
A Framework for Mobile SOA using Compression

By

Evan Saunders

Submitted in partial fulfilment of the requirements for the

degree of Magister Scientiae in the Faculty of Science

at the Nelson Mandela Metropolitan University

December 2010

Supervisor: Prof. Jean Greyling

Co-Supervisor: Dr. Lester Cowley

i Acknowledgements

Acknowledgements

I would like to thank and acknowledge the following persons for their efforts,

encouragement, and support:

 My supervisors, Prof. Jean Greyling and Dr. Lester Cowley, for their support,

encouragement and guidance throughout this research. I wish to express my gratitude

to them for their many hours they have spent reading the various drafts of this

dissertation and for the valuable feedback, which they provided to improve its

structure and content.

 The staff in the Department of Computing Sciences at NMMU for their support, use

of facilities and equipment.

 Mr. Danie Venter, statistical data analysis consultant at NMMU, for his assistance in

designing a suitable analysis outline for the evaluations conducted in the course of

this research.

 Telkom SA, as my financial sponsor for my Masters degree.

 The NMMU/Telkom Centre of Excellence for providing me with equipment to

complete this research.

ii Dedications

Dedications

Firstly, I would like to give thanks to my Father in heaven who has seen me through this

journey.

I would like to dedicate this dissertation to Crucinda, as well as my family.

To Crucinda, thank you for caring and supporting me from the start. Thank you for the

inspiration, calming words and motivation you have given me.

To my family, thank you for the encouragements and asking about progress.

iii Summary

Summary

The widely accepted standards of Service-Oriented Architecture (SOA) have changed the

way many organisations conduct their everyday business. The significant popularity of

mobile devices has seen a rapid increase in the rate of mobile technology enhancements,

which have become widely used for communication, as well as conducting everyday tasks.

An increased requirement in many businesses is for staff not to be tied down to the office.

Consequently, mobile devices play an important role in achieving the mobility and

information access that people desire. Due to the popularity and increasing use of SOA and

mobile devices, Mobile Service-Oriented Architecture (Mobile SOA) has become a new

industry catch-phrase. Many challenges, however, exist within the Mobile SOA

environment. These issues include limitations on mobile devices, such as a reduced screen

size, lack of processing power, insufficient processing memory, limited battery life, poor

storage capacity, unreliable network connections, limited bandwidth available and high

transfer costs. This research aimed to provide an elegant solution to the issues of a mobile

device, which hinders the performance of Mobile SOA.

The main objective of this research was to improve the effectiveness and efficiency of Mobile

SOA. In order to achieve this goal, a framework was proposed, which supported intelligent

compression of files used within a Web Service. The proposed framework provided a set of

guidelines that facilitate the quick development of a system. A proof-of-concept prototype

was developed, based on these guidelines and the framework design principles. The

prototype provided practical evidence of the effectiveness of implementing a system based on

the proposed framework. An analytical evaluation was conducted to determine the

effectiveness of the prototype within the Mobile SOA environment. A performance

evaluation was conducted to determine efficiency it provides. Additionally, the performance

evaluation highlighted the decrease in file transfer time, as well as the significant reduction in

transfer costs. The analytical and performance evaluations demonstrated that the prototype

optimises the effectiveness and efficiency of Mobile SOA. The framework could, thus, be

used to facilitate efficient file transfer between a Server and (Mobile) Client.

Keywords: Service-Oriented Architecture, Mobile Service-Oriented Architecture, File

Compression, Compression Framework.

iv Table of Contents

Table of Contents

Acknowledgements .. i

Dedications ... ii

Summary .. iii

Table of Contents ... iv

List of Figures .. xi

List of Tables ... xiii

Chapter 1: Introduction ... 1

1.1 Background ... 1

1.2 Relevance of Research .. 3

1.3 Research Outline ... 3

1.3.1 Problem Statement ... 4

1.3.2 Thesis Statement .. 4

1.3.3 Research Objectives ... 4

1.3.4 Research Questions .. 5

1.3.5 Research Methodology... 6

1.3.5.1 Literature Review ... 6

1.3.5.2 Framework Design ... 6

1.3.5.3 Proof-of-Concept .. 6

1.3.5.4 Evaluation ... 6

1.3.6 Goals, Scope and Constraints ... 7

1.4 Dissertation Structure .. 8

1.5 Conclusions ... 10

Chapter 2: Service-Oriented Architecture .. 11

2.1 Introduction ... 11

2.2 Definition .. 11

2.3 Service-Oriented Architecture .. 12

v Table of Contents

2.4 Design Principles of SOA ... 14

2.5 Components .. 15

2.5.1 Web Services .. 16

2.5.1.1 HTTP .. 18

2.5.1.2 XML ... 18

2.5.1.3 WSDL ... 19

2.5.1.4 UDDI .. 19

2.5.1.5 SOAP .. 19

2.5.2 Web Service Benefits ... 21

2.6 Service-Oriented Applications .. 21

2.7 Conclusions ... 22

Chapter 3: Mobile Service-Oriented Architecture .. 24

3.1 Introduction ... 24

3.2 Mobile Devices ... 25

3.2.1 Definition ... 26

3.2.2 Mobility .. 26

3.3 Mobile Device Capabilities ... 27

3.3.1 Hardware Capabilities .. 28

3.3.2 Software Capabilities ... 28

3.3.3 Network Capabilities .. 28

3.4 Everyday Uses of Mobile Devices .. 30

3.5 Matters to Consider in Mobile Computing ... 31

3.6 Mobile Service-Oriented Architecture .. 36

3.6.1 Definition ... 37

3.6.2 Component Model .. 37

3.6.3 Mobile SOA Benefits ... 38

3.6.4 Mobile SOA Drawbacks .. 39

3.6.5 Extant Systems and Related Work ... 39

3.6.5.1 M-Service Framework (Sanchez-Nielsen et al. 2006) 39

vi Table of Contents

3.6.5.2 EXEM (Natchetoi, Wu, Babin & Dagtas 2007) ... 41

3.7 Conclusions ... 41

Chapter 4: File Compression .. 43

4.1 Introduction ... 43

4.2 What is Compression? .. 43

4.3 Lossless Compression ... 45

4.3.1 Run-Length Coding .. 46

4.3.2 Variable-Length Coding... 46

4.3.3 Dictionary-Based Coding ... 46

4.3.4 Arithmetic Coding .. 48

4.4 Lossless Compression ... 48

4.4.1 Quantisation ... 49

4.4.2 Transform Coding .. 50

4.4.3 Wavelet-Based Coding... 51

4.5 Textual Data Compression .. 52

4.5.1 bZip2 .. 54

4.5.2 gZip .. 54

4.5.3 DotNetZip .. 55

4.5.4 XMill .. 55

4.5.5 XMLppm .. 55

4.5.6 XWRT .. 56

4.6 Image Compression .. 56

4.6.1 GIF ... 57

4.6.2 PNG .. 58

4.6.3 JPEG... 59

4.7 Audio Compression .. 60

4.7.1 MAC... 61

4.7.2 FLAC ... 62

4.7.3 MP3 .. 62

vii Table of Contents

4.8 Video Compression ... 64

4.9 Advantages and Disadvantages of Compression .. 64

4.10 Choosing the Best Algorithm .. 65

4.11 Conclusions ... 66

Chapter 5: Framework Design .. 69

5.1 Introduction ... 69

5.2 Extant System: EXEM Framework ... 70

5.3 Proposed Framework .. 73

5.3.1 Design Process ... 74

5.3.2 Components of Proposed Framework .. 77

5.3.3 Process Steps of Framework .. 80

5.3.4 Perceived Benefits of the Proposed Framework .. 83

5.4 Conclusions ... 84

Chapter 6: Implementation ... 86

6.1 Introduction ... 86

6.2 Initial Testing .. 87

6.2.1 Compression Testing Procedure .. 87

6.2.1.1 XML Compression Tests .. 87

6.2.1.2 Image Compression Tests... 88

6.2.1.3 Audio Compression Tests... 88

6.2.2 Descriptive Statistics .. 88

6.2.2.1 Descriptive Statistics for XML Compression ... 88

6.2.2.2 Descriptive Statistics for Image Compression.. 93

6.2.2.3 Descriptive Statistics for Audio Compression.. 95

6.2.3 Inferential Statistics .. 95

6.2.3.1 Inferential Statistics for XML Compression .. 96

6.2.3.2 Inferential Statistics for Image Compression ... 98

6.2.3.3 Inferential Statistics for Audio Compression ... 99

6.2.4 Initial Testing Summary ... 100

viii Table of Contents

6.3 Implementation Criteria .. 100

6.4 Implementation Tools ... 102

6.4.1 Database Server .. 102

6.4.2 Development Languages and Programming Environment 102

6.4.3 Mobile Platform ... 103

6.4.4 Service Deployment ... 105

6.5 Implementing Prototype for Framework ... 105

6.5.1 User Interaction Component .. 106

6.5.1.1 Registration Module ... 107

6.5.1.2 Service Request Module ... 108

6.5.1.3 Service Viewer ... 109

6.5.2 Intelligence Component ... 109

6.5.2.1 Backend Server Engine .. 110

6.5.2.2 Database ... 111

6.5.2.3 XML Categoriser .. 113

6.5.2.4 Data Transformer ... 113

6.5.3 Compression Component ... 114

6.5.3.1 XML Compression ... 115

6.5.3.2 Image Compression .. 115

6.5.3.3 Audio Compression .. 116

6.5.4 Decompression Component ... 116

6.5.4.1 XML Decompressor ... 116

6.5.4.2 Service Rebuilder ... 117

6.6 Conclusions ... 117

Chapter 7: Evaluation and Findings .. 119

7.1 Introduction ... 119

7.2 Evaluation Strategy ... 119

7.2.1 Pilot Studies ... 120

7.2.2 Proof-of-Concept Prototype ... 120

ix Table of Contents

7.2.3 Analytical Evaluation ... 120

7.2.4 Performance Evaluation ... 121

7.3 Pilot Studies .. 121

7.3.1 Pilot Study 1: Evaluation of Compression used within Mobile Environment 121

7.3.2 Pilot Study 2: Evaluation of Framework using Mobile Emulator 122

7.3.2.1 Procedure .. 122

7.3.2.2 Results .. 123

7.3.3 Pilot Study 3: Evaluation of Battery Life of Mobile Device 125

7.3.3.1 Procedure .. 125

7.3.3.2 Results .. 126

7.4 Analytical Evaluation .. 126

7.4.1 Easy and Lightweight Execution ... 128

7.4.2 Compatibility ... 128

7.4.3 Robustness and Concurrency ... 128

7.4.4 Interchangeable Communication Medium ... 129

7.4.5 Service Discovery .. 129

7.4.6 Efficiency ... 129

7.4.7 Flexibility ... 130

7.4.8 Summary of Analytical Evaluation .. 130

7.5 Performance Evaluation .. 131

7.5.1 Test Procedure .. 132

7.5.1.1 Server Performance .. 133

7.5.1.2 Client Performance ... 133

7.5.2 Results .. 135

7.5.2.1 Server Performance Results ... 135

7.5.2.2 Client Performance Results .. 136

7.5.3 Summary of Performance Evaluation .. 140

7.6 Conclusions ... 140

x Table of Contents

Chapter 8: Conclusions, Findings and Recommendations ... 143

8.1 Introduction ... 143

8.2 Research Contributions ... 144

8.2.1 Theoretical Contributions... 145

8.2.1.1 Literature Review ... 145

8.2.1.2 Framework Design ... 149

8.2.2 Practical Contributions ... 150

8.2.2.1 Development of Proof-of-Concept Prototype... 151

8.2.2.2 Evaluation of Proof-of-Concept Prototype ... 151

8.3 Problems Encountered .. 153

8.4 Benefits of Research ... 155

8.5 Future Research and Recommendations ... 156

8.6 Summary ... 158

References ... 159

Initial Testing Appendices .. 167

Appendix A: .. 167

Appendix B: List of Image Files ... 169

Appendix C: List of Audio Files .. 170

Appendix D: Results for Image Compression .. 171

Appendix E: Quality Ratings for Image Compression .. 172

Appendix F: Results for Audio Compression ... 173

Performance Evaluation Appendices .. 174

Appendix G: Performance Evaluation Results ... 174

xi List of Figures

List of Figures

Figure 1.1: Dissertation Structure ... 9

Figure 2.1: Gartner Hype Cycle for Emerging Technologies (Carpenter, 2009) 13

Figure 2.2: Service-Oriented Architecture (Sanchez-Nielsen et al., 2006) ... 15

Figure 2.3: Web Services Protocol Stack (Lewis & Wrage 2006) ... 17

Figure 2.4: Web Service Interaction (W3C 2004b) .. 18

Figure 2.5: Example of a SOAP Request Message (Senga 2010) .. 20

Figure 3.1: Global Mobile vs. Desktop Internet User Projection (Meeker 2010) 24

Figure 3.2: Simplified View of SOA with Support for Mobile Services (Jørstad et al. 2005) 38

Figure 3.3: Dynamical M-Services Architecture (Sanchez-Nielsen et al. 2006) 40

Figure 4.1: General Framework of a Model and Coder (Blelloch 2001) .. 44

Figure 4.2: A Statistical Model with Huffman Encoder (Nelson et al. 1995) 45

Figure 4.3: Example of Dictionary-Based Code Compression (Seong 2006) 47

Figure 4.4: Uniform Scalar Quantisation: (a) Midrise, (b) Midtread (Li & Drew 2004) 50

Figure 4.5: Basic Vector Quantisation Procedure (Li & Drew 2004) ... 50

Figure 4.6: Sample of Popular Wavelets (Blelloch 2001) .. 52

Figure 4.7: Example of XML Structure (W3C 2010) ... 53

Figure 4.8: Steps in JPEG Compression (Blelloch 2001) ... 60

Figure 4.9: MPEG Audio Layer 3 Encoder .. 63

Figure 5.1: Lossy Compression (Pruning) of an XML Document (Natchetoi et al. 2007b) 70

Figure 5.2: EXEM Framework (Natchetoi et al. 2007b) .. 72

Figure 5.3: Simplified View of SOA with Support for Mobile Services (Jørstad et al. 2005) 73

Figure 5.4: Proposed Compression Framework for Mobile SOA ... 76

Figure 6.1: Compression Ratio (%) for each Compression Technique... 89

Figure 6.2: Compression Time (sec) ... 90

Figure 6.3: Decompression Time (sec) ... 92

Figure 6.4: Memory Footprint (MB) ... 93

Figure 6.5: Windows Mobile SDK Emulator (a) Standard (b) Professional 104

Figure 6.6: Proposed Framework .. 106

Figure 6.7: Registration Screens (a) Default Screen (b) Incomplete Registration Screen 107

Figure 6.8: Service Request Forms (a) Default Screen (b) Search Screen ... 108

Figure 6.9: Service Viewer ... 109

Figure 6.10: Ratings Formula ... 110

xii List of Figures

Figure 6.11: System Database ... 112

Figure 6.12: Conversion of Data from EXCEL Format to XML Format ... 114

Figure 6.13: Decompression Method .. 116

Figure 7.1: Comparison in Costs Incurred During File Transfer .. 139

Figure 8.1: Proposed Framework .. 150

xiii List of Tables

List of Tables

Table 1.1: Research Questions and Associated Methodology .. 5

Table 4.1: File Type, Compression Techniques and Metrics .. 67

Table 5.1: Perceived Benefits Mapped onto Research Questions ... 85

Table 6.1: Compression Ratio Statistics ... 89

Table 6.2: Compression Time Statistics ... 91

Table 6.3: Decompression Time Statistics .. 92

Table 6.4: Summary of Results for Image Compression .. 94

Table 6.5: Quality Ratings for Image Compression ... 94

Table 6.6: Summary of the Results for Audio Compression .. 95

Table 6.7: Test Phones‟ Specifications ... 104

Table 6.8: Sun Fire V40z Server Specification ... 105

Table 7.1: Mobile Emulator Compression Results ... 123

Table 7.2: Expected Minimum Transfer Times (sec) ... 124

Table 7.3: Time Taken to Transfer Original and Compressed Files ... 125

Table 7.4: Mobile Decompression Results ... 126

Table 7.5: Web Service File Types ... 132

Table 7.6: Server Side Performance Results ... 135

Table 7.7: HTC s710 Performance Results ... 136

Table 7.8: HTC TyTN II Performance Results ... 137

Table 7.9: Uncompressed File Transfer Times ... 138

Table 7.10: Mobile Device Transfer Times .. 138

Table 8.1: Research Questions and Associated Methodology .. 145

1 Introduction

Chapter 1: Introduction

1.1 Background

Spurred on by the advent of the Internet, there is a growing need for information access.

Living in an “information society”, we are inundated with information (Edmunds & Morris

2000). People are increasingly requiring information access at any time, from any location,

and need more information, better technologies and easier access to this information.

The use of personal computing for Internet access continues to grow and new applications

and technologies continue to emerge. Mobile devices are starting to replace traditional

computing devices (personal computers and laptops) as client devices, and must support

growing, changing and emerging applications and technologies (Natchetoi, Kaufman &

Shapiro 2008).

There are approximately 4.6 billion mobile devices worldwide (CBS News 2010), which was

predicted to reach five billion by the end of 2010. It is therefore not surprising that mobile

phones are becoming a popular new platform for business applications. Mobile devices that

were initially intended as peripheral voice call devices have become small computers that are

required to do virtually anything, anywhere (Johnsrud, Hadzic, Hafsøe, Johnsen & Lund

2008).

Although the theoretical background of the Internet dates back as early as the 1960s, it was

not until the early 1990s that it became a popular technology. By the mid to late 1990s the

Internet had become a common household technology, made accessible by the development

of the World Wide Web (Lowe, Lomax & Polonkey 1996). Initially, the Web provided

businesses with a means of advertising their product on a global scale from a small set of

Web pages. The enhancement of Internet and Web technologies over time has enabled

business to do more than simply advertise.

New opportunities present themselves on a daily basis, and businesses of today are expected

to respond effectively and in a timely way to these opportunities (Papazoglou & van dem

Heuvel 2007). However, most businesses still utilise a legacy approach to their systems,

which may obstruct the response to these new opportunities (Sanders, Hamilton &

2 Introduction

MacDonald 2008). Additionally, the development of these legacy systems is costly, and

provides limited integration between systems within the business and external systems, as

required.

Service-Oriented Architecture (SOA) has provided a means to support the integration of

legacy systems, and reduce the time and cost of implementing these systems. SOA and

Service-Oriented Computing (SOC) are the most recent approaches aimed at facilitating the

design and development of applications in distributed systems (Jørstad, Dustdar & van Thanh

2005). Simply put, SOA is a collection of Services, which communicate with each other to

achieve a goal.

The emergence and acceptance of SOA has shown that it is as revolutionary and important to

businesses as the Internet was 10 to 15 years ago (Hurwitz, Bloor, Baroudi & Kaufman

2007). Mobile Services is an extension of SOA aimed at utilisation on mobile devices. The

Web has presented a means for standardisation of information Services on the Internet,

whereas mobile devices allow mobile, wireless access to these Services (Holonen & Ojala

2006). Mobile Services hold a promise of utilising the phone also for purposes other than

voice and SMS communication, (van Gurp, Karhinen & Bosch 2005).

It was estimated that 80 percent of all mission critical applications, including business

processes, will be based on SOA by the end of 2010 (Chattpar 2008). This indicates a

definite drive toward SOA-based applications. Furthermore, mobile devices are becoming a

common platform for business applications (Natchetoi et al. 2008). Technologies for

managing information are continually changing, and although technologies for mobile

devices and networks are becoming more advanced, it is not enough to deal with a number of

issues that plague mobile computing. These issues include insufficient memory, processing

capabilities and storage on a mobile device, low reliability of connections, limited available

bandwidth, poor security for wireless and mobile networks, and high cost (Barton, Zhai &

Cousins 2010; Huang 2009; Natchetoi et al. 2008; Ojala 2005). Additionally, the use of

mobile devices is made more challenging by the complexity and high expenses required to

implement mobile applications (Duda, Alesky & Schader 2008). These issues suggest that

the resources available to mobile devices and the challenges in implementing mobile

applications inhibit the evolution of SOA-based application, such as Mobile Services.

In the field of SOA, Web Services and many Web technologies, XML and associated

technologies play a key role (Ojala 2005). The manner in which XML files are created often

3 Introduction

leads to bloated files, which contain redundant information. Compression of XML files is

essential as it reduces the required bandwidth, storage, and processing (Natchetoi et al. 2008).

Media files are an important aspect of visual and auditory aid to enhance user experience.

Media files are typically classified as image, sound or video files. Because the size of media

files is often too large for efficient use on mobile devices, compression is essential for quick

file transfers to a mobile device, as well as the effective management of these files for

presentation on the device.

This section briefly discussed the growth of mobile computing and introduced the concept of

SOA and related technologies. The relevance of the research, the subsequent problem

statement, the research questions and the scope of the study are discussed in the following

sections.

1.2 Relevance of Research

Mobile devices do not offer the same resources as desktops. An example of this is the limited

bandwidth of cellular networks, which may lead to a delay factor in transmission of files to

and from the device. A solution to this problem is to reduce the size of the transmitted data

by employing compression, (Savini, Ionas, Meier, Pop & Stormer 2007). There has been

limited research into SOA in terms of mobile devices and standards. Research into SOA and

Web Services for mobile devices has focused primarily on the end devices in processing Web

Services. The effect of external influences, such as a slow wireless network to deliver these

Web Services, is frequently overlooked. It is essential that any solution related to issues

regarding mobile SOA is simple, intelligent and efficient.

The aim of this project is, therefore, to determine how an intelligent framework, supporting

compression, can be designed to support Mobile SOA and to implement a prototype to

evaluate the effectiveness and efficiency of the framework.

1.3 Research Outline

This section discusses the research outline by means of the problem statement, the thesis

statement, the research questions, the research objectives, the goals, scope and constraints,

and the methodology.

4 Introduction

1.3.1 Problem Statement

Traditional use of SOA within business organisations has been limited to desktop computers.

However, businessmen spend approximately a third of their time conducting business outside

the office environment (Johnson, Manyika & Yee 2005), highlighting the need for mobile

intervention. Current resources available to and on mobile devices are insufficient to cope

with large amounts of data and processing. Coupled with this, the unreliability of

connections and limiting bandwidth offered to mobile devices make it difficult to support

Mobile SOA, which incurs large costs for business and government organisations.

1.3.2 Thesis Statement

The aim of this research is to illustrate that Mobile SOA can be optimised using compression.

A framework will be designed and implemented for use within the Mobile SOA environment.

The framework proposed is centred on file compression and demonstrates that improvement

of file transfers to and from mobile devices is feasible. The thesis statement for the study is

therefore:

“The efficiency and effectiveness of Mobile SOA can be improved by the implementation of a

framework supporting intelligent
1
 compression.”

1.3.3 Research Objectives

With the purpose of researching the thesis statement, the primary objective of this research is

to “Improve efficiency and effectiveness of Mobile SOA”. This study also intends to achieve

the following secondary objectives:

 To gain a comprehensive understanding of an SOA and its enabling technologies

(Chapter 2);

 To acquire thorough knowledge of Mobile SOA and its enabling technologies

(Chapter 3);

 To investigate compression and categorisation techniques of files used within Mobile

SOA (Chapter 4);

o To establish a set of criteria for measuring efficiency of compression;

1
 Intelligent Compression, in this research, is the ability to choose different compression techniques based on the

categorisation of types of files, and the further categorisation within each type of file.

5 Introduction

 To determine how a framework supporting compression can be designed for Mobile

SOA (Chapter 5);

 To determine how a prototype can be implemented based on the design of a

framework (Chapter 6); and

 To evaluate the design of a framework and implementation of a prototype for Mobile

SOA (Chapter 7).

1.3.4 Research Questions

The main research question for this project is “how can the efficiency and effectiveness of

Mobile SOA be optimised using a framework that supports intelligent compression?” In

answering the main research question, a number of secondary questions must also be

answered. These questions are listed in Table 1.1, along with the method by which these

questions will be answered.

Table 1.1: Research Questions and Associated Methodology

In order to answer these research questions, a research methodology was designed. This

methodology is discussed next.

Research Question Research Method Chapter

Main:
How can the efficiency and effectiveness of Mobile SOA be optimised using a

framework that supports intelligent compression?

R1 What is SOA and what are its components? Literature Study Chapter 2

R2 What is Mobile SOA and what are the relevant issues and constraints? Literature Study Chapter 3

R3 What are the issues related to file compression? Literature Study

Chapter 4
R3.1 How can files be categorised in relation to intelligent compression? Literature Study

R3.2 What are the different file compression techniques? Literature Study

R3.3 What are the criteria for measuring efficiency of file compression? Literature Study

R4
How can a framework, supporting intelligent compression, be designed for

Mobile SOA?

Service-Oriented

Analysis and Design
Chapter 5

R5 How can a prototype, based on the proposed framework, be implemented?
Developmental/

Proof-of-Concept
Chapter 6

R6 Does the prototype adhere to the framework design principles? Evaluation

Chapter 7
R7

Does the prototype show that the efficiency of Mobile SOA can be improved

through intelligent compression?
Evaluation

6 Introduction

1.3.5 Research Methodology

Each of the research questions, listed in Table 1.1 above, will be answered by means of a

research method outlined in the following sub-sections to achieve the objective defined in

Section 1.3.3.

1.3.5.1 Literature Review

The goal of this research is to implement a compression framework for Mobile SOA. In

order to achieve this goal, an understanding of both mobile and SOA technologies is required.

A literature review on SOA is conducted to understand what SOA is and to establish what the

components of SOA are (R1). A literature review is conducted to understand what Mobile

SOA is, to establish what the components of Mobile SOA are, and to uncover the issues and

constraints related to Mobile SOA (R2). The literature review on compression is conducted

to understand what compression is and how it can be optimised (R3), how files may be

categorised in relation to intelligent compression (R3.1), what are the different compression

techniques available (R3.2), and what are the criteria for measuring the performance of these

compression techniques (R4).

1.3.5.2 Framework Design

Previous research is examined to discover existing frameworks within the same, or similar,

environment. A framework will be designed for this project as it provides the basis on which

a prototype can be implemented (R5).

1.3.5.3 Proof-of-Concept

In order to evaluate the framework design and propose improvements to the framework, a

proof-of-concept prototype has to be developed. This prototype will be implemented as a

proof-of-concept to establish whether the framework adequately supports intelligent

compression by means of file categorisation. This compression is performed on data and

media files associated with the requested Service. The prototype forms the basis for

answering research question R6.

1.3.5.4 Evaluation

Although the prototype provides a means for testing the proof-of-concept by answering

research question R5, an evaluation of this prototype is required. The evaluation provides a

7 Introduction

means of determining whether the framework achieved the objectives that were outlined in

Section 1.3.3. As shown in Table 1.1, the prototype must confirm the following:

 Whether the prototype adheres to the framework design principles (R6);

 Whether the prototype demonstrates that intelligent file compression improves the

efficiency of Mobile SOA (R7).

In order to answer Research Questions R6 and R7, the evaluation process consists of two

categories of evaluation, an analytical evaluation and an evaluation of performance metrics.

The analytical evaluation demonstrates that the prototype is designed according to framework

design principles, which are discussed in Section 5.3.1. The evaluation of performance

metrics provides a means to determine the efficiency of the developed prototype.

1.3.6 Goals, Scope and Constraints

The goal of this research is to “improve the efficiency and effectiveness of Mobile SOA” by

means of achieving each of the objectives listed in Section 1.3.3. The scope of this research

is, therefore, limited to investigating how a framework supporting intelligent compression

can be implemented within a Mobile SOA environment. The area in which the framework

will be used is Mobile Web Services.

SOA is an architecture that presents standards for describing and interacting between

components, and can be employed across multiple platforms. Web Services are the most

common technology for implementing an SOA and offer numerous types of Services that

provide different functions. This research focuses on Service-Orientation via Web Services,

which can be adapted to suit the mobile environment. Discussions of these Web Services are

restricted to the context of SOA. The domain constraints are outlined below:

 The domain is divided into two types of Services, namely Content Services and

Added Value Services. These Services, discussed in Section 2.3, are limited to

business queries that could be used within mobile environment. Three different

examples of scenarios, based on commonly used Mobile Services, will be examined

for evaluation purposes. The first example is based on a Service for delivering

students marks. The second Service resembles a blog in which photos can be

downloaded and uploaded. Finally, the third Service is based on a combination of

Content and Added Value Service in which data and media files are sent via the

Service;

8 Introduction

 Data will be represented in the form of XML files due to the widespread utilisation of

XML-based Web Services. Media will be represented in the form of image and audio

files; and

 The requirements of the implemented prototype are limited to performing the

following functions using Web Services:

o Registering a first time user by means of capturing user and mobile device

data;

o Compressing files of the user-requested Web Services to be transferred to a

mobile device; and

o Decompressing these files on a mobile device for use with the requested Web

Services.

File compression is restricted to XML, image and audio files. Video files are somewhat

large, in terms of storage space required, even after performing compression. As with most

Web technologies, there are time constraints when delivering content to a Client within the

Mobile SOA environment. Providing on-the-fly video compression is a very time-intensive

procedure, and, therefore, cannot meet the desired time specifications. Consequently, it was

decided that video compression is not within the scope of this research.

The evaluation of the prototype is limited to testing on two mobile devices, namely HTC

s710 and HTC TyTN. The specifications of these phones are discussed in Chapter 6.

1.4 Dissertation Structure

This section gives a brief outline of each of the eight chapters. Each chapter aims to achieve

a research objective as outlined in Section 1.3.3. Figure 1.1 provides a summary of the

structure of this dissertation.

Chapter 2: – Service-Oriented Architecture: This chapter provides a literature

background on Service-Oriented Architecture and its related technologies and formally

defines SOA. A number of projects related to SOA are discussed.

Chapter 3: – Mobile SOA: This chapter presents a discussion on mobile devices, and their

capabilities, uses and limitations. Furthermore, a discussion on Mobile SOA is also

conducted as a specialised domain within SOA. The benefits of Mobile SOA are discussed,

as well as the drawbacks faced within Mobile SOA. The supporting technologies and

9 Introduction

components are also discussed in this chapter in conjunction with existing frameworks that

support Mobile SOA.

Figure 1.1: Dissertation Structure

Chapter 4: – File Compression: Research on file compression is discussed in this chapter.

A sample of common files used within Mobile SOA is briefly discussed. Numerous

compression techniques are investigated. For data, an initial five compression techniques are

compared, and a further three for audio and image compression, respectively. The

comparison of these compression techniques are discussed in Chapter 6.

Chapter 5: – Framework Design: This chapter discusses the design processes and methods

of the proposed framework. In this chapter, the framework is designed, based on an existing

framework, following specific design principles.

Chapter 6: – Implementation: A proof-of-concept prototype was developed based on the

proposed framework. This chapter describes the design and implementation of this

prototype. The implementation of the architecture, individual components and data design is

described.

10 Introduction

Chapter 7: – Evaluation and Findings: This chapter discusses the evaluation of the final

prototype based on the specific performance metrics identified. The presentation and

analysis of the results were gathered from testing the performance of the prototype. A test for

efficiency and effectiveness of the prototype is the primary focus of this chapter.

Chapter 8: – Conclusions: Conclusions derived from this research are reviewed in this

chapter. The chapter validates that the outlined objectives were achieved and presents ideas

for future research.

1.5 Conclusions

As mobile devices are becoming increasingly popular year by year, there is an increasing

need for an optimised compression to improve the effectiveness and efficiency of providing

SOA to mobile devices. A standardised framework, supporting intelligent compression, is an

essential research area in Mobile Service-Oriented Architecture (Mobile SOA).

This research proposes a framework, which supports intelligent compression, and determines

how a prototype, based on the proposed framework, can be implemented using standardised

design principles. This research will also entail a literature review (Chapters 2, 3 and 4),

framework design, prototyping and experiment methods, and an evaluation of the framework

and prototype. The prototype will be evaluated by means of specific software engineering

metrics to test the performance in terms of effectiveness and efficiency it provides compared

to normal service delivery. The research methods will address the identified objectives.

The next chapter is the first section of the literature review, and provides an overview of SOA

and its underlying technologies.

11 Service-Oriented Architecture

Chapter 2: Service-Oriented Architecture

2.1 Introduction

Service-Oriented Architecture (SOA) is not a new concept or approach to software and

system design. SOA is an evolution of the component style of distributed system

development, where systems are designed and built in components that interact and exchange

data (OASIS 2006) and these underlying concepts to SOA have been around since the 1970s

(Datz 2004). In the past, operations have been carried out by multiple tiers of systems and

now there is a shift towards making these systems work together in an SOA (Sanders et al.

2008).

This chapter answers research question R1, “What is SOA and what are its components?”,

and is the first of three literature study chapters. A definition of SOA is provided in Section

2.2. Section 2.3 provides background knowledge of what SOA is and why it is so widely

accepted. SOA design principles are discussed in Section 2.4. This is followed by a

discussion of the enabling components of SOA in Section 2.5. Finally, the applications of

SOA are discussed in Section 2.6.

Before delving into the driving forces, challenges, components, and applications of SOA, it is

important to have a formal and concrete definition of SOA for this research.

2.2 Definition

Due to its wide acceptance and utilisation, SOA has become a popular term in the IT

community. The IT community has seen SOA as a solution to a wide variety of architectural

challenges (Senga, 2010). However, there is no one leading definition of SOA. This has

meant that many businesses, institutions, groups, and vendors, within the IT community, have

proposed varying definitions of what SOA is.

Erl (2005) defines SOA as an architectural model that proposes to improve the efficiency,

agility, and productivity of an organisation by positioning Services as the primary method

through which solution logic is represented in support of the fulfilment of strategic goals

related to Service-Oriented Computing. Shen (2007) also provides a definition of SOA as an

architectural style that aims to accomplish loose coupling between interacting and contracted

12 Service-Oriented Architecture

Services by way of communication protocols. Hurwitz et al. (2007) defines SOA as an

architecture for developing business applications as a collection of loosely coupled

components, organised to produce a well-defined level of service by connecting business

processes.

These three definitions are consistent in that they define SOA as an architecture for

combining previously developed business applications. This is achieved by means of

integrating loosely coupled components and presenting them as Services. This research

formally defines SOA as: “an architectural approach to building loosely coupled business

systems by integrating different components by means of Services. The integration of these

components is independent of programming language and platform.” This definition will be

used throughout the remainder of this dissertation.

2.3 Service-Oriented Architecture

The legacy systems, or existing working systems, of enterprise contain a mixture of different

programming and execution environments, techniques and protocols that are difficult to

maintain and update. SOA has become the new hype in both government operations and

industry as it promises to increase business agility and ease costs through improved

interoperability and reuse of shared business Services (Erradi, Kulkarni, Anand & Kulkarni

2006). An SOA is intended to allow developers to solve many distributed enterprise

computing challenges, which includes application integration, transaction management, and

security policies, whilst allowing multiple platforms and protocols, and influencing many

access devices and legacy systems (Alonso, Casati, Kuno, Machiraju, 2004).

According to Gartner, the use of SOA is still growing (Abrams & Schulte 2008). The

Gartner hype cycle (Carpenter 2009) (Figure 2.1) shows that SOA is still a rising technology,

as it highlights that SOA has passed the peak of inflated expectations and the trough of

disillusionment, and is well established on the slope of enlightenment. This is an indication

that organisations have a better understanding of SOA, along with its benefits and

capabilities.

13 Service-Oriented Architecture

Figure 2.1: Gartner Hype Cycle for Emerging Technologies (Carpenter, 2009)

In an SOA, software resources are wrapped as Services that are well defined, self-contained

modules that supply standard business functionality and are independent of the state or

context of other Services (Papazoglou & van den Heuvel 2007). Services are defined in a

standard definition language, have a published interface, and interact with each other,

requesting execution of their operation in order to collectively support a central business task

or process (Fremantle, Weerawarana & Khalaf 2002).

SOA is an architectural style that is based on loosely coupled system components. Loose

coupling refers to the idea of allowing a Service or application using the Service to be

agnostic to the underlying technical details of partner Services in order to use them to their

fullest functionality and is important for maintainability, scalability, and future upgrade paths

of applications using the Services (Sanders et al. 2008). This means that Services are not

dependent on each other and can be mixed and matched with other component Services as

needed (Hurwitz et al. 2007). Loose coupling has advantages over tight coupling in that it

provides asynchronous communication, dynamic binding, enables composition of Services at

14 Service-Oriented Architecture

runtime, is platform independent and any changes in one Service will not have additional

impact on any associated Services (Liegl 2007).

Services within SOA are divided into two categories, Content Services and Added Value

Services (van Gurp et al., 2005). Content Services are based on the delivery of media files,

such as audio and images. Added Value Services are based on the delivery of data files, such

as those used within the business environment.

2.4 Design Principles of SOA

A design principle is an accepted industry practice that provides a guideline, or set of

guidelines, to realise a specific technology implementation (Erl 2005). SOA is a type of

architecture that adheres to the principles of Service-Orientation, and when implemented by

means of Web Services, SOA supports these principles during the business process and

automation domains of an organisation (Erl, 2005). SOA design principles present guidelines

by which best results are achieved when utilising SOA (Senga, 2010).

Within the IT industry, there are a number of SOA design principles. Of these, there are

seven common design principles (Erl 2008; OASIS 2006; SOABooks 2010; IBM 2010). The

seven design principles of SOA are listed as (Erl 2008):

1. Service Composability: “Services are effective composition participants, regardless

of the size and complexity of the composition”;

2. Service Coupling: “Service contracts impose low consumer coupling requirements

and are themselves decoupled from their surrounding environment”;

3. Service Abstraction: “Service contracts only contain essential information and

information about services is limited to what is published in Service contracts”;

4. Service Statelessness: “Services minimize resource consumption by deferring the

management of state information when necessary”;

5. Service Reusability: “Services contain and express agnostic logic and can be

positioned as reusable enterprise resources”;

6. Service Autonomy: “Services exercise a high level of control over their underlying

runtime execution environment”; and

7. Service Discoverability: “Services are supplemented with communicative meta data

by which they can be effectively discovered and interpreted”.

15 Service-Oriented Architecture

These principles are applied together to the solution logic to structure it in a way that

promotes important design characteristics that support the specific goals linked to SOC

(SOABooks 2010). SOA, however, does not define a specific implementation technology,

but instead defines the architectural components and concepts to describe a particular Service

in a specific context (Sanders et al. 2008). Designing systems for SOA requires an

understanding of the components in a system and how they interact.

2.5 Components

There are numerous variations of the component model of SOA. However, the basic

components of SOA are standard. Figure 2.2 (Sanchez-Nielsen, Martin-Ruiz & Rodriguez-

Pedrianes 2006) describes the SOA paradigm and the relationship between the basic

components of SOA implemented by means of standard XML-based initiatives. These basic

components are the Service Consumer (or Service Requestor/Service Client/Service User),

the Service Provider and the Service Manager (or Service Registry/Service Directory).

Service Consumers may be different Services, applications or end-users (Erl 2005). A

Service Registry allows Service Providers to register and publish Services in a registry. The

Service Providers are the owners that offer Services. The Service Provider registers and

publishes a Service description to the Service Registry in which the Service Consumer can

find any Service with specific request parameters. The registry returns the description of

each relevant Service. The Service description contains sufficient information about the

Service to enable the Service Consumer to bind to the Service Provider and use the Service.

