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Abstract

Numerical simulations are becoming an increasingly important tool for under­
standing the growth and development of structure in the universe. Common 
practice is to discretize the space-time using physical variables. The discreteness 
is embodied by considering the dynamical variables as fields on a fixed spatial 
and time resolution, or by constructing the matter fields by a large number of 
particles which interact gravitationally (N-body methods).

Recognizing that the physical quantities of interest are related to the spec­
trum of perturbations, we propose an alternate discretization in the frequency 
domain, using standard spectral methods. This approach is further aided by 
periodic boundary conditions which allows a straightforward decomposition of 
variables in a Fourier basis. Fixed resources require a high-frequency cut-off 
which lead to aliasing effects in non-linear equations, such as the ones considered 
here.

This thesis describes the implementation of a 3D cosmological model based 
on Newtonian hydrodynamic equations in an expanding background. Initial 
data is constructed as a spectrum of perturbations, and evolved in the frequency 
domain using a pseudo-spectral evolution scheme and an explicit Runge-Kutta 
time integrator. The code is found to converge for both linear and non-linear 
evolutions, and the convergence rate is determined. The correct growth rates 
expected from analytical calculations are recovered in the linear case. In the 
non-linear model, we observe close correspondence with linear growth and are 
able to monitor the growth on features associated with the non-linearity.

High-frequency aliasing effects were evident in the non-linear evolutions, 
leading to a study of two potential resolutions to this problem: a boxcar filter 
which adheres t o “Orszag’s two thirds rule” and an exponential window function, 
the exponential filter suggested by Hou & Li [1], and a shifted version of the 
exponential filter suggested, which has the potential to alleviate high frequency- 
ripples resulting from the Gibbs’ phenomenon. We found that the filters were 
somewhat successful at reducing aliasing effects but that the Gibbs’ phenomenon 
could not be entirely removed by the choice of filters.
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Chapter 1

Introduction

Cosmology is the study of the large scale properties of the universe. It aims 
to develop a model - although possibly idealised - of the origin, evolution and 
future of the universe. To ascertain the effectiveness of the model, its predictions 
are compared with observations made by astronomers.

Observations of the universe are limited due to:

1. Having only one point of observation.

2. The speed of light.

3. There were no free travelling photons before the cosmic microwave back­
ground (CMB).

Since there is only one observable universe, measurements must be taken from 
multiple points to gather more information. Cosmological predictions are made 
on intergalactic scales. Therefore, any changes in the observer’s position, which 
are smaller than these scales, will have no observable effect. This is why obser­
vations are limited to one observation point (point 1).

In order to make observations, one receives light or electromagnetic waves 
from distant objects. These electromagnetic waves are limited to travelling at 
the speed of light (point 2). If the object, for example galaxy, is further away 
than the Hubble distance - discussed in Section 1.4 - then space is expanding 
faster than light [2]. In this case, light emitted from the object cannot reach 
Earth and be observed.

Light emitted by distant objects has to travel to Earth at the speed of light, 
which takes time. This implies that what is observed is not the current state 
of the object. Due to expansion, discussed in Section 1.4, the light emitted is 
subject to redshift while travelling. Light that was emitted further in the past 
has a longer wavelength. The CMB is the farthest into the past that can be 
observed due to the coupling of matter and photons before this time, discussed 
in Section 1.3.
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These limitations impose a distinction between the universe and the observ­
able universe. To develop a model of the universe, assumptions must be made 
about the areas that cannot be observed.

The standard cosmological model is based on four assumptions:

1. General Relativity (GR) describes gravity [3]. GR is Einstein’s 
theory of space, time and gravitation [4], which he postulated at the end 
of 1915 [5]. This assumption has been proved for solar system scales but 
might not hold on larger scales or at earlier times.

2. The particles observed in the universe, for example galaxies, are a rep­
resentation of the total matter content. The assumption is that on large 
scales matter is described by a mixture of a pressureless fluid and 
radiation [3].

3. The above assumption is not enough to solve Einstein’s equation. As­
sumptions of the symmetric nature of spacetime need to be made as well 
- this is known as the Cosmological principle [3], discussed in Section 
1.2.

4. The last assumption is that the universe exists in a globally hyperbolic 
spacetime [3]. This allows the choice of topology for spacetime to reduce 
to the choice of topology for the spatial sections [3].

The above four assumptions allow one to construct very successful universe 
models [3]. There are reasons to challenge these assumptions, but that will not 
be discussed in this thesis.

GR and the Cosmological principle are discussed in greater detail later in 
this chapter. The thermal history of the universe is then outlined, which leads 
into an explanation of the scale factor and Hubble parameter. Lastly, the theory 
of inflation is discussed.

1.1 General Relativity
Einstein developed the theory of GR in order to describe the spacetime distorting- 
effects of massive objects [5]. The spacetime metric, in the absence of mass, is 
flat. Curvature, i.e. the deviation of the spacetime metric from flatness, ac­
counts for the physical effects usually attributed to a gravitational field [4, 5]. 
Massive objects, such as the Sun, produce a local distortion in the geometry of 
spacetime [5]. This distortion affects the motion of objects and photons around 
the massive object.

A key concept of GR is the spacetime interval ds2, or line element [2], 
between nearby points. An inertial frame is defined as a coordinate system 
(■t ,x ,y ,z ) in which [6]:

ds — —dt +  dx +  dy +  dz . ( 1.1)
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This is usually written in the summation convention as [6]:

ds2 — nMV dxMdxv, (1 .2)

where nMM — ( —1,1,1,1) is called a metric tensor. The generic coordinate dxM 
can refer to (x0, x 1, x2, x3) — (t, x, y, z).

The spacetime interval, equation (1.1), can be written in spherical polar 
coordinates as:

ds2 — —dt2 +  dr2 +  r2 (dd2 +  sin2 Qdrfi2) . (1.3)

By choosing this coordinate system, there is an underlying assumption that the 
spacetime surface is flat. Generally the spacetime is considered to be curved 
and can be regarded as flat in “small” regions [6].

The value of ds2 determines the type of path it represents. The three types 
are [6]:

• Timelike if ds2 < 0

• Spacelike if ds2 > 0

• Lightlike if ds2 — 0

A particle with mass follows a timelike path and a photon follows a lightlike 
path [2]. The set of all lightlike lines passing through a given spacetime point 
is called the lightcone [6]. This allows spacetime to be divided into the past 
(ds2 < 0 with t < 0), the future (ds2 < 0 with t > 0) and everywhere else 
(ds2 > 0).

The line element of an arbitrary coordinate system is [6]:

ds2 — gMVdxMdxv,

where the metric tensor is now:

dx'“  dx'J
gMV — n“ J.

The connection coefficients, or Christoffel symbols, are given by:

"Jm — 2 g° 7 (dM0a£ +  — da9jM)

The Einstein equation [4]:

8nG
TT Mc4 -‘-mvi

(1.4)

(1.5)

( 1.6)

(1.7)
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links the curvature of the metric (left hand side) to the matter content (right 
hand side). The right-hand side contains the stress-energy-momentum tensor 
TMV which describes the matter in the universe. The left-hand side contains 
the Einstein tensor GMV — RMV — 2 RgMV and the cosmological constant A [4]. 
The Einstein tensor is calculated from the Ricci tensor RMV and Ricci Scalar 
R which are given %  first derivatives of the Christoffel symbols rac, defined 
in equation (1.6). The cosmological constant A refers to the energy density of 
the vacuum of space usually called dark energy [3]. A is considered to be small 
enough that deviations from Newtonian theory are not noticeable [4]. In this 
thesis it is assumed that A — 0.

1.2 Cosmological Principle
One of the corner stones of the standard cosmological model is the cosmolo­
gical principle. The principle states that the universe is spatially isotropic and 
homogeneous [3].

An arrangement of particles is spatially isotropic if there exists a point 
that observes an invariant arrangement of particles under spatial rotations [7]. 
Whereas an arrangement of particles is spatially homogeneous if the arrange­
ment of particles is invariant under translation of coordinates in space [7].

Observations of galaxies and the CMB suggest that the matter in the uni­
verse is spread isotropically [3] around Earth/The Milky Way. This alone does 
not affirm the cosmological principle since there are two possible scenarios that 
result in an isotropic arrangement of particles. Either there is only one point of 
observation that results in an isotropic view of the universe or the particles are 
spread isotropically around every point. The first scenario implies our galaxy 
is located at the centre of the universe which is statistically unlikely. Therefore 
the second scenario is assumed which is equivalent to stating that the universe 
is homogeneous.

Using the cosmological principle, definite predictions for all unobservable 
regions in the universe can be made due to homogeneity. Observations are still 
limited to one universe, observation limitation 1 (see Section 1).

It is clear from observations made on galactic scales that the universe is 
highly inhomogeneous on these scales. The cosmological principle only applies 
on large scales at the current epoch, and in a statistical sense, discussed in 
Section 3.1. In other words, for a universe smoothed on distances greater than 
its larger structures. The largest known cosmic structures are galaxy filaments 
which have a typical length ~  100h-1 Mpc (8, 9].

1.3 Thermal History of the Universe
Wavelengths of electromagnetic waves are stretched due to the expansion of 
space. Therefore, waves that have been travelling for longer periods of time 
are stretched more. Observing longer wavelengths (radio waves) is equivalent
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to seeing the universe at epochs further into the past. Using this information, 
astronomers are able to determine when particular events occurred. However, 
there is a time in the history of the universe that cannot be observed due to the 
scattering of light by free electrons.

Cosmology assumes the Big Bang model of the universe [6], Figure 1.1. This 
theory supposes that the whole universe expanded from a very high density and 
high temperature state [6]. The universe then began to expand and subsequently 
cool.

During the first second of the existence of the universe it went through 
several speculated processes. Inflation occurred after 10-42 s [6], discussed 
in Section 1.5. Once inflation ends, the universe continues to expand at a 
slower rate, a (t) a : t1/2. This time period is referred to as the Cold Big 
Bang [6]. At this stage, the universe is dominated by non-relativistic particles 
(matter dominated) which decay into relativistic particles at 10-18 ± 6 s [6] to 
form radiation. This process is called reheating, since the radiation increases the 
temperature of the universe. This temperature increase marks the beginning of 
the Hot Big Bang, universal temperature ~  106±3 GeV [6]. Once reheating 
has ended, the universe continues to expand and cool. The electromagnetism 
and weak interaction fields decouple once the temperature reaches 100GeV 
[6]. Free quarks condense to form hadrons once the universe cools to 
~  200 MeV [6]. At this stage the hadrons (i.e. protons, neutrons and pions) 
exist in thermal equilibrium with the photons, neutrinos, electrons, positrons 
and various hyperons [10].

At the end of this second, the temperature has reduced enough for the neut­
rinos to decouple from the matter [6]. The hyperons and mesons then decay. 
The universe then consisted of free travelling neutrinos, electron-positron pairs, 
electrons, neutrons, protons and photons in thermal equilibrium at T ~  850MeV 
(T ~  1010 K [10]). The electron-positron pairs then annihilated each other [6]. 
The neutrons and protons do not form stable nuclei at this point due to high 
energy protons which blast apart any atomic nucleus the moment it forms [10].

The universe continued to expand and cool until the conditions were right for 
nucleosynthesis [6, 10], time shown in Figure 1.2. This is the process whereby 
protons and neutrons bind together to form nuclei. Once the universe has cooled 
further, the protons are too cold to penetrate the Coulomb barrier and all the 
free neutrons decay into electrons and protons [10].

Thus far in the description, the universe has been dominated by radiation, 
red line in Figure 1.2. The density of the non-relativistic matter continues to 
increase - blue line in Figure 1.2. After 104 yr [6], the density of non-relativistic 
matter is the same as the density of the relativistic matter, known as matter- 
radiation equality [6]. Beyond this time, the universe is in the matter dominated 
era.

When the matter dominated era begins, the expansion rate changes from 
a (t) a: t1/2 to a (t) a: t2/3 [6] which decreases the temperature faster.

The above processes are unobservable due to the coupling of photons and 
matter. Consider Figure 1.1; the coloured regions of time cannot be observed 
since the light emitted is scattered by free electrons. The universe existed
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Figure 1.1: Diagram depicting the history of the universe where key stages are 
highlighted. Edited from Bicep2 2014 release image gallery [11]

as a particle-radiation plasma where photons did not travel far before being 
scattered. During the matter dominated era. the temperature of the universe 
cooled enough for photons to decouple from the matter, at 105 yr [6]. This 
process occurred in two stages. First, majority of the electrons bind to the nuc­
lei to form atoms [6], The remaining photons couple to the ionized electrons 
that remain. Shortly afterwards, the radiation decouples completely from the 
matter [6], These photons propagate freely and become the Cosmic Microwave 
Background (CMB) [6], Over time, the wavelength of the photons that make 
up the CMB become stretched due to expansion, top of Figure 1.1.

Nucleosynthesis created mostly Hydrogen and Helium [10] atoms. During 
the radiation dominated era the photon pressure did not allow the atoms to con­
dense into stars and galaxies [10]. After photons decouple, small perturbations 
in the matter density grow until galaxies form and stars ‘ignite’ [10].
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1.4 Scale Factor and Hubble Parameter
Since the universe is homogeneous and isotropic, the distance between any two 
comoving points (discussed in Chapter 6) is proportional to a universal scale 
factor a (t) [6], where t is cosmic time. Since the scale factor at the present 
epoch is arbitrary [3], it is normalised to be unity, i.e. a0 =  a (tpresent) =  1. 
Henceforth, the subscript 0 will denote present day values of the variable in 
question.

The scale factor is increasing with time; see Section 3.2. Therefore the 
distance between comoving points is increasing. This results in the redshift 
of light travelling from one point to another. Redshift, z, occurs when the 
wavelength of light from an object is increased. The redshift of a photon sent 
between two comoving observers is (3, 6]:

1 +  z =  ^ , (1 .8)
Aemit

where Aobs is the wavelength of the light being observed and Aemit is the 
wavelength of light that was emitted. The wavelength varies as the scale factor, 
A <x a, therefore (3, 6]:

1 +  z =  a (U s) . (1.9)
a (temit)

Due to the connection between redshift, time and distance it is more convenient 
to quote time and distance in terms of redshift. When the redshift refers to a 
particular epoch, it represents the time at which the scale factor was a fraction 
1 /  (1 +  z) of its present value.

At any epoch, the Hubble parameter H gives the rate of expansion of the 
universe,

H =  a , (1.10)
a

where a is the derivative of the scale fe to r  with respect to cosmic time t. The 
present Hubble parameter is:

Ho = 100h km • s xMpc
h

3000
Mpc - i

1

where the last equality uses c =  1 mid h is the dimensionless Hubble parameter 
which contains the uncertainty of H0, h =  0.72 ±  0.05 [3]. The Hubble time, 
H -1 , and Hubble distance, cH -1 , at the present epoch are:
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H - 1  =  9.78h-1 Gyr,
cH—1 =  2998h-1 Mpc.

The Hubble time is the age the universe would have been if the expansion of the 
universe was linear [3]. The Hubble distance is the distance between the Earth 
and the galaxies which are currently receding from us at the speed of light [3].

1.5 Inflation
As discussed in Section 1.2, the universe on very large scales is assumed to be 
homogeneous and isotropic. The CMB radiation is spread isotropically around 
Earth. In order for this to occur, the particles must have been in causal contact 
[3] before the photons were released, i.e. decoupling.

For two points to be in causal contact at the time of decoupling, their future 
light cones need to intersect before the time of decoupling. It can be shown that 
the regions in causal contact at the time of decoupling are smaller than the size 
of the observable universe. This is known as the horizon problem [3].

To solve the horizon problem, a process is added to the Hot Big Bang model: 
inflation. Inflation is simply an epoch during which the scale factor of the 
universe is accelerating i.e. a >  0 [6]. Therefore, the universe was expanding 
really fast. An accelerating scale factor is easier to visualise using the comoving 
Hubble length [6]:

d H -1 
dt a <  0, ( 1. 11)

where H _  the comoving Hubble length. The comoving Hubble length is the
characteristic scale of the expanding universe and governs the size of the observ­
able universe [6]. Equation (1.11) implies that during inflation the observable 
universe shrank.

To visualise this, one begins with the observable universe before inflation, 
Figure 1.3. The shaded area represents the portion of the observable universe 
that is in causal contact at the beginning of inflation. This shaded region is well 
within the comoving Hubble radius at the beginning of inflation. The comoving 
Hubble length decreases during inflation until it is the size of the inner most 
circle. After inflation the scale factor is no longer accelerating and the comoving 
Hubble length starts to grow again. At the present epoch the comoving Hubble 
length is the size of the circle marked ‘now’. This is still inside the shaded 
region, which explains why the CMB is observed to be isotropic.

The shaded region represents the homogeneous universe. The initial homo­
geneities (non-shaded region) end up on scales vastly larger than the observable 
universe at the present epoch [6]. This is why the universe is homogeneous on 
large scales.
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Figure 1.3: This diagram illustrates how the comoving Hubble length changes 
during inflation. The shaded area represents points that are in causal contact 
with the centre point at the start of inflation. During inflation the comoving 
Hubble length shrinks to the size of the inner most circle. After inflation ends 
the comoving Hubble length is free to grow. The observable universe is still 
contained in the shaded region which explains why the CMB is homogeneous 
and isotropic on large scales.

1.6 Outline of Thesis
This thesis is organised as follows:

Chapter 2 discusses cosmological perturbation theory. Beginning with the 
unperturbed universe, and then including perturbations. The decomposition 
into separate scalar, vector and tensor modes is then outlined. Gauges are then 
defined along with their significance. We then choose to adopt the Newtonian 
gauge.

Chapter 3 expands on the source of the perturbations discussed in the pre­
vious chapter. The equations describing this mechanism are discussed along 
with the derivation of the equations for the scale factor and Hubble radius. The 
chapter ends by looking at the evolution of modes as they enter the Hubble 
sphere during different epochs.

Chapter 4 discusses numerical simulations, beginning with a brief history. 
Two cosmologist groups: the Virgo consortium and the DEUS consortium are 
introduced, along with the codes and results they have produced. The reasoning 
behind creating large numerical simulations is then discussed. The latest ob­
servable results are mentioned, these results are used to set the initial conditions 
of the simulation. Lastly, the reason behind creating a new numerical code is
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mentioned.
Chapter 5 outlines the theory behind the spectral method of evolution. All 

constraints are discussed along with the equations necessary to perform the 
evolution. The Runge-Kutta method of time evolution is then introduced and 
outlined.

Lastly the effects of aliasing are considered. The section describes the ali­
asing effects created by sampling a signal, i.e. high-frequency and low-frequency 
aliasing; effects created by performing a convolution; and effects created by ap­
plying a filter that creates a discontinuity. Different filters are suggested and 
their effects discussed. The section ends by discussing the types of aliasing that 
may be present on the grid and what will be done to try to limit them.

Chapter 6 outlines the process of determining the evolution equations. Be­
ginning with a description on what the peculiar velocity is and the types of 
observers. The evolution equations are chosen to be the Euler equations. The 
Euler equations are derived from the Einstein equations for completeness.

The propagation equation is then derived during the two eras of interest: 
matter dominated and radiation dominated. The relationship between the phys­
ical and coded variables is defined. The propagation equation is linearised to 
obtain the general solution. The solution for the density contrast and velocity 
is determined for the evolution of just the growing mode. Lastly, the evolu­
tion equations and initial conditions are redefined in Fourier space for ease of 
programming.

Chapter 7 outlines the results obtained from the evolution. The convergence 
is determined along with a comparison between growing mode growth and the 
coded evolution. The evolution with no filter is then shown with a comparison 
between the 2/3rd boxcar filter and the suggested exponential filter. The results 
end with a look at the reduction of aliasing effects.

Chapter 8 is the conclusion. A summary of the results is presented along 
with the conclusions that can be drawn.

There are five chapters of the Appendix which contain the complete deriva­
tions of terms and equations discussed in the thesis.
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Chapter 2

Cosmological Perturbation 
Theory

Cosmology uses GR to describe the curvature of spacetime. Without matter, the 
universe is a flat/curved spacetime, i.e. unperturbed. Once matter is included 
the metric of spacetime develops small fluctuations, i.e. perturbations.

This chapter begins by describing the perturbed and unperturbed universe. 
The scalar-vector-tensor decomposition is then described. This leads one to the 
concept of a Gauge; the way matter is described, and gauge invariant variables 
are then derived. Finally, the gauge of choice for this thesis is discussed.

2.1 The Unperturbed Universe
Consider a spacetime with no perturbations, i.e. no mass. Since there are no 
perturbations, the slices of fixed t can be chosen to be homogeneous [6]. To 
specify the geometry of a homogeneous three-dimensional space, a curvature 
parameter K  is used [6]. This parameter appears in the Friedmann equation 
from Section 3.2.

The metric, in comoving spherical coordinates, takes the form [3]:

ds2 =  —dt2 +  a2 (t) [d\2 +  fK  (x) {dd2 +  sin2 dd<y>2}] , (2.1 )

where

I K  1/ 2 sin ( %/Kx) K  >  0
f K (X) =

) x  7
1 (—K )- 1/ 2 sinh (V —K x)

K  =  0 
K  < 0.

(2.2)

By using the radial coordinate r =  f K (x) , equation (2.1) can take the 
form:
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ds,2 +  r2 (dd2 +  sin2 dd<y>2) , (2.3)

where t has been replaced by conformal time r  and dt =  a (t) dq. This metric 
is called the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric [6].

2.2 The Perturbed Universe
Since the universe is neither perfectly flat nor perfectly curved, the spacetime 
contains small perturbations. There are two formalisms for cosmological per­
turbation theory [3]. This thesis follows the standard method introduced by 
Bardeen [12]. The method introduces arbitrary parametrisations of the per­
turbations which can then be used to construct gauge invariant variables. The 
other approach will not be discussed - however, both approaches do lead to 
equivalent physical results [3].

Let gMV represent the FLRW metric, equation (2.3). The metric of a per­
turbed spacetime, gMV, can then be written as [3]:

where Sg^v represents small deviations from the FLRW metric. The inverse 
metric is given by [3]:

to first-order. This implies that the indices of all tensor and vector quantities 
can be raised or lowered using the unperturbed spatial metric, - which is the 
spatial portion of equation (2.1 ).

