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Abstract 
 

 

This thesis describes the development of an ionospheric map for the South African region 

using the current available resources. The International Reference Ionosphere (IRI) 

model, the South African Bottomside Ionospheric Model (SABIM), and measurements 

from ionosondes in the South African Ionosonde Network, were incorporated into the 

map. An accurate ionospheric map depicting the foF2 and hmF2 parameters as well as 

electron density profiles at any location within South Africa is a useful tool for, amongst 

others, High Frequency (HF) communicators and space weather centers. A major product 

of the work is software, written in MATLAB, which produces spatial and temporal 

representations of the South African ionosphere. The map was validated and 

demonstrated for practical application, since a significant aim of the project was to make 

the map as applicable as possible. It is hoped that the map will find immense application 

in HF radio communication industries, research industries, aviation industries, and other 

industries that make use of Earth-Space systems. A potential user of the map is GrinTek 

Ewation (GEW) who is currently evaluating it for their purposes. 
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Chapter 1 
Introduction 
 

1.1 Introduction to the Project 
The aim of this project is to develop a map of the ionosphere over the South African region 

based on available data sources. The map is essentially a computer programme that 

graphically represents the distribution of ionospheric electrons over the region, in time and in 

space.  The purpose of the project is fully discussed in section 1.4. The available sources of 

data (ionospheric models and ionosondes) are discussed in chapter 2, and the way in which 

they have been combined to develop the map, is discussed in chapter 3.  

 

The ionosphere affects our lives in diverse ways, ranging from its usefulness in High 

Frequency (HF) radio propagation, to its attenuation of radio signals that have to pass through 

it. By extending our knowledge to lesser known areas of the ionosphere, use of the 

ionosphere can be greatly enhanced, and significant allowance can be made for the effects 

ionospheric behaviour can have on signals passing through these altitudes.  

 

1.2 A General Overview of the Ionosphere 
1.2.1 The Ionosphere 
The ionosphere is the region of our atmosphere extending from a height of about 50 km to 

about 1000 km. What distinguishes the ionospheric region from other regions of the 

atmosphere is that it contains significantly more charged particles. Kohl et al. (1996, p. 181) 

explained that the main source of plasma and energy for the ionosphere is solar extreme 

ultraviolet (EUV) and ultraviolet (UV) radiation, but that magnetospheric electric fields and 
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particle precipitation have significant effects on the system. Ratcliffe (1972, pp. 3-36) and 

Kohl et al. (1996, pp. 181-185) have detailed descriptions of processes at work within the 

ionosphere. 

 
1.2.2 Regions of the Ionosphere 
Based on chemical composition, level of ionisation, and variability, the ionosphere is sub-

divided into the following regions. 

  

D Region: 

The D region is the lowest region of the ionosphere lying at approximately 50 km to 90 km 

above the earth’s surface. The intensity of solar radiation reaching these altitudes is so small 

that relatively weak ionizations, and hence relatively low electron densities, are found in the 

region. The D region corresponds to a sparse layer of polyatomic ion clusters with densities 

in the range 102 to 104 cm-3 (Giraud & Petit 1978, p. 22).  At night, the ionization in this layer 

almost, but not completely, disappears. The layer reduces greatly after sunset, but remains 

due to the ionization effect of galactic cosmic rays (Bonnet & Woltjer 2008, p. 360). Radio 

waves cannot be reflected from the D layer but pass through to the strongly reflecting E and 

F regions. Bonnet and Woltjer (2008, p. 360) explain that the D layer is mainly responsible 

for absorption of HF radio waves, particularly at 10 MHz and below, with progressively 

smaller absorptions as the frequency gets higher.  

 

E Region: 

The E region is the region immediately above the D region, and extends from altitudes of 

about 90 km to 120 km. As expected, the ionization in this region is stronger than that in the 

D region, and is strongly diminished at night. The E region corresponds to a moderately 

dense (103 to 105 cm-3) layer of molecular ions NO+ and O2
+ in the midst of which fluctuate 

thin layers of atomic ions occasionally peaking in the so-called ‘sporadic E’ (Es) phenomenon 

(Giraud & Petit 1978, p. 22). Bonnet & Woltjer (2008, p. 360) noted that charged particles in 

the E layer are due to the ionization of molecular oxygen (O2) by soft X-rays and EUV 

radiations (1-10 nm), and that the layer is able to reflect radio waves with frequencies less 

than about 10 MHz. They also pointed out that, at night, the E layer begins to disappear 

because the primary source of ionization (the sun) is no longer present. 
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F Region: 

The F region is immediately above the E region, and extends to well above 300 km. This 

region contains the greatest density of free electrons, making it the most important for long 

distance radio propagation. The F region corresponds to a dense layer (105 to 106 cm-3) of 

atomic O+ ions (Giraud & Petit 1978, p. 22). Ionization here is mainly due to photo-ionization 

of atomic oxygen by extreme ultraviolet solar radiation. At night, the F region is mainly one 

layer, but during daylight hours it is divided into two sub-layers, the F1 and F2 layers. The F2 

layer is the higher layer of the two, and contains larger electron densities than the F1 layer. A 

greater concentration of free electrons and ions is found in the F2 region than anywhere else 

in the atmosphere. Giraud & Petit (1978, p. 22) also pointed out that the F1 region is the 

transition between molecular and atomic ions, while the F2 region is the peak of O+ ions. 

More details on the F region dynamics can be found in Ratcliffe (1972, pp. 55-57).  

 
1.2.3 Experimental Investigation of the Ionosphere 
A good number of instruments are today being used to probe the ionosphere. For this project, 

data from the 4 South African ionosonde stations located at Grahamstown (33.3°S, 26.5°E), 

Madimbo (22.4°S, 30.9°E), Louisvale (28.5°S, 21.2°E), and Hermanus (34.2°S, 19.2°E) were 

used. Ionosondes are HF radars that send radio wave pulses straight up at vertical incidence 

into the ionosphere, and receive the reflected pulses. By measuring the time of flight of the 

transmitted pulse, the instrument is able to provide a wealth of information about the 

ionosphere. The ionosondes used in this work are discussed in more detail in Chapter 2. Kohl 

et al. (1996, pp. 440-458) and Davies (1990, pp. 89-110) contain detailed and general 

information on the principle of operation of ionosondes. 

 

Besides using ionosondes, other ways that the ionosphere may be studied include the use of 

incoherent scatter radars, and experiments on board rockets and balloons. Since data from 

these instruments were not directly used in this project and are therefore not covered in detail 

within this thesis, the reader is referred to Davies (1990, pp. 106-112) for more detail. 
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1.3 High Frequency Radio Propagation through the Ionosphere 
High Frequency radio waves are radio waves having frequencies in the range of between       

3 MHz and 30 MHz. The bottomside ionosphere (the region of the ionosphere lying between 

about 80 km and 350 km) contains sufficient density of charged particles to cause substantial 

refraction and reflection of these waves as they attempt to pass through it. 

 
1.3.1 The Ionosphere as an HF Radio Reflector 
An important aspect of the ionosphere is its ability to reflect HF radio waves that would have 

left the Earth, making it possible to reach several other places on Earth, where the signals 

would not have reached otherwise. Consider, for instance, an HF radio signal transmitted 

from point A as shown in figure 1-1. 

 

 
Figure 1-1: A diagram to illustrate that an HF radio signal transmitted from one point on 

Earth cannot directly reach several other points on it 

 

The radio signal leaves in all directions, but since radio waves travel in straight lines, they 

can’t get to places like B and C. The ionosphere, here, can play the role of a reflector; the 

ionosphere can reflect these waves allowing the signals to reach places like B and C, as 

illustrated in figure 1-2. 

 

A 
B 

C 
Earth 

Ionosphere 



 5

 
Figure 1-2: A diagram to illustrate that the ionosphere reflects HF radio signals allowing 

them to reach other places on Earth 

 

The path of such radio waves is defined by the distribution of electrons in the ionosphere, and 

by the frequencies of the transmitted radio waves. The ray-tracing idea is needed to precisely 

predict the path of such radio waves, and is discussed in section 1.3.4.   

 
1.3.2 Plasma Oscillations in the Ionosphere 
Plasma electrons in the ionosphere oscillate with a characteristic frequency known as the 

plasma frequency. Lorentz (1916, p.133) explained that when electromagnetic waves pass 

through an ionized medium, they set electrons into vibration. Chen (1984, p. 82) further 

discussed the phenomenon by explaining that when electrons in plasma are slightly displaced 

from background ions, a Coulomb force is generated in such a direction as to drag the 

electrons back to their original positions, but that due to their inertia, these electrons 

overshoot the intended position and are trapped in an oscillation about that position. This is 

called plasma oscillation and the characteristic frequency of the oscillation is known as the 

plasma frequency. 

 

Chen (1984, pp. 83-85) also showed that the plasma frequency (in units of radians per 

second) at any point in a plasma is given by 

 

A 
B 

C 

Ionosphere 

Earth 
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ωp= 2 f
m

ne
0

2


                                                                                                                  (1-1) 

where f  is the corresponding Plasma frequency (in Hertz), n  is the number density of the 

electrons (in electrons per cubic meter), e =1.60x10-19 C is the electron charge,    

0 =8.85x10-12 Fm-1 is the dielectric constant, and m =9.11x10-31 kg is the electron mass. 

