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1 Introduction

In his thesis [6], Gutiérrez Garćıa developed a common framework for different approaches to

lattice-valued uniform spaces. These approaches comprise:

• generalizations of Weil’s entourage uniformities [27] such as Lowen’s fuzzy uniformities

[19] and Höhle’s L-uniformities [8], [9];

• generalizations of a uniform operator approach: Hutton’s L-uniformities [12] (see also

[29]). Classically this approach has not received wide attention. It appears briefly in [17].

In [23] it is argued that Hutton’s approach, though leading in the case that L = {0, 1} to a

category of uniform spaces which is isomorphic to Weil’s entourage uniformities [27, 1] and

Tukey’s covering uniformities [13, 26], is for L 6= {0, 1} different and more general. This

approach is, consequently, developed in [23] under fairly general conditions (e.g. no distributivity

requirements on the lattice L).

The approach in [7, 6] uses a more restricted lattice context but establishes links between

the aforementioned approaches of lattice-valued uniform spaces. In fact, based on the notion of

lattice-valued Hutton uniformity, all three aproaches are shown to be special cases of this gen-

eral framework. In order to accommodate Lowen’s [19] and Höhle’s [8, 9] approaches into the

new framework, the notion of L-uniformity is used. This L-uniformity is an L-filter satisfying

some natural axioms. The lattice context is chosen to be enriched cl-premonoids, where the

complete lattice (L,≤) is enriched by two further “algebraic” operations ∗ and ⊗, the first of

which distributing over arbitrary joins. It gives thus rise to a residual impication operator. If

L = {0, 1}, Gutiérrez Garćıa’s L-uniformities can be viewed as entourage uniformities in the

definition of Weil [27].

In the classical case, the category of uniform spaces with uniformly continuous mappings as

morphisms is not cartesian closed. In order to have a “nicer” category to work with, Cook and

Fischer [2] (modified by Wyler [28]) defined a supercategory, the category of uniform conver-

gence spaces. This category is topological over SET (i.e. it allows initial constructions) and

cartesian closed (i.e. it has canonical function spaces) [18]. Cook and Fischer’s category, as

improved by Wyler [28], was generalised to a category of lattice-valued uniform convergence

spaces in [16]. The lattice context was that of a complete Heyting algebra. Also this category

of lattice-valued uniform convergence spaces is topological over SET and cartesian closed. Un-

fortunately, the restriction to complete Heyting algebras as underlying lattices misses several

important examples of Gutiérrez Garćıa’s L-uniform spaces. We therefore generalise the lattice

context in this paper from complete Heyting algebras to enriched cl-premonoids as they are

used in [7]. We will show that a suitable adaptation of the definition of [16] again results in

a category which is topological over SET . Moreover, our new category contains many impor-

tant categories of L-uniform spaces as reflective subcategories. The generalised lattice context,
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however, has even wider applications. It allows us to view other categories of “many-valued”

uniform convergence spaces as natural examples of our definition: the probabilistic uniform

limit spaces of Nusser [20], [21]. Nusser’s spaces generalise the probabilistic uniform spaces of

Florescu [4], and they are explicitly based on a t-norm on [0, 1]. Our general setting allows us to

view Nusser’s category of probabilistic uniform convergence spaces as a coreflective subcategory

of our category of lattice-valued uniform convergence spaces when choosing the appropriate lat-

tice context.

The paper is organised as follows: in section 2, we collect the results about lattices and

lattice-valued sets that we will need later on, and we fix the notation. The next section is then

devoted to lattice-valued filters. We define product filters and inverses and compositions of

stratified L-filters on X × X. Further, we give criteria when these constructions again yield

stratified L-filters. In section 4 we define our new category of lattice-valued uniform convergence

spaces and show that this category is topological over SET . Here we also mention the forgetful

functor from our category to the category of lattice-valued convergence spaces [14]. Section 5

studies the most important example, namely Gutiérrez Garćıa’s lattice-valued uniform spaces.

We show that under a mild condition on the underlying lattice, Gutiérrez-Garćıa’s category

is isomorphic to a reflective subcategory of our category. Further, we mention the underlying

topological space of a lattice-valued uniform space and show that there are two ways of coming to

a lattice-valued convergence space when starting from a lattice-valued uniform space, and that

these two ways lead to the same space. One of these methods proceeds by forgetting the uniform

structure and embedding the resulting lattice-valued topological space into the category of

lattice-valued convergence spaces, while the other embeds the lattice-valued uniform space into

the category of lattice-valued uniform convergence spaces and then uses the underlying lattice-

valued convergence space. Section 6 is then devoted to showing that Nusser’s probabilistic

uniform limit spaces form a category which is isomorphic to a coreflective subcategory of our

category. Finally, we draw some conclusions.

2 Preliminaries

Throughout this work, we will consider (L,≤) to be a complete lattice with >, the top element,

and ⊥ the bottom element such that > 6= ⊥. The triple (L,≤, ∗) is called a quantale [24] if

(Q1) (L, ∗) is a semigroup,

(Q2) ∗ is distributive over arbitrary joins, i.e.
( ∨

i∈J
αi

)
∗ β =

∨

i∈J
(αi ∗ β) and β ∗

( ∨

i∈J
αi

)
=

∨

i∈J
(β ∗ αi).
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As consequence of the distributivity we have that when α, β ∈ L are such that α ≤ β, then for

any γ ∈ L we will have α ∗ γ ≤ β ∗ γ. When we have that ∗ is ∧, the quantale (L,≤,∧) is also

called a complete Heyting algebra.

A commutative quantale, (L,≤, ∗), is divisible if for every inequality β ≤ α there exists δ ∈ L

such that β = α ∗ δ [24]. A quantale that is commutative, strictly two-sided (> is the unit with

respect to ∗) and divisible is called a GL-monoid [10].

In a commutative quantale we have the implication operator :

α→ β =
∨ {

λ ∈ L : α ∗ λ ≤ β
}
.

This operator has the property that δ ≤ α→ β ⇐⇒ δ ∗ α ≤ β.

Lemma 2.1 [11] Let (L,≤, ∗) be a GL-monoid and α, β, δ, αi, βi ∈ L. Then the following

properties hold:

(i) α→ β = > ⇐⇒ α ≤ β,

(ii) α→
( ∧

i∈I

βi

)
=

∧

i∈I

(α → βi),

(iii)
( ∨

i∈I

αi

)
→ β =

∧

i∈I

(αi → β),

(iv) α ∗
( ∧

i∈I

βi

)
=

∧

i∈I

(α ∗ βi),

(v) (α→ δ) ∗ (δ → β) ≤ (α → β),

(vi) α ≤ β =⇒ δ → α ≤ δ → β,

(vii) α ≤ β =⇒ β → δ ≤ α → δ,

(viii) α → (β → δ) = (α ∗ β) → δ,

(ix) α ∗ (α→ β) = α ∧ β,

(x) (α→ β) ∗ (δ → γ) ≤ (α ∗ δ) → (β ∗ γ),

(xi) α ∗ (β → γ) ≤ β → (α ∗ γ),

(xii)
∧

i∈I

(αi ∗ βi) ≥
( ∧

i∈I

αi
)
∗

( ∧

i∈I

βi
)
.

A triangular norm [25] or t-norm is a binary operation ∗ on the unit interval [0, 1] such that

the following are satisfied:



Craig/Jäger: A common framework for L-uniform and probabilistic uniform limit spaces 5

(T1) α ∗ β = β ∗ α (commutativity)

(T2) α ∗ (β ∗ δ) = (α ∗ β) ∗ δ (associativity)

(T3) α ∗ β ≤ α ∗ δ whenever β ≤ δ (monotonicity)

(T4) α ∗ 1 = α (boundary condition)

The pair ([0, 1], ∗) can be considered as a quantale if the t-norm is left-continuous. The three

most commonly used (left-continuous) t-norms are:

• minimum: α ∗ β = α∧ β,

• product: α ∗ β = α · β,

• Lukasiewicz: α ∗ β = (α+ β − 1) ∨ 0.

The triple (L,≤,⊗) is a cl-premonoid [11] if:

(CL1) (L,≤) is a complete lattice,

(CL2) the binary operation ⊗ on L satisfies the isotonicity axiom :

α1 ≤ α2 , β1 ≤ β2 =⇒ α1 ⊗ β1 ≤ α2 ⊗ β2,

(CL3) for each α ∈ L, α ≤ α⊗> and α ≤ > ⊗ α,

(CL4) the operation ⊗ is distributive over non-empty joins, ie: for J 6= ∅,

( ∨

i∈J

αi

)
⊗ β =

∨

i∈J

(αi ⊗ β), β ⊗
( ∨

i∈J

αi

)
=

∨

i∈J

(β ⊗ αi).

An enriched cl-premonoid [11] is a quadruple (L,≤,⊗, ∗) where:

(E1) (L,≤,⊗) is a cl-premonoid,

(E2) (L,≤, ∗) is a GL-monoid,

(E3) the operation ∗ is dominated by ⊗. That is, for all α1, α2, β1, β2 ∈ L:

(α1 ⊗ β1) ∗ (α2 ⊗ β2) ≤ (α1 ∗ α2) ⊗ (β1 ∗ β2).

A consequence of the domination is that α ∗ β ≤ α⊗ β.

Examples 2.2

• If (L,≤,∧) is a complete Heyting algebra, then (L,≤,∧,∧) is an enriched cl-premonoid.
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• If (L,≤, ∗) is a quantale, then (L,≤,∧, ∗) is an enriched cl-premonoid.

A GL-monoid (L,≤, ∗) is said to have square roots [10] if there exists a unary operator S :

L −→ L with the following properties:

(S1) for all α ∈ L, S(α) ∗ S(α) = α,

(S2) β ∗ β ≤ α =⇒ β ≤ S(α).

If (L,≤, ∗) is a GL-monoid with square roots, then the monoidal mean operator, ~ : L×L −→ L,

is defined by α~ β = S(α) ∗ S(β). If (L,≤, ∗) also satisfies:

(S3) S(α ∗ β) =
(
S(α) ∗ S(β)

)
∨ S(⊥) for all α, β ∈ L

then if we use the monoidal mean operator as the cl-premonoid operation we get an enriched

cl-premonoid: (L,≤,~, ∗).

All of the t-norms mentioned earlier are left-continuous, and have square roots satisfying

(S3). Thus we can use the monoidal mean operator to form an enriched cl-premonoid where

for the minimum t-norm α ~ β = α ∧ β. For the product t-norm we get α ~ β =
√
α · β, the

geometric mean, and for the Lukasiewicz t-norm α~ β = α+β
2

, the arithmetic mean.

Lemma 2.3 Let (L,≤,⊗, ∗) be an enriched cl-premonoid and let α, β, δ ∈ L. If α ≤ α ⊗ α,

then

(α→ β) ⊗ (α→ δ) ≤ α → (β ⊗ δ).

Proof: This form of the proof was suggested in communication with Javier Gutiérrez Garćıa.

