
A REAL TIME FAST FOURIER

TRANSFORM ANALYSER

A thesis submitted i n fulfilment of t he
requirements for the degree of Master

of Science at

Rhodes University, Grahamstown

by

JOHN STANLEY FISHER

Supervisor: Professor J.A . Gledhill

November 1979

- 5"1-
V

ii

ACKNOWLEDGEM&~S

This project, although largely practical, has required the full

facilities available from the Rhodes Physics Department and the Rhodes

Antarctic Research Program. I would firstly like to thank Professor

J.A. Gledhill for being my supervisor on this project, and for his

continual encouragement throughout the four years of work. I am also

greatly indebted to Allon Poole for his technical and theoretical guid

ance, including the checking of the first draft of this thesis, and to

whom the initial idea of using FFT in this context must be attributed.

Most of my electronics advice was obtained from Clive Way-Jones whose

method of indirect guidance by the suggestion of possible circuit sol

utions, was greatly appreciated. To all the other members of the An

tarctic Research Group, and the Physics Department staff, I must pass

on my thanks for the very pleasing environment they have created for

research work.

Finally, I must thank my wife for the typing of the first draft

of this thesis, and Maureen Jackson for her very efficient and

professional typing of the final copy.

CHAPTER 1 INTRODUCTION

CHAPTER 2 : THE FFT ALGORITHMS

2-1 Discrete Fourier Transform

2-2 Factorising the DFT

2-3 Other FFT Algorithms

iii

CONTENTS

2-4 Simultaneous FFT on two Real Time Series

CHAPTER 3 : HARDWARE FFT

3-1 Chirpsounder Operation

3-2 Hardware or Software

3-3 Algorithm Choice

3-4 System Structure

3-4-1 Memory

3-4-2 Arithmetic Unit

3-4-3 Address Generator

3-4-4 vi' Terms

3-4-5 Sampler and AID Converter

3-4-6 Output

CHAPTER 4 : ARITHMETIC REQUIREMENTS

4-1 Fixed point Binary Arithmetic

CHAPTER 5 : COMPUTER SIMULATION

5-1 Program Development

5-2 FFTHIST

5-3 FFTHIST2

5-4 Other Programs

CHAPTER 6 : MICROPROGRAM CONTROL

6-1 Microprogram Sequencer

6-2 Instruction Set and Programming

6-3 Program Structures

6-3-1 Initialise FFT

6-3-2 FFT

6-3-3 Unscramble

6-3-4 Power Spectrum

1

4

4

10

15

19

22

22

24

25

27

28

29

31

34

36

37

38

38

49

50

52

53

53

55

55

58

61

63

63

63

63

6-3-5 Output Real

6-3-6 Output Imaginary

6-3-7 Initialise Test

6-3-8 Test 1 Memory

6-3-9 Test 2 FFT

6-3-10 Test 3 Unscramble

6-3-11 Test 4 Power Spectrum

6-4 Control Lines

CHAPTER 7 : TEST ROlJI'INES

7-1 Front Panel Controls

7-2 Hardware Test

7-3 Tests with Ionospheric data

CHAPTER 8 CONCLUSIONS

LITERATURE CITED

GLOSSARY

APPENDIX 1

APPENDIX 2

APPENDIX 3

FFTHIST

FFTHIST2

BRPOKE

WPDATA

WPPOKE

FFT16

Microprograms

Circuit diagrams

iv

Back Plane Wiring and Power Supply

Analogue Input Board

Test Control Board

Arithmetic Unit Board
P

W ROM Board

Address Generator Board

Micro Control Board

Memory Board

64

64

64

64

64

65

65

65

67

67

69

72

77

79

80

82

83

84

84

84

85

86

91

92

93

94

95

96

97

98

v

ABSTRACT

From the requirements of the Ionosonde digitisation project,

undertaken by Rhodes University Antarctic Research Group, it was

decided to use the Fast Fourier Transform to compute the spectrum

analysis. Several FFT algorithms are reviewed and properties

discussed, and the Ccoley Tukey algorithm chosen for utilization.

The hardware implementation of this algorithm, and the microprogram

control of the whole system are discussed in detail, and such design

aspects that required computer s~ulation are also treated in detail.

The final testing of the analyser is shown, and includes a test

using data from an ionosonde sounding. The conclusions contain

details of extensions to the analysers present operation, required

by plans to place the whole Chirpsounder under microprocessor control.

1. INTRODUcrION

The Rhodes University Antarctic Research Group operate two

Chirpsounder Ionosondes on a radio link between the South African

Antarctic base, SANAE and Grahamstown. The object of this radio link

is to measure the hourly, daily and seasonal changes of the ionised

layers above the Southern Ocean, for solar-terrestrial research, and

radio propagation predictions.

The prime parameter studied is the virtual height of each layer

as a function of frequency, and this is obtained in a simple ionosonde

by transmitting a pulse of fixed frequency radio waves, and timing the

echo return. The radio waves are reflected by the ionised layers select

ively, dependant upon their frequency, and thus return back to earth as

a signal able to be detected by a radio receiver. By incrementing the

frequency progressively, a plot of virtual height against frequency can

be obtained, this plot being termed an I ionogram I.

Research work, using ionograms as basic data, has been active

for many years and has solved many problems associated with radio prop

agation, but as our knowledge has increased, the requirement for another

dimension to the data has become necessary to explain problems and

clarify theories. The angle of arrival of a received signal is a para

meter that would be of ~ense value to researchers in ray tracing, and

general oblique incidence work, but which, as yet, is not readily available

from present equipment. This, together with Doppler shift measurements,

would according to Rash 1978 (13) greatly increase the progress of

research into travelling ionospheric disturbances.

The difficulty with most present Ionosondes, in respect of angle

of arrival and Doppler shift measurement, is that the phase and magni

tude of the incoming echoes or signals is lost in the data processing,

so that the ionogram can only display the delay of the signals. The

present Chirpsounder Ionosonde also fails in this respect, but due to

its unique technique of ionogram production, the phase and magnitude

of the incoming signals is preserved until the final stages of process

ing and by modifications to the signal analysis method, the phase could

be extracted simultaneously with the magnitude. The signal analysis

modifications are the subject of this dissertation, and the FFT analyser

Sec 1 - 2 -

will essentially replace the final output stage of the Chirpsounder

Ionosonde. A requirement for this analyser, is that it must output the

data in digital format to enable a computer to do further processing, and

in the future, to enable the data to be transmitted from the Antarctic

Base directly to Rhodes University via a telex link.

The principal difference between the Chirpsounder Ionosonde and

the more simple pulse ionosondes, is that a continuous sweep of frequency

is transmitted rather than a pulse. The incoming received echo is then

mixed with the instantaneous transmitter frequency (which will have ad

vanced during the time the echo travelled to the ionosphere and back),

and the resultant difference frequency will be proportional to the

virtual height of the reflecting ionised layer. Since the mixing is

coherent, the phase of the incoming echoes will be a meaningful quantity

and will be present at the output of the receiver.

Thus, the information to be retrieved from the receiver signal

consists of varying frequencies or tones whose frequency and amplitude

indicate the virtual height and amplitude of the echo respectively . A

spectrum analysis technique is therefore required to separate the tones,

and the present chirpsounder employs an analogue spectrum analyser which

outputs the data for recording on photographic film. In order to measure

the angle of arrival of an incoming signal, two antennas must be used

followed by two phase matched receivers, in order that the relative phase

between the two antennas may be determined. The analyser must, therefore,

be able to transform two sets of time data and complete the transforms

in real time, leaving time available for further computation by a digital

computer using the output transforms.

The Fast Fourier Transform (FFT) algorithm for spectral analysis,

is the method chosen to replace the present analogue technique, and it

fulfills all the requirements previously stated providing that it is

utilized correctly. The final stipulation implies that there are several

ways of implementing the algorithm, and the relative speed, for example,

will differ between methods . Chapter 2 deals with the different FFT

algorithms, but Chapter 3 decides how to implement the algorithm for

our particular case. The expansion of Chapter 2 to include details of

algorithms other than the one implemented by Rhodes, was intended to be

of use to an FFT system designer whose overall requirements dictate a

Sec 1 - 3 -

different approach. The hardware approach introduced in Chapter 3, is

expanded in Chapters 4, 5 and 6 and particular problems, for instance,

associated with the arithmetic, are discussed in detail.

The FFT is not a straight forward operation and since this unit

will eventually be installed at both the Grahamstown and the SANAE

chirpsounder stations, it will have to be operated and serviced by

personnel possibly unfamiliar with the theory. Therefore, every effort

must be made to make it simple but efficient, and to include built-in

test procedures to facilitate fault finding. Documentation is obviously

of paramount importance, and this thesis may be used as a manual to the

unit . The Appendices contain circuit diagrams and layouts, which to

gether with the detailed test and set-up procedures found in Chapter 7,

will provide the information necessary for the operation of the analyser.

The computer programs used in the development of the analyser

are included in appendix 1 so that future workers, possibly extending

the capabilities of the present unit, may make use of them. The design

work for the hardware was started 3 years ago and was designed around

integrated circuits that were available at that time, and due to advances

in technology over this period, there are no doubt, quicker and cheaper

methods of producing the same results. In my conclusions, I mention

possible areas of future study which might improve or extend the use

fulness of the unit , but its present working form completely fulfills

the design specification.

Sec 2 - 4 -

2. THE FFT ALGORITHMS

The object of this chapter is to show the development of the

FFT from the continuous Fourier Transform (FT) pointing out the limi

tations in the equivalence between the two, and concluding with the

properties of the FFT that are of use to the system or software designer.

The FFT does not refer to a single algorithm, but to a complete

family, and it is the different properties exhibited by the separate

members which gives the FFT its wide use in both hardware and software

implementations. Optimisation of computation time against system comp

lexity and cost is achieved by careful choice between algorithms.

The differing properties stem from the Discrete Fourier Transfor.m

(DFT) which is derived from the FT to deal with sampled data of the

form required for digital computation. The limitations of the FFT com

pared with the FT are caused by sampling in both the time and frequency

domains and truncation in the time domain as defined by the DFT,and there

fore the development from DFT to FFT is an exact process.

Using the diagrammatic method of Brigham 1')74 (1) the DFT will

be defined, and sampling and truncation examined in respect of their

effect in the frequency domain. The method of factorising the DFT to

form the Cooley Tukey 1965 (2) algorithm, will also follow the notation

of Brigham, and from this the other algorithms will be defined and

compared as "signal flow graphsl1.

2 - 1 Discrete Fourier Transform

The transformation between the time domain signal h(t) and the

frequency domain signal H.(f) is defined by the FFT

H (f) = h (t) e -j2Tfft dt .. 1

and the inverse transformation by

h (t) = H(f)e j2Tfft df • . • . • • • • • •. 2

noting that both h(t) and H(f) are defined between + ooand -00.

For the transfoDnation to be undertaken in a digital computer,

both h(t) and H(f) will have to be truncated to finite limits, and be

Sec 2-1 - 5 -

represented by their respective sampled waveforms h(kT) and H(n/NT)

where NT is the duration of the time domain signal and T the time

between each of the N samples. Both k and n are integers in the range

OtoN-l.

The first limitation of the equivalence of FT and FFT is known

as aliasing, and is due to the incorrect spacing of the samples in the

time domain with respect to the maximum frequency contained in the

signal. The sampling theorem states that if a signal contains no energy

at a frequency greater than a certain frequency

function h(t) can be exactly represented by its

by sampling at a rate of 2f •
c

f , then the continuous
c

sampled values obtained

Thus if the sample rate is lower than that defined above, the

sampled waveform cannot be held to represent the original h(t) and if

an FIT is carried out on this sampled waveform, the resulting transform

will only represent the frequency content of the modified h(t).

Aliasing can best be seen by examining the sampling function

which is defined as :

Set) =

and its FT as

S (f)

&(t - nT)

n = -00

1
T L & (f - niT)

n = - 00

Diagrammatically this is shown in Fig. 2 - 1.

s(t)

1

- --

~TI-

- --

t

~---

-1
T

Fig. 2 - 1. Time domain sampling function.

_1
T

15(f)1

_1 f
T

Sec 2-1 - 6 -

It can be seem that as the spacing of the samples in the time

domain increases, then the frequency domain impulse functions become

closer together, also noticing that both time and frequency domain

series, extend to ~oo. Therefore, any time signal h(t) sampled by set)

(i.e. multiplied by set»~ will produce a transform which is the result

of convolution of H(f) and S(f) (since multiplication in the time domain

is analagous to convolution in the frequency domain), and will thus

appear as the transform H(f) repeated at each of the impulse functions

of S(f). Fig. 2-2 shows a general signal h(t) and its transform,

followed by h(t) x set) and its transform, clearly detailing the

repetition in the frequency domain.

f

, , , ,

h(t)

h(t)· s(t)

, ,

t

t

Fig. 2 - 2. Incorrectly sampled time series.

, , , , ,
, "

,,'" ,

H(f)

1
LT

I H(f). S(f) I

1
IT

f

,/\

f

Sec 2-1 - 7 -

Since h(t) has frequencies above _1_, the sampled transform
2T

contains those frequencies reflected back on top of the lower frequencies.

Therefore, before sampling, the time domain signal must be

filtered (band limited) to contain only frequencies up to half the

sample frequency, or conversely, the signal must be sampled at a rate

of twice its highest frequency.

Proceeding then with this incorrectly sampled example, the next

step towards the DFr is that the infinite number of samples be truncated

to a finite size. The "tophat" function is used for this purpose to

take N samples of the time signal and is therefore of length NT. Fig.

2-3 shows the "tophat" function, and the sin x/x waveform of its trans

form.

x(t)
1 f---------,

NT t

Fig. 2 - 3. "Tophat" truncation waveform.

NT
IX(fll

_1
NT

By convolution of the "tophat" transform X(f) with the sampled

signal transform of Fig. 2-2, the effect of the sin x/x waveform can

be seen as "broadening and rippling". Fig. 2-4 shows this convolution.

Fig. 2 - 4.

h(t) 'S(t) ·x(t) I H(f).S(f).X(f) I

" , , ,

T

,

t

f

f

-

Sec 2-1 - 8 -

The final step in the progression to the DFT is to sample the

continuous waveform in the frequency domain. Fig. 2-5 shows the time

domain signal that results in the sampling waveform in the frequency

domain.

v(t)

--

NT t

Fig. 2 - 5. Frequency domain sampling function.

V(f)

1
NT

II
1\

The result of this frequency domain sampling is to form a

periodic repetition of the truncated time domain signal. The combin

ation of Fig. 2-4 and Fig. 2-5 to form the DFT of our example signal

h(t) is shown in Fig. 2-6.

I

f

h(t)-s(t) 'X(t) 'V(t) IH(f).S(f).X(f).V(f) I
\ \ ,
\ \ \ \ \

\ \ \

,

, , , , , , .

- 'h-l' 'h-t ~_.
T t

Fig, 2 - 6. DFT.

--, , ,
-, .-, ,

- .
, . .'

, - " -,

1
NT

,
"

, - , .
,

Comparison of the first transform in Fig. 2-2 and Fig. 2-6

indicates the degeneration of the ideal FT to the DFT, remembering that

in this example we have violated the sampling theorem.

..

-

f

-

Sec 2-1 - 9 -

If we remove the aliasing caused by incorrect sample rate, we

have only the sin x/x waveform degenerating the transform, and since

the frequency domain is also sampled, the presence of this degeneration

is not always apparent.

h(t)

To

h(t)·s(t)·x(t)

, , ,
:
:
,

-H-
T

t

Fig. 2 - 7. Correctly sampled time series.

H(f)

IH(f).S(f).X(f) I

For example, if we take a cosine wave h(t) which we have

truncated and sampled as described in the previousexamole, we obtain

the transform sequence shown in Fig. 2-7. Notice that the cosine wave

chosen has exactly two cycles within the lItophat" truncation function,
1 and that the zeros in the final transform are regularly spaced NT apart.

Recalling from Fig. 2-5 that the sampling waveform for the frequency

domain V(f) also has spacing of ~ , the final DFT of the cosine wave

f

Sec 2-1 - 10 -

appears as Fig. 2-8 since all the samples except two have fallen on

the zeros of the sin x/x function.

'. , . . ,
!

f ': : :
'. , ,, , .. . , , . , !

! : : :
\ " ~ ... -. . . ,

· ·
;
I \ : \

\ :,(\ .",:
, , 1
1" , : I · " , . " .,",; .' ~ i:-\ '--. --•. --.; I \.

Fig . 2 - 8.

: , , ,
\ :

This is a very special case since in general the sig nal does

not have an integral number of cycles within the NT samples, and there

fore, in the gene ral case, the V(f) samples will not fallon the zeros

of the sin x/x waveform. The side lobes that thus appear are termed

"leakage", and many authors have developed "low leakage windows", (in

other words, truncation waveforms other than the 1Itophat" used in the

above examples) to minimise the size of the side lobes.

Harris 1978 (8) sums together all the properties of these windows

with respect to their effect on the detection of harmonic signals in

the presence of broad-band noise. However, in the case of this study

it was not felt necessary to explore the use of "windows", and the only

further mention of them will be in Chapter 8 where possible future

research will be discussed.

2 - 2 Factorising the DFT

The DFT is defined as :

Where, n

H(~) ~
NT

0,1,

N - 1
~ h(kT) e -j2TInk/N

k ~ 0

N-l.

6

f

Sec 2-2 - 11 -

n _
For convenience of notation we let NT = n, kT _ k and let W = e -j2TT/N

there fore, H (n)

N - 1

L h (k) wnk
.........•.... ...•. ... 7

k = 0

2
This calculation requires N complex multiplications and N(N-l)

complex additions, which is a large task even for a fast computer, and

so the FFT aims at reducing the number of multiplications and additions

required.

I f we assume that N = 2 £ where £ 'is an integer, then for the

transform to be carried out ina binary computer, the indices n and k are

best expressed in binary notation.

i.e. n =
9. -1

r n £_1 8

k = 2£-1 k9.,_1 ... +22k2 + 2k1 + kO 9

where n
i

= 0 or 1

and k = 0 or 1
i

Eq . 7 then becomes

111

L L L h (k9.,..1 ... k 1 ,kO)

kO=O k 1=0 k£_1=0

. 10

splitting the W term, results in the two forms of this basic algorithm.

By separating the values of kR, the "Decimation in time" or

Cooley-Tukey 1965 (2) algorithm is developed.

Also, by separating the values of nR. the "Decimation in frequency"

algorithm is developed.

As mentioned at the beginning of this section, we will develop

the "Decimation in time II algorithm, therefore Eg. 10 becames :

Sec 2-2 - 12 -

1 1

H(n t _1,·· . n1 ,nO) = L L
kO=O k1=O

1

L h(k
t

_1 .. · ·k1 ,kO)

k
t

_
1

=O

W(2t-1nt_1 .•. +2n1+nO) 2 t -
1

k
t

_
1

t-1
W(2 nt_1·· · +2n1+nO)2k1

. • . .. 11

By multiplying out the exponent of W in each case, terms appear

of the
2t (2 t -2n k) " . t N -j21TN

form W t-1 t-1 = 1 S1nce 2 = Nand W = e -- = 1
N

This reduces the factors involved in the exponents of W considerably

and enables the separation of the total sum into t individual summations.

Thus, if the input data is defined as h O(K
t
_1 , ... k

1
,k

O
) then the result

of summation over k
t
- 1 will" be

noticing that k t _1 has been replaced in h1 by nO'

h2 can similarly be defined as

and finally

-j211N
= e N2

.. " 14

. • 15
= +1

Sec 2-2 - 13 -

Writing out each term for hi (

29,-1 (9,-1
h (0 k k)W nO,0)+ho(1,· •.. klko)W2 (nO,l) o , •.. l' 0

Each of the individual summations can be written similarly, split

into two blocks of data, the W term for the first block always being 1

and that for the second, generally being complex. Therefore, the arith

metic operation carried out at each stage can be expressed as h = A + BW

where A is the data addressed by k = 0 and B by k = 1 and W by the requisite

multiplying factor.

A method of graphically portraying the arithmetic procedure of

the FFT, is the signal flow graph . Each elemental operation of A + BW

is tenned a node and the group of operations which convert h into h
r r+l

are termed an array.

A node is shown thus

A
A+8W

W

8

The signal flow graph is best seen with specific values rather

than the general case .

Consider then, the case where N = 8 = 23 9, = 3 which indicates

that there will be 3 arrays . This signal flow graph is shown in Fig. 2-9.

A property of this algorithm, although not evident from the

signal flow graph, is that the output data H(n) has had its sequence

changed. From Eq. 14, it can be seen that the significance of the binary

digits has been reversed i.e. nO is the most significant bit and n9,_l

is the least significant. This bit reversal of the address can also be

seen in the powers of the W terms in the last array, and the same W term

sequence is used in each array, although the last array is the only one

that proceeds completely through the sequence.

16

Sec 2-2 - 14 -

h(O) 0-
H(O)

w w

h (1) H(4)

h(2)
w2 H(2)

h(3) w6 H(6)

h(4)
w'

H(1)

h(5) w5 H(5)

h(6) ----vo H(3)
w

"-

h(7) w6 W7~ H(7)

Fig. 2 - 9. Cooley Tukey Algorithm.

