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Abstract 

This dissertation develops a standard device model for networked audio devices and 

introduces a novel discovery and control environment that uses the developed device 

model. The proposed standard device model is derived from a study of current audio 

control protocols. Both the functional capabilities and design principles of audio control 

protocols are investigated with an emphasis on Open Sound Control, SNMP and 

IEC-62379, AES64, CopperLan and UPnP. An abstract model of networked audio devices 

is developed, and the model is implemented in each of the previously mentioned control 

protocols. This model is also used within a novel discovery and control environment 

designed around a distributed associative memory termed an object space. This 

environment challenges the accepted notions of the functionality provided by a control 

protocol. The study concludes by comparing the salient features of the different control 

protocols encountered in this study. Different approaches to control protocol design are 

considered, and several design heuristics for control protocols are proposed.  
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Chapter 1  

Introduction 
 

 
1.1 Motivation for this Study  

The previous two decades have provided technological advances in networking that allow 

local area networks to transmit digital audio with an acceptable quality of service. 

These technological advances have led to the development of complex audio devices such 

as mixing consoles that use network transports for both audio and control data. 

Management of both the networked audio streams and the networked devices themselves 

are critical features of an audio network: 

"Networks have a legacy of association with control and monitoring in audio 

systems … Especially in installed sound, the primary draw of an audio network 

may be in the control and monitoring capabilities." 

(Gross K. , 2006, p. 66). 

 
During the writing of this dissertation, several new audio control protocols were in 

development, undergoing standardization, or being brought to the commercial 

marketplace. Recently developed audio control protocols provide an integrated approach 

to device control, monitoring and connection management. This integration of 

functionality has resulted in vendors providing sophisticated control and management 

application software. Examples of these applications and their underlying control 

protocols (indicated in parentheses) include: 

 UNOS Creator and UNOS Vision (AES64) from Universal Media Access 

Networks (Universal Media Access Networks, n.d.); 

 Audio Architect (HiQnet) from Harman Corporation (Harman Pro Corporation, 

n.d.); 

 The CopperLan Manager (CopperLan) from Klavis Technologies (Klavis 

Technologies, n.d.). 

These protocols support the management and control of both networked audio streams 

and audio devices, and may be termed ‘second-generation’ control protocols. Control 

protocols that do not support this integrated approach may be termed ‘first-generation’ 

control protocols. First-generation control protocols typically only support the reading, 
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writing and monitoring of parameter values. An example is the Simple Network 

Management Protocol (SNMP) (Case, Fedor, Schoffstall, & Davin, 1990) which is a 

standard, general-purpose control protocol that has been used to configure audio 

networks and to control audio devices.  

Managing audio networks requires sophisticated and expressive control protocols. 

Unfortunately, no sources exist that identify or discuss the desirable features of a control 

protocol. Existing works dealing with protocol design consider network protocols in 

general, and often do not specifically discuss control protocols. In addition, these works 

typically emphasize the formatting and transmission of network data. For example,  

a rigorous work entitled Principles of Protocol Design (Sharp, 2008), emphasizes protocol 

implementation within the lower levels of the ‘Open Systems Interconnection’ (OSI) 

(ISO/IEC, 1994) model. This model is commonly used to describe the architecture of 

network protocols and is discussed in Section 2.3.4 The Control Protocol Stack (p.20).  

A limited and incomplete study of both packet structures and flow control (the regulation 

of data transmission rates) for control protocols (Roddey, 2011) does not address the 

representation and use of parameter data, nor does it address the control mechanisms 

used to access parameter data. The control of networked devices in general and audio 

devices in particular, has never been systematically examined.  

Evaluating the characteristic features of a control protocol is difficult, as an 

evaluation can be approached from several vantage points. These include the: 

 Semantics of the high-level commands provided by a control protocol; 

 Organization, storage and addressing of parameter data; 

 Representation of controlled devices within a control protocol; 

 Encoding, formatting and transport of packet data. 

At the highest level, users focus on the semantic outcomes of protocol commands. At the 

network level, a control protocol can be described in terms of the different network layers 

forming the OSI model or the ‘Transmission Control Protocol’ (TCP) Model (Cerf, Dalal, 

& Sunshine, 1974). Except for CopperLan, all of the control protocols emphasized in this 

study are built on top of the OSI layer 3 ‘Internet Protocol’ (IP).  

These control protocols typically use the two commonly encountered OSI transport layer 

(layer four) protocols: the ‘User Datagram Protocol’ (UDP) (Postel, 1980) and the 

‘Transmission Control Protocol’ (TCP) (Defense Advanced Research Projects Agency, 

1981). 

A discussion of a control protocol with reference to a layered network model is not 

required to investigate and evaluate the functionality provided by the protocol.  
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Control protocols typically provide commands that are high-level abstractions of control 

functionality. These higher-level abstractions such as the ability of a protocol command to 

address multiple parameters have never been systematically studied. In addition,  

the organization and storage of parameter data, as well as the representation of devices 

within a control protocol both warrant a detailed investigation. 

1.1.1 Topics Addressed in this Dissertation 

In addition to a general investigation and evaluation of different control protocols, three 

additional topics that provide an original contribution to the field of audio networking are 

emphasized throughout this dissertation:  

1. The development of a standard device model (SDM) that provides: 

 A standard representation of the structural organization and 

representation of an audio device, and 

  A standard addressing scheme used to reference parameter data.  

This standard device model supports service discovery and service enumeration 

for networked devices, and specifies the representation of a control surface. 

Although intended to represent audio devices, this generic device model can 

represent any networked device. A standard representation of parameter 

addresses promotes interoperability among different control protocols by 

supporting parameter address translation. Where service discovery requests and 

parameter addresses use a common abstract representation, gateways can 

translate between different control protocols. Translation between AES64 and 

OSC (Igumbor & Foss, 2013) has used this approach. 

2. The development of an original environment for the discovery and control of 

networked devices. This environment avoids many of the complexities associated 

with service enumeration and control surface creation. 

3. The development of a conceptual framework that is used to examine and 

illustrate principles of control protocol design without emphasizing any specific 

implementation. These concepts and general design principles are of greater 

importance than the characteristics of specific platforms or development 

environments. 

The formulation of a device model required a preliminary study to compare and evaluate 

the different features and capabilities of existing control protocols. These features include 

parameter representation, as well as the discovery, control and connection management 

capabilities provided by different control protocols. A comparison of the implementations 
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of the SDM within different control protocols led to the development of an original 

discovery and control environment. In addition, comparisons of the capabilities of 

different control protocols: 

1. Identified the desirable design features and characteristics of a sophisticated and 

expressive control protocol. Conversely, negative features (anti-patterns) of 

control protocol design that constrain the capabilities of a protocol were 

identified.  

2. Required the development of original terminology to describe control protocol 

concepts. Many control protocol concepts lack an accepted, standard 

terminology. 

Implementations of the SDM using the native data representations and commands of 

different control protocols highlighted both the capabilities and inherent limitations of a 

specific protocol. Attempts to overcome these limitations led to the development of the 

discovery and control environment presented in Chapter 11. This environment uses the 

SDM to support service discovery and encapsulates functionality within device 

components conforming to the SDM. A device component is defined as a control such as 

a fader or a logical section of a device such as the equalization section of a mixing console. 

A study of the design of different control protocols resulted in the formulation of 

concepts describing control protocol designs that are presented in Chapter 10. 

Identification of the strengths and weaknesses of different control protocols suggested 

many control protocol design heuristics. These heuristics are discussed throughout this 

dissertation and summarized in Appendix 1. 

1.2 Writing Conventions and Terminology 

The following section clarifies the writing conventions and the different uses of 

terminology in this dissertation. The following conventions are used:  

 Terminology that is specific to a particular control protocol is adhered to when 

discussing the protocol and the first occurrence of a technical term is placed in 

single quotation marks.  

 First occurrences of original terms developed during this study are underlined and 

placed in single quotation marks.  

 Names of classes, data structures, variables and technical terms may be placed in 

single quotation marks to make the text more readable. 

 Proper names such as the name of an organization or the name of a control 

protocol may be italicized to make the text more readable. 
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 Direct quotations from external sources are italicized, indented and placed within 

double quotation marks. 

The subject areas that embrace networking and network protocols often use 

terminology that is ambiguous or inadequately defined, especially when compared to 

accepted computer science terminology. The description of audio networks and audio 

device functionality also pose significant challenges: 

“We’ve always struggled with terminology when referring to audio input/output 

from devices such as codecs and hybrids where there’s local audio I/O as well as a 

combined network I/O port.” 

          (Axia Audio, n.d.). 

Commonly encountered terms and their denotations within this dissertation are defined 

below. Additional terms are defined as they are encountered and are placed in a glossary 

for the convenience of the reader. Technical terms that are not specifically associated with 

a particular control protocol or audio transport are preferred. 

 ‘Argument' refers to an actual or formal parameter within the context of the 

invocation of a function or remote procedure call.  

 ‘Attribute’ refers to a descriptive characteristic such as the color of a control or 

meta-data used to describe the characteristics of data. Standard object-oriented 

usage of the term is always clearly indicated by further qualifying an attribute as 

an ‘object attribute’.  

 ‘Protocol’ refers to a control protocol unless the context obviously refers to other 

network protocols.  

 ‘Parameter' always refers to a data item that is associated with the state of a device. 

The term ‘parameter’ is never used to refer to actual or formal arguments to a 

function, nor is it used to refer to other data such as general descriptive data. The 

term may be qualified further as in ‘control parameter’, ‘DSP parameter’ or 

‘connection parameter’. 

 ‘Component’ refers to a logical or physical part of a device. This term is also used 

to refer to logical groups of objects within service-oriented architectures. 

 ‘Control’ refers to a control (commonly a fader, knob or switch) implemented in 

hardware or implemented as a software widget. The term may be qualified further 

by using the terms  

o ‘Hardware control’ when referring to a physical control, or, 

o ‘Virtual control’ or ‘software control’ when referring to software controls.  



6 
 

 ‘Controller’ may refer to any hardware or software device that controls another 

device. An application or device that only performs control may be referred to as a 

‘dedicated controller’.  

 ‘Device’ refers to any controller or device, whether physical or virtual. A device is 

typically the recipient of control messages. 

 ‘Connection management’ refers to the management of audio connections between 

devices on a network. Some control environments provide connection 

management functionality between streams of control data. This type of 

connection management is termed ‘control connection management’ to 

distinguish it from audio connection management. 

 ‘Audio Stream’ refers to a group of source or destination audio channels.  

This term may be further qualified by referring to an ‘audio source stream’ or an 

‘audio destination stream’. The abbreviated forms ‘audio source’ and ‘audio 

destination’ are also be used. 

 A ‘control point’ is a remote procedure invoked to provide control functionality or 

invoked as a side effect of a parameter access. Note that UPnP uses the term 

‘control point’ to denote a controller process. 

 ‘Service’ denotes a well-defined functional capability provided by a device.  

The most rudimentary service consists of a parameter access or control point 

invocation.  

 Commands that read and write parameter values are generically termed ‘GET()’ 

and ‘SET(..)’ commands respectively. Note that standard SNMP commands also 

use these names. 

References may be repeated within different chapters if such repetition improves the 

coherence of individual chapters. 

1.3 An Introduction to Control Protocols  

A network protocol may be defined as: 

"The formats and procedures that govern the transmission and reception of data in 

a network. The term comes from the Greek “protokollon”, which was the cover page 

to a manuscript that provided a description of the contents." 

  (The Computer Language Company Inc., n.d.). 

As discussed in Section 1.1 Motivation for this Study, the concept of a ‘control protocol’ 

may have many different meanings and connotations that are determined by the 

conceptual level that a control protocol is viewed from. Control protocols typically 
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implement higher-level functionality using existing, open network protocols or 

proprietary network transport layers. Audio control protocols have developed from the 

functional requirements of different networked environments such as live sound and 

broadcast environments. Chapter 3 provides an overview of current audio control 

protocols with reference to these application areas. 

1.3.1 Protocols Discussed in this Dissertation 

Several control protocols were selected for detailed analysis according to three selection 

criteria:  

1. IP-based control protocols are emphasized as the use of IP-based control protocols 

has become common within the audio networking community. 

2. Protocols having freely available specifications and implementations were selected 

for further investigation. The availability of specifications and software libraries 

supported the development of software to evaluate and analyze the capabilities of 

each control protocol. 

3. Protocols that have achieved standardization or protocols that are undergoing 

standardization are emphasized.  

Using the above selection criteria, the protocols discussed in detail in this study include: 

1. Open Sound Control (OSC) (Wright, 2002a), developed at the Center for New 

Music and Audio Technology, University of California, Berkeley. 

2. SNMP in general and IEC-62379 (International Electrotechnical Commission, 

2008), a standard SNMP-based control protocol. 

3. AES64 developed by Universal Media Access Networks (UMAN) which became 

an AES standard in 2012 (Audio Engineering Society, 2012).  

4. CopperLan, developed by Klavis Technologies that uses a proprietary Ethernet 

transport layer (Klavis Technologies, n.d.). CopperLan is the only non IP-based 

protocol that is discussed in detail. 

5. Universal Plug and Play (UPnP) (UPnP Forum, 2013) has many valuable 

features, and is built using open protocols with an emphasis on HTTP-based 

network protocols. 

6. Fli2, an original object-oriented environment for discovery and control developed 

during this study. It uses an associative memory space for discovery and 

emphasizes the use of the standard model developed in Chapter 4 of this 

dissertation. 
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CopperLan was included because of the availability of development tools and the ability 

of the protocol to co-exist with other IP-based protocols. Protocols that are of interest, but 

were not selected for a detailed evaluation, as they did not meet the previously mentioned 

selection criteria are discussed in Chapter 3. These protocols include: 

 Architecture for Control Networks (ACN); 

  EuCon; 

  HiQnet;  

 MambaNet;  

 IEEE 1722.1-2013; 

 Open Control Architecture (OCA); 

 Amber+. 

Although ACN is an American National Standards Institute (ANSI) standard, no freely 

available implementations exist. IEEE 1722.1-2013 is designed for use within IEEE 1722 

(Institute of Electrical and Electronics Engineers, 2012) environments and is not a 

general-purpose control protocol. A control protocol that is likely to become significant is 

the OCA protocol that is currently undergoing standardization within the Audio 

Engineering Society (AES) as project X-210. An implementation of this control protocol 

is only available to clients of Bosch Communications Systems (Berryman, Private 

correspondence, 2012). Amber+ does not have a high-level specification or detailed API, 

but provides example applications that are discussed in Chapter 3 and Appendix 4. 

1.4 Standard Control Protocols  

As briefly mentioned in the previous section, standard control protocols exist within the 

IEC (IEC-62379), the ANSI (ACN), and the AES (AES64). Although intended as a general 

control protocol, ACN has its roots in lighting control, where it was initially conceived as 

a replacement for the serial Digital MultipleX (DMX512) protocol first developed in 1986. 

(United States Institute for Theatre Technology Inc., n.d.). In 2008, IEC-62379 became 

an IEC standard, while AES64 became an AES standard in 2012 (Audio Engineering 

Society, 2012).  

The IEC-62379 and ACN standards have a status similar to the status of the Service 

Location Protocol (SLP), which is an Internet Engineering Task Force (IETF) standard 

(Veizades, Guttman, Perkins, & Kaplan, 1997) for service discovery. Despite its status as 

an IETF standard, SLP is not as widely used as other protocols such as DNS-Based Service 

Discovery (DNS-SD) which by virtue of its widespread use has become a de-facto 

standard. Although Apple Computer has proposed that DNS-SD be accepted as an IETF 
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standard since 2002 (Cheshire & Krochmal, 2013), this proposal has never been accepted 

by the IETF. As mentioned previously, no freely available implementations of ACN exist, 

despite the availability of network switches that support ACN  

(Electronic Theatre Controls, Inc., 2009). These two control protocols are not supported 

by any audio hardware or software vendors. Chapter 3 discusses ACN and Chapter 6 

discusses IEC-62379.  

A control protocol is likely to become widely adopted if an associated audio transport 

is widely adopted. IEEE 1722.1-2013 – ‘Standard for Device Discovery, Connection 

Management and Control Protocol for AVTP Devices’, (also referred to as ‘AVB-DECC’) 

(Koftinoff, Audio Video Bridging - A collection of links, tools and open source code for 

Audio Video Bridging (AVB) technologies., 2013) is likely to be widely used if the 

underlying IEEE 1722 audio transport gains widespread acceptance. It is too early to 

speculate on the impact of AES64 and OCA (X-210); AES64 became a standard in 2012, 

and X-210 is likely to become a standard in early 2015. The current status of ‘standard’ 

control protocols intimates that the absence of a widely accepted standard (and the 

resultant lack of control interoperability) is likely to continue for the near future. 

1.4.1 Characteristics of Successful Standards 

John Huntington (Huntington, 2012) defines four characteristics of widely adopted 

(‘successful’) standards: 

 

 

 

 

 

 

 

 

  
 

 

 

 

Of particular interest is the assertion that a minimum level of functionality should be 

provided by a standard. The original environment presented in Chapter 11 illustrates this 

2. “They are limited in scope and ambition and optimized for some task. 

Consensus standards making processes ensure this, since only a 

minimal level of functionality will be agreed upon by all the parties 

involved.” 

4. “They leave clear room for expansion and allow shortcomings to be 

corrected.” 

1. “Successful standards are pulled into existence by the market; they are 

not pushed. They fill a clear commercial demand in the market, 

especially one driven by users. Often, this means that multiple, non-

interoperable systems already exist in a market segment and users are 

screaming for interoperability.” 

 

3. “They are open for all to use. All of the standards (of which I'm 

aware) that have caused our market to grow have been open.” 
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concept and conform to the last three characteristics cited by Huntington.  

It is easier to define the general characteristics of a standard - obtaining a consensus from 

vendors on how to implement these characteristics is much more difficult: 

 “Although it is clear that a common protocol such as OCA makes true 

interoperability and peer-to-peer communications possible, there is disagreement 

as to the importance of this. Frank Vernon, an engineer at Peavey Electronics, 

argued that a requirement for peer-to-peer communications is rare in these 

systems and there’s usually a way to accomplish the intended functionality in other 

ways.” 

  (Gross K. , 2011). 

AES-24 (Audio Engineering Society, 1999) was the first attempt to provide a standard 

control protocol and created a legacy that has inspired the development of other control 

protocols including OCA. These descendants of AES-24 are discussed in Chapter 3. 

1.4.2 Standardizing Functionality 

The core functionality of a control protocol may be defined in a generalized, abstract 

manner by specifying standard protocol commands and a standard parameter 

representation scheme. A standard parameter representation should standardize the: 

 Organization of parameters; 

 Parameter-addressing scheme;  

 Representation of parameter values. 

A standard parameter organization must specify both parameter identifiers and the 

representation of parameter addresses. Section 10.2.3.2.1 Parameter Organization and 

Addressing Schemes (p.253), discusses different parameter-addressing schemes. 

Standardization of audio parameter names and their associated parameter addresses is a 

non-trivial task. Unless such standardization is carefully considered, the result may only 

achieve a degree of interoperability at the expense of flexibility. The only existing example 

of attempts at parameter address and parameter identifier standardization are the 

hierarchical addressing scheme found in AES64 (discussed in Chapter 7) and OCA 

parameter addresses (discussed in Chapter 3 and Chapter 10). Standardizing parameter 

addresses is difficult within protocols that are designed around objects or data records. 

IEEE 1722.1-2013 standardizes parameters as a consequence of the standardization of 

descriptors. Thus, IEEE 1722.1-2013 parameter addresses themselves are not 

standardized, only their relative addresses within descriptors are standardized. 



11 
 

The machine representation of parameter values depends on the data types 

supported by a control protocol. For example, values encoded as binary numeric types, or 

the textual representations required by protocols such as HTTP. Irrespective of the 

machine representation, parameter values can be conceptually standardized by using a 

common unit of measurement. A trend towards this practice exists with standard 

measurement units found in AES64 and CopperLan. Standard data units avoid the 

conversions that must occur when expressing values within different measurement units 

that have different ranges. For example, conversions between control values and decibel 

units. 

1.5 Protocol Implementations 

Virtual controllers and virtual devices for different control protocols were developed using 

several development environments including C++, Java and C#.NET environments. 

Chapters dealing with specific control protocols introduce these control protocol 

implementations that are also discussed in Appendix 4. The performance of different 

programming languages is a contentious issue that falls outside the scope of this study. 

Java and .NET environments may become more widely used for audio applications in the 

future, as their performance is likely to become comparable to the performance of 

languages such as C++. The System Architect software from Harman Pro Corporation 

that uses the HiQnet control protocol is written in C# using the .NET environment 

(Kreifeldt & Holladay, 2005, p. 84). 

1.5.1 Controller Architecture 

The architecture of several mixing consoles were examined to determine the characteristic 

properties of a typical mixing console. These included the ‘TOA CX-124’ from TOA 

Electronics Inc. (TOA electronics Inc., 2008), the Yamaha O1V96 (Yamaha Corporation, 

n.d.), and the ‘Soundcraft Spirit 328’ (Soundcraft Inc., n.d.). With the exception of the CX-

124, these are all digital mixers. Despite the considerable complexity of these devices, the 

fundamental architecture of an audio mixing console is not overly complex.  

A virtual four-channel input, two-channel output mixer containing a single stereo 

bus was implemented within different development environments. Figure 1.1 shows the 

architecture of this device. Available external inputs (network audio source streams) can 

be assigned to the device inputs and the two device outputs can be assigned to any 

available network destination streams. An input selector allows device input channels to 

be routed to channel strips and an output selector allows the two output channels to be 

routed to any of the external output streams. 
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Figure 1.2 illustrates an SNMP controller that interacts with this device.  

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 

 
 

Figure 1.2 A Virtual Controller for a Mixing Console. 
 

Figure 1.1 Block Diagram of a Simple Mixing Console. 
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Channel strips contain: 

 Mute buttons; 

 Gain controls; 

 Equalization sections that contain two equalization controls; 

  PAN controls; 

 Button groups that perform bus assignments; 

 Fader controls; 

 Meters for monitoring the volume of each input channel; 

 Buttons below each meter that subscribe to remote meter parameters; 

A master section connected to the left and right buses containing left and right faders and 

meters. Drop-down list boxes allow available network audio source channels to be 

assigned to each channel strip and master output channels to be assigned to a set of 

available network audio destination channels. 

Although defined in abstract terms, parameters managing network streams use the 

connection management parameters supported by AES64 as examples. These controls 

and control sets reflect most of the commonly encountered mixing console control 

configurations. 

1.6 Chapter Layout 

Chapter 2 introduces and discusses the core concepts that relate to control protocols in 

general and audio control protocols in particular. Chapter 3 provides an overview of the 

current audio control protocol landscape and discusses some of the salient features of 

different control protocols. Chapter 4 examines device models and proposes a standard 

device model for networked audio devices. This chapter is followed by five chapters 

devoted to a detailed discussion of OSC, SNMP and IEC-62379, AES64, CopperLan and 

UPnP. Chapter 10 develops concepts used to compare control protocol designs, and 

provides a comparison of the protocols discussed in the preceding chapters. Chapter 11 

introduces an original discovery and control environment named Fli2 that utilizes a 

distributed associative memory. Chapter 12 summarizes the findings of this study and 

presents the conclusions with reference to the areas of investigation outlined in Section 

1.1.1 Topics Addressed in this Dissertation. 

The appendices provide additional information on control protocols and discuss 

software developed during this study. Appendix 1 proposes heuristics for control protocol 

design. Appendix 2 provides an XML representation of the standard device model 

developed in Chapter 4. Appendix 3 lists the most important SNMP specification 
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documents. Appendix 4 discusses the protocol implementations developed during this 

study. Appendices 5 and 6 provide class diagrams and sequence diagrams describing the 

design of the original environment presented in Chapter 11. Appendices 7, 8 and 9 list the 

OSC address spaces, SNMP MIB and UPnP service descriptions discussed in the chapters 

devoted to these protocols. Appendix 10 provides a quantitative and qualitative 

comparison of control protocols, and provides a detailed analysis of control protocol 

commands. Appendix 11 describes the structure and content of OSC and SNMP network 

packets, as these packet formats are discussed in the chapters devoted to these two control 

protocols. 
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Chapter 2  

Control Protocol Concepts 
 

 

2.1 Introduction 

This chapter provides a basis for the discussion and evaluation of different control 

protocols in the chapters that follow. The following sections introduce the core concepts 

encountered when discussing and evaluating different control protocols. As mentioned in 

the introduction, original terminology is underlined when it is first introduced. 

2.2 Fundamental Control Protocol Concepts 

Several core concepts exist that describe the responsibilities and functional capabilities of 

a control protocol. These concepts are discussed within the context of eight areas of 

investigation: 

1. Network architectures and the messages transmitted between networked devices.  

2. Discovery of networked devices and monitoring the reachability of devices. 

3. Service discovery and service enumeration which consists of: 

 Discovering the services (functional capabilities) provided by a device; 

 Enumerating the specific characteristics of a particular service. For example, 

determining the arguments required to invoke a service. 

4. Control surface representation and creation which encompasses the: 

 Representation of a control surface, and 

 Implementation of a control surface. 

5. Device control and monitoring which involves: 

 Reading and writing one or more parameter values; 

 Monitoring changes to parameter values or monitoring other device state 

changes; 

 Recording and playback of protocol commands (commonly referred to as 

‘automation’). 

6. Parameter management which  includes operations such as: 

 Linking controls to parameters; 

 Joining (linking) parameters to other local or remote parameters; 
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 Grouping parameters so that changes to the value of a single parameter within 

a group of parameters are propagated to the entire group; 

 Reading and writing multiple parameters (bulk parameter access). 

7. Connection management which involves: 

 Managing the audio connections between devices; 

 Managing the audio connections within a device; 

 Managing the sources and destinations of control commands. 

8. Security features such as: 

 Managing access to a network, and 

 Providing secure transmissions of network messages. 

The above division of responsibilities reflects some arbitrariness, as a division of these 

concepts can be done in different ways. For example, both connection management and 

control functionality typically involve the reading and writing of parameter values.  

These areas could conceivably be combined. Additionally, connection management 

between devices can also be seen as network management. Despite these possible 

ambiguities and shortcomings, the eight areas listed above cover all the areas of 

responsibility that are commonly encountered within different control protocols.  

This arrangement also attempts to separate areas that can be implemented separately such 

as control functionality and connection management functionality. These two areas are 

typically handled by different processes within a single application or by distinct 

applications. Security features are not discussed in detail, as they do not influence the 

control and monitoring capabilities of a control protocol. 

All control protocols have characteristic features that are rigidly defined or may be 

defined within a flexible framework. A framework is defined as an abstract architecture 

that does not prescribe any content. To provide scalability, all protocols have design 

features that are characteristic of a framework. For example, many control protocols 

define a limited number of protocol commands that operate on a freely defined parameter 

address space. Control protocol designs and the notion of a control framework are 

discussed in Chapter 10 of this dissertation. 

2.3 Network Architectures 

Control protocols are typically designed to function within particular network 

architectures. Second-generation protocols such as AES64, HiQnet and CopperLan favor 

peer-to-peer network topologies, while general-purpose, first-generation control 

protocols tend to be client-server based. 
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2.3.1 Client-Server Network Architectures 

Client–server architectures exist when client applications initiate service requests and 

server applications respond to these service requests. This implies that servers provide 

remotely addressable services. The roles played by client and server applications are often 

not well defined: 

“The terms client and server are not firm designations for particular parts of an 

application; rather, they denote roles that are taken by parts of an application for 

the duration of a request.... Similarly, clients are often not “pure” clients, in the sense 

that they only request service from an object. Instead, clients are frequently client-

server hybrids.” (ZeroC Corporation, 2012). 

 
These observations emphasize that network connectivity does not necessarily occur at the 

application level, but may occur between objects or modules that form part of an 

application. Figure 2.1 illustrates a classic client-server network architecture where only 

the server provides services. 

 

                                                       

 

 

 

 

 

 

          
 
 
The most rudimentary service consists of a single parameter access. Chapter 9 discusses 

service-oriented architectures where a service may represent a higher-level operation that 

accesses multiple parameters or invokes other services. Within a client-server 

architecture, clients only receive messages from a server that are mandatory or optional 

responses to received control messages. Clients only receive fixed responses following 

communication with a server; a server never initiates communication with a client. 

Responses are typically status messages that are handled by a one or more client-side 

callback functions shown in Figure 2.1 termed ‘return points’. Return points are used by a 

controller to process response messages received from a controlled device.  

 

 

 

Figure 2.1 A Client-Server Network Architecture. 
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2.3.2 Peer-to-Peer Network Architectures 

The term 'peer-to-peer' is often used to describe the architecture of distributed file sharing 

systems (Steinmetz & Wehrle, 2005) and should not be confused with networked devices 

having peer relationships. The terminology is in itself problematical: 

"Although the term peer-to-peer refers to a number of generic ideas and 

mechanisms, the idea of peer-to-peer is applied in different contexts and hence peer-

to-peer systems do not necessarily have many characteristics in common; neither 

do they have to adhere to a determined set of attributes. A formal definition of peer-

to-peer computing does not exist." 

 (Mauthe & Hutchison, 2003). 

In this study, peer-to-peer architectures are defined as relationships between networked 

devices where any device can assume the role of a client, a server, or a combination of 

these roles. Figure 2.2 shows that each controlled device can also function as a controller. 

 

 

 

 

 

 

 

 

          
                
       
 
 

Each peer device, also termed a ‘servent’ (server + client) (ENCYCLO Online 

Encyclopedia, 2012) provides parameters or higher-level services that can be accessed by 

other peer devices and also functions as a controller. Return messages in client-server 

architectures can be optional or mandatory, and may also address a client parameter 

and/or invoke a return point. The main advantage of peer-to-peer architectures is that 

they provide synchronized states between devices. In a client-server relationship, local 

changes made to server parameter values are not reflected by client states. Client-server 

state relationships are unidirectional, while peer state relationships are bi-directional. 

Because peer devices have a local parameter address space, return messages can target 

specific parameters (or return points that may be generic acknowledgements, or may be 

associated with specific parameters). 

 Control Messages 

Figure 2.2 A Peer-to-Peer Network Architecture. 
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2.3.2.1 Partial-Peer Network Architectures 

It is possible for a client-server architecture to exhibit characteristics of a peer-to-peer 

architecture. Figure 2.3 shows that a ‘partial-peer’ network architecture consists of clients 

that have a local parameter address space.  

 

 

 

 

 

 

 

  

 

 
 

Partial-peer network architectures support a client controller where: 

 The controller has its own local parameters provided by a control protocol, and 

 These parameters can be accessed remotely by return messages from a server 

process. 

Rather than using generic acknowledgments, a partial peer-to-peer protocol allows a 

server to provide context-sensitive responses to received messages. Client parameters that 

can be addressed by a server provide this context-sensitivity. This allows monitoring data 

such as meter values or data returned from discovery queries to be received by a specific 

parameter or return point specified by a controller. The message does not require a field 

indicating the semantics of the message as the end-point itself provides the context for the 

message. An example of a partial-peer network architecture is illustrated in Chapter 5 with 

reference to OSC. 

Client and server applications can also be combined to create peer-to-peer nodes on 

a network. Client and server processes that execute on the same network node 

communicate with each other to form a servent process. 

2.3.3 Hybrid Network Architectures 

Networks can have a topology that combines the client-server model with a peer-to-peer 

approach. This hybrid model is commonly used in file-sharing systems (Subramanian & 

Goodman, 2005, p. 29), where a server provides security functionality or maintains a list 
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Figure 2.3 A Partial-Peer Network Architecture. 
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Figure 2.4 A Control Protocol Network Stack. 

of devices on the network for peer nodes. A partial-peer network architecture discussed in 

the previous section does not support transactions between different clients. Hybrid 

network architectures do not reduce dependencies on a centralized server as peer nodes 

must communicate with a server before initiating transactions with other networked 

peers. Other accepted network architectures such as ‘multi-peer’ architectures where 

peers are divided into subsets, and ‘agent’ architectures (Sharp, 2008, p. 321), that allow 

different processes to collaborate have not been used within networked audio 

environments. 

2.3.4 The Control Protocol Stack 

A control protocol is a software process built on top of the OSI (ISO/IEC, 1994) or TCP/IP 

(Cerf, Dalal, & Sunshine, 1974) network models illustrated in Figure 2.4.  

IP-based protocols commonly use UDP for transmitting protocol messages. Messages are 

represented by ‘Protocol Data Units’ (PDUs) that are transmitted and received by the 

underlying layers of the network stack. A PDU typically represents a single protocol 

message encoded as binary data according to an encoding and organization scheme 

defined by the control protocol.  

 

 

 

 

 

 

 

    
 
 
 
 
The network stack for a control protocol is often regarded as an extension of the layered 

network model shown in Figure 2.4. The entire stack is commonly referred to as a ‘protocol 

stack’. For lower latency and greater throughput, UDP is commonly used to transport 

control protocol PDUs. However, comparisons of TCP and UDP performance is a complex 

topic (Goel, Krasic, & Walpole, 2008). 

A control protocol must have the capability to:  
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 Create protocol PDUs and insert these into network packets for transmission; 

 Pass the created packets to lower stack layers for transmission; 

 Extract control protocol PDUs from received network packets; 

 Parse the PDUs to determine:  

o The parameters to be updated, and/or 

o The control points to be invoked as well as the arguments for each control 

point invocation. 

 Invoke the control points, supplying the required arguments; 

 Create and transmit a return PDU if an acknowledgment is required. 

2.4 Network Management 

Network management within the context of a control protocol involves the: 

 Discovery and identification of networked devices and their services, as well as 

monitoring the reachability of devices; 

 Discovery of other networked resources such a service registry. 

2.4.1 Device Discovery 

Protocols that support device discovery typically also support service discovery and may 

implement this functionality in a variety of different ways, including: 

 Using existing open network protocols such as the Domain Name System – 

Service Discovery (DNS-SD) protocol (Cheshire & Krochmal, 2013), or the Service 

Location Protocol (SLP) (Veizades, Guttman, Perkins, & Kaplan, 1997) that were 

mentioned in Chapter 1. 

 Using proprietary device discovery mechanisms or enhancing existing discovery 

mechanisms. Examples include the proprietary discovery mechanism used by 

CopperLan and HiQnet’s ‘Disco’ discovery protocol (Kreifeldt, 2010) that is a 

UPnP-compliant discovery mechanism. 

 Downloading information from a registry dedicated to providing information 

about devices and their services. This approach is found in AES-24 and is discussed 

in Chapter 11 with reference to the Fli2 environment. Use of a registry implies that 

the registry itself must be discoverable. 

DNS-SD uses ‘multicast DNS’ (mDNS) for ad-hoc networks (Cheshire & Krochmal, 2013). 

The use of the conventional ‘Domain Name System’ (DNS) allows DNS-SD to be used on 

wide-area networks. Discovery protocols for device discovery are generally registry-based 

or use peer-to-peer discovery (Al-Mejibli, Colley, & Al-Majeed, 2011). Registry-based 

discovery protocols can use a centralized registry as found in DNS-SD or a distributed 
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registry as implemented by SLP. Protocols that use a single centralized registry create an 

undesirable network-wide dependency. If the registry is not reachable then all devices on 

the network are potentially affected.  

Discovery processes are typically implemented using a query model or an 

announcement model (Zhu, Mutka, & Ni, 2005). While mDNS uses a query model where 

a client (controller) must determine the available devices on a network, UPnP uses an 

announcement model where devices periodically announce their presence on a network. 

The environment developed in Chapter 11 supports both of these two discovery models. 

2.4.2 Monitoring Device Reachability 

To ensure that networked devices are reachable, devices may periodically confirm their 

presence on a network via a ‘heartbeat’ message sent to other devices on the network. 

Alternatively, controllers can monitor devices by ‘polling’ (requesting a response to a 

periodically transmitted message).  

“By having the device generate the heartbeat, the controller is not burdened by 

having to send a nuisance poll periodically just to make sure the device is still there.”    

(Open DeviceNet Vendor Association, n.d., p. 5). 

 
Assignment of responsibilities when verifying reachability depends on the network 

architecture; a registry may monitor devices and maintain a list of reachable devices or 

devices may communicate directly with each other via multicast or unicast network 

messages. 

2.5 Service Discovery and Service Enumeration 

Service discovery concerns itself with discovering the functionality supported by a device. 

At a low-level, services are typically represented by data values and thus map directly to 

parameters. Services can also be higher-level operations that reference multiple 

parameters or other services. These ‘Service-Oriented Architectures’ are discussed in 

Chapter 9 with reference to UPnP. Service enumeration involves discovering the 

characteristics of a service as discussed later in this section. 

2.5.1 Service Discovery and Network Architectures 

Service discovery is usually implemented within three broad network architectures: 

decentralized, centralized and distributed (peer-to-peer) network architectures (Johnsen, 

et al., 2008). Decentralized discovery exists within client-server models where each server 

is responsible for managing and advertising its own services. Changes to service 

advertisements are immediate and services are not available if the server node is not 
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reachable. Centralized discovery architectures use a centralized registry that advertises 

services for multiple network nodes. A centralized registry is easier to manage but creates 

a critical dependency for the entire network. Peer-to-peer architectures such as UPnP are 

tolerant of node failure but use unnecessary bandwidth, as all nodes must periodically 

advertise their services. Each peer node maintains a registry of services and service 

advertisements occur even when clients for these services are not available. Multiple 

centralized registries attempt to eliminate the drawbacks of both the single centralized 

registry and peer-to-peer approaches by duplicating a service registry. Section 11.2.3 

Space Network Architectures (p.276) illustrates how multiple, synchronized registries can 

be implemented. 

A formal classification of the different components of a service-discovery system 

(Zhu, Mutka, & Ni, 2005) identifies different traits of these systems and the sequence of 

events that occur during service discovery and service enumeration. These include the: 

 Naming scheme used for services and service attributes;  

 Registration of services; 

 Initial communication method (query or announcement); 

 Discovery of services and service attributes (service enumeration); 

 Selection of the required services. 

Service discovery is commonly implemented using the discovery protocols discussed 

previously in Section 2.4.1 Device Discovery (p.21).  

2.5.2 Service Enumeration 

Service enumeration involves determining how a service must be invoked.  

Exposing service characteristics using a registry or by using existing discovery protocols 

such as DNS-SD or SLP requires knowledge of the naming scheme and structure of the 

service information. Services are commonly represented as <key, value pairs> (Walker, 

2005), where the keys must be recognizable as representing the required services. Because 

of this requirement, protocols such as UPnP (Golden III, 2002) provide facilities for 

service browsing that are designed for user interaction rather than for machine processing. 

When a large number of services are available, services must be filtered by a discovery 

process or represented in a hierarchy that can be selected by users. 

The location of a service is commonly indicated by a URL or by an IP address and port 

number, as well as a service address or service identifier. Discovering how services are 

invoked involves discovering the required arguments to a service invocation, as well as the 

properties of the specified arguments. These arguments and properties are commonly: 
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 The data type and allowable range of values for a parameter value; 

 The data type and allowable range of values for any other arguments required by a 

parameter access or remote procedure call. 

Parameter values as well as other arguments such as status flags may not always require 

discovery if these values are defined by a protocol specification. The commands used to 

invoke a service are often fixed by a control protocol’s specification and do not require 

discovery, only the service targets invoked by commands must be discovered.  

For example, the GET() and SET(..) operations used by SNMP are well defined and need 

not be discovered. Service discovery and enumeration are thus dependent on the 

standardization of commands, as well as service names and service attributes. The wide 

variety of networked devices and control scenarios make this standardization a  

non-trivial task. The environment presented in Chapter 11 solves this problem by 

providing a ‘zero-configuration’ environment that does not require service enumeration. 

2.6 Control Surface Representation and Creation 

Irrespective of the design philosophy or capabilities of different protocols, protocols are 

likely to be used in conjunction with a control surface consisting of the familiar faders, 

knobs and switches found on most audio devices. Protocols that support the 

representation and creation of control surfaces may: 

 Provide an external representation of a control surface using XML or some other 

representation. Controller applications must retrieve and parse the representation 

to create a control surface. AES64 is an example of a protocol that represents 

control surfaces using XML. 

 Specify a control surface using the API provided by a control protocol. Using this 

approach, devices are designed in a standard manner to support service discovery 

and service enumeration queries from controllers. For example, CopperLan 

objects used to implement a control surface are instances of classes derived from 

API base classes. These derived objects must implement inherited abstract 

methods that expose a control surface to controller applications. 

 Specify a control surface using a device model that is implemented using the data 

structures provided by the control protocol. The chapters that follow develop this 

idea with reference to different control protocols.  

 Use a component-based approach where a component such as a single control or 

a set of related controls such as the controls forming a channel strip are discovered 

as atomic units and added to a control surface. Chapters 9 and 11 explore this 

approach to control surface creation.  
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A distinction exists between ‘active controls’ that support user interaction, and 

‘passive controls’ that do not allow user interaction such as lights and status indicators. 

Active controls read and write parameter values while passive controls only read or 

subscribe to parameter values. There is usually no advantage gained by distinguishing 

between control types unless such a distinction is required by the protocol. For example, 

protocols such as SNMP and UPnP require that access constraints (commonly ‘read’, 

‘write’, or ‘read-write’) be specified for parameter values. These access constraints create 

a distinction between active and passive controls by virtue of the access constraints of the 

parameters that different controls reference.  

2.7 Parameter Organization and Addressing 

The conceptual representation of parameter data varies widely among different control 

protocols. A logical organization of parameters is often closely related to the addressing 

mechanism used to address parameters. Machine implementations of parameter data are 

not mandated by many protocol specifications; implementation of a specified logical data 

organization is left to different implementations. Irrespective of the data structures used 

to store parameter data, parameters are conceptually represented in different protocols 

as: 

 Distinct scalar values (SNMP); 

 Distinct or related scalar values (ACN); 

 Tables of related scalar values (SNMP); 

 Variable sized hierarchies (SNMP, OSC); 

 Fixed-size hierarchies (AES64); 

 Record fields or object attributes (the AES-24 family, CopperLan, UPnP, and 

IEEE 1722.1-2013). 

Scalar values may be organized within a flat address space to denote hierarchical 

relationships. For example the numeric parameter addresses or identifiers: 

1000 1100 1110 1120 1200 1210 imply the hierarchy illustrated in Figure 2.5.  

 

 

 

 

 

 Figure 2.5 Hierarchical Ordering of Numerical Parameter Addresses. 

    Legend: 
        ■  Level one 
        ■  Level two 
        ■  Level three 
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These types of numerical relationships are directly supported by ACN commands and are 

discussed in Section 3.5.1.5 Control and Monitoring Commands (p.73). 

SNMP is the only control protocol discussed in this dissertation that supports tabular 

representations of parameter data. These tables are similar to relational database tables. 

CopperLan uses a flat, numeric address space that is contained within different sub-

devices; a device object is partitioned into different sub-device objects where each sub-

device has its own address space. CopperLan parameter addresses can be related using the 

numeric relationships defined in Figure 2.5. IEEE 1722.1-2013 uses fixed-address offsets 

within fixed record data structures. These different parameter addressing schemes are 

discussed in the chapters dealing with specific protocols and summarized in Chapter 10. 

2.7.1 Parameter Classifications 

Four types of parameters are commonly encountered within audio networks: control 

parameters, DSP parameters, connection parameters, and configuration parameters.  

Figure 2.6(a) shows that a control parameter is a protocol parameter that represents the 

current state of a control. 

 

 

 

 

 

 

 

 

 

Control widget values (representing the current states of controls) are outside of the 

parameters defined by a control protocol and should be referred to as ‘control values’ to 

distinguish them from the parameters defined by a control protocol. In Figure 2.6(b),  

a control parameter is the recipient of a local or remote control value. ‘DSP parameters’ 

represent the state of DSP functions such as a gain value or a filter value. Although DSP 

values are commonly tightly coupled to control values or to control parameters, they can 

exist independently of controls or other parameters. As an example, consider an audio 

device such as a digital effects unit that does not have a control surface. This device 

contains signal processing functions that are controlled by directly addressing parameter 

values via a network connection.  

Figure 2.6 Control Values and Control Parameters. 
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Connection parameters represent connections between audio signals or control 

streams. Connection parameters also identify audio source and destination terminals and 

represent the status of connections. For example, AES64 defines identification, status and 

connection parameters used to manage IEEE 1722 audio streams. Connection parameters 

are discussed in Section 4.4.1 Representing Audio Terminals and Audio Connections 

(p.104). Configuration parameters are parameters that are used to represent status 

information. Examples include parameters that are used to indicate reachability, and 

parameters that indicate the active layers of a ‘split’ mixing console design (Izhaki, 2012, 

p. 137).  

Finer distinctions may be used to differentiate parameters. For example, parameters 

describing audio connections can be defined as external connection parameters and 

internal connection parameters. These values define connections between different 

devices and connection states that are internal to a device.  

The theoretical differentiation of parameter types raises the question of whether such a 

differentiation offers any practical advantage. This topic is investigated in Chapter 4. 

2.7.2 Representing Parameter Values 

Representing parameter values that use different measurement units, ranges and step 

sizes across different devices poses significant challenges. Providing values that conform 

to the range of data values used by a particular device or control involves discovering the 

conventions used by the device or control, and converting values to conform to these 

conventions. Control protocols typically represent parameter data using a wide variety of 

machine data types. Different units of measurement are then accommodated within these 

data types. For example, decibels may be converted to integral or floating-point data types. 

To support different units of measurement and the implementation of these units within 

different data types, protocols such as AES64 and CopperLan define proprietary data 

measurement units. Protocol implementations usually provide conversion functions that 

enable different data types to be converted to and from these proprietary units. The use of 

a global unit of measurement allows different types of values to be expressed in a 

standardized format. For example, values expressed in decibels or hertz can be mapped to 

global measurement units. AES64 and Ember+ (discussed in Chapter 3) allow parameter 

values to be modified by applying a function to a parameter’s value. AES64 ‘modifiers’ that 

provide translation and scaling functions are discussed in Section 7.3.3.3 Parameter 

Modifiers (p.192). 
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2.8 Parameter Management 

Parameter management includes managing parameter relationships and providing atomic 

access to large numbers of parameters. A distinction should be made between: 

 Parameter groups where parameters are related to other parameters; 

 Addressing schemes that address multiple parameters via a single protocol 

command, and 

 Bulk parameter access mechanisms.  

Although all of these mechanisms access multiple parameter values, the intentions (and 

implementation) of each mechanism are significantly different. A parameter group 

consists of a set of parameters and a set of relationships among the members of the group. 

A change to the value of any member of the group may trigger changes to the values of 

other group members according to the defined relationships.  

Addressing mechanisms that reference multiple parameters are commonly derived 

from a matching process within a hierarchical addressing scheme. By using wildcards 

within a hierarchical parameter address, a single protocol command may target multiple 

parameters whose addresses match the wild-carded parameter address. Although these 

mechanisms can be used to address groups of parameters, they differ from parameter 

groups in that relationships between parameters within a group are not explicitly 

specified. Bulk parameter access mechanisms are typically used to retrieve or initialize a 

large number of parameters. Bulk parameter access allows the state of a device to be saved 

or restored to an earlier state, allowing different device configurations to be saved and 

loaded by devices or controllers. 

2.8.1 Joining Parameters 

A control relationship between two processes creates implicit relationships between data 

values on each side of the relationship. These relationships have been formalized by the 

developers of the AES64 protocol (Chigwamba, Foss, Gurdan, & Klinkradt, 2010), and 

incorporated into the protocol. AES64 refers to these relationships as ‘parameter joins’ 

and provides API functions (Foss, 2009) that manage these relationships. A parameter 

join is a type of subscription mechanism where changes to a parameter’s value are 

propagated to the parameters joined to it. Relationships between joined parameters can 

be unidirectional or bi-directional in nature. 

2.8.1.1 Static and Dynamic Parameter Joins 

Parameter joins that exist until the relationship is explicitly terminated are termed  

‘static parameter joins’. Although join relationships can occur between any local or remote 
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parameters, they are commonly found between local control parameters and remote 

parameters that are the recipients of local control parameter values as illustrated in 

Figure 2.7. Note that an implied join relationship exists between the control and the local 

control parameter. Static parameter joins are found in peer-to-peer protocols where each 

networked device has a local address space, and can be implemented in partial-peer 

networks. 

The implementation of static parameter joins in client-server protocols where the 

client does not have a local parameter address space is not possible. The concept of a 

parameter join is an AES64 concept where parameters themselves store relationships to 

other parameters. Many control protocol parameter representations do not provide this 

capability. However, relationships between local and remote parameters can be 

dynamically implemented by: 

 Specifying arguments to a control point invocation, or 

 Specifying multiple target parameters within a single command message when a 

protocol (such as SNMP) allows multiple commands to be packed into a single 

PDU. 

 

 

 

 

 

 

 

 
These relationships are termed ‘dynamic parameter joins’. Figure 2.8(a) illustrates an 

implementation of a dynamic parameter join where a control specifies a remote ‘joined’ 

parameter. When the control changes state, the address of a remote target parameter is 

passed to the control's event handler. The specified remote parameter is then updated, 

creating a dynamic join relationship between the local control variable and the remote 

parameter. The term 'local control variable' is used because the controller does not have a 

local parameter address space. 

In Figure 2.8(b), a control directly updates a remote parameter (the target 

parameter) which updates a specified joined parameter. The name of the joined parameter 

is provided as an argument to the accessed parameter (or control point invocation that 

Figure 2.7 A Static Parameter Join. 
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implies a parameter access). The remote control point receives the name of the joined 

parameter as an argument and updates the specified join parameter as well as the target 

parameter managed by the control point. This creates a dynamic join relationship between 

the two remote parameters. These types of dynamic updates can be implemented within 

client-server architectures where a controller does not have a local parameter address 

space. OSC and UPnP are examples of protocols where these dynamic parameter 

relationships can be implemented. Dynamic updates can also be implemented in SNMP 

where a single command can specify multiple target parameters. 

 

 

 

 

 
 

 

 

 

 
 
 
 
  

 

 

 

 

 

 

There is no accepted terminology to refer to relationships between: 

   A control and its local event handler; 

   A control and its associated control parameter; 

   A local event handler and a remote parameter or remote control point. 

Control 
  Value 

 

Figure 2.8 Dynamic Parameter Joins. 
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The relationship between a control and a control parameter is termed a  

‘linked relationship’ to distinguish this relationship from a parameter join.  

These different relationships define a ‘control path’. A control path is defined as the 

sequence of event handlers, remote procedure calls, callback functions or parameter 

accesses that are triggered by an event such as a control state change. 

2.8.2 Grouping Parameters 

Grouping parameter values is a concept that was described by Roey Izhaki (Izhaki, 2012) 

and refined and formalized by the AES64 developers (Chigwamba, Foss, Gurdan, & 

Klinkradt, 2010). An example of a parameter group is a master-slave group where changes 

to the value of the master parameter are propagated to all slave parameters.  

A parameter group is essentially a set of parameter joins. Three broad approaches exist to 

the implementation of parameter groups: 

 Represent all related parameters using collections of parameters where a collection 

of related parameters is maintained by each parameter;  

 Represent the group using an appropriate data structure or group class within an 

object-oriented representation; 

 Represent the group dynamically as arguments to a parameter update or control 

point invocation as discussed in the previous section. 

Group representations within control protocols that do not natively support groups must 

use the data structures provided by a protocol. Choice of a group representation is often 

constrained by the sophistication of the parameter representation. Parameters that are 

represented by unrelated scalar values such as the parameters defined within UPnP 

services cannot represent relationships to other parameters.  

2.8.2.1 Static and Dynamic Parameter Groups 

A ‘static parameter group’ is a parameter group represented within one or more data 

structures. Static parameter groups must be created and managed by a control protocol. 

This approach to implementing parameter relationships is only possible if a protocol 

explicitly supports groups or provides data structures that can be used to represent 

parameter groups. Examples of different types of parameter groups and group 

relationships are provided in Section 7.3.3 Parameter Relationships (p.190) with 

reference to AES64. AES64 allows different relationships between parameter values 

within a parameter group to be specified. 

In a similar manner to dynamic parameter joins, parameter groups can be 

represented dynamically. This type of parameter group is referred to as a  
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‘dynamic parameter group’. Grouping relationships within a dynamic parameter group 

only exists while the protocol command that addresses the grouped parameters is 

executing. Dynamic parameter groups are implemented by: 

 Parameters (or their associated control points) being addressed using wildcard 

mechanisms within a parameter address. 

 Using addressing schemes where parameters are ordered by an identification 

scheme that uses known numeric offsets as found in ACN. Protocol commands 

can then address several parameters by simply specifying the starting parameter 

identifier and the number of parameters to be addressed.  

 Using arguments to protocol commands that specify the members of a parameter 

group, as well as the relationships among group members.  

This dynamic grouping scheme is similar to the dynamic join relationships shown 

previously in Figure 2.8. 

 Specifying multiple target parameters within a single command PDU. 

 Linking controls on a control surface. 

Wildcard mechanisms are found in OSC and AES64 and are discussed in the chapters 

devoted to these protocols. A wildcarded parameter address does not indicate the 

relationships between matching parameter values; all targeted parameters are updated to 

the same value. The use of arguments to represent parameter joins and parameter 

relationships require that protocol commands support a variable number of arguments. 

These implementations are discussed further with reference to OSC in Chapter 5.  

SNMP allows a single command to address multiple target parameters as discussed in 

Section 6.5.1 Reading and Writing Parameter Data (p.155). 

2.8.2.2 Grouping Controls 

Parameters can also be naively grouped by grouping the controls on a control surface to 

create a ‘control join’. When a control changes state, the state change triggers state changes 

in all of the other local controls that are grouped together. All parameters linked to the 

grouped controls will be updated when the controls change states. The EuCon control 

protocol discussed in Chapter 3 is built around the notion of control joins between a 

controller’s control surface and the controls of a controlled device.  

2.8.3 Bulk Parameter Operations 

Control protocols may provide commands that address large numbers of parameters. 

These operations, introduced earlier in this chapter include: 
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 The use of wildcards within hierarchical parameter addresses to reference   groups 

of parameters; 

 Dedicated bulk parameter-addressing mechanisms that allow groups of 

parameters to be managed and accessed. 

Parameter addresses that contain wildcards are typically used for control functionality. 

Dedicated grouping mechanisms such as the mechanism provided by AES64 (discussed in 

Section 7.3.4 Bulk Parameter Management  (p.193)) are typically used for: 

 Bulk initialization or retrieval of parameters, and 

 Saving and restoring specific device configurations.  

Bulk access mechanisms may require flow control support or buffer management to deal 

with the transfer of large data blocks across a network. 

2.9 Control Protocol Commands 

The three core control functions provided by nearly all control protocols are: 

 GET () operations that read remote parameter values; 

 SET(..) operations that update remote parameter values; 

 Subscription - monitoring changes to remote parameter values or other remote 

events using a subscription mechanism.  

Two models of control protocol design have been identified by Gross and Holtzen (Gross 

& Holtzen, 1998): 

 A ‘descriptive approach’ that emphasizes the definition of  parameters in 

conjunction with a small set of commands; 

 A ‘functional approach’ that emphasizes the functional requirements of a control 

protocol using remote procedure calls. This approach is typically used by object-

oriented control protocols.  

These two approaches were conceived by comparing SNMP to AES-24. The descriptive 

approach is built around changes to parameter values that describe the state of a device 

and only uses commands that read and write parameter values. The functional approach 

uses methods that are executed within the context of the functional requirements of 

managed objects. This distinction is analogous to the Reduced Instruction SET 

Computing (RISC) and Complex Instruction SET Computing (CISC) approach to 

microprocessor design. An advantage of the descriptive approach is that it reduces the 

number of commands required by a protocol. However, useful operations exist that cannot 

be elegantly expressed by variable state changes. Examples include determining the 
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children of a device component during service discovery, and the management of 

parameter groups. These operations must be implemented as side effects of GET() and 

SET(..) commands that access parameter values and are discussed in Section 2.9.1.2 

Action Parameters (p.35) and Section 6.5.3 User-Defined SNMP Requests  (p.158).  

 Commands used for purposes other than control and monitoring vary considerably 

across different control protocols. For example, commands may manage groups of 

parameters as found in AES64 or iterate through a collection of parameters as found in 

SNMP. Control protocol design is discussed further in Chapter 10 and control protocol 

design heuristics are presented in Appendix 1. 

2.9.1 Implementing Control Commands 

The implementation of control commands within connection-oriented or connectionless 

network messages influences reliability. For example, the ‘Quality of Service’ (QoS) 

provided by UDP is a controversial topic, as the reliability of UDP control messages is 

dependent on many factors including general TCP traffic patterns (Sawashima & 

Sunahara, 1997).   

Control protocols update parameter values when control messages are received and 

processed by a protocol stack. Parameter data is usually defined and managed by the 

control protocol. Corresponding control points are invoked as side effects of parameter 

accesses. Control point invocations support application-specific functionality such as the 

scaling of parameter values. Where applications must define and update parameter data, 

parameter access is commonly associated with the invocation of a control point.  

This creates a correspondence between a parameter value and a specific control point. 

Chapter 5 illustrates this type of functionality with reference to OSC.  

2.9.1.1 Commands and Services 

A distinction must be made between services and commands. Protocol commands are 

atomic operations defined by a protocol’s specification. A service may consist of multiple 

atomic operations and may also use other services. For example, a service that retrieves 

layout information for a control may require multiple GET() commands.  

Consider a control that has a relative position to another control on a control surface. 

Before the control can be rendered, the referential position used to derive the relative 

position must be determined. Where the order of these operations is significant (such as 

in the previous example), the operations are referred to as the ‘process of the service’ 

(Johnsen, Rustad, Hafsoe, Eggen, & Gagnes, 2010, p. 10).   

‘Native commands’ are the commands defined by a control protocol’s specification. 

Functionality not natively supported by a control protocol can sometimes be implemented 
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by a native command. Such an implementation is termed a ‘synthesized command’. An 

example of a synthesized command is where arguments to a protocol command are used 

to provide data that allows the semantics of the command to be extended. As discussed 

previously, arguments to control protocol commands can be used to implement dynamic 

parameter joins and dynamic parameter groups. These commands are synthesized 

commands. Synthesized commands must always execute atomically, updating all of the 

members of a parameter group by using distinct SET(..) commands does not constitute a 

synthesized command. Synthesized commands are discussed in some of the chapters 

devoted to specific control protocols and the use of synthesized commands in different 

protocols is summarized in Appendix 10. 

All control messages are discrete in nature, as temporal relationships between 

successive data packets do not influence the interpretation of the transmitted data.  

By contrast, media streams are continuous in nature, temporal relationships between 

streamed data packets (determined by the sampling frequency) are a fundamental 

property of the stream itself. Continuous control messages are thus transmitted as a 

stream of discrete messages. For example, when fader movements generate multiple 

control messages, temporal relationships among the generated messages are a side effect 

of the message generation and are not a property of the message stream itself.  

2.9.1.2 Action Parameters 

Implementations of functional requirements such as managing parameter groups within 

protocols that do not explicitly support these concepts may require that a parameter be 

accessed only for the side effect of the invocation of its corresponding control point. Figure 

2.9 shows a parameter that is accessed solely for the side effect of the parameter access. 

This type of parameter that triggers functionality provided by a control point is termed an 

‘action parameter’. 
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Action parameters trigger arbitrary functionality that cannot be represented by parameter 

states. Examples include adding a parameter to a parameter group or triggering the 

execution of a search algorithm. An example of the use of an action parameter is provided 

in Section 6.5.1.1 Optimizing SNMP Requests (p.156). 

A control protocol may invoke more than one control point when a parameter is 

accessed. This design is found within many SNMP implementations although it is not 

mandated by the protocol’s specification. These control points are typically invoked before 

and after a parameter is accessed, and may be termed ‘pre-update control points’ and 

‘post-update control points’. Pre-update control points support parameter value 

modifications that occur before parameter values are written to a protocol stack and 

exposed to the network. For example, a pre-update control point can scale parameter 

values or translate parameter values between different measurement units. Conversely, 

control points may be invoked without reference to any particular parameter value.  

This type of dynamic behavior is possible in control protocols such as OSC and UPnP that 

support generic control points implemented as remote procedure calls.  

However, invocation of a control point within these control protocols typically implies one 

or more parameter accesses. 

2.9.1.3 Blocking and Non-Blocking Protocol Operations 

Control protocol commands that generate a response can be implemented to exhibit 

blocking or non-blocking behavior. Blocking implementations wait until a response to a 

transmitted command is received. Non-blocking implementations allow a response to be 

handled within a separate thread while the transmission of other control commands 

continues. This improves the performance of protocol commands and allows responses 

that are not of interest to be ignored by a controller. A non-blocking implementation of a 

protocol command is usually provided if the command is likely to take a significant 

amount of time to complete. For example, bulk parameter requests that require multiple 

responses will have a significant influence on the performance of a control protocol. 

Blocking and non-blocking commands are also referred to as ‘synchronous’ and 

‘asynchronous’ commands respectively. This terminology is potentially ambiguous as 

asynchronous network communications also refer to communications that are not 

dependent on a clock signal. 

2.9.1.4 Command Acknowledgments 

Protocols that return a command acknowledgment should be implemented so that 

parameter data changes are ‘idempotent’ (Gross & Holtzen, 1998, p. 3). Idempotence 

describes the properties of an operation that can be applied more than once to provide an 
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outcome (or state) that would be achieved by a single application of the operation. This 

ensures that if a response is not received, the re-transmission of the command does not 

create unwanted side effects. For example, when an offset value is used to update a 

parameter by adding the offset to the parameter’s current value, each transmission will 

alter the parameter’s value. If idempotence is required, absolute values must always be 

used to update parameter values.  

Mandatory acknowledgments that are not required by a particular control scenario 

consume bandwidth unnecessarily. Streamed control commands such as the sequence of 

messages generated by moving a fader do not require acknowledgments. 

Acknowledgments are only required for critical operations such as service discovery 

requests. 

2.9.2 Monitoring Parameter Values 

Subscriptions to parameter values in object-oriented software designs are often 

implemented by the ‘observer’ design pattern (Gamma, Helm, Johnson, & Vlissides, 

1995). Observers are subscribers that register an interest in specific data (parameter) 

values and receive update messages when these values change. The observer pattern has 

several possible implementations (Eales, 2006). An application typically subscribes to 

notifications of changes in specific parameter values and provides a callback function to 

process received notifications. Audio applications commonly use remote parameter 

subscriptions to monitor meter levels. Parameter subscriptions can be: 

 ‘Periodic subscriptions’ that transmit parameter values at regular intervals.   

 ‘Aperiodic subscriptions’ that only transmit parameter values when a parameter’s 

value changes or following an event such as the filling of a buffer of values.  

Periodic subscriptions are thus always ‘event-based subscriptions’; aperiodic 

subscriptions may be ‘value-based subscriptions’ or ‘event-based subscriptions’. Although 

a change to a parameter’s value can be regarded as an event, for semantic clarity, event-

based subscription exclude parameter value changes. Examples of periodic and event-

based subscriptions within the context of monitoring meter values are provided in the next 

section. Monitoring can also be achieved by polling a parameter’s value. Polling remote 

parameter values by a controller is an anachronism that is only used by control protocols 

that do not support parameter subscriptions.  

2.9.2.1 Bulk Transmission of Monitored Parameter Values 

Performance and quality of service are influenced by two common transmission schemes. 

If parameter values are immediately transmitted as they become available, the system is 
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Figure 2.10 Aperiodic Non-Work-Conserving Data Transmission. 
 

called ‘work-conserving’, otherwise it is referred to as a ‘non-work-conserving’ system 

(Microsoft Corporation, 1999). Work-conserving implementations are event-based 

subscriptions that have a minimum latency and a maximum bandwidth overhead. These 

implementations can cause buffer overflows when receive buffers are not large enough to 

support the bandwidth used. Non-work-conserving implementations are event-based or 

periodic subscriptions that typically reduce bandwidth usage but may introduce an 

unacceptable latency as the size of the transmitted buffer increases.  

Non-work-conserving implementations often use data queuing schemes that are referred 

to as ‘packet-shaping’ schemes (Microsoft Corporation, 1999). Packet shaping is 

commonly used to limit bandwidth usage by using a real-time clock to enforce periodic 

transmissions of queued data. Using metering as an example, Figure 2.10 illustrates a non-

work-conserving system where each meter executes in its own thread and writes its 

current parameter value into a determined transmit buffer slot.  

 

 

 

 

                  
 

 
Following a write operation, the metering thread is put to sleep indefinitely. When all 

threads have written their values, the buffer is transmitted and all threads resume 

execution. This implementation may introduce an unacceptable latency as the number of 

threads increases. Assuming constant network performance, latency will be linearly 

proportional to the number of metering threads. Buffer transmission time will not be 

significantly influenced by the buffer size, and the time to process and display the data is  

linearly dependent on N and cannot undergo further optimization. The total time to 

display N metering threads on a remote controller is given by: 

 

 

 

To improve QoS, the time taken to produce the transmit buffer must be improved.  

To implement an update where QoS has a bounded latency, a timer thread shown in Figure 

2.11 is used to transmit the data buffer. The buffer is transmitted when all values have been 

updated or on expiry of the timer period. Where buffer slots are not filled, jitter occurs for 

the values having unfilled slots. Assuming a fair thread scheduling algorithm, jitter will be 

N 

∑ 

i=1 
 t thread i    +   t transmit   +  t display Ttotal   = 
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randomly introduced across the transmitted values in exchange for a QoS that places an 

upper bound on the latency for all transmitted values. 

 
 

 

 

 

 

 
If multi-threaded applications are not deemed to be desirable (Ousterhout, 1995), 

meter values may be randomly read within a timer period. On expiry of the timer period, 

the buffer is transmitted. 

2.9.3 Automation 

The ability to record time-stamped commands and execute these commands at a future 

time is commonly found in applications such as ProTools (ProTools Automation Modes, 

2012), which is widely used within the film and video industries to edit and synchronize 

audio and video tracks. This capability is also extremely valuable for real-time control 

scenarios where the complexity of the settings does not allow an engineer to make accurate 

changes to control states. Automation is an integral feature of Musical Instrument Digital 

Interface (MIDI) sequences where MIDI commands are separated by delta times. The use 

of MIDI for non-musical applications is supported by the MIDI Show Control protocol 

and the MIDI Visual Control protocol (MIDI Manufacturers Association, 2011). With the 

exceptions of OSC’s ability to store time-stamped commands and the ability of AES64 to 

generate time-stamped events, automation features are not generally supported by control 

protocols. OSC time stamps (Schmeder & Freed, 2008) are discussed in Section 5.3.3 

Automation in OSC (p.126). Support for automation in AES64 is discussed in Section 7.4.3 

Automation in AES64  (p.198). 

2.9.3.1 Ramping Parameter Values 

Ramping is commonly found in lighting control systems where lights are brightened 

(‘ramped up’) or dimmed (’ramped down’) over a specified time frame. The term is derived 

from the ‘Ramp Function’ (Tan & Jiang, 2008, p. 12) found in signal processing. ACN 

allows parameters to be ramped by a protocol command that updates a parameter by 

specifying a start value, step size and an update period. Within each update period the step 

size is applied to the parameter’s value. The previously mentioned automation features 

found in OSC allow a parameter to be ramped by repeatedly changing a parameter value 
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Figure 2.11 Periodic Non-Work-Conserving Data Transmission. 
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at specific times over a fixed time period. AES64 has a dedicated mechanism discussed in 

Section 7.4.3 Automation in AES64 (p.198) that supports ramping of parameter values. 

2.10 Connection Management Principles 

Two broad types of connection management exist within audio devices and audio 

applications, audio connection management and control connection management.  

Both of these types of connection management involve the configuration of sources and 

destinations for audio streams and control streams. 

2.10.1 Audio Connection Management 

No standard protocol exists for the management of connections between media streams. 

A protocol that supports peer-to-peer connection management of media streams for 

teleconferencing was described in 1993 (Schooler, 1993) and has a published specification 

(Schooler, 1992). Standard protocols used for stream reservation that provide limited 

support for connection management include the Session Description Protocol (Handley, 

Jacobson, & Perkins, 2006) and the Real Time Streaming Protocol (Schulzrinne, Rao, & 

Lanphier, 1998). These protocols are used by the Ravenna audio transport protocol 

(Hildebrand, 2010). Connection management functionality is often implemented using 

the general control capabilities of a control protocol. This approach is used in CopperLan, 

AES64, and an OSC implementation (named AVBC) to configure IEEE 1722 media 

streams (Koftinoff, 2010). 

Implementation of audio connection management involves three fundamental 

activities:  

 Discovery of the available audio sources and audio destinations, collectively 

referred to as ‘audio terminals’; 

 Determination of the candidate destinations for each audio source or vice-versa; 

 Creating or tearing down the connections between audio sources and audio 

destinations. 

Audio terminals may be associated with a single audio channel or a group of audio 

channels. A group of networked audio channels is referred to as an ‘audio stream’. 

Sophisticated connection management applications require a view of all audio streams 

and all devices on the network. Connection management requires that devices advertise 

their audio input and output connection points to a network, allowing these connection 

points to be managed by connection management applications. Client-server architectures 

may not provide this view as only the local audio streams of a controlled device are 
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advertised to controllers. Peer-to-peer architectures allow devices to determine all 

available network streams.   

Devices can expose connections to a network using the capabilities of a control 

protocol, by using third-party service discovery protocols, or by using the discovery 

capabilities that may be provided by the audio transport technology. Second-generation 

control protocols such as AES64, HiQnet and CopperLan are able to manage connections 

across an entire network. This study does not examine the service discovery and 

enumeration capabilities offered by different audio transports. A detailed discussion of 

different aspects of connection management is provided in Section 4.4 A Connection 

Management Model (p.103). 

2.10.1.1 Message-Based Race Conditions 

Concurrent control messages have the potential to create race conditions. The creation of 

connections between audio streams and bandwidth reservation requests are scenarios 

where race conditions may produce inconsistent states between networked devices.  

Race conditions caused by access to shared memory are termed ‘data races’, while race 

conditions among messages within a distributed system are termed ‘message races’ 

(Huang & Elrad, 1998, p. 273). Figure 2.12 illustrates message races using  

Message Sequence Charts. This notation was developed by the International 

Telecommunication Union (International Telecommunication Union, 1998) to depict 

message flows in concurrent systems. 

 

 

 

 

 

 

 

 
An example scenario shown in Figure 2.12 consists of two controllers that both transmit 

SET(..) commands to a single target device. When these commands are received, the first 

message triggers event E1, while the second message triggers event E2. Events E1 and E2 

occur non-deterministically as a message-based race condition exists between the two 

messages. A formal model of message-based race conditions and race condition detection 

are discussed in a thesis entitled Detecting Race Conditions in Distributed Concurrent 

 Controller1                                 Device                                Controller2 

SET() 

SET()  Time 
E2 

E1 

E1 

Network 

Figure 2.12 Message-Based Race Conditions. 
                          (Adapted from (Lu, 2000, pp. 23-24)). 
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Systems (Lu, 2000). Solutions to race conditions created by connection management 

scenarios that utilize the inherent characteristics of the implementation environment are 

presented in Chapter 11. 

2.10.2 Control Connection Management 

As the sources and destinations of control data flows are parameter values, control 

connections may be implemented as parameter joins or parameter groups.  

CopperLan and AES64 both support the notion of control connection management. 

However, these protocols approach connection relationships differently.  

CopperLan creates connections between control streams by linking their control points; 

AES64 creates parameter joins to link parameters directly to each other.  

2.11 Clocks and Timing 

Execution of control commands at a time specified by a clock source or synchronization 

between control commands and audio streams are not commonly found in control 

protocols. The only protocols that specify clocks are IEEE 1722.1-2013 and CopperLan.  

IEEE 1722.1-2013 uses the Precision Time Protocol (Institute of Electrical and Electronics 

Engineers, 2008), while CopperLan defines proprietary timing messages. IEEE 1722.1-

2013 must manage media streams having different sample rates; CopperLan specifies a 

master clock source to synchronize different audio and MIDI streams. Control commands 

are usually generated within time spans defined by human perception, and are not linked 

to the timing resolutions found within computers or other network hardware. This is a 

result of control commands being generated by human interaction with devices rather 

than by machine events. 

2.12 Summary 

This chapter has introduced and discussed the core concepts that are encountered when 

studying control protocols. These concepts were discussed with reference to: 

 Network Architectures; 

 Device discovery and monitoring device reachability; 

 Service discovery and enumeration; 

 Control surface representation and creation; 

 Device control and monitoring; 

 Parameter organization and addressing; 

 Parameter management;  

 Connection management. 
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As no standard, formal definitions of many of the concepts discussed in this chapter exist, 

terminology was introduced to describe concepts as these concepts were encountered.  
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Chapter 3  

An Overview of Control Protocols 

 

 

3.1 Introduction 

This chapter provides an overview of the current control protocol landscape with reference 

to the various environments within which these protocols are commonly employed. 

Design characteristics and the salient features of several control protocols that are not 

examined in detail in later chapters are discussed. These control protocols are typically 

proprietary protocols, or protocols that do not have a mature implementation as 

previously outlined in Section 1.3.1 Protocols Discussed in this Dissertation (p.7). 

Control protocols are often initially conceived and developed to cater for specific 

application areas such as:  

 The control of software and hardware for computer music applications; 

 Professional studio and live sound environments; 

 Sound installations that are found in stadiums, exhibitions and conference 

centers; 

 Broadcast environments; 

 Lighting applications; 

 The control of scenery and effects for stage productions and theme parks 

(commonly referred to as ‘show control’); 

 Home networks that support consumer devices used to store and play media 

streams. 

Many control protocols can be used within different application areas. To provide 

coherence, this chapter discusses different control protocols within the context of their 

intended usage, or with reference to the environments within which they are currently 

being used.  
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3.2 Computer Music Applications 

The field of computer music embraces many application areas including:  

 Music composition; 

 Recording and performance; 

 Sound synthesis; 

 Music education. 

An early control protocol for computer music applications, the Remote Music 

Control Protocol (RMCP) (Goto, Neyama, & Muraoka, RMCP: Remote Music Control 

Protocol - Design and Applications, 1997) never gained widespread usage. RMCP was 

primarily designed to support MIDI over Ethernet and to support coordinated 

performances by distributed ensembles. An RMCP conductor and an RMCP animation 

server provided synchronization and graphical communication between remote 

performers (Goto & Hashimoto, 1993). Two protocols discussed in this section that 

provide a general control environment for computer music applications are Open Sound 

Control and CopperLan. 

3.2.1 Open Sound Control 

Open Sound Control (OSC) (Wright & Freed, 1997), originally conceived as a replacement 

for MIDI, has become a widely used control protocol for computer music applications. 

These application areas are varied (Phillips, 2008), and include controlling physical 

devices, as well as controlling software used for sound synthesis and algorithmic 

composition. The conceptual simplicity of OSC has resulted in a wide variety of 

implementations supporting different hardware platforms and programming languages. 

OSC has also been used for lighting control (Burghardt & Minini, 2010), as well as larger 

control systems that integrate lighting, audio and show control functionality.  

Examples include the D-Mitri audio and control environment from Meyer Sound  

(Meyer Sound, n.d.), and show control installations at Disneyland in Anaheim, California 

(Fraietta, 2008, p. 20). An OSC implementation termed AVB Control (AVBC) has been 

developed to manage AVB media steams (Koftinoff, 2010). 

OSC is designed around a hierarchical organization of remote procedure calls and is 

easily adapted to serve a wide range of control scenarios. The protocol also supports 

automation by scheduling the execution of time-stamped OSC commands.  

These features of OSC are discussed in Chapter 5.  



46 
 

3.2.2 CopperLan 

In addition to general control capabilities, CopperLan supports MIDI over Ethernet 

(Klavis Technologies, n.d.) and networked audio stream management. CopperLan uses a 

proprietary transport layer, and provides both device and service discovery using 

proprietary discovery mechanisms. Networked devices expose their architectures and 

services to controllers using the capabilities of a proprietary OSI level three middleware 

layer. Device components and services are specified by extending abstract library classes. 

The middleware layer exposes this information to controllers that use the information to 

create control surfaces that are automatically linked to the services advertised by remote 

devices.  

Although CopperLan can be used as a general-purpose control protocol, its support 

for MIDI allows the protocol to be used with many existing computer music applications. 

Like the EuCon protocol (discussed later in this chapter), CopperLan emphasizes the 

synchronization of control surfaces between a controller and a controlled device.  

The CopperLan protocol is discussed in Chapter 8. 

3.3 Professional Studio and Live Sound Environments 

The first attempt to provide a standard control protocol for professional audio 

environments was AES-24, developed by the Audio Engineering Society (AES)  

(Audio Engineering Society, 1999). Protocols derived from AES-24 include MambaNet 

(Prins, 2009), and the Open Control Architecture (OCA) (Open Control Alliance, 2013).  

OCA is being developed by Bosch Communication Systems, and is undergoing 

standardization within the AES as Project X-210 (Audio Engineering Society, 2012).  

This section discusses the control protocols derived from AES-24, as well as EuCon (Milne, 

Campbell, Boyer, McTigue, & Kloiber, 2006), HiQnet (Harman Pro Corporation, n.d.), 

AES64 (Audio Engineering Society, 2012) and the Media-Accelerated Global Information 

Carrier (Juszkiewicz, et al., 2003). 

3.3.1 AES-24 

AES-24 was designed to be used with different network transports and to provide 

interoperability among different networked audio devices, while also being extensible. 

Although the design of AES-24 uses an object-oriented approach, the terminology used 

differs from accepted object-oriented terminology. Object attributes (including device 

parameters) are termed ‘properties’ (Audio Engineering Society, 1999).  

Object methods that read or write properties are referred to as ‘property access methods’. 

The only known implementation of AES-24 is the implementation done by Bradley 
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Figure 3.1 AES-24 Device Structure and Network Architecture. 
 

     Device  
   Manager 

  Device  
 

  Device  
 

     Device  
   Manager

    Unit 

 AES-24 Functional Objects 

    Unit 
 

    NetworkManager 

  Registry 
 Manager

 Registry Device  
 

    Unit 
 Gateway Device  

 Sub-Network 

Klinkradt (Klinkradt, 1999) at Rhodes University. AES-24 was officially withdrawn by the 

AES in 2004 (Audio Engineering Society, 1999). 

3.3.1.1 Network Architecture 

Each AES-24 node is termed a ‘unit’ and contains a ‘NetworkManager’ object that acts as 

an interface between the node and a network. Figure 3.1 shows that a unit may contain 

multiple ‘devices’ where each device has a single ‘DeviceManager’ object.  

Devices represent a physical or logical partitioning of a unit where multiple devices may 

share a single network address. However, each device must have a unique transport layer 

endpoint. A registry device is regarded as a specialized device that contains a 

‘RegistryManager’ object. The registry manager assigns identifiers to networked devices 

and polls devices to determine their reachability. An AES-24 network may span multiple 

sub-networks where each sub-network is managed by one registry device. 

3.3.1.2 Device Representation 

There are three broad categories of devices: ‘standard devices’, ‘gateway devices’ and 

‘registry devices’. Gateway devices provide connectivity between different sub-networks, 

while registry devices provide service discovery. Figure 3.1 illustrates the AES-24 network 

architecture as well as the structure of AES-24 networked devices. 
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Standard devices contain instances of different AES-24 ‘functional’ objects that 

implement the control and monitoring functionality provided by devices.   

3.3.1.3 AES-24 Classes 

The different components of the AES-24 protocol are implemented as an object-oriented 

class hierarchy where all classes are derived from an abstract base class termed the ‘Root’ 

class shown in Figure 3.2. Classes ‘UserInterface’, ‘Functional’ and ‘Intermediate’ are all 

derived from the Root class that provides common properties and methods required by all 

classes. For example, all objects have a name and a handle (provided by the root class) that 

uniquely identify each object. 

Intermediate objects provide translation between instances of different classes such 

as ‘UserInterface’ and ‘Functional’ objects. The ‘Functional’ class serves as a base class for 

classes that provide control and monitoring capabilities. ‘Actuator’ objects are responsible 

for updating parameter data by dispatching control messages across the network. ‘Sensor’ 

objects provide monitoring functionality by acting as observers that transmit monitoring 

messages in response to events such as parameter value changes. Actuators and sensors 

provide object-oriented implementations of the core functionality (GET(), SET(..) and 

parameter subscription commands) found in most control protocols. Figure 3.2 shows 

that ‘UserInterface’ objects and the ‘Actuator’ and ‘Sensor’ objects that they interact with 

are clearly separated. 

 

           

 

 
                            

 

                          

                                                             
                    
 
 
 
Additional classes provide authorization and connection management capabilities. 

Security and network management functionality are provided by the ‘SecurityManager’ 

and ‘NetworkManager’ classes. A ‘SignalFlowManager’ class provides audio connection 

management capabilities.  

 

 

Figure 3.2 The AES-24 Core Class Hierarchy. 
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3.3.1.4 AES-24 Methods and Events  

Property access methods are used to access object properties that typically represent 

device parameters. AES-24 also supports a subscription mechanism where state changes 

termed ‘events’ cause objects to transmit network messages. The state of an object  

(as determined by the values of an object’s attributes) triggers events. Events are defined 

in a data structure termed an ‘event table’ that specifies the contents of event messages 

and the target objects for these messages. Messages that are generated as the result of an 

event can invoke any object method and do not differ from other AES-24 messages.  

An event table can be dynamically modified as changes occur within an AES-24 network. 

Examples of these changes include the conditions that trigger event messages and the list 

of subscribers for a specified event.  

3.3.1.5 AES-24 - Commentary and Evaluation 

Use of a centralized registry creates a critical vulnerability where the entire network is 

dependent on the registry. Recent control protocols have tended to prefer peer-to-peer 

network architectures that do not use a centralized registry. A solution to this vulnerability 

that uses multiple distributed registries is presented in Chapter 11. 

The design of AES-24 has influenced the development of other control protocols that 

are discussed in the later sections of this chapter. John Huntington has commented on the 

failure of AES-24 to become an accepted standard: 

"Two primary factors led to the failure of this standard effort. The first is that no 

clear market demand or commercial pressure ever developed for the creation of a 

unified audio control standard….. The second factor is that with the growth and 

power of modern DSP technologies, audio systems are becoming increasingly 

centralized with more power housed in less physical devices, so there are less 

devices and types of devices that need to be connected and controlled…" 

  (Huntington, 2012). 

The first factor cited in this quotation is plausible, as many proprietary protocols such as 

HiQnet and EuCon (discussed later in this chapter) appear to have a customer base that is 

sufficient to support these protocols. The second factor is more contentious. A typical live 

sound scenario will typically consist of multiple mixing consoles and several microphones, 

amplifiers and effects units. Additionally, conference centres and broadcast studios 

usually have multiple venues that contain a variety of hardware devices. Centralization 

may reduce network dependencies, but it does not eliminate the need for managing and 

controlling multiple networked devices. 
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The chair of the AES working group (AES working group SC-10) that was responsible 

for AES-24 commented on the withdrawal of the AES-24 standard: 

"What was missing, however, was a marketing model for how a common control 

protocol would benefit all producers of control systems. Without a clear ability to 

profit from a standard, it was difficult to keep the attention of the very companies 

for whom it was intended. In the end, AES-24 languished... None of this is to say that 

the ideas behind AES-24 were poor or that the work that was performed was 

insignificant."   (Karagosian, 1999). 

 
These comments reiterate the first point made by John Huntington quoted in Section 1.4.1 

Characteristics of Successful Standards (p.9), that a successful standard must have a 

commercial market that requires the standard. 

3.3.2 Open Control Architecture (X-210) 

Open Control Architecture (OCA) can use the standard IP-based network protocols 

illustrated in Figure 3.3. The goals of the protocol (Berryman, 2011) include: 

 Compatibility with standard IP networks and the ability to use other transports; 

 Both local-area and wide-area scalability; 

 Independence from any specific hardware or software environments; 

 Reliability mechanisms for acknowledging operations and handling the loss of 

control messages; 

 The provision of a minimum QoS;  

 Platform independence; 

 Device and service discovery capabilities; 

 The provision of network security. 

OCA uses an object-oriented design that is conceptually related to AES-24.  

The OCA specification (Open Control Alliance, 2011) consists of three main parts, the: 

 Open Control Framework (OCF) that is used to describe devices and provides a 

generic communication model that can be used with different network 

transports; 

 Open Control Classes (OCC) that define object-oriented classes which 

implement all OCA functionality; 

 Open Control Protocols (OCP) that describe the implementation of OCA 

commands on different network transports. For example, the OCP.1 specification 

defines OCA for TCP/IP networks. 
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OCA defines a large set of abstract data types that represent common scalar values, 

collections and specialized data types representing values associated with clocks and DSP 

functions (Bosch Communication Systems, 2013). 

3.3.2.1 The OCA Protocol Stack 

The OCA protocol stack is illustrated in Figure 3.3 with reference to the levels of the OSI 

network model. DNS-SD is used for service-discovery, while control functionality is 

provided by the OCP that forms the core of the OCA protocol. The OCP also supports 

connection management between audio and video streams. The Transport Layer Security 

(TLS) is a cryptographic protocol that provides security for OCP network traffic. Lower 

levels of the protocol stack consist entirely of standard, open network protocols. 

 

 

 

 

 

 

 

 

 

 

 
Implementations of the OCP have been made for several platforms  

(Bosch Communication Systems, n.d., p. 2). To enable portability, the OCP consists of a 

Host Interface Layer and an OCA Layer consisting of the Open Control Classes.  

The Host Interface Layer provides platform-specific support for the OCC. Version 1.2 of 

the OCA API defines 114 classes. 

3.3.2.2 Device Representation 

Figure 3.4 shows that the OCA device model includes ‘Manager’, ‘Worker’ and ‘Agent’ 

classes. Worker classes are base classes for ‘Actuator’ and ‘Sensor’ classes that are similar 

to their AES-24 counterparts as illustrated in. ‘Agent’ classes provide specialized control 

functionality that is not concerned with signal processing. These classes typically provide 

extended capabilities that are not found in AES-24. Examples of ‘Agent’ sub-classes 

include: 

 A ‘Grouper’ class that supports parameter groups where changes to the value of a 

group member  are propagated to all other parameters within the group; 
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(Open Control Alliance, 2011, p. 11). 

Figure 3.3 The OCP Protocol Stack. 
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Figure 3.5 OCA Microphone Channel Block Example. 

(Bosch Communication Systems, 2012, p. 23). 
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 A ‘Ramper’ class that supports automation by allowing parameter values to change 

over time. 

Additional management classes that are not elaborated on are also shown in Figure 3.4. 

These include classes that provide functionality pertaining to security, timing, and the 

management of networked devices. 

 

 

 

 

 

 

 

 

 

 
 

Devices are automatically discovered on a network using a ‘service browser’ that is 

implemented as a part of the OCP (Bosch Communication Systems, 2014). OCA does not 

support the specification of user interfaces. 

3.3.2.2.1 Signal Path Representation 

Representation of the signal paths within a device is not mandated by the OCA, but is 

optionally supported via ‘blocks’ that represent the path of an audio signal as illustrated 

in Figure 3.5.  

 
 

 
 
 
 
 
 

 

 

(Open Control Alliance, 2011, p. 14). 

Figure 3.4 The OCA Device Model. 
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Blocks may be nested and contain worker and agent objects. Figure 3.5 illustrates the block 

topology of a mixer microphone channel. Circles denote signal connections between 

blocks termed ‘ports’. The phantom power switch shows that blocks are not required to 

have signal connections. It is debatable whether a control protocol requires a depiction of 

signal paths to implement control functionality, as the fixed connections between internal 

blocks shown in Figure 3.5 do not influence the functionality provided by the channel 

block. Signal path representations are discussed in Section 4.5.1 A Channel-Oriented 

Model (p.112) and in Chapter 6 with reference to IEC-62379-2. 