A Service Consumer can be in the form of other applications, Services or end-users (Erl,

2005).

Figure 2.2: Service-Oriented Architecture (Sanchez-Nielsen et al., 2006)

16 Service-Oriented Architecture

Using a Web Service concept, a Client application (Service Consumer) makes a procedure

call of a Web Service (Service Provider) in the same manner it invokes a local call, in which

there are numerous types of communication between a Client application and a Web Service

(Sanchez-Nielsen et. al 2006).

Although the Service Client, Service Provider and Service Registry are the basic components

of an SOA, there are a number of additional components that may be used, depending on the

domain within which it is used. For example, this research focuses on Mobile SOA, which

employs the Mobility Controller as an additional component. This is discussed in more detail

in Chapter 3 and illustrated in Figure 3.2.

2.5.1 Web Services

The term Service is often used to refer to a Web Service. This research focuses on SOA by

means of Web Services and, thus, any mention of Services in this research refers to Web

Services and vice-versa.

The increasing acceptance of SOA has been due to the popular use of Web Services, and the

variety of today‟s systems (Sanders et al. 2008). Web Services are the most popular type of

Services available today (Papazoglou & van den Heuvel 2007).

A Web Service is an integration technology and has become an obvious solution to (or at

least as a simplification of) the integration challenge within SOA (Alonso et al. 2004). The

main advantage it yields is that of standardisation, in terms of data format (XML), interface

definition language (WSDL), transportation mechanism (SOAP), discovery description

(UDDI), and many other interoperability facets (Nezhad 2006).

There are three major bodies which aim to define Web Standards such as SOA. These are the

World Wide Web Consortium (W3C), WS-I, and the Organisation for the Advancement of

Structures Information Standards (OASIS, 2006). W3C (2004b) defines a Web Service as a

software system designed to enable and sustain interaction between interoperable machines

via a network by means of an interface described in a machine-readable format. The OASIS

group defines a Service as: “a mechanism to enable access to a set of one or more

capabilities, where the access is provided using a prescribed interface and is exercised

consistent with constraints and policies, as specified by the Service description” (OASIS

2006).

17 Service-Oriented Architecture

Figure 2.3: Web Services Protocol Stack (Lewis & Wrage 2006)

The main goal of Web Services is to make building blocks (initiatives) accessible over

standard Internet protocols that are independent from platforms and programming languages

(WebSphere, 2004). Web Services are based on a core set of open communication standards

and protocols (Senga, 2010). These standards are the building blocks of Web Service and are

shown graphically in Figure 2.3.

A discussion of the components within the Base Stack is presented later in this section. The

security, QoS, transactions, and management components are optional, as they provide

additional attributes to the implementation of a Web Service.

Figure 2.4 illustrates how these building blocks interact in a Web Service Architecture along

with the basic components of SOA. The components of SOA interact with one another by

transmitting requests and responses in the form of XML-based messages.

18 Service-Oriented Architecture

Figure 2.4: Web Service Interaction (W3C 2004b)

Web Services core standards have developed over the past five to ten years and are defined,

in detail in the following subsections.

2.5.1.1 HTTP

Hypertext Transfer Protocol (HTTP) is a widely accepted Internet protocol for the

transmission of data between interconnected machines; and applications that make use of this

protocol can communicate with minimum effort, in spite being installed and operated on

different platforms and potentially in different geographical locations (Senga 2010). HTTP is

the standard for addressing Web pages, e.g. http://www.google.com/alerts, and in addition to

defining addresses, HTTP can identify a Web Service, such as the news alerts Service that

Google provides (Hurwitz et al. 2007). Web Services allow machines to communicate using

standard communication protocols transmitted over HTTP using SOAP messages (discussed

in Section 2.5.1.5).

2.5.1.2 XML

Extensible Mark-up Language (XML) is a simple, text-based configuration for representing

structured information (W3C 2010). This information is saved in XML files, which have

their internal structures available to users of the file through a process of metadata publishing.

All definitions, descriptions and messages are based on XML. Since data is stored and

http://www.google.com/alerts

19 Service-Oriented Architecture

transmitted in the form of XML files within the proposed framework, it is discussed in more

detail in Chapter 4.

2.5.1.3 WSDL

A Service description is a collection of documents that describe the interface to and semantics

of a Service. W3C (2004a) defines Web Services Description Language (WSDL) as a

language for describing Web Services. This is done by means of messages, which have a

specific network protocol and message format, exchanged between the Service Consumer and

Service Provider. Simple changes to existing Internet infrastructure can consume Web

Services for utilisation through Web browsers or directly within an application, and provided

that both the sender and receiver agree on the Service description, the implementation behind

the Web Services can be anything (W3C 2004a). WSDL is a standard based on the XML

format. Through WSDL, a designer specifies the programming interface of a Web Service.

This interface is specified in terms of methods supported by the Web Service, where each

method is able to take one message as an input and return another as output.

2.5.1.4 UDDI

The Universal Description Discovery and Integration (UDDI) is a framework for describing,

discovering and integrating business Services through the Internet (Hurwitz et al. 2007). It

provides definitions for registries of business Services (Kanneganti & Chodavarapu 2008),

which can be made accessible to the general public, or they can be private – that is, used

within the confines of an organisation – or they could be between associate organisations

(Senga 2010). The UDDI framework makes use of SOAP messages to communicate with

applications that access it.

2.5.1.5 SOAP

Simple Object Access Protocol (SOAP) provides a standard, extensible, organised framework

for packaging and exchanging XML messages (W3C 2004a). SOAP is lightweight and

geared for the exchange of information in a decentralised environment in which messages are

exchanged over standard HTTP/HTTPS. Using SOAP, Services are used to exchange

messages by means of standardised conventions to convert a Service invocation into an XML

message, to exchange the message, and to convert the XML message back into an actual

Service invocation (Sanchez-Nielsen et al. 2006). The use of XML to define the messaging

framework allows SOAP to be independent of platform and programming language (Gudgin,

20 Service-Oriented Architecture

Hadley, Mendelsohn, Moreau, Nielsen, Karmarkar & Lafon 2007). Figure 2.5 shows an

example of a SOAP request message, which Web Services utilise to exchange messages with

other Web Services (Senga, 2010).

<?xml version="1.0"?>

<soap:Envelope xmlns:soap=http://www.w3.org/2001/12/soap-envelope

soap:encodingStyle="http://www.w3.org/2001/12/soap encoding">

 <soap:Body xmlns:m="http://www.example.org/stock">

 <m:GetAStockPrice>

 <m:StockName>MSFT</m:StockName>

 </m:GetAStockPrice>

 </soap:Body>

</soap:Envelope>

Figure 2.5: Example of a SOAP Request Message (Senga 2010)

Different systems interact with a Web Service in a way specified by its description, in the

form of WSDL, using SOAP messages, generally transferred using HTTP with an XML

serialization in conjunction with other Web-related standards (W3C 2004b). The following

describes the complete sequence of events that transpires when an XML-based Web Service

is called (Quynh & Thang 2009):

1. The Client creates an instance of an XML-based Web Service proxy class, residing on

the same computer or device as the Client.

2. The Client then invokes a method on the proxy class.

3. The infrastructure on the Client computer/device serialises the arguments of the Web

Service method into a SOAP message and transmits it over the network to the Web

Service.

4. The infrastructure accepts the SOAP message and deserialises the XML, after which

it creates an instance of the class implementing the Web Service and invokes the Web

Service method, feeding in the deserialised XML as parameters.

5. The Web Service method executes its code, finally setting the return value and any

out parameters.

6. The infrastructure on the Web Server serialises the return value and out parameters

into a SOAP message and transfers it over the network to the Client.

7. The Web Service infrastructure, on the Client computer/device, obtains the SOAP

message, deserialises the XML into the return value and any out parameters, and

passes them to the instance of the proxy class.

8. The Client receives the return value and any out parameters.

21 Service-Oriented Architecture

A Web Service, if implemented correctly, may provide a number of benefits, which has led to

its wide acceptance and use for implementing applications within an SOA. These benefits

are discussed in the next section.

2.5.2 Web Service Benefits

Web Service technology is widely accepted as a critical aspect of Service-oriented

architecture, more specifically Service-Oriented Integration Architectures (SOIA). The

standards provided within a Web Service provide an opportunity for seamless integration
1
.

The benefits of using Web Services, within SOA, include the following (Cavanaugh 2006):

 Application and data integration;

 Versatility;

 Code reuse; and

 Cost saving.

The main advantage of Web Services, due to the platform independence of Web Services and

standards used to implement Web Services, is that any application can invoke a Web Service,

as long as the Service is discoverable. Web Services provide a standardisation in terms of

data format (XML), interface description language (WSDL), transport protocol (SOAP), and

Service discovery (UDDI) (Nezhad 2006). Although there are other standards, they have

become the leading standards in industry for an SOA (Liegl 2007), hence its popularity.

Additionally, the technology used to implement Web Services makes it possible for an

interacting collection of simple Web Services to operate as one complex process (Sanders et

al. 2008).

2.6 Service-Oriented Applications

The SOA design paradigm has allowed a new class of applications that allow scalable

infrastructure and software to be delivered over the Internet as a Service (Senga 2010). An

example of such an SOA application is cloud-computing. Essentially, computing is

conducted in a cloud, in which data storage and information processing are performed in data

centres. These data centres often utilise the grid-computing method, in which parallel

1
 Seamless integration is defined as two (or more) systems, which may be implemented on different platforms

and in different programming languages, accessing core functionalities from the other system without any

additional implementation.

22 Service-Oriented Architecture

algorithms and applications are executed to manage processing on a large scale. The

infrastructure can be reused to provide on-demand Services to consumers by making them

available as Web Services (Atkins, Droegemeier, Feldman, Garcia-Molina, Klein,

Messerschmidtt, Messina, Ostriker & Wright 2003).

Loose coupling has enabled a new sector of the software industry known as “software as a

Service” (SaaS), which allows a provider to host software for a Client so that the Client does

not require to manage the software or purchase any hardware for it (Hurwitz et al. 2007). All

that would be required is a connection to that Service. The immediate scalability of the

infrastructure allows Service providers to benefit it, while consumers can use software on an

as-needed basis (Senga 2010). Ironically, the computer industry began with a similar model

until the mid-1970s, as the majority of companies that computerised their businesses

subscribed to time-sharing Services, as computers were too costly for one company to own.

Although hardware costs have dropped considerably, running software applications and

maintaining data centres still incur large costs for businesses (Hurwitz et al. 2007).

There are numerous examples of other types of applications that can be delivered via the

Internet as Services. These applications include, for example, Microsoft„s Windows Azure

Platform that provides a Windows operating system, EyeOS (EyeOS 2009) provides desktop

functionality through a browser, while Google Docs (Google 2009), and Buzzword

(Buzzword 2009) provide word-processing functionality from a cloud.

2.7 Conclusions

SOA is a technology that continues to grow year on year, and is not just used by large

organisations and businesses, but by ordinary people to perform daily tasks, such as banking.

However, there has been an excessive amount of differing definitions across vendors and

businesses. Due to the vagueness and ambiguity in the number of definitions provided for

SOA, this chapter has provided a formal definition of SOA. SOA is: “an architectural

approach to building loosely coupled business systems by integrating different components

by means of Services. The integration of these components is independent of programming

language and platform.”

SOA provides a platform independent means to deliver an application‟s functionality by

invoking the functionality as Services. The most popular form of Services to enable SOA has

been through the invocation of Web Services. A Web Service is a technology that is well

23 Service-Oriented Architecture

suited to implementing SOA, which are software systems to facilitate machine

communication over a network. The components of a Web Service are expressed using

HTTP, XML, WSDL, UDDI, and SOAP, each of which has a specific role for Web Services.

The advantages of Web Services include application and data integration, versatility, code

reuse and cost saving. Web Services are used within applications to perform tasks based on

the user request.

SOA continues to grow due to its rapid acceptance and wide use for both businesses and

everyday people. Mobile technology has also seen continued growth during the past decade.

The increase in the amount of connected mobile devices has meant that the technology has

moved from simply being calling devices to acting as small computers. Due to the expansion

of both these technologies, there has been an increasing interest in the domain of Mobile

SOA. The standardised implementation criteria for SOA have meant that the technology may

be adapted to operate within a mobile environment. However, many challenges still exist for

both mobile technology and Mobile SOA.

The next chapter provides a literature review of mobile devices and the increasing invocation

of Mobile SOA through Mobile Web Services.

24 Mobile Service-Oriented Architecture

Chapter 3: Mobile Service-Oriented Architecture

3.1 Introduction

According to research (CBS News, 2010) there are approximately 4.7 billion connected

mobile devices worldwide. This number is increasing daily and was expected to reach 5

billion by the end of 2010, of which two billion of these devices will be cell phones. There

are approximately 6.9 billion people in the world (U.S. Census Bureau 2010). Given that a

number of people might have more than one mobile device, it is estimated that more than 60

percent of the population have some form of a mobile device. Approximately 1.6 billion

people have access to online information (distinct from the ability of these devices to make

and receive phone calls) from around the world via their cell phones. Gartner (2010) predicts

that the number of users accessing the Internet via their mobile phones will overtake that of

desktop computers by the end of 2013, with approximately 1.83 billion Internet-enabled

mobile phones having been sold as opposed to the 1.78 billion computers sold at that time.

This is confirmed by Meeker (2010), who predicts that the same event will occur by mid

2013 (Figure 3.1).

Figure 3.1: Global Mobile vs. Desktop Internet User Projection (Meeker 2010)

25 Mobile Service-Oriented Architecture

In addition, the requirement of the corporate world is that they do not want to be tied to their

workstations in order to conduct their business. On average, mobile employees spend a third

of their time at work out of the office, and approximately half of their time in the office away

from their desks (Johnson et al., 2005). A growing number of employees want to make

business decisions using their cell phones and as a result, cell phones will play a critical role

as the devices used for accessing enterprise systems, such as ERP (Enterprise Resource

Planning), CRM (Customer Relationship Management), and BI (Business Intelligence)

(Natchetoi et al., 2008). From financial to media Services, few markets will be untouched by

mobility in the years to come with the impact on some sectors, such as banking, having

already been profound.

There is a definite requirement for providing better solutions in providing SOA to mobile

devices. In order to discuss Mobile SOA, its requirements, its benefits and drawbacks, a

discussion on the capabilities of mobile devices, as well as the uses and challenges, is

required. This discussion presents motivation for the necessity of using Mobile SOA.

This chapter provides a literature study on mobile devices and their technology. Section 3.2

provides a brief introduction to mobile technology, and also briefly introduces the need for

Mobile SOA, a technology enabled by modern mobile devices. This is followed by a

discussion on mobile devices, their capabilities, uses, and constraints (Sections 3.3-3.5). A

specialised domain of SOA, Mobile SOA, is discussed in Section 3.6, as well as underlying

technologies, drawbacks and existing systems within Mobile SOA.

3.2 Mobile Devices

Mobile technologies are revolutionising the manner in which people interact with their daily

lives, work, and business (Sanchez-Nielsen et al., 2006). The last ten years have been

witness to a telecommunications world that differs vastly from even the recent past, with

developments in the mobile sector having significantly changed the Information and

Communications Technology (ICT) landscape. This is particularly evident in Africa, as the

mobile cellular growth rate there has been the highest of any region over the past five years,

averaging close to 60% per annum (Botha, Makitla, Ford, Fogwill, Seetharam, Abouchabki,

Tolmay & Oguneye 2010).

Many computer vendors, such as Apple and Microsoft, have moved into the smartphone

market, while mobile phone vendors, such as Nokia, are starting to release devices that

26 Mobile Service-Oriented Architecture

compete with netbooks and notebooks from computer manufacturers. Mobile phones started

as a method for communicating via simple voice transmission over wireless networks,

revised soon after by the Simple Message Service (SMS). These devices, however, have

since grown into a multi-billion dollar industry where almost any form of computing is

capable of being achieved using these phones. This includes these devices being used to

access the Internet. Mobile devices are, in effect, becoming the new Client platforms

(Natchetoi et al. 2008) required to support most of the new computing paradigms, including

transmission of large files.

In order to discuss mobile device capabilities and uses, along with technologies enabled by

mobile devices, a formal definition is required.

3.2.1 Definition

Mobile devices have multiple definitions, which include numerous devices such as mobile

phones, PDAs and laptops, usually referring to communicators, multimedia entertainment

and business processing devices to support portability for their users. In this research, a

mobile device is defined as “any handheld, pocket-sized, mobile device that is connected to a

network operator and is capable of connecting to the Internet.” These devices include cell

phones, smart phones, and PDAs. This definition will be used for the remainder of this

research when referring to mobile devices, cell phones, smart phones or PDAs. Although

laptops and other such devices can technically be defined as being mobile, they lack what is

defined as true mobility, as they often require placement on a flat surface, and operation with

both hands. Additionally, the resources available to these devices are not always a limiting

factor, such as the screen size, input and processing power.

3.2.2 Mobility

Mobile devices, as described in its name, are defined by its capacity to be mobile and the

level of mobility it provides. There is a range of different types of mobility (Poslad 2009):

 Accompanied - these devices are not worn or implanted, and can be either portable

or hand-held, unattached, but transported in clothes or accessories;

 Portable – these are usually laptops, which are operated using two hands whilst

being seated and are high resource devices;

27 Mobile Service-Oriented Architecture

 Hand-held – these devices can often be operated using one hand and, on occasion,

hands-free, combining multiple applications such as communication, media

recording and playback, as well as mobile office and are usually low resource

devices;

 Wearable – these are devices, such as jewellery and accessories usually operated

hands-free, sometimes autonomously, and are usually low resource devices, which

can include watches, earpieces and glasses; and

 Implanted or embedded – these devices are often used for medical reasons, such as

a heart pacemaker, usually enhancing the abilities of physical and mentally able

humans.

In accordance with the definition of mobile devices, as defined in the previous section, this

research focuses on hand-held mobility, in which users may carry their devices on their

person and able to operate with one hand.

3.3 Mobile Device Capabilities

In addition to the increase in the amount of mobile devices, there has also been an increase in

the capabilities of these devices (Natchetoi et al. 2007a). Mobile technologies have increased

more rapidly than any previous technology and are, at present, the most ubiquitous

technology worldwide. The influence of mobile technology and the implications on the lives

of everyday people are extensive, as it empowers users with new abilities and capabilities,

which allows them to connect to the information society as both contributors and as users

(Botha et al. 2010).

Mobile phones dominate the international telecommunications market and exponential

growth in the usage of these devices is recorded globally. Due to their massive popularity

and flexibility, mobile phones have become equipped with hardware and software

technologies such as Bluetooth, Global Positioning Systems, and digital cameras at greatly

reduced prices (Natchetoi et al., 2008). It is this necessity that fuels the need for improved

mobile device capabilities.

28 Mobile Service-Oriented Architecture

3.3.1 Hardware Capabilities

The hardware capabilities are categorised by the functions they perform or facilitate. On

average, each mobile device is equipped with 30-40 hardware components grouped in the

following categories:

 Input – The standard components for input include buttons and microphone (for

communication using voice transfer). Other input components may include a touch

screen, camera/s, microphone via headphone, light sensor, accelerometer, and

proximity sensor;

 Output – These include the screen, receiver, loud-speaker, headphone audio jack,

vibration, and flash for the camera;

 Storage – Storage on a mobile device is either internal, as flash memory, or external,

as a storage card;

 Processing – All processing is carried out by the main processor;

 Power – Power is provided to the device by means of a lithium-ion battery; and

 Memory – memory is provided in the form of low-power memory modules.

3.3.2 Software Capabilities

The software capabilities available to mobile devices are limited only by the device itself and

the functionality it can provide. The only required software on a mobile device is the

operating system and the functionalities it can perform. All other software on a mobile

device can be downloaded from third party software developers. Mobile software includes

applications such as Internet browsers, email applications, games, and media players.

3.3.3 Network Capabilities

The primary contributor to the networking capabilities of mobile devices is the use of

wireless connectivity. Wireless connectivity has provided a means where the primary

advantage is the ability to connect mobile devices in locations where other infrastructure has

either failed or proven too difficult and costly to implement. The most essential wireless

connectivity feature, provided for all mobile devices, is the ability to communicate via voice

transmission. Other wireless technologies are defined by specific architecture to meet a

specific purpose, and include the following:

29 Mobile Service-Oriented Architecture

 Bluetooth – Bluetooth is a short distance, wireless protocol, which is free of any

licence requirements (Madhavapeddy & Tse 2005) and is available from any

Bluetooth-enabled device. Bluetooth was originally envisaged as a means for

connecting mobile devices without the need for cables.

 WAP – Wireless Application Protocol (WAP) is a standard for network

communications in a wireless network. It was proposed as a means to access Internet

on mobile devices while providing for the special features of such devices (Juul &

Jørgensen 2002). Although WAP connection speeds were fairly limited, typical usage

includes sending and receiving of emails, and viewing news articles.

 GPRS – General Packet Radio Service (GPRS) provides packet-switched data

transmission over the GSM network with efficient wireless protocols to cater for any

erroneous data packets (Othman, Zakaria & Hamid 2008). GPRS is the most popular

data communication system, utilised in more than 200 countries. GPRS provides

transfer rates of between 56-114 Kbit/sec and is charged based on the amount of data

downloaded to the mobile device.

 EDGE – Enhanced Data rates for GSM Evolution (EDGE) is a radio-based

technology that allows improved data transmission over that offered by GPRS

(Wandre 2002). EDGE is a 3G technology and was first deployed in 2003. It is

capable of reaching download speed of up to 236 Kbit/sec.

 HSPA – High Speed Packet Access (HSPA) is a 3G standard supporting download

speeds of up to 14.4 Mbit/sec (Tso, Teng, Jia & Xuan 2010). HSPA is available in 80

countries, which support 3G networks.

 HSDPA – High Speed Downlink Packet Access (HSDPA) is a 3G standard also

provided 14.4 Mbit/sec download speeds (Sedoyeka, Almasri, Rahman & Hunaiti

2008), although most networks capable of deploying HSDPA provide download

speeds of up to 7.2 Mbit/sec due to the limitations on mobile devices.

 HSUPA – High Speed Uplink Packet Access (HSUPA) is a 3G standard supporting

download speeds of up to 5.76 Mbit/sec (Li, Zaki, Weerawardane, Timm-Giel &

Goerg 2008). HSUPA offers improvements over HSDPA as it supports enhanced

uplink features, such as Voice Over IP (VoIP), and the sending of much larger emails.

 HSPA+ - Evolved High Speed Packet Access (HSPA+) is a standard for 4G,

Universal Mobile Telecommunications System (UMTS) enabled networks (Tokgoz,

30 Mobile Service-Oriented Architecture

Meshkati, Zhou, Yavuz & Nanda 2009). Released in July 2010, HSPA+ supports

download speeds of up 42 Mbit/sec.

 Wi-Fi – Wireless Fidelity (Wi-Fi) is a technology based on IEEE 802.11 standards

and is a wireless local area network that allows mobile devices to connect to the

Internet (Flickenger, Okay, Pietrosemoli, Zennaro & Fonda 2008). It has become a

feature of mobile business.

3.4 Everyday Uses of Mobile Devices

The growth in usage suggests a change in the way these devices are being used by people.

Mobile devices are being used to a greater extent by different people in different types of

environments. In addition to its wide use as standalone personal organisers and voice

communication devices, mobile devices are used for many daily tasks, examples of which

include the following:

 Entertainment – Except for conventional voice and SMS communication, the most

widespread use for mobile devices is that of entertainment. Entertainment on a

mobile device includes playing music, watching movies, and playing games (Huang

2009). Personalisation has become a key component of mobile devices, which

includes changing the user interface of a mobile device by way of downloading

ringtones, wallpapers, screensavers, themes, and widgets. Entertainment forms one of

the largest market areas for mobile sales, so much so that mobile devices are seldom

sold by manufacturers without some form of entertainment such as preloaded games,

music and video (Huang 2009).

 Medicine – In medicine and eHealth fields, mobile devices are being used to help

diagnosis of patients, add to the decision-making process and enhance the

effectiveness of communication between the patient and the hospital throughout

follow-up treatments (Velde, Atsma, Hoekema, Luijten, Buddelmeijer, Spruijt, &

Putten 2004). Patients are also able to install applications on their mobile devices to

facilitate or guide them in specific situations.

 Education – Mobile devices are being used in different schools and universities for

certain applications to assist conventional teaching techniques and increase teacher-

student collaboration. Applications such as electronic dictionaries, translators,

scientific calculators and remote presentation controls are common educational

software for mobile devices (Huang 2009). In recent years, educational institutes

31 Mobile Service-Oriented Architecture

have gone beyond supplying assistance via mobile devices to essentially teaching

using mobile learning. Although many challenges, such as psychological,

pedagogical and technical limitations exist, m-learning can be conducted using mobile

devices (Shudong & Higgins 2006).

 GPS – In recent years, Global Positioning Systems (GPS) have become a valuable

and influential functionality asset when purchasing a mobile device. The GPS

satellite navigation system is owned and operated by the U.S. Department of Defence

and internationally accessible for everyday use. This system uses a receiver to obtain

a signal from orbital satellites to triangulate the geographical location of the device

(Huang 2009).

 Business – As stated earlier, mobile employees spend a third of their time away from

the office and half the time away from their desks (Johnson et al. 2005). This has

prompted the need for business solutions available from mobile applications. These

applications provide functionality, such as mobile office, reading and sending emails,

calculators and converters, organisation through calendars, and Internet browsing.

 Daily Living – Mobile users have, in recent years, utilised their phones to perform

everyday tasks. These tasks include online booking, such as tickets for movies,

concerts and flights, and online banking, such as account payments and money

transfers. In more recent times, mobile users have started using their devices for

online chatting and updating blogs, which just five years ago were not considered an

everyday task.

The continuous growth and usage of mobile devices has resulted in an increase in the amount

of information transferred to and from these mobile devices. It is, thus, important that

information be managed more efficiently, not only to reduce cost, but also to reduce the

overhead required to transfer this information. This can be achieved by means of file

compression, in which information is manipulated in such a way as to reduce the amount of

space required for storage or transfer over a network. File Compression is discussed in

Chapter 4.

3.5 Matters to Consider in Mobile Computing

The large volumes of information available both online and offline continue to grow rapidly.

Living in an “information society”, people are showered with information whether they

actively seek it or not (Edmunds & Morris 2000). Mobile devices, which were initially

32 Mobile Service-Oriented Architecture

proposed as secondary voice call devices have become small computers required to do almost

anything, anywhere (Johnsrud et al. 2008). Additionally, people require more in terms of the

information access, better technologies, and easier access to this information.

Mobile devices and standards continue to improve, and are frequently becoming enterprise

application delivery platforms (Natchetoi et al. 2008). Most business applications require

significant amounts of data processing, either locally or through high-speed networks. Most

of existing cell phones, however, cannot fulfil these requirements, as mobile devices are

characterised by their limited resources. This presents many new challenges as mobile

devices are now required to support most computing paradigms while different brands, run-

time platforms, screen sizes, networks and many other aspects all add to the fact that there is

a large variety of mobile devices on the market (Venu 2008).

As with all new technologies mobile devices have many challenges, which might always be a

restrictive factor. Due to the fact that mobile phones were initially designed as simple voice

transmission devices, many components of the device as an everyday computing platform

were overlooked. These issues are major factors in new technological developments and

mobile enhancements. Usability, ease of access, and efficiency are the main design

requirements frequently not effectively addressed, as tradeoffs need to be made on mobile

devices to improve portability, where users are restricted by small screen dimensions, high

network costs and varying support for fonts and colours (Wang & Sajeev 2007). Usability

and accessibility are critical on mobile devices due to limited screen size or difficult

navigation, which have a negative influence on a variety of users. Mobility issues are

discussed in the following subsections and classified as either hardware, software, network or

human issues.

Hardware Issues

Because of the restrictions in its design, mobile devices have a number of hardware issues,

arising from a necessity for portability, as well as size and weight reduction. These issues

include the following:

 Reduced Screen Size – Limited screen size may lead to difficult viewing of text or

images (Huang 2009), which were initially designed for viewing on standard desktop

computer monitors, and not on small screens designed for the mobile environment.

Mobile device screen resolutions typically vary between 96x65 and 800x480 pixels,

33 Mobile Service-Oriented Architecture

and are not envisaged to reach the resolutions of desktop displays. These screens will

remain small, as mobile devices are required to be portable.

 Insufficient Processing Memory – As mobile devices are expected to have greater

capabilities, so have the demands for high-speed, low-power RAM increased. An

average mobile device has 64MB of RAM, too small to perform very complex

computational tasks. In recent years, a demand for larger RAM for more demanding

mobile applications has propelled the development of 512MB low-power memory

modules. The majority of consumer mobile devices, however, still have limited

memory capacities.

 Lack of Processing Power – The most recent processors for mobile devices have

reached clock speeds of 1 GHz. Although this provides better computational

capability, phone processors will be restricted to around this speed, as higher clock

speeds lead to higher power consumption on the battery, which reduces mobility

(Barton, Zhai & Cousins 2010). A number of approaches have been designed to

combat this issue. SOA, more specifically Web Services, is one solution to reducing

computational strain on a device.

 Low Battery Life – Due to the fact that mobile devices are required to operate with a

limited battery charge, power consumption has become an important issue in design.

Elevated processing capability does not lead to enhanced performance of a mobile

device, as battery capacities are not undergoing the same rapid growth rates (Ravi,

Scott, Han & Iftode 2008). Mobile devices have, however, advanced to more than

just communication devices and because of this the battery life expectancy has

diminished to between one and three days. Clever, uncomplicated solutions are

needed to deal with the challenge of increasing processing capacity while increasing

battery life and preserving pocket-sized portability for mobile devices.

 Poor Storage Capacity – When using mobile phones for functions other than just

voice or SMS communication, limited onboard storage capacity hampers the usage of

the device and requires some form of external storage, such as a storage card.

Onboard storage capacity ranges anywhere from an average of 10 MB to 100 MB in

basic mobile devices, to an average of 1 GB in the more advanced mobile devices.

Even though storage cards can provide storage of up to 32GB, this still trails what is

considered to be sufficient storage for a desktop computer.

34 Mobile Service-Oriented Architecture

 Input Limitations – Word input speed is less than ten % when using mobile devices

compared to that of a computer keyboard (Shudong & Higgins 2006). This is a direct

result of the input methods used on mobile devices where buttons are often smaller

than the tips of a human finger. These input methods are slow and inconvenient and

frequently lead to repetitive strain injury.

Software Issues

Software issues are sometimes a result of the hardware for the mobile devices. Software

issues on mobile devices include the following:

 Navigational and Browsing Difficulties – Undersized screens of mobile devices is the

major cause for most navigation and browsing difficulties. Wang & Sanjeev (2007)

demonstrated that in order to facilitate information display suited for larger screens

the information is required to be split into smaller presentation units that is able to fit

into the small screens of mobile devices. This directly affects the difficulty of

organising information effectively to aid navigation to and from the desired

information (Huang 2009). Most common Internet Web pages are distorted on

mobile phone screens and a great deal of multimedia elements are lost (Shudong &

Higgins 2006). It is therefore important when designing Web pages to consider

mobile devices, either by designing for both desktop and mobile devices or adding

special Web pages specific for use on mobile devices.

 Visual Constraints – Even though images and icons are typically considered as

important types of data and information visualisation in desktop computers, it is,

however, quite restricted in mobile devices with regard to the display of graphical

depictions, such as images, drawings, diagrams, maps, and logos (Huang 2009).

Therefore, the downscaling of an image from its initial size, used for viewing on

larger desktop screens, to a suitable size, suited for a mobile device screens, is an

important research requirement that should not be overlooked (Rist & Brandmeier

2002).

 Content Layout – On a desktop we often contend with varying screen sizes, but

standards and HCI principles have been developed as to which sizes should be

accommodated. For mobile devices there are numerous amounts of varying screen

sizes and resolutions, making it difficult to predict the sizes for which content needs

to be designed. Lengthy text, incorrectly spaced layout, variable navigation,

35 Mobile Service-Oriented Architecture

inadequately formed link text, and longwinded headings can all be a factor in making

a site less legible for many users. Intelligent use of colour, images, and layout can

assist the ease of readability on desktop screens and is equally, if not more relevant

when it comes to mobile device screens.

Network Issues

Mobile devices have a base requirement to be connected to a wireless network. Common

functions of mobile devices, such as voice communication, often have adequate infrastructure

to support these functions. However, wireless data connectivity is often troublesome and, at

times, non-existing. These issues include the following:

 Unreliable Connections – Due to the innate characteristics of wireless networks,

communication is often inferior when compared to fixed networks, mainly due to

substantial transmitted packet loss, and the inherent complications in sustaining fast

wireless connections over considerable distances and longer intervals (Ojala 2005).

Reliability could also be as a direct result of ineffective and inadequate infrastructure

provided by mobile network operators.

 Limited Communication Bandwidth – There are numerous causes for the inadequate

bandwidth provided by networks, most of which result in quite poor latency and

radically fluctuating connection quality, leading to inadequate bandwidth (Ojala

2005). In certain cases, infrastructure used by mobile networks is insufficient to deal

with the amount of connected mobile devices in specific locations, and only offers

limited communication bandwidth to each user.

 High Costs – Irrespective of the issues regarding reliability of connections and limited

communication bandwidths, it is common practice for mobile network companies to

attach a cost to any communication provided to the mobile device, even to that of

receiving data. Over and above this, higher bandwidth, which is not always

guaranteed equates to higher costs, in certain instances. Because of the mediocre

connections provided, loss of packets transferred is a frequent occurrence. This

frequently results in those packets having to be retransmitted, which, consequently,

relates to higher costs to the user. In South Africa, an average fee of R2 per MB is

observed for wireless downloads. In comparison, fixed land line charges average R29

per GB, or approximately 3 cents per MB, downloaded and offer superior transfer

36 Mobile Service-Oriented Architecture

speeds. This further highlights the need for smart file transfers, which reduces the

amount of overhead required for transfer to and from a mobile device.

Human Issues

Regardless of the common issues, human acceptance still plays an important role in the

design of mobile devices. These issues include the following:

 Psychological – In some instances, continually developing new technologies is not

always ideal, as humans take time to adapt to change. An example of this is that

email and digital signature technology have been available for everyday purpose for

many years, yet people still tend to use telephone or fax as forms of confirmations

and, therefore, in these cases, the issues for mobile devices are not network

technologies or limited bandwidth, but rather of habit (Shudong & Higgins 2006).

 Hype – Although there has been no direct verification that continuous use of a

wireless device, such as a mobile phone, causes brain or aural damage, many

individuals still distrust the frequent use of these devices for these reasons and in

some cases considerations, such as these, have kept people from using mobile phones

altogether (Shudong & Higgins 2006).

These four categories, hardware, software, network, and human issues, are critical in the

design of mobile devices. The lack of resources available on mobile devices, such as

processing power, memory, storage capacity and communication bandwidth, are inadequate

to deal with the large amounts of information transferred to the devices or perform

computationally expensive business tasks (Natchetoi et al. 2007b). It is, thus, important that

any solution related to these issues is simple, smart and efficient.

Mobile SOA may provide an answer to several of these concerns. The lack of processing

power, limited processing memory and storage capacity, poor battery life, unreliable

connections, low bandwidth, and high cost may be eased with intelligent use of a framework

within Mobile SOA. Mobile SOA is discussed in more detail in the following section.

3.6 Mobile Service-Oriented Architecture

Mobile Service-Oriented Architecture (Mobile SOA) is the ability to employ SOA within a

mobile environment. In theory, providing a Service to a mobile application is no different to

that of other computing platforms. In essence, any SOA can be implemented on any mobile

37 Mobile Service-Oriented Architecture

infrastructure, as long as the device supports it. However, the limiting resources of mobile

devices and its inherent implementation difficulties mean that supporting SOA within a

mobile environment is not easily realised.

Mobile Services are divided into two categories, Content Services and Added Value Services.

Content Services provide delivery of content, such as ringtones, greeting cards, wallpapers,

and music. Services that provide end users with added service functionality are more

challenging to invoke (van Gurp et al. 2005). These include access to information resources,

such as searching, language translation, newspaper reports and weather forecasting,

telemetry, mobile shopping, reserving rental cars, restaurants, mobile banking, and m-

government (Sanchez-Nielsen et al. 2006). Mobile SOA is realised by using Web Services to

leverage the standardised Web technologies for a mobile device. As defined in Section

2.5.1., Web Services are independent of platform and programming language. This allows

Web Services to be designed for mobile environments.

Mobile Services and solutions hold the promise of transforming African businesses in the

same manner in which the Internet transformed organisations in the more affluent countries

(Botha et al. 2010). In the following subsections, Mobile SOA is formally defined,

technologies, components and drawbacks discussed, along with existing systems and

projects.

3.6.1 Definition

Mobile Service-Oriented Architecture has no formal definition as it is simply an extension of

SOA on a mobile platform. Mobile SOA is the by-product of the convergence between the

fields of mobile computing and SOA. For the purposes of this research Mobile SOA is

defined, similarly to SOA, as: “An architectural style for the mobile environment whose goal

is to achieve loose coupling by positioning Services as the primary means through which

solution logic is represented.”

3.6.2 Component Model

An SOA-based mobile Service architecture extends the basic SOA with slight adjustments to

support the mobile environment. Jørstad et al. (2005) illustrates a new outlook of an SOA

that supports mobile Services, Figure 3.2. Due to the fact the key components of a mobile

Service are equivalent to existing SOA framework, and are exposed as Services of their own,

the only additional component is that of the Mobility Controller. The Mobility Controller

38 Mobile Service-Oriented Architecture

handles the state transfer and coordinates the overall mobile Service. A Mobility Controller

stub is required in each composite Service that can coordinate actions towards the mobility

controller.

Figure 3.2: Simplified View of SOA with Support for Mobile Services (Jørstad et al. 2005)

The framework proposed in this research forms a specific section within the Mobility

Controller, which manages information transfer to mobile devices. The requested Service is

sent to the Client via the Mobility Controller, which manages the files more efficiently before

the files are sent to the mobile device. The mobile application receives these files and then

builds the requested Service. The proposed framework is discussed in more detail in Chapter

5.

3.6.3 Mobile SOA Benefits

Mobile SOA and Mobile Web Services have a number of benefits above that of the mobility

it provides. These Services should, by definition, be available at any time and any place

using any device with wireless capabilities (Jørstad et al. 2005). Mobile SOA plays an

important role in delivering Services, such as education, health, business operations, banking

procedures, weather updates, and other similarly required information. These Services are of

particular significance to rural communities where access to services, such as banks and

clinics, are not as easily accessible as in residential and urban areas.

Businesses require that their employees make business decisions with their mobile devices

(Natchetoi et al. 2008). In addition to providing Services to the rural community, Mobile

39 Mobile Service-Oriented Architecture

SOA also offers additional capabilities to businesses by way of providing their employees

with information access even when not in their office environment.

The most valuable aspect of Web Services lies in its interoperability, which also applies to

Mobile Web Services within Mobile SOA. This interoperability allows different systems to

interact with one another, regardless of any platform or programming language it was

implemented in. Information exchange is an important factor when designing any Web

Service, including that of Mobile Web Services. The information is thus easier to deliver to

the mobile device, without having to consider its make and model.