Since all other quantities on the right hand side of  equation (1-1), except the electron density 

( n ) are constants, these quantities can be substituted for their values, and the frequency can 

be put into units of MHz, transforming equation (1-1) to the simpler form of equation (1-2) 

with the electron density still in electrons per cubic meter. 

 

n =1.24x1010 f 2                                                                                                                   (1-2) 

 

Equation (1-2) shows a square-law relation between the plasma frequency, f , and the 

electron density, n . 

 

Physically, the plasma frequency represents the highest radio frequency that a portion of the 

ionosphere is able to reflect if radio waves are at normal incidence to the ionosphere. In 

general, a radio signal will penetrate or traverse a portion of the ionosphere if the radio 

frequency is greater than the plasma frequency. If the radio frequency is less than or equal to 

the plasma frequency, the signal is reflected by the ionosphere.  

 
1.3.3 Definition of Some Ionospheric Parameters and Symbols 
Each one of the bottomside ionospheric layers has a local peak concentration of electrons in 

that layer. This is referred to as NmF2 for the F2 layer, NmF1 for the F1 layer, and NmE for the E 

layer. The corresponding heights where these peaks occur are referred to as hmF2 for the F2 

layer, hmF1 for the F1 layer, and hmE for the E layer.  

 

Equations (1-1) and (1-2) above imply that the plasma frequencies are greater in parts of the 

ionosphere where the electron densities are greater. Points of peak electron densities are, 

therefore, points of peak plasma frequencies. The peak plasma frequencies are also called the 

critical plasma frequencies, and are denoted foE, foF1, and foF2 for the E, F1, and F2 layers 

respectively.  
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Since the F2 layer will always contain the highest density of electrons in the ionosphere, the 

foF2 value is the highest plasma frequency obtainable in the ionosphere, and it represents the 

highest possible radio frequency that the ionosphere can reflect at normal incidence of the 

radio waves. It follows, from equation (1-2), that the foF2 and NmF2 are connected by the 

equation 

 

NmF2=1.24x1010(foF2)2                                                                                                         (1-3) 

 
1.3.4 Ray Tracing through the Ionosphere 
Ray tracing is a way of determining the path of radio waves through a system with regions of 

varying propagation properties. HF radio communicators use ray tracing to precisely 

determine the paths of HF radio waves as they propagate through the ionosphere. The process 

basically involves a step-by-step integration of differential equations that describe the 

propagation of these waves through dispersive and anisotropic media like the ionosphere. 

Unlike optical ray tracing, in which the refractive index is typically constant for a given 

medium, ray tracing through the ionosphere must account for the complexities of a spatially 

and temporally varying refractive index, where changes in the ionospheric electron density 

correspond to changes in the refractive index. Haselgrove (1955) described a method of using 

Hamilton’s equations for geometrical optics to calculate the path of rays through the 

ionosphere. The method offers a high speed of computation, puts no restriction on having a 

stratified ionosphere nor a constant magnetic field over the Earth, and takes into account the 

curvature of the Earth.     

Figure 1-3 below is an illustration of ray tracing through the ionosphere using an analytic, 

path-segmented, and quasi-parabolic ray-tracing approach (Norman & Cannon 1997; 1999). 

This approach was used to illustrate the application of the project in chapter 4.  
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Figure 1-3: An illustration of ray tracing through the ionosphere 

 

1.4 Purpose of the Project 
The project is aimed at developing a map of the ionosphere over South Africa using the best 

possible combination of sources available. The available sources are the International 

Reference Ionosphere (IRI) model, the South African Bottomside Ionospheric Model 

(SABIM) and scaled measurements from the 4 ionosondes in the South African ionosonde 

network. These sources were combined in such a way as to develop a map of the behaviour of 

South Africa’s ionosphere that is as accurate as possible. Chapter 2 is a detailed discussion of 

these sources, while the development of the map is discussed in chapter 3. 

 

An ionospheric map is essentially a computer programme that shows spatial and temporal 

representations of ionospheric parameters like the electron density, critical plasma 

frequencies, etc., for every geographical location on the map. Such a programme will rely on 

ionospheric models and on measurements taken by ionospheric instruments for the values of 

the parameters at each location. The main goal of an ionospheric model is to provide a 

mathematical description of the ionosphere as a function of position in space, and time 

(considering the fact that ionospheric behaviour changes with time, location, season, 

magnetic and solar activity). 

 

The drive behind this project is based on a requirement by the communications, defence, 

aviation, and research industries. Communications and Defense Industries need ionospheric 

maps for direction finding and propagation predictions of HF radio waves. Aviation 
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industries need them to correct for ionospheric effects on their positioning and navigation 

systems. A potential user of the map is Grintek Ewation. Grintek Ewation is a systems 

engineering company which produces products and systems, and provides services to 

government institutions and national defense forces. Grintek Ewation has been the electronic 

warfare systems house for the South African National Defense Force (SANDF) for the past 

30 years (Grintek Ewation 2009). The map will also be of great value to ionospheric and 

space weather researchers, and will be made available as a space weather product on the 

Hermanus Magnetic Observatory space weather website (http://spaceweather.hmo.ac.za/). 

 

1.5 Overview of the Thesis 
Chapter 2 of the thesis discusses the models and facilities used in developing the map. It 

begins with a discussion of the South African Bottomside Ionospheric Model (SABIM), then 

the International Reference Ionosphere (IRI) model, and concludes with a treatment of the 4 

South African ionosonde stations that were used in the work.   

 

Chapter 3 describes the development of the map and results from the map. It starts by 

discussing the way in which the data sources were incorporated into the map, then the project 

algorithm, the physical and mathematical techniques that were used, and finally results from 

the map. 

 

The project validation is done in Chapter 4. It starts with a brief description of resources that 

were used in the validation process; ray-tracing software, and total electron content (TEC) 

data derived from global positioning system (GPS) observations within South Africa. It 

concludes with a description of how these tools were utilized for the validation of the map.  

 

Chapter 5 describes the conclusion of the project. It is a succinct summary of the results, and 

proposes future work required to further improve on the map.   
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Chapter 2 
Available Data Sources 
 

2.1 The South African Bottomside Ionospheric Model (SABIM) 
SABIM is a model of South Africa’s bottomside ionosphere developed by Dr Lee-Anne 

McKinnell, a Space Physics researcher with the Hermanus Magnetic Observatory (HMO), 

and Rhodes University, South Africa (McKinnell 2008b). SABIM was developed using an 

archive of data from the 3 South African ionosonde stations located at Grahamstown (33.3°S, 

26.5°E), Madimbo (22.4°S, 30.9°E) and Louisvale (28.5°S, 21.2°E). These stations are 

located as shown in figure 2-1 below.   

 

 
Figure 2-1: Locations of the 3 South African ionosonde stations used to develop SABIM 

(McKinnell 2008c) 
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2.1.1 The Development of SABIM 
SABIM was developed using the technique of training Neural Networks (NNs) to learn from, 

and adapt to the pattern of archived data. A NN is simply a computer algorithm that is trained 

to learn the relationship between an output and a set of given input parameters (McKinnell 

2008a).  Gurney (1997, p.1) explains that the processing ability of the network is stored in the 

inter-unit connection strengths, or weights, obtained by a process of adaptation to, or learning 

from, a set of training patterns. See Gurney (1997, pp. 1-234) for very detailed information 

on NNs. To develop the model, NNs were trained to predict the parameters (including 

coefficients of a Chebyshev polynomial) needed to construct an electron density profile for 

given inputs. 

 

SABIM was previously called the LAM model (McKinnell 2008b). The earliest version of 

SABIM made use of data from the Grahamstown station only, limiting its applicability 

spatially to just that geographic location. Version 2 of SABIM was extended to include data 

from the other 2 stations, and was more representative of the entire South African latitude 

range (McKinnell 2008b). The latest version of SABIM is version 3, and is the version used 

in this work. Version 3 of SABIM has now been updated to include all available data to the 

end of 2006 and is now more representative of geophysical parameters like the solar and 

magnetic activities. Detailed information about Version 1, Version 2, and Version 3 of 

SABIM can be found respectively in McKinnell (2002, pp. 1-150), McKinnell (2005), and 

McKinnell (2008b). Currently, SABIM is being updated every 2 years and is being used for 

Southern African ionospheric research as well as in direction finding and HF radio 

communication applications (McKinnell 2008c). 

 
2.1.2 SABIM Inputs and Outputs 
The required inputs are the geographical latitude, geographical longitude, year, day number 

(day of the year), and hour. McKinnell (2008b) explains that instead of the year, the solar and 

magnetic activity variables may be entered. The model uses the year to calculate the solar and 

magnetic variables based on provided files containing the daily values of each. “In the latter 

case, where the solar and magnetic variables are entered, the model will determine a suitable 

year based on the given solar variable, and determine the magnetic dip angle and declination 

for that year. When this model is implemented in the field, the source for the inputs will be 

adjusted to suit the environment within which the model will be run” (McKinnell 2008b). 
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The output is basically an f(h) profile (that is a measure of the electron densities at various 

altitudes) corresponding to the given input parameters. Figure 2-2 below is a flow diagram 

illustrating the process that the model follows in determining the predicted profile. McKinnell 

(2008b) has more detailed information on the process. 