The line element of gMV is written as [3]:

ds2 =  a2 (n) [— (1 +  2A) dr/2 +  2Bid,xld,q +  (y j  +  hjj) dxjdxj ] , (2.6)

where A is the lapse function, Bj is the shift function, y j  is the spatial portion 
of the FLRW metric written in comoving spherical coordinates and h j  is a rank 
2 symmetric tensor.

The quantities A, Bj mid h j  are unknown functions of space and time that 
are determined from the Einstein equations.

2.3 Scalar-Vector-Tensor Decomposition
The previous section defined the perturbed spacetime metric. The metric con­
tains scalars, vectors and tensors. It is more useful to perform a scalar-vector- 
tensor decomposition (SVT) which separates these components.

g^v gnv +  3g) (2.4)

grMv gMV +  5g»v , 5g»v =  —g ^ g vXSgaX , (2.5)
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Any vector field can be decomposed as the sum of the gradient of a scalar 
and a divergence-less vector as [3]:

B j =  d jB +  B j with d jBj =  0, (2.7)

where dj represents a derivative with respect to the i-th component. In a similar 
way, any rank 2 symmetric tensor can be decomposed as [3]:

hjj — 2CYij +  2djdj E  +  2d(j Ej) +  2Ejj (2-8)
with djEgjj = 0, Ej =  0 .

The size components of hjj can be split into 2 scalar (C  and E), 2 rector (Ej) 
and 2 tensor E j  components. Thus, the metric has been decomposed into 4 
scalars (A, B, C mid E), 2 rectors (B j and Ej) and 1 tensor (E jj) [3].

The biggest advantage of using this decomposition is that, to leading order, 
the scalar, vector and tensor parts decouple. Thus, the components can be 
studied separately without ignoring contributions from the other components.

2.4 Gauges
2.4.1 The Gauge Freedom
In Section 2.2, the metric gMV was assumed to be ‘close’ to that of the FLRW 
metric. This was done in order to compare the perturbed metric with a metric 
that is well understood. During this process an arbitrary freedom is introduced 
in the way points are identified.

Consider Figure 2.1 where M  represents the Friedmann-Lemaitre universe 
and M  represents the perturbed metric. The isomorphism ^ has been formu­
lated in order to relate the points of the two spaces. There is no ‘natural’ choice 
for this isomorphism, which implies that there are some unphysical degrees of 
freedom related to the choice of the coordinate systems on the two manifolds
[3].

Locally, the spacetime metric is flat, and all systems of coordinates are equi­
valent [3]. Differences between coordinate systems are expected on large scales, 
i.e. scales above the Hubble radius [3].

When choosing a coordinate system, it is necessary that they reduce to the 
standard coordinates in the limit where perturbations vanish [6]. A gauge is 
a coordinate system that satisfies this constraint [6]. Equation (2.6) assumes 
implicitly that a system of coordinates has been chosen in the perturbed space. 
Therefore, any change of coordinates will modify the form of the metric coeffi­
cients [3].

It is important to separate the quantities into those that are intrinsic to the 
manifold in which the perturbations evolve, and the artificially generated ones.
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Figure 2.1 : Any perturbed quantity can be mapped between Friedmann- 
Lemaitre spacetime, M , and the perturbed spacetime M . Adapted from [3]

2.4.2 Gauge Transformation and Invariant Variables
The previous section illustrated that two spacetimes can be related using a 
gauge. There exist quantities that do remain gauge invariant. These quantities 
need to be described.

To begin, consider a coordinate transform generated by the vector field £. 
The coordinates of a point change like [3]:

. (2.9)

The displacement vector £M T
L L j , which is divergence-less djLj =  0)

as £0 =  T, £j =  Lj =  djL +  L j .
Under this operation, the metric transforms as [3]:

g v̂ — g^v +  gMV. (2.10)

To first-order the perturbations are:

ĝMV — $g^v +  g v̂ =  $g v̂ +  2V(m£v) , (2*11)

which implies that the metric perturbation variables transform as [3]:

A — A +  T  +  HT (2.12)
Bi — Bi — diT +  Lj
hjj —— hjj +  dj Lj +  dj Lj +  2HTyjj. (2.14)
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Using the scalar-vector-tensor decomposition of equations (2.7) and (2.8), 
the following expressions for the different modes are derived [3]:

Scalar Vector Tensor
A 7  A +  T ' +  HT 
B 7  B -  T +  L  
C 7  C +  HT 
E 7  E +  L

B i 7  B i +  Li' 
Ei 7  E i +  Li

E  - _v E  -Eij 7 EiJ

The arbitrariness is removed by specifying additional conditions, i.e. choos­
ing a gauge.

There exist some combinations of the above quantities that do not depend 
on Li and T, [3]:

^  =  - C  - H  (B  -  E ') , (2.15)
T =  A +  H (B -  E ') +  (B -  E ') ' , (2.16)

Ti =  E i' -  B i, (2.17)
Eij. (2.18)

The above quantities can be neither simplified nor eliminated by change of 
coordinates [3].

2.5 Description of Matter
The initial perturbations present on the metric of the universe are assumed to 
be very small, i.e. quantum fluctuations. Therefore, the metric is a smooth 
surface on larger scales.

During radiation domination, the matter content of the universe can be 
modelled as a perfect fluid with pressure. Once radiation decoupling has taken 
place, the universe can be modelled as a fluid with zero pressure.

The energy-momentum tensor that describes a perfect fluid in an unper­
turbed space is of the form [3]:

V  =  (P +  P ) vEvv +  Pg^v j (2.19)

where p is the density, P  is the pressure, vM is the velocity and gMV is the metric 
from Section 2.2. In the presence of perturbations, the energy-momentum tensor 
of a perturbed fluid takes the general form [3]:

ST v̂ =  (Sp +  SP) +  SPg^v
+ 2  (p +  p ) Suv) +  PSgMv +  ^2p n ^vj (2.20)

where vM =  vM +  SvA is the four-velocity of a comoving observer, satisfying 
vMvM =  -1 , and nMV is the anisotropic stress tens or. Once SuM and nMV are
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decomposed into their scalar, vector and tensor parts, the components of the 
perturbed energy-momentum tensor [equation (2.19)] are [3]:

ST00 =  pa2 (S +  2 A ), (2.21)
SToi =  -p a 2 [(1 +  w) (div +  Ei) +  diB +  Bi] , (2.22)

STij =  p a2 ( hij +  —p~Yij +  ni j j  j (2.23)

where S =  y- is the density contrast, w is the ratio of the pressure and density of 
the fluid, i.e. — , and A, B, hij and Y j are the parameters discussed in Section 
2.2.

2.6 Gauge Invariant Quantities
A change of coordinates is now performed, equation (2.9). The scalars transform 
as [3]:

SQ 7  SQ +  C(. Q ,
L  Q =  £“ daQ =  TQ'j

and the vectors transform as:

Sva 7  Sva +  va,
L v a =  £“ davM -  v“ da£M.

Therefore, SP, Sp v and Ei transform as [3]:

Sp 7 sp +  p 'Tj (2.24)
SP 7 SP +  P  'Tj (2.25)

v 7 v -  L'j (2.26)
Ei 7 Vi -  Li. (2.27)

The gauge invariant quantities associated with the above can now be determ­
ined. The gauge invariant quantities are defined as [3]:
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6n = 6 +  p  (B — E ') , (2.28)
P

6F = 6 p' c
6 p H ,

(2.29)

6C = 6 +  P  (v +  B ) , (2.30)
P

V = v +  E', (2.31)
V  = "Cj +  Bj, (2.32)

Wj = Cj +  Ej. (2.33)

These variables are related to each other by [3]:

6F =  6N +  P  1
+  P H ,

(2.34)

6C =  6n +  P'  V,
P

(2.35)

Wj =  Vj +  $ j , (2.36)

where 6 =  y- is the total density contrast.

2.7 Newtonian or Longitudinal Gauge
The gauge invariant variables have been defined above. However, these variables 
have no direct physical interpretation. The quantity 6N can only be interpreted 
as the density contrast if it is measured by an observer using this gauge. To relate 
them to physical quantities, one needs to find a gauge where the perturbation 
variables reduce to the gauge invariant quantities.

The Newtonian gauge is an example of such a gauge; this is the gauge chosen 
for this thesis. By setting up a N-body simulation, as discussed in Chapter 4, 
the gauge is chosen to be Newtonian.

The characteristics of this gauge are:

• The scalar portion of the perturbed metric is diagonal, i.e. B =  0 and 
E  =  0.

• The vector part is chosen to be zero, i.e. Bj =  0.

This fixes the gauge completely since the transformation from an arbitrary gauge 
to the Newtonian is [3]:

T  =  B — E ' , L =  —E and Lj =  —Bj.

23



Using the relations from equations (2.15)-(2.18), (2.28), (2.31) and (2.32), the 
perturbed quantities in terms of the gauge invariant variables are [3]:

A =
C = —
6 = 6n ,

6P  = 6P  N
v = V,

V = U.

The line element of the Newtonian gauge is [3, 6]:

ds2 =  a2 (n) [— (1 +  2$) drj2 +  (1 — 2$) Yijd P d V ] . (2.37)

Note that locally, all coordinate systems are equivalent; differences are only- 
expected on large scales. It will be shown in Section 3.3 that the limiting scale 
is the Hubble radius.
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Chapter 3

Origin of Structure

The universe began as a homogeneous and isotropic arrangement of matter [3]. 
However, the universe is highly inhomogeneous on small scales at the current 
epoch. The origin of the inhomogeneities could be due to gravitational effects, 
or contained within the initial conditions [6].

Inflation has helped solve the horizon problem, Section 1.5. It also provides 
a source for the inhomogeneities. The quantum fluctuations in the inflation field 
about its vacuum state [6] grow over time to create the inhomogeneities.

Let ^ be the inflation field and 6^ be its vacuum fluctuation. The vacuum 
fluctuation is usually expressed as a Fourier expansion in a comoving box with 
sides of comoving length L [6]:

6^ (x,t) =  ] T 6^  (t) eikx , (3.1)
k

where x is related to the physical position as discussed in Section 6.1. The 
possible values of k form a cubic lattice, with spacing

2n
Ak =  — . (3.2)L

The inverse wavenumber | defines a distance scale where < 1 represents 
a scale inside the horizon, and outside the horizon otherwise. During infla­
tion some scales exit the horizon, discussed in Section 1.5. After inflation, the 
Hubble radius increases and scales begin to re-enter the horizon. The scales are 
influenced by the time at which they enter the horizon, and will grow with dif­
ferent behaviours and rates depending on whether they enter during the matter 
dominated era or radiation dominated era.

The perturbations in the inflation field create perturbations in the energy- 
density 6p (x, t) and hence the metric of spacetime [6]. Once the inflation field 
decays into conventional matter, it creates perturbations 6pi (x, t) in the dens­
ities of individual particle species [6] for example baryons.
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The perturbations can be seen in observations of the CMB anisotropies [13]. 
There are small fluctuations in the temperature of the CMB. Due to the uniform 
distribution of photons, perturbations are small, and linear response theory 
applies [13] for most times.

This chapter discusses the initial data chosen for the study of structure 
formation. The expressions for the background quantities, such as the scale 
factor, are derived for each epoch. The chapter ends with a look at the evolution 
of modes after horizon re-entry.

3.1 Initial Conditions
As discussed in Section 1.3, the universe existed as a baryons, and photon plasma 
during the radiation dominated era [after inflation]. Once the universe cooled 
enough to allow the baryons and photons to decouple, the photons were emitted 
and became the CMB.

The vacuum fluctuation altered the initial positions of the baryons. The 
vacuum fluctuation has a statistical nature [6].

The probability distribution function cannot be completely random due to 
the isotropic nature of the CMB. Therefore, the cosmological principle imposes 
that the probability distribution must be statistically isotropic and homogeneous
[71-

Let the probability distribution of a field g (x) be described by a 3-dimentional 
normal (Gaussian) distribution of the form [6]:

P (g) 2ol

2g (3.3)

where the mean is zero and (j2g (x) is the variance. Approximating the independ­
ent random variables by a normal distribution is allowed, thanks to the central 
limit theorem [14].

Another useful statistical property is the correlation function:

£ (x, r) =  (g (x) g (x +  r)) . (3.4)

Since the field g (x) is assumed to be statistically isotropic and homogeneous, the 
correlation function only depends on the relative separations r =  |r|. Equation 
(3.4) can be written as:

£ (x, r) =  £ (r) (3.5)
The field is initialised in Fourier space by expanding in Fourier modes as

[3, 6]:

g (r)
d3k

(2n)3/g
gk exp (ik • r ) , (3.6)

where the Fourier transform also contains a factor of )3/2 ■ Sinee g (r) is a
real-valued field, the conjugation relation has to be satisfied:

26



gk =  g-k, (3.7)
where gk represents the complex corijugate of gk. The spectrum is given by
(3, 6]:

(gkgk') =  SD (k +  k') Pg ( k ) , (3.8)

where JD is the Dirac delta function and Pg is the power spectrum, which is 
defined as [6, 15]:

Pg =  L3 (|gk|2)  , (3.9)

where |̂gk|2  ̂ is the variance of |gk|2 mid L is the size of the box at the present 
epoch. Derivations can be found in Appendix B. The power spectrum is related 
to the correlation function by:

Pg (k) =  J  d3r£ (r)exp[ik • r ] , (3.10)

where k =  |k|. The power spectrum is defined in physical units. It is more 
useful to define a dimensionless spectrum [3, 13, 16]:

v g (k) =  2ng P gw . (3-n )
Using equation (3.9), the spectrum is related to the variance by:

Pg (k) =  ( 2 n )  4nk3 (|gk|2)  . (3-12)

The equation for the spectrum is determined by the model of inflation used. 
In almost all models of inflation, the spectrum can be taken as a power law 
[6, 15, 16, 17, 18]:

/  k \  n-1
P 0 ( k ) =  Po f  k j  , (3-13)

where k* is the pivot wavenumber, n is the spectral index relative to that 
wavenumber, and P 0 is a constant set by its value today. Recent surveys have 
measured n [19]:

n (k* =  0.002 Mpc-1 ) =  0.968 ±  0.012. (3.14)

P 0 is set according to observations [20], the most recent measurement is [19]:

P 0 =  2.42 x 10-9 . (3.15)

The field g (x) is chosen to have a Gaussian probability distribution. This 
implies that both the real and imaginary components of gk have a Gaussian 
probability distribution.
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Let Rn and In be the real and imaginary components. The components are 
independent and not correlated. Therefore, the variances must be equal [6]:

-n  =  (Rn) =  <in) =  2 (igk„ i2) . (3.16)

The spectrum is thus related to the individual variances by:

p g (kn) =  8^ 2 “ )  kn-n. (3-17)

In the simulation created for this thesis, the variance is fed into the random 
number generator. The initial field can either be determined by generating 
two Gaussian random numbers (one for each of the components of the complex 
field), or by generating one Rayleigh random number for the magnitude of the 
complex number - and then a uniformly random number for the angle. Appendix 
C demonstrates how these two approaches are equivalent.

3.2 Friedmann Equation
Before the evolution of individual modes is discussed, consider the Friedmann 
and acceleration equations [3]:

H 2

a
a

k K  A
3 p — a2 +  i ,

-  6 (p  +  3P) + A
"3 ,

(3.18)

(3.19)

where k =  8nGN and H =  | [3]. These two equations are derived from the 
Einstein tensor, equation (1.7), and the energy-momentum tensor, equation 
(2.19).

The matter conservation equation (V MTMV) reduces to a single equation:

0 =  p +  3H (p +  P ). (3.20)

In order to solve this system of equations additional information is required, 
calculations in Appendix A. The equation of state is [3]:

P  =  wp, (3.21)

where

• pressureless matter is described by w =  0

• radiation is described by w =  3

• cosmological constant is described by w =  —1
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By using equation (3.21) in equation (3.20) and integrating by time, the rela­
tionship between the density and scale factor is:

P_
Po

a
ao

3(1+w)
(3.22)

where a0 =  1 mid p0 is the background density measured at the present epoch. 
The scale factor can be written in terms time for some simple cases.

This thesis considers the case where K  =  A =  0 mid w =  —1. equation 
(3.18) is simplified to:

H =  ± y | P 0 a -3(1+w)/2, (3.23)

where equation (3.22) has been used. Since universe is expanding, the positive 
expression is taken. Rewriting H in terms of the scale factor gives:

a(1+3w)/2a K
rPo. (3.24)

Integrating with respect to time gives the scale factor in terms of cosmic time t:

a (t)
t \ 2/3(1+w)

To )
(3.25)

Using equation (1.10) and equation (3.22), the Hubble parameter and density- 
in terms of cosmic time are:

H (t) =
2 1

(3.26)3(1 +  w) t ’

P (t) = k  h ° ( to r
(3.27)

Equations (3.25), (3.26) and (3.27) are defined in terms of t where t0 is the age 
of the universe, t0 =  13.76 * 109yr [19]. It is more convenient to define a new 
time variable:

T t
to

(3.28)

Which allows the time to vary between 0 Mid 1. Equations (3.25), (3.26) and 
(3.27) become:

29



a (t ) =  t 2/3(1+w), (3.29)

H (t ) =  Ho1 , (3.30)T
3

P (t ) =  -Ho2T- 2, (3.31)

where Ho =  3(1+w) 1 .  The redshift can be written in terms of t :

1 +  z =  t - 2/3(1+w). (3.32)

3.3 Evolution of Modes
Section 1.5 discussed how the Hubble radius decreased with respect to conformal 
time during inflation. Modes behave differently depending on the time at which 
they re-enter the Hubble sphere, mentioned in introduction. This section will 
describe how the modes behave and what affects their behaviour.

The characteristic scale is the comoving Hubble length H  The modes k at 
an epoch can be [3]:

k ^  H super — Hubble mode wavelength larger than Hubble radius,
k ^  H sub — Hubble mode wavelength smaller than Hubble radius.

To study the evolution of structure, an understanding of how the modes of 
the density change over time is necessary. The evolution of the gravitational 
potential is linked to the density via the poison equation.

The evolution equation for the gravitational potential is given by [3]:

T '' +  3H (1 +  c2) T'

+  [2H +  (H2 — K ) ( 1  +  3c2)] T — c2AT =  Ka2P r, (3.33)

where cs is the speed of sound and r  is the entropy perturbation. This thesis 
considers the case of a flat universe (K  =  0) with no entropy perturbation
(r  =  o).

This section will first consider the evolution of modes during a particular 
epoch. The evolution of modes during the transition between eras is then dis­
cussed. Lastly, the evolution of small perturbations is discussed.
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3.3.1 During the Radiation Dominated Era:
During the radiation dominated era, the photons and matter are coupled to­
gether. This is modelled as a fluid with a constant equation of state w =  0 and 
implies c2 =  w.

Assuming w =  — 1 mid w =  — 3 , the scale fact or is a a: nv wher e v =  (1+23w) 
[this follows directly from equation (3.25) and dt =  a (t) d^j.

The evolution equation (3.33) can be written in Fourier space as:

T '' +  3H ( 1 +  w )T ' +  [2H' +  H 2 (1 +  3w)] T +  wk2T =  0. (3.34)

To find the solutions to the above equation, set f  =  xvT where x =  kn After 
some manipulation, the form becomes [3]:

f  +  2  d f  +
dx2 x dx

v (v +  1 )
f 0. (3.35)

The general solution for this equation is a combination of Bessel functions [3] 
The gravitational potential is given by:

w — 2x

T A jv+ 2 (csx) +  Bnv+ 2 (csx)— vx (3.36)

where 1 and nv+ 1 are spherical Bessel functions. Due to the asymptotic 
nature of the Bessel functions,

• When csx C  1, the gravitational potential remains constant.

• When csx ^  1 mid — 2 < w < 3 , the gravitational potential shows 
damped oscillatory behaviour.

• When csx ^  1 mid w =  3 , the gravitational potential oscillates with a 
constant amplitude.

The Poisson equation (6.25) allows the density contrast to be obtained from 
the gravitational potential. When csx ^  1, the mode also shows dampened 
oscillator behaviour. When csx C  1:

T oSc «  -̂ -̂ r «  a2. (3.37)
pa2

Since p «  a-4 . Therefore, the density grows like the square of the scale factor 
when the mode is on super-Hubble scales.

Consider the case where w =  3 , Figure 3.1 illustrates how the choice of gauge 
affects the evolution of the density contrast. When csx > 1 there is virtually no 
difference between the density contrasts. The differences get larger as csx < 1. 
This serves to illustrate how in the observable universe the choice of gauge does 
not affect results. Once modes outside the observable universe are taken into 
consideration differences are expected.
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3.3.2 During the Matter Dominated Era:
Modes behave differently during the matter dominated era. Radiation has de­
coupled from matter, therefore w =  c2 =  0 and v =  2. The evolution equation 
of the gravitational potential takes the form [3]:

d2f  2  df 6
+  +  f

dx2 x dx x 2

The general solutions of which lead to [3]:

0, (3.38)

$  =  $+ +  $ _  x 5,

dc =  - 1  x2 $.
6

And since a rc n2 rc x2, the density contrast of matter grows like:

(3.39)

(3.40)

dm rc a. (3.41)

Which is derived in more detail in Section 6.6.

3.3.3 Modes Entering the Horizon
In the previous two subsections the evolution of modes during the two eras was 
discussed. Not all modes remain sub-Hubble or super-Hubble at all times. 

Consider the following where i =  number:
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1. The scale is always sub-Hubble.

2. The scale is super-Hubble and becomes sub-Hubble during the radiation 
dominated era.

3. The scale is super-Hubble until matter-radiation equality.

4. The scale is super-Hubble and becomes sub-Hubble during the matter 
dominated era.

5. The scale is still super-Hubble.

Since mode k5 is not in the observable universe, its evolution will not be con­
sidered.

The rest of the modes are shown in Figure 3.2. The modes become sub- 
Hubble once they cross the red line in Figure 3.2(a). The area to the left of the 
eqfaeq] line represents the radiation dominated era, while the right represents 
the matter dominated era.

Modes like ki oscillate during radiation domination and grow like a when 
matter domination begins. The k2 modes grow like a2 until they enter the 
horizon during radiation domination. They then proceed to evolve like k1 modes.

k3 is referred to as the scale of equality. It only becomes sub-Hubble at 
equality, and therefore never oscillates. It grows like a2 during radiation dom­
ination and a when matter begins to dominate. Modes of the form k4 grow in 
a similar way.

