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Abstract

This research reports on the design and implementation of FRAME: an embedded hard-
ware network processing platform designed to perform network frame manipulation and
monitoring. This is possible at line speeds compliant with the IEEE 802.3 Ethernet stan-
dard. The system provides frame manipulation functionality to aid in the development
and implementation of network testing environments. Platform cost and ease of use are
both considered during design resulting in fabrication of hardware and the development of
Link, a Domain Specific Language used to create custom applications that are compatible
with the platform.

Functionality of the resulting platform is shown through conformance testing of designed
modules and application examples. Throughput testing showed that the peak throughput
achievable by the platform is limited to 86.4 Mbit/s, comparable to commodity 100 Mbit
hardware and the total cost of the prototype platform ranged between $220 and $254.
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1
Introduction

1.1 Introduction

Research into Telecommunications Security and Cyber Defence are growing fields, par-
ticularly with regard to incident identification and remediation. Emerging software and
hardware systems relating to these fields must undergo validation tests before deploy-
ment can occur. Validation is often performed by a test bed such as MX (Knežević et al.,
2010) and can be composed of both hardware and software components which must bal-
ance a trade-off between environment realism and cost (Sherwood et al., 2010). When
considering realism an important attribute is the ability to emulate non-ideal network
environments which can have significant impact on network related performance. Un-
available to most researchers is an affordable hardware solution to create such network
configurations, with conditions such as packet corruption and loss, in addition to being
able to log and manipulate traffic during tests.

1
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1.2 Problem Statement

As different approaches to identifying security threats and the techniques to resolve them
are designed, suitable simulation environments must also be developed before testing
of the conceptual systems can be performed. Testing environments should be flexible
enough to allow for modifications and extensions by the researchers themselves as the
requirements of the environment change. These environments would be comprised of a
series of subcomponents each handling a particular domain of the system. One such area
is the manipulation of network frames at wire level during transmission between hosts
within the environment. Devices operating in this domain must limit delays relating
to network frame processing to minimise the impact on network transmission speeds
during operation. Flexibility for such a device can be realised though a soft-programmable
hardware platform which allows for a rapid turnaround in the test phase of the systems
development life cycle, along with rapid prototyping. While some of this could be done in
software using traditional server platforms, researchers often need to introduce additional
latency and have to deal with issues specific to network card drivers.

Commercial systems such as Packetstorm1, BreakingPoint FireStorm2 and Netropy3 do
exist which are capable of performing packet delay and loss; however, such systems are
large, propriety and have limited extensibility in this domain. These limitations are not
due to poor design but are simply not the primary functions the systems were developed
for. A device capable of modifying network frames which is both flexible and can minimise
the impact of processing latency on traffic throughput is thus necessary. By implementing
this flexibility, researchers can quickly modify the device so that it can adapt to the
changing requirements of the test bed in response to modifications applied to the system
being tested. Researchers modifying the board should not be concerned with programming
specific components of the platform, particularly with the hardware interfacing as such
details should be suitably abstracted.

Similar approaches to developing a programmable frame processing platform have suc-
cessfully been carried out with prototypes such as the Scalable Programmable Packet
Processing Platform (SP4) (Gill et al., 2012) being implemented. The SP4 uses a custom
language based on Declarative Networking methodology (Loo et al., 2009) with high level

1PacketStorm network emulators are designed to produce unfavourable network conditions in a con-
trolled environment: http://packetstorm.com/

2The BreakingPoint FireStorm is a rack mounted device designed to perform large-scale network and
security testing: http://www.ixiacom.com/products/firestorm

3Netropy 10G2 is a network emulation engine designed to simulate multiple network streams in a
single device: http://www.apposite-tech.com/products/netropy-10G2.html
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programming abstractions to provide the functionality to reprogram the system. Our re-
search differs from this approach by developing a language that focuses on general frame
manipulation as well as routing and delay within the platform rather than implementing
rule sets.

1.3 Research Goals

The focus of this research was to design and develop a flexible system comprising both a
hardware and software layer capable of processing Ethernet frames.

As its primary goals, the system should be capable of performing generic modifications to
network frames on Ethernet, routing frames between output modules of the underlying
device, and delaying received frames for a set period of time. The system should also be
capable of logging specific attributes associated with received frames to be stored for later
retrieval and use by the researcher.

Secondary goals included the production of a low cost device to act as dedicated hardware
on which the proposed system could operate. Application development for the system
was intended to be simple and intuitive and to not require an innate understanding of the
underlying hardware while still remaining expressive enough to allow for flexibility.

Considering these goals, the approach taken by this research to investigate them were as
follows:

1. Potential architectures which could act as the underlying hardware of the benchtop
device were investigated. After investigation, the most appropriate candidates were
selected to make up the device architecture. This selection formed part of the initial
phase of the research as the resulting selection affected design decisions during the
development and implementation stages of the system.

2. The design of the system began with determining a suitable structure for construct-
ing network applications which could take advantage of features advertised by the
selected architecture. Core components required for basic system operation were
designed which would form the basis of any future network applications designed to
use the system.

3. To account for ease of use, approaches into simplifying application development were
investigated and implemented. Such approaches include developing API calls which
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could be used in a more generic language such as C or C++ to develop applications.
Alternatively, a custom language specific to the platform could be designed which
would aid in the development of compatible applications.

4. Board design required further research into electrical characteristics such as signal
propagation time and best practices on component placement. It was expected that
a simplified version of the device should initially be developed to confirm proper
design before development of the final product was attempted.

5. Both the board and the system underwent a series of conformance tests, which
concluded functionality and determined feasibility of the system as a component
responsible for frame manipulation and delay at wire speeds of up to 100 MBit/s.

1.4 Research Scope

This research remained in the scope of a functional prototype that can provide all of the
intended functionality but allow room for future development and refinement. The focus
of the research was divided between the design and development of a physical processing
platform, and the design and implementation of the software layer. The physical platform
was limited to supporting four network interfaces due to cost limitations and presenting
a functional proof of concept rather than a production ready product.

The intention of the software layer was to develop and showcase the device performance
by means of application examples showing potential uses of the device. For this research
the focus of the software layer was on its functionality rather then completeness. As a
result some features have been made available as a proof of concept and may need to be
extended before their full functionality can be realised. Traffic manipulation was focused
at the frame level, however, selecting frame data based on fields relevant to higher level
protocols was implemented.

During an initial evaluation it was concluded that adding IPv6 support to the system
would introduce unnecessary complexity for an initial prototype. As a result, the initial
implementation of the system would only support the IPv4 protocol with IPv6 being re-
served for future development. Transmission speeds were limited to 100 MBit/s primarily
to minimise cost and to reduce complexity relating to Printed Circuit Board (PCB) design.
Scaling to gigabit speeds could be addressed in a future revision of the device.
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1.5 Document Conventions

For the remainder of this document, all URLs relating to websites, organisations, or
software discussed will be available as a footnote associated with the term. This will
avoid disrupting the flow of the document while still providing the reader with a reference
for further reading.

Acronyms used throughout the remainder of this document are provided in a glossary at
the beginning of the document. Furthermore, the first presentation of each acronym is
preceded with the full definition of the term.

Owing to the length of some URLs related to other works referred to within this text,
URL shortening was required to improve readability of the associated references. For
all URL redirects, the URL shortening service provided by Google4 was used. Appendix
A associates each shortened URL with the original reference for the reader should the
shortened URLs prove to be unsuitable.

Finally, this document uses appendices for presenting all code listings in excess of 30 lines
and screen captures relating to the user interface produced as part of this research. These
figures have been moved to the end of the document as they are considered too large to
be placed in line with the associated text without distracting the flow of the document.

1.6 Document Structure

This dissertation consists of seven chapters followed by a list of appendices which contains
supporting material. The remainder of the dissertation is structured as follows:

Chapter 2 focuses on providing the reader with the necessary background information
relating to technologies used in this research. This includes an introductory discussion
of the XMOS architecture relating to structure characteristics and the interprocessor
communication methods currently supported. General compiler theory is also briefly
discussed to give an overview of the language processor. Similar work to that undertaken
in this research is also reviewed.

Chapter 3 covers the design of a prototype system which will be used to achieve the
research goals. This design includes the selection of underlying hardware which the sys-
tem is expected to operate on. The structure of a module is defined in Section 3.5.1

4Accessible at: https://goo.gl/
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which discuses module communication requirements. Application examples are presented
and evaluated to aid in the design of a language which can represent application func-
tionality compatible with the proposed system before system components relating to user
interaction and application compilation complete the chapter.

Chapter 4 presents the implementation of the designed system and the development
of a Domain Specific Language (DSL). An investigation into transmission performance
achievable by the selected network architecture is undertaken. The system implementation
is divided into first constructing the subcomponents necessary to interface with external
hardware before further defining the structure of a user-defined module. A DSL is designed
and a supporting translator is implemented to aid in application development. The user
interface designed in Chapter 3 is also implemented in Chapter 4.

Chapter 5 focuses on the design and fabrication of a hardware platform using the XMOS
architecture. An investigation into power design is performed including sequencing char-
acteristics required by the XMOS microcontrollers. An initial prototype is first designed
as an intermediate step to help confirm design correctness and functionality of the pro-
posed layout. This initial prototype is then scaled to produce the hardware component
of the Network Layer for this research.

Chapter 6 discusses the testing of the implemented system. Pre-existing hardware is
used to create an initial prototype of the underlying architecture and tests concerning
the individual hardware components are performed to confirm functionality. Following
this, internal modules designed to form part of user-defined applications are tested using
simple application examples. More elaborate application examples are then designed and
discussed to show potential uses of the research.

Chapter 7 concludes the research where the feasibility of designing a benchtop device
to aid in traffic manipulation, within the constraints presented in Section 1.3, is reflected
on. Following this, a discussion into future work that could be undertaken to extend the
results of this research is presented.



2
Literature Review

2.1 Introduction

Network processing can be used in a wide range of research domains, from network sim-
ulation to network security, to assist in the generation of valid data for evaluation. As
discussed in Chapter 1, the goal of this research was to create a network packet processing
platform to aid in simulating a non-ideal network environment. This chapter addresses
similar work in the field and presents literature to introduce some of the concepts discussed
in this document.

As network processing requires knowledge in data transmission and some of the common
network protocols, this chapter covers some general networking concepts. Section 2.2
gives a brief overview of the network OSI model with focus on the Link Layer.

Additional information relating to the XMOS XS1 is presented in Section 2.3. As this
architecture forms core component of the network processor used in this research, this
information is required to provide the reader with further background information relating
to characteristics and communications model of the XS1 architecture. This information
is later referred to in Chapters 3 and 4 along with more context specific information.

7
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Table 2.1: OSI Seven Layer Reference Model (IEC, 1996)
7 Application Layer
6 Presentation Layer
5 Session Layer
4 Transport Layer
3 Network Layer
2 Link Layer
1 Physical Layer

To assist in giving the reader a better understanding into the DSL and its functionality,
Section 2.4 covers literature relating to compiler theory at a broad level, followed by a
more detailed discussion of DSLs generally. Tools used to aid in the development of the
web interface for the base platform are briefly covered in Section 2.5.

Developing a network processor is not in itself a novel concept, and numerous imple-
mentations exist. Section 2.6 details some similar work in the field of packet processing,
highlighting similarities with the goals of this research. From these works, common ap-
proaches to application development for packet processing can be extracted and analysed
before development of a prototype device relating to this research can begin.

2.2 Networking

Prior to development, basic networking concepts need to be discussed to better understand
how modern networks function. After a brief overview, network frames will be discussed
in terms of the IEEE 802.3 family standards (IEEE, 2002). Literature relating to some
common standards and protocols used in network transmission are also mentioned and
discussed.

2.2.1 Networking Stack

To aid in the design of network protocols, communication can be structured into layers of
services, with each service abstracting away the underlying services on which it operates.
This conceptual model allows network protocols to be built on top of pre-existing protocols,
delegating responsibility for lower-level operations. The Open Systems Interconnection
(OSI) model (IEC, 1996) shown in Table 2.1 is a common conceptual model that represents
the network as a hierarchical structure consisting of seven layers.
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The Application Layer acts as the top layer of the model and represents the highest
layer of abstraction available in the OSI model depicted in Table 2.1. This layer is
used by protocols responsible for communicating between application endpoints and the
underlying protocols used to achieve this are abstracted from services using an Application
Layer protocol to communicate (Kurose and Ross, 2013).

The Presentation Layer represents the protocols responsible for handling data conversion
and compression before transmission can occur. Protocols residing in this layer allow data
to be translated between different formats such as EBCDIC and ASCII as well as data
reduction and encryption. Data reduction is performed by compression protocols such
as Joint Photographic Experts Group (JPEG) (Dubendorf, 2003) for images and Motion
Picture Experts Group (MPEG) for video (Dubendorf, 2003).

Communication between network devices takes place within ‘sessions’, which consist of
sequences of service requests and responses. Protocols residing in the Session Layer such
as the Session Control Protocol (SCP) are used to manage and coordinate these sessions
(Dubendorf, 2003).

The Transport Layer is responsible for the transmission of an entire message from the
source host to the destination host. The Transport Layer is unaware of the context of any
message it transmits: this is the responsibility of the layers that use this service. The two
most common Transport Layer protocols used are TCP and UDP, both of which operate
to transmit entire messages across the network (Forouzan and Fegan, 2007).

Protocols operating at the Network Layer are responsible for transmitting datagrams be-
tween hosts over a network. Datagrams conform to the IP protocol in terms of how the
datagram fields are ordered to ensure compatibility with other routing devices also sup-
porting the same protocol (Kurose and Ross, 2013). The layer responsible for transmitting
data between the individual nodes that form part of the network path between hosts is
the Link Layer. At this layer, the data transmitted is stored in frames which specify the
destination address of the next physical node on the path (Dubendorf, 2003). This is not
to be confused with the destination address at the Network Layer which specifies the host
at the end of the route. The Link Layer can be divided into two components, the Media
Access Control (MAC) Layer and the Logical Link Control (LLC) Layer.

The MAC Layer handles data access management for both access and transmission. This
sublayer defines the MAC address which uniquely identifies each device within the net-
work (Dubendorf, 2003). The LLC Layer is responsible for handling error checking and
flow control of the Ethernet frame. Flow control is used to monitor and moderate data
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transmission between devices to ensure no device gets overwhelmed and risks dropping
frames (Dubendorf, 2003). Error checking is necessary as frames can become corrupted
during transmission due to interference on the physical medium. A common approach
to handling error detection at the Link Layer is to include a redundant field, the Frame
Check Sequence (FCS) (see Figures 2.1 and 2.2). The FCS is generated by performing
a cyclic redundancy check (CRC) on the entire frame (excluding the FCS field). The
result of the CRC is placed in the FCS field before transmission. The receiving interface
then extracts the FCS and performs its own CRC on the entire frame. The CRC result
is compared to the value in the FCS and if the values match the frame is considered
uncorrupted (Forouzan and Fegan, 2007).

Finally, the Physical Layer is responsible for data transmission as individual bits across
a specific medium. The protocol used to perform the data transmission is highly depen-
dent on the physical medium being used as it must specify the mechanical and electrical
characteristics of the medium (Forouzan and Fegan, 2007). For example, 100BASE-TX
specifies how data bits are transmitted as a potential difference across two twisted pairs of
a Category 5 (CAT5) cable, one for transmit and one for receive. Meanwhile, 100BASE-
FX standardises the use of two fibre optic strands to transmit bits as near-infrared (NIR)
light pulses in full duplex mode (IEEE, 2002).

2.2.2 Network Frames

As the focus of this research is to provide traffic manipulation at the Link Layer, a
more in-depth discussion of network frames and Link Layer protocols is necessary. The
Physical Layer is usually handled by dedicated hardware such as a physical network inter-
face (PHY) which accepts network frames and handles their transmission and reception.
Network frames must be submitted to the PHY in a specific format in order for them
to be transmitted correctly. A network frame is described in RFC 1122 as a ‘unit of
transmission in a Link Layer protocol, and consists of a Link Layer header followed by
a packet’(Braden, 1989). The contents of the associated packet depend on the protocol
under which the frame is being transmitted.

Figure 2.1 shows the basic structure of an Ethernet frame. Each frame begins with a
preamble which is a 56-bit wide word of alternating 1 and 0 bits followed by a 1 byte start
frame delimiter (SFD). The preamble is primarily used for synchronisation of the frame
receiver with the SFD indicating the beginning of a frame. The second field holds the
destination MAC address of the frame under transmission which all listening receivers can
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Figure 2.1: Layout of an IEEE 802.3 Compliant Ethernet Frame
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Figure 2.2: Layout of an IEEE 802.3 Compliant Ethernet Frame with IEEE 802.1Q (VLAN)
Header (Bonaventure, 2011)
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read to determine if the frame is addressed to them. The third field contains the MAC
address of the PHY transmitting the frame onto the physical medium. The fourth field
of the Ethernet frame contains either the frame size or the EtherType which indicates
the protocol the frame is being transmitted under. To eliminate ambiguity as to whether
this field is an EtherType or a size indicator, the IEEE 802.3 standard enforces that
EtherType numbering must be greater or equal to 0x600 (1536). The reasoning is due to
the maximum Ethernet frame size being limited to 1500 bytes for non-jumbo frames1.

The VLAN protocol allows IEEE 802.1q switching devices to manage multiple Virtual
LANs on the same physical LAN by maintaining a MAC table for each VLAN identifier
recorded. Figure 2.2 shows an Ethernet Frame including a VLAN field or ‘tag’ which
precedes the EtherType field. When a frame is received with an unknown or multicast
destination address and includes a VLAN tag, that frame is only broadcast to ports
associated with the VLAN identifier. If the VLAN tag is unknown or blocked, the packet
is discarded (Bonaventure, 2011). To differentiate frames with a VLAN tag from those
without, the IEEE 802.1q header must begin with the protocol tag identifier 0x8100,
indicating the presence of a VLAN tag within the frame (Gwan-Su and Hong-Hee, 2005).
The PCP field indicates the transmission priority of the frame. Following the PCP is
a bit reserved to maintain compatibility between Ethernet and Token Ring networks
(Bonaventure, 2011). The remaining 12 bits make up the VLAN identifier, allowing for
up to 4094 VLANs.

2.3 XMOS XS1 microcontroller architecture

XMOS is a semiconductor company focused on developing multi-core, multi-threaded
processors. This is apparent in the XS1 microcontroller architecture designed for event
driven applications (May, 2009). The XS1 architecture is conceptually similar to the
Transputer with improved IO capacity and the XC programming language which is an
extended version of C (Dibley, 2014). The Transputer architecture was based on the
concept of creating a range of processors that can operate as individual entities or be
linked together to form a more complex parallel computer. Each Transputer contained
its own RAM and IO controllers with dedicated channels for communication with other
transputers (May and Shepherd, 1985).

The XS1 architecture is designed to provide parallel processing as well as determinism
1Jumbo frames can carry a 9000 byte payload http://www.ethernetalliance.org/library/whitepaper/ethernet-

jumbo-frames/ .
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and bounded latency for embedded systems. The architecture provides this functionality
by including a number of XCore tiles in each microcontroller. Each tile contains 64KByte
block of SRAM and up to eight ‘logical cores’. Each logical core contains 16 dedicated
registers and is capable of executing a single thread (Martins et al., 2012). The memory
block is shared between each thread executing on a tile, provided all the threads obey
the disjointness rules. These rules enforce read and write restrictions to prevent memory
violations in a parallel context. For a thread Tx that contains a reference or modification
to some variable in shared memory V the restriction is:

{ V ϵ Tx } → { V !ϵ Tt } where t ̸= x (2.1)

This implies that, if some thread contains a reference or modification to a variable, no
other threads operating in parallel may access that variable. However, concurrent threads
may access a shared variable provided all access to the variable is read-only (May, 2009)

A scheduler is implemented to manage time slicing between threads during operation.
The scheduler guarantees a minimum number of processor cycles associated with each
thread based on the number of threads active (May, 2009). More accurately, the thread
performance is dependent on two factors; the number of threads active on the tile [n], and
the maximum pipeline depth [p]. The relationship between the thread performance f(x)
and these factors can be shown by:

f(x) =


1
n
, if n ≤ p

1
p
, otherwise

(2.2)

This equation indicates a decline in thread performance as the number of threads increases
with the maximum possible performance limited by the pipeline depth. Reducing the
thread count beyond the pipeline depth results in no performance improvement. For an
XCore logical tile operating at 500 MIPS2, this approximates to a worst case operation
speed of 500

8 or 125 MIPS. Due to the independent registers available to a thread and
the implementation of the scheduler, it is possible to view the threads executing on a
single tile as logical processors with shared memory. The number of logical processors
available for use on a given tile is defined by the number of logical cores implemented
in its hardware design. The xCore tiles present on a XS1-L1 each contain eight logical
processors. (XMOS, 2013d)

2Million Instructions Per Second.
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The architecture allows threads to communicate within an XCore tile or between tiles
within the microcontroller. An interconnect is implemented consisting of on-tile switches
and xConnect3 links between tiles. An interconnect is then implemented on this configu-
ration which can allow data transfer of up to 250 Mbit/s and supports multiplexing. The
interconnect acts as a medium for message passing between threads. The interconnect
can also be used to allow a thread executing on one tile to access memory on a different
tile (XMOS, 2012b).

2.3.1 Communication

A central goal of the XS1 architecture is the deterministic execution of concurrent tasks.
Each XCore tile implements a communications infrastructure that enables concurrent
tasks to exchange data and control messages This communication infrastructure is rep-
resented programmatically as a channel variable which can be declared and passed to
two concurrent tasks prior to execution. During execution, either task may write or read
data to/from the channel but only when the other task is expected to do the alternative
otherwise a deadlock4 situation could occur as the tasks will block on the channel until
the data put into the channel buffer has been removed by the other task.

1 void f ( chanend c ) {
2 char va l ;
3 c :> va l ; //Read a charac t e r from the channel b u f f e r
4 }
5
6 void g ( chanend c ) {
7 c <: ’ a ’ ; //Put the charac t e r ’ a ’ i n t o the channel b u f f e r
8 }
9

10 int main ( void ) {
11 chan c ; //Channel f o r th reads to communicate over .
12 par
13 { // Execute the f o l l o w i n g two s ta tements in p a r a l l e l .
14 on s tdco r e [ 0 ] : f ( c ) ;
15 on s tdco r e [ 1 ] : g ( c ) ;
16 }
17 }

Listing 2.1: Sample Code to Pass a Single Character Over a Channel

3The xConnect is a scalable architecture that provides inter-tile communication (XMOS, 2013c).
4A situation where both processors are waiting on the other before being able to continue execution.
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In Listing 2.1, a channel is used to pass the character ‘a’ from one thread to another
before terminating. The logical core that is selected for a task to be executed on can be
specified using the ‘stdcore’ command, otherwise a free logical core is selected within the
tile. The ‘f()’ and ‘g()’ functions each specify a ‘chanend’ which data may be transmitted
over or received from. In the main functions, a channel is created and handed to both
functions. During execution, tokens are passed from function ‘f()’ to the interconnect to
establish a connection with the function ‘g()’. This token includes an address indicating
the destination interconnect and destination logical core for communication. In this case
there is only one interconnect so the tokens are directed to the logical core handling
function ‘g()’. Once a connection is established, the data (in this case the character ‘a’)
is transmitted before the connection is released.

At the program level, it is convenient to think of a channel as a pipe with each end
attached to a core; at the hardware level this is not the case. On a tile, resources are
shared between each core. These resources include channel ends which a tile has a finite
number of. When a channel is declared in the program, the associated number of channel
ends are then allocated to the relevant processors (XMOS, 2013c).

To further enhance communication between concurrent tasks, each tile supports routing
traffic from the switch through a link, as shown in Figure 2.35. Each link is associated
with a specific set of pins on each device. Currently, there are two types of links that the
switch can use to communicate; the serial XMOS link and the fast XMOS link. The serial
XMOS link depicted in Figure 2.4 is also referred to as a two wire link and consists of
four wires for full duplex operation. Each wire is associated with a state for a single bit so
that during transmission the wires do not maintain the same signal unless transmission
is complete or an error has occurred. The lines associated with the serial XMOS link are
capable of achieving 200 million pin transitions a second with a byte being transmitted
every 10 transitions. This results in a theoretical speed of 160 Mbit/s (May, 2009).

Alternatively, the fast XMOS link consists of 10 wires and has a theoretical duplex speed
of 400 Mbit/s. Figure 2.5 depicts the Fast Link connection with five lines dedicated
to data transmission in each direction. Using a five line interface, a nibble is sent by
associating a value with each of the lines as shown in the state diagram (May, 2009). In
practice however, achieving speeds in excess of 100 Mbit/s with the serial XMOS link
interface or 250 Mbit/s with the fast XMOS link interface is difficult as this value does
not take all control tokens into account. Furthermore, the theoretical speed assumes a
perfect connection between the switches (XMOS, 2013c).

5https://www.xmos.com/files/images/xlinks.jpg
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Figure 2.3: xLink Layout for an XMOS Controller Containing Two XCore Tiles

Figure 2.4: XMOS Serial Link Communication (May, 2009)

Figure 2.5: XMOS Fast Link Communication (May, 2009)
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To manage communications between connections, each XMOS device contains a switch
which handles the routing of channels relating to that tile. The switch supports up to
four intratile channels and up to eight intertile channels, all duplex. However, the actual
number of links present on an XMOS microcontroller depends on the package under
consideration. In multi-tile packages, at least one fast XMOS link per tile is reserved for
communication within the package while on smaller packages such as the XS1-L4 (XMOS,
2013i), only two links are available due to the reduced number of pins.

Associated with these switches is a series of tokens that are used to control the setup and
tear-down of a route between two logical cores. Data may be transmitted across a channel
either as packets or as a stream. When transmitted as a packet, the established route is
torn down after each packet is transmitted and set up again before the next packet can
be sent. This process is designed to include very little overhead and so does not cause any
notable drop in throughput over the link. By enforcing that the communication is torn
down after each packet is routed, the resources used by a route are made available for
other communications. As a result, multiple logical cores may share the resources needed
to perform communications.

Should a deterministic rate of throughput be required, an application can specify stream
transmission, in which case the hardware resources for a connection between two tasks are
reserved and maintained. Streams are routes between processors that are not torn down
after each data packet is sent. In this situation, the connection is maintained and so the
overhead relating to tear-down and setup is removed. Furthermore, as the resources are
not shared, throughput of the streaming task is not dependent on whether other tasks
need to communicate. The consequence is that no other processor can use the resources
held by the route, reducing the number of connections the switch is capable of maintaining.
If there are specific situations where the resources associated with a stream can safely be
shared, a PAUSE token can be used to allow multiplexing on part of the route used by the
stream. When this token is sent, the connection between the processor sending the token
and the local switch is torn down while the other end of the connection is maintained.
This allows another task on the same tile as the processor which sent the PAUSE token
to use the route resources. Once done, the connection is set up again so that streaming
of data can continue (XMOS, 2013c).
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Figure 2.6: Translator Overview

Figure 2.7: Compiler Overview

2.3.2 Programming

XMOS supports application development in high level languages such as C and C++.
XMOS have also developed an extended version of C called XC which allows the pro-
grammer to take advantage of the concurrency and channel communication features of
the architecture. For logic analysis as well as timing evaluation, XMOS provides the
xTIMEcomposer toolchain. This toolchain can be used to analyse applications written
for the XS1 architecture and verify that execution timing constraints are met for a given
application / configuration. The toolchain also includes xSCOPE which is a software
analyser that can monitor applications and memory usage during execution on the device
(XMOS, n.d.b).