3.6.4 Mobile SOA Drawbacks

In addition to the issues of mobile devices, as discussed in Section 3.5, Mobile SOA suffers

from drawbacks of its own. Because of the varying numbers of mobile devices, there are

numerous mobility deployment obstacles. In order to provide an application that consumes

Web Services, or alternate equivalents, it must allow every different mobile network

configuration to connect wirelessly, and because of this, implementation of such applications

is often complicated and time consuming. In most cases, this swells additional costs, which

is not ideal, as mobile applications are often required to be low cost equivalents of desktop

applications.

Existing SOAs are commonly used to offer Web Services on wired networks (Sanchez-

Nielsen et al. 2006), and not much attention has been devoted to the development of Service

protocol for mobile devices despite the obvious trends in the market. Web Services pose

additional drawbacks as the XML files used to transfer information between the Client and

Server are often verbose their structure (Natchetoi et al. 2008). This highlights the need for

intelligent compression of these XML files.

3.6.5 Extant Systems and Related Work

Before addressing the issues of Mobile SOA or proposing any solution to these issues, a

literature review on extant systems is required. This section discusses two existing systems,

which relate to this research.

3.6.5.1 M-Service Framework (Sanchez-Nielsen et al. 2006)

The framework used consists of four components, illustrated in Figure 3.3. These are the

Service providers, Service managers, Service Clients, and UDDI registry, all of which are

40 Mobile Service-Oriented Architecture

based on an XML infrastructure to provide uniformity. The framework‟s components are

defined and described as follows:

 Service Providers – are the owners that implement and offer different Services and

define descriptions of their Services using WSDL specifications;

 Service Clients – are wireless device-oriented users interested in standard Services

and searching of facilities when it is needed, without prior knowledge of available

Services and bringing these facilities to their wireless devices in a transparent way;

 Service Managers – act as a mediator layer between the Service providers and

mobile devices and are responsible for information flow between both components.

A Service manager is a Web Service entity that uses dynamic invocation interface

(DII) as a communication mechanism between the different Service providers. With

DII, a Service manager can invoke Web Services without knowing their

communication interface at compile time;

 UDDI Registry – can be used by mobile users in order to locate new Services.

Service discovery is computed at runtime by the Service manager, once the user has

sent their request of new Services in the UDDI registry; and

 XML-based Infrastructure - a uniform infrastructure using XML-encoded data

exchange is used with two purposes: to define the Service registry structure and

establish the communication between the mobile device and the Service manager.

Figure 3.3: Dynamical M-Services Architecture (Sanchez-Nielsen et al. 2006)

41 Mobile Service-Oriented Architecture

In the approach used above, the business logic was assigned to Service managers, resolving

the issues faced by direct access from mobile devices to the Web Services. Additionally, this

approach reduces the computational cost of the mobile devices and, therefore, optimises the

response times to mobile users and memory resources.

In their research, Sanchez-Nielsen et al. (2006) proposed mobile devices as being complete

contributors in networked SOAs to increase the variety of accessible Services and innovative

business opportunities in the mobile space. A framework was proposed that allowed Service

Providers to create, update and change Services at any time and mobile users may locate new

Services without knowing the accessible Services. Their prototype was implemented using

open source tools, and found that the implementation of the Web Service technology using

these tools was suitable.

Sanchez-Nielsen et al. (2006) established that there were some drawbacks within their

prototype, as the UDDI registry is not directly accessible by mobile devices. Furthermore,

the implementation specifications were required in order to support complex functions when

their dynamic invocation interface was used.

3.6.5.2 EXEM (Natchetoi, Wu, Babin & Dagtas 2007)

In their research paper, Natchetoi et al. (2007b), introduced a compression approach to the

domain of Mobile SOA. This approach, EXEM, manages XML documents exchanged

between a client and server in the context of mobile applications. It was intended to address

the issue of limited resources of a mobile device, such as the lack of bandwidth available,

limited storage capacity and computational capability. EXEM is a framework based on

compression of XML documents.

The experiments conducted produced significantly improved compression ratios compared to

that of other compression techniques, indicating the potential for more efficient file transfer

to and from mobile devices. The EXEM framework is discussed in more detail in Chapter 4,

as part of the design process for the framework proposed in this research.

3.7 Conclusions

As the number of mobile devices increases and more people require information access via

these devices, so the need for computing paradigms for the mobile environment increases.

Web Services is a key standardised technology used to provide Services for mobile devices in

42 Mobile Service-Oriented Architecture

the field Mobile SOA. There are numerous benefits of providing Web Services to mobile

devices, and although there are issues, there is no reason why Mobile Web Services cannot

provide the level of information access required by businesses. In recent years, the general

public have also developed a need for information access. Thus, Mobile SOA has become an

increasing aspect of people‟s daily lives, both for work and personal use.

Sanchez-Nielsen et al. (2006) proposed a framework, which allowed Service Providers to

create, update and change Services at any time while mobile users may locate new Services

without knowing the accessible Services. Their proposed framework consisted of four

components namely the Service Providers, Service Clients, Service Managers and UDDI

registry, which interacted via XML-based messages. Natchetoi et al. (2007b) proposed a

compression framework known as EXEM. Their proposed framework supports efficient data

exchange, using compressed XML, between the Server and Mobile Client.

The files used within Mobile SOA, both data and media files, play an important role. User

requests are performed by way of Web Services invoked within a mobile application or

browser. Smart management of resource-heavy files is essential when being transferred to

mobile devices to successfully complete user requests in less time and at reduced cost. A

popular management technique for these files makes use of compression, discussed in the

following chapter.

43 File Compression

Chapter 4: File Compression

4.1 Introduction

In the computing domain, compression is widely used (Blelloch 2001). The images received

via the Internet and the video transmitted via satellite are examples of everyday media that

make use of compression. The application of specially designed algorithms, suited for

specific types of files, allows the process of compression to transpire. These algorithms use

data structures, such as hash tables, trees, and dictionaries to compress files. The main aim of

this research is to optimise file transfer within Mobile SOA by means of compression, as the

resources available on a mobile device are limited.

This chapter provides answers to research question R3, “What are the issues related to

compression?”, and all the sub-questions of R3. In answering research question 3 and all its

sub-questions, this chapter is divided into nine sections. Section 4.2 provides a brief

discussion of compression. Section 4.3 and 4.4 discuss the two types of compression,

lossless compression and lossy compression, respectively. Textual data compression, image

compression and audio compression are discussed in Section 4.5, Section 4.6 and Section 4.7,

respectively. This is followed by a brief discussion on video compression in Section 4.8, and

why it is not suited for the proposed framework. The advantages and disadvantages of

compression are discussed in Section 4.9. This is followed by a discussion on how to choose

the best compression algorithm in Section 4.10.

Before the different types of compression are discussed, a formal definition of compression is

required.

4.2 What is Compression?

When referring to compression in terms of any Computer Science it often refers to data

compression. Data compression is the technique of removing redundant information from a

message to minimise the number of bits that need to be stored on a disk or transferred over a

network. Another definition is that compression is the process of reducing the size of a file

by encoding its data information more economically (Investintech 2006). Simply stated, data

compression is the process of encoding information using less bits.

44 File Compression

For this research, compression is defined as: “the procedure in which information is reduced

for storage or transmission, using either a lossless or lossy compression technique.” This

definition will be used for the remainder of this research when referring to compression.

Furthermore, the terms “coding” and “encoding” will be encountered later, and are often

used when referring to compression.

Most compression algorithms take advantage of the fact that data contains a lot of

redundancy. The compression algorithm requires a two-step procedure in order to be

effective. Firstly, information is said to be compressed after an encoding algorithm is applied

to it. This encoding algorithm, if successfully completed, reduces the amount of storage

space required to save the information on a computer or mobile device. However, in order to

use this information again, the information has to be decompressed by means of a decoding

algorithm. The decoding algorithm recreates the original information if a lossless

compression technique was used. If a lossy compression technique was used, a reduced, but

usable, version of the information is created. Data compression only works when both the

sender and receiver of the information share knowledge of the encoding algorithm.

All compression algorithms consist of two distinct components known as the model and

coder. Figure 4.1 shows the general framework of a model and coder. Using different

techniques for different compression standards, the model component encapsulates the

probability distribution of the information by knowing or revealing something about the

structure of the input (Blelloch 2001). The decision to produce a specific code for a specific

character, or set of characters, is based on the model component (Nelson & Gailly 1995).

Figure 4.1: General Framework of a Model and Coder (Blelloch 2001)

45 File Compression

The coder component, also known as the encoder, utilises the probability biases generated by

the model component to generate codes. The process undertaken to generate codes lengthens

low probability messages and shortens high probability messages. Figure 4.2 shows a more

specific model and coder (Huffman Encoder), which makes use of statistical probabilities.

Figure 4.2: A Statistical Model with Huffman Encoder (Nelson et al. 1995)

When discussing compression, it is important to understand what entropy is. Entropy is the

measure of disorder of a system – more entropy implies more disorder. Negative entropy is

added to a system to provide more order to that system. When compressing information, the

entropy of that information is reduced, i.e. there is less disorder. The original level of

disorder, entropy, is restored during decompression, but only when lossless compression was

used.

Compression is categorised into two groups, namely, lossless and lossy compression.

Lossless compression is the process by which information can be compressed for storage or

transmission, and then decompressed to the original information without any loss. Lossy

compression, however, allows some loss of information, which is either not noticeable or is

of an acceptable lower quality.

4.3 Lossless Compression

Lossless data compression is so named for what its algorithm achieves. A lossless data

compression file can be restored to its exact state, as it was before compression. The process

involves finding repeated patterns in the input information and encoding those patterns more

efficiently. Using this logic, a lossless data compression algorithm reduces the redundancy of

information. Consequently, lossless compression is not ideal for compressing files consisting

of random information, such as with images and audio, as the algorithm is dependent on

discovering patterns. This makes the lossless compression algorithm ideal for textual data

and software. Examples of coding (encoding) methods used within a lossless compression

algorithm will now be discussed.

46 File Compression

4.3.1 Run-Length Coding

Run-length coding (RLE) is a compression technique that compresses any sequence of at

least four repeating characters. RLE reduces the size of a repeating string of characters,

called a run. RLE can compress any type of data regardless of its information content, but

the content of data to be compressed affects the compression ratio. Consider a character run

of 10 „A‟ characters, which usually require 10 bytes of storage space. The characters are

replaced with a compression code „10A‟, one of the characters and a value that represents the

number of characters to repeat, which only requires two bytes to store the same character run.

The number „10‟ is referred to as the count and the character „A‟ referred to as the character.

A more complex example is the string “AAAAAbbbbCCCDD”, which is stored as

5A4b3C2D, reducing the original 15 byte string to 8 bytes.

RLE is the simplest of compression techniques, which is easy to implement and quick to

execute. This makes it a popular basis for data compression algorithms. RLE can, however,

not achieve high compression ratios compared to other, more advanced compression

methods.

4.3.2 Variable-Length Coding

Variable-length coding (VLC) uses the fact that certain characters in a string are more

common than others. VLC essentially maps input characters to a variable number of bits.

The advantage of VLC over RLE is that the more repeated characters are coded with fewer

bits, while the less occurring characters are coded with more bits, resulting in fewer bits

being used to represent the entire set of characters (Li & Drew 2004). This is advantageous

when transferring information across a network, where the length of time needed for

transmission is proportional to the amount of characters needed to encode it. VLC enables

lossless compression with zero error, and can be read back character by character. The

Shannon-Fano, Huffman Coding, and Adaptive Huffman Coding algorithms are popular

compression algorithms utilising the principles of variable-length coding.

4.3.3 Dictionary-Based Coding

Dictionary-based coding (DBC) is a lossless compression algorithm that reads in input and

searches for groups of characters that appear in a stored dictionary. If a string match is

located, an index, pointer or codeword linked to the dictionary, which contains the pattern,

can be used as an output instead of the code for that character (Seong 2006). This results in

47 File Compression

an efficient use of space as information is stored only once, in a dictionary, and the

compressed file consists mainly of pointers to that dictionary. The longer the resulting

matches between the string and dictionary entry, the better the compression percentage.

Figure 4.3: Example of Dictionary-Based Code Compression (Seong 2006)

DBC provides efficient compression, in addition to fast decompression. The dictionary also

contains decompression instructions used to decode the compressed information. Figure 4.3

shows an example of a dictionary-based coding compression using a simple program binary,

where the binary consists of ten 8-bit patterns, a total of 80 bits and the dictionary contains

two 8-bit entries. The output compressed program needs only 62 bits and the dictionary needs

16 bits. The more matches the dictionary contains, the better the compression yielded.

The static dictionary poses problems matching that of the problem the user of a statistical

model faces: the dictionary is required to be transmitted along with the compressed

information, resulting in a certain amount of overhead added to the compressed information

(Nelson et al. 1995). The use of an adaptive dictionary method eases this problem. The

Lempel-Ziv-Welch (LZW) algorithm makes use of an adaptive, dictionary-based

compression technique, which, unlike variable-length coding, uses fixed-length codewords to

represent variable-length strings of characters that frequently appear together, such as the

words in English text (Li & Drew 2004).

48 File Compression

4.3.4 Arithmetic Coding

Arithmetic coding (AC) is a more recent coding method, which is based on the initial idea

originally established by Shannon (1948). The logic behind arithmetic coding is to assign to

each character an interval. Starting with the interval [0, 1), each interval is divided in a

number of subintervals. The sizes of each interval are proportional to the existing probability

of the equivalent character of the alphabet. The resulting subinterval from the coded

character is then allocated as the interval for the succeeding character. The generated output

is the interval of the last character.

Unlike Huffman Coding, AC does not use a discrete number of bits for each character to

compress. Arithmetic codes almost always yield better compression than prefix codes, but

lack the direct correlation between events in the input data set and bits in the coded output

file (Howard & Vitter 1994). However, despite this, the main benefits of AC are its optimal

and inherent separation of coding and modelling.

Lossless compression algorithms provide efficient information transfer and storage without

affecting quality. Although there are continued improvements being made to lossless

compression algorithms, the level of compression does not match that of lossy compression

algorithms. Due to the characteristics of lossy compression, however, it is not suited for

compression of textual data (e.g. information stored within a database), and other stored files

in which information retention is important. Lossy compression is discussed next.

4.4 Lossy Compression

Lossy compression is a type of compression, which results in a certain level of information

lost from the original information sequence. The resulting compressed information can,

therefore, not be restored to the original information (Blelloch 2001). A lossy compression

algorithm is typically used for images, audio and video compression, where a decrease in

quality is indiscernible, or is of an acceptable lower quality.

Despite the fact that information is lost, it does not mean that the quality of the compressed

output information is always reduced. An example of this would be the occurrence of

random noise, which has high information content, and when noise is prevalent within an

image or audio file, the reduction thereof would be acceptable. Due to the limitation nature

of the human ear and eye, certain information would be unnoticeable, as certain frequencies

of sound are inaudible and certain levels of detail are indiscernible. These reasons contribute

49 File Compression

to lossy compression algorithms on images and audio often resulting in better compression by

a factor of two over their lossless compression counterparts providing flawless compression

(Blelloch 2001).

It is important to ensure that the degradation in the quality of information provided is

minimally objectionable to the intended viewer/hearer. However, there is a limit to the

amount of quality loss permissible. In conjunction with this, continually compressing and

decompressing information within an image or audio file will result in it gradually losing

quality. With lossless compression algorithms, this is not the case, as quality is never lost

even over numerous repeated compression and decompression cycles.

Four lossy compression algorithms are discussed in the following subsections.

4.4.1 Quantisation

Quantisation is the process of reducing the number of distinct output values to a much

smaller set. In some form or another, quantisation is the backbone of any lossy compression

technique (Li & Drew 2004). The input and output of a given algorithm (quantiser) can be

either scalar or vector values. There are three main types of quantisation:

 Uniform Scalar Quantisation – A uniform scalar quantisation process partitions the

domain of input values into uniformly spaced intervals, with exception possibly to the

two boundary intervals. The output or reconstruction value associated to each interval

is taken to be the midpoint of the interval. There are two types of uniform scalar

quantisers, namely midrise and midtread quantisation. Midrise quantisers have an

even number of output levels, while midtread quantisers have an odd number of

output levels. Figure 4.4 shows the difference between the two types of uniform

scalar quantisation.

 Non-uniform Scalar Quantisation – If the source input is not uniformly distributed,

a uniform quantiser may be inefficient. Increasing the number of decision levels

within the region where the source is densely distributed can effectively lower

granular distortion.

 Vector Quantisation – According to Shannon‟s information theory on data

compression, any compression system performs better if it operates on vectors or

groups of samples rather than individual characters or samples. Instead of using

single reconstruction values as in scalar quantisation, vector quantisation makes use of

50 File Compression

code vectors with n components. A collection of these code vectors form the

codebook. Figure 4.5 shows an example of the basic vector quantisation procedure.

Figure 4.4: Uniform Scalar Quantisation: (a) Midrise, (b) Midtread (Li & Drew 2004)

Figure 4.5: Basic Vector Quantisation Procedure (Li & Drew 2004)

4.4.2 Transform Coding

Transform Coding (TC) is a lossy compression technique in which the idea is to transform

input information into a different form, which can then improve compression, or allow the

algorithm to more easily release certain information without as much qualitative loss in the

output (Blelloch 2001). This transformation is based on utilising interpixel correlation. The

transformation component chooses which format of input source should be quantised and

51 File Compression

encoded. If the bulk information is correctly described by the first few components of a

transformed vector, the remaining components can be approximately quantised.

TC is typically used to compress natural data, such as photos or audio, using specific

knowledge to select which information to throw away. Once this lossy compression is

applied to the information, the remaining information is compressed using a variety of other

compression methods. Due to the ease of hardware computation and good energy

concentration for a broad range of natural images, the Discrete Cosine Transform (DCT) has

become the transform of choice for numerous image coding techniques. The DCT is spatially

variant, but is sensitive to phase.

4.4.3 Wavelet-Based Coding

Wavelets are defined as small waves. The aim of the wavelet-based coding is to split the

input signal, for compression purposes, into components that are easier to manage, have

distinctive interpretations, or have certain components that can be discarded by adjusting the

threshold. This works on the principle of being capable of at least approximately rebuilding

the initial signal given these components (Li & Drew 2004). Wavelet-based coding explores

tree-based structures in wavelet coefficients, which produce higher levels of compression

compared to DCT-based coding, while maintaining better quality.

The theory behind wavelet-based coding was developed many years before it was ever useful.

It became popular when Ingrid Daubechies used special filters in the filterbank for subband

coding that was generated from the wavelet by using the perfect reconstruction relation of the

filter bank (Blelloch, 2001). Higher compression rates are observed due to the possibility of

elimination of the information contents of the filter components. The compression ratio of

any wavelet-based coding scheme is not only dependent on the efficiency of the coding

scheme, but also dependent on the choice of appropriate wavelet filters.

The JPEG compression standard makes use of the Embedded Block Coding, which uses an

optimal truncation (EBCOT) compression scheme to upgrade to the JPEG2000 compression

standard. This truncation compression scheme is wavelet-based. Figure 4.6 shows four

popular wavelets used for compression. Simply defined, wavelet compression works by

distinguishing a signal in terms of a specific underlying generator (Blelloch 2001). Wavelet

transformation is often utilised in domains other than for compression. An example of such a

domain includes its use to filter noisy data or detect similarity across varying time scales.

52 File Compression

The study of wavelet coding has also been used for medical imaging, computer vision, and

investigation of celestial X-ray sources (Blelloch 2001).

Figure 4.6: Sample of Popular Wavelets (Blelloch 2001)

Section 4.3 discussed lossless compression algorithms and Section 4.4 discussed lossy

compression algorithms. Lossy compression algorithms provide superior compression level

than that of most lossless compression algorithms. With the increased quality retention, lossy

compression algorithms have seen widespread acceptance. Certain categories of files,

however, require specific compression algorithms due to the structure, content, or importance

of the information contained within these files.

A discussion on specific types of compression will be given next.

4.5 Textual Data Compression

This research focuses on improving efficiency within Mobile SOA. Due to the

overwhelming use of XML-based messages and files within the Web Service environment,

textual data in this research is limited to information stored and transferred within XML files.

53 File Compression

Extensible Mark-up Language (XML) is a simple, text-based configuration for representing

structured information (W3C 2010). XML describes a class of data objects known as XML

documents, or XML files, and partly describes the behaviour of computer applications that

process them (W3C 2004c). XML has gained unsurpassed acceptance since being developed

by the XML Working Group in 1998 with the backing of the World Wide Web Consortium

(W3C). XML is recognised as a standard data representation for interoperability on the Web.

These XML files are composed of storage units known as entities, which contain either

parsed or unparsed data (W3C 2006).

The information stored within an XML file includes documents, data, configuration, books,

transactions, invoices, and any other textual information. XML was derived from a previous

standard format called SGML in order to be more suitable for Web utilisation (W3C 2010).

The design goals for XML, together with associated standards, provide all the critical

information required to understand XML Version 1.1 and create computer applications to

process it. These design goals include principles, such as XML should be easily usable over

the Internet, must support a wide variety of applications, the XML language must be formal

and to the point, and the XML documents must be easy to create (W3C 2006). Figure 4.7

illustrates the typical structure of an XML document, designed to meet the design goals for

XML.

Figure 4.7: Example of XML Structure (W3C 2010)

XML plays a key role in the delivery of standardised messages between interoperable

systems, more specifically in SOA and Web Services. However, due to the manner in which

XML files are created, they often contain verbose information. These bloated XML files are

one of the main reasons why Mobile SOA has not been as successful as it should be, as they

require more resources to manage, something not easily available on a mobile device

54 File Compression

(Augeri, Mullins, Baird, Bulutoglu & Baldwin 2007). It is, therefore, essential that

compression be employed to reduce the amount of resources required to successfully manage

XML files on a mobile device.

Due to the inherent issues regarding the verbosity of XML files, numerous XML-specific

compression techniques have been developed. In this section, three XML-specific

compression techniques are studied, along with three multi-purpose compression techniques.

There are two main compressors used to compress XML files: arithmetic and dictionary

compressors. Arithmetic compressors are useful to determine entropy and as control

algorithms, but often have larger memory usage along with longer compression and

decompression time requirements. Dictionary compressors store dictionaries for each

message sent in order to produce better compression, and enjoy widespread use; most having

open source formats (Augeri et al. 2007).

The following subsections discuss six different XML compression techniques, which will be

tested and compared in Section 6.2.

4.5.1 bZip2

bZip2 is a patent free, lossless data compressor, which is available free of charge (Seward

2007). bZip2 employs RLE encoding to compresses information in blocks, sized from 100 to

900 Kilobytes, which makes use of the Burrows–Wheeler transform to convert a frequently-

recurring character series into strings of matching letters. Once this transform is successfully

completed, the algorithm then applies move-to-front transform and Huffman coding, as

opposed to arithmetic coding used by the previous gZip compression algorithm. It offers

compression of files to within 10-15% of best compression techniques available. bZip2

offers more efficient data compression of files than other leading compressors, but the

compression is slower.

4.5.2 gZip

GNU Zip (gZip) is a compression technique that aims to be an alternative for Compress

technique with benefits over Compress in terms of better compression, independent of

patented algorithms (Gailly & Adler 2003). The gZip compression algorithm was designed

by Gailly and the decompression algorithm by Adler, which utilises a combination of the

55 File Compression

LZ77 algorithm and Huffman coding. gZip is the most widely used commercial compressor

available for general use and on the Internet.

4.5.3 DotNetZip

The DotNetZip compression technique is available within the DotNetZip library. This library

is a comprehensible, straightforward, and free class library and toolset for manipulating zip

files or folders for all .NET applications, including mobile applications that use the .NET

Compact Framework, written in any .NET language (Microsoft 2010a). The library can be

easily imported to any .NET application, which exposes a number of compression

procedures, such as create, read, extract and update. The file format used for the DotNetZip

library is the zip file. This allows the compressed data to be stored in archives, able to

contain more than a single compressed file.

4.5.4 XMill

XMill was developed by Hartmut Liefke and Dan Suciu in 1999 at AT&T Labs Research in

New Jersey (Liefke 2004). XMill is a compression utility for compressing XML data

efficiently and is based on a reordering strategy that leverages the effect of highly-efficient

compression techniques in other compression utilities such as gZip (Liefke 2004). The

reordering strategy is designed to take advantage of the XML elements. XMill groups XML

text strings with respect to their meaning and exploits similarities between those text strings

for compression. Therefore, XMill generally attains significantly improved compression

rates than standard compressors such as gZip, without sacrificing much speed. The

developers have since released the project and the source code, which is now a SourceForge

project.

4.5.5 XMLppm

XMLppm is a data compression utility, which is a combination of the recognised Prediction

by Partial Match (PPM) algorithm for text compression, and an approach to modelling tree-

structured data termed Multiplexed Hierarchical Modelling (MHM) (Cheney 2009).

XMLppm increases compression of XML files between 5 and 30 percent compared to current

text or XML-specific compressors. An XML file is initally parsed by means of a SAX parser

to produce a stream of SAX events. Each event is then encoded using a bytecode

representation called Encoded SAX (ESAX). These ESAX bytecodes are encoded using one

56 File Compression

of many multiplexed PPM models based on its syntactic structure. The XMLPPM source

code is also a SourceForge project and forms part of an XML compression project.

4.5.6 XWRT

A XML-WRT (XWRT) is a high-performance XML compressor that transforms XML to

more compressible form, which utilises zlib, LZMA, PPMVC, or lpaq6 as back-end

compressors (Skibinski 2009). XWRT produces a partially dynamic dictionary and

substitutes regularly occurring words with shorter codes. The Xwrt compression algorithms

are used in a number of environments, which includes data logging, Wi-Fi messages, along

with several text editors.

Intelligent compression of XML files is important, as it will decrease the necessary

bandwidth, storage, and processing on a mobile device (Natchetoi et al. 2008). These

compression techniques play an important role when used in the XML-based SOA

environment, more specifically that of mobile Web Services that use XML-based SOAP,

WSDL and UDDI messages. These compression techniques can be incorporated into Mobile

SOA. However, before choosing which technique to use within the proposed framework, a

comparison test will be conducted. The results of this comparison test are discussed in

Chapter 7.

4.6 Image Compression

Computer graphics is a standardised means of organising and storing graphics created using

computers and digital representations of images, such as photos. Image files are made up of

either pixel (raster graphics) or vector (vector graphics) data. The pixels that represent an

image are ordered as a grid of columns and rows with each pixel consisting of numbers

representing magnitudes of brightness and colour. A raster graphic is a data structure

representing an array of pixels, or points of colour. Raster images are stored in image files

with varying formats. Unlike raster graphics, where the data describes the parameters of each

individual pixel, a vector graphic contains a geometric, or mathematical, description that can

be rendered smoothly at any display size. Raster graphics are used for this research, as vector

graphics are unable to be compressed.

The amount of file formats in multimedia continues to increase (Miano 1999). File formats

for graphics and images are no different with a large number of different formats, most of

which have developed their own compression technique. The most popular of these formats

57 File Compression

are BMP, GIF, JPEG and, recently, PNG. The BMP file format stores images without

compression, while GIF, JPEG and PNG all use some form of compression and their

common use is attributed to the fact that most Web Browsers can decompress and display

them accordingly. Image compression reduces the need for sophisticated hardware in order

to manage graphical images. This is of particular importance for digital photography where

cameras, and other such devices capable of capturing photos, do not have the resources

available to them as with desktop and mainframe computers. The need to efficiently access

and store images in digital form has resulted in the development of many image compression

standards for different applications and requirements (Li & Drew 2004). The developed

standards have a superior longevity than specific programs or devices, and, thus, merit

vigilant research and continuous improvement (Li & Drew 2004).

In addition to compression, images can be resampled. Image resampling is based on the

changing in the number of pixels in an image. This is useful in order to correctly display an

image of high resolution on a low resolution screen. This is not to be confused with image

resizing, which reduces the size an image will print without changes to the number of pixels.

Image resampling, in particular downsampling, produces a smaller sized image, both in

resolution and storage size. Added to the high storage capacity raw images require, computer

and mobile screens vary in both size and resolution. This further emphasizes the need for

smarter image compression able to adapt to the daily changing market.

Research into image compression standards started as early as the late 1970s, and was

particularly prolific in the 1990s when the Internet and Web browsers first became a

household technology. Image compression techniques accomplish compression between 10

and 90 percent, depending on the quality required. Although there have been many

compression standards and file formats developed over the years, this research focuses on

three current standards, which are the most popular in use for Web browsers, both on desktop

computers and mobile devices.

4.6.1 GIF

A Graphics Interchange Format (GIF) was developed by UNISYS Corporation and

Compuserve, initially for transmitting graphical images over phone lines via modems (Li &

Drew 2004). GIF files use a variant of the dictionary-based LZW compression format to

compress a repeated series in screen images (Nelson et al. 1995). The GIF compression

58 File Compression

standard is used to compress non-photographic images, usually textual images or images with

few distinctive colours.

When the Internet first became popular in the 1990s, 2400 baud modems were in use. These

modems were limited to the transfer speeds they could achieve. Image compression became

crucial. Despite transfer rates in excess of 14.4 Kbps, the extensive use of the World Wide

Web on the Internet meant an increase in demand for high-speed transfer of graphics, and an

increased dependence on the GIF compression standard for non-photographic images (Nelson

et al. 1995).

The GIF file format is made up of the following components:

 The GIF signature;

 The screen descriptor to specify the width, height and pixel colours of the image;

 A local colour map (when the file contains more than one image definition) to map

the 8 bit images to 24 bit screens;

 A global colour map if a local colour map is not used; and

 An image descriptor, which describes each image within the file, and raster area,

which is compressed before being stored, that can be repeated any amount of times

when several image are required in animations for example.

The original GIF standard was the GIF87a specification. The later, updated specification,

GIF89a, supports simple animation, which offers control over functionalities such as time

delay, a transparency index, and image count. However, the standard was limited to 8 bit

(256) colour images only, which lacked acceptance as the necessity for higher quality images

increased.

4.6.2 PNG

Portable Network Graphics (PNG) is platform-independent format that was created as a direct

result of the patent issue of the LZW compression method used in the GIF standard (Li &

Drew 2004). Industry viewed the patent of the GIF standard as unreasonable, as GIF had

already gained wide acceptance for use on most Web browsers by the time the patent was

requested (Nelson et al. 1995). Image developer groups joined together in an attempt to

replace the GIF standard. These efforts lead to the establishment of the PNG standard. The

59 File Compression

PNG standard is license- and patent-free, and contains numerous improvements over the

existing GIF format. These improvements include (Li & Drew 2004):

 48 bits of colour information, as opposed to 8 bits (256 colours) offered in the GIF

standard;

 Gamma-correction information for correct display of colour images; and

 Alpha-channel information to enable control over levels of transparency.

However, the standard does not provide any animation support, but offers superior

compression along with higher quality images.

4.6.3 JPEG

The Joint Photographic Experts Group (JPEG) format is the most important existing standard

for image compression (Pennebaker & Mitchell 1993). The JPEG compression standards

employs a lossy compression algorithm based on the limitations of the human vision system.

The eye is unable to distinguish exceptionally fine levels of detail, even more so when

viewing colour images. The compression algorithm, thus, decreases the quality of the image

by reducing the colour information, throwing away a large amount of colour information

when the division and truncation step is executed (Li & Drew 2004). This compression

technique compresses images from 1 to 10 percent of its original size.

Figure 4.8 shows the process undertaken by the JPEG compression standard to compress an

image file. The first step transforms the image‟s RGB values to YIQ (or YUV) values. A

discrete cosine transform (DCT), a type of transform coding, is performed on the blocks of

each plane. Quantisation is then applied to the image, which is where most of the loss occurs.

Zigzag scans (type of run-length coding) convert the 8x8 matrix of the image into a 64-

vector. The final step is to perform entropy coding, which is a lossless procedure that

converts a series of input characters into a sequence of bits, such that the average amount of

bits per character comes close to the entropy of the input characters (ITU, 1992).

JPEG-2000, developed as a replacement of the JPEG standard, provides superior

compression over that of the JPEG standard. The JPEG-2000 standard uses the same

compression steps of the JPEG standard, as shown in Figure 4.8, but uses a wavelet-based

coding method instead of the DCT coding method. This standard, however, is not

extensively supported by Web browsers, and, thus, has not yet replaced JPEG as an

alternative image compression standard.

60 File Compression

Figure 4.8: Steps in JPEG Compression (Blelloch 2001)

4.7 Audio Compression

An audio file is a file for storing digitised audio data on a computer. These files can be

categorised as uncompressed and compressed audio formats. The audio file contains

waveform data that is capable of being played on audio playback software. There is one

major uncompressed audio format known as Pulse Code Modulation (PCM). PCM files are

stored in a WAV file format for Windows operating systems and an AIF file format for

Macintosh operating systems. This uncompressed audio format is a direct representation of

the digital sample values of an audio recording, and is stored as 1s and 0s.

Audio compression refers to the encoding of digital audio. Sound is a wave consisting of

amplitude values changing over time. This amplitude value is continuous. However, due to

the high amount of storage required to save this continuous data, audio compression is

required. Additionally, using stereo information as opposed to mono doubles the required

storage space. As with image compression, generic data compression algorithms do not

perform well with audio data. Audio compression takes into account the human perception

of sound, which statistically removes bits of audio information humans are unlikely to hear.

Each audio compression technique has three steps to perform: transformation, loss, and

coding. The transformation step converts audio information, which is easier and more

efficient to compress. In the next step, loss is introduced using a specific level of

61 File Compression

quantisation known as Pulse Code Modulation (PCM). Because sound is a continuous wave,

quantisation is used to set the amount of reconstruction levels of the sound wave, which

enables the digitisation of audio. Depending on the compression, further compression is used

using either a lossless or lossy compression algorithm. The final step is to assign a codeword

to each output level, which could either use a fixed-length or variable-length coding system

(Li & Drew 2004).

Due to the increased necessity for multimedia, many different audio compression file formats

exist. Three file formats are reviewed, two of which use lossless compression techniques,

and one uses a lossy compression technique.

4.7.1 MAC

Monkey‟s Audio Compression (Ashland 2009) is an audio file format, which compresses

information using a lossless compression technique, and uses the .APE file extension for file

storage. MAC uses an open source algorithm, which allows better research into optimising

the algorithm.

MAC is designed to be integrated into other software with minimum difficulty. The SDK

used for MAC allows easy management of compression, decompression, verification, and

converting of audio information. The SDK also includes more complex features, such as on-

the-fly encoding and decoding, analysis, and tagging of APE files. The SDK provides patent-

free algorithms for the above-mentioned features.

Apart from the original three-step compression to digitise audio, MAC makes use of its own

three-step lossless compression algorithm. The first step requires that the left (L) and right

(R) channel values be converted into X and Y values, where X is the midpoint between the L

and R channel, and Y is the difference between the two. The next step requires a predictor, in

which the X and Y values are passed through to remove any redundancy. The final step is to

encode the audio information. MAC compression algorithm uses rice coding to achieve this.

Rice coding is a way of using less bits to represent small numbers, while still maintaining the

ability to tell one from the next.

Unfortunately, the decompression speeds of MAC are unfavourable compared to other

lossless compression file formats, which is a telling factor as to why it lacks popularity.

Another reason this file format is not popular is due to the developments of other file formats,

which have standards that are widely used on mobile audio players.

62 File Compression

4.7.2 FLAC

Free Lossless Audio Codec (FLAC) (Coalson 2008) is an audio file format similar to MP3,

but uses a lossless compression algorithm. Unlike Monkey‟s Audio, the FLAC file format

allows playback on a number of different devices, but is not as popular as the MP3 file

format. The decompression of FLAC is the fastest of all file formats using a lossless audio

compression algorithm.

FLAC is built on the need to avail as much support as possible to end users, which include

access to the source code, multiple device support, hardware, software and operating systems

support, is licence-free, and is able to stream over a network in minimum time, with

minimum error, independent of the level of compression.

The FLAC compression algorithm uses linear prediction to convert audio information to a

sequence of small, disassociated numbers known as the residual. These numbers are then

stored more efficiently using Golomb-Rice coding. For blocks of the same recurring

information, such as silent gaps, a run-length encoding process is utilised.

FLAC is a popular archive format for owners of CDs, and other media where audio quality is

of high standard, where the preservation quality is essential. The lossless compression

algorithm employed by the FLAC standard allows the owners of such media to replace lost,

damaged, or worn out audio with exact duplicates of the original data at any point in time.

This restoration is not possible in lossy compression standards, such as with MP3 and WMA.

However, the FLAC compression algorithm compresses audio information to within 10

percent of most lossy compression algorithms.

In addition to these advantages, FLAC files are also suitable for transcoding without the

usually associated transcoding quality loss. When “ripping” an audio CD into FLAC files,

the information of that CD is still maintained. This includes the original track order, timing

gaps, and CD-Text, but does not, however, store additional information, such as lyrics.

4.7.3 MP3

Moving Picture Experts Group Audio Layer-3 (MP3) is an audio file format, which, unlike

FLAC and Monkey‟s Audio, uses a lossy compression algorithm. The audio compression

algorithm used in the MP3 standard was developed by the Fraunhofer Institute in 1991

(Fraunhofer 2010). Although the MP3 format uses patented encoding, it is the most popular

63 File Compression

standard used to store compressed digital audio. Its popularity is achieved due to its

compression ratio, which is generally around 10 percent of uncompressed digital audio stored

as wave files. The MP3 file format has become the main standard used to transfer and

playback digital audio on both the desktop computer, and other portable devices.

Figure 4.9: MPEG Audio Layer 3 Encoder

Figure 4.9 is based on the MPEG encoder as described by Li & Drew (2004) and Seeck

(2005). The first step converts the input audio information from time into frequency values.

This information is then divided into 32 frequency subbands using the filterbank. Using

psychoacoustic modelling, the data is evaluated to take advantage of different facets of the

human hearing perception (Seeck 2005). The psychoacoustic model includes masking effects

(loud sounds cover quiet sounds), successive tone masking (when two different tones succeed

one another), and joint stereo effect (higher frequencies are easier to locate). Simply stated,

the psychoacoustic modelling removes all sounds that are not audible by humans, either

because they are masked by other sounds or not within the frequency range audible to the

human ear.

Bit allocation does not form part of the standard, and can, thus, be carried out in a number of

different ways, where the aim is to ensure all the quantisation noise is below the masking

64 File Compression

thresholds (Li & Drew 2004). The information is then compressed using entropy coding,

more specifically, Huffman coding. This coding removes redundancy, reducing the amount

of information required for storage, and is a lossless compression technique.

4.8 Video Compression

Similarly to image compression, video compression was developed by the need to record

video on devices, such as video cameras and mobile phones. These devices do not have

ample storage space, advanced processing power or adequate memory to process raw video

files after it has been captured.

A video is made up of a sequence of frames over time, along with optional audio. An

apparent compression approach would be to use image and audio compression together to

achieve acceptable compression rates and quality. This is, however, not the case, as video

usually contains multiple frames per second, which would still result in a large sized storage

space. The difference between two successive frames is vital to the compression of video.

Typically, objects and camera movements do not change significantly over short time

periods, which mean that the video has temporal redundancy (Li & Drew 2004).