The growth of these modes determines how large the perturbations grow. 
During the radiation dominated era, the perturbations remain small due to the 
decaying oscillations. Once radiation has decoupled, the perturbations are free 
to grow large. This is why linear perturbation theory is adequate to describe the 
evolution of structure for most of the universe’s evolution. It is only when the 
perturbations reach a large enough size that non-linear theory more accurately 
describes the universe.
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(a) Illustrates the time at which the modes ki enter the Hubble 
radius. The red line represents the size of the comoving Hubble 
radius, where (a) H <x a- 1 , and (b) H <x a-1 / 2 
represents scales larger than the comoving Hubble length.

(b) The evolution of the density contrast for each mode from Figure (a).

Figure 3.2: Illustrates how modes behave as they enter the Hubble sphere. The
a - 1  during radiation domination [left of 

figures] and a -1/2 during matter domination fright of figures].
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3.3.4 Growth of Small Scale Perturbations
During the radiation dominated era the amplitude of the density contrast shows 
oscillatory behaviour, as discussed above. This develops from the way radiation 
and matter are interacting. The gravitational force pulling the matter together 
opposes the pressure of the radiation pushing the matter apart. This is related 
to the concept of the Jeans length, defined as [3, 6, 1, 21]:

Aj -  cs/ G I P  (3'42)

where cs is the speed of s ound, GN is the gravitational const ant and p is the 
density. The Jeans length is the oscillation wavelength below which stable os­
cillations rather than gravitational collapse occurs.

This quantity appears in the propagation equation during radiation domin­
ation, see Section 6.4. Scales that are smaller than this value oscillate due to 
the pressure of the radiation. Larger scales do not overcome the gravitational 
force and undergo collapse.

During radiation domination cs =  ^3 [21]. The comoving Hubble distance 
is given by:

ca 1H 1 a
3c2

8 nGN p
3 a

2nV 2
o A 
3  Aj ’

Aj

where the Hubble distance is defined in Section 1.4. Since the comoving Jeans 
length, aAJ, is larger than the observable universe during radiation domina­
tion, it is not surprising that the modes entering the horizon show oscillatory 
behaviour.

The Jeans length continues to grow with the universe until matter-radiation 
equality [21]. The radiation then decouples from the matter which removes the 
pressure force preventing gravitational collapse. The Jeans length shrinks. The 
perturbations, which have remained small due to the oscillation, are then free 
to grow.

The perturbations are initially small, S C  1, which is why linear growth can 
be assumed for most of matter domination. Once the perturbations grow in 
size the universe enters the non-linear regime, and deviations from the expected 
linear growth are observed.

The scales where the power spectrum becomes non-linear is A «  8h- 1  Mpc 
[22] at the current epoch.
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Chapter 4

Structure Formation: 
Non-linear Regime

4.1 Introduction to N-body Simulations
The models of the universe need to be verified by cosmologists. Einstein’s 
prediction that light bends as it passes the Sun was testable in real life. Models 
of the universe cannot be tested in real life due to the scales of the experiment; 
see Chapter 1.

Numerical simulations, often referred to as N-body simulations, involve cre­
ating a grid that represents the system of interest on a computer. Models of 
how the particles interact over time are then written in code and the system is 
allowed to evolve in time. If the initial conditions are set according to obser­
vations, then the situation is effectively being recreating in a lab. The name 
N-body comes from the fact that the simulation could contain thousands of 
particles, i.e. N bodies.

The first application of numerical simulation to cosmology was in 1941, per­
formed on an optical computer [23]. Digital computers were used in the early 
1960s [20]. Simulations were relatively small, consisting of at most 100 particles 
[24].

As computers developed, cosmologists were able to create N-body simula­
tions with a larger number of particles. In 1970, a cluster simulation of 300 
particles was used to investigate whether a cluster of galaxies could have origin­
ated as a collapsing protocluster [25].

As discussed in Chapter 1, the study of cosmic structure formation is very 
important. This branch of cosmology gained particular attention in the 1980s 
due to several important developments:

• Several plausible physical models were proposed for dark matter [26, 27, 
28] (such as massive neutrinos, hot dark matter, and cold dark matter).

• The scale-invariant Harrison-Zel’dovich spectrum of primordial fluctuations
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in matter and radiation was shown to be produced by cosmic inflation [29].

• Thorough numerical calculations were done: [30] created a complete nu­
merical understanding of linear, first-order density perturbations in a 
Friedmann-Lemaitre cosmological model. [31] calculated the temporal 
evolution of the fluctuation spectrum by numerical integration to better 
understand dark matter and how it interacts.

• The theory of Gaussian random fields was developed and used in the gener­
ation of primordial density fields [32]. [33] and [34] investigated the effects 
of simulating Gaussian random fields with an arbitrary power spectrum.

• With the inclusion of grid-based algorithms, simulations with more than 
105 particles became possible [20].

Due to the above advancements, the Cold Dark Matter (CDM) model was cre­
ated and sophisticated tests were constructed to evaluate it. COBE (Cosmic 
Background Explorer) was used to measure the anisotropy in the cosmic mi­
crowave background radiation [35]. These observations presented a few prob­
lems with the model:

• The CDM model predicted more power on small scales than was observed 
[36].

• The velocity dispersion was too high on small-scales [37, 38].

• There were too many clusters of galaxies per unit volume [39].

The failure of the CDM model highlighted the complexity of the origin of struc­
ture. The model is being modified to improve its accuracy. These modifications 
involve including light massive neutrinos, including a cosmological constant, 
tilting the primordial spectrum, or including spatial curvature [20].

Regardless of the cosmological model, numerical simulations continue to be 
used. The machines have become more powerful and complex which has altered 
the method of the simulations. Studies continue to produce codes that are able 
to utilise this power and perform more accurate simulations.

Numerical simulations have been developed to study many areas of cosmo­
logy. Some examples include:

• Obtaining accurate predictions for the two-point correlation and power 
spectra of galaxy clusters [40].

• Studying galaxy cluster populations [41].

• Studying the large scale distribution of baryons [42].

• Testing a new method for constructing maps of temperature fluctuations 
on the CMB [43].

• Studying interacting galaxies [44].
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• Large scale structure formation [45, 46, 47].

This thesis focuses on large-scale structure formation. There are two groups, 
the Virgo and DEUS consortiums, which have focused on this area of cosmology. 
What follows is a discussion of these groups and their codes.

4.2 The Virgo Consortium
The Virgo Consortium [48] is a collaboration of scientists that was founded in 
1994. With access to the world class supercomputers COSMA4 and DiRAC-2, 
the Virgo Consortium can perform numerical simulations on a wide range of 
topics.

Some of the Virgo Consortium’s projects are:

• The GIF project [49, 50] which was started to study the formation and 
evolution of galaxies in a cosmological context using semi-analytical galaxy 
formation models embedded in large high-resolution N-body simulations. 
The code used was Hydra [51].

• The Millennium Simulation [52] was the largest simulation of the form­
ation of structure within the ACDM cosmology in 2005. The simulation 
was carried out using a specially adapted version of the publicly available 
code GADGET. The data was made available to the public and several 
publications have used this data. A list of publications can be found [53].

• EAGLE (Evolution and Assembly of GaLaxies and their Environments) 
[54] is a simulation aimed at understanding how galaxies form and evolve. 
It used the DiRAC-2 supercomputer to run and was performed by a heavily 
modified version of the public GADGET-2 simulation code [55].

• Copernicus Complexio (COCO) [48, 56, 57] is a dark matter only simula­
tion. The project’s goal is to resolve the formation and evolution of Milky- 
Way sized haloes and their subhaloes. COCO simulates WDM (Warm 
Dark Matter) and CDM (Cold Dark Matter) cosmologies in order to ob­
serve the differences between them [48]. The code used is GADGET3, 
which is an updated version of GADGET2 [55].

The Virgo consortium make the data generated in their simulations free to the 
scientific community [58].

These projects may involve simulating different models. However, the codes 
used are very similar. Most use a version of GADGET, while the GIF project 
made use of Hydra. The mechanisms behind these codes is outlined in Section 
4.4.

4.3 The DEUS Consortium
The DEUS Consortium [59] is another collaboration of scientists working on 
the DEUS (Dark Energy Universe Simulation) project. Their goal is to in-
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Figure 4.1: Left: The dark matter density field for two interacting halos. Right: 
The corresponding Adaptive Mesh Refinement (AMR) grid. [62]

vestigate the imprints of dark energy on cosmic structure formation through 
high-performance numerical simulations [59].

The DEUS project consists of two main components:

• DEUSS (Dark Energy Universe Simulation Series)

• DEUS - FUR (Dark Energy Universe Simulation Full Universe Run)

DEUSS is a large set of high performance cosmological DM simulations of real­
istic DE models with several billion particles and high spatial resolution.

DEUS-FUR was the first numerical N-body simulation of the full observable 
Universe [59].

Both projects were run by the code RAMSES_ DEUS [59] which is a new 
version of the cosmological code RAMSES [60].

4.4 The Numerical Codes Used
Cosmologists have used many numerical codes to study the universe. The ex­
amples discussed in this section are

• Hydra [45, 51],

• GADGET [44, 55], and

• RAMSES _  DEUS (paralleled version of RAMSES [60]).

Hydra is a parallel adaptive particle-particle-particle-mesh (P3M) code [45, 51]. 
The initial data is generated on a mesh grid and then evolved over time. The 
interparticle forces are split into two components: a long-range force which is 
calculated by a mesh-based method, and a short-range part which is summed 
directly from the contributions of nearby particles [61]. This code included a 
refinement grid for later evolutions to increase resolution of the galaxy clusters 
[51].
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RAMSES is based on the Adaptive Mesh Refinement technique and has a 
tree-based data structure which allows for recursive grid refinements on a cell- 
by-cell basis (“Fully Threaded Tree”) [60]. The N-body solver evolves particles 
using a Particle-Mesh (PM) method, while the Poisson equation is solved with 
a multi-grid technique [63].

This method is illustrated in Figure 4.1. The initial data is generated and 
enclosed inside a box, i.e. the root node of the tree. The box is then recursively 
divided until each particle is isolated inside its own box, i.e. the leaves of the 
tree [44, 55, 60]. The boxes that contain no particles do not have to be stored. 
This technique improves the memory usage and processing time/power needed 
to perform the simulation.

The codes GADGET-2 and -3 are hybrid codes. The long-range forces are 
computed using a particle-mesh method, while short-range forces are obtained 
using a hierarchical oct-tree algorithm [44, 55]. This particular heterogeneous 
architecture allows for a relatively easy follow-up of nested grids placed with in­
creasing accuracy around the high-resolution region [44]. This results in proper 
long-range force accuracy throughout the box, while focusing most of the com­
putational effort inside the high-resolution region of interest [44].

4.5 Initial Conditions
The initial data for structure formation is generated as the best fit for the highest 
precision observations of the time.

The Millennium simulation was carried out on a ACDM cosmology with a 
cubic region of 500 h-1 Mpc on a side with a spatial resolution of 5 h-1 kpc [52].

The cosmological parameters were based on the first-year data from WMAP. 
By 2012, these parameters were no longer consistent with improved parameter 
estimates based on more recent data [53], i.e. the WMAP-7yr data [64].

The DEUS-FUR simulation consists of a flat ACDM cosmology [47] best-fit 
to the WMAP-7yr data [64].

Gaussian initial conditions were generated with an optimised version of the 
code MPGRAFIC [65]. The box length is set to 21 h- 1  Gpc which encloses the 
horizon diameter in all three simulations, i.e. dH «  20.7h- 1  Gpc [47]. The initial 
redshift is set to z  =  106 which is sufficiently high enough to avoid transient 
effects which occur in the case of a late start of the initial conditions using the 
Zel’dovich approximation [66, 67].

4.6 Call for Large Simulations
The design of a numerical simulation depends on the system being studied. The 
physical size of simulation depends on the physical size of the object or structure 
being observed. Consider the study of galaxy cluster formation: if a simulation 
of size 100 kpc was created then no conclusions could be drawn, since galaxy- 
clusters are typically 2 to 10 Mpc in diameter [16].
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Similarly, since the different models of the universe should only differ on 
scales larger than the Hubble distance, a study of galaxy filaments - typical 
length ~  100h- 1  Mpc [8, 9] - or imprints of dark energy [59] need to be performed 
on a grid the size of the observable universe.

All numerical simulations are created with a particular resolution, which 
determines the smallest scale. During linear evolution, all modes evolve inde­
pendently. However, at late times non-linear effects are seen on small scales. If 
these scales are not present on the grid then coupling effects will not be seen, 
and an idealised representation of the evolution of the universe will be observed, 
as a result.

The finite size of cosmological simulations introduces two types of statistical 
errors [47]

1. It reduces the number of accessible modes, causing sample variance errors 
which dominate the error budget when probing scales near the size of the 
simulation box.

2. Modes that are larger than the simulation box length are absent [68], and 
since the gravitational coupling to these modes is missing, this results in 
a lower amplitude of the power spectrum [69].

Both problems can be handled either by averaging the spectra of a large number 
of different realisations (for example [70, 71]), or setting the simulation box 
length to be as large as possible. However, since observations are limited by 
the size of the cosmological horizon, statistical errors cannot be reduced to less 
than cosmic variance. Hence, by setting the box length of the DEUS-FUR 
simulations to the diameter of the observable universe the DEUS Consortium 
were guaranteed to derive cosmic variance limited (i.e. minimal sample variance) 
predictions for the matter power spectrum [47].

Carrying out the expansion in a box also imposes periodicity at the edges. 
However, these effects can be ignored as long as the box is much larger than 
the scales of interest [6]. Hence the need for simulations with a large number of 
grid points.

When conducting numerical simulations of isolated bodies or smaller regions 
of the observable universe it is necessary to correct for the aliasing effect. Ali­
asing and methods to prevent aliasing are discussed in Section 5.4.

4.7 Observational Results
The initial conditions of N-body simulations are set according to recent obser­
vational results in order to make comparisons and predictions of the numerical 
results.

The initial conditions can be measured by highly sensitive probes that can 
measure the slight variations in, for example, the CMB. There are other sources 
of structural information that can be observed in the Baryon Acoustic Oscilla­
tions (BAO) and galaxy surveys.
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Table 4.1: WMAP 9 year results relevant to thesis

Parameter Symbol WMAP data

Curvature perturbations, k0 =  0.002 Mpc- 1 109a R 2.41 ±  0.10
Scalar spectral index ns 0.972 ±  0.013
Age of the universe (Gyr) to 13.74 ±  0.11
Hubble parameter, H0 =  100h kms- 1Mpc- 1 Ho 70.0 ±  2.2
Redshift of matter-radiation equality zeq 3265+105

In this section these observable results are discussed, along with the implic­
ations on the thesis code and N-body codes in general.

4.7.1 Cosmic Microwave Background
The CMB was first discovered in 1965 [72]. It was assumed to be uniform until 
COBE DMR detected the 10-5  fluctuations in its temperature field across the 
sky [35]. These fluctuations illustrate the initial positions of matter at emission, 
which is important. The fluctuations were difficult to detect due to the size. 
This led to designing specialised probes.

One of the more recent probes was Wilkinson Microwave Anisotropy Probe 
(WMAP), which was launched in June 2001 [73]. This probe measured the dif­
ferences in temperature of the CMB with changes in direction, anisotropy [73]. 
This probe measured the anisotropy with much finer detail and greater sensit­
ivity than COBE [73] in order to detect smaller variations. The measurements 
were collected over multiple years with the following most recent results [74]: 

These quantities are used in numerical simulations to determine the initial 
power spectrum of vacuum fluctuations. To guarantee that the thesis simulation 
takes place in the matter dominated era, the initial redshift must be greater than 
zeq. This is why z =  100 is a common starting redshift.

4.7.2 Baryon Acoustic Oscillations
The Baryon Acoustic Oscillations (BAO) are another imprint observed in the 
oscillatory pattern of the matter power spectrum at later times [47]. Observa­
tions of the CMB have accurately determined the distance travelled by acoustic 
waves at decoupling. The distance these waves have travelled is called the sound 
horizon [13]. There is a slight increase in the chance of finding lumps of matter, 
and therefore galaxies, separated by the sound horizon distance.

WMAP is able to infer much more stringent bounds on the cosmological 
parameters [74]. In these observations, the BAO appear as a series of damped 
oscillations superimposed on the broadband shape of the matter power spectrum 
[47].

At lower redshifts, the non-linear clustering of matter induces deviations 
from the linear theory which are much harder to predict. The non-linearities
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degrade the BAO pattern on the power spectrum and, if not accounted for, can 
alter the cosmological parameter inference [47].

BAO occur on relatively large scales (~  100h- 1  Mpc) [47] with a shape 
that depends on small-scale Lagrangian displacements ~  1 — 10h- 1  Mpc [75]. 
Therefore, sample variance errors and a lack of large dynamical ranges will have 
a large impact on how accurate the numerical study will be.

Cosmic/ sample variance is the error arising from trying the make predictions 
about scales outside the surveys size [76]. To minimise the cosmic variance, the 
sampling size must increase. Since the sampled area is the observable universe, 
there is a limit to how large the sample size can be [76].

The Dark Energy Universe Simulation - Full Universe Run (DEUS-FUR) 
[77] aimed to create a N-body simulation of size 21 h- 1  Gpc [47]. This size 
allowed them to develop cosmic variance limited predictions for the matter power 
spectrum.

4.8 Reason for Code Creation
With freely available codes and data for large-scale structure formation, it is 
becoming unnecessary to create new codes to investigate structure formation. 
The code GADGET can be edited to study many system of interest.

The drawback of using the existing codes is they require specialised hardware 
and particular coding knowledge, i.e. GADGET is written in ANSI C [55].

Although these codes construct the initial data in Fourier space, the time 
evolution is performed in physical-space. This thesis will discuss an alternative 
method, spectral method of evolution, discussed in Section 5. This is a method 
of evolution in Fourier space, which does not translate well to a tree based 
structure like GADGET.

Another focus of this thesis are the effects that aliasing has on Spectral 
methods. To investigate this effectively a new code needed to be developed.
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Part II

Newtonian Spectral Code
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Chapter 5

P r i n c i p l e  o f  S p e c t r a l  M e t h o d s

Numerical simulations and the methods for evolution were discussed in the 
previous part. This chapter presents a different method of evolving grids in 
time: spectral methods. Unlike conventional methods, which evolve data in 
real-space coordinates, spectral methods allow the evolution to be conducted in 
Fourier space. This is particularly useful since the initial data is set in Fourier 
space.

This chapter begins by discussing the basic theory behind spectral methods 
and how it can be used to perform the time evolution of the data on the grid. 
The effect of aliasing is then discussed with emphasis on the different types, how 
aliasing is created, and what can be done to limit the effects. This leads to the 
idea of filters. This chapter ends by illustrating the aliasing effects that could 
be present in the initial evolution, and how different filters can limit the effects.

5.1 Theory
To perform a numerical time evolution, it is necessary to calculate derivatives 
of the data on the grid with high accuracy, which is represented by a function. 
If the exact form of the function is known, the derivatives could be calculated 
manually. For complicated equations, it is often not possible to find an exact 
analytic solution. Therefore, it is necessary to develop a method for approxim­
ating the derivatives of data on a grid.

Figure 5.1: Grid of points { x j } and corresponding values {u (x j )} with grid­
spacing h.
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Consider the grid with the set of x values { x j } which correspond to values 
{u (x j)}, where j  G [1, N ], Figure 5.1. Points are equally spaced with grid 
spacing h =  xj+ i — xj. The derivative, u' (x j), at point xj can be approximated 
by calculating the slope between the points x j - 1  and x j+ 1  by [78]:

D2 u =  Mj +12hMj - 1  , (5.1)
where uj-_1 =  u (xj-_1) mid u,j+ 1  =  u (xj+ 1  ). The function u' (x j) is then cal­
culated for each point. To minimise the amount of computing time, the above 
calculations can be done using a circulant matrix [78]:

(  W1 \

\ wn

=  h—1

0 2 

—2 0
(  U1

\ 2

(5.2)

/
\ uN )

where wj =  u' (x j). All omitted entries in the circulant matrix (middle) are 
zero in order to calculate the derivative using equation (5.1). This results in 
w1 =  h—1 \^u2 — 2un], w2 =  h—1 [jus — ju 1], etc.

When u is linear, equation (5.1) is sufficient to determine the derivative. 
However, if u is a sinusoidal wave and N  is very small, then the approximated 
derivative will not be accurate. To improve the accuracy without increasing N, 
more points are included in the derivative equation. The following is an example 
of a fourth-order finite difference equation [78, 79]:

0

D4u h [12 uj — 2 3 uj — 1 +  3 uj + 1 12 uj+ 2] . (5.3)
Equation (5.3) has included two additional points and improved the accur­

acy. Including all available points should increase the accuracy to its limit. 
Spectral methods represent taking the limit of this process. Instead of concen­
trating on the interaction between individual points, the interactions between 
the constituent waves of u are considered.

In Fourier analysis [78], any function can be decomposed into a sum of 
sinusoidal waves. Consider a function v (x), where x G R. The Fourier transform 
(FT) of v (x) is the function V (k) which is defined as [79]:

v (k)
1

(2n)n/2
e

—to
ikxv (x) dnx, k G R, (5.4)

where k is the wavenumber (alternatively referred to as the frequency or har­
monic). The FT has an inverse which reconstructs v (x) from V (k), defined as 
[79]:

1
(x) = ------- jr eikxv (k) dnk, x G R.

( 2 n)n/2 J -^(2 n)
There are two conventions in defining the FT and inverse FT equations:

(5.5)
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1 . A factor of j^tyn used equation (5-4) and no factor is in equation 
(5.5) or vice versa, where n refers to the number of dimensions that the 
integral is calculated over (convention used in (7, 78]).

2. The factor of is split over the two integrals to become )n/2, as in 
equation (5.4) & (5.5). (convention used in (6, 79]).

Fundamentally, any power of 2n can be used provided one equation has a factor 
of (2n)1—a while the other has (2n)1+a. Option 2 has been adopted in this thesis 
to remain consistent with the initial data applied to the grid.

Equation (5.4) and (5.5) are defined on the whole R line. However, the 
function u (x j) is not defined by xj G R. The grid points are contained on 
the infinite grid denoted by hZ, where xj =  jh  for j  G Z. Alterations to the 
real-space variable x place restrictions on the Fourier-space variable k.

