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ABSTRACT 

With the increase in the application of ultra-precision manufactured parts and the 

absence of much participation of researchers in ultra-high precision grinding of optical 

glasses which has a high rate of demand in the industries, it becomes imperative to 

garner a full understanding of the production of these precision optics using  the above-

listed technology. Single point inclined axes grinding configuration and Box-Behnken 

experimental design was developed and applied to the ultra-high precision grinding of 

BK7 glass. A high sampling acoustic emission monitoring system was implemented to 

monitor the process. The research tends to monitor the ultra-high precision grinding 

of BK7 glass using acoustic emission which has proven to be an effective sensing 

technique to monitor grinding processes.  Response surface methodology was 

adopted to analyze the effect of the   interaction between the machining parameters: 

feed, speed, depth of cut and the generated surface roughness. Furthermore, back 

propagation Artificial Neural Network was also implemented through careful feature 

extraction and selection process.  The proposed models are aimed at creating a 

database guide to the ultra-high precision grinding of precision optics. 
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CHAPTER ONE 

INTRODUCTION 

1.1: PREFACE 

Borosilicate crown glass was invented in the 19th century by the famous German 

glassmaker Otto Schott. Hence the emergence of the name Schott-Bk7 glass (1). Over 

the years, there has been a lot of development in its manufacturing process and an 

increase in its applications. It contains at least 5% boric acid and other chemical 

compounds like silicon oxide, aluminum oxide and sodium oxide in their various 

proportions (1). This glass is a high-quality technical workpiece, it is commonly used 

due to its special inherent properties like being practically bubble and inclusion free. 

Furthermore, it possesses a clear and colorless appearance with a low amount of 

inclusions, etcetera (2-4). 

Asides the inherent properties mentioned above, Bk7 glass possesses unique 

mechanical, optical and physical characteristics which include its resistance to 

chemical and environmental damage, excellent transmission range in the visible and 

infrared spectra down to 350nm, low coefficient of thermal expansion making it 

resistant to thermal shock and good scratch resistance. These combined unique 

mechanical characteristics and stable chemical properties of Bk7 glass make it a 

desirable workpiece coupled with the fact that no special treatment is required for 

grinding and polishing it, but it’s hard and brittle nature is a major disadvantage 

creating a reason for concern in precision grinding  (3, 5).  

The importance of Bk7 glass in our environment cannot be over-emphasized as it has 

found application in many areas. For example, in optics: as precision lens, achromatic 

doublets, laser optics and reflecting telescopes. In implantable medical devices: as 

artificial hip joints, bone cement, prosthetic eyes, dental composite materials and 

breast implants. In electronics and semiconductor industry: as commercial 

transmitters and microelectromechanical systems. Other areas include sensor and 

measurement technology, substrates for mirror and filter coating, neuro-stimulators for 

treatment of epilepsy, physiological sensors and veterinary tracking devices (6, 7) 
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1.2: BACKGROUND TO RESEARCH 

Ultra-high precision grinding (UHPG) is a cutting edge technology that has fast 

replaced conventional grinding techniques and is fast replacing more recent 

techniques like ultra-precision grinding. There is a current increase in the demand for  

ductile machined and advanced brittle engineering materials like silicon, tungsten 

carbide, borosilicate 7 glass, borosilicate 9 glass and other optical glasses. The reason 

for this increase is because these materials are being used in the semiconductor, 

telecommunications, microelectronics, automotive and defence  industries to 

manufacture silicon chips, optical lens for night vision, micro electro mechanical 

systems. These materials are machined to tight stringent requirements involving mirror 

surface finishes, nanometric surface roughness values and very low form deviations 

in order to be used in such applications. These stringent requirements can be met by 

applying ultra-precision grinding techniques. 

One of the major drawbacks in UHPG is insufficient data on process monitoring and 

optimization of the process as it is not a highly researched area.  Therefore, there is a 

need to create a data bank to efficiently predict the process and determine optimum 

parameters for specific surface roughness results. The research focuses on 

implementing acoustic emission sensing technique to effectively monitor the ultra-high 

precision grinding of Borosilicate 7 glass. Furthermore, the acquired signals are 

processed and important features extracted from them. These extracted features are 

used as a basis for machine learning inputs using neural networks to characterize and 

predict the surface roughness. In conclusion, the research drives towards the 

sustainability and optimization of the ultra-high precision grinding of advanced 

engineering materials. 

 

1.3: STATEMENT OF THE PROBLEM 

Previously glass was ground conventionally only at fracture mode to an average 

surface roughness of a few microns. This introduced micro cracks on the ground 

surface, as a result glass was termed difficult to machine. Final finishing was done 

using lapping or polishing processes to achieve desired surface integrity but this could 

be time-consuming and expensive depending on the magnitude of subsurface 

damage involved. Over the last decade, research in the field of ductile mode grinding 
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of hard and brittle materials has fostered the grinding of glass to Nano-metric surface 

finish levels in ductile mode while maintaining good form accuracy. As a result of this 

development, the focus is mainly on cost and time savings in achieving high surface 

integrity hence it is now of huge importance to optimize  the traditional process 

employed in generating high surface integrity with little or no need for finishing 

processes (8, 9). However, the development in the fields of ultra-high precision 

machining does not have enough existing literature especially in the area of ultra-high 

precision grinding of optical glasses.    

 

1.4: STUDY OBJECTIVES 

This research aimed at monitoring the ultra-precision grinding of BK7 glass through 

Acoustic Emission sensing technique implemented by a high-resolution data 

acquisition system and optimizing the process to determine optimum grinding 

parameters for good surface finishes. 

The research will monitor ultra-precision grinding of BK7 glass at different stages using 

a different combination of process parameters to generate different surface roughness 

values to link the generated surface roughness to the acquired AE data. The 

developed high-resolution acoustic sensing technique will enable effective monitoring 

and prediction of the ultra-precision grinding of BK7 and other hard and brittle 

materials.    Also, the research is expected to develop a response surface model that 

will determine the relationship between the process parameters and surface 

roughness.    

The following objectives were identified for the research: 

i. Conduct a concise literature survey on ultra-high precision grinding and 

process monitoring of optical glass grinding.  

ii. Develop a sensor based AE data acquisition system with virtual 

instrumentation   for monitoring the ultra-high precision grinding process. 

iii. Create a response surface model to link the machining parameters to the 

generated surface roughness to be  able to determine the optimal 

selection of parameters   

iv. Signal processing and feature extraction from acquired AE signals 

v. Implement neural network to predict surface roughness values. 
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1.6: SCOPE OF STUDY 

The research will serve as a guide for the single point inclined axes grinding of Bk7 

glass to help decipher the appropriate grinding parameters required for an optimal 

surface integrity and also develop the application of AE techniques for suitable 

monitoring of the ultra-high precision process. However the scope of the research is 

clarified as follows: 

I. Surface integrity measurements will be limited to the average surface 

roughness parameter. No measurement of surface damage or microscopic 

observation in the form of micrographs will be carried out. Subsurface damage 

will only be prevented as much as possible through the careful selection of 

appropriate grinding parameters.   

II. The acoustic emission set up will implement a single sensor setup and not 

multiple sensors. Sensor fusion technique will not be employed in the 

monitoring process.  

 

1.7: HYPOTHESIS 

Null hypothesis:  

I. Acoustic Emission sensing technique is not suitable to monitor the ultra-high 

precision grinding of Bk7 glass. 

II. Response surface modeling is not suitable to analyze and predict the effect of 

machining parameters in the ultra-high precision grinding of bk7 glass.  

  

1.8: SIGNIFICANCE OF RESEARCH 

Currently, there is little or no available literature relating to the ultra-high precision 

grinding of BK7 optical glass. Since the goal of precision grinding is to reach the 

minimum surface roughness with the least machining steps the research will be useful 

in developing a model that will achieve this amongst others and also bridge the 

literature gap in the specified field of study which will serve as a data bank. Also, the 

research will be able to develop a neural network training and   prediction scheme 

through monitoring with AE sensing technique.  
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1.9: STRUCTURE OF THESIS 

Chapter 2 describes the optical glass grinding process and classifies the ultra-high 

precision grinding process according to the different material removal rates and 

obtainable precisions including determinants of ductile mode machining concept and 

extends to the monitoring of the grinding process with acoustic emission sensing. 

Chapter 3 details the experimental design and setup while the detailed analysis of 

results and observations can be found in chapter 4. This chapter also includes the 

development of a response surface model, signal processing and neural network 

scheme for predicting the surface roughness values. Chapter 5 concludes the findings 

in the research and highlights suggested recommendations for future improvement on 

the research (Figure 1.1). 

 

 

Figure 1.1: Organisational structure of the thesis 

CHAPTER 1: 
Introduction

CHAPTER 3: 
Design of 

Experiment

CHAPTER 4: 
Results and 
Discussion

CHAPTER 5: 
Conclusion and 

Recommendation

CHAPTER 2: 
Literature Review
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CHAPTER TWO 

LITERATURE REVIEW  

2.1: INTRODUCTION 

The literature survey in this chapter dwells on the principles, concepts and developing 

technology involved in grinding optical glass. Furthermore, process monitoring 

techniques are highlighted with emphasis on acoustic emission sensing technique and 

the development of neural networks.  

 

2.2: GRINDING OF OPTICAL GLASS 

The mechanical properties of a workpiece and the required part quality of the 

workpiece are yardsticks for determining the abrasive process to be used in machining 

the workpiece(10). Glass which is brittle and hard is usually machined by ultra-

precision grinding. Ultra-precision grinding of glass is an abrasive process which 

requires the use of fine grain wheels, wear-resistant abrasives, low run-out spindles 

and machine tools with high loop stiffness (10). Grinding of hard and brittle materials 

like glass, ceramic and semiconductors by an abrasive process is more complex and 

probabilistic especially since high precision parts are required, unlike precision cutting 

of ferrous metals which is highly predictable (10).Due to the nature of glass, grinding 

initiates micro cracks which deteriorate surface quality hence glass was previously 

ground conventionally at a hundred percent brittle fracture. 

The concept of glass grinding has evolved over the years as a result of the 

development of ultra-precision machining and introduction of the ductile mode 

machining concept which has increased the achievable tight tolerances necessary to 

actualise grinding of optical glass. Hence, it can be rightly said that the concept of 

modern glass grinding and its evolution cannot be fully grasped without an 

understanding of the unique but interrelated concepts of precision engineering, 

precision machining, accuracy and ductile mode machining. A combination of 

precision machining systems and the ductile mode theory facilitates mirror like surface 

finish on hard and brittle materials without the need for several subsequent polishing 

processes (11). 
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2.2.1: Brief overview of precision machining 

From Nakazawa’s point of view, the intensively researched precision engineering field 

strictly concerns the creation, design, fabrication and measurements involved with 

highly precise machine tools (12). On the other hand, Venkatesh quoted Mc keown’s  

view on the subject matter which goes beyond the mere creation of high-precision 

machinery to involve a collection of engineering, scientific skills and techniques which 

evolved over four decades in response to the ever-increasing applications of 

metrology to precision machining (13). As a result, the concept of precision expands 

to accommodate precision processing of materials, control systems and unmanned 

machining with CAD and CAM systems, plus information processing systems. Hence, 

it is correct to state that application of precision machining in optics ranges from the 

manufacture of extremely large telescopes to microchips and micro-optical flats.   

 

2.2.2: Precision and accuracy 

The term precision is normally confused with accuracy, it is necessary to clarify these 

terms for the sake of understanding precision machining. Accuracy in a layman’s term 

is the ability to hit what is aimed at. It is the degree of conformity of the measured 

dimension with its true magnitude whereas precision is the repeatability of a process. 

In other words, precision is the degree with which an  instrument can give the same 

value when repeated measurement of the same limits and standards are made (13). 

In the manufacturing of optical glass, a combination of these two terms comes into 

play. Beyond hitting the targeted requirements, the system should be able to 

continually repeat the process at the same required accuracy.   

 

2.3: CLASSIFICATION OF MACHINING 

Japanese researcher Norio Taniguchi is credited for classifying machining and 

defining many of the terms used in micro-scale manufacturing today. Based on 

achievable machining accuracy he classified machining as follows: 

I. Normal  or conventional machining 

II. Precision machining 

III. High-precision machining 

IV. Ultra precision machining 
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Figure 2.1: Modified Taniguchi’s curve with decade intervals (13). 

 

Figure 2.1 is the modified form of Taniguchi’s chart by Venkatesh showing the 

historical progression of achievable machining accuracy over the last century. 

Taniguchi defined ultra-precision machining as a process by which the highest 

possible dimension accuracy is or has been achieved at a given point in time having 

dimension tolerance of 0.01µm and achievable average surface roughness of 0.001 

µm (14). From Taniguchi’s curve (Figure 2.1), the increase in achievable machining 

accuracy increasess with time and it is evident that ultra-precision accuracy in a 

previous dispensation can be regarded as normal machining accuracy in a more 

recent dispensation for the same country or region.      

2.3.1 Evolution of precision grinding  

Although the evolution of diamond turning has not attained the desired ultimate stage, 

the current focus is on the increase in productivity rather than an improvement in 
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flexibility and accuracy. The reverse is the case for ultra-precision grinding. As a result, 

similar ultra-machining systems for diamond turning are applicable in precision 

grinding. However, the ideal grinding tool has not been invented yet (10, 15). 

Precision grinding as a branch of precision machining falls between Mc Keown's broad 

classification of Microtechnology and Nanotechnology. From Brinksmeier and  Preuss’ 

point of view, precision grinding and ultra-precision grinding are the application of 

micro-grinding processes for small scale material removal from  large workpiece other 

than microstructures and micro-parts to achieve extremely tight figure and roughness 

tolerances  (15).  Miyashita in his series classified precision grinding based on the 

specific material removal rate and grain size (Figure 2.2). He posited precision grinding 

as the space between conventional grinding and polishing. 

 

 

Figure 2.2: Classification of precision grinding(10) 

 

Amongst other machining processes like turning, milling, drilling and grinding, the latter 

started as a precision process, achieved high precision status with the advent of super 

abrasives, then became an ultra-precision process with the development of rigid 

machine tools. Therefore, ultra-precision grinding now competes with ultra-precision 

diamond turning and is no longer labelled as a highly random process at the ultra-

precision level(11).  

Ultra-precision grinding cannot be possible without the developing technology in 

machining systems which improves on the areas of thermal stability, stiffness, 

damping and smoothness of motion which are integrated with ultra-precision 

metrology and isolated from the response of the machine tool during machining(13).    
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Schulz and Moriwaki classified an ultra-precision grinding system  as one with the 

following movement accuracies (13, 16): 

I. Slide geometric accuracy less 1µm 

II. Spindle error motion accuracy less than 50nm 

III. Control and feedback resolution less than 10nm 

With the above achievable movement accuracies, it is expected that the ultra-precision 

grinding machine is capable of generating (10, 13): 

I. Dimension accuracies in the micrometre range  

II. Surface form accuracy of 100nm or better 

III. Surface accuracy of 5nm range. 

IV. Figure roughness and damage tolerances in one single machining step-

deterministic. And  

V.  Damage free subsurface zone for avoiding light scatter in optically transparent 

materials. 

These high-tech machining systems are available in 2-5 axes configuration and are 

only developed by few companies in the world including Moore nanotechnology 

systems, Precitech, Toyoda, Nashi Fujikoshi and Toshiba (13).  

 

2.3.1.1: Ultra-high precision grinding 

The question arises: where are we today on Taniguchi’s curve? Eight years ago, 

Venkatesh believed that Precitech’s  Nanoform 200 series is the most advanced form 

of the precision machines in the world because it was  close to delivering 1nm on  

Taniguchi’s curve (17).  The currently developed technologies involving the Nanoform 

250 and  750 series and other machines and grinding spindles  higher accuracies in 

the  picometre machining range can be classified as ultra-high precision machining 

and would likely not remain in that category in the nearest future. Furthermore, the 

present day high precision grinding will most likely be regarded as normal grinding in 

the nearest future. 
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2.4: DUCTILE MODE GRINDING 

According to Bifano, ductile mode grinding was first applied in the frictional wear of 

rock salts by King et al (18). As mentioned earlier, conventional grinding of brittle 

materials generate fractured surface sometimes with severe subsurface damage 

hence needing further polishing to derive the desired surface finish. Ductile mode 

machining enables the  generation of nearly 100% ductile streaks while machining 

brittle materials thereby reducing or eliminating further polishing. The goal of ductile 

mode machining is to reduce brittle fracture, generate ductile streaks as much as 

possible hence reducing the need for numerous subsequent polishing and lapping 

(19).   

Ductile-to-brittle transition is the phenomenon that enables the ultra-precision grinding 

of brittle materials to produce optically smooth surface without subsurface damage. In 

the absence of plastic deformation, a material is supposed to undergo brittle fracture. 

However on the nanoscale, brittle materials behave plastically if the potential energy 

increase in the volume subject to indentation is not enough to initiate cracks (15).  The 

transition from brittle to ductile   material removal is considered to be of great 

importance in ultra-precision grinding of optical materials (10).   

 

2.4.1: Determinants of ductile mode grinding   

Ductile mode machining of brittle materials is a complex interaction between tool 

geometry, process materials and material response (20).  The most important deciding 

factors for the transition from brittle to ductile materials are the stress conditions 

around the cutting edge in the workpiece and the depth of cut(10). 