We will use Lemma 2.1 (ix) and the fact that the ∗ operation is dominated by the ⊗ to show

(
(α→ β) ⊗ (α→ δ)

)
∗ α ≤

(
(α→ β) ⊗ (α→ δ)

)
∗ (α⊗ α)

≤
(
(α→ β) ∗ α

)
⊗

(
(α→ δ) ∗ α

)

= (α ∧ β) ⊗ (α ∧ δ)

≤ β ⊗ δ.

The desired result can easily be seen from the property of the implication operator.

�

For the monoidal mean operator, we will clearly have α~ α = S(α) ∗ S(α) = α. Also, for the

Heyting algebra case (L,≤,∧,∧) we have α ∧ α = α. So clearly the above lemma will be valid

for all α ∈ L for these cases.
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Let (L,≤,⊗, ∗) be an enriched cl-premonoid. If the equation:

(α1 ∗ β1) ⊗ (α2 ∗ β2) =
(
(α1 ⊗ α2) ∗ (β1 ⊗ β2)

)
∨

(
(α1 ⊗⊥) ∗ (β1 ⊗>)

)
∨

(
(⊥⊗ α2) ∗ (>⊗ β2)

)

is satisfied for all α1, α2, β1, β2 ∈ L then (L,≤,⊗, ∗) is pseudo-bisymmetric [11]. In the case

where ⊗ = ∗ and the case of the monoidal mean operator, as well as (L,≤,∧, ∗) and (L,≤,∧,∧),

we have pseudo-bisymmetry.

Let (L,≤,⊗, ∗) be an enriched cl-premonoid and X be a set. We denote the L-sets on X

by a, b, c, . . . ∈ LX . For L-sets a, b, aj (j ∈ J), we extend the operations from (L,≤,⊗, ∗)
pointwise by

( ∧

j∈J

aj
)
(x) =

∧

j∈J

(
aj(x)

)
,

( ∨

j∈J
aj

)
(x) =

∨

j∈J

(
aj(x)

)
,

(a⊗ b)(x) = a(x) ⊗ b(x),

(a ∗ b)(x) = a(x) ∗ b(x).

To extend the order relation, we say a ≤ b if for all x ∈ X we have a(x) ≤ b(x). For any α ∈ L

and A ⊂ X we denote

αA(x) =




α if x ∈ A

⊥ else.

Two special cases of this are the charateristic function of A, >A, and the zero function, ⊥X .

If ϕ : X −→ Y is a mapping and a ∈ LX , b ∈ LY , then we denote ϕ→ : LX −→ LY

the mapping ϕ→(a)(y) =
∨
x :ϕ(x)=y a(x) (with

∨
∅ = ⊥) and ϕ← : LY −→ LX the mapping

ϕ←(b) = b ◦ ϕ.

3 Stratified L-filters

Definition 3.1 [11] Let X be a set and (L,≤,⊗, ∗) an enriched cl-premonoid. A map F :

LX −→ L is a stratified L-filter on X if F satisfies:

(LF0) F(>X ) = >, F(⊥X ) = ⊥,

(LF1) a1, a2 ∈ LX , a1 ≤ a2 =⇒ F(a1) ≤ F(a2),

(LF2) F(a1) ⊗F(a2) ≤ F(a1 ⊗ a2) for all a1, a2 ∈ LX ,

(LFS) for all α ∈ L, for all a ∈ LX , α ∗ F(a) ≤ F(αX ∗ a).

The set of all stratified L-filters on X is denoted by FS
L (X).
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Examples 3.2

• The point filter [x] : LX −→ L, a 7−→ a(x) is a stratified L-filter for every x ∈ X.

• For A ⊂ X, the mapping [A] : LX −→ L, a 7−→
∧
x∈A a(x) is a stratified L-filter on X.

A partial ordering can be defined on the set of all stratified L-filters on X by:

F ≤ G ⇐⇒ F(a) ≤ G(a) ∀ a ∈ LX .

Here we say that F is coarser than G, or G is finer than F . For a collection of stratified L-filters

on X, {Fi : i ∈ I}, the greatest lower bound is defined [6] for a ∈ LX :

( ∧

i∈I

Fi
)
(a) =

∧

i∈I

Fi(a)

and
∧

i∈I
Fi ∈ FS

L (X).

It is clear that for A ⊂ X we have [A] =
∧
x∈A[x]. Further, [X] is the coarsest stratified

L-filter on X [11]. The least upper bound of two stratified L-filters does not always exist but

it has been shown [7] that an upper bound for two L-filters will exist when they satisfy certain

conditions.

Proposition 3.3 [7] Let (L,≤,⊗, ∗) be an enriched cl-premonoid that is pseudo-bisymmetric.

Further let F and G be two stratified L-filters on X. If F(a1) ∗ G(a2) = ⊥ for all a1, a2 ∈ LX

such that a1 ∗ a2 = ⊥X , then there exists an upper bound for both F and G.

Gutiérrez Garćıa [7] has shown that if ⊗ = ∗ and the condition above is satisfied, then the least

upper bound of two stratified L-filters is given by:

(F ∨ G)(a) =
∨

{F(a1) ∗ G(a2) | a1, a2 ∈ LX and a1 ∗ a2 ≤ a}.

Let X and Y be sets, ϕ : X −→ Y and F ∈ FS
L (X). The image of F under ϕ, ϕ→(F) : LY −→

L, is always a stratified L-filter on Y and is defined [11] for a ∈ LY :

ϕ→(F)(a) = F
(
ϕ←(a)

)
= F(a ◦ ϕ).

From this definition it is straightforward to deduce that ϕ
(
[x]

)
=

[
ϕ(x)

]
.

Let X and Y be sets, and suppose ϕ : X −→ Y and let F ∈ FS
L (Y ). For a ∈ LX define [11]

ϕ←(F) : LX −→ L by

ϕ←(F)(a) =
∨ {

F(b) |ϕ←(b) ≤ a
}
.

The mapping ϕ←(F) is a stratified L-filter on X if and only if, for b ∈ LY , F(b) = ⊥ whenever

ϕ←(b) = b ◦ ϕ = ⊥X [14].
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If we have X, Y and Z as sets, and F ,G ∈ FS
L (X), ϕ : X −→ Y and ψ : Y −→ Z, then it is

easy to see that (ϕ ◦ψ)→(F) = ϕ→
(
ψ→(F)

)
, and ϕ(F) ∧ϕ(G) = ϕ(F ∧G). As a consequence,

if we have ϕ and F ,G as above with F ≤ G, then ϕ(F) ≤ ϕ(G).

Lemma 3.4 Let X and Y be sets and ϕ : X −→ Y . With F ∈ FS
L (X) and G ∈ FS

L (Y ) the

following hold:

(i) ϕ←
(
ϕ→(F)

)
∈ FS

L (X) and ϕ←
(
ϕ→(F)

)
≤ F ,

(ii) if ϕ←(G) ∈ FS
L (X), then G ≤ ϕ→

(
ϕ←(G)

)
,

(iii) if G ≤ ϕ→(F) then ϕ←(G) ∈ FS
L (X).

Proof: the proofs for (i) and (ii) are straightforward, while (iii) follows from (i) and the fact

that ϕ←(G) ≤ ϕ←(ϕ→(F)).

�

From here on, we consider our lattice L to be an enriched cl-premonoid (L,≤ ⊗, ∗) that is

pseudo-bisymmetric. The pseudo-bisymmetry is required as it will guarantee the existence of

upper bounds (see Proposition 3.3), and this is required in the definition of a product L-filter.

Consider now the projection mappings:

P1 :




X × Y −→ X

(x, y) 7−→ x
and P2 :




X × Y −→ Y

(x, y) 7−→ y.

Definition 3.5 Let X and Y be sets and let F ∈ FS
L (X) and G ∈ FS

L (Y ). We define their

product F × G by:

F × G = P←1 (F) ∨ P←2 (G).

Proposition 3.6 The mapping F × G is a stratified L-filter on X × Y .

Proof: Here we use the result of Proposition 3.3. That is, we must show that P←1 (F)(a) ∗
P←2 (G)(b) = ⊥ for all a, b ∈ LX×Y such that a ∗ b = ⊥X×Y . This will show that there exists an

upper bound for P←1 (F) and P←2 (G), and hence there must exist a least upper bound as the

meet of all upper bounds.

Suppose that a, b ∈ LX×Y are such that a ∗ b = ⊥X×Y . Then

P←1 (F)(a) ∗ P←2 (G)(b)

=
∨ {

F(c) | c ∈ LX , P←1 (c) ≤ a
}
∗

∨ {
G(d) | d ∈ LY , P←2 (d) ≤ b

}

≤
∨ {

F(c) ∗ G(d) | c ∈ LX , d ∈ LY , P←1 (c) ∗ P←2 (d) ≤ ⊥X×Y
}
.
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Now, P←1 (c)(x, y) = c ◦ P1(x, y) = c(x). Similarly P←2 (d)(x, y) = d(y). Therefore

P←1 (F)(a) ∗ P←Y (G)(b) ≤
∨ {

F(c) ∗ G(d) | c(x) ∗ d(y) = ⊥, ∀ x ∈ X, ∀ y ∈ Y
}
.

Now we note that if c(x) ∗ d(y) = ⊥ for all x ∈ X, y ∈ Y , then since ∗ is a quantale operation,

and using (Q2) we get

⊥ =
∨

x∈X

∨

y∈Y

(
c(x) ∗ d(y)

)
=

( ∨

x∈X

c(x)
)
∗

( ∨

y∈Y

d(y)
)
.

Together with (LF1), this yields

P←1 (F)(a) ∗ P←2 (G)(b) ≤
∨ {

F(αX) ∗ G(βY ) | α ∗ β = ⊥
}
.

Now, using (LFS), the stratification of the L-filters F and G, we have that for all α, β ∈ L,

F(αX) ∗ G(βY ) ≤ F
(
αX ∗

(
G(βY )

)
X

)
.

Then consider

[
αX ∗

(
G(βY )

)
X

]
(x) = αX(x) ∗

(
G(βY )

)
X

(x)

= α ∗ G(βY )

≤ G(αY ∗ βY )

= G(⊥Y ) = ⊥.

From this we get that F(αX ) ∗ G(βY ) ≤ F(⊥X ) = ⊥. Therefore, since

P←1 (F)(a) ∗ P←2 (G)(b) ≤
∨ {

F(αX) ∗ G(βY ) | α ∗ β = ⊥
}

we get that P←1 (F)(a) ∗ P←2 (G)(b) = ⊥.

�

Lemma 3.7 [16] Let X and Y be sets and let F ,G ∈ FS
L (X),H,K ∈ FS

L (Y ). If F ≤ G and

H ≤ K then F ×H ≤ G × K.

Lemma 3.8 [15] Let F ∈ FS
L (X × Y ). Then P→1 (F) × P→2 (F) ≤ F . Further, if G ∈ FS

L (X)

and H ∈ FS
L (Y ) then P→1 (G × H) ≥ G and P→2 (G × H) ≥ H.

Now we propose the definition of a new mapping from LX×X −→ L, one that is in fact a

stratified L-filter on the product space X × X. This is later used when inducing a stratified

L-limit space from a stratified L-uniform convergence space.