Video compression standards provide significant reduction of the size and storage space

required of video information. As discussed in Section 1.3.6, time is of great importance to

the process of delivering content to mobile device by means of Web Services. Even the

shortest of video lengths can take a significant amount of time to compress to an acceptable

size. This size, however, is still deemed too large for transmission over a wireless network.

This transmission may takes several minutes, if not hours, to transfer to a mobile device,

which may also incur significant costs. Thus, video compression is not considered within the

scope of this research.

4.9 Advantages and Disadvantages of Compression

To determine whether compression is indeed a solution to the issues regarding mobile device

resources, a comparison between the advantages and disadvantages of compression is

conducted. Based on research (Blelloch 2001; Li & Drew 2004; Natchetoi et al. 2007a;

Nelson et al. 1995), the advantages of using data compression are as follows:

 Compressed files or information requires less disk space;

 Provides faster file transfers for both upload and download

65 File Compression

 Uses less bandwidth;

 Saves costs on file transfers;

 Faster reading and writing from and to memory;

 Is independent of byte order;

 Reduces power consumption; and

 Enables faster printing speeds for compressed images.

Although some of the issues of compression can be overcome by means of using different

methods and techniques, the disadvantages still exist. The disadvantages of using data

compression are as follows:

 Adds some complication to file storage;

 Although uncommon, it can cause errors during transmission (if an error occurs

during compression);

 Increases processing for complex compression and decompression algorithms;

 Requires decompression, which can often take some time to complete; and

 There is an unknown byte to pixel relationship (for images).

Compression plays an important role in content delivery, while reducing the storage space of

information. Compression is more significant for devices with fewer resources available to

it, such as with mobile devices.

4.10 Choosing the Best Algorithm

In order to measure which lossless compression algorithm performs best, several performance

metrics are used. These metrics include the time to compress, the time to reconstruct, the size

of the compressed file, and the generality (i.e. if it works for a certain file, will it work for

another) (Blelloch 2001). Because the criteria for measuring the performance of lossless

compression are based on objective values, the use of weighting is not often used. However,

in cases where one criterion is more of a necessity than another, a weighted average is used.

For example, if the time taken to compress information is of more importance than the other

criteria, then the comparison between two or more lossless compression techniques will be

weighted more toward the compression time.

In addition to these performance metrics, the amount of resources consumed during the

compression and decompression processes plays an important role in the choice of

66 File Compression

compression algorithm to use. Compression techniques that operate more efficiently, in

terms of resource usage, may be favoured over resource extensive techniques, regardless of

the difference in compression levels they provide. This is of particular interest in the mobile

environment, where limited resources are available. The metrics recorded to measure

resource usage include the processing power and the memory footprint
1
. Additionally,

battery usage may also be recorded when measuring resource usage on a mobile device.

Unlike lossless compression, measuring the performance of each lossy algorithm is not a

matter of simply comparing metrics. An added complication when measuring a lossy

compression algorithm is how good the quality of the compressed file is. There are,

generally, tradeoffs between the amount of compression, the runtime, and the quality of the

decompression (Blelloch 2001). A weighted performance metric is required in choosing the

best algorithm, as some metrics may be more important than others depending on the specific

requirement. For example, if storage space is of main importance, then the quality of the

information and the time it takes to decompress this information is of less importance.

Due to the amount of data and media files available today, a compression technique

performed on one type of file is, typically, not suited for all other types of files. For this

reason, the manner in which the majority of lossy compression techniques are utilised are

highly dependent on the media that is to be compressed. Lossy compression techniques for

sound are vastly different to lossy compression techniques for images (Blelloch 2001).

The file compression techniques discussed in this chapter are evaluated and compared, in

Section 6.2, using the performance metrics and approaches discussed in this section. An

initial performance test is conducted in Section 6.2, and a more extensive evaluation is

conducted in Chapter 7.

4.11 Conclusions

Compression is one of the most fundamental aspects of providing mobile devices with the

necessary information people require. In a world consisting of unlimited, free bandwidth,

data compression would not be a necessity. Bandwidth is limited, however, and usage

thereof has an attached cost. Basic compression, therefore, not only reduces the need for

higher bandwidth and reduces cost, but also places less pressure on the limited resources

1
 Memory footprint is the amount of processing memory used when executing the compression technique

subtracted from the amount of processing memory allocated for that particular instance of a running application.

67 File Compression

available to the mobile device, such as the processing power, memory, storage capacity, and

battery life. Other aspects, such as the limiting screen size, poor navigation and browsing are

eased with image compression where images are typically larger the screen can display

correctly. Numerous amounts of data exists, in archives and elsewhere, and it has become

crucial to compress this information (Li & Drew 2004). The need for compression has risen

as a direct result from the need for multimedia presentations.

The goal of this chapter was to answer research question R3: “What are the issues related to

compression?” This chapter briefly discussed the different types of compression available,

and the principles each type employs to achieve high levels of compression. Using a lossless

compression for data and a lossy compression for media, compression has optimised

information management for use within a mobile environment. This optimisation has

significant benefits and it reduces the amount of resources required on the mobile device, as

well as reduce the cost of file transfer to and from the mobile device.

Several performance metrics were identified in order to compare the different compression

techniques. Table 4.1 shows the list of each category of file, the compression techniques for

these categories and the metrics used to compare these compression techniques.

Table 4.1: File Type, Compression Techniques and Metrics

Category Compression Techniques Performance Metrics

XML
bZip2, gZip, DotNetZip,

XMill, XMLppm, XWRT

Compression Ratio, Compression Time, Decompression

Time, Memory Footprint

Image GIF, JPEG, PNG Compression Ratio, Image Quality

Audio FLAC, MAC, MP3 Compression Ratio, Compression Time

In addition to these performance metrics, the resource usage is also measured. Resource

usage is measured by means of recording the processing power and memory footprint of each

compression technique. Additionally, when measuring resource usage on a mobile device,

the battery usage is also recorded.

Results from (Natchetoi et al. 2007b) suggest that compression of XML files significantly

decreases the amount of overhead required for transfer to a mobile device, which does not

entail utilising excessive resources from the mobile device to accomplish this. With XML

being a key aspect of specific XML-based SOA components, such as WSDL, UDDI, and

68 File Compression

SOAP, compression of these XML messages is important for delivering Web Services to a

mobile device quicker and at a significantly reduced cost. Each type of file, data and media,

has a preferred standard used for compression.

The management of compression techniques for each given file is important to the

optimisation of file delivery within Mobile SOA. Hence, a framework designed to support

intelligent compression of files used within Mobile SOA is beneficial. A proposed

framework, supporting intelligent compression, is discussed in Chapter 5.

69 Framework Design

Chapter 5: Framework Design

5.1 Introduction

Mobile Web Services, a specialised domain within SOA, is a relatively new field, but has

rapidly seen wide acceptance, from both businesses and the general population, due to the

rise of SOA and mobile technology (Hurwitz et al. 2007; Natchetoi et al. 2008). There are

still, however, a number of issues that exist when implementing a Mobile Web Service.

These issues are based on the limited resources available to a mobile device, which include a

reduced screen size, lack of processing power, insufficient processing memory, poor storage

capacity, unreliable connections, limited bandwidth and high costs incurred. Chapter 4

highlighted compression as a solution to the most significant issues restricting the sustained

use of a mobile Web Service.

Integration of mobile Web Services and the use of compression are required. A way to

integrate these two aspects lies in the design of a framework to support intelligent

compression for SOA within a mobile environment. The proposed framework should meet

the requirements of SOA design principles, as well as provide minimum complexity to

support sustained use on a mobile device where resources are limited. The design process is

critical to ensure that the proposed framework is designed according to these SOA principles.

The design process also provides a set of principles that the proposed framework should

adhere to.

An architecture is specific to one particular domain and provides a logical overview of a

technology. SOA, however, does not provide a total system view and, by itself, is

insufficient to describe an entire system‟s architecture (Sanders et al. 2008). A framework

describes and guides the architecture approach. A framework is a library that provides tools

and implementation guidelines for an application and can support multiple architectures. The

possible behaviour and flow of control is also determined by the framework. When

designing and developing applications within an SOA, it is important to do so according to

design principles and guidelines (Kajko-Mattsson & Chapin 2010). This reduces the risk of

failed or inefficient applications. This chapter describes the design of a framework, which

supports intelligent compression.

70 Framework Design

The previous three chapters provided a literature review and have illustrated the wide

acceptance and necessity of SOA, Mobile SOA and Compression. This chapter answers

research question R4: “How can a framework, supporting intelligent compression, be

designed for Mobile SOA?” Section 5.2 provides a literature study of an existing framework

that supports compression, which this research extends. The extended framework is then

discussed in Section 5.3, which discusses issues, such as the design, components, relevance,

and benefits of the framework.

5.2 Extant System: EXEM Framework

Natchetoi, Wu, Babin and Dagtas (2007) highlight the need for efficient management of

XML documents used for data exchange. This is done by means of compressing the XML

documents using Efficient XML data Exchange Management (EXEM) framework. EXEM is

a component-based framework that was designed to manage large data sets for mobile

applications where XML is central to data exchange. The framework supports the efficient

transfer of XML documents between a Client and a Server. This is of particular importance

to mobile applications that use limited resources.

Figure 5.1: Lossy Compression (Pruning) of an XML Document (Natchetoi et al. 2007b)

The EXEM framework combines the use of lossy and lossless compression (see Sections 4.3

and 4.4). Lossy compression is used to prune data that is not required from the business

object. This lossy compression is feasible only if there are no dependencies between the

business object attributes and if there is knowledge of the information required by the Client.

Figure 5.1 shows the process of pruning a business object within the EXEM framework. The

71 Framework Design

pattern tree (left) is pruned by means of extracting only the information required (right). This

means that only a subset of the XML document is transferred. However, pruning can only be

performed within applications that are owners of the Business Object. An example of this

would be the use of a Client/Server application within an organisation wishing to facilitate

data exchange between its own applications. For instances where information is requested

from an external source, such as a Service Directory for Services, it is improbable to predict

the Business Object for all, or any, Services.

A lossless compression technique, implemented by Natchetoi et al. (2007b), was used after

pruning was performed. Compression of the XML document is achieved by creating a

Huffman code for all the elements, attributes and tags of the XML documents. A dictionary

set is constructed to match each symbol with an appropriate code. The dictionary is managed

over time, which collects statistics on item usage and is also updated on the Client side, and is

dynamically adapted to the current applications available on the mobile device. To manage

these dictionary updates a synchronisation method is used, which is invoked only at the start

of each communication session. These dictionary sets are used to implement the context-

dependent lossy compression and Huffman-based lossless compression algorithms.

Figure 5.2 illustrates the steps undertaken to provide efficient compression of the XML

documents. The framework is divided into a Client and a Server (on which all

computationally expensive tasks are performed). On the Server-side the business objects
1

are requested from the repository that is managed by the Back-end Server engine. These

business objects are then sent to the EXEM Server where the data is converted and stored in

an XML document before being pruned and compressed. The EXEM Server also provides

updates for the dictionary based on statistics collected after each compression of a business

object. The compressed XML message is then sent to the Client via a wireless

communication network. This message is decompressed by the EXEM Client before it can

be used by the Client application. Concurrently, the dictionary is updated on the Client side.

The decompressed message is then used in the Business Query Engine, which extracts the

required information for the Client Business Scenarios.

1
 Business Objects, in this context of use, relates to a set of variables, properties and associations, which

represent the data that is stored.

72 Framework Design

Figure 5.2: EXEM Framework (Natchetoi et al. 2007b)

Natchetoi et al. (2007b) conducted a comparative study of four compression techniques,

including the use of an EXEM compression technique. The EXEM compression technique

was utilised within the EXEM framework. The study used a sample of 65 randomly selected

XML files categorised by file type. The EXEM compression technique significantly reduced

the XML document size, and also observed better compression ratios than the other

compression techniques. This allows for faster transmission of XML documents at a lower

cost to the Client. Additionally, a compressed file is easier and quicker to process on the

client-side, more so when it is transferred over a network. The EXEM compression

technique, however, requires periodic dictionary updates over time to produce significant

compression ratios. This leads to additional overhead transferred and a possibility of a

bloated dictionary over time.

Although the EXEM framework provides a template for efficient file transfer between a

Client and Server, the domain in which it was tested was limited to data within an

organisation. As previously discussed, the need for information access has increased beyond

that of a single business. Confirmation of this need lies in the growth of SOA (and Mobile

SOA). In order to provide practical significance for a framework, it is important that the

design of a framework addresses current needs using modern technologies within a realistic

environment. A framework is proposed in the next section, which extends the existing

EXEM framework.

73 Framework Design

5.3 Proposed Framework

Mobile SOA, generally, extends the basic SOA with adjustments made to support the mobile

environment. Jørstad et al. (2005) provided an illustration in Figure 5.3
1
 of what a Mobile

Service-Oriented Architecture might resemble. The key components shown correspond to

that of a standard SOA, with the addition of the Mobility Controller component, which

manages the use of Services for the mobile environment. The framework proposed in this

research forms part of the Mobility Controller component, as it forms the basic concept for

file transfer within Mobile SOA. The framework provides guidelines to the realisation of

more efficient delivery of a Service to a mobile application.

Figure 5.3: Simplified View of SOA with Support for Mobile Services (Jørstad et al. 2005)

While SOA provides the architecture for efficient interoperability between different systems,

there are many additional difficulties that should be addressed (Phu & Yi 2005). The

proposed framework addresses the issue of bloated XML documents and large media files

used within the SOA environment, more specifically that of Mobile SOA. XML documents

form the backbone for information exchange in an SOA between heterogeneous platforms.

Thus, the compression of these XML documents is fundamental, as it reduces the required

bandwidth for data transfer and also minimises the memory needed to process the data on a

mobile device. Compression of images and audio are crucial for Content Services in which

media files are the primary deliverable.

1
 Figure 3.2 is repeated as Figure 5.3 for ease of reference.

74 Framework Design

In order to successfully implement a prototype, a framework is required. The framework

provides a set of guidelines on which the prototype is implemented. Without a thorough

design process, however, the framework may not provide a beneficial set of guidelines. The

next section discusses the design process of the proposed framework and the principles on

which it was designed.

5.3.1 Design Process

For most organisations and vendors, the implementation of any software related to SOA can

be daunting (Hurwitz et al. 2007). The design process gives clear understanding of how the

framework should be structured and the prototype implemented. This not only aids similar

design processes, but also facilitates the implementation of applications and Services within

an SOA.

Consistent with Dey and Sohn (2003), a framework satisfies the two key objectives, which

are that a framework:

 supports a faster iterative development process, in which applications are simpler to

design, prototype and test; and

 provides designers and end-users with guidelines to build their own applications.

Additionally, the framework should minimise the complexities of building these applications.

The proposed framework is designed in consideration of the SOA design principles discussed

in Section 2.4. Although the framework itself is not required to adhere to these SOA

principles, it should not cause the components of Mobile SOA to infringe on these principles.

However, it is important that the proposed framework be designed to meet specific principles

in order to successfully achieve efficiency within Mobile SOA. These principles are as

follows:

 Easy and Lightweight: The framework should be lightweight and easy to execute in

practice, be robust, and provide easy access to Services (Shretha 2010).

 Compatibility: The framework must work for different Services and be compatible

for different devices, operating systems and programming languages. This is of

particular importance to the mobile environment in which numerous mobile devices

exist.

75 Framework Design

 Robustness and Concurrency: The framework must be robust, accurate, and error-

free. Additionally, the framework should support multiple, concurrent access to

requested Services. This feature should not, however, be detrimental to the

performance of the framework.

 Interchangeable Communication Medium: Although not limited to the mobile

environment, the framework must support different communication mediums for

mobile devices, as listed in Section 3.3.3. The framework should perform equally in

differing bandwidths and communication protocols from which the Service was

requested.

 Service Discovery: The framework should support discovery of new Services via a

specific Service Discovery method defined by the organisation or vendor that

implements a working prototype of the framework.

 Efficiency: The framework must provide a means for efficiently managing the

information produced by requested Services. The Service itself is external and

autonomous. The implementation and operation of these Services is irrelevant to the

performance the framework yields.

 Flexibility: The framework should fit into the existing SOA environment of an

organisation. This removes the need to redesign or redevelop any existing

applications used within the organisation.

An SOA does not exist in a vacuum and must be designed to support the ever changing

technologies and protocols. These principles are essential to successful execution of the

proposed framework itself and the services it provides within an SOA (more specifically

Mobile SOA). The evaluation of whether the proposed framework adheres to the design

principles mentioned in this section is discussed in Chapter 7.

The EXEM framework, supporting compression of XML files, provided a template on which

the proposed framework extends. The EXEM framework, however, was implemented and

evaluated within a closed environment of a single organisation. There is a continued growth

of SOA (and Mobile SOA) and other applications where information is securely accessed

from an external source. It is, thus, important that the proposed framework support efficient

transfer of this information provided by a Service, whether it is composed within an

organisation or invoked via an external source, such as a Service Directory.

76 Framework Design

Figure 5.4: Proposed Compression Framework for Mobile SOA

77 Framework Design

The proposed framework supports intelligent compression to provide efficient file transfer of

the files within a Mobile Web Service to a mobile device. Figure 5.4 illustrates how the

different components of the proposed framework are combined. The proposed framework is

divided into four components, namely: the User Interaction Component, the Intelligence

Component the Compression Component, and the Decompression Component.

5.3.2 Components of Proposed Framework

Standard XML-based initiatives form the basis on which Web Service technology

implements SOA (Sanchez-Nielsen et al. 2006). Similarly, these standards form the basis on

which Mobile Web Services implements Mobile SOA. As discussed previously, the

verbosity of the XML messages used within SOA, moreover Mobile SOA, has resulted in

many XML-specific compression techniques. The proposed framework provides an

approach to efficiently manage these XML messages by means of compression.

Additionally, the framework uses compression for efficiently managing media content, in the

form of image and audio files. The efficiency provided by the proposed framework lies

within the functionality of its four main components, and the interaction between these

components.

User Interaction Component

The User Interaction Component provides the basic functionality for registration, Service

request and Service display. However, only the Registration Module provides distinctive

functionality within the proposed framework. The Registration Module provides methods for

collecting the information required to build the User Profile and Phone Profiles, which forms

part of the Intelligence Component. The Service Request Module and Service Viewer

provide generic functionality to request and invoke a Service. The registration, Service

request and Service invocation processes are discussed in more detail in Section 5.3.3.

Intelligence Component

The intelligence of the proposed framework is managed within the Intelligence Component,

and is derived from the information provided by the Database and Backend Server Engine.

Information within the database is divided into two categories, the User Profile and the Phone

Profile. The User Profile stores information about the Client, such as the unique IMEI

number for the mobile device. Each User Profile is mapped onto a specific Device Profile.

78 Framework Design

The Device Profile stores information about the mobile device, such as the screen dimensions

and storage capacity.

The database provides information to the Backend Server Engine. Information from the

initial Service request is also fed into the Backend Server Engine. This information is utilised

to categorise the files from the requested Service. These files are grouped according to their

respective types. All data, image and audio files used by the requested Server are

compressed individually within the Compression Component. Additional files, which do not

fall within the three categories of files compressed by the proposed framework, are grouped

by the Server, and are sent to the mobile device without compression. In the event that a

compression technique exists to compress a specific file, within a specified time frame and

compression ratio, the compression technique may be added to the framework.

Additionally, the Backend Server Engine assists in the compression process by providing the

compression techniques with specific parameters based on the information collected. These

parameters are requested from the database, which stores information collected during the

registration process. However, before any data file, received from the requested Service, is

compressed, it is transformed into an XML document, if not already in this form. It is

essential that all data be transformed to a uniform standard. Since XML forms the backbone

of data exchange in Web Services, it is, thus, selected as the standard for data exchange

within the proposed framework.

Different XML compression techniques may perform better for different categories of XML

files. XML files can be categorised on criteria, such as file type (APP, SOAP, WSDL, and

RSS), number of repeated elements and attribute values, and the complexity of the XML

structure (Natchetoi et al. 2007b). The XML categoriser categorises the XML depending on

the XML compression technique preference. That is to say, if an XML compression

technique outperforms all other techniques for a specific category, then that compression

technique is used for that category.

Compression Component

The proposed framework promotes efficient file transfers of Mobile SOA to mobile devices

using intelligent compression. As previously described, intelligence is derived from the

ability to select the best compression technique for each of the categorised files. However,

the compression of the files is still required. The aim of compression is to reduce the amount

79 Framework Design

of resources and time required to manage and transfer the files used within Mobile SOA.

Due to the limited resources available on mobile devices, there is a definite need for

compression to reduce the effects of resource-intensive Web Services. The Compression

Component controls all aspects of file compression within the proposed framework. The

compression of these files is categorised into that of the data and media files.

The information stored within data files is often highly critical to the success of business

processes. For this reason only lossless compression techniques are used to compress data

files within the framework. Section 4.5 discusses the different XML compression techniques

that were considered for use within the implemented prototype. A comparison of these

compression techniques is discussed in the next chapter. In the case of media files, different

standardised compression formats were considered for image and audio compression. Image

and audio compression standards were discussed in Sections 4.6 and 4.7, respectively. The

comparison of these standards is also discussed in the next chapter.

Decompression Component

The Decompression Component simply reverses the process of lossless compression. For

data files, a decompression algorithm is applied based on the compression technique used.

The contents of the data file are accessible only once a decompression algorithm is applied to

the compressed data. For media files, however, the process is much simpler. Due to the

widely accepted standards for many image and audio compression formats, most operating

systems, programming environments, and applications accommodate the decompression

algorithms of these standards. For example, when using the JPEG format for an image, it can

be viewed on most mobile device operating systems, and it is not required that the

decompression algorithm be used within the framework to decompress the image. Any lossy

compression that had been applied to any of the files cannot be recovered.

The effectiveness of the proposed framework is dependent on the combined utilisation of

these four components. The (Mobile) Service Consumer sends a request to the Service

Directory, which in turn produces Services matching the request. The Service Consumer

then selects the required Service, in which the files linked to the Service are managed by the

Mobility Controller and transferred to the Service Consumer. The procedure for efficiently

delivering a requested Service to a mobile device is discussed in the following section.

80 Framework Design

5.3.3 Process Steps of Framework

The proposed framework provides an invocation mechanism to support Web Service requests

to the Service Registry. Business data and media content are exchanged between the Service

Provider and Service Client, which communicate via SOAP messages. The proposed SOA-

based mobile framework consists of four components, which provide efficient file transfer

between the two parties. The proposed framework provides a guideline to the processes that

should be performed in order to facilitate efficient file transfer to a mobile application, Figure

5.4. The process steps provide an important overview of the task flow of the proposed

framework, and illustrate how intelligent compression of the requested Service files is

achieved. Detailed explanations of these processes are now discussed.

Initial Registration

Before any Service requests, a Service Consumer (Mobile Client) is required to register via

the mobile application. Registration is handled by the Registration Module. The User is only

required to input specific information, such as their name, address, occupation and employer.

The Registration Module automatically collects all the information about the mobile device

by invoking background data collection methods. The User is prompted for any information

that is not successfully obtained by the Registration Module. This registration process

captures information about the Client and stores it within a database located on the Server.

The information captured is categorised as either User Profile data or Device Profile data.

This information is fed into the Backend Server Engine. More detail about the database

structure and the stored information is provided in Chapter 6.

Service Request

Once the registration process is complete, the Client may request Services to perform a

specific task or provide specific content. This request is sent via the Service Request Module

to the Service Directory, and the Service is located by means of a search method. The

Service Directory returns a list of Services available based on the request. Once the Client

selects the desired Service, the information is sent to the Service Directory and the Backend

Server Engine. Before the Service may be used, however, the data from the initiated Service

is passed through the Mobility Controller (refer to Figure 5.4) to provide efficient file transfer

to the Client.

81 Framework Design

File Categorisation

The intelligence of the framework lies in its ability to categorise files accordingly and select

which compression technique to use. Initially, files are categorised into data and media files,

as each require compression techniques specific to those category of files. The categorisation

of these files is performed in the Intelligence Component. The XML Transformer converts

all data, which is then stored within an XML file. These XML files are subsequently

categorised using the XML Categoriser by criteria discussed in Section 5.3.2. Media files are

further categorised into two categories, images and audio, within the Backend Server Engine.

These media files are the main deliverable for Content Services.

Compression

Files are compressed using different compression techniques for different categories of files.

The compression of these files is managed by the Compression Component. Parameters from

the Intelligence Component are passed through to the Compression Component. These

parameters are used, for example, to decide which compression techniques to use or to

determine the dimension of the compressed image. The parameters fed into the compression

techniques are the size, structure and file type of XML files, screen size, quality (pixels per

inch) and space available for image files, and quality (bits per second) and space available for

audio files. Before compression is performed on an image, it is required that the resolution

be reduced to match the mobile device screen. This is achieved by resampling an image,

based on the dimensions provided by the Phone Profile for that Client. The comparison and

selection of the compression techniques are discussed in the Chapter 6.

File Transfer

The compressed files are transferred to the mobile device via a wireless connection, discussed

in Section 3.3.3, which is established by the mobile application. One of the primary factors

for proposing a more efficient framework within Mobile SOA is attributed to the high cost

attached to file transfer when using these wireless connections. All files are assembled into

one package and transferred to the mobile device. The mobile application then separates the

package into files that do and files that do not require decompression. The compression

technique, which also performs the decompression, is sent to the mobile device, along with

the other compressed files, in order to perform decompression.

82 Framework Design

Decompression

Before the data files can be utilised by the mobile application, they must be decompressed.

The files are decompressed using the reverse of the technique used for compression. This

simply means that data files are restored to their original state using a decompression

algorithm, which applies the same steps used to compress the file, but in the reverse order.

Depending on whether a widely accepted compression standard was used, media files often

do not require a decompression step, as it is supported by most mobile devices and their

operating systems. XML files, however, need to be decompressed using the same technique

that was used during compression.

Build Requested Service

When all files are in their required formats, the mobile application is able to build the

requested Service, or utilise the downloaded content on the mobile device. Once the Service

has been rebuilt, it is invoked within the Service Viewer. Data is the most important

deliverable for Added Value Services. Because a lossless compression technique is used to

compress the XML files, the data within these XML files are exact copies of the original.

Media files used within Content Services have a set amount of loss, based on the parameters

provided by the Intelligence Component. However, due to the limited screen size and low

quality speakers, the loss within these media files is negligible.

Summary of Process Steps

These processes have explained how efficiency may be achieved for the transfer of Service

files to a mobile device. An important aspect of this framework is to provide cost-effective

and affordable access to content, in the form of Web Services, through an ever-growing

technology most people already have access to, their mobile devices. Regardless of the core

technology used, the only manner in which to make a framework viable for mobile

applications is by providing the Client with as much applicable data as possible (Natchetoi et

al. 2008). This chapter has provided a discussion on an approach to providing this data,

which relies on the execution of a framework that supports intelligent compression. The

proposed framework forms part of the Mobility Controller component, one of the four main

components within Mobile SOA. Therefore, the implementation of a prototype based on the

framework design does not require any adjustments to previously existing infrastructure

83 Framework Design

supporting SOA. Due to this design principle, the proposed framework has a number of

perceived benefits.

5.3.4 Perceived Benefits of the Proposed Framework

There are a number of issues and challenges that exist in the mobile environment and Mobile

SOA. This has led to the proposal and development of numerous solutions for individual

issues. The framework proposed within this research aims to provide a smart solution to

these issues. The proposed framework has perceived benefits intended for Mobile SOA,

although the principles of the framework may be adapted to support other mobile and desktop

Client/Server applications. These benefits are listed as the following:

1. There is a projected reduction in the overall development cost in an organisation to

develop mobile applications supporting SOA.

2. The mobile applications themselves may perform faster and better when developed

according to a specific guideline, such as that described by the proposed framework.

3. The viewing of an image is enhanced due to image resampling to match the screen

size for each individual mobile device. The content layout and navigation is also

improved as a result.

4. Compression reduces the amount of processing power and memory required to

manage larger files, in terms of transferring, accessing and storing of files.

5. The reduction in processing power and memory usage has a direct impact on the

battery life of a mobile device. The less processing and memory required, the longer

the battery may last between charges.

6. The framework may also facilitate improved file transfer where there may be

unreliable connections and limited communication bandwidth.

7. The reduction in the amount of overhead required for transfer over these connections

may result in the reduction of transmission costs. This is of significant importance for

businesses, where there may be an extensive amount of information that is transmitted

to and from a mobile device.

Benefits 1 to 3 list the advantages of developing an application based on the guidelines

outlined in Section 5.3.1. These benefits are of great significance to businesses having to

spend large amounts of money on the analysis and development of a mobile application.

Benefits to the end-user, which may be a business, business employee or regular person, are

84 Framework Design

listed from 4 to 7. These benefits highlight the significant reduction in cost and time to

receive files from a Server even on poorly performing connections.

Although there are a number of benefits perceived for the proposed framework, there may

always be limiting factors when developing for the mobile environment. Factors, such as

human acceptance, visual constraints and input limitations, add to the challenges faced when

implementing mobile applications. The evaluation performed in Chapter 7 provides a

discussion on whether these perceived benefits are realised.

5.4 Conclusions

Research question R1, R2 and R3 are answered in Chapter 2, 3 and 4, respectively. The goal

of this chapter was to provide an answer to research question R4: “How can a framework,

supporting intelligent compression, be designed for Mobile SOA?” In answering this

question, this chapter first provided a discussion on the framework proposed by Natchetoi et

al. (2007b). The EXEM framework reviewed in this chapter presents a template for

compression of data exchanged within a Client/Server mobile application. Natchetoi et al.

(2007b) demonstrated that a framework, which supports compression, provides efficient

transfer of files to a mobile device. The framework, however, does not provide a solution to

the other challenges faced within a Mobile SOA environment. This template, therefore,

provides a basis for the design of framework proposed in this research, and also provides

motivation for the use of XML data exchange.

A discussion on the proposed framework was divided into four subsections. The design

process, discussed in Section 5.3.1, illustrated the principles on which the proposed

framework was designed, and upon which the prototype should be implemented. In Section

5.3.2, a discussion on the components of the framework provided a view on how these

components interact. The three components, Intelligence Component, Compression

Component, and Decompression Component, provide the backbone for efficient file transfer

to a mobile device. Section 5.3.3 provided a discussion on the process steps of the proposed

framework, which showed how efficiency may be achieved by means of intelligent

compression. A list of perceived benefits was discussed in Section 5.3.4, which provided

evidence of the predicted effectiveness and efficiency of the proposed framework.

Furthermore, these benefits provided sufficient reasoning to the importance of the proposed

framework within the Mobile SOA environment.

85 Framework Design

Table 5.1: Perceived Benefits Mapped onto Research Questions

Perceived Benefit Research Question

There is a projected reduction in the overall development cost in an organisation to develop

mobile applications supporting SOA.
R 5

The mobile applications themselves may perform faster and better when developed according

to a specific guideline, such as the proposed framework.
R 6

The viewing of an image is enhanced due to image resampling to match the screen size for

each individual mobile device. The content layout and navigation is also improved as a result.
R 7

Compression reduces the amount of processing power and memory required to manage larger

files, in terms of transferring, accessing and storing of files.
R 7

The reduction in processing power and memory usage has a direct impact on the battery life of

a mobile device. The less processing and memory required, the longer the battery may last

between charges.

R 7

The framework may also facilitate improved file transfer where there may be unreliable

connections and limited communication bandwidth.
R 7

The reduction in the amount overhead required for transfer over these connections may result

in the reduction of transmission costs. This is of significant importance in for businesses,

where there may be an extensive amount of information that is transmitted to and from a

mobile device.

R 7

Each of the perceived benefits (Section 5.3.4) is mapped onto a specific research question, as

illustrated in Table 5.1. The proposed framework provides guidelines to the implementation

of a prototype. Chapter 6 provides a discussion on the implementation tools and methods

used when developing such a prototype to test efficiency and effectiveness of the proposed

framework. An evaluation of a prototype is conducted in Chapter 7 to determine whether the

proposed framework is implemented according to the design principles of Section 5.3.1 and

whether the perceived benefits of Section 5.3.4 are realised. The evaluation will provide

evidence of whether the perceived benefits of the proposed framework realised.

The implementation of the proof-of-concept prototype is discussed next.

86 Implementation

Chapter 6: Implementation

6.1 Introduction

In the literature review chapters (Chapters 2, 3, and 4), Service-Oriented Architectures

(SOA), Mobile SOA, and File Compression were discussed. Chapter 2: highlighted the

growth of SOA, and Chapter 3 discussed the recent development of Mobile SOA, as a

specialised domain within SOA, along with the constraints encountered when implementing

for this environment. A discussion was conducted in Chapter 4 on a possible solution to

these issues using compression. Chapter 5 proposed a framework for Mobile SOA, which

supports intelligent compression, and also discussed the design process, process steps and

perceived benefits of the proposed framework.

The development methodology chosen for this research is based on the proof-of-concept

methodology, for which a prototype was implemented. The framework proposed in Chapter

5 provided a set of implementation guidelines to support efficient file transfer of Web

Services within Mobile SOA. A prototype was, therefore, developed according to these

guidelines. A prototype, in terms of implementation of software, is an incomplete, but

practical, form of an application used for testing (Preece, Rogers & Sharp 2007). In terms of

this research, a prototype was used to test the feasibility and performance of the proposed

framework.

The purpose of this chapter is to provide an insight on how a prototype of the proposed

framework was implemented, in order to answer research question R5: “How can a

prototype, based on the proposed framework, be implemented?” This chapter begins with a

discussion on the initial testing of the XML, Image, and Audio compression techniques

(Section 6.2), which compares results for each of the compression techniques, respectively.

Section 6.3 provides a discussion on the implementation criteria of the prototype. The

implementation tools that were used for the development of the prototype are discussed in

Section 6.4. This is followed by a discussion on how the four components of the proposed

framework were implemented for the prototype in Section 6.5.

87 Implementation

6.2 Initial Testing

In order to discover the feasibility and usefulness of using compression within the proposed

framework, it was essential to conduct several compression tests for the categories of files

used within Mobile SOA, as discussed in Chapter 4. These categories of files are data

(limited to textual data stored in XML files), images and audio. In addition to testing the

practicality of compression within the proposed framework, the initial testing was used to

evaluate the factors of compression and the effects thereof. These factors revealed effects

within the proposed framework, when the prototype is implemented.

Comprehensive video compression tests were not conducted, as they do not fall within the

scope of this research, due to its lengthy compression times and possible large file sizes.

6.2.1 Compression Testing Procedure

All tests were conducted on an Intel Core 2 desktop computer, which included the following

specifications: 2.13 GHz Dual Core Processor, 320GB hard-drive and 2GB RAM. The list

of files used in these tests, as well as additional details about each of the files, is available in

Appendix A, Appendix B and Appendix C for XML, image and audio files, respectively.

The following subsections provide detail on how the compression tests were conducted.

Although lossy compression techniques provide superior compression levels, the quality of

the lossless compression techniques are better. Thus, both lossy and lossless compression

techniques were tested for the image and audio compression tests. Each of the compression

techniques tested for XML compression were lossless, as the data contained within the XML

files are critical and cannot be discarded.

6.2.1.1 XML Compression Tests

Six XML compression techniques were tested; namely bZip2, gZip, DotNetZip, XMill,

XMLppm and XWRT, which were discussed in Section 4.5. Each of the compression

techniques could be executed via a command line interface (CLI). However, in order to

accurately measure the compression metrics, a wrapper application was developed. The

wrapper can execute each of the compression techniques by means of a Windows batch file,

as well as record data, which was used to compare the compression techniques.

The XML files used for testing were divided into three categories based on their sizes, Small

(0-1MB), Medium (1-10MB) and Large (10MB+). The compression metrics recorded in the

88 Implementation

tests included the original size of the XML file, compressed XML size, the compression

ratio
1
, compression time, decompression time, and the memory footprint. These metrics were

chosen based on research (Palmer 2002; Canfora & Troiano 2002; Mirchandani 2001; Spanos

2009; Natchetoi et al. 2007b).

6.2.1.2 Image Compression Tests

Only two metrics were recorded when testing the different compression techniques for

images, which were the compression ratio and image quality (after compression) (Miano

1999; Li & Drew 2004). Three image compression techniques were considered, namely GIF,

JPEG and PNG. A total of 30 uncompressed image files (BMP format) were tested. These

files were of varying sizes ranging from 17KB to 20MB, and contained different content,

such as photos and graphics.

6.2.1.3 Audio Compression Tests

In testing the best audio compression technique three compression techniques were

compared. Two lossless compression techniques and one lossy compression technique were

used. The lossless compression techniques included FLAC and MAC, and the lossy

compression technique used was MP3, all of which were discussed in Section 4.7. A total of

30 uncompressed audio files (WAV format) were used in the testing process. These audio

files ranged from 11KB to 170MB. Based on research (Li & Drew 2004), the metrics

recorded during testing were the compression ratio and compression time.

The descriptive and inferential statistics recorded for each of the three compression categories

are discussion next.

6.2.2 Descriptive Statistics

The descriptive statistics provide a quantitative analysis of the results recorded for each of the

XML, image and audio compression techniques tested. This analysis is discussed in the

following subsections.

6.2.2.1 Descriptive Statistics for XML Compression

The compression ratio achieved for each XML file was recorded for each of the six

compression techniques. These results are shown in Figure 6.1. These results indicate a

1
 Compression ratio is the compressed XML size divided by the original XML size.

89 Implementation

better compression ratio for Medium sized XML files. The compression techniques do not

perform as well for XML files less than 500KB and larger than 80MB.

Figure 6.1: Compression Ratio (%) for each Compression Technique

Confirmation of these results are shown by the statistical data recorded in Table 6.1, with the

mean and standard deviation of compression ratio for Medium size XML files significantly

less than the Small and Large sized XML files.

Table 6.1: Compression Ratio Statistics

bZip2 gZip XMill XMLppm XWRT DotNetZip

M
e

an
 Small XML 22.2082% 24.4404% 29.9039% 18.1388% 35.9186% 30.3569%

Medium XML 3.8213% 6.9610% 9.0736% 4.1353% 3.6290% 8.0463%

Large XML 6.7879% 10.2473% 15.5199% 6.6445% 6.3049% 11.3469%

M
e

d
ia

n
 Small XML 19.9614% 21.2547% 26.2313% 18.6153% 22.7936% 23.8396%

Medium XML 1.9207% 4.5049% 6.8228% 2.3115% 1.8331% 5.6169%

Large XML 1.8183% 4.2421% 12.3035% 2.0820% 1.4164% 5.5193%

St
d

.D
e

v.
 Small XML 21.7310% 18.8712% 20.2526% 15.0685% 43.9663% 30.3958%

Medium XML 3.6500% 5.0584% 6.5818% 3.2106% 3.6699% 5.1224%

Large XML 8.4086% 9.8733% 10.5870% 8.1410% 8.6326% 9.9874%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0
.0

0
0

2
9

0
.0

0
0

9
3

0
.0

0
5

4
6

0
.0

0
8

8
6

0
.1

3
8

3
2

0
.1

7
5

0
3

0
.2

0
8

3
9

0
.2

6
6

7
1

0
.6

1
2

5
5

0
.7

1
6

6
1

1
.0

2
9

4
9

1
.4

8
0

0
5

1
.8

0
9

3
4

2
.2

2
9

2
3

2
.8

3
0

1
4

3
.3

5
6

2
1

5
.1

2
9

6
7

5
.6

3
3

8
2

7
.5

2
9

2
4

1
4

.8
1

1
2

4

2
1

.6
7

5
6

4

3
0

.7
9

9
3

7

4
8

.8
2

5
3

0

7
3

.4
8

3
1

5

1
2

7
.6

6
1

4
5

1
8

2
.4

1
0

7
9

C
o

m
p

re
ss

io
n

 R
at

io
 (

%
)

XML File Sizes (MB)

Compression Ratio (%) vs File Size (MB)

bZip2 gZip XMill XMLppm XWRT DotNetZip

90 Implementation

Figure 6.2 shows the time taken to compress each of the XML files using the different

compression techniques
1
. From this illustration, it is shown that for XML files less than 7MB

the mean compression time (for all compression techniques recorded) is less than five

seconds.

