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Mechanical fasteners are used extensively in the joining of two or more metal 

plates or sheets.  Riveted joints have been the joints of choice mainly for the 

Aerospace Industry.  However for this research, Friction Hydro Pillar Processing 

has been used to develop and characterise a new riveting technique termed 

Friction Hydro Pillar Riveting (FHPR).  Two overlapping 3.17 mm Ti-6Al-4V sheets 

were joined together using Ø6 mm rivet which was friction processed.  This 

research has focussed on the initial development of Friction Hydro Pillar Riveting 

thereby establishing a basic understanding of the influences of main process 

parameters, rotational speed and axial force - and also joint configurations.  The 

results showed that with a decrease in the bottom hole chamfer angle, there was 

resulting overall increase in the rivet joint pull off strength.  From the best 

performing joint configuration in pull off tests, shear tests were conducted whilst a 

blind hole FHPR joint was also done and tested in pull off and shear strength.  

The shear test fracture surfaces exhibited ductile failure.  The microstructure of 

the joints was thus evaluated.  From parent material, heat affected zone and to 

weld zone there was a variation in the microstructure analysed.  The hardness 

profiles showed increased hardness in the weld zone which partly explained the 

shear results.  The hardness increase was mainly due to grain refinement in the 

weld zone by the Friction Hydro Pillar Riveting process.   
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Alloying element:  An element added to and remaining in metal that changes its 

structure and properties 

 

Braking phase:  Sudden increase in torque response as rotation of consumable 

tool slows from welding speed to stop 

 

Consumable tool:  This is the tool used in specific friction welding processes that 

is rotated against a workpiece or inside a hole. The tool material is deposited and 

bonds to the parent material 

 

Down or axial force:  The force applied to the FP tool during the welding process 

in the direction of the axis of rotation of the tool. Also referred to as the z direction 

force or z-force on the FP platform 

Faying surface:  The mating surface of a member that is in contact with another 

member to which it is to be joined 

 

Flash:  The material that is displaced from the friction weld interface. See also 

„weld flash‟ 

 

Flash formation:  Excess plasticised material ejected during friction processing.  

 

Forging force:  A compressive force applied to the faying surfaces after the 

friction phase of the welding cycle is completed 

 

Friction Hydro Pillar Processing:  Friction welding process whereby a 

consumable tool or stud is rotated concentrically inside a blind hole under an axial 

load thereby filling the hole and creating a strong bond with the parent plate 

 

Friction Stir Welding:  Solid state welding process whereby abutting parts are 

joined together by rotating a non-consumable tool along the interface 
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dissimilar material by rotating a tapered consumable rod co-axially in a taper-
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sided cavity, of equal or slightly larger included angle than the tool, whilst under 

an applied load so as to generate a plasticised layer thereby forming a bond. 

 

Macrograph:  A graphic reproduction of a prepared surface of a specimen at a 

magnification not exceeding 10x. 

 

Macrostructure:  The structure of metals as revealed by macroscopic 

examination of the etched surface of a polished specimen. 

 

Microstructure:  The structure of a prepared surface of a metal as revealed by a 

microscope at a magnification exceeding 10x. 

 

Parameter:  The minimum and maximum parameters will describe the operating 

range of a variable. 

 

Parent material:  Pertains to material in its as manufactured form and condition. 

 

Plastic deformation:  Deformation that remains or will remain permanent after 

release of the stress that caused it 

 

Plasticised material:  Material that is displaced when its yield strength is 

exceeded and cannot return to its original form. 

 

Sidewall:  The surface of the hole along which bonding usually occurs during 

FHPP 

 

Solid state welding:  A group of welding processes which produce coalescence 

at temperatures essentially below the melting point of the materials being joined. 

 

Spindle speed:  The speed of the tool holding device (chuck), measured in 

revolutions per minute (rev/min) 
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Torque stages:  The trends of torque responses which are a measure of the 

resistance to rotation and have identifiable phases  

 

Tool rotational speed:  This is the rotary speed of the tool. This can be quoted 

as rotation speed (rev/min), peripheral velocity (m/s), or angular velocity (rad/s) 

 

Upset:  Bulk deformation resulting from the application of pressure in friction 

welding. Is measured as a percent increase in interface area or as a reduction in 

length 

 

Upset distance:  The total loss of axial length of the workpieces from the initial 

contact to the completion of the weld. Can be separated into the upset during 

friction phase, friction upset; and the upset during the forge phase, forge upset  
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Chapter 1: Project Overview 

 

1.1 Introduction 

Friction Processing (FP) has been researched extensively over the past decade 

but Rotary Friction Welding (RFW) has been in existence for over a decade in the 

manufacturing industry [1].  This type of welding has numerous advantages which 

include: 

 Low production time, 

 High joint efficiency, 

 Fast, repeatable, economic process that does not require an operator with 

welding skills. 

 Flash formed when welding carries out most surface impurities and oxides 

out from the weld zone. 

 

Some of the better known solid state welding techniques include Friction Stir 

Welding (FSW), Friction Taper Stud Welding (FTSW) and Friction Hydro Pillar 

Processing (FHPP) [1] [2]. 

 

RFW is one of the most common types of friction processing.  During the RFW 

process, two work pieces are joined together under force/load [2].  The first piece 

is rotated against the second stationary work-piece; thereby generating frictional 

heat at the inner surface.  The joint area is plasticised as a result of the increase 

in temperature.  The rotational speed of the spindle is stopped and the end force 

is increased to forge and consolidate the weld [1] [3].  

 

Friction Hydro Pillar Processing (FHPP) and Friction Taper Stud (FSTW) are both 

solid state processes where a consumable tool is co-axially rotated in a hole 

under a continuously applied axial force.  These two processes were developed 

by TWI in the early 1990‟s [1] [4].  Nelson Mandela Metropolitan University 

(NMMU) through eNtsa, (a technology station) and the Friction Processing 

Research Unit (FPRU) have over the past decade dedicated numerous research 

attempts to the field of friction processing.  These two units are headed by 
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Distinguished Professor D. G. Hattingh, who has contributed greatly to this field of 

FP. 

 

This research aims to employ techniques of FHPP to develop a process of Friction 

Hydro Pillar Riveting (FHPR) in order to investigate the quality of the joint that will 

be formed between the rivet and the sheets. 

 

1.2 Objective 

This project aims to develop and analyse a process of riveting titanium (Ti-6Al-4V) 

lap joints based on the principle of FHPP.  The project will further explore the 

feasibility and suitability of the FHPR process as an alternative for the current 

Aerospace Rivet practises.   

 

1.3 Problem Statement 

Currently, there are no developments or successful implementations of FHPR 

using FHPP as the basis for joining two similar/ metals.  This research is required 

to develop a relationship between process parameters, metallurgical and 

mechanical properties - and to determine the commercial feasibility of this 

process. 

 

1.4 Sub-Problems 

 Sub-Problem 1 

Determine the stud diameter, length and the shape of the rivet head and establish 

the optimum stud geometry and process parameters through preliminary welds. 

 

 Sub-Problem 2 

Determine how the interaction of the stud and the backing plate material at the 

start of the welding process influences the material flow in order to understand the 

material flow and the formation of the bottom rivet head.  

 

 Sub-Problem 3 

Quantify the influence of different process parameters on the joint integrity.  
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 Sub-Problem 4 

Determine suitable material for the backing plate and look at varying the backing 

plate configuration from using a consumable backing plate to using a non-

consumable backing plate with a layer of Magnesium Oxide (aids in non-sticking 

of the rivet head to the backing plate). 

 

1.5 Hypothesis 

Friction Hydro Pillar Riveting will have improved joint strength in shear allowing it 

to be a replacement or an alternative to the current riveting techniques used on Ti-

6Al-4V sheets. 

 

1.6 Motivation 

The rivet joint is one of the current viable methods for fastening thin-walled sheet-

metal parts permanently [5].  Rivets have many advantages, such as providing for 

a simple joining process, reliable joining intensity and high working efficiency, and 

are thus used extensively in the aircraft industry.  Due to the type and thickness of 

plates/sheets used in aircraft skins and other components, welding processes 

tend to damage thin fuselage skin structures and the skins are not easily welded 

[5] [6] [7]. 

 

FP has been used to overcome some of the shortcomings of convectional joining 

and fusion welding methods [8].  FHPR will be developed as an alternative to the 

current riveting method.  A lap configuration joint on the fuselage of an aeroplane 

is shown in Figure 1-1. 

 

 

Figure 1-1: A typical rivet joint as applied in the Aerospace industry [9] 

http://www.google.co.za/url?sa=i&rct=j&q=rivet+joint&source=images&cd=&cad=rja&docid=OYB1ieHR3FpwgM&tbnid=DQSfzL18sfefQM:&ved=0CAUQjRw&url=http://chestofbooks.com/crafts/machinery/Shop-Practice-V1/Riveting.html&ei=A4soUdeaIo6r0AXIlYH4CQ&bvm=bv.42768644,d.d2k&psig=AFQjCNHm8TmUlWjliCVHrqiS0zqlUTdK-g&ust=1361697866994951
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FHPP involves rotating a consumable tool co-axially in what is essentially a 

slightly tapered hole or a circular split mould whilst under an applied axial force, in 

order to generate frictional heat which leads to plasticisation of the rod as shown 

in Figure 1-2 [1] [2] [4].   

Please note: FHPP will be discussed in detail in section 2.5.4. 

 

 

Figure 1-2: The FHPP process [10] 

FHPP has the potential to compete with stud and slot welding, bolting or riveting 

and as shown in Figure 1-3, it can be used as a joining method.  For this 

research, the characteristics of FHPP are utilised so as to develop a method of 

Friction Riveting [11].   

 

 

Figure 1-3: FHPP as a joining method [11] 

 

1.7 Delimitations 

 Friction Hydro Pillar Riveting will only be developed on 3.17 mm Ti-6Al-4V 

sheets. 

 Only sheets with pre-drilled holes will be used for this research purpose. 
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 The process parameters will be depended on the PDS platform machine 

capability (maximum spindle rotational speed and axial force of 9000 rev/min 

and 94.8 kN respectively). 

 

1.8 Significance of Research 

This research seeks to contribute towards the following: 

 

 Industry:  

The knowledge generated from this research will allow for the development of a 

new viable option for joining materials to be used in the Aerospace industry as 

also many other applications: this will provide better structural stability compared 

to the currently available methods. 

 

 The Nelson Mandela Metropolitan University [NMMU]: 

It will help develop a new process for Friction Riveting and establishing it as a 

viable research field and thereby further international collaboration of the 

established FPRU within eNtsa. 

 

1.9 Research Methodology 

The research methodology is shown in Figure 1-4 which details the steps followed 

which are: 

 

Step 1: 

A literature survey on FSTW, FHPP, FPW and RFW or any other similar 

processes that may indicate any key information on FP will be conducted.  This 

survey will also include the following: 

• A review of both the type of material to be used as backing plate and 

of the type of configuration for good process results; 

• Details of components to be designed, including the stud and 

integrated shielding mechanism; 
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• Information about the development of a clamping methodology for 

 lap joints of thin sheets of titanium; 

 

Step 2: 

Development of a preliminary weld matrix to analyse process parameter influence 

on the envisaged FHPR Ti-6Al-4V joints will be conducted. 

 

Step 3: 

The influence of stud geometry, process parameters and backing plate 

configuration will be examined during the preliminary welding stage. 

 

Step 4: 

A final weld matrix will be established this will consist of the determined process 

parameters which will include samples for shear and pull off tests.  

 

Step 5: 

A report will be generated based on the static (shear and pull off testing) and 

metallurgical analysis conducted as illustrated in Figure 1-4. 
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.  

Figure 1-4: Outline of Research methodology 
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Chapter 2: Literature Review 

 

2.1 Introduction  

As proposed in Chapter 1, the advent of Friction Hydro Pillar Riveting (FHPR) is 

based on the principles of Friction Hydro Pillar Processing (FHPP): therefore the 

literature discussed here-within looks at the fundamentals of FHPP in developing 

FHPR.  Other forms of Friction Welding are Rotary Friction Welding, Friction 

Taper Stud Welding and Friction Stud Welding: these are also discussed in this 

Chapter.  The aerospace industry has a vast need for lighter and easily 

automated processes to join metal plates and sheets in sub-assemblies and for 

the manufacture of aerospace components [12] [13]. 

 

2.2 Mechanical Fasteners: Bolts and Rivets 

Mechanical fasteners are used extensively in the joining of aerospace 

components, sheets and plates.  The most common types of mechanical 

fasteners used in the aerospace industry are rivets and bolts [14].  The biggest 

advantages of mechanical fasteners are that they produce joints of high efficiency 

especially in high strength alloys: in addition they maintain excellent mechanical 

properties and corrosion resistance [7].  The other advantages of mechanical 

fasteners are as follows: 

 They provide a simple joining process. 

 The cost of installation tools is less than welding techniques. 

 Little or no operator skill is required. Committal  

 

However, the joint design limitation of mechanical fastening has led to the 

development of welding processes to replace mechanical fasteners.  In the 

Aerospace industry, mechanical fasteners still stand out compared to 

conventional welding techniques due to their fatigue and corrosion properties. 

Welding is intricate or complicated especially for thin sheets and requires 

specialised skills [6] [7].  

 

Bolts and rivets are the most extensively used and well known types of 

mechanical fasteners.  Bolt designs generally consist of a bolting connection 
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supporting loads in shear or tension and compression (where a high tensile 

strength bolt is used to apply a high compression load between structural 

component members) [7]. Rivets in turn mainly support loads in shear. Bolting 

provides joints that are strong, reliable and are easily disassembled, whilst rivet 

joints are permanent joints and difficult to disassemble.  Rivet joints are shown in 

a sub-assembly of a passenger aircraft in Figure 2-1. 

 

 

Figure 2-1: Riveting on fuselage structure [15] 

 

The most common type of rivets are blind and solid (button head) rivets, with the 

latter termed high strength rivets, whilst the former are used mainly for their 

aerodynamic qualities.  Blind rivets are mainly made via a hammer or squeeze 

mechanism.  Most common blind rivets are made from aluminium 2000, 5000 and 

6000 series materials.  Another method of riveting is the Self Piercing Riveting 

method (SPR).  SPR consists of a semi-tubular rivet driven into two or more 

sheets or plates while supported by an anvil, i.e. a shaped die supports the 

underside [7].  A known problem with titanium rivets is that of the rivet heads 

cracking because of their strain rate sensitivity and a high yield, as discussed from 

Deng et al [16]. 

 

2.3 Titanium alloys 

Titanium, which was discovered in 1790, is named after the Titans, the powerful 

children of the supreme rulers of the Universe in Greek mythology.  Titanium 

started being purified only in the early 1900s.  Nowadays Titanium is readily 

available and competes directly with stainless steels, copper alloys, etc.  Titanium 
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experiences allotropic transformation at approximately 900 degrees Celsius whilst 

it has a melting temperature in the excess of 1660 degrees Celsius [12] [17].  The  

Titanium is a high strength, low weight and corrosion resistant material.  These 

properties make it acceptable for use in a wide range of applications such as 

aerospace, oil and gas extraction and in the medical and other industries.  The 

most common type of titanium alloy is Ti-6Al-4V known as the workhorse of the 

aerospace industry which uses at least 50% of the available titanium alloy (Ti-6Al-

4V): Figure 2-2 shows some of its applications [12].  Due to its high strength to 

weight ratio, titanium is the metal of choice for the highly stressed wing sections 

and also the fuselage-wing connections on aeroplanes [18]. 