3.3.2.2.2 Device and Service Discovery 

Device discovery uses DNS-SD. OCA defines a discovery mode termed ‘capability 

discovery’ (Open Control Alliance, 2011, p. 16) that discovers: 

 All OCA objects belonging to a device; 

 Signal paths within a device (as discussed in the previous section) for media 

devices. 

These capabilities are provided by the OCA device model. 

3.3.2.3 Control and Monitoring Functionality 

Most control messages are sent over TCP while monitoring traffic uses UDP.  

Both periodic subscriptions and event-based subscriptions are supported. Figure 3.6 

shows different ‘Actuator’ sub-classes that provide control functionality within the OCA.  

All routing and functionality that affects audio signals are performed by these classes. OCA 

provides abstractions for different types of controls and different types of DSP functions. 

Actuators are typically defined according to their functionality or the data types that they 

transmit.  

 

 

 

 

 

 

 

 

 

Figure 3.6 OCA Object Control Protocol Actuator Classes. 

(Open Control Alliance, 2011). 
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Example classes shown in Figure 3.6 include a signal generator, a Finite Impulse Response 

(FIR) filter and a class representing arbitrary scalar values. OCA data values conform to 

International System of Units (SI) data units (National Institute of Standards and 

Technology, 2000). OCA allows these units to be translated into OCA ‘presentation units’ 

for display on a user interface (Bosch Communication Systems, 2013, p. 34). 

The OCA API provides proxy classes for these classes that implement both blocking 

and non-blocking commands. All proxy classes implement an event handler that allows 

applications to respond to OCP control commands (Bosch Communication Systems, 

2014).  

3.3.2.3.1 Control Class Identifiers 

Control classes are identified by their level within the OCA class hierarchy. For example, 

in Figure 3.7, the ‘OcpGain’ class has an identifier of 1.1.1.7 starting from the root node as 

it is the seventh class defined within level four of the class hierarchy.  The properties, 

methods and events within each class are identified by identifier strings having the format: 

LLCNN where LL is the level number, C denotes a class member (property, method or 

event) and NN is a sequence number. The second method within the ‘OcpGain’ class in 

Figure 3.7 would have a method identifier of 04m02, while the third property would have 

a property identifier of 04p03. 

 

 

 

 

 

 

 

 

 

 

 

3.3.2.3.2 Subscriptions and Monitoring  

Objects that support subscriptions are termed ‘emitters’, while messages that signal events 

are termed ‘notifications'. Notifications may be connection-oriented ‘reliable notifications’ 

Figure 3.7 OCA Control Class Identifiers. 
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or ‘fast notifications’ that use TCP and UDP respectively within the IP implementation of 

the OCP. All OCA classes are potentially emitters, as all classes have a ‘PropertyChanged’ 

event that is inherited from the root base class ‘OcaRoot’.  

Controllers monitor changes to an object’s property values by subscribing to 

‘PropertyChanged’ events. 

3.3.2.4 OCA - Commentary and Evaluation 

OCA is a sophisticated control protocol that has ambitious design and implementation 

goals. Without developing and studying an implementation of the protocol, it is only 

possible to make superficial observations. Implementations of this sophistication are 

likely to create a complex software environment that suffers from the adverse effects of 

the ‘functional approach’ introduced in Section 2.9 Control Protocol Commands (p.33). 

This disadvantage is the result of a large number of classes (of the order of 100) and 

methods needed to implement the required functionality. Specific functionality is not 

always handled in an abstract manner. As an example, the ‘OcpDanteManager’ class that 

supports the Dante audio transport (Audinate Corporation, 2013) is a singleton class that 

contains several methods that are applicable to all media transports. ‘StartSending()’, 

‘StopSending()’, ‘StartReceiving()’ and ‘StopReceiving()’ are methods applicable to all 

media transports. These methods are not abstracted into a base class, but are declared 

within the concrete ‘OcpDanteManager’ class. Implications of object-oriented and 

functional approaches to control protocol design are discussed Chapter 10. 

Identifier strings provide a basis for the standardization of parameter addresses in a 

similar manner to the parameter address hierarchy defined by AES64 that is discussed in 

Chapter 7. 

3.3.3 EuCon 

EuCon (Milne, Campbell, Boyer, McTigue, & Kloiber, 2006) is a proprietary, object-

oriented control protocol developed by Euphonix Corporation. This protocol is designed 

to link traditional hardware control surfaces to virtual (software) control surfaces. A 

library of virtual control objects allows developers to create virtual control surfaces. 

Euphonix Corporation markets generic hardware control surfaces such as the  

MC Control control surface shown in Figure 3.8. Hardware devices have an embedded 

system that implements a EuCon protocol stack.  

EuCon addresses limitations inherent in the structure of many traditional 

analogue control surfaces. For example, grouping controls and ramping control values are 

difficult to achieve when using traditional hardware control surfaces that do not explicitly 

support this functionality. 
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EuCon provides control mappings between hardware devices or maps hardware 

controls to controls on a software control surface. The protocol stack provides bi-

directional communication that synchronizes all mapped controls. EuCon does not 

represent parameters; all functionality is achieved by linking (‘joining’) controls. Note that 

unlike the use of the term ‘control’ in this dissertation, EuCon ‘controls’ are logical units 

that may contain more than one physical control or user interface widget. This concept is 

examined further in Section 3.3.3.1.2 Control Surface Architecture  (p.57). 

3.3.3.1 Network Architecture 

EuCon uses TCP for network transport and is written in the C++ programming language. 

A distributed object system provides the required remote functionality. Figure 3.9 shows 

that a EuCon network consists of a set of control surfaces and workstations. EuCon uses 

the term ‘workstation’ to refer to any processor that runs an application.  

Any computer or embedded device is thus a workstation. Workstations execute one or 

more applications where each application has a single ‘node’ object that provides all 

distributed functionality. 

 

 

 

 

 

 

 

 

(Euphonix Corporation, 2013). 

Figure 3.8 Euphonix ‘MC Control’ Control Surface. 
 

(Milne, Campbell, Boyer,  McTigue, & Kloiber, 2006). 

Figure 3.9 EuCon Network Architecture. 
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3.3.3.1.1 Device and Service Discovery 

All nodes register with a distributed database called EuCon Discovery that runs within 

each control surface and workstation. Using TCP/IP multicast protocols, this database 

maintains information about all discovered nodes on a network. Controllers access the 

database to obtain IP addresses and port numbers for networked devices. On Microsoft 

Windows platforms, the database is closely coupled to the operating system as it is 

installed as a Windows Service (Avid Technology, 2010, p. 23). 

3.3.3.1.2 Control Surface Architecture 

Multiple control surfaces can be defined within a single application. This allows a 

controller to present different views of a controlled device. Each EuCon application 

consists of one or more ‘processors’ where processors contain controls termed ‘primitive 

control objects’ that can be optionally grouped into the ‘control arrays’ illustrated in Figure 

3.10. The term ‘processor’ refers to a signal-processing unit and may represent a single 

DSP function or larger, composite units that process an audio signal path such as a channel 

strip.  

Related controls such as those found within a channel strip, an equalization section, 

or sets of controls performing the same DSP function for multiple audio signals are 

typically grouped within a single control array. At the lowest level are ‘control primitive’ 

objects. These are hardware or software widgets that are logically grouped to create 

‘primitive control’ (control) objects. 

 

 

 

 

 

 

 

 

 

 

 
         

 

 
 

 
Figure 3.10 EuCon Application Architecture. 
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For example, the fader control shown in Figure 3.10 consists of a fader control 

primitive and a display control primitive indicating the fader’s current value. The second 

control of Figure 3.10 is a primitive switch control object consisting of three control 

primitives: an LED, a switch and a text label. Control surfaces are configured by browsing 

for controls within each application node. ‘Browser’ objects search each processor within 

an application node to discover the processor’s control objects. When a ‘Browser’ object 

discovers and selects required controls, the control surface creates virtual copies of these 

controls (Milne, Campbell, Boyer, McTigue, & Kloiber, 2006, p. 7). Each control on a 

device has a unique identifier termed a ‘layout name’. This identifier is used to map the 

control to an identical virtual control on a virtual control surface.  

Layout names are associated with ‘layout rules’ that define the structure and visual 

appearance of groups of controls. An example is provided by the controls found within a 

channel strip. These controls would be grouped together to create a ‘channel strip layout 

rule’. 

3.3.3.2 EuCon - Commentary and Evaluation 

EuCon is an unusual protocol in that it does not represent parameter values.  

Parameters are not required to achieve the primary objective of the protocol, which is to 

link and synchronize control surfaces. The protocol provides a sophisticated 

representation of control surfaces where layout rules are similar to the AES64 ‘desk item’ 

concept discussed in Section 7.6.1 Representing AES64 Desk Items (p.203). EuCon is used 

in a variety of application areas, including video environments, recording studios and 

computer music applications. Euphonix Corporation maintains a list of products that 

support the EuCon protocol (Euphonix Corporation, 2014). 

3.3.4 HiQnet 

HiQnet is an object-oriented, proprietary control protocol designed to be both transport 

independent and scalable:  

“HiQnet is Harman’s proprietary control protocol and is the mechanism by which 

HiQnet devices communicate with each other and control software such as HiQnet 

Audio Architect or HiQnet Performance Manager … it is used to inform devices on 

the network which audio signals to transmit and which to receive, regardless of 

which audio transport they are using.” 

  (Harman Pro Corporation, 2012). 

This allows the protocol to be used with several supported audio transports as well as a 

range of products developed by Harmon Pro Corporation (Kreifeldt, HiQnet Third Party 

Programmer Documentation, 2007). Scalability is achieved by supporting software 
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‘plugins’ that interact with the core protocol architecture. Plugins are typically developed 

to support specific functionality required by different HiQnet-enabled products. All 

devices and applications within a HiQnet system are represented by a hierarchy consisting 

of sub-devices, objects and parameters.  

3.3.4.1 Network Implementation 

Proprietary network layers are used on top of the standard lower-level protocols shown in 

Figure 3.11.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
The ‘Routing Layer’ forwards HiQnet network packets using different network protocols 

managed by the ‘Packet Layer’. The ‘Message Layer’ manages messages for specific 

applications. Applications can also communicate directly with the ‘Routing Layer’ if 

different network protocols are used by an application (Kreifeldt, 2007, p. 66). The UPnP 

discovery mechanism is used by HiQnet’s ‘Disco’ discovery protocol: 

“All HiQnet devices conform to the Universal Plug and Play (UPnP) standards, so in 

the majority of situations, the system designer/engineer will not even have to 

consider IP addresses.” (Kreifeldt & Holladay, 2005). 

 
UPnP discovery messages are discussed in Section 9.4 UPnP Network Protocols (p.231). 

3.3.4.2 Device Architecture 

An audio device is termed a ‘node’ and consists of sub-devices termed ‘virtual devices’. The 

first virtual device always functions as a node manager shown in Figure 3.12.  
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(Kreifeldt, 2007, p. 64). 
Figure 3.11 The HiQnet Protocol Stack. 

Application Layer  (HiQnet Applications) 

Message Layer 



60 
 

L1 Device Address (16 bits) 

 
L2 

Virtual Device 
Address (8 bits) 

Object Address (16 bits) 

L3 Parameter Index (16 bits) 

 

(Kreifeldt, 2007, p. 11). 

Byte1 Byte2 Byte3 

Figure 3.13 HiQnet Parameter Address Format. 
 

Each virtual device contains (possibly nested) objects that define parameters.  

Following UPnP conventions, parameters are termed ‘state variables’. Virtual devices may 

contain parameters that are not associated with an object as shown by the shaded 

parameters in Figure 3.12. HiQnet does not distinguish between device components, 

control surface widgets or any other entity defined by the protocol. All elements within 

HiQnet devices are defined in terms of virtual devices, objects and parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.4.3 Parameter Organization 

HiQnet parameters are divided into two categories: 

 Parameters where values change periodically, such as meter values are termed 

‘sensor parameters’; 

 Parameters whose values only change when they are explicitly updated termed 

‘non-sensor’ parameters. 

Parameter addresses are derived from the device structure and are termed ‘fully qualified 

addresses’. These addresses consist of the three levels shown in Figure 3.13.  
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(Kreifeldt, 2007, p. 7). 

Figure 3.12 HiQnet Device Architecture. 
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  Attribute ID     Attribute      Value         Category 

0 Data Type   Data Type   Static 

1 Name String   STRING   Instance  

2 Minimum Data Type   Instance   

3 Maximum Data Type   Instance   

4 Control Law  Static 

5 Flags UWORD Static 

 
Table 3.1 HiQnet Device Architecture. 

(Kreifeldt, 2007, p. 9). 

These three addressing levels allow objects and parameters to be related in a logical 

manner. All Harman Pro Corporation software products represent parameter addresses 

within these three levels using a dotted notation similar to IP address notation to denote 

fully qualified addresses. 

Objects group related parameters; for example, an object would group all parameters 

found within a parametric equalizer. A parameter index identifies individual parameters 

defined within a single object. All parameters are described by a fixed structure that 

defines five descriptive attributes shown in Table 3.1. Entries specify a parameter name, a 

data type and an indication of whether the parameter is a class attribute or an instance 

attribute. The ‘Control Law’ specifies how a parameter’s value should change. For example 

a value may change logarithmically or have a step size specifying the minimum change to 

a parameter’s value. The ‘Flags’ attribute is used to specify a sensor or a non-sensor 

parameter. 

 
 
 
 
 
 
 
 
 
 
 

Note how attribute identifiers separate meta-data (indicated by the shaded rows) from 

descriptive data. 

3.3.4.4 Control, Subscription and Connection Management Messages 

HiQnet PDUs may contain multiple control messages, allowing a single network message 

to transport multiple control messages. Protocol commands (USA Patent No. 

US20050239396 A1, 2005) include commands that: 

 GET() or SET(..) multiple  parameter values within multiple objects or multiple 

virtual devices; 

 GET() or SET(..) parameter values  as a percentage of a specified value; 

 Subscribe or unsubscribe to specific parameters or all parameters within a 

specified virtual device. 

Control messages used to address non-sensor parameters are implemented using 

connection-oriented messages. Connectionless messages are only used to transmit data 
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received from sensor parameters. Subscription requests for a specific node are handled by 

the node manager shown previously in Figure 3.12. A HiQnet message can request: 

 A response to be transmitted with guaranteed delivery; 

 That an operation be implemented using multiple messages if the size of the 

message payload requires multiple network transmissions. 

HiQnet parameter subscriptions may be value-based or event-based subscriptions.  

The protocol does not support parameter relationships. Connection management is 

supported between HiQnet objects and between virtual devices. 

3.3.4.5 HiQnet Software Applications 

Sophisticated software tools that use HiQnet are available from Harman Pro Corporation 

(HiQnet™ Software, n.d.). These include the JBL Performance Manager, and the Audio 

Architect, which replaces the previous System Architect. Audio Architect is written in C# 

using the Microsoft .NET platform. The Performance Manager is intended to manage live 

sound for venues such as theatre, and conferencing venues. Audio Architect is designed 

for performance venues by supporting a range of audio equipment such as microphones 

and amplifiers. These applications: 

 Allow plug-ins to be developed that provide HiQnet functionality for specific 

devices; 

 Provide device discovery and service discovery; 

 Provide control surfaces that interact with discovered devices; 

 Perform connection management among networked devices.  

3.3.4.6 HiQnet - Commentary and Evaluation 

A detailed description of the features of HiQnet is not possible as information describing 

HiQnet is not publicly available. Additionally, the information used as a basis for this 

discussion is likely to be dated. However, the sophisticated applications described in the 

previous section indicate that the protocol is able to support complex networked 

applications and environments. 

3.3.5 Media-Accelerated Global Information Carrier 

The Media-Accelerated Global Information Carrier (MaGIC) was developed by the 

Gibson Guitar Corporation (Juszkiewicz, et al., 2003) to provide an open architecture for 

audio and control data. The technology has not enjoyed widespread acceptance, being 

confined to digital guitars developed by Gibson (Gibson Guitar Corporation, n.d.). MaGIC 

transports audio using a proprietary layer three protocol that use the IEEE 802.3 Ethernet 

http://hiqnet.harmanpro.com/general/performance_manager
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Figure 3.14 MaGIC Device Organization. 
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data link layer. Connection management is provided by audio stream transmitters termed 

'ports' that are advertised to a network; ‘Media Slot Router’ objects are responsible for 

routing these streams within a network.  

The ‘MaGIC Control Protocol’ (MCP) is used to control MaGIC-enabled devices. 

Media and control information are transported within fixed parts of the same data frame 

where a forty-four octet ‘control packet’ is reserved for control information. Because of 

this size restriction, a single high-level control message may require multiple packets to 

be transmitted.  

3.3.5.1 Device Representation 

A device consists of sub-devices termed ‘units’. Units consist of ‘components’ that provide 

control points (termed ‘access points’) for control messages as illustrated in Figure 3.14. 

Devices have ports that transmit and receive media data transported within OSI layer 2 

IEEE 802.2 LLC-SNAP frames (Postel & Reynolds, 1988). The MCP provides control 

communication between access points. Although the specification is incomplete, access 

points appear to include both independent access points and the access points linked to 

controls shown in Figure 3.14. 

 

 

 

 

 

 

 

 

 

 

 

 
Control message target addresses are termed ‘full component addresses’, and consist of a 

sixteen-bit unit address and a sixteen-bit component address. All devices have an 

‘attribute descriptor’ consisting of eleven mandatory entries that describe all device 

components and MaGIC network ports. Bi-directional communication channels between 
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a controller and a MaGIC device are termed ‘control links’ and are used to link access 

points between units. Each unit has a ‘control link table’ that specifies the control 

connections that exist between local and remote controls.  

3.3.5.2 Control Messages and Connection Management 

There are three categories of MaGIC control messages: 

1. ‘Network management messages’ that are standardized by the protocol; 

2. ‘Well known application protocol messages’ encapsulate messages from other 

protocols such as UDP, TCP or MIDI; 

3. ‘User control messages’ that are proprietary control messages. 

The most common messages are those that read and write control values or invoke access 

points.  

Within a device, 'virtual media pipes' are used to transfer audio between device units. 

Each device maintains an ‘internal routing table’ that connects virtual media pipes to and 

from device input and output ports. 

3.3.5.3 MaGIC - Commentary and Evaluation 

The MaGIC protocol does not define any parameters. Components are typically controls 

that can be connected (joined) to each other. In this respect, MaGIC strongly resembles 

the EuCon protocol discussed earlier in this chapter. The ability to define master-slave 

control relationships and to encapsulate other network protocols are notable features of 

MaGIC. The design decision to allow media traffic and control traffic within the same 

network frame is unusual. To achieve a desired QoS for media traffic, network frames 

containing only control traffic can be regulated. The protocol appears to be no longer 

developed or marketed by Gibson Guitar Corporation. 

3.3.6 AES64 

AES64 is a recent control protocol that became an AES standard in 2012  

(Audio Engineering Society, 2012). This protocol provides an integrated approach to 

control, monitoring, connection management and control surface creation. AES64 has 

many unique features, including: 

 A fixed, hierarchical parameter-addressing scheme; 

 Support for the parameter joins and parameter groups that were introduced in 

Section 2.8 Parameter Management (p.28); 

 A universal measurement unit; 

 A dedicated bulk parameter transfer mechanism; 
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 The ability to dynamically scale or modify parameter values; 

 Support for control surface creation; 

 The provision of connection management capabilities. 

AES64 fixed-level parameter addresses are intended to provide parameter address 

interoperability (and thus control interoperability) between similar devices. AES64 and 

OCA are the only control protocols to date that have suggested comprehensive solutions 

to the problem of device interoperability. For example, an AES64 pan parameter for a 

specific mixing console channel will have the same symbolic address across all mixing 

consoles that support AES64. Parameter addresses also allow control commands to 

address sets of parameters. The various features provided by AES64 are discussed in 

Chapter 7. 

3.4 Fixed Sound Installations 

Examples of fixed sound installations include stadium installations from Meyer Sound 

(Koftinoff, 2013) and the OSC-controlled installations used at Disneyland that are 

mentioned in Chapter 5. The CA-96 Beam Steering Column Array Loudspeakers from 

Meyer Sound shown in Figure 3.15 are configured and controlled using the  

IEEE 1722.1-2013 control protocol. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      (Koftinoff, Audio Video Bridging - A collection of 
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Figure 3.15 Column Array Loudspeakers from Meyer Sound. 
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3.4.1 IEEE 1722.1-2013 

IEEE 1722.1-2013 – Standard for Device Discovery, Connection Management and 

Control Protocol for AVTP Devices (Institute of Electrical and Electronics Engineers, 

2012), is also referred to as ‘AVDECC’. The commonly used term for the underlying audio 

transport technology (IEEE 1722) is Audio Video Bridging (AVB). IEEE 1722 consists of 

several standards defining different aspects of the protocol as well as other network 

protocols used by the protocol. These include standards that define: 

 Distributed synchronization and timing – Standard for Local and Metropolitan 

Area Networks - Timing and Synchronization for Time-Sensitive Applications in 

Bridged Local Area Networks (802.1AS) (Institute of Electrical and Electronics 

Engineers, 2011); 

 Traffic classification and shaping - IEEE Standard for Local and Metropolitan 

Area Networks---Virtual Bridged Local Area Networks - Amendment: 

Forwarding and Queuing Enhancements for Time-Sensitive Streams. (802.1Qav) 

(Institute of Electrical and Electronics Engineers, 2009); 

 Bandwidth reservation to guarantee QoS  - Standard for Local and Metropolitan 

Area Networks - Virtual Bridged Local Area Networks - Amendment: 9: Stream 

Reservation Protocol (SRP) (Institute of Electrical and Electronics Engineers, 

2010); 

 Transport protocols for different media formats (Institute of Electrical and 

Electronics Engineers, 2011). 

IEEE 1722.1-2013 is an ISO layer two protocol consisting of three components: A discovery 

protocol, an enumeration and control protocol, and a connection management protocol. 

An overview of the protocol was presented at the 2013 New York Convention of the Audio 

Engineering Society (Koftinoff, 2013). Although IEEE 1722 media streams are applicable 

to a variety of scenarios, IEEE 1722.1-2013 is discussed with reference to fixed-sound 

installations due to the example from Meyer Sound illustrated in Figure 3.15. 

3.4.1.1 Representing Device Architectures 

IEEE 1722.1-2013 uses an Entity Model (Institute of Electrical and Electronics Engineers, 

2012) to describe the internal components and connections within a device that is termed 

an ‘entity’. Figure 3.16 shows that this model consists of a variable-sized hierarchy of 

objects or structures. Each parent object provides links to its child objects. An entity is 

represented by multiple configurations where each configuration describes  

‘one operating mode of the entity’ (Institute of Electrical and Electronics Engineers, 2012, 

p. 41). Each configuration consists of predefined units that are audio, video or sensor units, 
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as well as the audio and video signal connections between units.  

For example, a specific configuration may stream both audio and video data to specific 

stream and jack outputs. 

Fixed-field objects or structures termed ‘descriptors’ describe entity model objects 

at every level of a device description hierarchy. The top of the hierarchy contains an ‘entity 

descriptor’ that describes the various configurations defined by the entity. ‘Configuration 

descriptors’ allow an entity to be configured in different ways and describe a particular 

mode of operation of an entity. Descriptors are implemented as XML documents provided 

by device vendors to describe entity models for different devices. These XML files can be 

loaded by IEEE 1722.1-2013-enabled controllers.  

 

 

 

 

 

 

 

 

 
 
 
 

 Figure 3.17 shows that audio functionality is represented by ‘audio units’ that are 

defined around a common clock domain. Each audio unit can also contain controls.  

An ‘audio map’ maps stream audio channels to ‘audio cluster’ channels where an audio 

cluster represents one or more channels within a unit. 

3.4.1.1.1 Service Enumeration 

The functional capabilities of a device are determined by tracing signal paths from AVB 

stream entry points to AVB stream exit points, and between the other entry and exit points 

defined by the entity architecture shown in Figure 3.17. IEEE 1722.1-2013 describes three 

types of ports using ‘port descriptors’: 

 Ports connected to media streams; 

 External ports that are connected to jacks; 

 Internal ports for connections between different units. 
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Figure 3.16 IEEE IEEE 1722.1-2013 Entity Model. 
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Unit 

Controls Ports 

Figure 3.17 IEEE 1722.1-2013 Entity Architecture. 

(Koftinoff, 2013). 
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Jack connections are connections for signals that are not media streams. Controls and DSP 

functions such as mute and volume controls, as well as signal mixers and signal selectors 

are described with reference to the signal paths found within a unit.  

Control data is comprehensively described by meta-data within descriptors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
3.4.1.2 Control and Monitoring Functionality 

IEEE 1722.1-2013 defines nine types of control objects (Institute of Electrical and 

Electronics Engineers, 2012, p. 41). A generic control is termed ‘control point’, differing 

from the use of this term in this dissertation. Controls and parameters are defined within 

the various descriptors. An entity transmits notification messages (termed ‘unsolicited 

notifications’) when the entity’s state is updated. Scaling of parameter data is supported 

by the protocol. 
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3.4.1.3 Connection Management 

P172.1 defines the ‘AVDECC Connection Management Protocol’ that manages media 

connections between IEEE 1722.1-2013 entities. Connections are made between AVB 

source streams termed ‘talkers’ and AVB destination streams termed ‘listeners’.  

Connections can be made persistent by using a locking mechanism and the status of 

connections can be monitored. For example a connection may exist but not be active if an 

AVB talker stream is not transmitting a media stream. Commands and responses are listed 

in the draft specification (Institute of Electrical and Electronics Engineers, 2012, pp. 264-

5) and the XMOS AVB Design Guide (XMOS Limited, 2011). 

3.4.1.4 IEEE 1722.1-2013 - Commentary and Evaluation 

Experience with IEC-62379-2 suggests that the use of signal paths to represent device 

structure provides significant parsing challenges during service discovery. In particular, 

the use of descriptors to represent device components, signal paths and parameters means 

that the device’s state is always contained within descriptors. Without the experience of 

developing IEEE 1722.1-2013 applications, it is difficult to provide a detailed evaluation of 

the protocol. A design that represents control parameters and connections within separate 

representations that are closely coupled to an entity model would possibly provide greater 

simplicity and flexibility. These control protocol design considerations are discussed in 

Chapter 10. For the reasons outlined in the introduction, IEEE 1722.1-2013 is not 

discussed in greater detail.  

3.5 Lighting Applications 

ANSI E1.11 – USITT DMX512-A (American National Standards Institute, 2008) is the de-

facto standard for lighting control. It is not a network protocol, being implemented as a 

balanced serial connection (OpenDMX, n.d.). Many protocols have been designed to 

transport DMX over Ethernet networks. An example is E1.31, ‘Lightweight Streaming 

Protocol for Transport of DMX512 using ACN’ that is often referred to as ‘Streaming ACN’ 

(sACN). (Entertainment and Services Technology Association, 2009). Note that this 

protocol only uses the proprietary ACN transport layer termed the ‘Session Data 

Transport’ and should not be confused with the ACN protocol discussed in the next section 

(Jands Technical Resource Group, 2010). 

3.5.1 Architecture for Control Networks  

Originally conceived as a control environment for lighting control, Architecture for 

Control Networks (ACN) became an ANSI standard in 2010. (Entertainment and Services 

Technology Association, 2010). ACN is designed as a general control protocol that can also 

be used within other application areas. ACN consists of a suite of network protocols for: 
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Figure 3.18 The ACN Protocol Suite. 
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 Device control; 

 Reliable network transmission of control and management commands; 

 Device and service discovery using the Service Location Protocol (SLP). 

The ACN protocol suite is illustrated in Figure 3.18. Use of a proprietary transport layer 

termed the ‘Session Data Transport’ (SDT) provides reliable delivery of PDUs between 

network nodes. The ‘Root Layer Protocol’ (RLP) is an interface layer that connects ACN 

protocols to the transport layer. Control functionality is provided by the  

‘Device Management Protocol’ (DMP). An XML-based ‘Device Description Language’ 

(DDL) is used to represent a device’s architecture and to specify device parameters 

(Entertainment and Services Technology Association, 2006). An example of the use of the 

DDL is provided in Section 3.5.1.3 ACN Device Description (p.71). 

 

 

 

 

 

 

 
 

Network packets are structured according to a standard PDU format that provides 

two main advantages: 

 Network packets from different protocols within the protocol suite have the same 

format. These protocols can use the same protocol stack processes to pack, unpack 

and parse network packets. 

 Bandwidth usage is optimized by allowing multiple messages to be packed into a 

single PDU. 

3.5.1.1 Network Transport  

The ‘Session Data Transport Protocol’ (SDT) supports both connection-oriented and 

connectionless transports. The SDT supports the ordered delivery of multicast messages 

using a subset of TCP/IP that avoids much of the inherent complexity of TCP.  

The ‘Component Identifier’ (CID) uniquely identifies a source or destination for network 

messages. A CID is a ‘Universally Unique Identifier’ (UUID) as defined by the IETF (Leach, 

Mealling, & Salz, 2005). 



71 
 

3.5.1.2 Device and Service Discovery 

A simplified version of SLP, SLPv2bis (Guttman & Kempf, 2000) is used to discover 

devices on an ACN network. Service discovery is initiated by retrieving and parsing an 

XML device description and then using SLP to bind device services to network addresses. 

Device descriptions can be vendor-supplied or stored within the device itself. A summary 

of the services provided by a device can also be obtained via SLP in the form of a ‘Device 

Class Identifier’ (DCID). Devices of the same device class will provide the same services. 

During service discovery, if a controller does not recognize a device’s DCID, it must obtain 

a DDL file from the device. Once a controller has parsed a DDL file, it can interoperate 

with all devices having the same DCID.  

Service requests allow wildcards as specified by SLPv2bis, and can select services 

associated with specific descriptive attributes. Services are identified by ACN component 

attributes described by <key, value> pairs. Each ACN component (a root device and its 

sub-devices) can advertise separate DDL files or a device may represent all services within 

a single DDL file.  

3.5.1.3 ACN Device Description 

An ACN XML device description links a structural device representation to parameter 

addresses and the control messages specified by the Device Management Protocol. Listing 

3.1 illustrates a device description for the input section of a mixing console.  

This simple example consists of eight channel strips each having a gain and fader control. 

A device description is able to specify sub-devices and link these to a device using the 

numeric component identifiers shown in Listing 3.1. Parameters are termed ‘properties’ 

and are linked to a standard set of abstract behaviors that indicate the practical influence 

of different controls on a media stream. For example, a fader has a standard ‘stream 

regulator’ behavior, while a gain control exhibits a ‘stream ratio’ behavior. 

3.5.1.4 Parameter Organization 

ACN supports four types of property (parameter) addresses (Entertainment and Services 

Technology Association, 2006, p. 37): 

 Absolute addresses;  

 Relative addresses that are specified as offsets to a base address; 

 ‘Ranged addresses’ used to group properties; 

 Virtual addresses that map to absolute or relative addresses.  

In Listing 3.1, the DDL specifies absolute addresses using a ‘property reference’ tag.  

A numerical organization of parameters, where offsets specify a hierarchical ordering was 
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introduced in Section 2.7 Parameter Organization and Addressing (p.25).  

ACN property address offsets are also used to represent property groups. For example,  

a group of four properties at addresses 500, 520, 540 and 560 can be defined by a starting 

address of 500, an increment of 20 and a range of 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 

 
 
Property groups are addressed using a ‘ranged address’ (Entertainment and Services 

Technology Association, 2006). Ranged addressing specifies the address of the first 

<!--    Generic Channel Strip   --> 
<DDL version=“1.0”> 
 <device UUID=“4fcb433d-7dd4-4318-9559-cb1a8e51638a”  

provider=“Andrew Eales” date=“2008-11-11”> 
        <useprotocol name=“ESTA.DMP”/> 
                <label>ChannelStrip</label> 
               <property> 
                     <label>Gain</label> 
                     <behavior name=“streamRatio” set=“setGain”/> 
          <protocol   name=“ESTA.DMP”> 
                          <propref_DMP loc=“500”  inc=“1” size=“1”  read=“true”  write=“true  /> 
          </protocol>    
                </property> 
                <property> 
                     <label>Fader</label> 
                     <behavior name=“streamRegulator” set=“setFader”/>    

<protocol   name=“ESTA.DMP”> 
                          <propref_DMP  loc=“600” inc=“1” size=“1”  read=“true”  write=“true  /> 
          </protocol>    
               </property> 
          </property> 
    </device> 
 

<!--   Generic mixing console   --> 
   <device UUID=“9fcb433e-8dd4-4418-9559-cb1a8e51648a”  
                                                                                        provider=“Andrew” date=“2008-11-11”> 
         <label>GenericMixer</label> 
         <useprotocol name=“ESTA.DMP”/> 
         <parameter id=“ChannelCount” fields=“#text”/> 
         <property array=“8”> 
              <includedev UUID=“4fcb433d-7dd4-4318-9559-cb1a8e51638a”> 
                     <setparam name=“ChannelCount”> 
                           <fix field=“text”>8</fix> 
                    </setparam> 
              </includedev> 
         </property> 
    </device> 
</DDL> 

Component 
Identifiers 

Listing 3.1 An Example of the ACN Device Description Language. 
 

Fader Behavior Fader Set Command 

Fader Parameter  
Address 

Nested child  
channel strip  
sub-devices 
 

Gain Behavior Gain Set Command 

Property  
Reference 
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                Gain Property Relative Addresses 

Base Address    Offset  Parameter1  Parameter2         ParameterN 

         100 Gain = 20  Gain1 =120  Gain2 = 140 GainN = Base Address 
 + N * Gain offset 

                                        Gain  Property Virtual  Addresses 
 Base Address    Offset  Parameter1  Parameter2         ParameterN 

        1000         1 

Gain1 =1001 
(Maps to 
address 120) 

Gain2 = 1002 
(Maps to 
address 140) 

 GainN = 1000 + N 
(Maps to address Base 
Address + N * Gain 
offset) 

 
Table 3.2 Relative and Virtual ACN Property Addresses. 

property, an increment between each address in the range, and the number of addresses 

in the range. 

ACN also allows ‘virtual addresses’ to be mapped to absolute, relative or ranged 

property addresses. These addresses thus become aliases for the addresses that they are 

mapped to. For example, the ranged property address [100, 20, 4] may be mapped to 

virtual addresses numbered from 1001 to 1004. This organization is illustrated in  

Table 3.2 where relative gain property addresses are mapped to virtual addresses. 

 

 

 

 

 
 

 

 
 

An ACN ‘binding behavior’ (Chigwamba, Foss, Gurdan, & Klinkradt, 2010, p. 7) that 

defines property relationships also allows parameter joins and parameter groups to be 

implemented in ACN.  Bindings between properties create three types  absolute 

parameter relationships: 

 Unidirectional master-slave relationships; 

 Bi-directional relationships between properties that ensure that all bound 

properties share the same value; 

 ‘Multiway bindings’ consisting of a set of unidirectional bindings.  

Bindings that occur between different networked devices provide a parameter join 

mechanism. 

3.5.1.5 Control and Monitoring Commands 

Control commands support absolute and relative addressing, and can also address 

multiple properties using ranged property addresses. Controllers may subscribe to a single 

ACN property or to a range of properties using ranged addressing. A list of subscribers is 

maintained for each property or ranged property address. Changes to property values are 

transmitted to all listed subscribers.  
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3.5.1.6 ACN - Commentary and Evaluation 

ACN consists of a complex suite of protocols that are unfortunately described by a poorly 

presented and sometimes less than lucid specification. The DDL represents an extremely 

high-level of abstraction. The XML markup is like a meta-language that describes the 

abstractions used to describe a device. The language does not directly describe a device in 

terms of the commonly encountered concepts of device components, parameters and 

control surfaces. Because of these device description characteristics, parsing an ACN XML 

description is likely to be a difficult task. The DDL lacks cohesion, as different concerns 

are not separated. Device structure, parameters and control functionality are all described 

within a complex, single description document. Jeff Berryman of Bosch Communication 

Systems has commented on ACN with particular reference to the ACN DDL: 

“We found it a bit fragmented but not functionally rich…. It's been a while since we 

did the investigation, but as I remember, ACN does not have a particularly rich 

device model.”   (qtd. inHuntington, 2012). 

 
The meaning of a “rich device model” is not clear, but may refer to the levels of abstraction 

within the DDL that do not directly provide the abstractions that would be expected when 

describing networked devices. 

The flexibility provided by the different DMP addressing schemes is one of the 

strongest points of ACN. The offset-addressing scheme used for organizing controls and 

parameters implies standard base-addresses for controls and parameters, supporting 

interoperability between different ACN applications. The grouping of controls rather than 

the grouping of the parameters modified by controls creates a naive grouping mechanism. 

The lack of security in ACN, as well as the use of the ‘Trivial File Transport Protocol’ 

(TFTP) to retrieve a DDL device description have been criticized by Erwin Rol (Rol, 2003). 

Retrieval of a DDL file is a critical operation which is dependent on the connectionless 

UDP protocol (Rol, 2003, p. 234) used by TFTP. By contrast, the reliable transport layer 

provides a guaranteed quality of service. 

The only freely available implementations of ACN are OpenACN (OpenACN, 2012) 

written in C++ and CodePlex ACN (CodePlex, 2012) written in C#. Unfortunately, both 

implementations are incomplete and further development appears to have been 

discontinued. Only sACN (Huntington, 2007) has gained commercial acceptance for 

lighting control and is supported by lighting control consoles marketed by  

Electronic Theatre Controls Inc. (Electronic Theatre Controls Inc., n.d.). ACN achieved 

the status of an ANSI standard without an implementation of the protocol being freely 

available. 
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3.6 Broadcast Environments 

Broadcast facilities commonly use hardware control consoles that are specifically designed 

for these facilities such as the examples shown in Figure 3.19.  

Broadcast consoles are typically designed with a small number of channels and support 

broadcast studio devices such as microphones and CD and DVD-players.  

 

 

                                                                      

 

 

 

 
 
 

These consoles may provide DSP functions for voice processing and usually support 

transport functions (load, play, stop etc) for media playback devices. The control protocols 

discussed in this section include MambaNet (D&R Electronics, n.d.), Ember+ (Keuck & 

Boger, 2014) and IEC-62379-2 (International Electrotechnical Commission, 2008). 

 

3.6.1 MambaNet 

MambaNet is a proprietary protocol developed by D&R Electronics (D&R Electronics, 

n.d.). Derived from AES-24, MambaNet is an object-oriented protocol where node objects 

consist of sensor and actuator objects (Prins, 2009). The protocol is message oriented and 

can be implemented on different network transport layers. Implementations include an 

IP version and a version that supports the High-Speed Controller Area Network Bus 

(CAN) protocol (Corrigan, 2008) used in automotive and building automation 

environments. Like AES-24, an address server allocates MambaNet addresses to all nodes 

on a network. 

3.6.1.1 Protocol Architecture 

The protocol utilizes a peer-to-peer organization where all networked controllers and 

devices are termed ‘nodes’. Nodes contain ‘actuator’ and ‘sensor’ child objects that 

correspond to their AES-24 counterparts. Figure 3.20 illustrates the architecture of a 

MambaNet node, and the representation of sensor and actuator objects. Sensor and 

actuator objects define standard parameter data types as well as meta-data describing the 

 

  

(D&R Electronics, n.d.), (Axia Audio, n.d.). 

Figure 3.19 Broadcast Consoles from D&R Electronics and Axia Audio. 
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allowable values for a parameter. User interface controls contain sensor or actuator 

objects. An ‘Object Engine’ functions as an AES-24 registry. It provides service discovery 

and facilitates subscriptions to sensor objects. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 

 

3.6.1.1.1 Service Discovery 

Each node on a network is described by a ‘Default Node Structure’. Data records termed 

‘Object Information Structures’ describe the data provided by sensor and actuator objects 

(Prins, 2009, p. 39). For example, minimum, maximum and default values for actuator 

and sensor objects, and the update frequency for sensor objects.  

Discovery messages are defined to obtain these descriptive records from a MambaNet 

node. 

3.6.1.2 Control Commands 

Control commands are implemented by invoking methods to GET() or SET(..) the 

attributes of a node’s sensor and actuator objects. Unicast and broadcast control 

commands can be transmitted with an optional response request. The response is a 

unicast message directed at the node requesting the response. ‘Interface Structures’ define 

control points used to process received messages.  

Object Engine 

Node 

Object 

   Sensor 

Actuator 

Object 

   Sensor 

Actuator 

 Inherited Attributes 
     Object Identifier 
     Description 
     Services 
     Update        
     Frequency 

           Attributes 
     Parameter Type 
     Parameter Size 
     Parameter Min 
     Parameter Max 
     Parameter Default 
      

 Object Information Structure 

Figure 3.20 MambaNet Node Architecture and Object Structure. 
 

Network 

 Callback1() 
         … 
CallbackN() 
      

 Interface Structure 

MambaNet         
     Stack 

 Default Node Structure  



77 
 

3.6.2 Ember+ 

Ember+ is a control protocol developed by L-S-B Broadcast Technologies GmbH that 

allows a device to advertise a hierarchy of parameters. The protocol consists of three 

components (Keuck & Boger, 2014): 

 A data schema named ‘Glow’ that defines Ember+ data types using Abstract 

Syntax Notation (ASN.1) (Larmouth, 1999); 

 An encoding scheme that is a subset of the Basic Encoding Rules (BER) encoding 

standard (Larmouth, 1999)  termed Embedded Basic Encoding Rules (‘EmBER’); 

 The S101 framing protocol developed to transmit EmBER encoded data. 

These data representation and encoding schemes are used by SNMP, allowing Ember+ to 

be integrated with SNMP (L-S-B Broadcast Technologies GmbH, 2014). 

3.6.2.1 Protocol Structure 

The Glow data schema defines an ‘element’ type that enumerates different types where 

each element is one of the following types – ‘Parameter’, ‘Node’, ‘Command’, ‘Stream’, 

‘Collection’, ‘Matrix’ or ‘Function’. These types are arranged in an M-way tree data 

structure. Supported primitive data types are similar to the SNMP data types discussed in 

Section 6.2.1 SNMP Data Types (p.144). 

3.6.2.2 Device and Parameter Representation 

Device architecture and the services provided by a device are represented by a hierarchy 

of Ember+ elements illustrated in Figure 3.21 that create a tree.  

 

 

 

 

 

 

 

 

 
 
 

The position of a parameter within this tree is designated by an SNMP-compatible ‘relative 

Figure 3.21 Ember+ Parameter Organization. 
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object identifier’ data type that denotes a path in the tree. For example, the ‘gain-1’ 

parameter shown in Figure 3.21 is identified by the relative object identifier:  

   1.3.1.1.1        (Device – InputSection – Channel-1 – GainControl-1 – gain-1) 

where the input section is the device’s third child sub-device.  

Each node and parameter has a ‘GetDiretory()’ command that obtains all child nodes 

and parameters (Keuck & Boger, 2014, p. 29). When applied to a parameter it returns the 

properties describing the parameter’s value such as the minimum and maximum 

parameter values. A noteworthy feature of the protocol shown in Figure 3.21 is the ability 

to define child parameters. In this example, child parameters (implemented as action 

parameters or Ember+ ‘command’ types) add or remove slave parameters belonging to 

the parent parameter. 

3.6.2.3 Parameter Operations 

Ember+ follows a declarative approach to control protocol design by only defining 

commands that GET() and SET(..) parameter values. Operations can also be defined on 

parameter values when they are transmitted by a device or received by a client.  

These operations are simply defined as algebraic formulas (Boger, 2014). This capability 

allows parameter values to be scaled or modified, and allows parameter values to be 

converted to and from proprietary measurement units.  

3.6.2.4 Implementation Environments 

Ember+ uses the QT framework that is a cross-platform application and UI framework 

(Digia Plc, n.d.). The Ember+ SDK and an example parameter management (controller) 

application are provided by L-S-B Broadcast Technologies. Use of this software is 

discussed and illustrated in Appendix 4. 

3.6.3 IEC-62379-2 

IEC-62379-2 is an SNMP-based protocol for audio device control that is used by the 

British Broadcasting Corporation (BBC) (Stevens, 2010). This protocol adds support for 

audio devices to the general control capabilities of the IEC-62379 SNMP specification.  

It is used by the BBC in conjunction with the EBU IPM SNMP Stream Monitor that 

supports the monitoring of networked SNMP-enabled devices (Yang, Stevens, & Yuan-

xing, 2010). IEC-62379-2 creates a model of an audio device by linking together audio 

components termed ‘functional blocks’. Sets of functional blocks represent the paths 

followed by audio signals entering and leaving a device. The standard functional blocks 

provided by IEC-62379-2 are designed to support the functionality provided by broadcast 

consoles. IEC-62379-2 is discussed in detail in Chapter 6. 
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3.7 Home Networks 

Universal Plug and Play (UPnP) is a protocol intended for home networks that is 

supported by a consortium initiated by Sony Corporation named the Digital Living 

Network Alliance (DLNA) (Digital Living Network Alliance, n.d.). The DLNA provides 

device profiles for different categories of devices such as video players and promotes 

interoperability among networked consumer devices. 

UPnP provides a simplified implementation of a service-oriented architecture for 

controlling devices and supports the use of an HTTP user interface that can be used with 

standard Web browsers. An announcement discovery scheme provides device and service 

discovery. UPnP and a UPnP implementation of the SDM are discussed in Chapter 9. 

3.8 Miscellaneous Control Protocols 

Several protocols used for show control, lighting and industrial automation were also 

examined. Examples include MIDI Show Control (MIDI Manufacturers Association, 

1995) and the ‘Building Automation and Control Network’ (BACNet) protocol  

(Swann, n.d.). Examples of hardware and software systems for show control are discussed 

in the book Control Systems for Live Entertainment (Huntington, 2007). A summary of 

control protocols used for lighting control and building facilities management are 

provided by the Illuminating Engineering Society (Illuminating Engineering Society, 

2011). These protocols typically support a limited number of data types, and are restricted 

to providing fundamental GET() and SET(..) commands.  

Audio transport environments such as Dante (Audinate Corporation, 2013) and 

LiveWire (Church & Pizzi, 2010) typically provide connection management for networked 

audio streams or channels. Because these environments do not support device monitoring 

and control, they are not discussed in this dissertation. 

3.9 Summary  

This chapter has introduced a variety of audio control protocols with specific reference to 

the different networked environments that use these control protocols. The core features 

of different control protocols were introduced, and the salient characteristics of these 

protocols were mentioned. A more detailed description of the protocols that are not 

examined in depth in the chapters that follow was provided.  

Control protocols may be broadly divided into two groups of protocols: protocols 

that emphasize parameters and protocols that are built around higher-level data or 

functional abstractions. These two categories of control protocols were introduced in 

Section 2.9 Control Protocol Commands (p.33). Examples of these abstractions that are 
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collectively termed ‘entities’ include objects, records and service descriptions.  

Parameter organization is emphasized by OSC, SNMP, AES64 and Ember+. The AES-24 

family (AES-24, MambaNet and OCA), CopperLan, IEEE 1722.1-2013 and OCA are built 

around the representation of entities that define both parameters and protocol 

functionality. UPnP creates a hierarchy of services that define functions and parameters 

associated with a specific service. UPnP services and parameters are very similar to objects 

where parameters are embedded within services. UPnP does not provide a complete 

service-oriented architecture as discussed in Section 9.2 Service-Oriented Architectures 

(p.224). Differences among control protocol designs are discussed in Chapter 10. 

The control protocols discussed in this chapter differ widely when considering the 

organization of parameter data, the depiction of a device’s architecture, and the 

representation of control surfaces. Commonality among different control protocols is only 

found in terms of: 

 A hierarchical representation of a device’s architecture, and/or 

 A hierarchical representation of parameter addresses or higher-level services. 

These two characteristics provide a basis for the development of a standard device model 

that is discussed in the next chapter.  
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Chapter 4  

Development of a Standard Device 

Model 

 

4.1 Introduction 

The absence of a widely accepted standard control protocol, as well as a lack of 

interoperability among existing control protocols prevents networked application 

software from supporting a wide variety of devices. A standard device model (SDM) 

provides a framework for developing interoperability among different networked devices 

by providing: 

 A common device representation that supports the discovery and enumeration 

of the services provided by a device, and 

 A standard representation of parameter addresses. 

A SDM also supports translation between different service discovery protocols as the 

model creates a fixed framework within which such translations can take place.  

More importantly, a standard parameter address format supports functional 

interoperability among different control protocols. This approach was used to translate 

commands between AES64 (at the time AES-X170) and OSC (Igumbor & Foss, 2013). 

This model, first proposed at the 44th International Conference of the Audio 

Engineering Society (Eales & Foss, 2011) was derived from a study of existing control 

protocols. An early version of the model was also published in the Journal of the Audio 

Engineering Society (Eales & Foss, 2013). This chapter discusses the development of an 

abstract device model for networked devices that is simple, scalable and expressive.  

The model is by necessity an abstract model (Rumsey, 2012), that represents the 

architecture and functionality of networked devices in general and audio devices in 

particular. 
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4.2 Device Models within Existing Control Protocols 

An investigation of existing control protocols compared different representations of: 

1. The architecture of an audio device; 

2. Parameter addresses; 

3. Control surfaces used to interact with a device; 

4. Audio signals and audio connections between different devices, and internal 

signals and connections within a single device. 

Table 4.1, summarizes the features of different control protocols with reference to the first 

three of these areas of interest: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[1] SNMP data relationships are not confined to the tree structure used to store SNMP data. Chapter 6   
     discusses data relationships in SNMP. 

 Device Architecture 
         

Parameter Address 
        Representation 

    Control Surface        
    Representation 

OSC 
Not supported. Related hierarchical 

addresses stored in an M-
way tree. 

Not supported. 

IEC-62379 

(SNMP) 

Functional units 
(‘blocks’) and their 
interconnections. 

Unrelated entries within 
different SNMP tables. 

Not supported. 

SNMP Not supported. 
Hierarchical addresses 
stored in an M-way tree. [1] 

Not supported. 

ACN 

XML ‘Device 
Description  
Language’. 

Hierarchically organized 
numeric identifiers shown 
in Figure 2.5 (p.25). 

Represented within the 
device description. 

EuCon 
 
Not supported. 

Does not define 
parameters. Controls are 
directly linked. 

Hierarchical representation 
of device components shown 
in Figure 3.10 (p.57). 

CopperLan 
Device partitioned 
into sub-devices. 

Linear numeric identifiers 
within sub-devices. 

Described by deriving classes 
from library abstract classes. 

AES64 
Implied by hierarchical 
parameter addresses. 

Fixed-level hierarchical 
parameter addresses. 

XML description. 

HiQnet 
Devices consist of sub-
devices containing 
objects. 

Composite addresses 
derived from the device 
architecture. 

Unknown proprietary 
representation. 

IEEE 
1722.1-
2013 

Configurations created 
by interconnected 
device components. 

Fixed, standardized 
addresses within descriptor 
records. 

Controls specified within 
device components. 

OCA 

‘Blocks’ of functional 
objects. 
 

Derived from the class 
hierarchy as illustrated in 
Figure 3.7 (p.54). 

Controls surfaces are not 
represented. 

 Table 4.1 Representational Capabilities of Different Control Protocols.  
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4.2.1 Device Architecture Representations 

IEC-62379, ACN and IEEE 1722.1-2013 explicitly support a model of a device, while 

EuCon only depicts a control surface. ACN represents device architecture, device 

parameters and depicts a control surface within a single XML device description. HiQnet 

and OCA do not represent control surfaces. HiQnet-enabled applications specify control 

surfaces (Harman Pro Corporation, n.d.) AES64 implies a device model within its 

hierarchical parameter-addressing scheme. 

4.2.2 Parameter Address Representations 

Different control protocols have different parameter address representations. Although 

OSC, SNMP and AES64 all store parameters within an M-way tree, SNMP uses the tree in 

conjunction with an indexing scheme which is described in Section 6.2.2 The SNMP 

Address Space (p.145). When a parameter address consists of multiple, hierarchical levels, 

some of these levels can also depict the hierarchical architecture of a device.  

This type of parameter address organization is commonly found within OSC 

implementations and is mandated by HiQnet and AES64. By contrast, the numeric 

parameter identifiers defined by ACN and CopperLan do not necessarily provide any 

information about a device’s architecture. Numeric parameter identifiers can be carefully 

assigned to relate parameters to a device’s architecture as previously illustrated in  

Figure 2.5 (p.25). IEC-62379-2 and IEEE 1722.1-2013 embed parameters within higher-

level representations of device components as SNMP tables and records respectively. OCA 

and UPnP represent parameters within higher-level abstractions (objects and services) 

that provide device functionality. 

Table 4.2 indicates relationships between parameter addresses and device 

architecture, and relationships between parameters and a control surface within different 

control protocols. Only ACN, HiQnet, AES64 and IEEE 1722.1-2013 relate parameter 

addresses to a device’s structure. EuCon only represents the values of controls used to 

create a control surface and does not define any parameters. 
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[1] OSC, SNMP and UPnP provide frameworks describing control points, parameter data and services.   
     These frameworks can depict a device’s structure, although such a description is not mandated by         
     these protocols. 
[2] UPnP describes parameters in the context of services that need not be related to a device’s structure. 

4.2.3 Control Surface Representations 

ACN, CopperLan and AES64 all have dedicated mechanisms to represent control surfaces. 

AES64 provides an XML representation of a control surface that associates parameters 

with a control surface. ACN represents a control surface within an XML device description. 

EuCon creates control surfaces where virtual controls are directly linked to corresponding 

physical device controls that are discovered by controllers. Details of how this mechanism 

is implemented are not known. CopperLan uses API methods to advertise a control surface 

to a CopperLan-enabled controller but does not distinguish between the architecture of a 

device and the representation of a control surface.  

 

 

     Parameter Addresses 
      Device Architecture 

  Parameter Addresses 
  Control Surface 

OSC Not required. [1] Not supported. 

IEC-62379 Not related. Not supported. 

SNMP Not required. [1] Not supported. 

ACN XML description. XML description. 

EuCon Not supported. No parameters defined. 

CopperLan Parameters are declared 
locally within sub-devices. 

Control parameters are tightly 
coupled to controls. 

AES64 
Parameter addresses have a 
fixed relationship to device 
structure. 

XML description. 

UPnP Not required. [2] Not supported. 

HiQnet (Unknown proprietary 
mechanism). 

(Unknown proprietary 
mechanism). 

IEEE 
1722.1-
2013 

Parameters defined within 
descriptors that define the 
architecture of a device. 

Defined within control 
objects. 

OCA Not related. Not supported. 

Table 4.2 Relating Device Structure to Parameter Addresses.  
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Table 4.3 Comparing Audio Signals and Audio Connections. 

 Audio Signal  Representation    Audio Connection Representation 

OSC Not supported. Not supported. 

IEC-62379-2 
Inputs and outputs to and 
from audio functional blocks. 

Connections between audio functional 
blocks. 

ACN XML description. XML description. 

EuCon Not supported. Not supported. 

CopperLan 
Audio streams defined by 
implementing object-oriented 
interface classes. 

Connections created by inherited 
methods that require connection 
parameters to be defined [1]. 

AES64 
Description of network 
streams and internal audio 
signals. 

Connection parameters representing 
audio connections. 

UPnP XML representation. Standard connection manager service. 

HiQNet Unknown. Unknown proprietary mechanism. 

IEEE IEEE 
1722.1-2013 

Description of network 
streams and internal audio 
signals. 

Connections between units having a 
common clock format. 

OCA Media stream objects. 

Device media port objects that are 
bound to media stream objects and an 
optional representation of connections 
between internal blocks. 

 

4.2.4 Representing Audio Signals and Audio Connections 

Connection management requires a representation of source and destination audio signals 

as well as the connections between signals. External connections between networked 

devices, connection assignments and internal connections were introduced in Section  

2.10 Connection Management Principles (p.40). Table 4.3 summarizes the 

representations of audio signals and audio connections used by different control 

protocols. 

 

 

 
 
 
 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
[1] CopperLan also supports connections between control parameters. This generalized connection  
      mechanism can also be used to create connections between audio signals. 
 

Characteristics of different control protocols discussed in the previous sections 

provided concepts that were used to develop a standard device model that is described in 

the remaining sections of this chapter. 
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4.3 Development of a Standard Device Model 

An audio mixing console provided an example of a networked audio device. From the 

previous discussion of device models, a sophisticated device model of a physical or virtual 

device must represent: 

1. Well-defined logical components that define the architecture of a device.  

For example, mixing consoles have an input section consisting of channel strips that 

group different controls and an output section containing a mastering section. 

Sections may be nested, such as the equalization section commonly found within a 

channel strip.  

2. The visual layout and appearance of different device components. 

3. The representation of parameter addresses and the relationships between 

parameter addresses and a device’s architecture. Parameters must be related to 

specific locations on a device. For example, a fader parameter that is associated with 

an input channel strip or the mastering section of a mixing console.  

4. The audio signals and the connections between audio signals. Connections may 

occur between different devices and within a device itself.  

The following section examines the architectural components of a mixing console and 

considers the audio signal paths within an audio mixer.  

4.3.1 Audio Mixer Architecture 

By considering the audio signal paths through a mixer, ten signal stages illustrated in 

Figure 4.1 were identified.  

    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
 

. 
 Legend: 
        Primary Connection points 

 

Figure 4.1 Audio Signal Paths Within a Typical Audio Mixer. 
 

1. External Inputs 

10. External Outputs 

2. Internal Inputs 

9. Internal Outputs 

3. Input Signal Path 

7. Output Signal Path 

5. Bus Inputs 

6. Bus Outputs 

4. Input Controls 

8. Input Controls 
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These stages are: 

1. Inputs that provide connection points for audio signals coming into the mixer. 

2. Internal input connection points that route external inputs to input channels.  

3. An input signal path from an input channel to a bus. 

4. Signal processing functions represented by controls associated with the input 

signal path.  

5. Bus Inputs. 

6. Bus Outputs. 

7. An output signal path from a bus to an output channel. 

8. Signal processing functions associated with the output signal path.  

9. Internal connection points that route channels to outputs. 

10. Outputs that provide connection points for audio signals leaving the mixer. 

These stages provide ‘primary connection points’ that represent points within a signal path 

where connections can be made. Connections between signal processing controls are 

termed ‘secondary connection points’. These connection points are of no value to a control 

protocol unless the device has a dynamically configurable, modular architecture. For 

example, the signal paths from a pan control that divides an audio signal need not be 

depicted by a control protocol. 

A bus may have inputs and outputs, where connections between buses are 

supported. If a device does not support connections between individual buses, this 

capability can be ignored, or each bus can be assigned to itself. Signal sends, signal returns, 

and signal inserts form sub-paths that also provide primary connection points. Bus 

assignments and the commonly encountered ‘pre-fader’ and ‘post-fader’ signal sends are 

typically managed by channel strip controls. 

4.3.2 An Analysis of Audio Mixer Data and Data Relationships 

An analysis of the different categories of data describing both the dynamic behavior and 

the structure of a mixing console identified three broad categories of data shown in Figure 

4.2. Data describing an audio device consists of: 

1. Parameter data that represents:  

 Control parameter values and parameter values internal to the device (DSP 

parameter values); 

 Configuration parameters such as power status indicators and network 

connectivity indicators; 

 Connection parameters representing the state of signal connections found 

at primary connection points. 
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 Action parameter values; 

 

Figure 4.2 does not depict relationships between parameters. A change to the value of 

any parameter will typically trigger changes to any other related parameter values. 

2. Descriptive data consisting of: 

 Attributes that describe: 

o  A device (including the  attributes of its components and 

relationships between different device components); 

o  Controls; 

o  Audio signals; 

o  Audio connections; 

 Layout attributes that describes the visual layout of device components. 

3. Meta-data that describes the attributes of data such as ranges of data values and 

units of measurement. 

In Figure 4.2, solid arrows depict dependencies that change parameter values, dashed 

arrows indicate device components and control described by descriptive data as well as 

data described by meta-data. For example, Figure 4.2 shows that device functions (such 

as DSP functions) or changes to control values cause changes to parameter values and that 

parameter values and descriptive data values are described by meta-data. 
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      (3) Meta-Data 

Figure 4.2 An Analysis of Audio Device Data. 
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For greater clarity, clear context-sensitivity, and as a practical aid to parsing data, 

descriptive data is divided into two categories of data:  

 ‘Descriptive attributes’ that describe a device, its component parts, and audio 

signals and audio connections; 

 ‘Layout attributes’ that describes the visual appearance of device components.  

Although meta-data may be regarded as descriptive data, it should be distinguishable from 

the data that it describes as indicated in Figure 4.2. Parsing data is simplified when a clear 

distinction is easily made between data and meta-data. The following sections discuss 

these different data categories. 

4.3.2.1 An Analysis of Parameter Data 

Parameter data representing a device’s state forms the most important part of a control 

protocol. Parameters may be classified according to many different criteria, including: 

1. Parameter Functionality 

A parameter can be classified according to the functional context in which it is used. 

Parameters can represent control states (‘control parameters’), internal signal 

processing functions (‘DSP parameters’), device configuration states (‘configuration 

parameters’), and connection states (‘connection parameters’). Parameters can also be 

action parameters. The multi-layer architecture supported by many mixing consoles 

where a physical control surface is mapped to audio channels provides an example of 

the use of a configuration parameter. Where an input section of N channel strips can 

address 2N audio channels, the configuration state determines whether channels 1...N 

or channels N+1…2N are assigned to the control surface.  

2. Parameter Location on a Network 

Local parameter addresses exist within the memory address space of a local process. 

Remote parameters are addressed across a network connection. Because all parameters 

typically have symbolic names, it may be useful to distinguish between local and remote 

parameters where parameter names are possibly duplicated.  

Join relationships between parameters may require this differentiation, as these 

relationships are usually defined between local and remote parameters. 

3. Parameter Location on a Device 

Parameters can be classified according to their relationship to the architecture of the 

device. For example, input parameters, output parameters or equalization parameters. 

This distinction may be required where both the input and output sections of a device 
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provide similar controls or functionality. For example, fader parameters that occur 

within both the input and output sections of a mixing console. 

4. Parameter Dependencies 

Changes to a parameter value may cause changes to other parameter values.  

‘Passive parameters’ do not trigger changes to other parameter values, while  

‘active parameters’ can trigger changes to other parameter values. For example, 

parameters joined to other parameters and parameters that are members of parameter 

groups are all active parameters.  

5. Parameter Behavior 

     Parameter values can change discretely or continuously. For example, discrete 

parameter values typically represent switch states. Parameter values representing 

meter and fader values are continuous, as they change continuously within an arbitrary 

update period. 

Figure 4.3 illustrates a device that has both user interface controls and internal DSP 

functions. The controller has its own local parameters and addresses remote parameters 

on the controlled device. 

 

 

 

 

 

 
 
 
 
 
 
 
 
It is useful to allow parameters to represent a control value, while also representing DSP 

parameters that are not associated with a control. Figure 4.3 shows that parameter values 

are often updated by control values (making them control parameters), or by relationships 

to other parameters. The controller is able to address a remote control via a remote control 

parameter, and a remote DSP function via a remote DSP parameter.  

A DSP function such as a filter is typically associated with a specific audio channel.  

Figure 4.3 Local and Remote Control and DSP Parameters. 
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To distinguish between multiple similar DSP parameters, each DSP parameter must be 

associated with an audio channel.  

A parameter is a data variable and thus does not have any unique intrinsic 

characteristics that distinguishes it from any other parameter. While a distinction between 

active and passive parameters may be of interest to a software engineer, such a distinction 

is not likely to be useful to users of the software. Parameters are thus differentiated by the 

roles that they play, not by any intrinsic qualities of the parameter value. Association with 

another entity, or the semantics attached to a parameter value defines the role of the 

parameter. For example, a parameter bound to a control becomes a control parameter and 

a parameter representing the status of a connection becomes a connection parameter. 

Additionally, it is conceivable that the role of a parameter can change if it is assigned a 

different role by a controller. 

Controls always have an associated value representing the current state of the control. 

These control values should not be directly transmitted across a network, as they do not 

form part of a control protocol. Controls should always ‘push’ their control values to local 

protocol control parameters. This preferred organization of parameters is not always 

possible, as controller clients within a client-server relationship may not have a local 

parameter address space. Use of local control parameters supports parameter joins and 

parameter groups introduced in Section 2.8 Parameter Management (p.28). 

4.3.2.2 Descriptive Data 

Descriptive data representations must always adhere to three principles: 

 Data must be represented by <key, value> pairs or lists of data associated with a 

key such as <key, value1 … valueN>; 

 The size of a collection of descriptive data must be variable; 

 Different attributes such as descriptive attributes and layout attributes must be 

represented separately. 

Use of <key, value> pairs is commonly found in service discovery protocols and reduces 

ambiguity, as no assumptions are made concerning the composition and location of 

descriptive data values. For example, the assumption that the first descriptive attribute of 

a list of attributes is always a unique identifier, or that the Nth attribute is always a specific 

attribute. The use of variable sized attribute collections is important, as it supports 

extensibility by allowing both new standard attributes and non-standard attributes to be 

added to a collection.  
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Descriptive 
Attribute 

Meta-Data 
c 

 

 

 

Layout Attribute Meta-Data 

Control name  
and/or control 
 identifier (Primary). 

 Control type, for 
example rotary 
potentiometer. 

 

Value of the control. 

Data type. Position - x and y co-
ordinates. 

Measurement unit 
such as pixels or 
millimeters. 

Maximum value. 

Minimum value. Absolute or 
relative x and y 
values. 

Step size. 

Measurement 
unit. 
 

Images used for 
rendering the control. 

URL for images. 
 

Scale factor. Image format. 

 
 

Parent sub-device  
(channel strip sub-
device). 

Relationship to a 
parent such as 
strong or weak 
aggregation. 

Target parameter 
address. 

 

 
Table 4.4 Examples of Different Categories of Data. 

4.3.2.2.1 Descriptive Attributes 

Two types of descriptive attributes exist: ‘primary descriptive attributes’, and ‘secondary 

descriptive attributes’. The most common form of a primary descriptive attribute is a 

unique name analogous to a primary key within a relational database. A primary 

descriptive attribute is commonly a single value but may also be a set of values.  

For example, where both a device name and an IP address identify a device, both attributes 

are primary descriptive attributes. Primary descriptive attributes should always be defined 

within the entity that they describe. Although this principle may appear to be self-evident, 

a protocol such as SNMP typically uses one or more tables to represent parameters. 

Because SNMP tables have a fixed structure, additional tables are required to represent 

variable-sized sets of descriptive attributes. Primary descriptive attributes that define 

parameters should be defined within the parameter table, not within the descriptive 

tables. This principle simplifies service discovery processes. 

As an example, consider the data describing a simple rotary potentiometer control 

that exists within a channel strip. Table 4.4 lists typical descriptive attributes and layout 

attributes that describe this control. Examples of meta-data that qualify these attributes 

are also provided. 
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4.3.2.2.2 Layout Attributes 

Layout attributes describe how different device components are rendered when creating a 

control surface. Controls rendered as software widgets, and containers used to group other 

components are two commonly encountered visual components. Positions of components 

can be absolute positions or positions that are relative to other device components. Figure 

4.4 illustrates the use of x and y co-ordinate offsets that specify the position of a 

component with reference to another component. Some of the sub-device components 

function as containers for other components. 

Figure 4.4(a) shows components (sub-devices and controls) positioned relative to 

parent components. Figure 4.4(b) includes positions that are relative to sibling  

sub-devices and controls. The use of relative positions is logically satisfactory but 

unfortunately assumes the existence of a related component. This assumption may limit 

the options available when creating a control surface. For example, it may be useful to add 

a fader to a control surface without the fader having any relationships to other objects on 

the control surface. Absolute positions for device components are therefore preferred, and 

should always be used if components are to be independently rendered. 

 

 

 

 

 

 

 

 

 

 

 

Software environments often define layout managers that manage the positions of 

components or may support drag-and-drop operations. The environment presented in 

Chapter 11 uses a layout manager, making the specification of component positions 

unnecessary. 

Figure 4.4 Layout Relationships Between Device Components. 
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4.3.2.2.3 Representing Meta-Data 

As mentioned previously, meta-data should not be interspersed with the data that it 

describes. This clear separation avoids the possibility of ambiguities when parsing 

attribute data. Although the SDM does not prescribe any specific data representations, the 

following textual example places meta-data in parentheses to distinguish it from the data 

that it describes. This example illustrates the descriptive attributes of a gain parameter: 

“name=gain, value=1 [ min=0, max =10, step=1 ], type =int32 “  

This meta-data defines the range and behavior of the ‘value’ attribute and is clearly 

associated with this attribute and separated from all other attributes. 

4.3.3 Structural Characteristics of a Device Model 

A universal device model should consist of high-level, abstract building blocks that are 

applicable to all audio devices. For example, a ‘channel strip’, or a ‘bus’ are specific 

structural abstractions associated with mixing consoles that are not applicable to all audio 

devices. Representing device inputs and outputs for connection management provides 

another example that illustrates this principle. Connection points created by input and 

output audio signals that can be connected to each other are collectively termed ‘audio 

terminals’.  

Two types of structural device model exist: a ‘physical device model’ and a  

‘logical device model’. A physical model provides a replica of the structure and appearance 

of a physical device. A device can also be represented by a logical model that provides 

interaction with the device, but does not attempt to replicate the appearance of, or provide 

access to all of the functionality provided by a physical device. For example, 

a logical model of a mixing console may group all controls that address a specific 

parameter type rather than the traditional grouping of controls on a signal path as 

represented by a channel strip. A physical model is thus always a logical model but the 

converse need not be true. As an additional example, consider the bus assignment controls 

commonly implemented as buttons within each channel strip of a mixer.  

A logical model can represent these physical bus assignment controls as a connection 

matrix that provides a logical connection management model for bus assignments.  

The abstractions provided by the proposed model can be represented in many 

different ways. They may be represented within a control protocol itself, use XML  

(as illustrated in Appendix 1), or may be used in conjunction with service discovery 

protocols such as DNS-SD (Cheshire & Krochmal, 2013) or the ‘Service Location Protocol’ 

(Guttman, Perkins, Veizades, & Day, 1999). What is important is that the model must have 

a standardized representation that provides a meta-model from which specific 
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implementations can be created. Implementations can use any hardware or software 

technologies or combinations of different technologies. 

4.3.4 Representing Device Structure and Device Parameters 

A descriptive hierarchy consisting of two related hierarchies represents the structural 

architecture of a device and the organization of device parameters. These two hierarchies 

are termed the ‘device architecture layer’ and the ‘parameter description layer’.  

4.3.4.1 The Device Architecture Layer 

Figure 4.5 shows that devices are partitioned into sub-devices that may recursively contain 

nested sub-devices. Each sub-device contains a combination of zero or more controls, and 

zero or more audio channel references. Channel references allow parameters to be 

associated with DSP functions without being associated with a control as previously 

illustrated in Figure 4.3. Because level two sub-device entries may be repeated to represent 

nested sub-devices, the total number of levels used within the device architecture layer is 

often greater than the three conceptual levels shown in Figure 4.5.  

Devices and sub-devices may be tangible entities in the sense that they can be 

rendered on a control surface while also grouping collections of device components. These 

components are termed ‘visual components’, and always have associated layout attributes 

represented within a ‘layout record’. The optional existence of layout records is denoted 

by square brackets. Sub-devices forming part of the logical organization of a device that 

do not have a visual representation are termed ‘container components’. The diagrams 

below illustrate the association of description and layout records with the different levels 

of the device architecture layer and parameter description layer. The cardinality of 

relationships occurring between different levels are also indicated. 
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Figure 4.5 The Device Architecture Layer. 
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Container sub-device components are typically only used to group other sub-devices and 

controls. Mixing consoles commonly visually group related controls such as the controls 

found within an equalization section. The equalization section of a virtual mixing console 

may be represented by a visual sub-device or a container sub-device, according to the 

visual design of the control surface. A visual sub-device would typically provide a border 

and a caption to be rendered on a control surface. A container sub-device would only 

logically group related controls within the device model without providing a visual 

representation. 

Descriptive attributes are represented within each level of the device architecture 

layer and the parameter description layer by a ‘description record’. The device architecture 

layer identifies specific controls that are then associated with parameters that are 

organized as described in the next section. 

4.3.4.2 The Parameter Description Layer 

Parameters are described by the hierarchical parameter description layer shown in Figure 

4.6. This layer depicts a logical organization of parameters. Level four distinguishes 

parameters of the same type that occur within different components of a specific device. 

For example, where faders exist within the input and output sections of a mixing console, 

this level will indicate these sections. Level five represents similar types of parameters 

such as gain parameters or fader parameters.  

 

 

 

 

 

 

 

 

 
 
 
 

Level six identifies a specific parameter of a level five parameter type such as a gain 

parameter belonging to a specific channel strip. This representation views parameters as 

abstract entities. The data and operations associated with a parameter identifier are 

implemented at level seven as described below. 
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Figure 4.6 The Parameter Description Layer. 
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4.3.4.2.1 Parameter Values and Action Parameters 

Level seven represents one or more parameter values and/or parameter actions that are 

used to invoke any required functionality associated with a specific level six parameter. 

Most parameters have a single value that simply represents the current value of the 

parameter. Examples of additional values are a value that denotes access restrictions (such 

as read-only or read-write), and a flag indicating a subscription status as depicted in 

Figure 4.7(a). Examples of action parameters shown in Figure 4.7(a) include values that 

trigger the transmission of a subscribable parameter, and actions that add or remove a 

specified slave parameter provided as an argument to the action.  

Parameters depicting audio streams commonly have both parameter values and 

parameter actions. For example, Figure 4.7(b) shows that an AES64 audio source stream 

has an identifier value and a parameter action that advertises the parameter to a network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The following section explains how the device architecture layer and the parameter 

description layer represent parameter addresses. 
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Figure 4.7(b). 
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Figure 4.7 Examples of Parameter Values and Parameter Actions. 
 

  gain7       Level6 

     Level7       

 Parameter Identifier 

Figure 4.7(a). 

   Parameter Value                

  gain      Level5 

     Level4 inParameter 

  sourceStream      Level5 

     Level4 netStream 



98 
 

4.3.4.3 Parameter Addresses 

The two layers describing device architecture and parameter organization introduced 

previously create two types of parameter addresses termed ‘full parameter addresses’ and 

‘short parameter addresses’. 

4.3.4.3.1 Full Parameter Addresses 

A full parameter address is created by combining the device architecture layer and the 

parameter description layer. Full parameter addresses: 

 Link parameters to a device’s architecture;  

 Provide compatibility with control protocols such as AES64 that define parameter 

addresses using more levels than the four levels provided by the parameter 

description layer. 

Use of description records (or signal description records discussed later in this chapter) 

and layout records at different levels of a full parameter address must adhere to the 

following rules: 

 Layout records for devices and sub-devices are optional. A device may or may not 

have a visual representation. A container sub-device used only to group child sub-

devices and/or controls will not have a layout record.  

 Controls must specify a layout record. 

 Level four and level three (when only containing a channel identifier) have 

optional description records.   

 Description (or signal description) records for parameter identifiers at level six 

are not forbidden by the model. However, these records typically describe a level 

five parameter type. The parameter type description may often be applicable to all 

parameters of the same type. 

An example of a full parameter address is provided in Section 4.3.4.4 A Full Parameter 

Address Example (p.101). 

4.3.4.3.2 Short Parameter Addresses 

The parameter description layer on its own provides ‘short parameter addresses’ 

illustrated in Figure 4.8 using OSC notation. Short parameter addresses are used to: 

 Make parameters discoverable without having to traverse a complete device model 

to discover parameters; 

 Provide simple, concise parameter addresses that implement control 

functionality. 
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Controllers may only be interested in discovering parameter addresses and not the 

components of a device. Short parameter addresses provide this capability. 

Devices should implement both types of parameter addresses as discussed and illustrated 

in Chapters 5 and 6 with reference to OSC and SNMP respectively. 

In Figure 4.8, OSC short parameter addresses are enumerated below the device node 

of the device description layer. This allows parameter address discovery without having to 

traverse a complete device model. 

 

 

 

          
 
 
                  
 
 
 

 
 

Making parameters independently accessible also implies that parameters should 

not be encapsulated within other device components such as controls. In Figure 4.9(a), 

parameters are represented as control attributes. These parameters can only be accessed 

via the controls themselves. In Figure 4.9(b), parameters are stored in an independently 

accessible parameter table and referenced (using short or full parameter addresses) by the 

two example controls. Therefore, ‘independently accessible’ means that parameter 

discovery and parameter access should never be dependent on the controls that address 

parameters.  

 

 
                                                                               
                                                                                                         
 

    

 

 

 

Figure 4.8 Examples of Full and Short Parameter Addresses. 
 

    Short Parameter Address: 

          /console1/ inParameter/fader/fader5/value 
 

Full Parameter Address: 

                   
/console1/inputSection/channelStrip5/faderControl5/inParameter/fader/fader5/value 
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Object-oriented control protocols commonly represent parameters within higher-level 

abstractions such as controls. Chapter 10 discusses the implications of representing 

parameters within objects. 

4.3.4.3.3 Parameter Address Interoperability 

The combination of a variable-sized device architecture layer with a fixed-sized parameter 

description layer means that only level two (the sub-device level) is recursively repeated. 

This allows the different levels within a full parameter address to be easily determined. 

For example, the parameter address 1.2.2.3.2.1.4.2 (using SNMP notation) illustrated in 

Figure 4.10 is interpreted as follows: 

 The last value is the address of a parameter value or an parameter action; 

 The second from last value is a parameter identifier;  

 A parameter identifier is preceded by a parameter type identifier, which is in turn 

preceded by a parameter description identifier;  

 A parameter description identifier is preceded by a control or channel identifier; 

 As the first value is always a device, the remaining values are therefore sub-

devices.  

 

 

 

 

                     

 

This structural format holds for parameter addresses of any length. A parameter address 

that allows the levels within the address to be determined by inspection or parsing is 

termed a ‘deterministic parameter address’. The deterministic full parameter addresses of 

the SDM combines the unambiguous semantics of a fixed-level parameter address with 

the flexibility of representing different device architectures. Deterministic addresses 

support protocol interoperability via address translation. For example, the SNMP-style 

full parameter address 1.2.2.3.2.1.4.2 used in Figure 4.10 can be translated into a short OSC 

parameter address such as /inPan/pan/pan4/value where a mapping specification between 

the two formats exists. If compatibility with larger size parameter addresses such as 

AES64 addresses is required, the full parameter address must be translated. Section 7.7.2 

Comparing AES64 to the Standard Device Model (p.206) discusses the translation of full 

parameter addresses into AES64 parameter addresses. 
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Figure 4.10 A Deterministic Parameter Address. 
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Chapter 11 introduces an environment where parameter addresses are transparent 

to the controller processes that access parameters. This environment makes the notion of 

parameter address interoperability redundant by allowing the use of different parameter 

address formats. 

4.3.4.4 A Full Parameter Address Example 

Figure 4.11 provides an example of a full parameter address with all associated description 

and layout records.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

 
 
 
This example, taken from the OSC implementation of the SDM shown in Listing 5.1 (p.129) 

shows that: 

 The fader control references a control parameter represented by a short parameter 

address. 

 Meta-data is placed within square brackets that clearly separate it from the data 

that it describes. 
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Figure 4.11 An OSC Example of a Full Parameter Address. 
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 A 'node' attribute within each level assists the parsing of description records.  

The model does not mandate this identifier, as attributes are not standardized.  

 Level four identifies the parameter as an input parameter ('inp'). 

 A description record for the level five parameter type identifier describes all 

parameter values and parameter actions for the fader type parameter. 

Implementations of description and layout records within an OSC address space are 

described in Chapter 5. 

4.3.4.5 Parameter and Device Component Naming Conventions 

Although naming conventions for parameters are not prescribed by the model, the use of 

regular, logical naming schemes:  

 Supports control protocols such as OSC and AES64 that allow parameter 

addresses to contain wildcard characters; 

 May optimize service discovery by allowing controls and sub-devices to be 

locally created by replicating previously discovered controls and sub-devices; 

 Allows parameter addresses to be determined from previously discovered 

parameter addresses. 

Figure 4.12 illustrates this principle by using numeric suffixes for container and parameter 

names that provide sub-device (channel) and control information for an example device 

that has two gain controls for each input channel.  
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Figure 4.12 An Example of Regular Naming Conventions. 
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Wildcard naming schemes can be level-based, as found in AES64, or both level-based and 

name-based as found in OSC. For example, within OSC addresses the ‘*’ character matches 

any sequence of characters and the ‘?’ character matches any single character. Each level 

three control identifier, level six parameter identifier and level seven parameter value in 

Figure 4.12 indicate related sub-devices and controls using numeric suffixes. Thus 

/device/inputSection/input?/gainCtrl*/gain?-1/value* references the value of the first gain 

parameter across all sub-device (input) channels. 

Naming schemes that indicate a naming convention, as well as a range of named 

values support local replication of device components and parameters from previously 

discovered components and parameters. Descriptive attributes of a sub-device, control or 

parameter can indicate the naming convention used, as well as the number of sibling 

entities that use the prescribed naming convention. For example, a new channel strip can 

be created by simply copying an existing (previously discovered) channel strip and then 

changing the numeric prefixes or suffixes used to name components and parameters. This 

replication makes further service discovery unnecessary. Service discovery becomes 

applicable to a set of similar entities rather than a specific individual entity.  

The principle of standard naming conventions can be extended to meta-data that describes 

parameter values. For example, parameter values can have a minimum value, maximum 

value and a step size where the type of parameter is identified as a suffix.  

The meta-data describing a fader parameter value might be encoded as ‘minFader’, 

‘maxFader’ and ‘stepFader’, and becomes applicable to all fader controls or fader 

parameters. 

4.4 A Connection Management Model 

Connection management functionality is considered within three categories of 

connections: 

1. Network-wide connections between source and destination audio streams that 

create terminals. The management of these connections is termed ‘external 

connection management’.  

2. Connections between available network audio terminals and the audio signals 

entering and leaving an audio device. The management of these connections is 

termed ‘connection assignment’. For example, assigning network audio signals to 

input channels on a mixing console. 

3. Internal connections within a device such as bus assignments. The management 

of these connections is termed ‘internal connection management’. 

A device model that supports the management of audio connections must represent: 
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1. The audio terminals that can be connected to each other; 

2. Connections between audio terminals; 

3. Parameters that define the possible states of audio terminals and connections. 

Parameters representing the states of terminals are usually only found in the context of 

connections between networked audio streams. For example, a source audio stream may 

be transmitting or not transmitting. A representation of audio connections must also be 

associated with controls that create or tear down audio connections and manage terminal 

states. 

4.4.1 Representing Audio Terminals and Audio Connections 

A connection management model requires connection parameters that represent audio 

connections. Three different abstract parameter-based connection management models 

were identified: a ‘partially-enumerated connection model’, a ‘fully-enumerated 

connection model’, and an ‘independent connection model’. 

The following sections discuss the characteristics of these models and provide 

examples of the use of these models for connection assignment, internal connections and 

connections between networked streams. 

4.4.1.1 A Partially-Enumerated Connection Model 

Where a parameter represents an audio terminal and the value of the parameter 

represents a second (connected) audio terminal, the model is termed a  

partially-enumerated connection model. Each connection point is represented by a level 

seven connection parameter illustrated in Figure 4.13. Two connected terminals are 

represented by the connection parameter’s value and an implied level six audio terminal. 

This representation raises the question of whether connection parameters should depict 

source terminals or depict destination terminals. As an example, consider an audio input 

that is assigned to one or more channels on a device. Figure 4.13(a) shows that an audio 

input can distribute its signal to one or more channels. In this representation, the model 

depicts audio inputs. The values of the SDM level seven connection parameters therefore 

represent one or more destination channels. If the model is inverted so that parameters 

represent destination channels, each device channel is depicted by a level seven 

connection parameter and the value of the parameter represents an audio input.  

Figure 4.13(b) shows that each channel can only be connected to exactly one audio input. 

Where a source terminal parameter represents connections as found in  

Figure 4.13(a), the parameter must be able to represent multiple values as the source 

signal may be split. This representation cannot be accommodated within a single scalar 

value. However, connections that are represented by a destination terminal parameter as 
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found in Figure 4.13(b) only require a single value, unless the destination terminal 

provides signal-mixing capabilities such as a mixing console bus. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

When audio signals must be mixed together, depiction of the connection parameters 

as source terminals allows multiple source terminals to be assigned the same destination 

value as discussed in the next section. 

4.4.1.2 A Fully-Enumerated Connection Model 

In a fully-enumerated connection model, each possible connection is represented by a 

connection parameter as illustrated in Figure 4.14.  
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Figure 4.14 Fully-Connected Connection Models. 
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Figure 4.13 Partially-Enumerated Connection Models. 
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Although restricted to two entries for the sake of brevity in Figure 4.14, level six parameter 

identifiers must represent all possible source and destination terminal combinations. 

Level seven connection parameter values represent connection states. This type of model 

naturally represents many-to-one audio connections where the destination terminal 

provides signal-mixing capabilities. Figure 4.14(a) represents parameters in terms of 

destination terminals (all candidate connections to a bus), while Figure 4.14(b) represents 

parameters in terms of source terminals (all candidate connections from an input 

channel).  

4.4.1.3 An Independent Connection Model 

A connection model where parameter actions are used to create or tear down audio 

connections is termed an ‘independent connection model’. Connections are created by 

control points termed ‘connection points’. A connection point is defined as a control point 

that is used to create or tear down a connection between audio signals.  

As previously discussed in Section 2.9.1.2 Action Parameters (p.35), when a parameter 

represents a connection point, the parameter is accessed solely for the side effects of the 

parameter access. This type of connection management model is termed an 

‘independent connection model’ as the remote procedure call or action parameter invoked 

to create the connection does not imply a source or destination audio terminal. Connection 

points are not used by the SDM as: 

 Connection points require commands having multiple arguments that are not 

found in all control protocols;  

 Connection points must update the required connection parameters, implying the 

existence of additional connection parameters. 

An independent connection model may require that parameters representing connections 

are dynamically added to or removed from the address space as connections are created 

or torn down. The SDM does not support dynamic modification of the parameter address 

space because protocols such as OSC and UPnP do not support address space 

modification. Ember+ addresses this limitation by allowing a parameter to specify child 

parameters. This capability allows a parameter representing a source or destination 

terminal to add child parameters representing the terminals connected to the parent 

parameter. 

4.4.1.4 Comparing Connection Models 

Table 4.5 summarizes the advantages and disadvantages of the three different connection 

models.  
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An independent connection model allows the granularity of connection management 

processes to be controlled as connection points can be specified to manage different types 

of connections. For example, different connection points can manage connections for 

different types of audio inputs to a mixing console. It is also possible for the source and 

destination arguments to be a collection of parameters, allowing multiple connections to 

be specified by a single protocol command. The most significant disadvantage of this 

approach is that connections cannot be created by control commands that do not support 

multiple arguments. Control protocols such as Ember+ and SNMP cannot implement this 

model. Additionally, the states of parameters representing connections must be managed 

by the protocol stack. This approach is thus a functional approach to connection 

management where parameters do not describe connections.  

The main advantage of the fully-enumerated approach is that all possible 

connections are specified by the model and the semantics of each connection parameter 

(as determined by the source and destination terminals) is indicated by the components 

of the parameter’s address. This prevents connections between incompatible audio 

formats and reduces the parsing effort required during service discovery. However, the 

model grows exponentially at the order of O (SRC • DEST) and can become very large as 

all possible terminal combinations are represented.  

