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Abstract 
This paper is focused on the coordination of order and 
production policy between buyers and suppliers in supply 
chains. When a buyer and a supplier of an item work 
independently, the buyer will place orders based on his 
economic order quantity (EOQ). However, the buyer’s 
EOQ may not lead to an optimal policy for the supplier. It 
can be shown that a cooperative batching policy can 
reduce total cost significantly. Should the buyer have the 
more powerful position to enforce his EOQ on the sup-
plier, then no incentive exists for him to deviate from his 
EOQ in order to choose a cooperative batching policy. To 
provide an incentive to order in quantities suitable to the 
supplier, the supplier could offer a side payment. One 
critical assumption made throughout in the literature 
dealing with incentive schemes to influence buyer’s or-
dering policy is that the supplier has complete informa-
tion regarding buyer’s cost structure. However, this as-
sumption is far from realistic. As a consequence, the 
buyer has no incentive to report truthfully on his cost 
structure. Moreover there is an incentive to overstate the 
total relevant cost in order to obtain as high a side pay-
ment as possible. This paper provides a bargaining model 
with asymmetric information about the buyer’s cost struc-
ture assuming that the buyer has the bargaining power to 
enforce his EOQ on the supplier in case of a break-down 
in negotiations. An algorithm for the determination of an 
optimal set of contracts which are specifically designed 
for different cost structures of the buyer, assumed by the 
supplier, will be presented. This algorithm was imple-
mented in a software application, that supports the sup-
plier in determining the optimal set of contracts. 
 
 
1 Introduction 
The term supply chain management refers to cooperative 
management of materials and information flow between 
supply chain partners, to reach goals that cannot be 
achieved acting singly. This paper is focused on the sup-
ply chain from the perspective of inventory management. 
In contrast to multiechelon inventory management, that 
coordinates inventories at multiple locations of one firm, 
a joint inventory replenishment policy in supply chains 
dings of the 36th Hawaii International Conference on System Sciences
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involves coordination among multiple firms [15; pp. 794-
795]. Therefore both in the scientific discussion and in 
practice the coordination of order policy and production 
policy between buyers and suppliers is especially interest-
ing [16; pp. 146-147]. 

When the buyer and supplier inventory problems are 
treated in isolation, under deterministic conditions, it is 
well known that the economic order quantity (EOQ) for-
mula or the economic lot size (ELS) formula gives an op-
timal solution. However, in general, an order policy based 
on the EOQ solution is unacceptable to the supplier, and 
likewise, a production and delivery policy based on the 
ELS solution is unacceptable to the buyer [17; p. 312]. The 
problem of coordination between the order policy and the 
production policy of a buyer and a supplier has received 
considerable attention in recent years. Detailed reviews of 
integrated buyer-supplier inventory models are given by 
Goyal/Gupta [10], Joglekar/Thartare [14], Thomas/Griffin 
[23] and Sharafali/Co [21]. A number of authors, including 
Goyal [8], Banerjee [2], Goyal [9], Landeros/Lyth [16], 
Chatterjee/Ravi [5] and Agrawal/Raju [1], suggest under 
different conditions some joint economic lot size (JELS) 
models where the objective is to minimize the total relevant 
costs for both the buyer and the supplier. It is shown that a 
coordinated or integrated inventory replenishment policy is 
more desirable than individual optimal policies of the par-
ties involved. Nevertheless, should one of the parties in-
volved have the more powerful position to enforce his 
EOQ or ELS on the other party, then no incentive exists for 
these party to choose a cooperative batching policy. Essen-
tially, the more powerful party will be at a disadvantage if 
the JELS solution is adopted. However, by adopting the 
JELS solution the more powerful party’s loss is more than 
offset by the gain of the other party [2; p. 309-310]. Thus, 
to provide an incentive to choose a joint policy the advan-
taged party can offer a side payment to the disadvantaged 
party. Therefore the order and delivery quantities and the 
side payment are determined through a bargaining process 
between the buyer and the supplier. 