 
Figure 2-2: A flow diagram illustrating the process followed by SABIM in determining the 

predicted profile (McKinnell 2008c) 
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For the purpose of this work, SABIM was implemented as an executable programme 

produced from a code written in the C programming language. Amongst other parameters, 

SABIM can provide the peak parameters foF2 and hmF2; the foF2 is the peak value on the f(h) 

profile, representing the maximum electron density, while the hmF2 is the corresponding 

height of the peak. 

 
2.1.3 SABIM Performance and Limitations 
SABIM was developed due to the insufficiencies observed in using global ionospheric 

models for the South African region. McKinnell & Poole (2004) noted that the IRI model is 

known to be inaccurate in the South African region due to a historical paucity of available 

data for the region. According to them, comparisons with the IRI global model showed that, 

for Grahamstown, a NN-based model predicted the noon value of foF2 more realistically than 

the IRI. Earlier work done by McKinnell (2002, pp. 127-130) showed that SABIM 

predictions were better than IRI predictions over Grahamstown when compared to measured 

data from the Grahamstown ionosonde, especially in the F1 region.   A powerful feature of 

SABIM includes its ability to predict the probability of existence of an F1 layer and apply 

corrective measures to ensure a realistic result (McKinnell 2008c). 

 

SABIM limitations are mainly in the amount of available data for training the NNs. 

According to McKinnell (2008b), the limitations placed on a NN-based model depend solely 

on the database that was used in the development of the model. She pointed out that since the 

model incorporated data from just the 3 South African ionosondes, it can, in theory, only be 

used to predict electron density profiles within the latitude range bounded by the ionosonde 

stations (that is, between -22.4 to -33.3 degrees) since NNs are known to interpolate well, but 

not to extrapolate well. McKinnell (2008c) suggests that these limitations will be overcome 

subsequently by ingesting into the model, recently archived data from the 3 ionosonde 

stations, and from the Hermanus ionosonde (34.24°S, 19.22°E) installed in July 2008.  
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2.2 The International Reference Ionosphere (IRI) Model 
The International Reference Ionosphere (IRI) is the international standard for the 

specification of ionospheric densities and temperatures (Bilitza 2001). The IRI is an empirical 

model developed using available data from all around the world. The model was developed 

and is being maintained by a working group that is jointly sponsored by the Committee on 

Space Research (COSPAR) and the International Union of Radio Science (URSI). The aim of 

the IRI is to establish a summary compendium of height profiles through the ionosphere for 

the four main plasma parameters, namely plasma density, temperatures of ions and electrons, 

and ion composition (McNamara & Wilkinson 1983). The model describes monthly averages 

of ionospheric densities and temperatures (Bilitza & Reinisch 2008). 

 
2.2.1 Development of the IRI Model 
The IRI project began in the late sixties, and since then several versions have been released 

both in hard copy and in computer-readable formats. The first widely circulated edition of the 

model was IRI-78 (computer programme: Version No. 5). A detailed account of the history 

and development of the IRI can be found in Bilitza et al. (1993). The latest version of the IRI 

model is the IRI-2007, and is the version used in this work. An interesting enhancement to 

the IRI-2007, which proved useful for this study, is the inclusion of two new options for the 

topside electron density, namely the corrected IRI topside and the NeQuick topside models. 

The topside profile is of special importance because of its impact on the total electron content 

(TEC), which is the prime parameter needed for many ionospheric model applications 

(Bilitza & Reinisch 2008). The NeQuick topside option was used to obtain TEC values from 

the IRI for the testing and validation of this work (described in chapter 4).  According to 

Bilitza & Reinisch (2008), the NeQuick model is the most mature of the different proposals 

for the IRI topside. Several other changes were introduced with this version; Bilitza & 

Reinisch (2008) give a detailed description. The IRI is updated yearly during special IRI 

workshops.  
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2.2.2 IRI Inputs and Outputs 
The main IRI-website is available at http://iri.gsfc.nasa.gov. The IRI model is available for 

use either as a web-based application at http://omniweb.gsfc.nasa.gov/vitmo/iri_vitmo.html, 

or as a FORTRAN source code at ftp://nssdcftp.gsfc.nasa.gov/models/. For the purpose of 

this work, the FORTRAN source code was used so as to allow the implementation of       

user-defined automatic operations.   

    

The input parameters required by the IRI model depend on what output is desired. In this 

case, the electron density profile is desired, and the required inputs are the geographical 

latitude, geographical longitude, year, day number (day of the year), hour, and a choice of 

options to be used in the model. The IRI options used in this work are exactly the standard 

IRI options (default for the IRI model), except for cases were there was a need to supply the 

IRI model with given foF2 and hmF2 values. See appendix A for a description of the standard 

IRI options. 

 
2.2.3 Performance and Limitations of the IRI Model 
Since its inception in 1969, the IRI model has been steadily improved with newer data and 

with better mathematical descriptions of global and temporal variation patterns (Bilitza & 

Reinisch 2008), and has been recommended for international use by COSPAR and URSI. A 

large number of independent studies have validated the IRI model in comparisons with direct 

and indirect ionospheric measurements not used in the model development (Bilitza & 

Reinisch 2008).  Examples of such studies can be found in Adewale et al. (2009), Sethi et al. 

(2009), Soicher et al. (1995), and several others. A comparison with IRI is often one of the 

first science tasks by an ionospheric, satellite or rocket team (Bilitza & Reinisch 2008). 

 

By using the IRI standard options in this work, the STORM model was switched on; this 

offers storm-time corrections to the foF2 values, but not to the hmF2 values. The STORM 

option is also only available for requested dates that lie within the IRI Ap index range (that is 

from 1958 to August 2009).    

  

Although the IRI patterns often agree with observations, substantial differences are also often 

noticed. A number of studies have noted discrepancies between the IRI model and 

measurements, especially at high latitudes and during high solar activities (Bilitza & Reinisch 
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2008). Work done by Chuo & Lee (2008), for instance, shows that at Taiwan, the percentage 

deviation of the observed foF2 values with respect to the IRI model varies from 5% to 80% 

during nighttime and 2–17% during daytime. For South Africa, Adewale et al. (2009) showed 

that the IRI generally overestimated hmF2 for both quiet and disturbed days. Certain 

discrepancies between the IRI and observations were also reported in Sethi et al. (2008), De 

Medeiros et al. (2003), and Bhuyan & Borah (2007). Bilitza et al. (1993) points out 

shortcomings and limitations of the IRI, discusses ways of overcoming them, and suggests 

priorities for a list of work items that the IRI group has to tackle in the future. 

 

2.3 The South African Ionosonde Network 
The South African Ionosonde Network (HMO 2009) currently comprises of 4 ionosonde 

stations located at Grahamstown (Eastern Cape, 33.3°S, 26.5°E), Louisvale (Northern Cape, 

28.5°S, 21.2°E), Madimbo (Limpopo, 22.4°S, 30.9°E) and Hermanus (Western Cape, 34.4°S, 

19.2°E).  

 

 
Figure 2-3: Locations of the 4 South African ionosonde stations (HMO 2009)  

 

The 4 ionosondes are all digisondes produced by the University of Massachusetts, Lowell 

Center for Atmospheric Research (UMLCAR). Digisondes are modern digital ionosondes. 

The three older digisondes (located at Grahamstown, Madimbo and Louisvale) are owned by 

the South African National Defence Force (SANDF), and are four-receiver Digisonde 
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Portable Sounder (DPS-4) models. The Digital Portable Sounder (DPS) is capable of 

providing real-time on-site processing and analysis. It has a transmit antenna and four crossed 

loop receive antennas. According to UMLCAR, in the DPS the signals from the four crossed 

loop receive antennas are fed into the antenna switch box, which either selects one signal to 

feed to the single receiver card or combines all four in phase. They explain that in the DPS-4 

(four-channel receiver variant) one receiver is dedicated to each receive antenna. 

 

The digisonde at Grahamstown has been operational since 1996, while those at Madimbo and 

Louisvale have been operational since 2000. At the Grahamstown station, a Barry Research 

Chirp sounder operated prior to the installation of the DPS-4 and so there is a database of 

ionospheric data for Grahamstown going back to 1973 (HMO 2009).  

 

The Hermanus ionosonde is a new model DPS-4D digisonde donated to the Hermanus 

Magnetic Observatory, South Africa, by the South African Department of Communications.  

 

 
Figure 2-4: The newly installed DPS-4D digisonde at Hermanus (McKinnell 2008d)   

 

The new digisonde has improved capabilities over the previous generation of digisondes. 

Apart from investigating the vertical profile of the ionosphere, the new digisonde can also 

perform drift measurements to look at ionospheric tilt, angle of arrival and phase 

measurements of the incoming signal, doppler velocity, and oblique soundings. Its 

installation was completed in July 2008.  

 

The Grahamstown and Hermanus ionosondes are set to a 15-minute resolution, while the 

Louisvale and Madimbo ionosondes are at a 30-minute resolution. For this reason, the 

temporal resolution of the ionospheric map was set to 30 minutes.  
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Data was incorporated into the map from the ionosondes in the SAO.XML file format. The 

SAO.XML file format is one of the file formats for data generated by the ionosondes. 

Detailed information about the format can be found on 

http://ulcar.uml.edu/SAOXML/SAO.XML%205.0%20specification%20v1.0.pdf .  