The wavenumber k is now contained in a bounded interval of lenglh 2 n, 
originally k G R. To maintain symmetry, the interval selected is [— f , f ] . The 
relationship between x and k is now:

Physical space : discrete, unbounded : x G hZ
I  I

Fourier space : bounded, continuous : k G [— f , f ]

A boundary is created for Fourier space to limit aliasing [78], which is dis­
cussed further in Section 5.4.

By bounding the wavenumbers a new transform is generated: the semi­
discrete Fourier transform (sDFT) and its inverse (isDFT):

v (k)

vj

h
( 2n p 2

i
( 2n p 2

E e
j= —̂

K/h

' — n/h

_ ikxj v .vj , k G

eikxj v ( k )  dk,

n n'
—h  h\ , 

j  G Z,

(5.6)

(5.7)

where v (x) has become vj =  v (x j ) which is discrete.
Fourier analysis has supplied a new perspective of the function on the grid. 

It is now possible to describe the process of differentiating in Fourier space, i.e. 
spectral differentiation.

Let w (x j) =  dfyv (x j). Using equation (5.7):

w (x , ) =  v (x , ) =  . ,1/2 I ,v dxj v dxj (2n)1/ 2  ̂— n/hE L  eikxj v (k ) dk

1/2 ff^hh  *keikxjv (k ) dk.(2n)
This implies that w (x, ) is the isDFT of ikv (k), which means,

rv (k ) =  ikv  (k ) . (5.8)

In Chapter 3, the initial data for the cosmological problem was determined 
in the Fourier domain from the power spectrum of initial perturbations of the
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vacuum field. A transformation to physical space is then performed to evolve 
the data in time. After the data has been evolved in time, a Fourier transform 
is performed. The power spectrum can then be calculated in Fourier space.

In performing the differentiation and time evolution in Fourier space, less 
processing power and time is required. This is only the case when the evolution 
equations contain linear terms. If there are non-linear terms, a conversion to 
real space is necessary to eliminate performing computationally intensive con­
volutions in Fourier space.

5.2 Boundary Conditions
In cosmology, space is homogeneous and isotropic on large scales, discussed in 
Chapter 3. Due to the homogeneous nature of the universe, it is unnecessary 
to recreate all of space on the grid. It is a reasonable approximation to create 
a portion of space and then extrapolate for the remainder of the universe. This 
extrapolation consists of setting up periodic boundaries.

The periodic boundaries modify the grid described in Section 5.1. The in­
finite grid is bounded to a smaller interval, in this case (0, 2nj. The physical 
length scales are mapped onto this numerical grid by including the appropriate 
scaling factors.

The grid is then partitioned into N  points, as shown in Figure 5.2, with 
spacing:

h =  N  . (5.9)

To simplify the discussion, N  is restricted to an even integer throughout this 
thesis. This preference is made to ensure the middle element in the array, a [2] 
where n =  length (a)
positive and negative Nyquist frequency [80].

0 71 271
I— ♦— ♦— •— ♦— ♦— ♦— •— •— •— •— •— ♦— ♦— •

X 1 X 2 X N/2 X N-1 X N

Figure 5.2: Grid of points { x j } where Xj G (0, 2n] and j  G [1, N ]

Consider the grid from the previous section, where the x values were discrete, 
which limited k to the interval [— h , h]- Using equation (5.9), the bounds can 
be written in terms of the number of points, [—N , N] • The k values were 
bounded due to the discretisation of x; since x k values
need to be discretized. Physical space is contained in the interval (0, 2n], where 
the available periodic waves have wavelength, A:

A =  , 1 G Z+. (5.10)
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This implies that the wavenumbers allowed on the grid must be integers, since:

k =  =  l . (5.11)

The relationship between physical space and Fourier space is:

Physical space : discrete, bounded : x G {h, 2h, . . . ,  2n — h, 2n}
I  I

Fourier space : bounded, discrete : k G { — Nf +  1, — Nf +  2, . . . ,  N }

The sDFT is defined for an infinite grid. To perform the FT on the newly- 
bounded grid, the sDFT is replaced by the discrete Fourier transform (DFT) 
[78]. When the new bounds are taken into consideration, the DFT and its 
inverse are defined by [78]:

Vk =

(2n )1/2

N
E e-ikXj Vj,
j = 1

k =  — N  +  1 , . . .
2 +  ,

N/2
E  eikXj Vk,

k = -  N/2 + 1
j  =  1, . . . ,  N.

is a summation over the integers k

N  
~2 ,

(5.13)

G [ —N +  1, f L
which is asymmetric. Evaluating the x-derivative of the term with the highest 
wavenumber results in ( iNf) elNx/2. The derivative should be zero since el N x / 2  

represents a real, sawtooth wave on the grid. This is due to the asymmetric 
treatment of the largest wavenumber by equation (5.13). This treatment can 
be fixed by defining V-N / 2 =  vN / 2 and replacing (5.13) by:

h

1
Vo =j

1 N/2 '

Vj =  \ 1/2 E  e*kXj Vk, j  =  1, . . . , N, (5-14)
(2n) k = -N/2

where the prime indicates that the terms k =  ±  y  ^re multiplied by f .
Since the proper form of the FT and its inverse on the grid have been derived, 

the derivative of the wave in Fourier space can now be determined. Equations 
(5.12) and (5.13) suggest the following algorithm for determining the derivative 
for a function v, defined at a set of discrete points in physical space:

1. Given v, compute V using the DFT, equation (5.12)

2. Define wk =  ikVk for all k G [— N +  1, N — 1  ’ set wN/ 2 =  0

3. Compute w from w using the inverse DFT, equation (5.13)

The resulting values of w give the pseudo-spectral approximation to the deriv­
ative of v evaluated on the grid.

The DFT can be calculated using the Fast Fourier Transform (FFT). Al­
gorithms for which are contained in the numpy.fft library for python [80].
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5.3 Time Evolution
In the previous sections, the grid was initialised and a method for calculating 
the derivative of a function on the grid was developed. This method is necessary 
to evolve the function in time.

There are many time evolution methods that have different orders of ac­
curacy and different stability regions. The method this thesis uses for time 
evolution is a fourth-order Runge-Kutta (RK) method.

The principle idea of the RK method was proposed by C. Runge [81] and 
later developed by W. Kutta [82] and others. This class of methods can be 
implemented as either explicit [79] or implicit [83] schemes.

Explicit methods calculate the state of the system in the future by using 
the current state of the system. Alternatively, implicit methods determine the 
solution by solving an equation involving the current and future states. Implicit 
methods are necessary for stiff equations due to the unbounded stability regions. 
However, implicit methods are more complicated and processor intensive, de­
pending on the number of steps involved, than explicit methods. This is why 
the explicit RK method is used in this thesis.

To define the RK method, let yo be the initial state of the system i.e. y (to) =  
yo. The time-step size At is chosen and yo is evolved in time to get y1 by the 
following formula [79, 84]:

yi =  yo +  At (biki +  . . .  +  bsks) , (5.15)

where the quantities kj are calculated by:

ki =  f  (xo, yo) ,
k2 =  f  (xo +  CfAt, yo +  Ata2i k i ) ,
k3 =  f  (xo +  C3At, yo +  At (a^ki +  a ^ k f ) ) , (5J 6)

ks f  (xo +  CsAt, yo +  At (as1ki +  . . .  +  as,s — 1 ks — 1 )) ,

where a21, a31, a32, . . . ,  as1, as2, . . . ,  aSjS-1 , b1 , . . . ,  bs, c2, . . . ,  cs are real coefficients 
and s is an integer that represents the number of stages. The above is referred 
to as an s-stage explicit RK method. The following condition must hold for all 
RK methods [84]:

s —1
aij =  ci . (5.17)

j =1

The Butcher tableau for this method is [84]:
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0
C2 «21
C3 «31 «32

Cs as1 «s2 • • as,s — 1
b1 &2 • • bs—1 bs

The RK method used in this thesis is the fourth-order RK method. This 
has the additional condition:

E b j  =  1. (5.18)
j = 1

The coefficients can be calcnlated to get the fonrth-order RK Bntcher tablean 
[79, 84]:

1 1
1 1 1
2 1 2
1
2 10 1

2
1 10 0 1

1 1 2 2 1
1 6 6 6 6

That correspond to the following eqnations [79]:

v1 =  ui
v2 =  ui + 2 A t f  (v1,tj)
v3 =  ui + 1  A t (  fv2,ti +  ^ )

v4 =  ui + A t f rv3,ti + a A
2 )  ,

ui+ 1 =  ui + 1  A t f  (v1,ti ) + 2f v vi +  f  (v^ ti +  A t ) ,

where ui is the function on the grid and ui+1 is the function at the new time.
For a hyperbolic equation, the Courant-Friedrichs-Lewy (CFL) [85, 86] con­

dition indicates that the time-step, At, and grid size, A x i , need to satisfy [87]:
n

C =  At £  U -  < Cmax . (5.19)
i=1

To maintain stability. The variables in equation (5.19) are:

• C, the Courant number.

• ux-, the magnitude of the chOTacteristic velocity in the dimension x i.

The value of Cmax changes depending on whether the method used is explicit 
or implicit. The actual value of Cmax, which allows for stable evolutions, may 
depend on the form of the equation - though Cmax =  1 is a typical guideline 
suggested by the theory of explicit methods [87].
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5.4 Aliasing
As mentioned in Section 5.1, spectral methods require the use of discrete Four­
ier Transforms (DFT). The particular implementation of the DFT used is the 
Fast Fourier Transform (FFT). The FFT method requires the real-space and 
Fourier space coordinates to be discrete, with the real-space signal assumed to 
be periodic. The discretisation of real-space implies the Fourier coordinates are 
bounded.

Thus, the spatial resolution limits the physical frequencies that can be rep­
resented by the method. Aside from the inevitable loss of information, sampling 
artifacts such as aliasing and Gibbs ringing are introduced by the discretisation. 
To limit the effects of the sampling artifacts, filters are applied to the data. 
These filters can cause problems if applied incorrectly.

This section is organised as follows: The discretisation of a signal is discussed 
in more detail. The different sampling artifacts, created by discretisation, are 
identified and discussed. Finally, occurrences of sampling artifacts are discussed 
in the context of numerical simulations, which create initial data - instead of 
sampling physical data and putting it onto the grid.

5.4.1 Discretising Real-space
Signals can be represented or approximated by sums of trigonometric functions, 
e.g sine. These sums are referred to as a Fourier series [88]. The signals from 
distant galaxies are more accurately described by an infinite Fourier series [89].

When these signals are observed by scientific equipment the signal recorded 
is a sampled signal. The signal is sampled at regular intervals, as shown in 
Figure 5.3 (a).

Let f  (x) be the original signal travelling in space and g (x) be the sampled 
signal. Since the signal can be represented as a scaled Dirac impulse function 
[89], the act of sampling a signal is equivalent to multiplying by a Dirac comb 
of the form:

n ( x ) =  X !  ^D (x — j A x ) , (5.20)
j= — TO

where A x  is the grid spacing. Therefore the sampled signal is g(x) =  n  ( x ) f  (x).
Spectral methods involve a transformation to Fourier space. By using the 

definition that the product of two functions in real-space yields a convolution 
in Fourier space [89], the Fourier transform of the sampled signal g (k) is:

g ( k ) =  ( n  * / )  (k ) , (5.21)

where * represents a convolution. The function n  (k) can be shown to be a 
Dirac comb of the form [89]:
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n(k)
1

Ax

TO

^ A D ( k — j  A ;j= — TO

Therefore the convolution becomes [89]:

(5.22)

g (k) n  * f  (k)

1
A x

■TO

TO

TO
A * D

j = — TO
k' — Ax

1
A x E f  k

j = — TO

f  (k — k') dk'

(5.23)

An example of the above multiplication and convolution is displayed in Fig­
ure 5.3. Figure 5.3 (a) shows the multiplication between f  (x) and the Dirac 
comb while Figure 5.3 (b) shows the convolution in Fourier space. It is clear 
that the signal g (k) is a periodic version of the original signal f  (k). In this case 
the original spectrum is still present and can be obtained using a filter, which 
would remove the superfluous data. Both the periodic behaviour of the sampled 
signal and the period between the repetitions have different aliasing effects.

Aliasing is a signal processing term used to describe errors caused by an insuf­
ficient sampling rate. There are two types, characterised by the frequency terms 
that are effected: low-frequency aliasing and high-frequency aliasing. These 
terms are discussed below.

5.4.2 Low-frequency Aliasing
The previous subsection showed how the Fourier transform of the sampled func­
tion, g (k), is a periodic version of the original signal, f  (k). The spectrum is 
no longer a one-to-one function. Consider two wavenumbers: q is located at 
the right peak in the centre part of the spectrum and p is located at the right 
peak in the repeat to the right. Both points correspond to the same value in 
the spectrum. Therefore, on the grid, q and p look identical.

To illustrate a specific example, Figure 5.4 shows the aliasing of two functions 
sin2nx and sin 10nx on the interval [—1,1]. The dots indicate the restriction 
of sampling with grid spacing A x =  0.25. The dots correspond to points where 
the two functions are identical. This phenomenon is referred to as low-frequency 
aliasing. This name refers to the process of mapping high-frequency terms to 
low-frequency values.

In order to remove this aliasing effect, the frequencies are bounded. The 
bounding process removes the superfluous data from the spectrum and guaran­
tees the uniqueness of waves on the grid. An interval centred on zero is chosen
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(a) Original signal multiplied by the Dirac comb in real-space

(b) The signal convolved with the Dirac comb in Fourier space 

Figure 5.3: Multiplication and convolution with the sampling function

[78], with an upper bound referred to as the Nyquist frequency or folding fre- 
ns:

ke [—ns, ••• , —1, 0,1, ••• ,na ] . (5.24)

The Nyquist frequency is half the sampling rate of the signal [89] which 
corresponds to N in the code [78, 90].

The result is that the spectrum of the original signal is reconstructed. In 
Figure 5.3 (b), the signals do not overlap, and therefore the bounding process 
can remove the repetitions without altering the original signal. This is not 
always possible and results in high-frequency aliasing.

5.4.3 High-frequency Aliasing
As seen in Subsection 5.4.1, g (k) f  (k). The period of
g (k) is determined by the Dirac comb, n  (k), with a grid spacing A x  If Ax 
decreases the period of g (k) increases, spreading the repetitions further apart. 
Alternatively, if A x increases, i.e. fewer points are sampled, the period of g (k) 
decreases. If the period of g (k) decreases sufficiently, the repetitions begin to 
overlap.

Filters can be used to remove the repetitions in the spectra. These filters 
are applied with a cut-off frequency equal to the Nyquist frequency, ns. If the 
original spectrum does not overlap with the repetitions, the original signal can 
be obtained. However, if overlap does occur, the signal will be altered.
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Figure 5.4: Demonstrating low-frequency alias

Alteration of the signal’s spectrum occurs when there is insufficient space 
between signals. Figure 5.5 illustrates a spectrum where: a) there is sufficient 
space between signals, and b) where signals overlap. The Nyquist frequency, ns, 
is the cut-off frequency of the filter. If the filter is applied to a) only the centre 
spectrum will remain, this is the original spectrum. Applying the filter to b) 
will result in a spectrum that increases as k approaches ns. The high-frequency 
terms of the repetitions have altered the centre spectrum by the amount in the 
blue area. Since this type of aliasing affects high-frequency terms first, it will 
be referred to as high-frequency aliasing.

The most direct way of removing this aliasing effect is to decrease Ax. The 
repetitions will get further apart and remove the overlap. However, this is only- 
effective if, at a sufficiently large frequency, the spectra is zero. Even if the 
spectra does reach zero, it might be impractical to create such a large grid. The 
process of pre-filtering is used in this case [89, 90]. The filter is applied before 
sampling to ensure the spectra reaches zero at a lower frequency. In this case, 
the reconstructed signal is not synonymous with the original signal, but is the 
reconstructed pre-filter signal.

5.4.4 The Effect of Convolutions and the 2 /3  Rule
The above aliasing effects have been discussed strictly in transformations from 
a physical signal to a sampled signal. However, aliasing effects can occur due 
to the evolution methods used. Evolving data in numerical simulations requires 
using a time evolution method, for example Runge-Kutta, with situation specific 
evolution equations.

The evolution equations consist of linear and non-linear terms. The linear 
terms contain a multiplication between a field and a time-dependent value. 
In Fourier space it remains a multiplication since the time-dependent variable
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(a) Sampled signal with no distortion (b) Sampled signal with aliasing

Figure 5.5: Adequately (left) and poorly (right) sampled signals

remains the same after the application of a Fourier transform. However, the 
non-linear terms arc characterised by a real-space multiplication of two fields. 
When this operation is converted to Fourier space it becomes a convolution. 
Since the fields contain the same number of harmonics, the resulting field has 
twice as many harmonics.

To justify the inclusion of more harmonics, consider the convolution of signal 
f  (k) (top hat) with signal g (k) (triangle), in Figure 5.6 (a) and (b) respectively. 
The convolution takes the form:

f  (k') g (k — kr) dk', (5.25)

where g (k — k') represents a reversed g (k') signal that has been shifted along 
the k-axis, Figure 5.6 c) illustrates both functions during the convolution. The 
value of ( f  * g) (k) for each k is obtained %  shifting the function g (k — k ') to 
the desired k and calculating the area common to both functions. Figure 5.6 (d) 
demonstrates a point where a common area exists (red). The area is calculated 
and plotted on the convolution result, arrow in Figure 5.6 e). Notice that f  (k) 
and g (k) have domain k e [—1 , 1] while the result of the convolution has domain 
k e [—2, 2]. This indicates the inclusion of more harmonics, specifically double 
the original harmonics.

The inclusion of more harmonics is not allowed since the signal has already 
been filtered to remove low-frequency and high-frequency aliasing. As a result, 
the extra harmonics arc aliased to low-frequency values.

This aliasing effect was experienced by |91| in a general circulation model. 
The simulation ran for a few days before the energy grew too large. The time- 
step and grid-spacing were greatly decreased in an attempt to correct the prob­
lem, however no noticeable improvements were made |88|.

It was noted that waves of |k| =  N were appearing shortly before the code 
failed |91|. This implied the excess energy was building up at high frequencies,
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(a) Signal f  (k) (b) Signal g (k)

(d) The overlapping area (e) The result of the convolution

Figure 5.6: The process of convolving two signals with the same size along the 
k-a.xis
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near the aliasing limit [88]. To rectify the situation a filter was applied which 
removed half the harmonics. This solution allowed the simulation to evolve 
correctly and removed the energy build up.

This was successful however it was not necessarily the best method to remove 
aliasing. Two distinct methods have been developed since then, phase-shift de­
aliasing [92] and zero-padding [93].

Phase-shift de-aliasing is accomplished by taking the difference between the 
FFT-based convolution and a convolution based on the shifted FFT [94]. This 
method is rarely used since it is always more processing intensive than zero­
padding [95].

Zero-padding, as the name suggests, involves including points that are in­
tentionally set to zero. There are two methods of achieving this, padding [96] 
and truncation [93].

Padding involves extending the numerical grid for the convolution process. 
After the convolution, the large grid is filtered to only contain harmonics present 
on the smaller grid. The results are then mapped onto the smaller grid and the 
time evolution method is continued.

The convolution can be done in two ways: explicit padding [96] or implicit 
padding [97]. Explicit padding creates the larger grid in memory and does 
the summations over points that are zero, which requires more processing time 
and memory. Implicit padding removes the need to explicitly create the larger 
grid and performs the calculations directly on the small grid, which requires 
less memory space and allows higher-dimensional convolutions to be calculated 
more efficiently.

An alternative method, truncation, removes wavenumbers that are affected 
by aliasing on the grid. Originally half the wavenumbers were removed [91]. 
However, it is sufficient to remove a third of the harmonics [93]. This be­
came known as Orszag’s two-thirds rule [88], which states that since the aliased 
wavenumbers must be multiples of 2K, all wavenumber interactions larger than 
3 K  are only aliased to wavenumbers that are removed [93].

To clarify, Figure 5.7 demonstrates a polar coordinate representation of 
wavenumbers k, where the circle represents k G [—K, K ]. The range k G 
[—§ K, 3K] is unaffected %  the filters while wavenumbers |k| > |K are set to 
zero at the end of every time-step.

The non-linear terms expand the range of wavenumbers to k G [— 4K, 4K] 
as a result of the convolution, discussed above. Since |k| G [§K, K ] are removed 
by the filter automatically, the wavenumbers of concern are |k| G [K, 3K].

The red arrow in Figure 5.7 represents k =  3 K. It is clear from the figure 
that this wavenumber is include in the range k G [—K, — 3 K ] , the bottom 
grey area. Points in this grey area are filtered out. Similarly, the green arrow 
represents k =  — 3 K , which falls in the upper grey area and gets filtered away. 
In this way the points where aliasing can occur are not retained at the end of 
the time-step.

One might test a different cut-off frequency, for example |k| =  3K. The 
range of wavenumbers after the convolution would be k G [|K , — |K]. Wavenum-
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Figure 5.7: The “Aliasing Wheel” adapted from [88]. The arrows represent two 
aliased wavenumbers: f K  (red) and — f K  (green)

bers in k G [K, |K] would alias to k G [—K, — 1K]. As a result wavenumbers 
in k G [—4 K, — 2 K

3 K  is necessary to maintain accuracy.

5.4.5 Gibbs Ringing
In Subsections 5.4.2-5.4.4 different types of aliasing effects were discussed. The 
common solution to each aliasing effect is to apply a low-pass filter. This filter, 
sometimes referred to as the “all-or-nothing” filter [88] or Boxcar filter, takes 
the form:

an -a [filtered] = ]k <  ”

where m is the cut-off frequency. In Subsection 5.4.2 and 5.4.3 m is set t o Nf, 
while Subsection 5.4.4 has set m =  Nf.

This type of filter allows frequencies below the cut-off frequency through 
without modification and frequencies above the cut-off are set to zero. Signals 
that reach zero before the cut-off frequency remain unchanged. A discontinuity 
is created when the spectra does not reach zero before the cut-off. This discon­
tinuity implies a truncation of the Fourier series, which can create oscillations 
in real-space known as the Gibbs Phenomenon.