A partially-enumerated model offers the best general representation. It is a compact 

representation that supports efficient service discovery as a single parameter represents a 

        Model                     Advantages                          Disadvantages 

Independent 

 

1. Compact representation 
where a single connection 
point can manage many 
connections. 

2. Granularity of managing 
connections is flexible as 
connection points can be 
freely defined.  
 

 

1. Illegal connections are not prevented 
by the representation. 

2. Service discovery must determine the 
terminals to be connected, as well as 
the required connection point. 

3. Requires multiple arguments to 
protocol commands to specify both 
source and destination terminals. 

4. Does not depict connection 
parameters. 

Partially-
enumerated 

1. Both terminals do not have to 
be discovered - the connection 
point represents one of the 
connection terminals. 

1. Illegal connections are not prevented 
by the representation. 

Fully- 
enumerated 

1. Only legal connections are 
possible. 
 

1. Space-intensive because all possible 
connections are explicitly represented. 
 

 

Table 4.5 Comparing Different Connection Models. 
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terminal, and the parameter’s value depicts a connection by representing a second, 

connected terminal. These connection models exist solely in terms of audio terminals and 

connection parameters and do not imply a user interface model.  

The use of a connection model with a control surface is discussed in Section 4.4.2.1 Multi-

Parameter Controls (p.110). 

4.4.1.5 Representing Connection Assignments and Internal Connections 

Figure 4.15(a) shows device outputs represented as destination terminals where the values 

of these terminals depict source terminals. In this example, the left master outputs of a 

mixing console are the candidate source terminals and the available analog output 

channels are the candidate destination terminals. In Figure 4.15(a), the left master output 

channel is connected to an analog output named ‘outCh1’. In a similar manner, a source 

channel is connected to a device input channel (‘ch1’) in Figure 4.15(b) where level 6 analog 

source channels are connected to device input channels. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Sub-devices can be used to group different audio inputs and outputs.  

Description records for these sub-devices describe the inputs or outputs contained within 

each sub-device are shown in Figure 4.15. A description record that describes a level five 

audio signal parameter type is termed a ‘signal description record’.  

A signal description record is a description record that: 

 Describes the characteristics of an audio stream or audio signal; 

 Value   [ ch1 ]         [ ch4 ]   Connections 

 Terminals 

Figure 4.15 SDM Connection Assignment Models. 
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Signal Description Record  
 

Value 
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L4 

Figure 4.16 Stream Connection Parameters. 
 

    ID             Advertise ConnectID        Listen 

 Stream 

  Transmitter 

T1 

 Stream 

R1 

<clock><48> 
<channels><8> 
<format><AES64> 
<parameter><ConnectID> 
      <values><T3, T4, T6> 
<parameter><Listen > 
      <values><true, false> 
 

<clock><48> 
<channels><8> 
<format><AES64> 
<parameter><ID> 
      <values><1234> 
<parameter><Advertise > 
      <values><true, false> 
 

Signal Description Record  
 

Value 

 Describes the parameter used to represent a connection; 

 Lists the candidate values that may be assigned to a connection parameter. 

Examples of these values are shown in Figure 4.15. A level five description record describes 

all parameters of the same type, avoiding descriptions to be duplicated at level six. All 

internal connections that are not many-to-one connections such as an auxiliary send use 

the same partially-enumerated model discussed in the previous section.  

In cases where many-to-one connections must be represented, a fully-connected model 

that represents source terminals (shown previously in Figure 4.14(b)) must be used. 

4.4.1.6 Representing and Managing Networked Audio Streams 

Connections are managed by the partially-enumerated connection model of Figure 4.16 

that shows connections between network streams using the parameters supported by 

AES64.  

 

 

 

 

 

 

 

 

 

 

 

 

 
The associated signal description record describes both the parameters used to create 

connections and the parameters that control the behavior of the audio stream.  

The receiver’s signal description record lists the candidate transmitter streams that can be 

connected to the receiver. If a device is not able to discover networked streams, it cannot 

list candidate transmitter streams in a signal description record. In this case, the candidate 

streams are omitted from the signal description record. 
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4.4.2 Connection Management Controls 

It is important to emphasize that the connection models presented in the previous sections 

are only expressed in terms of connection parameters and connection points. The controls 

used to perform connection management are independent of these models. Figure 4.17 

provides examples of three commonly encountered controls used to create audio 

connections.  

 

 

 

 

 

                                                              

 

 

 

 

 

 

Figure 4.17(a) illustrates a connection matrix; Figure 4.17(b) illustrates a channel strip 

where a selector switch (or list box widget) is used to select an input from the available 

device inputs, while Figure 4.17(c) illustrates two buttons used to assign the signal from a 

channel strip to the left and right channels of a stereo bus.  

Selector switches and context-sensitive button controls can easily be used with a simple 

partially-enumerated model. A control such as the connection matrix of Figure 4.17(a) 

must address more than one parameter. These types of controls are discussed in the next 

section. 

4.4.2.1 Multi-Parameter Controls 

In order to accommodate the representation of connection parameters used in 

conjunction with a connection matrix the SDM defines a ‘multi-parameter’ control.  

A multi-parameter control defines multiple level five parameter types that allow a 

connection matrix to be represented such as the connection matrix that assigns input 

channels to buses shown in Figure 4.18. Level five parameter types depict source 

terminals; level six defines parameter identifiers representing all possible connections for 

the level five source terminals. In this example, the source terminals ‘ch1’ and ‘ch2’ can be 

connected to the destination terminals ‘ch1L’, ‘ch1R, ‘ch2L’ and ‘ch2R’ that represent 

Figure 4.17 Common Connection Management Controls. 
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connections to the two channels of a stereo bus. Level seven connection parameter values 

(named 'conn' in this example) indicate the state of each connection.  

 

 

 

 

 

 

 

 
 

 

 

A level five signal description record lists all level five source terminals and level six 

destination terminals that may be connected. The connection parameters and the 

arguments for each connection parameter are also listed. These values provide the values 

required for the two axes of a connection matrix. This representation is a fully-connected 

connection management model. 

4.4.3 A Summary of Connection Management Representations 

The following summarizes the SDM parameter models used to perform connection 

management: 

1. A partially-enumerated model is used for connections between: 

1.2 Connection assignments and internal connections that are not many-to-

one connections (shown previously in Figure 4.15).  

1.1 Network streams (shown previously in Figure 4.16). 

2. A fully-enumerated model is used for many-to-one connections such as bus 

assignments illustrated in Figure 4.18 where a mixing capability is required. 

4.5 Alternative Device Models 

Development of the proposed model raised the question whether alternative models to the 

proposed model could be identified. A channel-oriented architecture based on the signal 

paths within a device was identified as an alternative device model and warrants further 
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Figure 4.18 An Example of a Multi-Parameter Control. 
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discussion. This type of model is used by IEC-62379 (discussed in Chapter 6), IEEE 1722.1-

2013, and is an optional feature of OCA as was mentioned in Section 3.3.2.2.1 Signal Path 

Representation (p.52). 

4.5.1 A Channel-Oriented Model 

This model consists of audio signal segments that are segmented by primary connection 

points. A simple four-channel mixer represented according to this model is shown in 

Figure 4.19, where related signal segments are partitioned into sets. Each signal path set 

is associated with a set of controls.  

 

 

  

 

 

 

 

 

 

 

 

 
Controls are depicted by colored shapes; black circles indicate primary connection points 

between signal segments. Each signal path provides source and destination audio 

terminals. Connections between signal segments can be accomplished by using the 

connection models discussed previously. This channel-oriented model was discarded for 

three reasons: 

1. The model creates the same logical partitioning as the structural device model 

presented earlier in this chapter. Signal segments and sets of signal segments 

correspond to sub-devices in the previously proposed model. These sub-devices 

are shown by dashed rectangles in Figure 4.19.  

2. The lack of hierarchical containment provided by nested sub-devices makes 

control surface representation less flexible. For example, equalization controls are 

not distinguishable from any other controls within a single channel strip that is 

Figure 4.19 A Channel-Oriented Device Model. 
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represented by a single signal path segment. A separate depiction of the grouping 

and layout of controls is required to depict relationships between controls 

associated with a specific signal path segment. 

3. A model derived from signal paths and signal connections does not provide any 

advantage. Unless the device has a modular architecture, or must support different 

media types and clock sources, the depiction of signal paths is not required for the 

configuration and control of a device. 

This type of model is discussed with reference to IEC-62379-2 in Chapter 6. 

4.6 Implementation of the Standard Device Model 

Different implementations of the SDM are dependent on the capabilities of the specific 

control protocols used within a networked environment. Although the model supports the 

representation of connections using connection parameters, applications can also 

determine connections by examining the states of controls. For example, to determine all 

bus assignments for a mixer, the states of the assignment buttons within each channel 

strip can be examined. 

Figure 4.20 illustrates relationships between different components of the SDM and 

the control surface of a controller. For greater clarity, parent device and sub-device names 

are indicated in parentheses after each sub-device name. The device component in Figure 

4.20 is not renderable - it has its own descriptive attributes, and serves as a container for 

child sub-devices. Input and output section sub-devices function as containers for other 

sub-devices where the output section sub-device is also a renderable sub-device. Channel 

strip sub-devices are renderable, and contain controls and equalization sub-devices that 

are also renderable sub-devices. Other representations are also possible. For example, the 

audio input and output sub-devices can be represented as child sub-devices of the input 

and output sections respectively. 
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It is important to emphasize that a full or short parameter address is a logical, 

hierarchical parameter address. Parameter addresses may be implemented in a variety of 

ways using the data structures or conventions available to a specific control protocol. 

These implementations include: 

 The hierarchical representations used by OSC, Ember+ and AES64. 

 An organization where parameters of the same type explicitly reference the same 

parameter type description. An example of this type of organization is provided in 

Chapter 6 with reference to SNMP. 

 Storing all parameters of the same type in a collection - referencing a member of 

the collection implies the type. This type of parameter organization is possible 

within the environment introduced in Chapter 11. 

These distinctions are subtle, and are created by the data structures and data 

representations provided by different control protocols. As the model is an abstract model, 

  EQ sub-devices  
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Figure 4.20 An Implementation of the Standard Device Model. 
 

     Input 
   section 
sub-device 
   (Device) 

     Master section 
 sub-device (Output Section) 

  Channel strip 
   sub-devices 
  (Input section) 

 Audio Output 
sub-device 
   (Device) 

  Output 
  section 
sub-device 
  (Device) 

Audio Input 
sub-device 
(Device) 



115 
 

it does not concern itself with implementation constraints. Subsequent chapters illustrate 

how different implementations are significantly influenced by both the data structures and 

command formats provided by different control protocols. 

4.7 Summary of the Proposed Model  

The schema of the complete standard device model is shown in Figure 4.21 where optional 

occurrences are denoted by square brackets. When parameters represent connections or 

terminals, the description record becomes a signal description record. The following 

principles summarize the core features of the standard device model: 

1. Parameter and their relationships to a device’s architecture are described by a two-

tiered hierarchical parameter address consisting of a device architecture layer and 

a parameter description layer. These two hierarchies are combined to create a full 

parameter address. 

2. The device architecture layer consists of a device and its child sub-devices where 

sub-devices may contain nested sub-devices and controls. These components are 

the abstract building blocks used to model the physical or logical architecture of a 

device.   

3. Controls only exist within sub-devices. 

4. Devices and sub-devices may optionally have a visual representation. If no visual 

representation is specified, devices and sub-devices function as containers for 

child sub-devices or nested sub-devices and controls respectively. 

5. A level three control entry may contain one or more channel identifiers if a device 

contains DSP functions that do not have an associated control. 

6. Controls should always be associated with local control parameters where a local 

parameter address space is available.  

7. Parameters are represented by a four-level parameter description layer consisting 

of a parameter description, a parameter type, a parameter identifier, and value, 

connection or action parameters. 

8. Each parameter identifier has at least one value parameter or action parameter. 

9. The parameter description layer provides short parameter addresses that must be 

implemented to be either: 

 Globally accessible, or 

 Accessible from a level one device entry. 

10. Entries within the hierarchical levels that constitute a full parameter address 

should adopt regular naming schemes. 
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11. Descriptive data is associated with different levels of the model. These data sets 

are description records, layout records, and signal description records. 

12.  Records contain attributes consisting of unordered sets of <key, value> pairs or 

<key, value1, … valueN> lists.  

13. Meta-data describing attribute data also consists of <key, value> pairs.  

Meta- data must be clearly distinguishable from the data that it describes. 

14. Connection parameters are represented using a partially-enumerated connection 

model for one-to-one or one-to-many connections. A fully enumerated model is 

used to represent many-to-one connections. 
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Figure 4.21 Schema for the Standard Device Model. 
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4.8 Conclusions 

This chapter has described the design of an abstract standard device model for networked 

audio devices. The SDM provides a complete conceptual framework for representing an 

audio device that is independent of any particular control protocol.  

The model supports a multifaceted description of a device consisting of a: 

 Description of the logical organization or physical architecture of a device. 

 Description of services represented by context-sensitive parameter addresses; 

 Description of the visual appearance of a control surface; 

 Representation of parameters within a logical parameter hierarchy; 

 Representation of how parameters are linked to a control surface or to internal 

device functionality. 

Advantages of this model include the following: 

1. It is a simple, scalable model that is able to depict any networked device. 

2. It is an abstract, conceptual framework that is independent of any particular control 

protocol, deployment platform or development environment. 

3. The model supports multiple views of a networked device’s architecture.  

For example, different logical representations of a device such as a set of channel 

strips, or a set of related controls are supported. 

4. The hierarchical nature of the model allows controllers to explore the structure of a 

device and the service provided by a device. 

5. Parameters are directly exposed to controllers. Controllers do not have to process 

the full device model to discover parameters. 

6. Different units of measurement are easily implemented. Controls, parameters and 

parameter types can each specify measurement units as required. A device can also 

specify a global measurement unit such as the proprietary units found in AES64, 

OCA and CopperLan. Parameters may also specify scaling and mapping functions 

within description records. 

7. Parameters are represented by fixed addresses consisting of four levels.  

The number of levels can be extended by using the levels defined by the device 

architecture layer to accommodate protocols that use more than four levels to 

represent parameter addresses. 

The SDM is a meta-model that prescribes the organization of a model but does not 

prescribe the content of the model. By using a small set of abstract entities, the model is 

as simple as possible while also being highly scalable. To be functionally useful, the model 
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would have to standardize the identifiers within each layer of a full parameter address and 

the contents of description and layout records. Standardization of the parameter 

description layer is of particular importance if interoperability between different control 

protocols is required. This standardization is not pursued further for two reasons.  

Firstly, Chapter 11 introduces a novel environment that makes such standardization 

unnecessary. This environment only depends on the identification of the different levels 

of the SDM for service discovery. Remote parameter addresses are transparently used and 

do not require standardization. Secondly, this non-trivial task falls outside of the scope of 

this dissertation. This type of standardization should be entrusted to a standards 

committee within organizations such as the AES or IEEE. 
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Chapter 5  

Open Sound Control 

 

 

5.1 Introduction 

Open Sound Control (OSC) was developed at the Center for New Music and Audio 

Technology (CNMAT) of the University of California, Berkeley (Wright & Freed, 1997). 

OSC was conceived as a protocol for controlling sound synthesizers and computer music 

applications. However, the protocol provides a high level of flexibility, allowing it to be 

used in a wide variety of networked control and communication scenarios.  

OSC is described by the developers as:  

“... a digital media content format for streams of real-time audio control messages 

... such a format has application outside of audio technology, and OSC has found use 

in domains such as show control and robotics.” 

  (Schmeder, Freed, & Wessel, 2010). 

The protocol is described by the version 1.0 specification (Wright, 2002a). Features of the 

proposed version 1.1 specification are described in a paper presented at the 2009 New 

Interfaces for Musical Expression Conference (Freed & Schmeder, 2009).  

This paper also discusses the future development of OSC. A variety of OSC 

implementations for different development environments, including embedded 

environments (Schmeder & Freed, 2008) are freely available. 

The following sections provide an overview of the protocol and examine the use of 

the protocol within the context of the SDM. Of particular interest are: 

 The representation of the SDM within the tree data structure that defines the 

structure of OSC control commands; 

 The implementation of service discovery; 

 The implementation of service enumeration by providing access to SDM 

description and layout records.  
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5.2 An Overview of OSC 

OSC is a transport-independent protocol that is typically implemented within client-server 

architectures. However, the specification does not differentiate between client and server 

process. Any process can create one or more address spaces, transmit messages and parse 

incoming messages. Server processes use a hierarchical, symbolic naming scheme termed 

an ‘OSC address space’ to represent remote control points that are referred to as ‘OSC 

methods’. OSC methods are implemented as remote procedure calls and correspond to the 

services provided by an OSC application Clients invoke OSC methods using URL-like ‘OSC 

addresses’ derived from the hierarchical structure of an OSC address space. A single OSC 

address can invoke more than one OSC method and time-stamped OSC methods may be 

grouped together within a single OSC bundle. 

5.2.1 Parameter Data and Data Types 

OSC is unusual, in that it does not persistently store parameter data. All of the other 

protocols discussed in this dissertation define parameters where parameter values are 

accessed by protocol commands. Parameter access is thus managed by the protocol stack. 

Within these protocols, control points are typically invoked as a side effect of reading or 

writing parameter data. This supports the execution of application-specific functionality 

within the context of accessing specific parameter values. The OSC protocol consists 

entirely of remote control points that correspond to OSC methods. Implementation of the 

parameter data accessed by OSC methods is thus application-specific.  

Because parameters are not defined, the protocol does not differentiate between read 

and write operations. Although many different addressing conventions have been 

proposed to differentiate between these operations (Place, Lossius, Jensenius, Peters, & 

Baltazar, 2008), these conventions are typically application-specific. One of the OSC 

developers, Mathew Wright has acknowledged that standardized parameter read 

operations should be considered for inclusion within the OSC standard (Schmeder & 

Wright, A Query System for Open Sound Control, 2004) (Wright, 2005). Section 5.4.4.1 

Parameter Persistence and Querying Parameter Values (p.133) discusses parameter 

persistence and parameter access. 

5.2.1.1 OSC Data Types 

The OSC data types (Wright, 2002a) used as arguments to OSC methods are listed in 

Table 5.1. Messages contain an ASCII character ‘type tag’ that identifies the data types 

found within a message. For example, a MIDI message has a type tag of ‘m’ followed by a 

four-byte MIDI message. Applications can represent non-standard data types within OSC 

messages by defining new type tags. Additional bytes are added to OSC string and blob 
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     Type                                Description 

   int32 32-bit big-endian two's complement integer 

 timetag 64-bit big-endian fixed-point time tag 

  float32 32-bit big-endian IEEE 754 floating point number 

  string 

 

Sequence of non-null ASCII characters terminated  
by a null character.  
    blob 

 

An int32 data size, followed by the specified number  
of  8-bit bytes of arbitrary binary data.  

 
Table 5.1 OSC Data Types. 
 (Wright, Open Sound Control Specification 1.0, 2002a). 

data types to align the data to a thirty-two bit word boundaries. This data alignment 

(illustrated in Appendix 11) enhances the processing of OSC messages and is discussed 

later in this chapter. 

 

 

 

 
 
 
 
 

 

 
Emphasis of four-byte data types reflects the data word size commonly supported by 

microprocessors at the time (2000-2002) when OSC was developed. 

5.3 The OSC Address Space 

An OSC address space defining OSC methods is implemented as an M-way tree.  

Figure 5.1 illustrates an example SDM OSC address space for a simple two-channel mixing 

device.  

                    

 

 

              

 

 

 
 
      
                     
  

 

 

Figure 5.1 An Example OSC Address Space Representing the SDM. 
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Root and interior nodes are termed ‘containers’, while OSC methods form the leaves of the 

tree. The two input faders and an output fader are controlled by invoking the OSC ‘value’ 

methods of the parameters ‘vol1’, ‘vol2’ and ‘vol3’. Although OSC does not define 

parameters, OSC methods typically imply a parameter value access. A forward slash 

delimited string forming a path through the tree from the root container to a leaf node 

method denotes an OSC address. Thus, each OSC address uniquely identifies an OSC 

method. Figure 5.2 shows that this scheme allows containers and methods to be logically 

organized, and indicates the context of an OSC method invocation. 

 

 

 

 

 

 

 
 

This OSC address is interpreted as follows: 

    The first forward slash is the root container of the OSC address space; 

 ‘value’ is an OSC method and the integer 56 is an argument passed to the 

corresponding remote control point when the method is invoked; 

 The remaining components separated by forward slashes are nested child 

containers of the root container. 

The OSC container hierarchy illustrated in Figure 5.2 implies the context within which the 

OSC method ‘value’ is executed – a parameter value for the channel one fader found on 

the input section of a mixing console. OSC addresses typically reflect a logical device 

structure or a logical organization of parameters. While the address space shown in Figure 

5.1 only contains methods at the lowest level of the tree, any container may have both child 

methods and child containers. 

5.3.1 Processing OSC Messages 

A client-side OSC protocol stack translates OSC addresses and their associated arguments 

into word-aligned protocol data units. These PDUs are then transmitted across the 

network by the OSC implementation’s transport layer. When an OSC server receives the 

network packet, the PDU is extracted and passed to the OSC stack for processing as 

illustrated in Figure 5.3. The stack extracts argument data and then invokes one or more 

OSC methods (control points) specified by the OSC address within the PDU. All argument 

/mixer1/input/fader1/inParam/volType/vol1/value  56 

Figure 5.2 OSC Message Structure. 
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Figure 5.3 Processing Received OSC Messages. 
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data is provided to all invoked methods. A single OSC address can invoke multiple OSC 

methods as explained in the next section.  

OSC methods are variadic functions in both type and arity. This means that methods 

can be invoked with a varying number of arguments, where each argument is a collection 

of one of the data types supported by the protocol. The receiving application must then 

process the provided arguments. Argument data can be passed by value (copied from the 

network buffer) or passed by reference using the address of each argument in the network 

buffer as shown in Figure 5.3. Type tag strings identify the different arguments within a 

PDU. 

 

 

                             

 

                                    

                                                  

                                                   

                                                                                                                           

                     
 

                               
 
 
 

PDUs are aligned at word boundaries to allow an OSC stack to efficiently process 

arguments as explained by Adrian Freed: 

“For computational efficiency: data will be word aligned in memory of the sender 

and receiver. This means that a copy-free ‘pass by reference’ is possible.” 

  (Freed, 2008). 

The meaning of ‘pass by reference’ was clarified by Matt Wright in an earlier paper: 

“… OSC data is parsed in the PacketBuffer, and eventually a number of callback 

procedures are invoked with arg values that point into the PacketBuffer.”  

  (Wright, 1998). 
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Protocol performance is enhanced when data is not copied from the network buffers that 

receive OSC messages. 

5.3.2 Address Space Organization 

In the absence of a standard address space topology, address spaces are typically designed 

to reflect the organization of a specific device, or to meet the requirements of a specific 

application. Andrew Schmeder, one of the developers of OSC has commented on address 

space design: 

"… pattern matching an address against the space of known addresses should 

terminate with the fewest possible comparisons." 

  (Schmeder, 2008). 

The fewest number of comparisons implies that the address space should branch as early 

as possible, resulting in each path having as many distinct containers as possible.  

Matt Wright has also commented on address space design in the source code of the 

original OSC implementation, OSC-Kit: 

"The free list of containers should actually be a “free forest”, so all the sub 

containers recursively under a freed container are automatically freed." 

  (Wright, 1998). 

This means that each container should have one and only one parent. This type of address 

space topology may not reflect a desired logical organization of parameter addresses and 

often requires OSC containers to be duplicated.  

 
 

                       

 

             

 

                                

 

                                 

 

         

      
 

 
Figure 5.4 OSC Address Space Organization. 
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It is logical to organize controls and parameters as shown in Figure 5.4(a), where each 

volume parameter is a distinct member of a set of volume type parameters. Because OSC 

does not allow this organization, the volume type container must be duplicated for each 

leaf method (parameter) as in Figure 5.4(b). This restriction occurs because container 

deletion may be implemented recursively from the leaf nodes of the OSC address space. 

Deletion of one branch of the address space in Figure 5.4(a) will result in references to 

non-existent containers or create orphaned nodes within the address space. Because of 

this design restriction, OSC addresses commonly contain duplicate container entries that 

are not conceptually required. 

5.3.2.1 Address Space Pattern-Matching 

OSC allows a single OSC address to invoke multiple control points by using wildcards and 

sets of values within an address. An OSC stack executes a pattern-matching algorithm that 

creates a set of matching OSC addresses by comparing a received OSC address to all the 

addresses defined by an address space. The syntax used by OSC addresses is derived from 

the syntax used by regular-expressions where: 

   The '?' character matches any single character;  

   The *' character matches any sequence of zero or more characters; 

  A string of characters in square brackets matches any character in the string    

where the minus sign and exclamation mark symbols have special meanings:  

o Two characters separated by a minus sign indicate a range of characters. 

o An exclamation mark at the beginning of a bracketed string matches any    

character not in the list. 

For example, the following OSC message: 

           /mixer1/input/*/volume/vol?  57  56     will match the OSC addresses 

/mixer1/input/fader1/volume/vol1  57  56   and  

/mixer1/input/fader2/volume/vol2  57  56 

Characters used in address matching can also be explicitly listed as a set. The following 

address provides the same matching semantics as the previous example: 

           /mixer1/input/fader[1,2]/ volume/vol[1,2]  57  56      

As illustrated by the above examples, all arguments are passed to method invocations. 

Because it is an application’s responsibility to identify the arguments that it requires from 

each typed set provided as an argument, OSC method names commonly have numeric 

suffixes that denotes an argument index within an N-sized argument list.  
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Using the example of Figure 5.4(b), the example OSC methods use the nth argument 

corresponding to their numeric suffixes: 

 

 

 

The OSC specification does not specify the ordering of multiple OSC method invocations 

by an OSC stack. Method invocations resulting from pattern matching are executed  

non-deterministically. Method invocations should thus not be semantically dependent on 

each other (Wright, 2002a). 

The design of an address space obviously influences the capabilities of the grouping 

mechanism, as address matching is restricted to sibling containers within an address 

space. The proposed version 1.1 OSC specification introduces a ‘multiple-level wildcard-

matching operator’ (Freed & Schmeder, 2009, p. 2), denoted by a double forward slash. 

This symbol is derived from the XML Path Language (XPath) which is used to traverse 

XML documents (World Wide Web Consortium, 1999). The ‘//’ operator provides 

matching at any level across distinct branches of an address space. For example, //vol? will 

match all the leaf methods of Figure 5.4(b). Andrew Schmeder has commented on the 

influence of the XPath and XQuery (World Wide Web Consortium, n.d.) mechanisms.  

"…if we were to re-invent the protocol today it would probably be based on one of 

the binary XML formats, and XPath would serve a similar role as does OSC pattern 

matching syntax. However... possibly with some restrictions: OSC patterns are 

restricted considerably compared to XPath/XQuery, so they can be evaluated in 

bounded time (e.g., there is no backtracking, non-greedy qualifiers, etc)." 

(Schmeder, 2008).  

XQuery is a functional programming language that uses XPath to extract data from one 

or more XML documents. 

5.3.3 Automation in OSC 

OSC ‘bundles’ allow multiple time-stamped OSC messages to be grouped together within 

a single PDU. As mentioned in the previous section, the execution order of methods 

grouped by a single OSC message using pattern matching is non-deterministic.  

By contrast, messages grouped in bundles are executed in transmission order. A bundle 

containing the following three OSC addresses: 

 

/vol1 ( <57, 56> ) 

/vol2 ( <57, 56> ) 
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1. /device/input/channel1/fader 

2. /device/input/channel[3,4]/pan 

3. /device/input/channel*/fader 

will be executed as follows: message one, followed by the two messages matching message 

two in any order, followed by the messages matching message three in any order.  

The time stamping mechanism used with OSC bundles allows messages to be time 

stamped and stored for later execution. The time tag represents a future time as a  

sixty-four bit fixed point number (Wright, 2002a), specifying the number of seconds since 

January 1, 1900, and has a precision of around two-hundred picoseconds  

(a picoseconds is 10−12 of a second). Stored sets of time stamped commands are commonly 

employed to provide automation within video and show control applications. 

The OSC bundle mechanism can also be used to control network latency.  

By specifying a future execution time for each OSC message within a bundle, all messages 

within the bundle will have a fixed latency.   

5.4 An OSC Representation of the Standard Device Model 

The following section describes the use of the OSC address space to represent the standard 

device model developed in the previous chapter.  

5.4.1 Parameter Address Representation 

Full parameter addresses are represented by the OSC addresses shown in Figure 5.5.  
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The SDM parameter description layer is duplicated at the device level to provide short 

parameter addresses that are independently accessible as illustrated by the dashed arrow 

in Figure 5.5(a). As explained in Section 4.3.4.2 The Parameter Description Layer (p.96), 

short parameter addresses allow parameter discovery without traversing the device 

architecture layer of a full parameter address. OSC implementations typically relate 

containers by programming language pointers or references. This means that short 

parameter addresses need not be replicated. Figure 5.5(b) shows that a control container 

and a device container can both reference a single implementation of the parameter 

address layer. 

 
The OSC implementation of the SDM discussed in Section 5.6 An Implementation 

of the Standard Device Model (p.137) supports container ‘aliases’ that are references to 

child containers. The following section discusses the representation of an audio device 

within an OSC address space. 

5.4.2 Device Representation 

Because an OSC address space is a generalized M-way tree structure, any hierarchical 

structure can be represented within an OSC address space. Several different 

representation schemes were investigated before an elegant implementation of the SDM 

within an OSC address space was achieved. The sections that follow describe this 

implementation. 

5.4.2.1 Representing Description and Layout Records 

Figure 5.6 illustrates a device representation that preserves the OSC addresses used for 

control functionality and also represents descriptive data. Child containers are used to 

implement description and layout records belonging to a parent container.  

Container names used to create an OSC address are simply string identifiers, and may 

consist of any sequence of characters except for the characters used for OSC pattern 

matching. A container name is thus used to represent a list of descriptive attributes.  

A null OSC method is added to each container that functions as a description or layout 

record to ensure that the address space is well formed i.e. all leaf nodes are valid OSC 

methods. A null method is an OSC method named ‘null’ that does not perform any action 

and returns the null string when invoked. Figure 5.6 shows that the containers used to 

represent description and layout records are clearly separated from the OSC addresses 

used to implement control functionality.  
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Listing 5.1 illustrates an OSC implementation of a SDM representation of a fader 

control.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Representing Description and Layout Records in OSC. 
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Description and layout records are implemented for the channel strip sub-device and the 

fader control. The parameter description (level 4) and parameter type (level 5) parameter 

address entries also have description records. The following section describes the 

functionality required to discover and enumerate services and descriptive data 

 (Eales & Foss, 2012) represented within an OSC address space. 

5.4.3 Service Discovery and Service Enumeration 

OSC does not natively support device or service discovery. OSC applications such as 

OSCGroups (Bencina, 2012) often implement device and service discovery using  

DNS Service Discovery (DNS-SD) (Cheshire & Steinberg, 2006). The use of DNS-SD by 

different OSC implementations is discussed on the Open Sound Control Website  

(Open Sound Control Technical Documents, n.d.). The creators of OSC have proposed a 

query system (Schmeder & Wright, 2004) for service discovery that provides a level-by-

level traversal of an OSC address space tree. This proposal has not been adopted by the 

standard. The following sections discuss an OSC implementation of service discovery that 

supports the requirements of the SDM. 

5.4.3.1 Address Space Operators 

OSC methods termed ‘address space operators’ were added to the OSC protocol stack to 

implement the functionality required for service discovery. These operators traverse the 

address space and retrieve description and layout records for the various components of 

the SDM represented within an OSC address. 

5.4.3.1.1 Address Space Traversal  

OSC address space traversal requires OSC methods that: 

 Perform a level-by-level traversal of an address space; 

 Identify descriptive and layout records for a specified parent container.  

An OSC address space is extended by simply inserting additional methods into every 

container. The ‘+’ OSC method is termed the ‘child enumeration operator’ and returns the 

names of its child containers within the context of the SDM. For example, when applied 

to the example address space of Figure 5.1 the OSC method  /mixer1/+  returns the string  

“input output” representing the SDM sub-devices that are children of the ‘mixer1’ device. 

This method is applied recursively to each of the returned strings to traverse the address 

space. When applied to a parameter (leaf) node, the child enumeration operator returns 

null to indicate that the node does not have any child containers. The operator can be 

qualified further where: 
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/mixer1/+p    returns only child parameters. 

/ mixer1/+s    returns only child sub-devices. 

/ mixer1/+c    returns all child containers. 

 

The command  +p is used to discover short parameter addresses from an OSC root node. 

5.4.3.1.2 Retrieving Description and Layout Records 

The ‘-‘ OSC method returns a description record describing its parent container.  

This method is termed the ‘attribute enumeration operator’. Two variations of this 

operator return a description record (-d) and a layout record (-l). Using Listing 5.1 as an 

example: 

      /dev/ins/ch1/fader-1/-d    returns the string:  

           “node=ctrl, ch=1, name=fader1,val=int, meta=[min=-8, max=16, step=1, def=0],    
              p=/dev/inp/fader/fader1/val” 

      /dev/ins/ch1/fader-1/-l      returns  the string:  

                                      “ctype=5, x=56, y=460, w=48, h=122, label=fader1” 

      /dev/ins/ch1/fader-1/-c      returns both the description and layout records for the  
            ‘fader-1’ control . 

 
Where descriptive or layout attributes do not exist for a specific container the attribute 

enumeration operator returns a null string.  

5.4.3.1.3 Bulk Data Retrieval 

A level-by-level tree traversal does not perform efficient data retrieval, as it is a  

fine-grained operation that incurs a large bandwidth overhead. A solution to this problem 

is to retrieve an entire branch of an address space with a single query.  

To achieve this, a ‘branch extraction operator’, represented by the ‘^’ character is 

implemented as an OSC method. This method returns a set of strings represented within 

a single string where component strings are separated using whitespace. For example, the 

OSC command: 

             /dev/ins/ch1/^  

will return all description and layout records for all the controls belonging to the first 

channel strip of the example mixing console device. The operator only returns all records 

within either the device architecture layer or the parameter description layer.  

This restriction is a result of the reference connecting the two layers illustrated previously 

in Figure 5.5(b). The use of this operator will be constrained by the size of the network 

buffers used to transmit and receive OSC data. The example OSC application discussed in 

Appendix 4 illustrates that a level-by-level traversal of the SDM tree is sufficient to provide 

service discovery and service enumeration capabilities. In addition, bandwidth is 
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conserved and traffic burstiness reduced when only the nodes of a SDM tree that are 

required by a controller are retrieved. 

Figure 5.7 shows an extended OSC address space containing address space operators 

as well as description and layout records. It is important to note that the organization of 

the address space operators and records preserve the OSC addresses used for control 

functionality. The OSC address:   

          /device/input/cstrip1/gainCtrl/gain/inp/gainType/gain1/value 

in Figure 5.7 is not influenced by the additional OSC address space methods and OSC 

containers that function as description and layout records. 

 

 

 

 

 

 

 

               

                                                                                     

                                                                                              

                                                                                         
 

 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 

    Legend: 
       ■  Device Structure 
       ■  Control 
       ■  Description / Layout Records 
       ■  Parameter Identifier 
       ■  Address Space Operators 
      ■  Parameter Value 

       

Figure 5.7 OSC Address Space Traversal Operators. 
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5.4.4 Parameter Operations  

The following sections discuss parameter operations with reference to OSC. 

5.4.4.1 Parameter Persistence and Querying Parameter Values 

An investigation into both the storage of parameter values and the storage of parameter 

groups within the OSC address space was abandoned for two reasons. Firstly, dynamic 

modification of the OSC address space is permitted but not required by the OSC standard. 

Secondly, dynamic address space modification introduces potential race conditions and 

may corrupt the address space. A simple scheme for parameter persistence would be to 

specify a map data structure, where the key is an OSC address that maps to a parameter 

value. 

It is logical to implement a command to query a parameter’s value as an argument 

to an OSC address string such as 

/console/input/parameter/gain/val ? 

or, to use an OSC message that does not have any associated arguments.  

The proposals for OSC extensions used in the Minuit system include the use of the  

‘?’ character as a query operator (Virage Group, 2009). This scheme closely resembles the 

proposal for a query system made by the developers of OSC that appends the  

‘#’ character to an OSC method to denote a query (Schmeder & Wright, 2004).  

Many other proposals for parameter data storage and parameter access within OSC exist. 

Notable are the extensions proposed for use within two computer music environments. 

These environments are the Jamoma system (Place, Lossius, Jensenius, Peters, & 

Baltazar, 2008), and the Open Sound Control Interface Transfer (oscit) system (Bucher, 

2008). Both of these extensions to OSC use object-oriented implementations of OSC 

containers and OSC methods, where object methods provide access to parameter values.  

5.4.4.2 Parameter Subscription 

OSC does not provide a subscription mechanism. A partial-peer network architecture 

(introduced in Section 2.3.2.1 Partial-Peer Network Architectures (p.19)) is implemented 

by the OSC controller application discussed later in this chapter. This allows a device to 

transmit meter values to specific OSC addresses defined by a controller. OSC 

implementations that provide a local, client-side address space support the invocation of 

controller-defined OSC methods by a device that functions as a server. 

5.4.4.3 Parameter Relationships 

Because OSC does not provide persistent storage for parameters, OSC cannot implement 

static parameter joins and parameter groups. However, the use of variadic arguments 

allows OSC methods to implement dynamic relationships between control points.  
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Section 2.8 Parameter Management (p.28) introduced these parameter relationships. 

Because control points often imply a parameter access, these relationships will be referred 

to as ‘dynamic parameter joins’. 

5.4.4.3.1 Dynamic Parameter Joins 

OSC can dynamically specify a relationship between two parameters by specifying the 

address of a dependent parameter when executing an OSC method as illustrated by the 

following example: 

 

 

 
A string argument to the OSC method ‘g1’ is itself an OSC method. When the method ‘g1’ 

is invoked, it executes one or more methods provided as arguments.  

Figure 5.8 illustrates a dynamic parameter join between a local OSC address space and a 

remote address space. A control updates a local control parameter that is provided with 

the OSC address of a remote parameter dynamically joined to it. 

 

 

 

 

                

 

                                           

 

                    

 

 

 

 

 

A dynamic parameter join only exists while the function or method call implementing it is 

executing. 

5.4.4.3.2 Grouping Parameters 

Grouping OSC methods using OSC pattern matching allows a single OSC message to 

update a group of parameters. The argument list supplied with the OSC address specifies 

an argument for each of the methods matching the address as explained previously in 

/console/input/parameter/gain/g1   56  “/console/input/parameter/gain/g2  67” 

 
Arguments 

Local OSC  
 address           
          

Figure 5.8 Dynamic Parameter Joins Implemented in OSC. 
 

                  Local OSC method 
                             (Remote OSC address)             
          

Controller 

Local OSC Address Space 
                    / 

Remote OSC Address Space 
                     / 

Remote OSCmethod( )       
          

Device 

 

Control 

Remote OSC  
address           
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Section 5.3.2.1 Address Space Pattern-Matching (p.125). In this example, each member of 

a group of three OSC methods is provided with an argument that occupies the same ordinal 

position as the numeric suffix to each ‘input’ container that functions as a channel identifier. 

The variadic organization of OSC arguments supports the specification of dynamic 

parameter groups. This example groups the fader parameters for three input channels of 

a mixing console. When each OSC method is invoked, the application extracts the required 

argument at the position given by the channel identifier. 

 
                      

                 

 

 
When invoked, the OSC method ‘value’: 

 

/console1/input3/param/fader/value  5.5  2.0  4.5  7.0   

 
extracts the third argument (4.5) from the argument list.  

5.5 Connection Management  

The hierarchical organization of an OSC address space naturally represents the 

hierarchical organization of the SDM. This supports the implementation of  

partially-connected and fully-connected connection management models. Figure 5.9 

illustrates the OSC command address space for managing connections between networked 

devices. This connection management model was described in Section 4.4.1.6 

Representing and Managing Networked Audio Streams (p.109) and illustrated 

previously in Figure 4.16. 

 

 

 

 

 

 
 

 

       Argument  position                 1      2      3      4 

/console1/input[ 2  3  4 ]/param/fader/value     5.5   2.0   4.5   7.0 
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The signal description records shown in Figure 5.10 describe the audio source and 

destination streams for a level 5 stream type. The record lists the stream types, as well as 

the parameters associated with each stream. Candidate connections for destination 

streams are also indicated. Signal description records are implemented in the same way 

as the description and layout records described in Section 5.4.2.1 Representing 

Description and Layout Records (p.128). 

 

 

 

 

 

 

 
 

Figure 5.11 illustrates a signal description record describing input parameters used 

for connection assignment. Connections connect audio source stream channels to device 

input channels. This is a partially-enumerated connection model described in  

Section 4.4.1.1 A Partially-Enumerated Connection Model (p. 104). 

 

 

 

“stream=AES64 clock = 48 
source =  s1, s2 
parameters = 
      connect ( type =  bool) 
      listen (type = bool)” 

   netOutput 

Figure 5.10 Signal Description Records Implemented in OSC. 
 

   netInput 

“stream=AES64 clock = 48 
parameters =  
     advertise(type = bool) 
     id(type = int)” 

L5 

   null  (OSC method) 

   null  (OSC method) 

Figure 5.9 OSC Address Space for Network Connection Management. 
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netInput 

   deviceInput 

    netInput 

audioOutput 

control 

netOutput 

    deviceOutput 

   netOutput 

netOut1        …       netOutN 

     id             listen        id             listen 
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Bus assignments are represented in a similar manner following the representation 

illustrated previously in Figure 4.14 (p.105). 

5.6 An Implementation of the Standard Device Model 

The OSC library from Weiss Engineering, Switzerland (WOscLib) is a complete open 

source implementation of the OSC standard developed by Uli Clemens Franke 

 (Franke, WOscLib: The Weiss OpenSound Control Library, 2005). WOscLib is an object-

oriented C++ implementation that uses some of the code from the first OSC 

implementation – the C-based OSC-Kit developed by Matt Wright (Wright, The 

OpenSound Control Kit, n.d.). WOscLib allows both client and server processes to define 

an OSC address space. OSC controller and device applications described in this chapter 

used this OSC implementation. The address space operators discussed in this chapter were 

implemented within the WOscLib protocol stack. Network traffic was monitored using an 

OSC monitor application developed by Frieder Weiss (Weiss, 2013). The monitor was used 

to verify that the Address Space Operators in Section 5.4.3.1 (p. 130) executed correctly. 

Creation of a control surface using the data obtained by the address space operators is 

illustrated in Figure A4.7 (p.369). This implementation is discussed in Appendix 4 and 

examples of the OSC address spaces used by the software are listed in Appendix 7. 

 
 

 

 

L1 

L2 

L7 

L3 

L4 

L5 

L6 

L2 

Figure 5.11 OSC Address Space for Audio Input Assignments. 
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    Legend: 
        ■  Device description layer 
        ■  Parameter description layer 
       ■  Connection parameter  

connect     connect 
 

“source = s1-ch1 … s1-chN 
parameters =  
      connect (type = string)” 
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Signal Description 
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Short Parameter 
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netInput 

   deviceInput 

   chanInput 

Connection parameter arguments 
 

[ “s1-ch1”]  [ “s1-ch2”] 
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5.7 Commentary and Evaluation 

OSC emphasizes dynamic behavior by providing a functional framework that defines and 

invokes remote control points. The protocol is easily adapted to a wide range of control 

scenarios. OSC methods (corresponding to parameters) are typically ordered within the 

address space to reflect the physical layout or functional organization of a device.  

This chapter has demonstrated that an OSC address space that conforms to the OSC 

standard can be used to implement service discovery and support service enumeration. 

The WOscLib protocol stack was extended to support standard OSC methods that traverse 

the address space and retrieve SDM descriptive and layout records stored within the 

address space. By discovering descriptive and layout records, and then transmitting these 

records to controllers, service discovery and service enumeration capabilities are added to 

OSC. These enhancements adhere to the OSC v1.0 specification and do not alter OSC 

addresses used to provide control functionality.  

5.7.1 A Summary of OSC Features 

Table 5.2 summarizes the native features of OSC with reference to the summary of control 

protocol features outlined in Chapter 2. 
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[1] Non-blocking commands are not required by the protocol specification. 

 

 

          Protocol Feature  Comment 

1. Network Management 

    1.1 Device Discovery   

    1.2 Monitoring Reachability   

2. Service Discovery and Enumeration   

3. Control Surface Representation  

2. and creation 

  

4. Control Commands 
    4.1 Write Single  Parameter Value  Control point invocation. 

   4.2 Write Multiple Parameter Values  OSC address wildcards. 

control points    4.3 Read Single Parameter Value   
No parameter values defined.    4.4 Read Multiple Parameter Values  

 4.5 Non-Blocking  (Asynchronous)         
        Commands 

[1] 
Implementation dependent. 

 4.6 Variable Number of Arguments   

   4.7 User-Defined Arguments    

   4.8 Multiple Return Values   

 4.9 Error Checking  Implementation dependent. 

 4.10 Control Point Invocation  OSC method invocation. 

   4.11 Automation    Bundle mechanism. 

5. Subscription (Monitoring) 

5.1 Single Value Subscription   

5.2 Multiple Value Subscription   

5.3 Event-based Subscription   

6. Parameter Management 
5.  6.1 Linking Controls to Parameters   

6.2 Joining Parameters  Not natively supported. Can be 
dynamically implemented as 
synthesized commands. 

6.3 Grouping Parameters  

6.4 Bulk Parameter Access 
 

Only OSC address wildcards and 
bundles. 

6.5 Dynamic Parameter  Modification   

6.6 Save / Load Configuration    

7. Connection Management   

8. Serialization  Arbitrary binary data type. 

9. Security   

         Table 5.2 A Summary of OSC. 
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                                                   Strengths 

1. Easy to develop applications. 

2. Supports bulk parameter access using wildcards. 

3. Bundle mechanism can represent different device  
     configurations and supports automation. 

4. Variadic arguments provide flexibility. 

5. Implementations exist for a wide variety of platforms and 
programming languages. Connectionless and  
connection-oriented implementations are available. 

                                                Weaknesses 

1. Persistent parameter data is not supported. 

2. No subscription mechanism exists. 

3. No address space standardization exists. 

4. Device discovery, service discovery and service enumeration 

 are not supported. 

5. Control surfaces are not represented. 

6. Does not support security features such as data encryption 

 or user access control. 

 
Table 5.3 A Summary of the Strengths and Weaknesses of OSC. 

5.7.2 Strengths and Weaknesses of OSC 

The most significant strengths and weaknesses of OSC are summarized in Table 5.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
The simplicity of the OSC protocol, as well as its ability to freely organize an address space 

to suit the needs of different applications are two reasons for the widespread adoption of 

OSC. However, this simplicity and flexibility places constraints on the scenarios within 

which the protocol can be usefully deployed. In particular: 

1. The absence of persistent parameter data within the protocol stack means that 

OSC cannot support permanent relationships between parameters.  

Parameter data must be stored in application-specific data structures that are 

independent of the protocol stack. 

2. Because no parameter values are represented, parameter subscriptions are not 

supported. As discussed in this chapter, subscriptions can be implemented 

outside of the protocol, using the local address space for return values.  

‘Outside of the protocol’ means that although subscribed messages can be 

received using OSC messages, the subscription mechanism must be 

implemented by additional code. In the context of metering, both parameter data 
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and the threads used to implement metering processes are outside of the OSC 

protocol stack.  

3. Different address space topologies create monolithic applications, restricting 

interoperability between OSC-enabled devices and applications. The ‘SYN’ 

namespace (Ehrentraud, 2010) is an attempt to provide a standard address space 

for the control of software synthesizers. A standard OSC address space for 

lighting applications (Burghardt & Minini, 2010) has attempted to provide 

interoperability with existing lighting control protocols such as DMX (American 

National Standards Institute, 2008). 

4. The protocol does not support device discovery, service discovery, or service 

enumeration.  

5. OSC does not support the representation or creation of control surfaces. 

6. No security mechanisms are provided by the protocol. 

These limitations are significant, and constrain the control scenarios within which OSC 

can be effectively employed.  

5.7.2.1 Scenarios Suited to OSC 

OSC is ideally suited to device control and connection management using small, easily 

implemented address spaces within client-server network architectures. This is the reason 

for the widespread use of OSC to control computer music applications such as sequencers 

and software synthesizers. Lighting and show control are application areas that are also 

suited to OSC, as monitoring of parameter data and parameter persistence are often not 

required. OSC is not suitable for use within large networks where device and service 

discovery are necessary, and monitoring capabilities are required.  

The protocol is thus not suitable for live sound and studio environments. 
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Chapter 6  

The Simple Network Management 

Protocol 
 

 

6.1 Introduction  

The Simple Network Management Protocol (SNMP) is one of the most widely-used 

network management environments for IP-based networks. Derived from the  

Simple Gateway Monitoring Protocol (Davin, Case, Fedor, & Schoffstall, 1987), SNMP 

uses a client-server model to configure, monitor and control networked devices.  

The protocol uses a connectionless transport service and provides asynchronous request-

response commands (Rose, 1994). Core components of the protocol include: 

 A formal representation of data and data relationships; 

 A standardized encoding of data for network transmission; 

 Operations termed ‘requests’ that read and write remote parameter values; 

 A notification mechanism that provides messages from servers to clients; 

 Two security mechanisms that are defined for different versions of the protocol 

(Blumenthal & Wijnen, 2002). 

Three versions of SNMP exist; version two (v2c) consists of minor enhancements to the 

first version. Version 3 provides a more sophisticated notification mechanism,  

and replaces the simple community-based security model of earlier versions (Case, 1996) 

with a more robust user-based security model. The SNMP specification is covered by many 

RFCs. The most important of these are listed in Appendix 3. 

6.1.1 SNMP Terminology  

SNMP has a unique terminology: 

 A ‘managed device’ is a controlled device. 

 An ‘agent’ is the SNMP software that executes on a managed device, providing 

control services, monitoring services and any other capabilities supported by a 

managed device. 
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 A ‘manager’ is a remote software application that interacts with one or more 

agents and is analogous to a network client or controller application. 

 A ‘community name’ is similar to a network domain or name space. 

 An ‘object’ is an SNMP data variable. Parameters are implemented as SNMP 

objects. 

 Agents ‘instrument’ (create and initialize) SNMP objects. ‘Instrumentation’ also 

refers to any required functionality that is implemented by an agent. An example 

of this functionality is provided in Section 6.5.3 User-Defined SNMP Requests  

(p.158). 

 An ‘object identifier’ (OID) consists of a sequence of integers in dotted-decimal 

notation used to uniquely identify SNMP objects that are stored in an M-way 

tree. 

 A ‘varbind’ (‘variable binding’) is a record that specifies an SNMP object (Leuwer, 

2006) by its OID and data value. A single SNMP PDU can contain one or more 

varbinds, allowing a single PDU to reference multiple SNMP objects.  

 A ‘management information base’ (MIB) is a text file that defines SNMP objects 

and relationships between objects using a formal syntax. MIBs are similar to 

relational database schemas or record definitions.  

 Standard SNMP operations (typically GET() and SET(..) operations) that access 

SNMP objects are termed ‘requests’. 

6.2 Data Specification and Translation  

SNMP data objects for a specific device or a generic family of devices are specified within 

a MIB using a formal syntax that allows different translation schemes to encode objects 

into Protocol Data Units (PDUs) for network transmission. SNMP objects are denoted by 

a syntax termed the Structure of Management Information (SMI) 

(McCloghrie, et al., 1999) which is a subset of Abstract Syntax Notation One (ASN.1) 

(International Telecommunication Union, 2008), (Rose & McCloghrie, 1990). ASN.1 is a 

data description language (Dubuisson, 2000) developed for the OSI Protocol Suite.  

Because ASN.1 does not prescribe the encoding of network data, ‘Basic Encoding 

Rules’ (BER) define how SNMP messages are translated from ASN.1 data definitions into 

PDUs for network transmission. BER is one of several ASN.1 encoding schemes 

(Larmouth, 1999) standardized by the International Telecommunications Union 

(International Telecommunication Union, 2002). BER encoding eliminates 

interoperability problems caused by endianness, processor architectures and character 
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encoding schemes (Gross & Holtzen, 1998, p. 4). The structure of SNMP packets and 

SNMP PDUs is summarized in Appendix 11. 

6.2.1 SNMP Data Types 

Native ASN.1 data types (ASN.1 ‘Universal Types’) and data types added to ASN.1 

specifically for SNMP (ASN.1 ‘Application Types’) are both termed ‘Base Types’.  

These data types are listed in Table 6.1. The types having numeric suffixes are defined by 

SMIv2 and were developed specifically for SNMP v2c. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

User-defined types are created by SNMP ‘textual conventions’ which are type 

assignments typically used to define sub-types. For example, the following textual 

convention defines a new single-digit assigned type named ‘DecimalInteger’ that is a sub-

type of the universal SNMP INTEGER type: 

DecimalInteger ::= TEXTUAL-CONVENTION       SYNTAX  INTEGER (0 . . 9) 
 

Textual conventions also allow strings to be used as synonyms for numeric values.  

This convention is similar to the definition of enumerated types found in many 

programming languages and allows meaningful names can be assigned to integer values. 

The example below maps integers to different control widgets: 

    Legend: 
         SMIv1       SMIv2 

 

(Perkins & McGinnis, 1997, p. 38). 

SNMP Type         Type Name                      Implementation 

 Universal  
     Types 

INTEGER 32-bit unsigned integer 

OCTET STRING Byte string  - max size 65535 bytes 

OBJECT IDENTIFIER Integer sequence 

Application  
      Types 

Integer32 32-bit signed integer 

IPAddress (IPv4) 4-byte OCTET STRING  

Counter 
Countert32 

32-bit unsigned INTEGER 

Counter64 64-bit unsigned INTEGER 

Gauge 
Gauge32 
Unsigned32 

32-bit unsigned INTEGER 
 

TimeTicks 
32-bit unsigned integer representing  
hundredths of a second 

Opaque 
OCTET STRING representation of binary  
data (Deprecated in SNMP v2c and v3) 

BITS Bit enumeration 

 
Table 6.1 SNMP Data Types. 
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WidgetType ::= TEXTUAL-CONVENTION 
         SYNTAX  INTEGER  {  linear(1),  rotary(2),  switch(3),  meter(4),  display(5)   } 

 
Support for arbitrary binary data provided by the opaque data type is only provided in 

SNMPv.1 and is not supported by later versions of the protocol. 

6.2.2 The SNMP Address Space 

SNMP objects are stored in an ordered M-way tree where each SNMP object is addressed 

by a unique OID represented by dotted-decimal notation as illustrated by the two SNMP 

objects shown in Figure 6.1. User-defined SNMP objects are either scalar objects or objects 

arranged within tables (tabular objects) denoted by the leaf nodes of the tree.  

An OID provides an object address by depicting a path from the root node to the leaf 

location of the specified SNMP object.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
         

 
 

Scalar objects are addressed by appending a zero to the OID that identifies the scalar 

value as shown by the scalar OID 1.0.99.1.0 in Figure 6.1. Values at higher levels of the 

object tree are fixed, consisting of a unique node identifiers assigned by the Internet 

Figure 6.1 SNMP Hierarchical Data Tree and OIDs. 
 

Columnar Objects 

    Level1                                               1(iso) 

 

    Level2           0 (standard)      1                   2               3 (org)                 6 (dod) 

 
 

 
    Level3   

        …         

 

            
    1 (Scalar1)  . . .  N (ScalarN)            N+1 (TableName)      

  1 (TableEntry) 

1 (column)        2 (column)       3 (columN)       N (column) 

 

99 (typically a specific organization or standard) 

   1 (Row1)            1 (Row1)          1 (Row1)           1 (Row1) 

 

N (RowN)           N (RowN)         N (RowN)         N (RowN) 

Scalar Entries 

Conceptual 
      Rows 

Index Entries 

Scalar Object   1.0.99.1.0 

Tabular Object   1.0.99.1.(N+1).1.3.1 

Conceptual 
      Table 



146 
 

Assigned Numbers Authority (IANA, 2012). For example, the level two identifiers ‘0’, ‘3’ 

and ‘6’ denote standard MIBS, MIBS defined by a specific organization and Department 

of Defense MIBS respectively. A specific standard or organization can apply for a unique 

level three identifier, which ensures that all OIDs defined within a MIB are globally 

unique.  

6.2.2.1 Tabular Objects 

SNMP does not provide a distinct representation for collections of SNMP objects. 

‘Conceptual tables’ are created by grouping scalar variables into ‘conceptual rows’.  

All tabular entries have a prefix consisting of a table identifier followed by a .1 denoting a 

table entry. Figure 6.1 shows vertical lists of scalar variables representing each column in 

a conceptual table. The data item occupying the first row of column three (shown within a 

dashed ellipse) has an OID of 1.0.99.TableName.1.3.1 where 3 denotes the third column. 

The suffix (.1) is an integer index used to identify a ‘columnar instance’ (row entry) within 

column three. The leftmost column entries in this example table provide indexes used to 

identify each conceptual row. Because tabular entries are stored as scalar values in 

column-major order, an index is always required to identify a specific columnar entry. 

Thus, all columnar entries having the same index form a conceptual row.  

It is common practice but not mandatory for the first columnar entry to be an integer that 

is used as a table index. Any SNMP object type (including strings and complex types such 

as IP addresses) may be used as table indexes. 

6.2.3 MIB Organization and Specification 

A MIB (Perkins & McGinnis, 1997), Walsh (Walsh, 2008) is a text file written in ASN.1 

that:  

 Defines the data type and optionally the range of values for each defined SNMP 

scalar or tabular object; 

 Designates the position of objects within the SNMP data tree by assigning an OID 

to each object. A MIB can also associate a label with an OID. For example, the OID 

1.0.99 shown in Figure 6.1 can also be expressed as 

‘iso.standard.organizationName’. 

Figure 6.2 shows that a MIB is a meta-model that describes the format of an instrumented 

MIB where the instrumented MIB is an instance of the meta-model. A meta-model of a 

device is defined by the SNMP objects specified by a MIB. A MIB thus typically represents 

a set of similar devices, while an instrumented MIB denotes a specific device. In 

programming language terminology, the MIB meta-model is analogous to a structure 

definition, while the model is an instance variable of the structure’s type.  
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Figure 6.2 SNMP MIB Model of a Device. 
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  MIB  

 Instrumented MIB 
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 Device 

  SNMP Objects    SNMP Requests 

        Agent  
  Functionality 
 

SNMP Commands and Data 

SNMP agents instrument a MIB by instantiating SNMP objects and providing values 

for the instantiated objects. Standard SNMP requests operate on the OIDs defined by an 

instrumented MIB. Additional functionality for the meta-model (and thus instances of the 

meta-model) must be implemented by the additional agent functionality shown in Figure 

6.2. For example, a function may be implemented within an agent that searches a MIB 

table for a specified object value. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
MIBs also define the contents of trap and notification messages that are sent from an agent 

to a manager. These notification messages are discussed in Section 6.5.2 SNMP 

Notification Mechanisms  (p.157). 

6.2.3.1 MIB Headers and Scalar Definitions 

Examples of MIB entries that define SNMP objects are shown in Listings 6.1 and 6.2. 

Listing 6.1 provides an example of a definition of a single scalar object. The OID 

declarations indicate that a scalar object ‘faderValue’ has an OID of 1.0.99.1.1. All MIBS 

have a root node of 1. This object is described by the following ASN1 clauses: 

 SYNTAX – defines the SNMP data type; 

 UNITS – optionally describes the units used by the data type; 

 DEFVAL – optionally defines a default value for the object; 

 MAX-ACCESS defines the access level of the object. From the highest to lowest 

levels this value may be ‘read-create’, ‘read-write’, ‘read-only’,  

or ‘not-accessible’. 
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standard   OBJECT IDENTIFIER ::= { iso 0 } 
    audio    OBJECT IDENTIFIER ::= { standard 99 } 

scalars  OBJECT IDENTIFIER ::= { audio 1 } 
    

faderValue    OBJECT-TYPE 
       SYNTAX           Integer32 
       UNITS   dB 
       DEFVAL    0 
       MAX-ACCESS     read-only 
       STATUS          current 
       DESCRIPTION                 “value of a fader control in decibel units” 
 ::= { scalars 1 } 

 
 

Listing 6.1 An Example of a MIB Scalar Object Definition. 
 

OID declarations 

First child object of the ‘scalars’ node. 

The read and write access specifiers are self-explanatory. A ‘not-accessible’ access specifier 

is commonly used for table indexes that can be used within an OID, but cannot be directly 

accessed by SNMP GET() or SET(..) requests sent by management applications. The 

UNITS and DESCRIPTION clauses are not processed by a MIB compiler, serving only as 

human-readable comments. The DEFVAL clause is used to indicate an acceptable default 

value to an agent implementing the MIB. 

 

 

 

 

 

 

 

 

 

 

 

 

SNMP is not rigorous in its data definitions as ranges and units of measurement are 

commonly indicated by DESCRIPTION clauses. Off-the-shelf management applications 

do not process these clauses and as a result do not enforce the restrictions specified by 

DESCRIPTION clauses. 

6.2.3.2 MIB Table Definitions 

Table definitions perform four main functions, they: 

1. Assign an OID to a table; 

2. Specify the structure of a conceptual row by defining the name and type of each 

columnar object within the row; 

3. Assign an OID to each columnar object; 

4. Specify one or more indexes used to identify columnar entries within a table. 

An example audio device table is shown in Listing 6.2. The table is a child node of a ‘device’ 

node. Each conceptual row of the table is defined as a ‘Device Entry’ object that defines 

the objects used for each columnar entry. In this example, each device has an index entry, 

a name and an IP address. As a conceptual row specification is not an atomic SNMP object, 

the access specifier (‘not-accessible’) does not allow reading or writing of this object. 

Following the row specification, each columnar object is defined. SNMP v1 and SNMPv2c 
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provide different row insertion mechanisms that allow managers to insert rows into 

existing tables (ZOHO Corporation, 2012). As these mechanisms are not used by the 

SNMP implementations discussed later in this chapter, they are not examined in detail. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

It is important to note that it is not necessary for a controller (manager) to parse a 

MIB during service discovery as a specific MIB defines a standard structure and 

addressing scheme for all defined SNMP objects. The ‘deviceName’ and ‘deviceIPAddr’ 

deviceTable OBJECT-TYPE 

   SYNTAX         SEQUENCE OF DeviceEntry 
   MAX-ACCESS     not-accessible 
   STATUS         current 
   DESCRIPTION    ““ 
   ::= { device 1 } 
  
deviceEntry  OBJECT-TYPE 
   SYNTAX         DeviceEntry 
   MAX-ACCESS    not-accessible 
   STATUS         current 
   DESCRIPTION    ““ 
   INDEX         { deviceIndex  } 
   ::= { deviceTable 1 } 
   
DeviceEntry ::= SEQUENCE { 
   deviceIndex      TableIndex,    
   deviceName    NameString,  
   deviceIPAddr     IpAddress  
}   

 
deviceIndex OBJECT-TYPE 
   SYNTAX        TableIndex 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   ““ 
   ::= { deviceEntry 1 } 
  
deviceName OBJECT-TYPE 
   SYNTAX        NameString 
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   ““ 
   ::= { deviceEntry 2 } 
   
deviceIPAddr OBJECT-TYPE       
   SYNTAX        IpAddress 
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   ““ 
   ::= { deviceEntry 3 } 

 

Listing 6.2 An Example of a MIB Table Definition. 
 

  Conceptual row 

   Structure of each conceptual row 

   Table Index  

   Columnar objects for each row 

   Columnar object definitions 

  Table is the first child of a ‘device’ node 
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entries in Listing 6.2 have fixed OIDs defined by the MIB. A controller that is designed to 

interact with this specific MIB can determine the devices listed within the device table by 

iterating through the fixed OIDs of the device table entries. For example, by appending the 

index values 1 through N to the OID of the ‘deviceName’ entry, the names of all N device 

entries can be determined. Off-the-shelf ‘MIB Browser’ applications do parse a MIB, and 

then query an agent to provide a view of the object entries within an instrumented MIB. 

These applications are generic in nature and must be capable of parsing different MIB 

files. 

6.2.3.3 MIB Implementation 

The relationship between a MIB and a typical SNMP environment is shown in Figure 6.3. 

A MIB compiler validates a MIB by performing syntax checking and type checking.  

The compiled MIB is then stored in a proprietary format that is accessible to an agent. 

When the agent executes as a server process, it instruments the MIB by creating object 

instances and inserting them into the SNMP object tree. The instrumentation process is 

thus application dependent, using the APIs provided by an SNMP development 

environment. 

 

 

 

 

 

 

 

 

 

 

 
A generic MIB browser reads the MIB to determine object addresses and then issues 

SNMP requests that address agent objects. As mentioned previously, dedicated controllers 

do not usually parse a MIB as object OIDS are standardized by the MIB. SNMP messages 

from an agent to a manger are collectively termed ‘notifications’.  

These operations are discussed in Section 6.5 Requests and Notifications (p.155). 

 

Figure 6.3 A Typical SNMP Network Environment. 
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Instrumented MIB 

Read and 
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Source File  

Network 
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Figure 6.4 Relating Tabular Entries using a Row Index. 
 

Index Table2Ref … 

1 5  

…   

 

Index … 

1  

…  

5  

…  

 

Table2 Table1 

6.3 SNMP Table Relationships  

SNMP provides a variety techniques for specifying relationships among tabular entries 

(Chisholm, 2003), (Fuchs, 2006), (Perkins, 1998) and (Perkins & McGinnis, 1997).  

As previously illustrated in Figure 6.1, tabular entries are commonly organized around a 

unique index column that is used to select columnar entries in a table. An index can also 

be a composite value, consisting of multiple values that uniquely identify columnar objects 

in a table. Composite indexes can be created from any SNMP objects, allowing conceptual 

rows from different tables to be related. These techniques are listed in  

Table 6.2 along with the semantics of each technique expressed in relational or  

object-oriented terms. 

 

 

 

 

 

 

 

 

 
The following sections examine these techniques in detail. 

6.3.1 Row References and Row Pointers 

An index value can be used as a reference to relate rows in different tables. In Figure 6.4, 

the first row of ‘Table1’ references the fifth row of ‘Table2’ by using a ‘Table2’ index value 

as a row reference in Table1.  

 

 

 

 

                   
 
 
 
 

SNMP Technique                             Semantics 

1. Indexes or OIDs used as   
references or pointers. 

Composition, binary association or extension 
(inheritance). 

2. Multiple indexes forming 
a composite index. 

N-way association / unique identification 
using a composite key. 

3. Expansion Tables. Composition, multiple association or 
extension (Inheritance). 

4. Relationship 
(Association) Tables. 

Association. 

5. Sparse Table Extensions. Selective addition of information to an 
existing table (Inheritance). 

6. Dependency Tables. Table extension or abstract inheritance. 

 
Table 6.2 Table Relationships in SNMP. 
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DeviceType Table 
{ typeIndex } 
 

Address Table 
{ addrIndex } 
 
addrIndex IPAddress … 

1 192.165.4.2  

…   

 

typeIndex type … 

1 mixer  

…   

 Device Table 
{ devIndex , typeIndex, addrIndex } 
 

Figure 6.5 Object Relationships using Composite Indexes. 

devIindex … 

1  

…  

 

An OID can also be used to reference a conceptual row. This type of reference is termed a 

‘row pointer’ (Case J. , McCloghrie, Rose, & Waldbusser, 1996). A row pointer is by 

convention usually the OID of the table’s index but may be the OID of any columnar object 

within the referenced row.  

6.3.2 Composite Indexes 

A table can have an arbitrary number of indexes, allowing table entries to be identified by, 

and associated with information from other tables. In Figure 6.5, each entry in a ‘Device’ 

table is identified by a composite index consisting of an index from a  

‘Device Type’ table, an IP address entry from an ‘Address’ table, and its own index.  

The index for each table is indicated within braces below the table name.  

Composite indexes are specified by an ‘INDEX’ clause in a MIB that was introduced in 

Listing 6.2. 

As can be seen in Figure 6.5, the ‘typeIndex’ and ‘addrIndex’ indexes are not 

contained within the ‘Device’ table. Each entry in the ‘Device’ table thus represents a 

specific type of device at a specific IP address. For example, the OIDs from: 

DeviceTableOID.DeviceTableEntry.1.typeIndex . addrIndex   to  

DeviceTableOID.DeviceTableEntry.N.typeIndex . addrIndex 

 

will identify all entries within the ‘Device’ table for devices of the specified type at the 

specified IP address. 

 

 

 

 

 

 

 

 
   
 
Note that the compound index is not represented within the ‘Device’ table. When an agent 

inserts device entries, the three index values used to select entries within the ‘Device’ table 

are specified. In the context of the standard model developed in  

Chapter 4, composite indexes allow the individual components of a device to be related.  

Composite Index 
{ typeIndex } 
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baseIndex … 

1  

2  

3  

…  

 

expIndex … 

       1  

      1 (2.1)  

       2  

      1 (3.1)  

…  

 
Figure 6.6 Containment Relationships using Base and Expansion Tables. 
 

Base Table 
{  baseIndex  } 
 

Expansion Table 
{  baseIndex, expIndex  } 
 

Row 1 

Row 2 

Row 3 

Row 4 

 

For example, parent-child relationships can be captured by identifying child component 

entries in a table using a composite index consisting of a parent table index and a child 

table index. 

6.3.3 Expansion Tables 

Composite or containment relationships are represented by a base table and an expansion 

table, where zero or more entries (rows) in the expansion table are associated with a row 

in the base table. In Figure 6.6, rows two and three of the ‘Expansion’ table are 

conceptually contained within row two of the ‘Base’ table, while row four of the ‘Expansion’ 

table is contained within row three of the ‘Base’ table. Each entry in the ‘Expansion’ table 

is identified by a composite index consisting of a base table index and an expansion table 

index. An expansion table allows index values that are not unique as the composite index 

(2.1 and 3.1 in Figure 6.6) provides uniqueness. In the context of the SDM, expansion 

tables are used to represent: 

 Description and layout records by associating a variable number of table entries 

(corresponding to a list of <key><value> pairs) with a specific base table entry 

(representing a record instance); 

 Parent-child relationships where a parent may have an arbitrary number of 

children. 

 

 

 

                                                                      

 

 

 

 
This flexibility is extremely valuable, as standard SNMP requests cannot modify the 

structure of a table, which is fixed by a MIB definition. However, an agent can insert an 

arbitrary number of entries into an expansion table when instrumenting a MIB. 

6.3.4 Relationship Tables 

These tables capture a relationship between two entries in different tables. A relationship 

table has entries indexed by entries from two or more tables containing objects that must 

be related. A relationship table only indicates the status of an M-way relationship, where 

M is the number of objects forming a composite index.  An entry in a relationship table 



154 
 

indicates that the M-way relationship exists; if an entry is not found the relationship does 

not exist. 

 

 

 

 

 

 

 

 

In audio applications, relationship tables can represent connections between audio 

signals. In Figure 6.7, each ‘Connection’ table entry is indexed by entries in an ‘AudioSrc’ 

table and an ‘AudioDest’ table. A connection name column in the ‘Connection’ table 

defines an SNMP object for each row entry. If a row entry having the OID 

connName.srcIndex.destIndex exists in the ‘Connection’ table, then a connection exists 

between the entries in the ‘AudioSrc’ table and ‘AudioDest’ table at the specified indexes. 

Other types of relationships between SNMP tables such as ‘sparse table 

relationships’ and ‘dependent relationships’ (Perkins & McGinnis, 1997, pp. 29-32) are not 

discussed as they were not used to implement the SDM. 

6.4 Device and Service Discovery 

SNMP version 1 and version 2c were never designed to support device discovery. SNMP is 

commonly used to configure devices such as gateways and routers where IP addresses are 

known. These devices typically use other protocols such as DNS-SD for device discovery. 

An SNMPv3 device that has a security subsystem is termed an ‘SNMP Engine’ 

(Harrington, Presuhn, & Wijnen, 2002). Each engine has a unique network identifier and 

may contain multiple agents that provide different functionality.  

“SNMP Engines can be discovered by probing their transport endpoints. Once 

a transport has been found, SNMP messages can be sent to the SNMP engine 

listening on that transport endpoint to discover the engine identifier and 

existing contexts. The variables within a context are discovered by using an 

iterator which traverses the name space while retrieving variables.” 

(Bergstra & Burgess, 2008). 

connName 

mic1-ch1 

… 

 

Figure 6.7 A Relationship Table Example. 
 

destIndex Name 

1 ch1 

 2 … 

 3  

…  

 

srcIndex … 

 1  

 2 Mic1 

 3  

…  

 

AudioSrc Table 
{ srcIndex } 
 

 Connection Table 
{ srcIndex, destIndex } 
 AudioDest Table 

{ destIndex } 
 

2.1 
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SNMPv3 thus uses a brute-force approach to service discovery by traversing the entire 

SNMP address space of a discovered SNMP engine. Service enumeration is not required 

when using SNMP as management applications address standard, fixed OIDs that are 

defined by a MIB. Namespace iteration retrieves SNMP objects advertised by a device that 

represent the current state of a device. A novel, context-sensitive approach to service 

discovery that makes use of composite table indexes is presented later in this chapter.  

6.5 Requests and Notifications 

SNMP allows parameter data to be accessed by: 

 Standard SNMP requests  that read and write SNMP object values; 

 Messages that are subscription responses received by mangers from agents; 

 User-defined operations that implement specific functionality as a side effect of 

executing standard requests on action parameters. 

6.5.1 Reading and Writing Parameter Data 

The standard SNMPv1 requests are GET(), SET(..), GET-RESPONSE() and GETNEXT(). 

GET() and SET(..) requests read or write the values of one or more objects.  

A PDU implementing a single GET() or SET(..) request (as defined by the command 

specifier entry in Figure 6.8) may contain multiple varbinds. This allows a single request 

message to reference the multiple SNMP objects shown in Figure 6.8. 

 

 

 

 

 

 

 

 
 
 

A GETNEXT() request retrieves an object instance with an OID that 

lexicographically succeeds the OID provided as an argument to the request. This type of 

request supports a traversal of an SNMP data tree and is usually used to traverse tabular 

data. Because GETNEXT() access objects in lexicographical order, tabular objects are 

accessed in column-major order. To retrieve an SNMP conceptual row, the entire table 

UDP Packet 

Protocol Data Unit 

    Command Specifier 

       Variable Binding1 

      Variable BindingN 

     … 

Figure 6.8 Variable Bindings Within an SNMP PDU. 
 

  OID – value 

 OID – value 

Object1 

ObjectN 
     … 
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must be retrieved and then processed locally by a manger to extract the desired row, or a 

conceptual row must be retrieved by using a GET() request to read each columnar entry 

within the row. 

GET-RESPONSE() messages are transmitted from an agent to a manager in 

response to receiving SET(..), GET(), or GETNEXT() requests. A GET-RESPONSE() 

message also functions as an acknowledgment for SET(..) requests. Responses to SET(..) 

requests contain an index field that allows a manager to match SET(..) requests with 

received responses. For GET() and GETNEXT() requests, responses contain the requested 

SNMP variables or the response indicates an error condition.  

6.5.1.1 Optimizing SNMP Requests 

A SET(..) request can be used to return data if the requested data is inserted into the 

mandatory acknowledgment message. This non-standard optimization of SNMP (used in 

the implementation of the SDM) is possible because a response message may contain an 

arbitrary number of varbinds.  The sequence diagram shown in Figure 6.9 illustrates how 

an agent monitors SET(..) requests. If the SET(..) request does not generate an error and 

the agent recognizes the OID as an action parameter, one or more varbinds are inserted 

into the acknowledgment to the SET(..) request.  

 

                          

 

 

 

 

 

 

 

 
 
As an example application scenario, consider a level-by-level traversal of the SDM where 

each SDM level entry is represented by a table row entry. A SET(..) request specifies a 

parent node and the response contains a list of child nodes.  

 

 

Figure 6.9 Optimizing SNMP SET(..) Requests. 
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6.5.1.2 Bulk Parameter Access 

The ‘GETBULK()’ request was added to SNMPv2c. These requests retrieve a range of 

object values returned as a list of varbinds within a single response message.  

A GETBULK() request specifies the number of OIDs that are atomic (termed ‘non-

repeaters) and the number of OIDs that must have GETNEXT() applied to them (termed 

‘repeaters’) (Perkins & McGinnis, 1997, pp. 180-81). An agent applies the GETNEXT() 

operations to the specified repeaters. For example, if a request specifies the OIDs oid1, 

oid2, oid3, and oid4 where the first two OIDs are atomic values - the total number of 

varbinds returned is given by N + (M * R) where N is the number of atomic OIDS, and M is 

the number of GETNEXT() operations to be performed on the number of repeater OIDs 

denoted by R. Repeaters are typically used to read sets of objects using a single request 

message. Bandwidth is conserved as the repeated GETNEXT() operations are performed 

by an agent rather than by a manager. SNMPv1 managers must retrieve bulk data by 

executing multiple GETNEXT() requests. 

GETBULK() has several performance issues (Chandragiri, 2001), including not 

being able to determine the size of a table before retrieving tabular data. A proposal has 

been made to enhance this request to return a specified number of rows (Jagadish, 

Prakash, & Gonsalves, 2008) rather than returning a specified number of OIDs.  

The number of varbinds that can be contained within a single SNMP message is 

application-dependent and is not defined by the SNMP protocol: 

“The maximum size of an SNMP message is limited to the minimum of:  

 (1) the maximum message size which the destination SNMP entity can accept; and, 

(2)  the maximum message size which the source SNMP entity can generate.” 

  (Case J. , McCloghrie, Rose, & Waldbusser, 2002). 

The SNMP implementation of the SDM presented later in this chapter provides a 

novel direct-access mechanism for service discovery that makes the use of standard 

GETNEXT() and GETBULK() requests unnecessary. 

6.5.2 SNMP Notification Mechanisms 

SNMP provides three different forms of communication between an agent and one or 

more managers. These are ‘traps’, ‘notifications’ and ‘informs’, and are collectively 

referred to as notifications. SNMP v.1 traps and SNMP v.2c notifications are asynchronous 

network messages sent from an SNMP agent to an SNMP manager when a particular event 

occurs on a monitored device. SNMP v.2 notifications are trivially different from SNMP 

v.1 traps, and both invoke callback functions within a management application. The 

differences between the two types of messages are found in the format of the PDUs used 
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for each message (Net-SNMP, 2011). The granularity of trap handling implementations 

can range from a single trap handling many different events to many dedicated traps that 

process specific events. It is important to note that a MIB only defines notifications; agent 

instrumentation must implement the creation and transmission of notifications. 

Informs are typically used as traps that must be acknowledged by the receiving 

management application but their usage is not well defined: 

“This operation, sent by an SNMP “informer” entity advises an SNMP manager 

of an event on a system … we made up the term “informer, since the SNMP WG 

cannot decide if agents or managers send INFORMS.” (Perkins & McGinnis, 

1997, p. 185). 

Because informs are acknowledged, they can be used to provide reliable transactions for 

critical operations such as service discovery and device initialization. An inform message 

is re-transmitted by an agent or manager if no acknowledgment is received.  

SNMP allows the number of times an inform request is re-transmitted to be specified 

(Levi, Meyer, & Stewart, 1998). 

6.5.2.1 Using SNMP Traps for Audio Metering 

Both the work-conserving and non-work-conserving transmission schemes introduced in 

Section 2.9.2 Monitoring Parameter Values (p.37) for monitoring meter levels can be 

implemented as SNMP traps. Work-conserving implementations do not require varbinds 

as it is possible to use the existing fixed-header fields within an SNMP trap PDU.  

Non-work-conserving implementations transmit a collection of values by representing 

each meter value as a distinct varbind within a single trap PDU. The format of SNMP traps 

and the use of trap messages to transmit meter values are discussed in  

Appendix 11. 

6.5.3 User-Defined SNMP Requests 

Standard SNMP requests such as GET(), SET(..), GETNEXT() and GETBULK() address 

specific SNMP objects, or follow the numeric ordering of objects within the SNMP 

address tree. In order to invoke context-sensitive functionality, SNMP objects 

representing action parameters (introduced in Section 2.9.1.2 Action Parameters 

(p.35)) are created and then addressed for the side effects of addressing the objects. 

“Since SNMP has no concept of an explicit action, all actions are represented in 

terms of implicit actions which do their work through side effects.” 

     (Perkins & McGinnis, 1997, p. 193). 
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Agent environments commonly invoke one or more control points as a side effect of a 

standard SNMP request. GET() or SET(..) requests that address an action parameter allow 

control point to provide functionality such as:  

 Returning a conceptual row from a table; 

 Returning a list of descriptive attributes; 

 Returning the names of child objects for a specified parent object where objects 

are arranged in a hierarchy. 

These types of subroutines are also commonly used to add and delete rows from tables, as 

agent development APIs commonly provide elegant table management functions.  

The SNMPv2c standard procedure to add rows to a table is designed to accommodate off-

the-shelf browsers that must implement row creation by using several SET(..) requests 

(ZOHO Corporation, 2012). Additionally, row ‘deletion’ is often indicated by a flag within 

a conceptual row; the data is not deleted from the SNMP object tree. 

Context-sensitive requests are implemented by using pairs of SNMP objects.  

An argument to a SET(..) request provides the context within which the following GET() 

request occurs. As an example, a GET() request that returns a list of object identifiers 

representing child nodes within an arbitrary hierarchy must return a list of children for a 

specific parent node. One SNMP object denotes the parent node, while a second object is 

an action parameter used to trigger an agent subroutine that determines and returns a list 

of child node identifiers for the specified parent. This type of operation can be optimized 

further as previously discussed previously in Section 6.5.1.1 Optimizing SNMP Requests 

(p.156). 

The remainder of this chapter examines two SNMP implementations: the  

IEC-62379 control protocol and an implementation of the standard device model. 

6.6 IEC-62379 

The International Electro-Technical Commission (IEC) publishes a set of standards for 

the control of networked audio devices. IEC-62379 (International Electrotechnical 

Commission, 2008) is a standard SNMP-based control protocol intended for use within 

the broadcasting industry. Part one of the standard, IEC-62379-1 (International 

Electrotechnical Commission, 2007)  describes how SNMP represents devices. Part two, 

IEC-62379-2 (International Electrotechnical Commission, 2008) extends the standard to 

represent and control audio devices. This protocol only exists as a specification and a set 

of SNMP MIBs. No freely available software tools or software libraries support the 

protocol. 
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6.6.1 Device Representation 

IEC-62379-2 is designed around the concept of ‘functional blocks’ that perform signal 

processing functions and the representation of audio signal connections between different 

functional blocks. Table 6.3 lists the different functional blocks defined by the protocol 

and the OIDs of the SNMP tables used to represent different functional blocks. Each block 

typically performs a single signal processing function or provides a specific type of 

functionality. Some blocks can be configured to provide a variety of different audio 

functions. For example, a ‘crosspoint’ block can be used to swap stereo channels or convert 

stereo signals to a mono signal (IEC-62379-2, p.25).  

 

 

 
       
 
 

 
 

Device architecture is represented by a set of IEC-62379-2 functional blocks and a 

specification of the connections between these functional blocks. A simple, hypothetical 

audio device modeled using a set of interconnected audio functional blocks is shown in 

Figure 6.10. This example uses the legacy AES3 standard (Audio Engineering Society, 

2010). The AES3 two-channel format (frequently referenced within the IEC-62379-2 

specification) was adopted as an IEC standard named IEC-60958-4 (International 

Electrotechnical Commission, 2003). A unique integer identifier (shown within circles in 

Figure 6.10) identifies each functional block. Functional blocks are connected by assigning 

the outputs from one block to the inputs of the next block on the audio signal path. Integer 

identifiers (indicated below each signal path in Figure 6.10) identify specific inputs and 

outputs for each functional block.  

 

 
                                                         
               
                                          
 
 
 

            

     
                  
 

(IEC-62379-2 Specification, p.77,  
International Electrotechnical Commission, 2008). 
 

Figure 6.10 IEC-62379 Device Representation. 

AES/EBU Input 

1 3 

4 5 

AES/EBU Output 
1 1 

1 2 

1 1 1 1 
Limiter 2 

AES/EBU Input 

Mixer 

Block Identifier 

Input Identifier Output Identifier 

OID         Functional Block 

   2 mixer  

   3 audioCrosspoint   

   4 audioClipPlayer  

   5 audioLimiter  

   6 audioConverter 

   7 audiolLevelAlarm 

 
Table 6.3 IEC-62379-2 Audio Functional Blocks. 
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Figure 6.11 IEC-62379-2 Block and Block Connector Tables. 

6.11(a)   

 BlockID                 BlockType 

       1 1.0.62379.2.1.1  (Audio port) 

       2   1.0.62379.2.1.1  (Audio port) 

       3 1.0.62379.2.1.2  (Mixer) 

       4 1.0.62379.2.1.5  (Limiter) 

       5 1.0.62379.2.1.1  (Audio port) 

 

BlockId BlockIn BlockId  BlockOut 

      3       1       1         1 

      3       2        2         1 

      4       1       3        1 

      5       1                      4         1 

 

Block Connector Table Block Table 

6.11(b)        

Source Destination  

Row entries within a specific functional block table thus represent instances of the table’s 

block type. Figure 6.11 shows a ‘Block’ table that lists all functional block instances and a 

‘Block Connector’ table that enumerates the connections between functional blocks. These 

tables depict the simple device shown previously in Figure 6.10.  

 

 

 

 

 

 

 
 
A ‘BlockType’ column indicates the block type of each entry. For example, the SNMP OID 

entry 1.0.62379.2.1.2 in the ‘Block’ table of Figure 6.11(a) identifies block number three as 

a mixer block. Block types were previously listed in Table 6.3. Each row in Figure 6.11(b) 

represents an audio connection where the last two columns specify a block output and the 

first two columns specify a block input.  

IEC-62379-2 allows a single block input or output to depict multiple channels.  

For example, a single input consisting of two channels depicts a stereo input.  

Functional blocks do not address individual channels when modifying a signal; 

modifications are propagated to all channels within the block.  

6.6.2 Service Discovery  

Discovery of the services provided by a particular IEC-62379-2 device involves: 

 Discovering the functional blocks for a specific signal path. 

 Determining the attributes describing the data associated with each of the 

parameters defined within functional blocks. These attributes will define the 

specific functionality provided by a functional block. 

The block topology for a device is determined by tracing the connections from input ports 

to the audio inputs and audio outputs for each successive functional block that exists on a 

signal path. The IEC-62379 ‘Audio Port’ table illustrated in Table 6.4 lists all audio input 

and output signals for a device shown previously in Figure 6.10.  
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Audio port blocks are identified in the ‘Block’ table by their OID, 1.0.62379.2.1.1.  

The ‘Direction’ entry in an audio port table indicates whether a port is used for input or 

output. Each ‘Block Connector’ table entry lists connections between the input and output 

ports of different functional blocks. To determine audio connections within a device, the 

‘Block Connector’ table is traversed to identify all signal paths between functional blocks 

as illustrated by the entries in Figure 6.11(b). If blocks 1 and 2 are known to be ports (as 

they have entries in the ‘Audio Port’ table), entries in the  

‘Block Connector’ table will also indicate port directions. Input ports have no input 

connection and output ports have no output connection as each input or output port is 

connected to only one functional block. For example, blocks one and two in  

Figure 6.11(b) each have a single output connection and no input connections,  

while block five has one input connection and no output connections.  

6.6.3 Parameter Description  

Parameters are only defined within functional blocks. IEC-62379-2 does not rigorously 

define parameter attributes, as these attributes are commonly defined using ASN1 

‘DESCRIPTION’ clauses and MIB comments. For example, the IEC-62379-2 ‘AudioLevel’ 

textual convention shown in Listing 6.3 defines an integral sub-type having a range of -20 

000 to 20 000 that represents hundredths of a decibel. 