Definition 3.9 Let X be a set, F ∈ FS
L (X), x ∈ X. We define Fx : LX×X −→ L by

Fx(d) = F
(
d(·, x)

)
, for d ∈ LX×X .
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Proposition 3.10 Let X be a set, F ∈ FS
L (X) and x ∈ X. Then Fx ∈ FS

L (X ×X).

The proof is left to the reader.

Lemma 3.11 [16] Let X be set and (L,≤,∧,∧) a complete Heyting algebra. If F ∈ FS
L (X)

and x ∈ X, then

Fx = F × [x].

Lemma 3.12 Let x, y ∈ X and F ,G ∈ FS
L (X) and let ϕ : X −→ Y . Then

(i) [x]y = [(x, y)],

(ii) Fx ∧ Gx = (F ∧G)x,

(iii) (ϕ× ϕ)→(Fx) = ϕ→(F)ϕ(x).

Proof: We show only (iii) as (i) and (ii) are straightforward. Let a ∈ LY×Y . Then

(ϕ× ϕ)→(Fx)(a) = Fx
(
a ◦ (ϕ× ϕ)

)

= F
((
a ◦ (ϕ× ϕ)

)
(·, x)

)

= F
(
a
(
ϕ(·), ϕ(x)

))

= F
(
a
(
·, ϕ(x)

)
◦ ϕ

)

= F
(
ϕ←

(
a
(
·, ϕ(x)

)))

= ϕ→(F)
(
a
(
·, ϕ(x)

))

= ϕ→(F)ϕ(x)(a).

�

For a stratified L-filter F ∈ FS
L (X × X) and d ∈ LX×X , define F−1(d) = F(d−1), where

d−1(x, y) = d(y, x) for (x, y) ∈ X ×X. From [16] we know that F−1 ∈ FS
L (X ×X).

Lemma 3.13 [16] Let X and Y be sets, ϕ : X −→ Y and F ,G ∈ FS
L (X ×X). If F ≤ G then

(i) (F−1)−1 = F ,

(ii) F−1 ≤ G−1,

(iii) (ϕ× ϕ)→(F−1) =
(
(ϕ × ϕ)→(F)

)−1
.

Let F ,G ∈ FS
L (X ×X). We then define the mapping F ◦ G : LX×X −→ L by:

F ◦ G(d) =
∨ {

F(a) ∗ G(b) : a, b ∈ LX×X , a ◦ b ≤ d
}
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with a ◦ b(x, y) =
∨

z∈X
a(x, z) ∗ b(z, y). We call F ◦ G the composition of F and G.

Below we will give a condition that, when satisfied, will give us F ◦ G ∈ FS
L (X ×X). In order

to prove the main condition which ensures that the composition F ◦ G is a stratified L-filter,

we will make use of the following results.

Lemma 3.14 Let f, g, f̄ , ḡ ∈ LX×X and a, b ∈ LX×X . If f ◦ g ≤ a and f̄ ◦ ḡ ≤ b, and with

α ∈ L, we have

(i) (f ⊗ f̄ ) ◦ (g ⊗ ḡ) ≤ a⊗ b,

(ii) (f ⊗⊥X×X ) ◦ (g ⊗ >X×X ) ≤ a⊗ b,

(iii) (⊥X×X ⊗ f̄ ) ◦ (>X×X ⊗ ḡ) ≤ a⊗ b,

(iv) (αX×X ∗ f) ◦ g ≤ αX×X ∗ a.

These proofs are technical, but not difficult and so are omitted.

Proposition 3.15 Let F ,G ∈ FS
L (X × X) and let (L,≤,⊗, ∗) be a pseudo-bisymmetric en-

riched cl-premonoid. For any f, g ∈ LX×X , the following are equivalent:

(i) the mapping F ◦ G ∈ FS
L (X ×X),

(ii) if f ◦ g = ⊥X×X , then F(f) ∗ G(g) = ⊥.

Proof:

Suppose (i) and let f ◦ g = ⊥X×X . From (LF0) we have F ◦G(⊥X×X ) = ⊥. This will only be

the case if

⊥ =
∨

h,k∈LX×X

h◦k=⊥X×X

F(h) ∗ G(k).

Since F(f) ∗ G(g) ≤
∨

h,k∈LX×X

h◦k=⊥X×X

F(h) ∗ G(k), we get F(f) ∗ G(g) = ⊥.

Conversely, suppose (ii). We check the axioms for a stratified L-filter.
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LF0: It is easily checked that >X×X ◦ >X×X ≤ >X×X . With this we conclude that F ◦
G(>X×X ) = >. Further we have

F ◦ G(⊥X×X ) =
∨

f◦g=⊥X×X

F(f) ∗ G(g)

=
∨

f◦g=⊥X×X

⊥ by (ii)

= ⊥.

LF1: This is easy and is left to the reader.

LF2: Let a, b ∈ LX×X . Then

F ◦ G(a) ⊗ F ◦ G(b) =
( ∨

f◦g≤a

F(f) ∗ G(g)
)
⊗

( ∨

f̄◦ḡ≤b

F(f̄ ) ∗ G(ḡ)
)

=
∨

f◦g≤a,
f̄◦ḡ≤b

((
F(f) ∗ G(g)

)
⊗

(
F(f̄ ) ∗ G(ḡ)

))
= P.

The above equality is as a result of the distributivity of the ⊗ operation over non-empty joins.

We now use the property of a pseudo-bisymmetric subset to produce the following inequality.

P ≤
∨

f◦g≤a,f̄◦ḡ≤b

(([
F(f) ⊗ F(f̄ )

]
∗

[
G(g) ⊗ G(ḡ)

])

∨
([

F(f) ⊗ ⊥
]
∗

[
G(g) ⊗>

])

∨
([

⊥⊗ F(f̄ )
]
∗

[
>⊗ G(ḡ)

]))

=
∨

f◦g≤a,f̄◦ḡ≤b

(([
F(f) ⊗F(f̄ )

]
∗

[
G(g) ⊗ G(ḡ)

])

∨
([

F(f) ⊗ F(⊥X×X )
]
∗

[
G(g) ⊗ G(>X×X )

])

∨
([

F(⊥X×X ) ⊗F(f̄ )
]
∗

[
G(>X×X ) ⊗ G(ḡ)

]))

= Q.

The equality above comes as a result of the fact that both F and G are stratified L-filters

and from property (LF0) described earlier. We can further produce another inequality by,

instead of taking the join over a single small set, we take the join of the joins of three larger
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sets:

Q ≤
∨

f◦g≤a,f̄◦ḡ≤b

([
F(f) ⊗F(f̄ )

]
∗

[
G(g) ⊗ G(ḡ)

])

∨
∨

f◦g≤a,f̄◦ḡ≤b

([
F(f) ⊗F(⊥X×X )

]
∗

[
G(g) ⊗ G(>X×X )

])

∨
∨

f◦g≤a,f̄◦ḡ≤b

([
F(⊥X×X ) ⊗ F(f̄ )

]
∗

[
G(>X×X ) ⊗ G(ḡ)

])
= R.

Now we use the results from Lemma 3.14 to choose larger sets for each of the joins shown above:

R ≤
∨

(f⊗f̄ )◦(g⊗ḡ)≤a⊗b

([
F(f) ⊗F(f̄ )

]
∗

[
G(g) ⊗ G(ḡ)

])

∨
∨

(f⊗⊥X×X )◦(g⊗>X×X )≤a⊗b

([
F(f) ⊗ F(⊥X×X )

]
∗

[
G(g) ⊗ G(>X×X )

])

∨
∨

(⊥X×X⊗f̄ )◦(>X×X⊗ḡ)≤a⊗b

([
F(⊥X×X ) ⊗F(f̄ )

]
∗

[
G(>X×X ) ⊗ G(ḡ)

])

= S.

Now we again choose larger sets by allowing any f, g, f̄ or ḡ instead of ⊥X×X and >X×X .

S ≤
∨

(f⊗f̄ )◦(g⊗ḡ)≤a⊗b

([
F(f) ⊗F(f̄ )

]
∗

[
G(g) ⊗ G(ḡ)

])

∨
∨

(f⊗f̄ )◦(g⊗ḡ)≤a⊗b

([
F(f) ⊗ F(f̄ )

]
∗

[
G(g) ⊗ G(ḡ)

])

∨
∨

(f⊗f̄ )◦(g⊗ḡ)≤a⊗b

([
F(f) ⊗ F(f̄ )

]
∗

[
G(g) ⊗ G(ḡ)

])
.

Since each of these sups is the same, we have:

S =
∨

(f⊗f̄)◦(g⊗ḡ)≤a⊗b

([
F(f) ⊗ F(f̄ )

]
∗

[
G(g) ⊗ G(ḡ)

])

≤
∨

(f⊗f̄)◦(g⊗ḡ)≤a⊗b

(
F(f ⊗ f̄) ∗ G(g ⊗ ḡ)

)

≤
∨

h◦k≤a⊗b

(
F(h) ∗ G(k)

)

=F ◦ G(a⊗ b).

LFS: This follows from Lemma 3.14(iv).
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�

We have thus provided a condition that, if satisfied, will guarantee that the composition

of two stratified L-filters will again be a stratified L-filter. We now show some further results

relating to the composition of L-filters that will be needed later on.

Lemma 3.16 Let X and Y be sets and let F ,G,H,K ∈ FS
L (X ×X) and M,N ∈ FS

L (Y × Y ).

Further suppose that F ≤ H and G ≤ K and that ϕ : X −→ Y . Then

(i) if H ◦ K ∈ FS
L (X ×X), then F ◦ G ∈ FS

L (X ×X) and F ◦ G ≤ H ◦ K,

(ii) (ϕ × ϕ)→(F) ◦ (ϕ × ϕ)→(G) ≤ (ϕ× ϕ)→(F ◦ G),

(iii) (ϕ× ϕ)←(M◦N ) ≤ (ϕ × ϕ)←(M) ◦ (ϕ× ϕ)←(N ).

Proof: The proof of (i) can be found in [16]. For (ii), we first show that for d1, d2, a ∈ LX×X ,

if d1 ◦ d2 ≤ a, then (
d1 ◦ (ϕ× ϕ)

)
◦

(
d2 ◦ (ϕ× ϕ)

)
≤ a ◦ (ϕ× ϕ).

Suppose d1 ◦ d2 ≤ a and let (x, y) ∈ X ×X. Then

(
d1 ◦ (ϕ× ϕ)

)
◦

(
d2 ◦ (ϕ× ϕ)

)
(x, y) =

∨

z∈X
d1 ◦ (ϕ× ϕ)(x, z) ∗ d2 ◦ (ϕ × ϕ)(z, y)

=
∨

z∈X
d1

(
ϕ(x), ϕ(z)

)
∗ d2

(
ϕ(z), ϕ(y)

)

≤
∨

w∈Y

d1

(
ϕ(x), w

)
∗ d2

(
w,ϕ(y)

)

= (d1 ◦ d2)
(
ϕ(x), ϕ(y)

)

≤ a
(
ϕ(x), ϕ(y)

)

= a ◦ (ϕ× ϕ)(x, y).