 

The Department of Physics and Electronics at Rhodes University partners the HMO in the 

South African ionospheric data collection, archiving and distribution (HMO 2009). Other 

information about these ionosondes can be found on the UMLCAR website for digisondes 

(http://ulcar.uml.edu/digisonde.html), and on the HMO space weather website 

(http://spaceweather.hmo.ac.za/).  

 

In conclusion, the IRI is the international standard for the ionosphere, the SABIM is an 

adaption for the South African region, and the South African ionosonde network provides 

‘true’ ionospheric information for the region. These 3 sources are the only considered sources 

for constructing a South African ionospheric map, and this is the reason they’ve been 

discussed in this chapter. The next chapter discusses how these sources were put together to 

develop the ionospheric map. 
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Chapter 3 
Developing the Ionospheric Map 
A major product of this project is software (written in the MATLAB programming language) 

that generates maps illustrating spatial and temporal representations of the South African 

ionosphere. The software produces maps of the foF2 values, and electron density profiles of 

the ionosphere above specific locations in the South African region for a given set of input 

parameters.  

 

3.1 Combining the Data Sources 
The data sources considered for the development of the map are the IRI model, SABIM, and 

measured data from the 4 South African ionosonde stations. In this section, the way in which 

these sources were combined to develop the map is discussed.  

 
3.1.1 Combining SABIM and the IRI Model 
To produce the map of foF2 values, SABIM was used inside the triangular region bounded by 

the 3 ionosonde stations that were used in the development of the model, and the IRI model 

was used outside that region. A smoothing function was introduced at the boundary of the 

regions, so that SABIM still contributes outside the triangular region, but that this 

contribution decreases as the distance to the closest edge of the triangle increases. This 

smoothing function is discussed in section 3.4.1. 

 
The rationale behind this combination is that SABIM has been shown to perform more 

accurately than the IRI model inside of the triangular region bounded by the 3 ionosonde 

stations that were used to develop the model (Poole & McKinnell 2000), but that its 



 20

performance outside of that region is not guaranteed. According to McKinnell (2008b), NNs 

(the technique used in the development of SABIM) are known to interpolate well but they do 

not extrapolate well. 

 
3.1.2 Incorporating the Ionosonde Data 
Ionosonde measurements provide the most accurate recordings of ionospheric behaviour, so 

in the development of the map this data source receives first priority. Measurements from the 

ionosondes were further used to adapt the produced foF2 map to the ionosonde measurements. 

For each ionosonde location, the programme calculates the difference between the 

ionosonde’s foF2 measurement and the foF2 value calculated by the existing modeled map at 

the ionosonde location. It then fits a best plane (discussed in section 3.4.2) of these 

differences over the whole map. The programme uses this plane to adjust the foF2 map to 

measurements from the ionosondes.     

  
3.1.3 Generating the Electron Density Profiles 
To generate the electron density profile for any location within the map, the programme uses 

the IRI model, but supplies it with the location's foF2 and hmF2 values as obtained from the 

final foF2 map. (The hmF2 values are obtained by exactly the same process used to obtain the 

foF2 values). See the project algorithm in the next section for details. 

 

SABIM also produces electron density profiles for the South African region, but was not used 

in the generation of electron density profiles for this work, since the model, being a 

bottomside ionospheric model, does not produce electron density profiles for the topside 

ionosphere. In addition, significant time would also be required by the computer programme 

to combine electron densities from the IRI model and SABIM at each of the altitudes 

involved in the construction of a single profile. It is also very important to clearly point out at 

this stage that the electron density profiles generated by adapting the IRI model with foF2 and 

hmF2 values from the map are effectively contributions from all 3 sources used in the 

development of the map since the foF2 and hmF2 values come from a combination of data 

from all 3 sources.  
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3.2 The Project Algorithm 
The software has a Graphical User Interface (GUI) that makes it more user-friendly, and 

provides the user with better interaction capability. In this section, the user inputs, processes 

performed by the programme, and the outputs are discussed.  

 
3.2.1 Required User Inputs 
The user is expected to enter the year, month, day, and UT hour of the day for which the map 

is to be generated. By default, the programme sets these fields to the present year, the present 

month, the present day of the month, and present time of the day respectively. See figure 3-1 

below.  

 

 
Figure 3-1: The appearance of the GUI when first launched  

 

The software also provides the user with a choice of entering the day of the year, rather than 

the month and day of the month. To do this, the user has to click on the radio button at the top 

left of the application, and that portion of the GUI then appears as shown in Figure 3-2.  
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Figure 3-2: Illustrating the use of the radio button at the top left of the application 

 

It is possible for users to edit an input field by entering values of their choice rather than the 

default values. If a user prefers to enter the month and day of the month, rather than the day 

of the year, the programme then has to convert them to the appropriate day of the year, for 

input to the various models. 

  

This version of the software allows the user to generate maps for the periods between 1972 

and 2011, the intervals within which the current versions of the IRI and SABIM are both 

valid. If users enter a year outside the range, they are informed that an invalid year has been 

entered, and the programme is not executed. The software also alerts the users when they 

make other invalid inputs like entering 32 for the day of a month.   

 
3.2.2 Generating the foF2 Map 
To generate the foF2 map, the user has to click on the command button labeled “Click Here 

To Generate foF2 Map”, and the programme performs the following routine: 

 

1. All inputs are checked to ensure that they are valid. If any of them are not, the user is 

alerted and the programme execution is terminated. If they are all valid, the 

programme converts them to the format required by each model, and the programme 

execution continues. 

2. The programme next prepares the input file needed by the SABIM software to 

generate foF2 values for the entered inputs, and for the locations that fall within 

longitudes 10º to 40º and latitudes -12º to -37º, a restriction set by the development of 

the current version of SABIM.  

3. It executes the SABIM software and extracts the generated foF2 values from SABIM’s 

output file. 
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4. Next, the programme prepares the input file needed by the IRI software to generate 

foF2 values for the entered inputs and for all locations involved, executes the IRI 

software, and extracts the generated foF2 values from IRI’s output file. (The IRI-2007 

standard options are used here, see appendix A for illustration).  

5. The programme then combines the foF2 values from the SABIM and IRI models to 

make a two-dimensional map of foF2 values over the South African region; it uses the 

SABIM foF2 values for places within the triangular region bounded by the 3 

ionosonde stations used to develop SABIM, and the IRI foF2 values for places outside 

the triangular region. It also introduces a smoothing function at the boundary between 

these regions so that SABIM still contributes outside of the triangular region, but that 

its contribution fades as the distance to the closest edge of the triangle increases. (The 

smoothing function is discussed in section 3.4.1). 

6. The programme then downloads the latest ionosonde files from the site (which 

receives them from the ionosonde stations) via file transfer protocol (ftp). If for any 

reason (the internet is not operational, etc) this site cannot be accessed, the 

programme continues execution without using the measured ionosonde data. If the 

site can be accessed, the files are downloaded, and the latest foF2 values from the 

various ionosonde stations are extracted from their respective ionosonde files. The 

programme also checks to see if these ionosonde files represent measurements 

recorded within plus or minus 30 minutes of the time for which the map is required. 

Only values from within a 60-minute window centered on the map time are used. For 

each of the ionosonde files to be used, the programme takes the difference between 

the ionosonde’s foF2 measurements and the foF2 value of the ionosonde’s location on 

the map. It then fits a best plane of the differences observed at the various ionosonde 

locations, and uses this plane to adapt the whole map to the ionosonde’s 

measurements. Section 3.4.2 discusses the plane fit.  

7. Finally, the programme produces a graphical colour representation of the ionosphere 

and displays it as shown in figure 3-3.  
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Figure 3-3: The appearance of the GUI after generating the foF2 map 

 

The programme also identifies ionosonde stations from which data was used with green dots, 

and stations from which data was not used with black dots. In figure 3-3, for instance, data 

from the Hermanus and Grahamstown ionosondes were used, while those from Louisvale and 

Madimbo were not used. Data from specific ionosondes may not be used for a variety of 

reasons including, but not limited to, ionosonde faults or communication delays.  

 
3.2.3 Generating the Electron Density Profile 
To generate the electron density profile, the user has to click inside the generated foF2 map at 

the location for which the electron density profile is to be generated. The programme then 

performs the following routine.  

 

1. If the user clicks anywhere outside of the foF2 map, the programme does not respond, 

however inside the foF2 map, the foF2 and hmF2 values as well as the longitude and 

latitude values of the location that the user is interested in are extracted. These values 
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are then used together with the previous user inputs, as inputs for generating the 

electron density profile from the IRI model.  

2. The programme next prepares the input file as needed by the IRI software to generate 

the electron density profile for the given inputs. The IRI software is executed and the 

programme extracts the generated electron density profile data from IRI’s output file. 

(The IRI-2007 standard options are used here, except that foF2 and hmF2 values are 

supplied to the model instead; the IRI model is therefore adapted for the South 

African foF2 map when generating the electron density profile). 

3. Lastly, the programme produces a graphical representation of the electron density 

profile as illustrated in figure 3-4. 

 

 
Figure 3-4: The appearance of the GUI after generating an electron density profile 

 

The user, at this stage, can either  

i) generate another electron density profile from the current foF2 map using the 

command button labeled ‘Pick Pointer’, or  

ii) generate a brand new foF2 map for a different set of inputs using the radio button 

labeled ‘Generate Another foF2 map’.  