 

 

 

 

 

 

 

 
 
 

 
An SNMP ‘DESCRIPTION’ clause shown in Listing 6.3 indicates the unit of measurement 

and step size. This information is not intended to be a machine-readable as previously 

  AudioLevel ::= TEXTUAL-CONVENTION 
  STATUS        current 
  DESCRIPTION   “An absolute or relative audio level in units of 0.01dB.” 
  SYNTAX        INTEGER (-20000 .. 20000) 
                -- { 
                --   mInfinity (-20000), 
                --   fullScale (0), 
                --   pInfinity (20000) 
                -- } (mInfinity .. pInfinity) 

MIB Comments 

Listing 6.3 The IEC-62379-2 ‘AudioLevel’ Textual Convention. 
 (IEC-62379-2 Specification, p.57, International ElectroTechnical Commission, 2008). 
 

Table 6.4 An IEC-62379-2 Audio Port Table. 

     ID  Direction                   Data Format         Transport    Name 

      1    1 (In)  1.0.62379.2.2.1.3.2.2.24.48000 1.0.62379.2.2.2.2 Channel1 

      2    1 (In) 1.0.62379.2.2.1.3.2.2.24.48000 1.0.62379.2.2.2.2 Channel2 

      3    2 (Out) 1.0.62379.2.2.1.3.2.2.24.48000 1.0.62379.2.2.2.2 Output1 
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  Name  Min  Max   Step    Type  Unit UnitStep UnitType InitVal 
   Gain    0   10    1     Int   dB     0.01     float      0 

 
Table 6.5 Example of an SNMP Parameter Attribute Table. 

discussed in Section 6.2.3.1 MIB Headers and Scalar Definitions (p.147). The integral 

representation of a floating point value, as well as the unit of measurement cannot be 

determined by a parser as they are indicated by SNMP comments. SNMP does not support 

a floating-point data type (Perkins, 1997); floating-point types are represented by integral 

or string data types.  

A full and unambiguous description of the descriptive attributes of a parameter 

requires a parameter attribute table such as the hypothetical table shown in Table 6.5. 

 

 
 

 
All the information required by a controller to dynamically control the parameter and label 

a control surface is contained within this table. 

The IEC-62379-2 specification does not clearly differentiate among parameters, the 

attributes describing parameters, and how the dynamic behavior of a control modifies 

parameter values. As an example, consider a mixer block (IEC-62379-2, p.21), which is 

represented by the two SNMP tables shown in Listing 6.4.  

 

 

 

 

 

 

 

 
 
 
 
 
 
 

 

 
(IEC-62379-2 Specification, p.21,  
International ElectroTechnical Commission, 2008). 
 

aMixerBlockTable(1) 
  │ 
SEQUENCE OF 
AMixerBlockEntry 

└aMixerBlockEntry (1)   AMixerBlockEntry  
├aMixerBlockId (1)   BlockId  
├aMixerFadeDuration (2)  CardinalNumber  
└aMixerFadeNow (3)   TruthValue  

 
aMixerInputTable(2) 
   │ 
SEQUENCE OF 
AMixerInputEntry 

└aMixerInputEntry (1)   AMixerInputEntry  
├aMixerInputBlockId( 1)  BlockId  
├aMixerInputNumber (2)  IndexNumber m 
├aMixerInputLevel (3)   AudioLevel  
├aMixerInputFadeToLevel (4)  AudioLevel  
└aMixerInputDelay (5)   CardinalNumber  

 

Listing 6.4 IEC-62379-2 Mixer Block MIB Design. 
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The first table represents the mixer block itself, while each entry in the second table 

represents an input to the mixer block. Each input to the mixer has an input level and an 

output level (‘aMixerFadeToLevel’) contributing to the combined signal level.  

Dynamic behavior is controlled by ‘aMixerFadeNow’ and ‘aMixerFadeDuration’ objects 

that specify the level to fade to and the time taken for a fade operation.  

Parameters describing the operation of a mixer block are the ‘aMixerInputLevel’ and 

‘aMixerFadeToLevel’ objects. Dynamic behaviors associated with the block 

(‘aMixerFadeDuration’ and ‘aMixerFadeNow’) are included with the data describing the 

block. There is no clear distinction between the dynamic behaviors of a functional block 

(triggered by action parameters), the data and parameter values defined within a 

functional block and objects that describes connections (‘aMixerInputBlockId’ and 

‘aMixerInputNumber’). 

6.6.3.1 Connection Management 

Block and connector tables similar to the tables shown in the tables shown in Figure 6.11 

are used to connect audio source and destination terminals to the input and output ports 

of a device (International Electrotechnical Commission, 2007, p. 28). 

6.6.4 An Evaluation of IEC-62379-2  

The design of IEC-62379-2 violates several principles of the SDM, including the:  

1. Use of a non-hierarchical model of device components based on the audio signal 

connections between components. 

2. Representation of device components as specific components (concrete 

functional blocks rather than abstract functional blocks). 

3. Definition of parameters within functional blocks. Parameter discovery requires 

a traversal of the full device model or a traversal of each block table. 

4. Representation of the semantics of functional blocks as comments that are not 

machine-readable within the IEC-62379-2 MIB. 

5. Lack of clear separation between parameter data, descriptive data and  

meta-data. 

These design features significantly constrain the use of this control protocol as discussed 

in the following section. 

6.6.4.1 Device Representation in IEC-62379-2 

The functional blocks defined by IEC-62379-2 are not capable of representing a complex 

audio device such as a mixing console. IEC-62379-2 defines a small set of blocks but does 

allow blocks to be added to the standard as required (Grant, 2009).  
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A flat, linear device model rather than a hierarchical device model means that it is not 

possible to directly access specific device components required by a controller.  

For example, the master faders found within the output section of a mixing console must 

be discovered by tracing audio connections between functional blocks starting at the 

device’s inputs. This is a complex process, requiring one or more graph traversals using 

the ‘Block’ table and ‘Block Connector’ table entries shown previously in Figure 6.11.  

A device model that depicts connections between functional blocks resembles a 

circuit diagram. As previously noted in Section 4.5.1 A Channel-Oriented Model (p.112), 

this type of model does not offer any advantages for controlling a device, as the 

identification of all of the connection points that exist along a signal path is not a 

requirement to control a device. Additionally, because functional blocks define a specific, 

concrete functionality, the protocol is not dynamically scalable. An agent cannot add new 

functional blocks when instrumenting the IEC-62379-2 MIB as the addition of new 

functional blocks requires the IEC-62379-2 MIB to be extended. Adding SNMP objects to 

a MIB defeats the purpose of a MIB, which is to provide fixed, standard OIDs for SNMP 

objects. 

Descriptions of functional block semantics and meta-data describing parameter 

values occur as comments within the IEC-62379-2 MIB and are not machine-readable. 

This means that the functionality provided by a functional block cannot be determined by 

machine parsing. A user must examine the structure of a functional block using a MIB 

browser to determine the semantics of the block. 

6.6.4.2 Representing Parameter Data and Descriptive Data  

Because functional blocks encapsulate parameters, parameters are not independently 

accessible. This means that parameter relationships cannot be represented and bulk 

parameter operations (commonly used to save or restore the state of a device) are not 

easily implemented. The location of parameters (represented as object identifiers) is 

dependent on the device structure.  

Parameters should be fully described by explicitly listing all the attributes of a 

parameter value. Attributes should not be implied or dependent on MIB annotations that 

are not machine readable. Parameter attribute descriptions may be non-existent, 

incomplete, or defined alongside the parameter values themselves in IEC-62379-2.  

Thus parameter data, descriptive data and meta-data are not clearly separated or 

informally represented within a MIB as discussed in Section 6.6.3 Parameter Description 

(p.162). These traits mean that the discovery of parameters and the attributes describing 

parameter values is a non-deterministic process.  
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6.6.5 Conclusions 

IEC-62379-2 appears to have been designed to allow users to examine a device using a 

MIB browser, and has not considered the machine interactions between a manager and 

an agent. Unfortunately, the IEC-62379-2 MIB structure does not provide an intuitive 

interface when viewed in a MIB browser. For example, creating connections to a device 

using block tables and connection tables similar to the tables shown previously in  

Figure 6.11 is not an intuitive task. The limitations discussed in the previous section stem 

from using: 

 A device model based on audio signal paths; 

 Comments to describe MIB objects;  

 High-level abstractions (functional blocks) that do not clearly separate different 

concerns. Parameter data, descriptive data and the functionality required to 

modify parameter values are all defined or specified within functional blocks. 

However, a small number of well-defined functional units creates a functional simplicity. 

As a result, IEC 62379-2 provides a high degree of interoperability and avoids 

interpretative errors that can occur during service discovery. The following sections 

describes an SNMP implementation of the SDM that avoids the limitations discussed 

above, and introduces a novel use of SNMP indexes to represent parameter relationships 

and structural relationships between device components. 

6.7 An SNMP Representation of the Standard Device Model 

The remainder of this chapter describes an implementation of the standard device model 

developed in Chapter 4. A robust implementation of the SDM must: 

 Implement relationships between components of the model (devices, sub-devices 

and controls), as well as parameters in an elegant manner using SNMP tables; 

 Simplify the retrieval of data during service discovery – inefficient retrieval of 

entire tables using GENEXT() or GETBULK() should be avoided; 

 Provide a parameter representation that allows direct access to parameters and 

supports relationships between parameters; 

 Attempt to design a MIB that satisfies the above requirements and also supports 

the use of off-the-shelf SNMP MIB browsers. 

6.7.1 Representing Devices, Sub-Devices and Controls 

Hierarchical relationships can be elegantly represented using SNMP table indexes  

(Eales & Foss, 2013). Figure 6.12 shows that table indexes that are variable-length OIDs 

allow a single sub-device table to capture nested relationships. The ‘childCount’ entry in 
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devIndex childCount ... 

1 2  

...  

 

 

 

Device Table { devIndex } 
 

Control Table { controlOID }  
  controlOID ... 

1.1.1  

1.1.2  

...  

 
SubDevice Table { subDeviceOID }  
 subDeviceOID  childCount   ctrlCount ... 

         1.1 0 2  

         1.2 2 0  

         1.2.1 0 0      

2.2          1.2.2 0 0  

... ... ...  

 

Figure 6.12 Representing Parent-Child Relationships using OIDs. 
 

the ‘Device’ table indicates that the first device entry has two children.  

Indexes for these two children in the ‘SubDevice’ table are trivially computed as 

deviceIndex.1 and deviceIndex.2.  

 

 

 

 

 

 

 

 

 

 

 

 
 
Indexes for the two child sub-devices of sub-device 1.2 are computed in a similar way as 

deviceIndex.subDeviceIndex.1 and deviceIndex.subDeviceIndex.2, giving 1.2.1 and 

1.2.2 respectively. Sub-device one (identified by the index 1.1) contains two controls 

indexed as 1.1.1 and 1.1.2 in the ‘Control’ table. Figure 6.13 illustrates the device 

architecture defined by the SNMP tables in Figure 6.12.  

 

 

 

 

 

 

 

 

 
 
Inspection of a control’s index indicates all parent components as it represents the 

complete device description layer of the SDM. For example, a control index of 1.1.2 

denotes that the control at index entry 2 in the ‘Control’ table has a parent sub-device 

identified by the index value 1 in the ‘SubDevice’ table. This sub-device is a child  

sub-device of the device at index 1 in the ‘Device’ table. Representing the device 

Figure 6.13 Representing Device Structure using OIDs as Indexes. 

Device   1 

Sub-device   1.1 

     Controls   

   1.1.1   1.1.2 

Sub-device   1.2 

      Sub-devices   

    1.2.1       1.2.2 
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Table 6.6 An SNMP Attribute Table Having Fixed Attributes. 

index xPos yPos width height graphicID 

1 20 100 40 100 23 

…      

 

LayoutAttribute Table 
 

architecture layer of the SDM using indexes provides a deterministic representation as the 

first and last indexes are always a device and a control respectively.  

This representation of a device supports a logical ordering of device components 

when using standard SNMP requests. All child sub-devices and child controls are 

lexicographically ordered following the index of their parent sub-device. An SNMP 

traversal of the sub device table using GETNEXT() or GETBULK() will perform a depth-

first traversal as these requests perform a traversal ordered by an increasing 

lexicographical ordering of OIDs. By indicating the number of children using the 

‘childCount’ entry, the exact number of GETNEXT() or GETBULK() requests required to 

retrieve all child entries of a given component can be calculated by an SNMP controller. 

However, the direct-access capabilities provided by this representation make the use of 

these requests unnecessary. 

6.7.2 Representing Descriptive and Layout Attributes  

SNMP tables that describe attributes within a single table must represent a fixed number 

of attributes, as the structure of an SNMP table cannot be dynamically modified.  

 

 

 

 

 
Table 6.6 shows such a table that describes commonly encountered layout attributes. This 

representation violates a principle of the standard model that states that attributes must 

always be represented by a variable-sized (extensible) set or list. For example, if the color 

or transparency is specified for the graphic image (represented as an identifier in the 

‘LayoutAttribute’ table), the table cannot accommodate these additional attributes.  

SNMP expansion tables provide a solution to this limitation by allowing a variable-

sized list to be associated with a specific tabular entry. Each entry in a base table thus 

identifies a specific description or layout record. Expansion table entries store all  

<key, value> pairs belonging to the description or layout record. Description and layout 

records require an indexing scheme to uniquely identify each record entry in a base table. 

It is both logical and economical to use the unique, variable-length OIDs that describe a 

device’s architecture to access corresponding description and layout records. For example, 

given a control entry in the ‘Control’ table having an index value of 1.1.2 (as illustrated 

previously in Figures 6.12 and 6.13), the corresponding description and layout record table 
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Figure 6.14 Accessing Attributes using OIDs as Table Indexes. 
 

ctrlIndex … 
1.1.1  
1.1.2  
…  

 

Control Table 
{ ctrlIndex } 
 

LayoutRecord Table 
{  layoutRecIndex } 
 layoutListIndex size 
        111 2 
        112 N 

…  

 

LayoutData Table 
{  layoutRecIndex, layoutDataIndex } 
    layoutDataIndex key value 

1  (111.1)   
2  (111.2)   
1  (112.1)   

…   
N  (112.N)   

 

Base Table                              
 

Expansion Table 
 

entries for this control will be indexed by the same composite  

index value. 

6.7.2.1 Fixed-Length and Variable-Length SNMP Indexes  

OIDs and strings used as table indexes commonly have a fixed-length. Variable-length 

indexes have the length added as a prefix to the index. For example, the string index 

“microphone1” is represented as “11microphone1”. The ‘IMPLIED’ keyword used with a 

MIB index definition specifies that an index is a variable-length (implied) index that does 

not contain a length prefix. Unfortunately, tables that use implied OIDs as indexes cannot 

be expanded (Fuchs & Schoenwaelder, 2007). The reason for this restriction is trivially 

obvious. Given two OIDs 1.1 and 1.1.1, appending an expansion table index value of 1 to 

the first OID duplicates the second OID creating an address clash in the SNMP object tree. 

A solution to this limitation is to convert an IMPLIED OID index value to an IMPLIED 

string or to an integer value. These unique values can then have values appended to them 

to create indexes for expansion tables.   

Figure 6.14 shows a ‘LayoutRecord’ table, where each entry identifies a single SDM 

layout record. Expansion table entries represent each entry in the layout record.  

For example, the OID index value 1.1.2 for the control entry in the ‘Control’ table of Figure 

6.14 is converted to an integer index value of 112, which is then used to access the record 

identifier in the ‘LayoutRecord’ table. Each <key, value> entry in the associated 

‘LayoutData’ expansion table now has a unique index ranging from 112.1 to 112.N where 

N is the number of data entries contained within layout record 112. Description records 

are represented in an identical manner using SNMP base and expansion tables.  
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Use of an integer as an index is possible as the largest SNMP integer value is able to 

represent extremely complex devices. The size of an OID is limited to 128 sub-identifiers 

(Fuchs, 2006) and the largest available integer value is a four-byte SNMP integer type. 

This value is 2147483647 (231-1) and allows ten decimal digits to be used as an index. More 

importantly, the integer index value will always be unique because of the nested device 

structure. Attempting to use an index that does not exist will result in an SNMP error 

message. For example, if a sub-device functions as a container and thus does not have 

associated layout information, attempting to use the sub-device’s index to access an entry 

in the layout record table will return an SNMP error indicating that the OID used for the 

SNMP request does not exist. It is thus easy to probe an agent to discover whether a layout 

record exists for a specific device component. 

6.7.2.2 Representing Meta-Data 

Expansion tables represent meta-data in the same way that expansion tables represent 

descriptive and layout records. These expansion tables, illustrated in Figure 6.15 provide 

information about the values listed in their base tables (the data items within a description 

or layout record). This representation of descriptive data and meta-data has several 

advantages: 

 Dedicated controllers are provided with a direct-access mechanism that does not 

require GETNEXT() and GETBULK() requests to be used as OIDs are easily 

calculated and executed by GET() requests. 

 It is simple and intuitive to use and does not require any additional agent logic to 

implement. 

 Off-the-shelf MIB browsers can traverse the architecture of a device and examine 

descriptive attributes. Standard GETNEXT() and GETBULK() requests can 

retrieve all attribute data belonging to a specific context as these requests are 

ordered by an increasing lexicographical ordering of OIDs such as 111,  111.1,  

111.1.1,  111.1.2 etc. 

 Base table ‘size’ entries indicate the number of attribute entries and the number 

of meta-data entries. This supports efficient SNMP requests as both GETNEXT() 

and GETBULK() requests can be deterministically executed when traversing 

expansion tables. 

Figure 6.15 illustrates the representation of SDM device architecture layer with 

description and layout record entries as discussed in the previous sections. 

 

 



171 
 

Exp 
 

Exp 
 

Exp 
 

Exp 
 

Figure 6.15 Representing Descriptive and Layout Records. 

AttribMetaData Table 
{ attrRecIndex, attrDataIndex, attrMetaIndex } 
 

SubDevice Table { subDeviceOID }  
 

devIndex childCount ... 

1 2  

...   

 

Device Table { devIndex } 
 subDeviceOID  childCount   ctrlCount ... 

         1.1 0 2  

         1.2 2 0  

 

AttributeData Table 
{ attrRecIndex, aDataIndex } 
 

AttributeRecord Table 
{ attrListIndex } 
 

attrDataIndex key value size 
1  (111.1)   3 

    1  (112.1)    
 2  (112.2)    

…    

 

attrRecIndex size 
111 1 
112 2 
… … 

 

ctrlIndex … 
1.1.1  

1.1.2  

 …  

 

Control Table 
{ ctrlIndex } 
 

LayoutLRecord Table 
{ layoutListIndex } 
 
layoutRecIndex size 
          11  
          12  
          111 2 
          112 1 
           … … 

 LayoutData Table 
{ layoutListIndex, layoutDataIndex } 
 
   layDataIndex key value size 
       1  (111.1)   2 
       2  (111.2)    
       1  (112.1)    

…    

 

LayoutMetaData Table 
{ layoutRecIndex, layoutDataIndex,  
  layoutMetaIndex } 
 
 
   layoutMetaIndex key value 

    1  (111.1.1)   
    2  (111.1.2)   

     …   

 

   attrMetaIndex key value 
 1  (111.1.1)   
 2  (111.1.2)   

     3  (111.1.3)   
…   

 

Base 
 

Base 
 

Base 
 

Base 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

                                                    

 

 

6.7.3 Parameter Organization 

Parameters can be stored in different tables according to parameter type, or stored in a 

single parameter table. There are two main disadvantages to representing parameters in 

separate tables organized by parameter type:  

 The representation is not scalable as new parameter types require the addition 

of new tables to the MIB; 

 Representing parameter joins and parameter groups becomes difficult to 

implement, as these relationships may span multiple tables. 
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paramTypeIndex description 

1  (1.1) Gain 

          2  (1.2) Pan 

... ... 

 

Figure 6.16 Representing SDM Short Parameter Addresses. 
 

L6  ParameterInstance Table 
     { devIndex,  paramDescIndex ,      
        paramTypeIndex, paramInstIndex } 

paramInstIndex name 

1   (1.2.1) Pan1 

2   (1.2.2) Pan2 

              ... … 

        N   (1.2.N) 2 

 

L5  ParameterType Table 
     { devIndex,  paramDescIndex ,       
        paramTypeIndex } 

paramDescIndex name 

1 Input 

2 Input 

... ... 

 

L4  ParameterDesc Table 
      { devIndex, paramDescIndex } 

paramIndex value ... 

1    (1.2.1.1) -2  

            ... …  

       N   (1.2.2.N) 2  

 

L7  Parameter Table 
      { devIndex, paramDescIndex ,     
        paramTypeIndex,  
        paramInstIndex, paramIndex  } 

A compromise that also allows parameters to be easily located when using off-the-shelf 

SNMP browsers is to provide separate tables for categories of parameters. For example, 

control parameters and connection management parameters are represented within one 

or more distinct parameter instance tables and parameter value tables. To ensure that 

parameter data can be accessed independently of the device model, the levels of a SDM 

short parameter address are used to identify short parameter addresses. Figure 6.16 shows 

that the indexes of the four levels of the SDM parameter address layer are used to create a 

composite index that uniquely identifies a parameter. 

 

 

 

 

 

 

 

 

 

 

 

 

A ‘ParamDesc’ (parameter description) table, a ‘ParameterType’ table and a 

‘ParameterInstance’ table provide a composite index that identifies parameter values and 

parameter actions within a parameter table. In this example, identification of the value of 

a specific pan parameter (the value of a channel one pan parameter) is shown to be -2.  

In a similar manner, support is provided for full parameter addresses by storing 

parameters in a table. Figure 6.17 illustrates how SDM full parameter address tabular 

entries are referenced by a composite SNMP index. Note that a device index is not required 

by the SDM but allows an agent to represent parameters from multiple devices within a 

single parameter table. Representation of AES64 parameter addresses within SNMP is 

discussed in Section 7.7.3 Protocol Interoperability with AES64 (p.207).  
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Figure 6.18 Representing Master-Slave Parameter Relationships. 
 

Parameter Table 
{ deviceIndex, parameterDescIndex,    
  paramTypeIndex, paramInstIndex.      
  paramIndex  } 

paramIndex value ... 

1    (1.1.1.1.1) 6  

2   (1.1.1.1.2) 4  

     3   (1.1.1.1.3) 6  

     1   (1.2.1.1.1) 3  

…   

SlaveList Table 
{ slaveListIndex  }    
(Integer of  parameter table index) 

SlaveParamTable 
{ slaveListIndex, slaveIndex } 

slaveListIndex name 

11111 

...  

 BaseTable 
 

ExpansionTable 
 

OID to int 
 

 

 

 

 

 

6.7.3.1 Parameter Groups 

Expansion tables support an elegant implementation of master-slave parameter groups as 

illustrated in Figure 6.18. Two expansion tables are associated with each parameter:  

A ‘SlaveList’ table defines a list of slave parameters for an entry in the ‘Parameter’ table 

that is the master parameter. An expansion ‘SlaveParam’ table lists all slave parameters 

belonging to the specified slave group. Each slave list is associated with a parameter by 

using the integer representation of the parameter’s OID as a ‘SlaveList’ table index. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
It is also possible to create multiple slave lists. In this case, each list in the ‘SlaveList’ table 

has an index that is extended to indicate the list identifier. The ‘SlaveList’ table in Figure 

6.18 would use indexes from 11111.1 to 11111.N where N slave lists are defined. This allows 

multiple predefined slave configurations to be defined for a specific master parameter. 

Peer parameters are defined in an identical manner using base and expansion tables 

to represent a list of peers and the members of each particular list. Each expansion 

Figure 6.17 A Full Parameter Addresses Represented by SNMP Indexes. 

     Device              Control       Parameter Type 

Sub-devices      Parameter        Parameter  
                            Description      Instance 

     1 . 2 . 1 . 2 . 1 . 1 . 4 . 2 Parameter 
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Table 6.7 SNMP Standard Trap Fields. 

      Trap Field                    Description   

Enterprise   Unique trap identifier. 

Agent Address   IP Address of the Agent. 

Generic  Type   Predefined SNMP trap types. 

Specific  Type   Application-defined trap types. 

 

parameter table entry that denotes a slave or peer parameter also indicates the 

relationship type (absolute or relative) for the parameter entry. 

6.7.4 Parameter Monitoring 

SNMP traps were designed to provide automated device monitoring. Traps signal 

exceptional conditions where the time interval between trap invocations is typically 

measured in hours or even longer periods. However, traps can also be used for continuous 

real-time monitoring. The only restriction is that the buffers that receive trap PDUs must 

be sufficiently large to store the received data. Some SNMP implementations such as 

Snmp#Net allow the size of trap buffers to be specified (SNMP#NET, n.d.).  

Trap messages do not have a high size overhead; SNMP v1 trap messages can be restricted 

to as little as twenty bytes (Mukhtar, 2009). 

To implement monitoring functionality, SNMP v1 trap messages are used to 

transmit meter values. Variable bindings are not required when implementing a work-

conserving scheme as standard trap fields are used to represent a meter’s value.  

SNMP v.1 traps offer greater flexibility than SNMP v2c traps due to the larger number of 

fields defined for these messages. An SNMP v1 trap message consists of the four fields 

listed in Table 6.7 followed by a list of variable bindings. The structure of SNMP v1 trap 

PDUs is illustrated in greater detail in Appendix 11.  

 

 

 

 

 

 

 

 
The ‘Enterprise’ trap field is used to uniquely identify traps within an application. In 

the context of metering, this field can be used to identify a specific meter or set of meters. 

Although generic trap types are reserved for specific conditions within SNMP, this field 

can be used for application-specific purposes (ZOHO Corporation, 2012).  

For example, this field can indicate a meter identifier and the ‘Specific Type’ field can 

contain the meter’s value. It is also possible to identify a specific meter by specifying a 

meter’s OID within the enterprise field. This arrangement allows filtering as SNMP 

supports trap filtering based on the different fields of a trap PDU. Non-work conserving 

schemes cannot use standard trap header fields as multiple values must be transmitted 
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Figure 6.19 SNMP Tables Depicting Networked Audio Streams. 
 

srcStreamParamIndex paramID instName name value 

1  (1.1.14.1.1)     1024   srcStream1        id      1024 
          2  (1.1.14.1.2)     1025   srcStream1     advert       true 
          1  (1.1.14.2.1)     1026   srcStream2        id      1025 
          2  (1.1.14.2.4)     1027   srcStream2     advert      false 

…     

 

srcStreamParam Table  
{ deviceIndex, parameterDescIndex,    
  paramTypeIndex, paramInstIndex.  srcStreamParamIndex } 
 

  destStreamParamIndex paramID instName name value 

  1  (1.1.15.1.1)     1044   destStream1        id     1024 
  2  (1.1.15.1.2)     1046   destStream1     listen      true 

            1  (1.1.15.2.1)     1045   destStream2 id     1025 
            2  (1.1.15.2.4)     1047   destStream2     listen     false 

…     

 

destStreamParam Table  
{ deviceIndex, parameterDescIndex,    
  paramTypeIndex, paramInstIndex, destStreamParamIndex } 
 

Connection 

within a single trap message. Each meter value must be encoded within a separate variable 

binding where the OID within each varbind identifies a specific meter. 

6.7.5 Connection Management 

Dedicated tables provide connection management parameters for connections between 

network streams, input and output assignments, and internal connections. Figure 6.19 

illustrates the SNMP tables used to represent parameters that describe network streams 

and connections between streams. This example uses parameters that are compatible with 

AES64 as described in Section 7.5.2 AES64 Connection Parameters (p.201).  

Tables are designed to be both machine-readable and to be used from within a MIB 

browser. In Figure 6.19, <name, value> pairs represent parameter identifiers and their 

parameter values.  

The ‘paramID’ entry specifies a fixed internal identifier as: 

 Parameter names can be optionally edited by the user to assign meaningful 

identifiers; 

 Representing connection parameters in different tables requires a value used as 

an index to identify an associated signal record table. Signal record tables are 

implemented as description records for two reasons. Firstly, the <key, value> data 

format is identical and secondly, there is no reason to create an additional table as 

the table entries are intended to only be machine-readable. 
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Figure 6.20 Tables Representing Signal Description Records. 
 

BaseTable 
 

ExpansionTable 
 

descRecIndex 

1024 
1046 
… 

 

  descMetaDataIndex    key   value 

1      src   1024 
2     src   1025 
…   

 

 inTypeIndex key     value 

     1  (1024.2)    clock       48 
     1  (1046.1)    clock       48 
     2  (1046.2)    srclist       list 

…   

 

DescData Table  
{ descRecIndex, descDataIndex } 

DescRecord Table  
{ descRecIndex } 
 

DescMetaData Table  
{ descRecIndex, descDataIndex,  
  descMetaDataIndex } 
 

Table 6.8 An SNMP Table Depicting Internal Connection States. 

    intConnIndex name      src       dest   conn 

1  (1.7.11.1.1) StereoBus ch1 LBus 1 
1  (1.7.11.2.1) StereoBus ch2 RBus 0 

…     

 

intConn Table  
{ deviceIdx, parameterDescIndex,  paramTypeIndex,        
  paramInstIndex, intConnIndex  } 
 

Although the indexing scheme representing the parameter description layer discussed 

previously indicates parameter instances, these instances are explicitly listed to provide a 

coherent user interface. Figure 6.19 shows how these tables are displayed by a MIB 

browser. Tables can contain any number of parameter value entries as this generic model 

is designed to accommodate any connection management parameters that may be defined 

by different audio transports. 

Figure 6.20 illustrates a signal description record that describes network streams. 

Signal description records are implemented in the same manner as the generic description 

records described earlier in this chapter. A stream identifier is used as an index to identify 

a specific signal description record in the ‘DescRecord’ table.  

The ‘DescMetaData’ table is an expansion table used to describe audio streams and to 

represent candidate connections for the audio streams shown in Figure 6.20.  

The destination stream identified by the identifier 1046 has two candidate source streams 

(the streams having identifiers 1024 and 1025). 

 

 

 

 

 

 

 

 

 
 
 
 
Table 6.8 shows a depiction of internal connections. Source and destination entries are 

listed and the connection status depicted by a connection (‘conn’) parameter value.  
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The ‘name’, ‘src’ and ‘dest’ fields of the ‘intConn’ table are not required to create 

connections, as the composite index value and the connection state given by the ‘conn’ 

entry are sufficient to denote a connection. These columns provide an intuitive user 

interface when using a MIB browser to perform connection management.  

Connection management tables are designed to support machine parsing (using the 

parameter indexing scheme), and to allow off-the-shelf management applications to be 

used to perform connection management. Connection assignments are created in a similar 

manner using the objects defined in the SDM MIB.  

6.7.6 Automation  

Automation can be implemented in SNMP by: 

 Using varbinds to represent time-stamped commands within a single SNMP 

PDU; 

 Recording commands for later execution by an agent process. 

Although SNMP supports grouping SET(..) requests as multiple varbinds within a single 

PDU, it does not support any scheduling of these commands. SNMP does provide a ‘time-

tick’ data type that provides a resolution of one centisecond (one-hundredth of a second). 

It is therefore feasible to implement the OSC bundle mechanism described in Section 5.3.3 

Automation in OSC (p.126) using multiple SNMP varbinds. Pairs of varbinds denote a 

timestamp and a parameter value respectively. Agent instrumentation must process the 

varbinds and execute the parameter updates at the specified times. 

An alternative design stores received SET(..) requests. Setting a scalar object that 

functions as an action parameter triggers a function that starts recording changes made to 

object values. When recording is enabled, the agent inserts the target OID, string value, 

type and timestamp of each received SET(..) request into an ‘Automation’ table and an 

‘AutomationData’ table. Each entry in the Automation table represents a command 

sequence. Entries in the ‘AutomationData’ table define the SET(..) requests that constitute 

each sequence. An agent uses the API of the development environment to execute these 

OID assignments using the stored data and timestamps. Generation of a clock process, 

and the storage and updating of object values during recording and playback of SNMP 

requests becomes the responsibility of the agent’s instrumentation. Although not 

mandated by the SDM, the developed MIB defines these two tables.  
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6.8 Implementing SNMP Devices and Controllers 

Development of an SNMP environment requires the design of a MIB, development of an 

agent application (device) that instruments the MIB, and development of a manager 

application (controller) that interacts with the agent. A MIB that represents the SDM was 

developed using the MG-Soft MIB compiler and editor (MG-Soft Corporation, n.d.). 

Additional MIB validation was provided by an Internet MIB validator (SimpleWeb, n.d.). 

Appendix 8 contains a design schema for the developed MIB. Agent and management 

(controller) applications were developed using: 

 A C#.NET SNMP environment (SNMP#NET, n.d.) that was used to develop a 

virtual SNMP controller, and 

 An SNMP MIB browser and agent development environment from iReasoning 

Corporation (iReasoning Networks, 2013). 

Figure 6.21 shows parameter table values from the instrumented agent displayed in the 

iReasoning MIB Browser (iReasoning Networks, 2012). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.21 Instrumented SNMP Parameter Objects. 
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The SNMP indexing scheme (deviceID – parameter description – parameter type – parameter 

instance – parameter value) can be seen in the index for the highlighted parameter. This 

parameter is the value of the second instance (channel two) of the pan parameter type. As 

mentioned previously in Section 6.7.1 Representing Devices, Sub-Devices and Controls 

(p.166), use of a device identifier as an index component allows a single agent to manage 

multiple devices. Appendix 4 mentions these SNMP development environments and 

provides additional information about the agent and manager applications. 

6.9 Commentary and Evaluation 

There is a significant difference between the capabilities of native SNMP features and the 

capabilities of SNMP implementations such as IEC-62397-2 and the SDM.  

Agent functionality provided by code developed to interact with a specific MIB becomes a 

part of the SNMP meta-model and thus is applicable to specific instances of the  

meta-model as illustrated previously in Figure 6.2 (p.147).  

6.9.1 A Summary of SNMP Features 

Table 6.9 provides a summary of the native features supported by SNMP.   
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Protocol Feature                 Comment 

1. Network Management 

    1.1 Device Discovery  SNMP v3 only. 

1.2 Monitoring Reachability   

2. Service Discovery and Enumeration [1] GET(), GETNEXT() and 
GETBULK()  requests. 

3. Control Surface Representation  
  

  

4. Control Commands 

   4.1 Write Single Parameter Value  SET() request. 

   4.2 Write Multiple Parameter Values [1] Multiple varbinds. 

   4.3 Read Single Parameter Value  GET() and GETNEXT() requests. 

   4.4 Read Multiple Parameter Values [2] GETBULK() request. 

   4.5 Non-Blocking  (Asynchronous)         
         Commands 

  

   4.6 Variable Number of Arguments   

   4.7 User-Defined Arguments   

   4.8 Multiple Return Values   Multiple varbinds. 

   4.9 Error checking  All requests are acknowledged 

   4.10 Control Point Invocation  Side effect of GET ()and SET() 

   4.11 Automation   

5. Subscription (Monitoring) 

5.1 Single Value Subscription  Traps, Informs, Notifications 

5.2 Multiple Value Subscription 
 Agent Instrumentation must 

add varbinds to messages. 

5.3 Event-based Subscription   

6.  Parameter Management 

6.1 Linking Controls to Parameters   

6.2 Joining Parameters  Synthesized by multiple 
varbinds. 6.3 Grouping Parameters [3] 

6.4 Bulk Parameter Access  GETNEXT() and GETBULK() 

6.5 Dynamic Parameter  Modification 

Values 

  

6.6 Save / Load Configuration   

7. Connection Management   

8. Serialization   Binary objects in v1 only. 
Deprecated in later versions. 

9. Security  Different models in v2c and v3. 

 

             Table 6.9 A Summary of SNMP Features. 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 
[1] No context-sensitive service discovery. 
[2] Reading and writing of multiple parameters can be accomplished within a single PDU.  
[3] A single PDU can contain multiple variable bindings. This is not a true ‘grouping’ mechanism, being  
     intended to reduce the UDP overhead incurred when transmitting multiple PDUs. 
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6.9.2 An Evaluation of SNMP  

This section highlights significant features of SNMP and the strengths and weaknesses of 

the protocol. 

6.9.2.1 SNMP Table Indexing Schemes 

The most expressive and flexible features of the SNMP data model are the object 

identifiers and object relationships supported by table indexing schemes. This chapter has 

demonstrated that SNMP indexing schemes support an elegant, context-sensitive 

implementation of the SDM. Table indexes are used to represent the device architecture 

layer and parameter description layer of the SDM. These indexes provide a novel direct-

access mechanism that is used to locate child components and to access description and 

layout records. This representation avoids the use of GETNEXT() and GETBULK() 

requests that return large sets of data containing logical data records (table rows) rather 

than directly accessing specific data records. However, this representation also preserves 

the lexicographical ordering of SNMP objects allowing GETNEXT() and GETBULK() 

requests to be used as these requests are supported by off-the-shelf MIB browsers. 

6.9.2.2 Retrieval of Logical Data Records 

SNMP data models do not support logical, context-sensitive operations that make use of 

the defined data relationships. Standard SNMP requests are not able to efficiently retrieve 

logically organized SNMP objects. Column-order table traversal using GETNEXT() and 

GETBULK() requests retrieve all rows from a table when only a small number of rows may 

be required by an application. A scheme to retrieval logical rows of data has been proposed 

(Chen & Chan, 2007) as an addition to the standard SNMP requests. Because of the 

conceptual organization of tables where data items are stored in a tree, a complex SNMP 

data model may not provide a useful, logical view to users. Logically related data is 

commonly implemented across multiple tables. This means that off-the-shelf MIB 

browsers may not provide a meaningful view of related SNMP objects.  

6.9.2.3 Dynamic Behavior in SNMP 

The simple structure of SNMP GET() and SET(..) requests does not match the 

sophistication of the data representation capabilities of the protocol. These limitations 

have been commented on by Juergen Schoenwalder, who is actively involved in the 

development of SNMP: 

“There is often a semantic mismatch between the task-oriented view of the world ... 

and the data-centric view of the world provided by SNMP.  Mapping from a task-

oriented view to the data-centric view often requires some non-trivial code on the 

management application side.” (Schoenwaelder, 2003). 
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To address these limitations, GET() and SET(..) requests should be enhanced to provide 

greater expressive capabilities. These enhancements could include the use of wildcards 

within target addresses and support for variadic arguments. More sophisticated command 

capabilities require services to be defined in terms of a service process (introduced in 

Section 2.9.1.1 Commands and Services (p.34)), or, requires a query language that 

formulates complex requests. An example of an SNMP service process that uses multiple 

GET requests was discussed in Section 6.5.3 User-Defined SNMP Requests (p.158). A 

hypothetical example of a query to select all gain parameters from a parameter table using 

a command syntax that is similar to the Structured Query Language (SQL) is shown 

below. 

SELECT * from ParameterTable where name  EQUALS “Gain” 

A proposal for an SNMP Query Language was made as far back as 1990 (Yeong, 1990). 

Patents describing the use of SQL with SNMP were filed in 1999 (Compaq Computer 

Corporation, 2002) and in 2012 (IBM Corporation, 2012). An SNMP query language that 

uses pattern matching has been developed at the Wellington Institute of Technology 

(Boyd, Ellis, Eales, & Owen, 2013). This system provides a small set of SQL-like queries 

that are implemented using pattern matching to retrieve context-sensitive tabular data. 

The large number of network messages generated by a request-response model that 

typically addresses single parameters (Jagadish, Prakash, & Gonsalves, 2008) mars SNMP 

performance. Each SET(..) request generates a mandatory acknowledgment that is not 

required when control messages are streamed across a network. A technique that 

addresses this issue by using the response message to provide requested data was 

discussed in Section 6.5.1.1 Optimizing SNMP Requests (p.156).  

6.9.2.4 SNMP Management Applications 

SNMP can be useful for implementing connection management using off-the-shelf 

manager applications, as only a small number of discrete SET(..) operations are required. 

However, as illustrated by the implementation of the SDM in Figure 6.22,  

data is often not displayed in an intuitive manner by MIB browsers. In this example, the 

linear depiction of tabular entries does not display the required connection parameters in 

a logical manner. The monitoring of exceptional conditions such as the detection of 

dropouts or distortion levels in audio signals is also easily accomplished using  

off-the-shelf manager applications. However, these applications cannot elegantly display 

meter states, as they are not designed to display data streams. All received trap fields and 

varbinds are typically displayed as scrolling text values. 
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The wide availability of management applications appears to be a benefit of SNMP. 

This may be a superficial advantage as off-the-shelf management applications are typically 

not sophisticated enough to support complex applications:  

“The typical off-the-shelf SNMP manager is not designed for displaying and 

processing telemetry data for effective network monitoring, especially for the kind 

of real-world monitoring tasks network managers most need performed. These 

capabilities can be added to an SNMP manager, but it usually requires substantial 

custom software development.”  (SNMP Tutorial: An Introduction to SNMP, n.d.). 

6.9.2.5 Strengths and Weaknesses of SNMP 

Table 6.10 summarizes the major strengths and weaknesses of SNMP that were identified 

and discussed in this chapter. 

 

 

 

 

Figure 6.22 A User Interface for Connection Management. 
 

http://www.dpstele.com/dpsnews/free_snmp_manager.php?alink=SNMP%20manager&r=2&cls=ylink
http://www.dpstele.com/layers/l3/snmp_l3_iam_7_multiple_notification_display_options.php?%3C!--#echo%20var=%27qs%27--%3Ereal_world_tasks
http://www.dpstele.com/layers/l2/snmp_l2_tut_part1.php?alink=SNMP&r=4&cls=ylink
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6.9.3 The Use of SNMP for Networked Audio Applications 

SNMP is not widely used to control audio devices. Existing applications are confined to 

providing connection management and configuring simple devices as mentioned in the 

introduction to this chapter. There are four possible reasons why SNMP-based protocols 

have not been widely used to control and manage audio devices: 

1. Development using the C and C++ development environments descended from the 

three low-level legacy implementations described in Section A4.3 SNMP 

Development Environments (p. 370) can be a tedious process.  

2. The expertise required to develop SNMP applications is similar to the expertise 

required to develop relational databases. A cursory examination of SNMP does not 

expose the full capabilities of the protocol, especially the use of indexing schemes 

to implement data relationships. 

3. SNMP implementations can be complex, typically consisting of multiple 

configuration requirements. For example, a typical SNMP implementation within 

a Microsoft Windows environment: 

 Has a specific repository for MIB files; 

 Requires compiled MIB files to be registered with the MIB repository; 

                                                     Strengths 

1. Flexible tabular data structures are provided. 

2. Indexing schemes provide expressive representations  
of relationships between tabular data. 

3. A flexible subscription mechanism is provided. 

4.  Service discovery can be reliably implemented using 

‘Inform’ messages. 

5.  Off-the-shelf browsers provide universal management  
applications. 

                                                  Weaknesses 

1. The simplicity of commands does not match the  
sophistication of data relationships. 

2. Mandatory acknowledgments waste bandwidth and  
degrade performance. 

3. Bulk data access is not context-sensitive. 

4. SNMP runtime environments are typically complex. 

5. Off-the-shelf browsers may not display SNMP objects and  
object values  in an intuitive manner. 

 
Table 6.10 A Summary of the Strengths and Weaknesses of SNMP. 
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 Requires configuration files and registry entries to describe MIB files and 

the SNMP environment; 

 Must have SNMP implemented as an operating system service that is 

correctly configured. 

These different requirements can create a fragile runtime environment having 

multiple interrelated dependencies. 

4. The literature dealing with MIB design and SNMP is limited. Using the appropriate 

RFC’s for learning SNMP is a difficult undertaking. 

Despite these limitations, SNMP provides all the core control and monitoring capabilities 

required by a control protocol. In addition, the sophisticated data representations make 

the protocol suitable for representing audio devices. SNMP requires further development 

to provide more sophisticated requests and to enhance the performance of existing 

requests. Unfortunately, this development is unlikely to occur. SNMP has been deprecated 

in Windows Server 2012 (Microsoft Corporation, 2012) in favor of the Common 

Information Model (Distributed Management Task Force, Inc., 2013). Although it is still 

possible to install SNMP on Microsoft Windows operating systems, support for SNMP is 

likely to be removed from future versions of Windows. 
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Index    DeviceID       IP Address 

   1 128-bit ID 122.140.201.66 

   2 128-bit ID 122.140.201.23 

   …         …             … 

   N 128-bit ID IP Address 

 

   Index    AES64 Parameter 

      1 AES64 Parameter 

      2 AES64 Parameter 

      …                         … 

      N AES64 Parameter 

 
Figure 7.1 An AES64  Mapping Table and Parameter Store. 

Mapping Table 

Parameter Store 

Chapter 7  

AES64 

 

7.1 Introduction  

AES64 is a control protocol developed by Universal Media Access Networks GmbH 

(UMAN). Formerly named X170, it was based on the earlier Cross-Fire Network (XFN) 

protocol developed at Rhodes University in South Africa (Foss, 2009). AES64 became an 

AES standard in 2012 (Audio Engineering Society, 2012). Although designed as a general-

purpose peer-to-peer control protocol, this UDP-based protocol has been strongly 

influenced by the control and connection management requirements of complex audio 

devices. AES64 is a ‘second generation’ control protocol that integrates discovery, 

connection management and control functionality by supporting a network-wide view of 

devices and their capabilities. AES64 also provides sophisticated parameter management 

capabilities and supports conversion and scaling operations on parameter data.  

7.2 Networked Device Management 

Devices broadcast discovery requests to discover AES64 devices. The peer-to-peer 

network architecture supported by AES64 requires that each device maintain a list of other 

known devices on a network. This list is termed a ‘mapping table’  

(Audio Engineering Society, 2012, p. 11). Indexed device entries within a mapping table 

have a unique device identifier and IP address illustrated in Figure 7.1.  
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When a device functions as a controller it stores parameter addresses used to access 

parameters on remote devices. Each remote device is identified by a mapping table entry 

where each AES64 parameter references the index of a device in the mapping table.  

This referencing scheme provides a compact representation of remote device identifiers 

and provides significant practical benefits. As an example, consider a scenario where a 

malfunctioning device is replaced on a network. By simply changing the device identifier 

and IP address entries in the mapping table, all existing parameter references to the old 

device are automatically applied to the new device. This compatibility assumes that similar 

devices have parameters that are addressed in a consistent and uniform manner. An 

important design goal of AES64 is to provide equivalent parameter addresses across 

similar devices.  

Each device is represented by an AES64 ‘device node’. This device node is a container 

for a tree of device parameters where each parameter is referenced by a unique 

hierarchical parameter address. 

7.3 Parameter Organization and Addressing  

The organization of parameter data and the fixed-addressing scheme used to identify 

parameters are the core concepts around which the AES64 protocol is designed.  

7.3.1 Parameter Addressing  

AES64 protocol has the ability to address any parameter using a fixed hierarchical  

seven-level conceptual addressing scheme or by using a more compact unique parameter 

identifier. This fixed addressing mechanism offers several advantages that are discussed 

in Section 10.2.3.2 Evaluating Static Specifications (p.253). AES64 parameters consist of 

the following levels: 

Level1 - ‘Section Block’ entries partition a device into logical sections. 

Level2 - ‘Section Type’ entries partition a section block into logical sub- 

                 sections.  

Level 3 - A ‘Section Number’ is typically used to specify an audio channel.  

Level 4 - ‘Parameter Blocks’ group related parameters such as the      

                  parameters within an equalization block. 

Level 5 - A ‘Parameter Block Index’ provides sub-groupings of parameters  

                 within a parameter block.  

Level 6 - A ‘Parameter Type’ entry groups parameters representing  

                  identical functionality into a set of parameters.   
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Level 7 - A ‘Parameter Index’ differentiates among multiple parameters  

                 having the same parameter type. For example, a channel may  

                 have two gain parameters. 

Table 7.1 illustrates the use of these seven addressing levels by providing specific examples 

of values for each address level.  

 

 

 

 

 

 
 
 

 
Although the hierarchical organization of parameters implies the structure of the 

underlying device, this organization is not intended to provide a model of a device. 

Parameter addresses indicate the audio processing context of a parameter or indicate the 

location of a parameter within a device’s architecture. While it is certainly possible to parse 

the parameter structure to determine a device model, such a model was not envisaged by 

the designers of the protocol. The organization scheme was conceived to provide fixed, 

standardized parameter addresses that provide interoperability among networked 

devices. Section 7.6 Control Surface Representation and Creation (p.203) discusses how 

parameters are linked to control surface representations. Linking a parameter model to a 

control surface representation dispenses with the need for a device model to specify a 

control surface.  

7.3.1.1 Parameter Address Wildcards 

A wildcard where all bits denoting the value of an address level entry are set can occur at 

any level of a parameter address. This mechanism allows a single parameter address to 

reference multiple parameters. AES64 wildcards differ from OSC in that they are level-

based rather than character-based. This reduces the costs of processing wildcarded 

parameter addresses. Wildcard entries can also be used to perform selective service 

discovery as controllers can retrieve a specific set of parameters from a device. For 

example, a GET command that reads parameter values using a wildcard entry for a specific 

 Number          Level Name                            Examples 

       1 Section Block Mixer Input section, Output section 

       2 Section Type Microphone  input, Line input, ADAT input 

       3 Section Number Channel number 

       4 Parameter Block Equalizer block 

       5 Parameter Block Index Equalization sub-grouping (Q, freq) 

       6 Parameter Type Low frequency, gain, threshold 

       7 Parameter Index A specific parameter of a level 6 type 

 
Table 7.1 The AES64 Parameter Address Hierarchy. 
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level will retrieve all available device parameters matching the wildcarded parameter 

address. 

7.3.2 Accessing AES64 Parameters 

The steps required to access AES64 parameters stored within a tree data structure are 

listed in Figure 7.2. Each parameter is represented by a record (structure) within the tree. 

The AES64 protocol stack processes received commands (1) that reference parameters by 

traversing the parameter address tree (2) to locate one or more seven-level conceptual 

addresses for the parameters referenced by the command.  

Each conceptual parameter address maps to a physical memory address. One or more 

callback functions associated with the referenced parameters are then executed (3). These 

callback functions are executed as a side effect of a parameter access, allowing arbitrary 

functionality to be associated with accessing a parameter. Parameter values at specific 

memory address are then accessed (4). Parameter values are updated, modified or 

returned according to the requirements of the processed AES64 command. 

 

 

 

 

 

 

 

 

 

 

 

 

 
7.3.2.1 Parameter Flags 

Each parameter has an associated set of flags that describe characteristics of the 

parameter. Examples of parameter flags include: 

 Access specifiers (READ or WRITE); 

(Foss, De-Mystifying Sound Control Protocols with a 
Focus on XFN, 2011) 

AES64 Device 

Parameter Entry 
      Structures 

(1) AES64       
     Message 

Network 

        AES64          
         Stack 

 Callback 
Function (3) Invoke     

      Callback  
      Functions  

(4) Access     
      Parameters 

(2) Traverse  
      Address Tree 

          

          

          

          

          

Ox000 

0xD10 

0x100 

    ... 

 

Root Node 

Hierarchical 
Parameter 
  Address  
     Tree 

Figure 7.2 Parameter Access in AES64. 
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 An ALERT flag that is set or cleared according to a parameter’s current value ; 

 A HIDE flag that can be set to make the parameter not visible to controllers; 

 PUSH interval and PUSH delta flags that govern the behavior of parameter 

subscriptions. These behaviors are discussed in Section 7.4.2 Device Monitoring  

(p.197). 

ALERT flags are typically used to generate AES64 messages when parameter values 

exceed set limits. A complete list of parameter flags is provided in Table 5 of the AES64 

specification (Audio Engineering Society, 2012, p. 25). 

7.3.3 Parameter Relationships 

AES64 explicitly supports static parameter joins and static parameter groups by 

providing:  

 Data representations of all related parameters for each parameter; 

 Commands that create and manage parameter relationships as described in the 

following sections. 

Translation between different data units and the scaling parameter values is also 

supported. 

7.3.3.1 Parameter Joins 

Parameter joins are typically found between a local parameter and a remote parameter as 

previously discussed in Section 2.8.1 Joining Parameters (p.28) and illustrated in Figure 

2.7. Controls typically reference local control parameters that can be joined to different 

remote parameters. Parameter joins allow a single control to be configured to control 

different remote device functions or multiple remote devices. For example,  

a fader can be joined to parameters on different remote devices to control the output levels 

of a set of remote devices.  

7.3.3.2 Parameter Groups 

Static parameter groups are represented in AES64 by a parameter maintaining lists of the 

parameters that it is related to (Foss, 2010). AES64 supports two types of parameter 

groups: 

 ‘Master-Slave’ parameter groups, where changes to the value of the master are 

propagated to all slaves. Changes to a slave parameter only affect the specific slave 

parameter.  

 ‘Peer-to-peer’ parameter groups where a change to any parameter value within 

the group is propagated to all other members of the group. 
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Relationships between parameter values may be absolute relationships where values 

mirror each other, or relative relationships. Relative relationships may express the change 

in a value as an absolute value or as a percentage. Table 7.2 shows the results of updating 

master and slave parameter values having relative, absolute and percentage relationships. 

Percentage relationships are similar to relative offset relationships but produce more 

floating-point values. These two relationships are essentially different ways of calculating 

the same type of relationship. AES64 supports absolute and relative relationships. 

 

 

 

 

 

 

 

 

Table 7.3 shows the results of update events within peer parameter groups.  

 

 

 

    

 

 

 

 

Parameter groups are implemented by each parameter maintaining three relationship 

lists: a slave list, a peer list, and a master list. A master-slave parameter group and its 

relationship lists are illustrated in Figure 7.3. Each master parameter maintains a list of 

its slave and peer parameters, while each slave maintains a list of its master parameters. 

Empty lists that are not required by a parameter’s current role are depicted as null lists in 

Figure 7.3. 

Several rules apply to parameter relationships (Chigwamba, Foss, Gurdan, & 

Klinkradt, 2010). For example, if a master parameter becomes a member of a peer group, 

Table 7.2 Master-Slave Parameter Relationships. 

Legend: 
     Change Event       Updated master values  
     Updated slave values 

Relationships Event Relationship 
Type 

Initial   Values Updated Values 

P1 P2 P3 P1 P2 P3 

MS 

P1 (M) 

   P2,P3 (S) 

P1=12 
MS ABS 10 12 6 12 12 12 

MS REL 10 12 6 12 14 8 

MS % 10 12 6 12 14.4 7.2 

P2=14 All Types 10 12 6 10 14 6 

 

Relationships   Event Relationship 
Type 

Initial   Values Updated Values 

P1 P2 P3 P1 P2 P3 

  

        

        P2P 

 

P1=12 

      ABS 10 12  6  12  12 12 

      REL 10 12  6  12  14  8 

       % 10 12  6  12 14.4 9.6 

 

P2=14 

     ABS 10 12  6 14  14 14 

     REL 10 12  6 12  14  8 

      % 10 12  6 11.6  14 6.96 

 

Table 7.3 Peer-to-Peer Parameter Relationships. 
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all of the other members of the peer group automatically become slaves of the master 

parameter.  

 

 

 

 

 

 

 

 

 

 
 

In this example, a master parameter references two slave parameters in its slave list. 

7.3.3.3 Parameter Modifiers 

When AES64 messages address parameters, parameter modifiers allow the values 

specified by a message to be translated between different measurement units or scaled. 

Example scenarios that can make use of parameter modifiers include: 

 Situations where scaling must occur between related parameter values; 

 Automation scenarios where the timing of messages must be modified; 

 Scenarios where a compact control surface is used to a control a large, complex 

device. 

Because a single control can potentially address many different parameters on a device, 

control parameter values may require scaling to accommodate a target parameter’s value 

range. Automation scenarios may require stored delta times that separate commands to 

be converted to actual clock times. Split-level mixing consoles may require that a channel 

identifier be modified to reflect the current device configuration. For example, channel 

numbers from one to eight specified within a command may require modification to 

address channels nine to sixteen. An AES64 ‘value modifier’ modifies parameter values 

using a function that expresses a relationship between the values of two parameters. 

Modifications are implemented by a ‘modifier block’ that consists of an input parameter, 

an output parameter and a modifier function. 

Slave list 

Master list 

     Master-Slave 
 Parameter Group 

Figure 7.3 AES64 Parameter Group Representation using Lists. 
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The example illustrated in Figure 7.4 defines a function that changes the value field 

of an AES64 message sent from one parameter to another parameter. The values of two 

fader parameters have a relationship defined by the modifier block as they are joined to 

the input and output parameters of the modifier block. The value of the output parameter 

represents the result of the modifier function applied to the value of the input parameter 

 

 

 

 

 

 

 

 
 
 
 
 
7.3.4 Bulk Parameter Management 

AES64 supports bulk parameter management via the Universal Snap Group (USG) 

mechanism (Universal Media Access Networks, n.d.). This protocol feature is not included 

in the 2012 specification but is intended for future updates to the specification (Foss, 

2015).  

This mechanism allows: 

 Retrieval and updating of a defined set of parameters; 

 Periodic bulk parameter updates using unicast that are sent from a device to a 

controller; 

 Periodic bulk parameter updates that are sent to a number of controllers using 

broadcast or multicast transmissions. 

The USG commands shown in Table 7.4 illustrate how the mechanisms functions in practice 

with command responses provided in the shaded rows. A controller transmits a ‘CreateUSG()’ 

command to create a USG group for the specified parameters and also specifies the size of the 

buffer to be used to return parameter values. A device returns a ‘ListNo()’ response to the 

‘CreateUSG()’ command that indicates the numbers of messages required to transmit the 

specified USG group for the specified fragmentation size. ‘USGData’ is a list of parameter 

identifiers and values sent from a device to one or more controllers.  

         Modifier 
  Parameter Block 

   (Audio Engineering Society, 2012, p. 14). 
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Figure 7.4 An AES64 Value Parameter Modifier. 
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‘GetUSGList()’ returns a list of parameter values for the specified list number. ‘SetUSG’() 

allows a controller to update the specified USG parameters. When a controller has 

obtained a list of parameter identifiers, it can subscribe to the specified parameters and 

specify the frequency and parameter for the list of returned values. Frequency is in 

messages per second. For broadcast messages, the device determines the frequency of the 

broadcast. Devices maintain a ‘broadcast list’ that can be updated by controllers using the 

‘AddUSGBroadcast()’ command. 

AES64 also supports saving and restoring parameter values using a Snapshot Model 

that provides efficient retrieval or updating of large sets of parameters (Audio Engineering 

Society, 2012, p. 22). Periodic bulk updates are also supported for monitoring purposes 

and are discussed in Section 7.4.2 Device Monitoring (p.197).  

Bulk parameter operations allow a snapshot of a device’s state to be saved or restored. This 

supports device initialization to different predefined configurations using a previously 

saved state. Figure 7.5 illustrates how a device responds to a snapshot command from a 

controller to create snapshots of different parameter groups as required by different 

control scenarios. These parameter values are stored on the device. A device parameter 

functions as an action parameter that manages snapshot parameter values. When a device 

receives a ‘SAVE SNP’ command addressed to its snapshot parameter, the device saves the 

required parameter values to the specified snapshot data store; when a device receives a 

Message Context                             Message  

Controller - -> Device CreateUSG  < Fragment size ,full     
                                     address1… fulladressN> 

Device - -> Controller ListNo < No of Lists > 

Controller - -> Device GetUSGList < ListN > 

Device - -> Controller ListData < … > 

Controller - -> Device SetUSG < xfnID1, value1, …  
                                   xfnIDN, valueN > 

Controller - -> Device PushUSGUnicast < xfnID1, … sfnIDN >  
  < Frequency > < Controller parameter address > 

Device - -> Controller USGData < xfnID1, value1, …  
xfnIDN, valueN > 

Controller - -> Device AddUSGBroadcast <xfnID1…xfnIDN, >  
                                             <fragment size > 

Device - -> Controller USGData < xfnID1, value1, …  
xfnIDN, valueN > 

 
  Table 7.4 AES64 USG Commands. 
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‘SET VAL’ command addressed to its snapshot parameter, it restores parameter values 

from the specified snapshot data store. 

 

 

 

 

 

 

  

 

 

 

7.4 Device Control and Monitoring 

AES64 command messages allow a variety of options to be specified.  

Command messages are implemented as blocking and non-blocking messages 

transported using UDP. 

7.4.1 Command Messages 

AES64 messages are request messages sent between devices, or responses to request 

messages. Request messages can specify a full (seven level) parameter address or may use 

a unique parameter identifier. Messages that use a parameter identifier are termed 

‘indexed messages’. Command messages can also be forwarded to a second parameter 

address. Messages having a second destination parameter address are sent to the first 

parameter address and then forwarded to the second parameter address. This capability 

is required by the ‘modifier’ messages that were discussed in Section 7.3.3.3 Parameter 

Modifiers (p.192). Modifier blocks modify received messages and then forward them to 

the specified recipient. Request messages have a sequence identifier that is incremented 

each time a response is transmitted. This allows the response to be matched to the request 

that generated the response. 

7.4.1.1 Command Message Format 

AES64 commands contain of three fields within a message that identify the semantics of 

the message. These are the ‘message type’, ‘command executive’ and ‘command qualifier’ 

fields. Table 7.5 lists the different message types that identify the format of a message. 

 Snapshot2 

Figure 7.5 The AES64 Snapshot Mechanism. 
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   Executive ID  Executive                   Description 

             0x00 GET Read one or more data values. 

             0x01 SET Write one or more data values. 

             0x02 ACT Perform an action. 

             0x03 JOIN Join a parameter to a group. 

             0x04 UNJOIN Detach a parameter from a group. 

             0x05 CREATE Create a structure such as a list. 

             0x06 SAVE Save a structure such as a list. 

 
Table 7.6 AES64 Command Executives. 
(Audio Engineering Society, 2012, p. 20). 

 

  

 

 

 

 

 

 

 
The command executives illustrated in Table 7.6 define the operation performed on a 

parameter or parameter value. 

 

 

 

 

 

 

 
 
A command qualifier adds semantic details to a specified command executive by 

specifying a parameter value, a parameter attribute, or a parameter group referenced by 

the command executive. Command qualifiers are listed in Table 7.7.  

Examples of AES64 commands (Gurdan & Foss, 2010) that combine a command 

executive with a command qualifier include: 

 SET VAL – the SET executive is applied to the value of a parameter; 

 JOIN PTP <parameter>,<…> – the JOIN executive is applied to a  

peer-to-peer join relationship with the specified arguments; 

 GET FLAG <address of parameter> – retrieves the flag field for the specified 

parameter. 

 

 

      Type ID                           Message Type 

            0x00 Full address block requiring a response. 
 0x01 Full address block requiring no response. 
 0x02 Indexed message requiring a response. 
 0x03 Indexed message requiring no response. 
 0x04 Response message. 
 0x05 Full address block with second destination and requiring a response. 
 0x06 Full address block with second destination and requiring no response. 
     0x07 .. 0xFF Reserved for future standardization 
  

Table 7.5 AES64 Message Types. 

(Audio Engineering Society, 2012, p. 17). 
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This three-tiered specification of commands promotes functional scalability by allowing 

existing command executives to be extended using command qualifiers. 

7.4.2 Device Monitoring 

Parameters may have subscription relationships to other parameters where one parameter 

periodically updates the parameters that subscribe to it. AES64 calls this a ‘push 

mechanism’ as a parameter pushes its value to all subscribers. This is an implementation 

of the ‘observer’ design pattern discussed previously in Section 2.9.2 Monitoring 

Parameter Values (p.37).  

Each AES64 parameter maintains a ‘push list’ of all subscribers to the parameter. 

Controllers typically provide a local parameter address to a remote parameter and this 

local parameter is added to a ‘push list’ maintained by the remote parameter. Network 

bandwidth can be conserved by constraining the rate at which update messages are sent 

to subscribers. This is achieved by: 

 Implementing periodic subscriptions by specifying a wait time in milliseconds 

before update messages are transmitted, and 

 Specifying a ‘push delta’ value that specifies the maximum amount that a 

parameter value may change without triggering update messages. 

Table 7.7 AES64 Command Qualifiers. 

     Qualifier ID       Qualifier                                  Description 

0x00 VAL Refers to a parameter's value. 

0x01 VTBL Refers to the value names of a parameter. 

0x02 CLA Refers to the child level alias. 

0x03 FLAG Refers to the various flags of a device. 

0x04 SEC Refers to the user access level. 

0x05 PUSH Adds a parameter to a Push list. 

0x06 PUSH_OFF Removes from the Push list of a parameter. 

0x07 DATA_BLOCK Refers to a set of values pushed by a parameter. 

0x08 MASTERS Refers to the master group of a slave parameter. 

0x09 SLAVES Refers to the slave group of a master parameter. 

0x0A MASTER_OFF Refers to the removal of a master group parameter. 

0x0B SLAVE_OFF Refers to the removal of a slave group parameter. 

0x0C PEER_OFF Refers to the removal of a peer group parameter. 

0x0D MSTGRP Refers to the master group associated with a 

0x0E PTPGRP Refers to the peer-to-peer group of a parameter. 

0x0F GRPVAL Refers to the value of a parameter within a group. 

0x10 PTP Used with the JOIN command executive. 

0x11 MSTSLV Used with the JOIN command executive. 

0x12 SNP Refers to a snapshot of a device's parameters. 
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Periodic parameter updates are also used for transmitting meter values to one or more 

controllers using a non-work-conserving transmission that was introduced in  

Section 2.9.2.1 Bulk Transmission of Monitored Parameter Values (p.37). If the push 

delta value is exceeded, a data block of parameter values is transmitted even if a specified 

delta time has not expired. Periodic transmission of a set of parameters provides an 

efficient use of bandwidth when multiple parameters are monitored. Bandwidth usage is 

also reduced by only transmitting parameter values that have changed since the last 

transmission. 

Controllers must periodically refresh their subscriptions as devices periodically 
remove subscriptions that have expired. This ensures that devices that are not 
reachable do not have parameter values pushed to them. Parameters can also push a 
parameter’s value as a result of the parameter’s ALERT flag (discussed in Section  

7.3.2.1 Parameter Flags (p.189)) being set.  

7.4.3 Automation in AES64 

AES64 supports automation by using ‘event modifiers’ where an event triggers a sequence 

of other events that are scheduled to occur at specified times.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The different components of an event modifier illustrated in Figure 7.6 include: 

 A time-stamped event list consisting of a sequence of event structures that define 

(Audio Engineering Society, 2012, p. 41). 
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Figure 7.6 Example of an AES64 Event Modifier. 
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event parameters; 

 A set of timer parameters used to start, stop, pause or continue the internal clock 

of an event modifier; 

 An ‘output value parameter' representing the current state of the event modifier 

with reference to a particular timestamp; 

 Interpolation parameters that ramp the output parameter value. 

 An event list consisting of a start event, zero or more change events and an end 

event. 

Execution of the start event triggers the execution of the other events in the event list.  

A detailed description of the event modifier mechanism is provided in Section 12.5, ‘Event 

Modifier’ of the AES64 specification (Audio Engineering Society, 2012, p. 40). 

7.5 Audio Connection Management 

AES64 connection management is designed to be compatible with IEEE 1722  

multi-channel audio streams (Audio Engineering Society, 2012, p. 82). 

7.5.1 The Multicore Concept 

AES64 uses the concept of a ‘multicore’ (Foulkes, Foss, & Gurdan, 2011) to represent audio 

signal paths between devices. A multicore forms a multi-channel network stream for audio 

and derives its name from the structure of analog audio cables. Each channel within a 

multicore illustrated in Figure 7.7 is termed a ‘multicore sequence’.  

 

 

 

 

 

 

 

 

 
 

 

 

 

By only transmitting data in one direction, each multicore provides a simplex data 

Figure 7.7 Connecting Multicores and Multicore Sequences. 

   Out1 ..    In1 .. 
   OutN       InN 

Multicore 

Multicore 

Multicore 
Sequences 

  

Network 

   Out1 ..    In1 .. 
   OutN       InN 



200 
 

connection. Bi-directional communication requires two multicore connections, one for 

each direction. Figure 7.7 illustrates two multicores that are both transmitted through the 

same network connection. Two devices are connected by assigning the same multicore 

sequence to an input on the first device and an output on the second device. Creating 

connections between audio channels thus requires multicore connections as well as 

connections between the device channels and multicore sequences shown in Figure 7.7.  

UNOS Creator, shown in Figure 7.8 is a toolset supporting AES64 networks from 

UMAN. UNOS Creator provides four user views of connections between multicores and 

connection assignments to and from multicores (Gurdan & Foss, 2010): 

1. A ‘devices view’ that allows two devices to be connected by a multicore. 

2. A ‘multicore view’ that allows a user to connect a transmitting multicore to a 

receiving multicore. 

3. A ‘talker view’ that maps audio channels from the transmitting device to 

multicore audio channels. 

4. A ‘listener view’ that maps device inputs on the receiving device to multicore 

channels. 

 

 

 

 

 

 

 

 

 

 

  

 

  

 

7.5.1.1 Routing Audio between Subnets  

Figure 7.8 UNOS Creator Connection Management Tools. 
 (Gurdan & Foss, 2010). 

s 
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     Level                Talker Parameters                Listener Parameters 

1 SECBLK  FN_SCT_BLOCK_OUTPUT FN_SCT_BLOCK_INPUT 

2 SECTYPE  XFN_SCT_TYPE_STREAM  XFN_SCT_TYPE_STREAM 

3 SECNR  Interface No. Interface No. 

4 PBLK  XFN_PRM_BLOCK_AVB_MULTICORE  XFN_PRM_BLOCK_AVB_MULTICORE 

5 PBLIX  Multicore number  Multicore number 

6 PARTP  
XFN_PTYPE_STREAM_ID  
XFN_PTYPE_ADVERTISE  
 

XFN_PTYPE_STREAM_ID 
XFN_PTYPE_LISTEN  
 7 PARIX  1  Specific parameter type index 

 
Table 7.8 Multicore Parameters Representing IEEE 1722 Streams. 
(Gurdan & Foss, 2010). 

Multicore audio channels can also be routed between subnets using AES64-enabled 

routers that are seen on the network as AES64-enabled devices. Routers are thus able to 

function as source and destination points for the multicore connections illustrated in 

Figure 7.9 (Zeisberger, 2010).  

 

 

 

 

 

 

  

AES64 enabled routers make all connected multicores available to devices across 

sub-networks by making the multicores connected to a specific router interface available 

to all other interfaces of the same router. In Figure 7.9, an input multicore on one subnet 

is visible to devices on all other subnets that are connected using the same  

AES64-enabled router. 

7.5.2 AES64 Connection Parameters 

The AES64 parameter format listed in Table 7.8 represents parameters used for 

connection management between IEEE 1722 audio streams where the shaded level six 

entries show the available talker and listener parameter entries.  

 
 

 

 

 

 

 

 

 

Figure 7.9 Routing AES64Multicores Across Sub-Networks. 
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       Parameter         Parameter                 Parameter    Parameter                         
           Index                  Index                           Index             Index 
 

L5 
 

L6 

L7 

Talker ID             Advertise                 Listener ID       Listen 

Figure 7.10 AES64 Connection Management Parameters. 
 

 Multicore Number                             Multicore Number                                        

value                                                       value                                      
Con nection                                       

Talker                                                Listener                                       

Stream 
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Audio connections are described by AES64 parameters where multicores represent  

IEEE 1722 audio streams (Dibley & Foss, 2013). These AES64 parameters are illustrated 

in Figure 7.10 where each stream type has a unique stream identifier.  

 

 

 

 

 

 

 

 

 

Audio transmitters (‘talkers’) have an ‘advertise’ parameter that indicates whether the 

terminal has been advertised to the network.  Audio receivers (‘listeners’) have a ‘listen’ 

parameter that requests a talker to stream audio data to the listener. 

Establishing a connection between an IEEE 1722 talker device and an IEEE 1722 

listener device is a four-step process (Gurdan & Foss, 2010), (Dibley & Foss, 2013): 

1. Obtain the stream ID of the required talker; 

2. Set the talker’s ‘advertise’ parameter to ‘true’ to enable the talker to be advertised 

to the network.  

3. Bind a talker stream to a listener stream by setting the stream ID parameter of the 

listener stream to an ID value of a talker stream as illustrated in Figure 7.10; 

4. Set the listener’s ‘listen’ parameter to ‘true’.  

Setting a ‘listen’ parameter to true causes the listener stream to send a ‘Listener Ready’ 

message to the talker that is bound to the listener stream. The talker then streams data to 

the specified listener. To tear-down a stream between talker and listener devices, the 

device tearing down the stream needs to set the value of the listener’s ‘listen’ parameter to 

false.  
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7.6 Control Surface Representation and Creation 

An AES64 control surface consists of controls termed ‘desk items’ (Audio Engineering 

Society, 2012, p. 47). Desk items are typically graphical controls such as switches, faders, 

pan pots, meters and display components. The concept also includes groups of related 

controls similar to SDM sub-devices. Specification of the images used to create desk items 

allows the appearance of control surfaces to be customized. Descriptions of desk items are 

provided by a device and stored within the device itself. 

7.6.1 Representing AES64 Desk Items 

XML is used to define the appearance of desk items and to link controls to control 

parameters. Each desk item is represented by an XML element that describes the desk 

item, including the graphical elements required to render the desk item. Listing 7.1 

illustrates the representation of the attributes of a fader desk item. 

This desk item is associated with a control parameter that is described by the seven levels 

of the parameter address shown in boldface. The value of an AES64 control parameter is 

always the value of the associated desk item (Audio Engineering Society, 2012, p. 47). 

Depending on the function of a particular desk item, AES64 control parameters receive 

values from desk items, or desk items display control parameter values. These control 

parameters can then be joined to any other local or remote parameters. Listing 7.1 shows 

that desk item specifications also indicate connections to AES64 value modifiers. 

 

 

 
 

 

 
 
 
 
 
 
 
 
 

 

 
When desk item control parameters are joined to remote parameters, the remote 

parameters are termed ‘action parameters’. This definition of the term ‘action parameter’ 

<UMANFADERDESKITEM name=““ IP_Address=“146.231.121.154” xfnid=““  
 
XFN_Level_1=“1” XFN_Level_2=“d1”  XFN_Level_3=“1”  
XFN_Level_4=“11”  XFN_Level_5=“1” XFN_Level_6=“201”  XFN_Level_7=“1”  
 
Control_Param_ID=“1” 
xfnUnitBitRange=“8” connected_to_modifier=“0” jointype=“0” id=“2a2f87c164a2a11c” 
explicitFocusOrder=“0” pos=“48 48 44 296” backimage_plain=“FaderbackNoTrack.PNG” 
                     backimage_plainrect=“0 0 0 0” backimage_plainzOrder=“0”    
backimage_plainhundredPercent=“1” trackimage=“Fadertrack.png”  
trackimagerect=“0 0 0 0” trackimagezOrder=“0” 
trackimagehundredPercent=“1” thumbimage=“FaderButton.png”  
thumbimagerect=“0 0 0 0”thumbimagezOrder=“0” thumbimagehundredPercent=“1”     
xfnUnitTableFile=““ trackX=“20” trackY=“30” trackHeight=“240” trackWidth=“10”  
thumbX=“15” thumbHeight=“40” thumbWidth=“20” thumbNeedleOffset=“23”  
thumbNeedRangeOffset=“33” thumbNeedleRangeLength=“240”/> 

 
Listing 7.1 An AES64 XML Desk Item Description. 
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differs from the use of the term in this dissertation as defined in Section 2.9.1.2 Action 

Parameters (p.35). 

7.6.2 Desk Item Retrieval and Configuration 

The XML desk item description file, as well as the graphics files referenced by the 

description file are stored on a device and can be retrieved from a device by controller 

applications. An application that is able to display and configure desk items is termed a 

‘desk item browser’ (Foss, 2010). Desk item browsers can support different types of 

functionality, including: 

 Downloading or uploading desk item descriptions and graphics files from or to a 

device; 

 Associating desk items with parameters; 

 Editing the visual appearance of desk items. 

The desk item concept moves much of the responsibility of representing and creating a 

control surface from the controller to the device. This approach has three advantages: 

 Device manufacturers are able to specify a control surface that is independent of 

any computing platform or programming language; 

 Controllers do not have to compute the layout of a control surface; 

 Controllers do not need to store information about a potentially large number of 

devices. 

7.7 Commentary and Evaluation 

AES64 contains a rich set of features. These features are a result of the designers carefully 

considering different control scenarios and functional requirements of complex audio 

devices and then designing the protocol around these scenarios and functional 

requirements. 

7.7.1 A Summary of AES64 Features 

Table 7.9 provides a summary of the features found in AES64.  
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  Protocol Feature                    Comment 

1. Network Management 

    1.1 Device Discovery   

    1.2 Monitoring Reachability   

2. Service Discovery and Enumeration   

3. Control Surface Representation  Desk item concept. 

4. Control Commands 

    4.1 Write Single  Parameter Value   

    4.2 Write Multiple Parameter Values  Wildcard mechanism. 

    4.3 Read Single Parameter Value   

    4.4 Read Multiple Parameter Values  Wildcard mechanism. 

    4.5 Non-Blocking Commands   

    4.6 Variable Number of Arguments  Fixed commands. 

    4.7 User-Defined Arguments   

    4.8 Multiple Return Values  Fixed commands. 

    4.9 Error Checking   

    4.10 Control Point Invocation  As a side effect of commands. 

    4.11 Automation   

5. Subscription (Monitoring) 

    5.1 Single Value Subscription   

    5.2 Multiple Value Subscription   

    5.3 Event-based Subscription   

6. Parameter Management 

    6.1 Linking Controls to Parameters   

    6.2 Joining Parameters   

    6.3 Grouping Parameters   

    6.4 Bulk Parameter Access  Snapshot mechanism. 

    6.5 Dynamic Parameter  Modification   

    6.6 Save / Load Configuration  Snapshot mechanism. 

7.  Connection Management 

    7.1 External Connection Management   

    7.2 Internal Connection Management   

    7.3 Control Connection Management  Using Parameter Joins 

8.  Serialization  User-defined argument. 

9.  Security 
 

Parameter flags define access 
levels. 

 

Table 7.9 A Summary of AES64 Features. 
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  AES64              SDM 

 1. Device 

1. Section Block 2. Sub-device 

2. Section Type 2. Sub-device 

3. Section Number 3. Channel  Identifier 

4. Parameter Block 4. Parameter 
    Description + Index 

5. Parameter Block Index 

6. Parameter Type 5. Parameter Type 

 
7. Parameter Index 

6. Parameter Identifier 
7. Parameter Value 

  

    Device 
Description 
     Layer 

 Parameter 
Description 
     Layer 

Table 7.10 Comparing AES64 and SDM Addresses. 

7.7.2 Comparing AES64 to the Standard Device Model  

The three main differences between AES64 and the SDM are the: 

1. Specification of parameter addresses. 

2. Representation of controls and control surfaces.  

3. Implementation of functionality such as managing parameter groups that is not 

supported by the SDM. 

7.7.2.1 Parameter Address Interoperability 

A comparison of the structure of a SDM full parameter address and an AES64 parameter 

address is shown in Table 7.10. An AES64 root node corresponds to the standard model 

device node. Level one of an AES64 address corresponds to a sub-device, while levels two 

and three correspond to nested sub-devices. Levels four to seven are parameter 

description levels. AES64 parameter addresses are essentially a fixed-level, specific 

implementation of the proposed standard model.  

 

 

 

 

 

 

 

 

 

 

 
The differences between the two representations include: 

 The absence of a device identifier within an AES64 address. An AES64 root node 

does not form a part of a parameter address. 

 One or more sub-devices (corresponding to the first three levels of an AES64 

address) are permitted by the SDM. 

 Controls are not represented within an AES64 parameter address. 

 Operations on parameters are specified by API functions. The SDM specifies all 

functionality in terms of updating parameter values and invoking parameter 

actions for a specific parameter identifier. 
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Parameter address compatibility with AES64 is achieved by mapping SDM full 

parameter addresses to AES64 parameter addresses. The level one SDM device identifier 

is disregarded and an index value is appended to entries within the level four parameter 

description level of the SDM. This allows both levels four and five of an AES parameter 

address to be represented within the parameter description level. For example, the 

parameter description ‘EqualizerBlock’ can be rewritten as ‘EqualizerBlock1’, where the 

numeric suffix represents a level five parameter block index. Parameter actions are 

disregarded, as the concept is not found in AES64. A SDM parameter identifier thus only 

has a value allowing the identifier to denote the parameter’s value.  

7.7.2.2 Representing Controls and Control Surfaces 

Representation of controls within the SDM is the most significant difference between the 

two different parameter address formats. While it is easy to replace a SDM control entry 

with a channel identifier, which is allowed by the SDM structure, the creation of an AES64 

desk item from a SDM control description, is more difficult. AES64 does not link 

parameters to controls; controls are linked to parameters. As a result, translation between 

XML desk item representations and SDM description and layout records is required. 

7.7.2.3 Functional Interoperability 

AES64 does not use a pure parameter-based approach as API functions are used to provide 

extended functionality. The concept of an ‘action parameter’ does not occur in AES64. 

Parameter group management provides an example where slave and peer parameters are 

added to a master parameter by invoking an action parameter within the SDM. AES64 

provides API functions to manager parameter groups. SDM action parameters must be 

recognized and translated into the appropriate AES64 commands to provide functional 

interoperability with AES64. 

7.7.3 Protocol Interoperability with AES64 

Because AES64 is an international standard, this section briefly considers interoperability 

with other control protocols. An OSC address space can be designed to represent the 

AES64 seven-layer addressing scheme. However, the combinatorial explosion created by 

the possible values for each of the seven layers makes the address space extremely large. 

UPnP provides a service-oriented architecture where services consist of one or more 

parameters that are embedded in sub-devices. Services are not represented hierarchically 

as discussed in Section 9.5 Device Representation and Service Specification (p.233). 

Hierarchical parameter addresses cannot be converted into arbitrary service identifiers. 

An SNMP indexing scheme that supports an elegant implementation of AES64 

parameter addresses is shown in Figure 7.11. Each level of an AES64 address is 
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Figure 7.11 An SNMP Implementation of AES64 Parameter Addressing. 
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represented by an SNMP table where the table entries reflect the allowable values for a 

specific level. A parameter table is indexed by a composite index consisting of seven values 

where each value indicates an entry in a table representing each level. Parameter table 

entries provide a unique AES64 parameter ID and also specify parameter values. 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

AES64 compatibility with control protocols that do not have a hierarchical 

organization of parameters is difficult or impossible to achieve. Thus, AES64 parameter 

addresses can be translated into OSC and Ember+ addresses. AES64 addresses can also 

be compatible with OCA control class identifiers described in Section 3.3.2.3.1 Control 

Class Identifiers (p.54). AES64 parameter addresses are not compatible with the non-

hierarchical parameter addresses used by CopperLan and UPnP. 

7.7.4 An Evaluation of AES64  

A comparison of AES64 to the other protocols discussed in this dissertation is difficult to 

achieve. Features such as parameter, joins, parameter groups, modifiers and desk items 

are not found in any of the protocols discussed in this dissertation. These features provide 

an extremely sophisticated control and monitoring environment. Table 7.11 summarizes 

the strengths and weaknesses of AES64. 
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The use of ‘dummy’ values for simple devices that cannot make use of all parameter 

address levels is a potential weakness of the addressing scheme. It is easy to assign dummy 

values to different levels to represent the same parameter when not all address levels are 

utilized. A consistent application of parameter addresses by different vendors is vitally 

important if the interoperability benefits provided by a fixed-addressing scheme are to be 

realized. Use of seven levels to denote a parameter address means that in practice selecting 

address level entries can be a difficult task.  

 

 

 

 

 

 

 

 

 

 

 

Table 7.11 A Summary of the Strengths and Weaknesses of AES64. 

                                                            Strengths 

1. Provides an integrated approach to all aspects of control, discovery, 
monitoring and connection management. 

 2. Supports parameter relationships and bulk parameter addressing. 
 
3. Provides standardized parameter addresses. 

 
4. Allows scaling between parameter values. 

5. Supports automation. 

6. Rich toolset for creating control surfaces and performing connection 
management. 

                                                          Weaknesses 

1. A seven level parameter address is not required to describe parameters  
for  simple audio devices. ‘Dummy’ values must be placed in unused levels. 

2. Interoperability requires that all vendors assign parameter addresses  
in a consistent manner.  
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Chapter 8  

CopperLan 

 

 
8.1 Introduction  

CopperLan, developed by Klavis Technologies (Klavis Technologies, n.d.), is a protocol for 

configuring, connecting and controlling networked devices that is available for several 

different operating systems:  

“CopperLan is really multi-purpose. It was initially designed [for] the Music 

Industry, but it can be used each time an efficient command & control [protocol] is 

needed. We have validated usage in show control, pro-audio, broadcast, stage and 

studio, and theoretically, it could be even used in industrial automation.” 

  (Cailleau, "Whatever over CopperLan", 2012). 

In addition to network management and control capabilities, CopperLan also supports the 

transport of MIDI data and connection management between MIDI devices. CopperLan 

uses an abstract, proprietary network layer that can be implemented on different transport 

layers. 

8.2 Network Implementation  

The CopperLan proprietary OSI level three layer termed a ‘Network Adaption Layer’ 

(Klavis Technologies, n.d.) can co-exist with other protocols such as IP-based protocols. 

The protocol is registered with the IEEE (Institute of Electrical and Electronics Engineers, 

2012) as having an Ethernet type (‘EtherType’) field of 8927. This field identifies the 

transported protocol from an Ethernet/802.3 data frame.  

Because CopperLan implements a peer-to-peer network architecture, there is no 

distinction between devices and controllers. They are both regarded as  

CopperLan-enabled applications. Support is also provided for embedded devices and 

several different transports including Ethernet, Universal Serial Bus (USB) and  

IEEE 1394 (FireWire) (Klavis Technologies, 2012). 
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8.2.1 The Network Transport Layer  

CopperLan applications execute on a ‘Host Machine’ which is any computer, network node 

or embedded system running the CopperLan ‘Virtual Network Manager’ (VNM).  

Applications are managed and controlled by the VNM which is a multiport virtual device 

that accepts control connections from multiple CopperLan applications. CopperLan uses 

the concept of ‘control connections’ (control joins) to link control parameters between 

networked devices. The VNM also provides connection management capabilities for both 

network control streams and audio streams (Klavis Technologies, 2012a). 

8.2.2 Network Management  

The ‘CopperLan Host Application Interface’ (CHAI) is a proprietary level three network 

protocol that connects all applications to the level two transport layer and manages 

network communication among CopperLan applications. The CHAI functions as a 

middleware layer that is linked into each executable application. It manages the 

underlying transport layer and provides the developer with a high-level programming 

interface.  

Figure 8.1 illustrates the relationship between two applications, the CHAI and the 

VNM where the applications are executing on two distributed host machines. Applications 

are discovered and managed by the VNM running on each host machine.  

In Figure 8.1 a controller application running on ‘Machine1’ uses the services provided by 

the VNM and the CHAI to discover the services provided by the second application. This 

information is used to create a control surface that is linked to the discovered services 

(controls and parameters) defined by the second application.  

 

 

                                   

                                               

                                          

   

                                                 

 

 

    

 

 

 
Applications derive objects from the abstract base classes provided by software 

libraries that access the CHAI. These application objects must implement inherited 

abstract methods that expose parameters and controls to the CHAI. Each application has 

Device (App2) 

Figure 8.1 CopperLan Network Architecture. 
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a ‘Root Device’ object that identifies the device on a network by responding to CHAI device 

discovery queries. This reflective capability where devices expose services and controls to 

the CHAI is discussed in later sections of this chapter. 

8.2.2.1 Device Discovery and Identification 

CopperLan devices may contain embedded sub-devices. Each CopperLan device is 

identified by an application identifier and an instance identifier separated by a dot 

character. Application identifiers identify device categories. For example, amplifiers and 

mixers would constitute two different device categories. Both these identifiers are usually 

assigned to applications by the VNM. An application identifier typically consists of a 

manufacturer’s identifier and a device model identifier. Figure 8.2 illustrates the sequence 

of events that occur during device discovery. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Applications may also specify a preferred application identifier or a fixed application 

identifier. Preferred identifiers can be changed by the VNM if identifier conflicts are 

Figure 8.2 Allocating Application and Instance Identifiers in CopperLan. 
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detected while fixed identifiers may prevent an application from connecting to the network 

if identifier conflicts exist.  