Now we let b ∈ LY×Y and show that

(
(ϕ× ϕ)→(F) ◦ (ϕ× ϕ)→(G)

)
(b) =

∨

d1,d2∈LY×Y

d1◦d2≤b

(
(ϕ × ϕ)→(F)

)
(d1) ∗

(
(ϕ× ϕ)→(G)

)
(d2)

=
∨

d1,d2∈LY×Y

d1◦d2≤b

F
(
d1 ◦ (ϕ× ϕ)

)
∗ G

(
d2 ◦ (ϕ× ϕ)

)

≤
∨

c1,c2∈LX×X

c1◦c2≤b◦(ϕ×ϕ)

F(c1) ∗ G(c2)

= (F ◦ G)
(
b ◦ (ϕ× ϕ)

)

=
(
(ϕ× ϕ)→(F ◦ G)

)
(b).
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For (iii), as a first step consider m,n ∈ LY×Y . Then with (x, y) ∈ X ×X, we have

(ϕ× ϕ)←(m) ◦ (ϕ × ϕ)←(n)(x, y) =
∨

z∈X

m(ϕ(x), ϕ(z)) ∗ n(ϕ(z), ϕ(y))

≤
∨

u∈Y
m(ϕ(x), u) ∗ n(u, ϕ(y))

= m ◦ n(ϕ(x), ϕ(y)) = (ϕ× ϕ)←(m ◦ n)(x, y).

With this we conclude

(ϕ × ϕ)←(M◦N )(a) =
∨

(ϕ×ϕ)←(d)≤a

M◦N (d)

=
∨

d: (ϕ×ϕ)←(d)≤a

( ∨

b◦c≤d

M(b) ∗ N (c)
)

≤
∨

b,c:
(ϕ×ϕ)←(b◦c)≤a

M(b) ∗ N (c)

≤
∨

b,c:
(ϕ×ϕ)←(b)◦(ϕ×ϕ)←(c)≤a

M(b) ∗ N (c)

≤
∨

h,k:
h◦k≤a

( ∨

b,c:
(ϕ×ϕ)←(b)≤h
(ϕ×ϕ)←(c)≤k

M(b) ∗ N (c)
)

=
∨

h,k:
h◦k≤a

( ∨
{M(b) : (ϕ × ϕ)←(b) ≤ h} ∗

∨
{N (c) : (ϕ × ϕ)←(c) ≤ k}

)

=
∨

h,k:
h◦k≤a

(
(ϕ× ϕ)←(M)(h) ∗ (ϕ× ϕ)←(N )(k)

)

= (ϕ× ϕ)←(M) ◦ (ϕ × ϕ)←(N )(a).

�

4 Lattice-Valued Uniform Convergence Spaces

Here we propose a new definition of a lattice-valued uniform convergence structure on a set X,

generalising the work of Jäger and Burton [16]. We show that our category is topological over

SET and we present the induced stratified L-limit structure. It is then shown that we can define

a forgetful functor to the subcategory SL-LIM [14] that will preserve the initial structures.

Unless otherwise stated, our lattice L will be a pseudo-bisymmetric enriched cl-premonoid.

Definition 4.1 Let X be a non-empty set, and (L,≤,⊗, ∗) a pseudo-bisymmetric enriched

cl-premonoid. A mapping Λ : FS
L (X × X) −→ L is called a stratified L-uniform convergence

structure if Λ satisfies the following:
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(LUC1) for all x ∈ X, Λ([(x, x)]) = >,

(LUC2) F ≤ G =⇒ Λ(F) ≤ Λ(G),

(LUC3) Λ(F) ≤ Λ(F−1),

(LUC4) Λ(F) ∧ Λ(G) ≤ Λ(F ∧ G),

(LUC5) Λ(F) ∗ Λ(G) ≤ Λ(F ◦ G) whenever F ◦ G exists.

The pair (X,Λ) is called a stratified L-uniform convergence space.

The original definition proposed by Jäger and Burton [16] was for the case where L is a complete

Heyting algebra. Their (LUC1) stated that for all x ∈ X, Λ([x]× [x]) = >. For the case of L a

complete Heyting algebra, it can be seen from Lemmas 3.11 and 3.12(i) that [x]× [x] = [x]x =

[(x, x)], for all x ∈ X, and so we see how the new definition is a generalisation of the previous

one. In addition, the (LUC5) given in [16] stated Λ(F) ∧ Λ(G) ≤ Λ(F ◦ G). For the Heyting

algebra case, ∗ = ∧, and so the above definition is thus a useful generalisation as it includes

the specific case that was investigated in that work.

Definition 4.2 [16] Let (X,Λ) and (Y,Σ) be stratified L-uniform convergence spaces. A

mapping ϕ : (X,Λ) −→ (Y,Σ) is uniformly continuous if for all F ∈ FS
L (X ×X), we have:

Λ(F) ≤ Σ
(
(ϕ × ϕ)→(F)

)
.

Proposition 4.3 [16] Let (X,Λ), (Y,Σ) and (Z,Γ) be stratified L-uniform convergence spaces.

Then:

(i) The mapping idX : (X,Λ) −→ (X,Λ) is uniformly continuous.

(ii) If ϕ : (X,Λ) −→ (Y,Σ) and ψ : (Y,Σ) −→ (Z,Γ) are uniformly continuous, then ψ ◦ ϕ :

(X,Λ) −→ (Z,Γ) is uniformly continuous.

Result: We have the concrete category SL-UCS, where the objects are stratified L-uniform

convergence spaces, and the morphisms are the uniformly continuous mappings.

If we have two different stratified L-uniform convergence structures, Λ and Λ′, on a set X, we

can order them in the following manner:

(X,Λ) ≤ (X,Λ′) if and only if, for all F ∈ FS
L (X × X), Λ′(F) ≤ Λ(F). In this case we say

Λ ≤ Λ′.

Example 4.4 ( [16] for L a complete Heyting algebra) The indiscrete stratified L-uniform

convergence structure Λi is defined:

Λi(F) = > for all F ∈ FS
L (X ×X).
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Example 4.5 ( [16] for L a complete Heyting algebra) For F ∈ FS
L (X × X), we define the

discrete stratified L-uniform convergence structure Λd by:

Λd(F) =





> if F ≥
∧

x∈E
[(x, x)] for some finite E ⊂ X

⊥ else.

Cook and Fischer [2] showed that the classical uniform convergence spaces form a topological

category, and Jäger and Burton [16] showed the analogous result for Heyting algebra-valued

uniform convergence spaces. Now we show this same result for the case where L is a pseudo-

bisymmetric enriched cl-premonoid.

Proposition 4.6 [16] The category SL-UCS is a topological category (in the sense of Preuss [22]).

Proof: First we will show the existence of initial structures. Consider a family {ϕi : i ∈ I}
such that X

ϕi−→ (Xi,Λi) for all i ∈ I.

For F ∈ FS
L (X ×X), define:

Λ(F) =
∧

i∈I

Λi
(
(ϕi × ϕi)→(F)

)
.

We show that (X,Λ) ∈ |SL-UCS|, but only present here (LUC1) and (LUC5) as the proofs

of the other axioms are similar to those in [16].

LUC1: From the definition of the image of a stratified L-filter, we can see that (ϕ×ϕ)→
(
[(x, x)]

)
=[(

ϕ(x), ϕ(x)
)]

. Now,

Λ
(
[(x, x)]

)
=

∧

i∈I

Λi
((
ϕi × ϕi

)→(
[(x, x)]

))

=
∧

i∈I

Λi
[(
ϕi(x), ϕi(x)

)]

= >.

LUC5: From Proposition 3.16 we see that

(ϕi × ϕi)→(F ◦ G) ≥ (ϕi × ϕi)→(F) ◦ (ϕi × ϕi)→(G).
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Now we use that result to show

Λ(F ◦ G) =
∧

i∈I

Λi
(
(ϕi × ϕi)→(F ◦ G)

)

≥
∧

i∈I
Λi

(
(ϕi × ϕi)→(F) ◦ (ϕi × ϕi)→(G)

)

≥
∧

i∈I

(
Λi

(
(ϕi × ϕi)→(F)

)
∗ Λi

(
(ϕi × ϕi)→(G)

))

≥
∧

i∈I

Λi
(
(ϕi × ϕi)→(F)

)
∗

∧

i∈I

Λi
(
(ϕi × ϕi)→(G)

)

= Λ(F) ∗ Λ(G).

Therefore we have that (X,Λ) ∈ |SL-UCS|.

Let (Y,Σ) ∈ |SL-UCS| and let ψ : Y −→ X such that for all i ∈ I, ϕi ◦ ψ : (Y,Σ) −→ (Xi,Λi)

is uniformly continuous. Thus for all i ∈ I we have

Σ(F) ≤ Λi
((

(ϕi ◦ ψ) × (ϕi ◦ ψ)
)→(F)

)
= Λi

(
((ϕi × ϕi) ◦ (ψ × ψ))→(F)

)
,

and consequently

Σ(F) ≤
∧

i∈I
Λi

(
(ϕi × ϕi)→((ψ × ψ)→(F))

)
= Λ

(
(ψ × ψ)→(F)

)
.

Therefore ψ : Y −→ X is uniformly continuous. Now we have that ψ : (Y,Σ) −→ (X,Λ) is

uniformly continuous if and only if ϕi ◦ψ : (Y,Σ) −→ (X,Λi) is uniformly continuous. Further,

we show the fibre-smallness of SL-UCS. Since each stratified L-uniform convergence structure

is a mapping Λ : FS
L (X ×X) −→ L we have that the class of all possible stratified L-uniform

convergence structures on a set X, is a subset of {0, 1}LF
S
L(X×X)

and so it is a set.

Lastly, in order to show the terminal separator property, consider X = {x} and hence

X × X = {(x, x)}. Since there is only one element in X × X, the only L-sets that exist (i.e.

elements of LX×X ) are the constant maps αX×X(x, x) = α for each α ∈ L. By the stratification

property (LFS) we have F ≥ [(x, x)] for all F ∈ FS
L (X × X). Now Λ

(
[(x, x)]

)
= >, but

Λ(F) ≥ Λ
(
[(x, x)]

)
and so Λ(F) = > for all F ∈ FS

L (X ×X).

�

Example 4.7 Let (X,Λ), (Y,Σ) ∈ |SL-UCS| and consider the projections mappings P1 and

P2. Then the product L-uniform convergence structure, Λ × Σ on X × Y is defined by using

the initial uniform convergence structure for the projection mappings. That is, for a stratified

L-filter F ∈ FS
L

(
(X × Y ) × (X × Y )

)
:

(Λ × Σ)(F) = Λ
(
(P1 × P1)→(F)

)
∧ Σ

(
(P2 × P2)→(F)

)
.
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In the case of L a complete Heyting algebra, the category SL-UCS has canonical function

spaces.

Proposition 4.8 [16] Let L be a complete Heyting algebra. Then SL-UCS is cartesian closed.