The procedure may be repeated as many times as required.  
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Prior to finally deciding on a suitable procedure for developing the map (as discussed before), 

various other options were investigated. One such option, that seemed very viable, is 

discussed in the next section with reasons why this option was eventually not used in the 

development of this map. 

  

3.3 Initial Attempts 

Initially, the idea was to incorporate the ionosonde data into the foF2 map by using this data 

only at the ionosonde locations, and then smoothing out into the models. The difficulty with 

this was that whenever there were significant differences between the ionosonde’s observed 

foF2 values and the models’ foF2 values, the generated map showed seemingly special 

activities (peaks or minimums) at the ionosonde locations. Figure 3-5 illustrates one of these 

cases. 

 

 
Figure 3-5: An illustration of the seemingly special activities at Madimbo and Grahamstown 

as a result of the differences between the ionosonde and model values    
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Figure 3-5 shows lower values of foF2 for Madimbo and Grahamstown than for surrounding 

places. That outcome is just the result of the differences between the observed ionosonde data 

and model data, and on a general appearance does not convey the right information about the 

South African ionosphere. Smoothing the boundaries did not solve the problem as there was 

always an indication that something different was happening at the ionosonde locations 

unless the differences were not significant.  

 

An approach that was used to solve the problem was to incorporate the ionosonde 

measurements (which represent the true state of the ionosphere) in such a way as to affect, 

not just the ionosonde locations but the whole of the map. A plane fit, in response to the 

varying degree of the differences between the ionosonde and model values at the ionosonde 

locations, was used to solve the problem. That plane was used to adapt the whole map to the 

true ionosonde measurements. Figure 3-6 illustrates what happens when the plane of 

differences is used for the same condition as in figure 3-5 above.  

  

 
Figure 3-6: Using the plane of differences between the ionosonde and model values to adapt 

the whole map to measured values  
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3.4 Mathematical Techniques Used 

 
3.4.1 The Smoothing Function 
As explained earlier, to generate the foF2 map, the programme used SABIM inside the 

triangular region bounded by the 3 ionosonde stations used to develop the model, and the IRI 

model outside of that region. To ensure a smooth transition at their common boundary, the 

smoothing function illustrated in equation (3-1) was used. For any given point outside the 

triangular region, the resulting foF2 value is given by  

 

 22 sincos is fff                               (3-1) 

 

where sf  is SABIM’s foF2 value for that point, if  is IRI’s foF2 value for the point, and   is a 

measure of the point’s distance from the closest edge of the triangle. The angle   was 

arbitrarily defined to have a value of 0º anywhere on the triangular edge, and 90º at a distance 

of 10 longitudinal degrees ( 1117  km) from the closest triangular edge. For places within 

1117 km from the closest triangular edge, the expression  =90d/1117, was used, where d is 

the point’s distance (in km) from the closest triangular edge. And for places further than 1117 

km from the closest triangular edge, the value of   was defined to remain at 90º so that at 

those places, SABIM’s contribution is zero and the IRI model contribution makes up 100% 

of the value. In essence, IRI’s contribution is zero for points on the triangular edge, increases 

with distance from the triangle, and is 100% at a distance of 1117 km and beyond from the 

closest triangular edge.  

 
3.4.2 The Plane Fit 

As discussed earlier, the programme adapts the foF2 map to the true ionosonde measurements 

by fitting a plane of the differences between the measured ionosonde foF2 values and the 

corresponding foF2 values from the map.  

 

The number of ionosonde stations from which the required data is available represents the 

number of points to be used to make the plane fit. Usually, 3 points are needed to fit a well-

defined plane, but in this case 4 ionosonde stations are available, and it is not likely that the 
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needed measurements from all 4 will always be available. Any number of points (from 0 to 4) 

is possible, and the programme’s response depends on the number of points available at the 

time the map is required.     

 

CASE 1: If data from all 4 stations are available, the programme fits a best plane using the 

least square method as described below. 

 

The general equation of a plane is 

 

0 DCzByAx                                                                                                            (3-2) 

 

where A , B , C , and D  are constants defining the plane. 

 

The perpendicular distance between a point ( aaa zyx ,, ) and the plane is given by 

 

d =
222 CBA

DCzByAx aaa




                                                                                                     (3-3) 

 

For the four points in consideration here, the sum of the squares of their distances will be  
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                                                                                            (3-4) 

 

where ix  represents the longitudes of the four points, iy  represents their corresponding 

latitudes, and the iz  represents the corresponding differences in foF2 values at those points. 

 

The best plane is that plane for which S  has the least possible value, that is, where  
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This gives the four equations with four unknowns ( A , B , C , and D ) needed to define the 

best plane. The programme solves these equations to get the values of the unknowns.  
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Shakarji (1998), Sturgul & Aiken (1970), and Rust (1972) provided useful information on the 

techniques used in the fitting of the best plane. 

 

CASE 2: If data from just 3 stations are available, the programme fits the plane passing 

through those 3 points. 

 

Given any 3 points in space, say ( iii zyx ,, ) for i =1 to 3, the equation of the plane through 

them is given as in equation (3-2)  

 

0 DCzByAx                                                                                                            (3-2) 
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D = -(the determinant of 
















333

222

111

zyx
zyx
zyx

). 

In this case, 1x , 2x , 3x  represent the longitudes of the three points, 1y , 2y , 3y  represent their 

corresponding latitudes, and 1z , 2z , 3z  represent the corresponding differences in foF2 values 

at the three points. 
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CASE 3: If data from only 2 of the stations are available, the programme looks for a third 

point such that the plane to be fit slopes in the same way as the line joining the 2 points. 

Suppose the two points are P( 111 ,, zyx ) and Q( 222 ,, zyx ), then the programme looks for a 

third point R( 333 ,, zyx ) such that R has the same longitude as one of the 2 points (say P), a 

line drawn from R perpendicularly meets the line PQ at the other point (say Q), and the z  

value of R is the same as that of Q (that is 23 zz  ). In essence, the desired plane is to contain 

the line PQ, and to have the same z  value at every point on a given perpendicular bisector of 

line PQ.  

 
CASE 4: If data is available from only 1 of the ionosonde stations, then the plane to be fit is 

a plane of constant z  values; all the points on the plane have the same z  value as that of the 

1 point. 

  
CASE 5: If no ionosonde data is available, the programme takes no further action on the map 

generated from the two models; the resulting map is the map obtained from the combination 

of just the two models. 

 
Ionospheric maps generated using the programme are used to discuss certain physics of the 

ionosphere in the next section. 

 

3.5 Results 
In this section, spatial and temporal variations in the South African ionosphere, as evident in 

the results of this project, are illustrated. The ionospheric parameter chosen for this 

illustration is the foF2 value.    

 
3.5.1 Variations during a Typical Day 

Figures 3-7a, 3-7b, 3-7c, and 3-7d illustrate, using the map, how the foF2 values vary over a 

typical day in South Africa. The figures show foF2 maps of the South African ionosphere, as 

determined by the map described in this thesis, for 8:00 UT (a South African morning), 12:00 

UT (a South African afternoon), 14:00 UT (a South African evening), and 22:00 UT (the 

South African midnight) respectively for day number 13 of year 2009. 
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Figure 3-7a: foF2 map of South Africa for          Figure 3-7b: foF2 map of South Africa for      

a South African morning                                  a South African afternoon 
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Figure 3-7c: foF2 map of South Africa for           Figure 3-7d: foF2 map of South Africa for 

a South African evening                                   a midnight over South Africa 

 

The maps show that the foF2 values are larger in the afternoon than for other parts of the day. 

This is expected since in the afternoon the sun has fully risen to, or very close to, zenith. The 

amount of solar radiation reaching the ionosphere during this part of the day is also generally 

greater than during other parts of the day, giving rise to greater ionospheric electron densities 

(and hence greater foF2 values). In the early hours of the day (figure 3-7a), the sun is still 

rising and the foF2 values are therefore relatively lower. During the evening hours, the sun is 

setting and the foF2 values are therefore gradually decreasing. Nights have the lowest foF2 

values due to the absence of solar radiation.   

 

The maps also show that during the early hours of the day (figure 3-7a), the foF2 values are 

greater at the north-eastern parts, during the afternoon (figure 3-7b), the region of greatest 

foF2 values shifts towards the north-central parts, and during the evening (figure 3-7c), the 
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north-western parts have the greatest foF2 values, following the sun’s rising from the 

northeast direction of South Africa and the sun’s setting in the northwest direction of the 

country. 

 
3.5.2 Seasonal Variations 

The intensity of solar radiation reaching the ionosphere changes with the seasons of a year. 

Figures 3-8a, 3-8b, 3-8c, and 3-8d (produced from the ionospheric map of this work) 

illustrate variations in the South African ionosphere during the 4 seasons of year 2008. The 

figures are foF2 maps for day numbers 13, 104, 195, and 285 of year 2008, respectively 

chosen to represent a day in summer, a day in autumn, a day in winter, and a day in spring. 

