy and is left to the reader.
LF2: Let a,b € LX*X. Then
Fog@eFogb)=( \/ F)+G@)e( \V F)+6@)
fog<a fog<b
-V ((f(f) £6(9)) © (F() +6(@) ) = P
fog<a,
fog<b

The above equality is as a result of the distributivity of the ® operation over non-empty joins.

We now use the property of a pseudo-bisymmetric subset to produce the following inequality.

PV (([f(f)®f(f)]*[Q(9)®Q(9)])

fog<a,fog<b

v(Fn e« [GweT])
v([LeF(n]«[Tede )>
-V ((Fneri) @ =ow)

fog<a,fog<b

v ([F(f) @ F(Lxx)] * [6(9) © G(Txx)])
v ([FLxx) @ F()] * [6(Txux) © (g )>
=Q.

The equality above comes as a result of the fact that both F and G are stratified L-filters
and from property (LFO0) described earlier. We can further produce another inequality by,

instead of taking the join over a single small set, we take the join of the joins of three larger
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sets:

Q< \/ ([J’”(f)®f(f)]*[Q(9)®Q(g)]>

fog<a,fog<b

v V([P0 @ Flxen)] « [6(9) @Q(TXXXﬂ)

fog<a,fog<b

v oV ([Floax) e 7D« [Q(TXXx)®g(9)]> -

fog<a,fog<b

Now we use the results from Lemma 3.14 to choose larger sets for each of the joins shown above:

rRe ([J’”(f)®f(f)]*[Q(9)®Q(g)]>

(f®f)o(g®g)<a®b

v \/ ([]—‘(f) ® F(Lxxx)] *[G(g) ®Q(TXxx)]>

(FOLxxx)o(g®T x xx)<a®b

v V (7o) & £+ [6(T xx) 26(0)] )

(Lxxx®F)o(T xxx ®7)<a®b

=5

Now we again choose larger sets by allowing any f, g, f or g instead of Lxxx and Txyxx.

s< (e AD) « 6) 0 6(9) )
(f@F)o(9®7)<a®b
VY ([f(f) & F(F)] * [9(g) © g<g>]>
(f®f)o(9g®7)<a®b

vV (Fnesn) s swese))

(f®f)o(g®g)<a®b

Since each of these sups is the same, we have:

s= vV (Fweri)-wese))

(f®f)o(9®g)<a®b

<V (FUehHxbuen)

(f®f)o(9®g)<a®b

<V (Fmomw)

hok<a®b

=FoG(a®D).

LFS: This follows from Lemma 3.14(iv).
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We have thus provided a condition that, if satisfied, will guarantee that the composition
of two stratified L-filters will again be a stratified L-filter. We now show some further results

relating to the composition of L-filters that will be needed later on.

Lemma 3.16 Let X and Y be sets and let F,G, H,K € F2(X x X) and M,N € F7 (Y xY).
Further suppose that F < H and G < K and that ¢ : X — Y. Then

(i) if HoK € FZ(X x X), then FoG € FP(X x X) and FoG < HoK,
(i) (ex )T (Fo(exp)~(G) < (px @) (Fog),
(iii) (p x )" (MoN) < (¢ x )" (M)o(px )~ (N).

PROOF: The proof of (i) can be found in [16]. For (ii), we first show that for dy,ds,a € LX*X,
if dy o dy < a, then

(dio(pxg@))o(dao(pxg)) <ao(pxyp).
Suppose dy o dy < a and let (x,y) € X x X. Then

(dio(px @) o(dao(px @)y =\ diolpxp)(z,2)*dyo (¢ xp)(zy)

=V di(p(@), 9(2)) *da((2), (1)
< \/ dip(@), w) * dz(w, o(y))

= (dy o d2)(p(), 0(y))
a(p(@), o(y))
o (¢ x p)(x,y).

IN

Now we let b € LY*Y and show that

(ex@) " (Folexe) @) =\ (¢ xe)7(F)(d)* ((¢x ©)~(9))(da)

di,dyeLY*Y
drods<b

=/ Fldiolpx9)*G(dzo(px )

di,da€ LY <Y
diods<b

< \/ Fler) * G(e2)
c1,c0€ L XX
croca2<bo(pXp)

(FoG)(bo (v xp))
=((px @) (Fog))(b).
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For (iii), as a first step consider m,n € LY*Y. Then with (z,y) € X x X, we have

(o x @)~ (m)o (o x )~ (n)(z,y) = \/ mlp(x),0(2) *n(e(2), o(y))
zeX

<\ mlp(@),u) = n(u, o(y))

ueyY
=mon(p(x), oY) = (px @)~ (mon)(z,y).

With this we conclude
(pxp)"MoN)a)= \/  MoN(@d)
(pxp)—(d)<a

= \/ ( \/ M) *./\f(c))

d: (pxp)~(d)<a *boc<d
\/ M(b) * N(c)
b,c:
(pxp)~ (boc)<a
< \/ M(b) x N (c)

b,c:
(pxp) ™ (b)o(pxp) ™ (c)<a

\/( \/ M(b)»d\/'(c))

h,k: b,c:
hok<a (¢x¢)~ (b)<h
(pxp) ™~ (c)<k

\/ (\/{M(b) (o x )~ () < B}« \/IN(O) - (@X@)‘_(C)Sk}>
h,k:
hok<a

IN

IN

I
<
—
AS)

X
&
A
<
=
*
s
X
&
A
=
=
N~

4 Lattice-Valued Uniform Convergence Spaces

Here we propose a new definition of a lattice-valued uniform convergence structure on a set X,
generalising the work of Jager and Burton [16]. We show that our category is topological over
SET and we present the induced stratified L-limit structure. It is then shown that we can define
a forgetful functor to the subcategory SL-LIM [14] that will preserve the initial structures.