Remark 4.9 From the stratified L-uniform convergence structures described earlier, it is possi-

ble to generate stratified L-limit structures. The stratified L-limit spaces are then sets equipped

with a map lim(Λ) : FS
L (X) −→ LX . That is, for each x ∈ X, lim(Λ)F(x) is the degree to

which F converges to x.

The pair (X, lim) is a stratified L-limit space [14] if lim : FS
L (X) −→ LX satisfies the

following axioms:

(L1) for all x ∈ X, lim[x](x) = >,

(L2) F ≤ G =⇒ limF ≤ limG,

(L3) limF ∧ limG ≤ lim(F ∧ G).

If (X, limX) and (Y, limY ) are stratified L-limit spaces, then ϕ : X −→ Y is continuous [14] if

for all x ∈ X and for all F ∈ FS
L (X ×X), limF(x) ≤ limY ϕ

→(F)
(
ϕ(x)

)
.

Result: SL-LIM is a concrete category, where the objects are stratified L-limit spaces and

the morphisms are the continuous mappings defined above. For (X,Λ) ∈ |SL-UCS| we can

define a stratified L-limit structure lim(Λ) : FS
L (X) −→ LX by:

lim(Λ)F(x) = Λ(Fx).

Using Lemma 3.12 (i) and (ii), the proof of the axioms is straightforward. Further, if we have

ϕ : (X,Λ) −→ (Y,Σ) uniformly continuous, then ϕ :
(
X, lim(Λ)

)
−→

(
Y, lim(Σ)

)
is continuous.

This proof will follow from Lemma 3.12(iii).

Result: We can define a forgetful functor

F :





SL-UCS −→ SL-LIM

(X,Λ) 7−→
(
X, lim(Λ)

)

ϕ 7−→ ϕ

Let X be a set and for all i ∈ I, let (Xi, limi) ∈ |SL-LIM |. For an SL-LIM source ϕi : X −→
(Xi, limi), i ∈ I, the initial stratified L-limit structure on X for F ∈ FS

L (X) is defined [14] by:

limF(x) =
∧

i∈I

limiϕ
→
i (F)

(
ϕi(x)

)
.
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With this definition, it has been shown [16] that if ϕi : X −→ (Xi,Λi) is a source in SL-UCS

and Λ is the initial SL-UCS structure on X, then lim(Λ) is the initial SL-LIM structure with

respect to the source ϕi : X −→
(
Xi, lim(Λi)

)
, i ∈ I.

Result: The forgetful functor F preserves initial structures.

5 Example: Lattice-Valued Uniform Spaces

The diagonal of a product X ×X is defined as ∆ = {(x, x) | x ∈ X}. From this we can define

the diagonal L-filter on X ×X. Let a ∈ LX×X :

[∆](a) =
∧

x∈X
a(x, x) =

∧

x∈X
[(x, x)](a), so

[
∆

]
=

∧

x∈X
[(x, x)]

Definition 5.1 [6], [7] Let X be a non-empty set and U a stratified L-filter on X ×X. If U
satisfies the properties below it is called a stratified L-uniformity on X.

(LU1) U ≤ [∆],

(LU2) U ≤ U−1,

(LU3) U ≤ U ◦ U .

The pair (X,U) is called a stratified L-uniform space.

Definition 5.2 [6] Let (X,U) and (Y,V) be stratified L-uniform spaces and ϕ : X −→ Y .

Then ϕ is uniformly continuous if (ϕ× ϕ)→(U) ≥ V.

Result: We have the category SL-UNIF [6], where the objects are stratified L-uniform spaces,

and the morphisms are the uniformly continuous maps.

Here we will show that SL-UNIF is a reflective subcategory of SL-UCS. In order to do

this we will first introduce the category of principal stratified L-uniform convergence spaces

(SL-PUCS), a subcategory of SL-UCS. Then we will proceed by showing that SL-UNIF is

categorically isomorphic to SL-PUCS.

Definition 5.3 [16] The pair (X,Λ) ∈ |SL-UCS| is a principal stratified L-uniform conver-

gence space if there exists a stratified L-filter U ∈ FS
L (X ×X) such that:

(LUCP) Λ(F) =
∧

a∈LX×X

(
U(a) → F(a)

)
for all F ∈ FS

L (X ×X).

The following lemma shows that from any principal stratified L-uniform convergence space,

we can get a stratified L-uniform space.



Craig/Jäger: A common framework for L-uniform and probabilistic uniform limit spaces 22

Lemma 5.4 [16] Let (X,Λ) ∈ |SL-PUCS| where:

Λ(F) =
∧

a∈LX×X

(
U(a) → F(a)

)
.

Then (X,U) ∈ |SL-UNIF |.

Proof: This can easily be adapted from that given in [16].

Below we show that from any stratified L-uniform space we can generate a principal stratified

L-uniform convergence space.

Lemma 5.5 [16] Let (X,U) ∈ |SL-UNIF |, and define:

ΛU (F) =
∧

a∈LX×X

(
U(a) → F(a)

)
.

Then (X,ΛU ) ∈ |SL-PUCS|.

Proof: Again we show only (LUC1) and (LUC5).

LUC1: From (LU1) we know that for all x ∈ X and for all a ∈ LX×X , U(a) ≤ a(x, x).

Therefore

ΛU
(
[(x, x)]

)
=

∧

a∈LX×X

(
U(a) → [(x, x)](a)

)

=
∧

a∈LX×X

(
U(a) → a(x, x)

)

= >.

LUC5: By definition we have that

ΛU(F ◦ G) =
∧

a∈LX×X

(
U(a) → F ◦ G(a)

)
.

Now since (X,U) ∈ |SL-UNIF | we use (LU3) to give

ΛU(F ◦ G) ≥
∧

a∈LX×X

(( ∨

d1◦d2≤a

(
U(d1) ∗ U(d2)

))
→ F ◦ G(a)

))

=
∧

a∈LX×X

∧

d1◦d2≤a

(
U(d1) ∗ U(d2) → F ◦ G(a)

)
,

using property (iii) of Lemma 2.1 in the equality. From the definition of the stratified L-filter

F ◦ G we have
∧

a∈LX×X

∧

d1◦d2≤a

(
U(d1) ∗ U(d2) → F ◦ G(a)

)

≥
∧

a∈LX×X

∧

d1◦d2≤a

(
U(d1) ∗ U(d2) → F(d1) ∗ G(d2)

)
= Q.
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Here we use Lemma 2.1 (x) in the first step, and properties of infima thereafter, to get

Q ≥
∧

a∈LX×X

∧

d1◦d2≤a

((
U(d1) → F(d1)

)
∗

(
U(d2) → G(d2)

))

≥
∧

d1∈LX×X

( ∧

d2∈LX×X

((
U(d1) → F(d1)

)
∗

(
U(d2) → G(d2)

)))

≥
∧

d1∈LX×X

(
U(d1) → F(d1)

)
∗

∧

d2∈LX×X

(
U(d2) → G(d2)

)

= ΛU (F) ∗ ΛU (G).

That is, we have ΛU (F ◦ G) ≥ ΛU(F) ∗ ΛU(G).

�

Lemma 5.6 [16] Let (X,U) ∈ |SL-UNIF |. Then for a ∈ LX×X ,

U(a) =
∧

F∈FS
L (X×X)

(
ΛU(F) → F(a)

)
.

We have shown that there is a one-to-one relationship between the class of objects of SL-PUCS

and SL-UNIF , and now do the same for the class of morphisms.

Lemma 5.7 [16] Let (X,U), (Y,V) ∈ |SL-UNIF | and let ϕ : X −→ Y be a mapping. Then

the following are equivalent:

(i) ϕ : (X,U) −→ (Y,V) is uniformly continuous,

(ii) ϕ : (X,ΛU ) −→ (Y,ΛV) is uniformly continuous.

Corollary 5.8 [16] The categories SL-PUCS and SL-UNIF are categorically isomorphic.

Having shown the above result, we now proceed to show that SL-PUCS is a reflective sub-

category of SL-UCS. This will then give us the corollary that SL-UNIF is isomorphic to a

reflective subcategory of SL-UCS.

In order to prove that SL-PUCS is a reflective subcategory of SL-UCS we follow a suggestion

of J. Gutiérrez Garćıa and consider the subset of L:

L⊗ =
{
α ∈ L : α ≤ α⊗ α

}
.

Clearly, for ⊗ = ∧ and ⊗ = ~ we have L⊗ = L. The result where we must consider this subset

is the one below, where we will show that from any stratified L-uniform convergence space, we

can define a stratified L-filter. This will then in turn be used to generate a principal stratified

L-uniform convergence space. This fact will then give us that the stratified L-filter defined

below is in fact a stratified L-uniformity.
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Lemma 5.9 Let (L,≤,⊗, ∗) be a pseudo-bisymmetric enriched cl-premonoid and let (X,Λ) ∈
|SL-UCS| such that Λ

(
FS
L (X × X)

)
⊆ L⊗. We define the mapping UΛ : LX×X −→ L for

a ∈ LX×X by:

UΛ(a) =
∧

F∈FS
L(X×X)

(
Λ(F) → F(a)

)
.

Then UΛ is a stratified L-filter on X ×X.

Proof:

LF0: UΛ(⊥X×X ) =
∧

F∈FS
L (X×X)

Λ(F) → F(⊥X×X ). Now we can take x ∈ X and consider the

stratified L-filter [(x, x)], where Λ
(
[(x, x)]

)
= >. In this case, Λ

(
[(x, x)]

)
→ [(x, x)](⊥X×X) =

> → ⊥ = ⊥, and so we have UΛ(⊥X×X ) = ⊥.

Now consider UΛ(>X×X ) =
∧

F∈FS
L (X×X)

Λ(F) → F(>X×X ). Clearly, for all

F ∈ FS
L (X × X) we have F(>X×X ) = >. Now, for any F ∈ FS

L (X × X) we have that

Λ(F) → > = > and therefore UΛ(>X×X ) = >.

LF1: straightforward.

LF2: Let a, b ∈ LX×X .

UΛ(a) ⊗ UΛ(b) =
( ∧

F∈FS
L (X×X)

(
Λ(F) → F(a)

))
⊗

( ∧

F∈FS
L (X×X)

(
Λ(F) → F(b)

))

≤
∧

G∈FS
L (X×X)

((
Λ(G) → G(a)

)
⊗

(
Λ(G) → G(b)

))
.

Now with Lemma 2.3 we have that

UΛ(a) ⊗ UΛ(b) ≤
∧

G∈FS
L (X×X)

(
Λ(G) →

(
G(a) ⊗ G(b)

))
.

We can then use (LF2) of the stratified L-filters to get

UΛ(a) ⊗ UΛ(b) ≤
∧

G∈FS
L (X×X)

(
Λ(G) → G(a ⊗ b)

)

= UΛ(a⊗ b).
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LFS: Let α ∈ L and a ∈ LX×X . Then using Lemma 2.1(xi) and (LFS) of each F ∈ FS
L (X×X),

we get

α ∗ UΛ(a) = α ∗
∧

F∈FS
L (X×X)

(
Λ(F) → F(a)

)

=
∧

F∈FS
L (X×X)

(
α ∗

(
Λ(F) → F(a)

))

≤
∧

F∈FS
L (X×X)

(
Λ(F) →

(
α ∗ F(a)

))

≤
∧

F∈FS
L (X×X)

(
Λ(F) → F(αX×X ∗ a)

)

= UΛ(αX×X ∗ a).