The supplier’s problem to influence the buyer’s order 
policy by a price discount or side payment scheme is ana-
lyzed by previous authors, including Monahan [19], Baner-
jee [3], Lee/Rosenblatt [18] and Joglekar [13]. However, 
one critical assumption made throughout in the literature 
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dealing with incentive schemes to influence buyer’s or-
dering policy is that the supplier has complete information 
about the buyer’s cost structure [6; p. 1]. However, it is 
very difficult to estimate buyer’s holding and ordering 
costs unless the buyer is willing to reveal the true values 
of his own cost parameters [17; p. 313]. Because this 
assumption is far from realistic, it can be assumed that 
opportunistic behavior will emerge and be accompanied 
by incomplete and falsified information. As a conse-
quence, the buyer has no incentive to report truthfully on 
his cost structure. Instead there is an incentive for him to 
overstate his total relevant cost in order to obtain as high a 
side payment as possible. Side payment problems can be 
considered as two-person-nonzero-sum games in which 
both players, the buyer and the supplier, try to maximize 
their individual gains. Corbett/de Groote [6] present a 
game theoretical analysis with information asymmetry 
about buyer’s holding cost. Nevertheless, the buyer’s 
ordering costs are assumed as common knowledge. In this 
case, the problem of information asymmetry is elimi-
nated. The buyer’s holding cost can be specified as an 
implicit function of his ordering cost and his EOQ. Thus, 
if the supplier knows buyer’s holding cost and his EOQ, 
the supplier can also derive buyer’s ordering cost. 

The research presented in this paper provides a bar-
gaining model with asymmetric information about the 
buyer’s ordering cost and holding cost, assuming that the 
buyer has the bargaining power to enforce his EOQ on the 
supplier in case of a break-down in negotiations. If the 
supplier has incomplete information about the buyer’s 
cost structure, the buyer can have different functions of 
total relevant cost, assumed by the supplier. In order to set 
an incentive for report truthfully, the supplier can employ 
self-selection or screening [12; pp. 561-562]: the supplier 
determines several contracts which are specifically de-
signed for the different assumed cost structures. The sup-
plier must design incentive-compatible contracts which 
make it attractive for the buyer to choose the contract 
which is designed for his specific cost structure. Thus, the 
supplier has to offer order quantities and side payments 
which guarantee that the buyer accepts the adequate con-
tract. It will be shown that the supplier can determine an 
optimal set of contracts for the assumed cost structures. 
An algorithm for the determination of the optimal set of 
contracts will be presented. This algorithm was imple-
mented in a software based application, that supports the 
supplier in determining the optimal set of contracts for 
different assumed cost structures. 

2 Optimal ordering and production policies 
In this section we will formally introduce the problem of 
coordinating the order policy and the production policy of 
a buyer and a supplier. First, the order policy of the buyer, 
based on his EOQ solution, and the production and deliv-
ery policy of the supplier, based on his ELS solution, will 
be presented. In order to compare a joint economic order 
ceedings of the 36th Hawaii International Conference on System Science
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and production policy with the individual policies, the 
individual policies, the JELS solution will be presented. 
We will show that neither party has an incentive to choose 
the JELS solution. 

2.1 Individual optimal ordering policy 
The discussion and analysis in this paper is restricted to the 
case of a single supplier (V) and single buyer (B) of a spe-
cific product. The periodical demand for the product is 
assumed constant and deterministic. Shortages are not 
permitted at the buyer’s end, and the time horizon over 
which the product is ordered by the buyer and supplied by 
the supplier is infinite. The lead time for the buyer is zero. 
In a situation where the buyer operate independently, the 
total relevant cost per period, )Q(TRC BB , for any order 
quantity BQ  is given by 

B
B

B
BB H

2
Q

Q
DA)Q(TRC ⋅+⋅=          (1) 

where  
D : demand per period [unit/period] 
A : buyer’s ordering cost per order [$] 

BQ : buyer’s order quantity per order [unit] 

BH : buyer’s inventory holding cost [$/unit and period] 
 

The objective of the buyer is to minimize his total rele-
vant cost per period. It is easy to see that for an optimal 
ordering policy every order is received precisely when the 
inventory level drops to zero [4; pp. 145-147]. The EOQ 
and the minimum total relevant cost per period are given by 

B

*
B H

DA2Q ⋅⋅= , BBB HDA2)Q(TRC ⋅⋅⋅=∗ .       (2) 

2.2 Individual optimal production and delivery policy 
The supplier (V) manufactures the regarded product, at a 
finite production rate P, in batches of VQ  and incurs a 
batch set up cost. It is assumed that DP > . For solving a 
production and delivery policy for the supplier it has to be 
considered whether lot streaming is allowed or not. In case 
of lot streaming, assuming a uninterrupted production run, 
shipments can be made from a production batch before the 
whole batch is finished. However, some suppliers cannot 
accommodate lot streaming because of regulations, mate-
rial handling equipment, or production requirements [22; p. 
657]. Without lot streaming the whole production batch 
must be finished before any shipments can be made from 
the batch [11; p. 493]. In this paper it is assumed that the 
supplier follows a lot-for-lot-policy, i. e. after finishing the 
whole production batch the supplier ships the entire lot to 
the buyer. There are still costs associated with processing 
those shipments [16; p. 151]. Thus, the set up costs include 
fixed delivery costs associated with each shipment, i. e. 
costs for inspection, packing, handling and shipping the 
production batch. The objective of the supplier is to find 
the optimal production and delivery policy minimizing his 
s (HICSS’03) 
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total relevant cost per period that is comprised of set up 
cost and inventory holding cost. Banerjee [2] shows the 
average inventory with lot-for-lot production to be: 