Optical glass can be subjected to visco-plastic flow or plastic deformation if hydrostatic 

compression and shear stresses are sufficiently high(10). From Coulomb Mohr’s 

hypothesis, plastic deformation is totally dependent on the strain rate, temperature, 

multi-axial compression and tensile stress in a workpiece, also  hydrostatic 

compression stress fields in the shear plane are necessary for the ductile cutting of 

optical glass materials (10).  Venkatsh and Sudin in their review on the  mechanics of 

material cutting  Shrinker et al posited that this required condition can be met in 

grinding by applying bonded abrasives which are capable of maintaining the required 

stress field. More so since each flattened, evenly protruding grain on  the grinding 
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wheel initiates an intense local stress field between the glass lamella which in overall 

initiates frictional heat and plastic flow  of material (21). This even protrusion effect is 

better explained by Konig and Sinhoff’s model (Figure 2.3).  However, the presence 

of sharp grains with unevenly distributed height can initiate severe deep cracks on the 

workpiece. 

 

 

Figure 2.3: Konig and Sinhoff’s model adjusted by Venkatesh(21) 

 

The absence of brittle fracture is attainable by using a depth of cut less than the unique 

critical depth of cut of a particular glass. Venkatesh while analysing Zhong’s modified 

model posited that uneven protrusion within the critical depth of cut cannot initiate 

brittle fracture instead plastic deformation occurs by ploughing action hence ductile 

streaks are produced on the surface. Otherwise, the material removal degenerates 

from micro-grooving and micro-ploughing to micro-crack generation due to excessive 

Hertzian surface pressure exerted by the abrasive grains (21) (Figure 2.4).        

 

 

  

 

 

Figure 2.4: Material response to increasing depth of cut 

Microgrooving Microploughing Microcutting
Microcrack
generation

Increasing depth of cut 
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Blackley, Scattergood, Bifano and Fawcet developed models for precision machining 

which relate the maximum chip thickness to the critical depth of cut (22). Below the 

critical depth, the converted grinding energy is insufficient for crack formation and the 

material is plastically deformed. Marshall et al through indentation tests showed that 

maintaining maximum chip thickness at a value below the critical and material specific 

chip thickness is necessary to avoid crack initiation and propagation. In other words, 

the maximum chip thickness must be maintained below the critical depth of cut all 

through the grinding process. From these models the maximum chip thickness (ℎ𝑚𝑎𝑥) 

and critical depth of cut (𝑑𝑐) depend on material and wheel properties like: young 

modulus (𝐸), fracture toughness (𝐾) and knoop hardness(𝐻) , wheel diameter(𝑑𝑠), 

wheel depth of cut(𝑎𝑐), work speed (𝑉𝑤), wheel speed (𝑉𝑐 ) and the distance between 

adjacent grits (𝐿𝑠)  (22, 23).  

The developed models for the estimation of the critical depth of cut (dc) for BK7 glass 

are presented below (Equations 2.1, 2.2 and 2.3) (24): 

 

𝑑
𝑐   =0.15 (

𝐸
𝐻

)(
𝐾𝑐
𝐻

)
2 … … … … … … … … … … … … … … … … … … … … . .2.1 

 

ℎ𝑚𝑎𝑥 = 2𝐿𝑠 (
𝑉𝑤

𝑉𝑐
) √

𝑎𝑐

𝑑𝑠 
… … … … … … … … … … … … … … … … … . . 2.2 

 

ℎ𝑚𝑎𝑥 <  𝑑𝑐 … … … … … … … … … … … … … … … … … … … … … . . … 2.3 

 

According to the developed models, the critical depth of cut for different optical glasses 

ranges from 50nm to 1micrometer (10). Fatima et al estimated critical depth (dc) of 

BK7 optical glass to be approximately 45nm (24).  

Gu et al from their investigative works on varying the depth of cut on Bk7 glass 

categorised four transition regimes for the horizontal surface grinding of optical glass 

as brittle mode, semi-brittle mode, partial ductile mode and ductile mode. These 

distinct modes are also dependent on the kinematic characteristics of horizontal 
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surface grinding as well as grinding-induced cracks (19). In the partial ductile mode, 

lateral cracks and ductile streaks were observed to exist even when the maximum 

penetration depth is greater than the critical depth of cut. However the lateral cracks 

initiated by brittle fracture do not extend below the grinding surface plane, hence 

ductile mode grinding was achieved with the occurrence of brittle fracture (19, 23)  

Brinskemier et al notably observed that ductile regime grinding is not only determined 

by the maximum depth of cut but also by the kinematic characteristics of the grinding 

process(10). This implies that a constant maximum penetration depth which is below 

the critical depth could result in ductile or brittle material removal depending on the 

ratio of feed rate to the depth of cut (10).  

Chen et al through simulation of single grain grinding of Bk7 glass showed that the 

brittle-ductile transition of optical glass is influenced by the cutting depth of a single 

grain hence ductile mode grinding of glass is achieved when the cutting depth is less 

than the critical depth (25).  

Ductile mode grinding cannot be perfectly quantified by surface characteristics of the 

workpiece only. Malking and Hwang et al through indentation experiments also 

showed that brittle mode grinding of glass resulted in two types of crack which are 

lateral cracking; responsible for material removal and surface formation and 

radial/medial cracking; responsible for strength degradation (19, 26). Pie et al through 

microscopy observation of brittle materials concluded that subsurface cracks exist 

below seemingly fracture free or ductile ground surfaces . However, the study of 

subsurface damage observations   in ultra-high precision grinding of BK7 is beyond 

the scope of this research (27).        

In conclusion, it is obvious that grinding of optical glass cannot be achieved without 

small-scale dimensions not essentially in the part of the workpiece size but in the ability  

developing a system with the accuracy for repeatable cutting of small and accurate 

dimensions which are required conditions for ductile grinding of optical glass (28).  

 

2.5: GRINDING WHEELS 

The behaviour of any grinding process is highly dependent on the performance of the 

grinding wheel because the wheel performance is susceptible to significant change 
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during the grinding process (29). Grinding wheels which consist of an abrasive 

material held to together by a befitting bond exist in different shapes, grades, abrasive 

composition, bond material, structure and sizes. The nature of the abrasive process, 

type of workpiece, surface finish required and grinding conditions all determine the 

selection of a grinding wheel.  The cutting action of a grinding wheel is reliant on 

grinding wheel features like the bonding material, the grit size, the abrasive type, wheel 

grade and the wheel structure. To obtain a desired optimum solution, the selection of 

the appropriate combination of these features is highly essential. (28)  

Diamond and cubic boron nitride are the most commonly used abrasives  for ultra-

precision grinding of optical glass while epoxy or polyester resins and metal bond are 

the most commonly used bonds in precision grinding of optical glasses(30, 31). As a 

rule of thumb, hard bonded wheels are used for soft materials while soft bonds are 

used for hard materials. Generally, resin bonded wheels have been applied in grinding 

optical glass but resin bonds are prone to high wear rate. In a comparative analysis of 

the performance of resin bonds and bronze with 2µm-4µm diamond abrasives on Bk7 

glass, it was observed that resin bond produced a better surface finish but wore out 

faster. Meanwhile, its Preston coefficient drastically reduced  hence resulting in grain 

pull out (32). Metal bonded wheels have lower wear rate but require constant dressing, 

therefore, Ohmori proposed the use of ELID on metal bonded wheels to cater for the 

consistent need for dressing (33).  

With the development in precision grinding of optical glass came the advent of super 

abrasives which are characterised as fine grained.  Apart from being made of diamond, 

super abrasives fulfil the necessary grit size and height distribution requirements to 

facilitate ductile mode grinding. The roundness requirements for glass grinding cannot 

be achieved with average grain size greater than 15 µm because such  exhibit 

variations in statistical height distribution of the abrasive grits even when perfectly 

dressed (15). 

Brinksmeier and Shore posited that the grain size of a grinding wheel is the most 

important consideration for surface roughness of optical glass and, therefore, 

recommended that grits of less than 6µm in size should be employed in achieving a 

surface roughness of 1-3nm (10, 34, 35).  In Chen’s point of view, super smooth 

finishes can be achieved when the average grain size is less than 10µm (25). On the 
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contrary, Grimme et al achieved surface roughness in the nanometre range by using 

coarse-grained, single-layered, electroplated diamond wheels of sizes 91µm, 151µm 

and 181µm, this was achieved at low specific material removal rates and proper 

dressing conditions (36). Hence, they concluded that it is possible to achieve 

nanometre range surface finishes with coarse grain diamond wheels.   

Research development in the area of grinding wheels led to the birth of engineered 

wheels for deterministic grinding which is a huge improvement on the conventional 

grinding wheels. Therefore, the evolution to engineered wheels includes wear resistant 

coated abrasives with high bond strength, single layered metal bonding system, 

uniformed grain cutting edge orientations, etcetera (37).  

 

2.6: PROBLEMS OF PRECISION GRINDING  

As earlier stated, fine-grain diamond wheels achieve the best result but grinding with 

super-abrasives has its inherent challenges. Firstly, resin bonded grinding wheels are 

prone to high wear. Hence, the wheels must be reconditioned frequently to maintain 

roundness. When the wheels are reconditioned, it results in shrinking diameter and a 

change in the depth of cut. The cutting depth changes in an unpredictable way 

initiating new problems like figure error. However, refusal to recondition the wheels 

result in the loss of wheel roundness and creates a difficulty in maintaining ductile 

mode grinding (15).  

Another challenge encountered with the use of small grit sizes is the tendency of wheel 

loading to occur. Wheel loading reduces grinding efficiency and could even make 

grinding impossible. The available chip storage space drastically reduces with a 

decrease in grits size because they have few voids. Hence, wheel loading  occurs as 

the material removal rate exceeds the  available chip storage space (31, 38). Chips 

tend to be lodged in the pores between active grits on the surface of the wheel. This 

prolonged effect reduces the level of grit protrusion and the available space for the 

storing of new chips hence initiating dull rubbing action between the wheel and the 

workpiece causing poor surface quality and severe subsurface damage on the 

workpiece (31). 
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The extreme hardness of metal bonded super-abrasive wheels makes its truing and 

dressing very difficult with problems. While using diamond tools, mechanical truing 

and dressing have the following limitations:  A newly dressed wheel surface becomes  

too smooth and dense therefore reducing the chip storage space (38, 39),  and 

generates high truing/dressing forces, high tool wear and maximum  grit protrusion 

equalling 20%-30% of the grit size which affects the performance of the wheel (40). 

Furthermore, the difficulty in grinding wheel manufacture results in grain 

agglomerations(8), changes of the abrasive layer topography and configuration during 

the grinding process and difficulty in the development of a process planning system 

since grinding is very sensitive to the product properties and requirements(41). Other 

problems include the occurrence of chatter vibration and grinding burn. 

In conclusion, the advancement of diamond turning has not yet attained its final stage 

as the present concern is more on the improvement in productivity rather than increase 

in flexibility and accuracy. The reverse is the case for ultra-precision grinding where 

accuracy and flexibility is a major concern.  Though similar machining equipment is 

used for precision grinding and diamond turning, the ultimate grinding tool has not 

been invented yet (10, 15).  Furthermore, Fung and Tong stressed the need for 

engineers to imbibe scientific skills in order to tackle the prevalent challenges facing 

them (42). Some of the problems encountered in   ultra-precision grinding today cannot 

be fully solved without an understanding of the grinding process at the sub-atomic 

level. Therefore, it is high time for precision engineers to add quantum mechanics to 

their tool box to be able to study and understand grinding at the subatomic level.  

 

2.7: SINGLE POINT INCLINED AXES GRINDING  

SPIA is one of the several grinding configurations for specific applications amongst 

other configurations like centerless grinding, internal surface grinding and arc 

envelope grinding. SPIA which is similar to arc envelope grinding or inclined axes 

grinding is normally applied in the manufacture of meso and micro optical elements in 

the form of aspheric surfaces(43).  However, the arc envelope grinding uses an arc 

wheel while SPIA utilises the cube point contact of a wheel. As illustrated in Figure 

2.4, point A1 on the grinding wheel makes contact with P1 on the workpiece while A2 

contacts with P2 for arc envelope grinding but the same tip point A1 contacts the 
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grinding surface at P1 and P2. This is enabled by rotating the grinding wheel on the B 

axes at α1 and alpha α2. 

Asides overcoming the limitations encountered with the arc envelope grinding, the 

SPIA configuration helps to avoid interference while grinding small aspheric inserts. In 

SPIA configuration, the velocity of the workpiece is parallel to the velocity of the 

grinding wheel hence a possible improvement in the surface roughness. Chen et al 

observed that surface roughness improves when the velocity of grinding wheel is 

parallel to the velocity of the workpiece. Hence, SPIA helps to achieve a better surface 

roughness (44). More advantages of the SPIA configuration over arc envelope 

configuration are listed highlighted in Table 2.1.  

  

 

Figure 2.4: Single point inclined axes grinding and conventional arc 

grinding(43) 

The adaptation of SPIA to the horizontal surface grinding of flat optical lenses will help 

to overcome some problems of precision grinding listed in section 2.6 as it helps avoid 

wheel rubbing and glazing that may occur due to chip formation being interlocked in 

the grits. This is also an avenue for the reduction of the thermal wear and flexibility. 

However while   adapting this method to horizontal surface grinding for a flat surface, 

there will be no need to rotate alpha during the grinding process instead the spindle is 

rotated on the B-axis (Figure 2.4 and 2.5).  

 

Table 2.1:  Comparison of SPIA with inclined axes grinding 
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Grinding Mode  Inclined axes mode SPIA  

Grinding wheel Arc shape Cube corner 

Wheel radius  Greater than 0.1mm Can 0.005mm 

Control centre Centre of grinding wheel Grinding tip  

Positioning controlling Difficult  Easy  

Inclination angle between 
workpiece and wheel 
spindle 

450 in YOZ plane Variable 

Controlling axis X-Z axes X-Z-B axes 

Trueing Difficult  Easy  

 

 

 

 

Figure 2.5: Single point inclined axis grinding configuration 

 

 

2.8: SURFACE INTEGRITY 

The surface Integrity of a machined workpiece is one of the greatest factors used in 

measuring the efficiency of the abrasive process applied in the manufacture of the 

workpiece (10). It affects the material properties of a workpiece and the preservation 

B-AXIS 
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of surface integrity is a manufacturing consideration (45). Particularly for precision 

grinding of optical parts which has a wide area of application, the important 

considerations of surface integrity cannot be over emphasized. Michael Field and 

John. F. Kahles defined surface integrity as the condition of a workpiece after 

modification by a manufacturing process (46). Surface integrity can be viewed from 

two aspects: 

I. Topography  characteristics:  The first part is made up of surface roughness, 

waviness, errors of form and flaws  

II. Surface layer characteristics: Comprises plastic deformation, hardness and 

residual stress (45). 

In the long run, the surface integrity of a workpiece will be damaged if improper 

parameters are used such as dull tools, excessively high speed, inadequate grinding 

wheel hardness, improper coolant or lubrication. Generally surface integrity is affected 

by the following variables: 

I. Grinding wheel selection  

II. The workpiece properties 

III. Wheel dressing and truing 

IV. The environment 

V. Process variables and condition of the machine 

VI. Grinding parameters 

The above variables can affect the surface integrity of an optical glass by  producing 

high temperatures during grinding and chemical reaction between the tool and the 

workpiece (45). 

Since the integrity of a surface affects its suitability for specific functional applications, 

the relationship between a grinding process and the resulting surface integrity should 

be perfectly understood. The interaction of the cutting edges of the wheel and the 

microstructure of the workpiece should be properly analyzed in relation to the final 

surface finish. The most commonly measured or the most important surface integrity 

parameter is the surface roughness value. 
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2.8.1: Surface roughness 

This is a measure of inherent, fine closely-spaced surface irregularities created by the 

production process. It is usually regarded as surface finish in engineering and is 

normally expressed in its root mean square value or average surface roughness. 

 

 

Figure 2.6: Surface roughness profile 

Several surface roughness measurements exist (Table 2.2) but the average surface 

roughness is the most commonly measured.  From Figure 2.6, the average surface 

roughness (Ra) can be expressed mathematically as:  

𝑅𝑎 =  
1

𝐿 
∫ |𝑓(𝑥)|𝑑𝑥 … … … … … … … … … … … … … … … … … … … … … … … .2.4

𝐿

0

 

 

Table 2.2: Surface roughness parameters 

Parameter Definition 

Ra Average of the measured peaks and valleys  

Rq Root mean square of the measured peaks and valleys 

Rti Peak to valley value of roughness profile. 

Ry Largest value of Rti over the sampling length 

Rtm Mean value of all Rti values within a sampling length (L)   

Rv Maximum depth of a surface profile from the centre line 

Rp Maximum height of a surface profile from the centre line 

Rpm Mean value of Rp 

 

Gu et al analysed the dependence of Bk7 surface roughness on grinding parameters 

and they posited that wheel speed and feed rate have strong effects on surface 

roughness because increasing feed yields a poor surface quality while high wheel 

rotation is relevant for good surface finishes (19).  
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Zhao et al analysed the dependence of surface roughness on grinding parameters 

and they posited that wheel speed and feed rate have strong effects on surface 

roughness and they went further to establish a predictive model relationship between 

surface roughness and subsurface damage. This relationship is dependent on the half 

apex angle of abrasive grain and the magnitude of extra grain extrusion (37).  