�

Now that we have shown that UΛ is a stratified L-filter on X × X, we can proceed with the

main result.

Lemma 5.10 Let (L,≤,⊗, ∗) be an enriched cl-premonoid and let (X,Λ) ∈ |SL-UCS| such

that Λ
(
FS
L (X ×X)

)
⊆ L⊗. Then SL-PUCS is a reflective subcategory of SL-UCS.

Proof: For any (X,Λ) ∈ |SL-PUCS| it is clear that (X,Λ) ∈ |SL-UCS|. Therefore we can

consider the embedding functor

E :





SL-PUCS −→ SL-UCS

(X,Λ) 7−→ (X,Λ)

ϕ 7−→ ϕ

.

Now we let (X,Λ) ∈ |SL-UCS| and define:

UΛ(a) =
∧

F∈FS
L(X×X)

(
Λ(F) → F(a)

)
.

From the previous lemma we have that UΛ is a stratified L-filter on X × X. Moreover, for

x ∈ X we have UΛ(a) ≤ Λ([(x, x)]) → [(x, x)](a) = [(x, x)](a) and so we find UΛ ≤ [∆]. Also

UΛ(a) ≤
∧

F∈FS
L (X×X)

(Λ(F−1) → F−1(a))

=
∧

F∈FS
L (X×X)

(Λ(F) → F(a−1))

= UΛ(a−1) = U−1
Λ (a),

showing that UΛ ≤ U−1
Λ . Lastly, using Lemma 3.16, we get UΛ ◦ UΛ ∈ FS

L (X × X), since for

any x ∈ X we have UΛ ◦ UΛ ≤ [(x, x)] ◦ [(x, x)] ∈ FS
L (X ×X).
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We define now

IΛ = {G ∈ FS
L (X ×X) : G ≤ UΛ, G ≤ G ◦ G}.

Then IΛ 6= ∅, as the coarsest stratified L-filter on X ×X, [X ×X] =
∧

(x,y)∈X×X [(x, y)] is in

IΛ. We further define

U∗Λ =
∨

G∈IΛ

G.

Clearly, U∗Λ ∈ FS
L (X ×X) and U∗Λ ≤ UΛ. Moreover

G ≤ G ◦ G ≤ U∗Λ ◦ U∗Λ

for any G ∈ IΛ and therefore also U∗Λ ≤ U∗Λ ◦ U∗Λ. Hence U∗Λ satisfies (LU3). Also, from

U∗Λ ≤ UΛ ≤ [∆] we see that (LU1) is satisfied. For G ∈ IΛ we have

G−1 ≤ U−1
Λ = UΛ

and

G−1 ≤ (G ◦ G)−1 = G−1 ◦ G−1.

Therefore G−1 ∈ IΛ and hence

U∗Λ ≥
∨

G∈IΛ

G−1 = (U∗Λ)−1.

From this it follows (U∗Λ)−1 ≥ ((U∗Λ)−1)−1 = U∗Λ and also (LU2) holds for U∗Λ. We define now

Λ∗(F) =
∧

a∈LX×X

(U∗Λ(a) → F(a)).

Then, by Lemma 5.5, (X,Λ∗) ∈ |SL-PUCS|. Moreover

Λ∗(F) =
∧

a∈LX×X

(U∗Λ(a) → F(a))

≥
∧

a∈LX×X

(UΛ(a) → F(a))

≥
∧

a∈LX×X

((Λ(F) → F(a)) → F(a))

≥ Λ(F).

Therefore Λ∗ ≤ Λ. Let now Λ̃ ≤ Λ satisfy

Λ̃(F) =
∧

a∈LX×X

(
U(a) → F(a)

)

with some stratified L-filter U such that (X, Λ̃) ∈ |SL-PUCS|. Then

U(a) =
∧

a∈LX×X

(
Λ̃(F) → F(a)

)
≤

∧

a∈LX×X

(
Λ(F) → F(a)

)
= UΛ(a).
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By the maximality of U∗Λ we then conclude that U ≤ U∗Λ and hence

Λ̃(F) ≥
∧

a∈LX×X

(U∗Λ(a) → F(a)) = Λ∗(F).

In other words, Λ̃ ≤ Λ∗ and therefore Λ∗ is the finest SL-PUCS-structure on X which is

coarser than Λ. Now, let ϕ : (X,Λ) −→ (Y,Σ) be a morphism in SL-UCS. We want to show

that ϕ : (X,Λ∗) −→ (Y,Σ∗) is a morphism in SL-PUCS. To this end it is sufficient to show

U∗Σ ≤ (ϕ × ϕ)→(U∗Λ).

Let G ≤ UΣ such that G ≤ G ◦ G. We know from Lemma 5.7 and the continuity of ϕ :

(X,Λ) −→ (Y,Σ) that (ϕ× ϕ)→(UΛ) ≥ UΣ. Hence also G ≤ (ϕ× ϕ)→(UΛ). By Lemma 3.4(iii)

then (ϕ× ϕ)←(G) exists and, by Lemma 3.4(i), we get

(ϕ × ϕ)←(G) ≤ (ϕ× ϕ)←((ϕ × ϕ)(UΛ)) ≤ UΛ.

Further, by Lemma 3.16(iii),

(ϕ × ϕ)←(G) ≤ (ϕ× ϕ)←(G ◦ G) ≤ (ϕ × ϕ)←(G) ◦ (ϕ × ϕ)←(G)

and hence (ϕ × ϕ)←(G) ∈ IΛ. Thus (ϕ× ϕ)←(G) ≤ U∗Λ and by Lemma 3.4 (ii) we finally get

G ≤ (ϕ × ϕ)→((ϕ× ϕ)←(G)) ≤ (ϕ × ϕ)→(U∗Λ).

Hence, by arbitrariness of G ∈ IΣ we conclude U∗Σ ≤ (ϕ×ϕ)→(U∗Λ), and ϕ : (X,Λ∗) −→ (Y,Σ∗) is

continuous. Now that we know that the uniformly continuous mappings will remain morphisms,

we can define a functor:

K :





SL-UCS −→ SL-PUCS

(X,Λ) 7−→ (X,Λ∗)

ϕ 7−→ ϕ

For (X,Λ) ∈ |SL-PUCS| we have K
(
E(X,Λ)

)
= (X,Λ) and since Λ∗ ≤ Λ we know that

E
(
K(X,Λ)

)
≤ (X,Λ) for (X,Λ) ∈ |SL-UCS|.

This in turn means that idX : (X,Λ) −→ E(X,Λ∗) is continuous. Therefore, for (X,Λ) ∈
|SL-UCS| we propose our E-universal map to be

(
idX , (X,Λ∗)

)
.

We show now that this is an E-universal map for (X,Λ).

Let (Z,Γ) ∈ |SL-PUCS| and ψ : (X,Λ) −→ E
(
(Z,Γ)

)
. We require a unique SL-PUCS

morphism φ : (X,Λ∗) −→ (Z,Γ) such that the following diagram commutes:
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(X,Λ)
ψ //

idX

��

E
(
(Z,Γ)

)
(Z,Γ)

E
(
(X,Λ∗)

) E(φ)

88qqqqqqqqqq
(X,Λ∗)

φ

OO

It is clear that the mapping φ will be none other than K(ψ) = ψ.

�

In [16], a similar result to the one above was stated for the case where L is a complete

Heyting algebra. The proof presented in [16] is unfortunately not correct. However, the result

of Lemma 5.10 does then show that the result in [16] is in fact still valid. We are grateful to

one of the reviewers for pointing out this inaccuracy.

Corollary 5.11 Let (L,≤,⊗, ∗) be a pseudo-bisymmetric enriched cl-premonoid and let (X,Λ) ∈
|SL-UCS| such that Λ

(
FS
L (X ×X)

)
⊆ L⊗. Then SL-UNIF is isomorphic to a reflective sub-

category of SL-UCS.

Remark 5.12 Now we show that for (X,U) ∈ |SL-UNIF | there are two ways of inducing a

convergence function. What is remarkable is that these two pathways produce identical con-

vergence structures.

It is shown in [6] that from a stratified L-uniformity we can define a stratified L-neighbourhood

system for each x ∈ X:

N x
U (a) =

∨ {
U(d) | d(·, x) ≤ a

}
.

The stratified L-neighbourhood space
(
X, (N x

U )x∈X
)

is equivalent to a stratified L-topological

space. From this stratified L-topological space it is shown in [11] that we can induce a stratified

L-limit space by:

lim(U)F(x) =
∧

a∈LX

(
N x
U (a) → F(a)

)
.

We can also consider the stratified L-uniform space (X,U) as a principal stratified L-uniform

convergence space (X,Λ) where

ΛU(F) =
∧

d∈LX×X

(
U(d) → F(d)

)
.

From here we can consider the induced stratified L-limit structure:

lim(Λ)F(x) = Λ(Fx) =
∧

d∈LX×X

(
U(d) → (Fx)(d)

)
.

The result below was proved in [16] for the case of L a complete Heyting algebra. Our proof

for the case of L a pseudo-bisymmetric enriched cl-premonoid uses the same procedure, except

that when considering the induced L-limit space, we make use of the filter Fx on the product

space.
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Proposition 5.13 Let (X,U) ∈ |SL-UNIF |. Then
(
X, lim(U)

)
=

(
X, lim(ΛU )

)
.

Using the two routes of obtaining a stratified L-limit space that are described above, we can

show the following diagram commutes when L is a pseudo-bisymmetric enriched cl-premonoid:

(X,U)

(embed)

��

(forget) //
(
X, τ (U)

)

(embed)

��
(X,ΛU )

(forget) //
(
X, lim(ΛU )

)
=

(
X, lim(U)

)

6 Example: Probabilistic Uniform Limit Spaces

In this section we shall consider the enriched cl-premonoid
(
[0, 1],∧, ∗

)
where ∗ is a left-

continuous t-norm. We denote by F(X) the set of all classical filters on a set X. For Ψ, η ∈
F(X×X) consider the filter Ψ−1 = {F−1 : F ∈ Ψ} where F−1 = {(y, x) : (x, y) ∈ F}. Now for

F,G ⊂ X×X, we have F ◦G = {(x, y)|∃z ∈ X such that (x, z) ∈ F, (z, y) ∈ G}. The collection

Ψ ◦ η =
[
{F ◦G : F ∈ Ψ, G ∈ η}

]
is a filter if and only if F ◦G 6= ∅, for all F ∈ Ψ, G ∈ η. We

also consider the filter ẋ, generated by an element of X, where ẋ = {F ⊂ X : x ∈ F}.