Figure 6.2: Compression Time (sec)

For XML files larger than 7MB, the mean compression time increases to approximately 60

seconds. For businessmen needing to access data via their mobile devices, time is an

important factor. Data files larger than 7MB, however, generally store substantial amount of

information potentially containing thousands of records not viewable on a mobile device.

Additionally, Web Services offer functionality that do not require an entire data file to be

transferred to the Client, but rather smaller chunks of information containing only necessary

data. Thus, the lengthy compression time of large XML files pertain to situations often not

encountered when using Web Services on a mobile device.

1
 Execution errors meant that the time taken to compress the XML files for the XWRT compression technique

was not recorded.

0

10

20

30

40

50

60

70

80

0
.0

0
0

2
9

0
.0

0
0

9
3

0
.0

0
5

4
6

0
.0

0
8

8
6

0
.1

3
8

3
2

0
.1

7
5

0
3

0
.2

0
8

3
9

0
.2

6
6

7
1

0
.6

1
2

5
5

0
.7

1
6

6
1

1
.0

2
9

4
9

1
.4

8
0

0
5

1
.8

0
9

3
4

2
.2

2
9

2
3

2
.8

3
0

1
4

3
.3

5
6

2
1

5
.1

2
9

6
7

5
.6

3
3

8
2

7
.5

2
9

2
4

1
4

.8
1

1
2

4

2
1

.6
7

5
6

4

3
0

.7
9

9
3

7

4
8

.8
2

5
3

0

7
3

.4
8

3
1

5

1
2

7
.6

6
1

4
5

1
8

2
.4

1
0

7
9

Ti
m

e
 (

se
c)

XML File Sizes (MB)

Time (sec) vs File Size (MB)

bZip2 gZip XMill XMLppm DotNetZip

91 Implementation

Table 6.2: Compression Time Statistics

bZip2 gZip XMill XMLppm DotNetZip
M

e
an

 Small XML 0.14330 0.07993 0.15683 0.26303 0.04515

Medium XML 1.30122 0.18560 0.27676 2.98476 0.32988

Large XML 30.24009 3.85936 4.48036 287.87893 9.03369

M
e

d
ia

n
 Small XML 0.07800 0.06300 0.06300 0.27300 0.04736

Medium XML 1.18800 0.12500 0.16700 1.95313 0.25977

Large XML 18.61750 1.32050 1.43700 42.18750 4.22900

St
d

.D
e

v.
 Small XML 0.13272 0.06643 0.26133 0.18177 0.03538

Medium XML 0.71796 0.13772 0.32430 3.20537 0.25901

Large XML 47.16192 6.18859 7.26906 554.88253 13.81142

The statistical data tabulated in Table 6.2 shows that the DotNetZip compression technique

performs best for Small XML sized files, in terms of time taken to compress, with a mean of

0.045 seconds and standard deviation of 0.035 seconds. For the Medium and Large sized

XML files, gZip performed best with a mean of 0.185 and 3.859 seconds, and a standard

deviation of 0.066 and 6.188 seconds, respectively. Statistical evidence is provided and

discussed later in this section as part of the analysis of the compression tests.

The decompression time was recorded for four of the six compression techniques
1
. Figure

6.3 illustrates that the bZip2, gZip and DotNetZip compression techniques take less than two

seconds to decompress XML files up to approximately 25MB. In contrast, the

decompression performance of the XMLppm compression technique was poor, as shown by

its erratic decompression times.

Based on the recorded times plotted in Figure 6.3, it is evident that gZip generally

outperforms the other compression techniques (for which a decompression time was

recorded). With decompression times averaging less than 10 seconds for XML files up to

80MB (bZip2, gZip and DotNetZip), the perceived efficiency of using compression before

transferring data from a Server to a Client is plausible.

1
 Execution errors meant that the time taken to decompress the XML files for the XMill and XWRT

compression techniques were not recorded

92 Implementation

Figure 6.3: Decompression Time (sec)

Table 6.3 provides statistical information recorded for the decompression times. The

DotNetZip compression technique once more performs best for Small sized XML files, with

a mean of 0.063 seconds and a standard deviation of 0.039 seconds. Similarly to the

compression times recorded in Table 6.2, gZip performs best, in terms of mean

decompression times recorded, for Medium and Large sized XML files.

Table 6.3: Decompression Time Statistics

bZip2 gZip XMLppm DotNetZip

M
e

an
 Small XML 0.07604 0.09844 0.25938 0.06276

Medium XML 0.30625 0.18500 2.91438 0.22211

Large XML 5.63849 4.00639 94.76382 5.13361

M
e

d
ia

n
 Small XML 0.07813 0.09375 0.27344 0.07031

Medium XML 0.23438 0.14063 1.90625 0.19531

Large XML 2.64063 1.64844 29.45313 2.47266

St
d

.D
e

v.
 Small XML 0.01822 0.03981 0.17089 0.03873

Medium XML 0.16707 0.12415 3.19009 0.16045

Large XML 8.42464 6.66841 181.30503 7.62320

0

2

4

6

8

10

12

14

16

18

20

0
.0

0
0

2
9

0
.0

0
0

9
3

0
.0

0
5

4
6

0
.0

0
8

8
6

0
.1

3
8

3
2

0
.1

7
5

0
3

0
.2

0
8

3
9

0
.2

6
6

7
1

0
.6

1
2

5
5

0
.7

1
6

6
1

1
.0

2
9

4
9

1
.4

8
0

0
5

1
.8

0
9

3
4

2
.2

2
9

2
3

2
.8

3
0

1
4

3
.3

5
6

2
1

5
.1

2
9

6
7

5
.6

3
3

8
2

7
.5

2
9

2
4

1
4

.8
1

1
2

4

2
1

.6
7

5
6

4

3
0

.7
9

9
3

7

4
8

.8
2

5
3

0

7
3

.4
8

3
1

5

1
2

7
.6

6
1

4
5

1
8

2
.4

1
0

7
9

Ti
m

e
 T

ak
e

n
 (

se
c)

XML File Sizes (MB)

DeCompression Time (Sec) Vs File Size (MB)

bZip2 gZip XMLppm DotNetZIp

93 Implementation

Although memory footprint data was recorded for the compression techniques
1
, illustrated in

Figure 6.4, the data collected indicated that a memory footprint above 0.70MB was recorded

only once, and a mean of 0.380MB was observed. Additionally, the mean memory footprint

for the different compression techniques was, statistically, similar. These results demonstrate

that the memory footprint produced is insignificant, and, thus, will not be used as a

comparison metric between the different compression techniques.

Figure 6.4: Memory Footprint (MB)

6.2.2.2 Descriptive Statistics for Image Compression

Table 6.4 shows a summary of the compression results recorded, in terms of compressed size,

for each of the three compression techniques. The full table is shown in Appendix D. From

these results, it is clear that the JPEG compression technique performs best, with a mean of

7.599% and standard deviation of 9.376%. A statistical analysis is conducted and discussed

at the end of this section to provide a statistical motivation for the best compression

technique.

1
 An execution error meant that the memory footprint was not recorded for the DotNetZip compression

technique.

0.00

0.20

0.40

0.60

0.80

1.00

0
.0

0
0

2
9

0
.0

0
0

9
3

0
.0

0
5

4
6

0
.0

0
8

8
6

0
.1

3
8

3
2

0
.1

7
5

0
3

0
.2

0
8

3
9

0
.2

6
6

7
1

0
.6

1
2

5
5

0
.7

1
6

6
1

1
.0

2
9

4
9

1
.4

8
0

0
5

1
.8

0
9

3
4

2
.2

2
9

2
3

2
.8

3
0

1
4

3
.3

5
6

2
1

5
.1

2
9

6
7

5
.6

3
3

8
2

7
.5

2
9

2
4

1
4

.8
1

1
2

4

2
1

.6
7

5
6

4

3
0

.7
9

9
3

7

4
8

.8
2

5
3

0

7
3

.4
8

3
1

5

1
2

7
.6

6
1

4
5

1
8

2
.4

1
0

7
9

M
e

m
o

ry
 F

o
o

tp
ri

n
t

(M
B

)

XML File Sizes (MB)

Memory Footprint (MB) vs File Size (MB)

XMLppm XMill bZip gZip

94 Implementation

Table 6.4: Summary of Results for Image Compression

 GIF JPEG PNG

Image

Original

Size (KB)

Compr.

Size

Compr.

Ratio

Compr.

Size

Compr.

Ratio

Compr.

Size

Compr.

Ratio

Test1 17 4 23.52941% 3 17.64706% 4 23.52941%

Test3 106 13 12.26415% 12 11.32075% 15 14.15094%

Test9 770 9 1.16883% 39 5.06494% 4 0.51948%

Test13 2305 90 3.90456% 76 3.29718% 107 4.64208%

Test15 3165 302 9.54186% 48 1.51659% 159 5.02370%

Test20 4922 70 1.42219% 245 4.97765% 43 0.87363%

Test21 5499 212 3.85525% 104 1.89125% 361 6.56483%

Test25 10355 1310 12.65089% 384 3.70835% 2942 28.41140%

Test26 11075 694 6.26637% 380 3.43115% 2031 18.33860%

Test29 12830 2645 20.61574% 881 6.86672% 6041 47.08496%

Test30 21241 595 2.80119% 551 2.59404% 1162 5.47055%

Mean 10.69007% 7.59941% 19.29410%

Median 7.21936% 4.28371% 11.49662%

Std. Dev. 11.21166% 9.37601% 20.85987%

In order to compare the quality for the compression techniques, a rating system was used. A

rating was given to each compressed image based on the quality of the image. The image

quality rating is based on the visual similarities between the original, uncompressed image

and that of the compressed image. A rating of 1 was given to poor quality images, 2 for

acceptable quality images and 3 for good quality images.

Table 6.5: Quality Ratings for Image Compression

 GIF JPEG PNG

Image Rating

Test1 3 3 3

Test3 3 3 3

Test9 3 3 3

Test13 3 3 3

Test15 3 3 3

Test20 2 3 3

Test21 2 3 3

Test25 1 3 2

Test26 3 3 3

Test29 2 2 2

Test30 2 3 3

Mean 2.633333 2.9 2.833333

Median 3 3 3

Std. Dev. 0.614948 0.305129 0.461133

95 Implementation

A summary of quality ratings, achieved for each image compression technique, are shown in

Table 6.5. The full table is presented in Appendix E. Although the overall results were

close, the table shows that the JPEG compression technique achieved better image quality,

with a mean of 2.9 and standard deviation of 0.305.

6.2.2.3 Descriptive Statistics for Audio Compression

A summary of the compression results is shown in Table 6.6. The complete table of the

results is shown in Appendix F. Table 6.6 provides the mean, median and standard deviation

for the compression size, compression ratio and time taken during the compression process.

Table 6.6: Summary of the Results for Audio Compression

MP3 FLAC MAC

Compr. Size

(KB)

Ratio

(%)

Time

(sec)

Compr. Size

(KB)

Ratio

(%)

Time

(sec)

Compr. Size

(KB)

Ratio

(%)

Time

(sec)

Mean 2288.200 31.346% 8.331 12303.333 44.738% 2.735 11525.967 40.367% 5.829

Median 553.500 9.089% 2.675 2132.000 41.570% 1.110 194750.500 38.068% 1.475

Std. Dev. 3579.689 87.414% 11.611 18504.906 24.411% 3.675 17428.186 19.837% 8.866

Based on the results from the table above it is clear that the MP3 compression technique

performs the best in terms of file compression. The FLAC compression technique, however,

performs best in terms of time taken to compress the audio files, although it yields the worst

file compression of the three techniques. An ANOVA test was used to determine if there is a

significant difference in terms of compression ratio and time between the three audio

compression techniques.

The inferential statistics recorded for each of the three categories of compression techniques

is discussed next.

6.2.3 Inferential Statistics

In order to select which compression technique performed best, for each of the three

categories of compression techniques tested, an analysis was conducted for each of the

performance metrics recorded. An Analysis of Variance (ANOVA) was used to provide

statistical analysis on the performance data. ANOVA is used to test for significant

differences between the means (StatSoft 2010).

96 Implementation

The tests, for which performance data was recorded, were conducted to compare the mean

performance of the compression techniques. An ANOVA test provides statistical analysis on

whether there is a significant difference in performance between each of the compression

techniques for each of the specific performance metrics.

Additionally, if a significant difference between the compression techniques was observed,

Tukey‟s HSD (Honestly Significant Difference) Test was used to determine if there was a

significant difference between any two compression techniques.

6.2.3.1 Inferential Statistics for XML Compression

Comparisons between the means of the different XML compression metrics are discussed in

this subsection.

Compression Ratio

At a significance level of 95%, the null hypothesis that the mean for compression ratio are

equal is rejected. Thus, there is a significant difference in the mean for the six compression

techniques. Results show that for Small XML files the XMLppm compression technique

outperforms all other compression techniques. For the Medium and Large sized XML files,

the bZip2 and XWRT compression techniques performed best. Using Tukey‟s HSD, there is

insufficient statistical evidence to support the conclusion that there is a difference in

compression ratios between these two compression techniques.

Compression Time

There is a significant difference in the mean compression times, at a significance level of

95%, for the five compression techniques for which compression times were recorded. Thus,

the null hypothesis that all mean compression times are equal is rejected. Using Tukey‟s

HSD, however, there is insufficient evidence to conclude that there is a significant difference

in compression times between the gZip, XMill, and DotNetZip compression techniques,

which performed best overall.

For Small sized XML files, the DotNetZip compression technique performed best. For

Medium and Large sized XML files both gZip and XMill performed best, yielding the fastest

compression times. Although there is insufficient statistical evidence to suggest that there is

a considerable difference in compression times recorded for the Small and Medium sized

XML files, there is sufficient statistical evidence to conclude that there is a significant

97 Implementation

difference in compression times for Large sized XML files. The gZip compression technique

performed best for Large sized XML files.

Decompression Time

At a significance level of 95%, there is a significant difference in the mean decompression

time for the four compression techniques for which decompression times were recorded.

There is, however, insufficient evidence, based on Tukey‟s HSD, to conclude that there is

significant statistical difference in decompression times between the gZip and DotNetZip

compression techniques, which performed best overall.

Memory Footprint

There is insufficient evidence to suggest, at a significance level of 95%, that there is a

difference in mean memory used for each of the compression techniques for which memory

usage was recorded. Additionally, due to the minimal amount of memory used, the memory

footprint metric is not considered when comparing the compression techniques.

Ease of Implementation

In addition to performance metrics, the ease of integrating the compression technique (when

implementing for the mobile environment) was also investigated. During the testing phase, a

number of implementation and execution errors were observed for certain compression

techniques.

When conducting the compression tests, the XWRT and XMill compression techniques

encountered numerous execution errors. Thus, the compression time was not recorded for

XWRT, and the decompression time was not recorded for XMill. For all of the metrics

recorded, XMill performed admirably only in terms of compression time. For these reasons,

XWRT and XMill were not considered for the implementation of the prototype.

Overall Analysis

When comparing the performance of the different compression techniques, compression

ratio, compression time, and decompression time was examined. Overall, XMLppm

performed the best in terms of compression ratio. In terms of compression and

decompression times, gZip performed best for Medium and Large sized XML files, and

DotNetZip performed best for small sized XML files.

98 Implementation

When testing the feasibility of the compression techniques within the mobile environment,

only two compression techniques were able to be executed without having to recode and

republish the source code. However, the DotNetZip compression technique was significantly

less complex to execute than the gZip compression technique.

Overall, DotNetZip was considered the best compression technique. It performed statistically

similar to the best compression techniques for each of the respective metrics. Additionally,

it was significantly easier to execute for both the desktop and mobile environments. Thus,

DotNetZip will be utilised for the development of the prototype.

6.2.3.2 Inferential Statistics for Image Compression

Comparisons of the mean compression ratio and mean image quality were conducted to

determine whether there was significant difference between the three image compression

techniques.

Compression Ratio

At a significance level of 95%, the null hypothesis that the mean for compression ratio are

equal is rejected. There is a significant difference in the mean for the three image

compression techniques. Additionally, there is sufficient statistical evidence, based on

Tukey‟s HSD, to support the conclusion that there is a difference in compression ratios

between the GIF and JPEG compression techniques, which performed the best. Thus, JPEG

statistically performed the best in terms of compression ratio achieved.

Image Quality

Lossy image compression uses psychovisual modelling, which removes colours and artefacts

that human beings cannot see with the naked eye. Lossless image compression, however,

uses compression algorithms, which retain the original image quality. The image quality

rating was based on the perceived difference between the original, uncompressed image and

the compressed image.

There is insufficient statistical evidence to suggest, at a significance level of 95%, that there

is a significant difference in image quality for each of the image compression techniques.

Due to the standardisation of these compression techniques in industry and its improvements

over a number of years, the image quality is of high standard. This is evident even at a mean

compression level of less than 20% of the original uncompressed size.

99 Implementation

Overall Analysis

The JPEG compression technique performed best in terms of compression ratios yielded.

Additionally, although there is no statistical difference between the compression techniques,

the JPEG compression technique performed best in terms of image quality. It is this superior

compression ratio and image quality that has led JPEG to become the most popular

compression technique in industry and every day use. Thus, the JPEG compression

technique will be utilised for the development of the prototype.

6.2.3.3 Inferential Statistics for Audio Compression

A comparison of the mean compression ratio and mean compression time were conducted to

determine whether there was significant difference between the three audio compression

techniques tested.

Compression Ratio

The null hypothesis that the mean for compression ratio for the three audio compression

techniques are equal is rejected. At a significance level of 95% there is a significant

difference in the mean for the three compression techniques. Further statistical analysis,

using Tukey‟s HSD, supports the claim that there is a significant difference in compression

ratios between the two best compression techniques in terms of compression ratio. Thus,

based on the statistical evidence, the MP3 compression technique performs the best in terms

of compression ratio yielded.

Compression Time

At a significance level of 95%, there is a significant difference in the mean compression

times for the three audio compression techniques. The null hypothesis that all mean

compression times are equal is, therefore, rejected. Using Tukey‟s HSD, however, there is

insufficient statistical evidence to conclude that there is a significant difference in

compression times between the FLAC and MAC compression techniques, which performed

best overall.

Overall Analysis

The MP3 compression technique performed considerably better in terms of compression of

the audio files. The FLAC and MAC compression techniques performed best in terms of the

100 Implementation

amount of time taken to compression the audio files. Although the MP3 compression

technique did not perform as well in terms of time taken for compression, the mean time

taken was only six seconds slower than the mean recorded for FLAC.

Additionally, the MP3 format is well supported by most phones. In contrast, the FLAC and

MAC compression techniques are not readily supported in the mobile environment, and

require the download of specific codecs or music players in order to playback these formats.

Therefore, based on the overall performance and widespread use, the MP3 compression

technique is selected for use in the implementation of the prototype.

6.2.4 Initial Testing Summary

The tests conducted confirmed the possible usefulness and feasibility to use compression

within the prototype. Additionally, the tests illustrated that compression may provide

efficiency within the prototype. Although the best compression techniques were selected for

use within the prototype, based on the comparisons conducted, the intelligence provided by

the prototype should allow different compression techniques to be used simultaneously, as

well as plug in new and improved techniques.

Further evaluation of the prototype is discussed in Chapter 7. Before the implementation

process is discussed, the criteria for which the prototype was developed is discussed in the

next section.

6.3 Implementation Criteria

A Mobile SOA was defined in Section 3.6.1 as: “An architectural style for the mobile

environment whose goal is to achieve loose coupling by positioning Services as the primary

means through which solution logic is represented.” This section provides a brief discussion

on the criteria for the prototype, which was developed as a proof-of-concept of the proposed

framework.

When selecting a domain for the proof-of-concept prototype, certain criteria were considered.

The criteria were, thus, as follows:

 The prototype had to be developed for the mobile environment;

 A topical and interesting application domain was required;

 The prototype is required to be feasible for the current mobile technology;

101 Implementation

 The basis of the prototype can be adapted to run on different mobile devices available

on today‟s market; and

 The prototype should be representative of the proposed framework and support all

underlying functionalities proposed.

The implementation domain was divided into two categories of Service delivery. It was

decided to implement a mobile application, which provides access to both types of Web

Services, Content Services and Added Value Services. The primary deliverable of Content

Services is media files, such as images and audio. Added Value Services are based on the

exchange of data between the Client and Server in order to accomplish a specific task.

Three Web Services were developed for the prototype, a Content Service, an Added Value

Service, and a combination of both types of Service. In terms of the Content Service, a Web

Service was developed based on the delivery of images and audio. This Web Service is

similar to Content Delivery Services made popular by media companies, such as 35050
1
,

31314
2
 and ExactMobile

3
, whereby a User sends an SMS with a specific code to a specific

number, with a fixed charge, and receives an image, audio or video file.

For the Added Value Service, a Web Service was implemented that performs a specific task

for the User. The data used for this Service was based on the marks of students for a certain

module. The data included information about the student, the marks of their semester tests,

and their exam mark. The tasks to be performed on this data included the calculation of the

students‟ average for their semester tests, whether they have received a DP
4
 (Duly

Performed) for this module, the weighted average of their semester mark and exam mark, and

whether they have successfully completed and passed this module.

A Web Service resembling that of a social network or blog, such as Facebook
5
, MySpace

6

and Twitter
7
, was developed as a combination of Content Services and Added Value

1
 http://www.mobilemagic.co.za

2
 http://31314.mobi

3
 http://www.exactmobile.co.za

4
 A DP is the minimum mark required to be allowed to write an exam for a particular module. The mark is

calculated as the (weighted) average of semester tests and any additional tasks for which marks are recorded.

5
 http://www.facebook.com

6
 http://www.myspace.com

7
 http://twitter.com

102 Implementation

Services. The Web Service provided information about a particular subject, and was

accompanied by an image, which would assist in the explanation of that subject. The choice

of the domain was, thus, feasible for current mobile technology, as confirmed by the

execution of similar systems within the particular domains.

The prototype, implemented as a proof-of-concept in this chapter, was developed according

to the design principles (Section 5.3.1) and within the specified domain. The three Web

Services developed for the prototype are representative of the two common types of Services

available within the Mobile SOA environment.

The prototype allows mobile Users to perform tasks and request media content in an efficient

manner via a Mobile Web Service. The implementation tools used to develop the proof-of-

concept prototype are discussed in the following section.

6.4 Implementation Tools

The successful implementation of the proof-of-concept prototype is determined by the

implementation tools. This section discusses the implementation tools used to develop the

prototype, which is based on the proposed framework, as identified in Chapter 5. Each of the

different elements of the proposed framework requires different implementation methods and

tools.

6.4.1 Database Server

Microsoft SQL Server 2008 (Microsoft 2010b) was used for the database server. MS SQL

Server 2008 is a database server used for the development and management of a database,

and includes features, such as business intelligence and data warehousing. The database used

within the proof-of-concept prototype stores information required to build the User and

Phone profiles. This information assists the categorisation and compression process, as

discussed in Chapter 5. The structure and arrangement of this database is discussed in

Section 6.5.2.2.

6.4.2 Development Languages and Programming Environment

One of the principles of an SOA is that a Web Service may be accessed from any platform,

regardless of the development language. For this reason, there is little significance in the

selection of any one development language in which the prototype is implemented.

103 Implementation

However, due to the scope constraints of the two mobile devices utilised for testing, the .Net

Framework was used. The .Net Framework is an important Windows component, which

supports the development and execution of Windows applications and XML-based Web

Services (Microsoft 2010c). For this purpose, C# was selected as the standard programming

language in which to implement the XML-based Web Services and proof-of-concept

prototype.

The prototype was implemented using the Microsoft Visual Studio IDE (Microsoft 2010d).

This IDE supports implementation of C# applications in conjunction with the .Net

Framework. More significantly, Visual Studio supports the implementation of XML-based

Web Services. Visual Studio 2010 has development support only for Windows Mobile 7,

which is available only on more recent and up-market mobile phones. Thus, Visual Studio

2008 was selected as it provides support for all Windows Mobile platforms prior to Windows

Mobile 7.

6.4.3 Mobile Platform

The proof-of-concept prototype was developed for use in a mobile environment. The mobile

devices used for testing the prototype both run the Windows Mobile operating system. As a

result of its backward compatibility to previous Windows Mobile versions, the Windows

Mobile 6 (Microsoft 2010e) developer platform was used during implementation. As

discussed previously, Visual Studio 2008 includes development support for all versions of

Windows Mobile prior to Windows Mobile 7.

In order to provide greater development support and additional tools for Visual Studio 2008,

Windows Mobile 6 SDK (Microsoft, 2010f) was imported. Windows Mobile 6 SDK

provides additional documentation, sample code, header and library files and emulator

images
1
.

Figure 6.5 illustrates the emulator for the (a) Windows Mobile 6 Standard SDK and (b)

Windows Mobile 6 Professional SDK packages. This emulator simulates the mobile

environment, making it easier to implement and test mobile applications for the Windows

Mobile operating system.

1
 Emulator Images facilitate the emulation of a specific mobile environment on the developer‟s computer to

simulate how a mobile application may perform on an actual mobile device.

104 Implementation

Figure 6.5: Windows Mobile SDK Emulator (a) Standard (b) Professional

Two different mobile phones were used for testing the feasibility and performance of the

prototype. These were the HTC s710 and the HTC TyTN II. The specifications for both

phones are shown in the Table 6.7.

Table 6.7: Test Phones‟ Specifications

 HTC S710 HTC TyTN II

Operating System Windows Mobile 6 (Standard) Windows Mobile 6 (Professional)

Processor TI's OMAP 850: 201MHz Qualcomm MSM 7200: 400MHz

Processing Memory 64MB SDRAM 128MB SDRAM

Onboard Storage 128MB 256MB

Max. External Storage MicroSD MicroSD (SD 2.0 Compatible)

Screen Dimensions 240x320 pixels 240x320 pixels

Network Capability Bluetooth, WiFi (IEEE 802.11), Bluetooth, WiFi (IEEE 802.11),

 GSM/GPRS/EDGE Quad-band HSDPA/UMTS Tri-band

 GSM/GPRS/EDGE Quad-band

Battery Rechargeable Lithium-Io Polymer Battery Rechargeable Li-Polymer Battery

 175 Hours Standby 350 Hours Standby

 7 Hours Talk Time 7 Hours (GSM), 4.5 Hours (UMTS)

105 Implementation

6.4.4 Service Deployment

The developed Web Services are published on Internet Information Services (IIS) 7

(Microsoft 2010g) running on Microsoft Windows Server 2008 (Microsoft 2010h). IIS is a

Web Server software package, which provides tools and features to facilitate secure and

easily managed hosting on the Web. Additionally, IIS provides easy integration for

applications and Web Services developed using the .Net Framework. Thus, IIS was selected

as the application server to host the implemented Web Services. Microsoft Windows Server

2008 is server operating system, which provides secure management of a server. Windows

Server 2008 runs on a Sun Fire V40z server with specifications shown in Table 6.8.

Table 6.8: Sun Fire V40z Server Specification

Processors 4 x AMD Opteron Model 848 2.19 GHz

Processing Memory 6 GB RAM (4 x 1GB, 4 x 512MB)

Storage Disks 3 x 80 GB Ultra320 SCSI (10 000 rpm)

Network Adapter 2 x Gigabit Ethernet

Operating System Windows Server 2008 (64-Bit) Service Pack 2

The most commonly used approach for implementing for SOA is the XML-based Web

Service. This approach utilises popular standards, such as WSDL, SOAP and UDDI.

Although an SOA is not required to be constructed using these standards, the industry

standards, the availability of implementation tools (as discussed above) and numerous

interoperability benefits strongly recommend their use (Liegl 2007).

6.5 Implementing Prototype for Framework

The design of the proposed framework was based on the EXEM framework (Natchetoi et al.

2007b). The prototype was developed as a proof-of-concept of the proposed framework,

which was designed and delineated in Chapter 5.

The implementation of this prototype provided a practical example of how the various

components of the proposed framework, Figure 6.6, may be implemented and how these

components may interact with one another in an effort to achieve effective and efficient file

transfer of a Web Service to a mobile device.

Additionally, the prototype was developed to provide a means for evaluating effectiveness

and efficiency, and the perceived benefits of the proposed framework. When developing

106 Implementation

prototypes for software applications, it provides limited functionality as it simulates only a

few features of the fully developed product. Typically, prototypes are developed to allow

users to test the graphical interface of the application in question.

Figure 6.6: Proposed Framework
1

When developing a framework, however, where a graphical interface is of negligible

importance, users are not required when testing the prototype. The feasibility and

performance of the proposed framework is of higher importance. Thus, a performance and

capacity prototyping method was used. This type of prototyping defines, demonstrates and

predicts how the proposed framework will perform, as well as to demonstrate and evaluate

non-functional aspects of the framework. The following subsection discusses the

implementation of the framework components.

6.5.1 User Interaction Component

The User Interaction Component was the first of the four framework components involved in

the facilitation of intelligent compression and efficient file transfer of Web Services. This

1
 Figure 5.4 is repeated as Figure 6.6 for ease of reference.

107 Implementation

component consists of three subcomponents, namely the Registration Module, Service

Request Module and Service Viewer.

6.5.1.1 Registration Module

The Registration Module performs the task that its name suggests. Figure 6.7 illustrates the

default registration screen and the incomplete registration screen, developed for the

prototype. The incomplete registration screen provides an alternative process if the default

registration process is not completed successfully. The registration process is conducted by

means of simply typing in a name, surname, address, occupation and employer.

All other information is gathered automatically by the mobile application, such as the IMEI

number, phone manufacturer, phone model, operating system and screen dimensions. In the

case when the mobile application fails to extract information that is critical to the

performance of the framework, the mobile application displays the full list of information that

it requires. The information already gathered is automatically filled in, as shown in Figure

6.7 (b), which requires that only the missing information be filled in.

Figure 6.7: Registration Screens (a) Default Screen (b) Incomplete Registration Screen

The registration process is only conducted once. The information collected is stored within a

database, discussed in Section 6.5.2.2. When running the mobile application after the

registration process is successfully completed, the User and Phone Profiles are automatically

108 Implementation

loaded upon start. Additionally, after successful registration, the User may request or search

for Services using the Service Request Module.

6.5.1.2 Service Request Module

Three Web Services were implemented to test the prototype, as discussed in Section 6.3. The

mobile application automatically lists the Services available on the Service Directory. For

this research, the Service Directory is simulated by a local Server using IIS 7 (Microsoft

2010g).

The three Services are listed in conjunction with their individual Service descriptions. To

select a Service, the User simply scrolls to the Service they wish to connect to and selects the

Connect option using the Menu button, as shown in Figure 6.8 (a).

Figure 6.8: Service Request Forms (a) Default Screen (b) Search Screen

Additionally, if there are too many Services listed, or the desired Service does not appear on

the list, the User may search for additional Services by selecting the Search option using the

Menu button. The User is then prompted to type in specific criteria on which to search, and

then selects the Find option using the Menu button, as illustrated in Figure 6.8 (b). If any

Services were found matching the search criteria, the Services would be listed as in the

default screen, Figure 6.8 (a).

109 Implementation

6.5.1.3 Service Viewer

When the User connects to a specific Service, that Service‟s operational tasks are listed. The

User may then invoke these tasks by selecting them, which then generates a specific result.

Figure 6.9 illustrates an image request invocation by the User via the Content Service.

Figure 6.9: Service Viewer

Before the content is delivered to the Mobile Client a sequence of tasks is performed.

Information from the Mobile Client is passed to the Intelligence Component, the files from

the requested Service are compressed using the Compression Component, sent via a wireless

medium, received and decompressed on the mobile device, and then displayed using the

Service Viewer.

The following section describes the implementation of the Intelligence Component.

6.5.2 Intelligence Component

The intelligence of the prototype is managed within the Intelligence Component. Information

gathered within this component provides the Compression Component with parameters to

improve the efficiency of file transfer by achieving better compression performance. The

subcomponents of the Intelligence Component are the Database, Backend Server Engine,

Data Transformer and XML Categoriser.

110 Implementation

6.5.2.1 Backend Server Engine

The Backend Server Engine manages all information and data from the Service Provider and

(Mobile) Service Client. Information retrieved during registration is processed and stored

within the database. This information is grouped as the User Profile or Phone Profile data.

Due to numerous amounts of new mobile devices being introduced on a regular basis, the

Phone Profile stores its information using three categories. These categories group the

mobile devices according to their performance, and are categorised as Low-end, Medium-end

and High-end mobile devices.

In order to group the mobile devices accordingly, the Backend Server Engine uses the

information gathered during the registration process. This information is analysed and given

a specific rating according to the mobile device‟s performance. The performance of the

mobile device is compared against specific criteria for each specification. This rating is used

to categorise a mobile device as being a Low-end, Medium-end or High-end device. The

formula to calculate this rating is given in Figure 6.10, designed specifically for the

prototype.

Where:
 , , and

Where:

 , where and

Figure 6.10: Ratings Formula

111 Implementation

For example, when categorising the general specifications of the mobile, which includes the

CPU clock speed, the processing RAM and operating system, each parameter is given a

rating from one to three. This rating is dependent on how the mobile devices compares to the

best available performance for that specific parameter. If the best mobile device CPU clock

speed is 1GHz, this value is separated into three groups of 0-333MHz, 334-666MHz and 667-

1000MHz and given ratings of 1, 2 and 3, respectively. Similarly, ratings are assigned to all

other parameters. The ratings for each general specification parameter are summed to give a

total rating. Once again this rating is separated into three, this time yielding an overall rating

for general specifications for the mobile device.

The rating system was developed for future use to improve intelligence and assist the

compression process. It allows the Server to determine specific levels of compression to use,

based on the performance of the mobile device. For example, a mobile device with a low

rating will not perform high level compression, as it would take much longer, use more

processing power and memory, and may lead to battery power depletion.

Additionally, the Backend Server Engine collects the required files from the requested Web

Services, as well all the necessary information used to facilitate improved compression of

these files. The information collected from the database and Mobile Client is passed through

as parameters to the respective compression techniques. The Backend Server Engine also

decides which compression technique to use to compress a given file. In addition to this, the

Backend Server Engine facilitates the transfer of the compression technique, used during

compression, to the mobile device, which enables it to perform the necessary decompression.

The compression technique, is, however, only transferred once to the mobile device, which

stores it on the device for future use.

6.5.2.2 Database

The database serves the purpose of storing important information to be used within the

Intelligence Component in order to achieve better compression results. This information is

divided into two groups, the User Profile and Phone Profile, as shown in Figure 6.11.

The User Profile contains one table, namely the UserInformation table. The UserInformation

table stores the Name, Surname, PhoneNo, and PhoneTypeID records. The UniqueID record

generally stores the mobile device‟s IMEI number, unique to every mobile device. In the

event that the IMEI number is not accessible, the phone number may be used as the

112 Implementation

UniqueID for that Client. This table also stores the Name and Surname records. This table is

linked to the PhoneType table using the PhoneTypeID foreign key, which links specifications

about the Client‟s mobile device to their User Profile.

Database

User Profile
Phone Profile

UserInformation

PK UniqueID

 Name
 Surname
 Address
 Occupation
 Employer
 PhoneNo
 PhoneTypeID

PhoneType

PK PhoneTypeID

 Manufacturer
 Model
 GeneralSpecID
 ScreenSpecID
 StorageSpecID

GeneralSpecifications

PK GeneralSpecID

 CPUSpeed
 RAM
 OperatingSys
 Category

ScreenSpecifications

PK ScreenSpecID

 Width
 Height
 ColourDepth
 Category

StorageSpecifications

PK StorageSpecID

 OnboardCap
 ExternalCap
 Category

Figure 6.11: System Database

The Phone Profile stores the most important specifications about the mobile devices used by

the Client. In the PhoneType table, thePhoneTypeID is stored, which stores information

about each Manufacturer and Model for each new mobile device that is registered. This table

is linked to the specifications tables, namely the GeneralSpecifications, ScreenSpecifications

and StorageSpecifications tables.

The GeneralSpecifications table stores information about the performance of the mobile

device, which includes the CPU clock speed, available processing RAM and operating

system. Each of these fields are categorised accordingly. For example, a mobile device with

a high CPU clock speed and large amount of processing RAM available will be categorised

113 Implementation

under the High-end category. This categorisation process is conducted by the Backend

Server Engine.

For the ScreenSpecifications table, information about the width and height of the viewing

screen is recorded. Additionally, the colour depth is recorded in order to select a specific

colour depth for images when being compressed. The StorageSpecifications table stores

information about the storage space available on the mobile device. Although some phones

may have poor onboard storage, the use of an external storage, such as an SD card, may give

the mobile device a higher storage rating, and, thus, a better categorisation.

6.5.2.3 XML Categoriser

The purpose of the XML Categoriser is to group XML files according to their internal

structures, content, file type and file size. Based on research (Lian, Cheung, Mamoulis & Yui

2004; Yongming, Dehua & JIajin 2008; Levene & Wood 2002) the categorisation and

grouping of XML files are important in providing efficient data mining, searching and,

fundamentally, compression of these files.

For the implementation of the prototype, the categorisation of XML files was considered out

of scope. The categorisation of XML files is beneficial only if different compression

techniques perform better for the different categories of XML files. Additionally, testing

would require testing of each compression technique for each category of XML file.

The aim of developing the prototype for this research is to provide information about the

feasibility and efficiency of the proposed framework within the Mobile SOA environment.

The proposed framework, however, does include the use of this feature, but no categorisation

algorithms were evaluated for use within the prototype.

6.5.2.4 Data Transformer

Before data files are compressed, the information stored within these files are converted to an

XML format and stored as an XML file. This transformation process is managed by the Data

Transformer subcomponent. For example, data stored within an EXCEL file is extracted, the

information transformed using the XML format, and then stored as an XML file. Figure 6.12

illustrates this example by transforming student marks from an EXCEL file into its equivalent

XML format.

114 Implementation

Figure 6.12: Conversion of Data from EXCEL Format to XML Format

The XML file contains only textual data, thus, requiring less storage space and less

processing power when managing this file. The use of compression provides further

increased efficiency when managing the transformed file.

6.5.3 Compression Component

Information gathered by the Intelligence Component is passed through as parameters for the

Compression Component. The task of the Compression Component is simply to compress

the data and media content provided by the Service Provider, and send the compressed

content to the Service Client. In the initial tests conducted in Section 6.2, three compression

techniques were selected for the compression of XML, image and audio files, respectively.

115 Implementation

The prototype, however, is not limited to selecting these compression techniques. These

compression techniques were chosen, based on the overall performance, to be implemented

within the prototype as a proof-of-concept.