 

American government funded research on titanium as a strategic metal for use in 

aerospace for spacecraft and missile manufacture.  In Aerospace, the Lockheed's 

SR-71 Blackbird spy plane, first flown in 1964, was predominantly made of 

titanium (at least 93% of its parts were titanium) [12]. 

 

Titanium alloys have proved to be a metal of choice due to the following reasons 

[12]: 

 High corrosive resistance (superior resistance to chlorides, seawater and 

sour and oxidising acidic media). 

 Bio compatible material. 

 Non-magnetic property. 

 Low specific gravity. 

 High specific strength 

 

Titanium is almost half the weight of steel and has the capability to withstand 

higher temperatures than both steel and aluminium respectively [18]. 
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 Figure 2-2: Applications of Titanium in the Aircrafts [19] 

 

Titanium applications have increased with each new generation of commercial 

airplanes.  The Boeing 777 used titanium in areas that had earlier used Carbon 

Fibre Reinforced Plastics (CFRP) structures because of the need to minimise 

galvanic corrosion [20].  For this application beta-annealed Ti-6Al-4V Eli was used 

because it provides maximum damage tolerance properties for titanium alloys.  

Due to its many advantages, especially Ti-6Al-4V, it has been used in many 

applications although it is costly compared to aluminium and steel.  For example, 

Ti-6Al-4V is used in wide ranging applications which include the following (refer to 

Figure 2-2) [18]: 

 Aerospace industries, i.e. in engines due to its high temperature resistance. 

 Marine industries due to its high corrosive resistance. 

 Chemical and biomedical applications. 

 Sports equipment due to it being lightweight. 

 Power generation and nuclear waste storage. 

 Medical implants because of biocompatibility.  
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The titanium alloy (Ti-6Al-4V) consists mainly of the alpha (α) and beta phase (β).  

The alpha-beta phase in titanium means that the structure is a mixture of the 

hexagonal closed packed (alpha) and body centred cubic structures (beta) [17] 

[18].  A matter of challenge is the weldability of titanium.  According to RMI 

Titanium Company specifications, Grade 5 and 23 exhibit fairly good weldability 

properties [18].  According to Arcam [21], Ti-6Al-4V has a chemical composition of 

(wt. %) Al 6, V 4.04, Fe 0.19, N 0.018, O 0.18 and remaining Ti.  The alpha 

stabilisers are Al, O and N while Fe is a beta stabiliser [22].  Ti-6Al-4V alloy can 

easily be fabricated allowing the mill products to be made into all shapes. Ti-6Al-

4V Eli (extra-low-interstitial) has controlled interstitial elements (oxygen, nitrogen 

and carbon) to improve ductility and fracture toughness [17] [18]. 

 

Processing of titanium requires a shielding gas to avoid contamination by 

oxidation.  Oxidation of titanium, for example in FSW will weaken the weld quality.  

In RFW and FTSW of titanium, no shielding has been required for these 

processes assuming that all impurities are expelled out as flash [17] [23]. 

 

According to the Military Handbook [14], to determine the strength of mechanically 

fastened joints, it is necessary to know the strength of the individual fasteners.  

Failure in joints occurs mostly due to tensile and shearing failure of the fasteners, 

or by bearing and tearing of the sheet or plate.  The handbook also specifies the 

acceptable shear strength for fasteners, i.e. rivets for the aerospace industry.  The 

efficiency of a riveted joint is defined as the ratio of the strength of the joint to the 

strength of a solid plate in one pitch of the joint [14].  

 

2.4 Failure Modes of Metals 

Metals fail in different modes and for different reasons.  There are only four 

principle fracture modes, i.e. dimple rupture, cleavage, fatigue and decohesive 

rupture, as described by the Metals Handbook on Fractography [24].  Dimple 

rupture is when overload is the principal cause of fracture.  This type of failure 

exhibits cuplike depressions which occur as a result of microvoid coalescence.  

This process occurs when microvoids nucleate at regions of localised strain 

discontinuities i.e. second phase particles, inclusions, grain boundaries and 
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dislocation pile-ups.  The common feature of dimple rupture is the elongated 

cuplike structure [24]. 

 

Cleavage failure is a low energy fracture compared to a dimple rupture. It 

propagates along well defined low index crystallographic planes which are called 

cleavage planes.  Due to a possible mismatch of the low index planes across 

grain and sub-grain boundaries, a distinct cleavage fracture surface is produced. 

The produced surface exhibits cleavage steps, river patterns, feather markings 

and chevron patterns and tongues [24].  

 

Fatigue failure is failure due to repeated cyclic loading.  As stated by the Metals 

Handbook on Fractography [24], fatigue fracture occurs in three stages which are: 

I. Stage 1 involves the crack initiation, 

II. Stage 2 is the propagation along the entire length, 

III. And lastly, there is catastrophic failure. 

A fracture that does not exhibit dimple-like failure and little or no bulk plastic 

deformation is known as decohesive rupture.  It is mainly rupture along the grain 

boundaries which contains the lowest melting point constituents of alloys [24]. 

 

2.5 Friction Processing 

Friction processing, or Friction welding as it is commonly known, is a solid state 

joining process.  It is termed a solid state joining process due to the entire process 

not exhibiting any molten material [2].  The process involves frictional heat being 

generated by rotating or moving workpieces relative to each other under an axial 

force.  Due to the rubbing, frictional heat is generated, leading to the plasticisation 

of material.  The plasticised material is displaced from the rubbing or 

faying/contacting surfaces.  The plasticised material mixes and then as rotation is 

stopped, a forging force is applied allowing for the consolidation of the plasticised 

material whilst it cools.  As stated earlier, the commonly known types of Friction 

Processing are FHPP, RFW, FSW and Friction Stud Welding which are discussed 

in section 2.5.3 [2] [25] [26].  
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2.5.1 Riveting by Friction  

During the past decade there have been developments made in the area of 

riveting using friction.  The following are some of the examples: 

 

2.5.1.1 Friction riveting  

The Friction Riveting technique was developed by Amancio [27] for polymeric-

metallic joints as an alternative spot joining process which is reliable, 

environmentally compatible and economically viable.  It involves a rotating 

cylindrical metallic rivet which is inserted in a thermoplastic base plate thereby 

leading to a temperature increase.  When insertion depth is achieved, this leads to 

an increase in heat input which becomes higher than the heat outflow due to the 

polymer‟s low thermal conductivity. The increase in temperature leads to the rivet 

tips plasticising.  Then rotation is abruptly stopped and forging begins, forming the 

rivet head as shown below in Figure 2-3 [27]. 

 

 

Figure 2-3: Friction Riveting [a) Positioning and clamping of joining partners, b) Insertion of rotating 

rivet, c) Rotation braking and subsequently rivet forging and  d) Cooling and joint consolidation 

[27]. 

 

2.5.1.2 Friction Plunge Riveting (W. Thomas and Nicholas)  

Friction Plunge Riveting was invented and patented in 2002 by I. Stol, W. Thomas 

and P. Threadgill.  Stol et al [28] termed Friction Plunge Riveting as a joining 

method for metal components with a rivet having a hardness that is substantially 

similar or higher to at least one of the components.  Friction Plunge riveting is a 

force-plunge, pierce, penetrate into and metallurgical bond two or more metal 
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parts lapped or stacked together.  Figure 2-4 shows the process of Friction Plunge 

Riveting. 

 

 

Figure 2-4: Friction Plunge Riveting 1) rotating rivet, 2) rivet penetration into plates and 3) Plates 

joined together [28] 

2.5.1.3 Friction Stir Blind Riveting  

A riveting technique called Friction Stir Blind Riveting was developed for one-

sided joining of aluminium alloys.  It involves a blind rivet rotating at high speed 

which is brought into contact with the work-piece, thereby generating frictional 

heat between the plate and the rivet.  The generated frictional heat softens the 

work-piece‟s material, thus enabling the rivet to be driven into the work-piece, and 

thereby forming a rived joint [29]. 

 

2.5.2 Rotary Friction Welding 

RFW has been in existence for the last century, with the first known patent applied 

for in 1891, according to the American Welding Society. As with all FP techniques, 

RFW involves the joining process occurring at the plasticisation temperature: 

therefore it is termed a solid state process [30].  The Welding Institute (TWI) has 

done extensive research on FP and they have termed the process whereby a 

rotating shaft is joined to a stationery shaft under an axial force as RFW.  Due to 

the process not exceeding the melting temperature of the material being welded, it 

has metallurgical benefits compared to conventional welding methods [31].  

 

Kimura et al [31] divided the welding cycle of RFW into four stages on the basis of 

the friction torque curve for a similar material joint as shown in Figure 2-1.  

According to Kimura et al [31], the first stage comprises the contacting of the 

faying surfaces and then friction torque reaches an initial peak from zero.  In the 
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second stage, the friction torque reaches equilibrium, and then it reaches the third 

steady state stage.  The fourth stage is the forging (upset) stage. In this stage, 

friction torque increases when a motor brake is applied and then drops to zero 

when the rotation is stopped.   

 

 

Figure 2-5: Definition of stages on the friction torque curve of RFW [31] 

 

Kimura et al [31] went on to explain the difference between the low and high 

pressure in the first stage of RFW as shown in Figure 2-5.  The main difference 

between the low and high pressure, is that for low pressure wear occurs over the 

whole area before seizure occurs as opposed to the high pressure welds as 

illustrated in Figure 2-6. 
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Figure 2-6: First stage of RFW (low and high pressure) [31] 

 

Avinash, Chaitanya, Giri, Upadhya and Muralidhara [32] conducted RFW of Ti-

6Al-4V shafts to determine microstructure and mechanical behaviour.  From their 

research, they concluded that the tensile strength of joints was affected by 

rotational speed.  At a rotational speed of 1500 rev/min, the weld microstructure 

appeared to be continuous with similar grain size.  Avinash et al [32], conducted 

tensile tests on the welded specimens (the matrix had differing rotational speeds 

of 1000, 1500 and 2000 rev/min) and it was observed that the 1500 rev/min joint 



Chapter 2  Literature Review 

18 

 

had the highest tensile strength compared to the 1000 and 2000 rev/min joints 

[32].   

 

Sahin and Akata [3] investigated the process parameters of RFW and they 

discovered that the most significant parameters were rotational speed, friction 

time, friction force and forging force.  Their test matrix had a variation of friction 

force and friction time whilst all the other process parameters were kept constant.  

With an increase of friction force, the tensile strength of the RFW joints increased 

to about 96% of the weaker parent material. 

 

2.5.3 Friction Stud Welding 

Friction Stud Welding is another type of friction processing and was first applied in 

1992 at an underwater scenario where a 12.5mm stud was welded to keel of a 

ship by the American Naval Sea Systems Command [30].  From this investigation, 

it was found that Friction Stud Welding had properties that exceeded that of 

conventional welding in terms of hardness and hammer bend tests. 

 

More recently in 2009, Samuel [33] investigated the feasibility of Friction Stud 

Welding on tanks using a Ø6 mm AISI 304L stainless steel stud.  From the 

research work some of the conclusions made were as follows: 

 Low friction pressure increases the temperature at the weld interface.  The 

stud forms a large convex weld nugget between stud and plate as illustrated 

Figure 2-7 a. 

 Increasing the upset distance past the required upset, leads to an increase in 

the amount of process energy required to complete the welding process. 

 Rotational speed has limitations where very low or high rotational speeds have 

a significant effect on the joint‟s mechanical properties. 

 

A low and high pressure welds of Friction Stud Welding using AISI 304L stainless 

steel stud are shown in Figure 2-7. 
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Figure 2-7 Low a) and High b) Friction Pressure Friction Stud Weld joints [33] 

Table 2-1 shows the optimum process parameter setting found by Samuel [33] for 

Friction stud welding of Ø6mm AISI 304L stainless steel with  respect to fracture 

force, elongation to failure, backing plate temperature and total process energy. 

 

Table 2-1: Optimum Process Parameters [33] 

Burn off (mm) 1 

Friction Pressure (MPa) 76 

Forging Pressure (MPa) 90 

Rotational speed (rev/min) 5034 

 

2.5.4 Friction Hydro Pillar Processing (FHPP) 

FHPP was developed and patented by The Welding Institute (TWI) in 1991 as a 

method of repairing and joining material sections [25].  The TWI inventors, 

Thomas and Nicholas described of FHPP [4] as, “a technique that involves 

rotating a consumable stud rod co-axially in a hole whilst under an applied axial 

force as shown in Figure 1-2 and Figure 2-8, tapered and straight hole geometry 

respectively.” 

 

When rotation starts at the interface between the stud and hole, temperature at 

the interface increases.  This allows material to plasticise and shear off [34] [35].  

Some of the material is pushed to the sides as a result of a decrease in resistance 

to the axial force.  The consumption of the stud continues rapidly, forming shear 

layers.  The first shear layer forms at the base of the following shear layer as the 

first cools and recrystallises, and the process is repeated until the last shear layer 

is formed.  According to Bullbring [35] the thickness of each shear is dependent 
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on the temperature profile, the cross sectional area and the mechanical properties 

of the stud.   

 

 

Figure 2-8: Basic principle of FHPP (i) Consumable stud, (ii)Plasticised zone (iii) pillar of 

extruded material [34] 

 

Originally, the FHPP process was developed mainly for the repair of steel 

structures in the construction and offshore industry.  Ambrozaick [26] reports that 

the main advantage of FHPP would be the improvement of safety and the 

reduced cost of on-shore tapping.  

 

The main difference between FTSW and FHPP is that the FTSW cross sections 

show that the consumable stud plasticises only in the contact area near to the 

side wall while FHPP involves the plasticisation of the whole stud with the 

formation of a pillar of shear layers to fill the hole.  Bullbring [35] details the two 

main factors (process parameters and geometry of stud and hole) and their effects 

on FHPP as shown in Figure 2-9 [26]. 
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Figure 2-9: FHPP weld input and outputs flow diagram [35] 

Another phenomenon of interest with FHPP is the idea that each material has its 

optimum material flow.  Nicholas [1] points out that materials which do not exhibit 

adequate flow characteristics often respond better to a tapered joint design than a 

straight hole geometry [25].  

 

The main advantage of FHPP, as with all FP techniques, is that the process is 

solid state based.  This means that the process does not occur above the melting 

temperature, thereby ensuring fewer metallurgical defects.  The other advantages 

of FHPP are: 

 Its suitability for joining of dissimilar materials which are not easily weldable by 

conventional welding techniques. 

 Compared to conventional methods, no filler material, flux or shielding is 

required except for titanium welding where oxidation occurs. 

 The process is easily automated for mass production at lower costs. 
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Although the FHPP has many advantages, the feasibility and cost of specialised 

equipment for process implementation is very high, whilst also having geometry 

limitations, i.e. with regard to stud diameter and length [4] [26] [36] . 

 

2.5.5 Process Parameter Control in FHPP 

The main process parameters of FHPP are axial force, rotational speed, upset 

distance and forging force - similar to what is required for the RFW process.  Each 

parameter plays a role in making a successful joint, depending on the type of 

application.  Meyer [2] highlights the influence of these process parameters 

graphically as illustrated in Figure 2-10 which can be used to control FHPP.  At 

NMMU, the term, “burn off” has been replaced by “upset distance” since burn off 

implies there is “some” degree of melting in the process. 