Definition 6.1 [20], [21] For any α ∈ [0, 1], consider Lα, a non-empty collection of filters on

X × X. The collection (Lα)α∈[0,1] is a probabilistic uniform limit structure if it satisfies the

following axioms

(UC1) for all x ∈ X, α ∈ [0, 1], ẋ× ẋ ∈ Lα,

(UC2) Ψ ∈ Lα, Ψ ≤ η ⇒ η ∈ Lα,

(UC3) Ψ ∈ Lα ⇒ Ψ−1 ∈ Lα,

(UC4) Ψ, η ∈ Lα ⇒ Ψ ∧ η ∈ Lα,

(P1) α ≤ β ⇒ Lβ ⊂ Lα,

(P2) L0 = F(X ×X),

(PULIM) Ψ ∈ Lα, η ∈ Lβ ⇒ Ψ ◦ η ∈ Lα∗β.

The pair
(
X, (Lα)

)
is called a probabilistic uniform limit space

Definition 6.2 [20], [21] A mapping ϕ, from one probabilistic uniform limit space to another,

ϕ :
(
X, (Lα)

)
−→

(
Y, (Kα)

)
is said to be uniformly continuous if for all α ∈ [0, 1], (ϕ ×

ϕ)→(Lα) ⊂ Kα.

Definition 6.3 A probabilistic uniform limit structure, (Lα)α∈[0,1], is left-continuous if when-

ever we have Ψ ∈ Lα for all α ∈ A, then Ψ ∈ L
∨
A.
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Note that if Ψ /∈ Lα when (Lα)α∈[0,1] is left-continuous, this implies that there exists ε > 0

such that Ψ /∈ Lα−ε. The left-continuous probabilistic uniform limit spaces with the uniformly

continuous mappings form a category PULIM∗.

In order to show that probabilistic uniform limit spaces are an example of our stratified

L-uniform convergence spaces, we must define a method for moving between L-filters and

classical filters. The following two constructions are special cases of definitions given in [5]. For

F ∈ FS
[0,1](X ×X) define

ΦF =
{
A ⊂ X ×X : F(>A) = >

}
.

Then ΦF ∈ F(X ×X) [3].

Lemma 6.4 Let F ,G ∈ FS
[0,1](X ×X) and consider the associated filters ΦF and ΦG . Further,

let ϕ : X −→ Y . Then

(i) Φ[(x,x)] = ẋ× ẋ,

(ii) F ≤ G =⇒ ΦF ≤ ΦG ,

(iii) Φ(F−1) =
(
ΦF

)−1
,

(iv) ΦF∧G = ΦF ∧ΦG ,

(v) if F ◦ G ∈ FS
[0,1](X ×X), then ΦF ◦ ΦG ∈ F(X ×X) and ΦF◦G ≥ ΦF ◦ ΦG,

(vi) (ϕ × ϕ)→(ΦF ) = Φ(ϕ×ϕ)→(F).

Proof: Results (i) to (iv) follow easily from the definitions. For (v) it must first be shown

that for F,G ⊂ X ×X we have 1F ◦ 1G = 1F◦G. The reverse inequality appears only to be true

for L = {⊥,>}. For (vi) we use the fact that for A ⊂ X ×X, (ϕ × ϕ)→(1A) = 1(ϕ×ϕ)→(A).

�

Conversely, if we let Ψ ∈ F(X ×X), we can define for a ∈ LX×X :

FΨ(a) =
∨ {

α ∈ L : [a ≥ α] ∈ Ψ
}

where [a ≥ α] =
{
(x, y) : a(x, y) ≥ α

}
.

Lemma 6.5 Let Ψ, η ∈ F(X ×X) and consider the associated stratified L-filters FΨ and Fη.
Further let ϕ : X −→ Y be a mapping. Then

(i) Fẋ×ẋ = [(x, x)],

(ii) Ψ ≤ η =⇒ FΨ ≤ Fη,

(iii) FΨ−1 = (FΨ)−1,
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(iv) FΨ ∧ Fη ≤ FΨ∧η ,

(v) if Ψ ◦ η ∈ F(X ×X), then FΨ ◦ Fη ∈ FS
[0,1](X ×X) and FΨ ◦ Fη ≤ FΨ◦η .

(vi) (ϕ × ϕ)→(FΨ) = F(ϕ×ϕ)→(Ψ).

Proof: For (i) to (iii) the proofs are straightforward and hence left to the reader. For (iv), let

a ∈ LX×X , then

FΨ(a) ∧ Fη(a) =
∨ {

α : [a ≥ α] ∈ Ψ
}
∧

∨ {
β : [a ≥ β] ∈ η

}

=
∨ {

α ∧ β : [a ≥ α] ∈ Ψ, [a ≥ β] ∈ η
}

≤
∨ {

α ∧ β : [a ≥ α ∧ β] ∈ Ψ, [a ≥ α ∧ β] ∈ η
}

≤
∨ {

γ : [a ≥ γ] ∈ Ψ, [a ≥ γ] ∈ η
}

≤
∨ {

γ : [a ≥ γ] ∈ Ψ ∧ η
}
.

Now for (v) we show that FΨ ◦ Fη ≤ FΨ◦η . From this the existence of FΨ ◦ Fη will follow. For

c ◦ d ≤ a we have

FΨ(c) ∗ Fη(d) =
∨ {

α ∗ β : [c ≥ α] ∈ Ψ, [d ≥ β] ∈ η
}
≤

∨ {
α ∗ β : [c ≥ α] ◦ [d ≥ β] ∈ Ψ ◦ η

}
.

For (x, y) ∈ [c ≥ α] ◦ [d ≥ β] we have z ∈ X such that c(x, z) ≥ α and d(z, y) ≥ β and hence

c ◦ d(x, y) ≥ α ∗ β. Consequently (x, y) ∈ [c ◦ d ≥ α ∗ β]. Therefore

FΨ(c) ◦ Fη(d) ≤
∨ {

α ∗ β : [c ◦ d ≥ α ∗ β] ∈ Ψ ◦ η
}
≤ FΨ◦η(c ◦ d) ≤ FΨ◦η(a).

In order to show (vi) we use the fact that [(ϕ× ϕ)−1(a) ≥ α] = (ϕ× ϕ)←[a ≥ α] and also that

(ϕ × ϕ)←[a ≥ α] ∈ Ψ if and only if [a ≥ α] ∈ (ϕ × ϕ)→(Ψ).

�

Lemma 6.6 Suppose F ∈ FS
[0,1](X ×X) and Ψ ∈ F(X ×X). Then

(i) FΦF ≤ F ,

(ii) ΦFΨ = Ψ.

Proof: To show (i), we let a ∈ LX×X and see

FΦF (a) =
∨ {

α : [a ≥ α] ∈ ΦF
}

=
∨ {

α : F(1[a≥α]) = 1
}

≤
∨ {

α : α ∗ F(1[a≥α]) = α
}
.
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Then, from the stratification of F , we see

FΦF (a) ≤
∨ {

α : F(α ∗ 1[a≥α]︸ ︷︷ ︸
≤a

) ≥ α
}

≤
∨ {

α : F(a) ≥ α
}

= F(a).

For (ii), it is simple to show that

A ∈ ΦFΨ ⇐⇒ FΨ(1A) = 1 ⇐⇒
∨ {

α : A = [1A ≥ α] ∈ Ψ
}

= 1 ⇐⇒ A ∈ Ψ.

�

For
(
X, (Lα)α∈[0,1]

)
∈ |PULIM∗| we define

ΛL : FS
[0,1](X ×X) −→ [0, 1]

for F ∈ FS
[0,1](X ×X) by

ΛL(F) =
∨ {

α ∈ [0, 1] : ΦF ∈ Lα
}
.

Proposition 6.7 The mapping ΛL is a stratified [0, 1]-uniform convergence structure.

Proof:

LUC1: The filter Φ[(x,x)] = ẋ× ẋ ∈ L1. Therefore ΛL
(
[(x, x)]

)
= 1.

LUC2: If F ≤ G by Lemma 6.4(ii) we have that ΦF ≤ ΦG. Now

ΛL(F) =
∨ {

α : ΦF ∈ Lα
}

≤
∨ {

α : ΦG ∈ Lα
}

= ΛL(G).

LUC3: If ΦF ∈ Lα, then by (UC3) and Lemma 6.4(iii), (ΦF )−1 = Φ(F−1) ∈ Lα. Now

ΛL(F) =
∨ {

α : ΦF ∈ Lα
}

≤
∨ {

α : Φ(F−1) ∈ Lα
}

= ΛL(F−1).

LUC4: Here we have

ΛL(F) ∧ ΛL(G) =
∨ {

α : ΦF ∈ Lα
}
∧

∨ {
β : ΦG ∈ Lβ

}

=
∨ {

α ∧ β : ΦF ∈ Lα,ΦG ∈ Lβ
}
.



Craig/Jäger: A common framework for L-uniform and probabilistic uniform limit spaces 33

From (P1) we will then get

ΛL(F) ∧ΛL(G) ≤
∨ {

α ∧ β : ΦF ∈ Lα∧β,ΦG ∈ Lα∧β
}

≤
∨ {

γ : ΦF ∈ Lγ ,ΦG ∈ Lγ
}
.

Now using (UC4) and Lemma 6.4 (iv) we see

ΛL(F) ∧ ΛL(G) ≤
∨ {

γ : ΦF ∩ ΦG = ΦF∧G ∈ Lγ
}

= ΛL(F ∧ G).

LUC5: Let F ,G ∈ FS
[0,1](X × X) and suppose that F ◦ G exists. By Lemma 6.4(v) we have

that ΦF ◦ ΦG exists and that ΦF◦G ≥ ΦF ◦ ΦG. By definition we have that

ΛL(F) ∗ ΛL(G =
∨ {

ε : ΦF ∈ Lε
}
∗

∨ {
δ : ΦG ∈ Lδ

}
=

∨ {
ε ∗ δ : ΦF ∈ Lε,ΦG ∈ Lδ

}
.

Using (PULIM) and then (UC2) we then see that

ΛL(F) ∗ ΛL(G) ≤
∨ {

ε ∗ δ : ΦF ◦ ΦG ∈ Lε∗δ
}

≤
∨ {

γ : ΦF ◦ ΦG ∈ Lγ
}

≤
∨ {

γ : ΦF◦G ∈ Lγ
}

= ΛL(F ◦ G).

�

Proposition 6.8 The map δ : PULIM∗ −→ S[0, 1]-UCS,
(
X, (Lα)

)
7−→ (X,ΛL) is injective

on objects.

Proof: Consider
(
X, (Lα)α∈[0,1]

)
and

(
X, (Kα)α∈[0,1]

)
such that (Lα)α∈[0,1] 6= (Kα)α∈[0,1]. We

must then have an α0 such that Lα0 6= Kα0 and therefore there must exist Ψ such that Ψ ∈ Lα0

but Ψ /∈ Kα0.

From the left continuity of (Kα)α∈[0,1] we have therefore that Ψ /∈ Kα0−ε for some ε > 0.

For Ψ and a ∈ LX×X we have FΨ(a) =
∨

[a≥α]∈Ψ

α and FΨ ∈ FS
[0,1](X×X). Further, Φ(FΨ) = Ψ.