Average Inventory 
P
D

2
Q V ⋅=  .      (3) 

The total relevant cost per period, )Q(TRC VV , for any lot 
size VQ  is given by 

V
V

V
VV H

P
D

2
Q

Q
DS)Q(TRC ⋅⋅+⋅=       (4) 

where  
P : supplier’s production rate [unit/period] 
S : supplier’s manufacturing set up cost per production 

run and cost of handling and processing per shipping 
the whole production lot to B [$] 

VH : supplier’s inventory holding cost [$/unit and period] 

VQ : supplier’s lot size [unit] 
 

The ELS and the minimum total relevant cost per pe-
riod are given by 

V

*
V H

PS2Q ⋅⋅= , 
P

HS2D)Q(TRC V
PV

⋅⋅⋅=∗ .    (5) 

2.3 Joint production and ordering policy 
If the supplier follows a lot-for-lot production, the lot size 
corresponds to the quantity delivered. For the buyer, the 
order quantity corresponds to the quantity delivered. So, 
in the JELS solution the lot size corresponds to the order 
quantity, i. e. VB QQ = . The JELS solution leads to the 
inventory cycles as represented in figure 1. 

Figure 1: Inventory cycles 

 
Banerjee [2] suggests a joint economic lot size (JELS) 

model where the objective is to minimize the total rele-
vant costs for both the buyer and the supplier. The joint 
total relevant cost for the buyer and the supplier per pe-
riod for a joint order quantity and lot size VBJ QQQ ==  
can be derived from equations (1) and (4) as follows: 







 ⋅+⋅+⋅+= VB

J

J
JJ H

P
DH

2
Q

Q
D)SA()Q(TRC  .    (6) 

Inventory Supplier (V)

Inventory Buyer (B)

Time

Time

QB

QV
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The joint economic order quantity and lot size and the 
minimum total relevant cost per period for both, the buyer 
and the supplier, are given by 

VB

*
J

H
P
DH

)SA(D2Q
⋅+

+⋅⋅
= , 







 ⋅+⋅+⋅⋅=∗

VBJJ H
P
DH)SA(D2)Q(TRC  .        (7) 

For *
V

*
B QQ ≠ , obviously the most common case, the 

optimal joint order quantity and lot size is situated in the 
interval between the individual optimal solution, i. e. 

[Q,Q]Q *
V

*
B

*
J ∈ . Figure 2 shows the cost functions of both 

parties and the function of the joint total relevant cost in 
case of *

V
*
B QQ ≠ . 

Figure 2: Cost functions 

 

For any joint policy ]Q,Q[Q *
V

*
BJ ∈  the buyer’s total 

relevant cost will be 

)Q(TRC
Q
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BB*
B
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J

*
B
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






+⋅= ,        (8) 

and the supplier’s total relevant cost will be 

)Q(TRC
Q
Q

Q
Q

2
1)Q(TRC *

VV*
V

J

J

*
V
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






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1
Q
Q

Q
Q

2
1

*
B

J

J

*
B >






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+⋅  *
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1
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1
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







+⋅  *

Vj
*
Vj QQ,0Q,Q ≠>∀ .      (10) 

If the buyer and the supplier behave individually and ra-
tionally, they select their individual optimal policies ∗

BQ  

and ∗
VQ . Therefore, in case of *

V
*
B QQ ≠  a joint policy 

VBJ QQQ ==  can only result from negotiations between 
the parties. Should the buyer have the more powerful posi-
tion to enforce his EOQ on the supplier, then no incentive 

*
V

*
J

*
B Q     Q      Q

)Q(TRC JV

)Q(TRC JB

)Q(TRC JJ

Order/Production Quantity

Total Relevant Cost
s (HICSS’03) 
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exists for him to choose any joint policy ]Q,Q]Q *
V

*
BJ ∈ . 

Essentially, the relation (10) shows that the buyer will be 
at a disadvantage if the JELS solution is adopted. On the 
other side, in comparison to the individual optimal order 
policy of the buyer any joint policy ]Q,Q]Q *

V
*
BJ ∈ , as 

can bee seen from figure 2, leads to lower total relevant 
cost for the supplier. Therefore, to provide an incentive to 
choose a joint policy the supplier can offer a side payment 
to the buyer. A side payment is defined as an additional 
monetary transfer between the parties involved that is 
used as an incentive for deviating from the individual 
optimal policy [20; p. 22]. It is to be examined which 
joint policy VBJ QQQ ==  will result from a bargaining 
process between the buyer and the supplier. Assuming 
complete information of the parties involved, it is easy to 
show that the joint optimal policy *

JQ  with an accordingly 

side payment of )Q(TRC)Q(TRCz *
BB

*
JB −=  [$/period] 

results from negotiations. In the following section, we 
will analyze which joint policy VBJ QQQ ==  and asso-
ciated side payment z are offered by the supplier, assum-
ing that the buyer has private information about his func-
tion of total relevant cost. 