 

 

Figure 2-10: Parameter Influence [2] 
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2.5.5.1 Rotational Speed 

Meyer [2], in FHPP rotational speed is the least sensitive process parameter. For 

every material, there is a certain optimum rotational speed and the idea of 

increasing rotational speed should be applied only after careful consideration [2]. 

In RFW, a minimum peripheral velocity of 1.27 m/s is required for sufficient 

bonding between the two work pieces. The minimum peripheral velocity for FHPP 

depends mainly on the material and geometry being utilised, joined or repaired.  

Rotational speed equates to peripheral velocity at the interface/faying surfaces of 

the pieces being joined together [3].  

 

A higher rotational speed reduces the upset distance rate: this involves longer 

heating time, leading to low tensile strength and hardness. Low heating time 

allows for the propagation of thermal energy along the axial direction of the 

workpieces, thereby leading to a greater volume of material being displaced [35]. 

 

From the feedback data acquired, the process torque of FHPP is analysed which 

points to a difference existing between high and low rotational speed welds.  High 

rotational speed FHPP welds have significantly low torque compared to slow 

rotational speed welds.  This is due to deep tearing at the interface with low 

rotational speed welds being replaced by a polishing action, which in turn leads to 

closely packed shear layers, as well as the aforementioned longer heating times.  

An increase in rotational speed will show a wider heat affected zone exhibiting the 

difference in the heat input into the weld and also high cooling rates compared to 

a low rotational speed weld [2] [35]. 

 

2.5.5.2 Axial force  

Axial force plays an important role in keeping the contacting or faying surfaces 

together or intimate.  By keeping the faying surfaces together, detrimental 

substances are kept out of the weld zone while some of the impurities are pushed 

out of the hole as flash.  Ambroizaick [26] states that the required axial force for 

FHPP is mainly dependent on the type of material being welded together and the 

joint geometry. 
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Axial force also has an influence on weld time, weld energy input rates and 

temperature gradient.  A high axial force reduces the weld time due to an increase 

in plunge depth rate (upset distance rate) which allows for the weld to be 

completed faster in volume displacement governed welds [35] [26].  

 

2.5.5.3 Upset distance 

In FHPP, upset distance is the amount of stud material that is required to fill the 

hole with plasticised material.  Upset distance is mainly dependent on the size of 

the hole and the stud being welded - and can be determined from mathematical 

calculations or experimentation.  The amount of upset distance should be 

determined by taking into consideration that it has a different effect on shallow 

holes as compared to deep holes.  For shallow holes, upset distance plays a 

significant role in the joining of stud-plasticised material to the sidewalls of the 

entire hole, while for deeper holes, it has a greater effect close to the top of the 

hole.  For upset distance governed welds, the weld time is controlled by the 

amount of upset distance (considering axial force and rotational speed are kept 

constant) [2] [35].  

 

Upset distance also governs the amount of volume fill % (under-fill % and 

overfill %).  Under-fill refers to the upset distance being less than the required 

volume fill at 100%, whilst overfill is above the 100% volume fill (considering the 

hole geometry to be filled by plasticised material).  With overfill secondary and 

primary flash is visualised on the completed FHPP weld.  A slight overfill 

compensates for the forging and cooling stage in FHPP [35].  

 

2.5.5.4 Forging force  

Forging force is applied at the end of the weld when rotation has been stopped. It 

has three benefits as stated by Ambroizack [26], which are as follows: 

 To break large inclusions. 

 Refines grains. 

 And reduces the probability of producing unwanted Widmanstatten 

structures which may affect the cooling rate. 
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By refining the grain size, the forging force increases hardness and ultimate 

tensile strength.  In RFW, Kimura et al achieved 100% tensile joint efficiency 

without forging but there is still a need for forging force in FHPP as stated earlier 

[31]. 

 

2.5.5.5 Torque curve stages in FHPP 

As discussed earlier, as with RFW, FHPP friction torque curve can be used to 

identify the stages of FHPP. Pentz [37] has identified the stages of FHPP rotor 

steel (26NiCrMoV145) as shown in Figure 2-11. 

 

 

Figure 2-11 torque curve stages 1 to 7 of FHPP [37] 

Pentz [37] outlined the stages of the torque curve and divided them into seven 

stages.  From stage 1 to 3, the wear and seizure are shown to be similar to RFW 

with the initial torque.  As soon as stage 3 is finished, there is an increase in 

torque, thereby signalling the beginning of stage 4 which Pentz explains as a 

gradual increase in torque due to the weld interface shear area increasing.  Stage 

5 is the opposite of stage 4 where the shear area decreases, hence leading to a 

torque decrease.  From stage 6 onwards, the hole has been adequately filled: 

therefore the torque is steady until the motor brakes to stop the process leading to 

the beginning of forging. 
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2.6 Summary 

This chapter has characterised FHPP and its process variables, as well as 

mechanical fasteners and their applications.  The influence of different process 

parameters was discussed, with explanations of how these process parameters 

have an effect on weld quality and mechanical behaviour.  

 

The torque curve of the FHPP and RFW is used as an important piece of 

information.  It allows the process to be characterised and can be used as a 

quality control measure, thereby eliminating the need to do an in-depth 

mechanical and metallurgical analysis when conducting welds of the same 

process variables and parameters.  From the torque curve, calculation of total 

process energy can be done: this will be used greatly in FHPR development. 

 

Types of riveting using friction as medium for generating heat - thereby forming a 

mechanical lock - are also discussed in this chapter.  As seen in the literature 

survey, the types of friction riveting found are more similar to Friction Spot 

Welding. As with Friction Spot Welding, the type of friction riveting discussed here 

focuses more on motor industry applications. 
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Chapter 3: Experimental Set-Up and Preliminary work 

 

3.1 Introduction 

In this chapter, the platforms used and the process developed through a 

preliminary development of Friction Hydro Pillar Riveting will be introduced.  The 

Friction Processing platforms that are utilised are characterised.  The design of 

the rivet/ stud and sheet to be utilised in the experimental set up is detailed, 

together with the integration of a shielding mechanism.  Methods of testing and 

characterising the FHPR joints are discussed. The preliminary work focuses on 

the influence of different process parameters, variables and material behavioural 

tendencies that are identified and described through a physical (visual) and 

macrostructural analysis. 

 

3.2 Friction Processing platforms used 

FHPR was initially done using a NMMU developed „Process Development 

System‟ (loosely termed PDS), the Friction Processing machine was purposely 

designed for process research on FSW and FHPP.  The PDS platform was 

designed to allow the operator to input the process parameters and output data to 

be acquired as feedback.  The PDS platform (refer to Figure 3-1) is the latest 

welding platform at NMMU which was designed mainly for FHPP and FSW. 
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Figure 3-1: PDS Platform set up 

The PDS platform has a welding bed which can move in the x and y directions by 

means of hydraulic actuation.  The welding bed is coupled with piezoelectric 

sensors which are used for the measuring of process feedback during FP.  From 

the output data, overall time for the joining process, total upset distance, average 

welding force and rotational speed can be determined.  Due to complications with 

the torque measuring component of the PDS platform, a loadcell with torque 

Hydraulic cylinder: 

Z-force and motion 

Welding head, 

(spindle motor) 

Tool holder 
 

Hydraulic controlled 

bed with loadcell: x 

and y motion 
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measuring capabilities was coupled to the PDS platform for this research.  The 

loadcell allows for the recording of torque data that is used to calculate total 

process energy of FP welds.  The PDS platform capabilities are listed in Table 

3-1. 

 

Table 3-1: PDS and Weldcore 3 platform capabilities 

Process  Parameter PDS Range Weldcore 3 

Rotational Speed 0-12000 rev/min 0-5250 rev/min 

Axial force 0-98.4 kN 0-40 kN 

 

The platform was later changed to the small Weldcore 3 platform, which is third in 

line in the generation of developed Weldcore platforms at NMMU. The Friction 

Processing Weldcore 3 platform is shown in Figure 3-2.  The reason for this 

change will be discussed in the preliminary development stage of FHPR.  

 

 

Figure 3-2: Weldcore 3 Friction Processing platform 

 

The Weldcore 3 platform (refer to Figure 3-2) works on the same principles as the 

PDS platform: however the main difference is that it has a maximum rotational 

speed of 5250 rev/min. One of the Weldcore 3‟s major advantages is its ability to 
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stop quicker than the PDS platform: this will be discussed in detail in later 

sections.   

Both platforms, i.e. The PDS and Weldcore 3, make use of the Human Machine 

Interface (HMI) to monitor and control process parameters before and during 

welding.  Before the start of each weld, input process parameters - as discussed 

earlier - are programmed into the HMI weld programme which is then used to 

control and monitor the whole joining process.   

 

Unlike the PDS platform, which can measure axial force and torque feedback 

using sensors on its welding bed, the Weldcore 3 uses a purposely designed 

external loadcell.  The Weldcore 3 machine does not have a bed which could 

have been used for feedback data measuring.  The loadcell used for the Weldcore 

3 platform, was designed and used by Samuel [33] in the Friction stud welding of 

AISI 304L stainless steel.  Figure 3-3 shows a schematic of the loadcell that has 

been utilised. 

 

As the loadcell had been idle for a while, force and torque measurements were 

verified through a series of recalibration tests and thereby the loadcell was 

deemed to be in good working order.  The torque data was recorded using a 

Spider 8 amplifier, whilst the force component was logged using the HMI.  The 

data logged by the Spider 8‟s Catman software was in voltage and was converted 

to torque (Nm), using excel (refer to Appendix A: Loadcell calibration).   
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Figure 3-3: Schematic of loadcell 

 

3.3 Volume Fill Calculation 

Upset distance as discussed in an earlier section, is the distance that the rivet 

plunges/upsets to allow for adequate filling of the bottom hole chamfer before the 

top of the rivet head is forced into the rivet location hole of the top sheet.  Upset 

distance was calculated by equating the volume to be filled to the amount of 

stud/rivet length as shown in Figure 3-4 and Table 3-2. 

 

   

 

Figure 3-4: Schematic of rivet and volume to be filled before the start of the joining process 
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Table 3-2: Example of upset distance calculation 

Description Volume Calculation 

i) 45
o
 chamfer hole 

 

Volume of frustum  

    
 

 
 (      (   )) 

    
 

 
  ((

  

 
)
 

 (
 

 
)
 

 (      )) 

                    

 

ii) Rivet (in hole before the start of 

the weld) 

 

Volume of rivet with chamfer 

  ( 
 

 
  )  (

 

 
 (      (  ))) 

                

            

 

iii) 100% Volume fill: 

 Upset distance, Ud 
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3.4 Weld Setup (PDS and Weldcore3 platforms) 

Utilised setup in the FHPR development is shown in Figure 3-5.  The set up 

consists of the rivet, sheets to be joined and a Haynes backing support plates 

(discussed in the following sections).   

Note: The design of the rivet and hole geometry is discussed per matrix. 

 

 

Figure 3-5: Schematic of FHPR process 

3.4.1 Backing Support Material  

The purpose of the backing support/plate was to act as a support face or anvil for 

forming the bottom head of the rivet, with no sticking occurring between the faying 

surfaces.  For this research, material chosen for the backing plate was Haynes 

230 alloy.  Mashinini [23] employed Haynes 230 alloy for his research on FSW of 

Ti-6Al-4V and its properties allowed for it to be used for FHPR but in a different 

setup configuration to FSW (refer to Figure 3-5).  Haynes 230 alloy is commonly 

used as a backing material in FSW of Ti-6Al-4V due to the material‟s high melting 

point and its ability to withstand high forces at elevated temperatures, thereby 

allowing for the non-sticking of the titanium rivet at the faying (contacting) surface..  

Available Haynes 230 alloy was thus machined into inserts that were used in the 

FHPR process as shown by the set up configuration in Figure 3-5. 

 

3.4.2 Shielding Mechanism  

Titanium is a very reactive material and at temperatures above 650oC it is 

essential to shield it from oxidation.  The amount of oxidation at these elevated 

temperatures should not exceed 200ppm.  A shielding mechanism was developed 

and integrated into the weld experimental set up.  The first shielding mechanism 
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used did not shield the FHPR joining process from oxidation adequately and a 

blue oxide layer was present on the flash formed as shown in Figure 3 8. 

 

 

Figure 3-6: Lack of adequate shielding 

 

Another shielding mechanism was designed and manufactured as shown in 

Figure 3 7 and Figure 3 8 for both PDS and Weldcore 3 platforms respectively.  

The integrated shielding mechanism for the Weldcore 3 platform was smaller due 

to the reduction of stud/rivet size: this therefore led to a reduced tool length 

sticking out after the joining process.  With this reduced tool length, rubbing of the 

platform tool holder whilst rotating with the shielding mechanism would have 

occurred.  A scenario of this nature would have been dangerous for the operator 

and for people in the vicinity, as the shielding mechanism could be thrown around. 

 

 

Figure 3-7: Adequate shielding 
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Figure 3-8: Weldcore 3 shielding mechanism 

3.5 Material Specifications for sheet and bar 

Material used in this investigation was 3.17mm Ti-6Al-4V alloy and Ti-6Al-4V 

Extra Low Interstitials (Eli) bar for the rivets.  

 

Table 3-3: Chemical composition specification % wr 

 Ti-6Al-4V Ti-6Al-4V Eli 

Aluminum, Al  6% 6% 

Vanadium, V 4% 4% 

Carbon, C 0.03% 0.03% 

Iron, Fe 0.1% 0.1% 

Oxygen, O 0.15% 0.1% 

Nitrogen, N 0.01% 0.01% 

Hydrogen, H 0.003% <0.003% 

Titanium, Ti Balance Balance 

 

As stated by the Arcam EBM system [21], Ti-6Al-4V ELI (Grade 23) is similar to 

Ti-6Al-4V (Grade 5) as shown in Table 3-3, except that Ti6Al4V ELI contains 

reduced levels of oxygen, nitrogen, carbon and iron.  ELI is short for “Extra Low 

Interstitials” and these lower interstitials provide improved ductility and better 

fracture toughness for the Ti6Al4V ELI material [21].  The ultimate tensile strength 

of Ti-6Al-4V and Ti-6Al-4V Eli grade is 1020MPa and 970MPa respectively [21]. 

 

 

Weldcore 3 
tool holder 

Rivet/s
tud Shielding 

chamber 

Argon Tubes 

Shiny Titanium flash 

Reduced size 
of stud/rivet 
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3.6 Mechanical Evaluation 

3.6.1 Pull Off test setup 

The objective of the pull off test was to quantify the ability of the FHPR joint to 

fasten sheets together when a force parallel to the rivet is applied.  The pull off 

test was performed based on ASTM D7332 (the standard test method for 

measuring resistance of fastener pull off in fibre reinforced polymer matrix 

composites), which was used in helping design and develop a pull off test method 

for the FHPR joints as illustrated in Figure 3-9. 

 

The testing machine for the pull off test “Instron” was equipped with a 100kN 

loadcell and the speed of the machine (extension) was set at 5mm/min.  The 

ambient temperature of the room was at 25ºC and remained the same throughout 

the entire specimen testing.   

 

 

Figure 3-9: Pull off test set up 

 

3.6.2 Shear testing  

The shear test was conducted to evaluate the shear strength capacity of the rivet.  

The single shear specimens were specifically designed for the FHPR process as 

shown in Figure 3-10 with reference to an Organisation of International Standard 

(ISO) specification on Mechanical joining.  The shear test was done using the 

Rivet Pulled off 

Ti-6Al-4V 
sheets joined 

together 
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same machine as the pull off test keeping the 100 kN loadcell and the speed of 

the machine constant (i.e. as with the pull off testing). 