2.4 Compiler Theory

Programming languages are an essential tool for describing an application in a manner that
is understandable to people and can be translated into a format more easily understood
by machines. A program that performs this translation is termed a ‘translator’, and can
be seen as a mapping function as shown in Figure 2.6 (Aho et al., 2006). An equivalent
view of a translator is a function whose domain is the source or input language and the
range is the target or output language (Terry, 2005).

A translator is a general term for a language processor, and these can be divided into
different classes each focusing on a different type of translation. These classes are char-
acterized by the input language they accept and the type of output they produce. Two
classes of particular interest to this research are the compiler and the high level translator.

For both a compiler and high level translator, the goal of the software is to accept an
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Figure 2.8: Two-Stage Compilation

application written in the source language and translate it into a functionally equivalent
application but written in the target language (Aho et al., 2006). A translator can be
classified as one or the other depending on how closely the target language relates to
machine language that can be processed by the target platform.

In general terms, a compiler is a language processor designed to translate a source appli-
cation from a human readable format into a language that can be executed on the target
platform as depicted in Figure 2.7. A translator operates in a similar fashion except this
language processor translates the source application code into either a language that is
still considered high level and often still human readable or into some intermediate lan-
guage. These translations are often used for two stage compilation such as in Figure 2.8
or bootstrapping (Terry, 2005).

Though depicted as a single entity in Figure 2.7, a compiler consists of a sequence of
processes or phases, each of which perform a specific task in the translation process
(Louden, 1997). These phases can be treated as distinct entities though often they are
combined to form larger links. Louden defines this sequence to consist of six stages
described in Figure 2.9. Associated with this sequence are three external components;
the literal table, the symbol table, and the error handler (Louden, 1997).

2.4.1 Literal Table

The literal table is used to store constants and strings relating to the source code. The
purpose of this object is to reduce the memory consumption of the final application on
the target platform. This is achieved by ensuring only one instance of each constant or
string is included and that these are included at the global scope. These constants and
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strings will then be accessible from all scopes within the application code (Louden, 1997).
This is possible as strings and constants are immutable and so are not modified within
the application code.

2.4.2 Symbol Table

The symbol table or name list (Grune et al., 2012) is a record of all identifiers present
in the source application code. Each record associates an identifier with all its collected
properties such as its type, its memory requirements, value, or (in the case of function
identifiers) input parameters (Terry, 2005).

2.4.3 Error Handler

Finally, to aid in the development of applications in the source language, a compiler should
include an error handler to help accurately identify errors. The error handler works in
two parts: error detection and error recovery. The errors a compiler can detect are syntax
errors which occur when incorrect syntax is found during parsing (Grune et al., 2012) or
the symbol table indicates a type mismatch.

1 // Simple main func t i on w r i t t en in C
2 void main ( void ) {
3 int x , y = 7 //The ’ ; ’ i s f o r g o t t e n here
4 y = x + 2 ;
5 //ˆ Here i s where the parser w i l l d e t e c t an error .
6 }

Listing 2.2: Error Detection Example

Once an error has been found, error detection must then determine what error message
to present to the user as often the location at which the error was detected may not
be the location of the error itself (Grune et al., 2012). For example, in Listing 2.2, the
actual error is a missing ‘;’, however the compiler only detects an error once it starts
processing the next line. Error detection methods must then decide if the error is due
to the missing ‘;’ or if the user was indeed continuing the expression and is potentially
missing an arithmetic symbol.

While error detection must try identify the error to present the appropriate message to the
user, error recovery is responsible for enabling the syntax parsing of the source language
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to continue without falsely identifying errors as a consequence of detecting the initial
error (Terry, 2005). This can be done through either error correction or non-correcting
error recovery. Error correction substitutes the offending symbol with the most likely
alternative and continues normally (Grune et al., 2012) while non-correcting error recovery
stops parsing the program using currently stored information and continues afresh for the
remainder of the source code (Richter, 1985).

2.4.4 Domain Specific Languages

Programming languages can be grouped according to the level of generality of the applica-
tions they are designed to create. For languages such as C, C++, Java and C#, the range
of possible implementations is very large. As a result, these languages are classified as
General Purpose Languages (GPL) (Bentley, 1986). A GPL boasts a large set of features
allowing for high functionality and application development in a large range of environ-
ments. Alternatively, a DSL is more limited in the features available which in turn limits
the range of possible implementations of the language (Mernik et al., 2005). In exchange,
a DSL can be optimized to suit a particular domain and becomes very expressive for
applications within that domain (van Deursen et al., 2000).

As discussed by Cleveland and Uzgalis (1977) and van Deursen and Klint (1998), a detailed
understanding of the problem domain is necessary before attempting to develop the DSL.
To achieve this, it is recommended that the investigation and development are guided by
the following steps:

• Identify the target domain.

• Investigate the domain and gather relevant knowledge.

• Use this knowledge to develop a set of semantic notations ans operations for the
domain.

• Design a DSL that describes applications targeting that domain.

• Design an interpreter or compiler that transforms applications written in the DSL
into the semantic notations and operations discovered.
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2.5 Web Development Tools

As a component of this research includes the development of a web interface, it is necessary
to discuss the tools used to render the interactive web pages. The three tools we discuss
further are: Common Gateway Interface (CGI), JavaScript, and Asynchronous JavaScript
and XML (AJAX).

CGI is a lightweight interface that allows for the use of external script to generate dynamic
webpages (Cozens and Wainwright, 2000). The client makes a HTTP request to the server
for a CGI script. The server responds by executing the CGI script as a separate process
and passes parameters included in the request to the process. The output of the process
is then collected and served back to the client as a HTTP query response (Gundavaram,
1996).

The primary concern with using CGI is that a new process is started to execute a CGI
script every time the associated request is received from a client. For servers expecting
regular CGI requests this approach is considerably more resource expensive than having a
continuous application running (Rhodes and Goerzen, 2010). However, for this research,
the webserver is only expected to serve a limited number of clients at any given time so
using CGI scripts should not cause a significant impact on the webserver.

JavaScript was developed by Netscape Communications Corporation and was one of the
first Web scripting language to be implemented (Moncur, 2000). Even so, it is still one of
the most popular scripting languages in use and is a common way to include interactivity
on served web pages. JavaScript programs execute within the browser and so allows for
computation to be done by the client rather than the server (Thau, 2000). This improves
responsiveness of the web page by eliminating the latency of communication between the
client and server. Furthermore, by operating as a client based application, the server only
has to transmit the bulk data and may delegate further processing to the client.

AJAX is a group of tools that are combined to create asynchronous applications by allow-
ing the web application to transmit and retrieve data from the server in an asynchronous
manner. This is achieved by separating the controller and view components of the web ap-
plication such that communication between the controller and server can happen without
interfering with the view. Whenever an AJAX related JavaScript call is initiated by the
web application view, the associated data is collected and included in an HTTP request
by the controller. This request is transmitted to the server and any response is received
by the controller. Once processing of the request is complete the view is updated with
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the new HTML and CSS data (Holdener, 2008).

2.6 Related Work

As development of a network processor is not a novel concept in itself, it is necessary
to review literature relating to similar works before research can progress. Considering
similar research highlighted popular approaches that were considered during platform
design.

2.6.1 Click Modular Router

The Click Modular Router6 is a software architecture designed to build flexible routers.
The architecture comprises elements that each represent a single unit or stage of processing.
All actions taken by the designed router must be encapsulated in these elements which
are then linked to create the routing application (Kohler et al., 2000).

Click comes with a custom language to aid in router development, however this language
was designed exclusively for declaring and connecting elements. The element classes
themselves are written in C++ and a supporting collection of libraries to simplify the
process. The routing application developed using Click is designed to run on the Linux
kernel. Packet references are transmitted between elements, while the actual packet is
stored separately until it is either dropped or transmitted off the platform. This greatly
reduces overhead in communication between elements (Kohler et al., 2000).

The modular approach taken by the Click modular router is both novel and effective in
providing scalability to a processing platform. The Click modular router functionality is
very similar to the goals that this research aims to achieve, with the most notable difference
being the intention to develop a physical device dedicated to traffic processing rather then
implementing the functionality as a kernel module. A second key difference is the focus on
user friendliness, especially with users who have a limited exposure to programming. The
elements in Click are written in either C or C++ which, in these languages, requires the
user to have reasonable familiarity. This research attempts to address this by providing
a more simplified approach to programming the platform, either by a minimal scripting
language or connecting prexisting nodes to form an element.

6https://github.com/kohler/click/
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2.6.2 NetFPGA

The NetFPGA7 project revolves around the development and maintenance of open source
hardware relating to the NetFPGA network adaptor. Supporting these adaptors is a
collection of reusable modules designed to aid in the development of common network
related tasks. Initially, the intent was to develop the NetFPGA network adapters as rack
mounted switches with remote access for upload and debugging (Watson et al., 2009).
The initial NetFPGA network adapters went through two revisions, the first beginning
in 2001 and the second in 2004. After testing, limitations of the initial revisions were
recorded and addressed in the second revision. Chief amongst these limitations was the
lack of a CPU on the NetFPGA network adapter. Developing applications to operate
on the adapter allowed for processing to occur at line speeds however the device lacked
resources for more data intensive processing. Furthermore, to account for the lack of a
CPU, the NetFPGA network adapter had to be linked to a remote host to use pre-existing
software which induced significant processing latency (Watson et al., 2009). To account
for this and other limitations, the second revision of the NetFPGA network adapter was
developed as a PCI card that could be mounted in an existing host. This approach
allowed the network adapter to use the PCI bus for power and communication with the
host (Watson et al., 2009). Packets can be received by the NetFPGA network adapter via
the input module either from the four onboard gigabit network interfaces, from the host
via the PCI interface, or from other NetFPGA network adapters connected using one of
two onboard SATA interfaces (Lockwood et al., 2007).

The intent of the NetFPGA project is to provide a open platform on which network re-
lated architecture can be rapidly developed. A basic IPv4 router is implemented using two
software packages, one to handle routing and IP lookups, and one for the user interface.
The hardware aspect of the router is broken into a series of pipelined stages where each
packet is received from an onboard interface before being handed to the user datapath.
The datapath performs the IP lookup and selects the appropriate output queue to move
the received packet to, as well as performing all necessary modifications such as TTL
checks and decrements. The output ports are then continually emptied by the associated
network interface (Naous et al., 2008). The NetFPGA network interface has also been
used to create a packet generator that is capable of generating traffic at gigabit speeds
by reading a previously recorded PCAP file and regenerating the associate packets while
acutely observing the recorded packet delay. The generator also includes accurate times-
tamping for received traffic which can then be recorded in a PCAP-compatible format for

7http://netfpga.org/
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later use (Covington et al., 2009).

2.6.3 Netgraph

Netgraph8 is a system designed to allow for the instantiation of kernel objects to perform
networking functions in the FreeBSD kernel. As described in the FreeBSD man pages,
netgraph allows for the inclusion of nodes in the kernel to aid in network processing.
These nodes can communicate by using channels described as hooks (Elischer and Cobbs,
2005). Network packets are described as flowing through the nodes in a bidirectional
manner. Each node processes a packet in some way before passing it to the next node.
This approach of chaining elements is similar to the approach taken by the Click Modular
Router.

2.6.4 SP4

Similar research at the University of Pennsylvania has developed the Scalable Programmable
Packet Processing Platform (SP4) (Gill et al., 2012). This research uses a declarative lan-
guage to develop applications from prexisting modules which are then deployed onto the
processing platform (Gill et al., 2012). The SP4 is based on an optimized version of the
networking engine called the RapidNet networking platform. RapidNet takes an approach
to network protocol simulation called declarative networking which uses a query language
called Network Datalog (NDLog) to to implement routing protocols (Muthukumar et al.,
2009). Though the research being undertaken on the SP4 is similar to the research dis-
cussed here, the SP4 focuses on providing a platform the rapid development of network
protocols and as such differs from the goals of this research.

2.6.5 Switchblade

Similar research to that proposed in this thesis is the Switchblade platform (Anwer et al.,
2010). The Switchblade is a hardware platform designed to aid in the rapid development
of new or customised network protocols. The platform is designed around an embedded
FPGA architecture and has been implemented using the NetFPGA platform. The goals of
the device are to provide rapid turnaround on network protocol development by providing
a platform that can operate at wire speeds (Anwer et al., 2010).

8https://www.freebsd.org/cgi/man.cgi?netgraph(4)
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The Switchblade supports flexibility by incorporating a customizable hardware module
which can be used to perform most tasks common to protocols, such as acquiring the
destination address of a frame or calculating the associated checksum. These modules
can then be included as part of a larger project that implements the protocol being
developed. For data intensive processing better suited to implementation in the software
layer, the Switchblade implements software-based interrupts allowing such processing to
happen outside of the FPGA and be injected at a later stage. Switchblade is compatible
with existing routing software such as Click (Anwer et al., 2010).

2.6.6 Scout and Silk

Another software-based approach similar to this research is the Scout architecture which
operates by segmenting the communication layer into paths or slices. Each slice is as-
sociated with a particular application or service allowing traffic to an application to be
individually addressed. A design feature of Scout that is of interest to this research is its
extensibility. The architecture was developed following a modular design making it easy
to extend by including new components which can operate alongside existing components
of the architecture (Montz et al., 1994). Improving on this, SILK implements the Scout
architecture as a networking module to effectively replace the current networking module
in the Linux kernel. This module allows application running on the operating system to
be classified into slices or paths which allows for individual addressing (Wehrle, 2005).

2.6.7 Frenetic

Frenetic9 is a high level language designed to aid in the programming of software-defined
networks (SDN) implemented across a distributed collection of switches. Frenetic provides
an alternative solution to network controller software such as NOX (Gude et al., 2008)
and OpenFlow (McKeown et al., 2008). The language operates using a declarative query
syntax to perform network traffic classification and aggregation (Foster et al., 2011). The
implemented network query sub-language operates by installing a series of low-level rules
on switches which allow applications implemented using Frenetic to observe the target
network. Frenetic attempts to improve on existing languages in the domain by providing
race-free semantics, modular design, and single-tier programming. Frenetic also assists in
application development by informing the user on performance costs relating to specific

9http://www.frenetic-lang.org/
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programming constructs (Foster et al., 2011).

2.6.8 Nettle

Nettle10 is a system designed to simplify development and configuration of SDNs. The
system operates on OpenFlow-compatible network switches and provides a family of ex-
tensible domain specific languages (EDSLs) to aid in the development of compatible ap-
plications (Voellmy et al., 2010). Each EDSL is designed to cater for specific operational
domains. The goal of the overall system is to express network requirements in a clear
and concise manner while also providing the mechanisms to implement network control.
These mechanisms allow Nettle to capture and generate control messages associated with
OpenFlow compatible switches (Voellmy and Hudak, 2011).

2.6.9 Procera

Procera is a control architecture for SDN that includes a declarative language aimed at
supporting expressiveness of high level network policies and constructs to support common
policy queries (Voellmy et al., 2012). Procera supports flow constraint functions, which
are used to limit the behaviour of low-level network controllers and can be implemented
using high-level control functions. Procera is designed as a policy layer that operates on
top of an existing network controller such as Frenetic (Foster et al., 2011), NOX (Gude
et al., 2008), or Nettle.

2.7 Summary

This chapter presented literature relating to several areas of this research. Section 2.2
provided a brief overview to the OSI model before discussing the Link Layer and the
structure of an Ethernet frame. Section 2.3 provided background information on the
XMOS architecture and its characteristics, detailing the communication interfaces sup-
ported by the architecture. Section 2.4 discussed the theory relating to general compilers
and the components commonly needed to construct them. Following this, DSLs were
discussed. Section 2.5 briefly highlighted some common web development tools that were
used in this research while Section 2.6 presented similar research in this field.

10http://haskell.cs.yale.edu/?post type=publication&p=350
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Design

3.1 Introduction

To achieve the research goals stated in Chapter 1, a prototype platform was designed and
developed. Section 3.2 begins by describing the intended functionality of the platform
which is later implemented as a benchtop device. Initial design work was published in
Pennefather and Irwin Pennefather and Irwin (2014) which provides a brief overview of
topics covered in this chapter.

For design purposes, the proposed platform is divided into two layers: the Network Layer
and the Base Layer. The justification for separating the system into two subcomponents
is due to the two distinct domains each layer must operate in. The first domain relates
to the routing and manipulation of network frames as specified by the user. Subsystems
operating within this domain are considered time critical to minimise latency incurred
during frame processing. The second domain includes all auxiliary subsystems necessary
for the successful operation of the platform. These subsystems include interfacing with the
user, collecting and storing data from the application, and compiling and programming
the application binaries for execution.

29
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Section 3.3 describes two potential hardware candidates that could be used to act as the
hardware base of the Network Layer. A brief overview of each candidate is given relating
to architecture type, Ethernet functionality and development tools. The section concludes
with the selection of a suitable candidate architecture to act as the hardware base.

Following the Network Layer selection, a similar investigation is performed in Section 3.4
to select an appropriate device to act as the Base Layer of the platform. This research
opted to implement the Base Layer as an existing device capable of performing the tasks
required rather than developing custom hardware to achieve the same goals.

After a suitable architecture has been selected for both layers of the proposed platform,
the remainder of the chapter focuses on developing the software based on the proposed
hardware configuration. Section 3.5 is divided into subsections to give a brief overview of
the approach taken in this research to develop the application software. An application
example is presented and discussed to highlight areas of interest that need to be accounted
for during implementation.

The software that operates on the Base Layer is also described towards the end of Section
3.5, including a brief discussion on how the user interface will be presented. This chapter
concludes with a summary reflecting on the system design proposed in this chapter.

3.2 Platform

Before design and development of the system could begin, it was first necessary to se-
lect appropriate underlying hardware on which to implement each of the platform layers.
These architectures were then used to design and fabricate a benchtop device capable of
executing the proposed system.

The completed device was expected to provide a hardware platform capable of parallel
processing on which the Network Layer of the system could be executed. This platform
must include physical interfaces for CAT 5 wire links as well as dedicated SDRAM for
temporary frame storage.

The device must also support a hardware platform on which all components not directly
related to network processing can run. These components include a user interface such as
a web server and a database for data storage and management. For the benchtop device
to become standalone, the Base Layer may also be required to include the compilation
toolchain required to compile the application source code into an executable format for
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Figure 3.1: Architecture Overview

the Network Layer hardware.

By logically separating the system into two layers, separate architectures could be chosen
for each to ensure optimal hardware configuration for the required functionality. Figure
3.1 provides a basic overview of the device which indicates the responsibilities of each
layer. From the diagram it is clear that the layers will communicate in two situations:
uploading of an application, and logging of data from the running application. Provided
that the method the two layers will communicate in is standardised, the architectures
used for each layer can be selected independently.

The Network Layer in Figure 3.1 is responsible for executing the client application and
handling all network-related IO, with the exception of the user interface. One of the
research goals described in Section 1.4 is to have the device operate at 100 Mbit/s and as
a result, this layer must be able to execute time sensitive applications while maintaining
network transmission speeds in this region. To maintain these speeds, all application logic
should be suitably pipelined in an attempt to minimize processing impact on latency.

The Base Layer is responsible for allowing the platform to interface with other devices.
This layer includes storage devices for storing log files generated and an I/O interface. This
layer could potentially include an additional Ethernet interface for uploading applications
to be run as well as accessing stored log files. This layer does not participate in the
execution of the applications but rather provides the base of the platform responsible for
collecting and presenting network related data to the user.
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3.3 Network Layer

Applications operating on the Network Layer are intended to focus on performing frame
manipulation and routing while minimizing the performance impact on transmission speed
due to latency arising from frame processing. Considering this requirement, it is necessary
to investigate potential architectures that could be used to implement this layer.

The architectures that are investigated in this chapter are the XMOS XS1 architecture and
the Xilinx Spartan 6 FPGA architecture. Both architectures were selected owing to their
low cost, ability to perform IO operations at speeds suitable for network communication,
and their ability to perform multiple operations in parallel.

3.3.1 XS1 Architecture

Details relating to the XMOS XS1 architecture are presented in Section 2.3 which provides
an overview of the architecture structure, communication, and programming environment.
The proposed component used to represent this candidate is the XMOS XS1-L8A available
for approximately $151.

I/O

Communication between the application executing on a logical processor and the attached
hardware is achieved using ports. In the XC application code, these ports represent logical
endpoints which are associated with a pin or group of pins, allowing the logic level to be
read or written to.

Once specified, each port can be associated with a different timing block. A timing block
specifies the frequency which in turn determines the sampling rate and latency of that
pin block. A timing block can come from an external clock source or some variant of the
system clock.

The XS1 architecture has the ability to delay the system clock used by applications while
allowing the timing blocks associated with IO to operate normally. This functionality
allows the XS1 to provide a larger window for sampling input signals which in turn
enables the microcontroller to guarantee correct signal reception for an application clock

1As of August 2015 http://goo.gl/XRmUF1.
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cycle. This is achieved by reducing the application clock frequency so that the application
instruction and signal sampling are not done on the same clock cycle (XMOS, 2010).

Ethernet

Layer 2 network communication can be implemented by including the XMOS layer 2
Ethernet MAC component. This component comes in two versions: the full version and
the light version (XMOS, 2013e). Both versions support the IEEE 802.3u standard (IEEE,
2012) but vary in the number of features supported. In both cases, the operational speed
to the PHY is limited to 100 MBits/s.

The full version allows for multiple clients and independent buffering as well as more
accurate time stamping and support for the IEEE 802.1 QAV standard (IEEE, 2009).
Owing to the larger feature set, the full version also requires five logical processors to
operate. Alternatively, the lite version is limited in features supported and only allows for
one receive client and one transmit client. The advantage of this version when compared
with the feature rich alternative is that it only requires two processors to operate (XMOS,
2013e).

Both versions of the component work by running a server process which can send and re-
ceive network frames using a RMII interface to the PHY. Transmission occurs by splitting
the server into two subcomponents which are the transmit subcomponent (TX) and the
receive subcomponent (RX). Each subcomponent then supports a series of queues which
can contain buffers for storing frames received or to be transmitted. Each frame is stored
in a buffer until it is either transmitted, dropped, or collected by the client application
(XMOS, 2013e).

Development Tools

The XS1 supports application development in high level languages such as C and C++.
XMOS have also released an extended version of C called XC which allows the programmer
to take advantage of the concurrency and channel communication the microcontroller can
support. For logic analysis as well as timing evaluation, XMOS provide the xTIMEcom-
poser development environment. This development environment can be used to analyse
applications written for the XS1 and provide timing constraints that the microcontroller
can guarantee will be met during execution. The development environment also includes
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xSCOPE which is a software analyser that can monitor applications and memory usage
during execution on the device (XMOS, n.d.b).

3.3.2 Xilinx Spartan 6 LX25

An alternative architecture to investigate is the field-programmable gate array (FPGA).
This architecture allows for integrated circuits to be designed and implemented after the
FPGA has been manufactured. This is due to the design of an FPGA not being developed
as a specific controller but rather a large collection of logic and RAM blocks. These blocks
can then be configured and connected using signal lines to represent the designed circuit.
(Wain et al., 2006)

The Spartan 6 LX25 architecture allows for up to 358 User I/O pins, grouped into 4 I/O
banks. The Spartan 6 family supports RAM block sizes of 18 Kb and the Spartan 6 LX25
contains 52 of these blocks, giving it a total of 936 Kb of internal RAM. The Spartan
6 family architecture provides a large collection of clock lines to support multiple clocks
running at different frequencies for different circuit components. (Xilinx, 2011)

The component selected was the Spartan 6 LX9 available for approximately $172.

Development Tools

In order to develop applications that can be loaded onto the Spartan 6 LX25, Xilinx
maintains a design suite that supports development in both Verilog and VHSIC3 Hardware
Description Language (VHDL). These languages allow the user to design circuits using
a programmatic syntax which is then simulated by the ISE design suite into a circuit
diagram. To implement the designed circuit, the logic needs to be converted into a bit
stream that can be uploaded to the device. Before this, the developer needs to specify a
user constraints file (UCF) which maps input and output signal lines to the device pins
(Xilinx, 2013). Once specified, the ISE then performs a place and route which maps out
the circuit to best fit the block configuration of the target device. Finally the bit stream
is generated which can be uploaded to the device (Xilinx, 2010).

For testing before bit generation, the ISE supports a simulator for both Verilog and VHDL.
The simulator can be used by setting up a test bench which will allow the user to monitor

2As of August 2015 http://goo.gl/ExFzzn.
3Very High Speed Integrated Circuit
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output signal for specific input signals (Xilinx, 2010).

To improve development with FPGAs, previously generated integrated circuits are avail-
able as modules called Intellectual Property (IP) Cores. These IP cores can be downloaded
and included in the current project manually or, if the IP core is supported by Xilinx and
the suitable licensing file is present, by using the IP wizard tool provided in the ISE. The
components can then be called in the developer’s code to take advantage of the previ-
ously generated circuits. Most IP cores from Xilinx require licensing to use but others
are available under the GNU General Public License (GPL)4 from websites such as Open
Cores5.

3.3.3 Network Layer Summary

Considering the requirements, both the Xilinx Spartan 6 and the XMOS XS1 architec-
tures can be used to implement a suitable hardware platform on which to run network
specific applications. Both architectures can operate at the necessary speed and both
architectures come with previously developed software/circuits relating to Ethernet com-
munication. The development tools in both cases are extensive and maintained which
limits the motivations of which candidate should be selected to the actual languages used
to develop on each and the cost of the representative components. Both Verilog and
VHDL are hardware description languages which means that they need to be simulated
into an actual circuit before being converted into a bit stream by some propriety software.
Initial investigations into developing network related applications for both architectures
was done. It quickly became apparent that developing network specific applications in
VHDL would be a complex and lengthy process. This would result in the device becoming
less user friendly.

Developing the equivalent applications in XC was found to take considerably less time
though this is also due to XC being an extension of the C and C++ languages to include
the parallel functionality offered by the XMOS XS1. More importantly, because it is an
extension of the language, applications written in either C or C++ could be converted into
XC which allows applications to be developed in any language that supports Application
Programmers Interface (API) calls in C or C++. An example language is Python which
can support extensions for both C and C++ by means of API calls6. With suitable API
calls for the XMOS extensions and some restrictions on the types of applications users

4https://www.gnu.org/copyleft/gpl.html
5http://opencores.org
6http://docs.python.org/2/extending/extending.html
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can write, using the XMOS XS1 could greatly simplify the software component of this
research.

Considering the costs associated with the representative of each candidate, it initially
indicates that the XMOS XS1-L8A would be the better device. Taking into account
the hardware requirements however, it is apparent that multiple XMOS XS1 controllers
would be required where a single Spartan LX9 would suffice. Assuming three XMOS
microcontrollers are required, the cost for the XMOS candidate becomes $45 in total
which is significantly more than the $17 required for the Spartan LX9.

In conclusion, it is proposed that the hardware platform for network specific applications
be implemented on a XMOS SX1 microcontroller as, though both ease of use and cost
are major goals of this research, ease of use was given a higher priority.