3 A bargaining game with asymmetric information 
In this paragraph we analyze the bargaining process be-
tween the buyer and the supplier. Therefore we will at 
first outline the bargaining situation. Thereupon we pre-
sent a bargaining model with asymmetric information. An 
algorithm for the determination of optimal contracts will 
be presented and illustrated by a numerical example. 

3.1 The bargaining situation 
The following bargaining game belongs to the class of 
two-person-nonzero-sum games in which both players, 
the buyer and the supplier, try to maximize their individ-
ual gains. The buyer has the bargaining power to enforce 
his EOQ on the supplier in case of a break-down in nego-
tiations. The supplier makes a take-it-or-leave-it-offer, 
i. e. in the first stage, the supplier makes an offer, and 
then, in the second stage, the buyer can either accept or 
reject and the game is immediately terminated after 
acceptance or refusal by the buyer [7; pp. 55-57]. It will 
be assumed, that the supplier has asymmetric information 
about the buyer’s cost structure. The buyer will only se-
lect a policy other than his individual optimal policy ∗

BQ  
if the increase in total relevant cost resulting from this 
policy is compensated by the supplier. But, the buyer has 
no incentive to report truthfully on his cost structure. 
Moreover, for any joint policy JQ  suggested by the sup-
plier the buyer has an incentive to overstate the increase 
in his total relevant cost resulting from the suggested joint 
policy, )Q(TRC)Q(TRC)Q,Q(TRC *

BBJB
*
BJB −=∆ , in 

order to obtain as high a side payment as possible. 
oceedings of the 36th Hawaii International Conference on System Science
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If the supplier has incomplete information about the 
buyer’s cost structure, different functions of the buyer’s 
cost function may be assumed by the supplier. Therefore, 
the supplier must design incentive-compatible contracts 
which make it attractive for the buyer to choose the con-
tract which is designed for his specific cost structure. The 
supplier has to offer order quantities and side payments 
which guarantee that the buyer accepts the adequate con-
tract. By accepting one of these contracts the buyer indi-
rectly reports truthfully about his cost situation. From sup-
plier’s point of view, it will be assumed that two alternative 
cost functions, )Q(TRC B

1
B  and )Q(TRC B

2
B , with the 

corresponding optimal policies ∗
1,BQ , ∗

2,BQ  are possible. 

3.2 The bargaining model 
Both players are assumed to be risk-neutral. Suppose, from 
the supplier’s point of view two different cost functions are 
possible: the buyer’s cost function is )Q(TRC B

1
B  with a 

probability of 0p1 >  and )Q(TRC B
2
B  with a probability 

of 0p1p 12 >−= . Not being informed about the true cost 
it will be optimal for the supplier to offer two separate joint 
policies 1Q  and 2Q  with corresponding side payments 1z  
and 2z  which guarantee that the buyer accepts the adequate 
contract, i. e. the supplier has to offer a set of contracts. 
The non-linear optimization problem of the supplier is to 
minimize the expected value of his total cost, that is: 

( ) ( )22V211V1

2211V

z)Q(TRCpz)Q(TRCp       
)]z,Q,z,Q(E[TRC min

+⋅++⋅=
     (11) 

s. t. 
)Q(TRCz)Q(TRC 1,B

1
B11

1
B

∗≤−        (12) 

)Q(TRCz)Q(TRC 2,B
2
B22

2
B

∗≤−        (13) 

22
1
B11

1
B z)Q(TRCz)Q(TRC −≤−        (14) 

11
2
B22

2
B z)Q(TRCz)Q(TRC −≤−        (15) 

0z,z,Q,Q 2121 ≥         (16) 
 

Conditions (12) and (13) ensure individual rationality: it 
must be attractive for the buyer to accept the contract. 
Conditions (14) and (15) ensure incentive-compatibility, so 
that it is attractive for the buyer to choose the contract 
which is designed for the specific assumed cost structures. 
The optimization problem with constraints can be trans-
formed to an unconstrained minimization problem: 

( )
( ) ( )