The Gibbs phenomenon, discovered by Henry Wilbraham and rediscovered 
by J. Willard Gibbs [98]. describes the way the Fourier series of a piecewise

59



(a) Seven harmonics (b) Twenty-five harmonics

Figure 5.8: The Gibbs phenomenon on a square wave. The oscillations are con­
tained in the shaded areas and the overshoots on either side of the discontinuity 
are labelled.

continuously differentiable periodic function behaves at a jump discontinuity 
[98]. The behaviour is characterised by an overshoot and Gibbs oscillations on 
either side of the discontinuity.

The overshoot and oscillations are shown in Figure 5.8, where the functions 
are square waves with seven harmonics (a) and twenty-five harmonics (b). As 
x moves further away from the discontinuity, the amplitude of the oscillations 
decreases. The figures show that including more harmonics creates more oscil­
lations with smaller amplitudes however the amplitude of the initial overshoot 
does not change.

In order to understand the Gibbs phenomenon, the cause of the oscillations 
needs to be identified. The filter truncates the Fourier series by performing 
a multiplication between the original signal and the boxcar filter. To under­
stand the effect in real-space, the inverse Fourier transform of the boxcar filter 
must be taken into consideration. This follows from the correlation between 
multiplication in Fourier space and convolutions in real-space, see Subsection 
5.4.1.

The inverse Fourier transform of boxcar filter is the sine function, Figure 
5.9:

Sinc =  , (5.27)

where a =  n corresponds to the normalized sine function and x =  0 is defined to 
be 1. The convolution with the sine function creates the oscillations observed.

As mentioned above, the amplitude of the overshoot is not affected by the 
number of harmonics included. The overshoot amount is related to the height 
of the discontinuity [88]. Since the height of the overshoot is the result of the 
convolution between the square wave and sinc function in real-space, the height 
of the overshoot is given by [99]:
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n lo SitLldt +  J =  J * 1.0894908106 , (5.28)
where J
J =  1 . The factor of J is included to account for the vertical translation of the 
square wave in Figure 5.8 from the wave discussed in [99]. This value implies 
there will always be an overshoot of ±9% the height of the discontinuity.

The oscillations on either side of the discontinuity are referred to as Gibbs 
rings or ripples depending on whether they exist in real-space or Fourier space, 
respectively. Since the sinc function and boxcar filter are a Fourier transform 
pair, filtering real-space will create oscillations in Fourier space in a similar way.

To limit or remove the Gibbs oscillations that result from the use of a boxcar 
filter, smoother filters have been suggested to remove the discontinuity, these 
filters are discussed below.

5.4.6 Filters
As discussed above, the boxcar filter with kc =  N removes the high-frequency 
aliasing however it may introduce Gibbs ripples.

Smoother filters have been suggested in order to remove the Gibbs effect. 
One such filter is suggested in [1], illustrated in Figure 5.10(a) (blue line). The 
filter, exponential filter, is:

F  (k) =  exp -3 6  * ( .  (5.29)

This filter does not create a discontinuity, unlike the boxcar filter. However, zero 
is not reached before the cut-off frequency for the 2/3 rule. Therefore, Gibbs 
ripples may be reduced at the expense of introducing high-frequency aliasing.
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included to compare whether there is a noticeable Gibbs effect. Blue is the 
suggested filter [1].

(b) The different filters in real space. Oscillations decrease faster for the smooth 
filters which suggests less Gibbs ripples will be created during the convolution.

Figure 5.10: Filters
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Modes affected by high-frequency aliasing - Exponential filter

Modes affected by Modes effected by
high-frequency high-frequency
aliasing, aliasing.
present in not present in
boxcar filter boxcar filter .
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Figure 5.11: T h e m od es where h igh -frequency aliasing will o ccu r  if  the ex p o ­
nential filter is used.

F igure 5.11 illustrates the m odes w here h igh-frequency aliasing will occu r 
betw een  tw o fields that have been  filtered by  the exponen tia l filter. T h e m odes 
in blue ( ^ ^  > |) d o  n ot appear in the box ca r  filter, therefore a  com parison  for 

those m odes is n ot possib le. H ow ever, the m od es in red (20 <  — |) are
com m on  to  b o th  filters and will experience h igh -frequency  aliasing w hen using 
the exponential filter.

T o  investigate w hether G ibb s ripples are reduced by  the shape o f  the filter, 
h igh -frequency  aliasing m ust not b e  occu rrin g. A  shifted filter is suggested:

F  (k) =  ex pj- 36 * ( +  3 ̂  j . (5 .30)

W h ich  becom es zero at «  |, see F igure 5 .10(a ) (red line). T h is filter is 
then  com pared  to  a  boxcar  filter w ith  k c =  0 8 .  T h is  cu t -o ff frequ ency  is chosen

0.5 i.e
N/2 =  0.562748886.

M ultip ly in g  by  these filters in Fourier space correspon ds to  a convolu tion  
in real space. F igure 5 .1 0 (b ) illustrates w hat the inverse Fourier transform  o f  
each filter look s like. A ll the filters show  oscillations near the peak  how ever the 
oscillations die away faster for the tw o exponential filters. T h is suggests that 
the G ibb s oscillations will be  m uch sm aller than the box ca r  filter.
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5.4.7 Identifying Sampling Artifacts in the Simulation
The initial data for the gravitational potential T in the simulation was generated 
with power spectrum according to equation (3.12) and (3.13) with ns and P 0 

given by equation (3.14) and (3.15) respectively, see Section 3.1.
The gravitational potential is related to the density contrast 5 via the Poisson 

equation (second derivative), and the velocity v via one derivative, see Chapter 
6 for full relationship.

As shown in Section 5.1, a derivative in real-space corresponds to a multi­
plication by the wavenumber k in Fourier space. Therefore:

5 a: |k|2 T ,
5i a: ikiT .

These relationships will be derived in Section 6.7. The power spectrum of 5 and 
vi are related to P$ (k) via [100]:

P$ (k) ~  k-4 Ps (k ),
P$ (k) ~  k- 2Pvi (k ) .

Since P $  (k) is relatively flat, ns — 1 «  0, the variance of 5 , a ) ,  decreases
with increasing |k|, see Figure 5.12. Due to the relationship in equation (3.12), 
the variance of 5  is 7 )  K  k- 3 .

Figure 5.13(a) illustrates how 5  decreases with increasing |k|. The same 
behaviour can be seen in 5x, Figure 5.13(b), where the expected variance is 
7 )) «  k- 1. The density contrast increases as |k| increases, Figure 5.13c). This 
is consistent with 7)  «  k.
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Figure 5.12: The variance of 5  with respect to |k|

(a) A typical slice of the gravitational (b) A typical slice of the velocity Vx 
potential 3>

£(k,,M)) at z = 10.0

(c) A typical slice of the density contrast 5

Figure 5.13: These figures illustrate how the gravitational potential and velo­
city experience a general decrease as |k| increases whereas the density contrast 
increases as |k| increases. Graphs drawn where L =  4166 Mpc
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Since 5  mid 5* decrease with increasing |k| and are of order O (5 , Vj) <  10-5 
at L =  4166 Mpc, a boxcar filter will not cause a large discontinuity at the 
cut-off frequency.

The density contrast increases with increasing |k|. When the box is L =  
4166 Mpc the maximum is O('5 , 5j) =  10-4 . Although the maximum is still 
C  1 the general trend is increasing, therefore a discontinuity is created when 
using a boxcar filter. This could cause Gibbs rippling if non-linear terms are 
included in the evolution.

If a curved filter is used it could decrease aliasing effects. If, however, the 
filter has non-zero high frequency contributions (into the 2 /3 ’s region) it will 
introduce high-frequency aliasing.
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Chapter 6

Evolution

The universe is modelled as a fluid [6, 16] to ensure the field varies smoothly as 
a function of position. This is true if it is assumed that topological defects play- 
no role in structure formation. Present theories suggest that, after inflation, 
the fluid was a gas except during phase transitions. Once bounded structures 
(for example galaxies) form due to gravitational interaction, the structures are 
seen as particles of the cosmic gas, as described in Chapter 3. The cosmic 
fluid concept only applies after smoothing on a comoving scale containing many 
particles.

To observe the development of structures in the universe, an understanding 
of the motion of the particles needs to be discussed. The motion described will 
be in terms of different observers. An observer refers to a hypothetical person 
present in a particular reference frame that can observe different quantities. An 
important type of observer is the comoving observer. Who exists in the reference 
frame of the expanding universe and subsequently moves with the expanding 
universe, including the effect of its inhomogeneities. Comoving observers meas­
ure zero momentum density at their position and any other observer will see 
them moving with the flow of energy [6].

This chapter begins with describing the velocity of observers in the universe 
and the evolution of the perturbations using Newton’s theory of gravity. In 
Section 6.3, it is shown that by using the fluid model Newton and Einstein 
theories agree. The rest of the chapter describes how the evolution equations 
can be written in comoving and then dimensionless coordinates. Finally the 
system of equations is linearised to determine the solutions, which are converted 
to Fourier space for convenience.

6.1 Peculiar Velocity
It is important to determine the velocity of a comoving observer. The observer 
will appear to move differently depending on the reference frame adopted. Let 
the 3-vector r describe the physical spatial positions, with respect to some ar­
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bitrary specified origin, and t describe the universal time coordinate.
The velocity of the comoving observer is called the fluid velocity,

. . dr
v (x,t) =  — , (6-1)

where r is time-dependent. In an unperturbed universe, the vector r is:

r (t) =  a (t) x, (6.2)

where a (t) is the expansion fact or and x is a fixed position vector. This position 
vector describes the position of a uniform-expansion observer, i.e. an observer 
that would observe galaxies expanding uniformly about their position. Uniform- 
expansion observers all measure the same value for Hubble’s constant.

In an unperturbed universe the position of a comoving observer would be 
equation (6.2). However, when perturbations are taken into account the position 
of the comoving observer is given by:

r (t) =  a (t) x ( t ) , (6.3)

where x is now time-dependent.
To determine the scale factor a (t), and hence the Hubble parameter H (t), 

the scales are chosen to be large enough for the perturbations to have a negligible 
effect, i.e. r very large. However, this result cannot be exact since the Newtonian 
viewpoint breaks down at r >  H -1 [6].

To determine the total velocity of a comoving observer the derivative of 
equation (6.3) is obtained:

v (x,t) =  H (t) r +  a (t) —  (6.4)

=  Vrec +  u (x, t) ,

where vrec, recession velocity, is the velocity of the expanding universe and u 
is the peculiar velocity (or proper velocity [3]) of the object with respect to a 
uniform-expansion observer.

6.2 The Euler Equations
The compressible Euler equations describe the motion of a fluid with density, 
p, and pressure, P  [101]:

dp
dt

dv
dt"

+  V •(pv) 

+  (v • V )v

0, (6.5)

(6.6)
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where p is the density of the fluid, v is the velocity of the particles in the fluid, P  
is the pressure of the fluid, ^  is the gravitational potential and V  is the gradient 
operator. These equations describe the Newtonian laws of conservation of mass 
and momentum, respectively. In cosmology the equations are referred to as the 
continuity and Euler equations, respectively.

The gradient operator V  is defined differently depending on the coordinate 
system used. In general rectangular coordinates, the gradient of a vector field 
f  =  (u, v, w) is defined as [2]:

V f f  e“ +  f  ev +  f  ew
du dv dw , (6.7)

where e are the basis coordinate rectors given by for example e“ =  [2]. When
using curvilinear coordinates, or on a curved manifold, the gradient becomes the 
covariant derivative given by [2]:

d  f  .
V  f  =  f  e* +  r j  f , (6.8)

where Einstein summation notation [2] is used such that the first term is V f  
and the second term is a sum of terms containing the Christoflel symbol T. The 
Christoflel symbol [2] is defined as r^c =  2 gad (dbgdc +  dcgbd — ddgbc) where g*j 
are the components of the metric tensor, see Section 1.1.

6.3 Einstein to Euler
Equations (6.5) and (6.6) were derived by Euler in 1757 [101], many years before 
General Relativity was conceived by Einstein (in 1915) [5]. To ensure these 
equations still hold on intergalactic scales, a derivation from general relativity 
must be performed. To begin, consider the Einstein equation from Section 1.1, 
equation (1.7). This equation illustrates how the geometry of spacetime (left) is 
coupled to the arrangement of matter (right). For a perfect fluid, is defined 
as [2]:

t =  (p  +  u V  — , (6.9)

where p is the rest density, P  is the pressure, uM and uv are 4-velocities, and 
is the metric of a flat spacetime, =  [1, —1, —1, —1]. The 4-velocity is 

defined as [2]:

uM =  yvM
=  Y (G v ), (6. 10)
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/  I 2 X - 1/ 2
where v is the particle’s 3-veloc ity and y =  (1 — ) .Therefore TMV is
symmetric and possesses one divergence, T ^ .  Since mid =  0,
from the Bianchi identities [2, 3], the divergence is zero .

Taking the divergence of equation (6.9) gives [2]:

(puM),M uv +  p u V M +  ( u* uv

+  ( C2) uM< M +  c-2 P,Mu V  — PiMnMV =  0. (6. 11)

Which can be projected along uv to obtain:

(pu%  +  (  J )  uMM =  0. (6-12)

Which simplifies equation (6.11) to:

( p +  P2) u > "  =  (nMV — c- W ) P,M. (6.13)

Note that contracting equation (6.11) with uv is equivalent to taking the zeroth 
component in an instantaneous rest system of the fluid at the point in question.

Equations (6.12) and (6.13) are the continuity and Euler equations from 
Section 6.2 before taking the classical limit. To take the limit, the fluid is 
assumed to be slow moving, v ^  1, and experiences small pressures, J2 C  p- 
Equation (6.12) reduces to:

(puM),M =  0. (6.14)

Using equation (6.10) and y =  1  due to slow moving particles, equation (6.14) 
becomes:

(pc),o +  (pv%  =

f + v  • <pv > =

Which is the continuity equation of Section 6.2.
Equation (6.13) reduces to:

p v ^ X  =  (nMV — c- V v v) P,M. (6.16)

In terms of vM. Since c-2 vMvv =  [1,0,0,0], the right-hand side reduces the 
above to:

0

0. (6.15)
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p v * X  =  — ĵ *P ,j, (6 .1 7 )

where S*j =  1 when i =  j  and zero otherwise. In 3-vector notation:

p
dv*

+  v*j vj

p
a
dt +  v • V v

- P

-V P . (6.18)

Which is the Euler equation of Section 6.2. Therefore, assuming the fluid is slow 
moving and experiences small pressure, the Einstein equation and stress-energy 
tensor lead to the continuity and Euler equations.

6.4 The Linearised Equations
The universe is modelled as a gas with mass density p (x, t) and pressure given 
by the equation of state in equation (3.21) [3]. Remember that pressure-less 
matter is described by w =  0 and radiation is described by w =  3 . For a 
barotropic fluid w =  (?s [3], so that w is a constant.

The gravitational potential, satisfies the Poisson equation:

A ^  =  4nGp. (6.19)

In Section 1.3, the different phases of the universe are discussed. Recall that, 
after the Big Bang and inflation, there are two major epochs [6]: the matter- 
dominated, era and the radiation-dominated era.

Matter-radiation equality marks the time at which the density of matter 
equals the density of radiation. The ratio of the densities at the current epoch 
is [64, 102]:

pm, 0 
pr,0

Om,0
r̂, 0

0.259
8.24 x 10-5

3140,

However, in the past, the ratio of matter density to energy density was:

pm (a) pm,0
pr (a) pr,0

Thus, the moment of radiation-matter equality took place when the scale factor 
was:

arm Pm,0 ^  1
Pr, 0 ^  3140 3.18 x 10-4 ,
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a n d  th e  red sh ift  w as [19]:

z =  3139.

Therefore, the redshift range of interest, 100 < z < 0, is in the matter-dominated 
era.

The following sections discuss the evolution equations for the matter-dominated 
era and the radiation-dominated era. The derivation of the matter-domination 
equations is discussed first despite occurring after radiation-domination, see 
Section 1.3. This is due to their relevance for this thesis, i.e. redshift range on 
interest is 100 < z < 0.

6.4.1 Matter-dominated Era
The universe is currently in the matter-domination era, discussed in Section 
1.3. During this era, the average particle density in the universe is so low it can 
effectively be treated as a collisionless dust and the pressure term in equation 
(6.6) can be removed. To determine the evolution of structure as seen by a 
comoving observer, the evolution equations (6.5), (6.6) and (6.19) are re-written 
in comoving coordinates:

■w +—  V x • (pu) +  3~p =  °  (6.20)dt a a
d  u 1 „ „  „ a 1 „  ,
—  +  -  (u •Vx) u +  -  u =  —  Vx T, (6.21)dt a a a

A xT =  4nGa2 (p — p ) , (6.22)

where a (t) is the scale factor, u is the peculiar velocity, X is the comoving space 
coordinate, T is the peculiar potential and p is the space-averaged background 
density. The above equations were derived in Appendix D.l.

The density can be decomposed into a time-dependent component and a 
component that depends on space and time:

p (x,t) =  p(t)[1 +  S (x ,t )] , (6.23)

where S is called the density contrast [3], and describes the perturbation of the 
local density from p. In terms of the density contrast, the continuity and Poisson 
equations become:

d t  +  - v  [(1 + S) u] =  0
A T  =  4nGa2pS,

(6.24)

(6.25)

as derived in Appendix D.2.
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There exists a solution for the density contrast and peculiar velocity [3, 6] in 
the linear regime. To obtain this solution, the system is linearised by assuming 
the density perturbations are small,

S C  1 ; (u • V) u «  0. (6.26)

The linearised evolution equations are:

d u a 
+ udt a

dS
dt +  1 V • ua

—1 VT, 
a

0,

(6.27)

(6.28)

By combining equations (6.27) and (6.28), the evolution equation for the 
density contrast during matter-domination is:

w + 2a d t —^  =  °. ^

The derivation of the evolution equations for the density contrast in the matter- 
dominated era can be found in Appendix D.3.

6.4.2 Radiation-dominated Era
In the radiation-dominated era, the energy densities were much higher and thus 
the fluid pressure is nonnegligible. Following the derivation in Appendix D.4, 
the evolution equation for the density contrast in this era is:

d 2S a dS
d t2 +  a dt

■4nGpS
c2
- I  AS,a2 (6.30)

where cs is the speed of sound in the fluid. This equation is referred to as the 
propagation equation [3, 16].

By decomposing the perturbations into plane waves, i.e.

S (x, t) =  C exp [i (wt — k • x)] . (6.31)

The dispersion relation is determined to be [3, 16]:

c2k2
w2 =  - V  — 4nGp. (6.32)a2

Which has three solution types:

• w2 > 0 - an oscillating solution.
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• w2 < 0 - a growing or decaying mode.

• w2 =  0 - the Jeans limit.

The dispersion relation is commonly written in terms of the wavelength, A,

=  4n2c2
1

A2 AJ
(6.33)

where Aj is the Jeans length defined in Section 1.3 as eqnation (3.42).

12w

6.5 Conversion to Dimensionless Units
All evolution equations thus far have been described using physical units. The 
simulated grid, as discussed in Chapter 5, is created with a length of 2n. Thus 
the evolution equations must be defined in terms of these variables instead of 
physical variables.

Variables with a ~  represent the variables in physical units. The variable L 
will represent the largest physical scale observable on the grid at to in Mpc. 

The transformation between physical and coded space coordinates is:

x L
2nx '

The wavenumbers are transformed using the relation:

(6.34)

k =  — k. (6.35)L

The power spectrum, discussed in Chapter 3, was defined in terms of the 
physical wavenumber and the variance. In terms of coded variables it becomes:

( k)

(k)

L
2n

3
4nk3

8nk3a2'

2

(6.36)

The power law equation, equation (3.13), remains unchanged due to the dimen­
sionless nature of the power spectrum, i.e. regardless of whether k or k is used 
the dimensions will be cancelled by the pivot wavenumber k*.

In Subsection 3.2, the time dependent variables were expressed in terms of 
a dimensionless time coordinate t , via:

T t , dt
t o dr t 0 1 H o

1 (6.37)
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In what follows, a derivative with respect to cosmic time, t, is represented 
by a dot, for example x, and a derivative with respect to dimensionless time, 
t , is represented by a dash, for example x '. Derivatives with respect to spatial 
coordinates can also be converted using:

dx L
dx 2n

The proper velocity:

(6.38)

u (x ,t) dx
1 dt

dr dXu 
dt dx

3LHo u 
4n u (6.39)

where u is chosen so that u =  a dx . Using all the above conversions the 
Poisson, continuity and Euler equations become:

6 =

6' +  1 V  [(1 +  6) u] =a
. 2 1 1 , _  x

u +  - - u  +  -  (u • Vx) u =3 t a

- ( L I ) 2 t (6.40)

0, (6.41)

1 (  4nc \ 2 (6.42)
a 3LH. V ' * ,

where factors of c have been included to guarantee the physical units are can­
celled.

6.6 Growing Mode
In Section 6.4, the propagation equation for the density contrast was derived 
for two epochs. Using this equation particular solutions for the density contrast 
can be derived.

Recall that during the matter domination era, the propagation equation is: 

d2 6 <i dS
a c  + 2 *a rn -  4nGP6 = 11 (li-43>

In a flat universe with no cosmological constant, the Friedmann equation implies 
that 6nGpt2 =  1 during the matter-dominated era (since a a  t2/3) [3]. Therefore 
the mean matter density can be expressed as 4nGpm (t) =  3H 2Um (t) (3] 
and equation (6.43) becomes:

3
6 +  2H (t) (5 -  - H 2 (t)Qm (t) 6 =  0. (6.44)
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The above equation is a second-order linear differential equation involving 
only time. The solution is of the form [3]:

6 (x,t) =  D+ (t) £+ (x) +  D _ (t) £_ ( x ) , (6.45)

where the functions £± (x) correspond to the initial density field, D+ is the 
growing mode and D_ is the decaying mode. The functions D are solutions of 
the equation [3]:

-
D +  2H (t) D -  - H 2 (t)Qm (t) D =  0. (6.46)

For a flat universe with no cosmological constant (Qm =  Qm0 =  1, a a: t2/3), 
the solutions are:

D+ (t) <x t2/3 a: a ( t ) ,
D _ (t) a: t-1 a: a_3/2 (t) .