 

 

Figure 3-10: Single shear specimen 

Table 3-4 shows the single shear sample dimensions. 

 

Table 3-4: Single Shear Specimen Geometry 

 Dimension (mm) 

Overlap, a 40 

Sample width, b 40 

Length of clamp area, lc 40 

Total length of specimen, ls 160 

Specimen length between clamps, lg 80 

Sheet length, lt 100 

sheet thickness, t1 and t2 3.17 

Shim sheets, 1(same material as sheet) 3.17 
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3.7 Process Development: FHPR of Ti-6Al-4V 

The objective of the preliminary work was to gain an understanding of FP and the 

influence of different process parameters on the joint formation.  Initially the effect 

of axial force on joint formation was investigated using two Ti-6Al-4V sheets with 

the bottom sheet hole having a chamfer where the rivet head would be formed.  

The process also involved the determination of a rotational speed that would allow 

for material to flow and fill the bottom sheet chamfer adequately. 

 

3.7.1 FHPR Matrix A 

Based on available literature, matrix A was established as illustrated in Table 3 5.  

Material flow characteristics with a change in axial force were quantified, with 

rotational speed kept constant at 5000 rev/min (peripheral velocity of 2.4 m/s).  

The axial force was set at 2 kN, 4 kN and 6 kN with the forge force set at 1.5 times 

the axial force.  The initial hole geometry that was used is shown in Figure 3-11 

while the dimensions of the rivet are provided in Table 3-5. 

 

Table 3-5: Matrix A 

Joint  Axial Force 

(kN) 

Forge 

Force (kN) 

Rotational 

speed (rev/min) 

Volume 

Fill % 

Rivet Ø 

(mm) 

A01 2 4 5000 120 9 

A02 4 6 5000 120 9 

A03 6 9 5000 120 9 

 

 

Figure 3-11: Schematic of sheets for Matrix A 

 

 

Figure 3-12 shows the macrostructure of A01 and A02 with exception of A03.  
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Joint No. A01 A02 A03 

Macrograph 

  

 

 

Unsuccessful joint 

Figure 3-12: Macrographs A01 and A02 

Discussion:  Matrix A: A01, A02 and A03 were the first joints of the FHPR 

process and the following were deduced: 

 

A01:  From the macrograph, it is the author‟s opinions that due to a very 

low axial force (2 kN), the faying surfaces could not be kept intimate 

enough, thus leading to the rivet collapsing.  The flash showed that most of 

the plasticised material was pushed up and bonding is visible from the 

middle up with an associated increase in forging force (4 kN). 

 

A02:  It would appear that bonding was achieved between the sheet and 

the rivet.  The plasticised material was sheared off during solidification and 

this could have been avoided by stopping the process more quickly.  Both 

rivet and sheet got „soft‟ - therefore no bond was formed. 

 

A03:  Due to the high axial force and forging force of 6 kN and 9 kN 

respectively for A03, plasticised material was pushed between the backing 

plate and the bottom sheet being joined therefore the joint was deemed not 

successful and would not be discussed any further. 

 

From this work it was noticed that for a successful FHPR joint, the Haynes 230 

insert needed to be slightly sticking out and not flush with the backing plate as 

shown in Figure 3-13. This would eliminate the problem experienced in joint A03 

and to a lesser extent A02 where plasticised material flows underneath between 

the bottom sheet and backing plate. 

 



Chapter 3 Experimental Set-Up and Preliminary work 

40 

 

 

Figure 3-13: Adjustment to insert and backing plate 

 

3.7.2 FHPR Matrix B 

The objective of matrix B was to understand the effect of tool geometry and the 

influence of rotational speed on the formation of the FHPR joint.  Important 

considerations that had been highlighted in matrix A were used to develop matrix 

A.  As had been shown by weld A02, which was done at an axial force of 4 kN, it 

was decided that the following joint trials would be done at axial force and forging 

force of 4 kN and 6 kN respectively.  The influence of process parameters with 

emphasis on rotational speed was investigated in order to understand material 

flow during the plasticisation phase.  An understanding of joint performance from 

a macrostructural and hardness point of view was established.  The total process 

energy was calculated in relation to rotational speed using the generic power 

formula discussed in this section.  The developed matrix is illustrated in Table 3-6.  

 

Table 3-6: Matrix B 

Description Joint 

Number,  

Rotational 

speed 

(rev/min) 

Axial Force 

[kN] 

Forge 

Force 

(kN) 

Volume Fill %] 

Tool 

development 

B01 5000 4 6 120 

B02 5000 4 6 120 

Rotational 

speed 

analysis 

B03 2000 4 6 120 

B04 4000 4 6 120 

B05 5000 4 6 120 

B06 7000 4 6 120 

Full 

geometry 

 (2 sheets) 

B07 Same as B04  

B08 Same as B05 
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3.7.2.1 Rivet/Tool development and analysis 

For the tool development, two geometries were investigated in order to gain an 

understanding of the material flow and the characteristic influence of the slight 

geometry change in the FHPR process.  Based on prior knowledge gained in the 

preceding joint trials (A01 to A03), a set of parameters was used and kept 

constant for both joints investigated.  The geometry of the two rivets was that of a 

chamfered rivet (45 degrees and 1 mm chamfer) compared to that of a cylindrical 

rivet with the diameter kept constant at 6 mm as shown in Figure 3-15.  The 

hypothesis upon which this was based was that there would be minimal difference 

in terms of process energy and process time for both the cylindrical and 

chamfered rivets.  This would be explained by the volume fill % which would be 

kept constant at 120% whilst upset distance was adjusted accordingly to 

accommodate the difference in geometry.  These two joints were processed at the 

same rotational speed of 5000 rev/min.  The experimental procedure is illustrated 

in Figure 3-14.  

 

 

Figure 3-14: Experimental analysis diagram 

 

The configuration and bottom appearance of the joined sheet is shown in Figure 

3-15. 
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Rivet type (bottom) Cylindrical (B01) Chamfered (B02) 

Geometry  

 

 

Diameter 1 (mm) 6  4 

Chamfer height (mm) 0 1 

Volume fill (%) 120 120 

Joint bottom 
Appearance after 
FHPR process 

 

 

Figure 3-15: Cylindrical and chamfered rivet geometries 

 

In terms of visual appearance there was no difference between the two joints as 

both sufficiently filled the bottom chamfer.  The total friction time of the chamfered 

rivet was marginally less than that of the cylindrical rivet, i.e. by 0.4 seconds.  As 

shown in Figure 3-16, the decrease in the total friction time of the chamfered rivet 

is attributed to the decrease in the contact area at the faying surfaces in the wear 

and seizure stage of FHPR (i.e. at the start of the FHPR joining process). 

 

 

Figure 3-16: Friction Torque curve 
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Due to the decrease in the volume of material being heated up, the amount of 

process energy decreases, thus leading to the rapid completion of the first stage 

(wear and seizure) of the chamfered rivet.  With the decrease in area of the 

chamfered rivet compared to the cylindrical, the torque is lower at the start of the 

joining process, and then increases until the two torque curves are almost on top 

of each other, signalling the end of the gradual depletion of the chamfer - as 

shown in Figure 3-17.  The process energy was calculated up to 1 second which 

is the approximate point where the torque for both geometries was almost equal. 

 

From these results it was concluded that there is a marginal difference in terms of 

the effect rivet geometry has on the process energy and process time to affect the 

overall FHPR process, as shown in Table 3-7 and Figure 3-17. 

 

Table 3-7: Process Energy at up to 1 second 

Rivet Geometry  Process energy at 1 second (kJ) 

Cylindrical   589.2 

Chamfered 537.1 

 

 

 

Figure 3-17: Torque (Up to 1 second) 
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3.7.2.2 Process parameter evaluation: Rotational speed 

As was emphasised in the literature review, rotational speed is an important 

process parameter in FHPP and its influence on the joint formation of FHPR joints 

was of interest.  The influence of rotational speed was therefore investigated in 

order to understand material flow during the plasticisation phase.  The set up used 

in this matrix was that of a single bottom sheet (instead of a double sheet 

configuration).  The dimensions and geometry of the rivet and sheet are shown in 

Table 3-8. 

 

Table 3-8: Geometry utilised 

Configuration Description 
Size 

(mm) 
Comments 

90 degree Flush rivet 

 

Diameter 6 
Machined to size Ti-6Al-4V 

Eli bar 

Shank length - Based on the volume fill 

Chamfer outer 

diameter 
12 -  

Chamfer height 3 - 

Hole, (45 degree 2 

mm Chamfer) 

 

Hole diameter 6.5 Radial clearance of 0.25  

Outer diameter 10.5 - 

Hole depth 3.17 - 

Thickness of plate, 

t 
3.17 

Readily available Ti-6Al-4V 

sheets 

 

The upset distance (consumable length) was calculated by considering the 

volume of material required to fill the bottom chamfer hole in the sheet. The 

bottom mechanical lock or rivet head will therefore need to be formed by 

plasticised material contained within the chamfered hole.  A 120% volume fill was 

used to allow for a slight overfill and to compensate for any volume change during 

the forge/cooling phase.  The axial and forge force was kept constant at 4 kN and 

6 kN respectively.   
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After welding the FHPR joints, visual images were taken: the samples were then 

cut up for macrostructural analysis. The macrographs were prepared by grinding 

with a 600 grit paper, followed by a diamond wheel using 3µ allegro.  A suitable 

polishing cloth with OPU suspension was employed for polishing as the finishing 

step.  For the macrostructure sample preparation, the etchant used was 2 ml HF 

(hydrogen fluoride 40 %), 5 ml H2O2 (Hydrogen peroxide30 %) and 100 ml H2O 

(distilled water). 

 

The process energy and process energy per upset distance were calculated using 

the generic power formula as follows: 

 Process energy E: 

      
      

             
     3.1 

  
    

  
                (Joules)   3.2 

 

Note:  Where N is the rotational speed feedback, and T is torque feedback at that 

instant interval 

 Process energy per upset distance: 

               
              

                             
  3.3 

 Relative velocity, v: 

                    3.4 

 

 

Influence of rotational speed was quantified in terms of material flow.  The process 

energy was calculated using a standard energy and power calculation formula as 

shown in Equation 1 (up until the stopping time without considering the peak 

brake torque).  The effect of rotational speed on the bottom rivet forming process 

is illustrated by the cross sectional macrostructural appearance as revealed in 

Table 3-9. 
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Table 3-9: Rotational speed influence 

 
Joint 

Parameters set 
Proces

s 
Energy 

(kJ) 

Energy
/ C. 

length 
(kJ/mm

) 

Joint cross section / 
macrostructure 

Rotational 
speed 

(rev/min) 

Relative 
Velocity 

(m/s) 

B03 2000 0.63 2.01 0.70 
 

B04 4000 1.26 2.60 0.904 
 

B05 5000 1.57 3.41 1.19 
 

B06 7000 2.20 3.66 1.28 
 

 

As stated previously, in Rotary Friction Welding (RFW), a minimum peripheral 

velocity of 1.27m/s is required for sufficient bonding between the two work pieces 

[31].  For this experiment, peripheral velocity varied from 0.62 m/s (2000 rev/min) 

to 2.20 m/s (7000 rev/min) as a fusion bond between the rivet material and the 

side of the hole in the sheet was not considered critical.  As indicated in Table 3-9, 

it was confirmed that with a lower peripheral velocity (0.62 m/sec at 2000 rev/min) 

at the outer periphery of the rivet, flow of the plasticised material was insufficient.  

This can be related to the quick completion of the joint at 2000 rev/min, as there 

was not enough heat generated at the faying surfaces to allow plasticised material 

to flow and form-fill the chamfered hole of the sheet.  In relation to the process 

energy, the 7000 rev/min gave the highest value of 3.66 kJ. 

 

From joints at 4000 rev/min and 5000 rev/min, it was observed that the material 

flow was acceptable although both showed deficiencies.  Process time for a 5000 

rev/min joint was longer than that of a 4000 rev/min joint, which relates to the 

tearing action being replaced by polishing with an increase in rotational speed.  At 

5000 rev/min, upset distance (plunge depth) rate slows down (which directly 

relates to cooling rate), increasing process time and producing a wider HAZ than 

at 4000 rev/min.  Process torque response for the four welds is shown in Figure 
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3-18, with the straight black line showing the start of motor braking and also 

initiating the stopping of rotation. 

 

  

   

Figure 3-18: Process torque response curves 

The torque curve contains important process information.  Considering the 7000 

rev/min (Figure 3-18:Joint 4), the torque curve stages can be identified; with the 

initial stage being the first stage of contacting (faying) surfaces, leading to the 

initial torque peak at approximately 3.92 seconds (4.6 seconds at 5000 rev/min).  

From the initial torque peak, the torque stabilises at 2N.m until the motor is 

stopped abruptly.  When the motor is stopped, the torque remains constant and 

gradually peaks up to a brake torque (point of zero rotation) which is related to the 

braking time of the PDS platform and has been observed in all the joint trials.  This 

is due to the large inertia of the welding head on the PDS platform and has been 

identified as a major challenge to be solved, allowing for production of optimal 

rivet head in the shortest time interval. 
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Figure 3-19: Process energy relationship to rotational speed 

Figure 3-19 shows that the relationship between process energy and rotational 

speed which can be used to predict process energy at different rotational speeds.  

As the rotational speed increases, the feedback process torque decreases, which 

in turn causes a minimal difference to process energy at higher rotational speed of 

5000 rev/min and 7000 rev/min.  The gradient between two sets i.e. between 

2000 rev/min and 4000 rev/min, of the rotational speed was quantified in Table 

3-10. 

 

 Sample calculation of gradient constant 

           
           

           
  

  
               

         
  

         (       )  
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Table 3-10: Gradient (Process Energy to Rotational Speed) 

Rotational speed (rev/min) Gradient, Q J /( rev/min) 

2000 to 4000 0.30 

4000 to 5000 0.81 

5000 to 7000 0.12 

 

This Q value showed that between 4000 rev/min and 5000 rev/min, there was a 

greater gradient compared to the other two.  This signifies a change in the energy 

input into the FHPR process joining process.  The high process energy difference 

between 4000 and 5000 rev/min is explained by an increase in overall process 

time (longer heating time for the 5000 rev/min joint than the 4000 rev/min joint).  

As explained in the literature review, at higher rotational speeds tearing is 

replaced by a polishing action which creates lower torques as shown in Figure 

3-20. 

 

 

Figure 3-20: Influence of rotational speed on torque response 

 

From here onwards, 4000rev/min and 5000rev/min joints were analysed in terms 

of hardness and also repeated with a full configuration of the two sheets and 

double chamfered holes of 45o.  Hardness measurements were done 0.5mm from 
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the bottom of the plate in a horizontal direction with a 0.5kg load and 0.5mm 

spacing between indentations as shown below in Figure 3-21.  Measurements of 

hardness were done close to the contacting surfaces of the rivet and backing 

plate as this is where frictional heat is generated and as these are the most likely 

points for introducing unwanted changes in terms of hardness. 

 

 

Figure 3-21: Hardness profile representation of half the sheet and rivet 

 

The hardness profiles illustrated in Figure 3-22 shows the variations of hardness 

with location from the centre of the joint at approximately 0.5mm above the sheet 

(refer to Figure 3-21).   