6.5.3.1 XML Compression

As discussed in Section 6.2.3.1, the DotNetZip compression technique was selected to be

utilised for the development of the prototype. The DotNetZip compression technique is

available as part of the DotNetZip library. In order to use the compression technique it is

required to import the library to the application. DotNetZip allows the option of choosing the

level of compression to use. However, better compression ratios require more compression

time. It is, therefore, important to choose a compression level suited to the context of use,

such as fast, low compression for smaller files, and slower compression for larger files

yielded better compression ratios. For larger XML files, a slower compression was used,

which achieved better compression ratios. The Backend Server Engine determines the level

of compression to use based on the amount of information required for compression.

6.5.3.2 Image Compression

In Section 6.2.3.2, tests were conducted to decide which image compression technique

performed the best. Based on the results of these tests, the JPEG compression technique was

selected for use within the prototype. However, before the compression technique is used,

the images are resampled, more specifically downsampled, based on the screen specifications

of the mobile device. If the image is larger than the screen width or height, the resolution of

that image would be reduced in order to fit within the screen dimensions. Downsampling of

the image is conducted using a method so at to maintain the original aspect ratio
1
.

Once the downsampling of an image is complete, the JPEG compression technique is

invoked, using parameters from the Backend Server Engine. The parameters include the

quality and colour depth to be used during compression. In addition, the quality and colour

depth of an image will be lowered to improve compression levels for mobile devices with

limited space available for storage.

1
 Maintaining the image aspect ratio during resampling involves the reducing the amount of pixels in an image

using percentages, e.g. width x 10%, height x 10%.

116 Implementation

6.5.3.3 Audio Compression

The MP3 compression technique was selecting in Section 6.2.3.3 to be utilised with the

prototype. The parameters used to provide improved compression results include the quality

(in bits/sec) and space available. For mobile devices with limited storage space, a lower bit-

rate is used to further reduce the size of an audio file.

6.5.4 Decompression Component

The Decompression Component consists of two main subcomponents, the XML

Decompressor, and Service Rebuilder. The goal of the Decompression Component is to

return the compressed content to a format that is usable by the mobile application. Because

of the popularity of the JPEG and MP3 compression techniques, most mobile devices provide

built-in decompression mechanisms in order to process and read files compressed by these

compression techniques. Thus, only compressed XML files were required to be

decompressed in order to be utilised by the mobile application.

6.5.4.1 XML Decompressor

Due to the design of the proposed framework, different compression techniques may be used,

and thus, require different decompression methods. In order to provide for this, the

compression technique that was used during the compression process is loaded onto the

mobile application (only once), in order to perform the correct decompression on the

compressed files. This compression technique is transferred along with the compressed files.

For the prototype, the XML Decompressor utilises the DotNetZip compression technique to

decompress the compressed XML files. Decompression is a simple task of reversing the

compression procedure, which returns the XML files to their original size and state.

using (ZipFile zip = ZipFile.Read(ExistingZipFile))
{
 foreach (ZipEntry e in zip)
 {
 e.Extract(DestinationFolder, true);
 }
}

Figure 6.13: Decompression Method

117 Implementation

Likewise to the import of the DotNetZip library to facilitate compression, it is required that

the library be imported into the mobile application to initiate decompression. Figure 6.13

shows an example of using a foreach loop to traverse each entry within the compressed file in

order to extract each entry to a specific destination folder.

6.5.4.2 Service Rebuilder

Files received by the mobile application are only usable if in the correct format. XML files

are sent to the XML Decompressor, while all other files are sent directly to the Service

Rebuilder subcomponent. After XML decompression is conducted, the XML files are sent to

Service Rebuilder as well. Once all files are in a usable format, the Service Rebuilder

prepares the files for use within the Service Viewer, i.e. the Service is recompiled to reflect

the initial Service requested by the User.

6.6 Conclusions

This chapter provided a study to determine how a prototype, based on the proposed

framework discussed in Chapter 5, may be implemented. This study provided an answer to

research question R5: “How can a prototype, based on the proposed framework, be

implemented?”

Before the prototype was implemented, a series of tests were conducted to determine the best

compression techniques for each of the three types of files, namely XML, image and audio

files. These tests concluded that the DotNetZip, JPEG and MP3 compression techniques

were the best in terms of their overall performance and ease-of-use within the mobile

environment.

A proof-of-concept prototype was developed once the initial tests were conducted. The

implementation criteria were discussed in Section 6.3 to determine the environment in which

the prototype was developed. Furthermore, the implementation domain discussed the scope

of the research. The implementation tools were listed in Section 6.4, which provided a

discussion on each of the tools used during the development of the prototype. The

implementation of the four framework components were discussed in Section 6.5, which

included a discussion about the interface, formulae, and database used for the prototype.

The development of the prototype demonstrated the successful implementation of the

proposed framework and its individual components. The implemented prototype provides a

118 Implementation

means to evaluate the framework. In order to determine whether the prototype adheres to the

design principles listed in Section 5.3.1, it essential to conduct a detailed evaluation.

Additionally, an evaluation of the prototype will also determine if the perceived benefits of

the proposed framework, discussed in Section 5.3.4, are realised. The evaluation of the

prototype is discussed in Chapter 7.

119 Evaluation and Findings

Chapter 7: Evaluation and Findings

7.1 Introduction

Literature reviews were conducted in Chapters 2, 3 and 4. These chapters discussed Service-

Oriented Architectures (SOA), Mobile SOA and File Compression, respectively. In Chapter

5, the proposed framework was presented. The chapter also discussed the design process,

components, relevance and perceived benefits of the proposed framework. Chapter 6

provided a discussion of the implementation of a proof-of-concept prototype, which was

based on the proposed framework, as well as a discussion on the implementation criteria and

implementation tools for developing the prototype.

This chapter focuses on the evaluation of the proof-of-concept prototype described in Chapter

6, based on an evaluation strategy as presented in Section 7.2. Pilot studies, which were used

to evaluate the prototype, in order to examine the feasibility and perceived overall efficiency,

are discussed in Section 7.3. The analytical evaluation is then discussed in Section 7.4, which

assesses whether the prototype was developed according the design principles described in

Section 5.3.1. Finally, Section 7.4 discusses the performance evaluation of the prototype for

both the Server and Client. The performance evaluation is the primary study within this

chapter, which evaluates the efficiency of the prototype.

7.2 Evaluation Strategy

The Thesis Statement for this research, as introduced in Chapter 1, is as follows:

“The efficiency and effectiveness of Mobile SOA can be improved by the implementation of a

framework supporting intelligent compression.”

Consequently the main research objective is to “improve efficiency and effectiveness of

Mobile SOA.” In order to determine whether this objective was achieved, the following

research questions need to be answered:

 R5: “How can a prototype, based on the proposed framework, be implemented?”

 R6: “Does the prototype adhere to the framework design principles?”

120 Evaluation and Findings

 R7: “Does the prototype show that the efficiency of Mobile SOA can be improved

through intelligent compression?”

An evaluation strategy was designed in order to answer these questions. This strategy

included four approaches, namely: pilot studies, proof-of-concept, analytical evaluation and

performance metrics evaluation. This section describes the four evaluation phases, and the

objectives of each phase.

7.2.1 Pilot Studies

Before the prototype was developed, three pilot studies were conducted to test the feasibility

of implementing a prototype and efficiency of file transfer between the Server and Client for

the proposed framework. These three pilot studies are described in Section 7.3.

7.2.2 Proof-of-Concept Prototype

The implementation of a prototype can be regarded as a proof-of-concept of the proposed

framework (as discussed in Chapter 5) determining the effectiveness of the framework. The

development of the proof-of-concept prototype answers research question R5: “How can a

prototype, based on the proposed framework, be implemented?”

The proposed framework facilitates efficient file transfer of Web Services within the mobile

environment. The prototype was implemented as a Client/Server application, which sends

requests from a mobile device to a Service Directory. The requested Service then sends files

to the mobile device via a Server, which intelligently compresses these files before sending

the files to the mobile device, where the files are decompressed and used as a Service.

The implementation of the proof-of-concept prototype was described in Chapter 6.

7.2.3 Analytical Evaluation

The focus of the analytical evaluation is to determine whether the prototype is implemented

according to the framework design principles discussed in Section 5.3.1. The analytical

evaluation answers research questions R6: “Does the prototype adhere to the framework

design principles?” By analysing the proof-of-concept prototype, it is possible to establish to

what extent the prototype conforms to the design guidelines of the proposed framework.

Section 5.3.1 highlights seven design principles to implement a prototype for the proposed

framework. The prototype is tested against these principles in Section 7.4.

121 Evaluation and Findings

7.2.4 Performance Evaluation

The analytical evaluation was conducted to determine if the prototype was developed

according to specific design principles. The performance evaluation was conducted to

measure the overall performance of the prototype. This evaluation answers research question

R7: “Does the prototype show that the efficiency of Mobile SOA can be improved through

intelligent compression?”

The results from this evaluation is based on tests conducted using the proof-of-concept

prototype. These results, and the analysis thereof, will be presented in Section 0. The

evaluation of the prototype was divided into two parts: the testing of the Server performance

and the testing of the Client performance. These tests were devised to test the efficiency of

the prototype.

The next section discusses three pilot studies, which were conducted to determine the

feasibility of developing a prototype based on the proposed framework.

7.3 Pilot Studies

The implementation of a prototype was based on an iterative process. This process included

the analysis of the design principles of the proposed framework, the development of a

number of prototypes, and the evaluation of these prototypes. The iterative process was used

with the purpose of analysing the effectiveness of the proposed framework. This process

involved developing a number of smaller prototypes, and conducting performance testing and

evaluation in the form of pilot studies. Three pilot studies were conducted, which aimed to

provide answers to the following questions:

 PS1: “Is it feasible to use decompression within the mobile environment?”

 PS2: “Can a prototype provide efficient transfer of files for a Web Service?”

 PS3: “Can a prototype facilitate sustained usage on a mobile device?”

These pilot studies are discussed in the following subsections.

7.3.1 Pilot Study 1: Evaluation of Compression used within Mobile Environment

Compression is the focus point of the development of a prototype. Thus, it is essential that

the decompression procedures for the selected compression techniques can be executed

within the mobile environment. Due to the standardisation and widespread use of the JPEG

122 Evaluation and Findings

and MP3 compression techniques, most mobile devices provide features to utilise files stored

as .jpg and .mp3 formats. In order to answer question PS1 a simple experiment was

conducted. The goal of this pilot study is, therefore, to develop a prototype in order to

determine whether XML decompression can be performed on a mobile device.

Three XML files were used of sizes 60KB, 1MB and 10MB. XML files were compressed on

a desktop computer and copied into a folder used by the mobile emulator. A mobile

application was implemented, which was used to execute the DotNetZip decompression

process. All three files were successfully decompressed by the application. Thus, the test

effectively verified the feasibility to use decompression within the mobile environment.

Since this pilot study found that the decompression of XML files on a mobile device is

feasible, a second prototype was implemented. The evaluation of this second prototype is

discussed next.

7.3.2 Pilot Study 2: Evaluation of Framework using Mobile Emulator

Once it was established that compression is feasible for the development of a prototype, a

second prototype was implemented. The second prototype was developed to evaluate

whether the proposed framework, supporting intelligent compression, provides efficient file

transfer to a mobile device. The goal of this pilot study is to determine the level of efficiency

that compression yields when used within the proposed framework. This test was simulated

using a mobile emulator provided by the Windows Mobile 6 SDK.

7.3.2.1 Procedure

An experiment was conducted in order to test the efficiency provided by the prototype. The

experiment involved the requesting of data, audio and image files from a Server via a mobile

application. These files were then compressed before being transferred to the mobile device.

The experiment tested criteria, such as different screen sizes, image files of different sizes

and types, different audio files, and XML files of different sizes and data stored. A total of

10 XML files were used, ranging from 10KB to 30MB in size, which were categorised

according to file sizes. Each XML file was compressed on the Server using the DotNetZip

compression technique. Six uncompressed audio files were used, from sizes 11KB to 9.5MB.

Five images were used, varying from 24KB to 11MB in size. Three screen sizes were tested,

which included a screen of size 128x128 pixels, 240x320 pixels and 480x800 pixels. These

sizes were chosen to match typical screen sizes of Low-end, Medium-end and High-end

123 Evaluation and Findings

mobile devices. These screen sizes were used as parameters for image resampling, before

using the JPEG image compression technique.

To test every scenario, each compressed XML, audio and image file were linked. These

compressed files were combined into a single file, called a package, resulting in a total of 300

different packages. These packages were then copied across to the mobile device emulator

representing each screen size. Once these packages were transferred, the files within the

packages were extracted. As a result of this extraction, the XML files were decompressed.

7.3.2.2 Results

A mean size of the uncompressed XML files was recorded, which includes the mean

compression size that was recorded for each of the three categories. The sizes of the audio

and image files were recorded. The mean compressed size of the XML files were summed

with each of the five compressed images and six compressed audio files.

Table 7.1: Mobile Emulator Compression Results

Screen Size (128x128) Screen Size (240x320) Screen Size (480x800)

Without

Compression
With Compression With Compression With Compression

Size (KB)
Size

(KB)

Compression

Time (sec)

Size

(KB)

Compression

Time (sec)

Size

(KB)

Compression

Time (sec)

C
a

te
g

o
ry

 1
 283 42 0.652 43 0.652 49 0.653

554 85 0.751 80 0.745 135 0.747

1 979 66 1.251 71 1.341 90 1.346

5 400 178 0.661 202 0.745 304 0.649

17 288 559 2.793 575 2.844 653 2.851

C
a

te
g

o
ry

 2
 3 501 859 421 1.009 422 0.995 428 0.822

3 502 416 408 1.547 403 1.544 458 1.544

3 504 773 517 0.649 522 0.473 541 0.831

3 511 214 902 2.986 926 2.987 1 028 2.984

3 522 722 1 250 4.121 1 266 3.847 1 344 3.975

C
a

te
g

o
ry

 3
 20 589 454 20 118 2.388 20 110 2.345 20 125 2.385

20 590 011 20 144 2.965 20 108 3.189 20 194 3.181

20 592 368 20 253 1.497 20 116 1.934 20 277 1.985

20 598 809 20 638 4.281 20 136 4.281 20 764 4.481

20 610 317 20 986 4.958 20 125 5.152 21 080 5.181

Table 7.1 shows a summary of the compression results, which includes the mean size for the

three XML categories summed with randomly selected compressed audio and image files.

Overall, XML files were compressed to a mean of less than 12% of their original file size.

Audio files were compressed to an overall compression ratio of less than 10%. Image

124 Evaluation and Findings

compression yielded the best results with a mean compression ratio of less than 6.5%. The

combined packages resulted in a joined mean compression of less than 11%.

Table 7.2 tabulates the expected minimum transfer times of the three most popular wireless

technologies used by mobile devices today. These transfer times were recorded by

calculating the time it would take to transfer a file of a specific size at the maximum transfer

rate
1
, in Kilobits per second. For example, the maximum transfer rate for GPRS is 114

Kilobits per second, which equates to 14.25 Kilobytes per second. Thus, a file of 10

Kilobytes would be transferred in 0.702 seconds.

Table 7.2: Expected Minimum Transfer Times (sec)

GPRS EDGE HSDPA

114 Kbps up to 236.8 Kbps up to 14.4 Mbps

File Size File Transfer Speed (sec)

10KB 0.702 0.338 0.043

100KB 7.018 3.378 0.434

1MB 71.860 34.595 4.444

10MB 718.596 345.946 44.444

100MB 7185.965 3459.459 444.444

1GB 73584.281 35424.865 4551.111

Using the results from both Table 7.1 and Table 7.2, It is evident that the packages,

containing compressed content, take significantly less time to transfer, even with the time

taken to conduct compression and decompression. For example, using a GPRS connection,

the most common wireless technology, a 5MB file would take approximately 360 seconds to

be transferred to a mobile device. However, the same file would take a total of 43.68 seconds

to compress, transfer via a GPRS connection, and decompress on a mobile device.

Table 7.3 is generated by calculating the transfer times of the compressed and uncompressed

file sizes for each of the three wireless technologies. This table provides a comparison

between uncompressed and compressed files transferred over the selected wireless

technologies. Using the maximum transfer rates of these wireless technologies, the transfer

time is recorded (in seconds). Three example packages, containing compressed content, were

1
 Note: Maximum transfer rates of any wireless technology are not often achieved by network providers due to a

number of factors, such as the distance between the Mobile Device and Cell Tower, the number of erroneous

packets during file transfer, and Cell Tower usage capacity.

125 Evaluation and Findings

chosen, which had file sizes of 620KB, 5MB, and 30MB, respectively. These packages were

randomly selected.

It is evident that the packages, containing compressed content, take significantly less time to

transfer, even with the time taken to conduct compression and decompression. For example,

using a GPRS connection, the most common wireless technology, a 5MB file would take

approximately 360 seconds to be transferred to a mobile device. However, the same file

would take a total of 43.68 seconds to compress, transfer via a GPRS connection, and

decompress on a mobile device.

Table 7.3: Time Taken to Transfer Original and Compressed Files

Original File Transfer Speed (sec)
Compressed File Transfer Speed (sec)

[including compression and decompression time]

GPRS EDGE HSDPA GPRS EDGE HSDPA

File Size

(KB)

56-114

Kbps

56-236.8

Kbps

up to 14.4 Mbps

(avg 1.8Mbps)

56-114

Kbps

56-236.8

Kbps

up to 14.4 Mbps

(avg 1.8Mbps)

620 44.070 21.216 2.726 6.347 3.508 1.212

5 120 359.298 172.973 22.222 43.680 21.772 4.027

31 744 2155.789 1037.838 133.333 221.161 111.884 23.407

A third pilot study was conducted to test the battery life of two mobile devices using the

prototype. This study is discussed next.

7.3.3 Pilot Study 3: Evaluation of Battery Life of Mobile Device

Based on the positive results of the first and second pilot studies, a third pilot study was

conducted. This pilot study was conducted to determine the effect of prolonged use of the

prototype on a mobile device. The goal of this pilot study is, therefore, to establish whether

the prototype can support sustained used on a mobile device.

7.3.3.1 Procedure

In order to achieve the goal of this pilot study an experiment was conducted. This

experiment tested the battery life of a mobile device while performing decompression on a

compressed file. A random file was selected from each of the three categories of XML files,

as discussed in Section 6.2.1.1. The uncompressed files were of sizes 180KB, 3.3MB and

31MB. Each of these files was compressed individually to sizes 49KB, 987KB and 3.1MB,

respectively.

126 Evaluation and Findings

Two mobile devices were used, the HTC s170 and HTC TyTN II, as described in Section

6.4.3. One thousand duplicates of each of the files were created and loaded onto the two

mobile devices separately. After each of the mobile device‟s battery was fully charged, the

files were then decompressed on the mobile device using the prototype. A log file was

created, which recorded the time taken to decompress the given file, the percentage of battery

life remaining after each file was decompressed, and the total number of files that were

decompressed before the battery charge was exceeded.

7.3.3.2 Results

A log file was created after the three tests, for each group of file, were conducted for both

mobile devices. Table 7.4 provides a summary of the results recorded from the log files. The

table illustrates the mean decompression time, the number of files decompressed, and the

battery charge remaining, either after the 1000 files were decompressed or the battery charge

was depleted. For both the small and medium sized files, both mobile devices successfully

completed the decompression of 1000 files. For large sized files, however, both mobile

devices failed to decompress all the files.

Table 7.4: Mobile Decompression Results

 Small Sized File Medium Sized File Large Sized File

Mobile Device

Mean

Decompression

Time (sec)

files % left

Mean

Decompression

Time (sec)

files % left

Mean

Decompression

Time (sec)

files % left

HTC S710 4.4 1000 32% 7.6 1000 25% 43.7 150 0%

HTC TyTN II 3.1 1000 86% 5.4 1000 81% 28.2 750 1%

Due to the faster CPU clock speeds and overall superior specifications, the HTC TyTN II

outperformed the HTC s710 in all tests. The HTC s710 did manage to decompress the total

1000 files for small and medium sized files. It is unlikely that, within the course of a working

week, one individual will require a total of 1000 file decompressions. This suggests that even

the more basic mobile devices are capable of performing numerous file decompressions.

Thus, the use of the prototype, which uses decompression on a mobile device, can be

sustained over a period of time before the battery requires recharging.

Based on the results achieved in these three pilot studies, a final prototype was developed, as

described in Chapter 6. The analytical and performance evaluations of this prototype are

discussed in Section 7.4 and 0, respectively.

127 Evaluation and Findings

7.4 Analytical Evaluation

The design of the proposed framework was discussed in Chapter 5. The implementation of a

prototype, described in Chapter 6, provides an answer to research question R5: “How can a

prototype, based on the proposed framework, be implemented?” This section provides an

analytical evaluation to determine whether the prototype adheres to the design guidelines, as

discussed in Section 5.3.1. The analytical evaluation is presented to show how the prototype

adheres to the following seven design principles:

 Easy and Lightweight Execution: The framework should be lightweight and easy to

execute in practice, robust, and provide easy access to Services (Shretha 2010).

 Compatibility: The framework must work for different Services and be compatible

for different devices, operating systems and programming languages. This is of

particular importance to the mobile environment, in which numerous mobile devices

exist.

 Robustness and Concurrency: The framework must be robust, accurate, and error-

free. Additionally, the framework should support multiple, concurrent access to

requested Services. This feature should not, however, be detrimental to the

performance of the framework.

 Interchangeable Communication Medium: Although not limited to the mobile

environment, the framework must support different communication mediums for

mobile devices, as listed in Section 3.3.3. The framework should perform equally in

differing bandwidths and communication protocols from which the Service was

requested.

 Service Discovery: The framework should support discovery of new Services via a

specific Service Discovery method defined by the organisation or vendor that

implements a working prototype of the framework.

 Efficiency: The framework must provide a means for efficiently managing the

information produced by requested Services. The Service itself is external and

autonomous. The implementation and operation of these Services is irrelevant to the

performance the framework yields.

 Flexibility: The framework should fit into the existing SOA environment of an

organisation. This removes the need to redesign or redevelop any existing

applications used within the organisation.

128 Evaluation and Findings

Existing technologies continue to improve, while newer technologies are discovered. It is,

therefore, essential that the implemented prototype is able to provide support for these

technologies. In order to provide this support the prototype must adhere to the design

principles listed above. The following subsections provide discussions in order to illustrate

how the prototype was implemented according to the seven design principles.

129 Evaluation and Findings

7.4.1 Easy and Lightweight Execution

The proof-of-concept prototype was implemented using the tools described in Section 6.4.

The combined use of the selected tools allowed for the individual implementation of the four

components of the proposed framework, which were integrated into the prototype.

Additionally, a total of 80 hours was spent implementing the prototype. The implementation

tools used, the integration of the four components, and the amount of time spent during

implementation meant that the proof-of-concept prototype was easy to execute.

Lightweight execution, in this context, refers to the amount of resources used to execute the

prototype. During the execution of the prototype, the amount of resources used was

insignificant, on both the Server and Client. The resource usage is discussed as part of the

performance evaluation in Section 0. The prototype may, thus, be considered lightweight.

7.4.2 Compatibility

The implementation of the prototype was divided into the four components of the proposed

framework, namely the User Interaction Component, the Intelligence Component, the

Compression Component and the Decompression Component. The Intelligence and

Compression Components are Server Side implementations, whereas the User Interaction and

Decompression Components are (Mobile) Client Side implementations.

The manner in which the Server Side components were implemented, the tools which were

used during implementation, as well as the deployment of the prototype (Section 6.4) allows

it to be accessed from any application, independent of its implementation tools. The mobile

application for the Client Side was implemented for the Windows Mobile operating system.

Therefore, the mobile application is not compatible for use on other mobile operating

systems. However, the implementation of a mobile application for a particular operating

system is, generally, not compatible with any other operating system.

7.4.3 Robustness and Concurrency

After the implementation of the proof-of-concept prototype, no errors or system crashes were

observed. The results recorded during the performance evaluation (more specifically in

Table 7.7 and Table 7.8) shows that a task completion rate of 100% was observed for each of

the three Web Services tested. Thus, the prototype is robust, accurate and error-free.

130 Evaluation and Findings

Two mobile devices were utilised to determine whether the prototype can support concurrent

use. These mobile devices used were the HTC s170 and HTC TyTN II. Although an ideal

test would require numerous amounts of different mobile devices being used at the same

time, the test conducted confirmed that the prototype does support concurrent use. The

Server Side implementation of the prototype can support use of more than 1000 requests,

which is supported by IIS 7, MS SQL Server 2008 and MS Windows Server 2008. Thus,

concurrent use of the prototype is possible.

7.4.4 Interchangeable Communication Medium

The use of the prototype within the mobile environment means that the mobile device using it

is required to connect via any wireless technology available to that mobile device. Three

wireless technologies were tested, namely GPRS, EDGE and Wi-Fi. When using the

prototype, each of the three wireless technologies were able to efficiently transfer files

between the Server and Client. The only difference in performance was as a result of the

transfer rates provided by the three wireless technologies.

7.4.5 Service Discovery

The use of a WSDL (Section 2.5.1.3) provides sufficient information to describe the interface

and semantics of a Service. Additionally, the information provided by a WSDL is used to

classify a Service, allowing Service Consumers to search for different Services. This

information is known as meta-data, on which search criteria, such as keywords, are based.

Similarly, the Services, which were used to evaluate the proof-of-concept prototype, provide

information in the form of meta-data, in which keywords were stored. The search

functionality provided by the mobile application, as illustrated in Figure 6.8 (b), searches the

meta-data for matching keywords. Services were accessed by means of a simple call request.

It can, therefore, be concluded that the proof-of-concept prototype provides support for

Service Discovery.

7.4.6 Efficiency

The implementation of a prototype used for Pilot Study 2 illustrated the level of efficiency

provided. The Pilot Study demonstrated that the use of compression significantly reduced the

storage and transfer sizes of XML, audio and image files, and decreased the time taken to

transfer these file. The reduction of storage and transfer size, and the time taken to transfer

131 Evaluation and Findings

the file resulted in less processing required to manage these files, which reduced the amount

of battery consumed during these processes. XML files were compressed to a mean of less

than 12% of their original file size, audio files to less than 10%, and image files to less than

6.5%. Overall, a combined compression ratio of less than 11% was yielded. Additionally,

the Pilot Study illustrated the potential reduction in costs, which may be incurred during file

transfer.

The efficiency of the proof-of-concept prototype is discussed in more detail in Section 0.

7.4.7 Flexibility

The flexibility of the prototype was not tested in an already existing SOA environment.

However, the tools which were used to implement the prototype provide flexibility, in that

the developed system may provide seamless integration. These tools included IIS 7, MS SQL

Server 2008, MS Windows Server 2008, and MS Visual Studio 2008, in which the Windows

Mobile SDK was used.

7.4.8 Summary of Analytical Evaluation

The analytical evaluation of the proof-of-concept prototype answered research question R6.

In addition, the analytical evaluation provided evidence that the prototype was developed

according to the design principles discussed in Section 5.3.1. For the cases in which tests

were not extensively conducted, the implementation tools provided sufficient motivation to

suggest that the specific design principle was adhered to. Based on the analytical evaluation

conducted in this section, it can, therefore, be concluded that the proof-of-concept prototype

does adhere to all the framework design principles.

Additionally, the successful implementation of the proof-of-concept prototype demonstrated

the effectiveness of the proposed framework for the Mobile SOA environment. By

implementing the prototype according to the framework design principles, it demonstrated

that the prototype was easy and lightweight to execute, was compatible for the mobile

environment, supported concurrent use and different communication mediums, was robust,

provided Service Discovery functionality, and was flexible.

The performance of the proof-of-concept prototype is evaluated in the following section.

132 Evaluation and Findings

7.5 Performance Evaluation

The performance of a system is the degree to which it meets its goals (Browne 1976).

Performance evaluation is the measurement and analysis of a system‟s performance. It is

often used to analyse a working system, from which enhancements are made to the

performance of the system, based on the results of the evaluation. The performance

evaluation, however, is used as a means for determining the level of efficiency that the

prototype provides. Efficiency, in terms of the prototype, is measured using specific

performance metrics.

Many definitions of a performance metric exist. To avoid confusion in the meaning of a

performance metric, a performance metric is defined as: a quantifiable measurement that

denotes a specific performance value (Deru & Torcellini 2005). Performance metrics were

used to measure and analyse the performance of the final prototype. Based on research

(Palmer 2002; Canfora & Troiano 2002; Mirchandani 2001; Spanos 2009), the following

categories of performance metrics were used:

 Response Time: In order to determine whether the prototype reduces the amount of

time taken to request a Service, it is essential that the response time is measured. The

response time is measured by recording the compression time of the Server Side, and

the decompression time on the Client Side. The file transfer time is also recorded.

 Resource Usage: Although the prototype may reduce the time taken to request a

Service, it is required that the amount of resources used during this process be

calculated. The resource usage is measured by recording the memory and processing

power used by both the Server and Client Side. The amount of space saved is

determined by the recorded compression ratio, which also indicates the amount

overhead saved during file transfer. Additionally, the battery usage is recorded on the

Client Side.

 Reliability: As with all systems, reliability is of great importance. Reliability is

measured by means of recording the task completion rating. The task completion

rating is the number of successfully completed tasks divided by the total number of

tasks.

 Costs: The cost incurred while using the prototype to request Services is compared

against the cost incurred when not using the prototype. Data transfer rate per

Megabyte is used to measure the cost.

133 Evaluation and Findings

The main objective of the performance evaluation is to determine the efficiency of the

prototype. The efficiency of the prototype is determined by the overall time that has elapsed

from the initial Service request to the delivery of those Services, the amount of resources

saved, and the reduction of overall costs incurred.

7.5.1 Test Procedure

There are two types of Web Services available, Content Services and Added Value Services.

Three Web Services were implemented in order to evaluate the performance of the prototype

(Section 6.3). These Web Services were requested via the two testing mobile devices

(Section 6.4.3). During this process, performance data was recorded on both the Server and

Client Side of the prototype.

Three separate tests were conducted for each of the Web Services; that is to say that a total of

nine Service requests were made to test the prototype. The results from these tests were

collected, from which the mean was calculated for each metric per Web Service. The data

that was captured during the tests conducted were stored as Comma Separated Values (CSV)

files.

The resulting data was then analysed to determine the level of efficiency provided by the

prototype. The compressed files were sent via Wi-Fi from the Server to the Client (mobile

device). During the testing procedure, the initial registration by the Client was not evaluated.

Table 7.5 illustrates the types of file used within each of the three Web Services tested during

the performance evaluation.

Table 7.5: Web Service File Types

Web Service XML File Image File Audio File

Web Service 1

Web Service 2

Web Service 3

Due to the implementation of the proof-of-concept prototype, there may be more than one

Client, but only one Server. It is, therefore, important to individually measure the

performance of the Client and Server. Thus, the performance evaluation of the prototype is

divided into two categories, the Server performance and the Client performance.

134 Evaluation and Findings

7.5.1.1 Server Performance

The Intelligence and Compression components reside on the Server. These two components

provide the primary factors, which determine the level of efficiency provided by the

prototype, in terms of the compression techniques chosen and the level of compression

yielded by these compression techniques. The performance metrics recorded to measure the

efficiency of the Server are listed as follows:

 Compression Time: The compression time is the total time taken to compress all the

files required by the requested Service. Compression time is measured in the amount

of seconds that have elapsed during compression.

 Compression Ratio: Compression ratio is the compressed file size of a file divided

by the original size of the file. In order to calculate the compression ratio, the original

file size and compressed file size are also recorded. The compression ratio is

measured as a percentage.

 Processing Power: This is the amount of processing power that is used during the

entire compression process, i.e. the processing power used by both the Intelligence

and Compression components. Processing power is measured as a percentage of CPU

usage for a specific time slot. The processing power used by the prototype is

calculated as the overall processing power in use subtracted by the mean idle

processing power.

These results of the Server performance are used to determine the level of efficiency of the

prototype on the Server Side.

7.5.1.2 Client Performance

Although the efficiency of the prototype is largely determined by the level of performance of

the Server Side, the overall performance and efficiency also depends on the Client. The

information provided during registration and the Decompression Component on the Client

Side play a pivotal role in the overall efficiency of the prototype. Thus, the second

performance evaluation was conducted to determine the performance of the prototype on the

Client Side (mobile device).

 Decompression Time: The decompression time is based on the time taken to

decompress all the compressed files transferred to the Client. Decompression time is

135 Evaluation and Findings

measured in the amount of seconds that have elapsed during the decompression

process.

 Memory Footprint: The memory footprint is determined by the amount of memory

used by the application subtracted by the amount of memory that was allocated to the

application for a specific process. Memory footprint is recorded in the performance

evaluation in order to determine the amount of resources used by the prototype.

 Battery Consumption: During the process of requesting a Service, receiving the

compressed files associated with that Service, decompressing these files and then

displaying the requested Service all require some level of processing power. In order

to use the processing power available on a mobile device, it is required that some

battery power be utilised. The amount of battery life is recorded before the Service is

requested, and again once the Service is displayed. The amount of battery power used

is measured as a percentage.

 File Transfer Time: This is the amount of time that has elapsed while transferring a

file from the Server to the Client. File transfer time is measured in seconds, for which

a value recorded implies a better transmission time. In addition to the transfer time

recorded for Wi-Fi, the minimum transfer time for GPRS, EDGE and HSDPA, using

the theoretical maximum transfer rate, was recorded and tabulated.

 Task Completion Rate: In order to determine the reliability of the prototype, task

completion rate is recorded. A task is successfully completed once the requested

Service is accurately displayed on the Client Side. Task completion rate is measured

as the percentage of the amount of tasks completed divided by the amount of tasks

conducted.

 Cost: This is the potential cost that may be incurred during the file transfer from the

Server to the Client and is measured in Rands. These costs are based on the rate

charged, in cost per Megabyte, for GPRS, EDGE and HSDPA.

 Overall Time: The overall time is recorded, which is the time that has elapsed from

when a Service is requested up to when it is displayed on the mobile device. This

time was recorded for a Wi-Fi connection, and is measured in seconds.

These results of the Client performance are used to determine the level of efficiency of the

prototype on the Client Side. The recorded results of all metrics and analysis thereof are

discussed in the following subsections.

136 Evaluation and Findings

7.5.2 Results

The results of the evaluation are discussed in relation to the performance metrics measured

during the conducted evaluation. These recorded results are presented in a tabular format.

The results are categorised into the performance metrics for the Server and the (Mobile)

Client. The full list of results, recorded for the performance evaluation, is shown in

Appendix G.

7.5.2.1 Server Performance Results

The performance of the Server is dependent on its two components, the Intelligence

Component and the Compression. Although the Intelligence Component played a critical

role in deciding which compression parameters to use, it was the Compression Component

that utilised most of the resources available on the Server.

Table 7.6 illustrates the performance results on the Server Side for each of the three requested

Web Services. Although the original size and compressed size were recorded, they were used

only to calculate the compression ratio yielded during the compression process. The

compression ratio, compression time and processing power are the performance results

obtained by the Compression Component. The overall server time is recorded throughout the

entire process on the Server Side.

Table 7.6: Server Side Performance Results

Metric Web Service 1 Web Service 2 Web Service 3

Original Size (KB) 112 9609 7439

Compressed Size (KB) 7.950 1105.900 576.000

Compression Ratio (%) 7.098% 11.509% 7.743%

Compression Time (sec) 0.360 3.403 2.853

Processing Power (%) 12.927 52.150 57.761

Overall Server Time (sec) 0.405 3.670 3.026

A significant compression ratio was yielded for each of the three Web Services used during

the evaluation. Web Service 1 yielded a compression ratio of 7.098%, Web Service 2 a

compression ratio of 11.509%, and Web Service 3 a compression ratio of 7.743%.

For Web Services 2 and 3, it was required that at least one audio file be compressed. As was

indicated during the initial tests conducted in Section 6.2, the audio compression process

yielded considerably higher compression times compared to that of XML and image

137 Evaluation and Findings

compression. Therefore, a higher compression time, and, consequently, a higher overall time,

was observed when requesting Web Service 2 and 3, as they both contained audio files.

During the compression, on the Server Side, the processing power was recorded. The

processing power is recorded as the percentage of CPU usage for a specific time slot, in

which the compression was conducted. Web Service 1 yielded processing power of

12.927%, 52.150% for Web Service 2, and 57.761% for Web Service 3. Based on the overall

server time, the percentage of processing power was used for a maximum of 0.405, 3.670,

and 3.026 seconds for Web Services 1, 2, 3, respectively.

7.5.2.2 Client Performance Results

The performance of the Client is dependent primarily on the Decompression Component.

The User Interaction Component serves the purpose of registration, requesting a Service and

displaying a Service. The initial registration was not evaluated.

Table 7.7 illustrates the performance results recorded for each of the three requested Web

Services on the HTC s710 Client. It is important to note that no decompression time was

recorded for Web Service 2, as only image and audio files were compressed on the Server

Side for this request. Image and audio files did not require a separate decompression process,

as the mobile devices utilised both support the JPEG and MP3 standards used for

compression.

Table 7.7: HTC s710 Performance Results

Metric Web Service 1 Web Service 2 Web Service 3

Decompression Time (sec) 6.985 NA 5.041

Memory Footprint (MB) 0.076 0.084 0.086

Battery Consumption (%) 0.093% 0.040% 0.066%

Task Completion Rate (%) 100% 100% 100%

Overall Time (sec) 10.561 7.334 10.957

Table 7.8 shows the performance results recorded for each of the three requested Web

Services on the HTC TyTN II Client. Once again, no decompression time was observed for

Web Service 2. A task completion rate of 100% was observed for both Clients over all

Service requests. Due to the improved decompression time for the HTC TyTN II over the

HTC s710, a better overall time and a lower battery consumption percentage was observed.

138 Evaluation and Findings

Table 7.8: HTC TyTN II Performance Results

Metric Web Service 1 Web Service 2 Web Service 3

Decompression Time (sec) 4.614 NA 3.781

Memory Footprint (MB) 0.078 0.081 0.084

Battery Consumption (%) 0.031% 0.011% 0.037%

Task Completion Rate (%) 100% 100% 100%

Overall Time (sec) 8.846 6.977 9.562

Decompression times of 6.985 and 5.041 seconds were observed on the HTC s710 for Web

Service 1 and 2, respectively. For the HTC TyTN II, decompression time of 4.614 and 3.781

seconds were observed for Web Service 1 and 2, respectively. These decompression times

were used in conjunction with the compression and transfer times in order to calculate the

overall time when using the prototype to request a Service, in comparison to requesting the

Service using standard methods. These transfer times are discussed later in this section.

The memory footprint recorded during the processing of all three Web Services on both

mobile devices was insignificant, with no decompression process requiring more than

0.086MB of processing memory. The results recorded for the memory footprint, for all three

Web Services, verified the results obtained for the memory footprint in Section 6.2.2.1.

The battery power consumed, on both mobile devices, during the entire process was

negligible. The percentage of battery power consumed for each test conducted was less than

0.1%. For example, the maximum battery power consumption yielded was during the

decompression of Web Service 1 for the HTC s710. A percentage of 0.093% was observed.

This means that the same procedure may be conducted approximately 1000 times before the

battery requires recharging. This further demonstrates the insignificant amount resources

used by the prototype on both the Server and Client.