3.4 Base Layer

The Base Layer is responsible for all processing and communication that is not directly
related to the network applications. This includes supporting a user interface, handling
and storing log information, uploading application code to the Network Layer, and pos-
sibly be responsible for translating the application code into code compatible with the
Network Layer.

Owing to the scale and complexity the development of a suitable device acting as the
hardware base of this layer would introduce, it was decided to rather implement this layer
using an existing device. Initial investigations identified two possible candidates: the
BeagleBone Black and the Raspberry Pi. The BeagleBone White was initially considered
as well but was decided against due to cost limitations imposed on the resulting prototype.
During the course of the research however, the Intel Edison became available as a potential
candidate and the platforms were re-evaluated accordingly.

3.4.1 BeagleBone Black

The BeagleBone Black is an embedded platform designed by Gerald Coley and manu-
factured by Circuitco LLC. It is an open source platform to allow for the development
of systems and applications using an ARM Cortex A8 based processor. The board is
currently at revision A5.2 as of February 2014 (Coley, 2013).
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The BeagleBone Black can be interfaced with in numerous ways; two common approaches
are as a standalone PC, and as a mass storage device. As a mass storage device, the
board is connected to the PC via a USB cable which acts as the main communication bus
as well as a power supply. Once power is supplied, the BeagleBone operating system will
boot up and the device can be interfaced with on the host PC by means of a web browser.

Operating the BeagleBone Black as a standalone PC requires all the necessary I/O pe-
ripherals such as a keyboard and display. The device also needs to be powered. Both the
display and audio are provided via the HDMI interface. An alternative is to run an SSH
server on the BeagleBone Black and interface with it remotely (Coley, 2013).

Board specifications

The BeagleBone Black runs a 1GHz ARM Cortex-A8 processor which includes a 16KB
level-1 cache and a 256KB level-2 cache (ARM, 2007). For memory, the BeagleBone
comes with a 512MB DDR3 RAM module as well as a 2GB embedded Multi Media Card
(eMMC) for storing an operating system. For interfacing with the BeagleBone Black, the
board contains both Ethernet and USB. USB interfacing can occur via a mini USB port
over which the board will emulate a client device in mass storage mode or via USB in
which the device acts as the host controller. Ethernet communication is performed at
speeds capable of 100 Mbit/s with its own dedicated communication lines rather then
being implemented on the USB.

For external storage, the BeagleBone Black can accept a microSD card which can be
interfaced to for increased storage capacity. Unfortunately, due to the presence of eMMC,
the general pins on the board cannot directly address the microSD unless the reset pin
of the eMMC is held high during transmission. Video and audio are both accessed via
HDMI with an on-board HDMI Framer (Coley, 2013).

The BeagleBone Black allows for expansion boards, referred to as ‘capes’, to be stacked
on top of it. These capes interface with the underlying board via the expansion headers
present on the BeagleBone Black. The BeagleBone Black contains two expansion header
sets, each containing 46-pin connectors. It is important to note that these pins operate
with a logical high of 3v3 and are not 5v tolerant. There are eight different modes that the
pins run in, each providing a different functionality such as SPI and I2C (Coley, 2013).

The creation of capes that are capable of interfacing with the BeagleBone Black is well
documented in the BeagleBone Black Reference Manual. This documentation covers best
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practices and concerns relating to SD communication with the eMMC present (Coley,
2013).

3.4.2 Raspberry Pi Model B

The second potential device that could be used as the Base Layer is the Raspberry Pi.
The primary motivation for considering this device was board cost compared with the
BeagleBone Black. After initial tests, it was found that the GPIO interface of the board
could only operate in the KHz range which was a major concern for proposing this device.
Further investigation however, revealed that the speed limitation was a result of pin toggle
speeds being controlled by the device operating system and not the ARM microcontroller
itself. To account for this, the standard BCM2835 Linux kernel maps the peripheral
registers relating to the BCM2835 microcontroller to the kernel address space. This
allows applications running on the Raspberry Pi to directly access the microcontroller
GPIO registers (Broadcom, 2012). Using this approach, it became possible to have the
GPIO interface on the Raspberry Pi operate at speeds up to 20 MHz.

By exposing the register set of the microcontroller, it also becomes possible to enable SPI
mode on select pins. This mode enables dedicated hardware which runs an SPI interface
with two chip select lines. To further simplify interaction between the operating system
and the microcontroller register sets, programming libraries such as the Python library
spidev7 exist which help to abstract away from some of the low level interfacing and thus
simplify development.

Board specifications

This research adopted the Raspberry Pi model B due to availability and the device meeting
all necessary requirements. The Raspberry Pi model B was first released on 29 Febru-
ary 2012 boasting a 700MHz ARM1176JZF-S processor with a Broadcom VideoCore IV
graphics processor (Broadcom, 2012). The current version of the B+ contains 512 MB
DDR2 RAM. Peripherals include an HDMI port, two USB 2.0 ports, and a 100 Mbit/s
Ethernet controller (Raspberry Pi Foundataion, n.d.). The GPIO header on the Rasp-
berry Pi contains fewer pins compared with the Beaglebone Black but still includes eight
GPIO pins, a UART interface,an I2C bus, a SPI interface with two chip select pins, power
pins for both 3v3 and 5v, and a ground pin.

7http://lxr.free-electrons.com/source/drivers/spi/spidev.c
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Figure 3.2: Internal Diagram of LAN9512 (SMSC, 2012)

There is no embedded multimedia card on the device but an SD expansion slot is present
for external memory and the loading of an operating system. The device also does not
support a real time clock and so the operating system must rely on either a time server
or external hardware to acquire the current time after start up. (Sheffield Learning
Community, 2013)

Ethernet communication is handled by a LAN9512 controller which manages both the
on-board USB port and the Ethernet magjack. As illustrated in Figure 3.2 both the
Ethernet controller and the USB interface use the same bus to communicate with the
ARM processor (SMSC, 2012). Though usually this will have insignificant impact on
either peripheral, it is important to note that significant traffic between one peripheral
and the device could potentially reduce the performance of the other. As a consequence,
it cannot be guaranteed that the Ethernet controller will always operate at 100 Mbit/s.

3.4.3 Intel Edison

The Intel Edison8 is a compute module designed to have a small form factor and low power
consumption. The compute module runs a Dual Core 32-bit Atom processor with each
core operating at 500 MHz. The module also includes a separate Z34 microcontroller
operating at 100 MHz. The Intel Edison supports 1 GB RAM and a 4GB onboard
eMMC for data storage. Communication peripherals include both wireless and Bluetooth

8http://www.intel.com/content/www/us/en/do-it-yourself/edison.html
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embedded modules as well as SPI and I2C interfaces. USB host support is also available
via the compute module breakout pins (Intel, 2014c).

With regard to this research, the Intel Edison comes with two major drawbacks. The
first is its small form factor. Though impressive, this was achieved by only presenting
the available IO ports via a 70 pin Hirose connector9 which, due to its small form factor,
requires a base platform before any of the pins can easily be interfaced with. The second
drawback is the lack of an Ethernet interface being broken out. This is intentional as the
target domain of the Intel Edison is wearable devices where wireless communication is
preferred over wired communication. For this research, wired communication is preferred.

To simplify interfacing with the Intel Edison compute module, two breakout boards have
been released by Intel. Both boards provide two USB interfaces; one for serial commu-
nication via an FTDI chip, and one for the compute module host USB. Both breakout
boards are also responsible for power management and provide a more accessible breakout
of the compute module GPIO. The first breakout board is minimal in size and includes
no additional features while the second includes logic translation, an SD interface, and a
mounting point for Arduino compatible boards. Drivers exist for both boards to allow for
Ethernet over USB and thus provide a wired network interface for the compute module
(Intel, 2014b,a).

As both breakout boards resolve the main concerns relating to using the compute module
in this research, the approach proposed is to include both the compute module and a
breakout board as part of the platform. As an SD card is not required and no Arduino
compatible devices formed part of this research, the proposed approach was to use the
minimal breakout board and physically mount it on the prototype device.

3.4.4 Base Layer Summary

Prior to the release of the Intel Edison compute module, the proposed approach was to
use the Raspberry Pi model B. The justification for this decision was the price differ-
ence between the two initial candidates with the Raspberry Pi being the cheaper device.
Furthermore, since this research began, XMOS have released a new development plat-
form called the XMOS Startkit which includes a Raspberry Pi GPIO expansion header
to promote hobbyists to investigate interactions between the XMOS architecture and the
Raspberry Pi (XMOS, 2013b).

9http://goo.gl/kWG3p2
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After the Intel Edison compute module was released and investigated, it quickly became
apparent that it would be a better candidate for the Base Layer, the primary reason being
that it runs an x86 architecture natively while both the BeagleBone Black and Raspberry
Pi model B use the ARM architecture. All the development toolchains released by XMOS
are released as compiled binaries for the x86 architecture. The initial workaround to
this was to emulate an x86 architecture on the Raspberry Pi but it was found to take
approximately 30 minutes to compile the application code while the Intel Edison achieved
the same result in approximately 30 seconds. The conclusion was to develop the Base
Layer software to be compatible with both devices.

3.5 System Design

Once suitable architectures had been selected, the software component of the device was
designed. This component should take advantage of the capabilities of the selected archi-
tectures and be responsible for communication throughout the device.

The selected XMOS architecture is capable of executing a set of concurrent processes in
parallel while supporting interprocess communication. Applications that are developed
to run on this device should be designed to take advantage of this parallel nature. Taking
this into account, the approach adopted by this research is similar to that of the Click
Modular Router discussed in Section 2.6.1, where a series of concurrent modules are
developed, each to handle some specific aspect of frame processing. These modules can
then be linked together to form an application chain. The chain of connected modules
represents the path taken by network frames through the application.

3.5.1 Module Overview

To ensure that modules can be freely interconnected, each module must conform to a
standard that will guarantee compatibility. The first requirement of this standard is that
all compliant modules must be able to operate independently of one another in terms
of memory and processing requirements. Processing independence of different modules
can be handled by the architecture provided each module is run in a separate core. The
architecture includes a scheduler and each core maintains its own registers and handles
all scheduling tasks transparently from the application. Ensuring memory isolation can
be achieved by reserving a block of memory for each process and guaranteeing that only
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Figure 3.3: Overview of a Module

data copied into that memory block can be modified by the process. Enforcing this in-
dependence will guarantee that adding or removing a module will not impact on the
functionality of other modules, provided that the application chain is reconnected appro-
priately. The second requirement is to define the format of data to be communicated
between modules. All modules must receive and send data in a specific order with the
exception of internal modules interfacing with external hardware. This can be enforced
by defining a frame object type and an interface for handling its transmission across a
channel between processes.

A secondary factor to consider with regard to communication is parallel communication.
The advantage of being able to write an application by creating a chain of defined modules
will simplify development however it limits the application to filtering. If we consider
allowing parallel communication to and from modules, we allow for branching in the
application chain and thus conditionals to be processed. To facilitate this, compliant
modules should support many-to-many communication however care must be taken to
eliminate any circular chains that could be created.

Considering these requirements, Figure 3.3 describes the first iteration of a generic module
to be used in an application chain. All frames received from one of the input channels will
be processed before being sent to the specified group of output channels. The specification
of which channels the data is presented to should be determined by the processing logic
which is further discussed during implementation in Chapter 4.

As platform flexibility is an objective of this research, these modules must be customizable.
However, as simplicity is also important, some modules will need to be implemented with-
out any user input. These internal modules will be preconfigured similar to the modules
implemented by the Switchblade discussed in Section 2.6.5. However, where the Switch-
blade modules focus on performing a specific frame related task, these internal modules
will focus on interfacing with external hardware to simplify further module development.
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As a result, these internal modules can be communicated to and from but not modified.
It is necessary to define such modules as communication with some external components
such as SDRAM and the networking PHYs is essential for a viable application but may
require specialized knowledge to implement. Furthermore, internal modules must be im-
plemented on specific tiles within the architecture for access to the correct pins. These
modules should be separately developed and attached to the module chain as dictated by
the user.

For the first revision of the device, three different types of internal modules will be required.
These are defined by the hardware components that the application may need to interface
with. The interfaces that will be supported in the first revision of the software component
are:

• An interface for the storing network frames in SDRAM.

• An interface for communicating back to the Base Layer.

• An interface for each of the four network interfaces.

The internal modules required for each of these components are further discussed in
Chapter 4.

3.5.2 Application Example

To better elaborate on the approach of using modules to create applications compatible
with the prototype device we designed a basic application according to a simple scenario.
The presented scenario requires that the platform pass all frames received from one net-
work interface to another (for the sake of this example we will label these portA and
portB). All frames transmitted between these ports should be unaltered unless they are
transmitted under the ICMP protocol from portA to portB. Should this be the case, the
Time To Live (TTL) field of the ICMP packet should be set to zero before the frame is re-
transmitted. Furthermore, the source IP address of the ICMP packet should be recorded
in a log file on the device for later evaluation.

Considering this scenario, we first note the internal modules that will be necessary for the
application to function. As traffic will be streamed between ports A and B, two internal
port modules are required to cater for this. To handle the exporting of IP addresses from
the Network Layer to the Base Layer an SPI interface module needs to be included in the
application.
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Figure 3.4: Diagram of Example Application

Now that communication between the networking layer and other systems has been con-
sidered, it is necessary to design the application logic. For this scenario there are two
stages to the application; filtering ICMP packets and modifying ICMP packets. As traffic
is received from port A it needs to be filtered of all ICMP traffic which is then routed
to the modifier module while all other traffic passes to port B unaltered. The modifier
module is then responsible for setting the TTL field to 0 before passing the frame on
to port B. A secondary function of the modifier module in this example is to transmit
the source IP address to the SPI internal module so that it can be recorded by the Base
Layer. This could be handled by the filter module but for the sake of this example, it is
the responsibility of the modifier module.

Figure 3.4 depicts how the modules would communicate as described in the above appli-
cation which can act as an example to highlight potential areas of concern which should
be investigated when implementing similar applications. The first point to note is that
the communication between modules must be capable of operating at transmission speeds
equal to the Ethernet interfaces or greater. Should the communication channels be slower,
it will cause a backlog throughout the application which in turn will cause network frames
to be lost as the port buffers overflow. To address this, a more thorough investigation of
the different XMOS communication methods must be performed.

A second issue to note is that some internal modules will be interfacing with other com-
ponents using communication protocols that might not be capable of transmitting data
at 100 Mbit/s such as SPI. For these modules, special care needs to be taken to sup-
port buffer responsible for temporarily storing messages. The buffer is still susceptible to
overflow but such an event will not affect transmission speeds relating to the rest of the
application. When allocating the buffer size, it should be noted that multiple modules
could be communicating to an internal module simultaneously.
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Figure 3.4 depicts both the ICMP Filter and the TTL Modifier as having two outbound
connections, allowing for communication to multiple modules. Though this functionality
is essential, it does invite the possibility of generating a circular path. Care needs to be
taken to avoid such a situation where traffic gets trapped within the application and never
reaches a port module or is dropped. Figure 3.6 shows an example of this where traffic
from port A passes through a duplicator which sends the frame to both port B and module
X. Module X passes the frame to module Y before it is returned to the duplicator module.
The duplicator, as before, sends the frame to port B and module X thus creating a circular
path. As more frames are received from port A, communication between modules X, Y,
and the duplicator becomes blocked and the entire application halts.

3.5.3 Base Layer Software

To accommodate user interaction with the device, a user interface has been developed on
the Base Layer. For this revision, the user interface was implemented as a simple dynamic
webserver for user interaction. As information is transmitted from the Network Layer to
the Base Layer, it is stored in log files on the device to be retrieved later. CGI scripts
also have access to these log files and the recorded information can be served to the user
via a console interface in the web application. Traffic information relating to active ports
is logged by the Network Layer and transmitted to the base. This information is stored
in a database which can then be accessed and visualized by the web application.

As the Base Layer is expected to handle all user interaction with the platform, this layer
should be responsible for receiving and compiling application code to execute on the
Network Layer. This procedure is highly dependent on the approach taken to provide
ease of use which could include additional processing of submitted code to be compatible



3.6. SUMMARY 46

Script 

Interpreter
User 

Script

 main.xc 

Internal 

Modules

Flash 

Image

XMOS Development 

Toolchain

To Network 

Layer

Figure 3.6: Overview of Uploading Script to Platform

with the XMOS development tool chain10.

Figure 3.6 shows the procedure followed for executing user applications on the Network
Layer. After the script is received via the web server, the application code is interpreted
into a format that can be processed by the XC compiler. Associated with the resulting
code are all relevant internal modules that will be required by the application during
execution. The resulting project is then compiled to produce an application binary and
later converted into an application image. This image is then written to the flash device
embedded on the Network Layer of the platform.

3.6 Summary

This chapter identified both the hardware and software requirements of the prototype
device which was developed in this research. The chapter began by separating the physical
components of the device into two layers, the Network Layer and the Base Layer, to
simplify hardware selection and development. Potential architecture candidates were then
identified and compared before an architecture for each of the layers was selected.

The remainder of the chapter focused on investigating the software requirements of the
system and designing the basic layout of an application module as well as describing how
applications could be developed using them. Finally, software for the Base Layer was

10Details relating to the development tools required for compilation are described at: http://www.
xmos.com/products/tools.
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addressed with this layer acting as the user interface. It was concluded that the Base
Layer should run a web server through which the user could interact with the platform
for uploading applications and monitoring system status. The Base Layer would also
be responsible for application code compilation and programming of the Network Layer.
Chapter 4 introduces the implementation of the software architecture designed in this
chapter to run on the selected hardware.



4
Software Implementation

4.1 Introduction

This chapter begins with an analysis of transmission speeds using the XMOS communica-
tion architecture discussed in Section 2.3.1. Comparisons between different communica-
tion types for intratile and intertile communication are highlighted. After an appropriate
communication architecture has been selected, implementation of the proposed software
architecture will begin by implementing each of the internal components described in Sec-
tion 3.5. Finally, to associate the DSL with the internal modules, a translator responsible
for producing XC source code from the DSL syntax is implemented.

4.2 Analysis of Transmission Speeds

As discussed in the application example presented in Section 3.5.2, before any implemen-
tation of the proposed system can be performed, data transfer speeds achievable by the
XMOS architecture require further investigation. This investigation is necessary to gauge

48
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Figure 4.1: Implemented Platform for Testing XMOS Serial Link

the feasibility of producing applications operating on the XMOS architecture that can
maintain network throughput comparable to retail devices that are IEEE 802.3u compli-
ant (IEEE, 2012). As discussed in Section 2.3.1, the XMOS architecture supports two
mediums for data transmission between tiles: the XMOS Fast Link, and the XMOS Serial
Link. Both mediums could be suitable candidates for transmitting a network frame with-
out incurring degradation of network throughput due to delay. To confirm the theoretical
transmission speeds discussed in Section 2.3.1, two sets of tests were performed to analyse
throughput achievable with each of the communication architectures.

To test the XMOS Fast Link, a test environment was designed to operate on an XMOS
Slicekit development board (XMOS, 2013a) which supports an XMOS XS1-L16 micro-
controller. This board was chosen as the test platform since the XMOS XS1-L16 micro-
controller is composed of two tiles connected with a series of XMOS Fast Links (XMOS,
2013h). The testing environment was implemented as a simple traffic relay capable of
passing network frames between the two tiles within the microcontroller.

To test the expected throughput of the XMOS Serial Link, the testing environment de-
signed on the XMOS Slicekit was ported to a different XMOS development platform
where the XMOS tiles are physically separated and communication limited to using an
XMOS Serial Link. The second testing platform was composed of two XMOS Startkits
(XMOS, 2013b) connected as depicted in Figure 4.1. The Startkit models were selected
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due to their low cost and availability while still being fully compatible with the testing
environment previously implemented.

Once the two suitable testing environments had been set up, transmission analysis of
network frames could begin. Tests implemented were designed to be compatible with
both communication mediums so as to provide a meaningful comparison between results.
The network frame was represented by a body of data composed of 1522 bytes and four
additional bytes for representing the frame length. As the goal was to have the application
run across multiple physically separated XMOS devices, tests performed were partitioned
into two groups: intertile communication and intratile communication. Timings relating
to intertile communication on the two Startkits were carried out using an oscilloscope to
record the time taken to transfer a full frame between the two tiles. This was achieved by
setting the oscilloscope to monitor a status pin associated with a Startkit which was set
to toggle between transfers. Intratile related timings for both testing environments was
recorded using a timer available on the development boards.

4.2.1 Intratile Delay

To accurately monitor the time taken for each task to complete on the XMOS develop-
ment boards, the xTAG interface was used. This provided an interface for logging and
debugging purposes communicating over USB. This communication was performed using
a method similar to UART and so care was taken to ensure that communication with the
host did not interfere with the task being tested (XMOS, 2009). Timings were done using
a 100MHz clock which generated a timestamp directly before and after the task being
tested was executed. A consequence of performing tests in this manner is that all timing
results would have an associated uncertainty of up to 20 ns which should be taken into
account when evaluating the testing results.

The first investigation performed was a transmission test when using the memcpy1 func-
tion to duplicate a body of data on a single logical processor. This test was designed to
evaluate the performance of memcpy itself. Both the time taken for memcpy to complete
and the volume of data copied was recorded. For this test, 15000 different data sizes were
sampled ranging from 0 bytes to 30000 bytes being copied. The results in Figure 4.2
show a clear linear relationship between volume copied and time taken. Using regression

1A function that copies a block of memory from one memory location to another memory location
(The Open Group, 2013).
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Figure 4.2: Graph Showing Relationship Between Time Taken by memcpy and Number of Bits
Copied

analysis, this relationship is represented by Equation (4.1) with an R squared value2 of 1.
Using this equation, the latency for a 60byte frame was calculated to be approximately
515.2 Mbit/s which is close to the recorded latency of 545.5 Mbit/s.

tns = bits × 8 + 414.22[ns] (4.1)

To test transmission speeds between two logical processors within a single tile, the same
test was performed but with the source memory array being accessed by a different logical
processor. To conform with the previous memcpy test, 15000 different data sizes were
sampled ranging from 0 bytes to 30000 bytes being copied. Regression analysis was
again used to produce the linear Equation (4.2) which relates the time taken to perform
the operation to the volume of data transmitted. As with Equation (4.1) the resulting
equation was recorded to have an R squared value of 1.

tns = bits × 6 + 927.27[ns] (4.2)

The larger constant is a consequence of the delay relating to the channel communication
but it was found that when operating over sufficiently large bodies of data, a memcpy
between two logical processors became more efficient when compared to a memcpy within
a single logical processor. For a network frame of 60 bytes, the transmission speed is
approximately 372.88 Mbit/s.

2The R Squared is a value between 0 and 1 which indicates how closely the recorded data matches
the model (Gujarati and Porter, 2008).



4.2. ANALYSIS OF TRANSMISSION SPEEDS 52

Considering the maximum frames size of 1522 bytes, performing a memcpy within a single
core results in a throughput of 964.2 Mbit/s while performing the equivalent operation
across two cores results in a throughput of 1210.4 Mbit/s. In both cases however, the
recorded and predicted throughput of a data using memcpy well exceeds the maximum
network throughput of 100 Mbit/s, minimizing the performance impact memcpy could
have on network throughput.

<Link Encoding=”5 wire ” Delays=” 0 ,1 ”>
<LinkEndpoint NodeId=”SLICE 0” Link=”XLG”/>

<LinkEndpoint NodeId=”SLICE 1” Link=”XLF”/>

</Link>

Listing 4.1: Example XN Link Specification

4.2.2 Intertile Delay

To account for wire impedance and track length between the communicating microcon-
trollers, the developer can set delays which are associated with the link defined between
two tiles. As discussed in the XN Specification document (XMOS, 2013g) and depicted
in Listing 4.1, a link delay has two values associated with it specified by the label
[Delays=”X,Y”]. The first value (X) represents the intertile delay value while the sec-
ond (Y) represents intratile delay. These delays indicate the number of cycles the switch
should delay between signal transmissions so as to maintain a reliable link between the
two tiles. Restrictions on this value are that the delay must be an integer value and cannot
be negative. Furthermore, the intertile delay must be less than or equal to the intratile
delay. During hardware design, it is important to minimise the length of wires used as
a link so that the specified delay can be set as low as possible while still being reliable.
The number of cycles by which the switch delays a transmission has a direct impact on
the maximum throughput of that link.

XMOS Serial Link

To investigate actual speeds observed in the application, an oscilloscope was used to
measure the duration of a bulk data transfer across the Serial Link. One of the goals of
this research was to show that it would be possible to implement an XMOS network that
could handle transmission at 100 Mbit/s while using the serial XMOS link rather than
being required to use the XMOS Fast Link. The primary motivation for selecting the
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Figure 4.3: Pin Toggle Speed on XMOS Startkit

(a) Four Cycle Delay (b) Three Cycle Delay
Figure 4.4: Transfer of a Frame With Different Delay Times

Serial Link over the Fast Link is the reduction in pins required to instantiate an XMOS
Serial Link, thus making it more readily available on low cost XMOS devices such as the
XS1-L4 (XMOS, 2013i).

The time taken to transmit 1526 bytes between the two Startkits was recorded by toggling
the output state of a separate one bit port after each bulk transfer was completed. Figure
4.3 graphs the time taken to perform a state transitions on the monitoring port from
which the duration of a full cycle was measured to be approximately 20 ns. As a result,
all recording related to this test included an additional 20ns of latency which needed to
be accounted for.

Figure 4.4(a) graphs the time taken to transmit a single frame over the XMOS Serial
Link. At the beginning of each transfer, the monitoring port was set low and remained
in this state for the duration of the operation. As soon as the operation completed, the
monitoring pin was set high again, indicating the operation was complete. The operation
performed a bulk transfer of data by first sending a memory reference across the XMOS
Serial Link to the destination tile. The memcpy operation was then called on this remote
array reference to handle the bulk memory transfer. This process took 170 µs which
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resulted in a transmission speed of 71.62 Mbit/s.

The next attribute of the transmission to consider is the delay applied to the link between
XMOS devices. For the above test, this delay was set to four cycles for both intertile
and intratile communication. By reducing this delay to two cycles for intratile commu-
nication and three cycles of intertile communication, it was possible to record a reduced
transmission delay. Figure 4.4(b) records this reduced delay to be 136 µs which implies
a transmission speed of 89.53 Mbit/s. Attempting further reductions in delay resulted in
errors in communication.

XMOS Fast Link

To investigate the XMOS Fast Link, the testing environment implemented on the XMOS
Slicekit was used. As both tiles were contained in a single microcontroller, timings relating
to the data transfer operations were recorded using internal timers rather than monitoring
an external pin.

As with the testing of the XMOS Serial Link, the transfer operation was performed by
first sending a remote memory reference of the array to the destination tile. The memcpy
command was again used to copy the array contents to the destination tile. As the two
tiles are contained within the same microcontroller, the delays relating to the XMOS Fast
Link were set to a minimum of 0 cycle intratile and 1 cycle intertile. The process was
recorded to take 27.96 µs which results in an approximate transmission speed of 435.47
Mbit/s, a significant increase on the speeds observed from the XMOS Serial Link.