Unless otherwise stated, our lattice L will be a pseudo-bisymmetric enriched cl-premonoid.

Definition 4.1 Let X be a non-empty set, and (L, <, ®, %) a pseudo-bisymmetric enriched
cl-premonoid. A mapping A : F7 (X x X) — L is called a stratified L-uniform convergence

structure if A satisfies the following:
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(LUC1) forall z € X, A([(z,2)]) =T,

(LUC2) F <G = A(F) < A(9),

(LUC3) A(F) < A(FY,

(LUC4) A(F)ANAG) < A(FANG),

(LUC5) A(F) * A(G) < A(F o G) whenever F oG exists.

The pair (X, A) is called a stratified L-uniform convergence space.

The original definition proposed by Jager and Burton [16] was for the case where L is a complete
Heyting algebra. Their (LUC1) stated that for all z € X, A([x] x [z]) = T. For the case of L a
complete Heyting algebra, it can be seen from Lemmas 3.11 and 3.12(i) that [z] x [z] = [z], =
[(z,2)], for all z € X, and so we see how the new definition is a generalisation of the previous
one. In addition, the (LUCS5) given in [16] stated A(F) A A(G) < A(F o G). For the Heyting
algebra case, * = A, and so the above definition is thus a useful generalisation as it includes

the specific case that was investigated in that work.

Definition 4.2 [16] Let (X,A) and (Y,X) be stratified L-uniform convergence spaces. A
mapping ¢ : (X, A) — (Y, %) is uniformly continuous if for all F € F7 (X x X), we have:
AF) <3((e x 9) 7 (F)).

Proposition 4.3 [16] Let (X, A), (Y, X) and (Z,T) be stratified L-uniform convergence spaces.
Then:

(i) The mapping idx : (X,A) — (X, A) is uniformly continuous.

(ii) If p : (X,A) — (V,%) and ¢ : (Y, X) — (Z,T) are uniformly continuous, then 1 o ¢ :

(X,A) — (Z,T) is uniformly continuous.

RESULT: We have the concrete category SL-UCS, where the objects are stratified L-uniform

convergence spaces, and the morphisms are the uniformly continuous mappings.

If we have two different stratified L-uniform convergence structures, A and A’, on a set X, we
can order them in the following manner:

(X,A) < (X,A') if and only if, for all F € F7(X x X), A'(F) < A(F). In this case we say
A <A

Example 4.4 ( [16] for L a complete Heyting algebra) The indiscrete stratified L-uniform

convergence structure A; is defined:

Ay(F)=T forall Fe F7(X x X).
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Example 4.5 ( [16] for L a complete Heyting algebra) For F € F7(X x X), we define the

discrete stratified L-uniform convergence structure Ag by:

T ifF> /\ [(z, z)] for some finite E C X
Ad(]:) = zeFE
L else.

Cook and Fischer [2] showed that the classical uniform convergence spaces form a topological
category, and Jager and Burton [16] showed the analogous result for Heyting algebra-valued
uniform convergence spaces. Now we show this same result for the case where L is a pseudo-

bisymmetric enriched cl-premonoid.
Proposition 4.6 [16] The category SL-UC'S is a topological category (in the sense of Preuss [22]).

PRrROOF: First we will show the existence of initial structures. Consider a family {¢; : i € I}
such that X 25 (X;, A;) for all i € I.

For F € F7 (X x X), define:
AF) = N\ di((ei x 907 ().
iel
We show that (X, A) € |SL-UCS)|, but only present here (LUC1) and (LUCS5) as the proofs

of the other axioms are similar to those in [16].

LUC1: From the definition of the image of a stratified L-filter, we can see that (¢ x @)~ ([(z, 2)]) =
[(p(@), ¢(x))]. Now,

Al 2))) = A A (0% 00 ([ 2))

iel
= /\Az‘[(%(ﬂﬁ), vi(z))]
iel
=T.
LUCS5: From Proposition 3.16 we see that

(i X i) T (FoG) > (pi x i) (F) o (i X 9i)~ (G)
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Now we use that result to show

AMFoG) = N\ Ai((pi x i) (FeQ))

>\ (0 x 0™ (F) e (i x 07 (9)

=\ (84l 907 () * Mo % 90~©@) )
> /\IAi((QDi X i) (F)) * /\IAi((‘Pi X i)~ (9))
- f(f) « A(G). :

Therefore we have that (X, A) € |[SL-UCS].

Let (Y, %) € |[SL-UCS| and let ¢ : Y — X such that for alli € I, g, 09 : (Y, X) — (X;, Ay)

is uniformly continuous. Thus for all ¢ € I we have

E(F) < Ai(((%‘ o) X (pi ow))_}(]:)) = Ai(((0i x @i) o (¥ x )7 (F)),

and consequently

B(F) < A\ Ai(lpi < 007 (0 x 9)7 () = AW x )7 (F))-
il
Therefore ¢ : Y — X is uniformly continuous. Now we have that ¢ : (Y, X) — (X, A) is
uniformly continuous if and only if p; 09 : (Y, X) — (X, A;) is uniformly continuous. Further,
we show the fibre-smallness of SL-UC'S. Since each stratified L-uniform convergence structure
is a mapping A : F7 (X x X) — L we have that the class of all possible stratified L-uniform

FP(XxX) L.
MoE and so it is a set.