 

2.8.2: Measurement of surface Integrity 

Several techniques have been employed in the past to measure the surface roughness 

of machined surfaces.  These techniques range from the subjective judgment based 

on visual inspection and fingernail tests to the objective measurement which 

comprises: capacitance, pneumatic, ultrasound and inductance methods. Other 

methods include noncontact with the use of optical profilers, optical microscopy, 

scanning tunnelling microscopy (STM) and much lately atomic force microscopy 

(AFM). Asides the non-contact methods, contact mechanical stylus instruments are 

also used for surface roughness measurements (47).  

Surface finish is usually measured using the contact and the non-contact methods. 

Contact methods employ the use of profilers by dragging a stylus across a surface 

while non-contact methods employ the use of electron microscopy, photogrammetry, 

interferometry and electrical capacitance. The most popular method for measuring 

surface characteristics of a workpiece is the use of a stylus-based measuring 

instrument also known as a profiler (48). As a result of the inadequacies encountered 

in analysing surfaces in 2D, emphasis has been laid on 3D analysis, hence scanning 

techniques have been implemented to accomplish 3D assessment (48). Thus 

essential features of a surface characterization system employ 2D projections of a 3D 

data in the form of an axonometric plot and a contour map. 

3D data characterization can be accomplished with the use of both visual and 

numerical techniques. Numerical characterization consists of  area parameters like 

area mean height, the average roughness of area (Ra), root mean square roughness 

(Ra) of area and volume parameters, skewness of area about the mean, kurtosis of 

the area about the mean, distance from mean to the highest peak and distance from 

mean to lowest valley. Volume parameters include material volume, void volume and 
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debris volume, also graphical characterization will include axonometric plotting and 

contour plotting (48).  

 

 2.9: PROCESS MONITORING IN GRINDING 

The grinding process is typically a non-stationary process which is characterized by a 

high number of cutting edges simultaneously undergoing non-uniform wear (10). 

Therefore effective monitoring of the grinding process is necessary to demystify the 

difficulties encountered. Ichiro Inasaki and Wang in their respective classical texts 

highlighted the important goals of grinding process monitoring as (29, 49): 

I. Detecting major grinding problems in the form of chatter vibration, grinding burn 

and surface deterioration. 

II. Information obtained by the monitoring system on the process parameter 

should be useful for the optimization of the grinding process.   

III. The input-output casualties of the grinding process should be useful for creating 

a databank as part of an intelligent monitoring system. 

  

Since ultra-precision grinding of optical glass  takes place at the submicron to nano-

scale dimensions and the ultra-precision machining process and surface finish are 

more closely affected by the ductile/brittle transition properties of brittle materials, It is 

seen as a herculean task to obtain essential process signal features which are difficult 

to obtain at the submicron and nanoscale. Depending on the monitoring targets which 

are: surface roughness, grinding wheel wear, wheel and bond performance, grinding 

burn and etcetera, monitoring techniques could be applied online, in-situ or in-process 

monitoring. 

From a systems approach to grinding, the monitoring targets for grinding is dependent 

on the system behaviour and grinding environment which affect the output (Figure 

2.7). It is of extreme importance to make these targets predictable. Hence grinding 

process modeling is not feasible without effective monitoring and understanding of the 

grinding process (50). 
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Figure 2.7: System overview of grinding process monitoring 

2.9.1: Data Acquisition and sensor development  

The process monitoring flow emanates from a data acquisition process, through signal 

processing and interpretation (Figure 2.8). When executing a process monitoring 

system, an important factor to consider is to select which signals are most suitable to 

achieving the end result. Grinding process monitoring techniques imbibe the use of 

grinding force, power, vibration, ultrasonic and acoustic emission sensing. The latter 

has developed to be one of the most promising sensing techniques.  

An understanding of the instantaneous AE characteristics in the transition of 

wheel/workpiece contact is necessary for contact selection and process control (51).   

It is an objective to measure process quantities of interest as direct and as close to 

their origin as possible. The grinding process, in general, has a large number of input 

INPUT

• System behaviuor-static and dynamic properties of machine, 
processs environment (coolant and lubricant), grinding 
wheel properties (micro and macro geometry ), properties of 
workpiece. 

• Grinding parameters: speed, depth of cut, feed, worktable 
speed

GRINDING

PROCESS

• Single point inclined axes grinding

• Creep feed grinding

• Centerless grinding

• Horizontal surface  grinding

OUTPUT

OR

TARGET

• Workpiece features: surface integrity, error of form, grinding 
burn,

• Machine: diagnostics and performance monitoring

• Tool: wheel wear

• Process: energy consumption, temperature, chip formation

• SYSYSB JSystem properties : Grinding wheel topography, 
wheel wear
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quantities which dominate on the process quantities. Once there is an interaction 

between grinding wheel and workpiece, process quantities exist. An effective 

measurement of these quantities is a step to efficient characterizing of the grinding 

process(29).  

 

Figure 2.8: Process monitoring flow 

   

Acute sensor information in UPG is required for assessment of the process as regards 

to material removal at the submicron level, surface finish and subsurface damage and 

the importance of the sensor feedback information cannot be overemphasised. The  

integration of sensors as an integral part of in-process monitoring in ultra-precision 

machining requires a high level of engineering confidence in the ability of the sensor 

to consistently detect the requisite process conditions (52).  Also, for control purposes 

as regards the variation in process parameters such as tool condition, material 

removal rate (MRR) and process cycle related characteristics like contact or spark out 

in grinding (52). 

Sensors available for monitoring in-process machining include force and power, 

vibration. At the submicron level, conventional  sensors like force and vibration 

sensors are prone to inaccurate measurement due to the lack of sensitivity in the 

exceptionally high frequency range where most micro cutting activities are sensed. 

But AE sensors are among the few which have demonstrated high signal to noise ratio 

at the precision level of grinding. Furthermore, AE sensors demonstrate good 

DATA 
ACQUISITION

SIGNAL
PROCESSING

INTERPRETATION OUTPUT
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response at high frequencies where other low-frequency disturbance are diminished 

and the frequencies from sub-micrometer level precision activities become dominant 

(Figure 2.9)(52).   

                      

 

 

 

 

 

 

 

 

 

Figure 2.9: AE Signal/Noise ratio (52) 

 

To meet up with the recent development in precision machining, demands are 

continuously placed on improving sensor based in-process monitoring systems. These 

sensors are used to generate control signals which are used to enhance both the 

control and productivity of precision grinding systems   aimed at being cost effective 

during mass production  (52). Sensor fusions techniques have also proved to be highly 

valuable in monitoring precision grinding processes.  

Over the years, indirect measuring signals like grinding power, forces, vibration, the 

surface temperature of the workpiece and acoustic emission have been used for 

monitoring of the grinding process. These signals are usually related to an output 

parameter of the grinding system. In most cases where the objective monitoring 

cannot be efficiently measured directly, indirect methods which measure quantities 

that directly change with the process condition are adapted. These indirect signals are 

usually referred to as in-situ or in-process measurements. Amongst them, acoustic 

emission measurement technique has proved to be one of the most sensitive over the 

years.    
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The influence of advanced signal processing techniques and artificial intelligence was 

observed in the development and application of intelligent sensors and sensing 

systems and serves as a foundation for input to learning schemes (52). 

 

2.10: AE SENSING TECHNIQUE 

Acoustic Emission sensing technique became a popular term for scientific research in 

the second half of the 20th century. AE signals are known to possess high-frequency 

bandwidth ranging from infrasound to ultrasound frequency of 10Hz to 50MHz with 

low amplitude. AE is a physical phenomenon which entails the formation of transient 

elastic waves within or on the surface of a parent physical centre and is generated by 

atomic level disturbances (53). Under the influence of localized dynamic modification 

in the structure of a material, elastic waves are generated and spread out from the 

source of the change. The elastic waves propagate through the structure of the 

material where its energy is primarily used for local mechanical work and generation 

of heat (54). An integral part   of this energy radiates towards the edge of the structure, 

on exiting they are captured by a sensing device as AE.  

Glass has low acoustic impedance compared to materials like wood and plastic, 

hence, it exhibits suitability AE process monitoring. A typical AE sensing system 

employs the output of a sensor fed through the amplifier with high input impedance 

and low output impedance.  

 

2.10.1: AE Sensors 

Piezoelectric sensors are particularly suitable for AE sensing in machining process 

monitoring (55). With an efficient data acquisition system and effective signal 

processing, AE sensors can detect most of the phenomena in machining owing to its 

very broad and dynamic sensor bandwidth from 100 to 900 KHz (55). 

Capacitance AE detection has high sensitivity and can also be used to calibrate other 

AE sensors but are susceptible to severe environmental conditions (55). Other 

developing AE sensor technology research areas include depositing thin film 

piezoelectric sensors on a zinc oxide shim to improve signal quality and minimize 

geometric propagation loss. Non-contact fibre optic interferometers are also being 

developed to transmit signals from source to sensor (55). 
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Another important consideration is the transmission of AE signals from the sensor unit 

to the data acquisition system, the use of coupling fluids and development of RF and 

wireless AE transmission and the sensor unit. Furthermore Teti et al attributed the 

development of a non-intrusive coupling fluid to enhance sensor coupling on the 

spindle drive to Hutton and  Li (55). 

 

2.10.2: Uniqueness of AE sensing technique in precision monitoring  

AE signal monitoring is one of the most reliable process monitoring and quality control 

techniques in manufacturing (53). Although previously observed in the cracking of 

wood and other structures, modern approach emerged in the 1930”s but the 

phenomenon was not defined until the 1950s with the works of Kaiser and B.H 

Schofield (56). Originally applied to the destructive testing of structures, its use has 

experienced a tremendous growth for manufacturing processes since its discovery in 

the early 1950s in Germany to its first process monitoring application in 1970 (57). 

The incorporation of an in-process sensor requires a high level of engineering 

confidence in the ability of the sensor to detect the desired process characteristic and 

reliably detect the quantity being measured (52). In the absence of this confidence, 

application of in-process sensor technology in monitoring ultra-high precision grinding 

process is not justifiable.  Acoustic Emission signals are suitable for very fast events 

hence its sensitivity is suitable for ultra-precision grinding process monitoring (31).  

Since sensor feedback information is critical for higher yields and process throughput, 

an applicable sensor to UHPG should have the necessary qualities to account for 

process conditions at sub-micrometre to nanoscale dimensions. At a very high level 

of precision, AE sensors have the capability for this range of applications compared to 

displacement force sensors which are better adaptable to conventional machining 

(Figure 2.10) (52). 

Another uniqueness of AE sensing technique is that its frequency of propagation is 

from 100KHz to 1MHz which is well above most structural natural frequencies, hence 

its immunity to the influence of machine vibration. 
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Figure 2.10: Sensor application versus level of precision (52) 

 

2.10.3: Types of AE signals 

Theoretically, each grit from the grinding wheel generates a transient or burst AE 

signal. When  numerous grits cut through the work piece  almost simultaneously in  

such a way that the interval of consecutive cuts is shorter than the decay time of each 

burst, continuous AE signals are generated (51).   Also for the initial spark in and spark 

out stages in a conventional setting, AE is seen as burst signals, sometimes this is 

because the cutting edges of the grits are not at the same circumferential height (51). 

AErms in its sense its equivalent to a statistical average and is similar to a low pass 

filtered signal. As a result, its application to unique cases like detection of high-

frequency chatter, massive breakage of bonds, initial contact of grits with the 

workpiece, grinding crack and burns is   limited compared to raw AE signals because 

changes in the process condition would have occurred before any appreciable change 

in the AErms signal (51).  The limitations of AE monitoring technique include signal 

saturation and the random oscillation of the RMS level (23). 

 

2.10.4: AE signal processing 

Reliable process condition monitoring cannot be based on a single signal feature, 

therefore, it is necessary to extract pertinent features that best reflect the process 

conditions (55, 58, 59). This can be achieved through sufficient signal pre-processing 

and further processing. Pre-processing occurs in the form of filtering, amplification, 
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RMS conversion, A/D conversion, segmentation and some of these signal processing 

applications come as an integrated part of the sensor (55). 

Further signal processing involves transforming raw AE signals into the time and 

frequency domain and extracting important features. Since not all the features are 

relevant, the important ones are extracted to diagnose the process conditions. Feature 

extraction and selection are important considerations for advanced signal processing 

of AE sensor based process condition monitoring. 

Feature extraction is the process of transforming the original sensory signal into 

potentially discriminant features (60). It is usually enabled by applying different 

techniques like power spectral density, discrete wavelet decomposition, Fourier 

transform, Gabor transform, and wavelet decomposition. These techniques can be 

viewed broadly as relating to the time series domain and frequency domain. 

Some important time domain features include: 

I. Skewness: the degree to which a statistical distribution is lopsided around the 

mean. A zero value indicates a perfectly symmetrical statistical distribution. The 

distribution with outliers above the mean has positive skew while outliers below 

the mean have negative skew values. 

II. Kurtosis: the sharpness of the peak of the frequency distribution. It is also the 

measure of the ‘tailedness’ of a probability distribution of a real-valued random 

variable. A positive kurtosis indicates a ‘peaked’ distribution and a negative 

kurtosis indicates a ‘flat’ distribution  

III. Crest factor: the ratio of the peak value to the RMS of a waveform. 

IV. Some other time domain features include: peak coefficient, AE ring down count 

rate, RMS value, peak factor, mean and standard deviation. 

 

Furthermore, autoregressive modelling and wavelet decomposition are methods for 

extracting features from processed AE signals.   ARM essentially involves building a 

regression model of autocorrelated errors existing in the AE signals while wavelet 

decomposition involves breaking down a signal into desired levels.  

 

Feature selection is processing and deriving an optimal subset from the extracted 

features based on an evaluation criterion(60). It entails eliminating redundant and 
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irrelevant features thereby facilitating a reduction in feature dimensions and increase 

in classification accuracy. Feature selection is not a widely researched area however  

Lezanski notably classified feature evaluation methods under three broad categories   

(61): 

I. Filter approach: The developed algorithm assesses and selects features based 

on the overall data characteristics without involving any learning model.  

II. Wrapper approach: A learning model is employed and its performance is used 

as the evaluation criterion. This approach is more accurate but costs higher 

computationally and has a lower speed. 

III. Hybrid approach: Balances the accuracy of the wrapper approach and the 

speed of the filter approach by applying the wrapper approach exclusively to 

the set of features selected by the filter approach first.   

     

Also, Zhang while monitoring the online prediction of optics developed a support vector 

regression model from the famous Vapnik model which was used in classifying and 

selecting acoustic, vibration and force signals (62). Other feature selection and 

classification techniques include genetic algorithms like ant colony optimization and 

particle swarm optimization.   

   

2.10.5: Some research works on AE in grinding monitoring 

AE has found widespread application in grinding control and monitoring of grinding 

processes. Webster et al were able to achieve surface quality control by studying the 

relationship between material removal rate AE with grinding force (63). Wang et al 

applied AE in the detection of grinding wheel wear (64). Stephenson et al compared 

the performance of resin bond diamond wheels and cast iron bond on zerodur and 

Bk7 workpiece. They discovered that: for fine grit wheels, aggressive dressing 

parameters correspond with low amplitude AE levels, wheel/workpiece contact area 

influenced AE during for resin bond wheel (31).    Han and Wu applied AE to the 

precision grinding of composite ceramics to determine the relationship between AE, 

precision grinding techniques and grinding direction. They concluded that correlation 

may exist between surface roughness and AErms  (65). 
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2.11: ARTIFICIAL NEURAL NETWORKS 

ANN is a mathematical model simulation inspired by biological nervous systems 

through the imitation of human brain’s problem-solving approach. The concept uses 

real and processed data to develop model systems used for classification, decision 

making and forecasting. The performance of a neural network is determined by its 

network structure and connection weights between neurons where a neuron receives 

input signals externally and transforms them into a single value. 

The neural network is made of the input layer, hidden layer(s) and an output layer with 

weights (w) and several existing connections between the layers (Figure 2.11). The 

process of introducing additional hidden layers into a network  creates a difficulty in 

training due to the fact that training a large network is more complex and time-

consuming (66).  

The learning process is the means through which the neural network acquires 

knowledge by matching patterns in data for adequate classification. As a result, new 

data is predicted based on the acquired knowledge. Based on the mode of parameter 

change in the knowledge acquisition, neural network learning process is classified as 

supervised   and unsupervised learning. 

 

 

Figure 2.11: Single hidden layer Neural Network structure (67) 
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Figure 2.12: Single neuron activation (67) 

 

The back propagation neural networks BPNN which is frequently used is a modified 

neural network with highly interconnected neurons organised in a layered structure. It 

is a logically applied in-training multi-layered neural network and its major advantage 

is in the non-linear solutions to ill-defined problems (68). The standard mode for 

training BPNN is using a gradient descent algorithm in which each layer is connected 

through associated weights (w) and the weights are moved along the negative of the 

gradient of the performance function (Figure 2.12). BPNN is performed using three 

steps: 

I. Develop the network structure and initialize the network 

II. Feed the training data repeatedly to train the network 

III. Predict with the trained network using sample data 

 

BPNN training process employs a technique of adjusting the assigned weights by 

comparing the output and the expected target to ensure the output is accurate. This 

can either be achieved with the batch training or stochastic training. 

I. Batch training: The weights are updated once every round because weight 

updating process is determined by the error of the entire package of training 

patterns. 