Now ΛL(FΨ) =
∨ {

α : Φ(FΨ) = Ψ ∈ Lα
}
≥ α0 and ΛK(FΨ) =

∨ {
α : Φ(FΨ) = Ψ ∈ Kα

}
<

α0. This second inequality is as a result of the fact that from (P1) we have that for β ≥ α0

that Ψ /∈ Kβ. Therefore we have shown that (X,ΛL) 6= (X,ΛK).

�

Proposition 6.9 The mapping δ preserves morphisms.
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Proof: Let ϕ : (X,Lα) −→ (Y,Kα) be uniformly continuous. That is, for all α ∈ [0, 1] we

have (ϕ×ϕ)→(Lα) ⊂ Kα. In order to show that ϕ is a morphism in S[0, 1]-UCS we must show

that for all F ∈ FS
[0,1](X ×X) we have ΛL(F) ≤ ΛK

(
(ϕ × ϕ)→(F)

)
.

We know that ΛL(F) =
∨ {

α : ΦF ∈ Lα
}
. If Φ ∈ Lα then by Lemma 6.4(vi) we

get (ϕ × ϕ)→(ΦF ) = Φ(ϕ×ϕ)→(F) ∈ Kα. Hence we can see that
{
α : ΦF ∈ Lα

}
⊂

{
α :

Φ(ϕ×ϕ)→(F) ∈ Kα
}

and therefore ΛL(F) ≤ ΛK
(
(ϕ × ϕ)→(F)

)
.

�

Using the above propositions, we define an embedding functor for L = [0, 1]:

δ :





PULIM∗ −→ S[0, 1]-UCS



(
X, (Lα)α∈[0,1]

)
7−→ (X,ΛL)

ϕ 7−→ ϕ

Proposition 6.10 The functor δ is full. That is,

mor
((
X, (Lα)α∈[0,1]

)
,
(
Y, (Kα)α∈[0,1]

))
= mor

(
(X,ΛL), (Y,ΛK)

)
.

Proof: Let ϕ : (X,ΛL) −→ (Y,ΛK) be uniformly continuous. That is, for all F ∈ FS
[0,1](X×X)

we have ΛL(F) ≤ ΛK
(
(ϕ × ϕ)→(F)

)
. Now if we let Ψ ∈ F(Y × Y ), α0 ∈ [0, 1] and Ψ ∈

(ϕ × ϕ)→(Lα0) then there must exist some η ∈ Lα0 such that (ϕ× ϕ)→(η) ≤ Ψ.

For Fη we have Φ(Fη) = η and therefore ΛL(Fη) =
∨ {

α : Φ(Fη) = η ∈ Lα
}
≥ α0. Hence

ΛK
(
(ϕ × ϕ)→(Fη)

)
≥ α0.

We have that

ΛK
(
(ϕ× ϕ)→(Fη)

)
=

∨ {
β : Φ(

(ϕ×ϕ)→(Fη)
) = (ϕ × ϕ)→

(
Φ(Fη)

)
= (ϕ × ϕ)→(η) ∈ Kβ

}
.

This then gives us
∨ {

β : (ϕ×ϕ)→(η) ∈ Kβ
}
≥ α0. Now if we consider A =

{
β : (ϕ×ϕ)→(η) ∈

Kβ
}
, then (ϕ×ϕ)→(η) ∈ Kβ for all β ∈ A. By left-continuity we then get (ϕ×ϕ)→(η) ∈ K

∨
A.

Since
∨
A ≥ α0 we have that K

∨
A ⊂ Kα0 and hence (ϕ × ϕ)→(η) ∈ Kα0.

�

In order to show that we can also generate a probabilistic uniform limit space from a

stratified L-uniform convergence space for Ψ ∈ F(X ×X) and α ∈ [0, 1], we define

Ψ ∈ LαΛ ⇐⇒ Λ(FΨ) ≥ α.

Proposition 6.11 If (X,Λ) ∈ |S[0, 1]-UCS|, then
(
X, (LαΛ)α∈[0,1]

)
is a probabilistic uniform

limit space.
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UC1: By Lemma 6.5(i), Fẋ×ẋ = [(x, x)] and Λ
(
[(x, x)]

)
= 1, we have ẋ × ẋ ∈ LαΛ for all

α ∈ [0, 1].

UC2: Suppose Ψ ≤ η and Ψ ∈ LαΛ. Then clearly Λ(Fψ) ≥ α. From Lemma 6.5(ii) and

(LUC2) Λ(Fη) ≥ Λ(FΨ) ≥ α and thus we see η ∈ LαΛ.

UC3: If Ψ ∈ LαΛ then Λ(FΨ) ≥ α. By (LUC3) and Lemma 6.5(iii) we have Λ(F(Ψ−1)) =

Λ
(
(FΨ)−1

)
≥ α and therefore Ψ−1 ∈ LαΛ.

UC4: If Ψ, η ∈ LαΛ then clearly Λ(FΨ) ≥ α and Λ(Fη) ≥ α. Using first (LUC2) and Lemma

6.5(iv), followed by (LUC4) we get

Λ(FΨ∧η) ≥ Λ(FΨ ∧ Fη)

≥ Λ(FΨ) ∧ Λ(Fη)

≥ α ∧α

= α.

Hence Ψ ∧ η ∈ LαΛ.

P1: Suppose α ≤ β and Ψ ∈ L. This gives us Λ(FΨ) ≥ β ≥ α. Therefore Ψ ∈ LαΛ.

P2: If Ψ ∈ F(X ×X) then Λ(FΨ) ≥ 0 and therefore Ψ ∈ L0
Λ. Hence L0

Λ = F(X ×X).

PULIM: Suppose Ψ ∈ LαΛ and η ∈ LβΛ, and that Ψ ◦ η exists. Then by Lemma 6.5(v) FΨ ◦ Fη
exists and FΨ ◦ Fη ≤ FΨ◦η . Now Λ(FΨ) ≥ α and Λ(Fη) ≥ β and therefore by (LUC5) we

have Λ(FΨ ◦ Fη) ≥ Λ(FΨ) ∗ Λ(Fη) ≥ α ∗ β.

Axiom (LUC2) then gives us Λ(FΨ◦η) ≥ α ∗ β and hence Ψ ◦ η ∈ Lα∗βΛ .

�

Proposition 6.12 If ϕ : (X,Λ) −→ (Y,Σ) is uniformly continuous, then ϕ :
(
X, (LαΛ)α∈[0,1]

)
−→(

Y, (LαΣ)α∈[0,1]

)
is uniformly continuous.

Proof: If α ∈ [0, 1] and Ψ ∈ LαΛ then Λ(FΨ) ≥ α. Since ϕ is uniformly continuous, Σ
(
(ϕ ×

ϕ)→(FΨ)
)

= Σ
(
F(ϕ×ϕ)→(Ψ)

)
≥ α, and therefore (ϕ × ϕ)→(Ψ) ∈ LαΣ.

�
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As a consequence of the previous two results we can now define a functor:

K :





S[0, 1]-UCS −→ PULIM∗



(X,Λ) 7−→
(
X, (LαΛ)α∈[0,1]

)

ϕ 7−→ ϕ.

Proposition 6.13 For
(
X, (Lα)α∈[0,1]

)
∈ |PULIM∗| and for all α ∈ [0, 1] we have Lα =

Lα(ΛL). In other words, K
(
δ
(
X, (Lα)α∈[0,1]

))
=

(
X, (Lα)α∈[0,1]

)
.

Proof: Let Ψ ∈ Lα. Then ΛL(FΨ) =
∨{

β : Φ(FΨ) = Ψ ∈ Lβ
}
≥ α and so Ψ ∈ Lα(ΛL).

On the other hand, Ψ ∈ Lα(ΛL) if and only if ΛL(FΨ) ≥ α. By definition, this will only be

the case if
∨{

β : Φ(FΨ) = Ψ ∈ Lβ
}
≥ α. If we denote A =

{
β : Ψ ∈ Lβ

}
, then we have

Ψ ∈ Lβ for all β ∈ A and hence by left continuity Ψ ∈ L
∨
A ⊂ Lα.

�

Proposition 6.14 The identity mapping idX :
(
X, δ

(
K(X,Λ)

))
−→ (X,Λ) is continuous. In

other words, (X,Λ) ≤ δ
(
K(X,Λ)

)
.

Proof: For F ∈ FS
[0,1](X ×X),

Λ(Lα
Λ)(F) =

∨ {
α : ΦF ∈ LαΛ

}

=
∨ {

α : Λ
(
F(ΦF)

)
≥ α

}

≤
∨ {

α : Λ(F) ≥ α
}

= Λ(F).

�

Proposition 6.15 PULIM∗ is a coreflective subcategory of S[0, 1]-UCS.

Proof: Let (X,Λ) ∈ |S[0, 1]-UCS|. Then idX :
(
X, δ

(
K(Λ)

))
−→ (X,Λ) is a morphism. For

a further space
(
Y, (Kα)α∈[0,1]

)
∈ |PULIM∗|, and a morphism ϕ :

(
Y, (Kα)α∈[0,1]

)
−→ (X,Λ)

we have that ϕ̄ :
(
Y,K

(
δ(Kα)α∈[0,1]

))
−→

(
X,K(Λ)

)
is a morphism in PULIM∗ since

(
Y,K

(
δ(Kα)α∈[0,1]

))
=

(
Y, (Kα)α∈[0,1]

)
. Clearly, idX ◦ ϕ̄ = ϕ.

Now to show the uniqueness of ϕ̄, assume that ϕ̂ :
(
Y, (Kα)

)
−→

(
X,K(Λ)

)
such that

idX ◦ ϕ̂ = ϕ. This would imply that we have idX ◦ ϕ̂(y) = idX ◦ ϕ̄(y) and hence for all y ∈ Y ,

ϕ̂(y) = ϕ̄(y). Hence ϕ̂ = ϕ̄.

�
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7 Conclusions

We have generalised the category of lattice-valued uniform convergence spaces, previously de-

fined in the restricted case of complete Heyting algebras, to more general enriched lattices.

The resulting category, SL-UCS, was shown to be a topological category in the definition of

Preuss [22]. Moreover we could show that Gutiérrez Garćıa’s L-uniform spaces [6] and Nusser’s

probabilistic uniform limit spaces [20], [21] can be viewed as natural examples of our spaces.

This shows that our category is a suitable framework for studying various lattice-valued con-

cepts of uniformities.

A question that remains open is whether or not our category is also cartesian closed. We

encountered problems in generalising the function space structure defined in [16] to our more

general setting. Also, it would be intersting to know if Nusser’s category of probabilistic uniform

limit spaces can also be reflectively embedded into our category. We will have a look into these

questions in our future work.
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[15] G. Jäger, Subcategories of lattice-valued convergence spaces, Fuzzy Sets and Systems 156

(2005) 1 – 24.

[16] G. Jäger and M.H. Burton, Stratified L-uniform convergence spaces, Quaest. Math. 28

(2005) 11 – 36.
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