 

 

Figure 3-22: Horizontal hardness profile of 4000 and 5000rev/min joints 

Hardness values increase from the parent (310-325 HV) to the HAZ and the 

plasticized zone.  An increase in hardness in the plasticised zone from the parent 

can be mainly attributed to forging force (this refines the grain size) and the 

temperature gradient during cooling. 

 

The two joints at 4000 rev/min and 5000 rev/min were repeated with the full 

configuration of two (top and bottom) chamfered sheets and a countersunk 90º 
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rivet as shown in Figure 3-5.  This was done so as to lock the two sheets together 

with a bottom and top chamfer as shown in Figure 3-23. 

 

Joint 4000 rev/min, B07 5000 rev/min, B08 

Macro- 
graph 

  

Figure 3-23: Full joint of 4000 rev/min and 5000 rev/min 

 

Although it appears as if a proper fill of the bottom chamfer was achieved at 

5000rev/min another phenomenon was identified raising some concerns.  From 

macrostructural appearance, it appears that some diffusion or lack of fusion 

accrued along the original shank diameter and the newly formed plasticised 

material that formed the bottom rivet head as illustrated in Figure 3-24. 

 

 

Figure 3-24: A clear separation line between plasticised material and rivet 

This is undesirable as it will not form the desired mechanical lock.  It most 

probably occurred due to the result of plasticised material making contact with the 

side of the “cold” chamfered hole in the sheet, resulting in a stronger bond than 

that between the original stud and the displaced plasticised stud material, thereby 

forming a shear layer at this point.  It is believed that this could be solved by 

stopping the process earlier and relying on a cold forge/form final. 

 

As a result of this phenomenon, an investigation of how quickly the FP PDS 

platform stops was therefore initiated.  As discussed earlier, the long stopping 

time is due to the large inertia head of the PDS platform, which necessarily is not 

an issue for FHPP welds where the process time is usually longer than 20 
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seconds.  Solving the stopping time issue would allow for production of an optimal 

rivet head in the shortest time interval. 

 

Constant rotational speed and upset distance - but varied axial force (4 kN; 5 kN 

and 6 kN) joints were FHPR processed.  Stopping time in relation to axial force 

showed that with an increase in axial force, the FHPR joining process time 

decreased.  The visual images presented in Table 3-11 of the FHPR joints 

showed that, an increased stopping time reduced the amount of flash formed. 

 

Table 3-11: Influence of increasing axial force on braking time 

Joint No. B04 B09 B10 

Force (kN) 4 5 6 

Rotational 

speed (rev/min) 

5000 5000 5000 

Volume fill % 120 120 120 

 

Joint top 

appearance 

 

 

 

 

 

 

 

Joint bottom 

appearance 

 

 

 

 

 

 

 

Although the flashed formed decreased with an increase in axial force, it was 

noted that from joints 5 kN and 6 kN, the FHPR joints would stick to Haynes 230 

alloy insert.  The sticking of the faying/contacting surfaces was mainly due to a 

large axial force keeping the surfaces intimate while the decrease in flash formed 

was due to a quicker stopping time which is affected by the large inertia of the FP 

head explained earlier.  A force of 4 kN continuously used in the development of 

the FHPR process, did not exhibit any sticking between the rivet plasticised 

material and the Haynes 230 alloy.  However separating the insert and joint 

became a problem as some material stuck on the backing plate insert thereby 

leading to a fairly rough surface on the bottom of the joint. 
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The rotational speed to time was also plotted for earlier joints done to quantify the 

influence of rotational speed on stopping time as shown in Figure 3-25. 

 

 

Figure 3-25: Increase in stopping/ braking time, PDS platform 

Figure 3-25 shows 2000, 4000 and 5000 rev/min rotational speed feedback 

curves and from these a graph of rotational speed vs. stopping (refer to Figure 

3-26 and Table 3-12) was plotted to characterise the platform when conducting 

diameter 6mm rivets for FHPR. 

 

Table 3-12: Stopping time at different rotational speed 

Rotational speed (rev/min) Stopping time (s) 

2000 0.190 

4000 0.419 

5000 0.618 
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Figure 3-26: Rotational speed relationship to stopping time, PDS platform 

 

The Weldcore platform has a maximum platform rotational speed of 5250 rev/min. 

At 5000 revm/min, it takes 0.05297seconds to come an abrupt halt from as shown 

in Figure 3-27.  This decrease in stopping time has an effect on the flash formed 

as the process is easily controlled with the upset distance kept constant.  

 

 

Figure 3-27: Rotational speed relationship to stopping time, PDS platform vs. Weldcore 3 platform 
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3.8 Summary  

The results from the preliminary welding revealed important process relationships 

and evidence to show that FHPR can be used as a method for riveting Ti-6Al-4V 

sheets together.  A drop in average process torque was experienced during rivet 

forming at higher speeds.  This trend in turn is attributed to an associated 

increase in process temperature with the increase in rotational speed, reducing 

shear layer strength in the plasticised material and thereby resulting in the drop in 

process torque.  Increased heat input on the other hand reduced the cooling rate 

due to a greater volume of material being heated up.  As the cooling rate 

decreased, a wider HAZ was observed.  Therefore, rotational speed contributes to 

the frictional heating and influences the joining speed of FHPR process.   

 

This chapter also describes the two different platforms used in the initial and final 

development of the FHPR process. The difference in the platforms is in their 

stopping times with the Weldcore which is utilised more quickly in the final 

stopping due to a decrease in the inertia of the welding machine. 

 

From this preliminary work, the required process stages have been defined with a 

clear indication that the final process will have to tend more to a cold forge/form 

stage rather than a traditional FHPP stage.  The clear separation between 

plasticised material pushed to fill the bottom hole chamfer and the rotating rivet, 

needs to be discussed further.  Stopping the process quickly and adjusting the 

bottom hole chamfer angle might play a role in eliminating this problem.  
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Chapter 4: Results and Discussion 

 

4.1 Introduction  

This chapter details the final development of Friction Hydro Pillar Riveting (FHPR) 

where the bottom hole chamfer was varied (15°, 30° and 45°) and a blind hole 

geometry introduced as shown in Table 4-1 and Figure 4-1.  Macrographs of the 

joints were studied and linked to the pull off strength of the FHPR joints.  The 

FHPR joining process was done using the Weldcore 3 platform at 5000 rev/min 

(maximum rotational speed of the platform is 5250 rev/min) and 4 kN axial force 

while the forging force was increased by 150% to the axial force. 

 

The preliminary work detailed for FHPR was used for the initial process 

development as there were no prior developments in FHPR of Ti-6Al-4V.  From 

the established set of process parameters, the final matrix was developed by 

involving a varying of the bottom chamfer angle (15°, 30° and 45°) in the bottom 

sheet hole.  This variation of chamfer angle allowed for results‟ quantification in 

terms of material flow (macrographs) thereby determining which geometry 

adequately fills the bottom hole chamfer.  The idea behind the introduction of 

varied chamfer angle bottom hole sheets was to try to eliminate the problem 

discussed in section 3.7.2 FHPR Matrix B (refer to Figure 3-23) where a clear 

separation was visualised.  The pull off test would then be used to quantify the 

joint strength in the axial direction. 

 

From the logged feedback data, upset distance, rate of upset distance, heating 

time and frictional torque were determined and subsequently analysed.  Frictional 

torque was used to identify the different stages of the FHPR process.  The final 

matrix finished off with shear testing of the best configuration and microstructure 

evaluation of all the FHPR joints from the parent material, heat affected zone 

(HAZ) to the weld zone.  This could then lead to the development of a new and 

exciting way of riveting Ti-6Al-4V sheets for the Aerospace industry via Friction 

processing. 
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Table 4-1: FHPR of Ti-6Al-4V Final Matrix  

Description Joint 

Number,  

Joint 

description 

Rotational 

speed 

(rev/min) 

Axial 

Force (kN) 

Upset 

distance 

(mm) 

 

Macro/ 

Microstructural 

01 45° 5000 4 3.6 

02 30° 5000 4 2.5 

03 15° 5000 4 1.8 

04 Blind Hole 

5000 rev/min 

5000 4 1.3 

 

 

Pull off test 

05 15°  5000 4 3.6 

06 30°  5000 4 2.5 

07 45°  5000 4 1.8 

08 BH 5000 

rev/min 

5000 4 1.3 

09 Blind Hole 

2500 rev/min 

2500 4 1.3 

Shear test 10 15°  5000 4 1.8 

11 Blind Hole 

5000 rev/min 

5000 40 1.3 

 

Specimen 45o 30o 15o Blind hole 

Configuration 

    

Figure 4-1: Geometry of the plate with varying chamfer angles and the blind hole 

Figure 4-2 shows the final matrix rivet (consumable tool) design.  For research 

purposes only, the rivet overall length was longer than actual “would be” design 

for commercial integration so that it could accommodate the numerous tests that 

were conducted (i.e. the pull off test required at least the back part to be 15 mm in 

length before clamping it with the jaws of the Instron tensile tester machine). 
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Rivet/stud (final matrix) 

Note: The rivet was designed and 

machined exactly to fit the required 

upset distance to achieve a 120% 

volume fill (refer to A, B, C and D 

on drawing).  The rivet head used 

was a 90° Flush head rivet. 

 

Figure 4-2: Rivet design for final matrix using the Weldcore 3 platform 

 

4.2 FHPR process model 

The torque curve of FHPR, as discussed in Chapter 3, contains important 

information that can be used to model the FHPR process: this was discussed and 

the stages of the FHPR process were detailed.  There are many configurations 

and various possible joint geometries that can be used in making a FHPR joint.  

The geometry that has been discussed thus far is of the bottom hole chamfer 

scenario.  It has shown characteristics that allow it to be an alternative joining 

technique for riveted joints and will be studied further with the blind hole 

configuration.  

 

It is the author‟s opinion that the FHPR process has five important process stages 

can be defined for the FHPR process by using the friction process torque curve.  

Initially the process involves a pre-machined rivet / stud and two Ti-6Al-4V sheets 

with the top sheet having a rivet hole and chamfer which is of the same size as 

the rivet being utilised.  In this case, a 90° rivet was used with a top sheet having 

a 45° chamfer.  The bottom chamfer can be varied from 45° to 15° or to a blind 

hole as has been suggested in this work.  The sheets being joined are firmly 

clamped together onto a backing plate with a Haynes plate insert.  

 

The rivet is rotated into the aligned holes of the sheets being joined together 

combined with a small axial force.  At the start of the FHPR process, the 

combination of rotational speed and axial force generates frictional heat which 



Chapter 4  Results and Discussion 

59 

 

increases the temperature at the faying or contacting surfaces of the rivet and the 

backing plate.  In the initial stage, as with RFW and FHPP, the FHPR has a 

rubbing and seizure stage which is quickly completed - and is not easily visible on 

the torque curve due to the smallness of the rivet size compared to normal FHPP 

and RFW processes.  After this rubbing and seizure stage has been completed, 

accompanied by a temperature increase at the faying surfaces, upsetting of the 

rivet starts.  For this to begin, the temperature needs to increase until it reaches 

the plasticisation temperature of the material.  Due to low thermal conductivity of 

Ti-6Al-4V alloy, the plasticisation temperature is quickly reached and the material 

then starts to flow, gradually filling the bottom hole chamfer.  Upsetting or rivet 

shortening is governed by the amount of upset distance required to fill the bottom 

hole chamfer, thereby enabling the formation of a mechanical lock.   

 

Unlike Friction Taper Stud Welding [38], the FHPR, as with its sister FHPP, 

involves a rapid formation of a pillar of shear layers as the whole rivet is 

plasticised: this then leads to plasticised material flowing to fill the bottom hole 

chamfer during the rivet consumption/upset.  When the set upset distance is 

reached, rotation is stopped abruptly, thus leading to the beginning of the final 

stage of forging/forming and consolidation.  The forging force refines the grain 

size and material consolidates as temperature decreases.  During this forging 

stage, some of the plasticised material is pushed out as flash, while the rest cools 

down and fills the bottom hole chamfer.   
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Figure 4-3: FHPR process curve for Bottom hole chamfer (15°) 

From this process curve, Figure 4-3, the stages of the FHPR process can be 

determined and the torque curve is divided into five FHPR stages (i, ii, iii, iv, v) as 

shown in Figure 4-4. 

 

 

Figure 4-4: Torque curve stages 
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It is imperative to discuss the stages represented by the torque curve for the full 

configuration.  Earlier discussion in the preliminary development stage focussed 

on a single sheet process torque curve prior to changing platform from the PDS to 

the Weldcore 3 platform.  The stages of a full configuration FHPR joint are now 

identified and discussed as follows:  

 

Stage i:  This stage involves the rubbing and seizure stage.  The rivet contacts the 

faying surfaces leading to an initial torque peak.  Temperature in this stage 

increases with upsetting distance still close to zero as rubbing and seizure is 

completed.   

 

Stage ii:  This stage is characterised by the increase in upset distance at a fairly 

constant torque as the rivet is being plasticised and is forming shear layers.  With 

low rotational speed the torque feedback will be higher than at higher rotational 

speed.  In this stage, there is a relationship between the plasticisation of material 

and material flow with upset distance: this is because upset increases linearly 

over process time.  However further investigation is required to understand this 

phenomenon better. 

 

Stage iii:  This stage is a continuation of stage ii, but now sees a gradual increase 

in torque due to the whole rivet head gradually coming into contact with the top 

chamfer hole, hence leading to an increase in torque up to a maximum: this is 

caused by the diameter of the rivet head increasing, with an increase in contact 

area as the rivet depletes or is consumed, thereby leading to a torque increase.  

 

Stage iv:  It is the author‟s opinion that at this stage, the rotating rivet under an 

axial force is apparently now into holes of the two sheets being joined, at which 

point, a 100% volume fill has been achieved.  The torque decreases as the flash 

is being formed due to the 20% additional upset distance (120% volume fill set), 

and then rapidly increases again as the stopping of the platform‟s motor starts. 
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Stage v:  This is characterised by the third torque peak which is due to the abrupt 

braking of the Friction Processing platform motor the forging and material 

consolidation starts. 

 

Table 4-2 (see below) lists the process parameters with their functions as 

investigated in the preliminary work where an emphasis was set on quantifying the 

influence of rotational speed and axial force on joint formation and material flow 

behaviour. 

 

Table 4-2: Process Parameters that in FHPR 

Parameter Function 

Rotational Speed Contributes to the frictional heating. Influences the 

joining speed. 

Axial Force Controls the distribution of pressure on the joining area. 

Contributes to frictional heating and joining speed.  

Forging Force Contributes to grain refinement and consolidation of the 

rivet plasticised material. 

Upset distance Indicates the level of rivet penetration and deformation 

(consumption). 

Temperature  Influences the properties of titanium (plasticising and 

material flow behaviour). 

Frictional Torque Associated with material plasticizing. Identification of 

process stages. 