The VNM preserves the state of all devices across sessions. The VNM is able to 

recreate device and connection configurations by storing information about different 

applications as well as multiple instances of the same application (CopperLan Forum - 

Where is the 'unique identity' stored?, 2012). When a device is discovered, the VNM checks 

if an entry for a newly created device exists in the ‘Duplicate Number Repository’ (DNR). 

If not, a random instance identifier that does not conflict with existing devices of the same 

type is assigned and stored as an instance identifier for the device. If an application 

identifier entry (representing a device category) exists in the repository, the VNM checks 

if an instance identifier is present for the device. If the instance identifier does not exist, a 

new instance identifier is assigned to the device. If the instance identifier exists, the device 

is restored to its previously saved state. If an application identifier entry is not found,  

an application identifier is created for the device category and the device instance is then 

registered. 

8.2.2.2 Service Discovery 

Each CopperLan device configures itself on the network by using the capabilities of the 

CHAI middleware layer that exposes services to controller applications.  

The ‘IBaseLocalDevice_ExplorationNotificationHandler’ class contains methods that 

must be overridden by an implementation to support service discovery. The CHAI calls 

these methods to request information about locally defined controls and parameters.  

8.2.2.2.1 Dynamic Controller Figuration 

CopperLan supports an automatic configuration mode for controller applications where a 

control on a control surface is placed into a ‘learning’ state. When a control that is in a 

learning state receives a CopperLan message, it stores the sub-device identifier and 

parameter address specified within the message. These remote parameter addresses then 

become the future remote targets that are invoked when the control changes state.  

This capability allows a generic control surface to be dynamically configured for use within 

a variety of control scenarios. 

8.2.2.3 CopperLan Device Types 

CopperLan differentiates between different device types and provides classes that serve as 

a base class for applications that require the functionality provided by the different base 

classes. The three core types of devices are MIDI devices, ‘plugin’ devices, and ‘general-

purpose’ devices. General-purposes devices (derived from class ‘ILocalDevice’) are defined 

as any devices that do not require MIDI capabilities and do not support a plugin 



214 
 

architecture. Plugins allow additional functionality to be added to existing CopperLan 

devices. The object-oriented design of devices emphasizes a dynamic, behavioral view 

rather than a structural view as the behavior of a device and its  

sub-devices forms the nucleus of the reflective discovery and control mechanism that 

exposes device services to the CHAI. Two classes also allow a device to share its  

user interface with other devices. Device and sub-device objects are derived from the 

abstract base classes illustrated in Figure 8.3. 

 

 

           
 

 
                

 
 
 

           
 

                   

 
Devices can be dynamically configured and these changes are broadcast to all 

manager (controller) applications on the network. Changes include changes to the device 

architecture typically caused by the addition of plugins to a device, as well as changes to 

the states of device inputs and outputs. 

8.3 Device Architecture and Parameter Organization 

Devices are partitioned into sub-devices where parameters are defined within each  

child sub-device. 

8.3.1 Device Architecture 

Each device has a ‘root device’ that is used for device discovery and provides information 

about the device such as the serial number, device name, and where applicable, firmware 

version. Root devices are created with an instance identifier value of zero. Root devices 

consist of embedded sub-devices termed ‘modules’. CopperLan device models are 

centered on the functionality provided by each module. 

8.3.2 Parameter Organization 

Parameters are not arranged hierarchically, having a distinct linear address space within 

each sub-device for each of the parameter categories defined within CopperLan.  

 IObject   

ILocalDevice            

   ISharedDisplayLocalDevice     

 IBaseLocalDevice  

Figure 8.3 The CopperLan Device Hierarchy. 
 

IPluginLocalDevice IHybridMIDILocalDevice      

ISharedDisplayClientLocalDevice 

file:///C:/CopperLAN/SDK/CopperLanFreewareSDKDoc%5b20120113_1.0(6)%5d/class_c_p_n_s_1_1_i_plugin_local_device.html
file:///C:/CopperLAN/SDK/CopperLanFreewareSDKDoc%5b20120113_1.0(6)%5d/class_c_p_n_s_1_1_i_shared_display_client_local_device.html
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For example, continuous parameters and discrete parameters each have their own address 

space. Parameters can also be organized in related groups termed ‘sections’.  

In addition to value parameters, parameters can also be ‘modifier parameters’, ‘selector 

parameters’, or ‘text parameters’. Parameters definitions also specify the controls that 

modify the parameter’s value and the command messages used to access the parameter: 

“During Parameter creation, the application provides information such as: 

-The Parameter's identity; 

-The related message description (type, number, index or selector item lists, 

labels...); 

-The preferred controller type (slider, knob, push-button, absolute, relative, with 

return-to-zero, ...).” 

  (Klavis Technologies, n.d., p. 'The Parameter') 

Value parameters are thus control parameters that are tightly coupled to controls. 

Specification of both parameters and controls occurs within the context of a sub-device. 

Sub-devices are derived from one or more abstract library classes. These classes have 

abstract methods that are implemented to provide methods used by the CHAI to perform 

service discovery and service enumeration.   

8.4 Control Functionality  

Parameters are accessed by remote procedure calls termed ‘messages’. Real-time control 

messages are termed ‘performance messages’. There are four types of performance 

messages: 

 ‘Modifier messages’ deal with parameters that have a continuous range of values. 

These parameters are typically associated with continuous controls such as 

knobs and sliders. Modifier messages typically contain two values:  

a parameter representing the position of the control and an optional typed value. 

This optional value typically represents a value that is scaled or converted from 

the value denoting the control position. When this value is not used, the target of 

the message must be able to interpret the parameter value. 

 ‘Selector messages’ deal with non-continuous parameter data, supporting 

controls having a fixed set of states. Examples include logical states associated 

with switches and data lists used in menus. 

 ‘Event messages’ encapsulate MIDI messages or represent parameters 

associated with audio, synthesizers and musical functions. Examples include 

MIDI note on/off messages as well as messages controlling gating and pitch.  
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 ‘Text messages’ are used to associate a string with a target item and are usually 

used to label controls. 

Modifier and selector messages support ‘parameter indexing’ where each type of 

parameter has a selectable index that is typically used to identify a particular audio 

channel. In the context of a mixing console, parameter indexing provides a horizontal 

grouping of related parameters across channel strips. Two other types of messages are 

used to encapsulate MIDI ‘System Exclusive’ (SYSEX) messages and messages that 

contain a payload of arbitrary binary data. SYSEX and ‘IDataTransfer’ messages are non-

real time messages that are implemented using a handshaking scheme. This scheme 

automatically gives priority to real-time messages when the bandwidth utilization 

increases. Performance messages address a numeric parameter identifier within a specific 

sub-device. 

8.4.1 Asynchronous Messages 

Devices and their notification handlers (callback methods) pertaining to the specific 

functionality provided by a device are registered with the CHAI. There are two types of 

notifications that are implemented within the API as pure virtual classes: 

 ‘Notification handlers’ are called to inform an application about an event or to 

request information from an application; 

 ‘Asynchronous return handlers’ that are called when an asynchronous function 

returns.  

Because notification handlers and asynchronous return handlers are called from the 

CHAI's execution thread, local attributes become shared variables and the code that access 

these variables become critical sections. These shared variables must be protected from 

concurrent access when implementing CopperLan applications. 

8.5 Connection Management  

CopperLan does not directly support any specific networked audio format.  

All connection management functionality is represented in an abstract manner.  

Both control connection management and audio connection management are supported. 

8.5.1 Control Connection Management  

CopperLan emphasizes join relationships between control parameters. Devices expose 

control connections in the form of input objects, output objects and pipe objects to the 

network (Klavis Technologies, n.d.). A pipe is a bidirectional object that is conceptually 
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similar to the fusion of an input object and an output object. These objects function as 

follows: 

 Inputs receive network messages from outputs. Messages are received by the 

inputs when a parameter is accessed, or when connections to an input are made 

or terminated. 

 Inputs may be defined as clock listeners, receiving data from a clock source. 

 A single output may multicast messages to multiple inputs and multiple outputs 

can be merged to a single input. 

 An output can be locked to prevent third party applications from changing the 

current destination assignments associated with that output. 

These communication endpoints transmit and receive the messages outlined in the 

previous section. 

8.5.2 Audio Connection Management  

Connection management support was added to version 1.3 of the SDK using the classes 

and interfaces (C++ fully abstract base classes) shown in Figure 8.4. These additions are 

being used by the Swiss company ArchWave AG (Archwave AG, n.d.) to support the 

Ravenna audio transport (Hildebrand, 2010).   

 

 

 

 

 

 

 

           

 
 
 
 
 
 
 
 
 

      Interface     IAudioLanManager 

AddUnmanagedSourceStream() 
AssignDecoder( wDecoderIndex,  
                                 SourceStreamName ) 
SetSamplingRate() 
GetPossibleSourceStreamList() 
 

Figure 8.4 CopperLan Audio Connection Management Classes. 
 

  Interface    IAudioLanRemoteDevice            

GetNumSourceStreams (…) 
GetSourceStreamFromIndex(…) 
SetConnection (…) 
ClearConnection(…) 
ClearConnectionsFrom(…) 
 

      Class   AudioLanSourceStream          

SetAudioLanRemoteDevice (…) 
 
uint32   StreamID 
String    StreamName 
Uint16  ChannelCount 
 

      Device 

    Controller 

          Interface     IAudioLanLocalDevice            

AddSourceStream (id) 
OnSetConnection()       //Callback 
OnClearConnection()      //Callback 
AddAudioParameterGroup (…) 
SetAudioParameter(…) 
AddAudioSourceStreamParameterGroup (…) 
SetSourceStreamParameter(…) 
 

http://www.copperlan.org/chaidoc/class_c_p_n_s_1_1_i_audio_lan_local_device.html#a8f97eafb89bb56cdd15b8946f726c746
http://www.copperlan.org/chaidoc/class_c_p_n_s_1_1_i_audio_lan_local_device.html#a8f97eafb89bb56cdd15b8946f726c746
http://www.copperlan.org/chaidoc/class_c_p_n_s_1_1_i_audio_lan_local_device.html#a8f97eafb89bb56cdd15b8946f726c746
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Audio streams are registered with the network using methods provided by the 

‘IAudioLanManager’ interface. The ‘AddUnmanagedSourceStream()’ method adds 

streams to a network and assigns decoders to a specific source streams. A decoder 

processes a specific audio transport such as Ravenna or IEEE 1722. The currently used 

sampling rate can be set and the ‘GetPossibleSourceStreamList()’ method obtains a list of 

network source audio streams for the currently active decoder. Devices create 

‘AudioLanSourceStream’ objects and advertise these objects using the 

‘IAudioLanLocalDevice’ interface. This interface also creates and tears down connections. 

The ‘IAudioLanRemoteDevice’ interface is implemented by connection management 

applications that wish to control remote devices. This interface defines the callback 

methods that are invoked when controllers create or tear down connections between 

devices. Use of these classes in the context of IEEE 1722 media streams supported by 

AES64 was explained by Philippe Caillou: 

“We use a Device to represent the audio talker or listener, and these devices have 

inputs exposing parameters related to the source stream (issued from a talker) and 

output stream (reception endpoint on the listener side)... We just need to access to 

the talker and listener's parameters in order to manage audio [connection] 

parameters.” 

  (Cailleau, Private correspondence, 2015) 

8.6 Development of a CopperLan Device 

A mixing console device was created in CopperLan that is discovered by the management 

applications provided by the protocol vendor. These applications are discussed in the 

following section. 

8.6.1 The CopperLan Manager Application 

A CopperLan management application provided by the protocol vendor consists of a 

network management toolset consisting of: 

1. An ‘Overview tool’ that displays all networked devices and their current 

connections; 

2.  A ‘Connector tool’ that manages connections between networked devices; 

3.  An ‘Editor’ tool (shown in Figure 8.5) that provides a control surface to edit 

parameter values; 

4.  A ‘Snapshot Tool’ that stores network configuration and settings. 

These tools are discussed further in Appendix 4. 
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A control surface created using the service discovery capabilities provided by the CHAI is 

illustrated in Figure 8.5. This control surface represents the architecture of the developed 

mixing console. Devices are partitioned into sub-devices (shown on the left in Figure 8.5) 

that specify a set of controls. In this example a set of controls are created for each channel 

strip. It is also possible to specify other logical control groupings. The index selector shown 

in Figure 8.5 allows multiple controls to be grouped together.  

The selector is then used to select specific controls from each control group. This is termed 

‘parameter indexing’ and provides efficient utilization of resources by not duplicating 

controls. Using this arrangement, a single input section sub-device can represent all 

channel strips. 

 

 

    

                       

       
 

 

 

 

 

 

 

 

 

 

 
 
 
Communication is implemented as a bi-directional (peer-to-peer) model where the 

control surface also receives updates from the device. 

8.7 Commentary and Evaluation 

8.7.1 A Summary of CopperLan Features 

Table 8.1 summarizes the capabilities of CopperLan.  

 

Figure 8.5 The Parameter Editor View of a Virtual Device. 
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Protocol Feature                  Comment 

1. Network Management 

    1.1 Device Discovery   

1.2 Monitoring Reachability   

2. Service Discovery and Enumeration   

3. Control Surface Representation   

4. Device Control  

    4.1 Write Single  Parameter Value   

    4.2 Write Multiple Parameter Values   

    4.3 Read Single Parameter Value   

    4.4 Read Multiple Parameter Values   

4.5 Non-Blocking  (Asynchronous)        
      Commands 

  

4.6 Variable Number of Arguments   

4.7 User-Defined Arguments   

4.8 Multiple Return Values   

4.9 Error Checking  Forty-five standard error 
messages. 

    4.10 Control Point Invocation  As a side effect of commands. 

4.11 Automation   

5. Subscription (Monitoring) 

5.1 Single Value Subscription  Not parameter based. 
Implemented by registering 
notification handlers attached 
to commands. 

5.2 Multiple Value Subscription  

5.3 Event-based Subscription  

6. Parameter Management 

6.1  Linking Controls to Parameters   

6.2  Joining Parameters  As a side effect of control joins. 

6.3 Grouping Parameters   

6.4  Bulk Parameter Access   

6.5 Dynamic Parameter  Modification  Enumerated types define 
modifier profiles. 

6.6 Save / Load Configuration   

7. Connection Management 

7.1 External Connection Management   

    7.2 Internal Connection Management   

    7.3 Control Connection Management   

8. Serialization    

9. Security  (Proprietary transport layer). 

10. Clocks  Supports different clocks. 

 

Table 8.1 A Summary of CopperLan Features. 
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8.7.2 An Evaluation of CopperLan 

CopperLan is a sophisticated control protocol that supports a wide range of features, and 

has the ability to translate between different clock formats. A variety of clock formats are 

supported, including Sample Position and SMPTE time (Society of Motion Picture & 

Television Engineers, 2008). 

The task-oriented design of CopperLan provides an example of the ‘functional 

approach’ to control protocol design (Gross & Holtzen, 1998) discussed in Section 2.9 

Control Protocol Commands (p.33). This approach has resulted in an explosion in the 

number of objects and methods found within the CopperLan API (version 1.3 of the SDK 

contains 103 classes). Table 8.2 summarizes the strengths and weaknesses of CopperLan. 

 

 

 

 

 

 

 

 

 
                

 
Despite publishing revision 1.3 of the SDK API (Klavis Technologies, n.d.),  

the documentation is incomplete and does not provide a sufficiently detailed level of 

information for developers. The protocol appears to provide many of the sophisticated 

features found in AES64. Unfortunately, development using the protocol is challenging, 

as it does not have an elegant division of responsibilities. In particular, the use of multiple 

inheritance to create devices and controllers as illustrated in Listing 8.1 creates a complex 

software architecture that mandates the implementation of many abstract methods.   

 Parameters are grouped within sub-devices according to functional roles as 

mentioned previously in Section 8.3.2 Parameter Organization (p.214). Parameters are 

not independently accessible and are not organized by logical groups of related parameter 

types such as gain parameters or fader parameters. 

 

Table 8.2 A Summary of the Strengths and Weaknesses of CopperLan. 

                                                          Strengths 

1.   Automatic device and service discovery 

2. Automatic control surface creation where controls are linked to  
services. 

3. Toolset provided by a management application that creates a 
control surface and performs connection management. 

4. Support for connection management of control streams and audio 
streams. 

                                                       Weaknesses 
1. API is extremely large and complex.  

2. The protocol design does not clearly separate different concerns. 

3. Parameters are not logically grouped and independently accessible. 
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8.7.2.1 Object-Oriented Design in CopperLan 

The use of multiple inheritance to provide required functionality leads to implementations 

such as the class design illustrated in Listing 8.1. This example class is taken from a 

CopperLan-enabled controller (ICT7 Corporation, n.d.). 

 

 

 

 

 

 
As mentioned previously, inheritance from library classes links applications to the CHAI 

middleware layer to provide service discovery and control capabilities for  

CopperLan-enabled controllers. In the class example of Listing 8.1, the device functions 

as a timer, a button event handler and handles remote parameter update messages and 

connection requests. Unlike OCA, where classes are represented within a deep  

single-inheritance hierarchy, CopperLan classes are typically implemented using a 

shallow class hierarchy that uses multiple-inheritance. This design provides a 

development environment that is complex and not always intuitive. 

8.7.3 CopperLan Support for the Standard Device Model 

CopperLan supports the use of arbitrarily nested sub-devices and the representation of 

controls and parameters within sub-devices. The functional design of the protocol and the 

linear organization of parameters do not support the core design features of the SDM that 

emphasize hierarchical relationships between device components and parameters. Only 

the device architecture layer portion of a full parameter address can be represented within 

CopperLan. The use of descriptive data records is also not supported by CopperLan. A 

functional design means that it is difficult to dynamically create a device as devices tend 

to be monolithic applications. As a consequence, translation to and from a representation 

of the SDM (such as the XML representation provided in Appendix 2) is likely to be a 

difficult undertaking. 

 

 

 

Listing 8.1 An Example of a CopperLan Class. 

class XYController : public Component, 
                                protected Button::Listener, 
                               protected Timer, 
                               protected AsyncUpdater, 
                                protected IOutput_NotificationHandler 
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Chapter 9  

Universal Plug and Play 

 

 

9.1 Introduction 

Universal Plug and Play (UPnP) was developed from the Plug and Play device discovery 

protocol developed for the Microsoft Windows95 operating system (Microsoft 

Corporation, 2013). UPnP is an open, peer-to-peer networking architecture that uses 

standard text-based IP protocols (UPnP Forum, 2013). The protocol supports automatic 

discovery of devices and services:  

“UPnP provides an architectural framework for creating self-configuring, self-

describing devices and services. Networks managed by UPnP require no setup by 

users or network administrators because UPnP supports automatic discovery.” 

(Microsoft Corporation, 2010). 

 
UPnP allows each networked device to maintain an in-memory registry of all other devices 

on the network that is automatically updated as devices are added to or removed from the 

network. In addition to discovery and control functionality, UPnP also supports audio and 

video (AV) streaming using a separate, dedicated AV stack that is incorporated into the 

core UPnP stack (Bobek, Bohn, & Golatowski, 2005). The UPnP-QoS Architecture v.3 

(UPnP Forum, 2008) provides quality of service by implementing bandwidth reservation 

for AV streams. A subset of UPnP developed by the Digital Living Network Alliance 

(DLNA) is supported by many consumer media devices. UPnP is available on a wide range 

of platforms, including mobile devices, as the use of standard protocols provides 

interoperability among different hardware platforms, software environments and network 

transport mediums. Version 1.1 of the specification adds support for IPv6 (Baugher, Chan, 

Stark, Saaranen, & Hain, 2011). 

UPnP is the only HTTP-based control protocol discussed in this dissertation.  

Web-based environments using the Simple Object Access Protocol (SOAP) (World Wide 

Web Consortium, 2000) that build on the features of UPnP have also been developed for 

embedded devices. Microsoft’s Devices Profile for Web Services (Schlimmer, 2004) is an 

example of this type of environment. This chapter only investigates the device 
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representation, service discovery and control features of UPnP, as the AV streaming 

capabilities are not relevant to the provision and implementation of device control 

functionality. 

9.1.1 UPnP Terminology 

Like SNMP, UPnP uses several terms that are specific to the protocol: 

 UPnP devices consist of a ‘root device’ that may optionally contain nested child 

sub-devices termed ‘embedded devices’. 

 Controller applications are referred to as ‘control points’. This differs from the 

use of the term in this dissertation. As defined in the introduction, the term 

‘control point’ is used within UPnP to denote a remote callback function.  

The UPnP meaning of the term is followed in this chapter. 

 UPnP parameters are referred to as ‘state variables’.  

 An ‘action’ defines one or more behaviors associated with a UPnP service. 

Actions are implemented as remote procedure calls that have optional input and 

output arguments (state variables).  

 Monitoring state variables is termed ‘eventing’, as monitored state variables 

generate callback events within a control point when their values change.  

A monitored state variable is termed an ‘evented state variable’.   

 ‘Presentation’ refers to the specification of a Web page that provides a user 

interface for a control point. This user interface is used to interact with a 

controlled device. 

9.2 Service-Oriented Architectures 

‘Service’ and ‘Service-Oriented Architecture’ (SOA) are terms that have unfortunately been 

used in many different contexts, and are subject to many different (and often conflicting) 

interpretations (Microsoft Corporation, 2012). SOAs are commonly used to describe 

HTTP-based architectures (Erl, 2004) that are commonly referred to as  

‘Web Services’. SOAs have also been used to describe services for networked devices that 

do not use HTTP-based protocols. The Service-Oriented Device Architecture (SODA) 

applies service-oriented principles to embedded devices (de Deugd, Carroll, Kelly, Millett, 

& Ricker, 2006). A SOA is defined by the World Wide Web Consortium (W3C) as: 

“A set of components which can be invoked, and whose interface descriptions 

can be published and discovered.” (World Wide Web Consortium Working 

Group, 2004). 
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‘Components’ are defined as abstract units of software or software objects (World Wide 

Web Consortium, 2004). ‘Interface descriptions’ are typically the identifiers of remote 

procedure calls and the arguments required to invoke these RPCs. The following definition 

of a service within the context of a SOA emphasizes the use of remote procedure calls: 

“Service in terms of SOA is an independent working functional unit, that can be used 

remotely by a defined interface, that means outside of the own [its] runtime 

environment.” (Bobek, Bohn, & Golatowski, 2005). 

For example, a device may provide an audio streaming service and a video streaming 

service. An “independent working functional unit” does not necessarily imply a component 

part of a device. It refers to a software module (unit) that performs a  

well-defined task such as enumerating layout attributes or creating an audio connection. 

These definitions and descriptions emphasize four core characteristics of a SOA: 

 A SOA has a modular architecture, made up of independent and fully functional 

tasks; 

 A device must advertise its services as well as the interface descriptions to these 

services; 

 Service interface descriptions (and the services themselves) must be remotely 

accessible. 

Within the context of a SOA, ‘components’ are containers that are used to logically group 

related software units (typically implemented as objects) that form the parts of the services 

illustrated in Figure 9.1.  

 

 

 

 

 

 

 

 
 
 
 
 
 Figure 9.1 Relationships Between Objects, Components and Services. 

 Adapted from (Hanson, 2003). 
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Services can be created from both components and objects that may both be shared across 

different services. In Figure 9.1, round connectors depict service interfaces and arrows 

depict connections to these interfaces. Components can also be combined to create higher-

level components, and services can be combined to create higher-level services. For 

example, a service that finds a control on a remote device may be combined with a service 

that renders a control on a control surface to create a higher-level service. 

A more detailed definition (McGovern, Tyagi, Stevens, & Mathew, 2003), lists the 

following characteristics of services within the context of a SOA: 

 Services are self-contained and modular; 

 Services stress interoperability among different platforms and programming 

languages; 

 Services are loosely coupled; 

 Services are discoverable and dynamically bound; 

 Services have a network-addressable interface;  

 Services have coarse-grained interfaces; 

 Services are location-transparent. 

‘Self-contained’ means that the resources required by a service are obtained by the service 

itself, resources need not be provided to a service. Loosely coupled services do not require 

users (clients) of the service have any knowledge of the implementation details of the 

service. Dynamically bound services are discovered and accessed at  

run-time by service clients; client applications do not require information about services 

at compile time. A network-addressable interface means that locations of remote services 

are independent of the location of the service users. 

9.2.1 UPnP Services 

Devices expose services to a network and provide URLs for these services. Services define 

UPnP actions that are implemented as methods or functions bound to SOAP RPCs. The 

term ‘service’ within the context of UPnP is misleading as a service functions as a container 

for executable actions (that are analogous to service implementations). UPnP services 

themselves cannot be executed atomically.  

UPnP services are implemented within a device by means of a ‘state table’,  

a ‘control server’ and an ‘event server’ (Fout, 2001). The control server executes actions 

and responses to actions; the state table monitors service actions and updates state 
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variables as actions are executed. The event server transmits events to remote subscribers 

when the values of evented state variables change. 

Services are typically associated with one or more state variables that are referenced 

by a service’s actions. Parameters are thus implemented as state variables, and the actions 

that access parameters are encapsulated within UPnP services.  

For example, a SET(..) command would be implemented as an action having an input 

argument that modifies the value of a parameter implemented as a state variable.  

A GET() command is implemented as an action having an output argument that returns 

the value of a state variable. Both of these actions would be defined within a UPnP service. 

9.3 UPnP Protocol Design 

The core UPnP specification (UPnP Device Architecture 1.1, 2008) provides a  

UPnP Device Architecture (UDA) specification. UPnP protocol stacks are 

implementations of the UDA for a specific platform or development environment. The 

UDA specification divides the implementation of a UPnP-enabled device into six different 

areas termed ‘phases’. These phases are: 

 Network Addressing; 

 Device and Service Discovery; 

 Accessing Device and Service Descriptions; 

 Control; 

 Eventing; 

 Presentation that specifies a Web interface to UPnP services. 

9.3.1 Network Addressing 

Devices use the Dynamic Host Configuration Protocol (DHCP) (Droms, 1997) to acquire 

an IP address. If no DHCP server is available, devices must assign an IPv4 link-local 

address to themselves using a technique known as ‘AutoIP’ (Cheshire, Aboba, & Guttman, 

2005). AutoIP addresses are 169.254/16 prefix addresses excluding the first and last 256 

addresses that are reserved addresses. Devices that select an AutoIP address must send an 

Address Resolution Protocol (Plummer, 1982) message to ensure that the selected address 

is not being used by another device on the network. 

9.3.2 Device and Service Discovery 

UPnP uses the Simple Service Discovery Protocol (SSDP) (Cai, Leach, Gu, Goland, & 

Albright, 1999) that utilizes UDP multicasting to advertise devices and services.  

SSDP is a text-based protocol derived from HTTPU (Goland, 1999), which provides UDP 
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Device Discovery Messages 

 Notification Type Unique Service Name 

1. upnp:rootdevice uuid:deviceUUID::upnp:rootdevice 

2. uid:device-UUID uuid:device-UUID 

3. 

urn:schemas-upnp-      
org:device:deviceType:ver 
        OR 
urn:domain- 
name:device:deviceType:ver 

uuid:device-UUID::urn:schemas-
upnp-org:device:deviceType:ver 
                        OR 
uuid:device-UUID::urn:domain- 
name:device:deviceType:ver 

 

(UPnP Forum, 2008, p. 20). 

Table 9.1 UPnP Service Advertisements. 

transport for HTTP messages. SSDP search requests can control the granularity of service 

searches where searches can be are restricted to one or more specific  

UPnP service types. For example, an audio device might define a fader service type.   

Responses to SSDP search requests are echoed to the port that was used for sending the 

request. UPnP supports two modes of device and service discovery that are termed: 

1. ‘Lazy discovery’, where UPnP-enabled devices periodically advertise their root 

devices, embedded devices and services. Advertisements must be periodically 

repeated as advertisements expire after a specified lease time.  

2. ‘Aggressive discovery’, where control points search for devices or services by 

multicasting SSDP search requests. Search requests may contain a list of 

qualifications specifying the required type of device or required service.  

Each UPnP device is identified by a Universally Unique Identifier (UUID)  

(Leach, Mealling, & Salz, 2005). A UUID is a number consisting of thirty-two hexadecimal 

digits arranged in a sequence of 8-4-4-4-12 digits that is designed to avoid identifier 

clashes. All devices advertise a UUID, a device type and a device version. Service 

advertisements include information describing the enclosing (parent) device. Root devices 

multicast all three of the discovery messages shown in Table 9.1.  

Embedded devices (sub-devices) only multicast the second and third discovery messages. 

 

 

 

 

 

 

 
 
 
 
Lazy discovery may generate many service advertisements that can cause network traffic 

bursts. Each root device transmits three advertisements, two advertisements are 

transmitted for each embedded device, and one advertisement is transmitted for each 

service (Jeronimo & Weast, 2003). A root device having d embedded devices and  

s distinct services must transmit 3 + 2d + s service advertisements to advertise all of its 

services. The SSDP attempts to alleviate this problem by introducing delays into the 
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responses to search requests. SSDP search request messages contain a header field (UPnP 

Forum, 2008, p. 19) that is used by devices to calculate a delay when responding to a 

search request. This value, termed a ‘jitter bound’ (Mills & Dabrowski, 2003) represents 

an upper bound (in milliseconds) on the time that device must wait before sending a 

response. Devices generate a random value less than the specified jitter bound and use 

this value as a delay before transmitting a response to an SSDP discovery request. Mills 

and Dabrowski have improved the jitter bounds used by standard UPnP by using a scheme 

called ‘adaptive jitter control’ and have also suggested a more efficient alternative to SSDP 

search requests. 

As mentioned in Section 3.3.4.1 Network Implementation (p.59), UPnP is used by 

HiQnet’s ‘Disco’ discovery protocol. 

9.3.3 Specification of Device and Service Descriptions 

Device and service descriptions are specified by XML documents that are reliably retrieved 

by control points from a device using HTTP requests over TCP. A device’s response to a 

discovery query includes the Uniform Resource Locator (URL) of its XML device 

description document. A device description provides the URLs for each of the device’s 

XML service description documents. Related service descriptions are often grouped 

within a single service description document or each service may be specified by a distinct 

service description document. A service description lists the actions and state variables 

implemented by the described services. Control points create and execute action requests 

from the service descriptions as described in the following section. 

9.3.4 Invoking UPnP Actions 

 SOAP is used to communicate ‘action requests’ that execute remote UPnP service actions 

and return the responses generated by these service actions. SOAP is a network protocol 

that implements remote procedure calls using XML. UPnP SOAP messages specify the 

UPnP action to invoke, as well as the arguments to the action. The response to an action 

request is a SOAP message consisting of an error status and any number of return values. 

Although commonly transmitted via HTTP, SOAP can also be implemented using other 

network protocols (Skonnard, 2003). 

9.3.5 The UPnP Subscription Mechanism 

Control points monitor device parameters by subscribing to device services rather than 

specific evented state variables. A service subscription automatically creates subscriptions 

to all the evented state variables declared within the service. This is a limitation of UPnP, 

as clients cannot control the granularity of subscription by subscribing to specific events 



230 
 

associated with a service (Mazuryk & Lukkien, n.d.). If a fine-grained subscription model 

is required, services must be restricted to providing a single evented state variable.  

UPnP implements an event-based subscription model using the ‘General Event 

Notification Architecture’ (GENA) (Cohen, Aggarwal, & Goland, 1999). GENA messages 

are transmitted using HTTP over TCP/IP. A GENA ‘Subscribe’ message is sent by a control 

point to a device to subscribe to a specific service. When a service accepts a subscription, 

it responds with a lease time value. Control points must periodically renew subscriptions 

before the lease time expires as devices cancel a subscription on expiry of the 

subscription’s lease time. Control points may also explicitly cancel a subscription by 

transmitting a GENA ‘Unsubscribe’ message to a device. All evented state variables are 

transmitted within a single message when a subscription is created which allows a control 

point to synchronize its state to a device’s state. Following this initial event message, the 

UPnP specification allows both work conserving and non-work conserving transmissions 

of evented state variables: 

9.3.6 Presentation 

Devices can specify a URL from where a Web page that implements a user interface to 

control functionality can be retrieved. This allows Web browsers to interact with UPnP 

devices via HTTP. A <presentationURL> tag in the device description provides the URL 

of a presentation page. This tag is mandatory; if the device has no presentation page, the 

tag should be empty. A UPnP presentation interacts with controlled devices in two 

different ways: 

 By means of client-side scripting that creates and sends SOAP control requests 

to the device; 

 By using HTTP POST messages to invoke device services. The device then parses 

the received messages and uses APIs from the development environment to 

control the device. This model requires the device to process POST messages. 

Controller implementations are not limited to Web browsers as they can also be created 

using the API’s provided by a specific UPnP development environment.  
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     (Jeronimo, 2004), (Fout, 2001). 

Figure 9.3 HTTPMU and HTTPU Protocol Stacks. 
 

Discovery            Presence               Discovery          
Requests       Announcements       Responses          Events 
 

  SSDP GENA SSDP GENA 

               HTTPMU       HTTPU 

       UDP 

       IP 

 

UPnP Application 
Layers 

Figure 9.2 The UPnP Protocol Stack. 

(Morgan, 2003). 

UPnP Vendor Defined 

UPnP Working Forum Defined 

  UPnP Device Architecture 
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         UDP TCP 

    IP 
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9.4 UPnP Network Protocols 

Figure 9.2 shows the HTTP-based protocols used to transmit device and service 

descriptions as well as control, subscription and presentation messages. These network 

protocols are all unicast protocols transported by TCP. UPnP application layers are 

designated as ‘Vendor defined’, ‘Working Forum defined’ and a layer defined by the 

standard UPnP device architecture. 

 

 

 
 

 
 
 

 
 

Multicast protocols used by UPnP are shown in Figure 9.3. These specialized network 

protocols support the transmission of HTTP messages using UDP rather than TCP. 

HTTPMU is a protocol that multicasts HTTP messages over UDP, allowing device 

presence announcements to be multicasted using UDP.  

 
 
 

 
 
 
 
 
 
 
 
Responses to presence announcements are returned using HTTPU that is used to transmit 

unicast HTTP messages over UDP. These HTTP variants avoid the overheads incurred by 

TCP message transmissions. 

9.4.1 Unicast Messages 

Device responses to control points, SOAP control messages, as well as event subscription 

and notification messages are all unicast network messages as illustrated in Figure 9.4. 

HTTP responses use the ‘OK’ HTTP status code and include requested data (such as a 

device description, or return value from a SOAP message) within the HTTP response. The 
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multicast SSDP ‘M-Search Request’ is included in Figure 9.4 to complement its unicast 

response counterpart. 

 

 

 

 

 

 

 

 

 

 

 

 
 

The security model for UPnP v1.0 (Ellison, 2003) is based on a digital signature 

identifying users and authorizations to execute specific actions. This security model is only 

applied to SOAP control messages and responses. 

9.4.2 Multicast Messages 

Devices indicate their presence on the network and control points search for devices using 

a dedicated UPnP multicast address shown in Figure 9.5. Devices indicate their presence 

by transmitting SSDP ‘Alive’ heartbeat messages.  

 

 

 
 

 

 

 
    

    
 

Presence announcements also contain the URL of the device’s device description 

document. SSDP ‘M-Search’ request messages are used by control points to find devices 

and services on the network using ‘aggressive discovery’ as discussed in Section 9.3.2 

Device and Service Discovery (p.227). An SSDP ‘Bye-Bye’ message is sent by devices 

before they go off-line.  

(EBS Inc., 2006). 

Figure 9.4 UPnP Unicast Messages. 
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Figure 9.5 UPnP Multicast Messages. 

(EBS Inc., 2006). 
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Both unicast and multicast event messages are tagged with an ‘event key’, which is 

initialized to zero for the first event message. This value is a sequence number that is 

incremented each time an event message is transmitted. Control points can determine if a 

message has been lost or received out of order and take an appropriate action. Use of 

multicasting confines UPnP discovery to a local network segment. A mechanism to 

forward control messages beyond the local segment (Iyer & Warrier, 2001) has been 

defined by the UPnP Forum.  

9.5 Device Representation and Service Specification 

Devices are represented by a model that partitions a device into embedded devices, 

services, actions and state variables. A design for a single fader belonging to the input 

section of a mixing console is shown in Figure 9.6. The UPnP descriptions of this device 

and its associated services and state variables are illustrated in the sections that follow.  

9.5.1 Device Descriptions 

Listing 9.1 is the UPnP device description for the simple device shown in Figure 9.6. 

Different UPnP devices can be embedded within a single UPnP control point.  

Standard device and service descriptions are termed ‘Device Profiles’ in UPnP.  

For example, a control point that streams audio according to the UPnP specification would 

have a ‘standard’ device profile. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 9.6 UPnP Device and Service Organization. 
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Listing 9.1 An Example UPnP Device Description. 
 

Service Description URL 

Channel Strip - Embedded Device 

Fader Control - Service 

A control is represented in Listing 9.1 by a service, where the service’s ‘ServiceType’ 

tag specifies that the service implements a fader control service. The control is contained 

within a channel strip embedded device. 

 

   <?xml version=“1.0” ?>  
   <root xmlns=“urn:schemas-upnp-org:device-1-0”> 
         <device> 

<deviceType>urn:schemas-upnp-org:device:mixer:1</deviceType>  
<friendlyName>AudioMixingConsole</friendlyName> 
<UDN>uuid:75802409-bccb-40e7-8e6c-fa095ecce10e</UDN> 
      <serviceList> 

        <service> 
        … 
       </service> 

</serviceList> 
 

<deviceList> 
<device> 

<deviceType>urn:schemas-upnp-org:device:Channel1:1</deviceType> 
<friendlyName>Input Section</friendlyName> 
… 
<serviceList> 
 

<service> 
<serviceType>urn:schemas-upnp-org:control:Fader1:1</serviceType>              
<serviceId>urn:schemas-upnp-org:serviceId:fader1:1</serviceId> 
     <SCPDURL>/service/state/fader1.xml</SCPDURL> 
      …  
      </service> 
 

 </serviceList> 
</device> 

</deviceList> 
 

<presentationURL>http://www.someorganization.org</presentationURL>  
       </device> 
   </root> 

 

 

A service description URL specifies the location of each XML service description defined 

by a device or embedded device. 

9.5.2 Service Descriptions 

Listing 9.2 provides an example of a service description. A service description describes 

the actions and state variables contained within a service. Each action description lists the 

input arguments, output arguments (return values) and associated state variables for each 
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Action Name 

Listing 9.2 An Example UPnP Service Description for a Fader Service. 

    Input  
Argument 

    State Variable 

      State Variable 
      Attributes 

defined action. Listing 9.2 enumerates the actions and state variables for the fader service 

defined within the device description of Listing 9.1.   

 
 

<?xml version=“1.0”?> 
<scpd xmlns=“urn:schemas-upnp-org:service-1-0” > 
 <actionList> 
 
          <action> 
  <name>SETFader1</name> 
        <argumentList> 
   <argument> 
               <name>InFaderArg</name>    

           <relatedStateVariable>Fader1Value</relatedStateVariable> 
              <direction>in</direction> 
    </argument>   
        </argumentList> 
  </action> 

 
 </actionList> 
 <serviceStateTable> 
  <stateVariable sendEvents=“no”> 
   <name>Fader1Value</name> 
   <dataType>i4</dataType> 

<stateVariable sendEvents=“no”> 
<defaultValue>100</defaultValue> 
<allowedValueRange> 

<minimum>0</minimum> 
<maximum>1024</maximum> 
<step>1</step> 

</allowedValueRange> 
  </stateVariable> 
 </serviceStateTable> 
</scpd> 
  

 
 

The fader service modifies a ‘FaderValue’ state variable. Attributes describe the data 

type, default value and range of values for this state variable. The XML attribute 

‘sendEvents’ indicates that it is not an evented state variable. All action arguments must 

have a corresponding state variable (termed a ‘relatedStateVariable’) as illustrated by the 

‘InFaderArg’ input argument to the SET(..) command that updates the fader’s value.  

The type of an input or output argument is inferred from the type of the associated state 

variable as input and output arguments do not explicitly define a data type.  

Actions having multiple arguments typically require unused state variables that are 

defined solely to provide type information for their associated input or output arguments. 

The simplified UPnP service-oriented model uses service definitions that are similar to 
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Table 9.2 UPnP Primitive Data Types. 
 

UPnP Type        Implementation 

 

   UPnP Type Implementation 

ui1   Unsigned 1-byte integer    r4 (float)   4-byte floating-point value 

ui2   Unsigned 2-byte integer          r8   8-byte floating-point value 

Ui4   Unsigned 4-byte integer        char   Single Unicode character 

i1   Signed 1-byte integer      string   Unicode string 

i2   Signed 2-byte integer    boolean   0 for false, 1 for true 

i4 (int)   Signed 4-byte integer    base64   Arbitrary binary data 

 

class definitions where actions and state variables are analogous to class methods and 

class attributes. 

9.5.2.1 UPnP Data Types 

UPnP provides a rich set of data types (Jeronimo & Weast, 2003, p. 231). Table 9.2 

summarizes the supported primitive data types. A number of other structured data types 

representing dates, UUIDs and URIs are also supported.  

 
 

 

 

 
 
Of particular interest is the ‘base64’ type which is a text format used to represent arbitrary 

binary data. Base64 can be used to represent serialized object instances if the development 

environment supports object serialization. This concept is explored further in Section 9.6.1 

Control Serialization (p.238). 

9.5.2.1.1 State Variables Persistence 

A standard service termed the ‘DataStore’ service (UPnP Forum, 2013) allows the storage 

and retrieval of a UPnP device’s state. A data store consists of data tables and a dictionary 

(map) data structure that references data table entries. Data tables and data table entries 

are stored within an XML document. 

9.5.3 Connection Management 

Connection management is provided by a standard UPnP connection manager service 

(UPnP Forum, 2010). This service describes: 

 Source and sink signal formats; 

 Connections between media sources and media sinks; 

 A list of attributes (termed ‘features’) for each connection; 

 A clock source used for synchronization. 

The connection manager determines compatibility between source and destination media 

formats by matching the format and the transport used for media steams.  

It is also able to discover all current streams and connections on a UPnP network, and to 

create and tear down media connections. 



237 
 

9.6 Implementation 

The Cyberlink for Java UPnP library (Cyber Garage, n.d.) was used for development of a 

mixing console control point and a virtual controller. Intel’s UPnP Device Spy network 

browser (Intel Corporation, n.d.) verified that the device functioned correctly. This 

application provides a hierarchical view of a UPnP device and allows service actions to be 

invoked. Figure 9.7 shows this application browsing the services defined previously in 

Listing 9.2. The fader service contains GET() and SET(..) actions. Return values from 

actions are implemented as output reference parameters. For example, the i4 type 

returned by GetFader( i4 RetFaderValue ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The GetControlFader (i4 ControlID, bin.base64 Control) action specifies a control identifier 

input parameter and returns a Base64 encoded control object corresponding to the control 

 

Figure 9.7 A UpnP Browser View of an Audio Mixing Console. 
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identifier. The use of object serialization to directly access control objects and their 

associated user interface widgets is described in the next section. 

9.6.1 Control Serialization 

The Base64 data-encoding format (Internet Engineering Task Force Network Working 

Group, 2003) allows a sequence of arbitrary bytes to be encoded as an ASCII string for 

network transmission. This encoding is commonly used to encode binary data such as 

image data, allowing binary data to be transmitted by text-based network protocols such 

as HTTP.  

Figure 9.8 illustrates that serialized object instances can be transferred across a 

network using UPnP when the serialized object is encoded into the Base64 data format. 

Serialization allows executable code to be exchanged between two processes. Figure 9.7 

illustrated a ‘GetControl()’ action that allows control points to retrieve a fader object from 

a device. This fader object is used by a control point to implement a UPnP fader service. A 

library that supports Base64 representations (d'Heureuse, n.d.) was used to encode and 

decode serialized control objects. The serialized control is transmitted to a control point 

and then decoded to provide a control object instance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
All embedded references (nested object instances) contained within a serialized object are 

also serialized by the Java Virtual Machine. Control points thus retrieve the user interface 

components that implement a particular service and then use these to construct a control 

surface. User interface objects contain methods that implement the remote actions 
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Figure 9.8 Base64 Encoding and Decoding of Objects. 
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required by the control. These remote actions allow the control to address the appropriate 

parameters on the controlled device. The fader control object encapsulates a ‘SETFader(..)’ 

UPnP action that is triggered by changes to the control’s value.  

The control object is rendered on a control surface as a fader widget. 

Retrieval of user interface objects had to accommodate the Cyberlink library classes 

that do not support object serialization. This means that the actions generated by a control 

specified by a Cyberlink library ‘Action’ class cannot be used within a control object that 

is to be serialized. Instead, the name (identifier) of the action must be specified as a control 

attribute. When a control is retrieved by a control point from a device it must then have 

the required UPnP functionality added to it by creating the required action instances. 

These action instances are created from a control’s attributes that specify action 

identifiers. This addition of functionality is implemented by using the Decorator object-

oriented design pattern (Gamma, Helm, Johnson, & Vlissides, 1995) which adds 

functionality at run-time to an existing object. The existing object becomes an attribute of 

the object providing additional functionality. Remote control objects retrieved from a 

device by a controller are thus wrapped inside local control objects that provide the 

required UPnP functionality for the wrapped remote control object. 

9.6.2 Implementing GENA Subscriptions 

The GENA architecture that implements subscription to a service rather than to individual 

evented state variables allows the granularity of monitoring to be specified. Using 

metering as an example, each meter can be implemented as a distinct service,  

or all meter state variables can be contained within a single meter service.  

Distinct services for each meter supports subscription to individual meters. Use of a single 

service containing multiple evented state variables representing meter values provides a 

bulk subscription mechanism. UPnP does not allow the granularity of a subscription to be 

specified as mentioned in Section 9.3.5 The UPnP Subscription Mechanism (p.229). 

Different services (subscribing to individual meters or groups of meters) are required to 

implement different subscription granularities. 

9.7 Commentary and Evaluation  

Auto-discovery of devices and services are attractive features of UPnP. These features are 

implemented using XML device and service descriptions. UPnP support for the Base64 

data type is significant as it supports object serialization where a control can define an 

action that creates the control’s user interface. This feature is discussed at the end of this 

chapter.  
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9.7.1. A Summary of UPnP Features 

Table 9.3 provides a summary of the features provided by UPnP. 

 
 
 
 
 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       Protocol Feature                             Comment 

1. Network Management 
    1.1 Device discovery  SSDP 

    1.2 Monitoring reachability  SSDP 

2. Service Discovery and Enumeration   

3. Control Surface Representation   Within a Web page. 

4. Control Functionality 
    4.1 Write Single Parameter Values   

SOAP 
    4.2 Write Multiple Parameter Values  

    4.3 Read Single Parameter Value  

    4.4 Read Multiple Parameter Values  

4.5 Non-Blocking  (Asynchronous )      
      Commands 

  

4.6 Variable Number of Arguments  Freely defined service actions. 
4.7 User-Defined Arguments  

4.8 Multiple Return Values   

4.9 Error Checking   

4.10 Control-Point Invocation  Side effect of UPnP actions. 

    4.11 Automation   

5. Subscription (Monitoring) 
5.1 Single Value Subscription  Dependent on service design as 

subscriptions are for all evented 
state variables within a service. 

 

5.2 Multiple Value Subscription  

5.3 Event-based Subscription   

6. Parameter Management 
6.1  Linking Controls to Parameters   

6.2  Joining Parameters   

6.3  Grouping Parameters   

6.4  Bulk Parameter Access   

6.5 Dynamic Parameter Modification   

    6.6 Save / Load Configuration   Standardized XML data store. 

7. Connection Management 

7.1 External Connection Management  Using standardized services. 

    7.2 Internal Connection Management   

    7.3 Control Connection Management   

2. Serialization   

3. Security   

 
Table 9.3 A Summary of UPnP Features. 



241 
 

9.7.2 Comparing UPnP to the Standard Device Model 

The SDM must be adapted to conform to the UPnP service architecture that does not 

represent controls. Controls are specified within Web interfaces to UPnP services defined 

by the presentation phase of operation for a UPnP device discussed previously in Section 

9.3.6 Presentation (p.230). Figure 9.9 illustrates that controls and parameters must be 

implemented as services within UPnP: 

 

 

 

 

 

 

 

 

 

   

 
 
 
 

 

All dynamic functionality within UPnP must be represented by services and their 

associated actions. The SDM does not define any functionality and therefore cannot 

represent UPnP actions. UPnP actions must not be confused with action parameters. 

Actions are functions implemented as remote procedure calls. Action parameters are 

parameter values accessed for the side effects of a parameter access. Controls are 

implemented as UPnP services that invoke actions when their state changes. Hierarchical 

parameter addresses as found within the SDM cannot be represented in UPnP. The 

retrieval of description and layout records from a device must also be implemented as 

actions. The functional nature of services that have embedded parameters does not map 

to the hierarchical, parameter-based design of the SDM. 
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Figure 9.9 Comparing the SDM to the UPnP Service Model. 
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Strengths 

1. Use of standard open protocols. In particular, SOAP is independent of network 
transports or platforms. 

2. The granularity of service searches and can be specified. 

3. HTTP interfaces for connection management allows standard Web Browsers to be 
used. The use of HTTP also removes the need for firewall configuration. 

4. An elegant device and service description model. 

Weaknesses 

1. Performance overhead caused by the parsing of SOAP XML messages. 

2. Multicast discovery creates traffic bursts. 

3. Limited network scalability, as each device communicates with all other devices 
on a network. 

4. Event subscription subscribes to all evented variables within a single service. 
5. Unique Service naming requirements mandates a fine-grained implementation of 

services. 

6. Service-based subscriptions apply to all evented state variables contained within a 
service. 

7. No bulk parameter access mechanism. 

 Table 9.4 A Summary of the Strengths and Weaknesses of UPnP. 

9.7.2.1 Independent Parameter Access 

Independent access to device parameters, which forms a core principle of the SDM, cannot 

be directly achieved within the UPnP service model. State variables are declared within 

different UPnP services and indirectly referenced by UPnP actions.  

This organization means that bulk parameter access, parameter joins and parameter 

relationships must be implemented by additional objects that create and manage 

parameter relationships. However, it is trivial to extract state variables from services using 

the APIs provided by UPnP implementations but is unnecessary within a  

service-oriented architecture where services can be defined to provide required 

functionality.  

9.7.3 Strengths and Weaknesses of UPnP  

UPnP applications have a simple, modular design. Only GET() andSET(..) and monitoring 

functionality is provided by the protocol. Unfortunately, several weaknesses limit the 

capabilities of UPnP. Some of the most significant weaknesses are discussed in the 

sections that follow. Table 9.4 summarizes the strengths and weaknesses of UPnP. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
9.7.3.1 Use of SOAP as an Access Protocol 

The design principles of UPnP compared to a Representational State Transfer (REST) 

(Fielding, 2000) approach are discussed by Jan Newmarch. The conclusion is that UPnP 
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performance can be significantly enhanced by services that directly use URLs rather than 

by using SOAP as an access mechanism. Implementation of UPnP messages is not clearly 

defined, as both actions and queries are implemented using POST requests: 

“In general, SOAP just supplies a noise layer that increases traffic and obscures 

semantics without adding anything to functionality.” 

(Newmarch, 2005, p. 136). 

 
Additionally, there is a performance overhead caused by the parsing XML messages.  

To address these issues, W3C has developed the Message Transmission Optimization 

Mechanism (World Wide Web Consortium, 2005). However, a study comparing Web 

service models to SNMP concluded that Web services might be more efficient than SNMP 

when many data objects are accessed: 

“From these conclusions it seems that, from a performance point of view, there is 

no convincing reason to refuse Web services for network monitoring.” 

(Pras, Drevers, van de Meent, & Quartel, 2004). 

Network monitoring and real-time control are application different scenarios.  

HTTP-based protocols have not been used for control applications within the audio 

industry. Widespread use of HTTP on networks may result in the future use of  

web-based applications less time-critical tasks such as connection management. 

9.7.3.2 Scalability of UPnP Networks 

UPnP does not scale well as control points can potentially suffer from traffic burst 

problems associated with multicast discovery protocols. The bandwidth used by the 

discovery process is proportional to the number of clients initiating SSDP ‘Discovery’ 

requests, multiplied by the number of services made available by UPnP devices. 

(Grimmett & O’Neill, 2012). The peer-to-peer discovery architecture means that devices 

transmit advertisements even if no control points exist. A possible solution to this problem 

is to violate the UPnP specification and only support aggressive discovery requests. This 

means that service discovery is performed by clients as is commonly found in most control 

protocols. 

9.7.3.3 Service Implementation 

UPnP services do not exhibit a modular architecture where services can be created from 

components and objects that may both be shared across different services as previously 

illustrated in Figure 9.1. Each service corresponds to a single remote procedure call that 

addresses its associated state variables. UPnP services are similar to OSC methods;  

the difference is that UPnP input arguments are fixed and cannot be dynamically specified 
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as found in OSC. The requirement that services and actions have unique names forces 

implementations to follow a fine-grained approach. As an example, consider a ‘fader’ 

service that is designed to process all fader messages. An input argument to the service 

would specify the audio channel number for a specific fader. This type of service 

organization cannot be implemented in UPnP as actions such as ‘GETFader()’ and 

‘SETFader(..)’ cannot be shared across different services. Fader services must thus be 

implemented as several separate services where each service corresponds to a specific 

audio channel.  This violates the coarse-grained characteristic of SOAs as well as the ability 

of services to share components that were mentioned in Section 9.2 Service-Oriented 

Architectures  9.2 (p.224).  

As discussed in Section 9.3.5 The UPnP Subscription Mechanism (p.229), UPnP 

subscriptions are defined for services and not for specific evented state variables. Because 

of this restriction, a single metering service that dynamically specifies a specific meter 

cannot be implemented. 

9.7.4 The Significance of Object Serialization 

Retrieving serialized object instances is a significant departure from the retrieval of data-

centric descriptions that must be parsed to obtain the entity that is described by the data. 

As a real-world analogy, consider consumer items such as a chair or television set. 

Consumers often purchase a chair in kit-form that requires trivial assembly.  

Complex items such as a television set are acquired in a fully constructed state as the 

inherent complexity of these items prohibits self-construction. By contrast, software 

environments commonly represent extremely complex entities using data descriptions. 

These entities must then be constructed by parsing the descriptive data. Serialized objects 

allow fully functional, complex representations to be constructed from a small number of 

object instances. 

Although data-centric descriptions such as XML descriptions appear to be an 

attractive solution to providing technology-neutral representations, this approach does 

have significant limitations. Because all data representations must be parsed to determine 

the semantics of the data, a significant amount of standardization is often required to 

realize the representation. By contrast, serialization allows any entity to be retrieved as a 

fully constructed and functional component. Standardization is only required to identify 

the required component or service. Where service discovery proceeds in a top-down 

manner as illustrated in Figure 9.7, the hierarchy of embedded devices and services is 

sufficient to identify the services and actions required by control points. Where a 

hierarchical representation of a device’s structure and services is provided by a control 

protocol, standardization of identifiers denoting the structure and services is not required. 
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Chapter 10 

Control Protocol Design and 

Implementation 

 

10.1 Introduction 

Previous chapters have discussed the design and implementation characteristics of 

different control protocols. This chapter considers different approaches to control 

protocol design and implementation. A control protocol comparison can examine: 

 Protocol performance; 

 The general (high-level) characteristics of a control protocol design; 

 The different features provided by a control protocol. 

Measuring control protocol performance may not be meaningful because results will 

reflect the performance of a specific implementation rather than the protocol itself.  

An example of the performance of specific implementations in OSC was discussed in 

Section 5.3.1 Processing OSC Messages (p.122). In this case, performance was influenced 

by how received OSC messages were copied from network buffers.  

A more valuable approach is to compare and contrast the data representations and 

commands supported by a control protocol. The sections that follow develop concepts for 

comparing and evaluating control protocol designs. Appendix 10 provides a detailed 

comparison of control commands across different control protocols. This chapter 

concludes by considering issues surrounding object-oriented control protocol designs and 

the unique approach to control protocol design provided by AES64. 

10.2 Control Protocol Designs 

A control protocol consists of one or more representations of logically structured data and 

a well-defined dynamic functionality that accesses this data. Data representations 

encompass the representation of:   

 Parameter data and descriptive data; 

 The architecture of devices; 

 Control surfaces used by controllers to interact with a device; 
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 Data encoding schemes and the formats of protocol PDUs. 

The most important characteristics of a control protocol are the specification of parameter 

data and the specification of protocol commands. Differentiation of control protocol 

designs into a ‘descriptive approach’ and a ‘functional approach’  

(Gross & Holtzen, 1998) was introduced in Section 2.9 Control Protocol Commands 

(p.33). This distinction was conceived by comparing AES-24 to SNMP: 

“With regards to functional versus descriptive, we sided with the designers of SNMP 

who in addition to recognizing the simplifying benefits of a descriptive approach, 

identified the potential for an ever increasing command set including commands 

with arbitrarily complex semantics in a functional approach.”  

  (Gross & Holtzen, 1998, p. 3). 

A descriptive approach recognizes that parameter values are sufficient to represent the 

state of a device. However, functionality that is more sophisticated cannot be represented 

solely by the states of parameter values. For example, the creation, management and 

updating of parameter groups within a descriptive control protocol design requires 

additional processing that must be achieved by dedicated functions that are activated by 

action parameters: 

“Mapping from a task-oriented view to the data-centric view often requires some 

non-trivial code on the management application side.” (Schoenwaelder, 2003). 

 
These limitations of a data-centric (descriptive) view were discussed with reference to 

SNMP in Section 6.9.2.3 Dynamic Behavior in SNMP (p.181). 

10.2.1 Static and Dynamic Specifications 

Control protocols consist of a ‘static specification’ and a ‘dynamic specification’. A static 

specification is defined as a specification of the representation and organization of the data 

used by a control protocol.  This data includes the parameter and descriptive data 

identified in Figure 4.2 (p.88), as well as the machine data types, data encoding schemes 

(such as ASN1.1 used by SNMP) and the format of PDUs. The most important static 

specification is the representation of parameter data, as parameter data values control the 

audio functions and control surface states that are the most common targets of control 

protocol commands. 

A ‘dynamic specification’ is defined as a specification of the different commands 

provided by a control protocol. The most important part of a dynamic specification is the 

set of protocol commands that address parameter data. Dynamic functionality is typically 
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implemented by fixed, specific commands (AES64 and SNMP), generic, freely defined 

remote procedure calls (OSC, UPnP and Fli2), action parameters (SNMP and Ember+), as 

well as object methods (the AES-24 family and CopperLan). Control protocol commands 

are analyzed in detail in Appendix 10. 

10.2.2 Design Concepts 

The core ideas around which a control protocol is built are termed ‘design concepts’. 

Design concepts are defined as the different design decisions that are reflected within the 

characteristics of the static and dynamic specifications. For example, the design decisions 

to allow SNMP objects stored in an M-way tree to be viewed as conceptual tables, the use 

of fixed-level parameter addresses in AES64, and the use of wildcards within parameter 

addresses found in OSC and AES64. 

10.2.2.1 Primary Design Concepts 

A ‘primary design concept’ is defined as the most important, fundamental design concept 

within a control protocol. Primary design concepts are either: 

1. ‘Parameter-based’, emphasizing a  hierarchical organization of parameters, or 

2. ‘Entity-based’, emphasizing a hierarchy of higher-level functionality or 

abstractions. These abstractions are typically higher-level records, objects or 

services. 

Hierarchical representations provide scalability, regularity, and allow semantic 

relationships to be expressed at different levels within a hierarchy. For example, a device 

component (such as a control or sub-device) within a hierarchy has semantic relationships 

to both its parent and child entities. A primary design concept consists of both a dynamic 

and a static specification. These particular specifications are referred to as a ‘static primary 

design concept’ and a ‘dynamic primary design concept’. Examples of static primary 

design concepts include: 

 SNMP’s conceptual organization of data objects within an M-way tree; 

 The fixed length, hierarchical parameter addresses used by AES64; 

 The hierarchy of descriptors defined by IEEE 1722.1-2013. 

Examples of dynamic primary design concepts include: 

 OSC methods that are implemented as RPCs supporting variadic arguments; 

 The fundamental GET() and SET(..) operations provided by SNMP; 

 The fixed set of commands defined by AES64. 
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The linear chaining of functional blocks within IEC-62379-2 is unusual, providing a 

unique example of a non-hierarchical, static primary design concept.  

 A primary design concept can be a framework that allows extensions or may be a 

fixed representation. For example, SNMP and AES64 commands provide fixed dynamic 

design concepts, while OCA class identifiers (introduced in Section 3.3.2.3.1 Control Class 

Identifiers (p.54)) and AES64 parameter addresses define fixed static design concepts. 

When a freely-defined static design concept is used to define parameter addresses (as 

found in OSC, UPnP and CopperLan), standardization of parameter addresses cannot be 

guaranteed. 

10.2.2.1.1 Parameter and Entity-Based Control Protocol Designs 

A descriptive approach to control protocol design (as referred to by Gross and Holtzen) 

should rather be termed a ‘parameter-based design’. The organization of parameters and 

the commands supporting this organization provide the primary design concept for a 

parameter-based control protocol. This type of control protocol design that is found in 

SNMP, AES64 and Ember+ is illustrated in Figure 10.1. 

 

 

 
 
 
 
 
 

 
 
 

IEC-62379-2, IEEE 1722.1-2013, UPnP, and the AES-24 family of protocols are all 

examples of protocols that have extensive entity-based designs but do not support an 

independent organization of parameter data. Figure 10.2 shows that these protocols 

embed parameters within the higher-level entities (objects in this example) defined by a 

static specification. A dynamic specification consists of object methods that access 

parameters defined locally within an object or in other objects.  

An entity-based primary design concept can be designed so that: 

1. Specific, concrete entities such as a gain control or a pan parameter are defined. 

2. Abstract entities such as a generic rotary potentiometer control or an entity that 

represents a generic DSP function (for example, an AES-24 actuator) are defined. 

Figure 10.1 Parameter-Based Control Protocol Design. 
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Defining specific entities means that a control protocol can only be extended by adding 

new entities that extend both its static and dynamic specifications. Defining abstract 

entities may require the specifications to be extended, but will typically allow new 

additions to be accommodated within the existing specification. For example, by defining 

or implementing a specific instance of an AES-24 actuator. This is achieved in object-

oriented designs by inheritance or by instantiating an object instance. However, this 

approach means that standard parameter addresses cannot be guaranteed and easily leads 

to monolithic implementations of a control protocol. When parameters are defined within 

entities, it is difficult to standardize parameter addresses as parameter addresses are 

always relative to a specific entity that contains parameters. A limited form of 

standardization can be achieved by storing parameters at fixed offsets within entities. This 

approach is found in IEEE 1722.1-2013 and ACN. The designers of OCA have recognized 

this limitation, and have defined concrete entities within deep inheritance hierarchies 

consisting of numbered levels. OCA control class identifiers provide unique parameter 

addresses that also allow parameters to be referenced independently of the entities that 

define parameters. 

10.2.2.2 Secondary Design Concepts 

A primary design concept is commonly used in conjunction with one or more  

‘secondary design concepts’. Secondary design concepts either extend or enhance a 

primary design concept, or may provide additional design concepts that are independent 

of, or loosely coupled to a primary design concept. Examples of static secondary design 

concepts include the: 

 Description and layout records of the SDM; 

 Use of SNMP indexing to represent relationships between SNMP tabular entries 

as was illustrated in Chapter 6; 

 AES64 desk item concept where XML is used to specify control surfaces; 

 Depiction of audio signal paths found in OCA. 

               Object1 
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Figure 10.2 Entity-Based Control Protocol Design. 
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Protoco

Specific
ation 

      Primary Design Concept          Secondary Design Concept/s 

OSC 

 

Static 

 
 
Dynamic 

 
No static specification.  

Device structure or a parameter 
hierarchy implied by the hierarchical 
addresses of the dynamic 
specification. [1] 

M-way tree address space 
specifying control points. 

1. Wildcard matching of parameter       
Addresses. 

2. OSC methods supporting variadic   
     arguments. 
3. Bundle Mechanism. 

SNMP 

Static 
M-way tree address space 
specifying SNMP objects. 

Use of indexing to create conceptual 
tables and to relate SNMP objects. 

Dynamic SNMP requests - GET(), SET(..), 
GETNEXT() and GETBULK(). 

Use of multiple varbinds within 
commands and command 
acknowledgments. 

AES64 

Static 
Fixed-level parameter address 
space forming an M-way tree.  
 

XML representation of desk items  
 

Dynamic 

Fixed set of remote procedure 
calls. 

 

1. Wildcard matching of parameter   
    addresses. 
2. Parameter joins, parameter        
    groups and parameter modifiers. 
 

UPnP 

Dynamic 
Hierarchical organization of 
services containing actions. 

Specification of state variables 
within services and linking these 
state variables to actions and 
subscription events. 

Variadic number of arguments to 
actions. 

Static 

Service-level subscriptions that 
subscribe to all evented state 
variables within a service. 

IEEE 
1722.1 

Dynamic Distinct function calls operating on 
descriptors. 

 

Static Units described by a hierarchy of 
descriptors defining data. 

Representing audio signal paths that 
link units. 

OCA 
(AES-24 
Family) 

Dynamic Methods within objects. 
 
 
Attributes within objects. 
 

 

Static 

1. Ordering of classes within an   
    inheritance hierarchy (OCA). 
2. Signal path representation (OCA). 
 

 
Table 10.1 Examples of Primary and Secondary Design Concepts. 

Examples of dynamic secondary design concepts include the: 

 Use of wildcards within hierarchical levels as found in OSC and AES64; 

 Variadic arguments supported by OSC; 

 Modifier mechanism provided by AES64. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 [1] Although OSC methods commonly imply a static specification by being used to update specific 
parameters, the protocol does not have a static specification. 
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Primary and secondary design concepts that have distinct implementations may reference 

each other as found in the parameter descriptions that reference parameters within AES64 

desk item descriptions. Design concepts and the control protocol features that constituent 

primary and secondary static and dynamic specifications for different control protocols 

are summarized in Table 10.1. These examples only highlight the most prominent features 

of each control protocol. Entities (classes or services) that form a primary design concept 

are indicated by blue shading where the static and dynamic specifications are defined 

within a single entity. Static and dynamic specifications are often only weakly related in 

that a static specification must support the functionality implemented by the dynamic 

specification. Examples of these relationships include: 

 SNMP GETNEXT() requests that require SNMP objects to be ordered by object 

identifiers; 

 AES64 parameter joins and parameter groups that require parameters to maintain 

lists of related parameters; 

 Parameter organization within ACN that must support the ranged addressing used 

by commands discussed in Section 3.5.1.4 Parameter Organization (p.71). 

10.2.3 Comparing Approaches to Control Protocol Design  

The term ‘functional approach’ as used by Gross & Holtzen can be misleading as their 

notion of a functional approach is derived solely from the object-oriented design of  

AES-24. Descriptive and functional approaches to control protocol design are not 

necessarily mutually exclusive; they exist within a continuum. For example, consider an 

enhanced version of SNMP having twelve different commands (SNMP requests).  

This protocol design is still a parameter-based design, but has an extended dynamic 

specification. It is not logically satisfactory for the addition of functionality to transform a 

descriptive approach into a functional approach. An enhanced dynamic specification does 

not alter the fundamental characteristics of a static specification. Gross & Holtzen’s notion 

of a functional approach results from the use of an object-oriented (entity-based) design 

rather than a parameter-based design as a primary design concept.  

Table 10.2 summarizes both the advantages and disadvantages of parameter-based 

and entity-based approaches to control protocol design. It is important to note that an 

entity-based design can also be represented within a parameter-based environment.  

This type of representation is exemplified by IEC-62379-2 entities (functional blocks) 

being represented within the (parameter-based) static specification provided by SNMP.  
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[1] Unless an additional identification scheme is used, such as the identifiers used by OCA discussed in 
Section 10.3.3 Representing Parameters within Inheritance Hierarchies (p.260). 
 

As shown in Table 10.2, entity-based control protocol designs have a number of 

disadvantages that pose significant challenges for the design and implementation of 

sophisticated entity-based protocols. 

10.2.3.1 Fixed and Freely-Defined Specifications 

Static and dynamic specifications exist within a continuum that ranges from rigidly 

defined specifications to specifications that are freely defined. Freely defined 

specifications such as the conceptual tables found in SNMP and the services defined within 

UPnP are always specified in an abstract manner. These abstractions create a framework 

that can be tailored to meet the requirements of a specific application while also providing 

scalability. A framework was defined in Section 2.2 Fundamental Control Protocol 

Concepts (p.15) as an abstract architecture which does not prescribe any content. To 

        Approach                Advantages                     Disadvantages 

 
 
 
 
 
 
 
 
 
Entity-Based 

1.  Provides all required    
functionality. 

2.  Translates directly into 
many programming 
languages that are entity-
based. 

 

1.  A large number of entities are 
typically required. 

2.  A large number of functions or 
methods are required to address 
and manage the different entities. 

3.  May only be scalable by adding 
entities. 

4.  Difficult to represent parameter 
relationships. 

5.  Difficult to provide bulk parameter 
access. 

6.  May not provide global parameter 
addresses [1]. 

7.  Has a complex type system, as both 
entities and parameter values are 
data types. 

8.  May be difficult to standardize 
parameter addresses. 

 
 
 
 
Parameter-Based 

1.  Naturally supports bulk 
parameter access. 

2.  Easier to implement 
parameter relationships. 

3.  Allows commands to 
provide generalized 
functionality. 

4.  Has a simple type system 
where only parameter 
values are types. 

1.  Commands that only read and write 
parameter values may not provide 
all required functionality. 

2.  Does not have an extensible 
dynamic specification as commands 
are fixed by the protocol. 

 

 
Table 10.2 Comparing Approaches to Control Protocol Design. 
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provide scalability, either a static or a dynamic specification (or both) have characteristics 

of a framework.  

Additions to a dynamic specification described as an ‘ever increasing command set’ 

by Gross and Holtzen do not only apply to dynamic specifications. A static specification 

may also need to be extended to accommodate additional entities. IEC-62379-2 creates a 

static specification from specific, concrete entities (functional blocks).  

Additional functional blocks must be added to IEC-62379-2 to represent  

signal-processing functions that are not provided by the protocol as was noted in Section 

6.6.4.1 Device Representation in IEC-62379-2 (p.164). OCA classes such as the specific 

actuator sub-classes illustrated in Figure 3.6 (p.53)  are also examples of concrete entities 

defined by the OCA protocol. These concrete classes standardize the addresses of 

parameters defined within objects as was discussed in Section 3.3.2.3.1 Control Class 

Identifiers (p.54). Support for new audio functionality requires new classes to be added 

that extend both the static and dynamic specifications defined by OCA. AES64 and the 

SNMP implementation of the SDM presented in Chapter 6 address this problem by 

supporting scalability only within fixed, clearly defined frameworks. 

Scalability, without the need to expand a specification is provided by a generalization 

of the commands forming a dynamic specification and an abstraction of the data items 

that form a static specification. Examples of a generalized dynamic specification include 

the GET() and SET(..) commands found in SNMP and the fixed set of AES64 commands. 

These commands are generically applicable to any static specification defined by these 

protocols.  

10.2.3.2 Evaluating Static Specifications  

The most important characteristics of a static specification are the: 

1. Parameter organization and addressing schemes used. 

2. Representation of relationships among data items. 

3. Scalability of the representations used by the specification. 

10.2.3.2.1 Parameter Organization and Addressing Schemes 

Different parameter-addressing schemes are categorized as: 

1. Variable-Sized  Hierarchical Addressing Schemes 

OSC, SNMP, Ember+ and SDM full parameter addresses are all able to implement 

variable-sized parameter addresses that may be: 
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1.1 Variable-sized hierarchical addresses within a single semantic hierarchy. 

For example, the device architecture layer of the SDM that only represents the 

device structure. 

1.2 Variable-sized hierarchical addresses consisting of multiple, related 

semantic hierarchies. Full parameter addresses within the SDM provide an 

example of this approach. A variable-sized hierarchy describing device 

architecture is combined with a fixed-size hierarchy describing parameter 

organization. 

2. Fixed Hierarchical Addressing Schemes 

This type of addressing scheme typically also provides additional information about the 

context within which the parameter is used. Examples include HiQnet parameter 

addresses shown previously in Figure 3.13, HiQnet Parameter Address Format (p.60), 

AES64 parameter addresses, and the parameter description layer of the SDM. HiQnet 

parameter addresses identify a sub-device and a specific object that contains the 

specified parameter. AES64 parameter addresses provide additional device and 

channel information encoded into the fixed seven levels forming a parameter address. 

3. Linear Addressing Schemes 

Examples of linear addressing schemes include the patch organization scheme used by 

Standard MIDI (MIDI Manufacturers Association, 2003), as well as the linear 

enumeration of parameter addresses starting from a fixed base address used by 

CopperLan and ACN. Parameters are typically referenced by a numeric identifier.  

Linear addressing schemes occur as: 

2.1   Linear numeric addresses having no additional semantics 

Denotation of parameter addresses provides no additional information within 

this parameter-addressing scheme. Numeric parameter addresses have no 

relationship to a device’s structure or the parameter type. CopperLan uses this 

type of parameter address model where each numeric parameter address only 

serves as a parameter identifier within a specific sub-device.   

3.2 Linear numeric addresses having additional semantics 

Numeric addresses may be organized by an address identifier indicating 

additional semantics. Linear encoding of a hierarchical tree data structure was 

illustrated in Figure 2.5 Hierarchical Ordering of Numerical Parameter 

Addresses (p.25), and has not been encountered in the control protocols 

discussed in this dissertation. ACN supports address offsets where parameters 

of the same type have a fixed address offset relationship to each other.  



255 
 

IEEE 1722.1-2013 organizes parameters within descriptors where each 

parameter occurs at an offset address from the base address of the descriptor.  

Related parameters such as all gain parameters will thus have the same address 

offset within a set of descriptors of the same type.  

The linear addressing scheme used by CopperLan defines parameter addresses 

within each sub-device. This type of addressing scheme promotes monolithic applications 

and offers no advantage over hierarchical parameter addresses. AES64 is the only protocol 

that uses an extended, standardized, fixed addressing scheme for parameter data. Fixed-

length parameter addresses have several advantages when compared to variable-length 

addresses. Table 10.3 summarizes the advantages and disadvantages of fixed and variable-

length parameter addressing schemes. 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter addresses consisting of a few levels (as exemplified by HiQnet) will not have 

unused levels. However, a small number of levels constrains the information that can be 

provided by parameter addresses, as each level of a parameter address may provide 

explicit or implicit information about a parameter. AES64 addresses will contain unused 

levels for simple devices such as microphones. The SDM solves the problem of unused 

levels by allowing variable-length full parameter addresses and fixed-size short parameter 

addresses. With reference to the device architecture layer and the parameter description 

layer of the SDM, devices can be classified as 5-4 devices for complex devices such as 

mixing consoles or 2-4 devices for simple devices such as microphones. These values 

Addressing 
  Scheme 

Advantages Disadvantages 

 
 

 
 
 
Fixed 

1. Supports parameter address standardization. 
2. Devices may be controlled without service 

discovery where parameter addresses can be 
determined from other known addresses or 
knowledge of the organization of similar devices.  

3. Devices can be explored by probing for 
parameters. 

4. Parameter addresses can be determined from 
existing addresses. Where the address is known 
for a parameter, addresses for similar 
parameters can be computed. 

1. Unused levels within 
parameter addresses 
must be padded with 
nulls for simple 
devices which  
may create ambiguous 
parameter addresses. 

Variable 

1. Supports different device architectures and 
logical parameter organization schemes without 
any redundancy. 
 

1. Usually requires 
service discovery (As 
discussed later in this 
section). 

 
Table 10.3 Comparing Fixed and Variable Parameter Addresses. 
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indicate the number of levels used within the device architecture and parameter 

description layers respectively. 

10.2.3.2.2 Representation of Relationships between Data Items 

Representing relationships between data items (including parameter data and descriptive 

data) is a useful capability. The only control protocols that explicitly represent parameter 

relationships are AES64 and OCA. AES64 supports parameter joins and parameter 

groups; OCA provides an ‘OcaGrouper’ class that represents and manages parameter 

groups (Bosch Communication Systems, 2012, p. 101), while IEEE 1722.1-2013 supports 

control grouping using a ‘CONTROL_BLOCK’ descriptor (Institute of Electrical and 

Electronics Engineers, 2012). OSC and AES64 also allow relationships to be expressed 

using wildcard values within parameter addresses. SNMP uniquely provides a generic 

representation of different data relationships using the indexing schemes discussed in 

Chapter 6. 

The implementation and management of parameter relationships is difficult to 

implement in a control protocol design that excludes an independent (and centralized) 

parameter representation from a primary design concept. Parameter data that is 

distributed across multiple entities must be managed by complex operations provided by 

a dynamic specification. Later sections in this chapter suggest solutions to these 

limitations that result from control protocol designs that have entity-based primary design 

concepts. 

10.2.3.3 Evaluating Dynamic Specifications  

It is important to note that previous discussions of control protocols that provide 

frameworks such as OSC, Ember+, SNMP and UPnP only considered the native 

capabilities of these protocols. In order to provide a meaningful evaluation, an evaluation 

should be made of a specific implementation of a framework. IEC-62379-2 is the only 

known example of a control protocol built using a framework. IEC-62379 does not extend 

the native dynamic specification represented by the standard SNMP requests discussed in 

Chapter 6. As was discussed in Section 6.2.3 MIB Organization and Specification (p. 146), 

additional functionality provided by libraries may form a part of the dynamic specification 

of a control protocol built using these frameworks. Thus, the native capabilities of a 

framework do not provide a true reflection of the capabilities of a specific control protocol 

developed using the framework. For example, the action parameters that were used within 

the SNMP implementation of the SDM to discover and return child device components 

extend the native dynamic specification provided by SNMP.  



257 
 

10.3 Overcoming Entity-Based Design Limitations 

As noted in previous sections, the representation of parameters forms a crucial element 

within control protocol design. Limitations within entity-based control protocol designs 

commonly stem from the characteristics of entities themselves because the fundamental 

properties of entities encourage the embedding of related parameter data within separate, 

disparate entities. In particular, object-oriented software design emphasizes class 

cohesion and object relationships, rather than data relationships. 

The following sections suggest how entity-based designs can be constructed to 

provide the advantages of parameter-based designs. 

10.3.1 Approaches to Object-Oriented Control Protocol Designs 

The fundamental nature of objects requires each class to define both a static and a dynamic 

specification. Static and dynamic specifications cannot be separated.  

An object-oriented design thus forces the static and dynamic specifications to be fused 

within individual classes and distributed across multiple object instances. 

Entity-based designs must represent one or more secondary design concepts by 

embedding these design concepts within the primary design concept, or by providing 

separate representations for secondary design concepts. This is because a single entity 

typically represents exactly one abstraction. As an example, consider an entity-based 

primary design concept used to represent the architecture of a device shown in  

Figure 10.3.  

 

 

 

 

 

 

 

 

 

 

If this design requires parameter groups to be supported as a secondary design concept, 

additional entities must be added to the entity-based design to represent and manage 

   Device 
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Parameters 

Figure 10.3 Parameter Relationships Across Different Entities. 
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these relationships that occur across different entities. In this example, a new entity must 

be added to the static specification to represent parameter groups. This type of design is 

found within OCA where a dedicated ‘OcaGrouper’ class mentioned previously represents 

and manages parameter groups. A common principle advocated for object-oriented 

software designs is that designs should attempt to separate different concerns. Figure 

10.4(a) separates device architecture from parameters and also separates parameters from 

the network transport that carries commands that address parameter values.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10.4(b) combines these different concerns using multiple inheritance to create a 

complex implementation of a simple control component. While the separation of concerns 

forms standard best practice in software design, the use of abstract inheritance to 

implement both static and dynamic specifications easily leads to the complex 

implementation of a class as found in Figure 10.4(b). An example CopperLan-enabled 

controller (ICT7 Corporation, n.d.) uses a design similar to the design in Figure 10.4(b) 

illustrated by the class declaration of Listing 10.1.  

 
 

 

 

 

Listing 10.1 A CopperLan Class Example. 

class XYController :  public Component, 
                                 protected Button::Listener, 
                                protected Timer, 
                                protected AsyncUpdater, 
                                 protected IOutput_NotificationHandler 
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Figure 10.4 Separating Concerns Within Object-Oriented Designs. 
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In this example (shown previously in Chapter 8), an object of the ‘XYController’ device 

class functions as a timer, a button event handler and also handles remote parameter 

update messages and connection requests. In addition, the class must define parameter 

addresses. OCA class designs that use a deep single-inheritance hierarchy provide greater 

semantic coherence, while also supporting hierarchical parameter addresses as mentioned 

previously. This type of class design is thus preferable to shallow class hierarchies that use 

multiple inheritance as illustrated by the example in Listing 10.1. 

10.3.2 Combining Entity-Based and Parameter-Based Designs 

By combining an entity-based design with a parameter-based design, the advantages of 

each approach can be realized while mitigating the disadvantages of each approach.  

To achieve this synthesis, parameters must be separately defined outside of the entities 

that form a primary design concept. In Figure 10.5, parameters are organized 

independently from an entity-based model of a device. Parameters are then loosely 

coupled to entities by being referenced from entities rather than being contained within 

entities.  

  

 

 

 

 
 
 
 

 

 

 

The implementation of the parameter model is not significant (it may also be entity-

based); the independence of the parameter model is what is important. This approach 

follows the approach used by the SDM which uses an entity-based design for the device 

architecture layer and a parameter-based design for the parameter description layer of a 

full parameter address. SDM short parameter addresses ensure that parameters can 

always be accessed independently of the device architecture layer. This allows parameter 

relationships and operations on sets of parameters to be implemented without managing 

entities that are not parameters. 
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Figure 10.5 Combining Entity-Based and Parameter-Based Designs. 
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                     04p01 …        04e01 …        04m01 …     
Identifier 
  Strings 

Figure 10.6 Comparing OCA Level Identifiers to the SDM. 
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10.3.3 Representing Parameters within Inheritance Hierarchies 

The use of classes within inheritance hierarchies where parameter values are identified by 

linear numeric identifiers as found in CopperLan makes parameter address 

interoperability with the SDM difficult to achieve. Numeric parameter identifiers must be 

created to imply multiple hierarchical levels as previously illustrated in Figure 2.5 (p.25). 

However, these parameter identifiers are not globally accessible as they are embedded 

within CopperLan objects. 

Because OCA assigns identifiers to class levels within a deep inheritance hierarchy 

and identifies properties methods and events using identifier strings (discussed in Section 

3.3.2.3.1 Control Class Identifiers (p.54)), it is possible to achieve parameter address 

interoperability with AES and SDM parameter addresses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
For example, the ‘OcaDelay’ class (Bosch Communication Systems, 2012, pp. 17-18) 

identified by the class identifier 1.1.1.8 and the property identifier 04p01 (referencing 

the first property of the ‘OcaDelay’ class) can be mapped to the SDM parameter 

description layer as shown in Figure 10.6. OCA level five classes may be specializations of 

a concrete level four class as illustrated in Figure 10.6. This means that level five 

representations cannot be accommodated within the four levels of the SDM parameter 
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address layer unless levels four and five are both accommodated within a SDM level six 

parameter identifier entry. For example, a level six SDM identifier value of 8 would 

represent the ‘OCADelay’ class, while a value of 81 would represented the 

‘OcaDelayExtended’ class. 

OCA demonstrates that parameter addresses can be conceptually independent of the 

entities (classes) that define parameters. Parameter addresses are independently 

represented by combining numbered inheritance levels and attribute identifiers. 

10.3.4 Aspect-Oriented Software Designs 

The use of entity-based designs is a direct result of the software development 

environments used to implement control protocols. It is natural to consider a software 

design in terms of records or objects, as these abstractions form the core building blocks 

of the most widely used programming languages. A solution to some of the limitations of 

entity-based designs is provided by a programming paradigm known as ‘aspect-oriented 

programming’: 

 “We have found many programming problems for which neither procedural nor 

object-oriented programming techniques are sufficient to clearly capture some of 

the important design decisions the program must implement. This forces the 

implementation of those design decisions to be scattered throughout the code ... 

We call the properties these decisions address ‘aspects’, and show that the reason 

they have been hard to capture is that they crosscut the system’s basic 

functionality.”  (Kiczales, et al., 1997). 

Aspects allow relationships that occur among objects that are not related by inheritance 

or any other referential relationships to be captured. A detailed investigation into the use 

of aspects in conjunction with entity-based control protocol designs falls outside of the 

scope of this dissertation. However, a brief discussion and an example illustrate how 

independent parameter access can be achieved by using aspects within entity-based 

control protocol designs. 

10.3.4.1 Aspect-Oriented Concepts 

A ‘cross-cutting concern’ occurs where a semantic relationship exists across branches 

within an inheritance hierarchy or between referentially related objects. For example,  

a set of otherwise unrelated objects that all support subscriptions. Crosscutting concerns 

create ‘aspects’ that are defined like classes and can be instantiated  (O'Regan, 2004).  

An aspect consists of: 

 ‘Join Points’ that are defined as points of execution within one or more methods; 
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 ‘Pointcuts’ that represent a set of join points; 

 ‘Advice’ consists of programming language code that is executed before or after 

a pointcut. 

Advice may be added to an existing object model. In Figure 10.7, a parameter group and a 

parameter join are represented by aspects as these parameter relationships form 

crosscutting concerns within the example class hierarchy.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Parameters that are implemented as unrelated class attributes are conceptually related 

using aspects by joining their SET(..) methods. ‘Aspect1’ implements a parameter join, 

while ‘Aspect2’ implements a parameter group consisting of three parameters. 

10.3.4.2 An Aspect-Oriented Example 

Assuming the existence of a ‘Parameter’ class and a ‘Group’ class, the code in Listing 10.2 

provides an example of how a parameter group is implemented using an aspect.  

This implementation is essentially the ‘Observer Pattern’ software idiom (Gamma, Helm, 

Johnson, & Vlissides, 1995) implemented using an aspect  (Eales, 2006).   

The ‘GroupUpdater’ aspect represents and manages a group of parameters. When a 

parameter belonging to a group is updated, the aspect updates all other members of the 

group. Lines 3 and 4 in Listing 10.2 manage a parameter group by adding and removing 

parameters to and from the group. Each parameter references the group that it belongs to. 

Line 6 creates a pointcut that defines a parameter update operation. An update operation 
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Figure 10.7 Parameter Access using Aspects. 
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Advice 

 
1. aspect GroupUpdater  { 

2. private Vector Parameter.pGroup = new Vector(); 

3.  public static void addParameter (Parameter p, Group g)  {  p.pGroup.add(g);  } 

4. public static void removeParameter (Parameter p, Group g)  {  p.pGroup.remove(g);  } 

5. public static void updateParameter Group(Parameter p, Group g)  {  g.update(p);  } 

 
6. pointcut update(Parameter p)    :  target(p)  &&  call (void Parameter.set*(int) ); 

 
7. after (Parameter p)  :  update(p)  { 

8.  Iterator iter = p.pGroup.iterator(); 

9.  while ( iter.hasNext() )  { 

10.  updateParameterGroup (p,  (Group)  iter.next()) 

 } 

  }  } 

Listing 10.2 Updating Parameter Groups using Aspects. 

 (Adapted from  (Matuszek, 2003). 

 

 

 

 

occurs when a method name beginning with ‘set’ is invoked as each SET(..) method forms 

a join point. Following the invocation of any method having a name prefixed with ‘set’ the 

‘after advice’ (lines 7 to 10) is executed. This updates the group by invoking an ‘update()’ 

method within each member of a group and specifying the group member parameter to be 

updated as illustrated by the code in line 10 and line 5 in Listing 10.2. 