Additionally, a task completion rate of 100% was observed for all tests conducted on both

mobile devices, as illustrated in Tables Table 7.7 and Table 7.8. The task completion rate

demonstrated the level of effectiveness of the proof-of-concept prototype for the Mobile SOA

environment.

The transfer times for the uncompressed files for each of the three Service requests are

tabulated in Table 7.9. This table is provided in order to compare the transfer times between

the uncompressed files, and the compressed files for the HTC s710 and HTC TyTN II for

139 Evaluation and Findings

three wireless technologies, GPRS, EDGE and HSDPA. In conjunction with Table 7.10, this

table is used to compare the difference in transfer time for compressed and uncompressed

files for each of the three Web Services.

Table 7.9: Uncompressed File Transfer Times

File Transfer Rate (sec)

Original File Size (KB) GPRS EDGE HSDPA

Web Service 1 112 7.860 3.784 0.486

Web Service 2
9609

674.316 324.628 41.706

Web Service 3
7439

522.035 251.318 32.287

The transfer times for the compressed files for both the HTC s710 and HTC TyTN II are

tabulated in Table 7.10. The total transfer time includes the time taken to compress the files

on the Server Side, the time taken to transfer the compressed files over the three wireless

technologies and the time taken to decompress the requested Service files on the respective

Clients.

Table 7.10: Mobile Device Transfer Times

HTC s710 Transfer Rate (sec)

[includes compression and

decompression time]

HTC TyTN II Transfer Time (sec)

[includes compression and

decompression time]

Web Service
Compressed

File Size (KB)
GPRS EDGE HSDPA GPRS EDGE HSDPA

Web Service 1 8 7.546 7.255 7.020 5.175 4.884 4.649

Web Service 2 1105 77.382 32.331 4.796 77.165 31.861 4.662

Web Service 3 576 45.462 24.500 7.541 44.202 23.240 6.281

In Table 7.10, a better transfer time was observed for Web Service 1, which compresses an

XML file, only when files were transferred using GPRS. Based on this result, it would be

more practical to transfer files of sufficiently small size for faster wireless technologies, such

as EDGE and HSDPA, without having to compress the files first. A higher cost, however,

would be incurred during the file transfer. The transfer times for both the compressed files of

Web Service 2 and 3 are considerably quicker than when transferring uncompressed files for

these Services.

140 Evaluation and Findings

Figure 7.1 illustrates the potential transfer costs
1
 for each of the three Web Services

transferred. The potential costs incurred when transferring the uncompressed Web Services

are compared to the potential costs incurred when transferring the compressed Web Services.

The results are based on the mean cost per megabyte of data downloaded across four network

operators. The potential cost incurred per megabyte for each of the three wireless

technologies (GPRS, EDGE and HSPDA) are, generally, the same. Based on the results

provided in Figure 7.1, it is evident that compression significantly reduces the costs incurred

during file transfer.

Figure 7.1: Comparison in Costs Incurred During File Transfer

For Web Service 1, the transfer of uncompressed files incurred a potential cost of 22c,

whereas the transfer of compressed files would, potentially, cost only 2c. A potential cost of

R18.77c was observed for uncompressed files for Web Service 2, compared to R2.16c for

compressed files of the same Web Service. Similarly, the potential cost of transferring files

for Web Service 3 was observed, with a potential cost of R14.53c observed for uncompressed

files, and R1.13c for compressed files. The possible reduction in costs, when using the

prototype to transfer files of a Service between the Server and (Mobile) Client, are

significant, especially after numerous amounts of file transfers. This is of particular

importance in the business environment, where large amounts of data are transferred and

reducing costs is of great benefit.

1
 Cost is based on pre-paid, out-of-bundle usage. The costs for subscriptions and data bundles vary significantly

and, thus, were not used.

R 0.22

R 18.77

R 14.53

R 0.02

R 2.16
R 1.13

R 0.00

R 3.00

R 6.00

R 9.00

R 12.00

R 15.00

R 18.00

R 21.00

Web Service 1 Web Service 2 Web Service 3

File Transfer Cost

Uncompressed Compressed

141 Evaluation and Findings

The summary of the performance evaluation and the analysis of the results recorded for both

the Server and Client are discussed next.

7.5.3 Summary of Performance Evaluation

Section 0, including its subsections, discussed the performance metrics used during the

performance evaluation of the prototype. Although the evaluation process was not divided

into two separate processes, the results from the evaluation were divided according to the

performance of the Server Side and Client Side of the prototype.

The results from this evaluation process validated the preliminary results yielded by the pilot

studies, which showed that the prototype provides efficient transfer of a Web Service to a

mobile device. It was observed (from Tables Table 7.9 and Table 7.10) that uncompressed

files of sufficiently small sizes are transferred quicker over a wireless network. This,

however, is realised with a higher cost incurred during file transfer.

The compressed files produced by the prototype facilitate efficient transfer to a mobile

device, not only in the reduction of cost and time, but also in the amount of resources

expended on the mobile device. The decrease in file transfer time and reduction of storage

space required implies that a reduction in processing power and time are required, which, in

turn, entails that the consumption of battery power is minimised.

The performance evaluation demonstrated, by means of the results yielded, the level of

efficiency provided by the prototype within the Mobile SOA environment.

7.6 Conclusions

The objective of this chapter was to answer research questions R6: “Does the prototype

adhere to the framework design principles?” and R7: “Does the prototype show that the

efficiency of Mobile SOA can be improved through intelligent compression?” These

questions were answered by means of an evaluation strategy, which consists of three pilot

studies, an analytical and performance evaluation.

The three pilot studies were conducted to determine the feasibility of developing a prototype.

These tests were conducted on the Windows Mobile emulator. The results from the first pilot

study verified the feasibility of using compression in the mobile environment, by showing

that decompression on a mobile device is viable.

142 Evaluation and Findings

A second prototype was implemented as part of the second pilot study. This study was

conducted to determine the level of efficiency of the prototype using compression. Results

suggest a significant reduction in file size, thus, reducing the amount time taken to transfer

files, and decreasing cost and storage space.

The third pilot study was conducted to determine the sustainability of using the prototype on

a mobile device by testing the battery life. The tests were conducted on two mobile devices.

These tests demonstrated that performing decompression on a mobile device by using the

prototype has a minimal effect on the battery charge and can support multiple file

decompressions before the battery requires recharging.

The analytical evaluation of the prototype was conducted to determine whether

implementation of the proof-of-concept prototype adheres to the design principles discussed

in Section 5.3.1. These design principles are listed as the following:

 Easy and Lightweight;

 Compatibility;

 Robustness and Concurrency;

 Interchangeable Communication Medium;

 Service Discovery;

 Efficiency; and

 Flexibility.

Each of the seven design principles were evaluated separately. The results from the

analytical evaluation provided sufficient evidence to deduce that the prototype was

implemented according to the design principles. Furthermore, the implementation of the

proof-of-concept prototype verified the effectiveness of the proposed framework, which

supports intelligent file compression, for the Mobile SOA environment.

The performance evaluation was conducted to determine the level of efficiency provided by

the prototype. The results from the evaluation were divided into two categories, the Server

Side performance and the Client Side (mobile device) performance. Performance metrics for

both the Server and Client were recorded. The results illustrated a reduction in the overall

file transfer time, processing power and time, and battery consumption on the mobile device,

and costs incurred during file transfer.

143 Evaluation and Findings

The file transfer rate for uncompressed files of sufficiently small size is much better for the

faster wireless technologies, such as EDGE and HSDPA, than when the same files are

compressed on the Server, transferred via these wireless mediums and decompressed on the

mobile device. Higher costs are incurred as a result of transferring the uncompressed files. It

is, thus, important to determine the cut off point when uncompressed files are transferred

more quickly across a wireless network, for which the cost difference is not significant.

Additionally, the amount of resources consumed when transferring uncompressed files is also

greater, which could result in the battery power being exhausted at a higher rate. The results

recorded for the performance evaluation, however, suggest an overall improved efficiency for

requesting, transferring and viewing Web Services on a mobile device.

The results of the analytical evaluation confirm the effectiveness of the prototype within

Mobile SOA. The results of the performance evaluation demonstrated the efficiency of the

prototype. Thus, based on the analytical and performance evaluation, it may be concluded

that the proposed framework is effective in optimising the effectiveness and efficiency of

Mobile SOA.

The dissertation is concluded in Chapter 8. The contributions, problems encountered and

achievements are discussed, and further research and recommendations are also identified.

144 Conclusions, Findings and Recommendations

Chapter 8: Conclusions, Findings and Recommendations

8.1 Introduction

Due to the benefits of using Service-Oriented Architecture (SOA), such as application and

data integration, versatility, code reuse, platform independency and cost saving, SOA has had

rapid growth in recent years. The growth of SOA has been met with enormous acceptance.

This is evident in the business environment, as it is calculated that 80 percent of mission

critical applications, together with business processes, will be implemented around SOA by

the end of 2010 (Chattpar 2008).

The rapid growth in the number of connected mobile devices has resulted in its inevitable

acceptance as the standard platform for business applications. With increasing utilisation of

both SOA and mobile devices, it is not surprising that Mobile SOA has become a new sought

after technology. As with all new technologies, however, Mobile SOA has a number of

limitations and challenges.

The aim of this research was to design a framework, which would support effective and

efficient transfer of files commonly used within Services. A proof-of-concept prototype was

implemented and evaluated in order to determine whether the proposed framework

“optimises the effectiveness and efficiency of Mobile SOA.”

Chapter 2 provided a discussion on Service-Oriented Architectures (SOA) and its enabling

technologies. A discussion on Mobile SOA (a subset of SOA) and its enabling technologies

was provided in Chapter 3. File Compression was described in Chapter 4, which entailed a

discussion on different compression approaches for three categories of files commonly used

within Mobile SOA. In Chapter 5, the design process, components, relevance and perceived

benefits of the proposed framework were discussed. Chapter 6 described the implementation

process of the proof-of-concept prototype, which was based on the proposed framework. The

evaluation of this prototype was conducted in Chapter 7 in order to determine the

effectiveness and efficiency provided by the prototype.

145 Conclusions, Findings and Recommendations

The objectives of this research, as listed in Section 1.3.3, are revisited in this chapter in order

to determine whether they have been successfully realised. The research contributions, which

provide a discussion on the theoretical and practical contributions of this research, are

discussed in Section 8.2. The problems encountered within this research are discussed in

Section 8.3, which includes the limitations of implementing a prototype for the proposed

framework. Section 8.4 provides a discussion on the research benefits, based on the

evaluations conducted. Finally, future research and recommendations are suggested for both

theory and practice in Section 8.5.

8.2 Research Contributions

The primary objective of this research, as introduced in Section 1.3.3, was to “improve

efficiency and effectiveness of Mobile SOA”. In order to achieve this goal, the following

secondary objectives were identified:

 To gain comprehensive understanding of an SOA and its enabling technologies

(Chapter 2);

 To acquire thorough knowledge of Mobile SOA and its enabling technologies

(Chapter 3);

 To investigate compression and categorisation techniques of files used within Mobile

SOA (Chapter 4);

o Establish a set of criteria for measuring efficiency of compression;

 To determine how a framework supporting compression can be designed for Mobile

SOA (Chapter 5);

 To determine how a prototype can be implemented based on the design of a

framework (Chapter 6); and

 To evaluate the design of a framework and implementation of a prototype for Mobile

SOA (Chapter 7).

These research objectives were analysed and discussed throughout the chapters of the

dissertation. These research objectives were mapped onto a set of research questions, which

were used to achieve a specific research objective. Table 8.1 illustrates the research

questions from Section 1.3.4, and how each of the research questions was answered.

146 Conclusions, Findings and Recommendations

Table 8.1: Research Questions and Associated Methodology

The research contributions are discussed in two categories, namely the theoretical and

practical contributions. These are discussed in the following subsections.

8.2.1 Theoretical Contributions

The theoretical contributions can be broken down into the literature review and framework

design. The achievements of the literature review are based on the research work done in

Chapters 2, 3 and 4. The proposed framework, discussed in Chapter 5, highlights the

achievements of the framework design.

8.2.1.1 Literature Review

The literature review achievements are emphasised in the research done into SOA, Mobile

SOA and File Compression within Chapters 2, 3 and 4, respectively. These achievements

include:

 Research into SOA, its enabling technologies and design principles;

 Research into Mobile SOA, its enabling technologies and extant systems; and

 Research into different types of compression and compression techniques.

Research Question Research Method Chapter

Main:
How can the efficiency and effectiveness of Mobile SOA be optimised using a

framework that supports intelligent compression?

R1 What is SOA and what are its components? Literature Study Chapter 2

R2 What is Mobile SOA and what are the relevant issues and constraints? Literature Study Chapter 3

R3 What are the issues related to file compression? Literature Study

Chapter 4
R3.1 How can files be categorised in relation to intelligent compression? Literature Study

R3.2 What are the different file compression techniques? Literature Study

R3.3 What are the criteria for measuring efficiency of file compression? Literature Study

R4
How can a framework, supporting intelligent compression, be designed for

Mobile SOA?

Service-Oriented

Analysis and Design
Chapter 5

R5 How can a prototype, based on the proposed framework, be implemented?
Developmental/

Proof-of-Concept
Chapter 6

R6 Does the prototype adhere to the framework design principles? Evaluation

Chapter 7
R7

Does the prototype show that the efficiency of Mobile SOA can be improved

through intelligent compression?
Evaluation

147 Conclusions, Findings and Recommendations

Service-Oriented Architecture (SOA)

Research Question R1: “What is SOA and what are its components?”

A study was conducted in Chapter 2 to examine SOA, and its underlying components and

enabling technologies. A formal definition was provided in order to clarify what SOA is in

relation to this research. SOA was, therefore, defined as: “an architectural approach to

building loosely coupled business systems by integrating different components by means of

Services. The integration of these components is independent of programming language and

platform.” Gartner has found that the use of SOA is still increasing (Abrams et al. 2008),

which indicates that businesses have a good understanding of SOA, and are able to access its

benefits and capabilities.

SOA is based on an architectural style that integrates loosely coupled components across

different platforms developed in different programming languages. The primary components

of SOA are the Service Consumer (Service Requestor/Service Client/Service User), the

Service Provider and the Service Manager (Service Registry/Service Directory). The

components of SOA are developed as Services, which may be accessed by any application as

long as it is discoverable. The implementation of a system based on SOA provides a number

of benefits, which include application and data integration, versatility, code reuse and cost

saving.

This research focused on Services in the form of XML-based Web Services. Although this is

not the only manner in which to implement a Service, the industry standards and wide

acceptance strongly suggest its use (Liegl 2007). An XML-based Web Service is developed

using a number of essential standards, namely: HTTP, XML, WSDL, UDDI, and SOAP.

Hypertext Transfer Protocol (HTTP) is an internationally accepted Internet Protocol for the

transmission of information between interconnected devices. HTTP is the standard for

addressing Web pages, which can also identify Web Services.

Extensible Mark-up Language (XML) is a simple, text-based configuration, which represents

structured information (W3C 2010). This information is stored within an XML file, which

has its internal structures accessible by means of a process of metadata publishing.

A Web Service Description Language (WSDL) is a language for describing Web Services

(W3C 2004a). Messages that have specific network protocols and message formats are

148 Conclusions, Findings and Recommendations

exchanged between the Service Provider and the Service Consumer. A designer may specify

the programming interface of a Web Service through WSDL. This interface is denoted in

terms of procedures supported by the Web Service, where each procedure is capable of taking

a message as an input and producing another message as an output.

The Universal Description Discovery and Integration (UDDI) is a framework for describing,

discovering and integrating business Services through the Internet (Hurwitz et al. 2007). The

UDDI provides definitions for registries, which can be made available publicly, privately, or

between partner organisations (Senga 2010). The UDDI framework uses SOAP messages in

order to exchange information with applications that access it.

Simple Object Access Protocol (SOAP) provides a standard, organised framework for

wrapping and exchanging XML messages (W3C 2004a). SOAP is equipped for the exchange

of information in a decentralised environment where messages are exchanged over

HTTP/HTTPS. Using XML to describe the messaging framework means that SOAP is

independent of platform and programming language (Gudgin et al. 2007).

Mobile Service-Oriented Architecture (Mobile SOA)

Research Question R2: “What is Mobile SOA and what are the relevant issues and

constraints?”

Mobile SOA is a specific domain within SOA, and is focused on realising SOA in the mobile

environment. Chapter 3 provided a formal definition for Mobile SOA and an in-depth

discussion of what Mobile SOA is. The underlying technologies, component model, benefits

and drawbacks of Mobile SOA were also presented. Two extant systems were reviewed, on

which this research extends and solutions were proposed to the identified shortcomings.

The first extant system reviewed was the M-Service Framework developed by Sanchez-

Nielsen et al. (2006). The approach used in this system reduced the computational cost of the

mobile devices, which optimised the response times to mobile users and reduced memory

usage. The EXEM framework, developed by Natchetoi et al. (2007b), was the second system

reviewed. The framework provided a basis on which the proposed framework, described in

Section 5.3.1, extends. The EXEM framework demonstrated an approach to efficient transfer

of XML files using compression.

149 Conclusions, Findings and Recommendations

Mobile SOA was defined as: “An architectural style for the mobile environment whose goal

is to achieve loose coupling by positioning Services as the primary means through which

solution logic is represented.” The necessity for SOA within the mobile environment is

driven by the dramatic growth in the amount of connected mobile devices. This growth is

evident in that there is an estimated 4.6 million connected mobile devices around the world

(CBS News 2010). Mobile devices were developed as simple voice and SMS communication

devices, but have since transformed into powerful handheld computers where almost any

form of computing is capable of being achieved. However, there are a number of hardware,

software, network and human limitations to consider when developing for this environment.

Mobile SOA has one additional primary component to that of the three primary components

of SOA. This added component is the Mobility Controller. The Service Consumer, Service

Provider and Service Registry are the other components found in Mobile SOA. The Mobility

Controller controls the state transfer and manages the overall Mobile Service.

In addition to the mobility provided, there are a number of benefits when using Mobile SOA.

These benefits extend to numerous branches of use, which include education, health,

business, banking, weather forecast and providing much needed information to rural

communities. Similarly to SOA, Mobile SOA offers interoperability with different systems

on different platforms and allows interaction and information exchange between these

systems. The challenges faced in developing for Mobile SOA are based on the mobile device

constraints, the continually increasing amount of mobile devices available and the high costs

of transferring data across wireless networks. The benefits of Mobile SOA, however, far

outweigh the challenges, and can, thus, be considered an ideal candidate for future research

and improvements.

File Compression

Research Question R3: “What are the issues related to file compression?”

Chapter 3 identified limitations when implemented for the Mobile SOA environment. File

compression was proposed as a solution to a number of these limitations. Chapter 4 provided

a discussion on the two types of data compression, the different algorithms used within these

types of compression, and several compression techniques for each of the three categories of

files used within this research, namely XML, image and audio files.

150 Conclusions, Findings and Recommendations

The two types of data compression identified were lossless and lossy compression. Lossless

compression is the process of compressing information for storage or transmission, which can

then be decompressed, producing a copy of the original information without any loss. In

contrast, lossy compression allows a certain level of information loss, which is either not

perceptible or is of a acceptably lower quality. Several algorithms were identified for both

lossless and lossy compression. These algorithms illustrate the procedure of compressing

information in order to achieve high levels of compression. Although the compression

algorithms differ significantly, they are still based on early work done by Shannon (1948) and

Huffman (1952).

The files used within this research were categorised as Data or Media files. For this research

data files represent textual information and are stored within XML files. For media files,

image and audio files were used. Six lossless compression techniques were identified for

XML compression, namely: bZip2, gZip, DotNetZip, XMill, XMLppm and XWRT. Three

compression techniques, two lossless and one lossy, were identified for image and audio files,

respectively. The lossless image compression techniques were GIF and PNG, and the lossy

image compression technique was JPEG. The lossless audio compression techniques were

APE and FLAC, and the lossy audio compression technique was MP3. A comparison on the

performance of each of these compression techniques was conducted in Chapter 6.

8.2.1.2 Framework Design

Research Question R4: “How can a framework, supporting intelligent compression, be

designed for Mobile SOA?”

The achievements for the framework design are underlined in the design of the proposed

framework, the implementation of a prototype based on this framework, and the evaluation of

this prototype. Chapter 5 provided a discussion on the design process, the four underlying

components, process steps and perceived benefits of the proposed framework.

Seven design principles were identified in the design process of the proposed framework.

These principles emphasized the necessity for a simple, lightweight, easy to implement, cost

effective, interchangeable, flexible and efficient framework, which supports the use of

intelligent compression.

The four components of the proposed framework included the User Interaction Component,

the Intelligence Component, the Compression Component and the Decompression

151 Conclusions, Findings and Recommendations

Component, as illustrated in Figure 8.1
1
. These components work together to achieve high

levels of efficiency when managing files of a requested Web Service.

The process steps of the proposed framework provided a detailed discussion on how the four

components interact. This discussion included a step-by-step walkthrough from when the

mobile application was first used, to the delivery and display of a requested Web Service.

The perceived benefits of the proposed framework were identified, which served as a

benchmark for performance. A proof-of-concept prototype was evaluated on how it

performed against these perceived benefits.

Figure 8.1: Proposed Framework

The next section provides a discussion on the practical contributions of this research, which

includes the implementation of the proof-of-concept prototype and the evaluation thereof.

8.2.2 Practical Contributions

In terms of practical contributions, the primary contribution of this research is the

implementation of a proof-of-concept prototype based on the proposed framework. The

secondary practical contribution is the evaluation of this prototype. The practical

1
 Figure 5.4 is repeated as Figure 8.1 for ease of reference.

152 Conclusions, Findings and Recommendations

contributions, and the related research questions that were addressed, are discussed in the

following subsections.

8.2.2.1 Development of Proof-of-Concept Prototype

Research Question R5: “How can a prototype, based on the proposed framework, be

implemented?”

In order to conduct an evaluation to determine whether the proposed framework optimises the

effectiveness and efficiency of Mobile SOA, a proof-of-concept prototype was implemented.

The implementation of the proof-of-concept prototype, in itself, provided evidence that it was

feasible to implement a prototype, based on the proposed framework, which supports

intelligent compression.

Chapter 6 provided a discussion on the implementation criteria, the tools used during the

implementation process, the implementation of the prototype and the four underlying

components of the proposed framework. Additionally, Chapter 6 provided a discussion on

the initial tests conducted before the proof-of-concept prototype was implemented.

An evaluation strategy was designed in order to comprehensively evaluate the proof-of-

concept prototype. These evaluations are discussed next.

8.2.2.2 Evaluation of Proof-of-Concept Prototype

The evaluation of the prototype was divided into three categories of testing, namely: three

pilot studies, an analytical evaluation and a performance evaluation.

Pilot Studies

Three pilot studies were conducted in order to determine whether compression is feasible

within the mobile environment, whether the proposed framework supported efficient file

transfer and whether the proposed framework supports sustained usage on a mobile device,

respectively. A test was conducted for each of these pilot studies. The first test conducted

simply tested whether decompression could be performed on a mobile device. The efficiency

of a prototype, developed according to the proposed framework, was evaluated in the second

test. The third test provided an evaluation on the battery life of two mobile devices in order

to determine if the prototype supports continuous use. For this test, decompression was

performed until the battery life reached its minimum.

153 Conclusions, Findings and Recommendations

The pilot studies provided positive results, from which it was concluded that it was feasible to

implement a prototype, based on the proposed framework. This prototype could support

decompression on a mobile device, provide significant efficiency and support extensive usage

on a mobile device before the battery requires recharging.

Analytical Evaluation

Research Question R6: “Does the prototype adhere to the framework design principles?”

The analytical evaluation was conducted to determine whether the proof-of-concept prototype

adheres to the seven design principles identified in the design process of the proposed

framework in Section 5.3.1. These design principles are listed as the following:

 Easy and Lightweight;

 Compatibility;

 Robustness and Concurrency;

 Interchangeable Communication Medium;

 Service Discovery;

 Efficiency; and

 Flexibility.

Six of the seven design principles were directly tested in the analytical evaluation. Although

the flexibility was not test specifically, the manner in which the prototype was implemented,

and the tools that were used during implementation, provided sufficient motivation to

conclude that the design principles were adhered to. Thus, based on the analytical evaluation,

it was concluded that the proof-of-concept prototype was implemented according to the

design principles.

Performance Evaluation

Research Question R7: “Does the prototype show that the efficiency of Mobile SOA can be

improved through intelligent compression?”

The primary objective of this research was to provide evidence that the proposed framework

optimises the effectiveness and efficiency of Mobile SOA. In order to determine whether this

objective was realised an evaluation of the proof-of-concept prototype was conducted. The

performance evaluation measured the overall performance of this prototype.

154 Conclusions, Findings and Recommendations

The performance metrics were identified and divided into four categories, which included

response time, resource usage, reliability and cost. Furthermore, testing the performance of

the prototype was divided into the Server performance and the (Mobile) Client performance.

Server performance metrics included the compression time, compression, and processing

power. The Client performance metrics included the decompression time, memory footprint,

battery consumption, file transfer rate, task completion rate, cost and overall time elapsed.

The results observed during the evaluation of the prototype confirmed those yielded during

the pilot studies. The prototype produced a significant performance improvement over the

common transfer method of a Web Service. For smaller sized XML files, it was observed

that the compression, transfer and decompression of these files took longer than transferring

it without compression. A higher cost, however, was incurred when transferring without the

use of compression.

The prototype provided efficient file transfer to a mobile device by reducing the cost and

time. Furthermore, the prototype reduced the amount of resources expended on a mobile

device. The decrease in file transfer time and reduction of storage space needed meant that a

reduction in processing power and time was observed. This reduction implied that the battery

power consumed by a mobile device was reduced.

In answering research questions R5, R6 and R7, the practical contributions highlighted the

development of the proof-of-concept prototype and evaluation thereof. The limitations and

problems encountered while conducting this research is discussed in the next section.

8.3 Problems Encountered

Some delineation decisions were taken at the outset of the research:

 Video Compression: Due to the timing and cost restraints of file transfer, video

compression was not considered within this research.

 Only Two Mobile Devices Used for Tests: Developing for the mobile environment

provides an additional challenge in trying to ensure that the mobile application works

on more than just a few mobile devices. As a result of the vast amounts of mobile

brands, and the large number of mobile devices developed for each brand, ensuring

that a mobile application runs on these different devices is highly unlikely. Thus, for

this research, the objective was to prove that the concept of implementing a

155 Conclusions, Findings and Recommendations

prototype, based on the proposed framework, is feasible. This application was not

required to work on each mobile device available on the market.

Although above decisions resulted in less extensive implementation criteria, a number of

problems were still encountered when implementing the proof-of-concept prototype.

Implementing for the mobile environment provided significant challenges over that of

implementing for the desktop environment. The following problems and challenges were

identified during implementation of the prototype:

 Decompression on Mobile Device: For the original XML compression techniques

tested within this research, the corresponding decompression techniques could not be

performed on a mobile platform. As a result of this, a number of delays were caused,

as the source code had to be recompiled, in some cases rewritten, for the mobile

environment. DotNetZip was the only compression technique that offered support for

the mobile environment.

 Service Requests: Due to network restrictions, external Service requests could not

be conducted. This led to the development of three Services in order to adequately

test the efficiency of the prototype.

 Connection between Client and Server: As a result of network restrictions and

network limitations of the mobile devices, numerous connection issues were

encountered between the Client and Server. A Virtual Private Network (VPN) had to

be set up on the mobile devices, with the specific network settings, in order to provide

a partial solution to this problem. Additionally, specific connection protocols were

included within the implementation of the mobile application, a Client Side subset of

the proof-of-concept prototype.

The problems encountered during the implementation process affected the evaluation of the

proof-of-concept and also imposed a number of limitations within this research. The

following problems were identified during evaluation:

 Unable to Record Mobile Information: The information recorded during the

registration process and the performance evaluation were recorded and saved by the

implemented system. However, specific information was not recorded. This

information included the processing power and screen colour depth on a mobile

device.

156 Conclusions, Findings and Recommendations

 Cost Evaluation: Due to the difference in cost of data transfer between networks,

and the difference in cost of data transfer for each data package available, it was not

possible to compare the cost saving of using the prototype for file transfer. The

decision was made to use only the costing model of out-of-bundle data transfer in

order to provide an adequate comparison between using the prototype to transfer files,

and using the standard file transfer protocols.

Although there were numerous problems and limitations, this did not affect the

implementation of the proof-of-concept prototype, and the conclusions derived from the

evaluation thereof.

8.4 Benefits of Research

Significant benefits were identified within this research, as well as for the proposed

framework. The results and findings of the research are divided into the benefits of the

research, and the advantages and disadvantages of the proposed framework discussed in

Chapter 5.

This research demonstrated that the proposed framework is able to optimise the effectiveness

and efficiency of Mobile SOA.

 Improved Implementation: The proof-of-concept prototype was implemented

according to the framework design principles listed in Section 5.3.1. Using an

analytical evaluation, conducted in Section 7.4, it was determined that the prototype

adheres to these design principles. Implementing a system based on these design

principles may improve the overall implementation process, which includes a

reduction in the implementation time and cost. The improved implementation

demonstrated the effectiveness of the prototype.

 Improved Efficiency: This research provided evidence that using the framework,

when implementing a Client/Server system, significantly improves the efficiency

when transferring and managing files. The results recorded during the performance

evaluation demonstrated a significant reduction in transfer time, the amount of

resources used and potential costs incurred during file transfer.

Section 5.3.4 identified the perceived benefits of implementing a proof-of-concept prototype

based on the proposed framework. The performance evaluation conducted in Section 0

157 Conclusions, Findings and Recommendations

verified specific perceived benefits of the proof-of-concept prototype. These benefits are

listed as follows:

 The mobile applications may perform faster and better when developed according to a

specific guideline, such as that described by the proposed framework.

 Compression of files reduced the processing power and memory footprint required to

manage files, in terms of transferring, accessing and storing of these files.

 The reduced processing power and memory footprint had a direct influence on the

battery life of the mobile devices.

 The viewing of an image was enhanced by means of image resampling, which

matched the image resolution to the screen resolution for each individual mobile

device. The content layout and navigation was also improved as a result.

 The framework provided improved file transfer between the Server and (Mobile)

Client.

 Compression also reduced the amount of overhead required for transfer over a

network. Although not tested on a commercial network, the results illustrated that

compression would significantly reduce the cost of transferring files between a Client

and Server.

This research, therefore, strongly recommends the use of the proposed framework, or variant

thereof, when implementing a Client/Server information exchange system.

8.5 Future Research and Recommendations

The design of the proposed framework and the successful implementation of a proof-of-

concept prototype provides both practical and theoretical evidence that the effectiveness and

efficiency of Mobile SOA can be optimised.

During the initial testing of the XML compression techniques, a number of phenomena were

observed. One significant observation is the „spikes‟ in compression ratio for each of the

compression techniques during compression of the same file, as illustrated in Figure 6.1. An

XML file may be categorised by its structure (and structure complexity), type (APP, XSL-

FO, SOAP, etc), number of repeated elements and attribute values within the XML file, and

content. This categorisation is an important factor to consider when compressing XML files.

Testing the different compression techniques against the different categories of XML files

158 Conclusions, Findings and Recommendations

may provide additional information, which may improve the compression efficiency of XML

files.

In the case of mobile devices, the Client has an additional risk of the mobile device being

stolen or lost, which results in the potential exposure of sensitive data. All data transferred

and stored on the mobile device should, therefore, be encrypted. Security and file encryption

was not included within the scope of this research, and may be an important asset when

providing efficient transfer of files and Services to and from a mobile device.

Due to the varying data transfer rates and high costs, the wireless connectivity offered by

network operators were not utilised. In order to accurately measure the performance of the

prototype, implemented according to the framework design principles, a more reliable Wi-Fi

connection was used. However, to evaluate the prototype in a real-world situation may

provide valuable information, which could improve the efficiency when transferring files

between a Server and (Mobile) Client.

Theoretically, the framework, proposed in Section 5.3.1 may support the compression of all

files. The framework, however, was designed in order to support the efficient transfer of a

Service by means of compressing the XML, image, and audio files it commonly uses. Other

file types were not considered within this research. Furthermore, the primary objective of the

framework was limited to providing efficient transfer of files used by a Service between the

(Mobile) Service Consumer and the Service Directory. The framework was not supported

by, and did not support the efficiency of the Service Provider, the Service Directory, the

Service Manager, or the Service itself.

There are many factors that determine the transfer rate of data over a wireless network.

These factors include unreliable connections, limited bandwidth, poor latency, distance from

the closest network cell tower, and the amount of users requesting data via the same cell

tower at a given time. Because of the fluctuating transfer rates, Wi-Fi was used as the

wireless connection between the Client and Server. In order to compare the transfer rates

between the wireless technologies, the maximum theoretical transfer rates for a given

wireless technology were used. Although a significant cost of transferring files may be

incurred, the benefit of using real network operator costs may be beneficial in comparing the

difference in costs incurred between compressed and uncompressed files.

159 Conclusions, Findings and Recommendations

Although a successful implementation and evaluation of a prototype (based on the proposed

framework) was conducted, the prototype was implemented and evaluated within a closed

and controlled setting. Ideally, testing the prototype within a real-world environment would

provide more concrete, statistical evidence to support the conclusions on the efficiency of the

prototype. Thus, it is recommended that future research incorporate this real-world testing

environment within its scope. Additionally, it is recommended that sufficient testing be

conducted when transferring compressed information from the (Mobile) Client to the Server.

Although the functionality to compress Client Side data exists, no significant tests were

conducted.

8.6 Summary

Chapter 1 provided an outline of this research study by means of the Thesis Statement,

research problem, research objectives, research questions and research methodology. The

Thesis Statement for this research study was:

“The efficiency and effectiveness of Mobile SOA can be improved by the implementation of a

framework supporting intelligent compression.”

The aim of this research study was to design a framework for the Mobile SOA environment.

Based on the Thesis Statement, a framework was proposed in Chapter 5, based on specific

design principles, which supports intelligent compression. A proof-of-concept prototype,

based on the proposed framework, was implemented in Chapter 6. This prototype was

evaluated in Chapter 7, which determined that it is feasible to optimise the effectiveness and

efficiency of Mobile SOA. The evaluation process was divided into pilot studies (tested the

feasibility of the framework), an analytical evaluation (determined the degree to which the

prototype adheres to the design principles of Section 5.3.1) and a performance evaluation

(determined whether the prototype provides sufficient efficiency, and what level of efficiency

it provides). The results and statistical analysis from the evaluation illustrate that a successful

implementation was achieved.

The aim of this research study was successfully realised theoretically, with the design of the

proposed framework, and practically, with the implementation of a proof-of-concept

prototype (based on this framework) and the evaluation thereof.

160 References

References

31314, Xcite – Games, Ringtones, Wallpapers And More!, available at http://31314.mobi/ [online],

2010, [accessed 1
st
 November 2010].

35050, 35050, available at http://www.mobilemagic.co.za/ [online], 2010, [accessed 1
st
 November

2010].

Abrams, C. & Schulte, R.W., Service-Oriented Architecture Overview and Guide to SOA Research,

Report Number G00154463, Gartner, Stamford, CT, USA, available at:

http://www.gartner.com/DisplayDocument?doc_cd=154463 [online], 2008, [accessed 15
th

October 2009].

Alonso, G., Casati, F., Kuno, H. & Machiraju, V., Web Services: Concepts, Architectures, and

Applications, Springer, 2004.

Ashland, M.T., Monkey’s Audio – A fast and powerful lossless audio compressor, available at

http://www.monkeysaudio.com/ [online], 2009, [accessed 30
th
 July 2010].

Atkins, D.E., Droegemeier, K.K., Feldman, S.I., Garcia-Molina, H., Klein, M.L., Messerschmitt,

D.G., Messina, P., Ostriker, J.P. &Wright, M.H., Revolutionizing Science and Engineering

Through Cyberinfrastructure:Report of the National Science Foundation Blue-Ribbon Advisory

Panel on Cyberinfrastructure, National Science Foundation, available

http://www.nsf.gov/od/oci/reports/atkins.pdf [online], 2003, [accessed 15
th
 March 2010].

Augeri, C. J., Mullins, B. E., Baird III, L. C., Bulutoglu, D. A. & Baldwin, R. O., An Analysis of XML

Compression Efficiency, U.S. Air Force, Department of Computer Science, ExpCS, San Diego,

CA, 13–14 June 2007.

Barton, J., Zhai, S. & Cousins, S., Mobile Phones Will Become The Primary Personal Computing

Devices, available at www.almaden.ibm.com/u/bartonjj/jbarton-PhoneBeatsPC.pdf [online],

2010, [accessed 2nd May 2010].

Blelloch, G.E., Introduction to Data Compression, Carnegie Mellon University, Computer Science

Department, 2001.

Botha, A., Makitla, I., Ford, M., Fogwill, T., Seetharam, D., Abouchabki, C., Tolmay, J.P. &

Oguneye, O., The mobile phone in Africa: Providing Services to the masses, Proceedings from

CSIR Conference, Science real and relevant conference, 2010.

Brown, J.C., A Critical Overview of Computer Performance Evaluation, ICSE ‟76, Proceedings of the

2
nd

 International Conference on Software Engineering, pp. 138-145, 1976.

Buzzword, Buzzword, available at: https://buzzword.acrobat.com/ [online], 2009, [accessed 31
st
 May

2010].

http://31314.mobi/
http://www.mobilemagic.co.za/
http://www.gartner.com/DisplayDocument?doc_cd=154463
http://www.monkeysaudio.com/
http://www.nsf.gov/od/oci/reports/atkins.pdf
http://www.almaden.ibm.com/u/bartonjj/jbarton-PhoneBeatsPC.pdf
https://buzzword.acrobat.com/

161 References

Canfora, G. & Troiano, L., The Importance of Dealing with Uncertainty in the Evaluation of Software

Engineering Methods and Tools, SEKE ‟02, Ischia, Italy, pp 691-698, 2002.

Carpenter, H., Gartner Hype Cycle for Emerging Technologies 2009, What’s Peaking, What’s

Troughing?, available at: http://bhc3.wordpress.com/2009/07/27/gartner-hype-cycle-2009-

whats-peaking-whatstroughing/ [online], 2009, [accessed 13
th
 September 2010].

Cavanaugh, E., Web Services: Benefits, Challenges, and a Unique, Visual Development Solution,

Altova WhitePaper, USA, available at http://www.altova.com/whitepapers/webservices.pdf,

2006, [accessed 22
nd

 December 2010].

CBS News, Number of Cell Phones Worldwide Hits 4.6B, CBSNews.com, available at

http://www.cbsnews.com/stories/2010/02/15/business/main6209772.shtml [online], 2010,

[accessed 1st May 2010].

Chattpar, A., Increased business agility through BRM systems and SOA, available at

http://www.ibm.com/developerworks/architecture/library/ar-brmssoa/ [online], 2008, [accessed

24
th
 April 2010].

Cheney, J., XMLPPM: XML-Conscious PPM Compression, available at

http://xmlppm.sourceforge.net/ [online], 2009, [accessed 12
th
 July 2009].

Coalson, J., FLAC – Free Lossless Audio Codec, available at http://flac.sourceforge.net/index.html

[online], 2008, [accessed 30
th
 July 2010].