II. Stochastic training: The weights are updated for each pattern in one round 

because the weight updating process is based on the error of a single training 

pattern. 

There are certain considerations for the selection  of activation function for ANN (69).  

A network may be assigned different activation functions for different nodes in the 

same or different layers. However, most networks use the same activation function 

predominantly for the node in the same layer.   
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Application of neural network to detect grinding anomalies includes the use of fast-

training radial basis function architecture to detect grinding burns in grinding of steel 

after feature selection from acquired AE signals based on autoregressive parameters 

and average statistical properties (64). Kwak et al applied a neural network to detect 

chatter vibration in grinding using a combination of power and AE signals. They 

achieved 95% successful diagnosis at a learning rate of 0.6 and with 2 hidden layers 

(70).       

In the optimal process control of creep feed grinding, grinding force signals were 

modelled to by introducing error distribution function to an improved BPNN algorithm 

which proved to be a better modelling strategy. The learning algorithm was able to 

reduce the local maximum to effectively obtain the global maximum and also 

accelerate the convergence speed of the learning process effectively (71). 

Pawel Lezanski concluded that a neuro-fuzzy combination yielded better result 

compared to fuzzy logic for grinding wheel condition monitoring. However, he also 

observed that the performance of such systems can be lower than neural network 

based systems and their potential for knowledge extraction can be limited (61).  

 

2.12: CONCLUSION 

With the concise understanding of the several conditions necessary for ductile mode  

machining  of optical glass and acoustic emission process monitoring techniques, it is 

necessary to carefully design experimental conditions involving the right selection and 

combination of machining parameters.  
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CHAPTER THREE 

EXPERIMENTAL DESIGN 

3.1:  INTRODUCTION 

This chapter represents the experimental design setup and methods applied in the 

course of the study. The chapter comprises the ultra-high precision machining systems 

utilized in the research, choice of grinding wheel, workpiece, acoustic emission 

sensing equipment, machining process and configuration utilized. It also includes the 

Box-Behnken design of experiment and parameter selection for the research. Design 

expert software and Minitab were utilized in the experimental design while LabVIEW 

was applied to design the AE data acquisition codes. 

3.2: ULTRA-HIGH PRECISION MACHINE 

The research experimental tests were carried out on a revolutionary, flood coolant 

compatible 4 axes Nanoform ultra-grind 250 machine manufactured by Precitech 

(Figure 3.1). This ultra-precision freeform machine is designed for diamond turning, 

deterministic freeform milling and grinding for the most challenging applications 

including glass grinding for plane and aspheric lenses, mould inserts for lenses and 

glass pressing. The Nanoform 250 ultragrind is standardized with Precitech’s UPx 

CNC machine control that provides a user-friendly interface with features designed 

specifically for increased throughput. It is also equipped with an unprecedented 16 

picometer feedback resolution and a high-tech operating system with 0.01 nanometre 

programming resolution. The sealed natural granite base provides exceptionally long 

term stability and immunity to external vibration. The Nanoform 250 ultragrind 

incorporates an FEA optimized dual frame for the ultimate in environmental isolation. 

The linear motors are driven by true linear amplifiers. The hydrostatic oil bearing 

sideways with optimized stiffness and damping characteristics are customized by 

Precitech and the liquid cooled slides enable thermal stability. It can be configured for 

precision grinding (2 or 3 axes) using a 15,000 rpm spindle in the 45° or 90° orientation 

for cross-axis grinding in the direct machining of precision glass optics and freeform 

grinding and (3 or 4-axes) using a 50,000 rpm spindle and a rotary B-axis for parallel 

grinding or 45° grinding. 
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Figure 3.1: Nanoform ultragrind 250 lathe machine at the Precision 

Engineering Laboratory, Nelson Mandela Metropolitan University 

 

3.3: ULTRA-HIGH PRECISION GRINDING SPINDLE 

The research utilized a 50,000rpm motorized air bearing spindle manufactured by 

precitech grinder systems which is one of the latest ultra-high precision grinding 

technologies with axial and radial error motion which is less than 25nm at full capacity 

of 50000 rpm (Figure 3.2).  The spindle accuracy is capable of eliminating 

synchronous and asynchronous spindle error which could have an effect on the 

workpiece surface pattern. 

The spindle was maintained at an optimum operating temperature of 23 degrees 

Celsius using thermoflex 1400 chiller with a dowtherm SR1 heat transfer fluid (Figure 

3.3). The heat transfer fluid comprises 95.5% weight  of ethylene glycol solution in 

water and is capable of providing freeze protection  below -50°C (-60°F) and burst 

protection  below -73°C (-100°F). The spindle was also operated from a designated 

controller supplied by the spindle manufacturer.  
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Figure 3.2: Precitech 50000 rpm ultra-high precision spindle 

 

 

Figure 3.3: Thermoflex 1400 spindle chiller 
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3.4: GRINDING WHEEL 

Resin bond diamond grinding wheel manufactured by Braemer with a grit size of 

#1200 was used for the experiment. The wheel was mounted on a shaft with an overall 

length and shank of 3.0 and 0.25 inch respectively (Figure 3.4 and Table 3.1).  

The wheels were already dressed by the manufacturer.  It was observed under the 

microscope and a perfect cube between the end and the cylindrical face of the wheel 

was noticed. This is the desired condition for SPIA hence no further dressing was 

required at this stage.  The average grain size of the wheel is less than 10µm which 

corresponds to Miyashita’s classification range for grinding of brittle materials (10). 

    

 

Figure 3.4: Resin bond diamond grinding wheel dimensions 

 

  

 

Table 3.1: Resin bond diamond wheel dimensions in inches 

Wheel diameter(A) Wheel width (B) Shank (D) Overall length (L) 

0.625 0.500 0.250 3.000 

 

3.5: GRINDING FLUID 

Water soluble grinding fluids are the best for precision grinding (40). Challenge 300HT 

was used with suitable unique properties. It is a synthetic fluid capable of optimizing 

material removal rate and surface finish in grinding operations. Its exceptional heat 

transfer characteristics ensure the preservation of diamond wheel life and it does not 

foam during the grinding operation. 
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3.6: WORKPIECE 

Single point inclined axes grinding was carried out on 25mm diameter and 2mm thick  

uncoated BK7 window manufactured by UQG optics. The properties of the window are 

listed in Table 3.2.  

 

Table 3.2:  Some mechanical properties of Bk7 glass 

Knoop hardness 610 

Young modulus 82Gpa 

Fracture toughness  0.85 

Acoustic impedance Low 

Abbe number 64.2 

Refractive index 1.157 

Thermal expansion 7.1x 10-6K-1 

Thermal conductivity 1.114Wm-1K-1 

 

 

3.7: ACOUSTIC EMISSION SENSING UNIT 

The AE sensing unit consists of the 8152B piezoelectric sensor which is capable of 

detecting continuous and burst AE signals within a wide frequency range (Figure3.6a). 

The AE sensor was calibrated on a Kistler calibration test bench accordingly with the 

compatible 5125B coupler (Figure 3.6b) and has a high sensitivity value of 57 dB ref 

1v/ (m/s) to the surface and longitudinal waves.    The sensor and coupler unit are 

powered by an S-100-24 supply (Figure 3.6c) manufactured by Meanwell. The input 

of the power supply was set at 220V with the output voltage stepped down to 24V with 

reference to ground.     

The sensor-coupler connection is capable of amplification and filtration and RMS 

conversion of the acquired AE signals through inbuilt configurable gain of x10 and 

x100 for 20dB and 40dB amplification, high pass filter range of 50kHz to 700kHz, low 

pass filter range of 100kHz to 1MHz and RMS conversion range of 0.12ms to 120ms 

time constant (Figure 3.5). The analogue output voltage signals are connected to a 

16bit PIC data acquisition card via BNC 2110 board (Figure3.6d). 
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The actual data acquisition was realised using a  virtual instrumentation Graphical 

User Interphase (GUI) software which  includes a front panel  for viewing the AE signal 

output in real time and a block diagram section  for developing the G-code 

programming. 

 

 

 

        Figure 3.5: Kistler piezotron coupler circuitry from the data sheet 
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(a)                                                                     (b) 

         

(c)                                                                       (d) 

Figure 3.6: (a) Kistler AE sensor (b) Sensor power supply (c) AE coupler (d) NI 

BNC 2110 board 

 

 

3.7.1: AE acquisition software design 

AE Data acquisition was actualized by using NI LabVIEW virtual instrumentation 

software in designing the data acquisition interphase. The software consists of a front 

panel (Figure 3.7) and a block diagram which incorporates a GUI-graphical user 

interphase approach. The design employed a producer and consumer loop approach 

to accommodate the high sampling rate. The producer loop consists of the data 

acquisition VI, buffer, sequence structure, incorporating a stack sequence structure 
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and a for-loop while the consumer loop was dedicated to saving and storing the 

samples in queued sequence. This concept ensured simultaneous, independent 

acquisition and storage of AE data thereby facilitating efficient acquisition and storage 

of samples which were saved for further processing. The block diagram can be viewed 

at the appendix.   

 

 

 

Figure 3.7: LabVIEW front panel design 

 

3.8: SURFACE ROUGHNESS MEASUREMENT 

Surface roughness measurement was carried out on a Taylor Hobson optical profiler 

whose features include (Figure 3.8): 300 mm diameter capability, fast stylus trace 

speed of 100 mm/s, automated 3D measurement, automated centre and level, high 

accuracy and repeatability, enhanced roughness measurements of up to 0.2 nm 

resolution, Steep slope surfaces of up to 85 degrees, Talymap advanced analysis with 

excellent report building tools.  
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Figure 3.8: Taylor Hobson optical profiling system 

 

3.9: MACHINING PARAMETERS 

Masuzawa and Tonshoff in their keynote paper posited that the conditions to realizing 

precision grinding of brittle materials are a low depth of cut, slow feed rate, high wheel 

rotation, and small grain size (72).  They also observed a significant improvement on 

the surface roughness in the high precision surface grinding of ceramics when depths 

of cut and feed rate were reduced while the wheel speed increased. Therefore, this 

research considered the controllable factors to be: low depths of cut and feed rate 

accordingly, using high wheel rotation.  
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3.9.1: Wheel speed calculation 

1500 surface meter per minute was selected for intermediate grinding from the 

precitech grinder manual.  

The rpm conversion is as follows: 

Convert surface meter per minute (𝑣) to revolutions per minute (𝑁),  

𝑣 = 𝜋𝐷𝑁 

Wheel diameter (𝐷) =0.625 inches = 0.01588 meters  

1500 = 𝜋(15.89mm)𝑁 

𝑁 = 1500/𝜋(0.01588)  = 30000  rpm. 

 

The feed rate and  depth of cut were selected to be 3(mm/min) and 5(µm) respectively 

which made up the center points of the model design. Lower and upper limits of each 

parameter were selected around the center points. 

 

3.9.2: Box-Behnken design of experiment 

Experimental designs are widely applied in controlling the effect of parameters in the 

precision machining process. Its application helps to reduce the number of 

experiments, saving time and materials resources. Furthermore, it fosters easy 

realization of the result, analysis and reduction in experimental errors (73). 

In this research, the Box Bencken experimental design was selected to deduce the 

relationship between surface roughness and machining parameters. It is a spherical 

revolving design rotatable second order design based on 3-level incomplete factorial 

designs or 3 interlocking 22 design and a center point. The unique arrangement of 

these design levels allows the number of design points to increase at the same rate 

as the number of polynomial coefficients. 

The advantages of the Box-Behnken design over other designs are such that it 

employs fewer design points hence it less expensive. The design also ensures that all 

factors are not set at their high level at the same time thereby allowing efficient 

estimation of the first and second order coefficients. However, it is not suited for 

sequential designs(73).    

The research design employed a 3-factor Box-Behnken design which consists of 3 

blocks of 4 experiments consisting of a full two-factor and 3 central points with the 
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level of the third factor set as zero. A 3x3 Box-Behnken design with one center point 

will yield 13 runs (Figure 3.9) hence for  a three-factor (𝑘) design with three center 

points (𝑐), the total number of experimental runs (𝑁) are: 

𝑁 = 𝑘2  + 𝑘 + 𝑐 … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … . … 3.2 

32 + 3 + 3 = 15 

Therefore, a 3X3 factor design parameters or control factors were selected as 

illustrated in Table 3.2. They were factored at three levels each to fit into the Box-

Behnken design model. The design was justified with Minitab software and Design 

Expert as illustrated in Table 3.3. 

 

                                 

Figure 3.9: Cube representation of 3x3 Box-Behnken design with one centre 

point 

 

Table 3.3: Grinding parameters and coded levels 

Factors Meaning -1 0 1 

A DEPTH OF CUT (µm) 2 5 8 

B FEED (mm/min) 1 3 5 

C SPEED (rpm) 15000 30000 45000 

 

Hence, a lower limit of 15000rpm and an upper limit of 45000 rpm were selected 

respectively with feed rates 1, 3 and 5 mm/min and cutting depths of 2, 5, and 8 µm 

(Table 3.2) and workpiece spindle speed of 50rpm was selected. 
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Table 3.4:  Experimental run order with point distribution 

RUN ORDER A B C Depth(µm) Feed(mm/min) Speed(rpm) 

1 0 -1 -1 5 1 15000 

2 1 0 -1 8 3 15000 

3 -1 -1 0 2 1 30000 

4 -1 0 -1 2 3 15000 

5 1 0 1 8 3 45000 

6 0 0 0 5 3 30000 

7 0 1 -1 5 5 15000 

8 0 -1 1 5 1 45000 

9 0 0 0 5 3 30000 

10 1 -1 0 8 1 30000 

11 0 1 1 5 5 45000 

12 -1 1 0 2 5 30000 

13 0 0 0 5 3 30000 

14 -1 0 1 2 3 45000 

15 1 1 0 8 5 30000 

 

3.10: EXPERIMENTAL SETUP AND PROCEDURE 

The section highlights the experimental set for the ultra-high precision machining 

system and Acoustic emission sensing unit.  

3.10.1: Setup 

3.10.1.1: Machine set up 

I. The work spindle was balanced at 1000rpm clockwise direction thereby 

achieving a spindle run out error of 3.26µm high, 3.255µm low and 0.005µm P-

V. This balancing was done using Precitech’s DIFFSYS software interphase to 

ensure the vacuum chuck was well positioned hence avoiding unwanted 

oscillation patterns on the surface of the workpiece  which would deteriorate the 

surface roughness of the workpiece and to ensure even contact all through 

workpiece surface and wheel tip.  

II. Once the tool was centred, the bk7 glass was attached to a custom made 

copper arbour with the help of wax (Figure 3.10). The wax was melted on a 
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heated fluid container and the arbour was dipped into the wax while the glass 

was quickly attached before the wax solidified.  

III. A major challenge was actualising the height setting of the grinding wheel to 

coincide with the centre point of the workpiece this was achieved at a height 

setting coordinates of x= 97.493mm and z=-195.738 mm.  

 

 

Figure 3.10: Wax for the Bk7 mounting process 

 

3.10.1.2: Single point inclined axis set up 

I. The spindle was installed with the horizontal configuration on the   rotary B axis 

using A17750 (top) and A16810-04(bottom) mounts (Figure 3.11).  

II. To achieve the single point inclined axes configuration, the grinding spindle was 

rotated on the B axis to an angle of 359 degrees with the help of the balancing 

software (Figure 3.12). Such that only the cube tip of the wheel was in contact 

with the workpiece. This was done to allow easy chip removal as the chip 

storage space of the fine grit resin bond wheel is extremely small  

III. Challenge 300-HT grinding fluid was mixed with water at a ratio of 1:50. The 

grinding fluid was set to trickle down from the nozzle supply at the rate of 0.5ml 

per second. 
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Figure 3.11: Experiment setup 

 

 

Figure 3.12: Spindle balancing platform DIFFSYS 

 

3.10.1.3 Acoustic Emission set up 

I. With the help of a magnetic clamp and M6 bolt, the AE sensor was fastened to 

the spindle mount at a distance of 4cm from the workpiece (Figure 3.13). The 
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distance is close enough to detect surface and Rayleigh acoustic waves from 

the workpiece. 

II. The AE coupler was attached directly above the set up to give room for the free 

rotation of the spindle on the B-axis and its travel on the X-axis without 

interference with the set up (Figure 3.13). This was also necessary to maintain 

the pre-processing unit as close to the acquisition point as possible and 

eliminate the effect of workpiece changing distance.  

III. Pre-processed signals were channelled to the BNC board and to the NI data 

card for further processing and storage. 

 

3.10.2: Procedure  

I. The experiment was pre-run at a feed rate of 6mm/min and workpiece spindle 

speed of 100rpm then the work spindle speed was reduced to 50 rpm. This was 

done to clean the surface of the workpiece and achieve an evenly flat surface 

on the workpiece. 

II. At the point it was previously observed that the contact noise of the wheel tip 

or edge with the surface was uneven, this was corrected by adjusting the 

programmed coordinates. Hence, each pass was run at the selected 

experimental trial parameters.  

III. After each pass the arbor was removed from the workpiece spindle, the ground 

surface was cleaned and placed under the optical profiler for surface roughness 

measurement (Figure 3.14) without separating the workpiece from the arbor. 