The maps are for 10:00 UT (midday local time) for each of the chosen days.  
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Figure 3-8a: foF2 map of South Africa for          Figure 3-8b: foF2 map of South Africa for 

a summer day                                                  an autumn day 
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Figure 3-8c: foF2 map of South Africa for        Figure 3-8d: foF2 map of South Africa for 

a winter day                                                    a spring day 
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As expected, the foF2 values are greater for the summer day than for the winter day. The tilt 

of the Earth’s rotational axis relative to the orbital plane coupled with the Earth’s revolution 

round the sun gives rise to these seasons; in summer, a given hemisphere is tilted towards the 

sun and so experiences greater solar radiation than in winter when the same hemisphere will 

be tilted away from the sun.   

 foF2 values at mid latitudes are also greater during the equinoxes (figures 3-8b and 3-8d) than 

during the solstices (figures 3-8a and 3-8c) due to the mid seasonal anomaly. foF2 data from 

ionosonde measurements (figure 3-9) also illustrate this. 

  

Figure 3-9: The variation in the 10:00 UT (12:00 SAST) foF2 values for a year of solar 

maximum (2000) and a year of solar minimum (1996) from Gledhill et al (2008, p. 90) 

 

3.5.3 Variations over a Solar Cycle 
The ionosphere is also expected to change in response to varying degrees of the solar activity. 

Figures 3-10a, 3-10b, and 3-10c respectively show the foF2 maps, from this work, for 

identical periods of year 2000 (a year of solar maximum), year 2003 (a year of moderate solar 

activity), and year 2006 (a year of minimum solar activity). The maps are for 08:00 UT and 

day number 50 of each of the chosen years. 
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Figure 3-10a: foF2 map of South Africa   Figure 3-10b: foF2 map of South Africa                  

for a year of maximum solar activity                for a year of moderate solar activity 

 

10 15 20 25 30 35 40

-35

-30

-25

-20

-15

Longitude

La
tit

ud
e

foF2 map for Year 2006, Day Number  50,  08:00 UT

 

 
fof2 (MHz)

Grahamstown

Madimbo

Louisvale

Hermanus

2

3

4

5

6

7

8

9

10

11

12

 
Figure 3-10c: foF2 map of South Africa for  

                                        a year of minimum solar activity 

 

The ionosphere is also affected by variations in the amount of radiation emitted by the sun. If 

the solar activity is high, more radiation is emitted by the sun, the ionosphere becomes more 

ionized because of the greater intensity of solar radiation reaching it, and consequently the 

foF2 values are greater. The sunspot number (SSN) is a measure of the solar activity. The 

solar activity (illustrated in figure 3-11) was high in year 2000, moderate in year 2003, and 

low in year 2006. Figure 3-11 was generated using monthly observations from the Space 

Physics Interactive Data Resource (SPIDR) website; http://spidr.ngdc.noaa.gov/spidr/.  

 



 36

0

50

100

150

200

250

1985 1990 1995 2000 2005 2010

Year

Su
ns

po
t N

um
be

r 
(S

SN
)

 
Figure 3-11: A graph illustrating the solar cycle developed by using observed monthly 

sunspot number values from the SPIDR website 

 

The foF2 maps in figures 3-10a, 3-10b, and 3-10c were generated for exactly the same periods 

of those 3 different years. The maps show large foF2 values for the year of maximum solar 

activity, moderate foF2 values for the year of moderate solar activity, and small foF2 values for 

the year of minimum solar activity.  

 
3.5.4 Latitudinal and Longitudinal Variations 

The sun is mostly overhead at locations on, or close to, the equator, and for this reason the 

sun’s radiation is more direct over such places. The overall effect is more ionospheric 

ionization and hence greater foF2 values for such places. The sun’s radiation arrives more 

obliquely at places farther away from the equator and so there is a gradual degradation in the 

degree of ionospheric photo-ionization from the equatorial regions to the polar regions.  

 

Longitudinal variations are related to local-time variations. For a given locality, the intensity 

of solar radiation increases as the sun rises, peaks at about local midday, and decreases as the 

sun sets.   

   

The maps from this work generally reveal these trends (see figures 3-7a, 3-7b, 3-7c, and 3-7d 

above) and agree with the fact that the sun’s energy is a chief contributor to the ionization of 

the ionosphere.  
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Movies were produced based on this work to illustrate the group of variations described in 

this section. The movies show, graphically and dynamically, the spatial and temporal 

variations in the foF2 values over the South African region. 

 

The map developed from this work has been tested with a ray-tracing programme and with 

TEC derived from GPS measurements. The results are discussed in the next chapter.  

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 38

 

 

 

 

Chapter 4 
Validating the Ionospheric Map 
This chapter discusses the project validation, the resources used for the validation and the 

way in which they have been used to demonstrate the validity of the model. 

 

4.1 Resources Used for Validating the Ionospheric Map 

 
4.1.1 Analytical Ray Tracing  
Ray-tracing programmes provide radio communication and radar systems with knowledge of 

the exact ray path of radio waves as they travel through the ionosphere. The ionospheric map 

developed in this thesis will be used in conjunction with ray-tracing techniques to locate 

unknown transmissions, and so it is necessary to demonstrate its usefulness for this purpose. 

The ray tracing was carried out using an analytic, path-segmented, quasi-parabolic             

ray-tracing approach (Norman & Cannon 1997; 1999). The ray-tracing software basically 

provides a visualization of HF radio traces through the ionosphere for given sets of user 

inputs.  

 

Users are required to input to the algorithm the locations of the transmitter and receiver 

stations between which the ray tracing is required. For this project, the ray tracing was 

performed between Pretoria (25.9ºS, 28.3ºE) and Hermanus (34.3ºS, 19.2ºS). Further required 

inputs are the date, the time (in UT), and the transmitter frequency (in MHz). It is possible to 

specify the ionospheric electron density distribution within the ray-tracing algorithm, using 

either a parameterized ionospheric model (PIM) or a user-specified ionosphere. Either 

possibility requires the specification of a three-dimensional electron density grid of 
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longitudes, latitudes, and altitudes to show the electron density values for all points on the 

grid. To achieve this, the ray-tracing algorithm requires users to enter the following 

parameters to define the range and resolution of the three-dimensional electron density grid.    

i. a minimum height, a maximum height, and a height resolution (in kilometers), 

ii. a starting longitude, stopping longitude, and a longitude resolution (in degrees), 

and 

iii. a starting latitude, stopping latitude, and a latitude resolution (in degrees). 

 

For a user-defined ionosphere, the electron density distribution at the grid points must also be 

specified. Since the requirement here is to validate a new ionospheric map, the user-defined 

ionosphere option was implemented within the ray-tracing algorithm. 

 
4.1.2 TEC Derived From GPS Data 
TEC is the total number of electrons between 2 points in the ionosphere in an imaginary 

cylinder with a cross-sectional area of 1 m2. TEC is measured in electrons/m2, where 1016 

electrons/m2 = 1 TEC unit (TECU).    

 

Due to the ionosphere’s dispersive nature, radio signals propagating through the ionosphere 

experience group delays and phase advances (Opperman et al. 2007). Hofmann-Wellenhof et 

al. (2001, pp. 101-102) showed that the group delays and phase advances are related to the 

TEC along the signal path by equations (4-1) and (4-2) respectively.  

 

Group delay,       TEC
f

Iono
gr 2

3.40
                                                                                       (4-1) 

Phase advance,    TEC
f

Iono
ph 2

3.40
                                                                                    (4-2) 

where f  is the radio frequency. 

 

If a GPS satellite is directly above a receiver, then the TEC derived from such a GPS system 

is a vertical TEC, otherwise a slant TEC is derived. As GPS satellites are rarely directly 

above receivers, most of the TEC values derived from the GPS are slant TEC values. 

Opperman et al. (2007) illustrate the derivation of slant TEC values, and subsequently 

vertical TEC values, from South African GPS data. The technique they described was used to 
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derive the vertical GPS-TEC values used in this work. Since these values were only used to 

validate the map developed in this thesis, and are not part of the map, the details have not 

been reproduced here. 

 

4.2 Ray Tracing 
The three-dimensional electron density grid used in this work covers the longitudes from 

10ºE to 40ºE in steps of 2º, latitudes from 13ºS to 37ºS in steps of 2º, and altitudes of 90 km 

to 900 km in steps of 10 km. The ray tracing was accomplished for two sets of user-defined 

ionosphere as follows: 

i. an ionosphere for which the electron densities at the centre of each grid point were 

obtained purely from the IRI model using the IRI standard options; this will be 

referred to as the IRI ionosphere in this work. 

ii. an ionosphere for which the electron densities at the centre of each grid point were 

obtained by using the foF2 and hmF2 values from this work to adapt the IRI model; 

this will be referred to as the MAP ionosphere in this work.  

 

The ray tracing was performed between Pretoria (25.9ºS, 28.3ºE) and Hermanus (34.3ºS, 

19.2ºS) with Pretoria as the transmitter station and Hermanus as the receiver station. Pretoria 

and Hermanus were chosen because of the known HF radio transmission link that exists 

between the two; transmission by ZS6DN (the international beacon station at Pretoria), and 

reception by ZS1HMO (the beacon receiver station at the Hermanus Magnetic Observatory, 

Hermanus). A transmission frequency of 14.000 MHz was used since the ZS6DN beacon 

transmits at that frequency.   

 

All possible elevation angles and all hours of day numbers 15, 106, 196, and 289 of year 

2000 (a year of high solar activity), and year 2006 (a year of low solar activity) were 

considered. Day numbers 15, 106, 196, and 289 were chosen to respectively represent days in 

the seasons of summer, autumn, winter, and spring. 