To observe the effects of increasing the values associated with both the intertile and
intratile delay would have on data throughput, the same test was repeated for multiple
delay values, the results of which are depicted in Figure 4.5. The tests indicate a clear
linear relationship between the number of cycles delayed and the transmission speed with
a four cycle intertile and intratile delay resulting in a transmission speed of 175.42 Mbit/s.

After reviewing the results from initial tests on both the XMOS Serial Link and the XMOS
Fast Link, it was concluded that platform implementation should opt to use the XMOS
Fast Link exclusively. Though the transmission speeds of the XMOS Serial Link achieved
results that were better than expected, data transmission between the logical processors
within the XMOS platform must achieve a minimum throughput of 100 Mbit/s or else
risk becoming a bottleneck for network traffic throughput thus reducing the throughput
of the entire system.
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Figure 4.5: Graph Showing the Recorded Time Taken to Perform Data Transfer at Different
Delays Using the XMOS Fast Link

Figure 4.6: Application Configuration

4.3 Implementation of Internal Modules

As discussed in Chapter 3, it was necessary to design and implement a series of specialized
modules for interfacing with external hardware. These modules would be preconfigured
and made unavailable to the user for modification. To ensure these modules had access
to the correct ports on the XMOS microcontroller, they would be restricted to operate on
specific tiles within the platform and only instantiated if required by the user application.

4.3.1 Port Module

The first internal module implemented was the port module which is responsible for all
communication with the PHY. The construction of this module was based on the Ethernet
module application project provided by XMOS (XMOS, 2013f) for communicating with
the Ethernet breakout cards developed by XMOS.

An investigation was undertaken on an XMOS SliceKit with two Ethernet modules to
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(a) Port module using two logical processors (b) Port module using three logical processors
Figure 4.7: Ethernet Port Module Used to Interface with the Physical Transceiver

evaluate the performance of the module application. An Ethernet module was attached to
each of the two tiles of the Slicekit development board so that all network communication
would be restricted to using the connecting XMOS Fast Link.

To test functionality of the implemented configuration, the Ethernet module and an as-
sociated demo application were downloaded. Two variations of the Ethernet module are
available from XMOS: a full version and a light version, both of which are further dis-
cussed in Section 3.3.1. As the focus of this research is on generic traffic processing, the
additional features provided by the full Ethernet module were considered unnecessary and
so the light version of the module was used. The light Ethernet module in Figure 4.7(a)
was designed to operate on only two processors with the MII controller responsible for all
communication between the PHY while the second processor handled all communication
with the remaining application. Frames received from the network are stored in a buffer
which is shared between the two processors.

The demo application3 was only designed to support one Ethernet module and so had
to be modified to allow for the use of both. The goal of the demo application was to
act as a loop-back that reflected all frames received back onto the network. By changing
the receive and send channels that the loop-back component interacted on to instead be
connected to a second Ethernet module, the application was made to act as a frame relay
as shown in Figure 4.6, passing all traffic seen between the attached endpoints.

Performance tests using this configuration were done to monitor the bandwidth the appli-
cation was capable of supporting. Using iperf(Tirumala et al., 2005), this was recorded to
be 7 Mbit/s of bandwidth for a TCP communication. Traffic passed in a single direction
via UDP allowed a throughput of up to 20 Mbit/s.

3Available from: https://github.com/xcore/sc ethernet.
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During these tests, it became apparent that there were problems with the traffic transfer
between endpoints as occasionally the endpoints connected to the device would cease
communication entirely until the device was restarted. A more detailed investigation into
the the Ethernet IP module functionality revealed this event to be a deadlock where both
Ethernet modules attempted to send a frame at the same time. In this situation, both
server applications had entered the Send State shown in Figure 4.6 and put data into their
respective channel buffers to transmit. Once in this state, the processor cannot transition
into any other state until the receiving processor has removed the data from the buffer.
As a result both server processors would lock up and no traffic could be transmitted.

After consideration, the approach implemented to resolve the deadlock issue was to split
the server module across two different processors, one responsible for sending frames
and another responsible for receiving them and relaying the associated data to the MII
controller. This extension of the the module effectively resolved the deadlock issue at the
cost of requiring an additional processor be reserved for each port module present in the
application. Figure 4.7(b) shows the revised configuration of the Ethernet module with
sending and receiving components of the server occurring in parallel. Due to the number
of xCores available on most XMOS microcontrollers and the importance of removing
the deadlock issue with minimal impact to transmission speed, the proposed solution is
considered acceptable.

After resolving the deadlock, focus shifted to optimising the throughput of the platform
to achieve more suitable transmission speeds. Speed reductions are expected due to
transmission delay through the platform, but should not reduce the bandwidth of a 100
Mbit/s line by 93%.

Numerous optimizations were performed to pipeline communication with the PHY and
the rest of the platform. These optimizations reduced traffic latency from 200 ms to less
than 10 ms. Raw channel communication was first replaced with transaction communica-
tion which removed synchronization requirements in transmission and this was then later
replaced with interface communication. Interface communication is not bidirectional but
optimizes transmission of data according to a specified type (XMOS, 2014). After opti-
mizations were implemented, the bandwidth throughput of the development platform was
increased to 80.8 Mbit/s.
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4.3.2 SPI Module

Although it was initially decided that communication between the Network Layer and
Base Layer would occur using an SPI interface, an alternate proposal was to develop
a parallel interface between the two layers to take advantage of the large number of
GPIO pins available on the selected device. As discussed in Chapter 3, the Raspberry
Pi was initially selected as the Base Layer and is capable of handling frequencies in the
region of 20MHz. In theory, a parallel interface operating at a speed of between 15MHz
and 20MHz could be implemented between the Base Layer and the Network Layer. The
implementation of a communication interface however, resulted in a considerable reduction
in pin toggle speed with data being transferred at a rate of 4MHz. The slow down was
due to additional processing required by the Raspberry Pi to read and write pin values
rather than simply performing a continual write. Knowing this toggle rate and reserving
10 GPIO made it possible to generate a parallel port capable of transmitting data at 27
Mbit/s which would was considered suitable for a prototype device.

Corruption in larger data transfers was recorded which was concluded to be a result of
cable length. Reducing the transmission speeds improved reliability on the connection
but reduced throughput to a point where it was unsuitable even for prototype purposes.

Considering the possible stability and compatibility issues of the parallel interface, it was
decided that an optimized communication medium between the Raspberry Pi and the
XMOS device was not essential and the standard SPI protocol would be more suitable.
Furthermore, by implementing the communication to operate using SPI, the process of
replacing the Raspberry Pi with the Intel Edison later in the research was greatly sim-
plified. An SPI module was developed for the XMOS architecture that would allow it to
act as a slave device on an SPI communication channel. The module allows for standard
bidirectional communication using the clock provided by the master device which in this
case was the Base Layer.

4.3.3 Logging Module

Once the SPI communication module was implemented and tested, a logging module was
implemented to transfer logged information from the Network Layer to the Base Layer.
The logging module is split into two concurrent processes with a shared set of circular
buffers between them. The first process acted as a logging server for the Network Layer
that accepted internal connections from other modules. This process would then store
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Figure 4.8: SPI Component Diagram

these records in the head of the circular buffer associated with that log object type before
updating the buffer count. The second process would then use the SPI module to set
up an SPI slave interface with the Base Layer. Whenever the base sends a data request
command, this process would respond by fetching the tail element of a non empty circular
buffer and transmitting it to the Base Layer before decrementing the buffer count. A single
instruction character was sent prior to the log object to help the Base Layer identify the
object type received. Numerical values were also preceded with an instruction character
indicating that the next set of characters represent a number and are not an ASCII value.
There are multiple number instruction characters implemented, each indicating a different
number width in bytes.

Separating the SPI interface and the application interface into concurrent processes was
necessary to minimize the performance impact communication over SPI would have on
the running application. Transmission of data within the Network Layer must maintain
a speed comparable with 100 Mbit/s while the SPI interface should be allowed to operate
at speeds of 15 Mbit/s to 20 Mbit/s.

The implemented circular buffers will overflow if the transmission speed of the SPI inter-
face cannot match the rate at which the application generates logs. This approach was
decided on over trying to store all logs generated which would require considerably more
dedicated memory. Figure 4.8 describes how the component functions by using memory
buffers shared between the two processes. During the testing of this module it became
clear that applications set up to generate logs for every frame would cause the buffers to
overflow regularly which was expected but also resulted in a rare case where a log being
recorded would become corrupt.

The corruption was due to both processes accessing the same buffer entry with the write
occurring faster than the read. To account for this, a buffer in use flag was implemented
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to signal that the buffer was being modified by a process. Memory space for a single
buffer entry was also reserved for the process interfacing with the SPI module to reduce
time the buffer was held in use.

Whenever the Base Layer requests data, the buffer in use flag of a non-empty buffer is
raised and the tail of the buffer is copied using memcpy into the reserved memory. The
flag is then released before any data is actually transmitted to the base. The slower SPI
can then operate on the allocated memory independent of the buffer.

Concerning data overflow, the current approach is to set up reasonably large buffers and
then simply allow for frame loss to occur without impacting on platform performance. A
potential indicator that could be added to the board would be an LED so the the user
can be made aware when an overflow occurs but no further action will be taken by the
prototype.

4.4 Programming and Flash

To allow the platform to operate without supporting hardware, the Base Layer must be
capable of uploading the compiled user application to the Network Layer for execution.
Currently this is done via the XMOS XTAG external programmer (XMOS, 2009). This
programmer is based on the JTAG interface4 which writes the compiled application im-
age onto the XMOS tile it is connected to. Additional tiles are then programmed by the
initial tile sequentially in a chain as specified by the application configuration file. Con-
verting the Raspberry Pi into an XMOS programmer was briefly investigated which, if
successful, would allow the Base Layer to upload applications to an XMOS board without
any additional hardware. Investigations concluded that the complexity of the is approach
was outside the scope of this research but also revealed a potentially simple alternative
regarding the flash interface present on XMOS development boards.

The XMOS XS1 microcontrollers support the ability to retrieve application code stored as
images on attached flash devices as discussed in the XMOS XS1-L16 datasheet (XMOS,
2013h). If the MODE5 pins of the device are correctly configured, the microcontroller
will start up and initialize an SPI master interface over four specific pins. The controller

4Joint Test Action Group (JTAG) is the common name for the IEEE Standard 1149.1 (Microsemi
Corporation, 2012). It is a standard initially designed to aid in testing controllers already embedded on
printed circuit boards but has grown to include on chip debugging and communication functionality.

5Boot configuration pins which must be set before the device is powered on. These pins determine
the expected clock rate of the device and how it expects to be programmed on startup.
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will then download the image from the attached flash device and program itself and all
connected tiles according to the configuration file used when generating the image. The
approach taken by this research then is to bypass the XMOS microcontrollers and access
the flash device directly from the base platform. The generated flash image can then be
written to a flash device on the Network Layer which the XMOS microcontrollers can
access on startup.

The feasibility of this approach was tested using an application called flashrom (Flashrom,
2015) in conjunction with a Raspberry Pi. Attaching a flash device to the appropriate pins
of the GPIO header of the Raspberry Pi allowed flashrom to write a binary image to the
attached device. Initial attempts at performing this operation on the XMOS Slicekit were
unsuccessful even with the SPI interface of the Raspberry Pi directly connected to the
flash device. Removing the flash device from the development board and programming it
externally proved to be successful and when reattached to the board, could be read and
executed by the development platform. Reviewing the schematic for the Slicekit6 revealed
this issue to be due to switch chips which resulted in the flash device being physically
disconnected from the development board when attempts were made to program it. Pro-
vided that accessibility of the flash device on the prototype device can be made available
to the Base Layer, this will be the approach taken for programming application code to
the Network Layer of the platform.

Due to compatibility limitations, it was found that flashrom (Flashrom, 2015) was not
available for the Intel Edison, rendering the the initial revision of the upload application
incompatible (Flashrom, 2015). Section 3.4.4 concluded that all Base Layer software
should operate on both the Raspberry Pi and the Intel Edison and the upload software
was reimplemented to achieve this.

Lower level API calls were used to interface with the SPI controller on both devices.
Though these differ between devices, all hardware specific functions are wrapped to allow
the application to be compatible with both architectures after minimal modifications.

4.5 Frame Delay Module

An important feature in simulating a network environments is the ability to implement a
delay in network traffic. A delay can be used to simulate larger networks by only allowing

6Available from the XMOS website as part of the Slicekit documentation https://www.xmos.com/
support/boards?product=15825&secure=1
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Figure 4.9: Functional Layout of the Delay Module

received frames to propagate forwards after a set duration of time has passed. This delay
emulates the delay seen by network traffic traversing a link with multiple hops. Modifying
the TTL field of relevant packets may also be required to simulate this in a more realistic
manner.

For this research, network frame delay is implemented by including a Synchronous DRAM
block on the platform which could be used to store frames during operation. The SDRAM
chosen was the IS42S16400F which contains 64Mib of memory, segmented into four mem-
ory banks (ISSI, 2008). To interface with the block, an SDRAM interface provided by
XMOS was used which allowed for read and write operations capable of achieving trans-
mission speeds of 60MB/s or 480 Mbit/s (XMOS, 2012a). Interfacing with the application
layer of the platform was done through a delay module which is functionally described
in Figure 4.9. The SDRAM interface communicates with a frame server process which
is responsible for maintaining the state of the four memory banks. Each memory bank
is treated as a circular buffer that operate independently, allowing for up to four delay
modules to be safely instantiated in an application. The frame server process maintains
both the head and tail of each buffer as well as how each translates into the geometry of
the SDRAM block. Each buffer can store up to 1024 Ethernet frames before overflow will
occur which translates into a delay time of between 6.5ms and 168.4ms when operating
at maximum throughput. The large variation in possible delay times reflect the volume
difference between the largest and smallest Ethernet frames that could be transmitted
under the IEEE 802.3 standard (IEEE, 2012)7.

The delay modules were abstracted away from the implementation of the memory storage
and treated the frame server as a FIFO buffer of a finite size that accepts and returns
network frames. Details relating to the duration which a network frame should be stored

7Jumbo frames were not adopted by the official IEEE 802.3 standard, limiting the maximum Ethernet
frame size to 1522 bytes.
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Table 4.1: Statistical Summary of Read and Write Operations for SDRAM [in ns]
Write [ns] Read [ns]

MIN 39390 34320
Q1 39400 34320
AVG 39403 34325
Q3 39410 34330
MAX 39410 34330

Figure 4.10: Recorded Timings for RAM IO with Frame of Non Varying Lengths

for as well as maintaining communication channels with other application level modules
is the responsibility of the delay module.

4.5.1 SDRAM Timings

Before timing constraints could be determined for the delay module, the timings relating
to bulk data transfer to and from the SDRAM had to be recorded. Once collected, these
timings can be used to determine the minimum delay time the application module should
allow. This minimum delay will account for the time taken to write and read a network
frame from the SDRAM.

Table 4.1 shows the statical summary of time taken to transfer bulk data to and from the
SDRAM. The bulk data transferred contained 1522 bytes of data which is the maximum
allowable size of a network frame transmitted under the IEEE 802.3 protocol (Beili, 2007).
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For both operations, 1000 iterations of the tests were performed and each data block was
written to a different address in SDRAM in a sequential manner. Figure 4.10 describes
the times taken to write and read the bulk data for sequential locations in SDRAM. From
this figure it is clear that the timing overhead relating to read and write operations is
independent of the location in SDRAM addressed.

Considering the results summarised in Table 4.1, the variation recorded can mostly be
attributed to the 10ns resolution of the timer used to record the timings and the operations
can be considered to only be dependent on frame size. Tests relating to variable frame
sizes show a linear relationship between volume of data to be transmitted in 32-bit integers
and time taken to perform the operation. Considering the largest frame size that could
be delayed, the expected maximum time taken to write and read a single network frame
from SDRAM is 0.074ms.

Table 4.2: Statistical Summary for 1000 Frame Transfer Timings in Nanoseconds
Without Delay Module [ns] With Delay Module [ns]

MIN 535010 645510
Q1 535010 645520
AVG 535016 645522
Q3 535020 645520
MAX 535020 645940

Accounting for additional overheads such as transferring the network frame from the
source module to the delay module and then later from the delay module to the destination
module was tested by implementing the delay module in a test system using a source and
destination module with controlled input and output. As a baseline, two tests were
performed, the first was a transfer between the source and destination modules directly
while the second test included the delay module as an intermediate step. A statistical
summary for both tests is shown in Table 4.2. Comparing the average time taken for
each test, including a delay module with a wait time of 0ms in the frame transmission
path resulted in an increase of 0.11ms in transmission delay. As the current intended
resolution of the delay module is 1ms, it was concluded that no minimum delay would be
enforced on the delay module. The DSL would compensate for the transmission latency
by reducing defined delays by 0.11ms and simply not including a delay module of 0ms.

After implementing the delay module into the DSL, transmission speeds were tested for
different latency durations. Table 4.3 lists the latencies that were tested along with the
average RTT recorded using the ping utility application found on most operating systems.

To evaluate throughput and different latencies, iperf (Tirumala et al., 2005) was used to
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Figure 4.11: Frame Throughput For Varying Latencies

Table 4.3: Recorded RTT Times for Different Delays [20 Iterations Each]
Test No. Delay [ms] Average RTT [ms]
1 5 5.2
2 10 10.3
3 20 20.3
4 25 25.2
5 30 30.2
6 50 50.2
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Figure 4.12: Logical Representation of a Ring Oscillator

move a bulk volume of data between end hosts through the functional platform imple-
menting the delay module. Figure 4.11 shows the observed throughput for each latency.
As expected, increasing the latency reduces throughput as it directly impacts the maxi-
mum TCP throughput as described in Equation (4.3) where windowr is the window size
advertised by the receiving host (Jain et al., 2003).

Throughput ≤ windowr

RTT
(4.3)

4.6 Random Number Generation

To support the inclusion of entropy when developing applications, the prototype device
must be capable of generating random numbers. To facilitate this, a module responsible
for random number generation should be developed and made available for the inclusion
in user-defined applications.

During an investigation into random number generation, it was found that the XMOS mi-
crocontrollers all contain four ring oscillators which are designed to operate independently
of each other. Furthermore, these oscillators are sensitive to heat and current draw which
can effect oscillation speed (XMOS, 2015a). Ring oscillators are usually implemented in
hardware as a chain of logical negations that can be conceptually described by Figure
4.12. A ring oscillator is started by applying a signal to the first logic gate of the chain,
the negation of which is fed into the second logic gate. This process is repeated until the
signal reaches the last logic gate in the chain. The signal produced by the last logic gate
acts as the output signal of the oscillator and is then fed back into the beginning of chain
causing the process to repeat. As the number of logic gates in the chain is always odd,
the output signal will always be the logical negation of the input signal. If the procedure
is allowed to operate continuously, the output signal will oscillate. The period of the
oscillation is dependent on the time taken for a signal to propagate through the chain
which is affected by the number of logic gates present and external factors such as heat
and current draw (Ricketts and McNeill, 2009) . Due to their sensitivity to these external
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Figure 4.13: Frequency Distribution Showing Bias of Modulo Operation

factors, ring oscillators provide a good source of entropy required for random number
generation. As the oscillators run independently of the system clock, they do not require
a dedicated thread to operate.

Random number generation was implemented by using the frequency differences between
different ring oscillators, the result of which was then combined with a pseudo-random
number generator. This was achieved by reading the current values of the four oscillators
to be used as parameters in a polynomial which is fed into a CRC check to produce a
codeword to act as the generated random number. This operation can be performed by
the thread that requires a random number rather then communicating with a dedicated
process. The only requirement is that the ring oscillators are initialized before the depen-
dent application begins. The CRC check can be done in a single clock cycle and the only
additional overhead is reading of the ring oscillators.

To test the implemented module, 10 million random numbers were generated in the range
from 0-99 inclusive. The recorded results are graphed in Figure 4.13 which indicates a
significant issue with the generation where some number ranges are favoured more than
others. This issue arises from the method used to reduce the 32-bit random number to
fit in the specified range. The implemented method is to simply perform the modulo
operation on the 32-bit random number and return the remainder as the result. Equation
(4.4) depicts a minimal example used to describe how for certain ranges, some values
have a higher probability of occurring as there are more situations in which the modulo
operation will resolve to them.
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Figure 4.14: Frequency Distribution of Generated Numbers

random(24) mod 5 =



0 : 0, 5, 10, 15

1 : 1, 6, 11

2 : 2, 7, 12

3 : 3, 8, 13

4 : 4, 9, 14

(4.4)

A proposed solution is to mask the 32-bit number to the least significant bit which will
still contain the target range8 and then repeat the process until the masked value lies
within the target range. This does produce a more evenly distributed result which is
depicted in Figure 4.14 but at the cost of becoming non-deterministic. The cumulative
frequency of the generated numbers was also computed which shows an even distribution
in numbers generated within the specified range.

Considering the trade off between using a deterministic and non-deterministic approaches
to number generation presented here, both were implemented. The user can then select
between using a deterministic but biased generation approach and the non-deterministic
but unbiased approach. A final important note is that the deterministic generation is
highly recommended when the desired range is of the form 2n where n is in the range 1
to 32 as these ranges are not affected by the bias seen in the deterministic generation.

Providing the proposed system with tools capable of performing random number gener-
ation all allow developed applications to include non-deterministic behaviour. Random

8For example, the value 100 would be completely contained in 128 or 27.
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number generation achieves this by allowing the developer to associate a probability of
occurrence with an operation or set of operations within the application.

4.7 User-Defined Modules

User-defined modules are classified into two types according to the output states the
module can achieve. The first type discussed is a modifier module which must output
all received frames to modules connected to it’s output regardless of the logic processed
by the module. The second module type is the switch module which can select between
two groups of modules connected it’s output depending on internal conditional logic. The
user-defined modules must still conform to the standard discussed in Section 3.5.1 to
ensure compatibility with all modules instantiated within an application.

The intention behind a user-defined module is to provide the structure required to commu-
nicate with other modules while allowing the user to develop the majority of the internal
logic to meet the requirements of the intended application. Unlike internal modules, a
user-defined module is independent of any specific hardware and can operate on any
available xCore on the Network Layer of the platform.

4.8 DSL Devlopment

In Section 3.5.2 the requirements relating application development to the scope of this
research were highlighted. The first factor to consider was ease of use as application de-
velopment relating to the proposed platform should be achieved in a user friendly manner
without requiring any specific hardware knowledge.

The sensitivity of the internal modules described in Section 4.3 must also be consid-
ered. Implementation of these components was performed under the assumption that
they would be inaccessible for modification by the user. To confirm conformance of
user-defined modules and ensure correct interfacing between these modules and required
internal modules, the solution proposed by this research is to develop a Domain Specific
Language (DSL).

Development of a DSL would allow the research to design a syntax which is both simple
and expressive in the domain of the prototype platform. The semantic notations relating
to the DSL could also provide the necessary abstractions away from hardware specific
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knowledge such as communication between physical components that form part of the
platform. Applications developed using the DSL should be easy to read and concise.

Considering the proposed design of applications compatible with the platform, the DSL
should be divided into two stages: the declaration stage and the link stage. The dec-
laration stage would be responsible for the design of any user-defined modules which
are required as part of the intended application. Following this, the link phase would
be responsible for describing the connectivity of both user-defined modules and internal
modules. These connections would ultimately describe the flow of network frames through
the Network Layer between port nodes.

As the internal modules described in Section 4.3 were implemented in XC, applications
written in the DSL must be translated into a language compatible with the XMOS devel-
opment tool chain. The translated code can then be compiled with the necessary internal
modules as first discussed in Section 3.5.3.

The final component that needs to be discussed before example applications can be in-
vestigated is the ability to record or log data and receive commands from the Base Layer
during application execution. Due to memory limitations of the XMOS platform, all data
management and storage will be passed to the Base Layer for handling. To achieve this,
it is necessary to create and maintain a connection between the executed application and
the Base Layer. As concluded in chapter 3, the implemented interface will use the SPI
protocol with the Base Layer acting as the master and the Network Layer acting as the
slave.

To incorporate the logging functionality into the DSL, two approaches were considered.
The first was to define the logging as a separate component that could be made avail-
able to the user with multiple input channels and an output channel. Other modules
with characteristics to be logged would then write to this channel and details relating
to communication with the base platform would become the responsibility of the link
exclusively.

The second approach was to allow both the modifier and switch modules the ability to
define when a characteristic should be logged. In this case, each defined characteristic
would have two attributes associated with it, the value to be compared or updated, and
the condition on which a record relating to that characteristic should be logged to the
base.

After testing both approaches in a series of applications, it was expeditiously discovered
that defining a separate component to act as a logger would not improve the functionality
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Figure 4.15: General Structure of a Platform Component

of the code for the user as the logging does not require any user interaction to define
and set up. The approach taken by this research was to extend the functionality of
current components to allow for the logging of characteristics. Should a component of the
application then require logging, a background process would be created to handle the
communication between the platform and the base.

4.8.1 Defining a Module

To simplify the translator and enforce compatibility, all user-defined modules should con-
form to a standard as discussed in Section 3.5.1. Figure 4.15 shows the input and output
constructs of a module. These constructs are set up to allow for multiple input and output
channels to be handled so that each module can connect to multiple other modules. A
condition that must be applied to every module is that each channel, both inbound and
outbound, must be connected to another module. Furthermore, a module can only con-
nect to another module once across both inbound and outbound channels as duplication
could result in circular connections as highlighted in Section 3.5.2.

4.8.2 Example Target Applications

To better understand how the platform will function once developed, a series of simple
target applications were developed and investigated. These applications are minimal as
they focus on showing how the platform could be used.
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Figure 4.16: Data Flow Model for ICMP Filter Application

Application Example: ICMP Blocker

The first example application is an ICMP blocker. The goal of this application is to
allow traffic to pass freely from port A on the platform to port B. Traffic travelling in
the opposite direction however will be monitored and all ICMP requests will be dropped.
Figure 4.16 depicts the traffic flow model of this application where the directed lines
represent the direction of data flow.

This application is made up of three modules, Port A, Port B, and the Filter. In XC,
each of these components represents a concurrent process or group of processes that are
executed in parallel on the XMOS architecture. For this application, both Port A and Port
B are internal port modules which has previously been developed and cannot be modified
by the user. The filter module however is the responsibility of the user to develop as its
functionality is dependent on the application requirements. In this application, the filter
link will contain a single condition that it will check against every packet it receives on
its input channels. The condition to check is if the IP layer protocol associated with the
frame is of type ICMP. To perform this check it is first necessary to determine if the frame
received is being transmitted under the IPv4 protocol. If the correct underlying protocol
is being used and the ICMP protocol tag is present, the packet is dropped immediately
and the system returns to the idle state (waiting for incoming traffic). Should the check
fail, the packet is then broadcast to all outbound channels attached to the filter link. For
this application, the filter only has one inbound channel and one outbound channel.

From this example it is clear that the only component of the application that needs to be
defined by the user is the filter link. Furthermore, only the characteristics of the frame
to be filtered and how the channels between links are connected require user specification.
The rest of the application such as how frames are passed over channels or how links
manage multiple inbound and outbound connections is not a concern of the user and
should be abstracted away by the DSL.

The second point highlighted by this example is the evaluation of frame related charac-
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Figure 4.17: Data Flow Model for MAC Spoofer Application

teristics. To check a characteristic relating to a specific protocol, it is first necessary to
confirm that the compatible lower level protocol is also present in the frame. This ad-
ditional check is not a concern of the user and the interpreter associated with the DSL
should be responsible for insuring that this check is performed.