convergence structures on a set X, is a subset of {0, 1

Lastly, in order to show the terminal separator property, consider X = {x} and hence
X x X = {(z,2)}. Since there is only one element in X x X, the only L-sets that exist (i.e.
elements of LX*X)
property (LFS) we have F > [(z,z)] for all F € F7(X x X). Now A([(z,z)]) = T, but

A(F) > A([(z,2)]) and so A(F) =T for all F € F7 (X x X).

are the constant maps ax« x(z, ) = «a for each a € L. By the stratification

Example 4.7 Let (X, A), (Y, %) € |SL-UCS)| and consider the projections mappings P; and
P,. Then the product L-uniform convergence structure, A x ¥ on X x Y is defined by using

the initial uniform convergence structure for the projection mappings. That is, for a stratified
L-filter F € F7 (X x V) x (X xY)):

(A X Z)(F) = A((Pr x P1)7(F)) AE((P2 x Py) 7 (F)).
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In the case of L a complete Heyting algebra, the category SL-UCS has canonical function

spaces.
Proposition 4.8 [16] Let L be a complete Heyting algebra. Then SL-UC'S is cartesian closed.

Remark 4.9 From the stratified L-uniform convergence structures described earlier, it is possi-
ble to generate stratified L-limit structures. The stratified L-limit spaces are then sets equipped
with a map lim(A) : F7(X) — LX. That is, for each € X, lim(A)F(x) is the degree to

which F converges to x.
The pair (X,lim) is a stratified L-limit space [14] if lim : F7(X) — LX satisfies the
following axioms:
(L1) forall x € X, lim[z](x) =T,
(L2) F <G = limF <limg,
(L3) limF AlimG < lim(F A G).
If (X,limy) and (Y, limy) are stratified L-limit spaces, then ¢ : X — Y is continuous [14] if

for all z € X and for all F € F7 (X x X), lim F(z) < limy ¢~ (F)(p(z)).

REsuLT: SL-LIM is a concrete category, where the objects are stratified L-limit spaces and
the morphisms are the continuous mappings defined above. For (X,A) € |SL-UCS| we can
define a stratified L-limit structure lim(A) : 77 (X) — L by:

lim(A)F(z) = A(Fy).

Using Lemma 3.12 (i) and (ii), the proof of the axioms is straightforward. Further, if we have
¢ : (X,A) — (Y, %) uniformly continuous, then ¢ : (X,lim(A)) — (Y,1lim(X)) is continuous.

This proof will follow from Lemma 3.12(iii).

REsSULT: We can define a forgetful functor
SL-UCS — SL-LIM
F:q(X,A)— (X, 1im(A))
P
Let X be a set and for all i € I, let (X;,lim;) € |SL-LIM)|. For an SL-LIM source p; : X —

(X;,lim;), i € I, the initial stratified L-limit structure on X for F € F2(X) is defined [14] by:

lim F(2) = /\ limg;” (F) ().

i€l
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With this definition, it has been shown [16] that if ¢; : X — (X, A;) is a source in SL-UCS
and A is the initial SL-UC'S structure on X, then lim(A) is the initial SL-LIM structure with
respect to the source p; : X — (Xi, 1im(Ai)),i el

RESULT: The forgetful functor F' preserves initial structures.

5 Example: Lattice-Valued Uniform Spaces

The diagonal of a product X x X is defined as A = {(z,z) | z € X}. From this we can define
the diagonal L-filter on X x X. Let a € LX*X:

[Al(@) = A alz,2) = A\ (z,2)](a), so [A] = A [(,2)]

Definition 5.1 [6], [7] Let X be a non-empty set and U a stratified L-filter on X x X. If U

satisfies the properties below it is called a stratified L-uniformity on X.
(LU1) U < [A]

(LU2) U <U,

(LU3) U <UoU.

The pair (X,U) is called a stratified L-uniform space.

Definition 5.2 [6] Let (X,U) and (Y,V) be stratified L-uniform spaces and ¢ : X — Y.
Then ¢ is uniformly continuous if (¢ X ©) 7 (U) > V.

RESULT: We have the category SL-UNIF [6], where the objects are stratified L-uniform spaces,

and the morphisms are the uniformly continuous maps.

Here we will show that SL-UNIF is a reflective subcategory of SL-UCS. In order to do
this we will first introduce the category of principal stratified L-uniform convergence spaces
(SL-PUCS), a subcategory of SL-UCS. Then we will proceed by showing that SL-UNIF is
categorically isomorphic to SL-PUCS.

Definition 5.3 [16] The pair (X, A) € |SL-UCS]| is a principal stratified L-uniform conver-
gence space if there exists a stratified L-filter U € F5 (X x X) such that:
(LUCP) A(F)= N (U(a) = F(a)) for all F € F§(X x X).

acLXxX

The following lemma shows that from any principal stratified L-uniform convergence space,

we can get a stratified L-uniform space.
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Lemma 5.4 [16] Let (X, A) € |SL-PUC'S| where:

AF) = N U@ — Fa).

aeLXxX

Then (X,U) € |SL-UNIF|.

PrOOF: This can easily be adapted from that given in [16].

Below we show that from any stratified L-uniform space we can generate a principal stratified

L-uniform convergence space.

Lemma 5.5 [16] Let (X,U) € |SL-UNIF)|, and define:

NMF) = N (Ula) - Fla)).

aeLXxX

Then (X, AY) € |SL-PUCS].

PROOF: Again we show only (LUC1) and (LUCS5).

LUC1: From (LU1) we know that for all z € X and for all @ € L*X*X, U(a) < a(z,x).