 

The outputs from the ray-tracing software were  

i. the hours for which there were rays that arrived within a 30 km radius of the receiver, 

ii. the corresponding elevation angles, and 

iii. the ground ranges for those transmissions.   
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The distances between the Hermanus receiver station and where the rays impact the ground 

were obtained by taking the absolute differences between the ground ranges and the ground 

distance from Pretoria to Hermanus. The actual ground distance from Pretoria to Hermanus is 

given as 1295 km. As shown in figure 4-1, if the ground range = R, and the ground distance 

between Pretoria and Hermanus = D, then the distance between the Hermanus receiver and 

where the rays impact the ground is d = absolute value of (D – R).      

 

 
 

 

 

Figure 4-1: An illustration of the procedure used in ray tracing 

 

Tables B-1 to B-8 in appendix B summarize the results of the ray tracing. Hours and 

elevation angles for which no rays arrived within a 30 km radius of the receiver were not 

shown. The empty cells in the tables represent hours and elevation angles for which using one 

of the MAP or IRI ionospheres produced rays arriving within a 30 km radius of the receiver 

but using the other did not.  

Pretoria Hermanus 
Point where ray impacts the ground R 

D 

d 
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Table 4-1 contains information for the number of times that there were rays arriving within a 

30 km radius of the Hermanus receiver, using both maps. 

 

Table 4-1: The ray-tracing results for the number of times that there were rays arriving within 

a 30 km radius of the Hermanus receiver, using both maps 

Year 

Day of 

the 

Year 

Hour of 

the Day 

(UT) 

Elevation Angles of 

Rays Arriving within 

30 km of the Hermanus 

Receiver (degrees) 

Distance from Hermanus 

Receiver (km) 

Using the IRI 

Ionosphere 

Using the MAP 

Ionosphere 

2000 

15 6 
7.50 22.86 20.14 

25.00 4.70 3.14 

106 

8 40.00 22.79 8.07 

11 

7.50 8.04 8.43 

20.00 25.95 3.62 

60.00 28.08 28.18 

12 45.00 25.37 20.85 

13 45.00 22.54 14.72 

196 

8 7.50 22.64 20.23 

9 7.50 7.55 7.40 

10 7.50 7.33 8.52 

289 

6 7.50 26.07 24.95 

11 10.31 7.56 2.38 

12 7.50 18.72 17.64 

 

 

The ray-tracing results (including those illustrated in appendix B) show that 

1. Most of the rays that arrived within a 30 km radius of Hermanus from Pretoria were 

transmitted at elevation angles of between 7.5 and 40.0 degrees. 

2. The percentage of rays arriving close to Hermanus from Pretoria was larger when using the 

MAP ionosphere than when using the IRI ionosphere. For the number of times that there 

were rays arriving within 30 km radius of the Hermanus receiver, using both maps, the rays 

arrived closer to the Hermanus station using the MAP ionosphere than they did using the IRI 

ionosphere. This happened for 78.6% of the cases.   
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In conclusion the MAP ionosphere appears to offer a better transmission link between 

Pretoria and Hermanus than the IRI ionosphere. It should be noted that this was a very 

narrow study intended to demonstrate a practical use of the ionospheric map developed in this 

work. A more accurate study could be accomplished with access to signal strength data from 

an automatic monitoring station. 

 

4.3 Comparisons with GPS-Derived TEC   
This section illustrates the comparison of vertical GPS-derived TEC values with vertical TEC 

values obtained as follows: 

i. Vertical TEC values were derived from the map using the IRI model; the IRI 

model was supplied with foF2 and hmF2 values from the map so as to output the 

TEC values. For simplicity and quick identification, TEC values derived using 

this method will be referred to as MAP-TEC in this work.  

ii. Vertical TEC values were also obtained from the IRI model using the standard IRI 

options illustrated in appendix A. For simplicity and quick identification, TEC 

values derived using this method will be referred to as IRI-TEC in this work  

 

Vertical TEC values derived from GPS data will be referred to as GPS-TEC. 

 

To obtain the MAP-TEC and the IRI-TEC, the upper integration limit of the IRI model was 

set to 20200 km (the altitude of the GPS satellites).  

 

GPS data from the following three dual-frequency GPS receiver stations within South Africa 

were used. The stations were chosen to cover certain regions of interest. 

i. The Bloemfontein station (26.3ºE, 29.1ºS) was chosen to be representative of 

places inside the quadrilateral region bounded by the 4 ionosonde stations in the 

South African ionosonde network. Bloemfontein is in the central part of the 

country.  

ii. The Calvinia station (19.8ºE, 31.5ºS) was chosen to be representative of places 

outside the quadrilateral region bounded by the 4 ionosonde stations in the South 

African ionosonde network. Calvinia lies in the southwestern part of the country. 



 44

iii. The Pietersburg station (29.5ºE, 23.9ºS) was chosen to be representative of places 

close to the ionosonde stations. Pietersburg is close to Madimbo, in the 

northeastern part of the country. 
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Figure 4-2: Location of the GPS receiver stations used in relation to the ionosonde stations  

 

Available GPS-TEC values for 10:00 UT of each day were used. IRI-TEC values and MAP-

TEC values corresponding to these times were obtained. Figures 4-3, 4-4, and 4-5 illustrate 

how the IRI-TEC and MAP-TEC values compare with the GPS-TEC values at the three 

selected GPS receiver stations. 
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Figure 4-3: Comparison of the 10:00 UT TEC values at Bloemfontein for year 2003 
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For figures 4-3, 4-4, and 4-5 sample sizes of 201, 189, and 135 data points respectively were 

available. The correlations related to these examples are given in table 4-2. 
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Figure 4-4: Comparison of the 10:00 UT TEC values at Calvinia for year 2002 
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Figure 4-5: Comparison of the 10:00 UT TEC values at Pietersburg for year 2003  
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Table 4-2: Correlation of the IRI-TEC values and the MAP-TEC values with the GPS-TEC 

values 

Station 

Correlation 

Coefficient between 

GPS-TEC and  

IRI-TEC 

Correlation 

Coefficient between 

GPS-TEC and  

MAP-TEC 

Sample Size 

Bloemfontein 0.69 0.83 201 

Calvinia 0.73 0.85 189 

Pietersburg 0.72 0.83 135 

 
Generally, both the IRI-TEC values and the MAP-TEC values correlate well with the GPS-

TEC values, but the results show a better correlation between the MAP-TEC and the GPS-

TEC than the correlation between the IRI-TEC and the GPS-TEC. This further validates the 

idea of using the foF2 map from this work to adapt the IRI model for the South African 

Region. Future work that could be carried on from this project is discussed in chapter 5. 
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Chapter 5 
Conclusion and Future Work 
 

5.1 Discussion and Conclusion 
In order to fully utilize the South African ionosphere for the purpose of HF communications, 

an ionospheric map is required. However, aviation industries, and most of the industries that 

make use of Earth-Space systems, also require ionospheric maps to adequately correct for the 

effects the ionosphere has on their systems. High frequency radio communication industries 

use such maps in conjunction with ray-tracing algorithms for direction finding and prediction 

of propagation conditions. The idea behind this work is to produce the best possible 

representation of the South African ionosphere given the available resources. The IRI model, 

SABIM, and ionosondes in the South African Ionosonde Network were utilized; the sources 

were incorporated into the map in such a manner as to provide an accurate description of the 

South African ionosphere. The map has been tested and demonstrated for practical 

application, since a significant aim of this project was to make the map as applicable as 

possible.  

 

A potential user of the map is GrinTek Ewation (GEW) who is currently evaluating it for 

their purposes. In response to their wishes for the map, the current version of the map has 

been expanded to also generate hmF2 values using exactly the same techniques that were used 

for generating foF2 values for the map. Graphical representations of the hmF2 values will be 

made in subsequent versions of the software.  
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A major limitation of the map is that it is spatially constrained to the South African region, a 

great concern for users who will be interested in using the map beyond these boundaries. The 

possibility of expanding the map to include other African countries, and the portability of the 

map to other countries of the world, such as India, which has similar requirements to South 

Africa, were discussed with Grintek Ewation and has been proposed for future work. It is 

hoped that the map will subsequently be developed to suit the needs of various users.       

 

5.2 Future Work 
In this section, improvements to the performance and scope of the map are suggested.  

 

The map accuracy can be improved using signal strength data from known HF radio 

transmission links like the one between Pretoria and Hermanus. Signal strength data obtained 

from the receiver station could be used as an indication of how close to the receiver the 

signals from the transmitter are arriving. Using ray tracing, the map is then harmonized to 

match the observed transmission conditions.  

 

Other ionospheric parameters like TEC can also be incorporated into the map. Potential 

sources of data include 

i. TEC derived from GPS data (see Opperman et al (2007)), 

ii. TEC predicted from NNs (see Habarulema et al (2009)), and 

iii. TEC predicted from the IRI model (with the IRI model supplied with foF2 and 

hmF2 values from this map)    

 

The ideas used in this work, can also be extended to cover other parts of the African 

continent. A major deterrent to achieving this is the paucity of ionospheric information 

available for the continent, especially from ionosondes. However, given the increased 

availability of GPS receivers, GPS data may be used in conjunction with the available 

models. Since ionosondes are the best sources of bottomside ionospheric information, their 

installation across different parts of the continent would greatly improve the accuracy of 

ionospheric maps for the continent.      