( )
( )
( )
( )22

2
B11

2
B2

11
1
B22

1
B1

22
2
B2,B

2
B2

11
1
B1,B

1
B1

22V211V1

2211

z)Q(TRCz)Q(TRC

z)Q(TRCz)Q(TRC

z)Q(TRC)Q(TRC

z)Q(TRC)Q(TRC

z)Q(TRCpz)Q(TRCp
z,Q,z,QL min

+−−⋅µ−

+−−⋅µ−

+−⋅λ−

+−⋅λ−

+⋅++⋅
=

∗

∗

    (17) 
s (HICSS’03) 
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The cost functions VTRC , 1
BTRC  and 2

BTRC  are strictly 
convex in 1Q  and 2Q . So, the Karush-Kuhn-Tucker- 
(KKT-) conditions are sufficient for an optimal solution. 
For (17) the KKT-conditions can be deduced as follows: 

0
Q

)Q(TRC
Q

)Q(TRC
           

Q
)Q(TRC

Q
)Q(TRC

p
Q
L

1

1
2
B

2
1

1
1
B

1

1

1
1
B

1
1

1V
1

1

≥
∂

∂
⋅µ−

∂
∂

⋅µ+

∂
∂

⋅λ+
∂

∂
⋅=

∂
∂

  (18) 

0
Q

)Q(TRC
Q

)Q(TRC                

Q
)Q(TRC

Q
)Q(TRCpQ

Q
LQ

1

1
2
B

2
1

1
1
B

1

1

1
1
B

1
1

1V
11

1
1

=



∂

∂⋅µ−
∂

∂⋅µ+





∂

∂⋅λ+
∂

∂⋅⋅=
∂
∂⋅

  (19) 

0
Q

)Q(TRC
Q

)Q(TRC           

Q
)Q(TRC

Q
)Q(TRCp

Q
L

2

2
2
B

2
2

2
1
B

1

2

2
1
B

2
2

2V
2

2

≥
∂

∂⋅µ+
∂

∂⋅µ−

∂
∂⋅λ+

∂
∂⋅=

∂
∂

  (20) 

0
Q

)Q(TRC
Q

)Q(TRC                 

Q
)Q(TRC

Q
)Q(TRCpQ

Q
LQ

2

2
2
B

2
2

2
1
B

1

2

2
1
B

2
2

2V
22

2
2

=



∂

∂⋅µ+
∂

∂⋅µ−





∂

∂⋅λ+
∂

∂⋅⋅=
∂
∂⋅

  (21) 

0p
z
L

2111
1

≥µ+µ−λ−=
∂
∂     (22) 

( ) 0pz
z
Lz 21111

1
1 =µ+µ−λ−⋅=

∂
∂⋅    (23) 

0p
z
L

2122
2

≥µ−µ+λ−=
∂
∂     (24) 

( ) 0pz
z
Lz 21222

2
2 =µ−µ+λ−⋅=

∂
∂⋅    (25) 

0z)Q(TRC)Q(TRCL
11

1
B1,B

1
B

1

≥+−=
λ∂

∂− ∗    (26) 

( ) 0z)Q(TRC)Q(TRC 11
1
B1,B

1
B1 =+−⋅λ ∗    (27) 

0z)Q(TRC)Q(TRCL
22

2
B2,B

2
B

2

≥+−=
λ∂
∂− ∗   (28) 

( ) 0z)Q(TRC)Q(TRC 22
2
B2,B

2
B2 =+−⋅λ ∗    (29) 

0z)Q(TRCz)Q(TRCL
11

1
B22

1
B

1

≥+−−=
µ∂

∂−   (30) 

( ) 0z)Q(TRCz)Q(TRC 11
1
B22

1
B1 =+−−⋅µ    (31) 

0z)Q(TRCz)Q(TRCL
22

2
B11

2
B

2

≥+−−=
µ∂

∂−   (32) 

( ) 0z)Q(TRCz)Q(TRC 22
2
B11

2
B2 =+−−⋅µ    (33) 

0,,,,z,z,Q,Q 21212121 ≥µµλλ     (34) 
The values of all the Lagrange’s multipliers 

2121 ,,, µµλλ  can either be zero or greater than zero. 
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Therefore, 16 possible combinations exist for the La-
grange’s multipliers. In case of *

V
*
B QQ ≠  the side pay-

ments 1z  and 2z  have to be greater than zero. With 
0z,z 21 >  and the KKT-conditions (23) and (25) follows: 

0p 2111 =µ+µ−λ−         (35) 
0p 2122 =µ−µ+λ−         (36) 

It applies 0p,p 21 > . Therefore, conditions (35) and (36) 
show that all combinations for the Lagrange’s multipliers 
with 011 =µ=λ  and 022 =µ=λ  are infeasible. From 
substituting (35) in (36) results: 

0pp 1122 =λ−+λ−  ⇔ 2121 pp λ+λ=+    (37) 
Because of 1pp 21 =+  it applies 121 =λ+λ  and all com-
binations with 021 =λ=λ  are infeasible. From this analy-
sis eight feasible cases of combinations for the Lagrange’s 
multipliers can be determined. 