 

 
 
 

 

 

 

 

 

 

 

 

 
 

 

 
 

To date, aspects have not been widely used within the software industry  

(Bradley, 2003). Reasons for this situation include the added complexity that aspects 

bring to software, and the specialized compilers that are required to develop aspect-

oriented software. 

10.3.5 The AES64 Approach 

AES64 provides an example of a novel approach to control protocol design in that it does 

not define a device model. Figure 10.8 shows that AES64 uses two design concepts:  

a fixed-level hierarchical organization of parameters is the primary design concept, and 

the specification of desk items that link control surface components to parameters is the 

secondary design concept. AES64 convincingly demonstrates that a model of a device is 

not required by a control protocol to provide control functionality or to represent a control 

surface. A parameter model and a distinct representation of a control surface that is linked 
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to the parameter model are sufficient to provide a complete static design for a control 

protocol. Because the SDM explicitly represents a control surface within an extended 

parameter hierarchy, it combines the two static design concepts found in AES64. AES64 

implies a device architecture within the seven levels of a parameter address while the SDM 

explicitly defines the architecture of a device.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

The designers of AES64 realized that a device model does not influence the functionality 

provided by a control protocol and is not required to specify a control surface.  

10.4 Conclusions  

Comparing the relative merits of approaches to control protocol design becomes more 

valuable when approached from well-defined perspectives. Only when approaches to 

protocol design are considered within the context of the characteristics of the static and 

dynamic specifications that are derived from design concepts does a comparison become 

meaningful. In particular, the capabilities of a control protocol are typically determined 

by the: 

 Characteristics of a primary design concept, and 

 The interaction between primary and secondary design concepts. For example, 

SNMP data objects stored in an M-way tree is a primary design concept. Different 

indexing schemes provide a secondary design concept that enhances the primary 

design concept. 

The use of abstraction within a design concept significantly influences the scalability 

and flexibility of a control protocol. As an example, consider the representations provided 

Figure 10.8 The Design of AES64. 
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by IEC-62379-2 and the SNMP implementation of the SDM presented in Chapter 6. The 

static specification created by linking abstract device components using SNMP table 

indexes and then relating these device components using a parameter indexing scheme 

provides a much more sophisticated and expressive primary design concept than the 

linear chaining of concrete functional blocks defined by IEC-62379-2. Within parameter-

based control protocol designs, a static specification should achieve scalability by 

extending the content of the specification and not the specification itself. AES64, the 

SNMP implementation of the SDM and UPnP are all examples of protocols that adhere to 

this approach. Generalization of the commands within a dynamic specification means that 

the dynamic specification does not require extension to meet the requirements of different 

static specifications.  

However, a simple dynamic specification (as provided by SNMP) may not meet the 

functional requirements of a control protocol design or a specific application. 

Object-oriented control protocols that endeavor to enforce standard parameter 

addresses may have to extend a primary design concept to accommodate extensions to a 

static or dynamic specification. For example, OCA adds sub-classes that have unique 

control class identifiers to enforce the standardization of parameter addresses. If OCA 

supported extension using different object instances (for example, different actuator 

instances) the protocol would have characteristics of a framework that supports arbitrary, 

non-standard extensions. Entity-based approaches that restrict direct access to 

parameters by embedding parameters within entities require extensive additional 

functionality to manage parameter relationships and bulk parameter transfers. A unique 

set of functions or methods are typically required for each specific entity, and are also 

required to manage a static specification that is distributed across multiple entities.  

The SDM has a primary design concept that consists of two loosely coupled static 

specifications. The device architecture layer provides one static specification that statically 

describes a device’s architecture. A second static specification is provided by the 

parameter address layer that describes parameters. Full parameter addresses are created 

by combining these two static specifications. Because the SDM is an abstract model of a 

device, the primary design concept does not include a dynamic specification.  

Appendix 10 provides a detailed analysis of different commands that make up the 

dynamic specification of different control protocols. The next chapter describes a novel 

environment that directly supports the SDM, while also providing service discovery and 

object serialization. This environment has a primary design concept based on SDM device 

components. These components support a freely defined dynamic specification that 

challenges the notion of what constitutes a ‘control protocol’. 
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Chapter 11 

Fli2: An Associative Discovery and 

Control Environment 

 
 
11.1 Introduction  

Investigation of the different capabilities of the control protocols discussed in the previous 

chapters identified three areas that are often unsatisfactorily addressed, or not addressed 

at all by many protocols. These areas include: 

 Service discovery and service enumeration; 

 The representation of a control surface that links a user interface to services;  

 The management of parameter relationships; 

 Bulk parameter initialization, including saving and restoring a device’s state. 

Previous chapters demonstrated that a representation of an audio device’s architecture 

could be accommodated within different control protocols that do not explicitly support 

the representation of a device. In particular, the different data structures provided by OSC 

and SNMP, and the parameter and device representations supported by AES64, 

CopperLan and UPnP were used to represent a device according to the SDM developed in 

Chapter 4.  

This chapter presents a novel approach to service discovery and control surface 

creation by using an object-oriented environment named ‘Fli2’ that naturally represents 

the component-based architecture of the SDM. By directly supporting object serialization, 

this environment also dispenses with the need for service enumeration. Controllers access 

serialized objects that are able to automatically configure the required network 

connectivity and automatically render controls on a control surface.  

This environment challenges the accepted notion of what constitutes a ‘control protocol’. 

11.1.1 Optimizing Operations within Distributed Environments 

The following sections discuss the computational costs encountered when attempting to 

optimize service discovery, service enumeration, and control surface creation within 

distributed environments.   
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11.1.1.1 Optimizing Service Discovery and Service Enumeration 

Performing service discovery and service enumeration using existing discovery protocols 

such as SLP or DNS-SD typically requires: 

 Multiple remote accesses to discover a service and enumerate the 

characteristics of  a service, and 

 Local parsing of remotely retrieved data describing a service to transform the 

data into the context-sensitive information required to implement the service.  

The number of remote commands required to implement a service on a controller is 

termed the ‘service implementation cost’. This metric consists of two component metrics:  

1. ‘Access cost’, defined as the number of remote accesses required to locate a service 

(‘location cost’) added to the number of remote accesses required to identify and 

retrieve the resources required to implement the service  

(‘retrieval cost’). Access cost can be a measure of bandwidth utilization;  

a measure of the time required to access and retrieve remote data, or a combination 

of these two metrics. 

2. ‘Processing cost’, which is the overhead incurred by the local parsing and 

processing of retrieved data. This can be measured by a metric similar to the 

commonly used software complexity metric, the Lines of Code metric  

(Chen, Wang, Zhou, & Bruda, 2011). The amount of data processed provides a 

similar metric that equates complexity with data size. Processing cost can also be 

measured by the time required to process retrieved data. The two metrics are 

equivalent, as data size is typically linearly proportional to the time taken to 

process the data if O(n) algorithms are used.  

Implementing a remote service thus has a total cost given by:   

 Service Implementation Cost = Access Cost + Processing Cost    where    

 Access Cost = Location Cost + Retrieval Cost  

As an example, consider the OSC operators discussed in Section 5.4.3.1.1 Address Space 

Traversal (p.130) that locate services within an OSC address space. The access cost is 

proportional to the level of the service within the OSC address space tree. Before a 

particular branch of the address space containing the required service is accessed,  

a level-by-level traversal of the address space is required to locate the service. The access 

cost consists of a single operation to retrieve the required data, while the processing cost 

involves parsing the string representation of data that is used. A second example is 

provided by standard SNMP requests that have a high access cost. To discover and 
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enumerate services, multiple GET() or GETNEXT() requests must be used. GETBULK() 

requests optimize access cost, but have a high processing cost as all of the retrieved data 

must be processed. UPnP appears to provide efficient access and processing costs, as 

specific services are easily identified and then directly retrieved. However, the indirect 

overheads encountered when discovering UPnP services are a consequence of using 

HTTP-based protocols. In this case, time rather than bandwidth is more likely to provide 

an accurate measurement of access cost. 

Within the context of the SDM, the number of remote accesses required to find a 

service is typically proportional to the depth of the service within the hierarchical 

representation of the device. Further optimization can only occur if the required service is 

directly accessible without requiring a top-down traversal of the device structure. 

Additionally, standardized service identifiers are required to directly access services. 

Service standardization was discussed previously in Section 1.4.2 Standardizing 

Functionality  (p.10). 

11.1.1.2 Optimizing Control Surface Creation 

Control protocols that support the specification of a control surface typically retrieve a 

control surface description from a remote device. For example, both AES64 and UPnP 

advertise XML descriptions to describe the content and organization of a control surface. 

Optimization of the overhead encountered when retrieving the user interface to a service 

was introduced in Section 9.6.1 Control Serialization (p.238), and discussed further in 

Section 9.7.4 The Significance of Object Serialization (p.244) with reference to UPnP.  

A single UPnP action was used to retrieve a remote control object using serialization at a 

cost of a single remote access. More significantly, the processing cost required for service 

enumeration was eliminated as serialized control objects encapsulate the functionality 

required to render themselves on a control surface and to access remote services.  

Bandwidth usage is reduced if control objects do not contain embedded widgets.  

In this case, a control object specifies the required widgets that are then created locally. 

Serialized control objects that include all required widgets, graphics and other resources 

are termed ‘fully-serialized’ control objects. ‘Partially-serialized’ control objects only 

contain resource identifiers indicating the required resources. These objects must be able 

to obtain the required resources from local libraries available to a controller. The local 

processing costs incurred when creating (deserializing) control objects are trivial.  

Times between 0.01020 ms and 0.02740 ms for serializing objects, and 0.00995 ms and 

0.03750 ms for deserializing objects have been benchmarked in Java applications 

(Mesquita, 2006).  



269 
 

11.1.1.3 Optimizing Parameter Management Functionality 

Providing bulk parameter access and supporting the efficient management of parameter 

relationships requires parameters to be independently accessible as defined in  

Section 4.3.4.3.2 Short Parameter Addresses (p.98). Complexity is introduced when 

parameters are encapsulated within programming language abstractions such as classes 

and structures (records). This complexity is a result of the overheads required to access 

parameters as was discussed in Chapter 10. 

The following section introduces a networked environment that supports the 

optimizations discussed previously. 

11.2 Tuple Spaces and Object Spaces 

This section introduces an environment that uses a distributed, shared memory termed a 

‘space’ that: 

 

 Provides an integrated, object-oriented approach to the implementation of 

device and service discovery, control functionality, parameter management and 

connection management; 

 Supports the dynamic creation of the remote communication endpoints required 

by services; 

 Supports the automatic creation of control surfaces; 

 Allows parameter management operations to be easily and efficiently 

implemented; 

 Supports different approaches to preventing potential race conditions that can 

occur when implementing connection management functionality. 

Following from the ‘Linda’ co-ordination language developed by David Gelernter 

and Nicholas Carreiro at Yale University (Gelernter D. , 1985), (Gelernter & Carreiro, 

1992), several environments termed ‘spaces’ have been developed. These include 

JavaSpaces from SUN Microsystems (Freeman, Hupfer, & Arnold, 1999), Fly from Zink 

Digital (Zink Digital Ltd., 2011), MozartSpaces from the Technical University of Vienna 

(Wittman, Efler, Dönz, & Planer, 2012) and SQLSpaces from the University of Duisberg-

Essen (Faculty of Engineering - University of Duisberg-Essen, n.d.). 

11.2.1 Space Characteristics 

 A space is a distributed, shared memory buffer that supports the discovery and retrieval 

of structured data. Data is organized as tuples in the classic Linda model and as object 

instances in object-oriented space implementations. A tuple is simply an ordered set of 

data values that conceptually corresponds to a programming language structure, database 
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record or an SNMP conceptual row. Object spaces store objects within a space in a 

serialized format. Serialized objects are termed ‘passive objects’, as they cannot be 

instantiated within the space environment in which they are stored.  

Processes can write objects to, and read objects from one or more remote spaces. 

Because objects have methods consisting of executable code, spaces facilitate an exchange 

of executable content between different remote processes. An object space can be 

subjected to many different semantic interpretations. It may be viewed as: 

 An environment for communication and synchronization between processes as 

envisaged by the original Linda implementation; 

 An object-oriented database; 

 A solution to concurrent access problems and race conditions; 

 A data cloud that provides a distributed storage environment. 

Spaces have six characteristics (Mahapatra, 2004) that differentiate spaces from 

traditional distributed environments:  

1. Multiple processes can access space data concurrently; 

2. There is a loose coupling between senders and receivers which enhances 

software reuse and flexibility of design; 

3. Spaces are highly scalable;  

4. Spaces are simple and flexible;  

5. Leasing of objects for a specified time is supported (objects are removed from a 

space by the space if their lease times have expired);  

6. Atomicity and thus transactional security are inherent properties of spaces. 

These characteristic are the result of spaces allowing interactions between different 

processes (Kühn, n.d.) to be decoupled with respect to: 

 Time – communicating processes may read and write data to or from a space at 

any time; 

 Data storage – processes all use the same space as a data store without any 

knowledge about each other; 

 Reference – direct communication between client-server or peer applications 

does not exist as all communication occurs via a space. 

Processes that communicate using a space are loosely-coupled, as read and write 

operations occur without any knowledge of any other processes. Applications using spaces 

scale well because spaces can be accessed by any number of networked processes and can 
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store an extremely large numbers of objects. Objects may remain indefinitely in a space or 

have a lifetime specified by a lease time. Because spaces store serialized, passive objects, 

and a space does not record changes to its contents, both the space and its contents are 

stateless.  

11.2.1.1 Comparing Spaces to RESTful Architectures 

Although intended to describe principles with reference to the World Wide Web, 

Representational State Transfer (REST) principles (Fielding, 2000) can be applied to any 

distributed software architecture. A RESTful architectural style (Servage Magazine, 2013) 

strives to: 

 Provide a uniform interface to the discovery and retrieval of all resources. 

 Support stateless interactions between a client and a server. 

 Allow clients to store responses obtained from a server. 

 Support loosely coupled client-server relationships where the client is not aware of 

how data is stored on a server and the server is not concerned with the client 

interface to the server. 

 Allow a server to extend the functionality of a client by transferring executable code 

to a client. 

It is interesting to note the close similarities between these features and the previously 

listed characteristics of object spaces. 

11.2.2 Space Operations 

Space operations are atomic, meaning that the entire operation is guaranteed to complete 

fully or to fail. Operations cannot be interrupted by time slicing algorithms that may pre-

empt different processes or threads. Space operations are not idempotent operations as 

writing the same object to a space creates two identical object instances within the space. 

However, read operations are easily designed to filter duplicate object instances. Spaces 

are inherently transactionally secure, as they automatically guarantee mutual exclusion. 

This property avoids the complexities associated with enforcing mutual exclusion in 

distributed systems to prevent deadlock and starvation (Kshemkalyani & Singhal, 2011, 

pp. 305-339). Enforcing mutual exclusion by using a space is discussed with reference to 

connection management in Section 11.4.1 Managing Concurrency (p.298). 

The four fundamental tuple space operations (Scientific Computing Associates, 

2007) defined by the original Linda model are: 

 in - removes a tuple from a tuple space; 

 rd - copies a tuple from a tuple space; 
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 out - writes a tuple to a tuple space; 

 eval() - writes the results of an evaluated expression in the form of a new tuple 

to a tuple space. 

Object-oriented spaces typically provide the following fundamental commands that are 

similar to Linda operations but operate on object instances: 

 READ - copies an object from an object space; 

 TAKE - removes an object from an object space; 

 WRITE (object) - writes an object to an object space. 

Figure 11.1 illustrates these commands and shows the architecture of a space-based 

network environment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These commands typically also exist in forms that address multiple objects:  

READ-MANY(), TAKE-MANY(), and WRITE-MANY(..). In addition to these fundamental 

space operations, spaces allow processes to subscribe to: 

Figure 11.1 Object Space Architecture and Operations. 
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 Changes to the contents (state) of a space; 

 The execution of READ() operations by remote processes that do not change the 

contents of a space. 

A space maintains an object registry and a listener registry shown in Figure 11.1 that store 

serialized objects and manage subscription requests respectively.  

Although networked devices can execute all space operations, it will be seen later in this 

chapter that devices are only required to advertise SDM components (devices, sub-devices 

and controls) as well as parameters via WRITE(..) operations. These SDM component 

objects encapsulate the remote services used by controllers.  

Controllers are typically interested in service announcements or configuration 

changes that are advertised when devices write objects to a space. Controllers register to 

receive notifications when specific objects are written to a space. When objects that are of 

interest to a controller arrive in a space, the controller is notified and then reads or 

removes the objects from the space. These events are illustrated in later sections of this 

chapter. 

It is important to note that a space is never used to convey control commands from 

a controller to a device. Control functionality is directly implemented between a controller 

and a device. An object space is used solely to advertise services, to provide services 

implementations, and to convey connection management requests.  

Controllers can also remove objects from a space, update the objects and then return the 

updated objects to a space. This update process is discussed with reference to 

implementing connection management in Section 11.4.2 Approaches to Implementing 

Connection Management (p.299). 

11.2.2.1 Object Discovery using an Associative Memory 

Serialized object instances in a space are located via ‘associative matching’. Unlike most 

programming language environments, objects are not referenced by a memory location or 

by an identifier that maps to a memory location. Objects are selected from a space during 

READ() and TAKE() operations by an object matching process that uses a template object 

(termed an ‘antituple’ in Linda) to select objects from a space.  

A template object selects (associatively matches) objects of the same type having data 

member values that are identical to the template’s data member values. This type of 

organization of information is known as an ‘associative memory’ or ‘content addressable 

memory’ and has its origins in hardware designs (Godse & Godse, 2003, p. 271) for  

high-performance memory supporting parallel access. The use of a content addressable 

memory was first suggested in 1955 by Dudley Allen Buck, an Electrical Engineer at the 
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Massachusetts Institute of Technology (TRW Computer Division, 1963, p. 17).  

This concept is also found in neural networks (Hassoun, 1993), where associative 

relationships are used to represent the evolution of a system’s state. 

11.2.2.1.1 Granularity of Service Discovery 

It is useful to be able to control the granularity of service discovery. By specifying different 

templates used to select objects from a space, device components or parameters that 

provide services that match the specified selection criteria can be selected.  

For example, a controller may only require specific controls such as the faders belonging 

to the mastering section of a mixing console. Using associative matching, the context of 

the returned fader controls is determined by the query itself which specifies these 

component relationships. In this case, the child controls of the mastering section  

sub-device are specified. This type of query follows RESTful principles in that the query 

itself is atomic and is thus never dependent on previous queries.  

Associative matching provides a logical, user-centered approach to service discovery. 

A parametric equalizer or channel strip are familiar components to an audio engineer and 

do not require any further qualification. For example, template object attributes 

containing keywords such as ‘INPUT CHANNEL’ or ‘CHANNEL STRIP’ would return a set 

of matching channel strip objects from a space. A lack of standards for the specification of 

services for audio devices makes this approach particularly attractive.  

A list of keywords used for associative matching can be provided by a device, retrieved 

from a space and then displayed on a control surface. An engineer can then compose 

queries from the list of provided keywords. Service discovery queries that return arbitrary 

sets of results are difficult or impossible to achieve with discovery protocols such as DNS-

SD or SLP. The granularity of an associative matching process is only dependent on the 

number of object attributes that are available to formulate queries. Objects also allow the 

granularity of discovery operations to be controlled via inheritance hierarchies if the 

discovery of types and their subtypes is supported by a space environment.  

Within the Fly Object Space environment discussed later in this chapter, object 

attributes are matched to a template object by type and value. Unspecified attributes 

within a template are implemented as null references. This provides a wildcard 

mechanism where any attribute value will match a template attribute having a null value. 

As an example, consider a class ‘Control’ having three attributes: a unique name,  

a control type description and a parent component name. The control type description 

identifies the control’s functionality such as a fader control or a gain control and the parent 

component denotes the SDM sub-device that contains the control. Table 11.1 lists example 



275 
 

object templates used for associative queries and the returned objects that match these 

templates. 

 

 

 

 

 

 

 

 

 

 

Simple matching operations are limited in that these operations cannot express complex 

queries, as Boolean expressions and attribute ranges cannot be expressed. For example, 

queries to select the input section faders for all even-numbered channels or the faders for 

channels one to six cannot be expressed. Associative matching consists solely of logical 

AND operations with the addition of a wildcard ‘ANY’ represented by a null object 

attribute. These limitations are often easily mitigated by carefully considering object 

attributes. For example, a large device can divide controls into banks of N controls and a 

bank identifier attribute allows selection of an arbitrary bank of controls.  

11.2.2.1.2 Space Subscriptions 

Networked processes subscribe to operations processed by a space as mentioned 

previously. Subscribers are notified when READ(), WRITE(..) or TAKE() operations are 

executed in the context of specific object instances by a space. A process creates a 

subscription by specifying: 

 The type of operation (READ(), WRITE(..) or TAKE()) that triggers a notification; 

 An object template that is used to match objects that are the arguments or returned 

results of a space operation. 

Subscription requests are thus also implemented using associative matching.  

For example, a WRITE(..) subscription with a template of class device where the device 

class has a device type attribute of “mic” will inform a subscriber when microphone device 

objects are written to the space. 

  Template                  Template Attributes      Matching Object/s 

    Name Control Type       Parent  Name   

Template1 Fader3 null null  All controls having the 
name ‘Fader3’. 

Template2 null Fader null All device faders. 

Template3 null null MasterSection Left and right master 
faders and meters. 

Template4 null 
 

Fader InputSection All input channel strip 
faders. 

Template4 null 
 

null 
 

ChannelStrip2 All controls belonging to 
channel strip two. 

Template6 null null               null All device controls. 

 
Table 11.1 Example Object Templates for Associative Matching. 
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11.2.2.2 The Role of Object Serialization  

A discovery environment that allows serialized objects to be located by associative 

matching provides many advantages, including:  

 Direct support for discovering components and parameters defined by the SDM; 

 An efficient representation of controls that does not require service enumeration 

as previously discussed in Section 9.6.1 Control Serialization (p.238) with 

reference to UPnP; 

 Allowing parameters to be accessed independently of any device components; 

 The ability for devices to both advertise and provide executable code in the form 

of object methods to controllers via serialization. 

The exchange of executable content allows a wide range of functionality to be passed from 

devices to controller applications. Devices are able to push the functionality required to 

interact with them to controllers. Spaces also naturally support one of the key principles 

of the SDM, namely that parameter access should not be dependent on accessing device 

components. Parameters can be advertised to a space independently of SDM device, sub-

device and control components. 

11.2.3 Space Network Architectures 

Spaces commonly support many different network topologies, depending on the 

requirements of a particular space environment. Reliability is increased if a space is 

replicated on one or more different network nodes. Decentralized data storage is always 

preferable to centralized solutions where the failure of a centralized network component 

may cause the entire network to fail. JavaSpaces avoids centralized dependencies by 

supporting a ‘federation’ of spaces. This allows a single logical space to consist of multiple 

distributed spaces that are managed by Java’s distributed Jini technology (Apache 

Software Foundation, n.d.). Environments that do not support a federation (such as the 

Fly environment discussed later in this chapter) must use multiple spaces that interact 

and synchronize with each other. The process of synchronizing multiple spaces is termed 

‘replication’ (Wittmann, 2008).  

In Figure 11.2(a), a process monitors a primary space and ensures that any changes 

to the contents of the primary space are propagated to a secondary (replicated) space. The 

‘Space Monitor’ process (on the same network node as the secondary space) registers with 

the primary space to receive notifications when objects arrive in the primary space. It then 

reads these objects and forwards (writes) them to the secondary space. Figure 11.2(b) 

shows two object spaces, each having a monitoring process that monitors the other space. 

This arrangement is similar to a per-to-peer network architecture and ensures that 
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changes to the content of either space are mirrored within the other space. In these 

examples, the monitoring process is implemented on the same network node as the space. 

It is also possible for a space and the process that monitors the space to be located on 

different network nodes.  

In the context of the SDM, it is not difficult to implement replication as the matching 

criteria used to monitor state changes within a space are well-defined.  

These criteria are simply the types of the different objects (“DEVICE”, “SUBDEVICE”, 

“CONTROL” and “PARAMETER”) defined by the SDM. Template objects of these types 

are used by a space monitor process to subscribe to the arrival or removal of objects of 

these types to or from a monitored space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            
                                                               
 

 
 

Figure 11.2 Maintaining Multiple, Replicated Spaces. 
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11.2.3.1 Monitoring Reachability 

As mentioned previously, objects within a space have a lease time which is specified when 

the objects are written to a space. Lease times are typically expressed in milliseconds and 

have an upper bound determined by the numeric data type storing the lease time. A 

negative value commonly specifies an infinite lease time. A ‘heartbeat’ object having a 

specified lease time may be written to a space by a device to signal that the device is 

reachable. Controllers that subscribe to a specific heartbeat object are notified each time 

the device writes a heartbeat object to the space. Controllers can easily maintain a list of 

currently reachable devices by registering to receive all heartbeat notifications from a 

space, or, may register to receive heartbeats from specific devices. Controllers can also poll 

a space using READ() or READ-MANY() operations to verify the reachability of remote 

devices.  

11.3 A Space-Based Discovery and Control Environment 

This section discusses the development of a space-based environment for the discovery 

and control of networked audio devices. 

11.3.1 Selecting a Space Implementation 

Four object space implementations that were evaluated for developing a space-based 

environment include: 

 ‘Mozart Spaces’ from the Technical University of Vienna (Technical University of 

Vienna - Space Based Computing Group, 2013); 

 SQLSpaces (COLLIDE Project, n.d.) which supports several programming 

languages including Prolog, Java, Ruby, C# and PHP. 

 JavaSpaces (The Apache Software Foundation, n.d.); 

 The Fly Object Space (Zink Digital Ltd., 2011) which is a lightweight associative 

memory space implemented in Java that is freely available for non-commercial 

use. 

11.3.1.1 MOZART Spaces 

This space implementation is based on a middleware layer named eXtensible Virtual 

Shared Memory (Wittman, Efler, Dönz, & Planer, 2012) that supports the partitioning of 

a space into logical collections termed ‘containers’. A distinction is made between ‘atomic 

entries’ in a space and tuples which may contain sets of other tuples or atomic entries. 

(Wittmann, 2008, p. 8). ‘Coordinator’ objects control the writing of data to a space, while 

‘selector’ objects control read operations. For example, a selector may be implemented to 

read objects from a space in the order that they were written to a space. 
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In addition to extended tuple space transactions, Mozart Spaces provides  

aspect-oriented operations, persistence, and a query system. Aspect-oriented 

programming (Kiczales, et al., Aspect Oriented Programming, 1997) allows functional 

‘views’ to be constructed across objects that are not related by inheritance and is briefly 

discussed in Section 10.3.4 Aspect-Oriented Software Designs (p.261). A sophisticated 

query system  

(Wittman, Efler, Dönz, & Planer, 2012, p. 21) allows a wide variety of matching operations 

to be performed on a Mozart space. 

11.3.1.2 SQL Spaces 

In addition to the standard space operations discussed previously, SQLSpaces provides: 

 Data storage within a relational database; 

 A shell interface to the space environment; 

 Matching templates that support ranges and wildcard characters; 

 A security model that specifies user access privileges. 

These extensions provide a level of flexibility and expressiveness for service discovery that 

significantly surpasses the capabilities of the fundamental space operations. However, as 

demonstrated later in this chapter, a sophisticated control environment can be developed 

without discovery queries based on SQL. 

11.3.1.3 JavaSpaces 

This environment allows polymorphic matching and also allows multiple spaces to be 

synchronized to form a ‘federation’ of spaces as discussed earlier in this chapter. 

JavaSpaces support polymorphic type matching where query results can be subtypes of 

the template type. JavaSpaces was eliminated as a candidate implementation 

environment because it requires a Java-enabled server and has a complex configuration 

that uses the distributed capabilities provided by Jini (Venners, 1999). Jini consists of Java 

APIs and network protocols that support the development of distributed  

service-oriented applications. 

11.3.1.4 The Fly Object Space 

Fly is a lightweight object space that supports discovery of spaces running on a local 

network segment using multicasting and can be configured to distinguish between 

different spaces. Fly was chosen as an implementation environment for two reasons:   

1. It does not have complex configuration requirements, and  
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2. Fly only provides the fundamental space operations that are typically supported 

by any object space.  

Although the use of extended features provided by the space environments discussed 

previously may appear to be attractive, the use of these features will create monolithic 

applications. As will be demonstrated in this chapter, the fundamental space operations 

introduced previously in this chapter are sufficient to elegantly support both service 

discovery and control functionality. The combination of an associative memory, object 

serialization and remote procedure calls creates an environment named ‘Fli2’ where 

device components conforming to the SDM encapsulate the services typically provided by 

a control protocol. 

11.3.1.5 Software Development using Java  

The implementation discussed in this chapter uses standard Java Remote Method 

Invocation (RMI) (Oracle Corporation, 2010) for control messages between controllers 

and devices. RMI is a Java technology that provides remote procedure calls that are 

advertised by an RMI registry. Control protocols are traditionally developed using the  

C and C++ programming languages. These languages provide higher performance than 

languages such as C# and Java that use intermediate machine representations.  

Standard RMI performance compares poorly to UDP or TCP socket connections (Taing, 

2011). However, performance issues related to remote procedure calls within different 

programming languages may become irrelevant in the near future. A Java environment 

using remote procedure calls has recently published benchmarks where the average 

performance of a SET(int) RPC achieved an order of eight million RPCs per second (Fast-

Cast Messaging Library, 2014). A version of the Fli2 environment uses this library to 

stream metering messages to a controller. Tests performed using a transaction timer 

supplied with the Fly distribution indicate that the Fly space takes of the order of a 

millisecond to process a space transaction.  

From a development perspective, the simplicity of the environment and the high 

conceptual level of the software are particularly attractive. The Fli2 software provides 

functionality that rivals the core functionality of sophisticated audio control protocols that 

have been developed using corporate resources. Additionally, the use of remote procedure 

calls avoids the multi-threaded message processing required to asynchronously process 

socket communications. 

11.3.2 An Overview of the Fli2 Environment 

The following sections outline the design of the FLi2 environment that uses the Fly object 

space to allow devices to: 
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 Implement device and service discovery; 

 Provide object instances via serialization to remote controller applications. 

11.3.2.1 System Architecture 

The deployment diagram of Figure 11.3 illustrates a controller node, an audio device node 

and an object space node that all communicate via TCP. Control traffic between a 

controller and a device uses Java’s Remote Method Invocation (RMI) technology 

discussed later in this section. However, it is possible to use any network protocol or 

combination of protocols for control and monitoring traffic as indicated in Figure 11.3. 

Controller and device applications are deployed within Java executable archives 

(Controller.jar and Device.jar) and access shared common libraries on the controller and 

device nodes shown in Figure 11.4. These libraries contain classes that are: 

 Fly library classes required to communicate with the Fly space; 

 Libraries containing GUI widgets such as the rotary potentiometer and signal level 

meter classes used in this implementation. A layout manager class is also used to 

create control surfaces. These libraries shown in Figure 11.4 and discussed in 

Appendix 5 are ‘SteelSeries-3.9.3.jar’, ‘trident.jar’, ‘craigl.jar’ and ‘miglayout-

4.0.jar’. 

 

 

 

 

 

 

 

 

 

 

 
 

Only five classes representing components of the SDM and three interface classes 

defining control functionality, metering functionality and the rendering of controls are 

required. These are the ‘AudioDevice’, ‘AudioSubDevice’, ‘AudioControl’, 
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Figure 11.3 Fli2 Environment Deployment Diagram. 
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‘AudioParameter’ and ‘StateParameter’ classes, and the ‘IControl’, ‘IMeterControl’ and 

‘IRenderable’ interface classes shown in Figure 11.4. These classes are contained within 

the ‘common’ namespace and can be easily packaged as a library. ‘StateParameter’ objects 

are used to save and restore a device’s state. These objects conserve bandwidth during bulk 

parameter transfers as they only contain data defining the states of parameters and do not 

reference any other objects.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The following sections discuss the deployment of these classes and the functionality 

provided by these classes. 

11.3.2.2 Classes Implementing SDM Components 

Figure 11.5 summarizes the relationship between an audio device application and SDM 

classes. Class ‘RemoteDevice’ represents a remote audio device and provides remote 

services to controllers. The ‘DeviceCreator’ class constructs the different sub-devices, 

controls and parameters required to represent the audio device.  

Figure 11.4 Audio Device and Controller Deployment Artifacts. 
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Class ‘DiscoverableDevice’ encapsulates the functionality required to write the device and 

its constituent components to a Fly object space. 

Device components conforming to the SDM consist of the ‘AudioDevice’, 

‘AudioSubDevice’, ‘AudioControl’, ‘AudioParameter’ and ‘StateParameter’ classes.  

These classes are packaged within the ‘common’ namespace (package) as discussed 

previously and are used by both devices and controller applications. Devices create objects 

from the first four of these classes and then advertise them to controllers via a space. These 

classes all implement the Java ‘Serializable’ interface that enables binary serialization for 

Java objects. This allows objects to be written to and read from a Fly object space. The 

‘IRenderable’ interface contains methods to render sub-devices and controls on a control 

surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
The ‘device’ package consists of classes used to locally create and implement an audio 

device: 

 Class ‘DiscoverableDevice’ discovers Fly object spaces on a network and advertises 

a device by writing ‘AudioDevice’, ‘AudioSubDevice’, ‘AudioControl’ and 

‘AudioParameter’ objects to the discovered space; 

 Class ‘RemoteDevice’ registers services provided by a device (as outlined in the 

next section) and receives and processes control messages from controllers; 

 

Figure 11.5 Classes Representing an Audio Device. 
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 Class ‘DeviceCreator’ is a factory class that creates the components of an audio 

device, while class ‘MeterTask’ implements local multi-threaded meters for a 

device. 

11.3.2.2.1 Service Implementations 

RMI in Java version v1.1 implements services as remote procedure calls using client and 

server proxies for the called procedures (Soares, 1992), (Krzyzanowski, 2012). Figure 11.5 

shows how an RMI system relates to the different OSI network layers.  

 

 

 

 

 

 

 

A local proxy for a remote method is termed a ‘client stub’. Local stubs communicate with 

a remote ‘server stub’ or ‘skeleton’ that is a proxy for the implementation of the remote 

method. Local stubs marshal and add arguments to a network transmit buffer and 

transmit the arguments to the remote Java Virtual Machine (JVM).  

Skeletons retrieve values from a network receive buffer, invoke the required method and 

then transmit the result back to the local stub. Marshalling and unmarshalling processes 

translate objects to and from the data formats used for network transmission.  

Java versions from version 1.2 implement an enhanced stub protocol that dispenses with 

remote skeletons (Oracle Corporation, 2010). 

Remote services within Fli2 are implemented using the RMI remote procedure calls 

defined within interfaces illustrated in Figure 11.7. Control classes that access remote 

services are derived from class ‘java.rmi.server.UnicastRemoteObject’.  

Two interface types extend the ‘java.rmi.remote’ interface and define the RPC’s required 

by service users for control and monitoring capabilities. The ‘IControl’ interface defines 

the remote procedure calls defined by a device to implement control functionality.  

Control functionality is provided by the parameter objects used by a controller.  

The ‘IMeterValue’ interface provides the RPCs defined by a controller that receive 

streamed meter values from devices.  
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 (Adapted from (Kogent Learning Solutions, 2012, p. 1446).
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Remote procedure calls require the address of the remote procedure to be 

determined in order to bind this address to the local stub. The RMI registry maps service 

names to remote method calls. A service query returns an interface class reference (such 

as a reference to the ‘common.IControl’ interface class) that declares the remote method 

used to invoke a service. For example, a fader control or fader parameter would use the 

remote registry to locate the required remote fader service on the controlled device. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
The advantage of the use of a service registry is that services (represented by remote 

procedure calls) can be configured dynamically. Dynamically configurable services: 

 Allow controls to address different services. This supports the layered design of 

modern mixing consoles where a small set of controls is able to control a larger 

device. A typical example is a sixteen-channel control surface providing the 

functionality of a thirty-two channel mixing console by addressing the first 

sixteen channels or by addressing channels seventeen to thirty-two. Additionally, 

compact control surfaces suitable for mobile devices that have small display sizes 

allow controls to be dynamically configured. 

 Provide support for parameter joins by allowing a local parameter to be 

configured to address (be joined to) different remote parameters registered as 

services. 

 

Figure 11.7 Audio Mixer Device Remote Services. 
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The following section provides a detailed description of the operation of the Fli2 

environment. 

11.3.3 Operation of the Fli2 Environment 

Figure 11.8 illustrates the events that occur during the operation of the Fli2 environment: 

1. Devices register their services with an RMI service registry. 

2. Controllers register to receive notifications from a space when devices advertise 

services by writing SDM device component objects and parameter objects to the 

space. These device components and parameters encapsulate the control and 

monitoring services provided by devices. 

3. Devices advertise device components and parameters by writing them to a space. 

4. Controllers are notified when components or parameters arrive in the space. 

5. Controllers read component and parameter objects from the space. 

6. Components initialize themselves by determining their required remote services 

from the service registry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
7. Components render themselves on the controller’s control surface providing a user 

interface to their remote services. 

8. Controllers execute the required services implemented as RPCs when users 

interact with the control surface. 

    Legend: 

        ■ Discovery operations     

         ■ Control operations (RPCs) 

                      

      
    
 

   SDM Component Object 

      
    
 

Figure 11.8 The Fli2 Discovery and Control Environment. 
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These discovery operations and remote procedure calls are discussed in the sections that 

follow. 

11.3.3.1 Device and Service Advertisements 

The following events that occur when a device, as well as its component parts and 

parameters are advertised to a network by writing objects to a Fly space: 

1. A networked mixer device searches for a Fly object space on the local network 

segment. The discovered space returns a reference to itself to the mixer device. 

2. The mixer device creates an ‘AudioDevice’ object that represents the mixer device. 

3. All child sub-devices of the ‘AudioDevice’ object are created and written to the 

space. 

4. For each child sub-device in step two above, all child sub-devices are created and 

written to the space.  

For each child ‘AudioControl object’ of each ‘AudioSubDevice’ object: 

5. Remote parameters are created and stored by the mixer device. These parameters 

store service identifiers that identify specific parameters. 

6. The service identifiers representing RPCs are registered with the RMI registry. 

7. Control parameter objects are created. These parameters reference the remote 

service identifiers registered in step six. 

8. All child controls (‘AudioControl’ objects) are created. 

9. All ‘AudioControl’ objects and ‘AudioParameter’ objects are written to the space.  

10. The mixer device advertises itself on the network by creating an ‘AudioDevice’ 

object and writing it to the space. 

The above events are illustrated by the sequence diagram of Appendix A6.1. 

Relationships among the serialized objects within a space are depicted in Figure 11.9. 

Parent-child relationships are represented by indirect references where each child has an 

attribute that is the name of its parent component. Controllers must always wait for a 

device object to be advertised before attempting to read device components from a space. 

This restriction ensures that a complete representation of a device is available before any 

read operations are executed by controllers, ensuring that indirectly referenced objects are 

available when the objects that indirectly reference them are advertised. For example, 

where a control indirectly references a parent sub-device as shown in Figure 11.9, the sub-

device must be available when the control is accessed. If the sub-device is not available, 

attempting to read the sub-device will incorrectly return a null value. In addition, if a 

controller is notified when each parameter object is written to a space, the controller 
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incurs an unnecessary bandwidth overhead by executing a read operation for each 

individual parameter advertisement. Where a device is advertised after all parameter 

advertisements, a single READ() operation can retrieve arbitrary sets of parameter 

objects.  

The serialization process automatically serializes all directly referenced object 

instances when an object is serialized. For example, where a control directly references a 

parameter as illustrated in Figure 11.9, the parameter is always available in the context of 

the control. Reading the control retrieves the entire object graph created by direct 

references.  

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

By indirectly referencing parent objects using an identifier, the granularity of service 

discovery can be controlled. If direct references are used within a hierarchy of objects, 

retrieval of an object from a space will also retrieve all referenced objects. When applied 

recursively, this will result in the undesirable retrieval of all ancestor objects and 

potentially, all objects representing a device. 

The remote parameter attribute ‘remoteServiceName’ shown in Figure 11.9 is the 

name of the remote service to be invoked when the parameter’s value is updated.  

This name is the name of the required remote service registered in the RMI Registry and 

is used by the device to identify a joined remote parameter. 

Control Parameter 

Figure 11.9 Object Relationships Within a Space. 
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11.3.4 Controller Implementation 

Figure 11.10 shows the class design of a controller application. The blue-shaded classes are 

user interface classes consisting of a: 

 ‘ControllerFrame’ class that provides a control surface for the controller; 

 ‘SpaceMonitorFrame’ class that displays all space transactions and  is only used 

for development purposes; 

 ‘NetworkFrame’ class that shows all devices discovered on a network within a 

‘NetworkBrowser’ user interface tree. This tree provides a view of the 

components and services for each discovered device; 

 ‘ParameterFrame’ class that provides a view of all local and remote parameters 

as well as join relationships between local and remote parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Classes representing device components and parameters corresponding to the SDM 

contained within the common package were previously illustrated in Figure 11.4. Instances 

of these classes are serialized to a space by devices and retrieved from a space by 

controllers. Class ‘AudioController’ maintains collections of these objects that are the 

previously discovered components and parameters used by the controller.  

The ‘DeviceListener’ class registers a template with the Fly space to receive notifications 

when devices are advertised to the network and processes these notifications by 

implementing a ‘NotifyHandler’ provided by the Fly library classes.  

Figure 11.10 Controller Application Class Diagram. 
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The previous sections provided an overview of the Fli2 environment; the following 

sections describe the core functionality of the Fli2 environment in greater detail. 

11.3.4.1 Device Discovery  

Networked devices and controllers query the network to discover available spaces using 

the methods of a ‘FlyFinder’ class provided by the Fly object space. Following the discovery 

of a space, a controller discovers all devices that have been advertised (written) to the 

space. The sequence of events that occur during device discovery within the Fli2 

environment are: 

1. A controller creates a ‘NetworkBrowser’ object. 

2. The controller creates an ‘AudioDevice’ template object that is used to select 

‘AudioDevice’ objects from a space. 

3. The controller uses the template to read all ‘AudioDevice’ objects currently 

stored in the space. 

4. The controller adds the discovered devices to the ‘Network Browser’ window. 

5. The ‘Network Browser’ updates the device tree user interface (illustrated in 

Figure 11.12). 

6. The controller creates a callback as outlined in Section 11.2.2.1.2 Space 

Subscriptions (p.275).  

7. The controller subscribes to future ‘AudioDevice’ advertisements by registering 

the ‘AudioDevice’ template object created in step two. The callback method 

created in step six is invoked by the space when ‘AudioDevice’ objects matching 

the template are written to the space. 

8. A mixer device creates an ‘AudioDevice’ object that represents the mixer device. 

9. The mixer device advertises itself by writing the ‘AudioDevice’ object to the space 

and specifying a lease time.  

10. The space invokes the callback created in step six to notify the controller that an 

‘AudioDevice’ object has been written to the space. 

11. The controller uses the ‘AudioDevice’ template created in step two to read the 

‘AudioDevice’ object from the space. 

12. The controller adds the newly discovered device to the ‘Network Browser’. 

13. The ‘NetworkBrowser’ updates its device tree that provides a user interface. 

The sequence of events that occur during device discovery is illustrated by the sequence 

diagram in Appendix A6.2 As illustrated by these events, an object template that specifies 

the attributes of the ‘AudioDevice’ objects required by the controller is provided as an 

argument to a READ() transaction. This template is used to retrieve all current devices 
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matching the template from the space. The controller also registers an ‘AudioDevice’ 

template with the space. This template ensures that the space notifies the controller when 

(future) devices arrive in the space after the initial READ() transaction has completed.  

Discovery schemes were introduced in Section 2.4.1 Device Discovery (p.21). Spaces 

support both query and announcement discovery schemes, allowing discovery of the 

currently available devices and devices that are added to the network in the future. These 

transactions were illustrated in the previously listed event sequence.  

Read operations support query discovery while subscription to space operations supports 

an announcement discovery scheme. 

11.3.4.2 Service Discovery  

Although services can be directly accessed as discussed previously in Section 11.2.2.1.1 

Granularity of Service Discovery (p.274), the Fli2 environment currently implements 

service discovery using a top-down traversal of a device’s components. All child 

components for a specified parent component are retrieved from a space using the indirect 

parent-child relationships shown previously in Figure 11.9. A controller is able to explore 

a device’s structure and services by using READMANY() operations to retrieve all child 

sub-devices and controls for a specified device or sub-device from a space.  

The device structure is traversed by recursively applying READMANY() operations to each 

child component.  

The ‘NetworkBrowser’ displays the devices and device components (conforming to 

the SDM) discovered on a network. The events that occur during service discovery are 

listed alongside the ‘NetworkBrowser’ tree shown in Figure 11.11 and illustrated by the 

sequence diagram in Appendix A6.3. Device components are only read from the space 

when nodes in the ‘NetworkBrowser’ user interface tree are expanded. Retrieval of objects 

from a space only when the objects are required by the controller application has two 

advantages: 

 It conserves bandwidth as the entire model of a device is not downloaded by a 

controller; 

 The sizes of network traffic bursts are reduced when space operations used to 

read device components are temporally distributed. 
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Implementation of services is discussed in the next section that explains how controls are 

initialized and added to a control surface, and discusses how remote services are 

initialized. 

11.3.4.3 Control Surface Creation 

A user adds components to a control surface from the hierarchical view of a device 

provided by the ‘NetworkBrowser’ as illustrated in Figure 11.12. The following events that 

occur when a user adds a sub-device to a control surface are illustrated by the sequence 

diagram in Appendix A6.4. Individual controls may also be added in a similar manner. 

1. A user requests the ‘NetworkBrowser’ to add (‘Insert’) the currently selected  

sub-device to the controller’s control surface. 

2. The ‘NetworkFrame’ window (containing the ‘NetworkBrowser’) requests the 

‘AudioController’ to add the specified ‘AudioSubDevice’ object (previously read 

from the space when the user interface tree was expanded) to the control surface. 

3. The ‘AudioController’ accesses the specified ‘AudioSubDevice’ object. 

4. The ‘AudioController’ registers the ‘AudioSubDevice’ object with the control 

surface (the control surface adds it to its collection of ‘AudioSubDevice’ objects).  

5. The ‘AudioController’ accesses all child ‘AudioControl’ objects for the specified 

‘AudioSubDevice’ object. 

 

Discovered Device 

Figure 11.11 The Network Browser Window. 
 

1. The user selects a device displayed by the device tree 

in the ‘NetworkBrowser’ window. 

2. The controller reads the child ‘AudioSubDevice’ 

objects for the selected device from a space. 

3. The names of child ‘AudioSubDevice’ objects read 

from the space are displayed in the expanded device 

tree in the ‘NetworkBrowser’ window. 

4. The user selects a sub-device displayed in the device 

tree. 

5. Child ‘AudioSubDevice’ objects for the selected sub-

device are read from the space. 

6. The names of child ‘AudioSubDevice’ objects read 

from the space are displayed in the device tree. 

7. The controller reads all child ‘AudioControl’ objects 

for the selected sub-device from the space. 

8. The names of child ‘AudioControl’ objects read from 

the space are displayed in the device tree. 

 



293 
 

6. The ‘AudioController’ registers all child controls (‘AudioControl’ objects previously 

read from the space when the user interface tree was expanded) for the added 

‘AudioSubDevice’ object with the control surface. 

7. The ‘AudioController’ requests each ‘AudioControl’ object to bind (initialize) its 

parameters.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8. Each ‘AudioControl’ requests its ‘AudioParameter’ (control parameter) object/s to 

bind (initialize) their remote services (representing joined remote parameters). 

9. The ‘AudioParameter’ object obtains the required remote service from the RMI 

registry. This service is defined by the ‘IControl’ remote interface (illustrated 

previously in Figure 11.7).  

10. The ‘AudioController’ obtains the control surface component (graphics surface) 

from the parent ‘AudioSubDevice’ that must display the ‘AudioSubDevice’ and its 

 

 Control Surface 

Figure 11.12 Adding Components to a Control Surface. 
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child ‘AudioControl’ objects. 

11. The controller requests the ‘AudioSubDevice’ to render itself on the graphics 

surface. 

12. The ‘AudioSubDevice’ object requests each child ‘AudioControl’ object to render 

itself on the graphics surface. 

13. Each ‘AudioControl’ object renders the appropriate user interface widget/s on the 

provided graphics surface. 

Figure 11.12 shows a user adding a channel strip to a control surface using the 

‘NetworkBrowser’ tree. All child sub-devices and child controls are recursively read from 

the space when the parent sub-device node in the tree is expanded. The user then adds 

sub-devices (and/or controls) as illustrated by the previously listed events.  

11.3.4.3.1 Service Implementations 

Remote services are hard-coded into the control and parameter objects passed to a 

controller via an object space. Controllers simply read control objects from a space and 

invoke their methods. Service enumeration is not required as control and parameter 

objects contain methods that initialize and implement the required local and remote 

services. Parameters have ‘bind()’ and ‘unBind()’ methods and control objects have a 

‘bindParameters()’ method. When a controller adds a control to a control surface it 

invokes the control’s ‘bindParameters()’ method. This method calls the ‘bind()’ method 

for each of its referenced parameters to initialize the required network interfaces that 

address corresponding remote services.  

A device thus provides the resources required to communicate with it to controllers. 

Controllers are created using SDM components that require no configuration. Controllers 

have no knowledge of how network messages are transported or how controls are 

implemented or rendered. Devices push device components  

(sub-devices and parameters) and services (parameters) to controllers via a space. 

Controllers pull device components and service implementations from a space, initialize 

the service implementations, and in the case of control or sub-device components that can 

be rendered, render the components. This scheme allows remote functionality to be 

implemented using different technologies. For example, remote services can be 

implemented as RPCs, use network sockets or make use of third-party libraries to provide 

network endpoints. This mixture of network technologies is demonstrated by an 

implementation of the Fli2 environment that uses RMI for control functionality and the 

FastCast Messaging Library mentioned in Section 11.3.1.5 Software Development using 

Java  (p.280) to stream meter values to a controller. 
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11.3.4.3.2 Implementing Metering Subscriptions 

Metering subscriptions for monitoring are implemented in the same way as the controller 

messages described previously. However, bi-directional communication is required for 

metering: controllers invoke subscription services provided by devices; devices then 

stream meter values to controllers that have requested subscriptions. Controllers thus 

provide services that receive meter values from devices.  

The ‘IMeterValue’ interface class shown previously in Figure 11.7 implements meter 

subscriptions in the same manner as control messages sent by controllers to devices. This 

interface class is implemented by controllers to provide a control point for meter values 

streamed from a device. When a controller sends a meter subscription message to a device, 

it provides the IP address and port of its local RMI registry. The device is then able to 

obtain a reference to the required remote service (procedure call) from the controller’s 

registry. The use of two registries is required because Java processes cannot add services 

to a standard Java remote registry. For enhanced security, service advertisements can only 

be added to a registry by processes executing on the same JVM as the registry process. An 

RMI registry implementation that supports remote service registrations has been 

developed at the Hochschule Konstanz University of Applied Sciences (Haase, Waesch, & 

Zhao, 2008). 

The following sequence of events illustrated by the sequence diagram A6.5 in 

Appendix 6 occur when a controller subscribes to receive meter values from a remote 

device: 

1. A user requests a local meter to subscribe to meter values from a remote device. 

2. The ‘LocalMeter’ object requests its local control parameter to subscribe to a 

remote meter. 

3. The local control parameter object (‘locParameter’) invokes the remote service 

to subscribe to the remote meter. 

4. An RMI RPC excites the service request provided by the ‘RemoteDevice’ object 

on the remote device. 

5. The ‘RemoteDevice’ object requests the specified ‘RemMeter’ (remote device 

meter) object to start transmitting meter values. 

6. If the remote meter process is executing, the remote meter process invokes an 

RMI RPC to stream its meter values to the audio controller. 

7. The audio controller receives meter values and updates the corresponding local 

meter. 
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The previous sections described the core control functionality provided by the Fli2 

environment. The sections that follow consider factors surrounding the implementation 

of this functionality.   

11.3.5 Implementation Considerations  

Serialized objects and the remote network communications required to implement control 

messages that invoke remote services can be implemented in several ways.  

11.3.5.1 Implementing Serialized Objects 

Objects placed in a space can be ‘fully-serialized objects’ or ‘partially-serialized’ objects. 

Fully-serialized objects contain all the resources that they require. All user interface 

widgets or graphics required by the object are represented as referential attributes that are 

serialized with the object instance. Partially-serialized objects contain identifiers 

indicating the resources that they require. These resources must be locally available to the 

controller that retrieves the objects. For example, a fully-serialized fader control would 

contain the fader widget that forms the user interface to the control. A partially serialized 

fader control would only contain an identifier indicating that the required user interface 

widget is a fader widget. This widget must then be loaded from a local library by the 

controller application that retrieves the control. These different implementations are an 

example of the classic space-time tradeoff. Fully serialized objects use more bandwidth; 

partially serialized objects require access to local data. The implementation discussed in 

this chapter uses partially serialized objects where the required widgets are loaded from 

the libraries shown in the deployment diagram of Figure 11.4. 

11.3.5.2 Implementing Parameters  

Parameters are hierarchically organized according to the levels prescribed by the 

parameter description layer of the SDM. Each level is described by a parameter object 

attribute that can be used to select parameters from a space using associative matching. 

It is often difficult to distinguish between remote parameters and remote services as 

remote services may access corresponding remote parameters or may be contained within 

remote parameter objects. Parameters are loosely coupled to the services that access 

parameters as illustrated in Figure 11.13(b) and Figure 11.13(c). Figure 11.13(a) shows a 

tightly coupled implementation that is decoupled in Figure 11.13(b) by introducing a 

parameter object. Figure 11.13(c) provides a parameter join between a local control 

parameter and a remote proxy parameter. Decoupling parameters from controls supports 

dynamic service configuration. A local parameter may select the remote service that it 

interacts with using the relationships shown in Figure 11.13(b), or local parameters may 
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Figure 11.13 De-Coupling Service Implementations. 
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be joined to remote parameters as illustrated by the object relationships shown in Figure 

11.13(c).  

 

 

 

 

 

 

                  

 
 

 

 

In the Fli2 implementation, a ‘RemoteDevice’ object (created by a remote device) 

implements control points for RPCs as explained previously. Figure 11.14 shows that 

because a control parameter (advertised and retrieved via a space) exists on the controller 

where it becomes a local parameter that encapsulates a remote service, the required 

remote control can be updated directly by the invoked remote service.  

It is also possible for the invoked remote service to be designed to update local control 

parameters on the controlled device.  

 

 

                                                                                                        

                                                                                                          

 

 

 

 
 

Because the control commands as well as the means to transport these commands 

are contained within parameter objects (made available to controllers via a space), 

different protocols and transports can easily be used. For example, a control surface can 

conceivably have a control transmitting OSC over UDP, a second control transmitting 

Local  Parameter 

Device 

 Class RemoteDevice 

Controller 

 Remote Service 

 

Control   
 Value 
 

         Remote 
    Service Proxy   

Network 

Figure 11.14 Remote Service Implementation. 
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UPnP actions over IEEE 1394 (FireWire) and a third control transmitting DMX over 

TCP/IP. This arrangement allows a service to be implemented using different control 

protocols and different network transports. For example, in Figure 11.14 the  

‘Remote Service Proxy’ would transmit a protocol command rather than invoke a RPC. 

This idea is explored further in Section 11.5 Use of Existing Control Protocols (p.304). As 

emphasized throughout this dissertation, independent access to parameters is supported. 

Independent parameters that are loosely coupled to a user interface allow parameter 

relationships to be specified, and also allow the state of a device to be easily saved or 

restored to a previous state. Creating parameter relationships and saving or restoring a 

device’s state are discussed and illustrated in Appendix 6. 

11.4 Connection Management 

The inherent properties of spaces lend themselves to connection management 

applications. The following sections discuss these properties and describe three different 

space-based approaches to implementing connection management (Eales & Foss, 2014).   

11.4.1 Managing Concurrency 

The challenges posed when dealing with race conditions caused by concurrent access to 

services and resources were introduced in Section 2.10.1.1 Message-Based Race 

Conditions (p.41). This section discusses how spaces provide solutions to concurrent 

access scenarios in the context of connection management.  

Space transactions exhibit four properties termed the ‘ACID properties’  

(Pinus, 2004), (Freeman, Hupfer, & Arnold, 1999, p. 243). These properties are: 

 Atomicity, which means that space transactions execute atomically or not at all. 

Transactions cannot be interrupted or pre-empted during execution. 

 Consistency, which states that space transactions can never modify the state of 

the objects within a space. 

 Isolation, which means that different space transactions do not affect each other. 

This principle differs from the idempotence principle discussed in Section 2.9.1.4 

Command Acknowledgments (p.36). Writing the same object twice to a space 

will add a duplicate object to the space. 

 Durability, meaning that completed space transactions will be persistent and 

survive a failure of the space. This property is implementation dependent and is 

not supported by the Fly object space. 

These properties enforce transactional security. In particular, atomicity ensures that data 

race conditions cannot occur. However, general race conditions may exist if different 
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devices or controllers attempt to make concurrent audio connections. Spaces naturally 

provide solutions to general race scenarios by making shared objects that represent or 

create connections only available to a single process at any one time.  

Applications wishing to manage connections must first remove one or more shared objects 

from a space. After connections have been created or torn down, the shared objects are 

returned to the space. Shared objects represent the states of a binary ‘mutual exclusion 

semaphore’ (MUTEX). A binary MUTEX is typically implemented in software as a binary 

variable that prevents race conditions by controlling access to shared resources (Dijkstra, 

1965). A space functions as a binary MUTEX where MUTEX states are represented by the 

space either containing or not containing the shared objects.  

Because spaces support subscriptions to WRITE() operations, changes to audio 

connections are automatically propagated to all interested devices on the network.  

These devices receive update notifications when newly created connections are written to 

a space. Devices and controllers can then read the required objects from a space and 

update their views of the network. 

11.4.2 Approaches to Implementing Connection Management 

A space-based approach to audio connection management allows audio terminals and 

connections to be represented and managed in a variety of ways. These include using: 

1. A single, shared connection manager application that is retrieved from a space by 

a controller and then returned to the space once the required connections have 

been made. 

2. Shared terminal objects that are removed from a space, updated, and then 

returned to the space. Each source terminal maintains a list of connected 

destination terminals or a destination terminal has an object attribute 

representing a single source terminal. Representing connections using destination 

terminals is compatible with the SDM and the AES64 representation of 

connections discussed in Section 7.5.2 AES64 Connection Parameters  (p.201). 

3. Shared connection objects that have object attributes representing both the source 

and destination terminals that create a connection.  

The last two approaches can also use a shared connection manager that is provided to all 

devices. In these cases, a connection manager is not used to enforce mutual exclusion.  

A connection manager is only read once from a space by an application that performs 

connection management. The connection manager is then used to read terminals or 

connection objects from the space, update the objects and then write them back to the 

space.  



300 
 

11.4.2.1 Use of a Shared Connection Manager 

The use of a single shared connection manager that is written to a space when the audio 

network is made available is illustrated in Figure 11.15. Devices are notified of the presence 

of the connection manager and then read the connection manager to update their views of 

audio terminals and audio connections. Terminal advertisements and connections are 

made by removing the connection manager from the space, updating the connection 

manager and then returning the updated connection manager to the space. 

 

 

 

 

 

 

 

 

 

The sequence diagram of A6.6 in Appendix 6 illustrates the use of a shared connection 

manager to advertise audio terminals: 

1. A device creates an object template to identify a ‘Connection Manager’ object that 

exists within a space. 

2. A device removes the ‘ConnectionManager’ object from the space using the 

template created in the previous step. 

3. The device adds its audio terminals to the ‘ConnectionManager’ and returns the 

object to the space. 

4. Devices are notified that a connection manager has been written to the space. 

5. Devices read the ‘ConnectionManager’ object from the space. 

6. Devices update their view to display the available audio terminals on the network. 

A similar sequence of events occurs when connections are made or torn down.  

A connection manager may also provide a user interface that: 

 Displays all terminals and the current connections on a network, and  

 Provides a user interface that allows users to view and create connections. 

Figure 11.15 Connection Management using a Connection Manager. 
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This approach that encapsulates a user interface within a connection manager object is 

explored later in this chapter. 

11.4.2.2 Using Shared Terminal Objects 

The use of a single, shared connection manager provides a coarse-grained approach to 

managing connections, as only a single object (the connection manager) must be retrieved 

from and written to a space. A more fine-grained approach makes use of objects 

representing audio terminals. Each object advertised to a space by a device is a single audio 

terminal representing a signal source or signal destination. These audio terminals can be 

individual audio channels, streams of audio channels or the source and destination signals 

that create primary connection points as described in Section 4.4.1 Representing Audio 

Terminals and Audio Connections (p.104). 

The sequence of events required to create connections between different networked 

devices are similar to the events listed in the previous section. The difference is that each 

connection is represented by an audio source or destination terminal that stores 

references to the audio source terminal or terminals that it is connected to. Starvation can 

occur if a device removes shared objects and does not return them to the space. Solutions 

to starvation scenarios are discussed later in this chapter. Connections are created by the 

following sequence of events: 

1. Devices register to receive notifications when terminal objects are written to 

a space. 

2. A device advertises terminals by writing terminal objects to a space. 

3. Devices are notified when terminal objects are written to the space and read 

the terminal objects. 

4. Devices are notified when terminal objects are written to the space and read 

the terminal objects. 

5. Devices update their view of the available audio terminals. 

6. A user creates connections and commits the updated terminals to the space. 

7. The device writes the updated terminals with their connected terminals to 

the space. 

8. Devices are notified that terminals have been written to the space and read 

the updated terminals from the space. 

9. Devices update their view of network connections. 

Each terminal that maintains connections (by storing the terminals that it connects to) 

functions as a MUTEX state within a space. This ensures that connections between 
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terminals occur in a deterministic manner. These events are illustrated in the sequence 

diagram of Figure A6.7 in Appendix 6 

11.4.2.3 Using Connection Objects 

This approach uses distinct instances of a shared connection manager that is read (copied) 

once from a space by each application that wishes to perform connection management as 

illustrated in Figure 11.16. The connection manager application manages all space 

transactions and provides controllers with a user interface.  

This implementation does not use the connection manager application to represent the 

states of a MUTEX as discussed earlier. Instead, a dedicated MUTEX state object must be 

removed from the space before connection objects are advertised to the space.  

Figure 11.16 illustrates an application that uses shared connection objects where: 

1. A ‘ConnectionManager’ object and an object that functions as a ‘MUTEX’ state are 

written to a space when the audio network becomes available. 
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Figure 11.16 Connection Management using Connection Objects. 
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2. Devices create a ‘Connection Manager’ template and read the ‘Connection 

Manager’ object from the space. 

3. Devices create and register a template to receive notifications when 

‘AudioTerminal’ objects are written to a space. 

4. Devices create and register a template to receive notifications when 

‘ConnectionObject’ objects are written to a space. 

5. Devices create a collection of all ‘AudioTerminal’ objects advertising source and 

destination audio streams 

6. Devices write all ‘AudioTerminal’ objects to a space. 

7. Devices are notified when terminals are advertised to a space and read the 

advertised ‘Terminal’ objects from the space. 

8. A device provides its ‘ConnectionManager’ with the newly read ‘Terminal’ objects 

and the connection manager updates its view of the terminals available on the 

network. 

9. Users create audio ‘ConnectionObject’ objects by associating a source terminal 

with a destination terminal using the user interface provided by the connection 

manager. 

10. The MUTEX state object is removed from the space by a connection manager 

wishing to make connections. 

11. ‘ConnectionObject’ objects are written to the space and all connection managers 

are notified that new connections have been made. 

12. The controller returns the MUTEX state object to the space. 

13. Devices are notified that 'ConnectionObject' objects have been written to the space. 

14. Devices create template objects and read the newly made connections from the 

space. 

15.  Devices request the connection manager to display the connections. 

Figure A6.8 in Appendix 6 provides a sequence diagram of the above events.  

The connection manager shown in Figure 11.16 also provides a summary of all space 

transactions using a ‘Space State Monitor’ that is used during development to verify the 

state of the object space. The user interface is illustrated in greater detail in Appendix 4. 

11.4.3 Inconsistent Connection States and Starvation 

Great care is required when designing space-based applications. When an object 

representing the state of a MUTEX is removed from a space, other processes that require 

the object must wait for it to become available. This situation introduces the possibility of 

starvation if a process that has removed the MUTEX state object does not return it to the 
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space. To prevent starvation, a timer can be used to limit the time available to commit 

audio connections to a space. When a device wishes to commit connections it removes the 

required object (connection manager, terminal or dedicated MUTEX state object) from a 

space. After expiry of a ‘lease period’, the object is returned to the space.  

A simpler solution is to ensure that the object is only removed from a space when 

committing connections to the space. 

11.5 Use of Existing Control Protocols 

If a protocol stack is available to a controller, control or parameter objects can use this 

stack to execute protocol commands. An innovative approach is for devices to provide the 

protocol stack to a controller via a space. When a required control protocol stack is not 

locally available, a device ‘pushes’ a protocol stack for the required control protocol to 

controllers. Figure 11.17 shows that this approach requires the control protocol stack to be 

implemented as one or more objects that are serialized to a space. In this example, a device 

contains a child control and an associated control parameter.  

When applications retrieve a device object, an attribute indicates the objects that must be 

read from the space to implement the required protocol stack. 

 

 

 

 

 

 

 

 

 

Parameter objects are automatically pre-configured (by the devices that created and 

advertised the parameters) to use the stack retrieved from a space. Use of a specific stack 

can be localized to different sub-devices and controls, allowing a device to communicate 

using different protocols. For example, control commands, subscriptions and connection 

management requests can be implemented by different network communication protocols 

or control protocols. 

 

Figure 11.17 ‘Pushing’ a Protocol Stack to Controllers. 
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11.5.1 Advertising an OSC Stack 

As an example, an OSC stack was developed using the classes from the JavaOSC library 

(Ramakrishnan, n.d.). Parameters send OSC commands and their arguments to the OSC 

stack, which then transmits the required OSC messages to the controlled device. 

The sequence diagram of A6.10 in Appendix 6 illustrates the following event sequence: 

1. A networked device creates a ‘ProtocolStack’ object and writes the object to a 

space. 

2. The device creates an ‘AudioDevice’ object and advertises itself by writing the 

object to a space. 

3. A controller creates an ‘AudioDevice’ object template and reads the 

‘AudioDevice’ object from the space. 

4. The controller obtains the name of the required protocol from the ‘Device’ 

object. 

5. The controller creates the required ‘AudioDevice’ object template. 

6.  The controller reads the ‘ProtocolStack’ object from the space. 

7. The ‘ProtocolStack’ object is registered with the controller. 

8. The controller creates a protocol message. 

9. The controller requests the ‘ProtocolStack’ object to execute the created 

message. 

A ‘ProtocolStack’ class encapsulates any protocol stack provided to controllers. Parameter 

objects that use this protocol then direct their messages to the registered protocol stack. 

In this example, because the device provides the protocol stack, the stack is automatically 

initialized to the address and port of the controlled device. 

11.6 Commentary and Evaluation 

The use of one or more distributed, associative memories creates a flexible ‘distributed 

discovery and control environment’ that can provide all of the control and monitoring 

features associated with a control protocol.  

11.6.1 A Summary of Fli2 Features 

Table 11.2 summarizes the features found in the Fli2 environment.  
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[1] Simple access security models are easily implemented using spaces. Objects may have fields that specify passwords 

or access levels that must be provided before services provided by the object may be invoked or control messages sent 

to specific devices. Access security is implemented by matching passwords or access levels when retrieving objects from 

a space.  

Spaces require a different approach to application development where consideration 

of the past, current and future states of a space is required.  

Applications must maintain sets of current objects, discard objects that are no longer 

useful, and register to receive notifications when objects arrive in the space in the future. 

Great care is required when implementing applications that use a space as the ordering of 

space transactions is significant. Because all transactions are atomic, the order of write 

transactions influences the results of read operations as discussed previously in  

Section 11.3.3.1 Device and Service Advertisements (p.287). For example, if a control 

object indirectly references a parameter object (using an attribute identifier rather than a 

reference); the parameter object should be written to the space before the control object 

Fli2 Features                     Comments 

1. Network Management 

    1.1 Device discovery   

4.3 Monitoring reachability   

Service Discovery and Enumeration 

1.1 Service Discovery   

1.2 Service Enumeration  -- Not required. 

2. Control Surface Representation and 
Creation. 

 Performed by objects. 

4.  Device control and Monitoring 

4.1 Writing Parameter Values  Performed by objects. 

4.2 Reading Parameter Values  Performed by objects. 

4.3 Automation   (Not implemented). 

5. Parameter Management 

5.1  Linking Controls to Parameters   

5.2  Joining Parameters   

5.3  Grouping Parameters  Absolute master-slave groups. 

5.4  Bulk Parameter Access   

6. Connection Management 

6.1 External Connection Management  Representing terminals or 
connections as shared objects. 
 

6.2 Internal Connection Management       

6.3 Connection Assignment  

7. Security 
 Passwords or community-based 

schemes [1]. 

 
Table 11.2 A Summary of Fli2 Features. 
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is written. If the reverse ordering is used, a controller may read the control from a space 

but fail to read the associated parameter as the space has not yet received the parameter 

object.  

11.6.2 Advantages of Object Spaces 

Using object spaces to provide service discovery and transfer service implementations 

provide several unique advantages over existing control protocols, including: 

1. An efficient use of network bandwidth during service discovery as continuous 

service announcements or polling a registry to discover devices and services are 

not required; 

2. Service identifiers that are easily discovered by associative matching;  

3. Control over the granularity of service discovery to support the functionality 

required by a particular application. The amount of standardization (of descriptive 

attributes used for associative matching) is directly proportional to the level of 

granularity required during service discovery. 

Additionally, object serialization via a space means that: 

4. Service enumeration becomes redundant as services are fully implemented within 

serialized objects; 

5. Point-to-point network connectivity is automatically and transparently created by 

objects retrieved from a space; 

6. Control surface creation is performed automatically by objects retrieved from a 

space; 

7. Any network technology can be used to implement network connectivity for 

control and monitoring messages. Examples include remote procedure calls, 

socket connections and the use of existing control protocols; 

8. The transfer of executable code between devices and controllers promotes 

functional scalability by allowing functional modules (‘plugins’) to be added to an 

existing application; 

9. There is no technical distinction between client-server and peer-to-peer network 

architectures. Any device may advertise services or discover and invoke remote 

services. 

These nine advantages are extremely significant. A coarse-grained approach to associative 

matching allows service discovery to be implemented by a small set of descriptive 

attributes. The attributes provided by the components of the device architecture layer of 

the standard model (‘DEVICE’, ‘SUBDEVICE’ and ‘CONTROL’) are sufficient to provide 

rudimentary service discovery capabilities. Matching of additional attributes allows finer 



308 
 

distinctions to be made, for example, discovering all gain controls or fader controls on a 

mixing console. These operations require additional template attributes such as ‘FADER’ 

or ‘GAIN’ attributes to provide a finer resolution during the associative matching process. 

Service enumeration is traditionally a difficult process that requires the properties 

of a service that enable controllers to invoke the service to be recognizable and therefore 

standardized. In the case of DNS-SD, properties of a specific service are described by ‘TXT’ 

records that are <key, value> pairs (Cheshire & Krochmal, 2013). These keys are 

commonly parsed by a process to enumerate the characteristic attributes of a service.  

To enable the recognition of key values, a significant amount of standardization is 

required. By delegating the initialization or configuration of a service to executable content 

implemented as object methods, standardization requirements are trivialized. For 

example, method names such as ‘Render()’, ‘Initialize()’, ‘Terminate()’ and 

‘BindToNetwork()’ are the only standardizations required.  

Associative matching also promotes a direct, user-centric view of services as 

previously illustrated in Figure 11.12. Associative matching allows a high-level graphical 

view or description of services or a device’s architecture to be directly presented to users. 

Enumeration of services becomes unnecessary, as objects retrieved from a space are  

self-describing. For example, each fader for a mixing console can provide a meaningful 

description of its functionality and the parameters that it references. This description is 

easily displayed to a user without requiring any service enumeration to determine the 

functionality provided by a service.  

Associative matching underlies the discovery philosophy used when parsing XML 

documents where unrecognized tags are simply ignored. This feature makes an associative 

environment highly scalable, as the device model can evolve while maintaining backward 

compatibility. Although Fli2 provides an object-oriented control environment, no 

inheritance hierarchies are used. This simplifies the design of the environment and 

supports scalability. New classes and methods are easily added to the environment 

without influencing existing classes and methods.   

11.6.3 Disadvantages of Spaces 

Spaces have three main disadvantages: 

1. Implementations are typically tightly coupled to a specific platform or 

programming language;  

2. Serialized objects exhibit value semantics rather than reference semantics.  

This means that object states will not be maintained across identical object 

instances as discussed in Section 11.6.3.1, below; 
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3. Associative matching operations are limited to logical AND, as well as wildcarded 

(ANY) operations when using standard space operations derived from the Linda 

model. These limitations were discussed in Section 11.2.2.1.1 Granularity of 

Service Discovery (p.274). Use of extended operations provided by object space 

implementations such as the Mozart Spaces implementation discussed in Section 

11.3.1.1 MOZART Spaces (p.278) will create monolithic applications. 

The implementation presented in this chapter is dependent on the Java programming 

language as Fly object space operations are tightly coupled to a Java environment.  

A space that is independent of any programming language is required to create 

interoperability between applications created within different development 

environments. This requires each application to have a protocol stack that can: 

 Translate from a specific programming language to a common serialized object 

format that is stored within a space; 

 Process notifications from a space and invoke the required callback functions 

belonging to an application. 

Spaces that support different programming languages typically create ‘bindings’ for each 

environment that support the serialized object format as well as the operations that access  

a space (Walton & Warren, 2015). A programming language-neutral object format such as 

Protocol Buffers (Schwitzer & Popa, 2011) or XML can easily be used to represent object 

instances. The difficulties lie in providing a common notification mechanism that is 

supported by different software environments. A commonly encountered solution to this 

type of problem is to use an Interface Definition Language (IDL) that supports generic 

remote procedure calls (McKinnon, n.d.). The use of IDLs is not discussed further in this 

dissertation. 

11.6.3.1 Value and Reference Semantics within Serialized Objects 

When a control is serialized to a space as shown in Figure 11.18, all object instances that 

are referenced by the control are also serialized. However, all referenced objects (a single 

parameter in this example) can also be independently serialized to the space. Serialization 

creates deep (different but identical) copies of objects. In Figure 11.18,  

P1 (a copy of the remote parameter object P) is serialized with the control that updates 

parameter P1. Parameter P2 is an identical copy of parameter P1 that has been 

independently written to the space. Parameter objects P1 and P2 contain identical 

methods that update the value of remote parameter P. However, P1 and P2 do not 

reference each other. If a controller retrieves and updates the value of parameter P2,  
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the value of P will be updated but P1 will not reflect the change. Similarly, P2 will not 

reflect changes made the control to P1. 

 

 

 

 

 

 

 

 

These dependencies and relationships between objects must be managed by an 

application. When controls (and their referenced parameters), as well as separate atomic 

parameters are retrieved from a space, the parameters are stored in a set. By definition,  

a set data structure ignores the addition of duplicate parameter instances.  

Unlike technologies such as CORBA (Object Management Group, 2012) and RMI, 

space environments do not pass objects by remote reference. Objects are always copied by 

value to and from a space. 

11.7 Summary 

This chapter has demonstrated how object spaces support the development of novel 

discovery and control environments. Control and monitoring capabilities are 

implemented by any distributed communication capability, including the use of existing 

middleware layers and control protocols. A control protocol was defined in Section 1.3 An 

Introduction to Control Protocols (p.6) as a software system providing remote 

communication that defines: 

 Remote commands and their associated semantics; 

 How these commands are encoded into PDUs;  

 The transport of  PDUs across a network; 

 A representation and organization of parameter data. 

The use of object serialization in conjunction with an associative space challenges the 

accepted notions of what constitutes a control protocol. The following original,  

higher-level definition of a control protocol was formulated to describe the space-based 

environments discussed in this chapter: 

Figure 11.18 Copy by Value Semantics Within an Object Space. 

     Space 
 

Control 

      Remote 
  Parameter P1 

      Remote 
  Parameter P2 

     Device 
 

 Parameter P 

  X 

Control 

Write() 

Write() 



311 
 

 “A set of transparent, independent point-to-point communications between the 

clearly identifiable and discoverable components or services provided by different 

distributed devices, where each communication has a well-defined semantics.” 

 
This definition differs considerably from the earlier definition of a control protocol.  

A client or peer process does not require any knowledge of remote commands, their 

implementation details, encodings or transport. Remote commands are transparently 

embedded into device components implemented as objects or parameter objects 

according to the functional roles provided by different components or parameters as 

discussed in the previous sections. Devices ‘push’ device components and their embedded 

services to controllers. This type of environment that transparently uses existing network 

protocols may be termed a distributed discovery and control environment. As this chapter 

has demonstrated, object spaces support sophisticated and expressive mechanisms that 

integrate service discovery and the provision of control functionality. The flexibility of 

discovery operations and service implementations, as well as the scalability provided by 

object serialization cannot be matched by traditional control protocols. 
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Chapter 12 

Conclusions 

 
12.1 Introduction 

A substantial portion of this dissertation has investigated the control and monitoring 

capabilities of different control protocols, as well as the representation of devices within 

these protocols. Control protocols were discussed with specific reference to the standard 

device model developed in Chapter 4. Chapter 10 developed concepts for evaluating 

control protocol designs, while Chapter 11 introduced a novel distributed environment 

that supports both service discovery and control functionality. 

This closing chapter briefly summarizes the most important areas of this dissertation 

and highlights the discoveries made during this study. The most significant original 

contributions to the field of audio control protocols presented in this dissertation are the: 

1.  Development of a standard, generic device model that defines a standard format 

for parameter addresses. 

2. Use of  an object space to provide the nucleus of a distributed discovery and 

control environment that implements service discovery by identifying objects 

representing components of the SDM. 

3. Demonstration that serialized objects can transparently provide control 

functionality. 

4. Demonstration that serialized objects can be used as ‘plugin’ components that 

can be transparently added to a control surface. 

5.  Development of concepts and terminology that provide reference points for 

examining and evaluating control protocol designs. 

6. Identification of both desirable and undesirable features of control protocol 

designs. These features were codified to provide the set of control protocol design 

heuristics listed in Appendix 1 that serve as guidelines for the design, 

implementation and evaluation of control protocols. 

Additionally, the discovery that compound SNMP indexes can represent a hierarchical 

organization of device components and hierarchical parameter addresses was a discovery 

that is valuable for SNMP control protocol implementations. 
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12.2 The Value of a Standard Device Model 

The SDM provides a comprehensive basis for further standardization efforts by 

formulating: 

1. An abstract model of device architecture that can be implemented within different 

control protocols as demonstrated in previous chapters. 

2. A standard representation of parameter addresses that promotes functional 

interoperability. 

12.2.1 Standardization of a Conceptual Model 

Standardization of the structure of an abstract device model is the first step to defining a 

universal standard that supports service discovery and service enumeration.  

As mentioned in the conclusions to Chapter 4, standardization of the contents of 

description records, layout records, and signal description records is required to make the 

SDM useful in practice. 

The ability to implement the SDM varies considerably between different protocols, 

as it is dependent on the data structures and parameter organization schemes provided by 

a control protocol: 

 The SDM may be entirely incompatible with a protocol (HiQnet, CopperLan); 

  The SDM may be partially  compatible with a protocol  (UPnP and IEEE 1722.1-

2013); 

 Only parameter addresses are compatible with a protocol (AES64); 

 The protocol may fully support the SDM as was previously demonstrated in 

Chapters 5 and 6 with reference to OSC and SNMP respectively. 

CopperLan does not support control components, or hierarchical parameter addresses; 

UPnP does not define controls, and AES64 specifies controls outside of parameter 

addresses using XML. A direct mapping between an abstract device model and these 

control protocols is thus not possible as the model must be accommodated within the data 

structures and parameter-addressing scheme provided by each protocol.  

However, in the case of AES64 it would be possible to translate between SDM control 

descriptions and AES64 desk items. 

12.2.2 Parameter Address Interoperability 

The SDM promotes interoperability among different control protocols by providing 

standardized (short) parameter addresses. As discussed in Chapter 4, the SDM combines 

a variable-length device architecture layer with a fixed-length parameter description layer. 
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Table 12.1 Parameter Address Representation Within Different Control Protocols. 

 SDM 
Parameter 
Description 

SDM 
Parameter 

        Type 

SDM 
Parameter 

      Instance 

    SDM 
Parameter            
    Value  

     SDM  
Parameter       
     Action 

OSC 
OSC 

Container 
OSC 

Container OSC Container                  OSC Method 

SNMP 
Index Value Index Value Index Value Object Identifier 

Ember+ Tree Node Tree Node Tree Node Parameter 
Parameter or 

Child Parameter 

AES64 
 Level 6 

Address 
entry 

Level 7 Address 
Entry 

Level 7 
Address Entry 

 

UPnP   Service State Variable State Variable 

CopperLan 
  Parameter 

Address 
  Parameter Address 

HiQnet 
 

Object 
Parameter 

Index 
Parameter Index 

IEEE 
1722.1-
2013  

  
   Descriptor Address Offset   

OCA 

 Class or 
Control Class 
Identifier 

Object or 
Control Class 

Identifier 

Object 
Attribute  or 
Control Class 
Identifier    

Object Method 
or Control Class 

Identifier 

 

This scheme provides the advantages of a fixed-level addressing scheme while also 

dispensing with redundant address levels for very simple devices.  

As was demonstrated in previous chapters, translation between different control 

protocol parameter address formats and SDM parameter addresses is feasible.  

However, these translations are often rather contrived as a one-to-one correspondence 

between the different levels of parameter addresses found in protocols such as AES64, 

OCA, HiQnet and SDM parameter addresses does not exist. The limited service hierarchy 

provided by UPnP, and the absence of a hierarchical description of parameters in 

CopperLan and IEEE 1722.1-2013 are not compatible with the SDM parameter dressing 

scheme. Parameter addresses relationships between different protocols and SDM short 

parameter addresses are summarized in Table 12.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Unfortunately, this dissimilarity between parameter address formats and the 

commercial realities created by currently competing control protocols means that the 

SDM is unlikely to make any impact as a possible basis for interoperability between 

different control protocols. Parameter address structure as defined by the SDM is akin to 

the development of a new control protocol, and is therefore unlikely to be adopted by 
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different vendors. Emergence of standards may often be driven by customer demand as 

mentioned in Section 1.4.1 Characteristics of Successful Standards (p.9). At the present 

time, users of audio networks have been concerned about audio stream interoperability, 

resulting in the AES67 standard (Audio Engineering Society, 2013). There does not appear 

to be a similar demand for control protocol interoperability, although concerns have been 

raised about the issue: 

"…we are seeing the emergence of competing standards to add to the abundance of 

existing competing proprietary protocols … it looks like end users will be stuck with 

competing protocols and their user interface control and monitoring software 

applications for the foreseeable future."  

  (Shuttleworth, 2012) 

As of 2015, the challenges surrounding control protocol standardization have not changed 

since 2012. 

12.3 Evaluating Control Protocols 

As pointed out in Appendix 10, the sophistication of a control protocol does not mean that 

the protocol will be widely adopted. Thus, a ‘successful’ control protocol meets the user’s 

needs, irrespective of the features provided by the protocol. The control protocols 

discussed in this dissertation have marked differences in their designs and capabilities.  

A control protocol is a software artifact that typically reflects the ideas of a single designer 

or a small group of designers. Experience and creative insight are thus strongly reflected 

in control protocol designs. 

12.3.1 Evaluating Control Protocol Designs 

The detailed analysis of different control protocol designs and features presented in 

Chapter 10 and Appendix 10 suggested several desirable attributes of a control protocol. 

A control protocol that is flexible, expressive and scalable should: 

1. Define generalized commands that are applicable to all or significant sections of a 

static specification. 

2. Provide an abstract static specification that is scalable in the sense that the 

contents of the static specification can be expanded without the need to expand 

the specification itself. For example, AES64 parameters and SNMP objects can be 

added to the tree data structures defined by these protocols without having to 

modify the data structure itself. By contrast, IEC-62370-2 requires the static 

specification to be extended to accommodate additions to the protocol. 

Complexity is reduced and standardized representations are enforced when a 
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static specification is scalable without requiring additions to either the static or 

the dynamic specifications. 

3. Object-oriented control protocols may need to expand a static specification via 

inheritance if an inheritance hierarchy provides standard parameter addresses as 

pointed out in Chapter 10 with reference to the Open Control Architecture (OCA) 

control protocol. OCA enforces standardization by the specifications created by 

class hierarchies, not the object instances of OCA classes. 

4. A static specification should be able to represent relationships between 

parameters and relationships between descriptive data. Examples of mechanisms 

that support the specification of data relationships include the representation of 

AES64 parameters that support lists of related parameters and the indexing 

schemes provided by SNMP. The ability to reference device components or 

reference meta-data is a valuable feature of a control protocol. 

5. A dynamic specification should be capable of using the relationships defined by a 

static specification. Examples include the use of wildcarded addresses by OSC and 

AES64, SNMP indexes and OCA control class identifiers. 

6. Provide a balance between a static specification and a dynamic specification.  

For example, the freely defined actions provided by UPnP do not match the static 

specification where state variables are not hierarchically organized or related. 

Conversely, the limited native SNMP commands do not match the sophistication 

of the static specification provided by SNMP. 

These general observations are covered by the heuristics for control protocol design that 

are presented in Appendix 1. 

AES64, IEEE 1722.1-2013 and OCA are the only control protocols discussed in this 

dissertation that adhere to the above requirements. A flexible approach to both parameter 

representation and command specification that is characteristic of frameworks such as 

OSC, SNMP and UPnP appears to be attractive features of these control protocols. 

However, this flexibility encourages monolithic implementations that inhibit 

standardization attempts. A balance is required between flexible and scalable 

representations that are designed around core, fixed concepts that promote 

standardization. 

12.4 Distributed Discovery and Control Environments 

The previous chapter introduced the concept of a ‘distributed discovery and control 

environment’ that denoted a multi-faceted software system for discovery and control that 

utilizes different network and control protocols. This environment provides a higher-level 
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abstraction of the functionality traditionally associated with a control protocol by 

supporting the transparent discovery, implementation and use of the services provided by 

a networked device.  

12.4.1 The Significance of Object Spaces 

An associative space provides a novel distributed discovery and control environment 

where executable code in the form of serialized objects is provided by remote devices to 

controllers. Spaces provide simple solutions to the challenges associated with distributed 

environments without sacrificing functionality or scalability. A space does not create the 

distributed control environment; it facilitates the creation of the environment by 

providing the means to advertise and transfer the objects required to implement the 

environment. More significantly, spaces make the concepts of both service enumeration 

and command interoperability redundant. These significant characteristics are briefly 

commented on in the sections that follow. 

12.4.1.1 Device and Service Discovery 

Associative matching supports a flexible service discovery process similar to the queries 

performed on a relational database. An associative memory is thus able to support 

multiple views of a static specification that are created solely by the different associative 

keys used to select objects. Examples include sets of related parameters and sets of 

controls for a specified parent sub-device. In addition, an object space supports the 

implementation of both query and announcement discovery schemes. 