The number of complex multiplications in the FFT flow graph of

Fig. 2-9 can be expressed as N x t, whereas the original DFT equation

contained N2 . Similarly Fig. 2-9 contains N x t complex additions,

whereas the DFT contained N(N-l). This is a vast improvement on the

DFT, but further examination of the arithmetic of each array enables

extra reduction of complex multiplication to Nt/2.

This is achieved due to the equal magnitude but differing sign

of W terms in the flow diagram, which operate on the same data. In

Fig. 2-9, for example, h(D) and h(4) are used twice to calculate the

next array values : in the first case h (4) is multiplied by wD and in the
4

second case by W

Sec 2-2 - 15 -

However, since N 8 in this case,

w4 = w(O + ~)
N

wO 2
x W

wO (Cos 2rrN
= x

2N

= wO x (-1)

Therefore
4 -wO W =

j Sin 27TN)
2N

Similarly, w6 = _w2, w5 = _wi and w7 = _w3. This means that the

product BW need only be calculated once, and then this product added

and subtracted from A. Thus the final arithmetic can be expressed as

A + BW.

Summarizing the properties of the Cooley Tukey algorithm

portrayed in Fig . 2-9, we have

(a) .Ordered input data sequence, but bit reversed output

data sequence.

(b) Uniform arithmetic operation throughout.

(c) W term sequence is bit reversed but identical in each array.

(d) Data separation for each node follows a strict modulo-two

sequence.

(e) Results of calculations can replace the original operands

in the data sequence, since data points are only used once

in calculating the corresponding points in the new array .

(In place arithmetic).

2 - 3 Other FFT algorithms

By bit reversing the data input sequence of the Cooley Tukey FFT,

a different set of properties appears. Fig. 2-10 shows this form of

the algorithm, and as can be seen, the data output sequence is ordered,

the arithmetic operation is uniform throughout, but the w~term sequence

has become ordered and follows a different sequence

W-terms are related in the same way as for Fig. 2-7

in each
. 4

1 . 8. W

array.

° = -w ,
The

Sec 2- 3 - 16 -

2 5 1 7 3 -w , w = -Wand W = -Wand therefore, the arithmetic is still

A + BW throughout.

h(O) WO H(O)
WO WO

h(4) W4 H(1)

h(2)
WO H(2)

h(6) W4 H(3)

h(1) WO H(4)

h(5) W4 H(5)

h(3)
WO H(6)

h(7) 4 W6 W7 H(7)

Fig. 2 - 10. Bit reversed input Cooley Tukey Algorithm.

The Sande Tukey or 'Decimation in Frequency' algorithm, as

mentioned earlier, is developed in an identical manner to the Cooley

Tukey algorithm, except that the n
i

term of the W power in equation 10

is split up to form the separate summations. Fig. 2-11 shows the signal

flow graph for this algorithm, and indicates that it has ordered input

data sequence, but bit reversed data output. The W-terms are related

in the same manner as for the COoley Tukey algorithm, and are seen to

be ordered and follow a different sequence in each array. However,

the main change is that the arithmetic operation is no longer A + BW,

but has the form of A + B and W(A - B) for the two respective new values.

There is a form of the Sande Tukey algorithm that has bit reversed

input data sequence and ordered output, formed in the same way as its·

Cooley Tukey counterpart. It exhibits the arithmetic of A + Band

Sec 2-3 - 17 -

h(O) o-------O:------:i>::::----~ H(O)

wQ
h(1) o-~-___;I---Q_-___7('--~--w·~ H(4)

H(2)

w2

h(3) o---*----1(--*---{j---W6-.!o~-- H(6)

H(l)

h(5) 0--1---*-----\

wQ
;-b---~-----a~-w"~ H(5)

wQ
h(6) o---I------"w '-(:f---¥-W4~ H(3)

h(7) o----W-:r'--t}----W6~~ H(7)

Fig. 2 - 11. Sande Tukey Algorithm.

W(A - B) but has a bit reversed W-term sequence that is the same for

each array. This algorithm is shown in Fig. 2-12.

wQ
h~)~--~~~-~~~~~--+~

h(1) O-:--------"Q,--------jj---jE-----j\---J\w4-<J

w'
h(5) CF---W5,-~--*-~.J}--I-----;;4;-____'.,

h(3) o,......---~>-----'~

H(1)

H(2)

H(3)

H(4)

H(5)

H(6)

~ W WQ
h(7) O::---W7'---,;:o.---vl~:>-----w".:o H(7)

Fia. 2 - 12. Bi t reversed innut Sa.nde Tuk e v Aloo r ithm.

Sec 2-3 - 18 -

By manipulation of the Sande Tukey signal flow graph, shown in

Fig. 2-11, a form of the algorithm with ordered input data sequence and

ordered output, is obtainable. This is shown in Fig. 2-13 as a signal

flow graph using the present notation, and it was modified from a paper

by M.J. Corinthios 1971 (3) where this basic algorithm was used for a

high speed signal processor. The W-term sequence is changed as a con

sequence, and the arithmetic can no longer be carried out 'in place',

i.e. the results of the calculations can not be stored in the same

operand locations as has been the case for all the previously mentioned

algori thms.

h(O) (')--------<:>-----~>------~ H(O)

h(1)

h(2) 0-+--+--+---0

h(3)

h(5) 0--+-"""*-...... '

h(6) C-~----'.

h(7) o----W7--C>------

H(1)

H(2)

H(3)

H(4)

H(5)

H(6)

we
~>__--_,W4~ H(7)

Fig. 2 - 13. Ordered input, ordered output Algorithm.

i.e.

Finally, Fig. 2-14 shows the flow graph for a radix 3 algorithm
2 N = 3 , where there are 2 arrays. It is taken from a recent paper

by E. Dubois and A.N. Venetsanopculos 1978 (5), where it is the starting

pcint for the development of a new algorithm requiring no multiplication.

Sec 2- 3

h(O)

h(3)

h(6)

h(1)

h(4)

h(7)

h(2) ~

"
h(5) ..-. ---'0'- - -4'

/' ',,
h(B) 0'"

Fig. 2 - 14. Radix 3 Algorithm.

- 19 -

2 - 4 Simultaneous FFT on two Real Time Series

H(O)

H(1)

H(2)

H(3)

H(4)

H(5)

H(6)

"
" '" H(7) .

"
"'"

H(B)

As mentioned in Chapter 1 this system must be capable of trans

forming ~wo real time series which represent the outputs of two receivers

with spacially separated antennas. The rel ative phase of the two

signals received from these antennas is the parameter of interest here,

for purposes of angle of arrival measurement and discrimination between

the ordinary and extraordinary rays, and the only point that this con

dition stipulates, is that the two received signals must be sampled at

the same instants and rates to preserve the phase information. Provided

that each sampled time series can be stored in memory, the respective

transforms could be carried out consecutively. All the algorithms, so

far mentioned, compute a transform from one set of time data, where both

the time data and its transform may be complex.

The time data does not usually have an imaginary part, and thus

the imaginary part of the input has to be equated to zero. However, due

to the odd and even properties of the DFT and hence the FFT, a method

has been developed by which two real time series can be transformed

simultaneously be treating one series as the imaginary part of the input.

Sec 2-3 - 20 -

If u(k) is made up of t(k) + js(k) where t(k) and s(k) are two

real time series, then after transformation, U(n) will have, in general,

the form R(n) + j I (n) ,

where, R(n)

and, I(n)

N-l

= L t(k)

k=O

21Tnk
cos -- + s(k)

N
sin

21TTIk
N

N-l

= - L t(k)

k=O

sin
21TTIk 21TTIk

- s (k) cos
N N

It can be seen from Eq . 18 and 19 that if u(k) was entirely real,

(i.e. s(k) = 0) then,

N-l N-l

U(n) T(n) 21TTIk ~
t (k) cos - N- - j L..J

k=O k=O

R (n) + j I (n).
e a

t (k) sin
21TTIk

N

Where R (n) is
e

an even function and I (n) is an odd function and sim
a

ilarly for the case of U(k) being entirely imaginary.

U(n) = j S(n) = Fb(n) + j Ie(n)

S (n) = I (n) - j R (n)
e a

18

19

20

Therefore, ~y decomposing R(n) and I(n) into odd and even parts, the

separate transforms T(n) and S(n) can be obtained from equations 20 and 21.

By decomposition,

and since R(n) is periodic with period N,

R(-n) = R(N-n)

similarly with

I (n)
e =

I (n) =
a

R (n) R (n) R (N-n)
e =-2-+ 2

R (n)
a

I (n) ,

I (n)
--+

2

I (n)
-2--

= R(n) R(N-n)
-2-- 2

I (N-n)
2

I (N-n)
2

21

Sec 2-3 - 21 -

therefore from 20,

T (n)

and from 21,

()
[

I (n) I (N-n)] . [R(n) Sn=--+ -]--2 2 2

This method then enables the transforms of t (k) and s (k) to be separated

after the FFT by a simple addition and subtraction, as defined by equa

tions 22 and 23, and this calculation can also be carried out 'in place'

if T(n) is stored at R(n) and S(n) stored at R(N-n).

22

23

In summary, it can be seen from the few samples, that a particular

algorithm can be developed to exhibit certain properties of use to the

designer. Speed is usually the criterion for development of a new

algorithm, and system complexity usually the limit to the development.

A compromise has, therefore to be drawn, and for this particular situation,
,

ultra high speed was not necessary, but a simple, compact, easy-to-control

algorithm was a major requirement. The choice of algorithm is left to

Chapter 3 where our system requirements are developed and the selection

of software or hardware implementation is made.

Sec 3 - 22 -

3. HARDWARE FF'I'

All the algorithms detailed in Chapter 2 could be implemented

either as software or hardware. Obviously, same are more efficient as

hardware algorithms due, for instance, to certain parallel operations,

whereas others are suited more to software, where, for instance, the

number of multiplications has been reduced (since software multiplication

is time consuming). The medium in both cases is digital but the diff

erences are in the specialisation of certain digital functions to

improve speed. The choice between hardware and software is dictated

by the speed required to complete the algorithm in real time. Expanding

quantitatively on the operation of the Chirpsounder Ionosonde given in

Chapter 1, a realisation of the system requirements will be developed,

from which a choice of algorithm will be made, leading to basic system

block diagrams.

3 - 1 Chirpsounder Operation

The ionosonde's transmitter outputs a signal whose frequency is

linearly increasing with time, and the receiver uses this same signal

as a mixer to obtain a sweeping bandwidth of reception in step with the

transmitter. Fig. 3-1 indicates an echo received at time t1 which has

the same frequency as that transmitted at t .
o

freq

f,

1-------,(-- - -_. - _.
L\t

time

Fig. 3 - 1. Chirpsounder echo detection.

Sec 3-1 - 23 -

The delay 6t of the signal is the parameter of interest, being

the time the radio wave took to reach the ionosphere and return, and

hence giving the virtual height of

a measurement of 6f will give 6t.

reflection, and since 6 £ =

At time tl the transmJ€er

constant,

frequency ,

and hence receiver mixer frequency, has increased to f1 and therefore,

the output of the receiver will contain frequencies, fl + fa and fl -

fa = M.

Since f1 + fa is large compared to 6f, a filter can be used to separate

these two signals and the receiver output frequency is hence directly

proportional to the virtual height of the reflecting layer.

Assuming 6f is 50 kHz/sec (the normal operation sweep rate for vertical
6t

incidence sounding) and if an echo had a frequency differing by 500 Hz

from the present Tx frequency, then:

6t = 500

50x103
10 msec

Therefore the virtual height of reflection c x 6t
2

1500 kilometres.

This is the maximum virtual height from which the chirpsounder

could receive a reflection, (on account of the receiver output being

bandwidth limited to 500Hz) and this height then represents the maximum

frequency to be handled by the spectrum analysis. In practice, the

height range up to 1000 kilometres i.e. 333Hz is analysed, which is

sufficient for the present research.

To satisfy the sampling theorem detailed in Section 2-1, this

signal must be sampled at a frequency of at least 1kHz, and to have a

resolution of 1Hz in the frequency domain 1000 samples must be taken.

(The FFT produces separate +ve and -ve frequency values). Therefore,

samples are accumulated for 1 sec., spectral analysis is carried out on

these samples, and to operate in real time, the next set of 1000 samples

must be obtained simultaneously. The FFT must be completed well within

the 1 sec. to allow further data analysis, such as the comparison of the

phases of echoes that will be carried out on a microcomputer.

Sec 3-2 - 24 -

3 - 2 Hardware or Software

To satisfy the frequency resolution of 1Hz an FFT of N = 1024

= 2
10

was chosen and the sample frequency set at 1024 Hz. From this we

can calculate the number of arithmetic operations that will be required

to compute, for example, a Cooley Tukey algorithm. There will be 10

arrays, each containing 512 nodes, and at each node the operation A + BW

will be carried out, where in general A, B and Ware all complex.

Expanding this in complex form we have :

A + BW = A + (B W - BI WI) + j(A
I

+ (B W + B W)) 24
R- R R R I I R

This clearly would take 4 multiplications and six additions,

making a total for the complete FFT of 20490 multiplications, and 30720

additions. This is a formidable task since multiplication is not a

simple digital operation and requires several clock cycles and complicated

control. Methods have been developed to reduce the number of multipli

cations, or the time spent in the operation, but in general circuit or

control, complexity is increased. For example, Dubois and Venetsanopoulos

1979 (5), use a radix 3 algorithm to exchange all the multiplications for

additions, but the control over selection of data for addition is more

complex. In a "pipe line" FIT processor, a method, as detailed by Liu

and Peled 1975 (11), would achieve a balance between speed and complexity.

This method utilizes new technology in the form of "Read Only Memory"

(ROM), to store partial product terms which could be added and shifted to

achieve the desired multiplication. In a "pipe line" processor, for
10 N = 2 , there are ten arithmetic units which handle the different arith-

metic sequences of each array individually, and hence produce a high

circuit cost.

Finally, sane applications require extra high speed and "parallel

or cellular processors" are used. These replace every node with an

arithmetic unit so that for N = 2 10 , there would be 5120 such units.

Cyre and Lipovski 1972 (4) describe such a system where, instead of

feeding separate multiplication values to each node, they are calculated

from the previous array value, and fed along with the data.

All of these examples are for specialised high speed processors,

and are mentioned here to indicate the manipulation of the algorithms

that is possible, to achieve certain specifications. Our system does

Sec 3-2 - 25 -

not warrant such complexity or speed, so the decision to be made, is

whether the algorithm could be best implemented in software or hardware.

Assume a software system ,is chosen, which is logical since the

data analysis, following tbe FFT, would be a software program in a

mini-computer. How long would it take to complete our FFT? A multiply

routine in a mini-computer typically takes 100 clock cycles, which at

tbe clock rate of lMHz, would mean a total time, for just tbe multi

plications, of 2,048 seconds, which is clearly far too slow. Fast

multiply peripheral units are available, but even if these units only

took 10 clock cycles, signifying a multiplication time of 200 msec,

the time for addition and the complicated control sequence added to

tbis, would leave little time available for the further computation

witbin 1 second.

A hardware system is therefore required, which has the ability

to be clocked, at up to 10 MHz, and that can utilize hardware control

units which take advantage of the modulo-2 structure of some algorithms.

This approach, now depends upon the choice of algorithm to

achieve the optimum balance between speed and circuit complexity.

3 - 3 Algorithm Choice

All algorithms have a basic structure, that is based around the

ari thmetic unit or units. Data has to be obtained in the correct sequ

ence, together witb tbe required multiplying factor, applied to tbe

arithmetic unit, and finally, the results stored again in correct

sequence. The control of the sequence of addressing operands and

results, is a major time consumer, and if this could be automated in tbe

hardware by choice of algorithm, tben the FFT time would be almost reduced

to the arithmetic time alone. The choice between algorithms, therefore,

is reduced to selection of one that can incorporate such a control

sequence, and that does not require too much hardware to achieve the

desired control.

Referring back to the properties of algorithms detailed in

section 2-2 and 2-3, from here one property appears as being of prime

importance to a hardware FFT, tbat is, being able to carry out the

Sec 3-3 - 26 -

arithmetic "in place". An algorithm. without "in place" arithmetic

would require a memory size twice that of an "in place" arithmetic

system, since the results would need clear storage ready for the next

array. The real time system which is envisaged, would require a large

memory, since clearly, new samples could not be stored in the memory

on which the arithmetic unit is operating. Therefore, by cutting down

on memory size, a saving of power, parts count and control time is

achieved.

In order for the algorithm to be automated, it must possess

properties easily implemented by digital functions, such as binary

counters and shift registers, and thus the radix 2 algorithms are fav

oured. Recalling the data selection sequence, required for Fig. 2-9,

notice that for the first array, the points are selected 4 apart i.e.

h(O) and h(4) are used to calculate hi (0) and hi (4). For the second

array, the data is selected 2 apart i.e. hi (0) and h1 (2), and for the

final array, only 1 apart i.e. h 2 (0) and h 2 (1). This is highly modulo-2

arithmetic, achieved by dividing the displacement by 2 each array, and

this form of addressing is common to the algorithms depicted by Figs.

2-9, 2-10, 2-11 and 2-12, i.e. both forms respectively of the Cooley

Tukey and the Sande Tukey algorithms.

The W-term has to be addressed for each node and by examination

of Fig.

that w
4

2-9, it can

° = -W , then

be seen to be a complicated sequence. Recalling

only wO is required for the whole of the first
. 6 2 0

s~nce W = -w , w array, and similarly
2

of the array, and W for the remainder.

is required for the first half

The final array, in which w
5

=
1 7 3

-Wand W = -w selects all the W values required for this algorithm
o 2 1 3

and their sequence is W , W , W , W This is in fact a bit-reversed

sequence, but the main property of this algorithm is that each array

takes its values in the same sequence as the final array, i.e. the first

array uses just the first W-term, the second array uses the first two

W-terms, the third array uses the first four w-terms and if Fig. 2-9 was

for N>8, the fourth array would take the first eight W-terms. This

property is common for Fig. 2-9 and 2-12 and is clearly easily implemented

in a digital system.

Figs. 2-10 and 2-11, however, have a different sequence which
o

can be seen in the final array of Fig. 2-10, as being ordered i.e. W ,

Sec 3-2 - 27 -

1 2 3 w , w , W. Assuming that this algorithm was for N>8 then the sequence

for each array would be : The first array only uses the first value,

the second array uses the first and the middle value, and the third

array uses the first, the middle and the upper and lower quarter pos

itions. This again is very modulo-2 and can therefore be implemented,

but it is more complicated than the previous sequence.

The choice of algorithm has, therefore, been reduced to Fig. 2-9

or Fig. 2-12. They exhibit different arithmetic operations, and Fig.

2-9 accepts ordered data, whereas Fig. 2-12 requires bit reversed data.

To address the data in bit reversed sequence is simple in hardware since

it just requires the address lines to be swopped in order of significance

i.e. the most significant becomes the least significant etc., so there

is no time involved in this operation, and, therefore, no advantage

gained by bit reversing the input as opposed to re-ordering the output.

Similarly, there is nothing to choose between the two types of

arithmetic operation. The Cooley Tukey and the Sande Tukey arithmetic

are shown in Fig. 3-2a and 3-2b respectively, noticing that the only

difference is, that the multiplier changes position.

A A w
w

+
x

+
B

Fig. 3-2a Cooley Tukey Arithmetic. 3-2b Sande Tukey Arithmetic.

3 - 4 System Structure

The choice was made to implement the Cooley Tukey Algorithm of

Fig. 2-9, and Fig. 3-3 shows a basic block diagram of the units required

for the implementation.

Sec 3-4 - 28 -

address memory address address wP

1
-,--

fJ!nerator generator

sampler ~ATA nATA nutput
AID

memory
I

pritrmetic
2 unit

Fig. 3 - 3. Cooley Tukey algorithm implementation.

3 - 4 - 1 Memory

To enable the sampler to access its memory at any time while

the FFT is being processed, a double data and address bus arrangment

is required, and a multiplexer then selects which memory is connected.

Since the sampler only writes to memory, a single direction bus is all

that is required, whereas the system bus has to be bi-directional.

Fo r convenience, the two buses will be called the "sampler bus" and

the "system bus", and similarly for the address. Diagrammatically this

arrangement is shown in Fig. 3- 4.

sam er
bus

memory address
1 10

DIN DOUT

memory
2

address

Fig. 3 - 4 Memory bus multiplexing .

SYSTEM
13 ADDRESS AND

CONTROL

13 SAMPLER

ADORES SAND
CONTROL

Sec 3-4-1 - 29 -

Since the memory has an input pert and an output pert, the bus

separation Can be achieved by using tristate buffers, which either allow

the data through or switch to a high impedence state to allow the other

bus to pass data. The tristate buffer control signals also require

multiplexing and so the multiplexer has to swop 13 lines each from the

sampler and system each time the sampler has taken 1024 samples.