Datz, T. What You Need to Know About Service-Oriented Architectures, Available at

http://www.cio.com/article/32060/What_You_Need_to_Know_About_Service_Oriented_Archi

tecture [online], 2004, [accessed 6
th
 July 2009].

Deru, M. & Torcellini, P., Performance Metrics Research Project – Final Report, available at

http://www.osti.gov/bridge [online], 2005, [accessed 13
th
 November 2010].

Dey, A. & Sohn, T., Supporting End User Programming of Context-Aware Applications, Conference

on Human Factors in Computing Systems, Fort Lauderdale, 2003.

Duda, I., Alesky, M. & Schader, M., Leveraging Different Application Styles in Mobile Business,

Proceedings of MoMM, Linz, Austria, 2008.

Edmunds, A. & Morris, A., The problem of information overload in business organisations: a review

of the literature, International Journal of Information Management, Volume 20, Issue 1, pp 17-

28, ISSN 0268-4012, DOI: 10.1016/S0268-4012(99)00051-1, February 2000.

Erl, T., Service-Oriented Architecture: Concepts, Technology, and Design, Upper Saddle River, NJ,

Prentice Hall PTR, 2005.

Erl, T., SOA Principles of Service Design, Service-Oriented Computing, Upper Saddle River, NJ,

Prentice Hall, 2008.

Erradi, A., Kulkarni, Anand, S. & Kulkarni, N., Evaluation of Strategies for Integrating Legacy

Applications as Services in a Service Oriented Architecture, IEEE International Conference on

Services Computing (SCC‟06), 2006.

http://bhc3.wordpress.com/2009/07/27/gartner-hype-cycle-2009-whats-peaking-whatstroughing/
http://bhc3.wordpress.com/2009/07/27/gartner-hype-cycle-2009-whats-peaking-whatstroughing/
http://www.altova.com/whitepapers/webservices.pdf
http://www.cbsnews.com/stories/2010/02/15/business/main6209772.shtml
http://www.ibm.com/developerworks/architecture/library/ar-brmssoa/
http://xmlppm.sourceforge.net/
http://flac.sourceforge.net/index.html
http://www.cio.com/article/32060/What_You_Need_to_Know_About_Service_Oriented_Architecture
http://www.cio.com/article/32060/What_You_Need_to_Know_About_Service_Oriented_Architecture
http://www.osti.gov/bridge

162 References

EyeOS, EyeOS, available at: http://Eyeos.org [online], 2009 [accessed on: 24
th
 March 2010].

eXactMobile, eXactmobile for the best Digital music, True tones, and Games in South Africa,

available at http://www.exactmobile.co.za/ [online], 2010, [accessed 1
st
 November 2010].

Flickenger, R., Okay, S., Pietrosemoli, E., Zennaro, M. & Fonda, C., Very Long Distance Wi-Fi

Networks, NSDR ‟08, Seattle Washington, USA, 2008.

Fraunhofer, Fraunhofer-Gesellschaft, available at http://www.fraunhofer.de/en/ [online], 2010,

[accessed 24
th
 September 2010].

Fremantle, P., Weerawanana, S. & Khalaf, R., Enterprise Services, Commun. ACM 45(10), 2002.

Gailly, J.-L. & Adler, M., The gZip Homepage, available at www.gzip.org/ [online], 2003, [accessed

12
th
 July 2009].

Gartner, Gartner Hype Cycle, available at http://www.gartner.com [online], 2010, [accessed 24
th

September 2010].

Google, Google Docs, available at: http://docs.google.com/, [online], 2009, [accessed 24
th
 March

2010].

Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.J., Nielsen, H.F., Karmarkar, A. & Lafon, Y.,

SOAP Version 1.2 Part 2: Adjuncts (Second Edition), World Wide Web Consortium, available

at http://www.w3.org/TR/2007/REC-soap12-part2-20070427/ [online], 2007, [accessed 31
st

May 2010].

Halonen, T. & Ojala, T., Cross-Layered Design for Providing Service Oriented Architecture in a

Mobile Ad hoc Network, MUM‟06, Stanford, CA, USA, 2006.

Howard, P.G. & Vitter, J.S., Arithmetic Coding for Data Compression, Proceedings of the IEEE Vol.

82 No. 6, June 1994.

Huang, K.-Y., Challenges in Human-Computer Interaction Design for Mobile Devices, Proceedings

of the World Congress on Engineering and Computer Science, Vol. I, San Francisco, USA,

October 20-22, 2009.

Huffman, D.A., A Method for the Construction of Minimum-Redundancy Codes, Proceedings of the

I.R.E., pp 1098-1101, 1952.

Hurwitz, J., Bloor, R., Baroudi, C. & Kaufman, M., Service Oriented Architecture for Dummies,

Wiley Publishing Inc., Indianapolis, Indiana, ISBN-13: 978-0-470-05435-2, 2007.

IBM, IBM – United States, available at http://www.ibm.com/us/en [online], 2010, [accessed 29
 th

June, 2010].

Investintech, What is Compression?, available at

http://www.investintech.com/resources/articles/whatcompression/ [online], 2006, [accessed 1
st

May 2010].

International Telecommunication Union (ITU), Information Technology – Digital COMPRESSION

and Coding of Continuous-Tone Still Images – Requirements and Guidelines, Terminal

Equipment and Protocols for Telematic Services, 1992.

http://eyeos.org/
http://www.exactmobile.co.za/
http://www.fraunhofer.de/en/
http://www.gzip.org/
http://www.gartner.com/
http://docs.google.com/
http://www.w3.org/TR/2007/REC-soap12-part2-20070427/
http://www.ibm.com/us/en
http://www.investintech.com/resources/articles/whatcompression/

163 References

Johnson, B.C., Manyika, J.M. & Yee, L.A., The Next Revolution in Interactions, The McKinsey

Quarterly, Number 4, 2005.

Johnsrud, L., Hadzic, D., Hafsøe, T., Johnsen, F. & Lund, K., Efficient Web Services in Mobile

Networks, Sixth European Conference on Web Services, 2008.

Jørstad, I., Dustdar, S. & van Thanh, D., Service-Oriented Architectures and Mobile Services,

UMICS, available at www.infosys.tuwien.ac.at/Staff/sd/papers/Service-

OrientedArchitecturesAndMobile%20Services_UMICS2005.pdf [online], 2005, [accessed 10
th

March 2009].

Jørstad, I., van Thanh, D. & Dustdar, S., An Analysis of Service Continuity in Mobile Services,

available at

http://www.infosys.tuwien.ac.at/Staff/sd/papers/AnAnalysisOfServiceContinuityInMobileServi

ces.pdf [online], 2004, [accessed 10
th
 March 2009].

Juul, N.C. & Jørgensen, N., Security Issues in Mobile Commerce Using WAP, 15
th
 Bled Electronic

Commerce Conference, Bled, Slovenia, 2002.

Kajko-Mattsson, M. & Chapin, N., SOA-zation Framework (SF), Proceeding of PESOS ‟10, Cape

Town, South Africa, 2010.

Kanneganti, R. & Chodavarapu, R., SOA Security, Greenwich, CT. Manning Publications Co., 2008.

Levene, M., Wood, P., XML Structure Compression, available at

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.16.824&rep=rep1&type=pdf

[online], 2002, [accessed 31
st
 January 2010].

Lewis, G.A. & Wrage, L., Model Problems in Technologies for Interoperability: Web Services,

Technical Report CMU/SEI-2006-TN-021. Carnegie Mellon Software Engineering Institute,

available at http://www.sei.cmu.edu/reports/06tn021.pdf [online], 2006, [accessed 22
nd

 January

2010].

Lian, W., Cheung, D.W., Mamoulis, N. & Yui, S.-M., An Efficient and Scalable Algorithm for

Clustering XML Documents by Structure, IEEE Transactions on Knowledge and Data

Engineering, Vol. 16, No. 1, January 2004.

Li, Z.-N. & Drew, M.S., Fundamentals of Multimedia, School of Computing Science, Simon Fraser

University, Pearson Prentice Hall, Upper Saddle River, NJ, ISBN: 0-13-061872-1, 2004.

Li, X., Zaki, Y., Weerawardane, T., Timm-Giel, A. & Goerg, C., HSUPA Backhaul Bandwidth

Dimensioning, TZI-ikom, Communications Networks, University of Bremen, Germany, 2008.

Liefke, H., XMill, An Efficient Compressor for XML, available at

http://www.liefke.com/hartmut/xmill/xmill.html [online], 2004, [accessed 12
th
 July 2009].

Liegl, P., The Strategic Impact of Service Oriented Architectures, Proceedings of the 14
th
 Annual

IEEE International Conference and Workshops on the Engineering of Computer-Based

Systems, 2007.

http://www.infosys.tuwien.ac.at/Staff/sd/papers/Service-OrientedArchitecturesAndMobile%20Services_UMICS2005.pdf
http://www.infosys.tuwien.ac.at/Staff/sd/papers/Service-OrientedArchitecturesAndMobile%20Services_UMICS2005.pdf
http://www.infosys.tuwien.ac.at/Staff/sd/papers/AnAnalysisOfServiceContinuityInMobileServices.pdf
http://www.infosys.tuwien.ac.at/Staff/sd/papers/AnAnalysisOfServiceContinuityInMobileServices.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.16.824&rep=rep1&type=pdf
http://www.sei.cmu.edu/reports/06tn021.pdf
http://www.liefke.com/hartmut/xmill/xmill.html

164 References

Lowe, H.J., Lomax, E.C. & Polonkey, S.E., The World Wide Web: A Review of an Emerging Internet-

based Technology for the distribution of Biomedical Information, Journal of the American

Medical Informatics Association, Volume 3, Number 1, 1996.

Madhavapeddy, A. & Tse, A., A Study of Bluetooth Propagation Using Accurate Indoor Location

Mapping, Springer, UbiComp, LNCS 3660, pp. 105-122, 2005.

Meeker, M., Mobile Internet Will Soon Overtake Fixed Internet, available at

http://gigaom.com/2010/04/12/mary-meeker-mobile-internet-will-soon-overtake-fixed-internet/

[online], 2010, [accessed 24
th
 September 2010].

Miano, J., Compressed Image File Formats: JPEG, PNG, GIF, XBM, BMP, Addison-Wesley, ISBN:

978-0201604436, 1999.

Microsoft, DotNetZip Library, Copyright © 2006-2010 Microsoft Corporation, available at

http://dotnetzip.codeplex.com/ [online], 2010a, [accessed 17th March 2010].

Microsoft, SQL Server 2008, available at http://www.microsoft.com/sqlserver/2008/ [online], 2010b,

[accessed 31
st
 October 2010].

Microsoft, .Net Framework Conceptual Overview, available at http://msdn.microsoft.com/en-

us/library/zw4w595w(v=VS.90).aspx [online], 2010c, [accessed 31
st
 October 2010].

Microsoft, Visual Studio 2008, available at http://www.microsoft.com/visualstudio/en-

us/products/2008-editions [online], 2010d, [accessed 31
st
 October 2010].

Microsoft, Windows Mobile 6, available at http://msdn.microsoft.com/en-us/library/bb278115.aspx

[online], 2010e, [accessed 31
st
 October 2010].

Microsoft, Windows Mobile 6 Professional and Standard Software Development Kits, available at

http://www.microsoft.com/downloads/en/details.aspx?FamilyID=06111a3a-a651-4745-88ef-

3d48091a390b&displaylang=en#Top [online], 2010f, [accessed 31
st
 October 2010].

Microsoft, The Official Microsoft IIS Site, available at http://www.iis.net/ [online], 2010g, [accessed

31
st
 October 2010].

Microsoft, Windows Server 2008, available at

http://www.microsoft.com/windowsserver2008/en/us/default.aspx [online], 2010h, [accessed

31
st
 October 2010].

Mirchandani, C., Evaluating Performance Factors in System Development, MAPLD, 2001.

Natchetoi, Y., Wu, H. & Babin, G., A Context-Dependent XML Compression Approach to Enable

Business Applications on Mobile Devices, Proceedings of Euro-Par, 2007.

Natchetoi, Y., Wu, H., Babin, G. & Dagtas, S., EXEM: Efficient XML data exchange management for

mobile applications, Springer, 2007.

Natchetoi, Y., Kaufman, V. & Shapiro, A., Service-Oriented Architecture for Mobile Applications,

SAM‟08, Leipzig, Germany, May 10
th
 2008.

Nelson, M. & Gailly, J.-L., The Data Compression Book, 2
nd

 Edition, M&T Books, ISBN: 978-

1558514348, 1995.

http://gigaom.com/2010/04/12/mary-meeker-mobile-internet-will-soon-overtake-fixed-internet/
http://dotnetzip.codeplex.com/
http://www.microsoft.com/sqlserver/2008/
http://msdn.microsoft.com/en-us/library/zw4w595w(v=VS.90).aspx
http://msdn.microsoft.com/en-us/library/zw4w595w(v=VS.90).aspx
http://www.microsoft.com/visualstudio/en-us/products/2008-editions
http://www.microsoft.com/visualstudio/en-us/products/2008-editions
http://msdn.microsoft.com/en-us/library/bb278115.aspx
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=06111a3a-a651-4745-88ef-3d48091a390b&displaylang=en#Top
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=06111a3a-a651-4745-88ef-3d48091a390b&displaylang=en#Top
http://www.iis.net/
http://www.microsoft.com/windowsserver2008/en/us/default.aspx

165 References

Nezhad, H.R.M., Model-driven Adapter Development for Web Services Interactions, available at

http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-169/paper7.pdf [online],

2006, [accessed 21
st
 May 2010].

OASIS, Reference Model for Software Oriented Architectures, available at http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=soa-rm [online], 2006, [accessed 17
th
 April

2009].

Ojala, O., Master’s thesis, Service Oriented Architecture in Mobile Devices: Protocols and Tools,

Helsinki University of Technology, 7th November 2005.

Othman, A.K., Zakaria, M. & Hamid, A., TCP Performance Measurement in GPRS Link Adaption

Process, International Journal of Engineering, Volume 2, Issue 1, 2008.

Palmer, J.W., Web Site Usability, Design, and Performance Metrics, Information Systems Research,

ABI/INFORM Global, Vol. 13, No. 2, pp 151-167, 2002.

Papazoglou, M.P. & van den Heuvel, W-J., Service Oriented Architectures: Appoaches, Technologies

and Research Issues, The VLDB Journal 16, pp 389-415, 2007.

Pennebaker, W.B. & Mitchell, J.L., The JPEG Still Image Data Compression Standard, New York,

Van Nostrand Reinhold, 1993.

Phu, P. & Yi, .M., A Service Management Framework for SOA-Based Interoperability Transactions,

Proceedings from KORUS, pp 680-685, IEEE, 2005.

Poslad, S., Ubiquitous Computing: Smart Devices, Environments and Interactions, Jonh Wiley &

Sons Ltd., ISBN 978-0-470-04560-3, 2009.

Preece, J., Rogers, Y. & Sharp, H., Interaction Design: Beyond Human-Computer Interaction, 2
nd

Edition, New York, NY, John Wiley & Sons, 2007.

Quynh, P.T. & Thang, H.Q., Dynamic Coupling Metrics for Service-Oriented Software, International

Journal of Computer Science and Engineering, 2009.

Ravi, N., Scott, J., Han, L. & Iftode, L., Context-Aware Battery Management for Mobile Phones,

PERCOM '08, Proceedings of the 2008 Sixth Annual IEEE International Conference on

Pervasive Computing and Communications, 2008.

Rist, T. & Brandmeier, P., Customizing Graphics for Tiny Displays of Mobile Devices, Personal and

Ubiquitous Computing, Vol. 6, No. 4, pp. 260-268, 2002.

Sanchez-Nielsen, E., Martin-Ruiz, S. & Rodriguez-Pedrianes, J., An Open and Dynamical Service

Oriented Architecture for Supporting Mobile Services, ICWE‟06, Palo Alto, California, USA,

ACM 1-59593-352-2/06/0007, pp 121-128, July 11-14 2006.

Sanders, D., Hamilton, J. & MacDonald, R., Supporting A Service-Oriented Architecture, SpringSim,

pp 325-334, 2008.

Savini, M., Ionas, A., Meier, A., Pop, C. & Stormer, H., The eSana Framework: Mobile Services in

eHealth using SOA, 2007.

http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-169/paper7.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm

166 References

Sedoyeka, E., Almasri, S., Rahman, A. & Hunaiti, Z., HSDPA Wireless Broadband Link

Performance, Faculty of Science and Technology, Anglia Ruskin University, Chelmsford, UK,

2008.

Seeck, R., Data Compression, Binary Essence, available at

http://www.binaryessence.com/dct/en000003.htm [online], 2005, [accessed 24
th
 September

2010].

Senga, E., A Service-Oriented Approach to Implementing an Adaptive User Interface, Masters Thesis,

Nelson Mandela Metropolitan University, Department of Computing Sciences, 2010.

Seong, S.-W., Dictionary-Based Code Compression Techniques Using Bit-Masks for Embedded

Systems, Masters Thesis, University of Florida, Department of Computer and Information

Science and Engineering, 2006.

Seward, J., bZip2, available at www.bzip.org/ [online], 2007, [accessed 12
th
 July 2009].

Shannon, C.E., A Mathematical Theory of Communication, available at http://cm.bell-

labs.com/cm/ms/what/shannonday/shannon1948.pdf [online], 1948, [accessed 24
th
 July 2010].

Shen, H.T., Service-Oriented Architecture, University of Queensland, available at

http://www.itee.uq.edu.au/~infs3204/Lecture_Notes/M1.pdf [online], 2007, [accessed 29
th

September, 2010].

Shrestha, A., MobileSOA Framework for Context-Aware Mobile Applications, Eleventh International

Conference on Mobile Data Management, IEEE, 2010.

Shudong, W. & Higgins, M., Limitations of Mobile Phone Learning, The JALT CALL Journal Vol. 2,

No. 1, pp 3-14, 2006.

Skibinski, P., XWRT32, available at http://www.ii.uni.wroc.pl/~inikep/ [online], 2009, [accessed 12
th

July 2009].

SOABooks.com, The Prentice Hall Service-Oriented Computing Series from Thomas Erl, available at

http://www.soabooks.com [online], 2010, [accessed 30
th
 May 2010].

Spanos, N., 100 IT Performance Metrics, available at

www.itmpi.org/assets/base/images/itmpi/Spanos-Metrics.pdf [online], 2009, [accessed 13
th

November 2010]

StatSoft, ANOVA/MANOVA, available at http://www.statsoft.com/textbook/anova-manova/ [online],

2010, [accessed 2nd May 2010].

Tokgoz, Y., Meshkati, F., Zhou, Y., Yavuz, M. & Nanda, S., Uplink Interference Management for

HSPA+ and 1xEVDO Femtocells, proceedings from IEEE GLOBECOM, 2009.

Tso, F.P., Teng, J., Jia, W. & Xuan, D., Mobility: A Double-Edged Sword for HSPA Networks,

MobiHoc ‟10, Chicago, USA, 2010.

U.S. Census Bureau, Population Division, available at

http://www.census.gov/ipc/www/popclockworld.html [online], 2010, [accessed 1
st
 May 2010].

http://www.binaryessence.com/dct/en000003.htm
http://www.bzip.org/
http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf
http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf
http://www.itee.uq.edu.au/~infs3204/Lecture_Notes/M1.pdf
http://www.ii.uni.wroc.pl/~inikep/
http://www.soabooks.com/
http://www.itmpi.org/assets/base/images/itmpi/Spanos-Metrics.pdf
http://www.statsoft.com/textbook/anova-manova/
http://www.census.gov/ipc/www/popclockworld.html

167 References

van Gurp, J., Karhinen, A. & Bosch, J., Mobile Service Oriented Architectures (MOSOA), available at

http://www.janbosch.com/mosoa.pdf [online], 2005, [accessed 9th February 2009].

Velde, E.T., Atsma, D.E., Hoekema, R., Luijten, J.E., Buddelmeijer, C.I., Spruijt, H.J. & Putten,

N.H.J.J., A Multicenter PDA Project to Support the Clinical Decision Processs, Proceedings of

the IEEE Conference on Computers in Cardiology, pp. 177-179, 2004.

Venu, R., A Project Report on Webkit Port of Mobile SOA, Master‟s Thesis, Department of Computer

Science, Cochin University of Science & Technology, June 2008.

W3C, Web Services Architecture, available at http://www.w3.org/TR/2004/NOTE-ws-arch-

20040211/ [online], 2004a, [accessed 3
rd

 May 2010].

W3C, Web Services Architecture, available at http://www.w3.org/TR/2004/NOTE-ws-i18n-scenarios-

20040730/ [online], 2004b, [accessed 3
rd

 May 2010].

W3C, XML: Extensible Markup Language, available at http://www.w3.org/XML/ [online], 2004c,

[accessed 24
th
 September 2010].

W3C, XML: Extensible Markup Lanuage 1.1 (Second Edition), available at

http://www.w3.org/TR/2006/REC-xml11-20060816/ [online], 2006, [accessed 24
th
 September

2010].

W3C, XML Schema, available at http://www.w3.org/standards/xml/schema [online], 2010, [accessed

24
th
 September 2010].

Wandre, S., EDGE: Enhanced Data Rates for GSM Evolution, Illinois Institute of Technology,

Broadband Networks, 2002.

Wang, L. & Sajeev, A.S.M., Roller Interface for Mobile Device Applications, Proceedings of the

Eighth Australian Conference on User Interface, pp. 7-13, 2007.

WebSphere, WebSphere Version 5.1, Application Developer 5.1.1., Web Services Handbook,

available at http://www.redbooks.ibm.com/redbooks/pdfs/sg24689.pdf [online], 2004,

[accessed 23rd June 2009].

Yongming, G., Dehua, C. & Jlajin, L., Clustering XML Documents by Combining Content and

Structure, International Symposium on Information Science and Engineering, pp. 583-587,

2008.

http://www.janbosch.com/mosoa.pdf
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.w3.org/TR/2004/NOTE-ws-i18n-scenarios-20040730/
http://www.w3.org/TR/2004/NOTE-ws-i18n-scenarios-20040730/
http://www.w3.org/XML/
http://www.w3.org/TR/2006/REC-xml11-20060816/
http://www.w3.org/standards/xml/schema
http://www.redbooks.ibm.com/redbooks/pdfs/sg24689.pdf

168 Initial Testing Appendices

Initial Testing Appendices

Appendix A:

The list of XML files used during the initial testing, described in Section 6.2, were

downloaded from the following Web sites:

 http://xml-file.smartcode.com/

 http://download.wikimedia.org/enwiki/

 http://jeffkubina.org/data/wikipedia/dumps/enwiki/

 http://www.w3schools.com/XML/xml_examples.asp

 http://www.ii.uni.wroc.pl/~inikep/research/Wratislavia/index.htm

 http://infolab.stanford.edu/pub/movies/dtd.html

The list of XML files used is divided into three categories of small, medium and large XML

files.

Small Sized XML Files

Number File Size (MB) Number File Size (MB)

1 9-9.xml 0.00029 16 j_caesar.xml 0.17503

2 AL_meta.xml 0.00034 17 much_ado.xml 0.18617

3 applicationxmltest.xml 0.00061 18 all_well.xml 0.20001

4 hotcop.xml 0.00093 19 r_and_j.xml 0.20839

5 books1.xml 0.00112 20 othello.xml 0.23725

6 AD_meta.xml 0.00521 21 CY_meta.xml 0.24565

7 TR_meta.xml 0.00546 22 hamlet.xml 0.26671

8 1998shortstats.xml 0.00807 23 BA_meta.xml 0.40947

9 4-2.xml 0.00880 24 MT_meta.xml 0.58403

10 schedule20030703.xml 0.00886 25 1998stats.xml 0.61255

11 1998styledshortstats.xml 0.01097 26 1998styledstatistics.xml 0.61381

12 LI_meta.xml 0.09757 27 1998statistics.xml 0.63830

13 dream.xml 0.13832 28 LU_meta.xml 0.71661

14 macbeth.xml 0.15552 29 IS_meta.xml 0.80913

15 merchant.xml 0.17361 30 RS_meta.xml 0.92141

http://xml-file.smartcode.com/
http://download.wikimedia.org/enwiki/
http://jeffkubina.org/data/wikipedia/dumps/enwiki/
http://www.w3schools.com/XML/xml_examples.asp
http://www.ii.uni.wroc.pl/~inikep/research/Wratislavia/index.htm
http://infolab.stanford.edu/pub/movies/dtd.html

169 Initial Testing Appendices

Medium Sized XML Files

Number File Size (MB) Number File Size (MB)

1 nt.xml 0.00029 16 NO_meta.xml 0.17503

2 System.Design.xml 0.00034 17 HU_meta.xml 0.18617

3 index.xml 0.00061 18 ot.xml 0.20001

4 LV_meta.xml 0.00093 19 SE_meta.xml 0.20839

5 bom.xml 0.00112 20 RO_meta.xml 0.23725

6 EE_meta.xml 0.00521 21 DK_meta.xml 0.24565

7 wsu.xml 0.00546 22 casts124.xml 0.26671

8 mondial-3.0.xml 0.00807 23 orders.xml 0.40947

9 SI_meta.xml 0.00880 24 GR_meta.xml 0.58403

10 partsupp.xml 0.00886 25 mains243.xml 0.61255

11 file1.xml 0.01097 26 SK_meta.xml 0.61381

12 uwm.xml 0.09757 27 BG_meta.xml 0.63830

13 LT_meta.xml 0.13832 28 FI_meta.xml 0.71661

14 IE_meta.xml 0.15552 29 mscorlib.xml 0.80913

15 nt.xml 0.17361 30 NO_meta.xml 0.92141

Large Sized XML Files

Number File Size (MB) Number File Size (MB)

1 CH_meta.xml 10.72262 12 GB_meta.xml 48.82530

2 PT_meta.xml 11.33062 13 IT_meta.xml 58.83995

3 PL_meta.xml 14.81124 14 ES_meta.xml 72.26563

4 NL_meta.xml 18.89466 15 FR_meta.xml 73.48315

5 BE_meta.xml 21.29284 16 treebank_e.xml 82.09469

6 CZ_meta.xml 21.67564 17 SwissProt.xml 109.50109

7 initial_search_entries.xml 23.30371 18 dblp.xml 127.66145

8 nasa.xml 23.88995 19 DE_meta.xml 129.09689

9 lineitem.xml 30.79937 20 enwikibooks-20061201-…xml 149.05986

10 enwikinews-20061201-…xml 44.26847 21 AirBase_v3_statistics.csv 182.41079

11 AT_meta.xml 47.83838 22 psd7003.xml 683.64431

170 Initial Testing Appendices

Appendix B: List of Image Files

Test File Full Name Original Size

(KB) Test1 G1-07.bmp 17

Test2 PUNKSKULL.bmp 47

Test3 G1-06.bmp 106

Test4 Man on the Moon-02.bmp 176

Test5 The Idea-01.bmp 250

Test6 pug.bmp 376

Test7 Untitled.bmp 641

Test8 G1_2.bmp 733

Test9 Negatives___.bmp 770

Test10 Orange IMAGE-02.bmp 1135

Test11 Be Strong.bmp 1609

Test12 Untitled.bmp 1877

Test13 The Great One-01.bmp 2305

Test14 The Great One-18.bmp 2368

Test15 Image1.bmp 3165

Test16 Image2.bmp 3601

Test17 Trees and Clouds-01.bmp 3601

Test18 Waves Amidst the Clouds.bmp 3627

Test19 CS-01.bmp 3841

Test20 Image-04.bmp 4922

Test21 The Chronicles-01.bmp 5499

Test22 Leaves.bmp 8001

Test23 Believers.com.bmp 8760

Test24 Wheels.bmp 9751

Test25 Sweet_dreams.bmp 10355

Test26 The Phoenix - Blue.bmp 11075

Test27 Image1.bmp 11251

Test28 Wishlist_for_a_New_World.bmp 11602

Test29 Fish_1.bmp 12830

Test30 Porshe_Fire.bmp 21241

171 Initial Testing Appendices

Appendix C: List of Audio Files

The list of Audio files used during the initial testing, described in Section 6.2, was

downloaded from the following Web sites:

 http://www-mmsp.ece.mcgill.ca/documents/audioformats/wave/Samples.html

 http://www.glooped.com/

 http://www.firstpr.com.au/0-big/

 http://www.simplosive.com/freesamples.htm

 http://www.dogstar.dantimax.dk/testwavs/

 http://compression.ca/act/act-files.html

File Name Original Size

(KB) addf8-GSM-GW.wav 5

WIND.wav 11

M1F1-Alaw-AFsp.wav 47

M1F1-int24-AFsp.wav 138

LaidBackGroove2_140.wav 333

Shamisen-C4.wav 497

Brown_Noise.wav 862

simplosive-mb201-125bpm.wav 993

SharpBassTune_140.wav 1551

3stepoct.wav 2717

ChopsyGuitar_Together_125.wav 2977

Summer_Nt3_110.wav 3195

Summer_SM57_110.wav 3195

ChopsyGuitar_OneAfterTheOther_12.wav5 4466

PowerChords_Together_75.wav 5789

Summer_Together_110.wav 6390

every.wav 6831

HighWall2_90.wav 7351

GuitarNoise2_75.wav 8821

GuitarNoise1_75.wav 9647

cc.wav 23824

ky.wav 35055

be.wav 42562

eb.wav 42968

hi.wav 54609

bm.wav 57751

sl.wav 83037

bi.wav 86772

si.wav 87316

ce.wav 173157

http://www-mmsp.ece.mcgill.ca/documents/audioformats/wave/Samples.html
http://www.glooped.com/
http://www.firstpr.com.au/0-big/
http://www.simplosive.com/freesamples.htm
http://www.dogstar.dantimax.dk/testwavs/
http://compression.ca/act/act-files.html

172 Initial Testing Appendices

Appendix D: Results for Image Compression

 GIF JPEG PNG

Image

Original

Size (KB)

Compr.

Size

Compr.

Ratio

Compr.

Size

Compr.

Ratio

Compr.

Size

Compr.

Ratio

Test1 17 4 23.52941% 3 17.64706% 4 23.52941%

Test2 47 4 8.51064% 4 8.51064% 6 12.76596%

Test3 106 13 12.26415% 12 11.32075% 15 14.15094%

Test4 176 13 7.38636% 15 8.52273% 18 10.22727%

Test5 250 10 4.00000% 9 3.60000% 21 8.40000%

Test6 376 55 14.62766% 24 6.38298% 143 38.03191%

Test7 641 7 1.09204% 9 1.40406% 9 1.40406%

Test8 733 5 0.68213% 12 1.63711% 3 0.40928%

Test9 770 9 1.16883% 39 5.06494% 4 0.51948%

Test10 1135 50 4.40529% 41 3.61233% 94 8.28194%

Test11 1609 74 4.59913% 47 2.92107% 213 13.23804%

Test12 1877 978 52.10442% 883 47.04315% 797 42.46137%

Test13 2305 90 3.90456% 76 3.29718% 107 4.64208%

Test14 2368 167 7.05236% 132 5.57432% 306 12.92230%

Test15 3165 302 9.54186% 48 1.51659% 159 5.02370%

Test16 3601 954 26.49264% 826 22.93807% 2635 73.17412%

Test17 3601 685 19.02249% 217 6.02610% 1297 36.01777%

Test18 3627 571 15.74304% 171 4.71464% 1296 35.73201%

Test19 3841 15 0.39052% 45 1.17157% 28 0.72898%

Test20 4922 70 1.42219% 245 4.97765% 43 0.87363%

Test21 5499 212 3.85525% 104 1.89125% 361 6.56483%

Test22 8001 2185 27.30909% 998 12.47344% 5043 63.02962%

Test23 8760 58 0.66210% 202 2.30594% 97 1.10731%

Test24 9751 227 2.32797% 143 1.46652% 226 2.31771%

Test25 10355 1310 12.65089% 384 3.70835% 2942 28.41140%

Test26 11075 694 6.26637% 380 3.43115% 2031 18.33860%

Test27 11251 971 8.63034% 2420 21.50920% 419 3.72411%

Test28 11602 2047 17.64351% 447 3.85278% 6989 60.23961%

Test29 12830 2645 20.61574% 881 6.86672% 6041 47.08496%

Test30 21241 595 2.80119% 551 2.59404% 1162 5.47055%

Mean 10.69007% 7.59941% 19.29410%

Median 7.21936% 4.28371% 11.49662%

Std. Dev. 11.21166% 9.37601% 20.85987%

173 Initial Testing Appendices

Appendix E: Quality Ratings for Image Compression

 GIF JPEG PNG

Image Rating

Test1 3 3 3

Test2 3 3 3

Test3 3 3 3

Test4 3 3 3

Test5 3 3 3

Test6 3 3 3

Test7 3 3 3

Test8 3 3 3

Test9 3 3 3

Test10 3 3 3

Test11 3 3 3

Test12 1 2 1

Test13 3 3 3

Test14 2 3 3

Test15 3 3 3

Test16 3 3 3

Test17 3 3 3

Test18 2 2 2

Test19 3 3 3

Test20 2 3 3

Test21 2 3 3

Test22 2 3 3

Test23 3 3 3

Test24 3 3 3

Test25 1 3 2

Test26 3 3 3

Test27 3 3 3

Test28 3 3 3

Test29 2 2 2

Test30 2 3 3

Mean 2.633333 2.9 2.833333

Median 3 3 3

Std. Dev. 0.614948 0.305129 0.461133

174 Initial Testing Appendices

Appendix F: Results for Audio Compression

Compressed Size (MB) Compression Ratio (%) Compression Time

(sec) File Name (*.wav) Original Size (KB) MP3 FLAC MAC

MP3 FLAC MAC

MP3 FLAC MAC

WIND 11 9 13 5 81.818% 118.182% 45.455% 0.59 0.42 0.21

M1F1-int24-AFsp 138 48 55 94 34.783% 39.855% 68.116% 0.89 0.59 0.21

LaidBackGroove2_140 333 31 174 155 9.309% 52.252% 46.547% 1.33 0.47 0.32

Shamisen-C4 497 39 127 110 7.847% 25.553% 22.133% 1.95 0.54 0.32

Brown_Noise 862 79 575 563 9.165% 66.705% 65.313% 2.55 0.60 0.43

simplosive-mb201-125bpm 993 62 163 196 6.244% 16.415% 19.738% 1.23 0.59 0.32

SharpBassTune_140 1551 142 422 363 9.155% 27.208% 23.404% 0.30 0.59 0.54

ChopsyGuitar_Together_125 2977 272 1150 992 9.137% 38.629% 33.322% 1.79 0.74 0.87

Summer_Nt3_110 3195 291 1846 1717 9.108% 57.778% 53.740% 1.84 0.80 0.87

Summer_SM57_110 3195 291 1835 1678 9.108% 57.433% 52.520% 1.79 0.99 0.98

ChopsyGuitar_OneAfterTheOther_125 4466 406 1853 1557 9.091% 41.491% 34.863% 1.29 0.84 1.31

PowerChords_Together_75 5789 526 2411 2178 9.086% 53.584% 37.623% 2.66 1.51 1.64

Summer_Together_110 6390 581 3424 3152 9.092% 72.888% 49.327% 2.94 1.46 1.75

every 6831 621 4979 4661 9.091% 24.078% 68.233% 2.78 1.11 1.96

HighWall2_90 7351 668 1770 1575 9.087% 24.078% 21.426% 2.69 1.11 1.09

GuitarNoise2_75 8821 801 3645 3216 9.081% 41.322% 36.458% 4.80 1.39 2.29

GuitarNoise1_75 9647 877 4027 3614 9.087% 41.744% 37.462% 3.90 1.54 2.40

cc 23824 2163 13065 12466 9.079% 54.840% 52.325% 8.36 2.85 5.57

ky 35055 3181 24592 23080 9.074% 70.153% 65.839% 11.54 3.68 8.32

be 42562 3862 17330 15040 9.074% 40.717% 35.337% 12.89 4.30 9.84

eb 42968 3899 28758 27950 9.074% 66.929% 65.048% 13.55 5.11 10.17

hi 54609 4955 19242 20597 9.074% 35.236% 37.717% 16.48 5.91 12.79

bm 57751 5240 39281 37460 9.073% 68.018% 64.865% 17.69 5.93 13.67

sl 83037 7533 33512 27448 9.072% 40.358% 33.055% 28.10 6.72 18.37

bi 86772 7872 50511 48231 9.072% 58.211% 55.584% 26.08 7.28 20.56

si 87316 7922 43804 41157 9.073% 50.167% 47.136% 26.07 7.31 19.68

ce 173157 15708 70536 66524 9.072% 40.735% 38.418% 51.05 17.66 38.39

175 Performance Evaluation Appendices

Performance Evaluation Appendices

Appendix G: Performance Evaluation Results

Server Side

 Performance Evaluation Test 1 Performance Evaluation Test 2 Performance Evaluation Test 3

Metric Web Service 1 Web Service 2 Web Service 3 Web Service 1 Web Service 2 Web Service 3 Web Service 1 Web Service 2 Web Service 3

Original Size (KB) 112.000 9609.000 7439.000 112.000 9609.000 7439.000 112.000 9609.000 7439.000

Compressed Size (KB) 7.950 1105.900 576.000 7.950 1105.900 576.000 7.950 1105.900 576.000

Compression Ratio (%) 7.098% 11.509% 7.743% 7.098% 11.509% 7.743% 7.098% 11.509% 7.743%

Compression Time (sec) 1.027 3.340 2.991 0.018 3.440 3.001 0.035 3.430 2.568

Processing Power (%) 13.967 56.500 55.938 13.188 52.965 59.063 11.625 46.985 58.281

HTC s710

 Performance Evaluation Test 1 Performance Evaluation Test 2 Performance Evaluation Test 3

Metric Web Service 1 Web Service 2 Web Service 3 Web Service 1 Web Service 2 Web Service 3 Web Service 1 Web Service 2 Web Service 3

Decompression Time (sec) 7.267 NA 4.573 6.553 NA 6.333 7.133 NA 4.218

Memory Footprint (MB) 0.082 0.088 0.088 0.070 0.078 0.091 0.074 0.088 0.078

Battery Consumption (%) 0.093% 0.045% 0.067% 0.087% 0.039% 0.078% 0.100% 0.036% 0.052%

Task Completion Rate (%) 100% 100% 100% 100% 100% 100% 100% 100% 100%

Overall Time (sec) 10.625 7.753 10.014 10.002 7.175 11.876 11.057 7.073 10.980

176 Performance Evaluation Appendices

HTC TyTN II

 Performance Evaluation Test 1 Performance Evaluation Test 2 Performance Evaluation Test 3

Metric Web Service 1 Web Service 2 Web Service 3 Web Service 1 Web Service 2 Web Service 3 Web Service 1 Web Service 2 Web Service 3

Decompression Time (sec) 4.17522 NA 3.625 5.012435 NA 4.005 4.6542522 NA 3.7125

Memory Footprint (MB) 0.084 0.086 0.084 0.075 0.076 0.088 0.074 0.082 0.079

Battery Consumption (%) 0.023% 0.009% 0.035% 0.037% 0.015% 0.042% 0.032% 0.008% 0.033%

Task Completion Rate (%) 100% 100% 100% 100% 100% 100% 100% 100% 100%

Overall Time (sec) 7.594 7.887 8.913 11.122 6.588 10.015 7.822 6.457 9.758