12.4.1.2 Service Implementations 

Two significant characteristics of the services provided by serialized object instances 

transferred via an object space are that: 

 Controllers do not require any knowledge of how services are implemented, and 

 Parameter objects are represented independently of the control objects that 

reference them; 

 A minimum level of standardization is required to discover services. 

Services are self-configuring and transparent to controllers. Controllers do not derive 

classes from abstract library classes or implement object instances belonging to specific 

classes to provide the required control, monitoring or connection management functions. 

A device provides the resources required by controllers to interact with the device as 

discussed in Section 11.3.4.3.1 Service Implementations (p.294). Controllers are provided 

with concrete classes that transparently implement all required functionality. Thus, object 
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spaces allow service implementations (rather than service descriptions) to be discovered 

and utilized. 

 The traditional notion of interoperability, where distributed processes 

communicate via well-defined messages that are understood by both transmitters and 

receivers does not exist in a space-based environment. Spaces allow processes to be loosely 

coupled where interoperability is defined in terms of controllers possessing the means to 

communicate rather than by the use of network communications having a standardized 

format and content. 

12.4.1.3 Connection Management 

By enforcing atomic space transactions, object spaces prevent data races and also allow 

applications to control general race conditions. Race conditions are prevented in a simple 

manner without using complex locking mechanisms to enforce mutual exclusion. 

Connection management functionality can be implemented in a variety of ways as 

discussed in Chapter 11. Chapter 11 illustrated how a serialized connection manager 

application is advertised to a network and provided to controllers. This application 

transparently provides connection management functionality to a controller.  

As demonstrated in the context of connection management, object serialization promotes 

the development of plugin architectures where specific functionality is advertised by 

devices. Controllers can read serialized objects to utilize the functionality provided by 

these objects. 

12.5 Final Observations 

The following closing comments consider the current challenges posed by service 

discovery and control protocol standardization. 

12.5.1 Zero Configuration Networking 

The term ‘zero configuration’ was first used by Stuart Cheshire to refer to DNS-SD service 

discovery  (Cheshire & Steinberg, 2006). By serializing executable content, the concept is 

taken further. Service enumeration is made redundant and replaced by executable object 

methods that automatically and transparently configure, initialize and realize services. A 

device is able to provide all of the functionality (including a protocol stack if required as 

described in Section  

11.5.1 Advertising an OSC Stack (p.305)) to controllers that wish to control the device. 

Devices thus ‘push’ complete implementations of control functionality to controllers. This 

distributed model differs substantially from traditional discovery and control models 

where service descriptions must be retrieved (‘pulled’) from a device or registry. With 
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these traditional models, a considerable amount of standardization and computational 

effort is required for service descriptions to be parsed and implemented by controllers. 

12.5.2 Control Protocol Standardization 

A minimum level of standardization is one of the features mentioned previously in Section 

1.4.1 Characteristics of Successful Standards (p.9) that is believed to lead to a widespread 

acceptance of a standard. Standardization to achieve interoperability between different 

control protocols requires: 

 Standardization of the format of symbolic parameter addresses, and 

 Standardization of the meaning of specific parameter addresses. For example,  

a pan parameter for a specified channel of a mixing console. 

Distributed control environments that use both existing network and control 

protocols can focus on a higher-level view of discovery and control functionality.  

Object spaces reduce the level of standardization required to implement a distributed 

control environment. As was demonstrated in Chapter 11, standardization of the 

identifiers denoting high-level device components and the parameter address levels 

defined by the SDM is sufficient to provide a sophisticated distributed control 

environment. By simply discovering devices, sub-devices, controls and parameters that 

contain all required control and monitoring functionality, controllers can interact with any 

discovered device. 

Given the number of network protocols and the number of competing control 

protocols currently available, the question of whether new control protocols are necessary 

should be posed. The insights gained from this study suggests that support for service 

discovery, user interface creation and the specification of zero-configuration services are 

more important than the standardization of lower-level implementations of control, 

monitoring and network transport capabilities. As demonstrated in the previous chapter, 

sophisticated control environments can be developed using the capabilities of existing 

network and control protocols. 

 

 

 

 

 

 

 

“The nice thing about standards is that you have so many to choose 
from.” 

                          (Tannenbaum, 1988), with reference to (Postel, 1983). 
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Appendix 1 

Principles of Control Protocol Design  

 

 

As outlined in Section 1.1.1 Topics Addressed in this Dissertation (p.3), this section 

formulates a set of heuristics that should be carefully considered when designing a control 

protocol. These heuristics are derived from experience gained in studying and 

implementing the different control protocols discussed in previous chapters.  

Heuristics are organized within the following categories: 

1. General protocol design heuristics. 

2. Object-oriented design heuristics. 

3. Service discovery and enumeration heuristics. 

4. Parameter representation and parameter access heuristics. 

5. Control functionality heuristics. 

6. Descriptive data heuristics. 

7. Device representation heuristics. 

8. User interface heuristics. 

Dependencies or relationships between different heuristics are indicated by placing a 

dependent or elated heuristic within parentheses following the heuristic. 

A1.1 General Protocol Design Heuristics 

G1.  A control protocol should provide direct access to parameters. 

Irrespective of whether a protocol design uses a parameter-based approach or an 

entity-based approach, parameters should be directly accessible. AES64, OCA and the 

SDM all adhere to this principle. IEC-62379-2, UPnP, CopperLan and IEEE 1722.1-

2013 all violate this principle. Section 10.3 Overcoming Entity-Based Design 

Limitations (p.257) discussed how independent parameter access can be achieved 

within control protocols that have an entity-based primary design concept.  

G2.  A protocol that is built around a primary design concept that also explicitly or 

implicitly defines one or more secondary design concepts will provide greater 

flexibility. 

Examples of the application of this principle include: 
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1. The specification of full parameter addresses that represent both device structure 

and parameter addresses within the SDM. 

2. Relationships among SNMP tabular entries that are specified using indexing 

schemes as described in Section 6.7.1 Representing Devices, Sub-Devices and 

Controls  (p.166). 

3. The AES64 parameter-addressing scheme that relates parameters to a device’s 

architecture. 

Further examples of secondary design concepts were provided in Table 10.1 Examples 

of Primary and Secondary Design Concepts (p.250).  

G3. Parameter data should never be organized to only serve the dynamic functionality 

specified by a control protocol. (G1) 

Parameter data should be logically organized with reference to other related 

parameters and/or a device’s architecture. These characteristics are clearly seen in 

the SDM and the AES64 parameter-addressing model. Many entity-based designs 

violate this heuristic as dynamic behavior is implemented in terms of functionality 

that operates on an entity rather than in terms of parameter access. For example, IEC-

62379-2 parameters only serve the functionality of a specific IEC-62379-2 functional 

block. 

G4. Functionality (dynamic design specifications) should be determined by logical 

requirements rather than fundamental data operations. 

Protocol commands should not be limited to GET() and SET(..) operations.  

This principle does not dismiss the declarative approach used by SNMP but states 

that these fundamental commands need to have more expressive options available as 

discussed in Section 6.9.2.2 Retrieval of Logical Data Records  (p.181). The use of 

wildcards within AES64 and OSC provide examples of a dynamic specification being 

extended to support logical functional requirements.  

G5. A balance should be achieved between the representation of parameter data and the 

dynamic functionality provided by a protocol. (G3, G4) 

A sophisticated parameter representation is of little use if the provided functionality 

cannot efficiently make use of the parameter representation or vice-versa.  

AES64 achieves this balance by providing an API were fundamental commands are 

extended was as discussed in Section 7.4.1 Command Messages (p.195). SNMP and 

Ember+ violate this principle, as the functionality provided by SNMP commands does 

not match the sophistication of its data representation capabilities.  

Conversely, UPnP violates this principle by having freely designed services that are 
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not supported by a logical organization of parameters. However, these protocols are 

frameworks and not specific control protocols that may provide more sophisticated 

commands as pointed out in Section 10.2.3.3 Evaluating Dynamic Specifications 

(p.256). Entity-based protocols must typically achieve this balance by providing a 

large repertoire of commands to support different entities as was discussed in 

Chapter 10.  

G6. Peer-to-peer network relationships should be preferred over client-server 

relationships.  

Peer-to-peer relationships subsume client-server relationships but the converse does 

not hold. As mentioned in Section 2.3.2 Peer-to-Peer Network Architectures(p.18), 

peer relationships maintain synchronization among the states of different networked 

devices and controllers. 

G7.  Audio signal paths should not form the primary-concept for a control protocol 

unless a compelling reason to do so exists.  

Controls or primary connection points for audio signals should not have to be 

determined by tracing the path of an audio signal through a device. As discussed in 

Section 4.5.1 A Channel-Oriented Model (p.112), secondary connection points offer 

no advantage to a control protocol. Device representations based on signal paths 

introduce unnecessary complexity. IEC-62379-2 violates this principle, as there is no 

compelling reason to depict signal paths within this protocol. IEEE 1722.1-2013 must 

represent signal connections between IEEE 17722 configurations within different 

clock domains that create different IEEE 1722 configurations as discussed in  

Section 3.4.1.1.1 Service Enumeration (p.67). 

G8.  Abstract entities should be preferred over concrete entities. 

This is a common software engineering principle. Basing a protocol design on 

concrete entities rather than abstract entities limits the extensibility of the protocol. 

For example, IEC-62379-2 defines concrete functional blocks that represent a specific 

signal processing function. As each functional block is represented within a dedicated 

SNMP table, the SNMP MIB must be expanded to add new functional blocks to the 

protocol. 

A1.2 Object-Oriented Protocol Design Heuristics 

The following heuristics apply specifically to object-oriented control protocol designs. 

OO1. Object-oriented control protocol designs should ensure that inheritance  

 relationships do not mix different concerns. 
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This principle was discussed in Section 10.3 Overcoming Entity-Based Design 

Limitations (p.257) with reference to the AES-24 family of protocols and CopperLan. 

OO2. Object-oriented control protocol designs should define inheritance hierarchies  

that can be used to represent hierarchical parameter addresses. 

OCA uses level identifiers and identifier strings to identify properties, methods and       

actions as discussed in Section 3.3.2.3.1 Control Class Identifiers (p.54). 

OO3. Object-oriented inheritance hierarchies should be deep, single- inheritance  

hierarchies rather than shallow, multiple-inheritance hierarchies. (OO2, OO4) 

Deep, single inheritance hierarchies represent a single entity and support 

hierarchical parameter address representations as found in OCA. 

OO4.  A class should represent a single abstract entity. (OO1) 

A software engineering cliché. For example, representing parameters within a 

control class. 

OO5.  Consider the use of aspects within object-oriented protocol designs. 

The use of aspects is an area that requires further investigation. Aspects provide 

independent access to parameters contained within objects, while also supporting 

arbitrary parameter relationships as illustrated in Section 10.3.4.2 An Aspect-

Oriented Example (p.262). 

A1.3 Service Discovery and Enumeration Heuristics 

S1.  Controller applications should be able to directly discover required services. 

A controller may only wish to access specific functionality such as the mastering 

section of a mixing console. Traversal of a service hierarchy where services are only 

discovered and retrieved on demand is possible within OSC, SNMP, AES64 and UPnP 

as was illustrated in the chapters devoted to these protocols. IEC-62379-2 violates 

this principle as controllers discover all services provided by a device.  

The organization of services within OCA is application specific. 

S2.   A control protocol should support the retrieval of arbitrary logical device 

components, services or descriptive data. (S1) 

The Fli2 environment allows arbitrary services to be selected using associative 

matching. Bandwidth is conserved, traffic burstiness is avoided, and the local 

overheads required to process discovered services are reduced when services can be 

selectively discovered and retrieved from a device. SNMP violates this principle as 

GETNEXT() and GETBULK() operations retrieve SNMP objects according to the 
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ordering of SNMP data within the SNMP object tree. AES64 and OCA devices may 

not require service discovery as parameters have standardized address identifiers. 

S3.  Prefer the retrieval of high-level entities themselves, not the data describing the 

entity. 

Serialized entities (objects or data records) allow a complete and fully functional 

entity to be retrieved rather than a description of the entity. This principle makes 

service enumeration redundant and was discussed in Chapter 9 with reference to 

UPnP and in Chapter 11 with reference to the Fli2 environment. 

S4.  Optimize service discovery and service enumeration for repeating items. 

Service discovery can be optimized if previously discovered device components or 

parameters can be locally replicated from previously discovered components or 

parameters as outlined in Section 4.3.4.5 Parameter and Device Component Naming 

Conventions (p.102).  

S5.  A control protocol should not be dependent on a centralized resource.  

Examples of centralized dependencies include the AES-24 registry and a centralized 

object space. Object spaces are able to overcome this limitation as multiple object 

spaces can easily be synchronized as discussed in Section 11.2.3 Space Network 

Architectures (p.276). 

A1.4 Parameter Representation and Access Heuristics 

Irrespective of the parameter storage mechanism or addressing scheme used to reference 

parameters, the following principles support parameter management and the 

specification of parameter relationships. 

P1. Access to parameter data should not be dependent on accessing controls or other 

device components. (G1) 

This heuristic restates heuristic G1. Parameters should be clearly separated from, and 

loosely coupled to device controls and components. Control parameter values should 

not be implemented as attributes within control objects; controls should push their 

values to control parameters as discussed in Section 2.7.1 Parameter Classifications 

(p.26). This principle is only enforced by AES64. 

P2. Related parameters should be stored within one or more logical collections, not as 

distinct scalar variables. (P1 ) 

CopperLan, UPnP and most entity-based control protocols violate this principle 

either by using linear numeric parameter identifiers or by embedding parameters 

within entities. IEEE 1722.1-2013 (like ACN) attempts to mitigate this limitation by 
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storing parameters at addresses that have an offset relationship. OCA uses class level 

identifiers to provide a logical grouping of parameters. 

P3. Protocol commands should be able to address logical parameter collections or 

parameter groups. (P1, P2) 

By addressing groups or ranges of parameters, bulk initialization is supported. 

Addressing parameter groups also supports capturing a device’s state and restoring a 

device’s state to a previous configuration. 

P4. Parameter naming and/or parameter-addressing conventions should consider the 

use of wildcard characters used for accessing parameter groups. 

OSC and AES64 both support wildcard characters within parameter addresses.  

A regular, coherent naming scheme such as always appending a channel number to a 

parameter name supports these naming conventions. 

P5. Carefully considered parameter and service naming conventions can reduce 

service discovery requirements. (S4) 

When carefully considered, regular naming schemes are used; services can be 

deduced from previously discovered services as discussed in Section 4.3.4.5 

Parameter and Device Component Naming Conventions (p.102). 

P6. Consider parameter relationships when designing data structures to represent 

parameters.  

Parameter relationships should be considered when designing data structures to 

represent parameters. Implementing commands to access and manage parameter 

groups is difficult if a parameter representation does not also support the 

representation of parameter relationships.  

P7.  Prefer explicit remote relationships between parameters rather than implicit 

relationships between local control values and remote parameter values. (P6) 

This heuristic states that parameter joins support additional functionality and 

flexibility that cannot be obtained if remote parameter values are directly accessed. 

Controls should push values to local protocol parameters if a local protocol address 

space exists, rather than directly updating remote parameter values. This principle 

allows parameter values to be scaled and modified and also allows a compact control 

surface to control a complex device as discussed in Section 7.3.3.1 Parameter Joins 

(p.190). 
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P8.  Distinctions between different types of parameters should be minimized. 

As previously discussed in Section 2.7.1 Parameter Classifications (p.26),  

no advantage is usually gained by distinguishing parameters according to criteria 

other than the functional type of the parameter. Distinctions between local and 

remote parameters may be of value where users must select parameters as found in 

the Fli2 environment. The SDM also distinguishes between parameters representing 

control or DSP values and connection parameters. These types of parameters typically 

have different functionality associated with them. For example, control parameters 

may belong to parameter groups, while connection parameters typically imply the 

existence of additional parameters such as parameters representing the transmission 

state of an audio source stream.  

P9.  Parameter names and parameter addresses should be context-sensitive by having 

a relationship to a device’s architecture.  

        This heuristic reinforces and overlaps heuristic G2. Parameters are typically 

duplicated across different device components or sections. For example, fader 

parameters are associated with the input and mastering sections of a mixing console. 

The context within which a parameter exists should be easily determined from the 

name or address of a parameter.  

P10.  Deterministic parameter addresses should be preferred over non-deterministic 

parameter addresses.  

Parameter addresses should be parsable. This heuristic implies that fixed-length 

addresses, or parameter addresses that contain a fixed-length component such as 

the SDM parameter address layer should be preferred over variable-length 

hierarchical parameter addresses. 

P11. Use of a common unit of measurement for parameter values minimizes data 

conversions and promotes efficient scaling of data values. 

Where parameter values utilize a common unit of measurement, controls can 

provide values that conform to parameter values or provide values that can be easily 

converted or scaled to the required parameter values. 

P12.  Protocols should provide support for arbitrary binary data types.  

As illustrated in Chapters 9 and 11 with reference to UPnP and the Fli2 environment, 

arbitrary binary data types allow controls and control surfaces to be transmitted in 

a serialized form across a network. This principle enables heuristics S3 and UI4 to 

be implemented. 

 
 



327 
 

A1.5 Control Functionality Heuristics 

CF1.  Commands should be designed to optionally request acknowledgments. 

A control protocol that uses connectionless communication protocols should be 

able to enable or disable acknowledgments. Commands such as service discovery 

queries may require acknowledgments, while streaming control messages do not 

require acknowledgments. Mandatory acknowledgments (as found in SNMP 

requests) use unnecessary bandwidth and impose a performance overhead. 

CF2.  Commands that have mandatory acknowledgments should provide  

non- blocking implementations. 

Where a protocol must provide mandatory acknowledgments, blocking and  

non- blocking implementations of commands should be provided.  

 
A1.6 Descriptive Data Heuristics 

DD1. Descriptive data should be clearly separated from parameter data. 

Parameter data should never be stored with descriptive data. Mixing parameter 

data with descriptive data requires additional parsing to separate these two 

categories of data. 

DD2. Data should be meaningfully formatted if it is to be displayed to users. 

Control protocol data may be displayed to users or may be intended to be machine 

parsable. Data that is displayed to users should be stored in a format that can be 

displayed without further processing. This heuristic supports applications such as 

UPnP service browsers and SNMP MIB browsers that must directly display service, 

parameter and descriptive data identifiers.  

 

A1.7 Device Representation Heuristics 

DR1.  Device models should be abstract models.   

Abstract representations of the different components and data representations used 

to define a device model promote scalability, and allow a model to be used to 

represent a wide range of devices. IEC-62379-2 uses concrete functional blocks to 

represent a device. This design decision requires additional functional blocks to be 

added to the protocol if functionality that is not provided by existing functional 

blocks is required. 
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DR2.  Device representations should be organized hierarchically unless a more 

sophisticated query model supports the arbitrary discovery of device 

components or services. 

A hierarchical model supports a top-down service discovery process that was 

demonstrated in the OSC, SNMP, UPnP and Fli2 implementations of the SDM 

discussed in the chapters devoted to these protocols. However, the Fli2 

environment does not require this organization because associative matching 

provides direct discovery of device components. 

 
A1.8 User interface Heuristics 

UI1.  Users should be able to select the service user interfaces that they require. 

This heuristic restates heuristic S1 from a user interface perspective. A user may only 

wish to access specific functionality such as the mastering section faders of a mixing 

console. 

UI2. Users should be able to determine the composition and layout of a control surface. 

(S1, UI1) 

User should be able to arrange control surfaces in an arbitrary manner. The layout 

of a control surface should not be required to mirror the layout of controls on a 

controlled device.  

UI3. User interface components should use absolute positions rather than relative 

positions.  

Related to heuristic UI1 and discussed in Section 4.3.2.2.2 Layout Attributes (p.93). 

A controller may require components such as individual faders or switches. Where 

these components have positions that are relative to parent components, relative 

positions become meaningless unless the parent components are also included 

within the user interface. 

UI4.  Prefer the retrieval of user interface components rather than the data describing 

user interface components. 

Restates heuristic S3 with reference to creating user interfaces. 

 
A1.9 Comparing Design Heuristics across Different Control Protocols 

Table A1.1 provides a comparison of different control protocols with reference to the 

principles discussed in the previous section. Blank entries indicate that the heuristic is not 

applicable or that support for the heuristic is not known.  
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-6

2
3

7
9

 

A
ES6

4
 

SN
M

P
 

C
o

p
p

erLan
 

  Fli2 

U
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O
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1. General Design Heuristics 

G1 
Control Protocols should provide 
direct access to parameters. 
 

[1]               

G2   
 

Control protocol designs should 
support multiple design concepts.                 

G3 
Organization of parameter data  
should not only serve functionality.                 

G4 
Functionality should be determined 
by logical requirements rather than 
data operations. 

                

G5 
Balance parameter representation  
and functionality. 

[2]        

[9] 
    

G6 
Prefer peer-to-peer network 
relationships. 

[3]               

G7 
Avoid a primary design concept  
based on audio signal paths.  
 

                

G8 
Prefer abstract entities over 
concrete entities. 
 

                       
  

 

2. Object-Oriented Design Heuristics         

OO1 
Inheritance relationships should 
not mix different concerns.                 

        
     

OO2 
Inheritance hierarchies should 
support parameter addresses.  
 

                             

OO3 
Prefer deep single-inheritance 
rather than shallow multiple-
inheritance relationships.             

                 

OO4 
A class should represent a single 
abstract entity.     [10]    

  

OO5 
Consider using aspects  
within object-oriented designs. 

        

 

3. Service Discovery and Enumeration Heuristics 

S1  Controller applications should be  
able to directly discover required 
services. 

  

 

 

 

 

 

[4] 

  

  

  

  

  

 

 

 

 

[5] 

 

  

  

       

S2 
 

Support the retrieval of arbitrary 
logical device components, services or 
descriptive data. 
 

           

S3 
 

Retrieve complete high-level  
entities rather that descriptions of 
entities. 

  
[7] 

               

S4 Optimize discovery for repeating items.   
[8] 
 

     
[11] 
 

S5 Avoid centralized resources. 
            

 

Table A1.1(a) Comparing Control Protocols using Design Heuristics – Part 1. 
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4. Parameter Representation and Parameter Access Heuristics 

P1 
 

Independent parameter  
representation. 

               

P2 
Related parameters stored 
within logical collections. 

             

P3 
Commands address logical 
parameter groups. 

               

P4 

Parameter-naming / 
addressing conventions 
support wildcards. 

               

P5 
Naming conventions can 
reduce service discovery. 

        

P6 
Data structures support 
parameter relationships. 

         

P7 
Prefer explicit remote 
parameter relationships.             

P8 
Minimize differences 
between parameters. 

               

P9 
Relate parameter addresses 
 to device architecture. 

  () 
Note1 

           

P10 
Prefer deterministic  
parameter addresses. 

             

P11 
 

Use common measurement 
units. 
 

           

P12 Support binary data types. 
     Note3 

 
   

     

 

Table A1.1(b) Comparing Control Protocols using Design Heuristics – Part 2. 

[1] Only SET(..) commands. 
[2] Not applicable as no static specification exists. 
[3] Although client-server implementations are common, peer-to-peer architectures are also found. 
[4] OSC does not natively support service discovery. 
[5] IEC-62379 does not natively support service discovery. 
[6] GETNEXT() and GETBULK() requests provide a coarse-grained retrieval that may often not match      
     logical requirements. 
[7] Retrieval of arbitrary binary types only supported by SNMP v1. 
[8] Indexing allows repeating items to be accessed within a logical ordering scheme. 
[9] Functionality not determined by the environment. 
[10] The design of the protocol encourages the mixing of concerns. 
[11] Using numbered levels within inheritance hierarchies and identifier strings within classes. 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[1] Not mandated by the protocol but commonly encountered. 
[2] Implementation dependent. 
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[1] OSC and SNMP v1c both support serialization. 
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5. Control Functionality Heuristics 

CF1 

Make command 
acknowledgments optional. 
for streamed commands. 

             

CF2 
Provide non-blocking 
commands.     [2]      [2]       

6. Descriptive Data Heuristics 

DD1 Clearly separate descriptive 
data from parameter data. 

         
 

       

DD2 Format descriptive data.            

 

7. Device Representation Heuristics 

DR1 
 Device models should 
 be abstract models. 

Note1        
 

      

DR2 
Prefer hierarchical  
device models.            

 

8. User interface Representation 

UI1 
Users should select  
required services. 

          

 
 

 
        

UI2 
Users select control surface 
composition and layout. 

          

UI3 
Prefer absolute positioning of 
user interface components. 

         

UI4 

Retrieve user interface 
components rather than  
data describing  
user interface components. 

[1]   [1]        

 

Table A1.1(c) Comparing Control Protocols using Design Heuristics – Part 3. 
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A1.10 Anti-Patterns in Control Protocol Design and Implementation 

Although most of the following ‘anti-patterns’ are covered by the principles discussed 

previously, it is useful to emphasize the most important negative features of control 

protocol design that were highlighted by this study. These include: 

1. Preventing direct, independent access to parameters by embedding parameters 

within entities. 

2. Unnecessary software complexity. This is a software design cliché that is 

unfortunately encountered in control protocols. Examples include the ACN 

Device Description Language discussed in Section 3.5.1.3 ACN Device 

Description (p.71), and the large and complex API provided by CopperLan.  

3. The use of a signal path as a primary design concept. This design feature found 

in IEC-62379-2 results in a complex service discovery process. Signal paths must 

be traversed from device inputs to device outputs to discover services.  

As signal paths typically connect entities, this type of architecture necessitates 

the anti-pattern described above in point two.  

4. Basing a protocol design on concrete entities (as found in IEC-62379-2) rather 

than abstract entities. This type of design is not scalable, as the protocol must be 

expanded to accommodate new entities. OCA defines concrete entities to enforce 

standardization as discussed in Chapter 10. 

5. Not clearly separating different concerns. For example, control functionality, 

parameter representation and a representation of a device’s architecture. 

CopperLan applications typically mix different concerns because of an object-

oriented design that uses multiple inheritance. 

As discussed in Chapter 10, current software design practices (and in particular  

object-oriented software) design emphasize entities and not data relationships. 
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Appendix 2 

XML Representation of the Standard 

Device Model 

 

 

An XML Document Type Definition (DTD) (World Wide Web Consortium, 1998) 

describes the structure of an XML document. The DTD presented in this appendix defines 

the structure of an XML document that represents a device using the standard device 

model. The structure and configuration of a simplified mixing console shown in Figure 

A2.1 is represented by the XML listed in this appendix. For brevity, only two channel strips 

are represented. 

Several representations of audio terminals and audio connections for providing 

connection management functionality exist. These representations depend on whether the 

device supports service discovery and provides controller capabilities for connection 

management. The device model reflects device capabilities where a device: 

 1. Must advertise local audio transmitters and audio receivers available to the device. 

2. May discover transmitters on the network and add these as candidate connections 

for the local receivers. 

3. May discover receivers on the network and add these as candidate connections for 

the local transmitters. 

4. May provide controls to perform connection management or may only define 

connection management parameters. 

The device illustrated in Figure A2.1 was used for the development of an XML DTD and as 

an example device represented in XML. Notable features of the DTD include: 

1. Lines 16-30 define the device architecture layer of the SDM. 

2. Lines 41 to 52 define the parameter description layer. 

3. Lines 54-58 define remote parameter references and remote parameter instances. 

The distinction between different parameter types was discussed in Section 4.3.2.1 

An Analysis of Parameter Data (point 2, p.89). 
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4. Line 37 defines parameter identifiers that are referenced by DTD identifier 

references (IDREF attributes). Line 52 shows that parameter addresses are 

implemented as DTD identifiers (ID attributes). This organization ensures that all 

parameter references refer to parameters defined as shot parameter addresses.  

5. Slave and peer parameter lists are also defined. Although not required by the SDM, 

these lists allow a device’s state to be saved. 

6. An AES64 modifier’ function is defined using a simple expression expressed in a 

manner compatible with the ‘Mathematical Markup Language’ (World Wide Web 

Consortium, 2003). 

7. Description and layout records are defined in lines 4 to 14. Description records 

may have <key><value> pairs or associate a list of values with a key. 

Within the XML example device: 

1. Connection management controls and parameter declarations use the AES64 

‘id’, ‘advertise’ and ‘listen’ parameters as example parameters. 

2. Lines 772-896 provide an example of a signal description record that advertises 

transmitter streams and lists previously discovered candidate connections for 

these streams.  
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 Figure A2.1 A Simplified Audio Mixer Architecture. 
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<?xml version="1.0" encoding="UTF-8"?> 1 
<!DOCTYPE DEVICE [ 2 
 3 
<!ELEMENT KEY (#PCDATA)> 4 
<!ELEMENT VALUE (#PCDATA)> 5 
<!ELEMENT META (KEY , VALUE)+> 6 
<!ELEMENT LIST (VALUE , VALUE+)> 7 
 8 
<!ELEMENT ATTRIBSET ( KEY , VALUE , META? )+> 9 
<!ELEMENT ATTRIBLIST ( KEY , VALUE , VALUE+ , META? )> 10 
<!ELEMENT ATTRIBREC ( ATTRIBSET*, ATTRIBLIST*, REMPARAMETER* )> 11 
 12 
<!ELEMENT LAYOUTREC ( KEY , VALUE , META? )+> 13 
 14 
<!ELEMENT DEVICE ( ATTRIBREC? , LAYOUTREC? , SUBDEVICE+ , SHORTADDRESS )> 15 
<!-- --><!ATTLIST DEVICE name CDATA #REQUIRED> 16 
 17 
<!ELEMENT SUBDEVICE ( ATTRIBREC? , LAYOUTREC? , CONTROLITEM* , SUBDEVICE* )> 18 
<!-- --><!ATTLIST SUBDEVICE name CDATA #REQUIRED> 19 
 20 
<!ELEMENT CONTROLITEM ( ( CONTROL* | MULTICONTROL | CHANNELID ) )> 21 
<!-- --><!ATTLIST CONTROLITEM name CDATA #IMPLIED> 22 
 23 
<!ELEMENT CONTROL ( ( PARAMREF | REMOTEREF ) , CONTROLVALUE, ATTRIBREC?, LAYOUTREC )> 24 
<!-- --><!ATTLIST CONTROL name CDATA #REQUIRED> 25 
<!-- --><!ATTLIST CONTROL controlType ( rotary | fader | selector | switch | meter ) "rotary"> 26 
<!ELEMENT MULTICONTROL ( (PARAMREF | REMOTEREF)+, CONTROLVALUE , ATTRIBREC?, LAYOUTREC )> 27 
<!-- --><!ATTLIST MULTICONTROL name CDATA #REQUIRED> 28 
<!-- --><!ATTLIST MULTICONTROL controlType ( selector | matrix ) "matrix"> 29 
<!ELEMENT CONTROLVALUE ( #PCDATA )> 30 
 31 
<!ELEMENT NETADDRESS ( #PCDATA )> 32 
<!ATTLIST NETADDRESS IPAddress CDATA #REQUIRED>  33 
<!ATTLIST NETADDRESS port CDATA #REQUIRED> 34 
 35 
<!ELEMENT CHANNELID ( #PCDATA )>  36 
<!ELEMENT PARAMREF ( ARGS* )> 37 
<!-- --><!ATTLIST PARAMREF address IDREF #REQUIRED> 38 
<!ELEMENT ARGS ( VALUE* )> 39 
 40 
<!ELEMENT SHORTADDRESS ( PARAMDESC+, MODIFIER* )> 41 
 42 
<!ELEMENT PARAMDESC ( ATTRIBREC?, PARAMTYPE+ )> 43 
<!-- --><!ATTLIST PARAMDESC name CDATA #REQUIRED> 44 
<!ELEMENT PARAMTYPE ( ATTRIBREC?,  PARAMINST+ )> 45 
<!-- --><!ATTLIST PARAMTYPE name CDATA #REQUIRED> 46 
<!ELEMENT PARAMINST ( PARAMETER+ )> 47 
<!-- --><!ATTLIST PARAMINST name CDATA #REQUIRED> 48 
<!-- Action params have no value within a device state --> 49 
<!ELEMENT PARAMETER ( LIST?, VALUE?, JOIN?, SLAVELIST?, PEERLIST? )>    50 
<!----><!ATTLIST PARAMETER name CDATA #REQUIRED> 51 
<!-- --><!ATTLIST PARAMETER address ID #REQUIRED> 52 
 53 
<!ELEMENT REMOTEREF ( VALUE? )> 54 
<!-- --><!ATTLIST REMOTEREF name CDATA #REQUIRED> 55 
<!-- --><!ATTLIST REMOTEREF address CDATA #IMPLIED> 56 
<!ELEMENT REMPARAMETER ( NETADDRESS, REMOTEREF+ )> 57 

                              XML DTD and Example Device 
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<!-- --><!ATTLIST REMPARAMETER name CDATA #REQUIRED> 58 
 59 
<!ELEMENT JOIN ( PARAMREF | REMOTEREF )> 60 
<!ELEMENT SLAVELIST ( PARAMREF, RELATION )+> 61 
<!ELEMENT PEERLIST ( PARAMREF, RELATION )+> 62 
<!ELEMENT RELATION (#PCDATA)> 63 
<!-- --><!ATTLIST RELATION relType ( abs | rel ) "abs"> 64 
 65 
<!ELEMENT AUTOMATION ( SEQUENCE+ )> 66 
<!ELEMENT SEQUENCE ( EVENT+ )> 67 
<!-- --><!ATTLIST SEQUENCE name CDATA #REQUIRED> 68 
<!ELEMENT EVENT ( TIMESTAMP, (PARAMREF | REMOTEREF), TYPE, VALUE )> 69 
<!ELEMENT TIMESTAMP (#PCDATA)> 70 
<!ELEMENT TYPE (#PCDATA)> 71 
 72 
<!ELEMENT MODIFIER ( FUNCTION )> 73 
<!ATTLIST MODIFIER name CDATA #REQUIRED> 74 
<!ELEMENT FUNCTION ( MROW )> 75 
<!ELEMENT MROW ( MROW?, ( MI? | PARAMREF ) , MO , ( MI? | PARAMREF ) )> 76 
<!ELEMENT MI (#PCDATA)> 77 
<!ELEMENT MO (#PCDATA)> 78 
]> 79 
 80 
<!-- _________________________  DEVICE  _________________________ --> 81 
<DEVICE name="Main Console"> 82 
      <ATTRIBREC> 83 
           <ATTRIBSET> 84 
                <KEY> deviceType </KEY> <VALUE> mixer </VALUE> 85 
                <KEY> location </KEY> <VALUE> studio1 </VALUE> 86 
                <KEY> MAC </KEY> <VALUE> 00:1C:B3:09:85:15 </VALUE> 87 
                <KEY> IP </KEY> <VALUE> 192.56.56.5 </VALUE> 88 
                <KEY> Port </KEY> <VALUE> 4534 </VALUE> 89 
                <KEY> Units </KEY> <VALUE> AES64</VALUE> 90 
           </ATTRIBSET> 91 
          <ATTRIBLIST> 92 
               <KEY> Children </KEY>  93 
                    <VALUE> Device Inputs </VALUE> 94 
                    <VALUE> Input Section </VALUE> 95 
                    <VALUE> Bus Section </VALUE> 96 
                    <VALUE> Output Section </VALUE> 97 
                    <VALUE> Device Outputs </VALUE> 98 
          </ATTRIBLIST> 99 
     </ATTRIBREC> 100 
   101 
     <!-- _______________________ DEVICE INPUTS _______________________ --> 102 
     <SUBDEVICE name="Device Inputs"> 103 
    104 
    <!-- ____________________ ANALOG INPUTS _________________ --> 105 
    <SUBDEVICE name="Analog Inputs"> 106 
         <SUBDEVICE name="Mic Inputs"> 107 
             <ATTRIBREC> 108 
                 <ATTRIBSET> 109 
                      <KEY> intype </KEY> <VALUE> mic </VALUE> 110 
                      <KEY> name </KEY> <VALUE> mic-1 </VALUE> 111 
                      <KEY> model </KEY> <VALUE> U87 </VALUE> 112 
                 </ATTRIBSET> 113 
            </ATTRIBREC> 114 
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            <LAYOUTREC> 115 
                 <KEY> x </KEY> <VALUE> 200 </VALUE> 116 
                 <KEY> y </KEY> <VALUE> 80 </VALUE> 117 
                 <KEY> image </KEY> <VALUE> mic.jpg </VALUE> 118 
            </LAYOUTREC> 119 
            <CONTROLITEM name = "Mic1"> 120 
                   <CHANNELID> m1 </CHANNELID> 121 
             </CONTROLITEM> 122 
            <CONTROLITEM> 123 
                 <CONTROL name="phantom1" controlType="switch"> 124 
                       <PARAMREF address="input.phantom.ph-1.value"/> 125 
                       <CONTROLVALUE> true </CONTROLVALUE> 126 
                       <ATTRIBREC> 127 
                            <ATTRIBSET> 128 
                                 <KEY> type </KEY> <VALUE> binary </VALUE> 129 
                            </ATTRIBSET> 130 
                       </ATTRIBREC> 131 
                       <LAYOUTREC> 132 
                            <KEY> x </KEY> <VALUE> 200 </VALUE> 133 
                            <KEY> y </KEY> <VALUE> 80 </VALUE> 134 
                       </LAYOUTREC> 135 
                </CONTROL> 136 
            </CONTROLITEM> 137 
       </SUBDEVICE>  <!-- Mic Inputs --> 138 
  </SUBDEVICE>  <!-- Analog Inputs --> 139 
    140 
      <!-- ___________________  RECEIVER STREAMS  _____________________ --> 141 
      <SUBDEVICE name="Receiver Streams"> 142 
           <!--______  Transmitter Stream Selector Control Receiver1  ______--> 143 
           <CONTROLITEM> 144 
                <CONTROL name="SrcStreamSelector1" controlType="selector"> 145 
                     <PARAMREF address="networkStream.recStream.rec-1.id"/> 146 
                     <CONTROLVALUE> tra-10 </CONTROLVALUE>    <!-- current transmitter id --> 147 
                     <ATTRIBREC> 148 
                           <ATTRIBLIST> 149 
                                <KEY> states </KEY>    <!-- discovered transmitters  --> 150 
                                <VALUE> tra-10 </VALUE> <VALUE> tra-11 </VALUE> 151 
                           </ATTRIBLIST> 152 
                     </ATTRIBREC> 153 
                     <LAYOUTREC> 154 
                          <KEY> x </KEY> <VALUE> 136 </VALUE> 155 
                          <KEY> y </KEY> <VALUE> 16 </VALUE> 156 
                    </LAYOUTREC> 157 
               </CONTROL> 158 
          </CONTROLITEM> 159 
 160 
          <!--_________ Transmitter Stream Selector Control Receiver2 _________--> 161 
          <CONTROLITEM> 162 
               <CONTROL name="SrcStreamSelector2" controlType="selector"> 163 
                    <PARAMREF address="networkStream.recStream.rec-2.id"/> 164 
                    <CONTROLVALUE> tra-11 </CONTROLVALUE>  <!-- current transmitter id --> 165 
                    <ATTRIBREC> 166 
                         <ATTRIBLIST> 167 
                              <KEY> states </KEY> <!-- discovered transmitters  --> 168 
                              <VALUE> tra-10 </VALUE> <VALUE> tra-11 </VALUE> 169 
                    </ATTRIBLIST> 170 
              </ATTRIBREC> 171 
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              <LAYOUTREC> 172 
                   <KEY> x </KEY> <VALUE> 200 </VALUE> 173 
                   <KEY> y </KEY> <VALUE> 36 </VALUE> 174 
              </LAYOUTREC> 175 
          </CONTROL> 176 
        </CONTROLITEM> 177 
     </SUBDEVICE>   <!-- Receiver Streams --> 178 
  </SUBDEVICE>  <!-- Device Inputs --> 179 
   180 
  <!--______________________  INPUT SECTION  _____________________--> 181 
  <SUBDEVICE name="Input Section"> 182 
        <ATTRIBREC> 183 
              <ATTRIBSET> 184 
                   <KEY> channels </KEY>  <VALUE> 2 </VALUE> 185 
              </ATTRIBSET> 186 
              <ATTRIBLIST> 187 
                     <KEY> Children </KEY>  188 
                     <VALUE> ChannelStrip-1 </VALUE> <VALUE> ChannelStrip-2</VALUE> 189 
              </ATTRIBLIST> 190 
        </ATTRIBREC> 191 
          192 
    <!--_____________________  CHANNEL STRIP1  ____________________--> 193 
    <SUBDEVICE name="ChannelStrip-1">      194 
          <LAYOUTREC> 195 
               <KEY> x </KEY> <VALUE> 56 </VALUE> 196 
               <KEY> y </KEY> <VALUE> 124 </VALUE> 197 
               <KEY> w </KEY> <VALUE> 60 </VALUE> 198 
               <KEY> h </KEY> <VALUE> 220 </VALUE> 199 
          </LAYOUTREC> 200 
       201 
      <!--_________  Source Assignment Control1  (IN to channel strip1)  ______  --> 202 
      <CONTROLITEM> 203 
             <CONTROL name="Stream Assignment1" controlType="selector"> 204 
                  <PARAMREF address="inputSection.Channel1.srcChannel.value"/> 205 
                  <CONTROLVALUE> ch-2 </CONTROLVALUE> 206 
                  <ATTRIBREC> 207 
                       <ATTRIBLIST> 208 
                            <KEY> states </KEY>  209 
                                 <VALUE> ch-1 </VALUE> <VALUE> ch-2 </VALUE> 210 
                                 <VALUE> mic-1 </VALUE> 211 
                       </ATTRIBLIST> 212 
                  </ATTRIBREC> 213 
                  <LAYOUTREC> 214 
                        <KEY> x </KEY> <VALUE> 56 </VALUE> 215 
                        <KEY> y </KEY> <VALUE> 130 </VALUE> 216 
                  </LAYOUTREC> 217 
             </CONTROL> 218 
      </CONTROLITEM> 219 
       220 
      <!-- __________________  Mute Control  ________________  --> 221 
      <CONTROLITEM> 222 
            <CONTROL name="mute1" controlType="switch"> 223 
                 <PARAMREF address="inputSection.mute.mute1.value"/> 224 
                  <CONTROLVALUE> true </CONTROLVALUE> 225 
                  <ATTRIBREC> 226 
                        <ATTRIBSET> 227 
                            <KEY> switchtype </KEY> <VALUE> binary </VALUE> 228 
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                        </ATTRIBSET> 229 
                   </ATTRIBREC> 230 
                   <LAYOUTREC> 231 
                        <KEY> x </KEY> <VALUE> 56 </VALUE> 232 
                        <KEY> y </KEY> <VALUE> 140 </VALUE> 233 
                   </LAYOUTREC> 234 
            </CONTROL> 235 
      </CONTROLITEM> 236 
       237 
      <!-- __________________  Gain Control  ________________  --> 238 
      <CONTROLITEM> 239 
            <CONTROL name="gain1" controlType="rotary"> 240 
                 <PARAMREF address="inputSection.gain.gain1.value"/> 241 
                  <CONTROLVALUE> 5 </CONTROLVALUE> 242 
                  <ATTRIBREC> 243 
                       <ATTRIBSET> 244 
                            <KEY> min </KEY> <VALUE> 0 </VALUE> 245 
                            <KEY> max </KEY> <VALUE> 10 </VALUE> 246 
                            <KEY> step </KEY>  <VALUE> 1</VALUE> 247 
                       </ATTRIBSET> 248 
                   </ATTRIBREC> 249 
                   <LAYOUTREC> 250 
                        <KEY> x </KEY> <VALUE> 56 </VALUE> 251 
                        <KEY> y </KEY> <VALUE> 150 </VALUE> 252 
                   </LAYOUTREC> 253 
            </CONTROL> 254 
      </CONTROLITEM> 255 
       256 
      <!-- _________________  Fader control  _______________  --> 257 
      <CONTROLITEM> 258 
           <CONTROL name="fader1" controlType="fader"> 259 
               <PARAMREF address="inputSection.fader.fader1.value"/> 260 
                <CONTROLVALUE> 12 </CONTROLVALUE> 261 
                <ATTRIBREC> 262 
                    <ATTRIBSET> 263 
                         <KEY> min </KEY>  <VALUE> -12 </VALUE> 264 
                         <KEY> max </KEY> <VALUE> 24 </VALUE> 265 
                         <KEY> step </KEY>  <VALUE> 1 </VALUE> 266 
                    </ATTRIBSET> 267 
                  </ATTRIBREC> 268 
                  <LAYOUTREC> 269 
                       <KEY> x </KEY> <VALUE> 50 </VALUE> 270 
                       <KEY> y </KEY> <VALUE> 180 </VALUE> 271 
                  </LAYOUTREC> 272 
           </CONTROL> 273 
      </CONTROLITEM> 274 
       275 
      <!-- __________________  Meter Display  _________________  --> 276 
      <CONTROLITEM> 277 
           <CONTROL name="meter1" controlType="meter"> 278 
                <PARAMREF address="inputSection.meter.meter1.value"/> 279 
                <CONTROLVALUE> 12 </CONTROLVALUE> 280 
                <ATTRIBREC> 281 
                     <ATTRIBSET> 282 
                          <KEY> min </KEY> <VALUE> 0 </VALUE> 283 
                          <KEY> max </KEY> <VALUE> 30 </VALUE> 284 
                          <KEY> step </KEY> <VALUE> 1</VALUE> 285 
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                    </ATTRIBSET> 286 
               </ATTRIBREC> 287 
               <LAYOUTREC> 288 
                     <KEY> x </KEY> <VALUE> 56 </VALUE> 289 
                     <KEY> y </KEY> <VALUE> 180 </VALUE> 290 
               </LAYOUTREC> 291 
          </CONTROL> 292 
      </CONTROLITEM> 293 
       294 
      <!-- ________________  BUS Selector Control  ______________  --> 295 
      <CONTROLITEM> 296 
           <CONTROL name="L-Bus" controlType="switch"> 297 
                <PARAMREF address="inputSection.bus.LStereoBus1.value"/> 298 
                <CONTROLVALUE> true </CONTROLVALUE> 299 
                     <ATTRIBREC> 300 
                          <ATTRIBLIST> 301 
                               <KEY> states </KEY>  302 
                               <VALUE> true </VALUE> <VALUE> false </VALUE> 303 
                           </ATTRIBLIST> 304 
                     </ATTRIBREC> 305 
                     <LAYOUTREC> 306 
                           <KEY> x </KEY> <VALUE> 50 </VALUE> 307 
                            <KEY> y </KEY> <VALUE> 190 </VALUE> 308 
                      </LAYOUTREC> 309 
                </CONTROL> 310 
                  311 
                <CONTROL name="R-Bus" controlType="switch"> 312 
                     <PARAMREF address="inputSection.bus.RStereoBus1.value"/> 313 
                      <CONTROLVALUE> true </CONTROLVALUE> 314 
                      <ATTRIBREC> 315 
                           <ATTRIBLIST> 316 
                                <KEY> states </KEY>  317 
                                <VALUE> true </VALUE> <VALUE> false </VALUE> 318 
                            </ATTRIBLIST> 319 
                       </ATTRIBREC> 320 
                       <LAYOUTREC>  321 
                            <KEY> x </KEY> <VALUE> 60 </VALUE> 322 
                            <KEY> y </KEY> <VALUE> 190 </VALUE> 323 
                       </LAYOUTREC> 324 
                </CONTROL> 325 
       </CONTROLITEM> 326 
             327 
    <!-- nested subdevices MUST be last  to conform to DTD--> 328 
    <!--_____________________  EQU SECTION  ____________________--> 329 
    <SUBDEVICE name="EQU Section"> 330 
         <LAYOUTREC> 331 
                <KEY> x </KEY> <VALUE> 56 </VALUE> 332 
                <KEY> y </KEY> <VALUE> 360 </VALUE> 333 
           </LAYOUTREC> 334 
           <CONTROLITEM> 335 
                 <CONTROL name="HiEqu1" controlType="rotary"> 336 
                      <PARAMREF address="inputSection.hiEqu.hiEqu1.value"/> 337 
                      <CONTROLVALUE> 3 </CONTROLVALUE> 338 
                      <ATTRIBREC> 339 
                      <ATTRIBSET> 340 
                            <KEY> min </KEY>  <VALUE> 0 </VALUE> 341 
                            <KEY> max </KEY> <VALUE> 12 </VALUE> 342 
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                            <KEY> step </KEY>  <VALUE> 1 </VALUE> 343 
                       </ATTRIBSET> 344 
                   </ATTRIBREC> 345 
                   <LAYOUTREC> 346 
                        <KEY> x </KEY> <VALUE> 56 </VALUE> 347 
                        <KEY> y </KEY> <VALUE> 150 </VALUE> 348 
                   </LAYOUTREC> 349 
              </CONTROL> 350 
          </CONTROLITEM> 351 
       352 
           <CONTROLITEM> 353 
                <CONTROL name="LoEqu1" controlType="rotary"> 354 
                     <PARAMREF address="inputSection.loEqu.loEqu1.value"/> 355 
                     <CONTROLVALUE> 6 </CONTROLVALUE> 356 
                     <ATTRIBREC> 357 
                           <ATTRIBSET> 358 
                                <KEY> min </KEY>  <VALUE> 0 </VALUE> 359 
                                <KEY> max </KEY> <VALUE> 12 </VALUE> 360 
                                <KEY> step </KEY>  <VALUE> 1 </VALUE> 361 
                           </ATTRIBSET> 362 
                      </ATTRIBREC> 363 
                      <LAYOUTREC> 364 
                           <KEY> x </KEY> <VALUE> 56 </VALUE> 365 
                           <KEY> y </KEY> <VALUE> 160 </VALUE> 366 
                      </LAYOUTREC> 367 
                </CONTROL> 368 
           </CONTROLITEM> 369 
      </SUBDEVICE>   <!--  Equ Section1 --> 370 
     </SUBDEVICE>    <!--  Channel Strip1 --> 371 
      372 
     <!--___________________  CHANNEL STRIP2  ____________________--> 373 
    <SUBDEVICE name="ChannelStrip-2"> 374 
          <ATTRIBREC> 375 
              <ATTRIBSET> 376 
                   <KEY> name </KEY> <VALUE> Channel-2 </VALUE> 377 
                   <KEY> deviceType </KEY> <VALUE> mixer </VALUE> 378 
              </ATTRIBSET> 379 
          </ATTRIBREC> 380 
          <LAYOUTREC> 381 
               <KEY> x </KEY> <VALUE> 80 </VALUE> 382 
               <KEY> y </KEY> <VALUE> 124 </VALUE> 383 
               <KEY> w </KEY> <VALUE> 60 </VALUE> 384 
               <KEY> h </KEY> <VALUE> 220 </VALUE> 385 
          </LAYOUTREC> 386 
       387 
      <!--____________ Source Stream Assignment Control  _________  --> 388 
  <CONTROLITEM> 389 
             <CONTROL name="Stream Assignment2" controlType="selector"> 390 
                  <PARAMREF address="inputSection.Channel2.srcChannel.value"/> 391 
                  <CONTROLVALUE> ch-2 </CONTROLVALUE> 392 
                  <ATTRIBREC> 393 
                       <ATTRIBLIST> 394 
                            <KEY> states </KEY>  395 
                              <VALUE> ch-1 </VALUE> <VALUE> ch-2 </VALUE> 396 
                              <VALUE> mic-1 </VALUE> 397 
                       </ATTRIBLIST> 398 
                  </ATTRIBREC> 399 
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                  <LAYOUTREC> 400 
                       <KEY> x </KEY> <VALUE>86 </VALUE> 401 
                       <KEY> y </KEY> <VALUE> 130 </VALUE> 402 
                  </LAYOUTREC> 403 
             </CONTROL> 404 
      </CONTROLITEM> 405 
       406 
      <!-- __________________  Mute Control  ________________  --> 407 
      <CONTROLITEM> 408 
            <CONTROL name="mute2" controlType="switch"> 409 
                 <PARAMREF address="inputSection.mute.mute2.value"/> 410 
                 <CONTROLVALUE> true </CONTROLVALUE> 411 
                 <ATTRIBREC> 412 
                      <ATTRIBSET> 413 
                           <KEY> switchtype </KEY> <VALUE> binary </VALUE> 414 
                      </ATTRIBSET> 415 
                 </ATTRIBREC> 416 
                 <LAYOUTREC> 417 
                      <KEY> x </KEY> <VALUE> 86 </VALUE> 418 
                      <KEY> y </KEY> <VALUE> 140 </VALUE> 419 
                 </LAYOUTREC> 420 
            </CONTROL> 421 
      </CONTROLITEM> 422 
       423 
      <!-- __________________  Gain Control  ________________  --> 424 
      <CONTROLITEM> 425 
            <CONTROL name="gain2" controlType="rotary"> 426 
                 <PARAMREF address="inputSection.gain.gain2.value"/> 427 
                  <CONTROLVALUE> 5 </CONTROLVALUE> 428 
                  <ATTRIBREC> 429 
                       <ATTRIBSET> 430 
                            <KEY> type </KEY> <VALUE> int </VALUE> 431 
                                 <META> 432 
                                      <KEY> max </KEY> <VALUE>  </VALUE> 433 
                                      <KEY> min </KEY> <VALUE> 0 </VALUE> 434 
                                       <KEY> step </KEY> <VALUE> 1 </VALUE> 435 
                                 </META> 436 
                        </ATTRIBSET> 437 
                   </ATTRIBREC> 438 
                   <LAYOUTREC> 439 
                        <KEY> x </KEY> <VALUE> 116 </VALUE> 440 
                        <KEY> y </KEY> <VALUE> 150 </VALUE> 441 
                   </LAYOUTREC> 442 
            </CONTROL> 443 
      </CONTROLITEM> 444 
       445 
      <!-- _________________  Fader control  _______________  --> 446 
      <CONTROLITEM> 447 
           <CONTROL name="fader2" controlType="fader"> 448 
                 <PARAMREF address="inputSection.fader.fader2.value"/> 449 
                 <CONTROLVALUE> 12 </CONTROLVALUE> 450 
                 <ATTRIBREC> 451 
                       <ATTRIBSET> 452 
                            <KEY> type </KEY> <VALUE> int</VALUE> 453 
                                  <META> 454 
                                       <KEY> min </KEY> <VALUE> -12 </VALUE> 455 
                                       <KEY> max </KEY> <VALUE> 24 </VALUE> 456 
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                                      <KEY> step </KEY> <VALUE> 1 </VALUE> 457 
                                </META> 458 
                    </ATTRIBSET> 459 
                </ATTRIBREC> 460 
                <LAYOUTREC> 461 
                     <KEY> x </KEY> <VALUE> 82 </VALUE> 462 
                     <KEY> y </KEY> <VALUE> 400 </VALUE> 463 
                 </LAYOUTREC> 464 
           </CONTROL> 465 
      </CONTROLITEM> 466 
       467 
      <!-- __________________  Meter Display  _________________  --> 468 
      <CONTROLITEM> 469 
          <CONTROL name="meter2" controlType="meter"> 470 
               <PARAMREF address="inputSection.meter.meter2.value"/> 471 
               <CONTROLVALUE> 12 </CONTROLVALUE> 472 
               <ATTRIBREC> 473 
                    <ATTRIBSET> 474 
                          <KEY> min </KEY> <VALUE> 0 </VALUE> 475 
                          <KEY> max </KEY> <VALUE> 30 </VALUE> 476 
                          <KEY> step </KEY> <VALUE> 1</VALUE> 477 
                    </ATTRIBSET> 478 
               </ATTRIBREC> 479 
               <LAYOUTREC> 480 
                      <KEY> x </KEY> <VALUE> 88 </VALUE> 481 
                      <KEY> y </KEY> <VALUE> 400 </VALUE> 482 
               </LAYOUTREC> 483 
          </CONTROL> 484 
      </CONTROLITEM> 485 
       486 
      <!-- _________________  Bus Selector Control  ______________  --> 487 
      <CONTROLITEM> 488 
                  <CONTROL name="L-Bus" controlType="switch"> 489 
                      <PARAMREF address="inputSection.bus.LStereoBus2.value"/> 490 
                      <CONTROLVALUE> true </CONTROLVALUE> 491 
                      <ATTRIBREC> 492 
                          <ATTRIBLIST> 493 
                                <KEY> states </KEY>  494 
                                <VALUE> true </VALUE> <VALUE> false </VALUE> 495 
                          </ATTRIBLIST> 496 
                      </ATTRIBREC> 497 
                      <LAYOUTREC> 498 
                            <KEY> x </KEY> <VALUE> 200 </VALUE> 499 
                            <KEY> y </KEY> <VALUE> 400 </VALUE> 500 
                      </LAYOUTREC> 501 
                 </CONTROL> 502 
                  503 
                 <CONTROL name="R-Bus" controlType="switch"> 504 
                      <PARAMREF address="inputSection.bus.RStereoBus2.value"/> 505 
                      <CONTROLVALUE> true </CONTROLVALUE> 506 
                      <ATTRIBREC> 507 
                          <ATTRIBLIST> 508 
                                <KEY> states </KEY>  509 
                                <VALUE> true </VALUE> <VALUE> false </VALUE> 510 
                          </ATTRIBLIST> 511 
                      </ATTRIBREC> 512 
                      <LAYOUTREC>  513 
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                            <KEY> x </KEY> <VALUE> 200 </VALUE> 514 
                            <KEY> y </KEY> <VALUE> 400 </VALUE> 515 
                      </LAYOUTREC> 516 
                </CONTROL> 517 
       </CONTROLITEM> 518 
        519 
    <!-- nested MUST be last --> 520 
    <!--_____________________  EQU SECTION  ____________________-->     521 
    <SUBDEVICE name="EQU Section"> 522 
         <LAYOUTREC> 523 
                <KEY> x </KEY> <VALUE> 28 </VALUE> 524 
                <KEY> y </KEY> <VALUE> 360 </VALUE> 525 
           </LAYOUTREC> 526 
           <CONTROLITEM> 527 
                <CONTROL name="HiEqu2" controlType="rotary"> 528 
                     <PARAMREF address="inputSection.hiEqu.hiEqu2.value"/> 529 
                      <CONTROLVALUE> 3 </CONTROLVALUE> 530 
                     <ATTRIBREC> 531 
                          <ATTRIBSET> 532 
                                <KEY> min </KEY>  <VALUE> 0 </VALUE> 533 
                                <KEY> max </KEY> <VALUE> 12 </VALUE> 534 
                                <KEY> step </KEY>  <VALUE> 1 </VALUE> 535 
                          </ATTRIBSET> 536 
                     </ATTRIBREC> 537 
                     <LAYOUTREC> 538 
                           <KEY> x </KEY> <VALUE> 200 </VALUE> 539 
                           <KEY> y </KEY> <VALUE> 400 </VALUE> 540 
                     </LAYOUTREC> 541 
               </CONTROL> 542 
           </CONTROLITEM> 543 
       544 
           <CONTROLITEM> 545 
                <CONTROL name="LoEqu2" controlType="rotary"> 546 
                     <PARAMREF address="inputSection.loEqu.loEqu2.value"/> 547 
                      <CONTROLVALUE> 6 </CONTROLVALUE> 548 
                     <ATTRIBREC> 549 
                          <ATTRIBSET> 550 
                                <KEY> min </KEY>  <VALUE> 0 </VALUE> 551 
                                <KEY> max </KEY> <VALUE> 12 </VALUE> 552 
                                <KEY> step </KEY> <VALUE> 1 </VALUE> 553 
                          </ATTRIBSET> 554 
                      </ATTRIBREC> 555 
                      <LAYOUTREC> 556 
                           <KEY> x </KEY> <VALUE> 86 </VALUE> 557 
                           <KEY> y </KEY> <VALUE> 500 </VALUE> 558 
                      </LAYOUTREC> 559 
                </CONTROL> 560 
           </CONTROLITEM> 561 
      </SUBDEVICE>    <!--  Equ Section2 --> 562 
     </SUBDEVICE>    <!--  Channel Strip2 --> 563 
  </SUBDEVICE>    <!--  Input Section --> 564 
 565 
<!-- ________________  OUTPUT SECTION SUB-DEVICE _______________  --> 566 
  <SUBDEVICE name="Output Section"> 567 
       <ATTRIBREC> 568 
           <ATTRIBSET> 569 
                  <KEY/> <VALUE/> 570 
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           </ATTRIBSET> 571 
      </ATTRIBREC> 572 
 573 
      <!-- ___________  MASTER SECTION SUB-DEVICE  ___________  --> 574 
      <SUBDEVICE name="Master Section"> 575 
          <ATTRIBREC> 576 
              <ATTRIBSET> 577 
                   <KEY/> <VALUE/> 578 
              </ATTRIBSET> 579 
          </ATTRIBREC> 580 
           581 
          <!-- ________________  Bus Selector Matrix  ______________ --> 582 
          <CONTROLITEM> 583 
                <MULTICONTROL name="Bus Selector" controlType="matrix"> 584 
                       <PARAMREF address="outSection.master.Lmaster.bus"/> 585 
                       <PARAMREF address="outSection.master.Rmaster.bus"/> 586 
                       <CONTROLVALUE> L--bus </CONTROLVALUE> 587 
                       <ATTRIBREC> 588 
                              <ATTRIBLIST> 589 
                                   <KEY> states </KEY>  590 
                                   <VALUE> L-bus </VALUE> 591 
                                   <VALUE> R-bus </VALUE> 592 
                           </ATTRIBLIST> 593 
                      </ATTRIBREC> 594 
                     <LAYOUTREC> 595 
                          <KEY> x </KEY> <VALUE> 20 </VALUE> 596 
                          <KEY> y </KEY> <VALUE> 23 </VALUE> 597 
                    </LAYOUTREC> 598 
               </MULTICONTROL> 599 
        </CONTROLITEM> 600 
           601 
          <!-- _______________  Left Master Fader control  ______________ --> 602 
          <CONTROLITEM> 603 
              <CONTROL name="L Master Fader" controlType="fader"> 604 
                   <PARAMREF address="outMasterSection.fader.leftFader.value"/> 605 
                   <CONTROLVALUE> 12 </CONTROLVALUE> 606 
                   <ATTRIBREC> 607 
                        <ATTRIBSET> 608 
                              <KEY> min </KEY> <VALUE> -12 </VALUE> 609 
                              <KEY> mAX </KEY> <VALUE> 60 </VALUE> 610 
                        </ATTRIBSET> 611 
                   </ATTRIBREC> 612 
                   <LAYOUTREC> 613 
                          <KEY> x </KEY> <VALUE> 20 </VALUE> 614 
                          <KEY> y </KEY> <VALUE> 23 </VALUE> 615 
                   </LAYOUTREC> 616 
              </CONTROL> 617 
          </CONTROLITEM> 618 
 619 
          <!-- _____________  Right Master Fader Control  ____________ --> 620 
          <CONTROLITEM> 621 
              <CONTROL name="R Master Fader" controlType="fader"> 622 
                  <PARAMREF address="outMasterSection.fader.rightFader.value"/> 623 
                  <CONTROLVALUE> 12 </CONTROLVALUE> 624 
                  <ATTRIBREC> 625 
                       <ATTRIBSET> 626 
                             <KEY> min </KEY> <VALUE> -12 </VALUE> 627 
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                             <KEY> mAX </KEY> <VALUE> 60 </VALUE> 628 
                       </ATTRIBSET> 629 
                  </ATTRIBREC> 630 
                  <LAYOUTREC> 631 
                       <KEY/>  <VALUE/> 632 
                 </LAYOUTREC> 633 
            </CONTROL> 634 
          </CONTROLITEM> 635 
           636 
        <!--  _________  OUTPUT SECTION CONNECTION TO STREAMS _________ --> 637 
        <CONTROLITEM> 638 
          <CONTROL name="output assignment"> 639 
              <REMOTEREF name="Transmitter1"  640 
                                       address="networkStream.recStream.rec-10.advertise"/> 641 
               <CONTROLVALUE> networkStream.recStream.rec-1.id </CONTROLVALUE> 642 
               <LAYOUTREC> 643 
                    <KEY> x </KEY> <VALUE> 436 </VALUE> 644 
                    <KEY> y </KEY> <VALUE> 86 </VALUE> 645 
               </LAYOUTREC> 646 
          </CONTROL> 647 
       </CONTROLITEM> 648 
  649 
      <!--- __________  Tranmsitter1 Output Stream Selector Control  _________  --> 650 
      <CONTROLITEM> 651 
           <CONTROL name="Transmitter1" controlType="selector"> 652 
                <REMOTEREF name="Transmitter1"  653 
                                          address="networkStream.recStream.rec-10.advertise"/> 654 
                <CONTROLVALUE> networkStream.recStream.rec-1.id </CONTROLVALUE> 655 
                <ATTRIBREC> 656 
                    <ATTRIBLIST> 657 
                          <KEY> states </KEY> 658 
                          <VALUE> networkStream.traStream.tra-1.id </VALUE> 659 
                          <VALUE> networkStream.traStream.tra-2.id </VALUE> 660 
                    </ATTRIBLIST> 661 
                </ATTRIBREC> 662 
                <LAYOUTREC> 663 
                      <KEY> </KEY> <VALUE> </VALUE> 664 
               </LAYOUTREC> 665 
          </CONTROL> 666 
     </CONTROLITEM> 667 
     668 
     <!--- _________  Transmitter2 Output Stream Selector Control  _________  --> 669 
     <CONTROLITEM> 670 
           <CONTROL name="Transmitter2" controlType="selector"> 671 
                <REMOTEREF name="Transmitter2"  672 
                                          address="networkStream.recStream.rec-11.advertise"/> 673 
                <CONTROLVALUE> networkStream.traStream.tra-11 </CONTROLVALUE> 674 
                <ATTRIBREC> 675 
                    <ATTRIBLIST> 676 
                          <KEY> states </KEY> 677 
                          <VALUE> networkStream.traStream.tra-1.id </VALUE> 678 
                          <VALUE> networkStream.traStream.tra-2.id </VALUE> 679 
                    </ATTRIBLIST> 680 
                </ATTRIBREC> 681 
                <LAYOUTREC> 682 
                      <KEY> </KEY> <VALUE>  </VALUE> 683 
                </LAYOUTREC> 684 
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         </CONTROL> 685 
     </CONTROLITEM> 686 
  </SUBDEVICE>   <!-- master section --> 687 
</SUBDEVICE>    <!-- output section --> 688 
 689 
<!-- ______________________  DEVICE OUTPUTS  ____________________ --> 690 
  <SUBDEVICE name="Device Outputs">  691 
   <!-- ___________________  ANALOG OUTPUTS  _________________ --> 692 
      <SUBDEVICE name="Analog Output"> 693 
            <ATTRIBREC> 694 
                 <ATTRIBSET> 695 
                      <KEY> outtype </KEY> <VALUE> line </VALUE> 696 
                      <KEY> name </KEY> <VALUE> lineout-1 </VALUE> 697 
                </ATTRIBSET> 698 
                </ATTRIBREC> 699 
                 <CONTROLITEM> 700 
                      <CONTROL name="streamChannelSelector" controlType="selector"> 701 
                           <PARAMREF address="output.analogOut.out-1.value"/> 702 
                           <CONTROLVALUE> R-Bus </CONTROLVALUE> 703 
                          <ATTRIBREC> 704 
                               <ATTRIBLIST> 705 
                                     <KEY> states </KEY>  706 
                                     <VALUE> R-Bus </VALUE> <VALUE> L-Bus </VALUE> 707 
                               </ATTRIBLIST> 708 
                          </ATTRIBREC> 709 
                          <LAYOUTREC> <!--  if displayed --> 710 
                               <KEY> x </KEY> <VALUE> 20 </VALUE> 711 
                                <KEY> y </KEY> <VALUE> 23 </VALUE> 712 
                         </LAYOUTREC> 713 
                    </CONTROL> 714 
              </CONTROLITEM> 715 
      </SUBDEVICE> <!-- Analog Outputs --> 716 
   717 
     <!-- _______________  TRANSMITTER STREAMS  _______________ --> 718 
     <SUBDEVICE name="Transmitter Streams"> 719 
           <SUBDEVICE name="Stream1"> 720 
                <ATTRIBREC> 721 
                      <ATTRIBSET> 722 
                           <KEY> outtype </KEY> <VALUE> stream </VALUE> 723 
                           <KEY> name </KEY> <VALUE>Transmitter Stream1 </VALUE> 724 
                           <KEY> address </KEY> <VALUE> networkStream.traStream.tra-1.id </VALUE> 725 
                           <KEY> channels </KEY> <VALUE> 2 </VALUE> 726 
                           <KEY> clock </KEY> <VALUE> 96 </VALUE> 727 
                      </ATTRIBSET> 728 
                 </ATTRIBREC> 729 
            </SUBDEVICE> 730 
            <SUBDEVICE name="Stream2"> 731 
                 <ATTRIBREC> 732 
                      <ATTRIBSET> 733 
                           <KEY> outtype </KEY> <VALUE> stream </VALUE> 734 
                           <KEY> name </KEY> <VALUE>Transmitter Stream1 </VALUE> 735 
                           <KEY> address </KEY> <VALUE> networkStream.traStream.tra-1.id </VALUE> 736 
                           <KEY> channels </KEY> <VALUE> 2 </VALUE> 737 
                           <KEY> clock </KEY> <VALUE> 96 </VALUE> 738 
                     </ATTRIBSET> 739 
                </ATTRIBREC> 740 
               <LAYOUTREC>    <!--  if displayed --> 741 
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                    <KEY> x </KEY> <VALUE> 380 </VALUE> 742 
                    <KEY> y </KEY> <VALUE> 560 </VALUE> 743 
                    <KEY> w </KEY> <VALUE> 180 </VALUE> 744 
                    <KEY> h </KEY> <VALUE> 60 </VALUE> 745 
               </LAYOUTREC> 746 
            </SUBDEVICE> 747 
         </SUBDEVICE> <!-- Transmitter streams --> 748 
    </SUBDEVICE>  <!-- Device Outputs --> 749 
     750 
   <!-- _____________________________________________________________________ --> 751 
   <!--  _____________________  SHORT PARAMETER ADDRESSES  __________________ --> 752 
   <SHORTADDRESS> 753 
         <PARAMDESC name="mic input"> 754 
             <PARAMTYPE name="phpower"> 755 
                     <ATTRIBREC> 756 
                           <ATTRIBSET> 757 
                                 <KEY> datatype </KEY> <VALUE> bool </VALUE> 758 
                           </ATTRIBSET> 759 
                     </ATTRIBREC> 760 
                     <PARAMINST name="phantom1"> 761 
                              <PARAMETER name = "value" address="input.phantom.ph-1.value"> 762 
                                   <VALUE> true </VALUE> 763 
                             </PARAMETER>  764 
                        </PARAMINST> 765 
               </PARAMTYPE> 766 
         </PARAMDESC> 767 
 768 
        <!--  ________________  Advertise Transmitter Streams  ______________ --> 769 
        PARAMDESC name="network source"> 770 
             <PARAMTYPE name="Transmitter"> 771 
                  <ATTRIBREC>   <!-- Signal Desscription Record --> 772 
                        <ATTRIBSET> 773 
                             <KEY> clock </KEY> <VALUE> 96 </VALUE> 774 
                             <KEY> channelcount </KEY> <VALUE> 2 </VALUE> 775 
                     </ATTRIBSET> 776 
                      <!--  Candidate connections --> 777 
                     <REMPARAMETER name="dest10">  778 
                           <NETADDRESS IPAddress="194.66.82.11" port="3456"/> 779 
                           <REMOTEREF name="id"  address="networkStream.destStream.dest-10.id"> 780 
                                  <VALUE> 10 </VALUE> 781 
                           </REMOTEREF> 782 
                           <REMOTEREF name="listen" address="networkStream.destStream.dest-10.listen"> 783 
                                  <VALUE> 1 </VALUE> 784 
                           </REMOTEREF> 785 
                      </REMPARAMETER> 786 
                      <REMPARAMETER name="dest11">  787 
                             <NETADDRESS IPAddress="194.66.82.11" port="3456"/> 788 
                             <REMOTEREF name="id"  address="networkStream.destStream.dest-11.id"> 789 
                                  <VALUE> 11 </VALUE> 790 
                            </REMOTEREF> 791 
                            <REMOTEREF name="listen"  address="networkStream.destStream.dest-11.listen"> 792 
                                <VALUE> 1 </VALUE> 793 
                           </REMOTEREF> 794 
                      </REMPARAMETER> 795 
               </ATTRIBREC> 796 
    797 
                <PARAMINST name="TransStream1"> 798 
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                      <PARAMETER name="id"  address="networkStream.traStream.tra-1.id"> 799 
                             <VALUE> 1001 </VALUE> 800 
                        </PARAMETER> 801 
                        <PARAMETER name="advertise"  address="networkStream.traStream.tra-1.advertise"> 802 
                             <VALUE> true </VALUE> 803 
                        </PARAMETER> 804 
               </PARAMINST> 805 
 806 
              <PARAMINST name="TransStream2"> 807 
                     <PARAMETER name="id"  address="networkStream.traStream.tra-2.id"> 808 
                          <VALUE> 1002 </VALUE> 809 
                     </PARAMETER> 810 
                     <PARAMETER name="advertise"  address="networkStream.traStream.tra-2.advertise"> 811 
                          <VALUE> true </VALUE> 812 
                     </PARAMETER> 813 
              </PARAMINST>  814 
        </PARAMTYPE> 815 
    </PARAMDESC>     816 
    <!--  _____________________  Advertise Receiver Streams  _____________________ --> 817 
    <PARAMDESC name="Receiver Stream"> 818 
        <PARAMTYPE name="Multicore"> 819 
            <ATTRIBREC>   <!-- Signal Desscription Record --> 820 
                 <ATTRIBSET> 821 
                      <KEY> clock </KEY> <VALUE> 96 </VALUE> 822 
                      <KEY> channelcount </KEY> <VALUE> 2 </VALUE> 823 
                 </ATTRIBSET> 824 
            </ATTRIBREC> 825 
             826 
            <PARAMINST  name="receiver-1"> 827 
                 <PARAMETER name="id"  address="networkStream.recStream.rec-1.id"> 828 
                      <VALUE> 201 </VALUE> 829 
                 </PARAMETER> 830 
                 <PARAMETER name="listen"  address="networkStream.recStream.rec-1.listen"> 831 
                      <VALUE> true </VALUE> 832 
                 </PARAMETER> 833 
            </PARAMINST> 834 
 835 
            <PARAMINST  name="receiver-2"> 836 
                 <PARAMETER name="id"  address="networkStream.recStream.rec-2.id"> 837 
                      <VALUE> 202 </VALUE> 838 
                 </PARAMETER> 839 
                 <PARAMETER name="listen"  address="networkStream.recStream.rec-2.listen"> 840 
                     <VALUE> true </VALUE> 841 
                 </PARAMETER> 842 
            </PARAMINST> 843 
        </PARAMTYPE> 844 
    </PARAMDESC> 845 
             846 
     <!--________________  CHANNEL STRIP PARAMETERS  _____________ --> 847 
     <PARAMDESC name="inputSection"> 848 
          <!-- ______  Stream channel to Input channel Parameters _____  --> 849 
        <PARAMTYPE name="channel"> 850 
            <ATTRIBREC> 851 
                  <ATTRIBSET> 852 
                       <KEY> channeID </KEY> <VALUE> tr1-ch-1 </VALUE> 853 
                  </ATTRIBSET> 854 
                  <ATTRIBLIST> 855 



351 
 

                       <KEY> channelID </KEY> <VALUE> tr1-ch-1 </VALUE>  856 
                                                                   <VALUE> tr1-ch-2 </VALUE> 857 
                  </ATTRIBLIST> 858 
            </ATTRIBREC> 859 
             860 
            <PARAMINST name="channel1 Input"> 861 
                 <PARAMETER name="channel1 Input"  address="inputSection.Channel1.srcChannel.value"> 862 
                      <VALUE> src1-ch1 </VALUE> 863 
                  </PARAMETER> 864 
            </PARAMINST> 865 
             866 
            <PARAMINST name="channel2 Input"> 867 
                <PARAMETER name="channel2 Input"  address="inputSection.Channel2.srcChannel.value"> 868 
                     <VALUE> src1-ch2 </VALUE> 869 
                </PARAMETER> 870 
            </PARAMINST> 871 
        </PARAMTYPE> 872 
         873 
        <!-- ____________________  Mute Parameters __________________  --> 874 
        <PARAMTYPE name="mute"> 875 
             <ATTRIBREC> 876 
                  <ATTRIBSET> 877 
                       <KEY> type </KEY> <VALUE> bool </VALUE> 878 
                  </ATTRIBSET> 879 
            </ATTRIBREC> 880 
             881 
            <PARAMINST name="mute1"> 882 
                <PARAMETER name="value"  address="inputSection.mute.mute1.value"> 883 
                     <VALUE> false </VALUE> 884 
                </PARAMETER> 885 
            </PARAMINST> 886 
            <PARAMINST name="mute2"> 887 
                 <PARAMETER name="value"  address="inputSection.mute.mute2.value"> 888 
                       <VALUE> false </VALUE> 889 
                 </PARAMETER> 890 
           </PARAMINST> 891 
       </PARAMTYPE> 892 
        893 
        <!-- ____________________  Gain Parameters  __________________  --> 894 
        <PARAMTYPE name="gain"> 895 
             <ATTRIBREC> 896 
                  <ATTRIBSET> 897 
                      <KEY> type </KEY> <VALUE> unsigned</VALUE> 898 
                      <KEY> min </KEY> <VALUE> 0 </VALUE> 899 
                      <KEY> max </KEY> <VALUE> 10 </VALUE> 900 
                      <KEY> step </KEY> <VALUE> 1</VALUE> 901 
                  </ATTRIBSET> 902 
            </ATTRIBREC> 903 
            904 
            <PARAMINST name="gain1"> 905 
                  <PARAMETER name="value"  address="inputSection.gain.gain1.value"> 906 
                        <VALUE> 1 </VALUE> 907 
                   </PARAMETER>               <!-- Action parameters do not have a value --> 908 
                   <PARAMETER name="addSlave"  address="inputSection.gain.gain1.addSlave"/> 909 
                   <PARAMETER name="remSlave"  address="inputSection.gain.gain1.remSlave"/> 910 
                   <PARAMETER name="addPeer"  address="inputSection.gain.gain1.addPeer"/> 911 
                   <PARAMETER name="remPeer"  address="inputSection.gain.gain1.remPeer"/> 912 
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            </PARAMINST> 913 
                 914 
            <PARAMINST  name="gain2"> 915 
                 <PARAMETER name="value"  address="inputSection.gain.gain2.value"> 916 
                       <VALUE> 3 </VALUE> 917 
                  </PARAMETER> 918 
                  <PARAMETER name="addSlave"  address="inputSection.gain.gain2.addSlave"/> 919 
                  <PARAMETER name="remSlave"  address="inputSection.gain.gain2.remSlave"/> 920 
                  <PARAMETER name="addPeer"  address="inputSection.gain.gain2.addPeer"/> 921 
                  <PARAMETER name="remPeer"  address="inputSection.gain.gain2.remPeer"/> 922 
            </PARAMINST> 923 
       </PARAMTYPE> 924 
        925 
       <!-- ___________________ Volume Parameters _________________  --> 926 
        <PARAMTYPE name="volume"> 927 
             <ATTRIBREC> 928 
                  <ATTRIBSET> 929 
                       <KEY> type </KEY> <VALUE> signed</VALUE> 930 
                       <KEY> min </KEY> <VALUE> 0 </VALUE> 931 
                       <KEY> max </KEY> <VALUE> 40 </VALUE> 932 
                       <KEY> step </KEY> <VALUE> 1</VALUE> 933 
                  </ATTRIBSET> 934 
             </ATTRIBREC> 935 
             936 
             <PARAMINST name="volume1">   <!-- Example of internal DSP parameters --> 937 
                  <PARAMETER name="value"  address="inputSection.volume.volume1.value"> 938 
                       <VALUE> 12 </VALUE> 939 
                  </PARAMETER> 940 
              </PARAMINST> 941 
               942 
              <PARAMINST name="volume2"> 943 
                  <PARAMETER name="value"  address="inputSection.volume.volume2.value"> 944 
                      <VALUE> 4 </VALUE> 945 
                  </PARAMETER> 946 
              </PARAMINST> 947 
        </PARAMTYPE> 948 
 949 
        <!-- ___________________  Fader Parameters _________________  --> 950 
        <PARAMTYPE name="fader"> 951 
             <ATTRIBREC> 952 
                  <ATTRIBSET> 953 
                       <KEY> type </KEY> <VALUE> signed</VALUE> 954 
                       <KEY> min </KEY> <VALUE> 0 </VALUE> 955 
                       <KEY> max </KEY> <VALUE> 10 </VALUE> 956 
                       <KEY> step </KEY> <VALUE> 1</VALUE> 957 
                  </ATTRIBSET> 958 
             </ATTRIBREC> 959 
             960 
            <PARAMINST name="Fader1"> 961 
                <PARAMETER name="value"  address="inputSection.fader.fader1.value"> 962 
                      <VALUE> 12 </VALUE> 963 
                      <JOIN > 964 
                            <PARAMREF  address="inputSection.volume.volume1.value"/> 965 
                      </JOIN>            966 
                      <SLAVELIST> 967 
                            <PARAMREF address="inputSection.fader.fader2.value"/> 968 
                            <RELATION relType = "abs" />  969 
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                      </SLAVELIST> 970 
                </PARAMETER> 971 
            </PARAMINST> 972 
 973 
            <PARAMINST name="Fader2"> 974 
                 <PARAMETER name="value"  address="inputSection.fader.fader2.value"> 975 
                      <VALUE> 12 </VALUE> 976 
                </PARAMETER> 977 
            </PARAMINST> 978 
        </PARAMTYPE> 979 
         980 
       <!--  _______________  Meter Value Parameters  ______________  --> 981 
      <PARAMTYPE name="meter"> 982 
            <ATTRIBREC> 983 
                <ATTRIBSET> 984 
                    <KEY> type </KEY> <VALUE> unsigned</VALUE> 985 
                    <KEY> min </KEY>  <VALUE> 0 </VALUE> 986 
                    <KEY> max </KEY>  <VALUE> 30 </VALUE> 987 
                    <KEY> step </KEY> <VALUE> 1</VALUE> 988 
                </ATTRIBSET> 989 
          </ATTRIBREC> 990 
           991 
          <PARAMINST name="meterValue1"> 992 
             <PARAMETER name="value"  address="inputSection.meter.meter1.value"> 993 
                 <VALUE> 16 </VALUE> 994 
             </PARAMETER> 995 
         </PARAMINST> 996 
          997 
         <PARAMINST name="meterValue2"> 998 
             <PARAMETER name="value"  address="inputSection.meter.meter2.value"> 999 
                  <VALUE> 14 </VALUE> 1000 
             </PARAMETER> 1001 
         </PARAMINST> 1002 
      </PARAMTYPE> 1003 
       1004 
      <!--  _______________  Meter Subscription Parameters  ______________  --> 1005 
      <PARAMTYPE name="meterSub"> 1006 
            <ATTRIBREC> 1007 
                 <ATTRIBSET> 1008 
                       <KEY> min </KEY> <VALUE> 0 </VALUE> 1009 
                       <KEY> max </KEY> <VALUE> 10 </VALUE> 1010 
                       <KEY> step </KEY> <VALUE> 1</VALUE> 1011 
                 </ATTRIBSET> 1012 
           </ATTRIBREC> 1013 
         1014 
          <PARAMINST name="metersub1"> 1015 
              <PARAMETER name="value"  address="inputSection.metersub.metersub1.value"> 1016 
                   <VALUE> 1 </VALUE> 1017 
              </PARAMETER> 1018 
           </PARAMINST> 1019 
           1020 
           <PARAMINST name="metersub2"> 1021 
               <PARAMETER name="value"  address="inputSection.metersub.metersub2.value"> 1022 
                    <VALUE> 1 </VALUE> 1023 
               </PARAMETER> 1024 
            </PARAMINST> 1025 
      </PARAMTYPE> 1026 
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      <!--  _________________  Meter Value Parameters  _______________  --> 1027 
      <PARAMTYPE name="meter"> 1028 
            <ATTRIBREC> 1029 
                 <ATTRIBSET> 1030 
                      <KEY> min </KEY> <VALUE> 0 </VALUE> 1031 
                      <KEY> max </KEY> <VALUE> 26 </VALUE> 1032 
                      <KEY> step </KEY> <VALUE> 1</VALUE> 1033 
                 </ATTRIBSET> 1034 
           </ATTRIBREC> 1035 
         1036 
          <PARAMINST name="meter1"> 1037 
              <PARAMETER name="value"  address="inputSection.meterval.meter1.value"> 1038 
                   <VALUE> 12 </VALUE> 1039 
              </PARAMETER> 1040 
          </PARAMINST> 1041 
 1042 
          <PARAMINST name="meter2"> 1043 
              <PARAMETER name="value"  address="inputSection.meterval.meter2.value"> 1044 
                   <VALUE> 12 </VALUE> 1045 
              </PARAMETER> 1046 
          </PARAMINST> 1047 
      </PARAMTYPE> 1048 
       1049 
      <!--  _______________  Bus Assignment Parameters  ____________  --> 1050 
      <PARAMTYPE name="busAssign"> 1051 
           <ATTRIBREC> 1052 
                <ATTRIBSET> 1053 
                     <KEY> type </KEY> <VALUE> bool </VALUE> 1054 
               </ATTRIBSET> 1055 
          </ATTRIBREC> 1056 
           1057 
          <PARAMINST name="LBus1"> 1058 
              <PARAMETER name="value"  address="inputSection.bus.LStereoBus1.value"> 1059 
                   <VALUE> true </VALUE> 1060 
              </PARAMETER> 1061 
          </PARAMINST> 1062 
           1063 
          <PARAMINST name="RBus1"> 1064 
               <PARAMETER name="value"  address="inputSection.bus.RStereoBus1.value"> 1065 
                    <VALUE> false </VALUE> 1066 
               </PARAMETER> 1067 
           </PARAMINST> 1068 
           1069 
          <PARAMINST name="LBus2"> 1070 
              <PARAMETER name="value"  address="inputSection.bus.LStereoBus2.value"> 1071 
                   <VALUE> true </VALUE> 1072 
              </PARAMETER> 1073 
          </PARAMINST> 1074 
           1075 
          <PARAMINST name="RBus2"> 1076 
              <PARAMETER name="value"  address="inputSection.bus.RStereoBus2.value"> 1077 
                  <VALUE> false </VALUE> 1078 
              </PARAMETER> 1079 
           </PARAMINST> 1080 
      </PARAMTYPE> 1081 
  </PARAMDESC> 1082 
   1083 
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  <!-- ___________________  EQU SECTION PARAMETERS  _________________  --> 1084 
  <PARAMDESC name="Equ Section"> 1085 
      <!-- ___________________  HiEqu Parameters _________________  --> 1086 
      <PARAMTYPE name="HiEqu"> 1087 
           <ATTRIBREC> 1088 
                <ATTRIBSET> 1089 
                     <KEY> type </KEY> <VALUE> unsigned </VALUE> 1090 
                     <KEY> min </KEY> <VALUE> 0 </VALUE> 1091 
                     <KEY> max </KEY> <VALUE> 10 </VALUE> 1092 
                     <KEY> step </KEY> <VALUE> 1</VALUE> 1093 
                </ATTRIBSET> 1094 
          </ATTRIBREC> 1095 
             1096 
          <PARAMINST name="hiEqu1"> 1097 
             <PARAMETER name="value"  address="inputSection.hiEqu.hiEqu1.value"> 1098 
                   <VALUE> 1 </VALUE> 1099 
              </PARAMETER> 1100 
          </PARAMINST> 1101 
           1102 
          <PARAMINST name="hiEqu2"> 1103 
              <PARAMETER name="value"  address="inputSection.hiEqu.hiEqu2.value"> 1104 
                   <VALUE> 3 </VALUE> 1105 
              </PARAMETER> 1106 
          </PARAMINST> 1107 
      </PARAMTYPE> 1108 
       1109 
      <!-- ___________________  LoEqu Parameters _________________  --> 1110 
      <PARAMTYPE name="LoEqu"> 1111 
            <ATTRIBREC> 1112 
                <ATTRIBSET> 1113 
                     <KEY> type </KEY> <VALUE> unsigned </VALUE> 1114 
                     <KEY> min </KEY>  <VALUE> 0 </VALUE> 1115 
                     <KEY> max </KEY>  <VALUE> 10 </VALUE> 1116 
                     <KEY> step </KEY> <VALUE> 1</VALUE> 1117 
                </ATTRIBSET> 1118 
           </ATTRIBREC> 1119 
             1120 
           <PARAMINST name="LoEqu1"> 1121 
               <PARAMETER name = "value"  address="inputSection.loEqu.loEqu1.value"> 1122 
                   <VALUE> 4 </VALUE> 1123 
               </PARAMETER> 1124 
           </PARAMINST> 1125 
            1126 
           <PARAMINST name="LoEqu2"> 1127 
               <PARAMETER name = "value"  address="inputSection.loEqu.loEqu2.value"> 1128 
                  <VALUE> 4 </VALUE> 1129 
               </PARAMETER> 1130 
          </PARAMINST> 1131 
      </PARAMTYPE> 1132 
   </PARAMDESC> 1133 
     1134 
    <!--  ______________  OUTPUT SECTION PARAMETERS _____________ --> 1135 
    <PARAMDESC name="Output Section"> 1136 
          <PARAMTYPE name="Bus Assign"> 1137 
              <ATTRIBREC> 1138 
                  <ATTRIBSET> 1139 
                       <KEY> type </KEY>  <VALUE> string </VALUE> 1140 
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                  </ATTRIBSET> 1141 
                  <ATTRIBLIST> 1142 
                       <KEY> value </KEY>  <VALUE> L-bus </VALUE> <VALUE> R-bus </VALUE> 1143 
                  </ATTRIBLIST> 1144 
              </ATTRIBREC> 1145 
               1146 
               <PARAMINST name="L Master Bus Assign"> 1147 
                  <PARAMETER name="bus"  address="outSection.master.Lmaster.bus"> 1148 
                      <VALUE> Lbus </VALUE> 1149 
                  </PARAMETER> 1150 
              </PARAMINST> 1151 
               1152 
              <PARAMINST name="R Master Bus Assign"> 1153 
                  <PARAMETER name="bus"  address="outSection.master.Rmaster.bus"> 1154 
                       <VALUE> Rbus </VALUE> 1155 
                  </PARAMETER> 1156 
              </PARAMINST> 1157 
          </PARAMTYPE> 1158 
                   1159 
          <PARAMTYPE name="Fader"> 1160 
              <PARAMINST name="L Master Fader"> 1161 
                  <PARAMETER name="L Master Fader"  1162 
                                                    address="outMasterSection.fader.leftFader.value"> 1163 
                       <VALUE> 12 </VALUE> 1164 
                  </PARAMETER> 1165 
             </PARAMINST> 1166 
  1167 
            <PARAMINST name="R Master Fader"> 1168 
                  <PARAMETER name="R Master Fader"  1169 
                                                    address="outMasterSection.fader.rightFader.value"> 1170 
                        <VALUE> 10 </VALUE> 1171 
                  </PARAMETER> 1172 
               </PARAMINST> 1173 
          </PARAMTYPE> 1174 
    </PARAMDESC> 1175 
     1176 
    <!--  ___________  MASTER SECTION CONNECTION TO STREAMS ___________ --> 1177 
    <PARAMDESC name="Device Outputs"> 1178 
        <PARAMTYPE name="stream connection"> 1179 
         <PARAMINST name = "stream connection ch1"> 1180 
             <PARAMETER name = "c1-1" address="networkStream.traStream.tra-1.c1-1"> 1181 
                <VALUE> </VALUE> 1182 
             </PARAMETER> 1183 
             </PARAMINST> 1184 
               <PARAMINST name = "stream connection ch2"> 1185 
             <PARAMETER name = "c1-2" address="networkStream.traStream.tra-1.c1-2"> 1186 
                   <VALUE> </VALUE> 1187 
             </PARAMETER>  1188 
             </PARAMINST>  1189 
       </PARAMTYPE> 1190 
 1191 
        <!-- __________  Receiver Stream Channel Selection Parameters ________  --> 1192 
        <PARAMTYPE name="stream channel"> 1193 
             <ATTRIBREC> 1194 
                  <ATTRIBSET> 1195 
                       <KEY> min </KEY> <VALUE> 0 </VALUE> 1196 
                       <KEY> max </KEY> <VALUE> 10 </VALUE> 1197 
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                       <KEY> step </KEY> <VALUE> 1</VALUE> 1198 
                  </ATTRIBSET> 1199 
              </ATTRIBREC> 1200 
             1201 
            <PARAMINST name="stream channel selector"> 1202 
                 <PARAMETER name="ch"  address="networkStream.recStream.rec-1.ch"> 1203 
                      <LIST> 1204 
                           <VALUE> ch-1 </VALUE> <VALUE> ch-2 </VALUE> 1205 
                      </LIST> 1206 
                     <VALUE>  ch-1 </VALUE>  1207 
                </PARAMETER> 1208 
            </PARAMINST> 1209 
         </PARAMTYPE> 1210 
 1211 
        <PARAMTYPE name="analog out"> 1212 
            <PARAMINST name="analog out selector"> 1213 
                 <PARAMETER name="value" address="output.analogOut.out-1.value"> 1214 
                      <LIST> 1215 
                           <VALUE> L-master </VALUE> <VALUE> R-master </VALUE> 1216 
                      </LIST> 1217 
                     <VALUE> L-master </VALUE>  1218 
                </PARAMETER> 1219 
            </PARAMINST> 1220 
         </PARAMTYPE> 1221 
      </PARAMDESC> 1222 
       1223 
      <MODIFIER name="fader modifier"> 1224 
         <FUNCTION> 1225 
             <MROW> 1226 
                <MROW> 1227 
                  <PARAMREF address="inputSection.fader.fader1.value"/> 1228 
                  <MO>=</MO> 1229 
                  <PARAMREF address="inputSection.volume.volume1.value"/> 1230 
                </MROW> 1231 
                <MO>+</MO> 1232 
                <MI> 12 </MI> 1233 
              </MROW> 1234 
         </FUNCTION> 1235 
      </MODIFIER> 1236 
    </SHORTADDRESS> 1237 
    <AUTOMATION> 1238 
         <SEQUENCE name = "Scene-1"> 1239 
              <EVENT> 1240 
                      <TIMESTAMP>  4000 </TIMESTAMP> 1241 
                    <PARAMREF address="inputSection.mute.mute1.value"/> 1242 
                    <TYPE> bool </TYPE> 1243 
                    <VALUE> true</VALUE> 1244 
             </EVENT> 1245 
             <EVENT> 1246 
                      <TIMESTAMP>  1000 </TIMESTAMP> 1247 
                      <PARAMREF address="inputSection.fader.fader1.value"/> 1248 
                      <TYPE> int </TYPE> 1249 
                     <VALUE> 12 </VALUE> 1250 
             </EVENT> 1251 
        </SEQUENCE> 1252 
    </AUTOMATION> 1253 
</DEVICE> 1254 
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Appendix 3 

SNMP Specifications  

 

SNMPv1 is defined by: 

 RFC1089 - SNMP over Ethernet (Schoenwaelder & Jeffree, 2006); 

 RFC1155 - Structure and Identification of Management Information for TCP/IP-

based Internets (Rose & McCloghrie, 1990); 

 RFC1157 - Simple Network Management Protocol (Case, Fedor, Schoffstall, & 

Davin, 1990). 