3 - 4 - 2 Arithmetic unit

The structure of Fig. 3-2a has to be implemented, and a choice

has to be made between serial or parallel units. Both adders and multi

pliers are available in serial and parallel form, but if the arithmetic

is to be carried out in 2'8 complement binary, then a serial unit is

the most economical~ In 2'5 complement arithmetic, the sign is auto

matically determined if two numbers are added in a conventional manner.

However, multiplication does not have this property, and usually, the

sign of each number is tested, then the multiplication carried out on

pesitive numbers and finally, the result adjusted in sign. This all

takes extra time and makes extra complication for the arithmetic unit.

FOrtunately, Advanced Micro Devices released a serial multiplier that

accepts 2's complement numbers and this unit is detailed in an article

by J.R. Mick and J. Springer 1976 (12) where Booth's algorithm, the

essence of the unit, is explained.

This algorithm makes use of the fact that a string of l's in

a binary number, running from bit weights 2r to 2s can be represented
s+l r . 5 2

as, 2 - 2 (for s >r) e.g. 011100 (2810) = 2 - 2 = 28. Thus, in

the long-hand method of multiplication, by shifting and adding, Booth's

algorithm states that by examining the multiplier a bit at a time

(serially), on the first 1 of a string, the multiplicand is subtracted

from the partial product, ·and on the first 0 of a string it is added,

and at each operation the partial product is shifted towards its least

significant end . In a software environment, this algorithm achieves a

time saving since it only requires shifts of the partial products at

some stages, but in hardware it is much more useful since it accepts

2's complement numbers, e.g. the 2's complement number 111100 (- 4 10) =

_22 = _ 4 since the string of l's represents the sign and a leading zero

never appears to cause a final addition.

Sec 3-4-2 - 30 -

The integrated circuit designed around this algorithm is the

Am25LS14, and it accepts the multiplicand as an a bit parallel input,

the multiplier is serially applied l east significant bit first, and the

result is output serially , also least significant bit first. Since an

a x a multiplication produces a 16 bit result , the multiplier must have

its sign extended for the extra a clock cycles and so a special shift

register is requir ed. AND thoughtfully produced the Am25LS22 which is

an a- bit sign extend shift register, at the same time as the Am25LS14,

and with the FFT arithmetic in mind they also produced the Am25LS15

which is a quad serial adder/subtractor.

A~

B.
=:: " IlIfllIHI SHIFT A. ::
== REGIS TER X SHIFT + ~ f-- :;

REGISTER ~
SHIFT

= U3 :;
~

REG IS TER :: ~ - -U1 U2 Itflflll U19 U20

I W.
::: U1 UB

U21

fllHll1 + '-
SHIFT

~

REGISTER

e- X f--
~ un U14

U, 1/ I tl 1.1 It jj
~ -/+ B. e--

+ / 1II6 A;

U tttltlltltl
- f- X + SHIFT

~

U4 REGISTER

tltt till '-- U23 U24

I W, U22

II III II, ~ :: SHIFT + = - SHIFT
:: SHIFT

~ REGISTER - REG ISTER ::: REGISTER - X :; - ~

U17 U18 ::: AI ~
==

Ul0 U11 U12 It II tlllHI
us U6 B;

Fig . 3 - 5. Arithmetic unit .

Thus, a serial arithmetic unit was developed using the AMD

integrated circuits and the block diagram is shown in Fig. 3-5.

The diagram in Fig. 3-5 is much more complicated than that of

Fig . 3-2a since A, B and Ware all complex, hence the arithmetic A +

BW becomes :

Sec 3-4-2 - 31 _

" " In Fig . 3-5, A and B are the results of the calculation which for

the FFT are A" = A + BW and B" A - BW. However, Fig. 3-5 is further

complicated since the arithmetic unit has to be able to calculate the

unscramble algorithm detailed in Section 2-4, and also to give a power

spectrum output. These two extra functions have been built into Fig.

3-5 and involve extra adders and utilising the dual serial inputs to

the output shift registers.

This is a convenient method of implementation since time is not

wasted in transferring data between registers as in a parallel system,

and also extra division by 2, required by the arithmetic, can easily

be made by shifts in the output registers.

3 - 4 - 3 Address Generator

This unit had to create the address sequence to access the data

required for each node of each array. Referring to Fig. 2-9 and extra-

polating to the case of N samples, the sequence required is, that for

the
N

selected 2 apart i.e. A is taken from n

and
N

first array, the data is
N

B is taken from 2 + n. For the second array, the data is selected

4" apart,
N

for the third array, selected 8 apart etc. After the first

array, however, skips in the data sequence are required to jump the

blocks of newly calculated values. For instance, in Fig . 2-9 for the

second array, the data sequence for A is 0,1,4,5, and for B is 2,3,6,7.

For A, the addresses 2 and 3 are skipped since they contain the new B"

values, calculated from A at ° and 1, and B at 2 and 3.

N
is =

Since N = 2£, and at the rth array the separation of the values

2£ £-r .
2 ,then the separation is always an integer power of 2.

This means that in a binary nunber I the B address of, for example, the

first array, is obtained by changing the most significant bit of the A

address to a 1. Similarly, the second array B address, is obtained by

changing the penultimate most significant bit. In each array, however,
N

only 2 addresses need be generated, (i.e. the A addresses)

the B addresses are produced. Thus, for our system with N

and from these,

= 210, only a

nine bit counter is required, which will count ° - 511 for the A address

of the first array, and the tenth bit will give the B addresses.

Sec 3-4-3 - 32 -

The sequence for the second array can be produced from this same

nine bit counter by changing the ninth bit to the tenth bit position and

putting the B address bit in the ninth bit position. Thus, the counter

counts 0 - 255 (with the B addresses of 256 - 511) but then the next

count will be 512 (with the B addresses of 768) since the carry skips

the ninth bit position and produces a 1 in the tenth bit. Fig. 3-6

shows this use of the nine bit counter diagrammatically and extends to

producing the count sequence for all the following arrays.

Array

1st

2nd

3rd

4th

5th

6th

7th

8th

9th

10th

Fig . 3 - 6.

x ,
I
I

X
I

X ,
I

X
I
I
I

~ , ,
x , , ,
X
I
I
I

*

,-----9 bit coLinter---------.
8
x

7 6 5
~ ~ ~ .
I " I

I I I I

4
x
I
I
I

X * X x k '" I I I , , I I I
I
I
I '>',- t I I

x/ A+B * x 1<
I " I I

X
I

I , ,," I " '
t ~, I

X x/ A+8 x ~ k
I I , ,, I
I I ' " I. I
It '" I I

1< * x/'A+B x 1<
I I I " " r
I I I " / I
I I I /~_ I

X X X x, A+8 x
I ,
I

* I

I

X ,
I
I

, "
I ' ,
I "
I / -
X x' A+B , ,
I ' '
I , '(

3
x ,

I
I

X , ,
I

~
I

I

* I
I
I

~
I
I

t
x,.

I
I

1<
I

I ,
1< , X

I
I
I

~ x ~/ A+~
I : I ' , ,

I

X
I
I

I

X
I ,
I

* I ,
I

X
I ,
I

* ,
I
I

X
I ,
I

X
/

1
x

I
I

I

X
I
I , ,
X ,
I
I
I
X
I
I ,
X , ,
I

1<
I

,
),(

I

I ,
X
I
I

1<

I
I

1< X
I , t ;' Y,-
~ x * x, A+8 ~ , ,

I

X

I
I
I

X

I ,
I x

I ,
I

X
,

*
I
I
I

X

I " , /

/

/ lIC",_ '

x; A-8
I

*
Array address sequences .

In Fig. 3-6, the term A + B indicates that the bit is 0 for

addressing A or 1 for addressing B, and the X's are the counter bits

which can be 1 or O.

This then can produce all the addressing required for each array

of the FFT, which, after ten arrays, leaves the data in bit reversed

order. A bit reversed address sequence is therefore, required to output

Sec 3-4-3 - 33 -

the transformed data in the correct sequence, and this is simply A + B

and the nine bit counter reversed in bit significance. Another bit

reversed address sequence is required to address the operands for the

separation of the two receiver signals as detailed in Section 2-4. It

requires two addresses, one termed n (i.e. straight counting) and the

other N-n (i.e. reverse counting) where n = 0, 1 •.•. N-1. The n

sequence is the same as that for the output of the transform, whereas

the N-n effectively addressed from the top of data down. By inverting

the n sequence address, that is, making every 0 a 1 and vice versa, and

adding 1, the N-n sequence can be created, so that for n = 1, N-n = 1023

which is the top of memory. For the case n = 0, N-n = 1024 which is outside

the memory space, howev~r, since the transform is periodic in the frequency

domain N-n = -n = ° which addressed the DC term, and therefore there is

only one DC term for both receivers. The N-n sequence requires that the

n sequence be decremented by 1 and then inverted, and this can be carried

out using an adder to add -1 to the n address, and then driving the address

bus through an inverter buffer. To implement these three address sequences,

and to drive the addres$ bus with only one at a time, an arrangement of

tristate buffers is envisaged. Each sequence is isolated from the address

bus by a tristate buffer and only one set of buffers is enabled at anyone

time.

The W-term address sequence is closely associated with the data

address and it would be advantageous to produce it from the data address

counter rather than have a separate counter and sequence unit. Referring

to Fig. 2-9 again, it can be seen that the W-term in the first array is

the same for all the ~ arithmetic operations, and in the second array,

it changes at the ~h operation. In other words, each time the data

address skips a block, the W-term changes. This can be seen in Fig. 3-6,

that whenever the next most significant bit after the A + B bit changes,

so does the W-term. This bit change is difficult to use to clock the

W-term, since the carry is not available externally on a counter, but

the previous state of all l's below the A + B bit is easily detected and

simple "Anding" used to generate a clock for the W-term. This method

requires the W-term to be clocked after its use, to enable the next

value to be available before the data address changes, thus putting the

W-term change ahead of the data address change. Combining all these

functions into one diagram produces Fig. 3-7.

RESET

c
o
~
r

?