IV. Three measurements were taken and the average recorded. 

 

The arbor and workpiece were then centered back on the work spindle using the 

centering software at the original coordinates to continue with the next selected 

parameters. 
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Figure 3.13: Acoustic acquisition set up 
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Figure 3.14: Surface roughness measurement with Taylor Hobson optical 

profiler 

 

3.10.2.1: AE Signal Acquisition procedure 

I. The sensor surface was wiped thoroughly clean of previous chips and dirt that 

may interfere with the sensitivity and acoustic coupling of the acquisition 

system. 

II. Firstly, the data acquisition setup was run without spindle-work piece contact at 

different spindle speeds of 15000rpm, 30000rpm and 45000rpm respectively 

with the coolant supply.  This procedure was initiated to determine the noise 

frequency of the grinding spindle and other environmental influence. 

III. During the grinding cycle, AE data acquisition was initiated when the wheel 

must have advanced 12mm into the diameter of the workpiece. The acquisition 

start time varied with the feed rate of each experimental run. This acquisition 

was close to the centre of the workpiece. 

IV. The AE signal was acquired at a high sampling rate of 2MHz through each 

grinding cycle and all through the experiment. 
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3.11 CONCLUSION 

The Box-Behnken design was applied in creating 3X3 experimental domain involving 

careful selection of machining parameters. AE sensing unit was also actualized using 

LabVIEW. Chapter 4 details the result and analysis.    
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CHAPTER 4 

 RESULT AND DISCUSSION 

4.1: INTRODUCTION  

The first section of this chapter details the application of regression analysis to develop 

a response surface model for predicting the surface roughness values and the 

investigation of the interactive terms of the model and its validation. The second 

section highlights the signal processing of acoustic emission data acquired during the 

research. It employs the use of Bolls spectral subtraction technique, feature extraction 

and selection of relevant features in the time, frequency and time-frequency domains 

using statistical and wavelet decomposition techniques. Finally, details of the training 

and testing of back a propagation neural network using the selected features as inputs 

for predicting surface roughness values are discussed. The analysis in this chapter 

was made possible using Minitab, Statistica, Matlab, Labview and Design Expert 

software.  

 

4.2: SURFACE ROUGHNESS OBSERVATION 

Earlier research has shown that the use of resin bond diamond grinding wheel results 

in lower normal grinding force compared to metal bonded diamond grinding wheels 

under the same process conditions (74). As a result, a lower value of grinding force 

per unit contact area exists between the wheel and the workpiece and also the 

cumulative sliding length of the cutting edge hence the possibility of low wheel wear. 

However, this is considered insignificant in this study. Moreover, newly acquired 

wheels do not require dressing. The diamond wheels used in the research are new, 

hence, the effect of the wheel dressing on the surface roughness is also considered 

insignificant for this research. 

The measured surface roughness values varied from a lower limit of 130nm to a 

maximum value of 320 nm over a range of 190nm (Figure 4.1 and Table 4.1). This 

shows a significant variation of surface roughness from the parameter combination in 

the experimental design. This variation in the surface roughness values can be 

attributed to the different grinding conditions, and the effects of small undeformed chip 

thickness at a lower depth of cut while using diamond grinding wheel in grinding hard 

and brittle materials (75).  
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Table 4.1: Experimental run and result 

Run Order Depth(um) 
 

Feed(mm/min) Speed(rpm) Ra(nm) 

1         5 1 15000 130 

2 8 3 15000 300 

3 2 1 30000 150 

4 2 3 15000 180 

5 8 3 45000 220 

6 5 3 30000 240 

7 5 5 15000 320 

8 5 1 45000 180 

9 5 3 30000 230 

10 8 1 30000 180 

11 5 5 45000 210 

12 2 5 30000 220 

13 5 3 30000 240 

14 2 3 45000 215 

15 8 5 30000 260 
 

 

 

Figure 4.1: Series plot for surface roughness 
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Table 4.2: Classification of surface roughness values 

Experimental run Interval (nm) Classification 

01,03,04,08,10 130 - 180 Good 

05,06,09,11,12,13,14 190 - 250 Average 

02,07,15 260 - 320 Poor 

 

For ease of analysis, surface roughness values were divided into three groups to suit 

the experimental domain (Table 4.2). The lowest roughness value of 130nm occurred 

at a low feed of 1 mm/min, depth of 5µm and speed of 15000rpm and most   good 

surface roughness ranges were also observed at low levels of feed within the selected 

machining parameters. Occasionally, medium levels of either feed or depth and 

increased speed yielded good surface finishes (Table 4.1). This suggests that better 

surface finish can be obtained preferably at low levels of feed for ultra-high precision 

grinding of Bk7 glass.  

The highest roughness value of 320nm corresponds with a feed rate of 5mm/min at 

the same wheel speed and cutting depth values for 130nm (Table 4.1). This suggests 

that the increase in feed played a significant role in the generation of poor surface 

roughness. These findings are consistent with the critical conditions for brittle to ductile 

transition since larger feed rate causes deeper penetration depth thereby causing the 

ground surface to exhibit more degrees of brittle fracture hence increasing the surface 

roughness values (19).  

Other poor roughness conditions of 260nm and 300nm occurred at high levels of 

cutting depth, high and medium levels of feed but not at a high level of wheel rotation. 

The high and medium levels of wheel speed (45000rpm and 30000rpm respectively) 

generated average surface roughness values which were observed to reduce with 

increase in wheel speed depending on the levels of the other parameters. However, a 

combination of low depth and feed with low speed resulted in low roughness value 

(experiment 4, Table 4.1). This suggests the possibility of interaction effects within the 

different levels of the machining parameters 

Furthermore, medium levels of cutting depth and feed rate generated average 

roughness categories while   poor surface finishes   generally occurred with increase 

in feed rate, depth of cut and sometimes wheel speed. However, none of the poor 
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surface finishes correspond to the case of highest wheel speed selection. Although 

Mazuwa and Tonshoff posited low feed, low cutting depth and high wheel rotation as 

conditions to realizing precision grinding of brittle materials (72), these conditions have 

been applied in UHPG of bk7 glass but it is not conclusive to say that an increase in 

the wheel rotation within the experimental domain impacts positively on the surface 

roughness at this stage as extremely high speeds within the experimental domain has 

shown an increase in surface roughness values in the research.   

Gu et al while investigating different modes of grinding bk7 glass (19) suggested that 

the feed to depth ratio determines the surface roughness after all the conditions for 

brittle to ductile transition are met. He also concluded  that the effect of grinding depth 

on surface roughness is weaker than feed rate hence MRR can be increased by 

increasing the depth of cut while keeping feed constant(19). Two out of the three poor 

surface roughness outcomes were observed to coincide with high cutting depth values 

of 8µm and the third poor outcome of 320nm coincided with medium cutting depth of 

5µm. On the other hand, two out of the three poor surface outcomes also coincided 

with highest feed rates 5mm/min while 300nm value coincided with medium feed value 

of 3mm/min.    

  

 

Figure 4.2: Main effects plot from experimental design 
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Main effects plot generated from the design of experimental points and surface 

roughness values supports some of the findings, indicating an increase in response 

surface when feeds and cutting depth levels were increased. However, changes in 

speed levels are seen to have complete inverse effects on the response surface from 

the plot (Figure 4.2). To further investigate and understand the nature of the effects of 

cutting depth, feed, main and interactive effects of the machining parameters, a 

response surface model was developed. 

 

4.2: RESPONSE SURFACE MODELLING  

RSM is a collection of mathematical and statistical methods which are useful for 

analysing engineering problems. This method employs regression analysis to 

determine the best fit for a series of responses. The best fit represents the best 

prediction of values for the modelled response. RSM  has the ability to quantify the 

relationship between controllable input parameters and the generated response 

surface (76). 

Procedure for developing response model: 

I. Design of experiment to adequately measure the response 

II. Check for normality of responses and transform if necessary. 

III. Develop a mathematical model of the second order response surface with best 

fitting 

IV. Finding the optimal set of experimental parameters that produce a maximum 

and minimum value of response 

V. Representing the direct and interactive effects of process parameters through 

2 and 3-dimensional plots 

If all the variables are assumed to be measurable, the response surface can be 

expressed as follows. 

 

𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, … … … … 𝑥𝑛) … … … … … … … … … … … … … … … … … … … .4.1 

𝑦 = 𝑏𝑋 + 𝜀 … … … … … … … … … … … … … … … … … … … … … … … … … … …   4.2 

𝑦 = 𝛽 +  ∑ 𝛽𝑖𝑥𝑖 + ∑ 𝛽𝑖𝑖𝑥𝑖2 +  ∑

𝑘−1

𝑖=1

∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗 +  𝜀

𝑘

𝑗=2

𝑛

𝑖=1

𝑛

𝑖=1

… … … … … … … . .4.3 
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4.2.1: Normality Test  

The Null Hypothesis (Ho) for the Normality test is that the data is normally distributed. 

Therefore, a p-value which is greater than or equal to 0.05 should indicate a normal 

distribution of the response data. A p-value of 0.667 from the probability plot (Figure 

4.3) supports the null hypothesis. The low Anderson-Darling statistic which is a 

measure of the goodness of fit indicates a good fit. Therefore, there was no need for 

transformation of the roughness data. 

 

 

Figure 4.3: Probability plot for Normality test 

 

4.2.2: Determination of appropriate polynomial equation for the RSM 

The sequential sum of square and lack of fit test were used to determine the suitable 

terms for the polynomial.  The goal is to select the highest order polynomial where the 

additional terms are significant and the model is not aliased while the lack of fit test 

ensures the model has an insignificant lack of fit. From the results (table 4.3 and table 

4.4): A Lack of fit value of 3 indicates that the   quadratic model lack of fit is insignificant. 

Hence quadratic and 2FI (two-factor interaction)   model was   selected for the 

response surface   polynomial. 
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Table 4.3:  Sequential sum of squares result 

Source df Sum of squares  Mean square f-value p-value Remark 

Mean vs total 1 7.1x105 7.1x105    

Linear vs mean 3 23243.75 7747.92 6.29 0.0096  

2FI vs Linear  3 9731.25 3243.75 6.81 0.0136  

Quadratic vs 2FI 3 2722.92 907.64 4.18 0.0788 Suggested 

Cubic vs Quadratic 3 1018.75 339.58 10.19 0.0907 Aliased 

Residual 2 66.67 33.33    

Total 15 7.1x105 50121.67    

 

Table 4.4:  Lack of fit test result 

Source df Sum of squares  Mean square f-value p-value Remark 

Linear  9 13472.93 1496.9 44.9 0.0022  

2FI   6 3741.67 623.61 18.71 0.0516  

Quadratic  3 1018.75 339.58 10.19 0.0907 Suggested 

Cubic 0 0.00    Aliased 

Pure error 2 66.67 33.33    

 

     

4.2.3: Regression Analysis 

Regression analyses   have been utilized to determine the significance of the individual 

parameters in a fitted response, their powers and interactions on the response surface. 

It entails fitting the independent and response variables to validate if the relationship 

between them is linear, two-factor interaction (2FI), or involving second order or higher 

order functions. A proposed response surface model with coefficients of independent 

variables, cross terms and higher order terms is highlighted in equation 4.4 

 

A 3x3 Box Behnken design with 3 center points will reflect 10 coefficients in a quadratic 

and 2FI model as follows: 

Ř = Bo + B1d + B2f + B3s + B4d2 + B5f2 + B6s2 + B7df + B8ds + B9fs  ……………… 4.4                       

Where: 

Ř= Response surface 

B0= Intercept  

d= depth of cut 

f= feed 

s= speed 
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B1-B3= coefficients of the first order term in the model. 

B4-B6= coefficients of the second order term in the model. 

B7-B9= coefficients of the cross term in the model. 

  

4.2.3.1: Assumptions for a regression model 

The p-value of an observed value tobserved of some random variable  T used as a test 

statistic is the probability that, given  the null hypothesis is true, T will assume a value 

as or more unfavourable to the hypothesis as the tobserved value in the analysis of 

variance (ANOVA (77). Hence, the p-value represents the significance of a result. The 

smaller the p-value in relation with the set confidence interval, the more significant the 

result (78). The p-value tests the null hypothesis that the corresponding coefficient 

equals zero (no effect), therefore low p-values indicate that the predictor is a 

meaningful addition to the model. 

Five iterations were used to determine the best fit model. The significant terms after 

the fifth iteration were used to develop the response surface model since their p-values 

were less than 0.05 (Table 4.5). 

 

Table 4.5: Regression analysis showing significant terms 

  b Std error of b t(5) p-value 

Intercept -125.69 34.148 -3.681 0.00621 

Depth 27.29 4.559 5.986 0.00033 

Feed 101.96 12.124 8.410 0.00003 

Speed 0.006 0.001 6.253 0.00025 

Feed*Feed -6.473 1.669 -3.880 0.00468 

Depth*speed -0.001 0.0001 -4.459 0.00211 

Feed*Speed -0.001 0.0002 -6.204 0.00026 

.  

Equation 4.5 and 4.6 are the developed response surface model. 

  

Řa = Bo+B1d+B2f+B3s+B5f2+B7df +B8ds +B9fs ……………………………………….4.5    

                                                     

𝑅𝑎 = −125.699 + 27.292𝑑 + 101.964𝑓 + 0.006𝑠 − 6.473𝑓2 − 0.001𝑑𝑠 − 0.001𝑓𝑠  4.6 

 

The standardized coefficients in Table 4.5 depict how many standard deviations the 

response variable   will increase per standard deviation increase in a predictor 

variable, therefore, it helps to understand the effect of the independent variable on the 
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response when they are measured in different units.  The coefficients of the developed 

model are summarized in (Table 4.5). Although feed has the highest standardized 

coefficient which means that the effect of feed is the most significant on the response 

surface (Figure4.4), this cannot be considered alone because of the significant 

interaction terms present between feed and speed then depth and speed. The second 

order feed term has the highest p-value of 0.00468, on the other hand, does not 

indicate the least value of standardized coefficients (Figure 4.4).   The percentage 

contribution of the model terms and their f-values can be found in (Table 4.6). 

 

 

 

 

 

Figure 4.4: Standardized coefficient plot 

 

 

 

 

 

Table 4.6: F-test 

source Contribution (%) F-value 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5

depth

feed

speed

feed*feed

depth*speed

feed*speed

standardised coefficients

T
e

rm
s

depth feed speed feed*feed depth*speed feed*speed

Series1 1.2 3 1.4 -1.2 -1.1 -1.5
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Model 96.38 35.53 

Depth 12.12 35.83 

Feed 46.52 70.73 

Speed 3.75 39.10 

Feed*Feed 6.8 15.05 

Depth*speed 8.9 19.88 

Feed*Speed 17.4 38.49 

 

 

 

Figure 4.5: Main effect plots for surface roughness from developed model 

 

Fitted means are helpful for obtaining more precise results by accessing response 

differences due to changes in factor level rather than differences due to unbalanced 

experimental condition (79). The main effects plot from a model helps to examine the 

differences between level means for one or more factors. A horizontal line parallel to 

the x-axes indicates that there is no main effect hence the response mean is the same 

across all factor levels. On the other hand, a steep slope indicates greater main effect. 

Figure 4.5 highlights the effect of the predictor variables on the response surface from 

the model. The feed has a very steep slope compared to the depth and speed 

therefore indicating a high correlation between surface roughness and feed rate. This 

relationship is not perfectly linear as can be seen with the slight curve at the higher 

100-10

200

0

-200

-400

-600

-800

50-5 500000-50000

depth(µm)

M
e

a
n

 o
f 

R
a
(n

m
)

feed(mm/min) speed(rpm)

Fitted Means



 

77 
 

values of feed showing the influence of the significant quadratic feed term in the model. 

The curve on the feed term also suggests that the impact of the feed on the response 

surface changes after a certain level, hence further investigation is needed. 

The steep slopes of the depth and speed also indicate main effects on the response. 

In the absence of interactions, the feed rate could be imagined to hugely influence the 

response variable followed by the depth of cut and speed as seen from the steepness 

of the slope. Ideally, the main effect of these factors cannot be considered alone.  

According to Montgomery et al  whenever a strong interaction exists between two 

factors or variables, the corresponding effects of the main factors have little or no 

practical significance (78). In this case, the effect of the main factors are of practical 

significance but cannot be considered alone due to significant interactions as seen 

from the p-values.   

It is also observed that the speed effect is quite different from   the main effects plot 

Figure 4.2 and Figure 4.5. A possible explanation of this occurrence can be found in 

section 4.2.4.3.  

 

4.2.4: Interaction effects in the response surface model    

From equation 4.6, the effect of feed rate and depth of cut on the response variable 

are both dependent on the speed.  The developed model does not indicate a direct 

significant interaction between the feed and depth of cut this is indicated by the empty 

blocks in the combined matrix plot of Figure 4.6.    

Fitted means were employed to analyze the effect of one factor dependent on the level 

of another. Parallel lines in an interaction plot indicate no interaction 
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Figure 4.6: Interaction matrix plot of model terms and surface roughness 

   

. 

4.2.4.1: Feed and speed interaction 

Interactions are observed with the superimposition of the coloured lines when the 

speed increases with an increase in the feed, the mean surface roughness increases 

both linearly and in a quadratic manner, this pattern of increase in the surface 

roughness is similar at different levels of speed (Figure 4.6).  On the other hand, 

reversing the axes of speed and feed gives another perspective which indicates an 

increase in mean surface roughness with a corresponding increase in speed and feed.  

This suggests that better surface roughness conditions can be achieved with low feed 

and speed. 