 

Table 4-3 shows two joints (45° bottom hole chamfer configuration for pull off and 

macro-analysis) which display uniformity in the flash formed between joints of the 

same bottom hole chamfer angle.  From the FHPR process feedback curve, 

important information was collated as shown in Table 4-4 for feedback data 

analysis (refer also to Appendix C: Visual images of Joints). 
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Table 4-3: Visual appearance of same process parameter joints 

Joint 

description  

Visual image 

15° bottom hole 

chamfer (Macro 

analysis joint) 

 

15° bottom hole 

chamfer (Pull off 

analysis joint) 

 

 

One of the advantages of FP is that it is easily repeatable, thereby giving this 

same process feedback within experimental error [2] [26].  For repeatability 

purposes and quality control of the FHPR process, the input upset distance and 

the feedback upset distance data was analysed.  Upset distance was analysed 

because the FHPR process is a joining process which is governed by upset 

distance considering rotational speed and axial force are kept constant.  An upset 

distance governed joining process means the upset distance is used as one of the 

inputs to control process time by setting the required upset into the Friction 

Welding machine.  Table 4-4 shows the analysis of upset distance.  From the 

feedback data, it was noted that the process was repeatable before testing could 

commence. 
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Table 4-4: Upset distance analysis  

Joint 

description 

Set upset 

distance 

(mm) 

Feedback upset distance Mean  Uncertainty 

Macro/

Micro 

Pull off 

test 

Shear 

Test 1 

Shear 

Test 2 

BH 

5000rev/min 

1.3 1.517 1.511 1.623 1.588 1.56 0.09 

15°  1.8 2.274 2.123 2.237 2.105 2.18 0.13 

30°  2.5 2.74 2.559  2.65 1.15 

45°  3.6 3.768 3.751 3.76 0.11 

 

The process torque curve was also used to analyse the repeatability of the FHPR 

process by calculating the amount of process energy required for the FHPR 

process.  The 45° bottom hole chamfer process curve shown in Figure 4-3 has a 

torque feedback and rotational speed which are used in the generic power 

formula to quantify the amount of process energy.  Figure 4-5 shows an example 

of two similar joints (blind hole configuration) which were completed at the same 

process parameters. 

 

 

Figure 4-5: Same process parameter FHPR joints process torque 
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From the set of samples done for pull off testing and for micro/macro analysis the 

process torque was quantified and tabulated as illustrated below in Table 4-5. 

 

Table 4-5: Calculated process energy 

Joint type Energy 1.(J)  Energy 2.(J)  mean 

45°  5725 5791 5758 

30° 
 4732 4701 4716 

15°  3750 3720 3735 

Blind hole 

5000rev/min 

3458 3433 3445 

 

From the data tabulated in Table 4-5, a Means Graph with 95% error bars of 

process energy versus joint type was plotted in Figure 4-6: Process energy.  As 

shown here, the error bars for 45°, 30° and 15° do not overlap: this means there is 

a significant difference in process energy, i.e. the energy values for the different 

geometries are not equal within experimental error (it is Important to note this for 

the following process energy and pull off energy absorbed relations).  If the 15° 

bottom hole chamfer is compared to blind hole, there is an overlap (error bars) 

which is attributed to the reduction of the chamfer angle, leading to less process 

energy being required for 15o geometry. 

 

 

Figure 4-6: Process energy vs. Joint Type 
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4.3 Macrostructural analysis 

The idea behind the variation of chamfer angle of the bottom sheet was to fully 

understand and obtain a material optimum angle of flow which is the angle at 

which material flows to adequately fill the bottom hole chamfer.  As was 

discovered in the preliminary work with the 5000 rev/min joint, an undesirable 

clear separation existed between plasticised material „pushed‟ to the side which 

contacts the cold sheet chamfer and the rotating rivet.  A decision was made to 

repeat the 45° bottom hole chamfer geometry using the Weldcore 3 platform 

(quicker stopping time) and from the macrograph try to visualize the difference in 

the joint at a quicker stopping time.  Figure 4-7 therefore shows the 45° bottom 

hole chamfer joint repeated.  The process parameters for the two joints are the 

same although different platforms were used (refer to Figure 3-23). 

 

 

 

Figure 4-7: 45°
 
bottom hole chamfer macrograph 

As visualised from the 45° bottom hole chamfer macrograph, an improvement in 

the bottom hole filling was visible although a clear “separation” was still evident 

which led to the introduction of bottom hole chamfer varying.  The 30° and 15° 

bottom hole chamfer configurations were then done to quantify the difference in 

macrographs with a subsequent decrease in chamfer angle.  Figure 4-8  shows 

the gradual progression in the filling of the bottom hole chamfer including the 45° 

bottom hole chamfer joint and blind hole. 

 

Flash formed 
due to 120% 

volume fill 

Separation of 
plasticised 

material pushed 
to the side  

Last shear 
layer 

HAZ 

45º 
chamfered 

hole 
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Figure 4-8: Macrographs of FHPR joints with varying angles and the blind hole 

 

From the macrographs, there is gradual progression in the optimum fill of the 

bottom chamfer.  The blind hole (BH 5000 rev/min) showed great potential as 

there was bonding of the sheet to the rivet (ref to Figure 4-4) at the bottom faying 

interface.  

 

 

 

Figure 4-9: Blind hole 5000rev/min macrograph  

 

Lack of bonding on the sidewall for joint blind hole 5000rev/min could be solved 

by reducing the clearance between the rivet and hole.  For all the FHPR joints 

discussed, bonding to the side wall was not necessary a requirement for a good 

FHPR joint, only to be able to form a mechanical lock by joining the two sheets 

together.  
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4.4 Pull off Test 

As had been discussed in the preliminary process development and illustrated by 

Figure 4-7, the clear separation line of material plasticised to fill the chamfer and 

the rivet would affect the mechanical lock strength of the FHPR joint.  Therefore, 

the pull of test was established.  The pull off test was performed according to a 

modified ASTM 7322 standard, which was used to develop a pull off test method 

for the FHPR joints as discussed in section 3.6.1.  The pull off test was done due 

to the need to quantify the amount of force required to pull the rivet out of the two 

sheets joined.   

 

4.4.1 Pull of test results 

From the pull off tested samples, a force vs. displacement graph for all the joints 

was plotted as shown in Figure 4-10.  The pull off tests results are tabulated in 

Table 4-6 indicating the first fracture force/load and displacement.  The first 

fracture force is defined as the position of the first slip on the force vs. 

displacement graph. 

 

 

Figure 4-10: Pull off test results 
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Table 4-6: Pull off results 

Joint description First Fracture Force (kN) Displacement (mm) 

45° bottom hole 30.709 1.038 

30° bottom hole 37.568 1.005 

15° bottom hole 42.643 1.235 

Blind hole (BH) 36.709 1.041 

 

 

Figure 4-11 shows the pull off joints fracture surfaces for tested joints of different 

bottom hole chamfer (15°, 30°, 45° and BH 5000 rev/min).  The shiny surface 

shown on the pulled off rivets is plasticised material that fills the bottom chamfer 

hole.  The 15° showed that with a decrease in chamfer angle, a bond was formed 

at the bottom chamfer hole therefore forming a strong mechanical lock as 

compared to the others.  The rivet fractured in half without the whole rivet being 

pulled off as shown from Figure 4-11 (15° bottom hole visual images).  
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 Top plate Bottom plate Rivet Points of 

interest 

1. 45° bottom 

hole

 

   

 

2. 30° bottom 

hole 

 

   

 

3. 15° bottom 

hole 

 

    

4.Blind hole

    

 

Figure 4-11: Pull off fracture surfaces 

 

From the pull of results the following was deducted: 

 

45° bottom hole chamfered: From the pull off result (force and displacement 

curve), it was clear that a low pull off force and displacement was recorded 

because of the failure to adequately fill the bottom hole chamfer.  As discussed 

earlier, the clear separation line which is still visible on the 45° macrograph had an 

impact on the first fracture force (defined as the position of the first slip on the 



Chapter 4  Results and Discussion 

71 

 

force vs. displacement graph) which was lower than the other 3 tested 

geometries.   

 

30° bottom chamfered hole: The 30° macrograph is almost a similar to the 15° 

macrograph.  With an increased angle of 30°, the pull off force is lower than that 

of the 15° configuration. 

 

15° bottom chamfered hole: It has the highest pull off force and leads to the 

conclusion that, with a decrease in the chamfer angle, the pull strength increases 

which will be elaborated further in the following sections.  

 

Blind hole (BH 5000 rev/min): The blind hole setup configuration eliminated the 

need for a Haynes insert backing support (refer to Figure 4-1).  The faying 

surfaces were between the Ti-6Al-4V sheet and rivet.  Pull off results showed that 

the bond between the sheet and rivet at the bonding interface was strong 

therefore leading to the fracture of the 1mm sheet at the bottom as shown in 

Figure 4-11.  Bonding at the interface of the rivet and sheet formed the desired 

mechanical lock.   

 

4.4.2 Pull off energy absorbed 

From the pull off vs. displacement graph, the amount of energy absorbed can be 

calculated as the area under pull off vs. displacement graph.  The energy 

absorbed allows to the quantification of the joint energy absorbed by looking at 

the both the displacement and the pull off which allows for choosing of the best 

geometry with better energy absorption qualities.  Energy absorbed is termed as 

the amount of energy required to break the joint or for failure to occur (in this case 

the first fracture force).  The energy absorbed is similar to toughness of a material. 

 

                                                    (      )  Equation 4.1 

 

Figure 4-12 shows the energy absorbed graph of the FHPR joints conducted for 

pull off testing at the point of first fracture.  Two sets of the data are shown, the 

first being from the preliminary work (initial Tested FHPR joints) which were done 
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at 100% volume fill and were used as a characterise the instron machine Pull off 

testing capabilities.  A few set up problems that were identified during initial 

testing were adjusted (i.e. avoiding any slipping of the FHPR joints when being 

tested) thereby leading to the final matrix testing results which are detailed in this 

section.  The initial and final results (refer to Figure 4-12) show a similar trend in 

the energy absorbed to the bottom chamfer angle considering that there were 

riveted at different volume fill % (100% and 120% volume fill for initial and final 

testing respectively). 

 

 

Figure 4-12: Energy absorbed at differing angles; Pull off test; (* data discussed in this section) 

Note: Initial test done at 100% volume whilst the Final volume was done at 120% volume fill 

15° bottom hole chamfer outperformed the other two geometries by more than 

10kJ of absorbed energy as compared to the second nearest (30° bottom hole 

chamfer).  From this data it was noted that there is a decrease in the energy 

absorbed from the 15° to 45° chamfered angles.  This in turn relates with the pull 

off data which showed that the 15° had outperformed both in terms of first fracture 

force and displacement.   

 

The FHPR joints can be easily repeated within the experimental error allowing for 

the use of only one tested sample for pull off data with close monitoring of the 
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upset distance and the process energy input.  The process energy from feedback 

data and the pull off energy absorbed energy were plotted against each other in 

Figure 4-13.  This graph also takes into account the blind hole as it was done at 

the same process parameters as the bottom chamfered sheets. 

 

 

Figure 4-13: Energy absorbed and process energy relationship 

Although the joints are done at the same process parameters, the difference 

bottom hole sheet configuration determines the amount of upset distance whilst 

the volume fill (%) is kept constant.  The blind hole has the least process energy 

compared to the bottom hole chamfered sheets followed by 15° bottom hole 

chamfer due to its geometry having a blind hole instead of through hole, leading to 

a decrease in require upset distance to fill the hole.  

 

4.5 Shear testing  

The shear testing was conducted as illustrated in section 3.6.2.  Shear strength of 

mechanical fasteners is critical especially in the aerospace industry.  Typically in 

aircraft structures, fasteners are responsible for transfer of force or load in joined 

sheets in terms of shear.  For this research, the shear samples consisted of single 

riveted specimen as shown in Figure 4-14.  For the shear testing, the 15° FHPR 
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bottom hole chamfer joint which outperformed the 30° and 45° in terms of pull off 

strength was tested in shear.  15° bottom hole chamfer was only tested as there 

was expected uniformity of shear strength results of all the joints and also it was 

the best performing joint according to the pull off results.  The blind hole 5000 

rev/min joint was also tested to quantify the its shear strength with change in joint 

configuration. 

 

 

Figure 4-14: Shear testing sample 

To quantify the results both the blind hole and 15° bottom hole chamfer joint were 

repeated twice and an unprocessed rivet was also tested.  The unprocessed rivet 

was used for comparison purposes to the shear strength capabilities of FHPR 

processed joint.  The testing procedure and sample geometry were described in 

section 0.   

 

4.5.1 Shear testing results  

The unprocessed rivet achieved an averaged result of 16.4 kN which related to 

578.8 MPa (Ø6 mm rivet).  This was in the range specified by the material supplier 

of between 480 MPa and 690 MPa for Ti-6Al-4V ELI bar shear strength.  As for 

the FHPR joints shear test results, Figure 4-15 and Figure 4-16 shows graphs of 

the 15° and blind hole joints.  For 15° bottom hole chamfer test one at position 

labelled A, a noticeable slippage occurred which is similar to a  common 

occurrence in shear strength testing of self-piercing riveting, then the rivet 

continued to elastically deform until failure occurs. 
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Figure 4-15: Shear test results: 15° bottom hole chamfer 

 

 

Figure 4-16: Shear test results: Blind hole geometry 

At the start of shear testing the joints deform elastically as shown in both Figure 

4-15 and Figure 4-16, showing a linear increase on the force-extension graph.  

Due to an inability to visualise a transition point on the shear test results, the 

ultimate shear fracture force was used to conduct shear strength analysis.  For the 

blind hole configuration, a transition point was noticeable for both curves before 

rivet fracture which was related to the pulling out the bottom sheet that had 

formed a bond with rivet being pulled out slightly before the rivet eventually failed.  



Chapter 4  Results and Discussion 

76 

 

That point as shown in Figure 4-17 was then used as the point of interest in 

characterising the joint quality, even though the rivet goes on to further fracture at 

a high shear force.  The average shear test results are presented in Table 4-7.  

 

 

Figure 4-17: Blind hole, Rivet pulling off the bottom sheet  

 

Table 4-7: Shear testing results calculated using an unprocessed rivet diameter 

Joint description (Ø6 

mm rivet) 

Maximum Fracture force 

(kN) 

Stress 

(MPa) 

Point of pulling of 

bottom sheet 

(Average stress, MPa) Test 1 Test 2 Average 

Rivet 15.4 17.3 16.4 578.8 - 

FHPR 15° bottom 

chamfer 

25.0 23.5 24.2 857.3 - 

FHPR Blind hole 22.8 19.7 21.2 750.5 671.9 

 

Although no data to compare with was found for Ø6 mm Titanium rivet, the 

unprocessed rivet results showed that the FHPR joint shear strength gives a joint 

efficiency of above 100% which is positive.  The joint efficiency is termed as ratio 

of FHPR joint shear strength to unprocessed rivet shear strength. 

 

 



Chapter 4  Results and Discussion 

77 

 

4.5.2 Shear Fracture surfaces analysis 

Fracture surfaces of the shear samples were analysed to determine type of failure 

mode using the Scanning Electron Microscope (SEM).  Figure 4-18 and Figure 

4-19 show the fracture surfaces at highlighted points.  The failure surface showed 

a dimple-cuplike fracture surface which suggests a ductile failure for both the 15° 

and blind hole joints.  The fracture surfaces showed elongated dimples.  The 

dimples observed are not shallow but rather deep and conically shaped.  The 

characteristics of elongated dimples are that the dimples are not entirely 

surrounded by a rim and one end of the dimple is open as stated in the Metals 

Handbook on Fractography [24].  The failure is purely ductile with no visible 

evidence of brittle failure. 
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Figure 4-18: 15°
 
bottom hole chamfer fracture surface
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Figure 4-19: Blind hole shear fracture surface 
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From the 15° bottom hole chamfer, it was observed that the sheet had secondary 

cracks during the shear testing.  A high fracture force meant that the rivet was 

strong enough to withstand a higher force, leading to crack initiation of sheet 

before the rivet finally sheared off as shown in Figure 4-20.  This was discovered 

during the shear fracture analysis of the FHPR joints. 