Sec 3-4-3 - 34 -

tarry I I CK4
9 Bit Counter I

A.B I I I

~~~W2¥~¥~'4M.~ III II III II 

Add -1 ~ ? 
C1·(9 

? ~nJ 

~-

] 
Address Bus 

Fig. 3 - 7. Address Generator. 

The "controlll block in Fig. 3-7 is incremented each time the 

counter produces a carry (after a count of 512). and this changes the 

A. B. C and C· control sequence . to that required for the next array . 

The bit reversed addresses are enabled by "en nil and "en (N-n)", with 

the FFT address sequence disabled through "en (A + B)". Sequence C· 

is enabled continuously, and the pull up resistors ensure that. as 

the lines are deselected by the tristate buffers, they stay at a 

logical 1. The control sequences for the tristate buffers are tabulated 

in Fig. 3-8 where a 1 indicates disable or high impedence and 0, enable. 

3 - 4 - 4 wP 
Terms 

where P 

Recalling from 
N 

= 0 + 2 -1 

Chapter 2 that wP = e -j21TP = 
N 

21TP 
Cos 

N 

21TP 
-j Sin 

N 

P The real part of W can then be seen to be the first half cycle of a 
N 

Cosine wave split into 2 samples. and t hat the imaginary part is -1 



Sec 3-4-4 

array 

1 
2 
3 
4 
5 
6 

7 
8 
9 

10 

A 
1098765.321 

01 I I I I I I I I 
101 I I I I I I I 

I 101 I I I I II 
I I I 0 I I I I 1 I 
1111011111 
1111101111 
1111110111 
1111111011 
1111111101 
1111111110 

- 35 -

B 

I I 1 I I I I I I 
011111111 
001111111 
000 I III I I 
0000 II I I 1 
0000011 II 
000000111 
0000000 I I 
000000001 
000000000 

Fig. 3 - 8. Address control sequences 

C and C' 
9 8 7 6 5 • 3 2 1 

000000000 
100000000 
110000000 
I I 1000000 
1. 11100000 
I I I I 10000 
I I I I I 1000 
I I I I I I 100 
111111110 
111111111 

times the first half cycle of a Sine wave also split into ~ samples. 

Therefore, there are 512 wP values each having a real and imaginary 

part, and rather than generate these values each time they are required 

(which would take time and special hardware), it was decided to have 

a look-up table. This takes the form of a Read Only Memory (ROM) 

addressed by a counter which is clocked from the address generator. 

Recalling that the power P is a bit reversed sequence through each 

array, the ~ terms were calculated and stored permanently in the ROM 

in this sequence. Fig. 3-9 shows the arrangement with a nine bit counter 

addressing the 512 wP values, and the values being enabled onto the common 

data bus via a tristate drive. 

RESET I 9 Bit Counter CLOCK 

VIP I VIP 

I I I j I I j I 

R I 

ROM ROM 
enWP 

~ -? 
~ -· ·--- -- I 1· . -.... 1 

System data bus 

Fig. 3 - 9. P W look up table. 



Sec 3-4-5 - 36 -

3 - 4 - 5 Sampler and A/D Converter 

The output of the ionosonde receiver which has been band limited 

to 500 Hz is sampled at a rate of 1024 Hz, and each of these samples 

converted into a digital word and stored in memory. This operation 

proceeds independently of the FFT and the only interface is a signal 

from the sampler to indicate that it has taken and stored 1024 samples 

of data. The sample rate is supplied by an external clock, which is 

accurately derived from the Chirp ionosonde time standard. The instant 

of sampling defines the relative phase of the spectral components, and 

hence to be able to compare sequential transforms, the sample time must 

be well defined. 

At the instant of sampling, the data on the real and imaginary 

inputs are held and the Analogue to Digital (A/D) converter triggered 

to start conversion~ The "end of conversion signal" then latches the 

real digital data into the "realo latch and then starts conversion on 

the imaginary input. The end of conversion then latches the imaginary 

data, writes both real and imaginary to memory and finally increments 

the address for the next sample. Fig. 3-10 shows a block diagram of 

this function. 

Analogu 

inputs 

e 

-
'r~le f-

and 
hold 

Analogue AID 
rrultiplexer - converter 

I 

, , 

Latch 
r-'-

t 

, 
, 
, 

Latch 

t 

f---,-
: 
: R 
, 

, 
, 
I , , 

, 
: 

Sampler 
data bus 

102 address 4 Hz Control Address ! 

counter 

t 
Fig. 3 - 10. Analogue Input. 

, , , 
! 

and 
control 

bus 



Sec 3-4-6 - 37 -

3 - 4 - 6 Output 

The transform, when complete, has to be transferred to a computer 

for further analysis, and so the output primarily consists of a latch 

from which the data is read. To facilitate testing of the unit, a 

Digital to Analogue {D/A.l converte r was included after the latch so 

that an oscilloscope trace can be obtained of the output. Fig. 3-11 

shows the block diagram of this unit. 

Syst 

data 

em 

bus 

r 
r 
r 

Latch r 
r 
r 
r , , , , 

Fig. 3 - 11. Output and Display . 

Outpu t 
bus 

- -- -- - - - -

D/A Oscitlo scope 
converter 

This Chapter has shown the development of a basic hardware 

system from the selected algorithm and has detailed the simple operation 

of the hardware. Chapter 4 will discuss the finer details of the 

arithmetic unit such as word size and truncation problems, and comprehen

sive circuit diagrams of the whole system can be found in Appendix 3. 



Sec 4 - 38 -

4. ARITHMETIC REQUIREMENTS 

The previous chapters have developed a basic system as outlined 

in the block diagram Fig. 3-3, and a few of the finer details were 

examined in section 3-4. The choice of size for the data word, (i.e. 

the number of bits used to represent the operands) was expressly not 

mentioned since it was dependent upon several factors, including 

accuracy, number system (2 1 s complement, fixed point, or floating 

point) and the hardware available. This will be discussed here and 

an examination made of the errors involved in an iterative calculation 

such as the FFT. 

The design of the arithmetic unit and its requirements was not 

completely open to choice, since the hardware to be used imposed limi

tations such as word size and number system. Also, the accuracy of 

the output data was limited to 8 bits since it was to be analysed 

further by an 8 bit South West Technical Products Corporation 6800 

microcomputer, and this accuracy was deemed sufficient for the system 

requirements. Therefore, the minimum word size for the system, was 

8 bits, but due to the hardware limitations of the AMD arithmetic chips 

to be used, the expansion above 8 bits was in blocks of 4 i.e . to 12, 

16 or 20, bits. FOr purposes of speed and simplification of control, 

fixed point arithmetic was decided upon for the arithmetic unit. This 

was a considerable deCision, and the consequences had to be carefully 

examined to understand the effect on the accuracy of the data. Al so, 

due to speed, it was decided that the arithmetic was to be carried 

out in 2's complement notation. This was partly due to the fact that 

the serial multipliers chosen could handle 2's complement numbers, 

whereas, if this had not been so, special control would have had to be 

included for the multipliers, thus l osing the advantages gained by 2's 

complement. 

4 - 1 Fixed Point Binary Arithmetic 

Let us consider what happens to the numbers through our repetitive 

arithmetic. The numbers are formed by an Analogue to Digital converter 

which has sampled the input time series, and produced a digital word 

which has a limited number of bits. Let the word have t bits to rep

resent the magnitude of the sample, and an extra bit for the sign, 



Sec 4-1 - 39 -

disregarding, for the present, how the sign and magnitude are handled. 

If we add two such samples together, then the absolute maximum answer 

we can obtain, will have t + 1 bits for the magnitude, and 1 for the 

sign, i . e. the number of bits required to represent the number, has 

increased by 1. Therefore, if we were to allow this to proceed through 

the FFT arithmetic, we would have to ensure that there were enough bits 

in the arithmetic word, to take account of the maximum possible growth 

of the data. Thus, an analysis of the specific arithmetic to be carried 

out, must be made to ascertain whether the numbers are such that the 

results will increase or decrease as the calculations progress. 

P.o. Welch 1969 (14) carried out such an analysis and concluded 

that " .•. in the root~ean-square (rms) sense, the numbers (both real 

and complex) are increased by v'2 at each stage". and " .... the 

maximu:n modulus of the array of complex numbers is nondecreasing". 

This indicates that as a minimum, the values double after every other 

array (stage), so that if we start the calculations with a t bit signif

icance, then after 10 arrays, we will require t + 5 bits minimum to 

represent the data. The peak value of a calculation, however, can exceed 

v'2 times the input after each stage, and it is very data dependent, so 

an upper bound of 2 times each array was fixed as a trial condition to 

ensure no overflow of data. Our data word length, under this condition, 

would then be t + 10 bits. 

a 

Rounded 

-1 1 

b 

Addition 

-1 1 

Fig. 4 - 1. Arithmetic error distributions. 



Sec 4-1 - 40 -

Another approach to analysing this problem was to consider the 

accuracy of the numbers before and after a calculation. Fig. 4-1a, 

indicates a binary number from the output of an AID converter, where 

the shaded area indicates the analogue value distribution which is 

represented by the binary number. This area is ~ 1/2 the least signif

icant bit value and has an equal or level probability within this range. 

Fig. 4-1b, shows the result of adding two AID values, indicating the 

spread of the error, and is obtained by convolution of the two A/D error 

distributions. Hamming 1962 (7) p. 33, develops this distribution, 

and extends the idea to the addition of several values and using the 

"Central limit theorem" concludes that the final distribution will 

approach the normal distribution . Therefore, as the FFT calculations 

are increasing in word size , the error in the least significant hits 

is also increasing, and so the question can be asked, "can these least 

significant bits, that are in error, be discarded"? In other words, 

does the arithmetic unit and memory, have to cater for t + 10 bits, 

or could the data be "rounded" to t bits after each calculation without 

greatly affecting the data accuracy. Several authors deal with this 

and develop upper and lower bounds to the ratio of rms error to rms 

answer, e.g . Welch 1969 (14) or mean square error (floating point) 

e .g. Kaneko, Liu 1970 (10), Glisson, Black, Sage, 1969 (6), but all 

assume that the arithmetic operations are separate and parallel in 

nature so that each operation adds error to the analysis. 

A~ 
::: 11111,,1111 SHIFT A. :; ::: 
~ REG ISTER r-- X ~ 

SHIFT + SHIFT 
REGI STER r--::;: U3 ~ '-- RE GISTER 

~ ~ - r--U1 U2 Itlltttl U19 U20 

I W. 
:: U7 ua 

U21 

IIHiHI + r= SHIFT - REG ISTER - X r-- - un U14 
U9 " 1t~;'''111 '- -/+ ,... 

+/ ",6 A; 

-.J It" """', -f0- X + SHifT -
U. REGISTER 

Itltftl' - U23 U24 

I w un 
1111111 ~ :: SH IFT + :: - - SHIFT 

~ 
SHIFT :::: REGISTER REGISTER 

:::: REGIS TER f- X ~ '--A :: - U17 U1e ::: UIO 1- U11 U12 11111111"1 ::: us U6 B; 
Fig . 4 - 2. Arithmetic unit block diagram. 



Sec 4-1 - 41 -

Our particular case is different due to the serial form of the 

arithmetic operation and the 2'5 complement notation. Referring to 

Fig. 4-2 a duplicate of Fig. 3-5), and assuming that all input 

operands are t bits wide, then the first operation is multiplication. 

W is applied in parallel to the multipliers and B is shifted in LS 

bits first. Out of each multiplier, a 2t bit product appears, LS bit 

first, of which the MS t bits are the data of interest, since the W 

term is a fractional multiplier, ~1. In a parallel processor, the LS 

t bits would be rounded or truncated, hence adding error into the data, 

but in our case, the LS bits are passed on to the addition stage. The 

central addition stage, therefore, operates on two 2t bit words to 

produce a possible 2t + 1 bit sum, which is then passed on to the final 

adders. The MS t + 1 bits are the data of interest, and are to be 

added to A which is a t bit word. Since there are no LS bits of A to 

correspond in binary weight to the t LS bits of the previous sum, 

truncation must occur, and this is carried out by not clocking the final 

adders or A until the t bits have passed. In 2's complement notation, 

the loss of these bits causes +ve numbers to be less in magnitude and 

-ve numbers to be greater. This is unfortunate, since in most theory 

associated with rounding, it is assumed that due to the equal probability 

of obtaining +ve or -ve numbers, the error converges on a zero mean 

value. With truncation on sign and magnitude notation data, the mean 

error does not converge but becomes more -ve after each truncation, 

but here, with 2 ' 5 complement notation, the error becomes -ve at twice 

the sign and magnitude rate. 

The distribution of this error in the final data was of interest 

here, to determine how much of the data to keep after each array, and 

hence, the storage word size. Fig. 4-3, details an analytical approach 

to predict the shape of the distribution after a typical arithmetic 

operation of addition followed by truncation. Each of the 4 stages 

represents the distribution of numbers around the 2's complement number, 

given in binary above the distribution (and decimal, below). The 

first stage, is the equal probability distribution of an ideal AID 

converter with + 1/2 bit accuracy. The second stage is the result of 

addition of two, stage one type distribution numbers, noticing how the 

distributions now overlap. Dividing the result by 2, but keeping the 

fractional part, results in the third stage, and only affects the 

number representation. The operation of truncating this number, is 



1 1 01 

-3 

1 1 0 1 

-3 

1 1 0·1 

Sec 4-1 - 42 -

1 11 0 1 1 1 1 0000 0001 0010 0011 0100 

-2 -1 o 1 2 3 4 

1 1 1 0 1 1 1 1 0000 0001 001 0 0011 0100 

1 1 1·0 1 1 1·1 000·0 000·1 001·0 001·1 010·0 

1 1 1 001 010 

truncated 
A.B 

-1 o 1 2 

Fig. 4 - 3. Truncation error Distribution. 

effectively the same as removing the fractional distributions, and 

lumping them together with the non- fractional distributions. Thus, 

the fourth stage SIDWS this and it can now be seen that the mean of 

each distribution is 1/4 LS bit higher than the number representing 

it . 

2 

This analysis unfortunately, . cannot proceed much further, since 

the convolution of the distributions, after adding, becomes less easy 



Sec 4-1 - 43 -

to determine analytically. The "central limit theorem" would usually 

come to the rescue here and define a normal or Gaussian distribution 

as result after several convolutions, but, in our case, there is no 

central limit, since the mean shifts -ve after each truncation. An 

empirical examination was therefore carried out, using FFTHIST in 

which one set of data was simultaneously transformed by 2 FFT routines. 

The first routine had a full accuracy arithmetic unit and the second 

had arithmetic to simulate the typical worst case truncation, that 

could occur in the FIT.. That is, our serial arithmetic was simulated, 

but it was assumed that scaling was necessary after each array. The 

difference between these two sets of data was calculated after each 

array and printed out in histogram form with 8 bins representing 1 LS 

bit. To smooth the histograms, 5 different types of input data were 

used, these being mixtures of sine-waves with or without noise, and 

then the 5 sets of values averaged after each array. 

Fig. 4-4 is the result of this program, run for N = 512. (Due 

to the fact that two arrays of data had to be kept in memory simul

taneously, together with a hit reversed sequence for the wP 
calculation, 

memory space became limited, and an N = 1024 transform was not physically 

possible) • 

The histogram after the second array confirms, nicely, the trap

ezium shaped distribution of Fig. 4-3, and it can be seen to degenerate 

slowly into what could be termed a "skew Gaussian" distribution after 

the final array. The fact that this trapezium distribution was not 

present after the first array is due to the computer program not 

taking into account the original ~ 1/2 LS bit distribution of the data, 

and if all the histograms of Fig. 4-4 were convolved with this distri

bution, a truer likeness to Fig. 4-3 would appear. What is of interest 

in Fig. 4-4 is that, although the standard deviation of the e"ror 

increases after each array, the mean value does not, and in fact it 

appears to remain constant after the third array. 

This was a very useful point and it enabled a decision on word 

size to be made. As was stated earlier, the minimum possible word size 

was 8 bits and the next highest, easily achieved in hardware, was 12 

bits, and so it was decided to split the 4 extra bits into 2 for over

flow at the MS end and 2 for truncation errors at the LS end. From 



Sec 4-1 

00 

00 

o 

o 

Fig. 4 - 4 . FFT truncation error distribution. 



Sec 4-1 - 45 -

the final histogram of Fig . 4-4, and extrapolating to include a 10th 

array, only the error shown above - 2 would appear in the output data 

since the 2 bits (or 4 times the LS bit value) would encompass the 

+ 2 bits of error shown. 

Thus, the system would now have a 12 bit data bus of which the 

middle 8 constitute the data to be finally output, and the arithmetic 

unit would have to cater for 12 bit operands. The memory would also 

have to be 12 bits wide, but this could easily be extended since the 

unit of memory was configured 1024 x 1 bit. One problem was encount

ered, however, with the multipliers of the arithmetic unit, since they 

accept an 8 bit parallel operand as the multiplier (the w term in this 

case) and would have to be cascaded to enable a 12 bit word to be 

loaded~ In the cascaded configuration, however, extra clock pulses 

would be required just to shift the data out, and hence, would increase 

the arithmetic time. 

In a very thorough paper by Glisson, Black and Sage, 1970 (6), 

the whole problem of arithmetic word size and "Kernel" or wP 
size is 

dealt with. By fixing two of the variables , such as data wo rd and 

arithmetic word size, the wP 
word size was varied and the mean square 

error in the result calculated . From input dynamic range and hardware 

considerations, they choose the optimum data word size as 10 bits, and 

with the arithmetic carried out at 16 bit precision they conclude that 

there is nothing to be gained by having wP greater than 10 bits, since 

the quantization error due to 10 bit data size is of the same order as 

the wP introduced error. 

It would appear from this that in our case, with an 8 bit data 

word and 12 bit arithmetic, that having wP as 8 bits would be a fair 

choice. It was decided to test this, and FFTHIST was modified to in-
P clude two sets of W data, one set with full accuracy and the other with 

variable limits. The accuracy between the two sets of data was only 

compared after the final array and printed out in histogram format. 

This program was called FFTHIST2 and is detailed in Chapter 5. A 

random number generator was used to produce psuedo-white noise as input, 

and the transform was again computed for N = 512. The results of this 

test are shown in Fig. 4-5 where wP size is varied from 6 bit (32-32) to 

11 bit (1024-1024) accuracy. 



Sec 4-1 - 46 -

1024 -1024 

.1~----------~.~O.75!::JL--L--1-no-L--1---t:~~O~.5~----------~ 

512 - 512 

-
-

256 -256 -

128 -128 

64 -64 

32 -32 

Fig. 4 - 5. FFTHIST2 results. 

The x - axis is me"asured in LS hit values and it can be seen 

that the distributions above 7 bit accuracy (64-64) remain within 

! 0,5 IS bit value (which is the minimum accuracy of the output data). 

This, therefore, confirms the findings of Glisson, Black and Sage, 

and indicates that a wP 
table to 8 bit accuracy (128-128) is ample 

for our requirements. 

When the wP table was being prepared to 8 bit accuracy, a problem 

was encountered due to the 2's complement notation. The table could not 



Sec 4-1 - 47 -

be fit into the range +128 to -128 

does not exist. This meant that the 

since in 8 bit 2's complement +128 
P W value +1 could not be defined, 

and this is the most frequently used value. To make +128 equivalent 
P to the W value +1, the arithmetic unit has to divide by 128, which is 

an integer power of 2 and thus easily achieved, but if the range was 

+127 to -127, then the data would have to be divided by 127 and this 

is not easily carried out. 

Therefore, a more detailed 

ascertain whether a 7 bit (64-64) 

examination was made of Fig. 4-5 to 
P accuracy W table would be acceptable. 

The standard deviation of each histogram was calculated, assuming that 

they are approximately normal in distribution with zero mean, and the 

results are shown in Fig. 4-6. As can be seen, there is only a very 

small spread in values up to the 64-64 case, and then after that, the 

standard deviation increases rapidly. This would indicate that 7 bit 

accuracy is the absolute minimum that can be used in this case and from 

Fig. 4-5 it can be seen that only a very small amount of error (less 

than 1%) is outside the ~ 1/2 LS bit range which, as stated earlier, 

is the minimum value of error. Thus the look-up table was computed to 

7 bit accuracy and programmed into ROM. The program WPDATA was used to 

compute the values and to store them in a bit reversed order at specific 

locations in computer memory, for access by the PROM programmer routine. 

The PROMs used were configured 256x4, so that to make up the look-up 

table of 512 values, each real and imaginary, 8 PROMs were required. 

0·315 

STANQA 
DEVIATION 

0·25 

0 ·125 

Fig. 4 - 6. 

32-32 

64-64 
1024-1024 512-512 256-256 128-128 

P 
W error standard deviation. 



Sec 4-1 - 48 -

In conclusion, the design of the arithmetic was finalized as 

8 bit output data accuracy, 12 bit arithmetic word size, and 7 bit 

wP table size. The input data size need only have been 8 bits, but 

a 12 bit AID converter was used for two reasons, firstly to place the 

quantization error below the middle 8 bits of the arithmetic word, 

and secondly to prevent overflow from large dynamic range input data. 



Sec 5 - 49 -

5. COMPUTER SIMULATION 

The object of this exercise was to test the algorithm completely 

and enable any hardware problems to manifest themselves. The simulation 

had to be done in such a way that the hardware constraints, such as word 

size and the truncation method, were reproduced in the software. To this 

end it was originally thought that a low level language such as assembler 

should be used since one could approach more closely to the data handling 

techniques used in the final system. After serne effort, however, it 

became apparent that this approach was far too cumbers erne , and in fact it 

was not simulating the hardware, since most of the functions, such as 

address control, were done in the hardware by specialised circuits. 

Therefore the simulation was programmed in a higher level language 

(Basic) and as it turned out all the parameters that required simulation 

could be made available . The control program was made general in size; 

(that is N could be chosen to be 2, 4, 8, 16, 32, 128, 256, 512 or 1024), 

and all the early development of the program was carried out with N = 64. 

It became apparent at this stage that the form of Basic (MSI BasiC), 

being used would be too slow to do any serious simulations with N = 1024 

since the program would take 3 hours to complete. A faster form of Basic, 

SO Basic, was available on the computer, but it differed from MSI Basic 

in that it was a compiler language. This implies that once the program 

has been written into a text editor, it has to be compiled and assembled 

befo re it can be executed, whereas the MSI Basic is an interpreter 

language where the program is written into a program already running, 

which interprets the entered program and does the necessary computation. 

The MSI language is ideal for development since small changes can be made 

instantly, but due to the interpreter structure, a lot of time is wasted 

in transferring between the entered program and MSI itself. SO Basic, 

however inconvenient for development, has the extra speed to be able to 

do the N = 1024 transform in 15 minutes, and so the MSI program was 

transferred into this language almost directly. 

The two forms of the program are detailed in this chapter and 

listings of both are found in Appendix 1. The results of the simulation 

however are discussed where relevant in other chapters. 



Sec 5 -1 - 50 -

5 - 1 Program development 

Using the theory developed in Section 2-2,in particular the 

signal flow graph of Fig. 2-9, the contr ol block diagram for the Cooley 

Tukey algorithm was drawn up, as shown in Fig. 5-1. A and B represent 

the two addresses o f the operands required for the FFT butterfly, whereas 

X and Yare address limits, which cause the address sequence to change 

from array to array. This diagram does not include any provision for 

unscramble or power spectrum control. 

Bl =Bl .Yl 

input data 
input N 

Yl = Nl 

Yl = Yl12 
reset wP 

Yl <1 YES 

NO 

Al=O 
Bl=Yl 
Xl =Yl 

get new wP 

Al=Al.l 
Bl=81.1 

YES . 

Xl =Xl .2Yl 
Al =Al • Yl P 
get new W 

YE S Bl<Nl NO 

Fig . 5 - 1 Cooley Tukey algorithm contro l 



Sec 5-1 51 -

As was mentioned earlier, most of the development of this part of 

the program was undertaken in MSI Basic and so the listing below is an 

MSI Basic listing of the program which represents the control of Fig . 5-1. 

5 Input NI 

200 YI = Nl 

210 Yl = YI/2 

220 IF YI < 1 THEN 300 

230 Al = 0 : BI 

240 GOSUB 500 

250 Al = Al + 1 

260 IF Al <> Xl 

270 xl = Xl + 2 

280 IF Bl <> Nl 

290 GOTO 210 

300 (output data) 

STOP 

= Yl : Xl 

: Bl = Bl 

THEN 240 

x Yl : Al 

THEN Bl = 

= Yl 

+ 1 

= Al + Yl 

Bl + Yl : GOTO 240 

(Input data) 

P (reset w ) 

P (get new W ) 

(Arithmetic Routine) 

P (get new W ) 

The remarks in parenthesis refer to subroutines not listed, which 
P 

will change depending on their implementation. For example, the W table, 

during the early development of this program, was calculated from a bit 

reversed sequence of addresses which was stored in a data file, but later 

the whole wP table was stored in a data file in bit reversed sequence in 

an attempt to reduce the canputation time. 

This simple control program therefore became the heart of all the 

test programs developed, with the associated subroutines handling t he 

simulation of the parameters of interest. Most of the simulation work 

was centered on the arithmetic routine with parameters such as operand 

word size being adjusted to test their effect on the accuracy of the 

calculations. The INT (integer) statement was used to keep the operands 

within a particular word size, and also to s~ulate the truncation process 

being carried out in the hardware system. The INT statement in both MSI 

and SD Basic takes the integer value less than or equal to the given number. 

Thus 3.35 would yield 3 but -3 . 35 would yield -4 . This slight difference 

between the definition of the integer function for Basic and that, for 

instance for electronic calculators, is quite useful since the Basic 

definition simulates the operation of truncation of 2's complement numbers 

as detailed in section 4-1. 



Sec 5-1 - 52 -

A typical arithmetic routine to simulate the FFT butterfly is 

500 T1 = (M (B1) .. W1 - AS (B1) " W2)/128 

T2 = (M (B1) " W2 + AS (B 1) .. W1)/128 

M (B1) = INT«M (A1) - T1) /Zl ) 

AS (B1) = INT «AS (A1) - T2) /Zl) 

A4 (A1) = INT «M (A1) + T1)/Zl) 

AS (A1) = INT «AS (A1) + T2) /Zl) 

RETURN 

In this example, the data is stored in arrays A4 and AS, being 

the real and imaginary parts respectively, and W1 and W2 represent the 

wP values, real and imaginary respectively, which have been calculated 

prior to ente ring the arithmetic routine. The wP 
values have been cal

culated within the range + 128 and are integer, but the complex multi

plication carried out at T1 and T2, is allowed a fractional part since 

as detailed in section 4-1 the serial arithmetic retains these LS bits . 

The 2 '5 complement truncation is simulated in the final four equations, 

where the term Zl scales the results by 2 when required. 

This type of arithmetic is used in two simulation programs, FFTHIST 

and FFTHIST2, both written in SD Basic, and a listing of each can be found 

in Appendix 1 . 

5 - 2 FFTHIST 

This program was written to simulate fully the arithmetic unit, 

in particular the truncation after each set of calculations. In order to 

compare the errors involved with this truncation, a standard or accurate 

arithmetic unit had to be simulated as well as the test arithmetic 

routine, and the differences between the results of the two arithmetic 

routines computed after each array. Input data had therefore to be split, 

for use by each arithmetic routine and thus A4 and AS are the real and 

imaginary parts of the truncated arithmetic data, and A6 and A7 are the 

real and imaginary parts of the standard data. The wP values W1 and W2 

are identical for each arithmetic unit to prevent another variable from 

affecting the results. To calculate the wP values, the program requires 

a bit reversed sequence, and this is computed by a program called BRPOKE 

which stores the sequence at memory location Dooo upwards. Therefore, 



Sec 5-2 - 53 -

BRPOKE must always be executed first, before FFTHIST. However, once 

the bit reversed sequence is in memory it will not be corrupted and 

thus need only be computed once per session. 

The histogram type output is produced by sorting the calculated 

errors into bins, each bin representing an eighth of a LS bit of the 

output data. The number of times such an error is computed, is then 

printed out on the computer terminal or on an auxilliary printer. 

The input data for this program is calculated internally from 

parameters that are input through the terminal at Run Time, so that 

data with mixtures of cosine waves and random noise can be produced. 

To smooth the resultant histograms, several transforms of different sets 

of data were computed and the histograms averaged. The results of this 

program are discussed in section 4-1. 

5 - 3 FFTHIST2 

This program retains the same input data generation and output 

histogram routines of FFTHIST, but the arithmetic being simulated is 

different. The object of this program is to ascertain the optimum size 
P 

for the W term. In FFTHIST it was fixed 
P arithmetic routine uses fully accurate W 

at ~ 128, but here a standard 

values to compare with an 

arithmetic routine using variable wP size selected through the input 

terminal. Two sets of data are computed as in FFTHIST, but both arith

metic routines are identical and correspond to the standard or 

accurate type used in FFTHIST. Again the bit reversed sequence is 

required, and is produced by BRPOKE and stores at DOOO upwards. The 

results of this program are discussed in Section 4-1. 

5 - 4 Other programs 

p 
Once the word size for the W term was decided, a program was 

written to calculate the full table of values rounded to the required 

significance, and to store them in a data file. This program was called 

WPDATA, and was followed by another program, WPPOKE written to access 

the data file and store the table of values at memory location COOO 

upwards, to enable the PROM programmer to gain access to them. Listings 

of both of these programs can be found in Appendix 1. 



Sec 5-4 - 54 -

In conclusion, the FFT s~ulation programs produced for this 

project were intended to be as general as possible, in order that other 

software users may have access to them. However, due to the features 

that had to be simulated, none of the programs are really efficient in 

computing a general FFT. An example of MS! Basic program FFT16, dev

eloped prior to changing to SD Basic, is given in Appendix 1, but a 

prospective FFT software user is advised to concentrate on the SD Basic 

program structure due to its speed and ability to handle the large 

arrays of data required in the FFT. The programs served their purpose 

well, manifesting several possible hardware problems and giving a general 

confidence that the theory behind the hardware was sound. 



Sec 6 - 55 -

6. MICROPROGRAM CONTROL 