  

4.2.4.2: Speed and depth interaction 

The interaction plot shows that   surface roughness value increases with an increase 

in depth and speed. The effect is such that lower depth of cut and low speeds give the 

best surface roughness value but an increase in the depth of cut while keeping the 

speed constant will yield a higher roughness value while an increase in  speed values 

at the same depth of cut gives a similar surface roughness   values (Figure 4.6).  
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4.2.4.3: More investigation 

So far, we have investigated the effect of the interaction terms on the model. If we 

recall, the model doesn’t indicate a significant interaction between feed and depth but 

the speed interaction is common to both feed and depth hence it is necessary to 

access these combined interactions.  To further access the effect of the model and the 

predicted values, the combined interaction of the predictor variables were investigated 

with 2D and   contour plots. 

 

 

Figure 4.7: 2D profile plot of feed against depth and speed. 

 

It was observed that at the constant low value of depth and speed, the surface 

roughness increases almost linearly with increased feed and the surface roughness 

values for the high values of speed and depth are higher (Figure 4.7). Interestingly, for 

the high constant values of speed and depth, the surface roughness values begin to 

drop beyond 3mm/min feed value as indicated with the red line (Figure 4.7). 

It is also observed that at high speeds and cutting depth, an increase in feed does not 

result in a wider range of change in surface roughness values compared to the range 

of change at   low speeds and depth, therefore, the maximum and minimum values in 

this condition are almost the same (Figure 4.7). This further highlights the effect of the 
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quadratic feed term in the model and justifies the fact that at higher values of feed and 

depth, the surface roughness can be improved by increasing the speed. 

On the other hand, at the constant low level of feed, an increase in speed and cutting 

depth generated good and average surface roughness values (Figure 4.8a). These 

findings from the interaction effect   explain the discrepancy between main effects plot 

obtained from the experimental design (Figure 4.2)   and model (Figure 4.5). 

 

 

 

Figure 4.8a: Contour plot at low level of feed 

 

The red zone from the contour plot (Figure 4.8b) also shows that a high level of feed, 

an increase in the depth of cut generates very poor surface roughness values. 
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                                 Figure 4.8b: Contour plot at high level of feed 

 

4.2.5: Optimization 

One of the major goals in manufacturing precision optics is to minimize the surface 

roughness with the ideal   combination of variables.  An individual desirability (D) 

accesses how well a set of combination of variables identifies the defined target for a 

single response.  A desirability value of zero signifies that the response is outside the 

acceptable limit.   From the model prediction and machining conditions, a target value 

of 80nm was set for the optimization. For the response, a range of weight values from 

0.1 to 10 can be chosen to emphasize or de-emphasize the target.  The significance 

of this value is such that: 

I. Values less than 1(minimum is 0.1) assigns less emphasis on the target. 

II. A weight of 1 places equal importance on the target and the bounds. 

III. A value between 1 and 10 assigns huge emphasis on the target. 

 

A weight of 10 was assigned to the target value. The optimization plot (Figure 4.9) 

from Minitab highlights 80nm is achievable with feed=1mm/min, depth=2µm and 

speed=15000nm. These values correspond to the lowest machining parameters 
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obtainable from the design. The desirability value of 1 indicates the parameter 

combination achieves a favourable result. Their effects are shown in Figure 4.10.  

 

 

Figure 4.9: Optimization plot 

 

Figure 4.10: 3D optimised surface plot 
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4.2.6: Validation of model 

The model F-value 35.53 infers the model is significant (Table 4.8). There is only a 

0.01%    chance that a model with an F-value this large could occur due to noise.  

In order to further access the quality of a model, it is necessary to check the lack of fit 

to ensure that it is not significant. An insignificant lack of fit (F-value) falling within the 

range of 6.32 indicates that the data fit well in the model and implies there is a 14.29% 

chance that a ‘lack of fit’ value this large could occur due to noise. The Full ANOVA 

table at the appendix 

It is also important to evaluate the coefficient of determination in 𝑅2 and adjusted 𝑅2. 

𝑅2 is a measure of the amount of in variability of a response using regression variables  

but its value can be artificially inflated by adding insignificant model terms hence 𝑅2 is 

not a good statistical measure (78) . However, adjusted  𝑅2𝑎𝑑𝑗 is a better statistical 

measure of the amount of observed variability in the response because its value will 

only increase if the additional terms are statistically significant. For an ideal model,  

𝑅2𝑎𝑑𝑗 should be greater than or equal to 70% (77). 

The standard error of estimate(S) represents the standard deviation of the response 

value from the fitted values. The lower the S-value, the better the model describes the 

response. The predicted  𝑅2 indicates how well the model predicts the response for 

new observations. It is a very useful tool in accessing a model since it is calculated 

with observations that are not included in the model calculation. A larger value gives 

a better predictive power. Also, a predicted  𝑅2 value that is substantially less than 𝑅2 

may indicate that the model is over fit . 

 

Table 4.7: Summary of regression analysis 

S R-square R-square(adj) Pred. R-square 

12.9nm 96.4% 93.7% 82.9% 

 

From the regression summary (Table 4.7) it is evident that the standard error of 

estimate is acceptable,   𝑅2𝑎𝑑𝑗 value indicates that the developed model explains 

93.7% of the variation in the surface roughness response data. That is to say that 

93.7% of the total variability in the surface roughness is explained by the independent 
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variables of feed, speed and depth of cut. The value of predicted   𝑅2 is also high 

enough and is not substantially less than  𝑅2 therefore the model is not over fit but can 

be used to navigate the design space. 

 

4.2.6.1: Analysis of variance 

The significance of the model factors was carried out using analysis of variance 

(ANOVA). This is done to analyze statistically the relative significance of the model 

and the response and to further validate the model. The parameters in the ANOVA are 

calculated as:  

 

𝑀𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 = (𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒)/(𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚 (𝑑𝑓))   

 

𝐹𝑣𝑎𝑙𝑢𝑒 = (𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 𝑜𝑓 𝑎 𝑚𝑜𝑑𝑒𝑙 𝑎𝑛𝑑 𝑡𝑒𝑟𝑚𝑠)/(𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒)  

 

The mean square has been used to determine whether terms in the model are 

significant while the F -values are used to compare models and their terms with a 

residual variance. 

The following applies to the ANOVA analysis in this research: 

I. The null hypothesis (Ho) for the main effect is that the surface roughness means 

for all parameter factor levels are equal. 

II. The null hypothesis (Ho) for an interaction effect is that the surface roughness 

means for the level of one factor does not depend on the level of the factor. 

III. The statistical significance of the terms and effect depends on the assigned p-

value of 0.05. A significant level of 0.05 indicates of 5% risk of concluding that 

an effect exists when there is no actual effect. 

 

If the variances are similar in range, the ratio will be close to 1 and it is less likely that 

any of the factors have a significant effect on the response. Accordingly, a p-value of 

less than 0.05 indicates that the terms in the model have a significant effect in the 

surface roughness. 

 

 

 



 

85 
 

Table 4.8: Summary of ANOVA table 

ANOVA      

                                   df SS MS F                  Significance F 

Model 6 35452.97619 5908.829 35.53228934 0.000024 

Residual 8 1330.357143 166.2946   

Total 14 36783.33333       

 

Table 4.8 shows the summary of ANOVA studies for the surface roughness model in 

this research the ANOVA table can be found in the appendix.  The p-value of 0.000024 

indicates that the model is extremely significant. The extended ANOVA table with the 

mean square error and the   mean square model can be found in the appendix section.   

From the plot residual plot of standardized residuals, the probability distribution 

indicates that no outliers are present in the fitted model and the fitted values are evenly 

distributed around the zero thresholds. This indicates the absence of patterns or 

correlation in the fitted model and the absence of homoscedasticity (Figure 4.11). The 

table of prediction indicates that the highest percentage error of prediction is 9.6% 

which is within the acceptable 25% for a model with 82.9% predicted  𝑅2. 

 

Figure 4.11: Residual plots for Ra 

 

Table 4.9: Percentage error of predicted Ra 
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Run 
Order 

Depth(um) 
 

Feed(mm/min) Speed(rpm) Ra(nm) Predicted(nm) 
 

% 
error 

1 5 1 15000 130 133 -2.4 

2 8 3 15000 300 298 0.5 

3 2 1 30000 150 136 9.6 

4 2 3 15000 180 192 -6.7 

5 8 3 45000 220 215 2.4 

6 5 3 30000 240 232 3.3 

7 5 5 15000 320 306 4.5 

8 5 1 45000 180 187 -3.8 

9 5 3 30000 230 232 -0.9 

10 8 1 30000 180 184 -2.4 

11 5 5 45000 210 199 5.1 

12 2 5 30000 220 228 -3.7 

13 5 3 30000 240 232 3.3 

14 2 3 45000 215 223 -3.9 

15 8 5 30000 260 277 -6.5 

 

Table 4.9 highlights the predicted outcomes of surface roughness values from the 

developed response model. 

4.3: AE SIGNAL ANALYSIS 

Below is the summary of   the process flow adopted for the signal processing, feature 

extraction and selection in this research using NI LabVIEW, Matlab, Statistica and 

Minitab (Fig 4.12). Acquired AE signals were electronically filtered through a band 

pass filter (50 kHz-1000 kHz) at the point of acquisition. This was able to eliminate 

machine vibration and environmental noise occurrence at low frequencies.  

 

4.3.1 AE Data segmentation 

A total of 270 million samples of AE data were acquired during the research at the rate 

of 2million samples per second (Table 4.10). With the use of Minitab software, the AE 

data was segmented into a time frame of 0.1s which corresponds to a length of 200000 

samples per segment and one tenth of a sampling window as observed in (Table 4.11). 

The segmentation was necessary to check for consistency in AE data, reduce 

processing time and eliminate redundancy. As highlighted in section 3.10.2.1, AE data 

acquisition was carried out as the wheel progressed towards the center of the 

workpiece.        
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Figure 4.12: AE signal process summary 

 

  

Table 4.10: Acquired AE samples 

Experiment number Number of AE samples in millions 

1 18 

2 14 

3 12 

4 12 

5 20 

6 20 

7 6 

8 34 

9 16 

10 22 

11 20 

12 20 

13 18 

14 24 

15 14 

TOTAL 270 

 

 

 

 

Table 4.11: AE data segmentation 

Filtering

• Bandpass: (50-
1000)kHz

• Data segmentaion

• Spectral 
subtraction

Extraction

• Time domain 
(11features)

• Freqency domain (3 
features)

• FFT, DFT

• STFT

Extraction

• Wavelet 
Decomposition (8 
features)

• Feature correlation
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Wheel speed 15000rpm 30000rpm 45000rpm 

Window segment length in seconds 0.1 0.1 0.1 

Number of wheel revolutions per segment 25 50 75 

Surface contact length for window segment Varied according to feed rate 

Number of samples per segment 200000 

Sampling rate  2000000  

 

4.4: AE SIGNAL PROCESSING 

Noise frequency effects were observed in the AE data. This could be due to the 

interference of the spindle resonant frequency with the AE data. The noise frequencies 

were observed to increase with an increase in speed ranging from 15000rpm to 45000 

rpm. When viewed with a spectrogram the frequency was observed to coincide with 

the range of useful AE frequency all through the entire window segment in the 

research. The noise could be as a result of frequency harmonics present from the 

high-speed grinding and workpiece spindles (80). The harmonic frequencies were 

observed to vary with the spindle speed (Figure 4.13). Also, they were within the useful 

AE frequency range hence the use of a band filter may not be efficient in this 

circumstance. Spectral subtraction technique was applied.  

 

 

Figure 4.13: Spectral density estimates of spindle harmonics at 15000 rpm 
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4.4.1: Spectral subtraction technique 

Steven Boll proposed a spectral subtraction method which is a computationally 

effective technique for noise reduction in signals and serves as a basis for reducing 

noise on the level of the frequency spectrum (81). This technique hinges on the 

homogeneity and additive property of the Fourier transform and is highly efficient 

where the frequency signature of the signal and noise are known (82). Spectral 

subtraction technique has proven to achieve a higher correlation coefficient of AE 

features compared to other methods like wavelet shrinkage in real time monitoring 

with AE. 

As a benchmark to determine the reference noise, data sampling was carried out with 

spindle running at 15000, 30000, and 45000 rpm without any contact with the 

workpiece as indicated in section 3.10.2.1. These set of acquired noise data contained 

both spindle harmonic frequencies and other environmental noise influence which 

could not be thoroughly filtered. The subtraction process was done in three categories 

based on the wheel speed parameter value obtainable from the experimental design.   

The set of equations below for the 15000 rpm noise data were applied to experiments 

1, 2, 4 and 7 while the other experimental runs were subtracted according to respective 

noise data. 

𝑥(𝑡) = 𝑠(𝑡) + 𝑛15000(𝑡) : Time domain  

𝑋(𝐽ῶ) = 𝑆(𝐽ῶ) + 𝑁15000(𝐽ῶ)  : Frequency spectrum 

 𝑆(𝐽ῶ) = ((𝑋(𝐽ῶ) −  𝑁15000(𝐽ῶ)) : Spectral subtraction (residual) 

 𝑠(𝑡)  = ifft ((𝑋(𝐽ῶ) −  𝑁15000(𝐽ῶ))   : Inverse Fourier Transform of the residual  

 

The subtraction process was carried out on the experiment grouping with their unique 

wheel speed, by subtracting the appropriate noise data. In order to validate the 

effectiveness of the spectral subtraction process, feature extraction was carried out 

both the noisy data and the noiseless data. It turned out that the spectral subtraction 

improved the correlation coefficient of extracted features. This validation table can be 

found in the appendix. 
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4.5: SIGNAL ANALYSIS AND FEATURE EXTRACTION 

The feature extraction process was carried out in three domains which are time 

domain analysis, frequency domain and time-frequency domain. 

 

4.5.1: Time domain observations  

The amplitude levels of the AE data was observed to vary with the different 

combination of machining parameters in the time domain. The following were 

observed:  

I. The amplitude levels of the AE voltage signals were observed to change with 

the combined effects of speed, feed and depth of cut. 

II. Burst AE signals were very noticeable at high speeds of 45000 rpm while lower 

speeds yielded continuous AE signals. 

III. Some amplitude  voltage of the raw     AE signals  increased with an increase  

surface roughness values but  the trend was not consistent through all the 

acquired data  for the experimental runs 

IV. The RMS level of the acquired AE signals increased with an increase in the 

surface roughness values but the increasing trend was not consistent. 

The amplitude levels of some raw AE signals were observed to increase with some of 

the surface roughness values and the corresponding variation in machining 

parameters (Figure 4.14).  The peak to peak AE voltage values of the raw signal were 

also observed to increase with an increase in some surface roughness values. Table 

4.12 shows some roughness values with the corresponding peak to peak voltage 

values. 

The burst AE signals were as a result of the higher rate of AE events resulting in quick 

transients which create the inability to form continuous signals. 

 

Table 4.12: Peak to peak voltage and surface roughness 

Ra(nm) 130 180 210 215 

Range(V) 0.52 0.79 0.91 0.95 
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Figure 4.14: AE amplitude variations in time series 

 

Figure 4.15 shows a complete cycle of some RMS AE signals. The RMS levels also 

increased with an increase in some surface roughness values with the highest RMS 

peak observed at 300nm (Figure 4.15).   

 

Figure 4.15: RMS Level of AE signals 
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The effect of increased speed and feed showed the presence of burst AE signals in 

the time domain.This is due to a higher rate of AE events at high speeds resulting to 

transients which create the inability to form continuous signals. This could be due to 

the fact that at high feed and speed, AE events increase but reduced cutting depth 

makes it easier to exit the surface faster as the bursts become more spaced out 

(Figure 4.16.) 

Hence, it is suggested that for real-time monitoring, burst AE signals signify average 

to poor surface roughness conditions due to the occurrence of transients at medium 

to a high combination of machining parameters.   While steady AE signals are 

sometimes indicators of good surface finishes.  However raw AE amplitude levels are 

not sufficient for monitoring surface roughness in ultra-high precision grinding of Bk7 

glass.  

 

Figure 4.16: Burst AE signals 

 

4.5.1.1: Time domain feature extraction 

The following time series features were extracted from the AE data: AE mean, root 

mean square, skewness, kurtosis, crest factor, peak amplitude, peak to peak voltage, 

standard deviation, variation, minimum amplitude values. 
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4.5.2: Frequency domain observation  

Fast Fourier Transforms (FFT) and Short Time Fourier Transforms (STFT) were 

employed to observe and analyze the spectral contents of the AE data in the frequency 

domain.  Power spectral density was applied to investigate the nature of the frequency 

spectrum and where the frequencies are concentrated.  

The AE data was observed to have similar fundamental frequencies and varying 

harmonics between 0.05 to 0.6MHz frequency bands (Figure 4.17 and 4.18).These 

harmonics varied with the machining parameters and surface roughness data and 

contain relevant information about the energy content in the frequency spectrum of the 

AE data.  

The spectrograms (Figure 4.19 and Figure 4.20) revealed that at low speeds, feed and 

depth, the harmonics are concentrated within 100 kHz-200 kHz while variations are 

noticed between 300 kHz-400 kHz frequency range. These variations were observed 

to be dependent on the changes in machining parameters and surface roughness.  

The higher surface roughness values reflected higher harmonics which are in the 

magnitude range of -80dB to -70dB.  More harmonics were observed between 300 

kHz-500 kHz at higher surface roughness values of 300nm (Figure 4.20). 