 

 

Figure 4-20: Crack initiation on the Ti-6Al-4V FHPR joined 

 

4.6 Hardness analysis 

The Micro-hardness profile of the two joints quantified in shear strength (15° 

bottom hole chamfer and blind hole) was done.  It was noted that the Micro 

hardness of the FHPR joints changed from different zones due to the thermal and 

mechanical processing.  From the parent material across to the weld zone, there 

was general increase in hardness values with the average hardness of the parent 

sheet was 316 HV. 

 

As the 15° degree had the best results in terms of pull off strength and was tested 

for shear strength, it was decided to do hardness profile of the joints to determine 

the influence of FHPR processing on formation of the riveted joint.  The 15° 

bottom hole chamfer joint at rotational speed 5000rev/min, axial force 4kN and a 

forge force of 6kN hardness‟ profile is shown in Figure 4-21.   
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Figure 4-21: Micro-hardness 15° bottom hole chamfer, bottom and centre 
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The micro-hardness distribution in the 15° bottom hole chamfer showed 

interesting variations.  The hardness values in the vertical direction from the 

bottom are similar up until the last shear layer where hardness decreases to about 

a value close to the parent material.  Plasticisation and grain refinement in the 

weld zone led to hardness increase which positively affects the shear strength 

with a decrease in grain size altering the preferential shear slip plane.  The 

average horizontal hardness across the joint was 350HV which is above the 

hardness of the tested parent rivet material and sheet material hardness  

 

Figure 4-22 illustrates the hardness of the blind hole at process parameters of 

rotational speed, 5000 rev/min, axial force, 4 kN and a forge force of, 6 kN.  
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Figure 4-22:  Micro-hardness blind hole, bottom and centre 
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As expected hardness values increased from the bottom HAZ into the weld zone 

then decreasing after the last shear layer.  The average horizontal hardness 

across the blind hole was 340HV which to lesser extent explains the low shear 

strength values compared to the 15° bottom hole chamfer joint.   

 

4.7 Microstructure analysis 

Although the final matrix joints were done at the same process parameters, the 

influence of these process parameters on the microstructure needed to be 

quantified.  Figure 4-23 and Figure 4-24 illustrates the microstructure of the rivet 

and sheet material.   

 

 

Figure 4-23: Parent sheet material (a. SEM X1900 and b. Optical Microscope) 

 

 

Figure 4-24: Parent rivet material (a. SEM X1900 and b. Optical Microscope) 

The microstructure of both the rivet and the sheet are similar with the rivet 

material being Ti-6Al-4V Eli.  The microstructure of the sheet and rivet shows α-

phase (dark) surrounded by β-phase light (light).  This correlates to the specified α 



Chapter 4  Results and Discussion 

85 

 

+ β mill-annealed titanium microstructure.  The evaluated microstructure of the 15° 

and BH 5000rev/min is shown in Figure 4-25 and Figure 4-26 (for 30° and 45° 

refer to Appendix E: Microstructure variation (30º and 45º .  These were the joints 

tested in shear using the same process parameters as the other bottom hole 

chamfer configuration joints.  Figure 4-25 and Figure 4-26 shows the full 

micrographs done on an optical microscope. 

 

 

Figure 4-25: 15° bottom hole chamfer microstructure analysis 
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Figure 4-26: Blind hole: (5000rev/min) microstructure analysis 

The microstructural analysis was conducted to characterise the different zones of 

FHPR joints in the determination of a preliminary window of FHPR.  From the 

micro-analysis, it was noted that there are distinct zones in the FHPR joints.  The 

identified zones were the HAZ, weld zone and the interface between the faying 

/contacting surfaces.  These zones are described in detail as follows: 

 

4.7.1 Weld zone 

The weld zone micro-analysis showed that the structure formed after FHPR 

processing was more of primary equiaxed α and acicular α + β.  Using the 

Titanium technical guide, the weld zone microstructure relates to a process 

maximum temperature of 955°C which is then rapidly cooled, forming the 

microstructure illustrated in the blind hole and 15° bottom hole chamfer micro-

analysis figures. 
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4.7.2 Heat Affected Zone (HAZ) 

From the HAZ, the material had an equiaxed α phase or embedded αʹ martensite 

(transformed β) which is similar to what was observed by Mashinini [23]. 

 

4.7.3 Interface between the faying surfaces 

As this was the region where frictional heat was generated, the microstructure 

looks similar to the HAZ for both the blind hole and the 15° joints. 

 

To conclude this section on microstructural analysis, more work needs to be done 

to understand the phase change and effect of process parameters on the 

microstructure change/ evolution.  The microstructural zones are similar due to the 

same process parameters being used in the preliminary development of the FHPR 

process.  The cooling rate of Ti-6Al-4V after FHPR processing which was not 

investigated in this research but if done, could help in the explanation of the 

microstructure formed after FHPR process.  Selected points were evaluated on 

the SEM and are shown in Figure 4-27 and Figure 4-28.  The SEM images 

showed that there was grain refinement in the weld zone as compared to the 

parent in both the 15° bottom hole chamfer and blind hole geometry 

configurations.
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Figure 4-27: 15° Bottom hole chamfer microstructure; SEM x1900 
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Figure 4-28: Blind hole (5000 rev/min) microstructure SEM x1900 

 

4.8 Effect of rotational speed on FHPR joints 

To further analyse the effect of rotational speed on joint formation of the FHPR 

process, the effect of rotational speed was analysed with the introduction of the 

blind hole at 2500 rev/min joint.  From the blind hole geometry joints of 5000 

rev/min and 2500 rev/min, it was decided to conduct a pull off test, microstructure 

and hardness analysis on the weld zone to establish the effect of rotational speed.  

A blind hole joint at 5000 rev/min (discussed earlier) was conducted using the 

same process parameters as the 15°, 30° and 45° bottom hole chamfer 

geometries.  The second blind hole (BH2500 rev/min) was repeated with same 

process parameters with the exception of rotational speed which was reduced to 

2500 rev/min.  The resulting influence of the change in rotational speed is shown 

in Figure 4-29 and Figure 4-30 macrographs of the pulled off rivets. 
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Figure 4-29: Blind hole 5000rev/min macrograph of pulled off rivet 

 

 

Figure 4-30: Blind hole 2500rev/min macrograph of pulled off rivet 

 

The two curves for both 5000 rev/min and 2500 rev/min blind hole configurations 

are shown in Figure 4-31.  From the two curves, there is definite decrease in 

process torque due to the increase in rotational speed.  The effect of rotational 

speed showed that with an increase of rotational speed, the process energy input 

increased, leading to a higher up shear layer as visualised in Figure 4-29.  Whilst 

at the interface of the faying / contacting surfaces, the HAZ increased.   

 

At higher rotational speed, the upset distance rate is reduced, meaning a longer 

heating time leading to lower hardness values.  By considering the position of the 

last shear layer on the blind hole joints, 2500 rev/min and 5000 rev/min, it was 

observed that greater volume of material was displaced due to the low heating 
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time for the 5000 rev/min blind hole.  Low heating time allows for the propagation 

of thermal energy along the axial direction of the workpieces being friction 

processed. 

 

 

Figure 4-31: Blind Hole, Rotational speed influence on torque curve 

 

 

The difference in rotational speed, which meant a reduction in peripheral velocity 

from 1.57 m/sec to 0.78 m/sec, had an effect on pull off strength as illustrated in 

Figure 4-32.  It is the author‟s opinion that the amount of displaced material 

contributed to the difference in the pull off results. 
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Figure 4-32: Pull off results of 2500rev/min and 5000rev/min 

 

 

Figure 4-33 shows the microstructure analysis of the 2500 rev/min blind hole joint.  

The microstructure analysis was conducted on the pulled off rivet whilst 

microstructure for blind hole 5000 rev/min is illustrated in Figure 4-26. 
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Figure 4-33: 2500rev/min Blind hole 

 

 

The microstructure of the 2500 rev/min compared to the 5000 rev/min one, 

showed that at the middle section of the weld zone, the 2500 rev/min blind hole 

had a more refined microstructure.  This tends to agree with the fact that at low 

rotation speed, the grain structure formed is finer than in high rotational speed 

(5000 rev/min).  To verify this, hardness was also done for both blind hole joints to 

quantify if there is major difference in the hardness values (refer to Figure 4-34).   
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Figure 4-34: Hardness profile of varied rotational speed blind hole joints 

 

Hardness measurements were done across the joint with position zero being the 

bottom sheet were parent material registered a Hardness value of between 310 to 

325HV.  The hardness values of 2500 rev/min compared to the 5000 rev/min 

showed that the BH 2500 rev/min hardness values are just above 350HV in the 

weld zone compared to an approximate average of 340HV for the BH 5000 

rev/min (average calculated over the whole entire range).  This relates to the 

microstructure refinement in the weld zone. 

 

4.9 Summary 

It is necessary to state that this chapter was not a process parameter optimisation 

but used to understand and establish the process of FHPR.  The influence of 

changing the chamfer angle from 45° to 15° showed that by decreasing the 

chamfer angle at the bottom hole, material fills the chamfered hole better due to 

dynamic flow of plasticised material.  The reduction of the chamfer angle also had 

a positive effect on the pull off results with a decrease in angle relating to increase 

in pull off strength.  These pull off tests dispelled any questions as to whether a 
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fully mechanical lock had formed, which would be able to firmly clamp the sheets 

together. 

 

It can be concluded that the FHPR process is fairly repeatable from the torque 

data and upset distance feedback analysis.  The process torque as discussed is a 

valuable piece of information which was used to characterise the FHPR process.  

The curve itself was divided into 5 stages which explained what happened at each 

stage.  The microstructure analysis showed that for both 15° and blind hole 5000 

rev/min joints the structure was similar.  The hardness values of the two in the 

maximum shear plane showed that the 15° joint had a marginally higher hardness 

compared to blind hole at 5000 rev/min.   
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Chapter 5: Conclusion and Future work 

 

5.1 Introduction 

This research was done to determine the feasibility of riveting Ti-6Al-4V 

overlapping sheets together with the emphasis on providing a joint that would be 

able to provide an alternative joining technique.  Based on FHPP, FHPR used the 

same principles which allowed for the quick development of this joining process.  

Analysis was conducted on the process data feedback of all the FHPR joints and 

a select few joints were analysed in pull off strength, shear strength, hardness and 

micro/macro-structural analysis.  The varied chamfer angle geometry was tested 

by pulling the joints so as to determine the effect of varying the bottom hole 

chamfer angle (pull off test).  

 

5.2 Discussion and Conclusion 

Ti-6Al-4V overlapping sheets were successfully joined together using a Ø6 mm 

rivet made of Ti-6Al-4V rod in two different joint geometries (bottom hole 

chamfered sheet and blind hole).  These two geometries were tested and 

exhibited good mechanical properties in terms of the pull off and the shear 

strength.  Initially in the preliminary work, the effect of rotational speed and axial 

force were quantified.  It was noted that rotational speed played a role in the 

generation of frictional heat and the joining speed which translated to the overall 

process time.  From a series of rotational speeds tested, it was observed that an 

adequate rotational speed for easily displacing of material to fill the chamfered 

hole at the bottom should be at least 5000 rev/min. Due to the machine 

capabilities (maximum speed of 5250 rev/min) and the preliminary work results, it 

was decided to use 5000 rev/min for the final matrix tests. 

 

Axial force which is responsible for the keeping of the faying surfaces in contact 

and the temperature gradient was also quantified in the preliminary work.  The 

effect of axial force on the FHPR joint was that with low axial force, the material 

flow was not adequate to fill the bottom hole chamfer whilst a high force pushed 

material under the backing plate as well as causing sticking between the backing 

plate and the rivet.  From the axial force tests, it was decided to use a force of 4 
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kN with a 150% increase on the forge force.  The increase in forge force refined 

the grain structure and consolidated the plasticised material as it cooled down.  

The forging force was kept constant at 150% which is deemed not too high so as 

to minimise the amount of material that flowed as flash.   

 

Due to the clear “separation” line that was comprehensively detailed in the 

preliminary work findings, it was decided that the following joints be tested in their 

capacity to withstand a pull off force.  This allowed the quantification of how much 

force would pull apart the sheets which are FHPR mechanically locked together.  

With the decrease in the bottom hole chamfer angle, it was noticed that the pull off 

force increased.  This was explained by the fact that the clear separation line was 

eliminated while bonding was visualised at the bottom hole chamfer therefore 

forming a stronger mechanical lock.  A blind hole configuration was tested in its 

pull off force capabilities and it was observed that the joint did not fail at the 

bonding interface of the rivet and bottom hole sheet material, but that the sheet 

was pulled out.  This scenario suggested that by decreasing the blind hole depth, 

it would increase the pull off strength although it was not tested in this work. 

 

The shear testing was related to the hardness results for the 15° and the blind 

hole configurations.  From the shear strength deduction, the 15° bottom hole 

chamfer had the best shear strength results compared to the blind hole although 

both were done at the same process parameters.  A possible explanation was the 

decrease in hardness in the blind hole which in turn was related to the difference 

in joint configuration.  Comparing the shear fracture surfaces, it was observed that 

failure was due to ductile for both tested joints. 

 

The microstructure after FHPR processing was the same for all the joints due to 

no change in the process parameters.  In the weld zone, the microstructure was 

refined and more of primary equiaxed α and acicular α + β.  The microstructure 

observed is similar to the microstructure after duplex annealing with heat 

treatment where the alloy is heated to 955°C then air cooled [17].  The blind hole 

had two variations in rotational speed, and the microstructure of the 5000rev/min 

to 2500rev/min was compared and it was noticed that the 2500rev/min had a 
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refined microstructure in the weld zone which translated to an in increase in the 

average hardness although marginally. 

 

Friction Hydro Pillar Riveting “a new riveting technique” developed, characterised 

and explained in this work has proved to be a feasible alternative joining 

technique for Titanium alloys.  For commercial purposes, its shear strength puts it 

in good stead as alternative joining process for Ti-6Al-4V sheets.  The bottom hole 

chamfer can be used where accessibility of the both sides is not an issue while 

the blind hole caters for where only one side is accessible for joint preparation. 

 

To conclude the main observations from this research are as follows: 

 Rotational speed plays an important role in frictional heating and thereby 

generating enough heat for material plasticisation and flow to adequately fill 

the bottom chamfered hole. 

 An adequate axial force is required to keep the contacting surfaces intimate 

as the plasticised material is pushed to fill the bottom hole chamfer. 

 Joint pull off strength of the FHPR joints is related to the bottom hole 

chamfer angle, with a decrease in chamfer angle leading to an increase in 

pull off strength. 

 The shear fracture surfaces of the FHPR joints exhibited ductile failure. 

 

5.3 Future work 

The development of the FHPR process identified certain areas which will require 

further study.  Suggested areas are as follows: 

 The process window needs to be optimised with an in-depth analysis on 

the upset distance and volume fill to allow for a FHPR joint where the 

amount flash is minimal. 

 An analysis on the effect of radial clearance on the joint formation leading 

to improved pull off strength. 

 A temperature analysis to verify the type of microstructure formed with the 

cooling rate. 