The functional operation of the analyser has been fully discussed 

so far, but no mention has been made of the overall control. In section 

3-2, the choice of a hardware system was made, but this still required 

software in same fonm to do the overall control. It was decided to use 

ROM as a storage medium for the software because of its fast access time, 

(typically 35 nanosecs) and also its nonvolatile nature, rather than 

having to load the system program after each power down. The sequencing 

of the address of this ROM was originally intended to be carried out by 

a specialized binary counter which could branch forward and backward under 

control of system parameters. However, Advanced Micro Devices had done 

similar design work previously and were marketing an integrated circuit 

called a microprogram sequencer Am 2909, which included the address 

counter and all the control for branching. Therefore, the microprogram 

control design became centered around the Am 2909. 

The concept of controlling a system via microcode stored in 

memory is not new, but in the past it has been restricted to large 

systems only, where the hardwired logic alternative approach becomes too 

unwieldy. Its first large scale use came in minicomputer control where 

op codes from the main memory were decoded via a micro-instruction memory 

into the control signals required for a particular operation, and this 

has enabled many firms to emulate other systems just by changing the 

micro-instruction memory. This approach has become available by the 

advent of fast, low cost memory in the form of ROM which can be easily 

programmed to any specification. 

6 - 1 Microprogram Sequencer 

The micro-instruction memory in this application contains outputs 

for all the control lines of the system (e.g. arithmetic unit and memory) 

together with outputs which control its own addressing and sequencing. 

The start address and subsequent major branch addresses are obtained from 

outside the memory, enabling the overall sequence of operations to be 

laid out in correct order, with the micro-instruction memory requesting 

the next operation address upon completion of the present operation. 

The major branch addresses are obtained from another ROM, termed 

the 'start address ROM', and this is also controlled by the micro-



Sec 6- 1 - 56 -

instruction memory. It has two parts howe v e r, wh ich are selected from 

the front panel to switch the system from a fully automatic FFT routine, 

to a sequence of test routines; this being achieved by controlling the 

M.S. address bit of the ROM U12. 

Due to the repetitive nature of the FFT algorithm, the operations 

defined under a single start address can encompass the whole algorithm. 

That is, a sequence of three start addresses for example, could define 

the operations: FFT, Power Spectrum, and output routines, and under 

each of these addresses , there might be as many as 100 micro-instructions 

which together, carry out the operation. 

~ 1l~~S~t 
ZERO 

elK 

&Wr~s ~ IIIIIII coun"" 
CLR I s~luS ROM U12 

(t U1l 

----
e se ~ct Ul1 MCLK 

I 
~ - Microprogram opcoo: program = / / address = driver sequencer select 

display = I 

Ul U7 U8 U9 Ul0 

T1- 8 

1 -l.. 

ROM ROM or I- M 
~ 4K7 U14 U15 U17 U18 U3 U4 us U19 U20 U21 :L~ (016) ! II II I 1 I I I I I 

bistable 
U22 \7 U26 

latches 
U26 r- U2 U6 U23 U24 U25 

III I opcode 

clock reset and latch enable and load 
controls MeLK controls status bit code 

Fig. 6 - 1. Micro control board block diagram. 

The micro program s equen cer then controls the order of thes e 

micro-ins tructions. Fig . 6-1 shows the block diagram of the system 



Sec b-l - 57 -

micro program control with the Am 2909s (UB & U9) as the central feature. 

The micro-instruction in this case is 40 bits wide and built up from 

256x4 bit ROMs so that to address 256 words, an B bit address is required, 

and to handle this, 2 x Am2909 are cascaded . The control lines are 

split into two types; those that occupy only one clock cycle, such as 

resets and latch controls, and those that last for several cycles, such 

as enable the load controls. The latter type are latched, and these 

include the controls for the microprogram sequencer (status bit code and 

op code). Of the single cycle type, there are those that are active 

high, those ~ctiye low, and two that are toggle types. To affect a 

branch, a status bit is selected for test, and a positive result causes 

the next op code to be changed, directing the microprogram sequencer to 

change to a different source for its next address. Fig. 6-2 details 

the structure of the Am 2909 and how the op codes change the address . 

TI 
EGISTER R 
E NABLE 

R 

a " 

so 

S1 

• 

OR,. , 

= 

1lt 

(LO(K 

Register 

-~ -~ -' 

Multiplexer 

~ 
'\ 

, 
y 

Fig. 6 - 2 . Am 2909 internal structure. 

PUSHI POP 

Stack 
pUP 

pointer IT 
FILE 

ENABLE 

4 x4 
fi Ie 

Program 
count er 

-!! 

( IN 

Incrementer (OUT 

-t-' 



Sec 6-1 - 58 -

so and Sl select the source for the next address from either 

direct, register, stack or PC (program counter), whereas PUP and FE 

control the loading of the stack and positioning the stack pointer, 

OR inputs mask out the address bits and ZERO takes all outputs to the 

low state. The direct D and register R inputs are paralleled in our 

system, OE is permanently tied low, Cout, of the LS Am 2909, is tied 

to Cin of the MS Am 2909, and only ORO and OR!, of the LS Am 2909 are 

used. Combinations of the eight control lines, ORO, ORI, RE, PUP, FE, 

Cin, Sl and SO, are selected from ROM U10 to affect the particular 

microprogram sequencer functions, and ZERO is connected to a Master 

Reset on the front panel of the analyser to enable the whole system to 

be stopped. 

6 - 2 Instruction Set and Programming 

The instruction set referred to here, is that pertaining to 

the microprogram sequencer control, and is the set of combinations of 

the 8 control lines that are stored in ROM (U10). U10 is termed the 

OP CODE mapping PROM since it converts the 4 bit op code plus status 

bit, into the 8 control lines, and can thus contain 25 = 32 different 

combinations or functions. During development, a large number of op 

codes were used, but for the final system, only 7 were selected. Before 

discussing the individual op codes, it would be best to analyse the 

programming required. 

M elK 

changing 

Am 2 9 09 
AND LATCHES 

CLOCKED 

ADDRESS 
stable changing 

xxxxx 
r-- RESET, ~ 

CLOCK 
AND LATCH 

LINES ENABLED 

Am2909 
AND LATCHES 

CLOCKED 

Fig. 6 - 3. Micro-instruction clock cycle. 

stable 



Sec 6-2 - 59 -

As mentioned earlier, several of the system control lines, in

cluding the op code select lines, are latched, and this greatly affects 

the analysis of the program. Referring to Fig. 6-3, which is the clock 

timing diagram for the whole microprogram control board, it can be seen 

that the latches are clocked at the same instant as the Am 2909s, and 

also, all the unlatched lines are enabled during the preceding half cycle. 

Therefore, the latched control lines are half a cycle behind their un

latched counterparts and must be considered as effective in the next 

clock cycle, when programming. Hedges 1978 (9) explains that, by the 

addition of the latch "the MCU becomes a next-address calculator instead 

of a current address calculator - in other words, the MeU is one instruc

tion ahead of the data manipulation". In this system, the latched control 

lines can be considered as set up conditions for action that will take 

place in the next cycle. The status of the system is monitored by 7 

status bits, which mostly change in response to a transition in an un

latched control line, such as a clock, but asynchronous status bits are 

latched prior to testing to ensure correct monitoring. 

The programming, therefore, consisted of selecting the control 

line functions required, ensuring that latched lines were set up in the 

previous cycle and then deciding where to obtain the next instruction. 

Particular problems were encountered when programming that had to be 

overcome in special ways, and in one case, with special hardware. 

These were mainly to conserve ROM space, since several routines had to 

be written in the 256 words available. Firstly, during the FFT, it 

became necessary to scale the data after the arithmetic unit, but this 

scaling was not regular each array, only alternate arrays. Therefore, 

to write a general routine to handle this, the special case of scaling 

each array was programmed, and on each alternate array, a status bit 

caused one divide by 2 to be skipped. To skip an instruction, however, 

meant in effect, incrementing the PC by 2 and this was not a standard 

function; however by utilising the ORO control line, it could be achieved. 

The ORO line forces the LS bit of the ROM address to 1, so that if the 

divide by 2 to be skipped was positioned at an even address, then a true 

test of status bit would force that even address bit to a 1, hence missing 

out that instruction. 

The second problem, also in the FFT routine, was where a part

icular function was repeated many times consecutively, hence being waste-



Sec 6-2 - 60 -

ful of memory space. To overcome this, a counter was used which was 

incremented by MCLK, and a sta tus bit set to detect the count of 7, 

this then causing the microprogram sequencer to jump out of a single 

instructi on loop . The counter was c l eared prior to entering the loop, 

and the instruction then carried out 7 times while in the loop . 

The third problem encountered, was how to indicate to the program 

that a parti cular test routi ne had been requested on the front panel, 

by only utilising one status bit. The solution was to use a priority 

encoder on the front panel rotary switch to generate a count proportional to 

the number of the test routine and then to clock a counter from a program 

loop until the two counts were equal. This proved an efficient program, 

since as well as clockingtbe counter from the program, the start address 

ROM could be c l ocked simultaneously, thus automatically setting up the 

required test's start address. 

TEST 
CORRECT 

TEST 
FALSE 

OR NO 
TEST 

OPCOD E 

00 0 0 0 

o 0 0 0 1 

o 0 0 1 0 
o 0 0 1 1 
o 0 1 0 0 
o 0 1 0 1 

1 0 0 0 0 

1 0 0 0 1 
1 0 0 1 0 
1 0 0 1 1 

101 00 
1 0 1 0 1 

PC 

PC 

PCORO 

PC 
JD(TPC} 
JSiTPC} 
PCSTK 

PClTORO} 
PCPOP 

OR1 ORO 

0 0 

0 0 

0 1 

0 0 
0 0 
0 0 
0 0 

0 0 
0 0 

Fig . 6 - 4. Opcode mapping ROM Ul0. 

fIT PUP IT Cin 51 SO 

1 0 1 1 0 0 

1 0 1 1 0 0 

1 0 1 1 0 0 

1 0 1 1 0 0 
1 0 1 1 1 1 
1 0 1 1 1 0 
1 1 0 1 0 0 

1 0 1 1 0 0 

1 0 0 1 0 0 

As mentioned earl ier, only a subset of the possible op codes 

were used and these are tabulated in Fig . 6-4. In the l ower half of 

the table are the normal 'no test selected' operations, and those with 

parenthesis in their psuedonym can be selected to test a status bit. 

Dependi ng on the outcome of the test, the MS bit of the op code directs 

to the 'test correct' or 'test false' op code. For example, JD(TPC) 

would normally (with no test selected) jump to the address which 



Sec 6-2 - 61 -

appeared at the direct (D inputs) of the Am 2909 from the start 

address ROM U12. However, if a test was selected by defining a status 

bit numbe r-, and the test was true, then the sequencer wo uld be inst

ructed to obtain the next address from the program counter (PC). 

The psuedonyms can be read as follows 

PC Next address from the PC. 

JD (TPC) Jump direct, or upon test from PC. 

JS (TPC) Jump stack, or upon test from PC . 

PCSTK Next address from PC and load the stack. 

PC (TORO) Next address from PC, or upon test force the LS bit 

to a 1. 

PCPOP Next address from PC and pop the stack . 

PCORO Next address from PC and force the LS bit to a 1. 

6 - 3 Program Structures 

Using the instruction set defined by Fig. 6-4, normal program 

struc tures such as branching and looping could b e configured, and those 

that were used in the present program are detailed below . 

Looping, i.e. repeating one or more instructions under control 

of a status bit, was used throughout the present program and was carried 

out using the JS(TPC) operation: 

stack . 

enter rout ine 

save present address + 1 for return" 

routine repeated 

repeat routine or jump out 

proceed to next routine 

PC 

PCSTK 

JS(TPC) 

PC 

S81 

Such loops can be nested 4 deep, and PCPOP used to roll down the 

Branching always uses the direct inputs, i.e . the start address 

ROM u12 and hence the instruction JD(TPC), and performs a simple jump 

operation. 



Sec 6-3 

leave previous routine 

obtain next address 

enter next routine 

- 62 -

increment start address ROM 

for next routine 

JS (TPC) 

JD (TPC) 

PC 

PC 

SB5 

Upon entering a routine in the Full FFT program, the start address ROM 

is incremented in preparation for proceeding to the next routine. 

However, it is not incremented immediately, since the first instruction 

is itself obtained from the start address ROM and would thus cause it 

to try and increment its own address. Therefore, a PC instruction is 

always the first instruction of a routine, and the start address ROM is 

incremented at a later instruction . 

The system test routines , which are detailed in Chapter 7, break 

the Full FFT routine up into specific areas, such as Power Spectrum, or 

Unscramble , and follow each of these with an output routine to enable 

oscilloscope diagnosis of the results. These output routines, however, 

repeat indefinitely to give a steady oscilloscope trace and rather than 

write a special routine for outputting data, the Full FFT output routine 

is entered at a point after the start address ROM has been incremented 

so that the program always returns to its own start address, and hence 

repeats. 

ROUTINES 

a a INITIALISE FFT 
0 , FFT 
0 2 UNSCRAMBLE 

0 3 POWER SPECTRUM 
0 4 OUTPUT REAL 
a 5 OUTPUT IMAGINARY 

, a INITIALISE TEST , , TEST' MEMORY , 2 , 3 TEST2 FFT , 4 OUTPUT BI T REVERSED , 5 TEST3 UNSCRAMBLE , 6 OUTPUT BIT REVERSED , 7 TEST4 POWER SPECTRUM 

Fig. 6 - 5. Start address sequence ROM U12. 

START 
ADDR. 

a F 
2 8 
8 2 
5 E 
4 9 
4 7 

o 8 
, 6 

2 8 
4 B 
8 2 
4 B 
6 a 

FULL 
FFT 

TEST 



Sec 6-3 - 63 -

The sequence of the routines, as stored in the start address ROM 

U12, is shown in Fig. 6-5 and a brief description of each routine is 

given below. The full programs are given in Appendix 2. 

6 - 3 - 1 Initialise FFT 

This routine is entered immediately the master reset is released 

if the Full FFT is selected. Its purpose is to reset address counters 

etc., and then wait for the sampler to indicate, via 5Bl, that a memory 

is full. It then passes control immediately to the FFT routine. 

6-3-2 FFT 

Into this routine is programmed the whole control to carry out 

the complex FFT butterfly arithmetic. It obtains the operands A, B, 

and W by controlling the addresses of each, latches them into the arith

metic unit, clocks them through the arithmetic unit, scaling the result 

as required, and finally stores AX and B* back in memory. It uses SB7 

to count 7 clock cycles (and hence repeat an instruction), SB3 to indicate 

when to scale, and SB5 to indicate the end of the FFT algorithm. 

6 - 3 - 3 Unscramble 

This separates the two receiver signal transforms that were 

originally stored in the real and imaginary parts of the input memory, 

and requires a bit reversed address sequence since the data output of 

the FFT is in bit reversed order. It uses SB2 to indicate that it has 

completed the separation, and SB6 to wait until the outside computer is 

ready to accept the transformed data. 

6 - 3 - 4 Power Spectrum 

are, 

To indicate to the outside computer \;here the 

this routine computes the power spectrum P = R2 

received echoes 
2 

+ I (but does not 

take the square root) and outputs the information to the computer, for 

both receiver 1 and 2. It also requires a bit reversed address sequence 

and uses SB2 to indicate the end of the computation. 



Sec 6-3-5 - 64 -

6 - 3 - 5 output Real 

This outputs the whole of the real memory to the outside com

puter, receiver 1 transform, followed by receiver 2 transform, using 

a bit reversed sequence, and also using SB2 to indicate completion. 

6 - 3 - 6 Output Imaginary 

This is the same routine as above, but it is accessed earlier 

so that R/I output multiplexer can be toggled. The front panel R/I 

selector switch is disabled if the Full FFT is selected. 

6 - 3 - 7 Initialise Test 

This routine is the first entered if the test switch indicates 

a system test is to be carried out. It deCides, using SB4, which test 

number is requested and passes control to that routine, having reset 

address counters etc. Each test routine is assumed to require two start 

addresses, one for the operation under test, and one for the output 

routine, and it can be seen from Fig. 6-5 that Test 2 and Test 3 conform 

to this. However, Test 1 and Test 4 have output routines integrated 

with the test operation, and therefore, only require the one start 

address, hence the gap in the ROM at location 12. 

6 - 3 - 8 Test 1 Memory 

This is a special test which outputs the contents of the memory 

to an oscilloscope in straight order to check for memory faults. The 

first operation, upon entering, is to change over the memories, and 

therefoIecontrol is only passed to this routine once the sampler has 

indicated, via SB1, that it has filled a memory. SB2 is used to control 

the address looping, and an oscilloscope trigger pulse is positioned in 

the return loop. 

6 - 3 - 9 Test 2 FFT 

This is the identical routine to that accessed in Full FFT 

operation, but it is followed immediately by a bit reversed output 

routine to enable a display of the transform before any further data 

arithmetic is carried out. Control of displaying either the real or 

imaginary part, is from the front panel. The first operation upon 

entering is to change over the memories, the same as Test 1. 



Sec 6-3-10 - 65 -

6 - 3 - 10 Test 3 unscramble 

Again identical to the Full FFT operation, and again followed 

by the bit reversed output routine, but it does not change over memories. 

6 - 3 - 11 Test 4 Power Spectrum 

The identical routine to the Full FFT operation, which has the 

output routine built in, but for Test, the routine is accessed later in 

the program, and it does not change over IDeIIXJries 6 

6 - 4 Control Lines 

There are a total of 41 control lines and each has been given a 

psuedonym appropriate to its action for ease of reference. Here is a 

list of the control lines with their operations 

VAL 

INT 

RE1 

WEI 

OC1, oc2 

OC3, OC4 

Mux imp/CLK 

SBA, SBB, SBC 

Scope trigger 

TCLR 

R1 

SR1 

CL1 

CKRI 

Output data valid 

Interupt outside computer to request DMA 

Enable memory to read to the system 

Enable memory chips for writing 

Op code select lines for the microprogram 

sequencer 

Dual function. To the arithmetic unit it multi

plexes the inputs to the output shift registers 

when computing the unscramble Routine. To the 

test address counter it acts as a clock 

Status bit select lines for the microprogram sequencer 

Taken out to an external socket 

Clears the MCLK counter which is used to generate 

SB7 on the test control board 

A reset used in the address generator to return the 

sequence to that of the 1st FFT array 

A general reset used at the beginning of a routine 

to initialise the address generator 

A general reset for the arithmetic unit 

A clock that toggles the R/I line that controls 

the output bus multiplexer 

Loads the multiplier wP 
into the arithmetic unit 

A strobe to the address generator to synchronise 

the change in wP 



Sec 6-4 

BR/S 

CKl 

CKM 

CKDA 

CK4 

CK3 

BCLK 

CK2 

A+B 

en (N-n) 

enn 

en (A+B) 

enl 

en4 

WE2 

WE3 

LD3 

:!:/CLR 

en3 

LDl 

en2 

- 66 -

A reset to the start address ROM U12 counter 

A clock that shifts the operand B into the 

multipliers of the arithmetic unit 

A clock that toggles the 2 + 1 line that in turn 

swaps memories 

Latches output data for access by the D/A or 

the output bus 

Clocks the address sequence counter 

Clocks the multipliers and adders in the arithmetic 

unit 

Clocks the start address ROM U12 counter 

Clocks the operand A into the adders in the 

arithmetic unit 

Used in the address generator to select either A 

or B from memory 

Used in the address generator to enable a special 

bit reversed sequence for the unscramble routine 

Enable for the normal bit reversed sequence from 

the address generator 

Enable for the special FFT address sequence 

Output enable of 

Output enable of 

result BK from the arithmetic 
P P operand W from the W ROM 

unit 

Bus driver enable for writing from the system to 

memory 

Bus driver enable for writing from the sampler to 

memory 

Loads the operand A into the arithmetic unit 

Dual function. To the arithmetic unit it changes 

an adder into a subtractor for computing the 

Power Spectrum. To the test address counter it 

acts as a clear 

Output enable from the B shift registers of the 

arithmetic unit 

Loads the operand B into the arithmetic unit 
K 

Output enable of result A from the arithmetic 

unit. 



Sec 7 - 67 -

7. TEST ROUTINES 

Due to the complexity of the system hardware, it became necessary, 

during development, to allow for the testing of certain aspects of the 

algorithm without recourse to complicated diagnostic equipment. It was 

decided to include these tests in the final system as a means of periodic 

checking of its operation, and also to facilitate fault finding. 

There is provision on the front panel switch and internally for 

8 test routines, but at present only 4 are deemed necessary, and these 

are selected by the front panel switch. A description of the operation 

of these controls is given in section 7-1 to augment the test procedure 

detailed later. Section 7-2 details how the pre-programmed tests can be 

used to monitor the hardware performance, whereas section 7-3 describes 

the function of the analyser in respect of separating the echoes con

tained in an actual sounding from the ionosphere. 

7 - 1 Front Panel Controls 

The prime function of these controls is to switch the analyser from 

its full FFT microprogram to one of the microprogrammed tests. other 

parameters such as system clock and sampler control, can be changed through 

the front panel and they affect both the tests and the full FFT and 

therefore must be correctly positioned at all times. Fig. 7- 1 shows a 

facsimile of the front panel with its controls and labelling. 

The system clock can be controlled by the top switch labelled 

RUN, TEST or MAN (manual) and the adjacent push button , thus enabling 

RUN speed of approximately 10MHz, TEST speed of 400KHZ, or Manual single 

step. The slower speed is used for the Test routines to enable an 

accurate trace to be output from the D/A converter, which has a limited 

frequency response. The next pair of switches below the clock controls 

are to select the source for system start. Labelled MAN, AUTO, or ONE

SHOT, they select continuous control, external control, or single trans

form control respectively. This switch only affects the sampler 

(Analogue Input) and controls the 1024Hz sample clock, which in turn 

starts the microprogram by indicating that a memory is full. With the 

switch in the ONE-SHOT position, and by pressing the adjacent push button, 

the 1024Hz is enabled until a memory is full, and then disenabled until 

the push button is pressed again. 



Sec 7-1 - 68 -

@ @ 
Run, ~st 

aManO 
LClock ...J Man 
~ Auto 0 
One-shot Start 

® MaCS 
I 2 3 Reset 

FFT~'O\ I ~5 
Test 8· 7'6 

Fig. 7 - 1 Front Panel Controls. 

MASTER RESET is a push button which forces the microprogram to 

its zero program address, and when this push button is released, the 

microprogram checks to see if a test has been selected, and if so, 

which one. With the rotary switch at the bottom of the panel in the 

FFT position, no tests are selected and the unit carries out the full 

FFT routine. The other positions 1 - 8 of this switch select the test 

routines : Test 1 Memory, Test 2 FFT, Test 3 unscramble and Test 4 

Power Spectrum, and each of these tests is detailed at the program level 

in Chapter 6. The switch labelled R or I selects which bus, real or 

imaginary is to be output under test and is ineffective when the b ottom 

rotary switch selects FFT. Finally, the two LEOs (light emitting diodes) 

at the top of the panel monitor the sampler real and imaginary data 

buses and indicate when the input signal is going over range. When the 

sampling ceases, the LEOs refer to the range of the last data word 

loaded, and therefore, for true monitoring of the input signal level, 

the sampler must be running. (The intermittant flashing of the LEOs 

indicates the optimum level). 



Sec 7-1 - 69 -

SIGNAL 

0 GENERATOR 

10 Hz 
2V pip 

OSCILLOSCOPE 

{"\R D/A {"\ Y 

¥o- FFT OUTPUT ¥ INPUT EXTERNAL 

ANALYS ER TRIGGER {"\I 
SCOPE {"\I 

-*' TRIGGER ¥-
Fig. 7 - 2 Hardware Test Interconnections 

7 - 2 Hardware Test 

This test involves setting the analyser up as shown in Fig. ' 7-2 

with a sine wave being fed into the "real (rece iver 1) input" and the 

"imaginary (receiver 2) input" shorted to earth. The "D/A output" and 

"scope trigger" are special outputs specifically for use when testing 

the analyser, and they enabl e a steady oscilloscope trace of the output 

data to be obtained. With the systan clock set to TEST, the systan 

start set to MAN, and FFT/Test switch set to 1, pressing MASTER RESET 

will initiate the manory test and by selection of R or I the traces shown 

in Fig. 7-3 can be obtained. The real trace can be seen to begin repeat

ing at the right hand edge, and it can also be seen that there are not 

exactly 10 cycles of the wave in the memory. If there had been exactly 

10 cycles, then all the energy in the transform would be in one frequency 

channel, but since this is not the case, according to the Discrete Fourier 

Transform theory developed in Chapter 2, the transform energy will be 

present in the adjacent channels with amplitudes defined by the sin x/x 

function . 

Switching the FFT/Test switch to 2 and pressing MASTER RESET 

initiates Test 2 FFT, and the transform of the test signal is obtained 

as Fig. 7-4 shows. The sin x/x side lobes are evident on either side of 

the main signal peak, and notice the even nature of the real trace compared 

to the odd nature of the imaginary trace, i . e. both real +ve and -ve 

frequency spikes are the same polarity, whereas the imaginary spikes 

have opposite polarity . 



Sec 7-2 - 70 -

D " A ~ III " " " " ~ /I , 

l \ , 
~ V 

V .. .. .. .. .. .. .. .. 
IV .. 

-Sms-

I 

I 

Fig. 7 - 3 Test 1 Memory 

-

0 +ve freau ncie5 .S11Hl 0 -ve freau ncies -S12H 
. . .... 

F 
.. 

J 1-5ms- . 

1~ 'r 
-

. . . . . -f ... . . . . . . 

Fig. 7 - 4 Test 2 FFT 



Sec 7-2 - 71 -

It is this odd and even symmetry that the unscramble routine, 

deve l oped in section 2-4, employs to separate the two transforms of the 

real and imaginary inputs respectively. Since in this example the 

imaginary input is shorted to earth, then initiating Test 3 Unscramble 

will place the transform of the real input in the +ve frequency position 

(i.e. 0 - 511 memory locations) and will compute zero as the transform 

for the imaginary input and place this in the -ve frequency position 

(i.e. 512 - 1023). Fig. 7-5 shows this result. 

0 rec I inp ut 511H 0 imag nary input 512H 
c;r [petrul n 5 ectn m 

.. 
r 

1-5m~ 
I~ 

1~ 
"I 

I 

Fig. 7 - 5 

Finally, initiating Test 4 Power Spectrum, takes the real input 

transform and the imaginary input transform of Fig. 7-5 and produces the 

power spectrum of each, but due to a signal inve rsion in the D/A con

verter, the +ve number in the computer becomes represented as a -ve 

voltage on the display, hence Fig. 7-6 shows the -ve spike in the real 

input transform power spectrum. 

For diagnostic purposes, these tests will verify the correct oper

ation of a particular stage in the computation. By altering the frequency 

of the input signal, its amplitude or its input port (real or imaginary), 

the required change in transform can be monitored. 



Sec 7-2 - 72 -

0 rea inpL t 511Hz 0 i1magir ary i hDut 512Hz 
nnWF ~ c;oe ttrum SOP; ttnlm 

R 

I 
0jSV 

r-~ 

I 

Fig. 7 - 6 

7 - 3 Tests with Ionospheric data 

This test is intended to show comprehensively the operation of 

the unscramble r outine when handling i onospheric data. The analyser 

inte rconnections required are not quite the same as those used in the 

previous tests but the analyser front panel settings are identical. 

The output from the ionosonde receiver is now connected to the "real 

(receiver 1) input" and the signal generator is transferred to the 

"imaginary (receiver 2) input", whereas the oscilloscope connections 

remain the same as those depicted in Fig. 7-2. 

The very scattered trace of Fig. 7-7 is the sampled time series 

taken from the output of the Chirpsounder receiver, and displayed using 

Test 1 Memory. The samples were taken at a point in a sounding where 

there were two closely spaced echoes corresponding to the ordinary and 

the extraordinary components of a reflection from the F2 region of the 

ionosphere. These two components are two separate echoes, which from 

the theory of the Chirpsounder ionosonde developed in section 3-1, means 

that they appear at the output of the ionosonde receiver as two closely 

spaced tones or frequencies. The beat frequency resulting from the close 

spacing of the two echoes can be seen as modulation on the trace of Fig. 

7-7, but the actual t ones cannot be resolved. 



Sec 7 - 3 - 73 -

• 
• ; . 

·f • • • • • t . 't' • • 0 • 00 

Fig. 7 - 7 Sampled Chirpsounder Receiver Output 

To demonstrate the unscramble routine, a test signal of 300Hz 

2V pip was fed into the imaginary input and Fig. 7-8 shows the inter

esting result of sampling this high frequency signal, and outputting 

again via Test 1 . 

....... ___ ~ •••••• , .... " ..... \ .......... u .... \,",IU ' t'!~'\\\N11 t'~~"l-*..AJ u ••• \\ .. L...., ...... "*", ..... . 
.... -;,...., ..................... - ....... 1 h, ~" .~ ....... '..--. •• ,..... I' .. r· •• ~_. ". 
~., -'t ,tt .. t-"'" ",.,'" ~t·r.t' o",_t • ,'" :: .. :' 

I ...... ' .. , •...•...• "... ",." •• , "'i~'" I, ".... -', •••• • ••• ~. ..~_~, 
.. ",. .. •••• _ ,.t '" ,.t' to .,Itl!", " ""_ ",,_, ,.t.. " 

...... ~.. • I. .... '. ,_~t..L" .. , j " I, , t 'I .' 

• " .tt '" I' '" ,.", " .. " I, ,t ' I •• ' ..... 

;....... ':"" ,,' ,,,' I • I'" ',,' .n.. ,'- : • 
• t ' tt, It ,"t.. 't. .t' -'" ", .' ':"., ," ,,'. "t,' I,.,. '" , .&,." 

,.t ~J.".,.-. ••• , ", .... t 'ft, ,t tt, ~J'" It, .JI" ."-,,., •••• ~,.. •••• .. 

;-5ms-

Fig. 7 - 8 300Hz Test Signal 



Sec 7-3 - 74 -

The FFT of this combination of real and imaginary time series is 

shown in Fig. 7-9 where the two ionospheric echoes can be seen at about 

100Hz (which corresponds to a virtual height of 300 kilometers, refer to 

section 3-1) and the test signal at 300Hz. Notice the odd and even prop

erties of both sets of signals, and that the 300Hz signal produces an 

even imaginary transform since it was input as a time signal in the 

imaginary input. 

_-+_-::::t ECHO 

I 

Fig. 7 - 9 Mixed Transform of Ionospheric Data and 300Hz. 

The result of the unscramble routine Test 3 depicted in Fig. 

7-10, shows very convincingly, the separation of the two transforms. 

When the FFT analyser is fitted into the Chirpsounder system, it will 

be handling two time series, separating their transforms, and to indicate 

to the following computer which are the principal echoes, it will compute 

the power spectrum of each transform. 

The final Fig. 7-11 depicts the operation of Test 4 Power Spectrum, 

and shows again the two echoes and the 300Hz signal, but the noise in 

the live data transform has been lost. This is due to the fact that 

since the output has only 8 bit precision, the true power spectrum of 



Sec 7-3 - 75 -

R2 + I2 which has a maximum size of 17 bits, cannot be calculated, so it 

is scal ed by factors of 2 until it stays within the range . 

.Frf DES 3 POHi 

R 
./ 
~~~ I:. 
-,,- . I'-