Therefore

A, 2)]) = N (Ula) = [(,2)](a))

LUCS5: By definition we have that
MFoG) = N (Ula) = Fogla)).
aeLXxX
Now since (X,U) € |[SL-UNIF| we use (LU3) to give

N(Fog) > /\ (( \/ (U(d1)*u(d2)))—>]:°g(a))>

aeLX*xX diodz<a

= A A (@) ) — Fod),

aceLX*xX dyoda<a
using property (iii) of Lemma 2.1 in the equality. From the definition of the stratified L-filter
F oG we have

A A ( (dy) *U(dy) — FoGla ))

aceLX*xX dyoda<a

> NN () <U(d) — F(dr) 5 ()

a€LX*xX dioda<a

Q.
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Here we use Lemma 2.1 (x) in the first step, and properties of infima thereafter, to get

Q> N A (W) = Fld) « U(dz) — G(d2))

a€LX*xX diod2<a

A ( A ((U(dl) = Fdv)) * (U(dz) — g(d2)))>

dleLXxX dQELXXX

AN U@d) - Fd)« N\ (Udz) — G(ds))

dy ELX XX do€ LX XX

= AY(F) « A4(G).

Y

Y

That is, we have AY(F o G) > AY(F) x AY(G).

Lemma 5.6 [16] Let (X,U) € |SL-UNIF|. Then for a € LX*X,

Ua)= N\ (MF) = Fla)).
FeF$(XxX)
We have shown that there is a one-to-one relationship between the class of objects of SL-PUC'S
and SL-UNIF, and now do the same for the class of morphisms.

Lemma 5.7 [16] Let (X,U),(Y,V) € |SL-UNIF| and let ¢ : X — Y be a mapping. Then
the following are equivalent:

(i) ¢: (X,U) — (Y, V) is uniformly continuous,

(i) ¢: (X, AY) — (Y, AY) is uniformly continuous.

Corollary 5.8 [16] The categories SL-PUCS and SL-UNIF are categorically isomorphic.

Having shown the above result, we now proceed to show that SL-PUC'S is a reflective sub-
category of SL-UCS. This will then give us the corollary that SL-UNIF is isomorphic to a
reflective subcategory of SL-UC'S.

In order to prove that SL-PUC'S is a reflective subcategory of SL-UC'S we follow a suggestion

of J. Gutiérrez Garcia and consider the subset of L:
L®:{a€L : a§a®a}.

Clearly, for ® = A and ® = ® we have L® = L. The result where we must consider this subset
is the one below, where we will show that from any stratified L-uniform convergence space, we
can define a stratified L-filter. This will then in turn be used to generate a principal stratified
L-uniform convergence space. This fact will then give us that the stratified L-filter defined

below is in fact a stratified L-uniformity.
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Lemma 5.9 Let (L, <,®,*) be a pseudo-bisymmetric enriched cl-premonoid and let (X, A) €
|SL-UCS| such that A(F7(X x X)) € L®. We define the mapping Uy : L*** — L for
a € LX*X py:
Ur@)= N\ (AF) = F(a)).
FEFS(XxX)

Then Uy is a stratified L-filter on X x X.

PROOF:

LFO: Up(Llxxx) = /\ A(F) = F(Lxxx). Now we can take z € X and consider the
FEFS(XxX)

stratified L-filter [(z, )], where A([(z,z)]) = T. In this case, A([(z,2)]) — [(z,2)](Lxxx) =

T— 1L =1, and so we have Upn(Lxxx) = L.

Now consider Uy (Txxx) = /\ A(F) = F(Txxx). Clearly, for all

FEFS(XxX)
F € FJ(X x X) we have F(Txxx) = T. Now, for any F € F7(X x X) we have that
A(F) — T =T and therefore Up(Txxx)=T.

LF1: straightforward.

LF2: Let a,b e LX*X,

u@eth®) = A BEA-Fa)e( A (AEF - FG))

FEFS(XxX) FEFS(XxX)
< A (A9 = 6) & (AG) - 9m))-
GEFF (X XX)

Now with Lemma 2.3 we have that

u@eoth®) < A (MG~ (Ga) @ 60)).
GEFF (X XX)
We can then use (LF2) of the stratified L-filters to get
Un(@eUr(d)< N (AG) = Gla®b))
GEFS (X xX)

=Upr(a®D).
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LFS: Let o € L and a € LX*X. Then using Lemma 2.1(xi) and (LFS) of each F € F7 (X x X),

we get

a*xUp(a) = ax* /\ (A(F) — F(a))
FEFS(XxX)

A (ax(AF) = Fa))

FeFS(XxX)

/\ (A(]:) — (oz*]-'(a)))

FeFS(XxX)

/\ (A(f)ﬂf(aXXX*a))

FeFS(XxX)

IN

IN

=Up(axxx *a).
|

Now that we have shown that Uy is a stratified L-filter on X x X, we can proceed with the

main result.

Lemma 5.10 Let (L,<,®, x) be an enriched cl-premonoid and let (X,A) € |SL-UCS| such
that A(.?’-'f(X X X)) C L®. Then SL-PUCS is a reflective subcategory of SL-UCS.

PRrOOF: For any (X, A) € |SL-PUCS] it is clear that (X,A) € |[SL-UCS|. Therefore we can
consider the embedding functor

SL-PUCS —» SL-UCS

E:{(X,A)— (X,A)

p=—@

Now we let (X, A) € |SL-UCS| and define:
Ur@)= N\ (AF) = F(a)).
FEFS(XxX)

From the previous lemma we have that U, is a stratified L-filter on X x X. Moreover, for
x € X we have Up(a) < A([(z,2)]) — [(z,2)](a) = [(x, 2)](a) and so we find Uy < [A]. Also

Upn(a) < N AFH = F )
FEFS(XxX)

= N\ AF) = Fla)
FeFS(XxX)
= Ur(a™") = Uy'(a),

showing that Uy < Ugl. Lastly, using Lemma 3.16, we get Up o Up € ff(X x X), since for
any z € X we have Uy oUp < [(z,z)] o [(z,2)] € F7 (X x X).
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We define now
In={GeF (X xX): G<Ur G§<GoG}.