Table 1: Feasible combinations 
Case 1λ  2λ  1µ  2µ  

1 01 >λ  02 >λ  01 =µ  02 =µ  
2 01 >λ  02 =λ  01 =µ  02 >µ  
3 01 =λ  02 >λ  01 >µ  02 =µ  
4 01 >λ  02 >λ  01 >µ  02 =µ  
5 01 =λ  02 >λ  01 >µ  02 >µ  
6 01 >λ  02 =λ  01 >µ  02 >µ  
7 01 >λ  02 >λ  01 =µ  02 >µ  
8 01 >λ  02 >λ  01 >µ  02 >µ  

 
For these alternative cases six possible sets of contracts 

can be derived for the supplier. For each set of contracts, 
all constrains of (11), i. e. (12),(13),(14),(15) and (16), 
must be satisfied, otherwise the solution is infeasible. If 
one solution satisfies these constrains and the KKT-
conditions as well, it is an optimal solution. For the first 
case )0,0,0,0( 2121 =µ=µ>λ>λ  the contracts can be 
derived as follows. With conditions (35) and (36) and 

021 =µ=µ  follows 11 p=λ , 22 p=λ . For 0Q,Q 21 > , 
021 =µ=µ , 11 p=λ  and 22 p=λ  the KKT-conditions 

(19) and (21) can be reduced to: 
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Conditions (38) and (39) represent the first order condi-
tions for the joint economic order quantity and lot size as 
presented in paragraph 2.3. Therefore the offered joint 
policies are equal to the joint optimal policy, which can 
be derived from the JELS model. The offered payments 

1z  and 2z  exactly compensate the increases of cost, in-
duced by the transition from ∗

1,BQ  to 1Q  or from ∗
2,BQ  to 

2Q . For the first case it follows that: 
 
Set of contracts number 1 

V1,B

1
1

H
P
DH

)SA(D2
Q

⋅+

+⋅⋅
=  with 

)Q(TRC)Q(TRCz 1,B
1
B1

1
B1

∗−=     (40) 

V2,B

2
2

H
P
DH

)SA(D2
Q

⋅+

+⋅⋅
=  with 

)Q(TRC)Q(TRCz 2,B
2
B2

2
B2

∗−=     (41) 
This set of contracts satisfies the KKT-conditions and the 
constrains (12) and (13). It is an optimal solution if the 
conditions (14),(15) and (16) are satisfied. The sets of 
contracts for the other five feasible cases can be derived 
in a similar manner. 
 
Set of contracts number 2 
For case 2 and case 6 it follows that: 

2,B1,B2,B1V1

21211
1

HHHpH
P
Dp

)AAApSp(D2
Q

−+⋅+⋅⋅
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V2,B

2
2

H
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Q
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)Q(TRC)Q(TRC)Q(TRC)Q(TRCz 1,B
1
B1

1
B1

2
B2

2
B2

∗−+−= (43) 
This set of contracts satisfies the KKT-conditions and the 
constrains (12) and (15). This set of contracts is feasible 
and optimal if the conditions (13) and (14) are satisfied. 
The offered payment 2z  consists of the compensation for 
the increase of cost, induced by the transition from ∗

2,BQ  

to 2Q  and a bonus for not accepting the offer 1Q , 1z . 
 
Set of contracts number 3 
For case 3 and case 5 it follows that: 
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1
1

H
P
DH
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Q
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2
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1
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1,B2,B1,B2V2
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2
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∗−=        (45) 
This set of contracts satisfies the KKT-conditions and the 
constrains (13) and (14). If the constrains (12),(15) and 
(16) are satisfied it is feasible a and optimal set. 
 
Set of contracts number 4 
For case 7 it follows that: 
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The set of contracts satisfies the constrains (12),(13) and 
(14). It is an optimal set of contracts since the constrains 
(15) and (16) are satisfied and 02 >µ  as well. It applies 

02 >µ  if the following conditions is satisfied: 
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Set of contracts number 5 
For case 4 it follows that: 
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The constrains (12),(13),(15) are satisfied. This set of con-
tracts is feasible and optimal, if conditions (14),(16) and 

01 >µ  are satisfied. For 01 >µ  the following conditions 
must be satisfied: 
s (HICSS’03) 
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Set of contracts number 6 
For case 8 it follows that: 
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This set of contracts is feasible and optimal, if conditions 
(16),(48) and (51) are satisfied. 
 