1~ i-5ms-

Ii.. ...!. , c', '. 0
I ...

'l'n" ~~'o . 0 -0' I'"

11 0 210. 3PO 400Hz 11 0 2)0 31)0 4 bo 51 10Hz
rE al Inl pUI lmo Iglnar ~ Inp' II

! pectn m ~pect ,um

Fig. 7 - 10 Separated Trans forms of Ionospheric Data and 300Hz.

r
.

r~
r--ECHD 5

30 Hz_

.I.
Q'5v

5Oms-"I
. L ·

'" 1'" "'1' u, II IIUY IIUI Y I IIjJU l

P pwer s pectr m pOWEr spe ~trum

Fig. 7 - 11

Sec 7-3 - 76 -

All the tests detailed above, and the full FFT, may be single

stepped through by switching the system clock to manual, and the address

of the next micro-instruction can be seen displayed on the LEDs on the

"micro-control" board, refer Fig. 6-1.

In conclusion, these test facilities were found very useful during

development and it was felt that due to the complexity of the analyser's

operation, and the lack of any visible end result to indicate correct

operation, the tests were a necessary part of the analyser. All the

oscilloscope traces shown can be easi ly obtained on any oscilloscope set

up according to Fig. 7-2 and to the parameters shown on each trace.

Slight changes in time base might be necessary to capture only one cycle

of the output (as indicated in all the traces), and external triggering

is recommended to be used throughout .

Sec d - 17 -

8. CONCLUSIONS

An FFT analyser with the properties detailed in Chapter 1 has

been designed, tested and is now incorporated as part of a new system

to be sent to the SANAE base in Antarctica during the summer of 1979/

1980. The real time analyser performs the FFT in 50 msecs (including

the separation of the two receiver transforms) and then outputs the

data in 15msecs. Since it takes 1 sec to accumulate 1024 samples, there

are then 935 msecs left for further computation on the data. The

Ionospheric data transforms detailed in Chapter 7 show the ability of

the analyser to distinguish ionospheric echoes from background noise,

and also its ability tc separate the two receiver transforms.

Although at present the unit is functioning perfectly within its

initial specification , future work has necessitated changes in the analyser IS

operation. A project to place the whole of the Chirpsounder under micro

processor control, at present being undertaken by G. Evans under the

supervision of A.W.V. Poole, has extended the requirements to selectable

N- point transforms, and variable analysis bandwidth.

Altering the analysis bandwidth is easily achieved simply by

changing the sample rate, but extra work will be necessary tc compute

a transform for N < 1024 . Initial discussions on this subject with

Poole have indicated a possible approach whereby the sampler only takes

the N values required, and the rest of memory is filled with zeros. The

full 10 arrays of the 1024 point transform are then computed in the normal

way and the output transform data will be found spread evenly within the

normal 512 point output spectrum, e.g. for N ; 256 the spectral points

will be spaced 4 apart. The work involved in implementing this, will be

to program the analyser, to zero its memory after it has output the last

transform spectrum, so that when the memories are interchanged, the sampler

has only to store its N values and the rest of memory remains zeros.

For the analyser only to take 256 samples, for example, will require the

external microprocessor to indicate to the analogue input circuitry , that

it has to stop sampling, which in turn will initiate the FFT cycle. The

control line to affect this interupt, has been included in anticipation

and called "Stop Sampling".

As mentioned in Chapter 2, research into the use of "windows" or

truncation functions, has not been carried out in this thesis, since the

Sec 8 - 78 -

"top hat" function is regarded as sufficient for our present needs.

From a close examination of the different windows and their transforms,

as detailed by Harris 1978 (8), it would appear that as the peak-to-side

lobe ratio is increased, so the width of the central lobe increases, which

impairs the ability to resolve closely spaced signals. The "tophat"

function at present in use has the first side lobes of its transform

lSdS down on the main lobe, Harris (8), and since the output of the

analysers is only 8 bits, which represents a dynamic range of SOdS

Glisson et al. (6), to place the side lobes below the resolution of the

data would require 3SdS of suppression. The Hamming window depicted by

Harris in Fig. 21, page 63, with "its peak-to-side-lobe ratio of 45 db

would possibly be sufficient to do this.

(1) E. Oran Brigham,
1974.

- h J -

LITERATURE CITED

"The Fast Fourier Transform", Prentice Hall

(2) J.W. Cooley and J.W. Tukey, "An Algorithm for the Machine Cal
culation of Complex Fourier Series", Math . Canput., Vol. 19,
pp. 297-301, April 1965.

(3) M.J. Corinthios, "A Fast Fourier Transform for High-Speed Signal
Processing", IEEE Transactions on Computers, Vol. C-20,No . 8,
pp. 843-846, August 1971.

(4) W.R. Cyre, and G.J. Lipovski, "On Generating Multipliers for a
Cellular Fast Fourier Transform Processor" I IEEE Transactions on
Computers, Vol. C-21, pp. 83-87, January 1972.

(5) E. Dubois and A.N. Venetsanopoulos, "A New Algorithm for the
Radix-3 FFT", IEEE Transactions on Acoustics, Speech and Signal
Processing, Vol. ASSp-26, No.3, pp. 222-225, June 1978.

(6) T.H. Glisson, C.L Black and A. P. Sage, "The Digital Computation
of Discrete Spectra Using the Fast Fourier Transform", IEEE
Transactions on Audio and Electroacoustics, Vol. AU-1S, No.3,
pp. 271-287, September 1970.

(7) R.W. Hamming, "Numerical Methods for Scientists and Engineers",
McGraw-Hill, 1962.

(8) F.J. Harris, "On the Use of Windows for Harmonic Analysis with
the Discrete Fourier Transform", Proceedings of the IEEE, Vol. 66,
No.1, pp. 51-83, January 1978.

(9) T.M. Hedges, "Replacing hardwired logic with microcode", Electronics,
Vol. 51, No. 23, pp. 125-129, November 1978.

(10) T . Kaneko and B. Liu, "Accumulation of Round-Off Error in Fast
Fourier Transforms", Journal of the Association of Computing
Machinary, Vol. 17, No.4, pp. 637-654, October 1970.

(11) B. Liu and A. Peled, "A New Ilardware Realization of Highspeed
Fast Fourier Transfo:rmers". IEEE Transactions on Acoustics,
Speech and Signal Processing, Vol. ASSp-23, No.6, pp. 543-547,
December 1975.

(12) J.R. Mick and J. Springer, "Single chip multiplier expands
digital role in signal processing" I Electronics, Vol. 49, No.
10, pp. 103-108, May 1976 .

(13) J. P. S. Rash, "Oblique Incidence Investigations of the Ionosphere
OVer the Southern Ocean ". PhD thesis, Department of Physics,
Rhodes University, Grahamstown, South Africa, Decembe r 1978.

(14) P.O. Welch, "A Fixed-Point Fast Fourier Transform Error Analysis",
IEEE Transactions on Audio and Electroacoustics, Vol. AU-17,
No.2, pp. 151-157, June 1969.

A/D

AMD

array

hi-directional

bus

butterfly

chip

D/A

DFI'

DMA

FFT

FI'

Latch

LS

25LS14

MCU

MS

node

Op-code

PROM

R/I

ROM

rounding

SANAE

- 80 -

GLOSSARY

Analogue to digital

Advanced Micro Devices

One of Log N stages in the FFI' where the whole data
set is use& in computation

When describing a data bus it indicates that data can
be written to it or read from it by one device

A parallel group of lines interconnecting devices

A term used to describe the Cooley Tukey complex
arithmetic of A + BW

An integrated circuit

Digital to analogue

Discrete Fourier transform

Direct memory access

Fast Fourier transform

Fourier transform

D type Flip-flop or bi-stable used as temporary
storage

Least Significant

Low power Schottky TTL

Microprogram control unit

Most significant

A point in an array where the FFI' arithmetic is
carried out

A binary number used to define a particular micro
program sequence

Programmable read only memory

Real or Imaginary

Read only memory

The operation of losing the fractional part of a
number, by adding 0,5 and taking the integer value of
the result

The name of the South African Antarctic Base, South
African National Antarctic Expedition

stack

Status bit

Toggle

tristate

truncating

T1'L

unscramble

- 8 1 -

Lis t of operands or addresses he l d in memory with a
pointer that indicates the next one to be used

A signal line that indicates the status of a particular
device

Change to the opposite binary state

Type of output stage on TTL circuits, which possesses
a high impedence state as well as high or l ow

The operation of losing the fractional part of a number
or part of a waveform , by just chopping it off

Transistor Transistor Logic

The separation of two signal transforms f rom a single
transform

Appendix 1 - 82 -

8Il81 DATR ~IGIN :8889
8982 01" R4(512).R5(512).R6(512).R7(512).D$(18).D(128).E(128).1
8I!8l 01" NL ZL Vi. Ai. R2. XL X2. Xl. IlL 112. BL 82. T1. T2. 51. R1
8884 IIf\IT 'N S R WNL51.RLDN1=2\Vi=H1\X2=2t!'111824
001II5 tmI 12. D$
8886 F~)(l=8 TO 111-1
8887 A4()(l)=INT(S105120C0S(13OPI*)(lIN1)+8. 5)+INT(R1*1824*(RIIHl. 5)+8. 5)
8889 R6()(l)=A4()(l)
8889 R5()(l)=8
8818 R7()(l)=8
8811 NEXT)(l
8812 218 Vi=Y1l2\B2= :De88\21=2\IFZ1=3 Tl£II 21=1
8813 PRINT Vi
8814 IF Y1<1 TI£lC89
8815 R1=8'181=Y1\X1=Y1
8816 238 R2=f'EE1(B2)*256+I'EEK(B2+1)
8817 N1=INT(128OCOS(X20R2)+8. 5)
8818 N2=INT(-12B*SIN(X20R2)+8. 5)
11819 B2=B2+4
8B28 248 GOSI..8 5Il9
8821 R1=R1+1'181=81+1
8822 IF R10 X1 Tl£II 248
8823 X1=X1+2*Y1'111=R1+Y1
8824 IF B10N1 Tl£II B1=81+Y1\GOT0 238
8825 GOSI..8 688\G0T0218
8826 388 B2= :0088\F~ TO N1-1
8827 R2=N1*(f£EI(B2+2*)(l)*256+f'EEI«B2+2*)(l+1»/1824
8B28 PRINT 12. A4(A2). R5(A2). R6(A2). R7(A2)
8829 NEXT)(l
8838 ClOSE 12\ST!P
8831 5Il9 T1=(A4(B1)*M1-f15(B1)*II2)/128
8832 T2=(A4(B1)*II2+fl5(B1)*M1)/128
8833 R4(B1)=INT«A4(R1)-T1)1Z1)
8834 R5(B1)=INT«R5(R1)-T2)1Z1)
8835 A4(R1)=INT«A4(R1)+T1)1Z1)
8836 R5(R1)=INT«R5(R1)+T2)1Z1)
8837 T1=(R6(B1)*M1-R7(B1)*II2)/128
8838 T2=(R6(B1)*II2+R7(B1)*M1)/128
8839 A6(B1)=(R6(R1)-T1)1Z1
8848 R7(B1)=(A7(R1)-T2)1Z1
8841 A6(R1)=(A6(R1)+T1)1Z1
8842 A7(R1)=(R7(R1)+T2)1Z1
8843 RETWf
8844 688 F~=8 TO 127
8845 D()(l)=8\E()(l)=8
8846 NEXT)(l
8847 F~)(l=8 TO 111-1
8848 T1~()(lHI4()(l)

8849 T2=A7()(l)-«i()(l)
eese 1=INTm*8+8. 5)
8851 O(I+63)=D(I+63)+1
8852 1=INT<T2*8+8. 5)
8853 E<I+63)=E<I+63)+1
81154 NEXT)(l
8855 F~)(l=8 TO 127
8856 PRINT 12. D()(l);
8857 NEXT)(l
eese PRINT 12
8859 F~)(l=8 TO 127
8868 PRINT 12. E()(l);
8861 NEXT)(l
8862 PRINT 12
8863 RETlJIII
8864 END