In the general case, this equation needs be integrated numerically. It is 
more convenient to solve the equation by using the scale factor, a, as the time 
coordinate. Equation (6.46) takes the form [3]:

d 2 D  /  1 d H  3 \ d D  3 Qm0 /  H
da2 +  y H  da +  a )  da 2 a5 \ H o

2

D 0, (6.47)

where the relation 4nGp =  4nGpmoa_3 was used with the assumption that
a0 =  1 . The decaying mode solution is found to be D _ =  H . The

second solution is then obtained from the method of variation of parameters [3]:

D + (a)
5 H (a) ^ f a da'
2 “ H T  m0Jo [a'E (a')]

(6.48)

where E (a) =  HM [3]. The normalization constant was chosen such that 
in a flat matter-dominated universe the solution D+ =  a is recovered.

The above solutions hold when derived in dimensionless coordinates t =  T  .to
So the density contrast solution is: 6

6 (x, t ) =  a (t ) £+ (x) +  H (t ) £_ ( x ) . (6.49)

For the purpose of this thesis, the decaying mode is set to zero. The evolution 
of the growing mode can then be calculated and compared with existing data. 
If the decaying mode is removed then the density contrast is:
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5 (x, T) =  ( — ) 5ini (x) .
2/3

(6.50)

Using equation (6.41) and remembering that 5 C  1 , due to linearising, the 
continuity equation becomes:

i

5' =  — -  Vu. (6.51)
a

Using equation (6.50) and the Poisson equation, the relationship between the 
gravitational potential and the velocity is derived as:

u (x,Ti) =  —u /3 ( V$( x , Ti ),  (6-52)

in physical space with dimensionless coordinates. Calculations for the above 
may be found in Appendix E.2.

6.7 Fourier Space
The evolution of data will be performed using spectral methods which requires 
that all evolution equations are expressed using the Fourier components. The 
Fourier decomposition used is [16]:

f  (t, x) =  —-~- 372 I f  (t, k) exp (ix ■ k) d3k,
(2n)3/2 J

f  (t, k) =  - 3/2 /  f  (t, x) exp (—ix ■ k) d3:
(2n)3/2 J

(6.53)

(6.54)

where V represents the volume being integrated over. The evolution equations 
(6.41) and (6.42) become:

2 1 , 1 \, ,
Uj +  -  —Uj +—  > Ul -k ik l'Uj

J 3 t  a ^

a E
1=1

1 (  4nc

1=1 a \  3LH(

+  iki ( j k u ) , (6.55)

2

ikj $  , (6.56)

represents a convolution
between the two variables. The initial density contrast is determined from 
equation (6.40):

77



*(k ) =

And the initial velocity is:

uj (k) =

2
3

2nc
LH~o

r i /3|k|2<l(k) .
2

A /3 4 nc 
3 LHo

2
ikj <£(k).

(6.57)

(6.58)
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Chapter 7

Results

This chapter outlines the results of investigations into spectral methods, and 
the effects of aliasing on this method. We begin with a discussion of the set up 
of the initial conditions, and then the evolution equations used are outlined.

The consistency of the code to the continuum solutions can be verified by 
establishing the convergence rate of the numerical scheme. Section 7.3 discusses 
the convergence and stability of the evolution. This is done for both the linear 
and nonlinear evolutions in this section.

The solutions for the density contrast and velocity contain growing and 
decaying mode terms. The decaying mode is set to zero as described in Section 
6.6. Therefore, the growth factor of the density contrast and velocity during 
linear evolution is known, and can be verified. This verification is performed in 
Section 7.4.

Non-linear terms are then included in the evolution system. Their effect on 
the growth is shown in Section 7.5.

Since spectral evolution is susceptible to aliasing, Section 7.6 focusses on 
identifying and mitigating these effects using filters. Evolving the system when 
no filter is applied is discussed first. The modes that show non-linear effects 
are discussed, with emphasis on the time and amount of deviation. The 2/3rd 
boxcar filter is then introduced - and its stability discussed.

The suggested exponential filter is then applied to the data. We emphasise 
the merits of this filter, compared to the boxcar, while identifying the introduc­
tion of high-frequency aliasing. To determine whether the shape of the expo­
nential filter shows a noticeable improvement in the amount of deviations, while 
removing the high-frequency aliasing, a shifted-exponential filter is suggested 
and investigated.

7.1 Initial Data Specification
The spectral code, described in Chapter 5 and 6, was developed to evolve data 
from an initial redshift until the current epoch. The initial data, for the grav­
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itationa l potentia l <!>, was generated using the pow er spectru m  accord in g  to  
equations (3 .12) and (3.13) w ith  n s m id P 0 given accord in g  to  T ab le  7.1 (see 
Section  3 .1 ). A  flat spectru m  was used for  sim plicity.

T ab le  7.1: Initial da ta  param eters based on  W M A P  m easurem ents [74]

Param eter Sym bol W M A P  data

Curvature pertu rbations, k0 =  0.002 M p c - 1 P o 2.41 ±  0.10

Scalar spectra l index n s 0.972 ±  0.013

A ge o f  the universe (G yr) to 13.74 ±  0.11

H ubble param eter, H 0 =  100h k m s- 1M p c - 1 Ho 70.0 ±  2.2

Initial R edshift z 1 0 0

T h e age o f  the universe, t 0, and the H ubble param eter, H 0, determ ine the 
backgrou n d  param eters a, p, mid H , in equations (3 .29 ), (3 .30 ), (3 .31) - see 
Section  3.2 for m ore details. T h e  values o f  to and H 0 are set a ccord in g  to  
T ab le  7.1. T h e  initial redshift is chosen such th at the evolution  begins in the 
m atter-dom in ated  era - see Section  6.4.

T h e initial Fourier com pon en ts o f  the density  contrast, S, and velocity , a ,  
are ca lcu lated  from  T  using equations (6 .57) and (6.58) respectively, see Section  
6 .7  for details and derivations.

7.2 Evolution
T h e evolution  m eth od  im plem ented was the fou rth -order R u n ge -K u tta  tim e 
evolu tion  algorithm , as described  in Section  5.3. T h e  evolution  was con du cted  
in Fourier space, using spectra l m ethods (discussed in C hapter 5). T h e  linear  
evolu tion  equations o f  the density  contrast and ve locity  are, respectively :

Uj +  3Tuj

2/3Y l ikj Uj , (7 .1)
j= 1

2/3 ( 3LH0 )  ikj*■
(7 .2)

T h e  non-linear  evolu tion  equations are:

S' =  —T 2/3^ ^ ikj Uj  — t 2/3^ ^ ikj  (s
j = i j = i

-' 2 ~ -2/3Sj = ------U  — T /— T 2/3Y l  U9 * (ik9 Uj ) — TT  =  3t Uj T 7 JU9 * \lk9uj )
9=1

-2/3 (  4nc
3 L H 0

(7 .3)

ik j  T , (7 .4)
2
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where j  =  x, y, z for both the linear and non-linear equations. See Section 6.7 
for derivations. We will carry out evolutions of both the linear and nonlinear 
systems, clearly indicating which case is being considered in each section.

The behaviour of the mode, k, will be discussed, which represents a partic­
ular physical scale. Variables with a ‘ ~  ’ represent physical variables, all other 
variables refer to quantities evaluated on the discrete numerical grid.

7.3 Code Convergence
To measure how stable and consistent a numerical simulation is, the convergence 
of the simulation must be determined. Due to the discretisation of signals when 
represented on a grid - see Chapter 5 - the evolution of the signal is not identical 
to the expected signal. As the number of wavenumbers in the numerical model 
increases, the signal better approximates the continuum solution, therefore the 
difference should decrease as the spacing decreases. The grid spacing h is de­
termined by the highest wavenumber included on the grid.

If gj is the calculated signal, then (g e j is the expected signal at the points, 
j .  The convergence can be obtained by [103]:

gj (ge)j ~  Chp, (7.5)

where C is a constant, h is the space or time resolution, and p is the order of 
convergence. The convergence is calculated for different resolutions to determine 
the order.

The relationship between the convergence order and total difference gives 
the expression for the L1-norm, defined as:

Li-norm =

where p will determine the order of convergence.
The time evolution method used is the fourth-order Runge-Kutta algorithm, 

see Section 5.3. Since the spatial variables are initially continuous and differen­
tiable at all orders, the expected spatial convergence is exponential. As the dust 
collapses, non-linear terms grow, the continuity assumptions may break down 
so that the spatial order may degrade. Initially, we expect the convergence rate 
to be determined by the fourth-order time integrator.

The evolution equations used contain both linear and non-linear terms. The 
order of convergence of the linear equations is expected to be fourth-order. The 
space resolution can remain constant, while the time resolution is decreased to 
obtain the order of convergence. However, in order to obtain the non-linear 
convergence, the time and space resolution need to be reduced by the same

2 n ) E | gj — (ge jN

(dT )P

(7.6)
3
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ratio. This is due to the coupling of the space and time components in non­
linear terms.

The remainder of this section is dedicated to calculating the convergence of 
the linear and non-linear evolution equations.

Unless otherwise stated, the linear evolutions use a grid-size of N  =  54 
wavenumbers in each dimension. The largest physical scale value of 4166 Mpc 
(|X|) - which corresponds to |X| =  L.

In the non-linear section the grid size and time-step size must be decreased 
by the same ratio. The smallest grid size is N  = 12 , and with each doubling of 
the number of wavenumbers the time-step size, A t , is halved.

7.3.1 Linear Convergence
The numerical scheme was first tested by performing evolutions of the linear 
system, equations (7.1) and (7.2). Since the evolution only contains linear terms, 
the expected results for the dynamical variables as a function of t are:

/ r N,2 / 3 ^
A (k, r ) = - j 5ini (k) ,

Vriy
/  r  n 1/ 3

At (k  r) = n .
(Uj)- - (]i V Amt V

(7.7)

(7.8)

One expects to see convergence of the same order regardless of the physical size 
of the grid, since the growth does not depend on it.

The Li-norm is calculated by decreasing the time resolution, and keeping the 
spatial resolution constant, equation (7.6). The spatial resolution can remain 
constant since it has no effect on the linear system’s convergence, because all 
modes evolve independently. This allows us to establish convergence by changing 
the time-step size while keeping the spatial resolution fixed. Figure 7.1 shows 
the L^norm for 5 and V. The slope, and therefore the order of convergence, is 
3.933 for 5 and 4.084 for V - these values are consistent with the order of the 
Runge-Kutta algorithm. Changing L does not affect the gradients significantly.

Another graph of interest is the L^norm for different t values and time- 
step sizes - as shown in Figure 7.2 (a) and (c). Since the evolution equations

converge, multiplying by the ratio of I dTm
V dTi should result in all the curves

overlapping (where d— is the time-step size of the current curve, and dTmin is 
the smallest time-step size). This is shown in Figure 7.2 (b) and (d). The curves 
for dr larger than 0.0091 do not overlap, which suggests that there is a slight 
curve in Figure 7.1 which cannot be easily observed. As long as the time-step 
size is smaller than 0.0091 convergence is verified at all times.
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Figure 7.1: The Li-norm for V at r  =  0.2467 on a grid with L =  4166Mpc.
The lines are parallel to dr4, indicating fourth-order convergence.
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(a) Li-norm for i>. The lines show an increase 
in the norm as time increases. Notice the spa­
cing between lines gets smaller as the time- 
step is halved.

(b) Li-norm for 6 scaled by 
lines begin to overlap indicating convergence.

nr
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(c) Lmnorm for vx . The lines show an de­
crease in the norm as time increases. Notice 
the spacing between lines gets smaller as the 
time-step is halved.

(d) Li-norm for vx scaled by 
lines begin to overlap indicating convergence.

Figure 7.2: The L^norm for S and Sx vs r. 
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7 .3 .2  N o n - l in e a r  C o n v e r g e n c e

The convergence rate was then verified for the set of nonlinear equations (7.3) 
and (7.4). The non-linear contributions are small, when working at large scales, 
for all t . Initially, where |X| < 10Mpc, the scales contain small non-linear terms. 
Then at later r  these terms become larger than the linear ones.

Notice that, as mentioned in the beginning of Section 7.3, it is not sufficient 
to decrease the time-step size alone in order to obtain the non-linear system’s 
convergence. Modes become coupled in this scenario which results in the spa­
tial discretisation affecting the accuracy and convergence rate of the numerical 
solution. This is verified in Figure 7.3(a), where the Li-norm decreases for the 
first time-step sizes, but remains constant for the remaining time-step sizes. 
Therefore, the results fail to converge due to the fixed spatial resolution.

To obtain the convergence of the non-linear evolution, the time resolution 
and spatial resolution are halved together (dr and h respectively). Since h =  
this means N  must be doubled. This is equivalent to including more wavenum­
bers (|k|) on the grid in Fourier space. These new |k| values have delta and 
velocity set to zero initially. When calculating the L^norm the only |k| points 
included in the sum are the ones common to all the grids.

In Figure 7.3(b), the smallest N  value is 12 Mid d r  =  i0v — - where — is the 
initial time. The factor of 10 is to ensure that the grid has linear convergence. 
The data converges with order 3.004, even when L is small enough to introduce 
significant non-linear effects.

The Li-norm versus r  is plotted in Figure 7.4. Similar to Figure 7.2, a factor 
of is included which makes all the graphs overlap (where drmax is the
largest time-step size).
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(a) The Li-norm for 5 and v at t  =  0.2467 on a grid with 
L =  4166Mpc. Note the lack of convergence for non-linear 
evolution.

(b) The L^norm for S and vx at t  =  0.2467 on 
a grid with L =  4166Mpc. Note the third-order 
convergence for both variables.

Figure 7.3: Convergence for the nonlinear system. In (a) the spatial grid is 
kept fixed as the time-step is halved. The results fail to converge. In (b) the 
spatial resolution is halved along with the time-step which results in third-order 
convergence.
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Ll-norm for non-linear system

(a) Li-norm for 5. The lines show an increase in 
the norm as time increases. Notice the spacing 
between lines gets smaller as the time-step and 
spatial resolution are halved.

(c) Li-norm for vx. The lines show an increase 
in the norm as time increases. Notice the spacing 
between lines gets smaller as the time-step and 
spatial resolution are halved.

Ll-norm for non-linear system

„ / , \ 3
(b) Li-norm for 5 T‘>d'^x
The lines overlap implying convergence.

The lines overlap implying convergence.

Figure 7.4: The Li-norm for and v* vs t .
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7.4 Simulation Accuracy

7.4.1 Expected Results
A s discussed in Section  6 .6 , the solution  o f  the propagation  equation  during 
m atter dom in ation  takes the form  o f  equation  (6 .45 ).

T h e decay in g  in ode is set to  zero initially. T herefore, the expected  grow th
D +  =  a. W h en  for

f  is p lotted , henceforth  referred to  as the grow th  o f  the variable, itf i
is ex p ected  to reprodu ce  the solid  line show n in F igure 7.5. T h is is because 
Qmo =  1 was assum ed in Section  6 .6 .

Similarly, the solution  for the ve locity  takes the form  o f  equation  (6.45) w ith 
a grow ing  m od e  o f  D +  =  t 1 /3  =  a 1/2.

F igure 7.5: E volu tion  o f  the grow ing  m od e o f  the density contrast, D +  (a ), as a 
fu nction  o f  the scale factor, a. A da p ted  from  [3]
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7 .4 .2  G r o w in g  R a t e  o f  th e  d y n a m ic a l  v a r ia b le s

To investigate whether the data evolves with the expected growth, the initial 
data is generated and evolved for comparison against the expected. The grid 
dimensions are set according to Table 7.2.

Table 7.2: Initial conditions
Variable Value

N 54
z 100
L 4166 Mpc

The total number of grid points is N 3, z is the initial redshift, and L is the 
physical size of the box at redshift z =  0.

The physical modes, presented on the grid are contained in:

k € [1 .5 ,..., 27.2] x 10-3 Mpc-1 , (7.9)

where the smallest physical scale observable is |x| =  231.4 Mpc.
The numerical scheme was tested using the linear evolution system, equa­

tions (7.1) and (7.2). Figure 7.6(a) illustrates the ratio

lo g (  s j -  (7-10)

for every mode, where Si is the initial density contrast, and 5 is the density- 
contrast at the current time t . This ratio is referred to as the growth of the 
variable.

The expected density contrast, 5e, is given by equation (7.7) as stated in 
section 7.3. The difference between the numerical and expected variable is 
given by:

5 -  5e

5e
x 100 (7.11)

This difference is a measure of the error in the numerical solution from the 
analytical result, which may contain non-linear corrections and aliasing effects. 
The difference in the velocity Uj is expressed in the same way. The difference 
for 5 is shown in Figure 7.6(b). The slope of the growths for 5 and vXi are shown 
in Table 7.3.

All lines in Figure 7.6 overlap which indicates that over time the growth 
and difference is identical for every mode. The growth is plotted versus time t ,
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therefore the slope o f  the grow th  o f  5  and vXi should  correspon d  to  § and 3 , 
respectively. T h e slope is extrem ely  close to  the ex p ected  gradient, show n in 
T able 7.3. "

T able 7.3: Results for grow ing m od e

Q uantity M easured slope E x p ected  slope D ifference

5 0 .666666664588 2
3 eT <  3 .5 x  10- 6

Vi 0 .333333333237 1
3 eT <  3 .0 x  10- 7

(b) The difference eT for the density contrast, for 
all modes |k|

(a) The growth log (s/S-t  ̂ vers us log (t  ), for all 
modes |k|

Growth of d with respect to r

Figure 7.6: T h e linear evolu tion  o f  the da ta  from  z =  100 to  z =  0. T h e  final 
phvsical b o x  size is L  =  4166 M p c. O bservable m odes are contained  in equation  
(7 .9).

7.5 Emergence of Non-linearity
As discussed in C hapter 2 , cosm ologica l pertu rbation  th eory  explains that there 
were sm all pertu rbations in the C M B  that gave rise to  the current structure o f 
the universe. From  m a tter-ph oton  decouplin g, to  the present day, the evolution  
o f  the fields has been  linear on  large scales - as show n by  the h om ogeneous and 
isotrop ic nature o f  the universe on  large scales.

H ow ever, the non-linear term s have grow n as well, and are visible on  sm aller
~  8 h - 1  M p c

[74] at z =  0 . T h e  quasi-linear regim e extends to  ab ou t 30h -1  M p c  [76] at z =  0  

but is sign ificantly sm aller at higher redshifts [76].
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1
On scales k >  10h 1 Mpc at z =  0, bound objects have yet to form, and 

linear theory is still valid [6]. On small scales, the regime of linear theory ends 
at an epoch zn (k), after which non-linearity sets in [6].

7.5.1 Effect on Growing Mode
To investigate the effect that the non-linear terms have on the growth of the 
fields 5 and v, the initial data is generated using the variables from Table 7.2 - 
as before. Where the smallest scale observable is |X| =  231.4Mpc. The evolution 
is then conducted using the evolution equations with non-linear terms included, 
equations (7.3) and (7.4).

With the inclusion of non-linear terms the evolution of modes changes. In 
the linear system, each mode k =  (kx, ky ) with magnitude |k| evolved with 
the same growth and eT. When non-linear terms are included, not only do modes 
with different |k| values evolve differently, but modes that share the same |k| 
do not evolve in the same way. This is not observable in Figure 7.7(a), however 
it is observable in the difference over time in Figure 7.7(b).

Figure 7.7(a) illustrates that the non-linear effects, while present, create no 
observable corrections to the growth due to their size at these scales. This is 
the expected behaviour for these scales.

The eT, calculated using equation (7.11), now contains the deviation caused 
by the non-linear terms. The change in behaviour of eT over time - shown in 
Figure 7.7(b) - indicates that the observed eT is not due to the evolution method 
used. There are two possible sources of these deviations: non-linear terms, and 
aliasing effects - to be considered in Section 7.6. If eT was larger on these scales, 
the graphs would indicate that aliasing is definitely occurring. This is because 
differences are not expected to be observable on these scales.

Generally, eT shows the same behaviour for all modes and grows linearly 
after t =  0.2.

In Figure 7.7(b), a few modes’ difference initially decrease, and at some later 
time increase again resulting in the dips in graph. After the decrease the shape 
becomes consistent with the other modes. These dips occur in modes which 
initially deviate to the ‘right’ of the expected value. The evolution causes the 
mode to tend closer to the expected value, i.e. the spike down. At some time 
the mode passes to the ‘left’ of the expected value and the difference continues 
to grow in that direction.

Since the shape of eT generally increases as time progresses, more information 
can be obtained from considering the difference from linear growth at particular 
epochs, for example z =  0. Figure 7.8 illustrates what eT looks like on each 
axis at times t G [0.25,0.50,1.00]. All modes show an increase in eT as time 
increases, and eT generally increases as ki increases. The differences remain 
small for these scales, as expected.
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(b) The non-linear difference eT for the density 
contrast over time. Each line represents the ciif- 
ference of a mode k =  (kx,ky,kz ), where the 
magnitude |k | is: 1 (red), 6 (black), 12 (pink), 
and 18 (green). Notice how each mode, with the 
same magnitude |k |, evolves differently.

Figure 7.7: The non-linear evolution of the data from z =  100 to z =  0. Modes 
are contained in equation (7.9) and L =  4166 Mpc.

7.5.2 Nonlinear Scale
Minimal 1%) non-linear differences were observed on a box of size 4166Mpc, 
see Section 7.5.1 for detailed results. The differences are not expected to become 
percent differences on a box of that size - a percent difference is defined as having 
a value greater than or equal to 1 percent of the expected linear evolution value. 
The scales where non-linear deviations are expected to become observable are 
where |x| < 8h 1 Mpc.

To observe these non-linear differences, the physical size of the numerical 
grid needs to be decreased in order to resolve smaller scales at the same com­
putational cost. With this in mind, the initial data for this section is generated 
from the variable values in Table 7.4.

Table 7.4: Initial conditions
Variable Value

N 54
z 100
L 100 Mpc

Figure 7.9 illustrates the change over time of the growth and eT from linear 
behaviour at the present epoch, for this initial data. The differences in Figure 
7.9(a) indicate when non-linear growth begins for the mode - these deviations
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(a) The non-linear differences for the 6, for modes 
along the x-axis.

(b) The non-linear differences for the 6, for 
modes along the y-axis.

10-2 Difference from 6„ with respect to k7 at r
IZZI r  =  0.25

(c) The non-linear differences for the 6, for modes
along the z-axis.

Figure 7.8: The non-linear differences er th e 5 along the x, y and z axis.
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are relatively small, and grow as time increases. Small differences are expected 
at the current epoch, and this is consistent with what is shown in the graphs.