 

 

Figure 4.17: Power spectral density plot at 130nm 
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Figure 4.18: Power spectral density plot at 300nm 

 

Figure 4.19: Spectrogram at 130nm 
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Figure 4.20: Spectrogram at 300nm 

 

The following frequency domain features were extracted:  

I. Mean frequency: A pitch measure that accesses the center of power distribution 

across the frequencies. 

II. Spectral peaks: The maximum energy in the frequency spectrum.  

III. Frequency deviation: The deviation of the frequency components from the 

mean frequency.  

The frequency components of the acoustic signal showed a better variation with the 

surface roughness values compared to the amplitude levels of the raw AE signals. 

Hence raw AE amplitudes may not be best suited for monitoring the ultra-high 

precision grinding of BK7 glass.     

 

4.5.3: Wavelet decomposition 

Time-Frequency localization is advantageous because it is possible to vary the time-

frequency aspect ratio in order to produce good frequency localization at low 

frequencies with a long time window and  good time localization at high frequencies 

with short time windows thereby  resulting in segmentation or tiling that is suitable for 

signals with transient nature like acoustics (83). 

There are several “mother wavelets”. The Haar wavelet is very simple but a serious 

disadvantage is that it is not continuous. Ingrid Daubechies set of orthonormal basis 
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function have proven to be elegant and has become the cornerstone for modern 

wavelet applications (84).  

Debauchies discrete wavelet transform db3 is utilized for the decomposition analysis 

in this research. The wavelet decomposition technique was used to decompose the 

signal into several details hence giving a final approximation segmentation of the 

signal into different bandwidth for the frequency observation. 

Base wavelet db3 with 7 levels was used for the wavelet features extraction in this 

research. Figure 4.21 shows that the sub-band d3 had the highest amplitude, followed 

by d4.This implied that majority of the AE spectral contents for the wavelets are 

centered within the frequency range of 125 kHz-250 kHz and 62.5 kHz-125 kHz 

respectively (Table 4.13). A vivid correlation was also observed with variations in sub-

bands d2, d3, d4, d5 and the surface roughness.  

The following features were extracted from the wavelet decomposition: 

I. Frequency distribution in each sub-band. 

II. Mean absolute value of coefficients in each sub-band.  

III. The average power of wavelets in each sub-band. 

IV. Total energy in sub-bands 

V. Frequency deviation in each sub-band.  

 
Figure 4.21: Wavelet decomposition at level 7 
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Table 4.13: Wavelet decomposition frequency levels 

 

 

A total of 22 features were   extracted from the time, frequency and time-frequency 

domains.  The extracted features were observed to vary in an ill- pattern across the 

generated surface roughness values. Figure 4.22 shows the ill-pattern variation of 

some extracted features with the surface roughness including standard deviation (std),  

total energy in sub-band (et),  mean absolute frequency in sub-band 3 (f3),   mean 

absolute frequency in sub-band 4 (f4), standard deviation of frequency in sub-band 3 

(s3) and peak to peak time series voltage (p-p).  The values in Figure 4.22 have been 

scaled to avoid superimposition of legends.  

 

Figure 4.22: Variation of some extracted features with surface roughness 
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4.6: FEATURE SELECTION 

A total of 22 features were extracted from the time and time-frequency domain. To 

determine the optimal feature sets to be used as input to neural network training, the 

correlation coefficient was implemented. 

 

𝑟 =
𝑐𝑜𝑣(𝑇𝑎𝑟𝑔𝑒𝑡, 𝑂𝑢𝑡𝑝𝑢𝑡)

𝜎𝑡𝑎𝑟𝑔𝑒𝑡𝜎𝑜𝑢𝑡𝑝𝑢𝑡
… … … … … … … … … … … … … … … … … … … … … … … … … … . .4.7 

 Where: 

𝑐𝑜𝑣(𝑇𝑎𝑟𝑔𝑒𝑡, 𝑂𝑢𝑡𝑝𝑢𝑡): Covariance of surface roughness and feature and 

 

𝜎𝑡𝑎𝑟𝑔𝑒𝑡𝜎𝑜𝑢𝑡𝑝𝑢𝑡:  Standard deviation of target and output. 

 

Pearson’s correlation (𝑟)  is normally used as a test of linear correlation between 

variables. A value of 1 represents a perfect positive linear relationship, 0 no correlation 

and -1 represents a perfect negative linear relationship. Table 4.14 shows the 

correlation coefficient of some extracted features in the research, including the 

coefficients of the machining parameters.  

The coefficient value of 0.7 for feed supports the developed response surface model 

in section 4.2, which indicates that the feed influence is highest but not totally linear.  

Other coefficient values of 0.4 and -0.2 for depth and speed respectively also support 

the previous findings from the response surface model, indicating that the influence of 

cutting depth on the surface roughness is higher than the influence of speed.   

The highest extracted feature value of 0.5 is the mean absolute value of the frequency 

(f3) in sub-band d3 in the time-frequency domain and the standard deviation -0.4 in 

the time domain. This indicates that a relationship exists between the extracted 

features and the surface roughness but none of the relationships are perfectly linear 

(Figure 4.22). Neural networks models are well suited for investigating such non-linear 

relationships.  

 

 

 

Table 4.14: Correlation coefficient 
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Feature R 

Feed 0.7 

Speed -0.2 

Depth 0.4 

RMS -0.4 

F3  (mean absolute value in sub band 3)  -0.5 

F4  (mean absolute value in sub-band 4) -0.3 

F9  (ratio of mean value in bands 3 and 4) -0.1 

F10(ratio of mean value in bands 2 and 5)  0.1 

E3  (energy in sub-band 3)  -0.4 

E4  (energy in sub-band 4) -0.3 

Et   (total energy in sub-bands) -0.3 

S3  (standard deviation of frequency sub-band 3) -0.4 

S4  (standard deviation of frequency in sub-band 4) -0.3 

 

 

4.7: NEURAL NETWORK 

A total 10 feature sets were selected for building the  neural network, based on 

correlation coefficients and literature, including the  machining parameters, mean, root 

mean square and standard deviation, frequency content and   deviations in sub-band 

d3, d4and the total energy of wavelets.  

 

4.7.1: Transformation of data set  

The selected   feature dataset was transformed to values ranging between 0 and 1 

using equation 4.8 where 0 and 1 value correspond to the lowest and highest feature 

value in the subset respectively (Table 4.15).  The transformation was done to achieve 

standardization of the feature values and reduce redundancy before feeding them into 

the network for training. 

𝑌𝑡 = (𝑌𝑜 − 𝑌𝑚𝑖𝑛)/(𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛)     …………………………………………………. 4.8 

Where: 

𝑌𝑡 - Transformed value of 𝑌𝑜, 𝑌𝑜 - observed value, 𝑌𝑚𝑎𝑥 – maximum observed value 

in the subset and 𝑌𝑚𝑖𝑛 – minimum observed value in the subset. 

 

 

 

Table 4.15:  Transformation of some feature subsets 
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 Ra  Ra(t) Feed Feed(t) Rms Rms(t) 

1 130 0 1 0 0.07 0.21 

2 300 0.89 3 0.5 0.06 0.02 

3 150 0.11 1 0 0.08 0.39 

4 180 0.26 3 0.5 0.07 0.25 

5 220 0.47 3 0.5 0.12 0.92 

6 240 0.58 3 0.5 0.09 0.46 

7 320 1 5 1 0.06 0 

8 180 0.26 1 0 0.12 0.96 

9 230 0.53 3 0.5 0.07 0.24 

10 180 0.26 1 0 0.10 0.64 

11 210 0.42 5 1 0.12 1 

12 220 0.47 5 1 0.09 0.50 

13 240 0.58 3 0.5 0.08 0.33 

14 215 0.45 3 0.5 0.11 0.83 

15 260 0.68 5 1 0.07 0.26 

 

 

4.7.2: Neural Network Architecture 

A three layer feed forward BPNN with one hidden layer was adopted to train the 

network for the classification process. The network architecture comprises 10 input 

neurons, 20 hidden layer   neurons and a single output (Table 4.16). 

The transfer function for the individual layers is log sigmoid (equation 4.9). Log-

sigmoid activation function can only generate output values between 0 and 1 hence it 

was selected because it is suitable for the transformed data pattern.  

   

𝑓(𝑥) =  
1

1 + exp(−𝑥)
        … … … … … … … … … … … … … … … … … … … … … … … … … …  4.9 

 

 

 

 

 

 

 

Table 4.16: Network model and architecture 
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Parameters  Values 

Maximum iterations   500000 

Number of layers 3 

Transfer function at layer 1 Log-sigmoid  

Transfer function at layer 2 Log-sigmoid 

Transfer function at layer 3 Log-sigmoid  

Layer 1 size 10 

Layer 2 size 20 

Layer 3 size 1 

Learning rate 0.1-0.9 

Momentum  0.1-0.9 

Weights  Random from [-1,1] 

Training function  Gradient descent   

Training method Batch process 

4.7.3: Training and Prediction 

Training of the network was done programmatically with SQL on SAPHANA platform.  

SAPHANA is robust software capable of handling a huge amount of data and has been 

successfully applied in extremely large sets of data including financial data. The 

developed codes for training and testing can be viewed at the appendix section. The 

transformed data set was divided into two categories for training and testing. Ten data 

sets (experiment: 1-10) were selected for training while five data sets (experiment: 11-

15) were selected for network testing and prediction. 

Several simultaneous training and prediction tests were carried out to determine the 

optimum function by varying the learning rate and the momentum function. The goal 

for training is to predict at least an accurate single value within the prediction data set 

while maintaining a low mean square error value generally.     In all the combination 

of learning rates and momentum function for the five prediction data sets, experiment 

14 (215nm) showed the closest prediction accuracy in all the tests therefore this value 

was used as the benchmark for the best training condition and subsequent prediction.  

Different combinations of momentum function and learning rate resulted in different 

prediction accuracies for the target value of 215nm (Table 4.17). The highest 

prediction accuracy for a single value of 215nm occurred at learning rate of 0.1 and 

momentum function of 0.2 (Table 4.18) while the lowest mean square error occurred 

at learning rate of 0.3 and momentum function 0.1 (Table 4.17).  
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Figure 4.23 and Figure 4.24 show a training and prediction process in SAPHANA with 

the mean square error, training speed, server runtime and some SQL codes.  

The selected training condition was successfully achieved in 193ms and 55 µs with a 

server processing time of 2ms and 794µs and a maximum iteration of 50000 epochs.   

Table 4.17 also shows a comparison of the highest prediction accuracy for 215nm for 

different training conditions with some of the different learning rates, momentum 

function and mean square error values observed while training the BPNN neural 

network. Table 4.18 shows a prediction set (experiment 11- 14) from the selected 

training condition (at learning rate 0.1 and momentum function 0.2)   with transformed 

values of the response and their respective conversions. 

 

Table 4.17: Comparison of predicted values for experiment 14 (215nm) 

Learning 

rate  

Momentum 

function 

Response (Response*(320-130))+ 130nm Error  

0.3 0.1 0.51052 227 1.1 x10-8 

0.8 0.5 0.34736 196 1.7x10-4 

0.8 0.1 0.51052 227 2.7x10-6 

0.1 0.8 0.21052 177 7.4x10-6 

0.1 0.1 0.50966 226 3.8x10-6 

0.1 0.2 0.44976 215 1.1x10-4 

0.2 0.2 0.42631 211 1.1x10-4 

0.2 0.1 0.51052 227 2.4x10-7 

 

 

 

Table 4.18: Neural network prediction set (Experiment 11- 15) 

ID Response  Predicted =(Response*(320-130))+ 130nm 
 

Actual 
(nm) 

Accuracy 
(%) 

11 0.74025 270.65 210 78 

12 0.79421 280.90 220 79 

13 0.46691 218.71 240 91 

14 0.44976 215.45 215 100 

15 0.99250 318.57 260 82 
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Figure 4.23: ANN training and prediction with SAPHANA platform 
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Figure 4.24: Mean square error 

  

 

Figure 4.25: Actual and predicted values for the selected learning rate and 

momentum factor (training condition) 

 

A variation of the predicted values with the original experimental values for the 

selected training condition indicates a close margin of prediction for 240nm and 215nm 

(experiment 13 and 14) (Figure 4.25). Wider variations were observed for the 
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remaining prediction data set with the lowest occurring at 210nm value (experiment 

11). This suggests that the developed network can be improved with further tests. 

Figure 4.26 shows the structure of the developed neural network with 10 input 

neurons, 20 hidden layer neurons and a single output neuron.     

 

Figure 4.26: Network structure 
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The proposed neural network model structure can be found in the equations below. 

 

𝐺 = 𝐹(𝑓𝑛 − 𝑓𝑛−1, 𝑑𝑛 − 𝑑𝑛−1, 𝑠𝑛 − 𝑠𝑛−1, 𝑒𝑡𝑛 − 𝑒𝑡𝑛−1, 𝑓3𝑛 − 𝑓3𝑛−1, 𝑠3𝑛 − 𝑠3𝑛−1, 𝑟𝑛

−  𝑟𝑛−1, 𝑓4𝑛 − 𝑓4𝑛−1, 𝑚𝑛 − 𝑚𝑛−1, 𝑒3𝑛 − 𝑒3𝑛−1) 

 

𝑅𝑎 =  
1

1 + exp 𝐺
 

 

The terms n and n-1 represent the transformed value of the   nth iteration and the 

previous iteration respectively where: 

m = mean (time domain) 

r =root mean square (time domain) 

f = feed 

s = speed 

d = depth 

f3 = mean absolute value of frequency in sub-band 3(wavelet) 

f4 = absolute value of frequency in sub-band 4(wavelet) 

et = total energy in sub-bands (wavelet) 

s3 = standard deviation of frequency components in sub-band 3(wavelet) 

e3 = total energy in sub-band 3 (wavelet) 
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Chapter 5 

Conclusion and Recommendation 

5.1: CONCLUSION 

Through the careful selection of machining parameters and efficient design of the 

experiment, SPIA has been applied to the ultra-high precision grinding of BK7 optical 

glass and the grinding process has been monitored using acoustic emission sensing 

technique. A quadratic   model   has been developed using response surface 

methodology while neural network prediction has been applied to the extracted AE 

signal features, therefore, we reject the null hypothesis in section 1.7. The study 

exposed some important results in ultra-high precision grinding of BK7 glass which 

include: 

I. SPIA configuration is able to prevent wheel loading and rubbing from occurring 

by ensuring easy chip removal from the surface of the wheel. 

II. The developed response model is able to predict 93.7% of the total variability 

in the surface roughness. 

III. The feed rate has the highest effect on the surface roughness. 

IV.  A minimum surface roughness value of 80nm has been achieved through 

optimization at low values of feed, speed and depth of cut. Hence, better 

surface finishes can be achieved by using lower machining parameters.  

V. At high feed and cutting depth, it is possible to improve the surface roughness 

by increasing the wheel speed. 

VI. The amplitudes of the raw AE voltage do not follow a consistent increasing 

trend with the increase in surface roughness values therefore, they may not be 

suitable for online monitoring.   

VII. It is possible to initiate online monitoring by analyzing the real-time burst AE 

signals in the time domain. 

VIII. Time-frequency domain features (wavelets) show a better correlation with the 

surface roughness compared to time domain features and frequency domain 

features. Therefore, they serve as a better choice of input to the neural network 

scheme. 

IX. The overall extracted AE   features show a unique ill- pattern with the changes 

in surface roughness values. 
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X. The extracted wavelet features from sub-bands 3 and 4 show the most 

significant correlation with surface roughness compared to other sub-bands. 

Hence, they are more suitable features for predicting the surface roughness.   

XI. Artificial Neural Network models are suitable in predicting such ill-pattern 

variations derived from the study by achieving a hundred percent prediction 

accuracy for 215nm value.  

 

5.2: RECOMMENDATION 

Some recommendations have been suggested during this study. These include:   

I. The use of microscopy evaluation to observe the surface metrology in the form 

of ductile streaks and direction of lay. 

II. Initiation of further  study on subsurface damage that may have occurred 

III. Extending the study to other important surface roughness parameters like 

maximum peak to valley height. 

IV. The use of wireless AE sensor to acquire signals from a point closer to the 

workpiece and an AE sensor with a wider frequency range. 

V. Implementation of electronic counters to measure the AE ring down count rate 

and constant false alarm rate (CFAR). 

VI. Possible investigations of the wheel wear over time to determine its 

relationship with the surface roughness and AE data. 