Application Example: MAC Spoofer

A second example application that could be executed on this platform is a MAC spoofer
which also logs the length of each frame sent. In this application all traffic received from
port A will be passed unaltered through to port B. However, all traffic from port B will
have the source mac address altered to some defined value before being passed through to
port A. Figure 4.17 shows how the frames will traverse the application between the two
ports.

As in the previous example, the application specifies two Port modules which will handle
communication between the application and the physical network medium. In addition
to these modules, this example includes a modifier module. The modifier composition is
very similar to that of a filter except all traffic received from an inbound channel will be
broadcast to all outbound channels in a modifier as the modifier link cannot drop frames.
The purpose of a modifier is to alter attributes of each frame received as specified by the
user. This is done by replacing the value in the frame that represents the characteristic
to be modified with the value specified by the user.

Unlike the previous example however, this application is also required to log the length of
each frame sent to the base platform. To do this, an additional background process must
be created which can maintain a connection to the Base Layer for data transmission.

To allow the modifier component to communicate with this background process and send
data, it is necessary to specify an additional channel type that the component can com-
municate through. Figure 4.18 shows the updated structure of a component object which
now includes an optional channel for communicating with the SPI process.
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Figure 4.18: Updated Structure of a Platform Component

Figure 4.19: Data Flow Model the Combined Application

Application Example: Combined Example

A third example is to combine the functionality of the previous two examples into a
single application. Figure 4.19 depicts the data flow of this new application with a filter
component and modifier links chained together. For this the component indicating that
ICMP traffic is dropped has been removed so as to not imply that channel communication
is required to to perform this action.

As described the previous two application examples, all network traffic traversing from
port A to port B will pass through the application unaltered. Traffic traversing from port
B to port A however, will be be altered according to the application chain depicted in
Figure 4.19. The first module in this chain depicts a filter taken from the application
example described in Section 4.8.2. This filter is responsible for removing all ICMP
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related frames from the network traffic traversing from port B to port A. The filtered
traffic is then processed by the second module in the application chain, the MAC spoofer.
This module, discussed in Section 4.8.2, will alter the source MAC address of all filtered
network traffic to a previously determined value. A secondary function of this module is
to log the frame length of every modified frame to the Base Layer via the SPI interface.

4.8.3 Semantic Notations

After considering the issues highlighted by the example applications and concerns raised
in Section 3.5.2, a basic syntax that represents each component from the perspective of the
user was developed. This notation focused on simplicity by removing all factors relating
to the application that should not be a concern of the user. The syntax was designed to
operate in two distinct phases: the declaration phase and the linking phase.

During the declaration phase, modules that are to form part of the application must be
declared and defined. Due to the limited number of module structures available, there is
very little syntax related to this stage of the application design. Once the module type
has been declared, it must be given a name so that it can be addressed later during the
linking phase. A list of the characteristics associated with the module would then be
applied to every frame received. The syntax used to develop a list was designed to be
independent of the module type to allow for compatibility.

These attributes are defined locations in the data collected off the network port and are
effectively indexes into an array which represents the network frame. Associated with
each characteristic is a value that the frame attribute should be compared against. To
show this syntax quantitatively , the declaration phase of the first application shown in
figure 4.16 is presented in Listing 4.2.

1 Switch ICMP Filter
2 {
3 on Condit ion ( e ther type == ICMP) : FAIL ;
4 Defau l t : PASS ;
5 }

Listing 4.2: Declaration Phase for Application Example: ICMP Blocker

The syntax presented in this listing declares the defined module to be of type Switch.
A switch type module requires two output states indicated as PASS and FAIL. Each
statement included in a switch module must resolve into a boolean expression which is
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associated with one of the two proposed output states. Finally, all switch modules require
that the last statement listed is Default which will be the action performed by the module
if all other statements resolve to false.

Following the declaration phase, the remainder of the script is reserved for the linking
phase. In this phase, the modules defined by the user are used to create an application
chain. This chain can also include modules not defined by the user provided they form
part of the internal module group.

Each chain must end with a terminal module which acts as the sink of the application
chain. For the proposed revision of this research, only the internal port modules may act
as a sink. The linking phase following the declaration phase in Listing 4.2 is presented in
Listing 4.3.

1 Port A −−> Port B
2 Port B −−> ICMP Filter<on PASS> −−> Port A

Listing 4.3: Linking Phase for Application Example: ICMP Blocker

The ‘–>’ syntax indicates a channel between the two links within the application. All
switch modules need an additional parameter of either ¡on PASS¿ or ¡on FAIL¿ which
indicate whether the chain should be linked to the PASS output group or the FAIL output
group of the switch module.

A more advanced application to evaluate is the example discussed in Figure 4.19. As
this is an application that can be run on the platform, the syntax must be capable of
representing it. In this case, the length characteristic of each frame must be logged which
is achieved by including the LOG statement. This indicates the length characteristic
of the current frame should be written to the log interface. The completed code in the
proposed syntax for the third example application is presented in Listing 4.4.
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Table 4.4: Frame level attributes available in the DSL
Characteristic Value Available to Modifier
dst mac array of hex No
src mac array of hex No
length unsigned integer Yes
ethertype unsigned integer Yes
VLAN tag unsigned integer Yes
frame data array of hex Yes

1 Switch ICMP Filter
2 {
3 ipv4 e the r type = ICMP;
4 }
5
6 Modi f i e r Spoofer
7 {
8 [LOG <: l ength ] /∗Log the l e n g t h o f the frame∗/
9 src mac = x00 : x3D : x45 : xA7 : xE5 : xFF ;

10 }
11
12 Port A −−> Port B ;
13 Port B −−> ICMP Filter −−> Spoofer −−> Port A ;

Listing 4.4: Complete Application example: Combined Example

To allow the user to easily retrieve or modify frame characteristics, the DSL will support a
selection of attribute names. The user can then interact with the frame characteristics by
using the associated name rather then explicitly selecting the relevant data. For example,
should the user require that the frame length attribute is incremented by ten, they can
achieve this by simply adding the statement [length = length + 10] to a modifier type
module. Any attribute appearing on the right of a statement will be resolved into its
numeric value as it currently appears in the frame. Table 4.4 shows an initial revision
of the exposed characteristics purely at the frame level. The third column of Table 4.4
indicates whether a modifier link can use the characteristic as part of a numeric operation.

Additional characteristics that the DSL will include are dependent on the Ethertype field
included in the frame. Table 4.5 presents a sample of the additional characteristics that
will be supported by the first revision of the DSL. The fourth column in the table indicates
the Ethernet type that is required for the characteristics to be relevant. Later extensions
to this research will include extending the availability of user modifiable characteristics
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Table 4.5: Ethertype specific attributes available in the DSL
Characteristic Value Available to Modifier Required Ethertype
ipv4 src ip array of char No IPv4
ipv4 dst ip array of char No IPv4
ipv4 ttl unsigned integer Yes IPv4
ipv4 version unsigned integer Yes IPv4
ipv4 protocol unsigned integer Yes IPv4
ipv4 flags unsigned integer Yes IPv4

to include attributes associated with different protocols. The user can bypass the require-
ments of selecting a characteristic and address the data directly using the [frame data]
keyword.

When adding conditions based on IP level Ethernet types, if a frame does not form part
of the appropriate underlying Ethernet type, the condition will be ignored entirely. It
is recommended that this situation be avoided by linking a filter between the modifier
and the frame source to ensure that only frames of a particular Ethernet type reach the
modifier.

After describing a functional syntax capable of representing minimal applications in a
concise manner, the prototype language was named Link with each application being
comprised of interconnected node.

4.9 DSL Interpreter

For the proposed language to be functional, a translator capable of accepting valid appli-
cation scripts written in Link and producing equivalent XC source was necessary. Rather
than develop such an interpreter from first principles, it was proposed that a compiler
generator be used to simplify the process.

Due to the structure of the application examples, Link can be broken into the declaration
and linking phase with the requirement that the declaration phase occurs first in the
produced script. By enforcing this requirement, it is possible to ensure that any node used
in the linking phase must have already been defined either by being an internal module
or by being previously defined during the declaration phase. The resulting language can
be modelled as an L-attributed grammar which is formally defined by Mauer Wilhelm
(Wilhelm et al., 2013) as:

An attributed grammar AG is L-attributed, if for every production of the
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grammar p : X0− > X1...Xp, all inherited attributes a ∈ Inh(Xi) for i ∈
{1, ..., p} only depend on inherited attributes of Xj for 1 ≤ j < i.

This allows for a top down parsing of the source code in a single pass by the translator
while maintaining a list of known variables. As a result, generating a translator can be
performed using a compiler generator such as Coco/R.

Coco/R was developed in Obreon in 1989 and is a derivative of a table driven parser called
Coco which in turn was developed in 1983 (Terry, 2005). Coco/R accepts an attributed
grammar and generates a scanner and parser designed for that language. The developer
is also required to supply some additional support components such as a code generator
or table handler to call the generated parser.

A requirement of Coco/R is that the productions of the DSL grammar be written in Ex-
tended Backus-Naur Form (EBNF) form. John Backus, a member of ALGOL9, developed
a notation for describing the syntax of programming languages. Impressed by the nota-
tion, Peter Naur used this meta language to completely describe the ALGOL language
syntax, thus proving the significance of the meta language. As a result the syntax became
known as Backus-Naur Form (BNF) (Patti, 2005).

This meta language was then extended by adding operations to allow for conditions and
repetition within the production rules of the language grammar (ISO, 1996). Productions
in EBNF are equivalent to productions written in BNF but can be written in a more
compact form by not having to use recursion to allow for a sequence of symbols to repeat.

4.9.1 Generated Code

The goal of Link is to be used in conjunction with a high-level translator responsible
for converting the application script into into source code compatible with the XMOS
development toolchain. The resulting code can then be compiled with additional libraries
to produce the application image. The code is structured such that each node declared
in the application chain will be reserved for a separate logical processor on the platform.
Because of this, the number of modules that an application can include is dependent on
the number of logical processors available on the Ethernet platform. For an XS1-L16,
up to 16 modules can be implemented. It is important to consider that the number of
channels that can be declared in an application will also be limited as it is a finite resource
of the device.

9ALGOrithmic Language, an early high-level programming language
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The designed translator works in to two stages, first the script is parsed and once complete,
the source code is generated. During the parsing phase of translation, module objects are
created for each user-defined module. Associated with these objects are lists indicating
the attached upstream and downstream modules. All internal modules referred to in the
script are also recorded so that the translator can include the initialisation code for them
at a later stage. A counter of the number of logical processors is kept to ensure that the
implemented Network Layer supports enough logical processors to run the application.

Once the script has been parsed, checks are performed on all generated objects to ensure
every module present in the linking stage of the script has been properly defined. All user-
defined modules are renamed to ensure they do not conflict with the names of internal
modules which could case the resulting application to fail later compilation. Semantic
checks are also performed during parsing and any errors detected are announced along
with the line on which they were detected. No attempt at error recovery is done and the
translator will simply terminate at that point without producing any output file. Once
the source is successfully parsed, generation of the application code in XC can begin.

As indicated in Figure 4.18, a module is required to support multiple inbound channels
which will need to be monitored for incoming frame data. To support this, XC offers a
new statement type called the select statement. In a programming context, the select
statement works in a similar fashion to a switch statement common in C and C++ in
that it consists of a series of cases which which are evaluated upon entering the statement
block. The difference between the two statements arises from the context of each case.
Instead of comparing some input variable against a predetermined value, the cases of a
select statement are associated with events such as channels, ports, or timers. The first
case in which an event occurs is the case the select statement transfers control to (Watt,
2009). select Statements allow threads written for the XS1 architecture to respond to
multiple inputs without having to revert to polling. Appendix B.1 shows an example of
this functionality where two threads are executed in parallel. The first thread sequentially
sends a character over four different ports which the second thread prints out. If the second
thread does not receive anything from the first thread for a specified duration, it times
out.

To improve readability and reduce repetition in the generated code for select statements,
XC provides an optional extension to the select statement called a replicator. The code
listing in appendix B.2 is logically equivalent to the code listing in appendix B.1 except
now the second thread operates using a replicator rather then explicitly specifying each
case.
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4.9.2 Module Control

A proposed feature of the this research would be to allow the user to interact with an
application by enabling or disabling user-defined modules during execution. The approach
taken by this research to achieve this is to provide a listing of user-defined modules
associated with the active application on the user interface identified in Section 3.5.3 and
further discussed in Section 4.10. Associated with each element should be a check box to
allow the user to enable or disable a specific module.

To facilitate this, the interpreter is required too produce a secondary file listing all user-
defined nodes and an identification number associated with each. The secondary file
produced by the translator should then become available to the web interface and be used
too populate a control tab for user interaction.

The purpose of the identification number is to allow the executing application to distin-
guish which user-defined module is to be enabled or disabled. As communication of the
enable commands must operate through the internal module responsible for logging, the
identification numbers associated with each module would simply be the channel number
associated with that node in the internal logging module.

The consequence of this approach however is that the internal logging module becomes
compulsory and must be included in all applications, reducing the number of available
logical processors for user-defined modules by two. Given the potential functionality this
could add to the executing applications by allowing user control without reloading the
target application, this cost was considered acceptable.

4.9.3 Supporting Function Design

During an evaluation of semantic notations in Section 4.8.3, a series of frame related char-
acteristics were tabulated. Allowing the user to address these and other protocol specific
characteristics is essential in achieving the research goal of providing frame manipulation.

Tables 4.4 and 4.5 provide an initial listing of characteristics relating to the frame and IP
protocol which applications developed in Link should have access to. As the language is
extended to support more protocols, the list of available characteristics should increase
accordingly.

From the perspective of the Link grammar, incorporating such extensions can be per-
formed by simply including the new attribute names. Every modification to the grammar



4.10. PLATFORM USER INTERFACE 82

however, must be reflected in the accompanying translator. For the current revision of
the translator, each characteristic resolves into one of two function calls depending on
whether the characteristic is being retrieved or modified. For the generated code to be
compiled, each function being called must have been previously defined in a supporting
library.

The characteristics currently defined in the supporting library are listed in appendix
B.4 which can be extended during future development of the translator. Each function
listed is responsible for insuring all relevant underlying protocols relating to the target
characteristic are present before modifying for returning the characteristic value.

4.9.4 Compilation and Uploading

Once the translator produces the application source file, it is included as part of an
existing application project. The project is then compiled with relevant libraries into a
binary using the XMOS XCC compiler10. Included in the project is a configuration file for
the Network Layer of the platform. This file tells the development tools how the target
platform is structured.

Once the binary is generated, the xflash11 application is called to convert the binary
into an image file which needs to be uploaded to the Network Layer flash as discussed in
Section 4.4. This is done via an SPI connection to the flash device dedicated to storing
the application code. Once flashed, the Network Layer of the platform is reset and the
images are loaded from flash onto the device.

4.10 Platform User Interface

To accommodate user interaction with the device, a user interface is provided via the
Base Layer. The user interface is presented as a web application that serves an interactive
web page to provide monitoring of the Network Layer and the current application being
executed. The webserver is a simple Apache server that uses CGI scripts to populate
served pages via AJAX calls. JavaScript is then used on the served pages to render
the information recorded by the platform to the user as a series of charts. This data is
periodicity updated as information is recorded from the Network Layer.

10https://goo.gl/22Bie5
11https://goo.gl/WVV8aF



4.11. SUMMARY 83

Currently, monitoring is done by default on all enabled ports of the device. Each active
port records basic information on the frames received or transmitted and pushes this meta
information to the Base Layer via the logging interface. For the current implementation,
this information is limited to volume of bytes, number of frames, and a count of ICMP
and IP frames handled. The information recorded in this manner is done as a proof of
concept with more informative data to be recorded in later revisions of the platform.

This recorded data is periodically received by the Base Layer and stored in a database.
This database exists for the current application and is only active for the application
lifespan. When the application is restarted or a new application is run, a new database
file is created to associate with it. Old database files are stored for later retrieval.

To make the recorded information available to the user during application runtime, a
set of CGI scripts are run periodically on the database. These scripts retrieve the last
window of records from the database and transmit the processed data via the webserver
to all active client interfaces. The window size is currently set to 100 entries which are
processed into coordinate values and ratios to be rendered by the client interface as shown
in Appendix C.

An additional function of the client interface is to allow the user to upload their application
scripts onto the device. Once uploaded, the Base Layer compiles the script and uploads
it to the Network Layer as discussed in Section 4.9.4.

4.11 Summary

Prior to implementation, Chapter 4 focused on the analysis of transmission speeds through
the architecture chosen for the Network Layer. From this investigation, it was concluded
that the XMOS architecture was a suitable candidate for implementation though it was
recommended that only the XMOS Fast Links be used for intertile communication. The
internal modules described in Chapter 3 were implemented and tested before further
application examples were investigated which utilise these internal modules. The findings
from the application examples were then used to design a DSL called Link which could
be used to represent each application in a simple manner.

Following the language design, an interpreter was developed for translating applications
written in Link into source code compatible with the XMOS architecture. The user
interface and supporting applications relating to the Base Layer were also implemented
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with the discussion focusing on user interaction and the application components required
to facilitate them.



5
Hardware Design

5.1 Introduction

In Chapter 4, the internal software modules required to support frame manipulation were
implemented and the format of general modules was covered. The scripting language Link
was designed to aid in the generation of platform compatible software which includes cus-
tom components supplied by the user. The supporting software required to interface with
the Network Layer was implemented to operate on both the Intel Edison and Raspberry
Pi, each of which included an SPI interface for programming the platform flash.

This chapter presents the design and fabrication of a dedicated hardware platform to act as
the underlying hardware for the Network Layer of the system. The initial stage of Section
5.2 focuses on the design of a stable power supply for the platform while the second stage
covers general design characteristics related to board development such as acceptable PCB
track lengths and capacitor placement. Section 5.3 focuses on the fabrication and testing
of a prototype board containing a subset of the hardware expected to be supported by
the final device. This preliminary board is intended to test the operation of the on-board
power supply and designs for the network interfaces.

85
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Section 5.4 uses conclusions drawn from previous sections for the design and fabrication of
the dedicated hardware for the network platform of the system. Section 5.4.2 reviews the
resulting device, identifying all errata detected. Actions taken to remedy the errors de-
tected are also discussed. Modifications to the DSL, allowing for the use of the new board
in application development are discussed in Section 5.4.3 before the chapter concludes
with a summary in Section 5.5.

5.2 Hardware Design Theory

In Section 3.3 the XMOS XS1 architecture was selected to act as the underlying hardware
of the Network Layer associated with the platform. As stated in Section 1.3, an intended
outcome of the research is to fabricate dedicated hardware on which the Network Layer of
the platform can operate. Owing to the complexity of the intended board it was decided
that an intermediate prototype should first be fabricated to test component and subsystem
design, and highlight any issues that could impede the functionality of the final hardware
configuration.

A significant component of the proposed device was the power supply as the XMOS micro-
controller requires both 1v and 3v3 to operate. Furthermore, the XMOS microcontroller
requires proper sequencing of the power regulators and reset line to ensure correct boot-
ing procedure (XMOS, 2015c). To account for these requirements, a detailed evaluation
of a suitable power supply is required followed by an analysis of some transient effects
which should be considered to ensure smooth current distribution throughout the designed
device.

5.2.1 Power Supply Design

To achieve the output voltage Vout required for the prototype platform from a given input
voltage Vin, a conversion circuit is required. Two common approaches to conversion are
linear regulation and switched mode conversion.

5.2.2 Linear Regulation

Linear regulation can only produce an output voltage where Vout < Vin as it operates in
a fashion similar to a potential divider shown in Figure 5.1, varying the resistance Z1
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Figure 5.1: Theoretical Potential Divider Associated With a Linear Regulator
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Figure 5.2: Function Diagram of a Linear Regulator (Simpson, 2011)

to maintain a constant Vout. Differences between Vout and Vin are then dissipated across
Z1, usually as heat (Erickson and Maksimovic, 2001, ON Semiconductor, 2014). As more
current is required, the voltage drop across the load resistance Zload will begin to change.
The series resistance Z1 must then change accordingly to maintain the correct voltage
drop across Zload (Wens and Steyaert, 2011).

An alternative representation of a linear regulator is depicted in Figure 5.2 which describes
a basic implementation consisting of two components: a voltage controlled current source,
and control circuitry attached to a feedback loop. The voltage controlled current source
is responsible for presenting a fixed voltage at the output terminal of the linear regulator.
To achieve this, the control circuitry uses a feedback loop and error amplifier to monitor
the voltage on the output terminal and adjust the current source to account for variations
in current draw and input fluctuations (Zhang, 2013). The error amplifier is commonly
composed of an operational amplifier along with some reference voltage. The operational
amplifier will then exaggerate the difference between the potential divider output and the
reference voltage, amplifying the difference. The control circuitry uses this exaggerated
result to determine how the voltage controlled current source should react to maintain
Vout at the intended voltage. A common characteristic of linear regulators is the time
taken to react to a change in the output voltage. These variations are usually owing to
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a sudden increase or decrease in current draw or a variation on the input voltage. This
delay time is called the transient response and describes the time taken for the linear
regulator to return to a stable state in response to a disruption (Simpson, 2011).

Owing to the power factor of linear regulators, their efficiency will drop according to the
difference between the input and output voltages, resulting in an efficiency of approxi-
mately 20-60% (Rashid, 2011). This inefficiency results in excess heat being generated
by the circuit which needs to be extracted to maintain a stable ambient temperature
for neighbouring hardware. A significant advantage of linear regulators when compared
to switched mode conversion circuits is the little to no electrical noise generated by the
regulator (Rashid, 2011). Furthermore linear regulator circuits are relativity cheap and
simple, requiring little or no additional circuitry to operate.

5.2.3 Switched Mode Conversion

Switched mode conversion is a procedure involving a switching converter which is used to
produce a controlled output potential Vout from a given input Vin (Erickson and Maksi-
movic, 2001). Figure 5.3 describes a basic switching converter regulating an output Vout
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as defined by a control signal. Controller logic commonly associated with a switching
converter allows for the monitoring of both input and output terminals. This additional
logic enables the switching converter to react to voltage fluctuations so as to maintain a
constant output voltage according to some reference.

The operation of a switching power supply is dependent on the topology of the switch-
ing converter. A common topology is the Buck regulator which can produce an output
potential Vout from a given potential Vin provided Vout < Vin (Kazimierczuk, 2008). A
basic Buck regulator topology, depicted in Figure 5.5, operates by continuously switch-
ing between two states: on, when the input terminal is connected to the inductor; and
off, then the input terminal is disconnected from the inductor(Erickson and Maksimovic,
2001, Texas Instruments, 2012). Pulse width modulation is used to vary the duration D

the switch remains in each state for a given period Ts (Kazimierczuk, 2008) where D is
then the duty cycle of the switching converter. Figure 5.4 describes the resulting wave-
form generated on the output terminal where D is the duty cycle and Ts is the switching
period (Erickson and Maksimovic, 2001). The DC component of this generated waveform
is given by (5.1) (Erickson, 2001):

Vout = 1
Ts

∫ Ts

0
vs(t) dt = DVin when: Ic = Iout (5.1)

It is important to note that, owing to imperfections in switching elements of the switching
converter, a ripple voltage is also generated which results in an actual output voltage of
(5.2)(Erickson and Maksimovic, 2001).
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v(t) = V + vripple(t) (5.2)

To account for this, a low pass filter such as in Figure 5.6 must be inserted between the
Switching element and the output terminal to reject the high frequency ripple generated by
the switching elements (Erickson, 2001). The filter however, will also include imperfections
and as a result, not all harmonics are cleaned from the signal resulting in a possible output
ripple regardless (Kursun et al., 2003). If the induced ripple is significantly small, it can
be neglected and the output terminal is approximated to be just the DC component. This
approximation is referred to as small-ripple approximation or linear-ripple approximation
(Erickson and Maksimovic, 2001).

A consequence of the low pass filter is the effect it has on the output current supplied
by the switching regulator. The inductor will filter out the high frequency harmonics
present in the output voltage but in doing so, also acts as a current source which adds
a ripple current Iripple to the regulator output. To minimise Iripple, care must be taken
to match the inductor to the intended output voltage. The selected inductance should
induce a ripple current that is less than 20% of the average current supplied (Vaucourt,
2004). The expected ripple current Iripple can be calculated using (5.3) (Richtek, 2010)
which relates the ripple current to the switching frequency f and inductance L value of
the low pass filter.

Iripple = Vout

f × L
×
(

1 − Vout

Vin

)
(5.3)

Minimising the ripple current will help reduce power losses owing to ESR of capacitors
which is discussed shortly. When the current demand of the power regulator fluctuates
suddenly, the transient response time of the error amplifier used to monitor the output
voltage must be minimised to allow the switching regulator to react accordingly. Should
the transient response time be too large, current stored in both local and global board
capacitance must be able to supply the increased demand in current until the regulator
can respond.

Selecting a smaller inductance for the low pass filter reduces this transient response time,
allowing the buck converter to react sooner to current fluctuations (Vaucourt, 2004). The
actual inductor should be selected to have a saturation point well above the output cur-
rent the buck converter can provide (Richtek, 2010). Reaching the saturation point of a
ferrite core inductor will cause the inductance of the core to drop abruptly, changing the
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ESR
C

Figure 5.7: Representation of a Real World Capacitor.

characteristics of the low pass filter.

Proper selection of capacitance is also important for optimal operation of the converter.
Increasing the capacitance value will reduce the voltage ripple resulting in a smoother
output voltage (Zhang, 2013). Increasing the output capacitance however will also increase
the transient time taken by the error amplifier to react to a sudden change in load current
demand (ON Semiconductor, 2013).

Capacitors also include a resistance owing to imperfections in the physical component
which can magnify the voltage ripple Vripple. This resistance varies with frequency and is
referred to as the Equivalent Series Resistance (ESR) which represents the total lossiness
of the capacitor during current fluctuations (QuadTech, 2003). This resistance can be ap-
proximated by treating an imperfect capacitor as a perfect capacitor in series with a small
resistance which is represented in Figure 5.7 (Franklin, n.d.). The effective impedance of
the capacitor is then given by Equation (5.4) where R is the ESR, and jXc is the complex
impedance of the capacitor given by Equation (5.5).

Z = R + jXc (5.4)

Xc = −1
wC

(5.5)

The ESR is then the difference between theoretical impedance Xc and the measured
impedance Z of the capacitor at a known frequency. It is important to note that the ESR
is affected by frequency and so would be more accurately represented as R(w). Figure
5.8(a) and (b) describe the effect of frequency on the ESR of a capacitor which shows a
non-linear increase in resistance at higher frequencies. The effect of the output capacitor
on the output voltage ripple Vripple can be determined using Equation (5.6) (Richtek, 2010)
where the ESR is dependent on the type of capacitor used.