Then In # 0, as the coarsest stratified L-filter on X x X, [X x X]| = A, exxx[(®:y)] is in
In. We further define
ur=\ 6.

gela

Clearly, Ux € F7 (X x X) and U3 < Up. Moreover
G<GoG <UyolUy

for any G € I5 and therefore also Uy < UX o UY. Hence U satisfies (LU3). Also, from
U5 <Up < [A] we see that (LU1) is satisfied. For G € I, we have

Gt <U = Uy

and

Gl < (Go g)_l =g ltog
Therefore G=! € I, and hence

Uz \/ 67 = wi)

gela

From this it follows (Ux)~* > ((U3)~!)~! = Uj; and also (LUZ2) holds for U;. We define now

A(F) = N\ WUkla) — F(a)).

aeLXxX

Then, by Lemma 5.5, (X, A*) € |[SL-PUCS|. Moreover

A Ui(a) — F(a))

aeLXxX

> N\ (Uala) - Fla))

aeLXxX

> N (AF) = Fla) = Fa)
aeLXxX

> A(F).

AY(F)

Therefore A* < A. Let now A < A satisfy

AF) = N U) = F(a)

aeLXxX

with some stratified L-filter ¢ such that (X, A) € |SL-PUCS|. Then

Ua)= N AF -F@)< N (AF) - Fla) =Us(a).

aeLXxX aeLXxX
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By the maximality of U} we then conclude that U < U} and hence

aeLXxX

AF) = N Uia) = Fla) = A (F).

In other words, A < A* and therefore A* is the finest SL-PUC S-structure on X which is
coarser than A. Now, let ¢ : (X, A) — (Y, %) be a morphism in SL-UCS. We want to show
that ¢ : (X,A*) — (Y, X*) is a morphism in SL-PUC'S. To this end it is sufficient to show

Us, < (p x )~ (UR)-

Let G < Us, such that G < G o G. We know from Lemma 5.7 and the continuity of ¢ :
(X,A) — (Y, %) that (¢ x ¢) 7 (Ua) > Us. Hence also G < (¢ x )~ (Up). By Lemma 3.4(iii)
then (¢ X ¢)(G) exists and, by Lemma 3.4(i), we get

(px9)7(9) < (px @) ((p xp)Ur)) <Un.

Further, by Lemma 3.16(iii),

(exe) (G) <(pxp) (GoG) < (pxp) (G)o(pxp)(9)

and hence (¢ X ) (G) € In. Thus (¢ x ¢)"(G) <Uj and by Lemma 3.4 (ii) we finally get

G<(pxp) ((pxp)7(9) < (¢ x )~ (Uy).

Hence, by arbitrariness of G € I, we conclude Uss < (¢x¢)~ (Ux), and ¢ : (X, A*) — (Y, X*) is
continuous. Now that we know that the uniformly continuous mappings will remain morphisms,

we can define a functor:
SL-UCS — SL-PUCS

K2 (X, A) — (X, A7)
pr—

For (X,A) € |[SL-PUCS| we have K (E(X,A)) = (X,A) and since A* < A we know that
E(K(X,A)) < (X,A) for (X,A) € |SL-UCS].

This in turn means that idx : (X,A) — E(X, A*) is continuous. Therefore, for (X, A) €
|SL-UCS| we propose our E-universal map to be (idx, (X, A*)).

We show now that this is an F-universal map for (X, A).

Let (Z,T) € |SL-PUCS| and ¢ : (X,A) — E((Z,T)). We require a unique SL-PUCS
morphism ¢ : (X, A*) — (Z,T) such that the following diagram commutes:
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(X,A) —2 = B((2,1)) (Z,T)
o %
BE((X,A")) (X, A%)

It is clear that the mapping ¢ will be none other than K () = 1.
|

In [16], a similar result to the one above was stated for the case where L is a complete
Heyting algebra. The proof presented in [16] is unfortunately not correct. However, the result
of Lemma 5.10 does then show that the result in [16] is in fact still valid. We are grateful to

one of the reviewers for pointing out this inaccuracy.

Corollary 5.11 Let (L, <,®, *) be a pseudo-bisymmetric enriched cl-premonoid and let (X, A) €
|SL-UCS)| such that A(F7(X x X)) C L®. Then SL-UNIF is isomorphic to a reflective sub-
category of SL-UCS.

Remark 5.12 Now we show that for (X,U) € |SL-UNIF| there are two ways of inducing a
convergence function. What is remarkable is that these two pathways produce identical con-

vergence structures.

It is shown in [6] that from a stratified L-uniformity we can define a stratified L-neighbourhood

system for each = € X:
Nig(a) = \/ {u(d) | d(,z) < a}.

The stratified L-neighbourhood space (X (N ze X) is equivalent to a stratified L-topological
space. From this stratified L-topological space it is shown in [11] that we can induce a stratified
L-limit space by:
lim@)F@) = N\ (N(a) = Fla).
acLX
We can also consider the stratified L-uniform space (X, ) as a principal stratified L-uniform
convergence space (X, A) where
NMF) = N\ U@ - Fd).
deLX*xX
From here we can consider the induced stratified L-limit structure:
lim(A)F(@) = AF) = N\ (U(d) — (Fa)(d))
deLX*xX
The result below was proved in [16] for the case of L a complete Heyting algebra. Our proof
for the case of L a pseudo-bisymmetric enriched cl-premonoid uses the same procedure, except
that when considering the induced L-limit space, we make use of the filter F,, on the product

space.
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Proposition 5.13 Let (X,U) € |SL-UNIF|. Then (X,lim(U)) = (X, lim(A¥)).