The supplier can determine an optimal set of contracts for 
the buyer’s assumed cost functions )Q(TRC B

1
B  and 

)Q(TRC B
2
B . If the buyer behaves rationally, it is attrac-

tive for him to choose the contract which is designed for 
his specific cost structure. The expected value of the sup-
plier’s bargaining surplus is given by the difference be-
tween the expected value of his total relevant cost with 
and without bargaining:  

( )
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  (54) 

The expected value of supplier’s bargaining surplus for 
the derived sets of contracts are: 
For the sets of contracts number 1,4,5 and 6: 
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For the set of contracts number 2: 
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Finally, for the set of contracts number 3: 
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3.3 An example 
The algorithm for the determination of optimal contracts, 
presented in the preceding paragraph, will now be illus-
trated by a numerical example. We will consider the sup-
plier-buyer-relationship between an electronics company 
and a car manufacturer in Germany. The electronics com-
pany, the supplier, produces several electronic components 
for a number of car manufacturers in Europe. One of these 
components is a control system for a cooler, which is ex-
clusively produced for a German car manufacturer. A 5-
year contract between the two companies specifies the 
conditions of the supplier partnership. The buyer is respon-
sible for construction specifications. The relationship is 
asymmetric, the buyer has the final decision in most re-
spects. The contract is based on the lifetime of the model 
and the buyer is free to choose another supplier when the 
model is replaced. The buyer’s order policy is based on an 
one-year blanket purchase order for the control system. The 
monthly demand is quasi-deterministic and constant. Thus 
the buyer will place his order based on his EOQ. From past 
orders the supplier anticipates an EOQ of 200Q*

1,B =  or 

150Q*
2,B = . The electronics company employs a lot-for-

lot-policy. Consider the following information for both 
assumed cost structures of the buyer based on possibilities 
for buyer’s EOQ and for the supplier in table 2, with the 
assumed probabilities of 5,0pp 21 == , the demand 

10000b =  and the supplier’s production capacity 
15000d = .  

Table 2: Data of the example 
Supplier Buyer 

(with 5,0p1 = ) 
Buyer 

(with 5,0p2 = )
135S = , 

45HV =  
100A1 = , 

50H 1,B =  
90A2 = , 
80H 2,B =  

300Q*
V =  200Q*

1,B =  150Q*
2,B =  

9000
)Q(TRC VV =∗

 
10000

)Q(TRC 1,B
1
B =∗

 
12000

)Q(TRC 2,B
2
B =∗

 
For the next six month the supplier needs to determine 

an offer, consisting of the supplied quantity and the side 
payment. This offer should include an incentive for the 
buyer to deviate from his EOQ in order to reduce the total 
relevant cost of the supplier. Without bargaining, the total 
relevant cost of the supplier will be  9750)Q(TRC 1,BV =∗  if 
buyer’s true cost function is given by )Q(TRC B

1
B  and 
s (HICSS’03) 
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 11250)Q(TRC 2,BV =∗  if )Q(TRC B
2
B  is the true cost 

function of the buyer. Without bargaining the expected 
value of the total relevant cost of the supplier amounts to 

( ) 10500]0z,150Q,0z,200QE[TRC 2211V ===== . 
With the given data structure the sets of contracts 

2,4,5 and 6 are infeasible because of determined side 
payments 0z,z 21 <  and/or offers 0Q,Q 21 < . The set of 
contracts number 1 is infeasible for (11) because condi-
tion (14) is not satisfied. This set of contracts is given by 

38,242Q1 = , 28,185z1 = , 26,202Q2 = , 12,540z2 = . If 
the true cost structure of the buyer is given by 

)Q(TRC B
1
B  the buyer has an incentive to accept the con-

tract 26,202Q2 = , 12,540z2 =  which is made based on 
the assumed cost function )Q(TRC B

2
B . In this case ap-

plies 10000z)Q(TRC51,9460z)Q(TRC 11
1
B22

1
B =−<=−  

and the total relevant cost of the supplier will be 
45,10248)z,Q(TRC 22V = . The set of contracts number 3 

is optimal for the supplier. This set of contracts is incen-
tive-compatible, i. e. it is attractive for the buyer to 
choose the contract which is designed for his specific cost 
structure. For the optimal set of contracts number 3, 

38,242Q1 = , 39,243z1 = , 25,175Q2 = , 52,145z2 = , the 
expected value of the total relevant cost of the supplier 
amounts to 20,9963]E[TRCV = . The supplier realizes 

 85,9448)z,Q(TRC 11V =  if buyer’s true cost function is 

)Q(TRC B
1
B . He realizes  55,10477)z,Q(TRC 22V =  if the 

true cost function is )Q(TRC B
2
B . With bargaining the 

supplier’s expected bargaining surplus is given by 
80,536)]Q,Q([E 21V =π . 