Vripple ≤ Iripple ×
(

ESR + 1
8fCout

)
(5.6)
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(a) ESR Value vs Frequency for 0805 Capacitors

(b) ESR Value vs Frequency for 0603 Capacitors
Figure 5.8: ESR vs. Frequency for Different Capacitor Sizes (AVX Corperation, n.d.).
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Table 5.1: Characteristics of the PCB Panel Used to Manufacture the Initial Prototype
PCB Material FR4
PCB Thickness 62.99 mil
Copper Plate 35 µm
Finish Lead-free HAL

5.2.4 PCB Track Characteristics and Signal Propagation

Another aspect to consider during board design is the PCB tracks in terms of signal prop-
agation and resistance. The prototype board is expected to operate at 100 Mbit/s but
only tracks between the port magnetics and the PHY are expected to handle switching
frequencies in this region. The majority of the board is only expected to handle signal
speeds dictated by the on-board clocks, all of which operate at 25 MHz. As a result,
the board can be considered to be operating at low frequencies when considering track
resistances and signal propagation (Flamm, 2004). Table 5.1 lists the characteristics pro-
vided by the manufacturer of the PCB panel used to manufacture the prototype platform
(PCB Pool, 2015). All tracks on the board are etched from a copper plate and will thus
have a thickness of 35 µm or approximately 1.38 mil. The fabricated PCB tracks can be
approximated by a rectangular conductor depicted in Figure 5.11 (Hall et al., 2000). The
track cross-sectional area is then A = TW where T is the track thickness and W is the
track width. The resistivity of a copper track is described by Equation (5.7) (Sharawi,
2004, Thierauf, 2004) where A is quoted in thousandth of an inch squared (mil2) and L

is quoted in thousandth of an inch (mil).

RDC = A × 4.47 × 10−7

L
(5.7)

However, this only accounts for the DC component of the track resistance when current
will flow in a uniform manner through the cross-sectional area of the track. An AC current
on the other hand tends to flow closer to the surface of the track. This behaviour of the
AC current is referred to as the skin effect (Popovic and Popovic, 2000). As the frequency
of the AC current increases, the current flow will begin to migrate further away from
the center of the track as described by Equation (5.8) (Popovic and Popovic, 2000). For
Equation (5.8), δ is referred to as the Skin Depth, ρ is the resistivity of the material, µ is
the permeability of the system, and f is the signal frequency. Relating the Skin Depth to
the resistance of a PCB track can be approximated using Equation (5.9) (Sharawi, 2004).
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Figure 5.9: AC and DC Components of Track Resistance for Different Track Widths

δ =
√

ρ

πfµ
(5.8)

Rac ≈ ρ

Wδ
=

√
ρπµf

W
(5.9)

Finally, the net resistance of a PCB track can be approximated as
√

R2
DC + R2

AC (Sharawi,
2004) where at low frequencies the RDC is dominant but falls away in favour of RAC at
much higher frequencies. Working with the upper bound frequency expected to be handled
by the prototype platform of 25 MHz, Figure 5.9 shows the resistance per inch expected
for tracks of varying widths.

Figure 5.9 indicates that the AC component RAC contributes less than a third to the PCB
track resistance for this implementation and, as Equation (5.9) is proportional to the signal
frequency, RAC will contribute even less for signals operating at lower frequencies. An
alternate perspective of this data is depicted in Figure 5.10 which shows the track length
(in inches) required to induce a resistance of 1Ω for varying track widths. These figures
do not take into account any sources of interference owing to surrounding circuitry and
are used primarily as indicators of possible upper bounds on track dimensions.

At very high frequencies additional factors come into play and the capacitive and inductive
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Figure 5.10: Trace Dimensions Contributing a Net Resistance of 1 Ohm

H εr

W

T

Figure 5.11: PCB Cross-Section With a Single Rectangular Trace

characteristics of the track become the dominant source of impedance, especially if there
is a ground plane directly beneath the track. In this situation the effective impedance of
the track is better approximated by Z0 =

√
L
C

(Hall et al., 2000) and its characteristics can
be discussed in terms of a microstrip. Fortunately frequencies of 25 MHz are well below
the frequency where such characteristics become significant and so can be neglected.

The next effect considered is the impact the PCB track could have on signal velocity.
Signals in a perfect vacuum would propagate at the speed of light c which is a velocity of
approximately 3 × 108m/s (Weiler and Pakosta, 2006). The PCB track and surrounding
material is not a perfect vacuum, however the transmission speed can still be reasonably
approximated as waves propagating through a homogeneous dialectic using Maxewll’s
equations which result in Equation (5.10) (Thierauf, 2004).
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Vp = 1
√

µ0µrε0εr

(5.10)

Where ε0 is the permittivity of free space, εr is the relative permittivity of the dialectic, µ0

is the permeability of free space, and µr is the relative permeability. In a perfect vacuum,
µr and εr are defined to be 1 which simplifies Equation (5.10) to:

Vp = 1
√

µ0ε0
where: ε0 = 1

µ0c2 (5.11)

Equation (5.11) simplifies to c which implies that the propagation of a signal through
a perfect vacuum is the speed of light as expected. Substituting this result back into
Equation (5.10):

Vp

c
=

√
µ0ε0√

µ0µrε0εr

= 1
√

µrεr

(5.12)

Thus the signal propagation velocity through a dialectic of permittivity εr and permeabil-
ity µr is:

V = c
√

µrεr

(5.13)

However the relative permeability of a non magnetic substance is 1 and so µr falls away
(Sheng and Varadan, 2007), simplifying Equation (5.13) to:

V = c
√

εr

and Td =
√

εr

c
(5.14)

Where εr is the effective dielectric constant of the PCB track and surrounding mediums.
As a PCB surface track is in contact with at least two mediums (air, PCB material), this
value is composed of multiple εr values (Weiler and Pakosta, 2006). An approximation
of the effective dielectric constant can be found using the diagram 5.11 where part of the
signal field will exist in air with an approximate dielectric constant of 1 and the remainder
will propagate through the substrate material (Semtech, 2006). Calculating εeff can be
done using formulas (Collin, 2000) :
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εeff = εr + 1
2

+ εr − 1
2

(1 + 12H

W
)− 1

2 + F − 0.217(εr − 1)T√
WH

(5.15)

F =

0.002(εr − 1)(1 − W
H

)2 when W
H

< 1

0 when W
H

> 1
(5.16)

Where εr now refers to the dielectric constant of the substrate material. Using the values
associated with the prototype platform, the signal propagation velocity can be found to
be:

V = 3 × 108
√

4.013
= 1.498 × 108 m/s or 169.559 ps/inch (5.17)

Considering the physical dimensions of the prototype platform, no PCB track is expected
to exceed 25.4 cm in length with signals propagating at the calculated velocity achieving
this distance in 1.7 ns. As a result, signals switching under a frequency of 588.25 MHz such
as the prototype platform should not be concerned with propagation speed limitations
imposed by the PCB material.

5.2.5 Decoupling Capacitor Placement

During operation, the power draw by the device will fluctuate depending on processing
load and the activity of device components. This power draw will result in a fluctuation
in current demand described by the simple formula (5.18).

P = IV (5.18)

As the voltage is not expected to vary, the load current must change to account for
power fluctuations. This increased demand in load current should be readily available
from a local source such as a decoupling capacitor. Should insufficient current be locally
available, the current will be drawn from the general capacitance of the board which can
cause voltage fluctuations on the power tracks referred to as power supply noise (Popovich
et al., 2011). Many Integrated Circuits such as the XMOS XS1-L8 require that the voltage
supply be kept within a tolerance band of 10% (XMOS, 2015c) so the net voltage ripple
Vripple cannot exceed these bounds. Power supply noise is usually high frequency owing
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to the rate at which load current requirements can fluctuate. These fluctuations can be
reduced by applying a surface mount ceramic capacitor close to each source of current
fluctuation (Analog Devices, n.d.). For a microcontroller such as the XMOS XS1-L8, this
implies multiple ceramic capacitors, one for each of the power pins on the package. It is
recommended that four 100nF ceramic capacitors and a bulk 22 uF capacitor be placed
close to the microcontroller for each of two power supplies to act as transient current
sources. These capacitors can supply a power pin during an abrupt increase in current
draw without impacting surrounding components (XMOS, 2015c). Placing the decoupling
capacitor close to the source of the current demand also helps reduce the return current
flow. The density of the return current flow is greatest closer to the source track through
which the load demand is supplied (Silicon Labs, n.d.). In the case of a ground fill, the
current density will be at its greatest directly adjacent to or beneath the source track.

5.3 Initial Prototype Design

To test the design of supporting circuitry required by hardware components such as the
Ethernet PHYs and XMOS microcontrollers, it was proposed that an initial prototype
board be fabricated. This prototype would include switching regulators designed to han-
dle all power requirements of the Network Layer and confirm stability of the produced
outputs. Once fabricated, this prototype could also be used to test interactions between
components such as the SPI flash and XMOS microcontroller. Any errors identified during
the development of the prototype could then be corrected during final board design.

5.3.1 Board Power Consumption

The platform will require three different voltage regulators for the proposed hardware.
The Intel Edison will require an input voltage of 7-28V to act as its source power supply
which it will then manage internally. Most IO and message passing on the platform
operates at 3.3v logic, including the XMOS microcontrollers (XMOS, 2015c) and the
Ethernet PHYs (Texas Instruments, 2015). These devices require that the 3.3v potential
be supplied externally.
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Table 5.2: Approximate Power Consumption Breakdown for Hardware Platform
Component Voltage Power Count Total Power Total Current
Ethernet PHY 3v3 267mW 4 1068mW 323.64mA @ 3v3
Additional Circuitry 3v3 100mW 1 100mW 30.30mA @ 3v3
SDRAM 3v3 170mW 1 170mW 51.51mA @ 3v3
XMOS Core 1v 250mW 3 750mW 750mA @ 1v

Table 5.3: Approximate Power Consumption Breakdown for Hardware Platform
Supply Voltage Supply Current
3v3 405.45mA
1v 750mA

Table 5.2 lists the predicted power requirements for the Network Layer of the proposed
platform. These figures are taken from the respective datasheets and indicate the peak
power draw of each device. Platform power supplies should be chosen to exceed these
requirements so as to ensure ample current is supplied during operation. The ”Additional
Circuitry” entry in Table 5.2 includes components such as the on-board flash, the 25 MHz
clock, and LEDs which do not draw enough power to be individually assessed. Table 5.3
lists the total current requirements for the 1v and 3v3 power supplies that will be required
to power the Network Layer of the platform.

5.3.2 XMOS Power Sequencing

An additional requirement of the XMOS XS1-L8 microcontroller is proper sequencing of
the power supplies and reset signal to ensure stable power during device power up. First,
the XMOS XS1-L8 requires that the 3.3v power supply rise from 0v to 3.3v in a monotonic
manner before the 1v has reached 0.4v (XMOS, 2015c). To ensure this, it is recommended

tms

V tdelay

V1v

V3v3

(a) Sequencing of V3v3 and V1v

power supplies

tms

V

V1v

Vreset
tslew

(b) Power on Reset

Figure 5.12: Required Power and Reset Sequencing for XMOS Microcontroller
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5v Output
3v3 Input

1v Input

A

B

C

(a) PCB track for the 5v supply (b) 5v Output

(c) Test point A (d) Test point B
Figure 5.13: Recorded Voltage Ripple at Test Points on 5v Track.

that the 1v regulator only be enabled after the 3.3v supply has reached is expected output
voltage of 3.3v ± 10% as depicted in Figure 5.12(a).

Once the 1v supply has reached its expected output voltage of 1v ± 10%, the reset signal
must be pulled low for 100ns. This allows time for the PLL input voltage to stabilise
before the microcontroller begins its boot procedure. The theoretical sequencing that the
hardware design will attempt to achieve is depicted in Figure 5.12(b).

5.3.3 Power Supply Testing

After PCB design and fabrication was complete, the process of board population could
begin. This process was broken into three phases with testing performed at the end of
each stage. The first stage was populating the components responsible for board power
supply which included circuitry required for correct power sequencing and power on reset.
Once populated, a voltmeter was used to confirm that each power supply was generating
the correct voltage.
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Figure 5.14: Recorded Voltage Ripple at Test Point A After Adding an Additional Capacitor

As discussed in Section 5.2.3 however, switch mode power supplies can induce a ripple
voltage. This ripple voltage needed to be checked to ensure the power rails were within
the 10% tolerance band required by the XMOS microcontroller for correct operation. As
the output ripple voltage for both 1v and 3v3 supplies could be affected by the stability of
the input supply, it was important the Vripple in the 5v supply be suitably minimal as well.
The oscilloscope capture shown in Figure 5.13(b) shows the ripple observed on output
voltage from the 5v power supply. In this supply Vripple was recorded to be approximately
30.4mV or 0.61% of the expected DC output voltage.

Monitoring the same track at the input location to the 1v regulator described a concerning
variation. The 5v track was monitored for voltage ripple at two locations between the 5v
regulator and the input to the 1v regulator. The 5v PCB track is depicted in Figure 5.13(c)
with the voltage ripple observed at location A depicted in Figure 5.13(c) and the ripple
voltage at location B depicted in Figure 5.13(d). From the oscilloscope readings it was
clear that a significant amount of noise was being introduced to the 5v track between test
points A and B. On the underside of the PCB, care was taken to ensure components were
not placed close to the 5v track however, inspecting the topside of the PCB revealed that
the 47uF capacitor used to smooth the voltage ripple of the 3v3 regulator was positioned
directly above the 5v track at position C in diagram 5.13(b) introducing the power supply
noise seen at test point B.

Resolving this increase in Vripple was done by adding an additional 4.7uF capacitor at
the 1v input. Figure 5.14 depicts the Vripple at test point B after the additional 4.7uF
capacitor was added to the board indicating a significant improvement.

Finally, the XMOS microcontroller had a dedicated power input for the PLL which re-
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R
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VoutVin

(a) Diagram of PLL low pass filter

(b) Recorded Vripple just before low pass filter (approxi-
mately 3.84% of DC voltage)

(c) Recorded Vripple after low pass filter (approximately 2.4%
of DC voltage)

Figure 5.15: Comparing Effects of the Low Pass Filter on the Voltage Ripple Present on the 1v
Power Supply
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Figure 5.16: Recorded Sequence in Which the 1v and 3v3 Power Supplies are Initiated.

Figure 5.17: Device Prototype After Board Population

quired a very clean input voltage. To achieve this, a low pass filter on the input power
supply was recommended (XMOS, 2015c). The implemented low pass filter consisted of a
4.4Ω resistor and a 100nF capacitor as shown in diagram 5.15(a) and was placed close to
the PLL input supply pin. The effect of the low pass resistor can be seen by comparing
the noise on the 1v power supply before [depicted in Figure 5.15(b)] and after [depicted
in Figure 5.15(c)] the low pass filter.

5.3.4 Board Testing

As discussed in Section 5.3.2, the XMOS power supplies had to be correctly sequenced
before correct booting of the device can be insured. During power up of the prototype,
both the 3v3 and 1v tracks were monitored. Figure 5.16 depicts the recorded sequence in
which the power supplies were initialized which follows the theoretical sequence described
in Figure 5.12(a).

Once fabrication of the initial prototype shown in Figure 5.17 was complete, testing of the
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device was performed to ensure hardware functionality. An XMOS xTAG programmer
was used to access the XMOS microcontroller over the JTAG interface. Test applications
were then written to the board to test communication with the Ethernet PHYs and the SPI
flash. Errors were identified however these were owing to incomplete soldering and were
suitably corrected. Further details relating to this initial prototype were published in the
Southern Africa Telecommunication Networks and Applications Conference (SATNAC)
2015 (Pennefather and Irwin, 2015)

5.4 Final Board Design

In Section 5.3.1, peak power consumption of the final proposed board was discussed and
a suitable power supply was designed and tested. Design of a network interface and
communication with the XMOS microcontrollers were also tested as part of the initial
board design. The intent of the final prototype was to include four network interfaces
and an additional two XMOS XS1-L8 microcontrollers. In addition, SDRAM and related
components were also added to the final design. To provide communication between the
SPI flash, XMOS microcontrollers and base platform, two SN74 (Texus Instruments, 2007)
switching chips were added to the board. These switching chips allowed the necessary
isolation of components to avoid interference during operation and programming of the
board.

The final design was completed and the resulting device was named the Frame Routing
and Manipulation Engine (FRAME). An annotated diagram of the completed board is
depicted in Figure 5.18 while the Eagle design files are presented in Appendix D.1.

5.4.1 Fabrication Costs

As stated in Section 1.3, a secondary goal of this research was to develop a device that was
comparatively low cost when compared with market equivalent products. To evaluate this,
the costs relating to fabrication of the FRAME board must be recorded. These costs are
quoted in US dollars ($) with all components purchased in rands (ZAR) being converted
at the current exchange rate of 12.73 ZAR to the dollar.

PCB printing was performed by PCB Pool (PCB Pool, 2015) which prices PCB fabrication
according to board dimensions with a minimum size of 100cm2. As the FRAME board
dimensions are 137cm2, the PCB fabrication cost was $86.93. This price does not include
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Figure 5.18: Annotated Image of the Fabricated FRAME Board
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Table 5.4: FRAME Board Component Costs
Component Name Unit Price [$] Unit Count Total Price [$]
XMOS XS1-L8 14.5 3 43.5
SDRAM 4.28 1 4.28
PHY 4.99 4 19.96
Switching Regulator 0.82 3 2.46
Ethernet 0.57 4 2.28
Inductors 0.64 3 1.92
I2C OLED 8 1 8
Additional Components 22 1 22
Sum Total 82.4

220R

1v Status

1v

3v3

Figure 5.19: Original 1v Power Status Circuit

a solder mask to minimize costs. All component soldering was done by the researcher to
further minimise costs.

All board components were purchased in dollars with an shipping cost of $60 and a import
duty fee of 30% (shipping cost inclusive). Table 5.4 shows the component costs recorded in
dollars, excluding shipping and import duty related fees. Including shipping and import
duties, the cost for board components totals to $185.12. Total fabrication cost for the
FRAME board is then $272.05.

5.4.2 Errata

During testing of the FRAME board, a series of design errors were identified and the
impact of each was evaluated. The majority of significant errors relate to the commu-
nication interface between the XMOS controllers and the base platform, though design
errors which directly impacted board functionality were successfully resolved with minor
modifications.

The first design error detected relates to the power indicator LED for the 1v regulator.
The intent was for this LED to indicate when the 1v power supply was active. The
implemented circuit described in Figure 5.19 used a transistor to create an open drain
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when the 1v line was powered which caused the status LED to illuminate. Unfortunately
the voltage threshold at the base of the transistor was too high to be affected by the
1v regulator resulting in the status LED remaining off regardless of the 1v power status.
This design error was considered minor as it did not affect device performance and no
action was taken to resolve it. A proposed solution for future board revisions is to either
use a MOSFET to act as an open drain or operational amplifier to drive the status LED.

The second design error detected related to the link and power status LEDs associated
with each of the four network interfaces. In all cases, these two LEDs had been swapped
resulting in the power LED only illuminating when a connected device could sync at 100
Mbit/s while the sync LED remained permanently on. Considering possible solutions, it
was concluded that no action would be taken to rectify the issue for the current revision
as it did not impact actual board functionality. This error should be rectified in future
board revisions however as it could lead to misinterpretation of connection speeds by the
user.

The third error detected relates to reprogramming of the FRAME board. During design
it was believed that toggling the reset line connected to all XMOS controllers would cause
a board reset and application code to be read from the SPI flash. During testing this was
found to not be the case and a full power cycle would be required. Fortunately this could
be resolved by utilising the enable pin present on the RT8250 switching power supply
(Richtek, 2010) responsible for producing the regulated input supply for the 1v and 3v3
regulators. The program reset line was disconnected from the microcontroller reset line
and instead connected to the enable pin of the RT8250 via a jumper cable. This allowed
the board to continue to function as intended.

The final error related to the switching chips used to switch the SPI interface between flash,
XMOS microcontrollers and base platform. This switching was necessary, as during reset
the XMOS microcontrollers would hold the SPI lines at a logical 1 causing communication
between the base platform and the SPI flash to fail. The error identified was that one
select pin was not routed to the communication header resulting in the base platform
being unable to disconnect the SPI interface from the XMOS microcontrollers. To remedy
this, a jumper wire was soldered to the select pin and an additional breakout header was
attached to the board.

After the modifications noted above, the only impact the acknowledged errata had was
to limit the base platform to the raspberry pi. This limitation stems from differing volt-
age levels with the Intel Edison requiring a voltage translator to communicate with the
FRAME board. The voltage translator was built into the designed board but modifica-
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tions to select and reset pins bypassed it and require a voltage level of 3v3 to operate.

5.4.3 Interpreter Modifications

Owing to architectural differences between the functional prototype and the FRAME
board, a series of modifications had to be made to the DSL to ensure compatibility with
the new hardware. These modifications resulted in no changes to the language itself but
focus on minor alterations to the translation process.

The first modification required was to change the number of cores available to the appli-
cation from 32 to 24. The reduction results from the new device supporting three XMOS
tiles while the functional prototype could support four. The decision to support fewer
tiles stems from component costs and availability of equipment and expertise required to
mount components with a smaller form factor. Pin layouts for the port modules were
updated to match the layout of the FRAME board and the XMOS tiles each module was
associated with was also updated.

5.5 Summary

This chapter detailed the development of a dedicated hardware platform for network
processing. An initial prototype was developed in Section 5.3 after a detailed evaluation
of power requirements was performed. After functionality was confirmed, the initial design
was scaled to meet the Network Layer requirements and the FRAME board was fabricated.

Errors relating to board development which varied form primarily cosmetic to affecting
board functionality were highlighted and discussed in Section 5.4.2. Solutions to errors
that impacted functionality of the board were implemented while indication and cosmetic
errors were noted to be corrected in future board revisions. In Section 5.4.3, modifications
to the developed translator associated with the DSL implemented in Section 4.9 were
discussed and performed to ensure compatibility between the FRAME board and designed
applications.



6
Testing

6.1 Introduction

This chapter presents testing procedures and results concerning system performance and
conformance testing. Chapter 5 presented the design and fabrication of the underlying
hardware platform on which the Network Layer could operate. Hardware design was
performed in conjunction with the first phase of testing described in this chapter. Once
fabrication was complete, testing resumed using the newly implemented FRAME board.

Section 6.2 focuses on combining pre-existing hardware components to create a functional
prototype. This revision is intended to test the functionality of the software components
designed for the platform and does so by designing and implementing a series of frame
modification tests. Section 6.3 continues testing system components with the FRAME
board replacing the functional prototype in the system. Finally, the chapter concludes in
Section 6.4 giving a reflection of board development and testing.

109
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(a) Connection Layout of the Functional Prototype

(b) Image of Assembled Functional Prototype
Figure 6.1: Produced Functional Prototype Used in System Testing.

6.2 Implementation of a Functional Prototype

The hardware used to construct a functional prototype of the network platform consists of
two XMOS Slicekits (XMOS, 2013a), four Ethernet breakout modules and one SDRAM
breakout module. The selected breakout modules were designed to be combinable with
the XMOS Slicekit for rapid creation of testing hardware for applications targeted at the
XMOS architecture (XMOS, n.d.a). Guidelines are provided for requirements relating to
component interconnection as well as documentation of the ports made available on each
connector interface1.

1A list of available breakout modules is available at: https://goo.gl/gU1TP2 .
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Table 6.1: Recorded Throughput on Functional Prototype
Source Destination Average Standard Deviation Test Count

A B 83.1 0.17 20
C D 83.0 0.12 20
A C 83.4 0.15 20
B D 83.2 0.22 20
A D 83.2 0.15 20
B C 83.2 0.26 20

6.2.1 Hardware Setup

The hardware components are connected as illustrated in Figure 6.1 with two network
interfaces per microcontroller. These microcontrollers are then connected using the XMOS
Fast Link, which is discussed in Section 2.3.1. Both SliceKits are powered separately using
standard power supplies producing 12 V @ 500 mA.

6.2.2 Component Testing

Before testing of the designed modules could be performed, testing of the individual hard-
ware components comprising the functional prototype was necessary to ensure proper
operation. For each component, an application was designed and executed on the func-
tional prototype. These applications were intentionally kept simple and included only the
relevant internal modules to ensure hardware compatibility.

Ethernet Breakout Modules

The application used to test the Ethernet breakout hardware components was based on the
Ethernet internal module demo application discussed in Section 4.3.1. This application
allowed for the testing of two Ethernet ports simultaneously by relaying traffic between
the selected ports in a full-duplex manner. Two end hosts were attached to the relevant
Ethernet ports and traffic was exchanged accordingly. Six configurations were set up to
test traffic communication between the functional prototype ports labelled A,B,C,D as
indicated in Figure 6.1(a). Table 6.1 describes the transmission speeds recorded for each
of the six configurations tested. These results show little variation between the interfaces.
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SDRAM Breakout Module

Communication with the connected SDRAM was previously evaluated in Section 4.5.1,
which focussed on providing an analysis of timings relating to communication with this
component. The hardware configuration used to perform these tests was equivalent to the
hardware configuration of the functional prototype. These tests were however, performed
again to confirm conformance, but no significant variations were recorded.

6.2.3 Frame Modifications

The primary focus of the system and the associated DSL was to provide the user with
the necessary tools to modify network traffic at the frame level in a manner that is
simple and intuitive. To achieve this, Link provides a selection of pre-built functions
intended to assist the user in modifying frame characteristics. A full list of the currently
supported operations is shown in Appendix B.4. Though all were tested, only a sample
of modification functions are discussed here to show system functionality.

The functions were divided into three groups according to the type of action performed.
The first group of functions prefixed with is , were used to identify the presence of a specific
characteristic within the network frame. The second group were functions associated with
retrieving frame characteristics to be used in the network application. The third were
assignment related functions responsible for updating an associated frame characteristic
with a specified value. For both retrieval and assignment function groups, underlying
checks were performed to ensure the characteristic being retrieved or replaced was present
in the current frame as discussed in Section 4.8.2.

To show functionality, three tests were performed using functions from each group. A
conditional function was used to identify the target type of network frame with a char-
acteristic form that frame being selected by using a retrial function. The assignment
function was used to replace a targeted frame characteristic with a modified version of
the characteristic extracted.
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(a) Frame Header Before MAC Replacement (b) Frame Header After MAC Replacement
Figure 6.2: Hexdump of Ethernet Frame Before and After MAC Modification

MAC Swap

1 //−−−−−Dec lara t ion Phase−−−−−
2 Modi f i e r Swapper
3 {
4 on Condit ion ( i p p r o t o c o l == TCP )
5 {
6 frame source mac = frame des t inat ion mac ;
7 }
8 }
9 //−−−−−−−Linking Phase−−−−−−−

10 PortA −−> Swapper −−> PortB ;
11 PortB −−> PortA ;

Listing 6.1: MAC Swap Written in Link

The first test performed modified the source MAC address of a network frame supporting
the TCP protocol by setting it to the value of the destination MAC address. Figure
6.1 describes the application required to perform this task, which was then compiled and
executed on the functional prototype. This application only modified traffic directed from
port A to port B while traffic traversing in the opposite direction remains unaffected.