FFTHIST

Appendix 1 - 83 -

I.OOuDATA ORIGIN .8000
2.00=DlftA415121,A~15121,A615121,A715121,D.IIOI,DII281,EII281,1
J.00-DlftNI,ZI,YI,AI,A2,XI,X2,XJ,UI,U2,.I,J2,TI,T2,SI , RI,F,UJ,U4,U5,U6
4.00=INPUT"N 9 F R US U6 D."NI,SI,F,RI,U5,U6,D.\ZI=2\YI=NI\X2=2*PI/I024
5.00'OPEN'2,Df
6.00=FORXJ=0 TO NI-I
7.00=A4IXJI=INTISI*SI2*COSIF*PI*X3/NII+0.51+INTIRI*I024*IRND-0.51+0.S1
8.00=A6IXJI'A4IX31
9. 00'A5 (x3 I =0

lO.00=A7IX31=A5IX31
" .OO-NEXT X3
12.00=210 YI=YI/2\B2=.DOOO\ZI=2\IF ZI-3 THEN ZI . I
1J.00·PRlNT YI
14.00=IFYI<I THEN 300
IS.OO=AI-O\BI=YI\XI=YI
16.00=230 A2=PEEKIB21*256+PEEKIB2+I1
17.00=UI=INTIU5*COSIX2.A21+0.51\UJ=I28*COSIX2*A21+0.5
18.00=U2=INTI-USoSIN(X2.A21+0.SI\U4=-I28.SIHIX2*A21+0.5
19.00=B2=B2+4
20.00=240 BOSUB SOO
21.00=AI=AI.I'.I=.I.I
22.00=IFAI<> XI THEN 240
2J.00=XI=XI+2*YI\AI=AI.YI
24.00=IFBI<>HI THEN BI=BI+YI\GOTO 2JO
2S.00-S0TO 210
26.00=300 GOSUB 600\B2=:0000 \FOR X3=0 TO NI-I
27.00=A2=NI·IPEEK(B2+2·XJlo256+PEEK(B2+2*X3+III/I024
28.00=PRINT.2, A4(A21,AS(A21,A6(A21,A7IA21
29.00=NEXT XJ
JO.00=CLOSEI2\STOP
JI.OO=SOO TI=(A4IBII*UI-A5(BII*U21/U6
J2.00=T2=IA4IBII.U2+ASIBII.UII/U6
33.00=A4IBII=(A4IAII-TII/ZI
34.00=A5(BII=(A5IAII-T21/Z1
35.00=A4(AII=(A4IAII+TI)/ZI
36.00-A5IAII=(A5IAII+T21/Z1
37.00=TI=(A6(Bf).U3-A7IBII*U41/128
38.00=T2=(A6(BlloU4+A7(BlloY31/128
39.00=A6IBI)=(A6IAI I-TI I/ZI
40.00=A7(BII=(A7IAII-T21/Z1
41 .OO=UIAI 1=(A6(AI IHI I/ZI
42.00=A7IAII=(A7(AII+T21/Z1
43.00=RETURH
44.00=600 FORX3=OTOI27
45.00=DIX31=0\EIX31=0
46.00-HEXTXJ
47.00-FORX3=0 10 "I-t
48.00=TI=A6IXJI-A4IXJI
49.00-T2=A7IX31-AS(XJI

-5-0. 00=1=IN1 (l I .8+0.5 I
51 . 00-011+631=DII+631+1
S2.00=1=INTI1208+0.51
53.00=EII+631=EII+6JI+I
S4.00=NEXTX3
55.00=FORX3=OTOl27
S6.00=PRINT.2, DIX31;
57.00=NEXTXJ
58.00=PRINTI2
59.00=FORX3=OTOl27
60.00=PRINT. 2, E(XJ);
6t .OO=NEXTXJ
62.00=PRINTl2
6J . 00-RETURN
64.00=ENO FFTHIST2

Appendi x 1

.f,

1.00=DIHX,A2,A3,A4
2.00=OPEN '2,"REVSEO"
3.00=FORX=OT01023
4.00=READ '2,A2
5.00=A3=IHT(A2/256)
6.00=A4=A2-A3*256
7.00opOKE :DOOO+2*X,AJ
8.00=POKE :DOOO+2*X+1,A4
9.00-IIEXT X

10.00=CLOSE 12
l'.00=STOP
12.00=END

- 84 -

0019 Iii =1824 : !J'£NI20, ' R£VSEQ1'F~I If'UT : F1 El..DI20, A2--4
B011 !l'£N 13t!, 'If'OATA'FOOlTPUT: FIELDl3t!, W4=4"~5=4
0012 X2=2H 141592654/1t1
0029 F~ W2=1 TCfI1/2
0025 (£[120
003t! W4= INT (6#CQS(X2*!l2)+Il. 5)
0032 W5=INT(-64*SIH(X2*!l2)+Il.5)
0035 IF 114=8ll£H42
0037 IF 1141f1lS(1I4)=-1 TI£16I4=256+W4
0042 IF W5=9ll£H45
8e44 IF II5IfIlS(WS)=-1T1£1615=256+WS
0045 PUT 13t!
0046? W2
9Il68 (£[120: I£XTW2
0079 CLOSf 120, 13t!: ST(J'

0019 !l'£N 120, 'If'OATA'F~IIf'UT: FIEl..DI20, 114=4, W5=4
0015 SET 128=257
0029 F~ W2=8T02S5
003t! !i:T 120: ~9152+W2
8e48 POO: (R, 114) :?\14;
eese NEXT W2
B069 CLOSf 120: ST(J'

BRPOKE

WPDATA

WPPOKE

Append ix 1 - 85 -

ooes Hi =1024 : F ~2'56
Be10 DI~ R4(2S5,4),R5(2S5,4),A6(2S5,4),A7(2S5,4)
002e? '[)$,P'; : IHPUT[)$,P
0040 !)'>EN 139, Wei< INPUT : FIELDI39, A4=4,fl~,,"1
0945 24=0 : Y4=0
Be5B Fei< X4=0 TO (-1+LOFF'39)
9B55 IF (X4-24)~2'56 THEN 2~24+2'56 : Y4--Y4+1

996B GET 139:R4(X4-24, Y4)~:R5(X4-24,Y4)=AS : NEXTX4

1l87B ClOSE .39
B280 1'1 ~ : 1)'>EN12I!, '1f'1024 'Fei< INPUT: FI ELDI2I!, W4~ 3, 1&3 : 21=1
8210 1'1"'1112 : SETI2I!=1:?I'1: 21~21 +1 : IF21~3 TI£N21=1
B22I! IF 1'1<1 TI£N398
B239 Ai=B : B1~:Xi~:GETl2I!

0240 A=fl1 : B=B1
0241 Y=B : IFA)~ TI£NA=fl-F: Y=1: IFA)~ TI£Ifl=fK: 1'=2: IFA)~Tl£NA=A-F : 1'=3
0242 lF1l : IFB)9'TI£IW-f : U=1 : I FB)=fTl£IB=ll-f : lJ=2: I FB)~TfEtal=B-f : lJ= 3
0245 G09.Il 5Il8
B25B Ai=ll1+1:B1~+1

B26B I F Ai OXi Tl£N24B
027B Xi ~Xi + 2*'/1 : Ai =Il1 + 1'1
Il28e IF B1 0Hi. TI£Ml1 ~ +1'1: GET'2I!: GETl2I!: GOT024B
B2ge GOTO 210
B295 ClOSE '21!
0300 OP£H '2I!'R£YSEQi 'Fei<1 NPUT : FIELDI2I!, A2=4
0310 Fei< 112=1 TM : W=W2
8312 T=B: IFW)~ :T=1: IFw)~Tf£ll.l=W-F: T~2: IFW)~TI£NW=W-f : T~3
0315 GET '21! :2=R2
8317 S=0 : IF2)~HEN2~2-F:S--1:IF2)~THENZ~2-F : 5=2:1F2)~THEN2~2-f:S--S

0321! A6(W, n~(z, 5) :A7(W, T)=AS(2, 5)
8339 NEXT W2
8340 CLOSE 12I!
0358 Fei< ~2 TO(N1I2l
8352 W=W2 : 2=1026-1>12 : T =B : S=0
8355 IF w)~:T=1 : IFw)~f£ll.l=W-F:T~2:1FW)~TI£I61~IH:T~3

8357 IF 2)=fTHEII2~2-f :5=1: IF2)=fTHEII2~2-f : 5=2 : IF2)~THENZ~2-f: 5=3
8360 X7~-(A6(W, n-A6(z, 5»/2:A6(W, n~(A6(w, n+A6(w, T)~(2, 5»/2
8m A6(2, 5l~(A7(W, Tl+A7(Z, 5»/2:A7(W, Tl~(A7(W, Tl-A7(Z, 5»/2
8390 A7(Z, 5l~X7 : NEXTW2
8390 GOTO 600
05Il8 Ri~(B,Ul0W4-R5(B,Ul*W5

0510 l1=AS(B,Ul0W4+R4(B,Ul*W5
0521! A4(B, Ul~INT«6#A4(A, Yl-Ril/(64*21»
0539 R5(B, Ul~INT«64*A5(A, Yl-J1)/(64*21»
054B A4(A, Yl~INT«6#A4(A, Yl+Ril/(64021ll
0550 R5(A, Yl~lNT«64*A5(A, Yl+ I1l/(64*21»
05BB RETlRN
0600 Fei< 112=1 TM
06B2 W=W2: T =B
8605 IF w)~f£I6I=W-F : T=1: IFw)~1HEM4=IH':T~2: IFw)~~IH:1=3

8610 ? IP, INT(A6(W, n+0. 5l; :t£XTW2
8621! ? IP,
8639 Fei< 112=1 1M
8632 W=W2: 1 =B
8635 IF w)~11£161=IH :T=1: IFw)~III=I!-f : 1~2 : IFw)~TI£t"I=IH :T~3

864B ? IP, INT(A7(W, 1l+0. 5l; :NEXTW2
8658 ? IP, :S1(J> FFT16

[ill]
~

l@ L~ mJ I V ' U14 u,~

PROM
9 to 11 12 9 10 11 12 910"'2 9 10 11 12

'5

;~~~ REMARKS address " ~
~~~~ 

-4' ~,., ..... ........ mot 

Hex 
u?:§:,-,u ~~~31 Q%:oo 

UNPROGRAMMED STATE 1 I 1 I o 0 0 0 o 0 0 0 1 I 1 1 

r: I\j '-F ~y ZERr 00 
01 

I 
63 I I I I 
o If- I 

. - - +-
.Em D"fFsr RQ\L~~t~f-:-~Io 8 -

_. .. rf-:- T - -I c . 90 
0'1 ~ 1 . 9 I f-:-

Clock. :If",!:: addrellE> COhnI-., A 5 I I 
B -Iii- I 

IN m Rl.l 'OEC 10 , OF 
10 1 1/1: I c 00 
I I 
12. oiL I 

-

TF.hl :l M.,t1QR:i 1 b 
e bQ,o~e t:Je oocc;J....-- 17 1 I 
en ( . A -t- P, ') "A 1 

" 1'1 

" (),,'out \'In ~ n 1 D 0 -
" k\&h...Qc -D/A 

- I j~ ('\nek - ~.4rP:"';;' I I Z - I 
- Ill It - -

e.n(A+-B) 15 E 

" IF -
OIIt.Wt. \)Q,tr!. OD 0 " 

" Latch n' 1\1 .. 1 
r \,,<_k "dele"",,,, Z~ \ lIZ '\ 

Z Z 
SCO!,€ \:600£L !'<epee. I I 50 

- -

U15 u,~ U17 v, , U18 V,V tU19t I UIJ! 
9101112 9101112 9 10 11 12 9 10 11 12 

8~~~ ~~~~ ~sh '? ~ I~ ; 
"" .. &I .. 

, 1 1 1 1 1 1 1 1 1 1 , , , 1 1 

70 

-

-
. ... . 

D 0 
0 

-
. -

- D 0 f-:- - -
- -

-D - .- - .. -
0 0 - 60 

0 
- - -

7 0 

E 

(-.f- lO 0 
E a 

E 
70 

tU20t , IIJZI] [J "'" LATCHED 

9 10 " 12 9101112 .... 
iD 

1~ 1~I~t§ ~ ~ e I. § opcoo 

, 1 1 1 , 1 1 1 0 

Pr 
lOr 

-
I ''-'''(ro' 

Jr> 

7 VC'OrK !"I,'LL n') 

orr~,,:; ",<,b'- : <:nITPD ). .'" 
;rh c'n en (b~Gne. 

PC 
-R:&TK 

TO 

PC 
Dr<;r < \",n\le. rtl.u en' 
Pc • \2 

2~ 
Pr-z,:;;; T'O" reluJ"n" 
Dr • 
Wc': 
1,::;-
Ipr 

2. :rS('-"; 
IPcPnP 
:re 

~ 
11> 

" Q, 
f-'. 
x 

'" 

ro 
'" 



~ L~ ~~ 
9101112 '} 10 11 12 9 10 "'2 PROM ~ 

REMARKS i! 
address ~ 

~t;;~~ 
~ ~ ........ ........ m<l( 
u ~6~ ~~~~ Hex 0 

UNPROGRAMMED STATE , 1 1 1 o 0 0 0 o 0 o 0 

FF 9 
A , , , I 

en( A+fI) R ,,1.J·clMrnr,~h . A 
" i..aw,wP 01 .", . B 
" r1uLouio Da~ <II [\1. l...d 0 , a. r~ , p D 
" ClocK multo M.r~A E 
" " " 

u " ,,0, "" ·.~ ..... II' 30 0 
, "Lo.lcn A 31 I 

:5 til " 
Clock A mult. . ..A.l. ,0 " ••••• 3 

" 3 1 l I 
" 5 :<. I 
" 6 I 
" 37 I :5 I I 
" 1% 
" en ( A + B A 

" " " 3A 
" "nu,,""'. A'" 3B 
" " w" ... 1'. 0 

en ( A + B) B D . 

" " EO 

" " 0,·' P,I' 3F 
.. " "" c, '-" • OE 0 

1 
e. locK o..drtres5 2- I 11 I 

3 , 
. -. 

Po,,.. '~ou.TP T 0 ,-
CKRI 0 

q 0 
BeLl< E' , I 
'?>"'Vf'. ('.turn, Smee I:i,aoer C 0 I , I , 
Pnn lo! 0 

.. E .. .. "-oul:. p"l:.o.. 1= 

" ..o.ten a~ DI A 3 0 
("Ioc ,,J..I'P<'os 5 0 I 

:<. 0 

VI" VI'> VI ' UIU 
'} 10 11 12 9 10" 11 9 10 " 12 9 10 11 12 

;~t;~ ~~~~ ~~~~ ~S~~ 
1 1 1 1 1 1 1 1 1 1 1 1 , 1 1 1 

-
D 0 0 

E 0 0 
0 
0 
0 
0 .. .. 

0 

0 

0 

, 

70 

- -
.. -111 - H- - - . -

0 

. 

E 
7 

- -

LY.J.2J L'd.f .'::!l 
9 10 " 12 9 10 " 12 

~ ; . . 
m < 

~ I~~I§ • c: C c:: '" .. I .... 
1 1 1 1 , 1 1 1 

-

0 
E 

]A 

EO 

0 E 

E 

E 
E 

- . 

0 
D 0 

LVf:..!J 
'} 10 " 12 .... 

"-

~ ti e Ii ~ opcodE 

1 1 1 1 0 

Pr 

Dr 
Dr 

Dr=-I 
7 :r;::r.:;:; 

Prc.T 

"" 0;:;< 
",",p 

~r 

0,.-

0 Dr 
Dr 
Dr 

F 

r" 

5r ... -

".. 
fnl 
,~ .... u 

pr. 
Or 

Dr 
:<'I:T~ 

Po" 

l-' ~ .. " .. ... 

JC:m e "'hkr~ 

LeX 

-, 

I CU''''N''''''-' 

.odd<>fr.y 

. 

I~t<:f RlILff[ 
.m 0. ,AG,"o", 
:-;:;: •• "T 

lOT PASS 11..01... 

r ''''' nsr 

,1)' 
'0 
ro 
" 00 .... 
X 

IV 

ro 
-J 



[ill] 
~ [ill] ~....:::!.J 

9 10" 12 9101112 

P ROM ~ 

REMARKS ad dress '" ~ 
~~~~ 

..., ~,., ...
Hex

u ~u u
0::1: 00

U NPROGRAHMEO STATE 1 1 1 1 (} 0 (} (}

Sn'p. rD~ r" "\ 3 0 II . I I
." "1_ n ~ IL 5"

" 556
" 0 IltR "~)aloo.. 6 0
.. /.,o,l:.cb 01:. [)(A 7 0

(' ,r'" ..,
\3
q 0

-P-':;-WF' C;; P ECTal uVI e-
5F
60

'Veep<' bCiS'¥'c R." I
"",,' e \""''" . '" . . 16 ;<.

" 63
" n , .. ,~ .. > ()..,t~ M 11'\"" bill- a ,. 1 ~ r;, nl, p'.-v-d t1u\1o. .5

n Ie Inrlt n 66
u

" " " 7 . " " ~"" 68
" " .. " 69 Z I .. 6A 0
" .. " " IBIElI

(' Inr It C
r'\"C n,

A "" ~kr}, nl- t>(A e 00 I ,
6F

Ko""p.1:: 70 I I
p" "I-nl J pnC 71

" 72-.. .~.~ 1· 1~ , rl. 73 00
" I" " P.. c 7

0 r.bck 1'I'\1l11:. . o.ddecs 5 0 I I " b I .. " " f.o..r. 77 I .. " " " 7S I b " :'.-- 79 I I
.. I

I nr.1< 1 rPG~ 76 2 I
r'l " 1-.", A 11< 7C I

D(A I
7EB

llEl , , U14 v,~ U15 v,~ U17 ~" U18 ~,~ [Uj9)
! '-' I

9 10 11 12 9101112 9 10 " 12 9 10 11 12 9 10 11 12 9 10 11 12

;~~~ ~ ~ I~ ~ ~8~~ ~e~S 1...1-«>-«

~~S~ e::t;~~ .0;:

(} (} II (} 1 1 1 1 1 1 1 1 1 1 1 , 1 1 1 1 1 1 1 1

D 0
0

0

I I I
I 5

I 0
I I I

I 0
I I

I
I 0

I I I
.

I E
.

I H - I-

I 0
I I

I
I I

I
I IA

I I
'U 70

I

I

[U2Q] I l0W
, 10 1t 12 9 10 11 12

w

I~ I~ I~I§ ~ r. e I. ~ opcock

1 1 1 1 , 1 1 1 (}

IPCSTK
Pc
t'C...
PC
PC

ITt'>

IPC
IJ>c.

7 l'C..
2C

0 8:
0 R-.hTK

E:'!;£oP
7 (;.SIX

0
7 c P
60 cPo!'

0
7 IPe

0 Pcs-n<
0 [PC

Pc
'30 .E'Cc

70 ~
PcST

0 7
PePOf

7E
0 PcP<'>F

[D

C-=-'l - LAHH[O

.. . .

J<,- Eo.,..", F . F."

,. D~ • .., ~

7x

r'<.

bx.

Orl1'D~ '

'" '!)

'I..'A.

li

bl<

~
ro

" p. ,...
x

'"

OJ
OJ

[ill]
"""'"

[ill] I V",,' IDl ,V oJ!

PROM
11 1011 12 9 10 11 12 11 10 " 12

~

REMARKS addr '" ess ~

n~~
..,.iIi N ""''-10<1(

Hex
u ~'-' L.J m:5m51 02:00

UNPROGRAMMED STATE 1 1 1 t o 0 0 0 o 0 0 0

Ii .I'.M B J...EO IX
Rpo.,,~ "3 I

p"" rJ"nrAr', II
"
")lJkou.~ R (n', '.n II' lood D 0
. ~ -h tJ. (,,") ..; b A I

P." ' N_~l I
" '3 I

" ::lut..", j" RfN-n) 0 I
Ln R' ''' - ~Jn ~ SIE I

((I~r., A. B ",dJpr C I I I 1
3D 6 I 1 I

E '5 I
"

.. " rr, '"-,, F 5 I I I I
:), "" ... 0 iI..
\, ' .':D I E 0
" M' ;Z

" 3
Ou~ou.~ A'"
' \0"':" 5

C I"ok 1
0 I I

I 1
A

,

U14 u ,~ U15 U, ... U17 ~" U18 ~,~ [ill9] ~
11 to 11 12 11 10 11 12 9101112 9 10,t 12 9101112

;h~ 8Se~ ~~~~ 5S~~ ~F.I~~ -c: II II ..

1 1 , 1 1 1 1 , 1 1 1 , 1 1 1 1 , 1 1 1

0 D 0
:10 0

0

E- o

0 0
0 0

0
0 0 0

0
0

0

0
0
0

,

11 10 " 12 ~'2
[illQ], IU211

;;;

~I~~I§ Ij ~ e ~ ~ opcode
~.. ~ ~

1 1 1 1 , 1 1 1 0

C
CST K
~
'c:.

IE. f'C.
t'L.
PC

C
0 PC

t:!' srI<.
;'serf';
~

,PcsrK
S(T",'

50 0
'5 0

c
Pc

0 0
0 0 'C

C
;r~
/:'CST1<
~TR:

D

0= LATCHED

I s"ve re.e rfl '
IL

7X

I b)(

06'
'g
::l
0-,.,
" N

CD
\!)

A
p

p
en

d
ix

2

-
9

0

-

I

o
~
 u a
.