 Increasing the shear area of blind hole, could in turn have an effect on pull 

off strength and allow for ease of manufacture.  
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 The fatigue life and residual stress of FHPR joints due to different process 

parameters, needs to be investigated before the process can be applied to 

the Industry. 

 The use of a hollow rivet should be investigated and what impact it has on 

the formation of the bottom head to lock the sheets together. 

 

The knowledge generated in this study can be used as a basis for further 

development of the FHPR process.  The work done on FHPP regarding process 

parameters and geometries can fully be enhanced by FHPR. 
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Appendix A: Loadcell calibration 

 

Torque calibration Curve 

 

 

  Table of Recorded data 

Mass 
(kg) 

Torque 
(Nm) 

Recorded voltage (mV/V) average uncertainty 

1 2 3 

1 1.766 0.102 0.094 0.090 0.09536 0.015 

2 3.532 0.198 0.191 0.194 0.19436 0.009 

3 5.297 0.299 0.297 0.293 0.29616 0.006 

4 7.063 0.401 0.400 0.398 0.3998 0.003 

5 8.829 0.504 0.504 0.496 0.50148 0.011 
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Abstract. This paper reports on preliminary results obtained during exploratory research, 

investigating the feasibility of employing Friction Hydro Pillar Processing principles as an 

alternative technique for producing riveted joints in 3.17mm Ti-6Al-4V sheets. Influence 

of process parameters was investigated to understand material flow during the 

plasticisation phase. An understanding of joint performance from a macrostructural and 

hardness point of view was established and forms part of the data presented. Process 

energy was quantified in relation to rotational speed. The data presented will assist in 

guiding the overall research objective to determine the feasibility of Friction Hydro Pillar 

Riveting as a suitable alternative high integrity joining process for the Aerospace industry. 

Introduction 

Mechanical fasteners are used extensively in the joining of two or more metal plates or 

sheets. For most applications of mechanical fasteners a pre-drilled hole is fitted in with the 

fastener (i.e. rivets, bolts and etc.).  The fastener is inserted into two or more aligned holes 

of plates or sheets being joined. Riveting is one of the more viable methods to fasten thin 

wall sheets permanently. Rivets have many advantages, such as simple joining process, 

reliable joining intensity and high working efficiency, and are used profusely in the 

aircraft industry. Ti-6Al-4V accounts for 50% of titanium usage in the aircraft industry [1, 

2]. Due to material type and thickness of sheets used in aircraft skins and other 

components, welding processes tend to degrade fuselage skin structures and the skins are 

not easily welded. With the emergence of friction processing as an alternative method of 

joining components together in the aerospace industry, emphasis has been placed on 

understanding and quantifying the impact of this new technological advancement as a 

potential joining process. Research is currently being carried out on the feasibility of 

joining Ti-6Al-4V sheets using Friction Stir Welding (FSW) [2, 3, 4]. The Welding 

Institute (TWI) describes Friction Hydro Pillar Processing (FHPP) as involving rotating of 

a consumable cylindrical shaft under an applied load inside a blind hole of nominal 

diameter and generating friction between the shaft and the material at the bottom until 

sufficient heating, causing a temperature increase. Material plasticises and bonding occurs 

forming a metallurgical bond [5, 6, 7, 8]. Friction Hydro Pillar Riveting (FHPR) as 

proposed by this research project provides an alternative joining technique and is based on 

mailto:danie.hattingh@nmmu.ac.za
mailto:davies.tsikayi@nmmu.ac.za
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the same principles as FHPP. The significant parameters that influence FHPR are axial 

force, rotational speed and consumable length (plunge depth) as stated by Sahin et al. for 

FHPP [7]. Consumable length is the distance that the rivet plunges to allow for adequate 

filling of the bottom sheet chamfer before the top of the rivet head is forced into the rivet 

location hole of the top sheet. Rotational speed is the least sensitive process parameter and 

individual materials have their optimum rotational speed [8]. Axial force controls 

temperature gradient in the weld zone for FHPP [8]. Hattingh et al. showed how these 

parameters strongly affect the strength of AISI 4140 steel joint in Friction Taper Stud 

Welds (FTSW) [9]. This paper reports preliminary work on FHPR, „a new riveting‟ 

technique under development at Nelson Mandela Metropolitan University (NMMU) for 

joining of thin wall overlapping Ti-6Al-4V sheets. Currently it is envisaged that a typical 

FHPR process will involve a rotating pre-machined rivet-stud into aligned holes of two 

overlapping sheets onto a backing plate under a small axial force. On initial contact with 

the backing plate, the temperature of the stud material will rise sharply with an associate 

torque peak due to rubbing of the faying surfaces (,-rivet and backing plate).  When the 

pre-set consumable length (plunge depth) to form the bottom rivet head is achieved, 

rotation is stopped abruptly and the final forge/forming sequence is completed allowing 

the plasticised material to form the bottom rivet head during consolidation.  

 

Experimental procedure 

Material used in this investigation was 3.17mm Ti-6Al-4V alloy and Ti-6Al-4V Extra 

Low Interstitials (Eli) bar for the rivets. The sheet material chemical composition (wt. %) 

is Al 6, V 4.04, Fe 0.19, N 0.018, O 0.18 and remaining Ti while the rivet is Al 6.25, V 

4.04, Fe 0.1, N 0.01, O 0.18, C 0.03 and remaining Ti. The Eli bar material has improved 

toughness and ductility as compared to the sheet material [10]. 

 
Figure 1: Schematic of FHPR 

In the preceding process development phases, several setup combinations were considered 

to evaluate the influence, for example of rivet diameter, clearance and rivet “end face” 

geometry, however for this paper only the geometry and set up as illustrated in Fig.1 was 

considered. Material used for the backing plate was Haynes 230 alloy. With reference to 

Fig. 1, the function of the backing plate insert is to act as a support face or anvil for 

forming the bottom head of the rivet. Haynes 230 alloy is commonly used as a backing 

material in FSW of Ti-6Al-4V due to the material‟s high melting point and ability to 

withstand high forces at these elevated temperatures, allowing for the non-sticking of the 

titanium rivet at the faying (contacting) surface. The platform used for this research was a 

NMMU developed „Process Development System‟ (PDS), friction processing machine 

purposely designed for process research on FSW and FHPP. The PDS platform allows the 

researcher to independently control axial force, forge force, consumable length, forging 

time and rotational speed. As one of the considerations during the work was to limit „total 

time‟ to form a rivet, the influence of axial force and consumable length were closely 
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controlled as they were identified as the main contributors to joining time. By increasing 

axial force, process time decreases whilst increasing consumable length has the opposite 

effect as more material is displaced [2]. For this investigation, rotational speed is varied 

from 2000rev/min to 7000rev/min while other process parameters, axial and forge force 

and forging time were kept constant in reference to preceding work not covered in this 

paper. The set up used in this matrix was that of a single bottom sheet (instead of a double 

sheet configuration). The dimensions and geometry of the rivet and sheet is shown in Fig. 

2. 

 

Configuration Description Size (mm) Comments 

90 degree Flush rivet 

 

Diameter 6 
Machined to size Ti-6Al-

4V Eli bar 

Shank length - Based on the volume fill 

Chamfer outer diameter 12 -  

Chamfer height 3 - 

Hole, (45 degree 2 mm 

Chamfer) 

 

Hole diameter 6.5 Radial clearance of 0.25  

Outer diameter 10.5 - 

Hole depth 3.17 - 

Thickness of plate, t 3.17 
Readily available Ti-6Al-

4V sheets 

Figure 2: Geometry utilised 

Consumable length was calculated by considering the volume of material required to fill 

bottom chamfer hole in the sheet. The bottom mechanical lock or rivet head will therefore 

be formed by plasticised material contained within the chamfered hole. A 120% volume 

fill was used to allow for a slight over fill and compensate for any volume change during 

the forge/cooling phase. The axial and forge force was kept constant at 4kN and 6kN 

respectively. A shielding mechanism was integrated into the setup of the machine due to 

the need to shield Ti-6Al-4V from oxidation during joining. Although FHPR can be 

considered a solid state joining process meaning that the process does not exceed the 

melting temperature, a need for shielding was observed. A brown colour or blue purge was 

observed on the flash with no shielding while with shielding, shiny metallic flash was 

formed. For the macrostructure sample preparation, the etchant used was 2ml HF (40 %), 

5ml H2O2 (30 %) and 100ml H2O. Hardness was done 0.5mm from the bottom of the plate 

in a horizontal direction with 0.5kg load and 0.5mm spacing between indentations as 

shown in Fig. 3. 

 
Figure 3: Hardness profile representation of half the sheet and rivet 
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Results 

Influence of rotational speed was quantified in terms of material flow. The process energy 

was calculated using standard energy and power calculation formula shown in Equation 1 

(up until the stopping time without considering the peak brake torque). The relative 

velocity formula is illustrated in Eq. 2.  
 

Energy=Power × Time interval 

                  E= 2π/60 NT × time interval   

 (1) 

 

 Relative velocity = rotational speed ×radius                  

             v = wr                           

(2) 

 

The effect of rotational speed on the bottom rivet forming process is illustrated by the 

cross sectional macrostructural appearance as revealed in Fig. 4. 

 

 

Joint 

Parameters set 
Process 

Energy 

(kJ) 

Energy/ 

C. length 

(kJ/mm) 

Joint cross section / 

macrostructure 
Rotational 

speed 

(rev/min) 

Relative 

Velocity (m/s) 

1 2000 0.63 2.01 0.70 
 

2 4000 1.26 2.60 0.904 
 

3 5000 1.57 3.41 1.19 
 

4 7000 2.20 3.66 1.28 
 

Figure 4: Rotational speed influence 

In Rotary Friction Welding (RFW), a minimum relative velocity of 1.27m/s is required for 

sufficient bonding between the two work pieces [8]. For this experiment, relative velocity 

varied from 0.62m/s (2000rev/min) to 2.20m/s (7000rev/min) as bonding between the 

plasticised material and the side of the hole in the sheet was not considered critical. From 

the Figure 4, it was confirmed that with a lower relative velocity at the outer periphery of 

the rivet, flow of the plasticised material was insufficient. This can be related to the quick 

completion of joint at 2000rev/min, as there was not enough heat generated at the faying 

surfaces to allow plasticised material to flow and form-fill the chamfered hole of the sheet. 

In relation to the process energy, the 7000rev/min gave the highest value of 3.66kJ. 

 

From joints at 4000rev/min and 5000rev/min, it was observed that the material flow was 

acceptable although both showed deficiencies. Process time for 5000rev/min joint was 

longer than that of 4000 rev/min joint, which relates to the tearing being replaced by 

polishing with an increase in rotational speed [2]. At 5000rev/min, consumable length 

(plunge depth) rate slows down (which directly relates to cooling rate), increasing process 

time and producing a wider HAZ than at 4000rev/min. Process torque response for the 
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four welds is shown in Fig.5 with the black straight line showing the start of motor 

braking and  initiating the stopping of rotation. 

 

 
Figure 5: Process torque response curves 

The torque curve contains important process information. Considering the 7000rev/min 

(Figure5:Joint 4), the torque curve stages can be identified; with the initial stage being the 

first stage of contacting (faying) surfaces, leading to the initial torque peak at 

approximately 3.92 seconds (4.6 seconds at 5000rev/min). From the initial torque peak, 

the torque stabilises around 2N.m until the motor is stopped abruptly. When the motor is 

stopped, the torque remains constant and gradually peaks up to a brake torque (point of 

zero rotation) which is related to the braking time of the PDS platform and is observed in 

all the joint trials. This is due to the large inertia of the welding head on the PDS platform 

and has been identified as a major challenge to be solved, allowing for production of 

optimal rivet head in the shortest time interval. 

 

 
 

Figure 6 shows that there is a non-linear relationship between process energy and 

rotational speed which can be used to predict process energy at different rotational speeds. 

As the rotational speed increases, the torque decreases which in turn causes minimal 

difference to process energy at higher rotational speed of 5000rev/min and 7000rev/min.  

 
The hardness profiles illustrated in Figure 7 shows the variations of hardness with location 

from the centre of the joint at approximately 0.5mm above the sheet (refer to Fig. 3).  

Figure 6: Relationship between Process Energy and Rotational speed 
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Measurements of hardness were done close to the contacting surfaces of the rivet and 

backing plate as this is where frictional heat is generated and are the most likely points for 

introducing unwanted hardness changes. 

 
Figure 7: Horizontal hardness profile of 4000 and 5000 rpm joints 

Hardness values increase from the parent (310-325HV) to the HAZ and plasticized zone. 

Increase in hardness in the plasticised zone from parent can be mainly attributed to forging 

force (refines the grain size) and the temperature gradient.  

 

The two joints at 4000rev/min and 5000rev/min were repeated with the full configuration 

of two (top and bottom) chamfered sheets and a countersunk 90º rivet as shown in Fig. 8. 

A mechanical lock was formed as illustrated in the macrographs shown in Fig. 8. 

 
Joint 4000rev/min 5000rev/min 

Macrostructural 

  

Figure 8: Full joint of 4000 rpm and 5000 rpm 

 

Although it appears as if a proper fill of the bottom chamfer was achieved at 5000rev/min 

another phenomenon was identified raising some concerns. From macrostructural 

appearance, it appears that some diffusion or lack of fusion accrued along the original 

shank diameter and the newly formed plasticised material that formed the bottom rivet 

head as illustrated in Fig. 9.  

 

 
Figure 9: A clear separation line between plasticised material and stud 

This is undesirable as it will not form the desired mechanical lock. It most probably 

occurred due to the result of plasticised material making contact with the side of the “cold” 

chamfered hole in the sheet, resulting in a stronger bond than that between the original 

stud and the displaced plasticised stud material, forming a shear layer at this point. It is 

believed that this could be solved by stopping the process earlier and relying on a cold 

forge/form final stage and will be investigated further. 

Conclusion 

The results from this study revealed important process relationships and evidence to show 

that FHPR can be used as method for riveting Ti-6Al-4V sheets together. The results 

further showed that rotational speed has a non-linear relationship to process energy. This 
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non-linear relationship can be attributed to the drop in average process torque experienced 

during rivet forming at higher speeds.  This trend in turn is attributed to an associated 

increase in process temperature with the increase in rotational speeds, reducing shear layer 

strength in the plasticised material resulting in lower process torque required. Increased 

heat input on the other hand reduced the cooling rate due to greater volume of material 

being heated up. As the cooling rate decreased, a wider HAZ was observed. Therefore 

rotational speed contributes to the frictional heating and influences the joining speed. 

From this work the required process stages have been defined with a clear indication that 

the final process will have to tend more to a cold forge/form stage rather than a traditional 

FHPP stage. 
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Appendix C: Visual images of Joints 

 

Joint description  Visual Image 

15° Bottom hole 

chamfer 

Shown in Table 4-3 

 

30° Bottom hole 

chamfer 

 

   

 

45° Bottom hole 

chamfer 

 

   

 

BH 5000rev/min 

 

   

 

  



Appendices 

112 

 

Appendix D: Process curves (15°, 30° and 45° joints) 

15° Bottom hole chamfer process curve (similar to that shown in Figure 4-3 (1) at 

the same process parameters) 

 

 

30° Bottom hole chamfer process curves 
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45o Bottom hole chamfer representative process curve 

 

 

Note: The average feedback axial force and rotational speed was 4000N and 

5000rev/min respectively at steady state. 
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Appendix E: Microstructure variation (30º and 45º joints) 

30o Microstructure analysis  
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45o Microstructure analysis  

 