The eT over time for modes |k| =  [1, 6,12,18] are illustrated in Figure 7.9(b). 
All the modes where |k| =  1 mid |k| =  6 have eT less than 1%. However, many 
modes like |k| =  12 mid |k| =  18 have eT in the range 1 — 20%. Non-linear

|k| > 9, since those
are the modes on the grid that correspond to |x| < 8h-1 Mpc. This explains why 
eT are too small to be observed on |k| =  [1,6] and me visible on |k| =  [12,18].

Figure 7.10 illustrates the differences for all modes along the axis’s at times 
t £ [0.25,0.50,1.00]. Many of these modes have minimal differences, however 
the difference for the mode k =  (0,11,0) is of order 10% at t = 1 .  Generally, 
the difference increases with increasing |k|.

The largest scale that experiences multiple differences of order 1% is |X| =  
14.29 Mpc (i.e. |k| =  7), however there is one |k| =  3 point that shows such 
a difference. This indicates that the differences are becoming large enough to 
observe on scales larger than expected.

The modes where |k| > 9 (scales |X| < 11.11 Mpc) experience many differ­
ences of between 1 — 20% and begin to show percent differences at early times 
in the evolution, i.e. z «  100. One expects to see differences on these scales, 
however percent differences should only become visible at later times. This 
indicates that the differences are being influenced by aliasing effects - Section
5.4 discusses this in more detail.

contrast over time. Each line represents the 
difference of a mode k =  (kx,ky ,kz ), where the 
magnitude |k | is: 1 (red), 6 (black), 12 (pink), 
and 18 (green). Notice how each mode, with 
the same magnitude |k |, evolves differently.

Figure 7.9: The non-linear evolution of the data from z =  100 to z =  0. The 
box size is L =  100 Mpc and the smallest scale observable is |X| =  5.55 Mpc.
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(a) The non-linear differences eT for the 6, for modes 
along the x-axis.

(b) The non-linear differences for the 6, for 
modes along the y-axis.

1Qi D ifference from 8P with respect to k7 at r
I------ 1 r  =  0.25 I

(c) The non-linear differences for the <5, for modes
along the z-axis.

Figure 7.10: The non-linear differences er for the 5 along the x, y and z axis.
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7.6 Aliasing Effects
The previous sections have verified that the code is stable - see Section 7.3 - 
and is evolving the data correctly - see Section 7.4. This section will discuss the 
presence of aliasing effects on the grid.

Aliasing is not present in the linear evolution due to the independent nature 
of the evolution of modes. To observe aliasing effects, all tests are performed 
with the inclusion of non-linear terms. This means conducting the evolution 
using equations (7.3) and (7.4).

Four tests have been performed: no filter, 2/3rd boxcar filter, exponential 
filter, and shifted filters. The first serves to illustrate why filters are necessary 
and the remaining tests are performed to compare the merits of each filter in 
question.

7.6.1 Evolution of Unfiltered Data
To verify the necessity for applying a filter in the non-linear evolution, we con­
sidered the case where no filter is applied to the data - where there is no initial 
filtering, and no filtering after each time-step. The initial data is generated 
using the values from Table 7.1 and 7.2. Since no filter is applied, the smallest 
scales present are: 154 Mpc Mid 3 Mpc for the 4166 Mpc Mid 100 Mpc grids, 
respectively.

Growth and eT graphs were generated for each grid size: Figure 7.11(a) and 
(b) for the 4166 Mpc grid, and Figure 7.11(c) and (d) for the 100 Mpc grid.

On the 4166 Mpc grid, none of the scales should experience observable non­
linear differences. No non-linear contributions can be seen in Figure 7.11(a), 
and the differences remain less than 0.1% for all times, as expected.

The non-linear differences should be significant on the L =  100 Mpc grid, 
and this was confirmed by observation of the time-evolution data. The largest 
scale where percent differences occur is |X| =  50 Mpc, however these differences 
occur late in the time evolution. Comparatively, percent differences at early 
times (z «  100) Me first observed on the scale |X| =  33.33 Mpc.

Since the differences should only become observable on scales of the order 
|X| < 11.43 Mpc, this indicates that errors are being introduced. These errors 
are due to the occurrence of high-frequency aliasing - see Sections 5.4.3 and 
5.4.4.

Since the convolution present in the non-linear terms creates a signal that 
contains twice the number of modes as the terms being convolved - see Section
5.4 for further details - the high-frequency aliasing is expected to influence all 
modes present on the grid. This can be seen when comparing Figure 7.7(b) 
to Figure 7.11(b), where modes show larger differences in the latter. Similarly, 
the differences present in Figure 7.11(d) are larger than those present in Figure 
7.9(b).
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log t

(a) The growth of < oil grid L =  4166 Mpc (b) The non-linear differences eT for the dens­
ity contrast over time, on grid L =  4166 Mpc. 
Each line represents the difference of a mode 
k =  (kx, ky, kz), where the magnitude |k| is: 1 
(red), 6 (black), 12 (pink), and 18 (green).

(c) The growth of S on grid L =  100 Mpc £t
L =  100 Mpc.

Each line represents the difference of a mode 
k =  (kx, ky, kz), where the magn itude |k| is: 1 
(red), 6 (black), 12 (pink), and 18 (green).

Figure 7.11: No filter has been applied to the data during time evolution. Only 
scales 0 < |k| < T  are shown.

7.6.2 Boxcar Filter with 2/3rd Cutoff
To remove the effects of high-frequency aliasing, a filter is applied to the data. 
This filter is applied before the evolution starts, and at the end of every time- 
step. The boxcar filter used in this Subsection has a cut-off frequencv of |k| =
NT =  18 "

Due to the chosen cut-off frequency, the smallest observable scales are:
231.4 Mpc ^id 5.5 Mpc on grids of size 4166 Mpc Mid 100 Mpc, respectively.
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This filter was applied when generating the results for Section 7.5.
The scale where percent differences begin to be observable has gone from 

50 Mpc, in the to filter case, to 33.33 Mpc, which is closer to expected. Per­
cent differences at early times become visible on the scale 10 Mpc. This is an 
improvement from the no filter case, however the differences still occur at early 
times, which is a concern. Fortunately, the scales where these errors are ob­
served is closer to the expected scale. Graphs for L of 4166 Mpc mid 100 Mpc 
are shown in Figure 7.7 and 7.9, respectively.

This filter may create Gibbs ripples, as discussed in Section 5.4.5. In order to 
observe the ripples that may be created, consider the norm, ||X||T, at a particular 
time - Figure 7.12. The norm will be defined as:

This ratio is equivalent to 1 for linear evolution since the difference eT was of 
order 10-7 %.

The ||X||T is plotted for all points k =  ), where the magnitude
of the mode |k| is an integer, at four t values during the evolution i.e. t g 
[0.25, 0.5, 0.75, 1] (Figure 7.12). The solid red line represents the average value 
for the mode |k|, the dashed black lines indicate one standard deviation from the 
average, and the grey shaded area covers all points within one standard deviation 
of the average. Near the start of the evolution, i.e. t =  0.25, the points of a 
particular magnitude are collected around one. The points are more spread 
out for the larger |k| values which indicates that the non-linear contributions 
are already visible, however the average line shows only slight ripples. As the 
evolution progresses the points of the large modes become more spread out, and 
the oscillations in the average line grow larger.

Notice how the height of the oscillations in the average line increases as the 
mode gets closer to the discontinuity, which is indicative of Gibbs ripples. To 
reduce the oscillations a smoother filter is considered in the next subsection.

(7.12)
e
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Figure 7.12: T h e n orm  S at particu lar tim es for a grid  L  =  100 M p c  areT
show n. O nly  integer m odes betw een  0  <  |k | <  N are show n. T h e average (solid  
red line) and standard deviation  (dashed black  lines) for each m od e  is shown. 
T h e shaded area contains the poin ts enveloped  w ith in  one standard  deviation  o f  
the average. N otice  the oscillations present in the average line and the general 
increase in the spread o f  the poin ts as tim e progresses.

99



7 .6 .3  T h e  E x p o n e n t ia l  F ilt e r

By including the boxcar filter, in the last section, the evolution became more 
stable, and smaller differences from the linear behaviour were observed. How­
ever, including this filter introduced Gibbs ripples - as seen by the shape of the 
average, over time, in Figure 7.12.

To potentially reduce the Gibbs ripples, the smooth exponential filter (sug­
gested by Hou and Li (lj) is considered. The benefits of this filter are that: it 
has a smooth cutoff which should reduce ripple effects, and it allows 20% more 
modes than the 2/3rd boxcar filter [lj. For further details see Subsection 5.4.6.

The exponential filter takes the form of equation (5.29) from Section 5.4.6. 
The initial data is generated for the two box sizes, and evolved with and without 
non-linear terms. The exponential filter is applied to the initial data, and 
again after every time-step. The expected solution is modified since the filter is 
smooth, and not zero or unity at every point;

where # A t is the number of times the time evolution has been performed, and 
Sini (k) is the density contrast before any filter has been applied.

Since the filter is not 1 or 0 at every mode, and instead curved, the eT over 
time graphs show a different behaviour to the linear and non-linear systems 
presented in Section 7.4 and 7.5. The linear and non-linear evolution eT graphs 
are shown for the 4166 Mpc grid in Figure 7.13.

For the linear system: although points of a particular mode (example |k| =  2) 
all evolve the same way, modes with different |k| values evolve differently - 
see Figure 7.13(a). Points where |k| > 14 experience an increase in eT over 
time, |k| < 11 experience a decrease in eT over time, and the remaining modes 
experience a mixture.

The same behaviour is present in the non-linear system in Figure 7.13(b) for 
modes where |k| > 16. This indicates that either the expected solution is not 
correct, or the filter changed the growth of modes where the filter is not equal 
to 1 up to an order of 10-12. Since the linear system cannot contain aliasing 
effects or non-linear effects, a comparison between the linear and non-linear 
systems can be performed in order to compare the accuracy of the boxcar and 
exponential filters. Therefore, only the effects of aliasing and non-linear terms 
will be present.

2/3
S (k, t ) [Sini (k) X F (k)] X [F (k)] #At (7.13)
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(a) Linear evolution (b) Non-linear evolution

Figure 7.13: Differences eT, calculated using equation (7.11), for the evolution of 
the exponential filter. Linear evolution (left), and non-linear evolution (right). 
The box size is L =  4166 Mpc. Only scales 0 < |k| < N are shown.

The new equation for the difference is:

£exp — £nl £l, (7.14)

where enl and £l are the non-linear and linear differences calculated from equa­
tion (7.11). The growth of the exponential filter is now calculated using:

grow th

( N 2/3
(£ni -  £i +  1) * T  , for S

( * \ 1/3
(£nl -  £l +  1) * T  , for Si

(7.15)

These quantities are illustrated in Figure 7.14. The difference and growth of the 
boxcar filter could have been calculated in this way, however due to the relative 
size of enl and £l there would have been no noticeable difference.

The £exp values present on the L =  4166 Mpc grid are of the same order 
as the boxcar filter. Whereas the L =  100 Mpc grid contains larger differences 
than the boxcar. However, percent differences first occur on smaller scales, that 
is |X| equals 16.67 Mpc (|k| =  6). While modes that show percent differences at 
early times are still 10 Mpc.

The £exp over time for modes |k| =  [1,6,12,18] are illustrated in Figure 
7.9(b) and (d) for grids 4166 Mpc and 100 Mpc, respectively. The £exp for 
modes on the 4166 Mpc grid remains less than 0.1% for all modes. The modes 
on the 100 Mpc grid show a similar behaviour to Figure 7.9(b): where modes 
|k| < 8 have differences less than 1%, and the rest of the modes have some 
differences in the range 1 — 20%.

Along the axis’s, the £exp does not show a general trend as ki increases. 
The £exp for each mode does not generally increase as time progresses. This 
indicates that many modes start with a difference to the ‘left’ and then travel
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to the ‘right’ . By comparing Figure 7.10 and 7.15, the general change in the 
axis behaviour can be observed: along the x-axis the differences have generally 
increased, along the y-axis the modes where ky < 8 have increased differences 
while the rest show a decrease, and along the z-axis some modes have decreased 
differences but many remain the same.

Figure 7.16 illustrates the norm S at times t G [0.25, 0.5, 0.75, 1]: the
T

average line (solid red) still shows oscillations, which are larger than the boxcar 
filter for certain modes. There is an increase in the standard deviation envelope 
for scales < 12.5 Mpc.

Increases in the magnitude of differences and oscillations could be due to the 
increased number of modes or high-frequency aliasing. If high-frequency aliasing 
is occurring, the modes affected are |k| > 11, see Subsection 5.4.6. These modes 
have larger standard deviations than before.

To accurately determine whether the smooth filter reduces Gibbs ripples the 
high-frequency aliasing must be removed.

The norm for each point is now calculated like:

||X ||T =  £nl — £l +  1  (7.16)

This ratio is plotted for all points k =  (kx,ky, kz ), where the magnitude 
of the mode |k| is an integer, at four t values during the evolution i.e. t g 
[0.25, 0.5, 0.75, 1] (Figure 7.16). The solid red line represents the average value 
for the mode |k|, the dashed black lines indicate one standard deviation from 
the average, and the grey shaded area covers all points within one standard 
deviation of the average. The graphs look similar to Figure 7.12, including 
the oscillations noted earlier. This indicates that the exponential filter has not 
removed the Gibbs ripples.

Since the exponential filter does not obey Orszag’s two-thirds rule, the filter 
may be reducing the Gibbs ripples while introducing high-frequency aliasing. 
To determine whether this is the case we suggest a comparison between an 
exponential filter that has been shifted and a boxcar filter with cutoff frequency 
such that both filters allow the same number of modes through.
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S for the
L =  4166 Mpc.

T

(b) The non-linear difference eexp for the dens­
ity contrast over time, on grid L =  4166 Mpc. 
Each line represents the difference of a mode 
k =  (kx, ky ,kz ), where the magn itude |k| is: 1 
(red), 6 (black), 12 (pink), and 18 (green). No­
tice how each mode, with the same magnitude 
|k|, evolves differently.

(c) The growth, equation (7.15), of S for the 
box size L =  100 Mpc.

(d) The non-linear difference eexp for the dens­
ity contrast over time, on grid L =  100 Mpc. 
Each line represents the difference of a mode 
k =  (kx, ky, kz), where the magn itude |k| is: 1 
(red), 6 (black), 12 (pink), and 18 (green). No­
tice how each mode, with the same magnitude 
|k|, evolves differently.

Figure 7.14: The evolution of the data when the exponential filter is applied. 
Only scales 0 < |k| < y  are shown.
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(a) The differences, eexp for the <5, for modes along 
L =  100 Mpc.

(b) The differences, eexp, for the <5, for modes along 
L =  100 Mpc.

(c) The differences, eexp for the <5, for modes along 
L =  100 Mpc.

F igure 7.15: T h e  differences, eexp, f o r  the 5 a long  the x, y and z axis.
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(c) Norm at t  ^  0.75 (d) Norm at t  ^  1.00

Figure 7.16: The norm at particular times for a grid L =  100 Mpc are
Nshown. Only integer modes between 0 < |k| < N

red line) and standard deviation (dashed black lines) for each mode is shown. 
The shaded area contains the points enveloped within one standard deviation 
of the average. Notice that the oscillations are present in the average line and 
the mode |k| =  14 has a larger standard deviation envelope compared to the 
boxcar filter.

T
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7.6.4 Removal of Gibbs Ripples
The results have shown that Gibbs ripples are present, however the suggested 
exponential filter in fl] does not limit the aliasing effects. Although Gibbs 
ripples may be removed, the filter has introduced high-frequency aliasing. To 
investigate whether the smooth filter does reduce the Gibbs ripples, consider the 
shifted-exponential filter equation (5.30) of Section 5.4.6. This filter is illustrated 
in Figure 7.17.

To compare the effects of Gibbs ripple reduction, consider the shifted-boxcar 
filter with cut-off frequency |k| =  ^  =  15, see Figure 7.17. The shifted- 
exponential filter could not be compared to the filter from Section 7.4 since 
the filters allow through a different number of modes. Since the modes couple 
when non-linear terms are included, evolving without the contributions for these 
modes will skew the results.

The modes present on the grids are: |k| < 15 for shifted-boxcar filter, and 
|k| < 16 for the shifted-exponential filter. However, not all modes fc e 
exponential filter are multiplied by 1. Modes equivalent to 1 at order O (10-2 ) 
are |k| < 10. The modes |k| > 10 
we were unable to reconstructed them correctly.

The slope of the growth for the two shifted filters is shown in Table 7.5, 
where the growth is calculated by using equation (7.15). The average slopes for 
the two filters are similar in size for |k| < 10.

The largest eT for modes |k| < 10 are: 13% for the shifted-boxcar filter, and 
9% for the shifted-exponential filter. The Gibbs ripples are still present on the 
shifted exponential filter’s average line, however they might be slightly reduced 
for some modes.

Figure 7.17: The shifted-exponential and boxcar filters compared
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( a )  N o r m  a t  t  ^  0 .2 5 ( b )  N o r m  a t  t  ^  0 .5 0

( c )  N o r m  a t  t  ^  0 .7 5 ( d )  N o r m  a t  t  ^  1 .0 0

Figure 7.18: T h e norm 6 at particu lar tim es for a grid  L
T

1 0 0  M p c. O n ly

integer m odes 0 <  |k | <  10 are show n. T h e average (solid  red and dashed black 
lines) for each filter is show n. N otice  that a lthough  the G ibbs ripples m ight be 
slightly reduced  for the sh ifted-expon en tia l filter, th ey  are still present.
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Table 7.5: Results for growing mode - shifted filters

Shifted-boxcar filter
Quantity Average slope of growth Expected slope Difference

|k | e  [1 ,..., 10] |k | e  [11 ,..., 15] |k | <  10
6 0.666909115 0.666051900 2

3 eT <  13%
Vx 0.333261017 0.333342068 1

3 eT < 8%
Vy 0.333330810 0.333249744 1

3 £t <  8%
Vz 0.333337382 0.333263786 1

_________ 3_________ £t <  8%

Shifted-exponential filter
Quantity Average slope of growth Expected slope Difference

|k | e  [1 ,..., 10] |k | e  [11 ,..., 13] |k | <  10
6 0.666764516 14.33251454 2

3 êxp <  9%
Vx 0.333344597 13.62405652 1

3 êxp <  2%
Vy 0.333290361 13.74438222 1

3 êxp <  2%
Vz 0.333366689 13.61942314 1

3 êxp <  2%
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Chapter 8

Conclusions

The goal of the thesis was to implement a numerical simulation for evolving a 
Newtonian model of cosmology using spectral methods, verify its stability and 
convergence, and investigate the affects of aliasing - with a specific comparison 
between the suggested exponential filter [lj.

The spectral method of evolving data on a grid is a natural formulation 
for the problem of evolving a spectrum of perturbations, and only requires a 
conversion to physical space when the evolution equations contain non-linear 
terms - shown in Chapter 5. This spectral method of evolution is both stable and 
convergent. For the linear and non-linear evolutions the order of convergence 
was 4 mid 3, respectively - see Section 7.3.

The growth, P , for the linear evolution was a (t ), as expected for all modes,
see Section 7.4. Deviations from linear behaviour on scales ~  8h - 1 Mpc =  
11.42 Mpc [74] at z =  0 were expected. However, when the full non-linear 
system was evolved, the scales where |x| < 50 Mpc showed deviations from 
linear growth, see Section 7.5.

The spectral method of evolution was sensitive to aliasing effects when non­
linear terms were present in the evolution equations, as shown in the no-filter 
scenario. The growth showed large deviations from linear behaviour, which 
developed at early times. These differences were only expected on smaller scales, 
and at later times, however this was not the case when no filter was applied - it 
was determined that the cause of this unexpected behaviour was high-frequency 
aliasing (see Section 7.6.1). Percent differences are first observed on the scale 
where |X| =  50 Mpc, while |X| =  33.33 Mpc is the scale that experiences the first 
percent differences at high redshift.

To reduce the aliasing artifacts alternate filters were applied to the high- 
wavenumber modes: the 2/ 3rd boxcar filter, the exponential filter, and shifted 
versions of both.

The first filter applied was the 2/ 3rd boxcar filter (see Section 7.6.2). The 
percent differences only started on the scale where |X| =  33.33 Mpc, which 
is an improvement, and the scale where |X| =  11.11 Mpc is the largest mode
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where percent differences are observed at high redshifts. It was shown that the 
aforementioned filter introduced Gibbs ripples, this caused the filter to create 
oscillations in the data which made the graphs inaccurate.

A n exponen tia l filter, fo llow in g  the suggestion  o f  fl] was tested. T h e  sm ooth  
profile o f  the w indow  was expected  to  reduce the effect o f  G ibb s ripples (see 
Section  7 .6 .3 ). U nfortunately , in p ractica l use it had the effect o f  in trodu cin g  
additiona l h igh -frequency  aliasing effects. T h e  scale w here percent differences 
are first seen is |X| =  16.67 M p c, while percent differences at high redshift are 
first observed  on  the scale where |X| =  14.29 M p c. T h e  scales w here non-linear 
differences are observed  suggests th at the filter m ay have helped im prove the 
differences. T h is was on ly  a prelim inary assum ption , and m ore tests needed to  
b e  con d u cted  to  verify  w hether th is was the case or not.

T o  investigate the exponen tia l filter ’s ab ility  to  reduce G ibbs ripples, a 
sh ifted-expon en tia l filter was created , w hich was then com pared  to  a  shifted- 
box ca r  filter - see Section  7.6.4.

D ue to  the shape o f  the sh ifted-expon en tia l filter, we were unable to  accur­
ately  recon stru ct the density  contrast and ve locity  for  the m od es where |k | >  1 1 . 
T h erefore , a  com parison  betw een  the |k | <  11 m odes was perform ed. It was 
fou n d  th at the sh ifted-exponentia l filter m ay reduce G ibb s ripples bu t not sig­
nificantly.

T h is suggests th at the exponential filter creates h igh -frequency  aliasing and 
d oes n ot significantly reduce G ibbs ripples for the non-linear system  studied 
here, as was suggested in [lj.