VII. The implementation of a wider processing time-window frame for AE signal 

processing  
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APPENDIX A: FULL ANOVA TABLE  
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Model 6 35453.0 96.38 35453.0 5908.8 35.3 0.000 

linear 3 23243.8 63.19 17857.8 5952.6 35.8 0.000 

depth  1 4753.1 12.12 5958.7 5958.7 35.83 0.000 

feed 1 17112.5 46.52 11761.9 1176.1 70.73 0.000 

speed 1 1378.1 3.75 6582.0 96502.0 39.10 0.000 

square 1 2503.0 6.8 2503.0 2503.0 15.05 0.005 

feed*feed  1 2503.0 6.8 2503.0 2503.0 15.05 0.005 

2-way 
interaction 

2 9706.3 26.39 9706.3 
4853.1 

29.18 0.000 

Depth*speed 1 3306.3 8.9 3306.3 3306.3 19.88 0.002 

Feed*speed 1 6400.0 17.4 6400.0 6400.0 38.49 0.000 

Residual  
Error   

8 1330.4 3.62 1330.4 
166.3 

  

Lack of fit 6 1263.7 3.4 1263.7 210.6 6.32 0.143 

Pure error 2 66.7 0.18 66.7 33.3   

Total 14 36783.3 100     
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APPENDIX B: SPECTRAL VALIDATION TABLE  

 

Feature Raw feature 
correlation value 

Spectral subtracted feature 
correlation value 

F3  -0.22 -0.5 

F4 -0.17 -0.3 

F9 -0.17 -0.1 

F10  0.08 0.1 

E3 -0.20 -0.4 

E4 -0.15 -0.3 

Et -0.18 -0.3 

S3 -0.23 -0.4 

S4 -0.16 -0.3 
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APPENDIX C: SAPHANA CODES FOR ANN TRAINING AND PREDICTION 

Training  

-- cleanup  

DROP TYPE "T_DATA_GOODNESS"; 

DROP TYPE "T_PARAMS_GOODNESS"; 

DROP TYPE "T_STATS_GOODNESS"; 

DROP TYPE "T_MODEL_GOODNESS"; 

DROP TABLE "SIGNATURE_GOODNESS"; 

CALL "SYS"."AFLLANG_WRAPPER_PROCEDURE_DROP"('MASTER_KA', 

'P_BPNN_M'); 

DROP VIEW "V_DATA_GOODNESS"; 

DROP VIEW "V_DATA1_GOODNESS"; 

DROP TABLE "STATS_GOODNESS"; 

DROP TABLE "MODEL_GOODNESS"; 

 

-- procedure setup 

CREATE TYPE "T_DATA_GOODNESS" AS TABLE ( 

 

   "DEPTH" DOUBLE,   

         "FEED" DOUBLE, 

         "SPEED" DOUBLE, 

         "s3" DOUBLE, 

         "et" DOUBLE, 

         "e3" DOUBLE, 

   "f4" DOUBLE, 

   "f3" DOUBLE, 

         "rms" DOUBLE, 

   --"std" DOUBLE,               

         "mean" DOUBLE, 

         "response" DOUBLE 

 

  ); 

            

CREATE TYPE "T_PARAMS_GOODNESS" AS TABLE ("NAME" VARCHAR(60), 

"INTARGS" INTEGER, "DOUBLEARGS" DOUBLE, "STRINGARGS" VARCHAR(100)); 

CREATE TYPE "T_STATS_GOODNESS" AS TABLE ("NAME" VARCHAR(100), "VALUE" 

DOUBLE); 

CREATE TYPE "T_MODEL_GOODNESS" AS TABLE ("NAME" VARCHAR(100), "MODEL" 

CLOB); 

 

CREATE COLUMN TABLE "SIGNATURE_GOODNESS" ("POSITION" INTEGER, 

"SCHEMA_NAME" VARCHAR(100), "TYPE_NAME" VARCHAR(100), 

"PARAMETER_TYPE" VARCHAR(100)); 

INSERT INTO "SIGNATURE_GOODNESS" VALUES (1, 'MASTER_KA', 

'T_DATA_GOODNESS', 'IN'); 

INSERT INTO "SIGNATURE_GOODNESS" VALUES (2, 'MASTER_KA', 

'T_PARAMS_GOODNESS', 'IN'); 
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INSERT INTO "SIGNATURE_GOODNESS" VALUES (3, 'MASTER_KA', 

'T_STATS_GOODNESS', 'OUT'); 

INSERT INTO "SIGNATURE_GOODNESS" VALUES (4, 'MASTER_KA', 

'T_MODEL_GOODNESS', 'OUT'); 

 

CALL "SYS"."AFLLANG_WRAPPER_PROCEDURE_CREATE"('AFLPAL', 

'CREATEBPNN', 'MASTER_KA', 'P_BPNN_M', "SIGNATURE_GOODNESS"); 

 

-- data & view setup 

CREATE VIEW "MASTER_KA"."V_DATA1_GOODNESS" AS 

 SELECT TOP 10 

  

     "DEPTH" ,   

         "FEED" , 

         "SPEED" , 

         "s3" , 

         "et" , 

         "e3" , 

   "f4" , 

   "f3" , 

         "rms" , 

   --"std" ,               

         "mean" , 

         "response" 

FROM "MASTER_KA"."NN_GOODNESS"; --(Predict 15 days) 

 

CREATE VIEW "MASTER_KA"."V_DATA_GOODNESS" AS 

 SELECT  

 *  

FROM "MASTER_KA"."V_DATA1_GOODNESS"; 

 

CREATE COLUMN TABLE "STATS_GOODNESS" LIKE "T_STATS_GOODNESS"; 

CREATE COLUMN TABLE "MODEL_GOODNESS" LIKE "T_MODEL_GOODNESS"; 

 

-- runtime 

DROP TABLE "#PARAMS_GOODNESS"; 

CREATE LOCAL TEMPORARY COLUMN TABLE "#PARAMS_GOODNESS" LIKE 

"T_PARAMS_GOODNESS"; 

INSERT INTO "#PARAMS_GOODNESS" VALUES ('HIDDEN_LAYER_ACTIVE_FUNC', 3, 

null, null); 

INSERT INTO "#PARAMS_GOODNESS" VALUES ('OUTPUT_LAYER_ACTIVE_FUNC', 3, 

null, null); 

INSERT INTO "#PARAMS_GOODNESS" VALUES ('LEARNING_RATE', null, 0.1, 

null); 

INSERT INTO "#PARAMS_GOODNESS" VALUES ('MOMENTUM_FACTOR', null, 0.2, 

null); 

INSERT INTO "#PARAMS_GOODNESS" VALUES ('HIDDEN_LAYER_SIZE', null, 

null, '20'); 

INSERT INTO "#PARAMS_GOODNESS" VALUES ('MAX_ITERATION', 500000, null, 

null); 

INSERT INTO "#PARAMS_GOODNESS" VALUES ('FUNCTIONALITY', 1, null, 

null); -- 0:Classification; 1:Regression 

INSERT INTO "#PARAMS_GOODNESS" VALUES ('TARGET_COLUMN_NUM', 1, null, 

null); 

INSERT INTO "#PARAMS_GOODNESS" VALUES ('TRAINING_STYLE', 0, null, 

null); -- 0:Batch; 1:Stochastic 
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--INSERT INTO "#PARAMS_GOODNESS" VALUES ('NORMALIZATION', 1, null, 

null); -- 0:Normal; 1:Z-transform; 2:Scalar 

INSERT INTO "#PARAMS_GOODNESS" VALUES ('WEIGHT_INIT', 1, null, null); 

-- 0:all zeros; 1: normal; 2: uniform 

--INSERT INTO "#PARAMS_GOODNESS" VALUES ('CATEGORY_COL', 0, null, 

null); 

 

TRUNCATE TABLE "STATS_GOODNESS"; 

TRUNCATE TABLE "MODEL_GOODNESS"; 

 

CALL "P_BPNN_M" ("V_DATA_GOODNESS", "#PARAMS_GOODNESS", 

"STATS_GOODNESS", "MODEL_GOODNESS") WITH OVERVIEW; 

 

SELECT * FROM "STATS_GOODNESS"; 

SELECT * FROM "MODEL_GOODNESS" 

 

 

 

 

PREDICT 

 

-- cleanup 

DROP TYPE "T_DATA_P_GOODNESS"; 

DROP TYPE "T_PREDICT_GOODNESS"; 

DROP TABLE "SIGNATURE_GOODNESS"; 

CALL "SYS"."AFLLANG_WRAPPER_PROCEDURE_DROP"('MASTER_KA', 

'P_BPNN_P'); 

DROP TABLE "DATA_P_GOODNESS"; 

DROP TABLE "PREDICT_GOODNESS"; 

DROP VIEW "DATA_PV_GOODNESS"; 

 

-- procedure setup 

CREATE TYPE "T_DATA_P_GOODNESS" AS TABLE ( 

    "ID" INT, 

         "DEPTH" DOUBLE,   

         "FEED" DOUBLE, 

         "SPEED" DOUBLE, 

         "s3" DOUBLE, 

         "et" DOUBLE, 

         "e3" DOUBLE, 

   "f4" DOUBLE, 

   "f3" DOUBLE, 

         "rms" DOUBLE, 

  -- "std" DOUBLE,               

         "mean" DOUBLE 

 

   

         ); 

          

CREATE TYPE "T_PREDICT_GOODNESS" AS TABLE ("ID" INT, "response" 

DOUBLE); 
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CREATE COLUMN TABLE "SIGNATURE_GOODNESS" ("POSITION" INTEGER, 

"SCHEMA_NAME" VARCHAR(100), "TYPE_NAME" VARCHAR(100), 

"PARAMETER_TYPE" VARCHAR(100)); 

INSERT INTO "SIGNATURE_GOODNESS" VALUES (1, 'MASTER_KA', 

'T_DATA_P_GOODNESS', 'IN'); 

INSERT INTO "SIGNATURE_GOODNESS" VALUES (2, 'MASTER_KA', 

'T_MODEL_GOODNESS', 'IN'); 

INSERT INTO "SIGNATURE_GOODNESS" VALUES (3, 'MASTER_KA', 

'T_PARAMS_GOODNESS', 'IN'); 

INSERT INTO "SIGNATURE_GOODNESS" VALUES (4, 'MASTER_KA', 

'T_PREDICT_GOODNESS', 'OUT'); 

 

CALL "SYS"."AFLLANG_WRAPPER_PROCEDURE_CREATE"('AFLPAL', 

'PREDICTWITHBPNN', 'MASTER_KAYODE', 'P_BPNN_P', 

"SIGNATURE_GOODNESS"); 

 

-- data & view setup 

CREATE COLUMN TABLE "DATA_P_GOODNESS"( 

     -- "ID" INT not null primary key generated by default as 

IDENTITY, 

      "ID" INT,  

 "DEPTH" DOUBLE,   

         "FEED" DOUBLE, 

         "SPEED" DOUBLE, 

         "s3" DOUBLE, 

         "et" DOUBLE, 

         "e3" DOUBLE, 

   "f4" DOUBLE, 

   "f3" DOUBLE, 

         "rms" DOUBLE, 

  -- "std" DOUBLE,               

         "mean" DOUBLE 

 

        ); 

 

Insert Into "DATA_P_GOODNESS" ( 

       "ID",   

    "DEPTH" ,   

         "FEED" , 

         "SPEED" , 

         "s3" , 

         "et" , 

         "e3" , 

   "f4" , 

   "f3" , 

         "rms" , 

  -- "std" ,               

         "mean"  

    

  ) 

(SELECT  

  "ID", 

   "DEPTH" ,   

         "FEED" , 

         "SPEED" , 

         "s3" , 



 

120 
 

         "et" , 

         "e3" , 

   "f4" , 

   "f3" , 

         "rms" , 

   --"std" ,               

         "mean"               

  

FROM "MASTER_KAYODE"."NN_GOODNESS" WHERE "ID" > 10); --(Predict 15 

days) 

 

 

CREATE VIEW "MASTER_KA"."DATA_PV_GOODNESS" AS 

 SELECT  

 * 

 FROM "MASTER_KA"."DATA_P_GOODNESS"; 

 

CREATE COLUMN TABLE "PREDICT_GOODNESS" LIKE "T_PREDICT_GOODNESS"; 

 

-- runtime 

DROP TABLE "#PARAMS_GOODNESS"; 

CREATE LOCAL TEMPORARY COLUMN TABLE "#PARAMS_GOODNESS" LIKE 

"T_PARAMS_GOODNESS"; 

 

TRUNCATE TABLE "PREDICT_GOODNESS"; 

 

CALL "P_BPNN_P" ("DATA_PV_GOODNESS", "MODEL_GOODNESS", 

"#PARAMS_GOODNESS", "PREDICT_GOODNESS") WITH OVERVIEW; 

 

 

SELECT ID, "response" FROM "PREDICT_GOODNESS"; 

 

SELECT ID, "response", ("response" * (320 - 130) + 130) as RES FROM 

"PREDICT_GOODNESS"; 
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APPENDIX D: SOME MATLAB CODES FOR SIGNAL ANALYSIS 

% Plot raw AE signals. 

t=(0.0000005:0.0000005:.1); 

subplot(3,1,1); plot(t,res(:,1)); 

ylabel('Raw AE(V)'); 

title('01, Ra(130nm), d(5µm), f(1mm/min), s(15000rpm)') 

  

subplot(3,1,2); plot(t,res(:,9)); 

ylabel('Raw AE(V)'); 

title('09, Ra(230nm), d(5µm), f(3mm/min), s(300000rpm)') 

  

subplot(3,1,3); plot(t,res(:,5)); 

xlabel('Time(sec)'); ylabel('Raw AE(V)'); 

title('05, Ra(220nm), d(8µm), f(3mm/min), s(450000rpm)'); 

  

ts=(0:0.0000005:.0000995); 

subplot(3,1,1), plot(ts,res500rms(1:200,1)); 

ylabel('AErms(V)'); 

title('01, Ra(130nm), d(5µm), f(1mm/min), s(15000rpm)') 

  

ts=(0:0.0000005:.0000995); 

subplot(3,1,2), plot(ts,res500rms(1:200,9)); 

ylabel('AErms(V)'); 

title('09, Ra(230nm), d(5µm), f(3mm/min), s(30000rpm)') 

  

ts=(0:0.0000005:.0000995); 

subplot(3,1,3), plot(ts,res500rms(1:200,5)); 

ylabel('AErms(V)'); 

title('05, Ra(220nm), d(8µm), f(3mm/min), s(45000rpm)') 

 
  

 

%wavelet decomposition levels 

[c,l]= wavedec(res(:,15),7,'db3');  

A7=wrcoef('a',c,l,'db3',7); 

D1=wrcoef('d',c,l,'db3',1); 

D2=wrcoef('d',c,l,'db3',2); 

D3=wrcoef('d',c,l,'db3',3); 

D4=wrcoef('d',c,l,'db3',4); 

D5=wrcoef('d',c,l,'db3',5); 

D6=wrcoef('d',c,l,'db3',6); 

D7=wrcoef('d',c,l,'db3',7); 

 

 

  

%plot the wavelet decomposition levels 

fs=2000000; tp=1/fs; tr=linspace(tp,0.1,200000); 

X=tr;  

  

%subplot for wavelet decomposition 

subplot(9,1,1);plot(X,FINALT(:,15));  

subplot(9,1,2);plot(X,A7);  
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subplot(9,1,3);plot(X,D1);  

subplot(9,1,4);plot(X,D2);  

subplot(9,1,5);plot(X,D3);  

subplot(9,1,6);plot(X,D4);  

subplot(9,1,7);plot(X,D5);  

subplot(9,1,8);plot(X,D6);  

subplot(9,1,9);plot(X,D7); 

% Feature category 1 

f3= mean (abs (D3)); 

f4= mean (abs (D4)); 

f9= f3/f4; 

f10= mean (abs (D2))/mean(abs(D5)); 

  

d1=D1.*D1; d2=D2.*D2; d3=D3.*D3; d4=D4.*D4; d5=D5.*D5; d6=D6.*D6; 

d7=D7.*D7; 

a7=A7.*A7; 

tp=1/fs; tm=tp:0.0000005:0.1; 

  

% Feature category 2 

e1= trapz (tm,d1); 

e2= trapz(tm,d2); 

e3= trapz(tm,d3); 

e4= trapz(tm,d4); 

e5= trapz(tm,d5); 

e6=trapz(tm,d6); 

e7=trapz(tm,d7); 

e8=trapz(tm,a7); 

et=e1+e2+e3+e4+e5+e6+e7+e8; 

  

% Features category 3 

s3=std(abs(D3)); 

s4=std(abs(D4)); 

  

% Total feature set 

setfinalt15=[f3;f4;f9;f10;e3;e4;et;s3;s4]; 

 

 

t=(0.0000005:0.0000005:.1); 

subplot(3,1,1); plot(t,res(:,1)); 

ylabel('Raw AE(V)'); 

title('01, Ra(130nm), d(5µm), f(1mm/min), s(15000rpm)') 

  

subplot(3,1,2); plot(t,res(:,9)); 

ylabel('Raw AE(V)'); 

title('09, Ra(230nm), d(5µm), f(3mm/min), s(300000rpm)') 

  

subplot(3,1,3); plot(t,res(:,5)); 

xlabel('Time(sec)'); ylabel('Raw AE(V)'); 

title('05, Ra(220nm), d(8µm), f(3mm/min), s(450000rpm)'); 

  

ts=(0:0.0000005:.0000995); 

subplot(3,1,1), plot(ts,res500rms(1:200,1)); 

ylabel('AErms(V)'); 

title('01, Ra(130nm), d(5µm), f(1mm/min), s(15000rpm)') 

  

ts=(0:0.0000005:.0000995); 
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subplot(3,1,2), plot(ts,res500rms(1:200,9)); 

ylabel('AErms(V)'); 

title('09, Ra(230nm), d(5µm), f(3mm/min), s(30000rpm)') 

  

ts=(0:0.0000005:.0000995); 

subplot(3,1,3), plot(ts,res500rms(1:200,5)); 

ylabel('AErms(V)'); 

title('05, Ra(220nm), d(8µm), f(3mm/min), s(45000rpm)') 
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APPENDIX E: LABVIEW SOFTWARE DESIGN 

 

 

 
 

 

 

 

 

 

 

 

 