 

In conclusion, since the accuracy of the map greatly depends on that of the models used, and 

since both models are regularly updated, a significant way to improving the accuracy of the 
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map would be to regularly update it in line with the models, ensuring that the latest version of 

each model is incorporated into the map. The plan is to update the map regularly so as to 

maintain desirable accuracies. Such a map of the ionosphere should find fruitful application 

in HF radio communication, aviation, space weather, ionospheric climatology, and error 

corrections in GPS and satellite links.      
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Appendix A 
 
 

IRI Standard Options 
 
 
Table A-1: The IRI Standard Options 

Available Options IRI 

Standard 

Options True False 

Ne computed Ne not computed True 

Te, Ti computed Te, Ti not computed True 

Ne & Ni computed Ni not computed True 

B0 - Table option used B0 - Gulyaeva (1987) used True 

foF2 – CCIR used foF2 – URSI used False 

Ni - DS-78 & DY-85 used Ni - DS-95 & TTS-03 used False 

Ne – Topside: f10.7<188 Ne – Topside: f10.7 unlimited True 

foF2 from model foF2 or NmF2 - user input True 

hmF2 from model hmF2 or M3000F2 - user input True 

Te – Standard Te - Using Te/Ne correlation True 

Ne - Standard Profile Ne - Lay-function formalism True 

Print messages to screen No messages True 

foF1 from model foF1 or NmF1 - user input True 

hmF1 from model 
hmF1 - user input (only Lay 

version) 
True 

foE  from model foE or NmE – user input True 

hmE  from model hmE - user input True 

Rz12 from file Rz12 - user input True 

IGRF dip, magbr, modip 
Old FIELDG using POGO68/10 

for 1973 
True 

F1 probability model Critical solar zenith angle (old) True 

standard F1 Standard F1 plus L condition True 

Ion drift computed Ion drift not computed False 



 51

Ion densities in percentage Ion densities in m-3 True 

Te_topside (Aeros,ISIS) Te_topside (Intercosmos) False 

D-region: IRI-95 Special: 3 D-region models True 

F107D from AP.DAT F107D - user input True 

foF2 storm model No storm updating True 

IG12 from file IG12 - user input True 

Spread-F probability 

computed 

Spread-F probability not 

computed 
False 

IRI01-topside New options for topside False 

IRI01-topside corrected NeQuick topside model False 
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Appendix B 
 
 

Ray-tracing Results 
 

 

Table B-1: Ray-tracing results for day number 15 of year 2000 

Hour 

(UT) 

Elevation Angles of Rays 

Arriving within 30 km of the 

Hermanus Receiver (degrees) 

Distance from Hermanus Receiver 

(km) 

Using the IRI 

Ionosphere 

Using the MAP 

Ionosphere 

5 
26.25  18.98 

30.00 23.07  

6 

7.50 22.86 20.14 

25.00 4.70 3.14 

30.00  23.99 

7 

10.63  15.58 

25.00 21.76  

35.00  25.61 

8 30.00  0.75 

9 
30.00  0.72 

42.50 0.44  

10 28.22  1.02 

12 10.00 28.68  

13 25.00 28.81  

14 

30.00  28.67 

35.00  27.40 

30.00  28.01 

15 30.00  3.39 

16 30.00  0.16 
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Table B-2: Ray-tracing results for day number 106 of year 2000 

Hour 

(UT) 

Elevation Angles of Rays 

Arriving within 30 km of the 

Hermanus Receiver (degrees) 

Distance from Hermanus Receiver 

(km) 

Using the IRI 

Ionosphere 

Using the MAP 

Ionosphere 

4 20.00 8.03  

6 
18.63  22.63 

60.04 10.38  

7 7.50  15.63 

8 

10.00 14.37  

15.98 15.47  

40.00 22.79 8.07 

9 

16.72  26.16 

18.54 26.97  

40.00  5.47 

60.00  13.52 

10 

19.01  20.47 

19.49 12.97  

40.00  1.73 

60.00 18.99  

11 

7.50 8.04 8.43 

19.70 12.10  

20.00 25.95 3.62 

20.14  9.38 

60.00 28.08 28.18 

12 

19.23 12.80  

20.00  0.91 

20.04  3.06 

45.00 25.37 20.85 

60.00  5.77 

13 
18.48 13.37  

19.27  1.08 
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45.00 22.54 14.72 

65.00  21.07 

14 45.00  14.91 

15 
18.95  16.43 

20.00 10.62  

16 

20.00  30.00 

20.81  0.05 

25.00 9.47  

17 30.00  27.59 
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Table B-3: Ray-tracing results for day number 196 of year 2000 

Hour 

(UT) 

Elevation Angles of Rays Arriving 

within 30 km of the Hermanus 

Receiver (degrees) 

Distance from Hermanus Receiver 

(km) 

Using the IRI 

Ionosphere 

Using the MAP 

Ionosphere 

5 17.25 11.31  

6 14.20 10.53  

7 14.69 12.08  

8 
7.50 22.64 20.23 

16.81 24.45  

9 
7.50 7.55 7.40 

40.00 13.43  

10 

7.50 7.33 8.52 

19.04 21.64  

45.00  6.13 

11 

18.91 21.70  

19.73  21.66 

20.00  21.30 

45.00  3.02 

47.50  22.34 

12 

18.18 22.46  

19.46  6.37 

45.00  16.48 

47.50  7.43 

13 

17.39 18.29  

19.06  21.31 

45.00 29.34  

47.50 28.21  

14 
16.86 27.10  

18.53  14.10 

15 
18.68  17.57 

19.03 14.96  
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Table B-4: Ray-tracing results for day number 289 of year 2000 

Hour 

(UT) 

Elevation Angles of Rays Arriving 

within 30 km of the Hermanus 

Receiver (degrees) 

Distance from Hermanus Receiver 

(km) 

Using the IRI 

Ionosphere 

Using the MAP 

Ionosphere 

5 
20.00 21.26  

19.72 7.81  

6 
7.50 26.07 24.95 

20.86 12.50  

7 22.40 19.99  

8 
23.42 18.01  

25.73  3.69 

9 
25.00 22.24  

24.70 6.06  

10 23.90 14.42  

11 
10.31 7.56 2.38 

23.47 15.44  

12 

7.50 18.72 17.64 

22.33 0.57  

25.00  22.35 

13 
20.00 12.00  

19.89 7.28  

16 21.22  3.84 

17 
32.50 10.54  

25.00 1.56  
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Table B-5: Ray-tracing results for day number 15 of year 2006 

Hour 

(UT) 

Elevation Angles of Rays Arriving 

within 30 km of the Hermanus 

Receiver (degrees) 

Distance from Hermanus Receiver 

(km) 

Using the IRI 

Ionosphere 

Using the MAP 

Ionosphere 

6 19.06  25.17 

8 
24.69  7.54 

25.50  20.91 

9 24.69  14.45 

10 25.47  6.74 

12 23.59  20.18 

13 
24.92  7.46 

25.00  23.59 

14 22.50  11.71 

16 
21.56  11.64 

25.17  25.34 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 58

Table B-6: Ray-tracing results for day number 106 of year 2006 

Hour 

(UT) 

Elevation Angles of Rays Arriving 

within 30 km of the Hermanus 

Receiver (degrees) 

Distance from Hermanus Receiver 

(km) 

Using the IRI 

Ionosphere 

Using the MAP 

Ionosphere 

6 
26.11 0.25  

18.35 9.47  

7 
28.91 12.43  

17.84 0.92  

8 18.61 7.03  

9 

19.89 4.77  

20.00 9.10  

22.05  16.01 

28.90 15.07  

29.69  20.25 

10 

20.00 7.79  

20.40 9.60  

22.95  29.88 

28.49 28.76  

29.17  27.95 

11 

19.98 3.05  

20.00 3.92  

24.22  29.69 

28.13 4.99  

12 

19.80 7.49  

20.00 11.80  

23.38  26.05 

26.51 10.79  

13 21.59  5.72 

14 

22.50  13.85 

25.00  26.76 

25.63  21.99 
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26.59  29.68 

15 22.65  27.26 

 

 

Table B-7: Ray-tracing results for day number 196 of year 2006 

Hour 

(UT) 

Elevation Angles of Rays 

Arriving within 30 km of the 

Hermanus Receiver (degrees) 

Distance from Hermanus Receiver 

(km) 

Using the IRI 

Ionosphere 

Using the MAP 

Ionosphere 

9 22.50  14.09 

10 24.38  22.48 

11 25.31  4.31 

12 
20.63  28.89 

25.31  11.09 

13 

19.90  14.26 

20.00  18.78 

20.04  20.46 

25.00  22.28 
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Table B-8: Ray-tracing results for day number 289 of year 2006 

Hour 

(UT) 

Elevation Angles of Rays 

Arriving within 30 km of the 

Hermanus Receiver (degrees) 

Distance from Hermanus Receiver 

(km) 

Using the IRI 

Ionosphere 

Using the MAP 

Ionosphere 

10 
25.00 25.80  

26.25 23.54  

11 

24.88 4.99  

25.00 6.73  

26.25 13.71  

12 

24.09 12.98  

25.00 28.11  

26.25 16.50  

13 
25.00 18.91  

27.50  12.22 

14 
20.92  7.66 

22.91  18.77 

15 
20.60  7.79 

26.88  8.19 
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