Based on  the results above  we con clu de  th at app ly ing  a  filter is necessary 
w hen using spectra l m eth od s - prim arily  due to  o f  h igh -frequency  aliasing. A d ­
d ition ally  w hile the 2  3rd box ca r  creates G ibb s ripples, it is m ore accurate than 
the exponential filter, and should therefore take preference w hen perform ing 
sim ilar sim ulations. T h is  decrease in accuracy  is due to  the exponen tia l fil­
ter in trodu cin g  h igh -frequency  aliasing, if  said aliasing cou ld  be  rem oved either 
m eth od  w ould  b ecom e equally  viable. It can also be  con clu ded  th at a  sm ooth  
filter is not significantly better, or m ore accurate, than a box ca r  filter - this 
is su pported  by  the strong sim ilarities show n betw een  the tw o shifted filters in 
Section  7.6.4.

A s explained above , th e  spectra l m eth od  was b o th  efficient and p rodu ced  the 
exp ected  grow th  o f  the density  contrast. T h e  sim u lation ’s efficiency is dem on ­
strated b y  the system  on  w hich  it was run, w hich  had 16.5 G B s o f  R A M  and 4 
C P U s running at 3 .5G H z. T h is  set-up  to o k  45 m inutes to  run the linear system  
to  com pletion , and 6  hours to  com plete  a run o f  the non-linear system  - b o th  o f  
w hich  were from  an in itial redshift o f  z =  100, w ith  a  tim e-step  o f  d r  =  10. For 
future w ork, the cod e  cou ld  either b e  re-w ritten  in a  lower level language, run 
on  a  better system , or parallelised in order to  im prove the tim e taken and to  
allow  for larger grids - w hich  w ould in turn  im prove the accuracy  o f  the results.

Spectral simulations usually experience problems when handling hydro-effects, 
such as shocks - these were not observed, but could be investigated in future 
works.

T h e cosm ologica l m od el investigated in th is thesis d id  n ot contain  a  cosm o­
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logical constant, and was purely contained within the matter dominated era. 
The affects of this could be investigated in future works via the inclusion of a 
cosmological constant, evolving the initial data from a higher redshift, or use of 
a dynamical background spacetime (such as ADM+hydro formalism). Further 
calculations, and their implementation in numerical simulations, could be done 
to solve the constraints in GR - this would result in simulating curved spacetimes 
instead of just the flat spacetime, which would in turn allow for investigations 
into structural formation in the early universe.
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Part III

Calculations /  Appendices
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Time dependent variables

Appendix A

B eginning  w ith  the Friedm ann and conservation  equations, equation  (3.18) and 
(3.20) respectively. T h e equation  o f  state is given b y  equation  (3 .21 ). T h is is 
substitu ted  in to equation  (3.20):

=  - 3 ( 1  +  w ) H
P

=  - 3 ( 1  +  w ) - .  ( A . l )
a

T h en  integrated on  b oth  sides w ith  respect t o  tim e:

P0

a

a o

3(1+w)
(A .2 )

w here b o th  quantities have been  norm alised w ith  respect t o  their values at the 
current epoch . a0 is arbitrary so it is set t o  unity. T h ere are on ly  a  few  sim ple 
cases where the expression  for  a in term s o f  the tim e can be  determ ined. T h e 
case where K  =  A  =  0 is chosen. W h ich  sim plifies equation  (3.18) to :

H 2 

H

;p

K Poa-3 (1 + w)

± J | P 0 a - 3 ( 1 + w ) / 2

K

(A .3 )

T h e positive  case is chosen because it correspon ds t o  an expanding  universe. 
U sing the defin ition  o f  H :
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a =  J 1 nnn -3(1+w)/2P o-

=  J - n r a -^+Zw)/2Po-

a (1+ 3w)/2a = Po.

This can be integrated with respect to time to get:

(A.4)

2

3 (1 +  w) . 
2

a3(1+w)/2 3 Po [t -  to]

3 (1 +  w)
3(1+ w )/2  1 3 Po [t -  to]

2 ___ a3(1+w)/2 = K K 2
3 pot - ^  3 poto +  3 ( 1 + ^ ) .  (A -5)3(1 +  w)

Notice that if the following are set H =  Ho, a =  ao =  1 mid K  =  A =  0 in 
ration 

becomes
equation (3.18) then the density is given by Kpo =  H 2. So the expression above

3a

3
K

3

a

2
3 (1 +  w)

a3(1+w)/2 H ot H oto  +
2

3 (1 +  w) (A.6)

Since ao =  1 the Hubble parameter is given by Ho =  3(t+w) t1 . After 
some more manipulation the expression for a is:

a (t)
t \ 2/3(1+w)

toy
(A.7)

Consider that to =  13.76 * 109yr [19] and the initial redshift is 100. Using 
the relationship between the scale-factor and the redshift [3]:

ao
a
1

a

1 +  z 

101.

Using equation (A.7) and pressure-less matter, i.e. w =  0, the starting time is 
t =  1.35 * 107yr.
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Appendix B

Correlation function

Beginning with the correlation function of Section 3.1, equation (3.4) [3]. As­
suming statistical isotropy and homogeneity, the correlation function depends 
only on r =  |r|, i.e. equation (3.5) [3, 7].

The field, g (x), is usually written in terns of its Fourier modes, g (k), [3, 7], 
the Fourier and inverse Fourier transform pairs for a field are given by equations 
(6.53) and (6.54) respectively. This implies that the quantities g (k) are complex 
random variables.

The quantity g (x) is a real-valued field [3, 7] so gk needs to satisfy the 
conjunction relation:

The random field is thus completely characterized by the statistical proper­
ties of the random variables gk. The correlators are computed in Fourier space,
f3, 6]:

where SD is the Dirac distribution in D dimensions, not to be confused with the 
density contrast, and Pg (k) is by definition the power spectrum of the field g. 

Then we have the relation [6]:

g-k. (B.l)

-— -3  J  £ (r ) ex P [—i (k +  k ')  • x — ik ' • r ] d3x d3r

SD (k +  k ')  J  d3r£ (r ) exp  ( ik • r )

Sd (k +  k ')  P g (k) ,
/

(B.2)
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P g =  L 3  ̂|gk|2)

k3—  p g (k): (B .3 )

because [61

Pg (k) =  ( : § )  4nk3 (|gk|2)

8 W  T) k V 2 . (B.4)

This a2 is put into the Gauss or Rayleigh distribution.
There is another method where the Fourier transform is defined by [34]:

V f
g (x) =  T“~ 3  / gk exp (—ik • x) d3k 

(2n) J
i

(B.5)

(B.6)gk =  V— J  g (x) exp (ik • x) d3x.

Then the factor of Vu is included in the probability distribution, i.e. [34, 104]:

P (g)
Vu

2 n a 2
exp (B.7)

The grid constructed in this thesis is [0, 2n] which imp lies Vu =  (2n)3. If the 
factor of Vu is included the same linear to non-linear behaviour is observed. 

This is similar to [7] which set:

g (x) =  J gk exp(—ik • x) d3 k,

gk =  f  g (x) exp (ik • x) d3x,
( 2 n ) ‘

(B.8)

(B.9)

and then defined the power spectrum to be smaller by a factor of (2n)3. So:

Pg (k) = 4nk3P g ( k ) . (B.10)
1

124



Rayleigh and Gauss 
equivalence

Appendix C

C onsider a  com p lex  num ber z =  u +  iv  and where the m agn itude is set t o  x . 
T h e  real and im aginary parts are G aussian d istributed :

f u (u)
1

exp
2—u

2 a 2
(C . l )

w here a 2 is th e  variance or spectrum , v is defined b y  a  sim ilar expression . For 
these d istribu tions it is assum ed th at the real and im aginary parts have the 
sam e spectrum .

T o  find the distribu tion  o f  the m agn itude o f  z , i.e. x ,  the above  equations 
are m ultip lied  and integrated:

f  ( x ,a )
2 n a 2

du d v exp

exp  ( — 2 )  ^ ( x  -  V u 2 +  v 2 j  ,

- u 2

2 a 2

2 ^

1

(C .2 )

w hich  is sim pler to  integrate in polar coord inates, rdrdd  =  dudv where r 2 =  
u 2 +  v 2. So the above  becom es:
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f  ( x ,a )
2 n a 2 L d6L “ p ( “ K-?) ̂  -

1

a4  exp

1

a 2 exp
/o

—u 2 v 2 \
2 a 2 2 a 2 y

— (u 2 +  v 2) 

2 a 2

S (x  — r )  rd r

J (x  — r ) rd r

rd r

1 nOO ( _ r 2

a 2 l
exp  (

2 a 2

x /  —x 2 A
a 2

exp
1 2 a 2 .

S (x  — r ) rd r

(C .3 )

T h e  integration  is sim ple since the on ly  tim e the fu nction  is none zero is when 
x  =  r  because S (k ) =  0 on ly  w hen k =  0.

T h e last expression  is th e  R ayleigh  distribution . T h erefore  the initial da ta  
can either take ran dom  G aussian values for  the real and im aginary parts or use 
a  random  R ayleigh  value for  the m agn itude o f  the com p lex  num ber and then 
choose a  ran dom  angle.

N otice  that a 2 in each o f  the ran dom  gauss fu nction s is the sam e as the one 
seen in the R ayleigh  fu nction . T h is is coun ter intuitive since the spectru m  for 
z is the sam e as the spectru m  for x  and is dou b le  the spectru m  for u and v.

I f  X  is a  com p lex  ran dom  variable, X  =  U +  V i ,  then its variance is defined 
as:

Var ( X ) =  E  ( ( X  — M) ( X  — ^ ) )  , (C .4 )

w here c is the com p lex  con ju gate  o f  c  and p, is th e  m ean o f  the d istribution . In 
th is case the m ean p  =  0 , w hich gives:

Var ( X ) =  E  ( X X )

=  E  (|X|2)

=  E  ( U 2 +  V 2)

=  E  ( U 2) +  E  ( V 2)

=  Var (U ) +  Var ( V ) .

A  sim ilar th ing  can be  don e for  the R ayleigh  distribu tion  how ever the m ean is 
n ot zero [p  =  a y ^ .  I f  is used X  =  R exp  (i0 ):
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V a r ( X ) =  E  (|X|2)

=  E  ( R 2)

=  E  ( R 2) -  E  ( R ) 2 +  E  ( R ) 2 

=  Var (R ) +  2 a 2.

Since V a r (R )  =  ^2— a 2 the variance o f  X  is Var ( X ) =  2 a 2 .
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Appendix D

Deriving the evolution 
equations in comoving 
coordinates

D .l Comoving coordinates
This section details the transformation of the Euler, Poisson and continuity 
equations from stationary coordinates, x, to comoving coordinates, X.

The Euler, Poisson and continuity equations in stationary coordinates are 
given by equation (6.6), (6.19) and (6.5). These equations will be re-written in 
the comoving coordinate variables u, the peculiar velocity, and T, the peculiar 
potential. The relationship between the velocity and peculiar velocity is given 
by equation (6.4).

The relationship between the potential and the peculiar potential is:

^  =  T — — aax2. (D.l)

In all the above equations, a refers to the scale factor of the universe and a dot 
above a variable refers to a derivative by time, t. The gradient with respect to 
r becomes:

V  =  — V x .a (D.2)

The derivatives with respect to time evaluated at a particular position r become:

d

d t
r d t|x

a
a

(x • V x ) . (D.3)
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D.1.1 Euler equation:
The Euler equation during matter domination is:

d v
tit +  (V ' V ) V - W . (D .4 )

The pressure term is removed because the fluid is pressure-less. The conversion 
to comoving coordinates for each term separately is as follows. The first term 
on the left of equation (D.4) becomes:

d v
~dt

and the second term on the left becomes:

a f  a \ 2 d  u—r -- -  r + Ix -a V - / dt

a2 d  u a
dx - - — x +  ^ - |x — —

a dt a

a
a

(D.5)

(v ■ V) v - r  +  u ) -V
a

a—r +  u
a

a „  „ \  i a—r -V  +  u -V  —r +  ua j  \a

=  -  (r -V ) ( - r +  u^ + ( u  -V ) f - r +  u ) . (D.6)a \a J \a J

Since (r -V ) r =  r and (u -V ) r =  u, the above is re-expressed in terms of x as: 

(v -V ) v = -  r +—  (r -V ) u +—  u + (u  -V ) u 
a j a a

• 2a a , „  x a . „---x +  -  (x • V x) u +  - u + (u  -V ) u.
a a a

(D.7)

The term on the right of equation (D.4) becomes:

W
1 / 1  2
-V x  T — - aax a V 2
1 1 o—V x T — — dVx x 2

—V x T — dx.a (D.8)

After combining all three terms, the Euler equation in comoving coordinates is:

du 1 . „  . -  1 „  ,
-wr +  - ( u  - V x) u +  -  u =  — V x T.dt a a a

(D.9)

x /
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D .l .2 Poisson equation:
T h e Poisson  equation , equation  (6 .19 ), can b e  rew ritten  in com ov in g  coord inates 
b y  using the relationship betw een  the potentia l and peculiar potential. T h e 
L aplacian  o f  equation  (D .l )  is:

A x t  =  Ax ^  +  2 -a x 2^

=  A x ̂ + -  A x adx2. (D .10)

U sing the original Poisson  equation  and rem em bering th at the Laplacian  b e ­
com es A  =  2̂ A x , the Poisson  equation  in com ov in g  coord in ates is:

A x  T  =

w here p is the physical density  n ot the com ov in g  density  and p is the portion  
o f  the density  that is on ly  dependent on tim e.

D .l .3 Continuity equation:
T h e continu ity  equation  can b e  w ritten  in com ov in g  coord inates by  converting  
each term . T h e first term  in equation  (6 .5) becom es:

4 n —p a 2 +  — a -6

4 n —p a 2 +  3a ^ ------ -— pa^j

4 n —a 2 (p — p ) , ( D . l l )

dp (r,t)
dt

— -  x , w  p (x,<)].

W h ile  the second  term  becom es:

(D .12)

V  ■ (pv ) =  p [V  ■ v ] +  v [Vp]
a

p

p

V  ■ ( —r +  u
a

+  ( - r  +  u
a [Vp]

- 3  +  V  ■ u
a

+—  r ■ V p  +  u ■ V p
a

-  1 ^  a 1
—3p +  - p V x ■ u +  - x V xp +  - u ■ V xp
a a a a

-  (3p  +  x ■ V x p ) +  1  V x  ■ (pu ) .
a a

(D .13)

A fter the term s are com bined , the continu ity  equation  in com ov in g  coord inates 
is:

|r

a
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~7T7 + V x • (pu ) +  3 “ p =  0. (D .14)dt a a

D.2 Density contrast
T h e equations determ ined  in C hapter D .l  are in term s o f  th e  density. It is m ore 
useful to  define the equations in term s o f  the density  contrast:

S =  — - .  (D .15)
p

T h e  Euler equation  rem ains unchanged. T h e  Poisson  equation , equation  ( D . l l ) ,  
becom es equation  (6 .25).

For the continu ity  equation  each term  w ill be  calcu lated  separately. T h e 
first term  in equation  (D .14 ) becom es:

dp =  d  (p  +  pS) 
d t  =  dt

=  p (1  +  S) +  pS

=  —3 - p (1  +  S) +  - S, (D .16)
a

w here p was calculated by  using - a3 =  const. T h e  second term  becom es:

1 V  • (pu ) =  1  p V  [(1 +  S) u ] , (D .17)
a a

and the th ird  term  becom es:

3 - p =  3 - p (1  +  S ) . (D .18)
a a

R esu ltin g  in the com ov in g  density  contrast continu ity  equation :

d t  +  C- v  ̂ [(1 +  S) u] =  0. (D .19)

D.3 Solution in the linear regime
T o  solve the equations in com ov in g  coord inates the system  needs to  be  linearised, 
as discussed in Section  6.4. A n  evolu tion  equation  for the density  contrast can 
b e  determ ined by  com bin in g  the divergence o f  equation  (6.27) and th e  tim e 
derivative o f  equation  (6 .28 ), i.e.
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0 T A  — 1 V ^ B , (D.20)

where A  is equation (6.28) and B is equation (6.27). The first term is:

dA
~dt

and the second term is:

d fdS  1 
dt \~dt +  - v  u 
d2S a 1 d
a c  — - 2 V  u +  - a t V
d2S adS 1 d
dt2 +  a dt +  a d t ,

u

1 V Ba
1 / du a 1
-  V  • —  +  -  u + -  VT a V dt a a
1 /  d  1 1-  — V  • u +  -  V  • u +  -  A T
a V dt a a

1 /  d  ^  . dS 1 .
a  ( d t V u  — a d t  +  a

(D.21)

(D.22)

After combining the two terms, the evolution equation for the density contrast 
in a pressure-less fluid is:

d2S adS
dt2 +  a dt

4nG pS 0. (D.23)

D.4 Introducing pressure
During the radiation dominated era, particles in the fluid experience pressure. 
The Euler equation will contain the pressure term:

V P
,

p
(D.24)

where P  =  ^p, cs is the speed of sound in the fluid. This term can be re-written 
in terms of the density contrast:
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V P
p

c2
^  Vp
pa

c2
ap (1 +  S) Vp(1 +  S)

a (1 +  S)
V  (1 +  S)

(1 — S) VS +  O (2) a
c2
-*■ VS.a

After including this term the Euler equation reads:

d u a 1 ^ ,  c ;? r—  +  -  u +  -  V T  +  — V S 
dt a a a

0.

(D.25)

(D.26)

The same linearising procedure is perform with the new Euler equation, the 
divergence of the above equation is:

1 V - B
a

1 „  ( d u a 1 „ ,  c2 „  
-  V ^  7 -  +  -  u +  -  V T  +  —  V S  
a \ at a a a

-  ( d  V^ u +  1 V^ u +  -  A T  +  AS 
a V dt a a a
1 (  d _  dS 1 c2

=  _  m V^ u — a —  +  -  A T  + A Sa \ d t at a a
(D.27)

Substituting this into equation (D.20), the propagation equation is:

=  tA —- V -Bdt a
1 c2

=  S +  2HS — A T  — AS
n 2 n 2

5 +  2HS 4nGpS +  -§■ AS. (D.28)

By decomposing the perturbations into plain waves i.e. S (x, t) =  C exp (—i [k • x —

—w2S +  iiv2HS =  4nGpS — c2k2 S. (D.29)

The dispersion relation is obtained:

2cs

2

0

2

2a

w t]),

133



c2sk2
— 2 4nGp

a2
2 k2 4nGp

" ~72 cr~ (D.30)

where k =  The above equation can be written in terms of the wavelength:

(2n) 4nGp
~ 2 c r

(2n)2 (2n)2"
A2 AJ

4 n 2c2
1 1

A2 A2J J
(D.31)

where Aj is the Jeans length and is defined in eqnation (3.42).

2W =

2 2cs

2=  c s
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Appendix E

Time evolution equations in 
dimensionless co-ordinates

E.l Converting to dimensionless expressions
To convert the evolution equations to dimensionless form the dimensionless vari­
ables need to be defined. Section 6.5 defined the dimensionless variables t and 
x as equation (6.37) and (6.34), respectively. The derivative with respect to 
time and space in dimensionless variables becomes equation (6.37) and (6.38), 
respectively.

The proper velocity of an object is defined as equation (6.39) from Section 
6.5. All terms that include taking the gradient and/or Laplace of a variable 
need to be replaced by the dimensionless equivalents, i.e:

2n
V x  =

T  V x,
(  2n  V

A  =
T

(E.l)

(E.2)

respectively.
The full derivations of equation (6.41), (6.42) and (6.40) can be found in the 

sections below.

E.1.1 Density contrast
The continuity equation in comoving physical coordinates reads:

S + 1 V • [(1 +  S) u] =  0. (E.3)
a

Using the conversions from Section E.l, the dimensionless continnity eqnation 
is:
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S + 1  V[(1 +  S) u] 
a

3
2

HqS' +  - ^ -  V
1 2 n . 
a L

/1 , ^  3 L H 0 
( 1 + S ) i n - u

2  Hq S' +  32aQ V  [(1 +  S) u]

S' +  1  V [(1 +  S) u] 
a

0

0

0

0. (E .4)

E .l .2 Velocity equations
T h e Euler equation  in com ov in g  physical coord in ates reads:

u +  H  u +
1
a

(u • Vx) u

U sing the conversions from  Section  E .l :

- 1 V XT .a
(E .5)

9LHQ
8n u' +

3 3LHq , 3LHq

2 Q 4n 4n
1 (  3LHq 2n \ 3LHq

+ U  -h i -  u T  Vd  u
3LHqH  1 9LH2

4n a 8n (u • Vx) u

. 2 H 1 ,  ^  N
u +  o J T u + ~  (u • V x) u 3 Hq a

f 2 H  1 , _  x
u +  7  —  u +  -  (u • Vx) u 3 Hq a

1 2n _  ^
------ T  VxTa L

2n
-  7-  VxT La

2n 8n
V x$La 9LH02 x

1 7 4n 
a y 3LHq

V x $ .(E .6 )
2

E quation  (3.30) can b e  used to  sim plify  the second  term s and the last term  
requires a  fa ctor  o f  c2 to  b e  dim ensionless, the dim ensionless Euler equation  is:

. 2 1 1 , _  N 
u +  - - u  +  -  (u • V x) u 3 t a

1 (  4nc 
a y 3LHq

2

V x $ . (E .7)

E .l .3 Poisson equation
T h e P oisson  equation  in com ov in g  physical coord inates reads:

S 1
4nGpa2

A T . (E .8)
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U sin g  th e  co n v e rs io n s  fr o m  S e c tio n  E . l ,  it  b e c o m e s :

2
A T  =  4 nGpa2S. (E.9)

The terms a mid p can be replaced by t equivalent terms, equation (3.29) and

where a factor of c is included to ensure the constant is dimensionless.

E.2 Growing mode
Using the general solution to the propagation equation from Section 6.6, equa­
tion (6.49), and setting the decaying mode to zero, the density contrast grows 
according to equation (6.50). The linearised continuity equation is equation 
(6.50) which can be used to calculate the peculiar velocity:

The Poisson equation, equation (E.10), is then used to determine the relation­
ship between the potential and the peculiar velocity:

To obtain the initial velocity, the above equation is evaluated at t  =  t* as shown 
in equation (6.52) in Section 6.6.

(3.31):

(E.10)

S' =  -  -  VuS'
a

2 1/3Ti -2/Sini (x) =  - t  2/3Vu

1/3r r 2/3Si„i (x) =  - V u .

—t
3

2 (E .ll)—t
3

(E.12)
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