4 The software application DOSO 
In association with Hulocon Huth Logistics Consulting 
[www.hulocon.de] the algorithm for the determination of 
the optimal set of contracts, presented in the preceding 
paragraph, was implemented in the software application 
DOSO (Determination of the optimal set of contracts). 
DOSO is an interactive application running under Micro-
soft Windows that enables the user to determine the opti-
mal set of contracts. 

Figure 3 shows the graphical user interface of DOSO. 
The user interface is split in two different areas. The area 
on the left hand side is used for data entry. The user enters 
all relevant planning data, i. e. demand, production rate, 
set up cost, inventory holding cost and the assumed cost 
structures of the buyer. Figure 3 shows the relevant data 
of the example presented in the preceding paragraph. The 
area on the right hand side is used for displaying the com-
putational results. Figure 3 shows the individual optimal 
solutions for the supplier and for both assumed cost struc-
tures of the buyer as well as the underlying cost curves. 
Beside the display of the individual optimal solutions, the 
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program computes the six possible sets of contracts and 
evaluates the optimal set. These computational results can 
also be displayed using the area on the right hand side. 
Figure 4 shows that of the six possible sets of contracts, 
number 3 is optimal. For the set of contracts number 1 the 
condition (14) is not satisfied. Therefore the set of contracts 
number 1 is feasible but sub-optimal. The sets of contracts 
number 2, 4, 5 and 6 lead to solutions infeasible, with 

0z1 <  and/or 0z2 < . As can be seen from figure 4, the 
program displays the results of the computation and evalua-
tion using different colors for infeasible and sub-optimal 
sets and for the optimal set of contracts. Moreover, for sub-
optimal sets of contracts the application displays the gain 
of the buyer if he accepts a contract which is not designed 
for his cost structure. 

A joint planning process between buyers and suppliers 
is supported by software systems as Enterprise Resource 
Planning Systems (ERP) and Advanced Planning Systems 
(APS). These systems support information management 
between supply chain partners and a joint planning process. 
The APS Advanced Planner and Optimizer (APO) of SAP, 
for example, provides a module called SAP APO Collabo-
rative Planning. Using this module requested order quanti-
ties and delivery dates of the buyer can be forwarded to the 
supplier via internet. The supplier can accept these orders 
or change the quantities or delivery dates. The resulting 
deviations are displayed by an “Alert-Monitor”. If the 
buyer does not accept the changes they must negotiate on 
order quantities and delivery dates. However, the bargain-
ing process between buyers and suppliers in supply chains 
are not supported by these systems. 

The application DOSO is a software based negotiation 
support system which can be implemented in ERP and 
APS. Using DOSO the supplier is able to generate sets of 
contracts which can be forwarded to the buyer via internet. 
If the buyer refuses the contracts the supplier generates 
another set of contracts in consideration of other possible 
cost structures of the buyer. Therefore DOSO can signifi-
cantly enhance order quantity and due date functionalities 
of ERP and APS. 

5 Conclusion 
In this paper a joint order and production policy is devel-
oped as a bargaining solution. If the buyer has the more 
powerful position to enforce his individual optimal order 
policy on the supplier then no incentive exists for the buyer 
to choose a cooperative order and production policy. A 
joint policy therefore can only be the result of a bargaining 
process between the buyer and the supplier. The research 
presented in this paper offers a bargaining model with 
asymmetric information about buyer’s holding cost and 
ordering cost assuming that the buyer has the bargaining 
power to enforce his EOQ on the supplier in case of break-
down in negotiations. It was shown that the screening suc-
ceeds if the supplier can estimate the possible cost structure 
of the buyer sufficiently exact. 
s (HICSS’03) 
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Figure 3: User interface of DOSO 
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Thus, complete information of both players, the buyer and 
the supplier, does not represent a necessary prerequisite 
for a bargaining solution. 

The presented model was restricted to the case of two 
possible cost structures of the buyer. It can also be ex-
tended to 2n >  assumed cost structures. In this case 

)1n(n −⋅  incentive-compatibility conditions exist. Every 
offered contract has to be compared with n-1 other con-
tracts. However, in practice it is not feasible to offer a 
more than two contracts. Another important practical 
issue should also be considered: In order to derive the set 
of contracts the supplier must obtain the assumed cost 
structures of the buyer. While the buyer’s periodically 
demand can be inferred from his past ordering behavior, it 
is very difficult to estimate buyer’s holding and ordering 
costs. However, the buyer’s holding cost can be specified 
as an implicit function of his ordering cost and his EOQ 
and, likewise, the buyer’s ordering cost can be specified 
as an implicit function of his holding cost and his EOQ. 
The relative insensitivity of the optimal solution permits 
the establishment of a “good” set of contracts. 
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