Using the two routes of obtaining a stratified L-limit space that are described above, we can

show the following diagram commutes when L is a pseudo-bisymmetric enriched cl-premonoid:

(forget)

(X, U) (X, 7))
l (embed) l (embed)
(X, AY) el (X, lim(AY)) = (X, lim(1A))

6 Example: Probabilistic Uniform Limit Spaces

In this section we shall consider the enriched cl-premonoid ([0, 1, A, *) where * is a left-
continuous t-norm. We denote by F(X) the set of all classical filters on a set X. For ¥, 7 €
F(X x X) consider the filter U= = {F~!: F € ¥} where F~! = {(y, ) : (z,y) € F}. Now for
F,G C X xX, wehave FoG = {(z,y)|3z € X such that (z,z) € F,(z,y) € G}. The collection
Von=[{FoG : FeW¥,Gen}]isafiter if and only if Fo G #0, for all F € ¥,G €. We
also consider the filter &, generated by an element of X, where & = {F C X : x € F}.

Definition 6.1 [20], [21] For any « € [0, 1], consider £%, a non-empty collection of filters on
X x X. The collection (L%)qe0,1] is a probabilistic uniform limit structure if it satisfies the

following axioms

(UC1) forallz e X, a €[0,1], x X © € L,

(UC2) P eL* U <n=mneL

(UC3) v eLor=TleL

(UC4) U,ne L= T Ane L,

(P1) a<pB=LPCLY,

(P2) L0 =TF(X x X),

(PULIM) U € L% ne Ll = Vone L,

The pair (X, (E“)) is called a probabilistic uniform limit space

Definition 6.2 [20], [21] A mapping @, from one probabilistic uniform limit space to another,
¢ (X, (L£Y) — (Y,(K?)) is said to be uniformly continuous if for all a € [0,1], (¢ x
p)7 (L) C K

Definition 6.3 A probabilistic uniform limit structure, (£*)qeo0,1), is left-continuous if when-
ever we have ¥ € £ for all o € A, then ¥ € £V 4.
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Note that if W ¢ £ when (L£%)ae[o,1] is left-continuous, this implies that there exists e > 0
such that ¥ ¢ £>~¢. The left-continuous probabilistic uniform limit spaces with the uniformly

continuous mappings form a category PULIM™*.

In order to show that probabilistic uniform limit spaces are an example of our stratified
L-uniform convergence spaces, we must define a method for moving between L-filters and
classical filters. The following two constructions are special cases of definitions given in [5]. For
F e .7:[‘371]()( x X) define

(I)]:Z{ACXXX : f(TA):T}

Then 7 € F(X x X) [3].

Lemma 6.4 Let F,G € .7-'[*3 1] (X x X) and consider the associated filters ®  and ®g. Further,
let ¢ : X — Y. Then

(i) Pz =12 X &,

(ii) F<G= &5 < dg,

(iii) @) = (®5) ",

(iv) ®rag = Pr A Dg,

(v) if FoG € Fj (X x X), then ®5 0 ®g € F(X x X) and Prog > 5 0 ¥g,
(Vi) (e x )7 (Pr) = Poxp)—(F)-

PROOF: Results (i) to (iv) follow easily from the definitions. For (v) it must first be shown
that for F,G C X x X we have 1polg = 1poq. The reverse inequality appears only to be true
for L = {1, T}. For (vi) we use the fact that for A C X x X, (¢ X ¢) 7 (14) = Lipxe)—(A)-

Conversely, if we let ¥ € F(X x X), we can define for a € LX*X:
Fu(a) = \/{a €L :[a>a]l €V} where [a>a]={(z,y) : a(z,y) > a}.

Lemma 6.5 Let ¥,n € F(X x X) and consider the associated stratified L-filters Fy and F,.
Further let ¢ : X — Y be a mapping. Then

(i) Fixi = [(x,x)],
(ii) U <n=Fy an,

(iii) Fy-1 = (Fo)7 1,
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(iV) ]:\11/\]:77 S]:\I//\n,
(v) if Wone F(X x X), then Fy o F, € Fig (X x X) and Fy o Fy < Fuoy.
(vi) (¢ x9)7(Fu) = Foxp)~(9)-

PRrROOF: For (i) to (iii) the proofs are straightforward and hence left to the reader. For (iv), let

a € LX*X then

Fu(a) ANFyla) =\/{a : [a>a] e U} A\/{B : [a>p] €n}
=\ {anB :[a>a] eV, [a>p|en}
<\V{eAB:lazanfl eV, fa>anpen}
<\V{1:la=1e€¥fa>9]en}

<\/{fy [a > 7] E\I//\n}

Now for (v) we show that Fy o F;; < Fyoy. From this the existence of Fy o F,, will follow. For

cod < a we have

fq,(c)*]-},(d):\/{a*ﬁ : [cza]eﬁ/,[dzﬁ]EU}S\/{a*ﬁ :[e>alo[d>p] € Von}.

For (x,y) € [c > a] o [d > 3] we have z € X such that ¢(x,z) > « and d(z,y) >  and hence
cod(zx,y) > a* (. Consequently (z,y) € [cod > «a x 3]. Therefore

Fu(c) o Fy(d) < \/{a*ﬁ i fcod>axf] e \I/on} < Fuop(cod) < Fyoy(a).