0

119
Snl't'1S

0

"
=

-

~

!lil -
~

1!!! -
~

lD
J/i

-

"
'"

-
~

W
l

-
~

'"
-

~

~
 -

"
~
 -

~

""' -
~

~
 -

~

.'V
 -

"
.u

J
 -

-. =
 -

~

ill -
~

il!l -

"
lll.!!.l -

~

!flU
 -

~

.Ill -
~

illU
I -

"
d!ll!1 -

L
fl
~

lJ
ll -

5
~

lI!lL
l -

~

ill -
I

"
l!!i -

~

I
I
 -

~

lIlll -
... ~mll ldD

JS -
"

vas
0

~

•• 5
0

~

IJO

0

~

'.5

0

"
Z

)O

0

~

[)O

0

~)(1J.IdHlxnW
0

~

"
0

0

"
.ua. -

~

J.lJL
 -

~

JJII -
~

ill -

~
 ~

0
x

....
Q

I
cr-o I
0.."8

~

I
a

I
~

0 ~

r
III

r

I
..

~

~

0
cr

0 ~

<
{

~

z
~

~

W

cr

III
OJ
n
;.;'

'0
I-'

§
(D

::E! ...,.
i'i ...,.
:J

IQ

OJ

5.
'0 o
~
(D
i'i

U)

~
I-'

'<:

l _______ (
O~-----

240V N
50Hz O~-----,

E

~
l

FAN

POWER N •
)

+15

A N,\lOGUE
INPUT -J,..

7815
',5 A

l~ • •
TEST

CONnOl

-15
:TI- -- 7915

'-SA

30

1~000}J

40V

1~OOO}J

40V

lM323K
3A

Ny

.---------;161. l' < 4
ANALOGUE

INPUT

MEMORY 2

lM323K
3A

7805

I MICRO 2·1f1...L I 1'5A
[aNTRal I _ _.__--1

II4l =-

wP
ROM

7805
1-5 A

N1r-----~

L--t------ill

LM323K
3A

ARITHMETIC
UNIT

2'2)1 ~ Ilnr-
AUX
~

7805
1·5A

7805
1-5 A

I 2-2~ ADDRESS
_ GENERATOR - Is

Power supply chassis
TEST •

I CONTROL Heatslnk 2 Heatsink 1

o
EXT CLK

o
OIA

OUTPUT

o
AUTO

START

o
1024Hz

powerl Heat IHeat
Supply sink sink

5V I ANALOGUE
INPUT

System on ARITHMETIC
UNIT

3A

Ml

M2

3A

TEST I MICRO
CONTROL CONTROL

5v I 5v 5v 5v

SB7 II Raw DC Mu.,n~Lkl samples
3A sv!NT SBl

1~ ~:110 ~4~: ~ j'o 1~~t
3A I Man slrt 3A SV m

3A SV m
-15V

o I'SASV 7E'lf(T-I2o
21 l·SA 5V 21

1----+---+----11 EXHLK 1-5ASV Scopelrig
. TITR" ~ "51ff

AUXILIARY I MICRO
OV 1 5V CONTROL

1·5A 1-5 A

ADDRESS I wP ROM
.ISV IGENERATOR TE S T

CONTROL
loSA 1·5A

RAW RAW
DC DC

12-1.V 12-14V

12V 12V
AC AC

~ ~31r~
iiiiii YTt!

.1SV m enm:ii\
OV

IBAV 0 BAV
OVAL41 m
OINT TFlT
09 010
07 OB
OS
03 51

rn!A

iii1
iii4

J40CKWP
41

tlCDl
UJ1

rut
iiil

R/I 0 CL 1
(KWPs1 [!l"2

2. T 'CK1f7i
CKl

I ' 1 13 1----+---+----1'" 2 CK2

12V 12V
AC AC

~ CK3 ¥O
CK461

'" Tesl 1-__ -+ ___ +-__ -11 ~ 17 ~ add bit
;;l 18 '" SB3

AUXILIARY
5V

.L -L -!-

~ 19 lI: S 132
aJ

fj; 0 20 ~ SBS-I90
21 SB171
22 ~ SB6

II 23 ~ SB4
12 24' SB7

.L elrO -=!:-
R/I 0

~81 .J:..

ADDRESS I WPROM IANALOGUE
(£NERAT~ INPUT

MEMORY
1

MEMORY IARITHMEl1C
2 UNIT

5v I 5v

eii'ii\.el +10
SB3 11
'Iff

nm
enlN-ni +20

21

A.B 31
CK4
m

1

~O

I
!Q 2 ~O
':!l
'" ~ ,..
o
o

341
4
5

'" ,..,
VI
VI

7 tso
B 51

I 9
10

SBl 61
CKWP

71
WPCLK

Resel wP
SBS

~O

1070

*~rO~

5v 5v 5v Sv 5v 5v 5v 5v
1 RuetWP I 1

2 Oe;;-r. '" 2
~ 3 11 10 ~ ~ 311

Man slrt I'
Oouto strt ~
1024Hz ,..

0'2 14 ~ 02 r
3 VI 'f! 311 3 VI

4 9 ii: 4

1;5 B~~ 5
~ 6 7'" 3 6
:;: 7 0 6);;:;; 7 ~O
VI 5 ~;o 821

.... aJ 9 i fj; 10

m 111
Om 12 fO . 1024
m 1 Stop 31 s~es
WIT sampling m

1 I 1
402 VI ~ 2"140

341 3 ~::; 341
4 ~:; 4

»0 5 ~ '" 5
g ffi E; 6
~ 0 7 it ~ 7 tso
~ 8 ~ VI 8S1

! 9 VI '" 9
10 j j 10

~

»0
o
o
Xl
m
V'I
VI

I

m I 13 Om 14 ~O
22 , :i 1561
21 ~ ~ 16
20 2: VI 17

4 ~?i 18
5 1ii;!! 19 tlo

"';;; 2071
16 ~ OJ 21

15 I :;; 22 t OV
2. T 23 -1SV

10 OWPCLK j 24 0.15V

-:!=- 81 7 * 81 -=?-

r-

V'I ,..
~
;:g ,..,
Xl

~
II'

!

4 4 1i: VI 4 4 1i:
S 5 ?i 5 5

6 ~;:g 6 6 ~
o 7 ~ \;j 7 20 7 :;;

8 VI 821 ~
~ 9 9 ~

10 10:i! 10 10:i!

~~ I 11 11 I
W31 1
m -402 0 2

41' 3 3

4 '" 4 VI VI
5 5 w

co: co:
6 g 6 2

Iso 7 < 07<
511 8 i: e ~

,~ j 1~ !
14 14 014
13 13 1 I 13 13 I

'i 15 ~ 15
~ 16 ~ '" 16 VI

'" :::>
VI 17 17 ~ 17'"
?i 18 18 ~ ~ 18 15
;!! ~ :;; 19 :;;
;;; VI "2071 ~
'" 21 ~ ~ 21 20 g
c: V'I -

VI) 22 22 ~ I 22 22 2:1
23 23 1 23 23
24 24 024

-d:- 81 -:!:- ..L 81 ~

5v I 5v

11~0~ 1 . ~
5 ttl

6 ffi
~o 7 :;;

211 8 ~
9 ~

10 ~

11 I Iilm
311m

rn
CK1

ro CK3
41 m

tIm
CK2

en1
koen1'

s1l MuxinP6.K
m ru
13 1 Olio

61r 15
16 ~

'" 17
:L Ie

o 19 ~
711 20 VI

21 ~
22 ~
23

1
r

024

-b 81 -d:-

03 -1 14'
04 -2

15
_

OS -3 16'
06 '4 17-
07 .5 IS
oa ·6 19-
09 -7 20-
010·8 21-

OINT -9 22-

OVAL '10 230 1'" BAV '11 24- ~ *' -12 25- ~
... -1

o
REAL

RECEIVER 1

()
IMAG

REeE IVER 2

()
SCOPE

TRIGGER

>5'
'0
(D
:J
p.
1-'.
X

Lv

ill
>-"

•

U14

auto

man

1024
Hz

memory
full

r ~v
lK

24K
1 2
LF398

Rec.l 3 U7 5

~nalogue
6 .J,.common lS

.15

lK

8 1 2 24K
Rec,2 LF 39B

3 Ul0 5

6 7 4

10 ~~ -15

~
1
2 U14 8 11
4 54

12 @}--;Mnn, 13 "*" l!Ql-!'uto 3
9 105

I -

L 5

1024 6 ~ SQIIlplES •

~---

ble
U2

D-type
flipU11

flo

2N5465

-15

9

51K

9

10

Appenciix 3 - 92 -

latch 12 U12
analogue real to
digital sampler U15 U16

converter data
bus

latch 12

imag

ROM
U17 U18

5 bit
sampler counter

U4 us address
bus

10 bit 10
osc. address

0-33M
Ul

+15 2K7 4K7 2K7 -15

Gain R

11 10
13 12

11. U15 15
6 174 7
4 5
3 9 2

29 1
8

33 9
161 12 10

32 11
37/38 U12

12
24 13 ---4-~_ 111 9 10

36 14
34 15

16
19 35 17

~
.15 4K7 -15

4 WTI
4 WE3

2n

13 12
14 U16 15
6 174 7

4 5
3

9

2
1

15

14 [37]
U9 13 39

161 12
11

14
U 6 13 7
161 12 ~

11 --15II

7 10
2

oj 3 14
• 9 161 13

" 12

R

1

1 12 71.00 i· Stop

~
U13 4· ~4K7 sampling L _____ ~ _______ --------__+__ ----L331

10 6 S =-

Analogue Input Board

>-3
ro
(fI

rT

g
!:l
r.
Ii
0
~

txI
0
III
Ii
P.

•

R

12 2 14

U13
...-------1-11 0M 809 5

10 6 11 3 13
If' t

8

~9

12

+
4K7

141 ~15! U"'Ao.

1-=;0-

-15

+15 ~ -15 r
Test +~+II 12

Man Run p1 :1:'

t

It! 1 _

14[j!] • h ~
~II 5~:-blt FKl

7 9 10

30 1 .

---- ... 4-1 20------ 3
3

10,11 11
U6

9 1274LS161
2 U2 6

13

4
1 74LS148 7

14

5
1 13

9
6

12 70--
1

90 • !IV ;) :>tl4 , -=-

Man ~ .,.
10

6
-L =>u2 rw---JV =

U3
74LS86

SOK

Man

start 115

.-

ON

.- ~
~Q •• r;;--, IL ~ IjLlU~

MCLK

11
1

-13 1 ---

7 6 I I 14 1312
U4 12

~ ~Ul
74LS221

+
74LS11 4K7

TCLR Ext rz
clock 23

~
'd
ro
!:l
p.
~

w

\D
w

•

Appendix j . - 94 -

:: A~
:::: SnlFT - !lUIIHHH
:: REGISTER X

AR ::
SIrlIFT ;--- + :: ---- ::

REISISTER ----- [l SHIFT

::: U3 :: - REGISTER

:::: U1 U2 .tttHIH ::: -
:: U19 U20

I WR - U7 UB
U21

tHHIH + r-: SHIFT - REG ISTER -- X)-- ->--- U13 U14
U9 it IHI.iHHt - -/+ BR

~

L--~
+/ Ui6 A~

J --- HHItHHH
L--~ X + SHIFT

~
U4 REGISTER

Hflllll '--- - ;-- U23 U24

I WI U22
::::

:: HIHIH :: SHIFT + - SHIFT
::: SHIFT :;: REGISTER - REGISTER
:: REGISTER ~ X :: L----- - L...-oo

:: AI :: >--- U17 U18

::;: U10 -- Ul1 U12 HHtHltttt - us us
B;

IUi1 A~=JiB iiifCK2TIl' A~R.J!nr0<2ID
Iii'i'eii1,1

1

en!,: IITi
1
[](1 L~3+ RCt 2

t!fl 32 J til 11 I I I I CK3 TIi2 CK3 LD2 BR~ I r AR-:~ I
's1 MSB 428 911 428911 423f7 an 9 4l317tl119
~ 6 16 16 f------- 16
.12..-5 5 -117 1 117 1 -5 5
l!<.:-15 U1 5 U7 -12 1--...;'12 5 UB 15 U19
'16 - 625L522 6 25Lsn r----13 1---l13 U9 - 6 6 18 14 14 r----14 U3 t---i14 _1425LS22 1425LS22

B

i?g, 7 I,; r---- 2 r---- 2 - 7 7
...... "12 1 18 12 1 18 3 25LS14 r-- 325LS14 12181 19 n1218 1 19

I ~ t ~ 9iL 9 "L .q. I 1.1-4, lMuxinp

c~

m

~ 2 U 8 10 f-1 ~ 10 -l ~ 2 2 52
§- 3 U2 3 4 r---- 4 ~ 3 U14 3 U20 - 1 i I. •
-2~-- 474LS395 474LS395 I----- 515 6 I----- 5 15 6 f------- 4 74LS395 f------- 474LS395 !R. (-1- 'L~

~ LS~ - ~91 710, ',11:== ~91710 1111! BR --1 I _ 'SR"'R ~ 9101 7 r-- ~ 9 101 7 erlL~l¢ - ---!E
,- -, ," BI --.J L-BIWR ! ! * ! I~ 7Tl~ _ ;

~--:J_. ! i • L !j I CK3 m'I;' ,! ~ r-
1~-- W...:...~BR +1 , AR ~~ 16 18 1 19~!~w:en2 1 1 !, CK r-5-!1~---=-2-' CKl

m---~- l! ~~17 U16 CK2 ' ~ \ U15 1~ CK-
~~--- +--.-- 'I B~ 15 2SLS15 BJWRiBRW j ill L ' I 46 ',.,
.J..KL~ I ' tl.a:'L. 14 13 11 12 f---'-l' I' " I 36 128 -""-

-hill --~L. I i r BI + II i rAJ .1 1m I p.- I f j po 2

m
o LS8 697 10111 69710111 _.!lR_. r-BRWI B~ r--B,w, 691017)---- 69 101 7
81- 5 5 5 5
6'- 4 U5 4 U11 - S15 6 -5 15 6 4 U17 r---- 4 U23
4 -- 374LS395 3 74L 5395 r--- 4 4)--- 374LS395)---- 37~LS395 ,--, i :.

2 2 U4 9 h-. U10 9 t-'l~ 2 2 I-\r.<inn ~r:=-' -:,:'~~~:'.:-7'~
t rS~~ f ~ 10f-!.,J" 10J-l4,. h Ro,-0i-;;r-"'"" ~a1619'7141512'; CK3

'72l---- '}12 1 18 1':'12 1 18 - - 325LS14 32SLS14 't218,'19 12181'19 U22 25LS1S 11 lIT
~-.-- 7 7 ~ 2 2 f------- 7 -·'1
~-~-14 LJ6 14 LJ12 ~---14 11. r-'-14 U18 -14 U24 3 5 2 ~ 76 9 8
66--- 6 6 -13 13)--- 6 --- 6 ±, '.
64---1525'S221-~--1S2SLS221---'2 ~_11217 1 ~15525LS22 -:-: __ 1S525LS22 AT",~ ';'·-8.
62 --- 5" -- 5 -- 117 1,--- ~ ~+-T-'''' 'A;.'t.
f#..~'6 -16 r------>-~ ~ --16 ---'6 c _1 __ _

SftJMSa-428 9'~ 1-----~28 911 .- -7-.~ r - 423'78r9 ---42:;1"8'1:; ~

1 "J I I I j I
:-";;n3i"[i:K'

I. I I CK3, t:lrrl CK3! wi
_C3 LITCJ<2

. ,
8: -;---.: III
BR~R_~ ,

~CK2m

III
~0<:2~

Arithmetic Unit Board

•

10 eiiJ;

•

address
counter ROM

U1, U2, U3 I---~

clock clear

0-255

U I., US, U6, U7

ua U9. U10,U11

output
enable

256 - 511

7 11. 13 12 1115
U2

74LS161

Appendix 3 - 95 -

sampler
v

system
t

address
multiplexer M1

~
M2
~

-----f~: ~~~~~=--l---------
2 ---------l_~-~=:~~~~.--_1-______ 2 __ _

4-----4-_-_-_~-_-_-_-~~~~-~=~~~~-~-~------4---
5 -----5-~-_-_____ -_-_-_~-~~~~~:~~1------5---

6 ----6-~-_-_-_-_ -_-_~_!:~ ~ ~~=__I__-------_

7---------I-~.~~~r:~1__-----7--_

8 ----8-... -_------------~~~-~~~::-----I------8---
9 ----9~-_-_-_-_-_~-_l-l~---~=~~ :..1--_____ 9 __ _

10 ----10-... ---------------=!~~~~~""-s-~-I------10---

wrr----\W-... -_-------------J=----~~ ~=I__-----wrr-E-_
Vlti------l--~ ~ ~ ~ :I__-----WIT-E-_

WE3·-----.. - ... -_------------~-~~~: :::==-:-.:..1__-----W-E-3-_

swap

:: ~ ~ :::.~-_I__-----R-E-1-_ mr-----J U12.U14,U15,U16,U17
U18 Ll1Q

_--___ -4-_---1 U13

memories

Sa Sy
M1 M2

4 WEf~ M2
U12 12 WEl 'if: '11

'.vE3-~
_~ '12
WE3 'lID Ml .~ i I ~ I I

~ LI ___ -=--_ ~_ '::i.._-.!f-..!,-J

wP
ROM Board

~

AFpendix 3
- 96 -

'eset wP monostable
---4Tr---------~-~ ~------~

9 bit counter
i U12 U9 Ul0 Ul1
I

I
i

I X I
\ ";

f Xb" """,d
f----

Al -Al0 > FFT - ROM counter - 81-89) address
- sequence ?" subtract

UI. C1 -C9) generator 1
Ul. U2,U3. C,. - C 9') un U22, U23, U24, U25. U19 U20 U14 U15 U16

us. U6,U7, U26,U27. U28, un U30 10

}-H 10 -~

SA
~C 2

~A 3
43 , ..
3C 5
2A 6

l!l.7
1 C B

5nF

1Jn

lU ~1

1~ 58
11. I.C
13 3A

UB 12 3~
4K7 11 li. pull

10 16.,. ups
9 111

U4 13

74 LS16112

11
2

10 13
15
14

U12
9602

9
12 11

I
13U11

m
~

WPCLK (]
U31

us
13 74S288
14

U
I--

CKWP

u17
7~ 36 6

13 5 11 7 9

S 3?t"
:61.

S3~ ,533 : '1' '
,n::W -11 li

1$.,53~5t.~~~ .~I

system

U18
71.366

3 13 5 11 ?

~~~~~ 

~N~ 
U17 U18 -p 10 

address 

lL.U12 
lOA ~ 16 

9A 3 14 99 
881. 13 9( 

§C 5 un 12 SA 

]A 6 I.K7 11 78 
68 7 

pull 7 
6C 

ups 18 
6A 

U21. 
74125 

A+3 :ill 

wPCu< 
;--JTII 

8 12U31 

14 4 12 6 10 
115 

un ! 

74125 , I CKWP~ 
! 

e l4U31 , I 

I I 

U20 
;:,365 ~5 ~ 

3 13 5 11 
I I' 

J,l:,iJ ;-:1 
.42.,414UU?J 

Address Generator Board 



• 

• 

Appendix 3 
- 97 -

test , ! address lit ZERO 
_ _____________ -=Clli~ s10f+ I, 

1-
fl, --- LJi count'erTZ:ll'"l-----IOOdreSS I 

CL ROM Ul2 

U13 --:r====f8 
MeLK I LJ 

+ 

-
program = 
address = driver 
display : 

Microprogram 

sequencer 

1+-----I
9'--lOpcro: 

14----,/--l1 select I-I---I----~ 
~/~--, 

.. U1 U7 U8 U9 U10 

11L-----------------~~r------f~8--------~ 
J 

ROM 
~! L Off-

( ~~:l yLr-.-t--rj-r-;:U14~U15::"'-;;:':':, 17,....:1;.:.::1 ~rr-T.,-T"""iT"""1-,-Ir 

bistable I ' ~ 
U26 I U22 Y U27 

I I I; 11\ nnn 

ROM 
, U3 UI,. us U19 U20 U21 

: ! I ! ! ! ! t II ! r I TT 
latches 

U2 U6 U23 U21,. U25 

'\111tttli opcode 

clock reset and latch 
controls MCLK 

enable and load 
controls status bit code 

14 745287 
13 

U1 

11 
12 

Y4 
YO BRIS 1 

2 
BCLK 

Y7 
Y6 
Y5 
Y3 
Y2 

10 L 0 2 

1111 ~ 

U27 
12 ~O~dc 

;.0 ~ 

c~,P IV! 

7 9 10 14 
U13 13 

74LS161 12 
11 

12 
10 
8 

-5R1 

1014 
Ul1 S8A 

74L 5151 10 SBg 

6 9 SSC 

1+ , 

S674321J~ 

U21 'i -
'3 745287 ;0 
14 - 745287 11 
L-___ --..::.J9 - 12 

I 
"1Clli 

Micro Control Board 



I 
o 
~ 
tJ;j 
o 
III 
1-1 
0. 

• 

un 

T 

I 

3 l/" :13 

WTI trf~~1- -: ~ WU 
31l ~ *J _1~~ 

• 

-J ~~1 r 
~11s ; :WE2 
- G',~r is -1-~, MSB 158 

rs- WE1 

~ 
ill 
:J 
0. 
1-'
~ 

w 

\0 
(Xl 