To show application functionality, a crafted packet was transmitted from the host con-
nected to port A (host A) to a host connected to port B (host B) through the system.
Figure 6.2(a) shows a hexdump of the packet header as seen by host A while Figure 6.2(b)
shows a hex dump of the packet received by host B. As the highlighted fields in both
figures indicate, the source MAC address has been replaced with the destination MAC
address.
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(a) Without TTL Field Modification

(b) With TTL Field Modification
Figure 6.3: Ping Utility Output With and Without TTL Field Modification

(a) Frame Header without TTL Modification (b) Frame Header with TTL Modification
Figure 6.4: Hexdump of Ethernet Frame TTL Modification

TTL MOD

1 //−−−−−Dec lara t ion Phase−−−−−
2 Modi f i e r t t l d e c r e m e n t e r
3 {
4 on Condit ion ( i p p r o t o c o l == ICMP)
5 {
6 i p t t l = i p t t l /2 ;
7 }
8 ip update checksum ;
9 }

10 //−−−−−−−Linking Phase−−−−−−−
11 PortA −−> Swapper −−> PortB ;
12 PortB −−> PortA ;

Listing 6.2: TTL Decrement Application Written in Link

As a second test, the Time To Live (TTL) field of an ICMP packet was modified to half
its original value. Again, a code snippet from Link is presented in Listing 6.2 which
produces an application implementing the functionality discussed here. The command
ip update checksum tells the interpreter that the checksum of the IP header should be
updated to reflect the modified attribute. The origin of the ICMP request is a host
connected to Port B and as a result, modifications were only applied to traffic responding
to the ping request.
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Functionality of the application was shown by comparing Figure 6.4(a) and (b). Figure
6.4(a) represents the ICMP response without the modification while Figure 6.4(b) repre-
sents the response packet with modifier application implemented. The highlighted fields
indicate the updated TTL values and updated checksum. Comparing output snippets
shown in Figure 6.3(a) and (b) as seen by host A further confirmed this functionality.

6.2.4 Timing of Supporting Functions

Section 6.2.3 used simple application examples to show the functionality of modification
functions that could be used as part of user applications. Including these functions as
part of an application however, would contribute to the timing delay associated with
each network packet. Tests were undertaken to determine the impact each function could
have on the system by performing timing analysis on each of the supporting functions
associated with the TCP, IP, and ARP protocols listed in Appendix B.4.

Timing tests were performed using the XMOS Timing Analyzer (XTA)2 which evaluates
each operation associated with a function to determine the time required to perform each.
These times were then accumulated to give the worst and best case timing paths through
the evaluated function. All analysed functions were confirmed using the XMOS timers,
which support a 10ns resolution.

Figure 6.5 graphs the recorded timings for each function tested. These graphs are divided
according to protocol and include both the read and write related function calls available
to the user as part of the DSL. Comparing the timing costs per function, it is apparent
that some operations such as those relating to the TCP protocol required significantly
more time to complete. This however, was expected owing to the hierarchy of tests,
which were evaluated prior to each TCP related operation. These tests ware performed
by an internal function called by all TCP related functions to confirm the presence of
the TCP protocol in the current frame. This internal function was timed to take 1890 ns
which, once deducted from the TCP function timings, brought the timing costs to below
those seen for the IP header related functions.

This internal function performed a three-step evaluation of the frame. The first step
determined if the VLAN tag was present so that the reminder of the frame could induce
the appropriate offset. Following this, a test was done to detect the presence of the IPv4
protocol in the frame. If present, the TCP protocol identifier was checked before the

2http://www.xmos.com/products/tools/xta
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function could determine if the frame formed part of a TCP transmission. As the IP
protocol related function must include the VLAN and IPv4 evaluation, it was expected
that the TCP function timing without the internal check would be less.

In graphs (a) and (b) in Figure 6.5, the longest timed functions relate to performing
checksum recalculation, which is essential for producing valid modified network frames.
These functions significantly exceed the timings relating to the remaining graphed function
calls with the TCP update checksum function call taking taking 4.73µs to complete.

Though not as apparent as in Figure 6.5(a), Figure 6.5(b) and (c) indicate a distinct
difference in time required to read a frame characteristic when compared with the time
taken to write the equivalent characteristic. The recorded exception to this was the
getting and setting of MAC addresses which involved operations on more than a single
32-bit integer of the target frame.

6.3 System Testing

After the board functionality had been confirmed, system testing including the new device
could resume. The aim of the remaining tests was to confirm functionality of individual
system components when executed on the new platform. Two application scenarios were
also constructed and implemented on the FRAME board as part of the testing process.

6.3.1 Delay Module

To confirm functionality of the delay module included as part of this system, tests that
highlighted expected component operation in implemented applications were designed
and undertaken. The aim of the delay module was to provide the system with the ability
to delay the propagation of network frames by providing access to an SDRAM interface
capable of storing the traffic for a specified duration as discussed in Section 4.5.

To test this feature, the ICMP protocol was used along with the ping utility common to
most operating systems. The test comprised of three stages required to produce compara-
ble data necessary to prove component operation. The first stage involved performing a
sequence of ping requests without any delay implemented to determine the general delay
associated with traffic transmission when using the device. Table 6.2 shows the average
RTT delay to be 0.174 ms with a standard deviation of 6.5%.
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(a) TCP Related Function Timings

(b) IP Related Function Timings

(c) ARP Related Function Timings
Figure 6.5: Recorded Timings Relating to the Execution of Supporting Functions
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Table 6.2: Average RTTs With No Delay
Average 0.174 ms
Standard Deviation 0.011 ms
Test Count 1506

Table 6.3: Average RTTs With 0ms Delay
Average 0.349 ms
Standard Deviation 0.011 ms
Test Count 115

Figure 6.6: Functional Overview of Implementing Delay

The second stage repeated the same testing procedure, but with a delay of 0 ms imple-
mented on the device. This delay was implemented on network traffic passing in either
direction through the device requiring two delay modules to be instantiated as depicted
in Figure 6.6. The results of the repeated tests are recorded in Table 6.3, which gives an
average RTT of 0.349 ms with a standard deviation of 3.3%.

0.346 − 0.174
2

= 0.0875ms (6.1)

Comparing the two results, the inherent delay associated with using the delay module
is calculated in Equation (6.1) to be 0.0875 ms. The implications of this are that for
the FRAME board, a minimum delay of 87.5 µs would be required, which is an increase
of 15.42% on the 74 µs delay associated with the testing performed on the functional
prototype discussed in Section 4.5.1. The increase in delay is due to the different micro-
controller families used by the platforms, but could potentially include additional factors
that would impact the delay time. The interpreter was updated to include the delay before
the third stage of testing could begin. The interpreter was also updated to handle delays
less than 0.0875 ms by simply not including a delay module. Should the user attempt to
include such a delay, the interpreter would issue a warning and trim the operation from
the resulting application.

To show the delay module in operation a simple application written in Link is shown in
Figure 6.3. This application adds a 10ms delay to the upstream and downstream traffic,
which includes the updated delay offset. Table 6.4 gives a brief summary of the results

Table 6.4: Average RTTs With 20ms Delay
Average 20.2 ms
Standard Deviation 0 ms
Test Count 300

1 //−−−−−−−Linking Phase−−−−−−−
2 PortA−−> Delay1 (10ms)−−> PortB ;
3 PortB−−> Delay2 (10ms)−−> PortA ;

Listing 6.3: Delay Application Written in Link
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Table 6.5: Statistical Summary of TCP Throughput on FRAME Board
Path Average Minimum Maximum Standard Deviation Test Count
A.B 84.44 83.9 84.9 0.19 61
A.C 82.80 82.3 83.4 0.35 61
A.D 82.90 82.3 83.4 0.32 61
B.C 82.93 82.3 83.4 0.33 61
B.D 82.92 82.3 83.9 0.32 61
C.D 84.54 84.4 84.9 0.23 61

produced using the application, showing the expected increased delay of 20 ms.

6.3.2 Throughput

In Section 4.2, analysis of network transmission speeds was evaluated to determine the
feasible data throughput of the system. These tests however were performed using compo-
nents later combined to form the functional prototype and did not include the completed
application layer. As a result, the conclusions drawn during the development stage needed
to be re-evaluated. The tests undertaken during development the stage were revisited and
a new series of tests were constructed for the complete system.

To determine achievable network transmission speeds while using the FRAME board,
throughput tests were performed that took full system functionality into account. Test-
ing was performed in three stages. The first stage involved monitoring network throughput
of the FRAME board while executing a minimal application that performed no network
processing. Background processing, including the monitoring of network traffic received
at each port was included as this was now compulsory for all applications. Any addi-
tional overhead such processing could produce had to be included to determine realistic
traffic throughput. As the FRAME board consists of four network interfaces, testing
was repeated for each feasible path between two ports on the device described by Equa-
tion (6.2). This resulted in six permutations to test as listed in Table 6.5. The network
transmission speeds, recorded using iperf (Tirumala et al., 2005), are listed in Table 6.5.

(
n

2

)
, where n is the set {portA, portB, portC, portD} (6.2)

By reviewing the results, it quickly becomes apparent that two of the four defined paths
achieved a higher overall throughput. Graphing the recorded data further highlights the
variation presented in Figure 6.6. To understand the source of the varying throughput
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Figure 6.7: Functional Layout of Communication Paths Between XMOS Microcontrollers

Table 6.6: Statistical Summary of TCP Throughput on FRAME Board

seen during testing, the physical layout of the FRAME board was reviewed. Figure 6.7
represents the FRAME board as a functional diagram, indicating connections between mi-
crocontrollers. For ports A and B to communicate, no intertile communication is required;
the same situation exists for ports C and D. For the remaining four permutations, data
must pass through the intermediate microcontroller labelled as Tile 0. These additional
two steps are suspected to be the cause of the reduced throughput seen in Table 6.5

The second testing stage was to determine the performance impact on TCP throughput
when including intermediate nodes within an application. Six applications were designed
with an increasing number of intermediate nodes. Initially, these nodes contained no
processing logic and simply piped all incoming traffic to the next processing element in
the chain. Permutations B ·C and C ·D were selected from Equation (6.2) to perform tests
on, which would determine the effects on intertile communication. Owing to the tiles of
the selected XMOS microcontrollers supporting eight processors, only two free processors
were available on Tile 1 and Tile 2. Tests exceeding two additional processing units will
have the chain extended to Tile 0. The reduced number of available cores was due to the
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(a) Empty Nodes

(b) Checksum Nodes
Figure 6.8: Recorded TCP Throughput for a Path Between Port C and Port D

implementation of two port interface modules, each of which required three processors
to operate. For these tests, all four port interface modules were instantiated so that the
impact of offloading some processing to an adjacent XMOS tile could be observed.

Figure 6.8(a) and Figure 6.8(b) depict the recorded results of TCP throughput tests
recorded on the functional prototype for permutations B · C and C · D. Throughput
tests for each plotted permutations were performed multiple times and the results are
summarised as a box-and-whisker diagram per iteration. The top and bottom of each
box presents the first and third quantiles of the recorded test results while the inner
band presents the average recorded throughput. The whiskers present the maximum and
minimum recorded TCP throughput for each iteration.

Figure 6.8 presents the recorded TCP throughput or communication between ports C
and D. Increasing the number of intermediate cores added to the chain without any
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(a) Empty Nodes

(b) Checksum Nodes
Figure 6.9: Recorded TCP Throughput for a Path Between Port B and Port C

additional processing logic is shown in Figure 6.8(a) while Figure 6.8(b) depicts the results
of including some simple logic in each additional node. For these tests, the additional logic
served to perform a complete recalculation of the IP checksum and replace the current
checksum with the updated (though unchanged) value. For both graphs, increasing the
number of intermediate nodes caused a gradual decrease in TCP throughput. This minor
reduction in throughput was attributed to the increase in processing time related to the
additional nodes. When comparing the overall performance of the two graphs, including
the additional logic to recalculate the IP checksum, an average throughput reduction of
0.3 Mbit/s was recorded.

Figure 6.9 presents the same set of tests preformed in Figure 6.8 but with the network
path instantiated between port B and port C. Recorded results are summarised in Figure
6.9 which indicates an overall throughput reduction of approximately 1 Mbit/s. This
result correlates with the performance reduction seen in Table 6.6 for network throughput
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between ports B and C.

Unlike in Figure 6.8 however, Figure 6.9(a) and (b) shows a shallower decline in TCP
throughput as additional nodes are added. Furthermore, the average throughput reduc-
tion incurred by the IP checksum logic is 53 Kbit/s which is 85% less than the recorded
average difference when using ports C and D.

Raw Throughput

Relating TCP throughput to raw throughput was done by comparing the difference be-
tween the number of bytes transmitted onto the physical medium and the subset of these
bytes relating to the TCP payload. Considering the actual bytes transmitted without
VLAN tagging present, each frame begins with a preamble composed of seven bytes,
which is followed by the start of a frame byte (Cisco Systems, 2003). Following this is a
14-byte frame header and frame payload of between 46 and 1500 bytes. The frame ends
with a 4-byte checksum and an inter-packet gap of 12 bytes.

Traw = Ttcp × 1538
1588

(6.3)

Assuming all 1500 bytes of the frame payload are used, a TCP throughput of 84.54 MBit/s
requires a minimum of 6900 frames to be transmitted. Each of these frames includes an
overhead of 38 bytes to be transmitted on the wire which, using Equation (6.3), results
in a raw throughput of 86.68 MBit/s.

6.3.3 Module Enabling

As discussed in Section 4.9.1, a feature of the implemented system is to allow for the
enabling and disabling of user-defined modules that form part of the active application.
This feature allows for frame processing to be enabled or disabled without restarting the
device and uploading a new application.

Testing of this feature was done using the same application described in Listing 6.2. All
user-defined modules for the active application are listed in the enable tab on the control
page shown in Appendix C.1.

The application was once again executed on the FRAME board with two hosts connected.
The ping utility was used to send ICMP requests and responses through the platform
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Figure 6.10: ICMP Response Listing Seen by the Initiating Host of the Ping Command

continuously. After allowing the application to run for a a duration of appropriately five
minutes, the ttl decrementer element on the enable tab was unchecked. The application
was left in this state for a short duration so that the impact on the TTL could be recorded.
After the application was allowed to continue for approximately 20 seconds, the box on
the enable tab was again checked. The recorded output for this sequence of events is
depicted in Figure 6.10, which lists the TTL response messages received. The highlighted
fields show where the TTL value changes from the modified value of 32 to the unmodified
value of 64 and vice versa. These transition points indicate when the user-defined module
has been disabled and enabled again.

To show system logging of network traffic and frame specific characteristics, a series of
live captures are presented in Appendix C.2. These captures were taken during testing of
the system to show the prevalence of TCP, UDP, and ICMP traffic during operation.

6.3.4 Application Examples

Finally, to test operation of the complete system, two application examples were created
with the problem domain related to network frame manipulation. A script was written in
Link for each application to address the application requirements. This script was then
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Figure 6.11: Layout of Basic NAT Application Example

compiled into an application compatible with the XMOS architecture and executed on
the FRAME board.

6.3.5 Basic NAT

The first proposed application example was to perform basic Network Address Translation
(NAT) during communication between two hosts. NAT is a common procedure used to
translate the IP addresses of devices in a local network to be represented by a single
outward facing IP address (Kurose and Ross, 2013). This procedure is often used when
locally assigned IP addresses require Internet access. Though NAT usually refers to a
many-to-one translation, basic NAT provides a one-to-one translation between two IP
addresses (Srisuresh and Holdrege, 1999).

In this example two hosts communicated without interference except in a specific case as
described in Figure 6.11. From the perspective of host A, there was only one other host
on the network; host B. Host B provided two services that could be accessed by connected
network devices. From the perspective of host B however, there were two other devices
on the network, each with their own unique IP address.

To achieve this configuration, an application was developed that could selectively perform
basic NAT on network traffic relating to a particular service on host B. To simplify the
problem, each service opened a known port for communication. Service A operated on
port 5001 and service B on port 5002. The application was designed to monitor traffic
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from host A for network frames addressed to port 5001 on host B. These frames had the
source IP address fields translated to the fictitious host IP 192.168.137.103. To translate
returning traffic from service A, network frames addressed to this fictitious host had the
destination address translated to the IP address of host A.

1 //−−−−−Dec lara t ion Phase−−−−−
2 Modi f i e r Rec i eve Trans l a to r
3 {
4 on Condit ion ( i p d e s t i n a t i o n == 192 .168 . 137 . 103 )
5 {
6 i p d e s t i n a t i o n = 1 9 2 . 1 6 8 . 1 3 7 . 1 0 2 ;
7 ip update checksum ;
8 tcp update checksum ;
9 }

10 on Condit ion ( a r p t a r g e t i p == 192 .168 . 137 . 103 )
11 {
12 a r p t a r g e t i p = 1 9 2 . 1 6 8 . 1 3 7 . 1 0 2 ;
13 }
14 }
15 Modi f i e r Send Trans lator
16 {
17 on Condit ion ( t c p d e s t i n a t i o n p o r t == 5001 )
18 {
19 i p s o u r c e = 1 9 2 . 1 6 8 . 1 3 7 . 1 0 3 ;
20 ip update checksum ;
21 tcp update checksum ;
22 }
23 on Condit ion ( a r p s o u r c e i p == 192 .168 . 137 . 102 )
24 {
25 a r p s o u r c e i p = 1 9 2 . 1 6 8 . 1 3 7 . 1 0 3 ;
26 }
27 }
28 //−−−−−−−Linking Phase−−−−−−−
29 PortA −−> Rec i eve Trans l a to r −−> PortB ;
30 PortB −−> Send Trans lator −−> PortA ;

Listing 6.4: Basic NAT Application Source

The application associated with the designed application is shown in Listing 6.4. This
application used two modifier modules to translate source and destination IP addresses of
network traffic relating to service A. During testing it was found that some hosts would
attempt to confirm the existence of the fictitious host by using an ARP request and would
ignore the connection if no valid response was received. To remedy this, both modules
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int process Drop Switch (Frame &frame )
{

i f ( gen random (100) <= 10)
{

return 0 ;
}
else
{

return 1 ;
}

}

Listing 6.6: Function Not Operating Correctly

int process Drop Switch (Frame &frame )
{

int random num = gen random (100) ;
i f ( random num <= 10)
{
return 0 ;
}
else
{
return 1 ;
}

}

Listing 6.7: Function Operating Correctly

were extended to apply address translation to any ARP frame related to the fictitious IP
address.

Server [ Address , Port ] : [ 1 9 2 . 1 6 8 . 1 3 7 . 1 0 0 , 5001 ]
C l i en t [ Address , Port ] : [ 1 9 2 . 1 6 8 . 1 3 7 . 1 0 3 , 6828 ]

===================Payload=====================
Cl i en t [ Address , Port ] : [ 1 9 2 . 1 6 8 . 1 3 7 . 1 0 2 , 6828 ]

Listing 6.5: Server Application Output

Testing was performed using a minimal client server application, the code of which is given
in Listing B.3. The server application recorded and printed the server address and port as
well as the address of any connected client. The client would send its host address, which
was also printed out by the server as part of the TCP payload. Figure 6.5 depicts the
output of the server application, which records the client IP address to be 192.168.137.103
instead of 192.168.137.102.

6.3.6 Packet Loss

As a second application example, the introduction of packet loss to an ideal network was
implemented. Packet loss is usually caused by network congestion, faulty hardware, or
misconfiguration of network components and is often quoted as a percentage related to
the number of packets dropped relative to the total number of packets transmitted.

The hardware configuration used in this example was two hosts communicating through
the FRAME board described in Figure 6.12. For this example all traffic transmitted
from host A to host B was unaltered while ICMP related traffic traversing in the opposite
direction had a 10% probability of being dropped. Implementing this logic on the FRAME
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Figure 6.12: Layout of Packet Loss Application Example

board was achieved using a minimal application described in Listing 6.8.

1 //−−−−−Dec lara t ion Phase−−−−−
2 Switch ICMP drop
3 {
4 on Condit ion ( i p p r o t o c o l == ICMP)
5 {
6 on Random(10%) : FAIL ;
7 }
8 Defau l t : PASS ;
9 }

10
11 //−−−−−−−Linking Phase−−−−−−−
12 PortA −−> PortB ;
13 PortB −−> ICMP drop<on PASS> −−> PortA ;

Listing 6.8: Basic NAT Application Source

During testing of the implemented application, unexpected behaviour was recorded where
initial results indicated a 0% packet loss of network traffic transmitted through the plat-
form. This behaviour implied that the random number test always evaluated to true
and the frame was never dropped. Listing 6.6 presents a snippet of code generated from
the implemented application. Further testing on this code revealed that the expression
[gen random(100) ¡= 10] always evaluated to true. Restructuring the conditional expres-
sion to operate as a two-stage operation depicted in Figure 6.7, resulted in the expected
operation. The translator was updated to account for this behaviour by having the result
of a random number generation stored in a temporary variable before comparison.

As discussed in Section 4.6, there are currently two variants of the random number gen-
eration: one deterministic, but suffering from bias, and the other eliminating bias but
suffering from an unknown time cost. For this application example, both approaches
were tested.

Using the ping utility, 1000 ICMP requests were performed between two hosts operating
through the platform, Figure 6.13(a) depicts the results using the non-deterministic ap-
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(a) Recorded ICMP Results Using Non-Deterministic Random Number Generation

(b) Recorded ICMP Results Using Deterministic Random Number Generation
Figure 6.13: Recorded Results for Traffic Loss Application Example

proach, which shows an expected 10% packet loss. To compare the biased and unbiased
random generation approaches, the same test was performed using a deterministic ap-
proach. Figure 6.13(b) depicts the results of this test showing a 12% packet loss. When
comparing the recorded average time taken by each of the tests over 1000 iterations, it is
clear that, for an ICMP request, the overhead introduced by the non-deterministic ran-
dom generation function was minimal with the maximum RTT recorded being less than
its deterministic counterpart. This indicates that the time fluctuation resulting from other
factors is more dominant when compared with the additional time induced by the random
generation methods.

6.4 Summary

This chapter confirmed the functionality of the implemented system on a functional pro-
totype constructed using existing hardware. Timing analysis of supporting functions was
performed to determine the impact these could have on user applications. Once develop-
ment of the FRAME board discussed in Chapter 5 had been completed, system testing
was resumed on the new device. Network transmission using the FRAME board showed
a recorded raw network throughput of 86.68 MBit/s. The chapter concluded with two
application examples designed to confirm system functionality further.



7
Conclusion

The aim of this research was to develop a frame processing platform that could be used in
conjunction with existing systems to augment environments set up to test network related
applications. This chapter summarises the work performed as part of this research and
draws conclusions from the results recorded in Chapter 6. Section 7.1 begins by reiterating
the goals this research aimed to achieve before continuing with a brief summary of each
of the three major components developed as part of the platform.

Section 7.2 discusses protocol support and implications of recorded timings associated
with the supporting functions. A summary of the network throughput testing is discussed
in Section 7.3, which highlights the peak raw throughput achieved by the implemented
platform. The throughput summary is followed by an evaluation of the research goals pre-
sented in Section 7.1, before concluding the chapter with a discussion of future extensions
to the platform in Section 7.5.

7.1 Key Aspects

The research goals, initially set out in Section 1.3, are the following:
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• Selection of suitable hardware candidates, which when combined, produce a hard-
ware platform for network frame processing.

• Proposal of a structure that can be used in conjunction with internal modules to
produce applications compatible with the platform.

• Design and production of a prototype DSL to aid the user in application development
related to the proposed platform.

• Investigation of the hardware design necessary to produce the FRAME board, which
will act as the Network Layer hardware of the platform.

• Conformance testing of completed system and evaluation of application examples
to confirm functionality.

In short, this research attempted to develop a platform for generic frame manipulation at
wire speeds in the region of 100 MiB/s. Associated with this platform is the development
of a suitable environment to simplify application development and a user interface for
logging and monitoring purposes. The hardware components of the system should be
relatively low cost to fabricate or use existing low cost devices.

The remainder of this section provides a brief summary of each of the three primary
areas of development for this research. Application development covers the research re-
lated to the design and implementation of internal modules and DSL syntax. Following
this, a summary of all hardware development leading to the fabrication and testing of
the FRAME board is covered. The section concludes with a brief summary of the user
interface and related development.

7.1.1 Application Development

During the initial phases of the research, approaches to providing the user with an intuitive
and simple method for designing applications to operate on the system were discussed. It
was concluded that the approach taken by this research would be to design and implement
a DSL, which could be translated into a language compatible with the selected hardware.

Application design began in Section 3.5 after the appropriate hardware had been selected.
The first stage was to determine how applications would be structured to take advantage
of the XMOS architecture while accounting for requirements identified while evaluating
application examples in Section 3.5.2. From this limited evaluation it was concluded that
a series of internal modules would be implemented to handle communication with lower
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level components which could be called by the user-defined applications. Implementation
of these individual modules was presented in in Section 4.3, which covered the development
process and individual testing.

DSL development was covered in Section 4.8 where a module was defined. Through
the evaluation of simple target applications, a basic set of notations was developed which
could be used to express the functionality of a module. These notations were subsequently
used to construct an interpreter targeted at the XMOS architecture. Rather than compile
the semantic notations into a low-level language that could be executed natively by the
XMOS architecture, the translator converted the semantic notations into equivalent XC
code, which could be compiled using the internal modules as discussed in Section 4.9.1.

Testing of the designed semantic notations and associated translator was performed in
conjunction with general system testing in Section 6.3, which concluded with application
examples used to show platform functionality.

7.1.2 Hardware Development

In Section 3.3, an investigation into potential hardware architectures that could be used
as part of the system was performed. After an initial evaluation, two candidates were
proposed and investigated further. Considering component costs and development envi-
ronments, the XMOS XS1 architecture was selected to act as the hardware base for the
network processing layer of the system. A similar procedure was followed in Section 3.4
for the base layer underlying hardware. It was concluded that either the Intel Edison or
Raspberry Pi could perform this role and so further development would be compatible
with both.

Section 4.2 investigated and confirmed the feasibility of connecting multiple XMOS micro-
controllers together to form an internal network for frame processing. This would allow
the number of processing cores advertised by the underlying hardware to be extended
between board revisions without requiring a complete rewrite of the associated software
layer.

After consideration, communication between the Network Layer and the Base Layer was
standardised to use an SPI interface in Section 4.3.2. By limiting communication to
operate over a known protocol, the different hardware layers could be interchanged more
easily.

As discussed in Section 5.2 an initial prototype of the underlying architecture for the
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Network Layer was designed and fabricated. Section 5.2 covered an investigation of PCB
characteristics and power supply design required to manufacture an operational device.
Once the initial prototype was fabricated and tested, the design was extended in Section
5.4 to produce the FRAME board design. The FRAME board was fabricated and errors
identified relating to the resulting device were discussed in Section 5.4.2. The final board
is depicted in Appendix D.1.

7.1.3 User Interface

To maintain compatibility between the Raspberry Pi an Intel Edison, Section 3.5.3 con-
cluded that the user interface should be constructed as a web-based application. Imple-
mentation of the described interface was discussed in Section 4.10 where the different
components of the interface were presented.

7.2 Protocol Support

Section 4.9.3 discussed the design and implementation of supporting function calls for
the detection and manipulation of protocol specific frame attributes. The implemented
revision of the supporting libraries, which form part of the compiled applications, is
capable of extracting header specific fields relating to the ARP, ICMP, TCP, and IP
protocols. Testing of these functions was performed during implementation and further
confirmed during general testing in Section 6.2.3.