In order to show (vi) we use the fact that [(¢ X ¢)~(a) > a] = (¢ X ¢) " [a > a] and also that
(pxp)"la>a]l €Vif and only if [a > o] € (¢ X ¢) 7 (P).

Lemma 6.6 Suppose F € .7:[*371](X x X) and UV € F(X x X). Then
(i) For < F,

(ii) @z, = 0.

PROOF: To show (i), we let @ € LX*X and see

For(a \/{a: la>a] € ®r}

:\/{Oé : .7: 1[a2a]):1}
§\/{a Dk F(lgsa)) = o}
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Then, from the stratification of F, we see

Far(a <\/{a: (ax1g>a)) = af
—_———

<a

g\/{a : Fla) > a} = F(a)

For (ii), it is simple to show that

Ac bz, «= Fy(la)=1+=\/{a: A=[la>al €V} =1<= AT

For (X, (L) acp0,1]) € |PULIM*| we define
Ap: Fig (X x X) — [0, 1]
for F € .7:[%71](X x X) by
Ac(F) =\ {a cl0,1]: oy e E“}.
Proposition 6.7 The mapping Az is a stratified [0, 1]-uniform convergence structure.

PROOF:
LUCT: The filter @, ) =& X & € L. Therefore Aﬁ([(x, x)]) =1.

LUC2: If F < G by Lemma 6.4(ii) we have that & < ®g. Now

Ag(]:) = \/ {a tdre Ea}
< \/ {a : dg e Ea}
= Az (G).
LUCS: If &5 € £*, then by (UC3) and Lemma 6.4(iii), (®d£)~! = @ (r-1y € LY Now
Ag(]:) = \/ {a HEOFNS Ea}
< \/ {Oé : q)(]:—l) S Ea}
= Ag(]:_l).
LUC4: Here we have

Ac(F)NAL(G) =\ {a : @reL} A\ {8 : &g e L")}
:\/{a/\ﬁ c dr € L% dg € L.

32
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From (P1) we will then get
Ac(F)AAL(G) <\ {anpB : &F € L4 &g € L7}
<\{v:®reLr dge L}
Now using (UC4) and Lemma 6.4 (iv) we see
Ac(F)NALG) <\ {y : @7 NOg = Drpg € L7}
= Az(FAG).

LUCS: Let F,G € .7-'[*3 1 (X x X) and suppose that F o G exists. By Lemma 6.4(v) we have
that ®r o ®g exists and that ®r.g > @£ o Pg. By definition we have that
Ap(F)sAp(G=\{e: ®rel}«\[{6: dgerL’}=\/{exd: ®rec L dge L}

Using (PULIM) and then (UC2) we then see that

Ap(F)xAp(G) <\ {exd : rodg e L}
<\/{v: @rodge L}
S\/h : Prog € L7}
= As(Fo Q).

Proposition 6.8 The map 6 : PULIM* — S[0,1]-UCS, (X, (E“)) — (X, Ar) is injective

on objects.

Proor: Consider (X, (E“)ae[o’l]) and (X, (K“)ae[o’l]) such that (£%)aep0,1] 7 (K¥)aelo,1- We
must then have an o such that £ # ? and therefore there must exist ¥ such that ¥ € £*°
but ¥ ¢ K.

From the left continuity of (K%)4ejo,1) we have therefore that ¥ ¢ K*°~¢ for some € > 0.

For ¥ and a € LX*X we have Fy(a) = \/ aand Fy € .7:[‘371] (X x X). Further, ®(x,) = V.
[a>alew

Now Az(Fu) =V i{a: ®x,) =¥ e LY} >apand Ax(Fy) =V {a: &r,) =V ek} <
ap. This second inequality is as a result of the fact that from (P1) we have that for 5 > ay
that ¥ ¢ KP. Therefore we have shown that (X, Az) # (X, Ax).

Proposition 6.9 The mapping § preserves morphisms.
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PROOF: Let ¢ : (X, L%) — (Y,K%) be uniformly continuous. That is, for all a € [0,1] we
have (¢ X ¢) 7 (L*) C K. In order to show that ¢ is a morphism in S[0, 1]-UC'S we must show
that for all F € F{ (X x X) we have Az(F) < Ac((p x 9) 7 (F)).

We know that Az(F) = V{a : ®r € £*}. If ® € L* then by Lemma 6.4(vi) we
get (¢ X )7 (PF) = Pyxp)—(F) € K. Hence we can see that {a : O € E‘X} - {a :
D(pxp)—(F) € K} and therefore Az (F) < Ax((¢ x )7 (F)).

Using the above propositions, we define an embedding functor for L = [0, 1]:

PULIM* — S[0,1]-UCS
0: (X, (£%aep,1)) — (X, Az)
pE=@
Proposition 6.10 The functor § is full. That is,
mm‘((Xa (L%)ael0,1)); (Y (’C“)ae[o,u)) = mor((X, Az), (Y, Ax)).

PROOF: Let ¢ : (X,Az) — (Y, Ax) be uniformly continuous. That is, for all F € .7:[‘3 1](X><X)
we have Az (F) < Ax((¢ x ¢)7(F)). Now if we let ¥ € F(Y xY), ap € [0,1] and ¥ €
(o x )7 (L) then there must exist some 7 € L* such that (¢ X ¢)7(n) < U.

For F, we have ®z,) = 1 and therefore Az(F,) =\ {a : &) =n€ L*} > ap. Hence
Ak ((e x 9)7 (Fy)) = oo

We have that

Ax(lpx o)~ (Fp) =\ {8 : B ) = (o ©) 7 (®(r,) = (p x )~ (n) € K7}

(pxp) =~ (Fn)

This then gives us \/ {8 : (¢ x )~ (1) € KP} > ap. Now if we consider A = {3 : (px )7 (n) €
KA}, then (¢ x @)~ (n) € KP for all 8 € A. By left-continuity we then get (¢ x )~ (n) € KV A,
Since \/ A > ag we have that V4 C £ and hence (¢ x )~ (n) € K.

In order to show that we can also generate a probabilistic uniform limit space from a

stratified L-uniform convergence space for ¥ € F(X x X) and « € [0, 1], we define
U e LY < A(Fy) > a.

Proposition 6.11 If (X,A) € |S[0,1]-UCS|, then (X, (Eﬁ)ae[o,u) is a probabilistic uniform

limit space.
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UC1: By Lemma 6.5(i), Fixs = [(z,2)] and A([(z,z)]) = 1, we have & x & € LY for all
a€[0,1].

UC2: Suppose U < n and ¥ € L. Then clearly A(Fy) > «. From Lemma 6.5(ii) and
(LUC2) A(F,;) > A(Fy) > a and thus we see n € L].

UC3: If ¥ € L§ then A(Fy) > a. By (LUC3) and Lemma 6.5(iii) we have A(Fg-1)) =
A((]—'q,)_l) > o and therefore =1 € £%.

UC4: If ¥, 7 € LY then clearly A(Fy) > a and A(F,) > a. Using first (LUC2) and Lemma
6.5(iv), followed by (LUC4) we get

A(]:\Il/\n) > A(]:\I/ A ]:TI)
> A(Fa) AA(F,)
> al«o

= .

Hence ¥ A € L].
P1: Suppose a < § and ¥ € L. This gives us A(Fy) > 8 > a. Therefore ¥ € L].
P2: If ¥ € F(X x X) then A(Fy) > 0 and therefore ¥ € £4. Hence L) = F(X x X).

PULIM: Suppose ¥ € L§ and 7 € E/B\, and that W o7 exists. Then by Lemma 6.5(v) Fy o F,
exists and Fy o Fp; < Fyop. Now A(Fy) > a and A(F,) > [ and therefore by (LUC5) we
have A(Fy o Fpy) > A(Fu) * A(F,)) > ax .

Axiom (LUC2) then gives us A(Fyoy) > a* 3 and hence Vo € £y,

Proposition 6.12 If¢ : (X,A) — (Y, X) is uniformly continuous, then ¢ : (X, (E%)ae[o,l}) —

(Y, (E%)ae[o,l}) is uniformly continuous.

Proor: If a € [0,1] and ¥ € L§ then A(Fy) > a. Since ¢ is uniformly continuous, ¥((¢ x
©) 7 (Fu)) = S(Foxp)—~(w)) > @, and therefore (¢ x )~ (¥) € LS.
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As a consequence of the previous two results we can now define a functor:

S[0,1]-UCS — PULIM*
K (X,A) — (X, (‘Ci)ae[o,u)
P
Proposition 6.13 For (X, (£%)acj0,1]) € |[PULIM*| and for all o € [0,1] we have L* =
LLy - In other words, K(é( , (L )ae[O,l])) = (X, (LYacp,1])-

PROOF: Let ¥ € L Then Az(Fy) =V {8 : ®r,) =V €L} >aandso V€ L7y 5

On the other hand, ¥ € E(A ) if and only if Az(Fy) > «. By definition, this will only be
the case if \/ {B# : ®(r,) =¥ € L} > a. If we denote A = {3 : ¥ € L7}, then we have
U e £P for all B € A and hence by left continuity ¥ € £V 4 c £,

Proposition 6.14 The identity mapping idx : (X, 5(K(X, A))) — (X, A) is continuous. In
other words, (X,A) < §(K(X,A)).

PROOF: For F € Fg (X x X)),

Proposition 6.15 PULIM* is a coreflective subcategory of S[0,1]-UCS.

PRrROOF: Let (X,A) € |5[0,1]-UCS|. Then idx : (X S(K(A ))) — (X, A) is a morphism. For

a further space (Y, (K*)acp0,1]) € [PULIM?*|, and a morphism ¢ : (Y, (K*)acpo,1]) — (X, A)

we have that ¢ : ( (5( )aclo,1 )) — (X, K(A)) is a morphism in PULIM* since
2 (

K)
(V. K (50 acom) ) = (v: (£)

)aclo,1 ) Clearly, idx o @ = ¢.

Now to show the uniqueness of @, assume that ¢ : (Y, (IC‘X)) — (X K (A)) such that
idx o ¢ = ¢. This would imply that we have idx o $(y) = idx o ¢(y) and hence for all y € Y,
¢(y) = ¢(y). Hence ¢ = ¢.
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7 Conclusions

We have generalised the category of lattice-valued uniform convergence spaces, previously de-
fined in the restricted case of complete Heyting algebras, to more general enriched lattices.
The resulting category, SL-UCS, was shown to be a topological category in the definition of
Preuss [22]. Moreover we could show that Gutiérrez Garcia’s L-uniform spaces [6] and Nusser’s
probabilistic uniform limit spaces [20], [21] can be viewed as natural examples of our spaces.
This shows that our category is a suitable framework for studying various lattice-valued con-

cepts of uniformities.

A question that remains open is whether or not our category is also cartesian closed. We
encountered problems in generalising the function space structure defined in [16] to our more
general setting. Also, it would be intersting to know if Nusser’s category of probabilistic uniform
limit spaces can also be reflectively embedded into our category. We will have a look into these

questions in our future work.
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