Timings relating to these functions were recorded and presented in Section 6.2.4. These
results indicate the performance impact some functions, such as recalculating a TCP
checksum or modifying the MAC address, have on generated applications when compared
with simply reading or writing a single integer. Such timing impacts should be considered
when attempting to construct an efficient application to minimise the use of more costly
operations. Considering Listing 6.4 in Section 6.3.5, the Send Translator function incurs
up to 9.024 µs additional delay on traffic transmitted from port B to port A owing to the
included functions.
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7.3 Throughput Evaluation

In Section 4.3.1, initial development of a port module was performed by extending the
existing Ethernet module provided by XMOS to allow for bidirectional communication.
The resulting module is capable of achieving 80.8 MBit/s which is a marked improvement
on the initial 20 MBit/s throughput achieved with the initial implementation of the port
module recorded in Section 4.3.1.

Through extensions to the initial implementation during research, Section 6.3.2 recorded
an average TCP throughput of between 82.8 and 84.54 MBit/s depending on the path
defined through the FRAME board while the functional prototype described in Section
6.2 recorded an average TCP throughput of 83.2 MBit/s.

7.4 Evaluation of Research Goals

This section aims to draw conclusions relating to the success or failure of this research by
reflecting on the goals described in Section 1.3. As these goals were stated in numerical
order, this section refers to each goal by its associated number.

1. Initial investigations were performed on a range of architectures before selecting two
candidates for further evaluation. The XMOS architecture was finally selected as
the underlying hardware of the Ethernet layer while both the Raspberry Pi and
Intel Edison were selected to act as suitable platforms for the Base Layer.

2. Considering the multicore architecture provided by XMOS, application development
focused on constructing a chain of nodes to perform network processing in incremen-
tal steps allowing for pipeline processing of network frames. Features such as the
XMOS channels, timers, and ring oscillators were also incorporated into application
design and implementation.

3. After consideration, a syntax was designed and used to describe network applications
that would be compatible with the XMOS architecture. The syntax was intended
to be both simple and expressive so as to be easily understood by the user. An
interpretor was also designed as part of this research to translate applications written
in the DSL into code that could be compiled for the hardware using the XMOS
development toolchain. A user interface was also successfully implemented to allow
system control and monitoring by the user.
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4. An evaluation of stable board power supply and PCB characteristics that could affect
signal propagation were investigated before the FRAME board was successfully
fabricated.

5. Testing proved system functionality, however traffic manipulation at speeds of 100
Mbits/s was not achieved as discussed in Section 6.3.2, with a recorded raw through-
put of only 86.68 Mbit/s, 13.31 Mbit/s below the 100 Mbit/s goal. Furthermore,
increasing processing logic would further reduce throughput owing to the additional
processing time incurred.

In closing, this research attempted to create a platform on which to perform frame ma-
nipulation at wire speeds of 100 MBit/s while considering ease of use and cost. While
a system was successfully developed and tested, the achieved throughput is substantially
lower than the proposed output. Ease of use was achieved through the use of a DSL,
which is based on a syntax designed to express applications compatible with the system
in a user friendly manner.

Section 5.4.1 recorded the component costs associated with the FRAME board totaling
$185 per device. Additional costs include the Base Layer hardware of either a Raspberry
Pi at $35.00 1 or an Intel Edison at $69.00 2, resulting in a total hardware cost of between
$220 and $254 for the platform. It is noted that these costs will fluctuate depending on
the price of the selected base platform and the number of boards to be fabricated.

7.5 Future Work

A future revision of the implemented FRAME board is highly recommended to account
for errors identified in the current revision as detailed in Section 5.4.2. These errors have
been accounted for in the design files made available as part of this research. Additional
aspects to consider in future revisions are:

• An architecture upgrade from the current generation of XMOS microcontrollers to
the new XS2 family (XMOS, 2015b). This newer generation supports an increased
number of processing cores and is capable of traffic transmission at speeds up to 1
Gbit/s.

1Taken from Allied Electronics on 1 September 2015 http://www.alliedelec.com/raspberry-pi-
raspberry-pi-model-b/70229569/

2Taken from Allied Electronics on 1 September 2015 http://www.alliedelec.com/intel-edi2bb-al-
k/70526557/
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• The addition of a secondary microcontroller responsible for controlling the on-board
switching chips and potentially providing USB support for the FRAME board. USB
would allow the FRAME board to be tethered to an existing host which could
operate as the Base Layer of the system and allow for board integration into existing
systems through the construction of an API library.

• Embed the base platform onto the FRAME board such that the underlying hardware
for the entire platform is combined into a single device. This will reduce the risk
of incorrectly wiring the separate components together, potentially damaging the
hardware.

• Extend the number of both ports and processing cores on the FRAME board to
allow the device to scale and support more complicated test bed configurations.

The DSL developed as part of this research is still limited with several potential areas for
improvement. Extensions to the language are proposed as follows:

• As part of this research, a translator responsible for converting applications devel-
oped in the DSL into applications compatible with the XMOS development toolchain
was implemented. A potential extension would be to construct additional transla-
tors targeting different architectures.

• During this research, support for the ARP, ICMP, IP, and TCP protocols were added
to the DSL by constructing supporting functions responsible for reading and writing
the relevant frame attributes. The language set should be extended to support more
protocols including higher level protocols such as HTTP by constructing the required
supporting functions in the target language.

• The current DSL does not allow the user to instantiate variables. This limitation
restricts modules developed in the DSL to be stateless. Support for the creation
of variables should be included to allow the user to include state such as counters,
which could improve the range of application solutions the DSL can be used to
describe.

• Addition of networking specific data structures such as IP tables would be of great
use to the researcher when developing applications related to frame manipulation.
Future work could incorporate such structures into the modules at the request of
the user.
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A
URL Redirects

Throughout this document, references have been made to electronic sources either as
footnotes or in the reference listing using their URL. Due to the length of some URLs, a
URL shorting service was employed. This appendix records each URL shortened using
the Google URL shortening service, accessible at: https://goo.gl/. The table provided in
this appendix associates each shortened URL with the original full length URL for the
reader.
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B
Code Listings

Throughout this document, code listings are used describe application functionality and
to highlight features and errors identified during development. The majority of these
listings are suitably small to be presented inline with the relevant text without disrupting
document flow. Some listings which are required to address areas to the research were
considered too large to place inline and are instead presented in this appended and are
referred to from the relevant bodies of text.
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B.1 Listing A

1 #include <t imer . h>

2 #include <plat form . h>

3 #include <pr in t . h>

4 #define t imeout 1000000 //An a r b i t r a r y durat ion
5
6 int main ( void )
7 {
8 chan p [ 4 ] ; //An array o f four channe l s
9 par

10 { // A l l b l o c k s o f code in a par b l o c k are executed in p a r a l l e l
11 { //Code wi th in t h i s b l o c k i s executed s e q u e n t i a l l y
12 p [ 0 ] <: ’ a ’ ;
13 p [ 1 ] <: ’ b ’ ;
14 p [ 2 ] <: ’ c ’ ;
15 p [ 3 ] <: ’ d ’ ;
16 }
17 { //Code wi th in t h i s b l o c k i s executed s e q u e n t i a l l y
18 int time , no t imeout = 1 ;
19 char msg ;
20 t imer t ;
21 t :> time ;
22 while ( no t imeout ) s e l e c t {
23 case p [ 0 ] :> msg : p r i n t c h a r l n (msg) ;
24 break ;
25 case p [ 1 ] :> msg : p r i n t c h a r l n (msg) ;
26 break ;
27 case p [ 2 ] :> msg : p r i n t c h a r l n (msg) ;
28 break ;
29 case p [ 3 ] :> msg : p r i n t c h a r l n (msg) ;
30 break ;
31 case t when t i m e r a f t e r ( time + timeout ) :> void :
32 p r i n t s t r l n ( ”No event occured be f o r e timeout . ” ) ;
33 no t imeout = 0 ;
34 break ;
35 }
36 }
37 }
38 return 0 ;
39 }

Listing B.1: XC Parallel Execution Without Replicator
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B.2 Listing B

1 #include <t imer . h>

2 #include <plat form . h>

3 #include <pr in t . h>

4 #define t imeout 1000000 //An a r b i t r a r y durat ion
5
6 int main ( void )
7 {
8 chan p [ 4 ] ; //An array o f four channe l s
9 par

10 { // A l l b l o c k s o f code in a par b l o c k are executed in p a r a l l e l
11 { //Code wi th in t h i s b l o c k i s executed s e q u e n t i a l l y
12 p [ 0 ] <: ’ a ’ ;
13 p [ 1 ] <: ’ b ’ ;
14 p [ 2 ] <: ’ c ’ ;
15 p [ 3 ] <: ’ d ’ ;
16 }
17 { //Code wi th in t h i s b l o c k i s executed s e q u e n t i a l l y
18 int time , no t imeout = 1 ;
19 char msg ;
20 t imer t ;
21 t :> time ;
22 while ( no t imeout ) s e l e c t {
23 case ( int i = 0 ; i < 4 ; i++) p [ i ] :> msg : p r i n t c h a r l n (msg) ;
24 break ;
25 case t when t i m e r a f t e r ( time + timeout ) :> void :
26 p r i n t s t r l n ( ”No event occured be f o r e timeout . ” ) ;
27 no t imeout = 0 ;
28 break ;
29 }
30 }
31
32 }
33 return 0 ;
34 }

Listing B.2: XC Parallel Execution With Replicator
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B.3 Listing C

1 import socke t
2
3 s e r v e r i p = ’ 192 . 168 . 137 . 100 ’
4 s e r v e r p o r t = 5001
5 s s = socket . socke t ( socket . AF INET , socke t .SOCK STREAM)
6 s s . bind ( ( s e r v e r i p , s e r v e r p o r t ) )
7 s s . l i s t e n (5 )
8
9 print ’ Server [ Address , Port ] : ’ , ’ [ ’+s e r v e r i p+’ , ’+str ( Port )+’ ] ’

10 while True :
11 con , addr = s s . accept ( )
12 buf = con . recv (64)
13 i f len ( buf ) > 0 :
14 print ’ C l i en t [ Address , Port ] : ’ , ’ [ ’+addr [0 ] ,+ ’ , ’+str ( addr [ 1 ] )+’ ] ’
15 print ”===================Payload=====================”
16 print buf
17 break

Listing B.3: Basic NAT Example: Server Application

1 import socke t
2
3 t a r g e t i p = ’ 192 . 168 . 137 . 100 ’
4 s o u r c e i p = ’ 192 . 168 . 137 . 102 ’ #This i s t e s t e d and confirmed b e f o r e t e s t i n g
5 so u r c e po r t = 6828
6 t a r g e t p o r t = 5001
7
8 cs = socket . socke t ( socket . AF INET , socke t .SOCK STREAM)
9 cs . bind ( ( sour c e ip , 6828) )

10 cs . connect ( ( t a r g e t i p , t a r g e t p o r t ) )
11 cs . send ( ’ C l i en t [ Address , Port ] : ’ , ’ [ ’+s o u r c e i p+’ , ’+str ( s o u r c e po r t )+’ ] ’ )

Listing B.4: Basic NAT Example: Client Application

During test of the completed system, a simple client server application was required to
demonstrate network communication. Listing B.3 contains the source code for the server
component of the application while listingB.4 conatins the source code for the client
component of the application.
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B.4 Supporting Functions

The final contribution to this appendix is a listing of functions designed to support appli-
cation development associated with this research. Only function names are described here
in an attempt to minimise unnecessary information and to allow the user to quickly grasp
the functions currently supported by this research. Details relating to these functions are
further discussed in sections 4.9.3 and 6.2.4.

1
2 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

3 Functions
4 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

5 //Frame r e a l a t e d c h a r a c t e r i s t i c s
6 has v lan (Frame &f ) ;
7 i s a r p (Frame &f ) ;
8 i s i p (Frame &f ) ;
9 i s t c p (Frame &f ) ;

10 i s udp (Frame &f ) ;
11 i s i cmp (Frame &f ) ;
12 ge t f r ame e the r type (Frame &f ) ;
13 s e t f r a m e e t h e r t y p e (Frame &f , e ther type ) ;
14 get source mac (Frame &f ) ;
15 ge t de s t i na t i on mac (Frame &f ) ;
16 s e t d e s t i n a t i o n m a c (Frame &f , Mac m) ;
17 se t source mac (Frame &f , Mac m) ;
18
19 //ARP r e l a t e d c h a r a c t e r i s t i c s
20 arp get hardware type (Frame &f ) ;
21 a r p g e t p r o t o c o l t y p e (Frame &f ) ;
22 a r p g e t o p e r a t i o n (Frame &f ) ;
23 a rp ge t ta rge t mac (Frame &f ) ;
24 a r p g e t t a r g e t i p (Frame &f ) ;
25 arp get source mac (Frame &f ) ;
26 a r p g e t s o u r c e i p (Frame &f ) ;
27 arp se t hardware type (Frame &f , unsigned int ) ;
28 a r p s e t p r o t o c o l t y p e (Frame &f , unsigned int ) ;
29 a r p s e t o p e r a t i o n (Frame &f , unsigned int ) ;
30 a r p s e t t a r g e t ma c (Frame &f , Mac mac) ;
31 a r p s e t t a r g e t i p (Frame &f , unsigned int ) ;
32 a rp se t sour ce mac (Frame &f , Mac m) ;
33 a r p s e t s o u r c e i p (Frame &f , unsigned int ) ;



B.4. SUPPORTING FUNCTIONS 160

34
35 // IPv4 r e l a t e d c h a r a c t e r i s t i c s
36 i p g e t s o u r c e (Frame &f ) ;
37 i p g e t d e s t i n a t i o n (Frame &f ) ;
38 i p g e t t t l (Frame &f ) ;
39 i p g e t v e r s i o n (Frame &f ) ;
40 i p g e t h e a d e r l e n g t h (Frame &f ) ;
41 ip get DSCP (Frame &f ) ;
42 ip get ECN (Frame &f ) ;
43 i p g e t l e n g t h (Frame &f ) ;
44 i p ge t ID (Frame &f ) ;
45 i p g e t f l a g s (Frame &f ) ;
46 i p g e t o f f s e t (Frame &f ) ;
47 i p g e t p r o t o c o l (Frame &f ) ;
48 ip get checksum (Frame &f ) ;
49 i p s e t s o u r c e (Frame &f , ip ) ;
50 i p s e t d e s t i n a t i o n (Frame &f , ip ) ;
51 i p s e t t t l (Frame &f , t t l ) ;
52 i p s e t v e r s i o n (Frame &f , v e r s i on ) ;
53 i p s e t h e a d e r l e n g t h (Frame &f , h l ) ;
54 ip set DSCP (Frame &f , dscp ) ;
55 ip set ECN (Frame &f , ecn ) ;
56 i p s e t l e n g t h (Frame &f , l ength ) ;
57 i p s e t I D (Frame &f , id ) ;
58 i p s e t f l a g s (Frame &f , f l a g s ) ;
59 i p s e t o f f s e t (Frame &f , o f f s e t ) ;
60 i p s e t p r o t o c o l (Frame &f , p r o t o t c o l ) ;
61 ip se t checksum (Frame &f , checksum ) ;
62
63 //TCP r e l a t e d c h a r a c t e r i s t i c s
64 t c p g e t s o u r c e p o r t (Frame &f ) ;
65 t c p g e t d e s t i n a t i o n p o r t (Frame &f ) ;
66 tcp get sequence number (Frame &f ) ;
67 tcp get acknowledgment number (Frame &f ) ;
68 t c p g e t d a t a o f f s e t (Frame &f ) ;
69 t c p g e t r e s e r v e d (Frame &f ) ;
70 t c p g e t f l a g N S (Frame &f ) ;
71 tcp get f lag CWR (Frame &f ) ;
72 tcp get f l ag ECE (Frame &f ) ;
73 tcp get f lag URG (Frame &f ) ;
74 tcp get f lag ACK (Frame &f ) ;
75 t cp ge t f l ag PSH (Frame &f ) ;
76 tcp ge t f l ag RST (Frame &f ) ;
77 tcp get f l ag SYN (Frame &f ) ;
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78 t c p g e t f l a g F I N (Frame &f ) ;
79 t c p g e t f l a g s (Frame &f ) ;
80 t cp ge t w indow s i z e (Frame &f ) ;
81 tcp get checksum (Frame &f ) ;
82 t c p g e t u r g e n t (Frame &f ) ;
83 t c p s e t s o u r c e p o r t (Frame &f , s ou r c e po r t ) ;
84 t c p s e t d e s t i n a t i o n p o r t (Frame &f , d e s t i n a t i o n p o r t ) ;
85 tcp set sequence number (Frame &f , sequence number ) ;
86 tcp set acknowledgment number (Frame &f , acknowledgment number ) ;
87 t c p s e t d a t a o f f s e t (Frame &f , o f f s e t ) ;
88 t c p s e t r e s e r v e d (Frame &f , r e s e rved ) ;
89 t c p s e t f l a g N S (Frame &f , f l a g ) ;
90 tcp set f lag CWR (Frame &f , f l a g ) ;
91 t cp se t f l ag ECE (Frame &f , f l a g ) ;
92 tcp set f lag URG (Frame &f , f l a g ) ;
93 tcp set f lag ACK (Frame &f , f l a g ) ;
94 t cp s e t f l a g PSH (Frame &f , f l a g ) ;
95 t cp s e t f l ag RST (Frame &f , f l a g ) ;
96 t cp se t f l ag SYN (Frame &f , f l a g ) ;
97 t c p s e t f l a g F I N (Frame &f , f l a g ) ;
98 t c p s e t f l a g s (Frame &f , f l a g s ) ; // This does not i n c lude the NS f l a g !
99 t c p s e t w i n d o w s i z e (Frame &f , window size ) ;

100 tcp set checksum (Frame &f , checksum ) ;
101 t c p s e t u r g e n t (Frame &f , urgent ) ;
102
103 // A x i l l a r y f u n c t i o n s
104 i s s r c i n r a n g e (Frame &f , s ta r t , end ) ;
105 i s s r c i n s u b n e t (Frame &f , address , p r e f i x ) ;
106 i s d s t i n r a n g e (Frame &f , s ta r t , end ) ;
107 i s d s t i n s u b n e t (Frame &f , address , p r e f i x ) ;
108 i p r e c a l c u l a t e c h e c k s u m (Frame &f ) ;
109 ip update checksum (Frame &f , o ld va l , new val ) ;
110 tcp update checksum (Frame &f , o ld va l , new val ) ;
111 update checksum 32 ( old checksum , o ld va l , new val ) ;
112 ip swap addre s s e s (Frame &f ) ;
113 tcp swap port s (Frame &f ) ;

Listing B.5: Supporting Function Library
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User Interface

This appendix attempts to provide the reader with screen captures relating to the control
component of the user interface described as part of this research. This component is
responsible for providing the user with statistical summaries of the network traffic received
by each of the currently active ports associated with the implemented platform. Due to
the size of the screen captures, it was decided to separate the figures from the text where
they could be referred to rather than attempting to provide the figures inline.

In addition to statistical summaries of network traffic, this component also supports a tab
dedicated to the enable feature associated with active applications. This feature allows the
user to enable or disable custom modules or spores during application execution providing
greater flexibility of applications.
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Figure C.1: Screen Capture of Enable Table

C.1 Enable Tab

Figure C.1 presents the functionality that the enabler tab provides as part of the user
interface, this screen capture of the tab was recorded during the TTL modification test
described in section 6.2.3. Though minimal, this capture shows the intended functionality
of the enable feature. All user defined modules associated with the current application are
presented on this page for the user to select or deselect which in turn enables or disable
the respective module during execution.
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Figure C.2: Screen Capture After Continuous ICMP Message Transfer

C.2 Traffic Summaries

During the testing phase of the completed system, the platform was to pass traffic un-
modified between two hosts. During the procedure, screen captures of the statistical
summary page which forms part of the user interface were recorded and are presented in
this appendix.

The intent of the statistical summary page is to provide the user with a brief overview of
the network traffic currently being received by the platform. The page consists of a series
of tabs, one associated with each network port with periodically submits a summary of
traffic received to the base platform as discussed in section 4.10.

Figure C.2 presents a rendered summary of the data received by port A during a ping
test. The only traffic seen during this evaluation was ICMP messages wich is reflected in
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Figure C.3: Screen Capture Of Bulk TCP Transfer Following Continuous ICMP Message Trans-
fer

the doughnut graph. The line plot in figure C.2 shows a constant low frequency of ICMP
based traffic which is expected as the ping test would only perform in ICMP request every
second.

Following the ICMP test, a bulk TCP transfer was done over the same configured network
using the iperf application. Figure C.3 presents the results recorded by port A after after
the iperf TCP transfer was complete. Both the doughnut and line graphs reflect the TCP
transfer with TCP traffic quickly becoming the majority of traffic seen by the platform in
the past 100 seconds. The line graphs indicates the traffic as a sudden spike lasting for
approximately ten seconds.
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Figure C.4: Screen Capture During Standard Network Use

Finally, the network configuration was used to transfer more generic network traffic was as
small TCP downloads and general web browsing. As indicated in figure C.4, such traffic
is largely composed of a mix between UDP and TCP communication. It is important to
note that the current platform configuration does not record traffic relating to the IPv6
protocol and only the UDP, TCP, and ICMP protocols are currently supported.



D
Board Design

D.1 FRAME Board and Schematics

As part of the research described in this document, a hardware platform labelled the
FRAME board was designed a fabricated. This appendix serves to provide the reader
with the schematic designs relating to this board fabrication. It is important to note that
these schematics include the proposed board modifications to account for design flaws
described in section 5.4.2.
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E
Link DSL Grammer

During research, a DSL termed Link was designed and developed to assist in the generation
of network applications compatible with the FRAME board. This appendix presents the
grammar used to parse all applications written in Link which are presented as part of this
dissertation. This grammer was written using the Extended BNF notation, compatible
with the compiler generation, Coco/R. The grammar was extended using supporting
functions and structures written in C#, responsible for maintaining application state and
detection of errors specific to the FRAME board such as exceeding logical processor count.

The presented grammar does not include any annotations used to produce a functional
code generator for translating the source language or any of the supporting functions
written in C#. Furthermore, due to length considerations of this dissertation, elements
of the Printable and Operable sets are not presented. The intent of this appendix is to
provide the reader with a overview of the DSL functional layout and as such, excluded
components were considered unnecessary to achieve this.
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1 CHARACTERS
2 l f = CHR(10) .
3 backs la sh= CHR(92) .
4 c o n t r o l= CHR(0) . . CHR(31) .
5 bin= ”01” .
6 d i g i t= ” 0123456789 ” .
7 hexDig = ”ABCDEFabcdef” + d i g i t .
8 l e t t e r = ”ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz” .
9 str ingCh = ANY − ’ ” ’ − c o n t r o l − backs la sh .

10 charCh = ANY − ” ’ ” − c o n t r o l − backs la sh .
11 p r i n t a b l e= ANY − c o n t r o l .
12
13 TOKENS
14 i d e n t i f i e r = l e t t e r { l e t t e r | d i g i t | ” ” } .
15 number = d i g i t { d i g i t } .
16 s t r i n g L i t= ’ ” ’ { str ingCh | backs la sh p r i n t a b l e } ’ ” ’ .
17 charL i t= ” ’ ” ( charCh | backs la sh p r i n t a b l e ) ” ’ ” .
18 hex= ”0x” hexDig {hexDig } .
19 binary = ”0b” bin { bin } .
20
21 COMMENTS FROM ”//” TO l f
22 COMMENTS FROM ”/∗” TO ”∗/”
23
24 IGNORE CHR(9) . . CHR(13)
25
26 PRODUCTIONS
27
28 DSL = { LinkSetup } Chain { Chain } .
29
30 LinkSetup = ( SwitchLink | ModLink ) .
31 SwitchLink = ” Switch ” i d e n t i f i e r ”{” SwitchStates ”}” .
32 ModLink = ” Modi f i e r ” i d e n t i f i e r ”{” ModStates ”}” .
33
34 SwitchStates = SwitchState { SwitchState } .
35 ModStates = ModState{ModState } .
36 SwitchState = ( ( ”on” StateType | ” Defau l t ” ) ” : ”
37 ( ”PASS” | ”FAIL” | Respond | Log )
38 | Log )
39 ” ; ” .
40 ModState = ”on” StateType
41 ( ”{” ModStates ”}”
42 | ” : ” ( Respond | Log ) ” ; ” )
43 | Assignment
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44 | ( ” ip update checksum ”
45 | ” tcp update checksum ”
46 | ” i p r e c a l c u l a t e c h e c k s u m ”
47 | Respond
48 | Log ) ” ; ” .
49 Assignment = Operable ”=” Express ion ” ; ” .
50 StateType = Condi t iona l
51 | Random
52 | ” s r c i n s u b n e t ” ” ( ” Express ion ” ) ”
53 | ” d s t i n s u b n e t ” ” ( ” Express ion ” ) ”
54 | ” s r c i n r a n g e ”” ( ” Express ion ” , ” Express ion ” ) ”
55 | ” d s t i n r a n g e ”” ( ” Express ion ” , ” Express ion ” ) ” .
56 Condi t iona l = ” Condit ion ” ” ( ” Condit ion ” ) ” .
57 Random = ”Random” ” ( ” Express ion ”%” ” ) ” .
58 Respond = ”Respond” ” ( ” FrameIden t i f i e r ” ) ” .
59 Log = ”Log” ” ( ” Pr in tab l e {” , ” Pr in tab l e }” ) ” .
60 FrameIdent i f i e r = ”ICMP Expired” .
61 /∗ Add i t i ona l p r i n t a b l e s have been removed due to l e n g t h ∗/
62 Pr in tab l e = ” length ” | s t r i n g L i t /∗ . . . . ∗/ .
63 Chain = Port ”−−>” { Inte rmed iate ”−−>” } Port ” ; ” .
64 Intermed iate = i d e n t i f i e r [ ”<” ”on” ( ”PASS” | ”FAIL” ) ”>” ]
65 | Delay .
66 Delay = ( ” Delay1 ” | ” Delay2 ” | ” Delay3 ” | ” Delay4 ” ) ” ( ” number ( ” s ”

| ”ms” | ” us ” ) ” ) ” .
67 Port = ”PortA” | ”PortB” | ”PortC” | ”PortD” .
68 Condit ion = Express ion [ ( ”==”
69 | ”!=”
70 | ”>”
71 | ”<”
72 | ”>=”
73 | ”<=”
74 ) Express ion ] .
75 Express ion = AddOp<out expl , r e g i s t e r o f f s e t > {( ”+” | ”−” ) AddOp } .
76 AddOp = MulOp{( ”∗” | ”/” ) MulOp } .
77 MulOp = number | Operable | Operation | ” ( ” Express ion ” ) ” .
78 /∗ Addi t i ona l o p e rab l e s have been removed due to l e n g t h . Every f i e l d s

r e l a t i n g to the IP , ICMP, ARP, and TCP header frames have an a s s o c i a t e d
operab l e here ∗/

79 Operable = ” frame data ” ” [ ” Express ion ” ] ” [ ” . a s char ” ] /∗ . . . . ∗/ ” )
” .

80 END DSL .

Listing E.1: Overview of the DSL Grammar Used in the Development of Link
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Electronic Sources

Source code and electronic schematics relating to research presented in this document
have been made available to the reader using the Bitbucket project hosting platform.
The source material is divided into three repositories available at:

Resource Address
Thesis Document https://bitbucket.org/CountBadger/msc thesis
DSL Implementation https://bitbucket.org/CountBadger/Flow
Board Schematics https://bitbucket.org/CountBadger/Frame
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