SNMPv2c is defined by: 

 RFC1902 - Structure of Management Information for Version 2 of the Simple 

Network Management Protocol (SNMPv2) extends the SMI for SNMPv2.  

(Case J. , McCloghrie, Rose, & Waldbusser, 1996); 

 RFC1903 - Textual Conventions for Version 2 of the Simple Network Management 

Protocol (SNMPv2) (Case J. , McCloghrie, Rose, & Waldbusser, 1996); 

 RFC1904 - Conformance Statements for Version 2 of the Simple Network 

Management Protocol (SNMPv2). (Case J. , McCloghrie, Rose, & Waldbusser, 

1993c); 

 RFC1905 - Protocol Operations for Version 2 of the Simple Network Management 

Protocol (SNMPv2) (Case J. , McCloghrie, Rose, & Waldbusser, 1996a); 

 RFC1906 - Transport Mappings for Version 2 of the Simple Network 

Management Protocol (SNMPv2) (Case J. , McCloghrie, Rose, & Waldbusser, 

1996b). 

SNMPv3 is defined by: 

 RFC2570 - Introduction to Version 3 of the Internet-standard Network 

Management Framework (Case, Mundy, Partain, & Stewart, 1999); 

 RFC2571 - An Architecture for Describing SNMP Management Frameworks         

(Harrington, Presuhn, & Wijnen, 1999); 

 RFC2572 - Message Processing and Dispatching for the Simple Network 

Management Protocol (SNMP) (Case, Harrington, Presuhn, & Wijnen, 1999); 
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Several enhancements to version two (Hassan & Yaghobi, 2001) did not gain widespread 

acceptance. These versions, ‘SNMPsec’, ‘SNMPv2p’, ‘SNMPv2u’ and ‘SNMPv2*’ are of 

historical interest only.  

Two versions of the SMI exist, SMIv1 is described by: 

 RFC1155 - Structure and Identification of Management Information for TCP/IP-

based Internets (Rose & McCloghrie, 1990); 

 RFC1212 - Concise MIB Definitions (Rose & McCloghrie, 1991); 

 RFC1215 - A Convention for Defining Traps for use with the SNMP 

(Rose, 1999); 

SMIv2 is described by:    

 RFC1442 - Structure of Management Information for version 2 of the Simple 

Network Management Protocol (SNMPv2) (Case J. , McCloghrie, Rose, & 

Waldbusser, 1993a); 

RFC1443 - Textual Conventions for version 2 of the Simple Network Management 

Protocol (SNMPv2) (Case J. , McCloghrie, Rose, & Waldbusser, 1993b); 
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Appendix 4 

Protocol Implementations 

 

 

This appendix describes the software that was developed to investigate and illustrate the 

capabilities of different control protocols. These implementations are listed below. 

1. Four different implementations of the Fli2 environment that are described in 

the next section. 

2. A Fli2 connection management application. 

3. An OSC device and controller. 

4. An SNMP agent and controller. 

5. An AES64 device and controller. 

6. A CopperLan device and controller and a device that demonstrates 

connection management between CopperLan devices. 

7. A UPnP device and controller. 

8. An EmBer+ parameter implementation. 

The AES64 and UPnP implementations only implement basic control and monitoring 

functionality. Development was not continued within these protocols following the 

discovery of object serialization and the possibilities suggested by the Fly object space. The 

Ember+ device creator utility (‘TinyEmberPlus’) provided with the Ember+ distribution 

was used to investigate the implementation of SDM parameters within Ember+.  

A4.1 Fli2 Device and Controller Applications 

Four versions of the Fli2 environment were developed: 

1. A version designed for use on a local-area network. 

2. A version that used uses the local loopback address for demonstration on a single 

machine. Instructions for running this application are included with the software 

distribution. 

3. A version that used the Fast-Cast message library (Fast-Cast Messaging Library, 

2014)  described in Section 11.3.1.5 Software Development using Java (p.280) for 

transmitting metering subscriptions. 
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An environment where an OSC-enabled device provides an OSC stack to controllers.  

This novel use of serialized objects was described in Section  

11.5.1 Advertising an OSC Stack (p.305). 

A4.1.1 A Fli2 Mixing Console Device 

Figure A4.1 illustrates a four-channel audio mixer developed in Java. The device, sub-

device and control components of this device are advertised to controller applications 

using a Fly space as described in Chapter 11. Four channel strip sub-devices contain 

equalization section sub-devices. A mastering section consists of sub-devices representing 

the left and right channels of a stereo output. In addition to standard Java button and 

slider widgets the following third-party components and classes were used: 

 Rotary potentiometer widgets adapted from the code developed by Craig Lindley 

(Lindley, 1999); 

 Meter widgets obtained from the SteelSeries gauge component library (Grunwald, 

n.d.); 

 A layout manager named MiGLayout that supports grids (MiG Components, n.d.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All parameters are also separately advertised by writing them to a space. This supports the 

 

Figure A4.1 A Fli2 Audio Mixer Device. 
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development of universal, locally-created controllers. This type of controller can link 

discovered remote parameters to existing controls on a generic (‘universal’) control 

surface. 

A4.1.2 The Fli2 Controller Application 

Use of a ‘NetworkBrowser’ object to add SDM components to a control surface was 

illustrated in Chapter 11. This object also manages parameter joins and parameter groups. 

Figure A4.2 shows how parameter joins between local control parameters and remote 

parameters are managed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A4.2 Managing Parameter Joins. 
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Each local parameter has an attribute specifying the name of the remote service that is 

invoked when the local parameter value changes. A ‘Parameter Browser’ window is opened 

from the ‘Network Browser’ windows and allows local parameters (listed in the left-hand 

column) to be joined to remote parameters (listed in the right-hand column). Parameter 

joins are implemented by a parameter having an attribute that is the name of the remote 

RMI service representing the join relationship. Figure A4.2 shows a local control 

parameter named ‘Fader1’ joined to a remote parameter named ‘rem_Volume1’. 

Figure A4.3 illustrates the management of parameter groups.  This implementation 

supports absolute master-slave relationships between a local master parameter and 

remote slave parameters. Local parameters maintain a list of remote slave parameters. 

Slave parameters (listed in the right-hand column) are added to and removed from local 

parameters (listed in the left-hand column) of the ‘Slave Parameter Manager’ window.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure A4.3 shows that slave parameters can be added to or removed from a master 

parameter by selecting or deselecting slave parameters for a specified master parameter. 

A4.1.3 Connection Management 

Figure A4.4 consists of a set of five diagrams illustrating the sequence of events that occur 

when a shared connection manager is used to create audio connections as described in 

Section 11.4.2.3 Using Connection Objects (p.302). Figure A4.4(a) shows two networked 

devices or controllers that can perform connection management and a networked process 

that contains a connection manager application that is a part of the Fli2 connection 

management environment.  

 

Figure A4.3 Managing Slave Parameter Groups. 
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Controllers that wish to perform connection management register to receive a notification 

when the connection manager is made available to the network. In Figure A4.4(b), the 

connection manager is advertised to the network by writing it to a space.  
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Figure A4.4(a) A Shared Connection Manager. 
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Figure A4.4(b) Advertising a Shared Connection Manager. 
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Devices receive a notification that the connection manager is available and then read the 

connection manager application from the space. Figure A4.4(b) shows the connection 

manager being added to the software user interface for each device. This architecture 

supports a modular, plugin-design where modules that perform specific functionality can 

be obtained from a space and added to an existing application. 

In Figure A4.4(c), a device advertises audio source and destination terminals by 

writing them to a space.  The device also displays these terminals in its connection 

manager.  

 

 

 

 

 

 

 

 

 

 

 

 

 
The second device’s connection manager is notified of these service advertisements and 

the device reads the terminals. The connection manager then updates its user interface by 

displaying a connection matrix that shows the discovered terminals.  

In Figure A4.4(d) the second device advertises audio source and destination 

terminals by writing them to a space. The first device’s connection manager reads these 

terminals and adds these to its connection matrix. The space transactions are identical to 

those illustrated in Figure A4.4(c) with the device roles reversed. 

 

 

 

Figure A4.4(c) Advertising Terminal Objects (1). 
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Figure A4.4(e) shows that connections made by either device are propagated to the 

other device. When a connection is made or torn down using the connection matrix user 

interface provided by the connection manager, a connection object is written to a space.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A4.4(d) Advertising Terminal Objects (2). 
. 
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Figure A4.4(e) Creating Audio Connections. 
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The connection object is then propagated to all network devices that have registered with 

the space to receive connection notifications. Devices read the connection object and 

update their views of the connections on the network. 

As discussed in Chapter 11, an object that functions as a mutex value within a space 

is obtained from the space before connections may be committed to the space.  

The mutex value object is returned to the space after newly made connections are written 

to the space. 

A4.2 A Device and Controller using OSC 

An OSC device built using the WOscLib (Franke, 2005) OSC implementation is shown in 

Figure A4.5. A portion of the OSC address space can be seen with the OSC address space 

operators discussed in Chapter 5 listed at the bottom of the screen.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A4.5 An OSC Audio Mixer Device. 
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Metering threads implemented on the device using the JUCE (ROLI Ltd., n.d.) thread 

libraries target OSC addresses defined in the controller’s local OSC address space.  

This ‘partial-peer network architecture was introduced in Section 2.3.2.1 Partial-Peer 

Network Architectures (p.19).  

An OSC controller shown in Figure A4.6 mimics the architecture (provides a physical 

model) of the controlled device. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Use of the SDM and the OSC address space operators for service discovery are 

illustrated in Figure A4.7. A ‘Parameter Browser’ window on the left displays the 

parameters discovered on the remote device. A ‘Device Browser’ frame displays the 

Figure A4.6 An OSC Audio Mixer Controller Application. 
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Figure A4.7 OSC Parameter and Device Browsers. 
 

 

discovered sub-devices and controls of the remote device. Device components are only 

retrieved from the device when the used expands node within the Device Browser tree. 

Discovered controls and sub-devices can be added to the control surface provided by the 

device browser by selecting the desired node in the tree, right-clicking the node with the 

mouse and selecting ‘Insert’ from the displayed popup menu. Figure A4.7 shows the 

addition of the first channel strip to the control surface. 

 

 

 

 

  

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

Examples sections of the OSC address spaces for the above device and controller 

applications are listed in Appendix 7. Instructions for running these applications are 

included with the software distribution. 

Uli Franke has kindly fixed errors discovered in the WOscLib libraries and enhanced 

and optimized WOscLib. In particular, he added support for dynamic address space 

 Control Surface 

  Parameter Browser 

  Device Browser 



370 
 

modification. This allowed an investigation into storing parameter data within the OSC 

address space to be conducted (Franke, Personal correspondence, 2011). 

A4.3 SNMP Development Environments 

Development environments for the Microsoft Windows platform that use C or C++ are 

commonly based on three legacy SNMP Implementations:   

 The 1995 implementation from the University of California, Davis that later 

became NET-SNMP (Schönwälder, 2002). 

 Windows SNMP, a 1993 implementation from the American Computer & 

Electronics Corporation (Natale, 1995) used by the MG-Soft SNMP development 

tools; 

 SNMP++, a 1997 implementation from the Hewlett Packard Company 

(Mellquist, 1997). 

Development of agent applications using these environments is a challenging, low-level 

process that is not suitable for implementing a complex MIB design. In addition, NET-

SNMP handles traps within a reporting module that is tightly integrated to a relational 

database. This module is not suitable for transmitting remote meter parameter values as 

SNMP traps. A tool that generates C++ classes for a MIB from MG-Soft Corporation was 

evaluated and abandoned because it was not stable. Updated libraries provided by the 

vendor did not resolve these issues. These SNMP development environments were 

abandoned in favor of: 

 A C#.NET SNMP environment (SNMP#NET, n.d.) that was used to develop an 

SNMP controller; 

 An SNMP MIB browser and agent development environment from iReasoning 

Corporation (iReasoning Networks, 2013). 

A4.3.1 SNMP MIB Development 

A MIB was developed using the MG-Soft MIB Compiler (MG-Soft Corporation, n.d.). 

Additional validation of the developed MIB was provided by an online MIB validator 

(SimpleWeb, n.d.). Figure A4.8 shows the SDM MIB being compiled by the MG-Soft MIB 

Compiler. 
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The developed MIB is shown in the SNMP MIB browser application from iReasoning 

Networks (iReasoning Networks, 2012) in Figure A4.9. Only the tables and the data within 

the expanded ‘Device’ table are shown, as this is a view of the MIB without any 

instrumentation. Relationships among the different tables defined by the MIB are 

illustrated by the design schema provided in Appendix 8. 

 

 

 

 

 

 

 

 

 

Figure A4.8 The MG-Soft MIB Development Environment. 
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An SNMP controller developed using C#.NET is shown in Figure A4.10. This controller 

has a similar design to the OSC controller illustrated previously in Figure A4.6. 

 

Figure A4.9 MIB Browser View of the Standard Device Model. 
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A4.3.2 AES64 Development Environments and Toolsets 

Note that the development tools used refer to AES64’s predecessor X170. 

A4.3.2.1 Desk Item Retrieval and Configuration 

The XML desk item description file, as well as the graphics files referenced by the 

description file are stored on a device and can be retrieved from a device by controller 

applications. An application that is able to display and configure desk items such as the 

‘UNOS Creator’ application from UMAN shown in Figure A4.11 is termed a ‘desk item 

browser’ (Foss, 2010). Desk item browsers can support different types of functionality, 

including: 

 Downloading or uploading desk item descriptions and graphics files from or to a 

device; 

 Associating desk items with parameters; 

Figure A4.10 A Virtual Controller for a Mixing Console. 
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 Editing the visual appearance of desk items. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The desk item concept moves much of the responsibility of representing and creating a 

control surface from the controller to the device. This approach has three advantages: 

 Device manufacturers are able to specify a control surface that is independent of 

any computing platform or programming language; 

 Controllers do not have to compute the layout of a control surface; 

 Controllers do not need to store information about a potentially large number of 

devices. 

UNOS Creator also supports: 

 Device Discovery; 

 Connection management; 

 Parameter joins and parameter group. 

Figure A4.11 A Desk Item Browser – UNOS Creator. 

 

(Foss, 2011). 
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IEEE 1722 talker and listener streams are viewed as multicores to provide interoperability 

between IEEE 1722 and AES64 as illustrated in Figure A4.12. Stream identification is done 

using AES64 parameters as discussed in Chapter 7. 

 

              

 

  
 
               

 

 

 

 

 

 

      

 

 
 
 

 

A4.3.2.2 Viewing Parameters 

Figure A4.13 shows the parameters of an implemented AES64 device displayed in the 

parameter browser provided by UNOS Creator. The figure is annotated with the level 

numbers of the address components defining a fader parameter. 
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(Gurdan & Foss, 2010). 

Figure A4.12 UNOS Creator Connection Management Tools. 
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A Controller similar to the OSC controller shown in Figure A4.6 was developed to interact 

with the AES64 device. 
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Figure A4.13 The UNOS Creator Parameter Browser. 
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A4.4 A CopperLan Example Device and Controller 

An example device developed in CopperLan is shown within the CopperLan Manager in 

Figure A4.14. The CopperLan Manager interacts with the proprietary network layer and 

CHAI middleware layer to discover networked devices and to retrieve information about 

the device’s structure and services as explained in Chapter 8.  

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
A control surface is then created from the discovered information as illustrated by the 

control surface created by the CopperLan Manager’s ‘Editor’ application shown in  

Figure A4.15 that creates a control surface to interact with discovered remote parameters. 

Devices are partitioned into sub-devices (shown on the left in Figure A4.15) that specify a 

set of controls. The first channel strip sub-device is selected. In this application, a single 

set of controls are created for each channel strip. The index selector shown for each control 

allows multiple related controls to be grouped together. This is termed ‘parameter 

indexing’ in CopperLan and provides efficient utilization of resources by not duplicating 

controls. Using this arrangement, a single set of controls representing the controls of a 

single channel strip can be shared between all channel strips. 

 

 

 

 

 

Figure A4.14 The CopperLan Manager Network View. 
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 Figure A4.15 The Parameter Editor View of a CopperLan Virtual Device. 
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A ‘Connector View’ shown in Figure A4.16 provides connection management between 

devices. In this example, two instances of the mixing console application. The left master 

output of the one mixer is connected to an input channel of the second mixer.  

Although designed for control connection management, this connection model can also be 

used for audio connection management.  

 

 

 

 

 

 

 

 

 

 
 
 
 
A4.5 A UPnP Device and Controller 

The Cyberlink for Java UPnP library (Cyber Garage, n.d.) was used for developing a 

mixing console device (control point) and a controller. Intel’s UPnP Device Spy network 

browser (Intel Corporation, n.d.) facilitated interaction with the device to verify that the 

device conformed to the UPnP specification and functioned correctly. 

Figure A4.17 shows the controller application browsing the discovered control point 

(device) services. Controls are represented by services that implement GET() and SET(..) 

actions. Services also define a 'GetControl()' action that obtains a serialized control from 

the remote device and adds the control to a control surface. In Figure A4.17, a fader control 

and a gain control have been obtained from a discovered device using serialization. These 

controls are then added to the controller’s control surface. 

 

 

 

 

 

Figure A4.16 The ‘ConnectorView’ of CopperLan Devices. 
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A4.6 EmBer+  

A device creator and controller application included with the Ember+ distribution were 

examines to determine the characteristics of the Ember+ parameter address space.  

The services provided by a device are represented by the tree of Ember+ elements 

illustrated in Figure A4.18. Nodes are designated by blue circles and parameters 

designated by green leaves. As found in SNMP, the position of a parameter within this tree 

is designated by a ‘relative object identifier’ data type. For example, the ‘value’ parameter 

of the ‘gain1’ parameter instance shown in Figure A4.18 is identified by the object 

identifier:  

                  1.1.1.3.1.1.1   (Device – InputSection – Channel-1 – GainCtrl-1 – inParameter – 

gaintype – gain1 – value).  

Each node and parameter has a ‘GetDiretory()’ (Keuck & Boger, 2014, p. 29) 

command that obtains all child nodes and parameters. When applied to a parameter it 

Figure A4.17 Object Serialization using UPnP. 
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returns the properties (meta-data) describing the parameter’s value. For example, the 

minimum and maximum values of a parameter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure A4.18 also illustrates the use of parameters having a string type that can be 

used to represent descriptive attributes and layout attributes. In this example, the layout 

attributes for the ‘GainCtrl-1’ control. 

 

 

 Figure A4.18 The Ember+ Device Creator Application. 
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Appendix 5 

Fli2 Class Diagrams  

 

This appendix provides detailed class diagrams and discusses the functionality of the Fli2 

classes introduced and discussed in Chapter 11. 

A5.1 Device Design and Implementation 

Figure A5.1 shows the classes that implement a mixing console device.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Methods are provided to initialize the local controls (‘setLocalControls()’) and render 

these controls on the local control surface. 

 

 

Legend: 
      Java RMI classes  UI classes
      Fly Class                              Device classes 

Figure A5.1 Fli2 Audio Device Classes. 
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Class ‘AudioConsole’ implements a mixing console and: 

 Provides a user interface; 

 Stores collections of its components (instances of classes ‘AudioSubDevice, 

‘AudioControl’ and ‘AudioParameter’); 

 Provides methods to manage these collections. 

Parameters are stored in a map data structure, allowing parameter objects to be retrieved 

by name. This allows a remote service to access the required parameters when the service 

is invoked. 

A5.1.1 Device Creation 

Objects instances of class ‘DeviceCreator’ are factory objects that: 

 Creates device components; 

 Implements parent-child relationships among components; 

 Creates parameters and links parameters to controls; 

 Links remote (control) parameters to local parameters; 

 Registers remote services for parameters with the RMI registry.  

Control parameters are serialized to the Fly space with their associated control 

objects. Device components and parameters created by a ‘DeviceCreator’ object are 

added to the local ‘AudioConsole’ object using the different ‘add()’ and ‘set()’ methods 

provided by class ‘AudioConsole’.  

A5.1.2 Object Space Interactions 

Class ‘DiscoverableDevice’ functions as a proxy class that handles all space 

interactions. It has methods to write the ‘AudioDevice’, ‘AudioSubDevice’, 

‘AudioControl’ and ‘AudioParameter’ objects created by a ‘DeviceCreator’ factory 

object to a Fly object space. Writing an ‘AudioDevice’ object to a space advertises the 

device on a network. 

A5.1.3 Implementing Control and Metering Functionality 

Class ‘RemoteDevice’ (derived from the class ‘java.rmi.UnicastRemoteObject’ that 

supports remote procedure calls) defines two callback methods that receive control 

messages from controllers. One method provides an integer argument and the other 

method provides a Boolean argument. These callbacks are declared in the ‘IControl’ 

interface class that extends the ‘java.rmi.Remote’ interface. Thus, classes derived 

from class ‘java.rmi.UnicastRemoteObject’ accepts remote procedure calls; a class 
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implementing the ‘java.rmi.Remote’ interface class declares the target RPCs that are 

implemented by the classes derived from class ‘UnicastRemoteObject’. 

Class ‘MeterTask’ shown in Figure A5.2 implements a multi-threaded metering 

process that execute on the device. The ‘RemoteDevice’ class handles meter 

subscription requests issued by controllers. Class ‘MeterTask’ implements a 

multithreaded meter on a device and transmits (streams) current meter values to 

remote controllers that have subscribed to receive meter values.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The ‘running’ and ‘transmitting’ flags are declared as ‘volatile’ attributes because they 

may be accessed concurrently by both local and remote processes.  

Volatile attributes will never block and are always atomically updated (Coffey, n.d.). 

Method ‘setMeterValue()’ is the remote procedure call used to transmit meter values 

to a controller. The ‘RemoteDevice’ class discussed in the previous section provides a 

callback method that processes meter subscriptions. 

 

Figure A5.2 Fli2 Classes used to Implement Metering. 
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A5.2 Controller Design and Implementation 

In a similar manner to the device architecture discussed in the previous section, the 

controller application consists of a ‘ControllerFrame’ application class and an 

‘AudioController’ class shown in Figure A5.3. Class ‘AudioController’ stores sets of 

device components and parameters read from the Fly space (for clarity, methods that 

implement space interactions are shown in Figure A5.4). Methods are also provided 

to access locate specific objects stored in these collections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The controller also functions as a server because it provides metering services for the 

remote device. In the same manner as the implantation of device services shown 

previously in Figure A5.2, this controller-provided service is implemented by the 

‘java.rmi.server.UnicastRemoteObject’ base class and the ‘IMeterValue’ interface that 

extends the ‘java.rmi.Remote’ interface class. 

 

Figure A5.3 Fli2 Controller Classes. 
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A5.2.1 Object Space Interactions 

Controllers need only monitor a space for ‘AudioDevice’ objects and optionally, 

‘AudioParameter’ objects. When a controller reads a device it can recursively read all 

child sub-devices and controls to perform a top-down traversal of a device’s 

architecture. Classes ‘DeviceListener’ and ‘ParameterListener’ illustrated in  

Figure A5.4 implement the ‘fly.NotifyHandler’ interface class. These classes receive 

callback notifications from a space when ‘AudioDevice’ or ‘AudioParameter’ objects 

are written to a space. The different ‘read()’ methods read ‘AudioDevice’, 

‘AudioSubDevice’, ‘AudioControl’ and ‘AudioParameter’ objects from a space and 

store these objects in the appropriate collection implemented as a set.  

Sets are commonly used in conjunction with spaces as they allow filtering of 

duplicate entries returned by multiple space READ() operations. In addition, a set 

difference operation between two sets (a previously discovered set of objects and a 

newly read set of objects) identifies the set of objects that have been added to a space 

since the last READ() transaction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure A5.4 Fli2 Controller Classes Implementing Space Interactions. 
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As illustrated in the previous class diagrams, software that interacts with a space is 

often designed in terms of object collections and the status of these collections. 

Examples include: 

 Sets of objects previously read from a space; 

 Sets of objects that will be read in the future; 

 Sets of currently active and currently rendered objects. 

A5.2.2 SDM Classes Used by Devices and Controllers 

Figure A5.5 shows the SDM component classes ‘AudioDevice’, ‘AudioSubDevice’, 

‘AudioControl’ and ‘AudioParameter’ that are used by both devices and controllers.  

‘AudioSubDevice’ objects that are renderable and ‘AudioControl’ objects implement 

the ‘IRenderable’ interface class that renders these objects on the graphics surface of 

a specified parent (container) component. ‘AudioSubDevice’ objects that are 

renderable reference a Java panel component and the ‘MigLayout’ layout manager 

mentioned in Chapter 11. 

Figure A5.5 shows that class ‘AudioParameter’ specifies a remote RMI service 

name that represents a remote, joined parameter. Parameter objects can also be used 

as local parameter objects that do not specify any remote services.  

All classes that must be serialized to a Fly space implement the ‘java.io.serializable’ 

interface class that enables binary serialization.  

Class ‘StateParameter’ has been omitted from Figure A5.5. Instances of this class 

simply represent the define name, type and value attributes that represent a 

corresponding ‘AudioParameter’ object. This compact representation conserves 

bandwidth during bulk parameter transfers as mentioned previously in  

Section 11.3.2.1 System Architecture (p.281). 
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A5.2.2.1 Implementing Parameter Groups 

With the exception of AES64, the creation and management of parameter relationships 

within many control protocols requires a service process that is awkward to implement. 

Managing data relationships such as parameter joins and groups requires data structures 

and dynamic behavior that are able to represent and manage these relationships.  

An object-oriented approach to representing parameters allows parameter relationships 

 

Figure A5.5 SDM Classes in Package Common. 
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to be elegantly represented and managed. Listing A5.1 shows that an ‘AudioParameter’ 

object contains the attributes and methods required to represent and manage 

relationships to other parameters. Methods are provided to add members to and remove 

members from a parameter group. The SETValue(..) method iterates through the lists of 

slave or peer parameters and updates their values. 

 

 

 

 

 

 

 

 
 
 
 

 

 

 

 

 

 

The last first three object attributes in Listing A5.1 represent the first three levels defined 

by the SDM parameter address layer. This allows ‘AudioParameter’ objects to be retrieved 

from a Fly space access by using object templates that match sets of parameter 

descriptions, sets of parameter types or specific parameter instances.  

 

 

 

 

 

 

class AudioParameter  { 
      public: 

void addSlave(AudioParameter p); 
void addPeer (AudioParameter p); 
void removeSlave(AudioParameter p); 
void removePeer (AudioParameter p); 
void setValue(<type> newValue); 

      private: 
     Collection <AudioParameter> slaveList; 
     Collection <AudioParameter> peerList; 
               int relationType; 
  
              String parameterDesc; 
              String parameterType; 
              String parameterInst; 
              String parameterName; 
 
 

 

 

Listing A5.1 Fli2 Parameter Methods and Attributes. 
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Appendix 6 

Fli2 Sequence Diagrams  

 

The sequence diagrams provided in this appendix illustrate the event sequences described 

in Chapter 11. For the sake of clarity, these events sequences are provided with each 

sequence diagram. 

A6.1 Device and Service Advertisements 

The sequence diagram of Figure A6.1 illustrates the following sequence of events that 

occur when a device and its component parts and parameters are advertised to a network 

by writing objects to a Fly space: 

1. A networked mixer device searches for a Fly object space on the local network 

segment. The discovered space returns a reference to itself to the mixer device. 

2. The mixer device creates an ‘AudioDevice’ object that represents the mixer device. 

3. All child sub-devices of the ‘AudioDevice’ object are created and written to the 

space. 

4. For each child sub-device in step two above, all child sub-devices are created and 

written to the space.  

For each child ‘AudioControl object’ of each ‘AudioSubDevice’ object: 

5. Remote parameters are created and stored by the mixer device. These parameters 

store service identifiers that identify specific parameters. 

6. The service identifiers representing RPCs are registered with the RMI registry. 

7. Control parameter objects are created. These parameters reference the remote 

service identifiers registered in step six. 

8. All child controls (‘AudioControl’ objects) are created. 

9. All ‘AudioControl’ objects and ‘AudioParameter’ objects are written to the space.  

10. The mixer device advertises itself on the network by creating an ‘AudioDevice’ 

object and writing it to the space. 
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A6.2 Device Discovery 

The sequence of events that occur during device discovery is illustrated by the sequence 

diagram in Figure A6.2. 

1. A controller creates a ‘NetworkBrowser’ object 

2. The controller creates an ‘AudioDevice’ template object that is used to select 

‘AudioDevice’ objects from a space. 

3. The controller uses the template to read all ‘AudioDevice’ objects currently 

stored in the space. 

4. The controller adds the discovered devices to the ‘Network Browser’ window. 

5. The ‘Network Browser’ updates the device tree user interface (illustrated in 

Figure 11.11). 

6. The controller creates a callback as outlined in Section 11.2.2.1.2 Space 

Subscriptions (p.275).  

7. The controller subscribes to future ‘AudioDevice’ advertisements by registering 

the ‘AudioDevice’ template object created in step two. The callback method 

created in step six is invoked by the space when ‘AudioDevice’ objects matching 

the template are written to the space. 

8. A mixer device creates an ‘AudioDevice’ object that represents the mixer device. 

9. The mixer device advertises itself by writing the ‘AudioDevice’ object to the space 

and specifying a lease time.  

10. The space invokes the callback created in step six to notify the controller that an 

‘AudioDevice’ object has been written to the space. 

11. The controller uses the ‘AudioDevice’ template created in step two to read the 

‘AudioDevice’ object from the space. 

12. The controller adds the newly discovered device to the ‘Network Browser’. 

13. The ‘NetworkBrowser’ updates its device tree that provides a user interface. 
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A6.3 Service Discovery 

The following events shown in the sequence diagram A6.3 take place when a user browses 

for services using the ‘NetworkBrowser’ provided by a controller: 

1. The user selects a device displayed by the device tree in the ‘NetworkBrowser’ 

window. 

2. The controller reads the child ‘AudioSubDevice’ objects for the selected device 

from a space. 

3. The names of child ‘AudioSubDevice’ objects read from the space are displayed 

in the expanded device tree in the ‘NetworkBrowser’ window. 

4. The user selects a sub-device displayed in the device tree. 
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5. Child ‘AudioSubDevice’ objects for the selected sub-device are read from the 

space. 

6. The names of child ‘AudioSubDevice’ objects read from the space are displayed 

in the device tree. 

7. The controller reads all child ‘AudioControl’ objects for the selected sub-device 

from the space. 

8. The names of child ‘AudioControl’ objects read from the space are displayed in 

the device tree. 
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Service Discovery  
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         Figure A6.3 Service Discovery Sequence Diagram. 
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A6.4 Control Surface Creation 

A user adds components to a control surface from the hierarchical view of a device 

provided by the ‘NetworkBrowser’ window. The sequence diagram of Figure A6.4 

illustrates the following events that occur when a user adds a sub-device to a control 

surface: 

1. A user requests the ‘NetworkBrowser’ (illustrated previously in Figure 11.11) to add 

(‘Insert’) the currently selected sub-device to the controller’s control surface. 

2. The ‘NetworkFrame’ window (containing the ‘NetworkBrowser’) requests the 

‘AudioController’ to add the specified ‘AudioSubDevice’ object (previously read 

from the space when the user interface tree was expanded) to the control surface. 

3. The ‘AudioController’ accesses the specified ‘AudioSubDevice’ object. 

4. The ‘AudioController’ registers the ‘AudioSubDevice’ object with the control 

surface (the control surface adds it to its collection of ‘AudioSubDevice’ objects).  

5. The ‘AudioController’ accesses all child ‘AudioControl’ objects for the specified 

‘AudioSubDevice’ object. 

6. The ‘AudioController’ registers all child controls (‘AudioControl’ objects previously 

read from the space when the user interface tree was expanded) for the added 

‘AudioSubDevice’ object with the control surface. 

7. The ‘AudioController’ requests each ‘AudioControl’ object to bind (initialize) its 

parameters.  

8. Each ‘AudioControl’ requests its ‘AudioParameter’ (control parameter) object/s to 

bind (initialize) their remote services (representing joined remote parameters). 

9. The ‘AudioParameter’ object obtains the required remote service from the RMI 

registry. This service is defined by the ‘IControl’ remote interface (illustrated 

previously in Figure 11.7).  

10. The ‘AudioController’ obtains the control surface component (graphics surface) 

from the parent ‘AudioSubDevice’ that must display the ‘AudioSubDevice’ and its 

child ‘AudioControl’ objects. 

11. The controller requests the ‘AudioSubDevice’ to render itself on the graphics 

surface. 

12. The ‘AudioSubDevice’ object requests each child ‘AudioControl’ object to render 

itself on the graphics surface. 

13. Each ‘AudioControl’ object renders the appropriate user interface widget/s on the 

provided graphics surface. 
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A6.5 Implementing Metering Subscriptions 

Figure A6.5 shows the sequence of events that occur when a controller subscribes to 

receive meter values from a remote device. 

1. A user requests a local meter to subscribe to meter values from a remote device. 

2. The ‘LocalMeter’ object requests its local control parameter to subscribe to a 

remote meter. 

3. The local control parameter object (‘locParameter’) invokes the remote service 

to subscribe to the remote meter. 

4. An RMI RPC excites the service request provided by the ‘RemoteDevice’ object 

on the remote device. 

5. The ‘RemoteDevice’ object requests the specified ‘RemMeter’ (remote device 

meter) object to start transmitting meter values. 

6. If the remote meter process is executing, the remote meter process invokes an 

RMI RPC to stream its meter values to the audio controller. 

7. The audio controller receives meter values and updates the corresponding 

local meter. 
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A6.6 Connection Management using a Shared Connection Manager 

Figure A6.6 illustrates the events that occur when devices perform connection 

management using a shared ‘ConnectionManager’ object: 

1. A device creates an object template to identify a ‘Connection Manager’ object that 

exists within a space. 

2. A device removes the ‘ConnectionManager’ object from the space using the 

template created in the previous step. 

3. The device adds its audio terminals to the ‘ConnectionManager’ and returns the 

object to the space. 

4. Devices are notified that a connection manager has been written to the space. 

5. Devices read the ‘ConnectionManager’ object from the space. 

6. Devices update their view to display the available audio terminals on the network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Connection Management using a Shared Connection Manager 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

Figure A6.6 Using a Connection Manager Sequence Diagram. 
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Figure A6.7 Connection Management using Audio Terminals Sequence Diagram. 
 

 

Advertise Audio Terminals and Create Audio Connections 

(1) 

(2) 

(1) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

A6.7 Connection Management using Audio Terminals 

Connections are created by the sequence of events listed below that are shown in the 

sequence diagram of Figure A6.7. The red rectangle indicates events that can cause 

starvation as discussed in Section 11.4.2.2 Using Shared Terminal Objects (p.301). 

1. Devices register to receive notifications when ‘Terminal’ objects are written to a 

space. 

2. A device advertises audio terminals by writing ‘Terminal’ objects to a space. 

3. Devices are notified when ‘Terminal’ objects are written to the space and read the 

objects. 

4. Devices update their view of the available audio terminals on the network. 
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5. A user creates connections and commits the updated ‘Terminal’ objects that reflect 

these connections to the space. 

6. The device writes the updated ‘Terminal’ objects terminals to the space. 

7. Devices are notified that terminals have been written to the space and read the 

updated ‘Terminal’ objects from the space. 

8. Devices update their view of connections among networked devices. 

 
A6.8 Connection Management Using Connection Objects 

The sequence diagram of Figure A6.8 illustrates the use of connection objects to represent 

audio connections between networked devices: 

1. A ‘ConnectionManager’ object and an object that functions as a ‘MUTEX’ state are 

written to a space when the audio network becomes available. 

2. Devices create a ‘Connection Manager’ template and read the ‘Connection 

Manager’ object from the space. 

3. Devices create and register a template to receive notifications when 

‘AudioTerminal’ objects are written to a space. 

4. Devices create and register a template to receive notifications when 

‘ConnectionObject’ objects are written to a space. 

5. Devices create a collection of all ‘AudioTerminal’ objects advertising source and 

destination audio streams 

6. Devices write all ‘AudioTerminal’ objects to a space. 

7. Devices are notified when terminals are advertised to a space and read the 

advertised ‘Terminal’ objects from the space. 

8. A device provides its ‘ConnectionManager’ with the newly read ‘Terminal’ objects 

and the connection manager updates its view of the terminals available on the 

network. 

9. Users create audio ‘ConnectionObject’ objects by associating a source terminal 

with a destination terminal using the user interface provided by the connection 

manager. 

10. The MUTEX state object is removed from the space by a connection manager 

wishing to make connections. 

11. ‘ConnectionObject’ objects are written to the space and all connection managers 

are notified that new connections have been made. 

12. The controller returns the MUTEX state object to the space. 
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13. Devices are notified that 'ConnectionObject' objects have been written to the space. 

14. Devices create template objects and read the newly made connections from the 

space. 

15.  Devices request the connection manager to display the connections. 

A6.9 Implementing Parameter Joins 

The sequence diagram in Figure A6.9 illustrates how the Fli2 environment supports 

parameter joins where ‘remote’ parameters encapsulate remote services. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. The user selects a control and then requests that the parameters associated with 

the control to be displayed. 

 

Joining Parameters 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

Figure A6.9 Creating Parameter Joins Sequence Diagram. 

(7) 

 



405 
 

2. The parameter view frame is created and then obtains the local control parameters 

from the controller. The controller extracts the control parameters from each 

control within a set of controls that have been previously retrieved from a space. 

3. If remote parameters have not been previously retrieved from the space,  

a template is created and all remote parameters are read from the space. 

4. The control and remote parameters for the currently selected control are 

determined. 

5. The control parameter associated with the selected control is displayed in the 

parameter view frame.  

6. The user selects a remote parameter. 

7. The user joins the selected remote parameter to the local control parameter. 

 

A6.10 Discovering and Registering a Protocol Stack 

The sequence diagram of Figure A6.10 illustrates the following events: 

1. A networked device creates a ‘ProtocolStack’ object and writes the object to a 

space. 

2. The device creates an ‘AudioDevice’ object and advertises itself by writing the 

object to a space. 

3. A controller creates an ‘AudioDevice’ object template and reads the 

‘AudioDevice’ object from the space. 

4. The controller obtains the name of the required protocol from the ‘Device’ 

object. 

5. The controller creates the required ‘AudioDevice’ object template. 

6.  The controller reads the ‘ProtocolStack’ object from the space. 

7. The ‘ProtocolStack’ object is registered with the controller. 

8. The controller creates a protocol message. 

9. The controller requests the ‘ProtocolStack’ object to execute the created 

message. 

 

 

 

 

 

 



406 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

Discovering and Using a Control Protocol Stack 

 

(1) 

(2) 

(3) 

(4) 

Figure A6.10 Discovering and Registering a Protocol Stack Sequence Diagram. 

(5) 
(6) 

(7) 

(8) (9) 
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Appendix 7 

Standard Device Model OSC Address 

Space  

 

A section of the OSC address spaces for the controller and device discussed in Chapter 5 

are provided below. For the sake of brevity, only the OSC addresses for the network stream 

inputs and the gain control of the first channel strip of the device are listed. 

Implementation of the address space operators requires each container to have the 

required OSC methods attached to it. All operators are always added to each OSC 

container even if the operator is not applicable to a specific container: for example,  

a device container may not have an associated layout record. Adding all operators ensures 

that queries that are not applicable to a particular container return a null string rather 

than an OSC error message. As discussed in Chapter 5, the WOscLib protocol stack was 

modified to provide the functionality associated with each operator.  

The controller is an example of a ‘partial-peer’ network node that has its own address 

space. 

 

Controller Address Space 

/rGetParams 

/rSubtree 

/rLayout 

/rAttributes 

/rChildren 

/rMeter 

 

Mixer Device Address Space 

/^ 

/+p 

/+c 

/+s 

/+ 

/-l 

/-d 

/- 

 

 

Root-level address space 
operators 

OSC methods for descriptive data and meter  
values returned from the device 
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-------- Device-------- 

/dev/^ 

/dev/+p 

/dev/+c 

/dev/+s 

/dev/+ 

/dev/-l 

/dev/-d 

/dev/- 

 

/dev/inp/^ 

/dev/inp/+p 

/dev/inp/+c 

/dev/inp/+s 

/dev/inp/+ 

/dev/inp/-l 

/dev/inp/-d 

/dev/inp/- 

/dev/inp/gain/^ 

/dev/inp/gain/+p 

/dev/inp/gain/+c 

/dev/inp/gain/+s 

/dev/inp/gain/+ 

/dev/inp/gain/-l 

/dev/inp/gain/-d 

/dev/inp/gain/- 

/dev/inp/gain/gain1/peer 

/dev/inp/gain/gain1/slave 

/dev/inp/gain/gain1/val 

/dev/inp/gain/gain1/^ 

/dev/inp/gain/gain1/+p 

/dev/inp/gain/gain1/+c 

/dev/inp/gain/gain1/+s 

/dev/inp/gain/gain1/+ 

/dev/inp/gain/gain1/-l 

/dev/inp/gain/gain1/-d 

/dev/inp/gain/gain1/- 

/dev/inp/gain/desc: node=paramtype, ptype=gain, (value=val,  

meta=[type=int, min=0, max=5, step=1]) (action=peer, args=1,  

    type=string) (action=slave, args=1, type=string)/0 

 

 

/dev/netin/^ 

/dev/netin/+p 

/dev/netin/+c 

/dev/netin/+s 

/dev/netin/+ 

/dev/netin/-l 

/dev/netin/-d 

/dev/netin/- 

/dev/netin/stype1/^ 

/dev/netin/stype1/+p 

/dev/netin/stype1/+c 

/dev/netin/stype1/+s 

/dev/netin/stype1/+ 

/dev/netin/stype1/-l 

/dev/netin/stype1/-d 

/dev/netin/stype1/- 

/dev/netin/stype1/stream2/id2 

/dev/netin/stype1/stream2/listen2 

/dev/netin/stype1/stream2/^ 

Description Record 

 Parameter Actions 

Parameter Value 

Short Parameter Addresses 

SDM Gain Parameter Type 

Network Destination Streams 

SDM Input Parameter Description 

SDM Gain1 Parameter Instance 



409 
 

/dev/netin/stype1/stream2/+p 

/dev/netin/stype1/stream2/+c 

/dev/netin/stype1/stream2/+s 

/dev/netin/stype1/stream2/+ 

/dev/netin/stype1/stream2/-l 

/dev/netin/stype1/stream2/-d 

/dev/netin/stype1/stream2/- 

/dev/netin/stype1/stream1/id1 

/dev/netin/stype1/stream1/listen1 

/dev/netin/stype1/stream1/^ 

/dev/netin/stype1/stream1/+p 

/dev/netin/stype1/stream1/+c 

/dev/netin/stype1/stream1/+s 

/dev/netin/stype1/stream1/+ 

/dev/netin/stype1/stream1/-l 

/dev/netin/stype1/stream1/-d    

/dev/netin/stype1/stream1/- 

/dev/netin/stype1/signal: node=param, type=AVB, clock=48, param=listen,  

param=id/0 

/dev/netin/stype1/desc: node=param/0 

/dev/netin/desc: node=param/0 

 

/dev/ins/^ 

/dev/ins/+p 

/dev/ins/+c 

/dev/ins/+s 

/dev/ins/+ 

/dev/ins/-l 

/dev/ins/-d 

/dev/ins/- 

 

/dev/ins/ch1/^ 

/dev/ins/ch1/+p 

/dev/ins/ch1/+c 

/dev/ins/ch1/+s 

/dev/ins/ch1/+ 

/dev/ins/ch1/-l 

/dev/ins/ch1/-d 

/dev/ins/ch1/- 

 

/dev/ins/ch1/gain-1/^ 

/dev/ins/ch1/gain-1/+p 

/dev/ins/ch1/gain-1/+c 

/dev/ins/ch1/gain-1/+s 

/dev/ins/ch1/gain-1/+ 

/dev/ins/ch1/gain-1/-l 

/dev/ins/ch1/gain-1/-d 

/dev/ins/ch1/gain-1/- 

/dev/ins/ch1/gain-1/layout: ctype=1, x=67, y=182, w=47, h=54,  

label=gain1/0 

/dev/ins/ch1/gain-1/desc: node=ctrl, ch=1, name=gain1,val=int,  

meta=[min=0, max=5, step=1, def=1], p=/dev/inp/gain/gain1/val/0 

 

 

 

 

Signal Description Record 

Channel Strip 1 Sub-Device 

Gain1 Control 

1 

Description Record 

Layout Record 
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Appendix 8 

Standard Device Model MIB Schema 

and MIB 

 

The SNMP data model for the SDM MIB is summarized in Figure A8.1. The complete MIB 

file  is included with the example software. Table indexes are indicated above each table. 

 

 

 

 

 

            

Device Architecture Layer Tables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Metering and Automation Tables 

 

 

 

 

Automation Automation Data 

MeterTable 

Int, int … int 

 Device 

SubDevice 

Control Attribute Data Layout Data 

 Meta-Data Meta-Data 

int 

int (from implied OID) 

int, int int, int 

int, int, int 

AttributeRecord 

int, int, int 

Layout Record 

Implied 
OID 

int (from implied OID) 
Implied 
OID 

Parameter 

Legend: 

             Table                                                         Row Pointer Relationship 
              Expansion Table                                  Parameter Description Layer 
              Decriptive Data                                   OID Index Relationship 
              (Base Table)                                             Indexed Relationship 
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Parameter Description Tables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

External (Network) and Internal Connection Management Tables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

int, int,  int 

  Parameter 
 Description 

Parameter Inst 

 Parameter 
      Type 

Attribute Data Meta-Data 

  Slave Parameters   Peer Parameters Parameter 

int (device), int, int 

int (device), int, int, int int, int int, int 

int (device), int 

int, int 

int (device), int, int,  
int, int 

 Slave List  Peer List 

Figure A8.1  SNMP Data Model for the SDM. 

 Parameter Inst 
 

 SrcStream 
 

int, int, int, int 

int, int, int, int, int 

  Parameter 
 Description 

 Parameter 
      Type 

Meta-Data 

int (device), int, int 
int, int 

SignalDesc 
 

( Attribute  
Record ) 
 Description 

 Parameter Inst 
 

   Int Connection 
 

int, int, int, int 

int, int, int, int, int 

  Parameter 
 Description 

 Parameter 
      Type 

int (device), int, int 

DestStream 
 

External Internal 
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Audio Device Mib Listing 

 

AUDIO-DEVICE-MIB DEFINITIONS ::= BEGIN 
IMPORTS                  
   MODULE-IDENTITY, OBJECT-TYPE,  -- OBJECT-IDENTITY, 
   Integer32, IpAddress, NOTIFICATION-TYPE, TimeTicks      
         FROM SNMPv2-SMI        
  OBJECT-GROUP, NOTIFICATION-GROUP --  MODULE-COMPLIANCE,  
         FROM SNMPv2-CONF 
   TEXTUAL-CONVENTION,  TruthValue -- RowPointer, DisplayString, RowStatus 
         FROM SNMPv2-TC;               
audioDevice9MIB MODULE-IDENTITY 

   LAST-UPDATED  "201001250000Z" 
   ORGANIZATION  "Rhodes University" 
   CONTACT-INFO  "Andrew Eales" 
   DESCRIPTION   "MIB for audio device control Nov - 2014 v0.9.16" 
   REVISION       "201001250000Z" 
   DESCRIPTION   " " 
   ::= { audio 1 }         
iso        OBJECT IDENTIFIER  ::= { 1 }    
standard    OBJECT IDENTIFIER  ::= { iso 0 } 
audio       OBJECT IDENTIFIER  ::= { standard 9 } 
-- _______________________________________________________________ 
-- Object identifier values for MIB object groups 
device              OBJECT IDENTIFIER ::= { audioDevice9MIB 1 }   
deviceCommand      OBJECT IDENTIFIER   ::= { device 2 }  
subDevice           OBJECT IDENTIFIER  ::= { audioDevice9MIB 2 }  
subdeviceCommand   OBJECT IDENTIFIER      ::= { subDevice 2 }               
control             OBJECT IDENTIFIER    ::= { audioDevice9MIB 3 }    
controlCommand    OBJECT IDENTIFIER       ::= { control 2  }           
attribute           OBJECT IDENTIFIER   ::= { audioDevice9MIB 4 }   
layout                 OBJECT IDENTIFIER   ::= { audioDevice9MIB 5 }   
parameter             OBJECT IDENTIFIER    ::= { audioDevice9MIB 6 }   
paramCommand       OBJECT IDENTIFIER      ::= { parameter 12  }      
groupCommand      OBJECT IDENTIFIER      ::= { parameter 15  }  
io      OBJECT IDENTIFIER    ::= { parameter 18 }     
net      OBJECT IDENTIFIER      ::= { io 1 }    
netSrc     OBJECT IDENTIFIER        ::= { net 1 }     
netDest    OBJECT IDENTIFIER        ::= { net 2 }  
assign      OBJECT IDENTIFIER        ::= { io 2 }    
input     OBJECT IDENTIFIER        ::= { assign 1 }  
output      OBJECT IDENTIFIER        ::= { assign 2 }  
intConnect          OBJECT IDENTIFIER   ::= {  parameter 20 }   
automation       OBJECT IDENTIFIER    ::= { audioDevice9MIB 7 }   
meter       OBJECT IDENTIFIER    ::= { audioDevice9MIB 8 }   
audioMIBGroups        OBJECT IDENTIFIER   ::= { audioDevice9MIB 9 }   
-- ______________________________________________________________ 
-- ______________________ Textual Conventions ______________________ 
DeviceTypeID ::= TEXTUAL-CONVENTION 
    STATUS              current 
    DESCRIPTION         " " 
    SYNTAX              INTEGER { console(1), microphone(2), amplifier(3),  
             effectsUnit(4), keyboard(5) }       
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-- ChildType ::= TEXTUAL-CONVENTION 
--    STATUS              current 
--    DESCRIPTION         " " 
--    SYNTAX              INTEGER { subdevice(1), control(2) }    

-- used as part of index into a global layout table   
-- ComponentType ::= TEXTUAL-CONVENTION 
--    STATUS              current 
--    DESCRIPTION         " " 
--    SYNTAX              INTEGER { device(1), subdevice(2), control(3) }  
                    
-- NumericDataType ::= TEXTUAL-CONVENTION 
--    STATUS              current 
--    DESCRIPTION         " " 
--    SYNTAX              INTEGER { int(1), double(2) }  
 
-- NumericString ::= TEXTUAL-CONVENTION 
--    STATUS              current 
--    DESCRIPTION         " " 
--    SYNTAX              OCTET STRING (SIZE (0..12))  
        
-- DataUnit ::= TEXTUAL-CONVENTION 
--    STATUS              current 
--    DESCRIPTION         " " 
--    SYNTAX              INTEGER { system(1), dB(2) }  
                 
NameString ::= TEXTUAL-CONVENTION 
   STATUS        current 
   DESCRIPTION   " " 
   SYNTAX        OCTET STRING (SIZE (0..32))  
            
TableIndex ::= TEXTUAL-CONVENTION 
   STATUS        current 
   DESCRIPTION   " " 
   SYNTAX        Integer32 (1..512)     
    
WidgetType ::= TEXTUAL-CONVENTION 
    STATUS      current 
    DESCRIPTION " " 
    SYNTAX      INTEGER { linear(1), rotary(2),   
                          switch(3), meter(4), display(5) }     
                            
--SourceType ::= TEXTUAL-CONVENTION 
--    STATUS      current 
--    DESCRIPTION " " 

--    SYNTAX      INTEGER { extInput(1), inputSubDevice(3),  
--                          bus(4), outputSubDevice(5), intOutput(6) }   
   
--SourceType ::= TEXTUAL-CONVENTION 
--    STATUS      current 
--    DESCRIPTION " " 
--    SYNTAX      INTEGER { extInput(1), intOutput(2), bus(3) }  
                       
--SinkType ::= TEXTUAL-CONVENTION 
--    STATUS      current 
--    DESCRIPTION " " 
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--    SYNTAX      INTEGER { intInput(1), bus(2), extOutput(3) }  
                                                      
RelType ::= TEXTUAL-CONVENTION 
    STATUS      current 
    DESCRIPTION " " 
    SYNTAX      INTEGER { abs(1), rel(2) }    
                         
-- SignalFormat ::= TEXTUAL-CONVENTION 
--    STATUS      current 
--    DESCRIPTION " " 
--    SYNTAX      INTEGER { aes(1) }                       
         
-- SignalDirection ::= TEXTUAL-CONVENTION 
--    STATUS      current 
--    DESCRIPTION " " 
--    SYNTAX      INTEGER { input(1), output(2) }   
-- ______________________________________________   
-- _____________ Scalar Tiggers (Device)______________   
-- 
currentDevice OBJECT-TYPE                               
   SYNTAX       OCTET STRING   
   MAX-ACCESS    read-write 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { deviceCommand 1 } 
 
deviceChildren OBJECT-TYPE 
   SYNTAX       OCTET STRING  
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { deviceCommand 2 } 
  
deviceRow OBJECT-TYPE 
   SYNTAX       OCTET STRING  
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { deviceCommand 3 } 
       
deviceNames OBJECT-TYPE 
   SYNTAX       OCTET STRING  
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { deviceCommand 4 } 
  
deviceAttributes OBJECT-TYPE 
   SYNTAX       Integer32  
   MAX-ACCESS    read-write 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { deviceCommand 5 } 
                  
 
 
 



415 
 

-- __________________________________________    
-- _________ Scalar Tiggers (SubDevice) ___________   
-- 
currentSubDevice OBJECT-TYPE 
   SYNTAX       OCTET STRING  
   MAX-ACCESS    read-write 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { subdeviceCommand 1 }   
     
subDeviceChildren OBJECT-TYPE 
   SYNTAX        OCTET STRING 
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { subdeviceCommand 2 }   
  
subdeviceRow OBJECT-TYPE 
   SYNTAX       OCTET STRING  
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { subdeviceCommand 3 } 
    
subdeviceNames OBJECT-TYPE 
   SYNTAX       OCTET STRING  
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { subdeviceCommand 4 }  
    
subdeviceAttributes OBJECT-TYPE 
   SYNTAX       Integer32  
   MAX-ACCESS    read-write 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { subdeviceCommand 5 } 
    
subdeviceLayout OBJECT-TYPE 
   SYNTAX       Integer32  
   MAX-ACCESS    read-write 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { subdeviceCommand 6 } 
    
-- ______________________________________________    
-- ____________ Scalar Tiggers (Control) ______________  
-- 
currentControl OBJECT-TYPE 
   SYNTAX       OCTET STRING  
   MAX-ACCESS    read-write 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { controlCommand 1 }   
     
controlChildren OBJECT-TYPE 
   SYNTAX        OCTET STRING 
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   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { controlCommand 2 }   
  
controlRow OBJECT-TYPE 
   SYNTAX       OCTET STRING  
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { controlCommand 3 }   
    
controlAttributes OBJECT-TYPE 
   SYNTAX       Integer32  
   MAX-ACCESS    read-write 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { controlCommand 4 } 
    
controlLayout OBJECT-TYPE 
   SYNTAX       Integer32  
   MAX-ACCESS    read-write 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { controlCommand 5 } 
  
-- ____________________________________________   
-- ___________ Scalar Tiggers (Parameter) ___________  
-- 
currentParam OBJECT-TYPE                                
   SYNTAX       OCTET STRING  
   MAX-ACCESS    read-write 
   STATUS        current 
   DESCRIPTION   " " 
    ::= { paramCommand 1 }   
     
paramRow OBJECT-TYPE 
   SYNTAX        OCTET STRING 
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { paramCommand 2 }   
        
paramAttributes  OBJECT-TYPE 
   SYNTAX       OCTET STRING  
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { paramCommand 3 }     
    
-- ______________________________________________   
-- ___________ Scalar Tiggers (Slaves - Peer) ___________  
-- 
addSlaveList OBJECT-TYPE                                
   SYNTAX       Integer32 -- group number is list entry index    
   MAX-ACCESS    read-write 
   STATUS        current 
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   DESCRIPTION   " " 
    ::= { groupCommand 1  }    
     
remSlaveList OBJECT-TYPE                                
   SYNTAX       Integer32   -- group number - list entry index  
   MAX-ACCESS    read-write 
   STATUS        current 
   DESCRIPTION   " " 
    ::= { groupCommand 2  }   
     
addPeerList OBJECT-TYPE                                
   SYNTAX       Integer32 -- group number - list entry index    
   MAX-ACCESS    read-write 
   STATUS        current 
   DESCRIPTION   " " 
    ::= { groupCommand 3  }    
     
remPeerList OBJECT-TYPE                                
   SYNTAX       Integer32   -- group number - list entry index  
   MAX-ACCESS    read-write 
   STATUS        current 
   DESCRIPTION   " " 
    ::= { groupCommand 4  }     
       
addSlave OBJECT-TYPE                                
   SYNTAX       OCTET STRING  -- parameter name  
   MAX-ACCESS    read-write 
   STATUS        current 
   DESCRIPTION   " " 
    ::= { groupCommand 5  }    
     
remSlave OBJECT-TYPE                                
   SYNTAX       OCTET STRING  -- parameter name 
   MAX-ACCESS    read-write 
   STATUS        current 
   DESCRIPTION   " " 
    ::= { groupCommand 6  } 
  
addPeer OBJECT-TYPE                                
   SYNTAX       OCTET STRING  -- parameter name  
   MAX-ACCESS    read-write 
   STATUS        current 
   DESCRIPTION   " " 
    ::= { groupCommand 7  }    
     
remPeer OBJECT-TYPE                                
   SYNTAX       OCTET STRING  -- parameter name 
   MAX-ACCESS    read-write 
   STATUS        current 
   DESCRIPTION   " " 
    ::= { groupCommand 8  } 
                           
-- _____________________________________ 
-- ____________  Device Table _____________  
-- 
deviceTable OBJECT-TYPE                         
   SYNTAX        SEQUENCE OF DeviceEntry 
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   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { device 1 } 
  
deviceEntry OBJECT-TYPE 
   SYNTAX        DeviceEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   INDEX         { devIdx }    
   ::= { deviceTable 1 } 
   
DeviceEntry ::= SEQUENCE { 
   devIdx           TableIndex,  
   devType          DeviceTypeID,   
   devName          NameString,  
   devIPAddress     IpAddress,  
   devPort       Integer32, 
   devChildCount    Integer32      
}  
   
devIdx OBJECT-TYPE 
   SYNTAX        TableIndex 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { deviceEntry 1 } 
    
devType OBJECT-TYPE 
   SYNTAX        DeviceTypeID 
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { deviceEntry 2 } 
 
devName OBJECT-TYPE 
   SYNTAX        NameString 
   MAX-ACCESS    read-write 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { deviceEntry 3 } 
   
devIPAddress OBJECT-TYPE       
   SYNTAX        IpAddress 
   MAX-ACCESS    read-write 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { deviceEntry 4 } 
                
devPort OBJECT-TYPE       
   SYNTAX        Integer32 
   MAX-ACCESS    read-write 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { deviceEntry 5 } 
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devChildCount OBJECT-TYPE      
   SYNTAX         Integer32    
   MAX-ACCESS     read-only 
   STATUS         current 
   DESCRIPTION    " " 
   ::= { deviceEntry 6 } 
     
-- _____________________________________     
-- ___________ SubDevice Table ____________   
--  
subDeviceTable OBJECT-TYPE                     
   SYNTAX        SEQUENCE OF SubDeviceEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " "  
   ::= { subDevice 1 } 
 
subDeviceEntry OBJECT-TYPE 
   SYNTAX        SubDeviceEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   INDEX        { IMPLIED subDeviceIdx } 
   ::= { subDeviceTable 1 } 
         
SubDeviceEntry ::= SEQUENCE { 
   subDeviceIdx     OBJECT IDENTIFIER,    
   sdName            NameString, 
   sdChildCount      Integer32, 
   sdControlCount    Integer32 
} 
               
subDeviceIdx OBJECT-TYPE 
   SYNTAX        OBJECT IDENTIFIER 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { subDeviceEntry 1 } 
 
sdName OBJECT-TYPE 
   SYNTAX        NameString  
   MAX-ACCESS    read-write 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { subDeviceEntry 2 }   
    
sdChildCount OBJECT-TYPE      
   SYNTAX        Integer32    
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { subDeviceEntry 3 }      
    
sdControlCount OBJECT-TYPE      
   SYNTAX        Integer32    
   MAX-ACCESS    read-only 
   STATUS        current 



420 
 

   DESCRIPTION   " " 
   ::= { subDeviceEntry 4 }  
       
-- ____________________________________      
--  ___________  Control Table  ____________ 
--   
controlTable OBJECT-TYPE 
   SYNTAX        SEQUENCE OF ControlEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { control 1 } 
  
controlEntry OBJECT-TYPE 
   SYNTAX        ControlEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   INDEX         { IMPLIED controlIdx  }    
      ::= { controlTable 1 } 
   
ControlEntry ::= SEQUENCE { 
   controlIdx       OBJECT IDENTIFIER,    
   controlName      NameString,   
   controlType      WidgetType, 
   controlValue     Integer32,     
   controlParam     OBJECT IDENTIFIER 
}  
   
controlIdx OBJECT-TYPE 
   SYNTAX        OBJECT IDENTIFIER 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { controlEntry 1 } 
  
controlName OBJECT-TYPE 
   SYNTAX        NameString 
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { controlEntry 2 }     
    
controlType OBJECT-TYPE 
   SYNTAX        WidgetType 
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { controlEntry 3 }   
 
controlValue OBJECT-TYPE 
   SYNTAX        Integer32 
   MAX-ACCESS    read-write 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { controlEntry 4 } 
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controlParam OBJECT-TYPE       
   SYNTAX        OBJECT IDENTIFIER 
   MAX-ACCESS    read-write 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { controlEntry 5 }   
    
-- ________________________________________________________     
-- ______ Component Attrib Table - Device  Subdevice  Control ______ 
--            index -> integer of implied OID  
--  
attribListTable OBJECT-TYPE 
   SYNTAX        SEQUENCE OF AttribListEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " "  
   ::= { attribute 1 } 
 
attribListEntry OBJECT-TYPE 
   SYNTAX        AttribListEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   INDEX        { attribListIdx } 
   ::= { attribListTable 1 } 
         
AttribListEntry ::= SEQUENCE { 
   attribListIdx   TableIndex,   
   attribListSize  Integer32   -- num entries for GETNEXT 
} 
     
attribListIdx  OBJECT-TYPE 
   SYNTAX        TableIndex 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { attribListEntry 1 }     
    
attribListSize  OBJECT-TYPE 
   SYNTAX        Integer32 
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { attribListEntry 2 }    
    
-- ___________________________________________    
-- _______ Attrib Data Table  <key, value>__________  
--  
attribDataTable OBJECT-TYPE 
   SYNTAX        SEQUENCE OF AttribDataEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " "  
   ::= { attribute 2 } 
 
attribDataEntry OBJECT-TYPE 
   SYNTAX        AttribDataEntry 
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   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   INDEX        { attribListIdx, attribDataIdx } 
   ::= { attribDataTable 1 } 
         
AttribDataEntry ::= SEQUENCE { 
   attribDataIdx   TableIndex,    
   attribDataKey     NameString,  
   attribDataValue   NameString, 
   attribDataType    NameString 
} 
     
attribDataIdx  OBJECT-TYPE 
   SYNTAX        TableIndex 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   ::= {attribDataEntry 1 } 
            
attribDataKey OBJECT-TYPE 
   SYNTAX        NameString  
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { attribDataEntry 2 }    
    
attribDataValue OBJECT-TYPE 
   SYNTAX        NameString  
   MAX-ACCESS    read-write 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { attribDataEntry 3 }     
 
attribDataType OBJECT-TYPE 
   SYNTAX        NameString  
   MAX-ACCESS    read-write    
   STATUS        current 
   DESCRIPTION   " " 
   ::= { attribDataEntry 4 }      
  
-- ___________________________________________    
-- ______  Attrib Meta-Data Table <key, value> ______  
--   
attribMetaDataTable OBJECT-TYPE 
   SYNTAX        SEQUENCE OF AttribMetaDataEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " "  
   ::= { attribute 3 } 
 
attribMetaDataEntry OBJECT-TYPE 
   SYNTAX        AttribMetaDataEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   INDEX        { attribListIdx, attribDataIdx, attribMetaDataIdx } 
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   ::= { attribMetaDataTable 1 } 
         
AttribMetaDataEntry ::= SEQUENCE { 
   attribMetaDataIdx     TableIndex,    
   attribMetaDataKey     NameString,  
   attribMetaDataValue   NameString, 
   attribMetaDataType    NameString 
} 
     
attribMetaDataIdx  OBJECT-TYPE 
   SYNTAX        TableIndex 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   ::= {attribMetaDataEntry 1 } 
            
attribMetaDataKey OBJECT-TYPE 
   SYNTAX        NameString  
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { attribMetaDataEntry 2 }    
    
attribMetaDataValue OBJECT-TYPE 
   SYNTAX        NameString  
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { attribMetaDataEntry 3 }     
 
attribMetaDataType OBJECT-TYPE 
   SYNTAX        NameString  
   MAX-ACCESS    read-only    
   STATUS        current 
   DESCRIPTION   " " 
   ::= { attribMetaDataEntry 4 }  
          
-- _________________________________________________  
-- _____ Layout Table - index -> integer of implied OID ______ 
--  
layoutListTable OBJECT-TYPE 
   SYNTAX        SEQUENCE OF LayoutListEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " "  
   ::= { layout 1 } 
 
layoutListEntry OBJECT-TYPE 
   SYNTAX        LayoutListEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   INDEX        { layoutListIdx } 
   ::= { layoutListTable 1 } 
         
LayoutListEntry ::= SEQUENCE { 
   layoutListIdx   TableIndex, 
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   layoutListSize   Integer32  
} 
     
layoutListIdx  OBJECT-TYPE 
   SYNTAX        TableIndex 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { layoutListEntry 1 }     
          
layoutListSize  OBJECT-TYPE 
   SYNTAX        Integer32 
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { layoutListEntry 2 }    
 
-- _________________________________________     
-- _______  Layout Data Table  <key, value> _______  
--   
layoutDataTable OBJECT-TYPE 
   SYNTAX        SEQUENCE OF LayoutDataEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " "  
   ::= { layout 2 } 
 
layoutDataEntry OBJECT-TYPE 
   SYNTAX        LayoutDataEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   INDEX        { layoutListIdx, layoutDataIdx } 
   ::= { layoutDataTable 1 } 
         
LayoutDataEntry ::= SEQUENCE { 
   layoutDataIdx   TableIndex,    
   layoutDataKey     NameString,  
   layoutDataValue   NameString, 
   layoutDataType    NameString 
} 
     
layoutDataIdx  OBJECT-TYPE 
   SYNTAX        TableIndex 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { layoutDataEntry 1 } 
            
layoutDataKey OBJECT-TYPE 
   SYNTAX        NameString  
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { layoutDataEntry 2 }    
    
layoutDataValue OBJECT-TYPE 
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   SYNTAX        NameString  
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { layoutDataEntry 3 }     
 
layoutDataType OBJECT-TYPE 
   SYNTAX        NameString  
   MAX-ACCESS    read-only    
   STATUS        current 
   DESCRIPTION   " " 
   ::= { layoutDataEntry 4 }   
  
-- ___________________________________________    
-- ______ Layout Meta-Data Table <key, value> ______  
--   
layoutMetaDataTable OBJECT-TYPE 
   SYNTAX        SEQUENCE OF LayoutMetaDataEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " "  
   ::= { layout 3 } 
 
layoutMetaDataEntry OBJECT-TYPE 
   SYNTAX        LayoutMetaDataEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   INDEX        { layoutListIdx, layoutDataIdx, layoutMetaDataIdx } 
   ::= { layoutMetaDataTable 1 } 
         
LayoutMetaDataEntry ::= SEQUENCE { 
   layoutMetaDataIdx     TableIndex,    
   layoutMetaDataKey     NameString,  
   layoutMetaDataValue   NameString, 
   layoutMetaDataType    NameString 
} 
     
layoutMetaDataIdx  OBJECT-TYPE 
   SYNTAX        TableIndex 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { layoutMetaDataEntry 1 } 
            
layoutMetaDataKey OBJECT-TYPE 
   SYNTAX        NameString  
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { layoutMetaDataEntry 2 }    
    
layoutMetaDataValue OBJECT-TYPE 
   SYNTAX        NameString  
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
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   ::= { layoutMetaDataEntry 3 }     
 
layoutMetaDataType OBJECT-TYPE 
   SYNTAX        NameString  
   MAX-ACCESS    read-only    
   STATUS        current 
   DESCRIPTION   " " 
   ::= { layoutMetaDataEntry 4 }  
   
-- ______________________________________   
-- _______ Parameter Description Table _______ 
--  
paramDescTable OBJECT-TYPE 
   SYNTAX        SEQUENCE OF ParamDescEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " "  
   ::= { parameter 1 } 
 
paramDescEntry OBJECT-TYPE 
   SYNTAX        ParamDescEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   INDEX        { devIdx, paramDescIdx } 
   ::= { paramDescTable 1 } 
         
ParamDescEntry ::= SEQUENCE { 
   paramDescIdx    TableIndex,    
   paramDescName   NameString   
} 
     
paramDescIdx  OBJECT-TYPE   
   SYNTAX        TableIndex 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { paramDescEntry 1 } 
 
paramDescName OBJECT-TYPE 
   SYNTAX        NameString  
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { paramDescEntry 2 } 
    
-- _______________________________________   
-- __________ Parameter Type Table __________  
--  
paramTypeTable OBJECT-TYPE 
   SYNTAX        SEQUENCE OF ParamTypeEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " "  
   ::= { parameter 2 } 
 
paramTypeEntry OBJECT-TYPE 
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   SYNTAX        ParamTypeEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   INDEX        { devIdx, paramDescIdx, paramTypeIdx } 
   ::= { paramTypeTable 1 } 
         
ParamTypeEntry ::= SEQUENCE { 
   paramTypeIdx    TableIndex,    
   paramTypeName   NameString   
} 
     
paramTypeIdx  OBJECT-TYPE 
   SYNTAX        TableIndex 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { paramTypeEntry 1 } 
 
paramTypeName OBJECT-TYPE 
   SYNTAX        NameString  
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { paramTypeEntry 2 }  
  
-- ________________________________________________   
-- _____ Parameter Type Attrib Table (META-DATA) _______    
--    
paramTypeAttribTable OBJECT-TYPE 
   SYNTAX        SEQUENCE OF ParamTypeAttribEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " "  
   ::= { parameter 3 } 
 
paramTypeAttribEntry OBJECT-TYPE 
   SYNTAX        ParamTypeAttribEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   INDEX        { paramTypeIdx, paramTypeAttribIdx } 
   ::= { paramTypeAttribTable 1 } 
         
ParamTypeAttribEntry ::= SEQUENCE { 
   paramTypeAttribIdx     TableIndex,    
   paramTypeAttribName    NameString,  
   paramTypeAttribType    NameString,  
   paramTypeAttribValue   NameString   
} 
     
paramTypeAttribIdx  OBJECT-TYPE 
   SYNTAX        TableIndex 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { paramTypeAttribEntry 1 } 
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paramTypeAttribName OBJECT-TYPE 
   SYNTAX        NameString  
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { paramTypeAttribEntry 2 }    
    
paramTypeAttribType OBJECT-TYPE 
   SYNTAX        NameString  
   MAX-ACCESS    read-only    
   STATUS        current 
   DESCRIPTION   " " 
   ::= { paramTypeAttribEntry 3 }   
 
paramTypeAttribValue OBJECT-TYPE 
   SYNTAX        NameString  
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { paramTypeAttribEntry 4 }   
         
-- __________________________________________   
-- __________  Parameter Instance Table __________  
--  
-- Only indexed type and index - parmeter description placed IN table 
paramInstTable OBJECT-TYPE 
   SYNTAX        SEQUENCE OF ParamInstEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " "  
   ::= { parameter 4 } 
 
paramInstEntry OBJECT-TYPE 
   SYNTAX        ParamInstEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   INDEX        { devIdx, paramDescIdx, 
                          paramTypeIdx, paramInstIdx } 
   ::= { paramInstTable 1 } 
         
ParamInstEntry ::= SEQUENCE { 
   paramInstIdx     TableIndex, 
   paramInstName   NameString, 
   paramInstSlaveList   TableIndex, 
   paramInstPeerList    TableIndex 
} 
    
paramInstIdx  OBJECT-TYPE 
   SYNTAX        TableIndex 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { paramInstEntry 1 }    
    
paramInstName OBJECT-TYPE 
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   SYNTAX        NameString  
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { paramInstEntry 2 }      
    
 paramInstSlaveList OBJECT-TYPE 
   SYNTAX        TableIndex  
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { paramInstEntry 3 }    
    
paramInstPeerList OBJECT-TYPE 
   SYNTAX        TableIndex  
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { paramInstEntry 4 }  
                      
-- _______________________________________   
-- ____________ Parameter Table ____________  
--  
paramTable OBJECT-TYPE 
   SYNTAX        SEQUENCE OF ParamEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " "  
   ::= { parameter 5 } 
 
paramEntry OBJECT-TYPE 
   SYNTAX        ParamEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   INDEX        { devIdx, paramDescIdx, paramTypeIdx,  
                          paramInstIdx, paramIdx } 
   ::= { paramTable 1 } 
         
ParamEntry ::= SEQUENCE { 
   paramIdx    TableIndex, 
   paramName  NameString,   
   paramType  NameString, 
   paramUnit  NameString, 
   paramValue   OCTET STRING  -- (SIZE (1..6))  
} 
     
paramIdx  OBJECT-TYPE 
   SYNTAX        TableIndex 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { paramEntry 1 }    
    
paramName OBJECT-TYPE 
   SYNTAX        NameString  
   MAX-ACCESS    read-only 
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   STATUS        current 
   DESCRIPTION   " " 
   ::= { paramEntry 2 }   
   
paramType OBJECT-TYPE     -- parameter value or action parameter  
   SYNTAX        NameString  
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { paramEntry 3 }  
    
paramUnit OBJECT-TYPE 
   SYNTAX        NameString  
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { paramEntry 4 }  
                     
paramValue OBJECT-TYPE 
   SYNTAX        OCTET STRING (SIZE (1..6)) 
   MAX-ACCESS    read-write 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { paramEntry 5 }          
   
-- _____________________________________________   
-- __________ Full Address Parameter Table __________  
--  
fullParamTable OBJECT-TYPE 
   SYNTAX        SEQUENCE OF FullParamEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " "  
   ::= { parameter 6 } 
 
fullParamEntry OBJECT-TYPE 
   SYNTAX        FullParamEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   INDEX        { IMPLIED fullParamIdx } 
   ::= { fullParamTable 1 } 
         
FullParamEntry ::= SEQUENCE { 
   fullParamIdx     OBJECT IDENTIFIER, 
   fullParamName   NameString,     
   fullParamValue       OCTET STRING 
} 
     
fullParamIdx  OBJECT-TYPE 
   SYNTAX        OBJECT IDENTIFIER 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { fullParamEntry 1 }    
    
fullParamName OBJECT-TYPE 
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   SYNTAX        NameString  
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { fullParamEntry 2 }    
    
fullParamValue OBJECT-TYPE 
   SYNTAX        OCTET STRING (SIZE (1..6)) 
   MAX-ACCESS    read-write 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { fullParamEntry 3 }  
                         
-- ____________________________________        
-- ____________  Slave List Table __________  
--  NB  allows different lists to be defined    
 
slaveListTable OBJECT-TYPE 
   SYNTAX        SEQUENCE OF SlaveListEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " "       
 ::= { parameter 7 } 
 
slaveListEntry OBJECT-TYPE 
   SYNTAX        SlaveListEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   INDEX        { paramIdx, slaveListIdx } 
   ::= { slaveListTable 1 } 
         
SlaveListEntry ::= SEQUENCE { 
   slaveListIdx   TableIndex    
} 
     
slaveListIdx   OBJECT-TYPE 
   SYNTAX        TableIndex 
   MAX-ACCESS    read-only -- one index accessible strict compilers 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { slaveListEntry 1 } 
  
-- _________________________________________        
--  ________  Slave List param Table ________  
--  
slaveParamTable OBJECT-TYPE 
   SYNTAX        SEQUENCE OF SlaveParamEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " "       
 ::= { parameter 8 } 
 
slaveParamEntry OBJECT-TYPE 
   SYNTAX        SlaveParamEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
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   DESCRIPTION   " " 
   INDEX        { slaveListIdx, slaveParamIdx } 
   ::= { slaveParamTable 1 } 
         
SlaveParamEntry ::= SEQUENCE { 
   slaveParamIdx   TableIndex, 
   slaveParamPointer    OBJECT IDENTIFIER,  -- points to slave parameter   
   slaveRelType         RelType 
} 
     
slaveParamIdx   OBJECT-TYPE 
   SYNTAX        TableIndex 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { slaveParamEntry 1 }      
    
slaveParamPointer   OBJECT-TYPE 
   SYNTAX        OBJECT IDENTIFIER 
   MAX-ACCESS    read-write 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { slaveParamEntry 2 } 
    
slaveRelType   OBJECT-TYPE 
   SYNTAX        RelType 
   MAX-ACCESS    read-write 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { slaveParamEntry 3 } 
    
-- ______________________________________  
--  ____________  Peer List Table ____________   
-- NB  allows different lists to be defined    
 
peerListTable OBJECT-TYPE 
   SYNTAX        SEQUENCE OF PeerListEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " "       
::= { parameter 9 } 
 
peerListEntry OBJECT-TYPE 
   SYNTAX        PeerListEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   INDEX        { paramIdx, peerListIdx }  -- one index accessible strict compilers 
   ::= { peerListTable 1 } 
         
PeerListEntry ::= SEQUENCE { 
   peerListIdx   TableIndex    
   } 
     
peerListIdx   OBJECT-TYPE 
   SYNTAX        TableIndex 
   MAX-ACCESS    read-only    -- one index accessible strict compilers 
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   STATUS        current 
   DESCRIPTION   " " 
   ::= { peerListEntry 1 } 
  
-- _________________________________________  
-- __________ Peer List param Table ____________   
--  
peerParamTable OBJECT-TYPE 
   SYNTAX        SEQUENCE OF PeerParamEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " "       
::= { parameter 10 } 
 
peerParamEntry OBJECT-TYPE 
   SYNTAX        PeerParamEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   INDEX        { peerListIdx, peerParamIdx } 
   ::= { peerParamTable 1 } 
         
PeerParamEntry ::= SEQUENCE { 
   peerParamIdx       TableIndex, 
   peerParamPointer   OBJECT IDENTIFIER,  -- points to slave parameter   
   peerRelType        RelType   
  } 
     
peerParamIdx   OBJECT-TYPE 
   SYNTAX        TableIndex 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { peerParamEntry 1 } 
   
peerParamPointer   OBJECT-TYPE 
   SYNTAX        OBJECT IDENTIFIER 
   MAX-ACCESS    read-write 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { peerParamEntry 2 } 
    
peerRelType   OBJECT-TYPE 
   SYNTAX        RelType 
   MAX-ACCESS    read-write 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { peerParamEntry 3 } 
       
-- _________________________________________________    
-- ___________  Source Stream Parameter Table ___________  
--   
srcStreamParamTable OBJECT-TYPE 
   SYNTAX        SEQUENCE OF SrcStreamParamEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " "  
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   ::= { netSrc 1 } 
 
srcStreamParamEntry OBJECT-TYPE 
   SYNTAX        SrcStreamParamEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   INDEX        { devIdx, paramDescIdx, paramTypeIdx,  
                             paramInstIdx, srcStreamParamIdx } 
   ::= { srcStreamParamTable 1 } 
         
SrcStreamParamEntry ::= SEQUENCE { 
   srcStreamParamIdx       TableIndex, 
   srcStreamParamID        NameString,   
   srcStreamInstName       NameString,   
   srcStreamParamName      NameString,    
   srcStreamParamValue     OCTET STRING   
} 
     
srcStreamParamIdx OBJECT-TYPE 
   SYNTAX        TableIndex 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { srcStreamParamEntry 1 } 
           
srcStreamParamID OBJECT-TYPE 
   SYNTAX        NameString 
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { srcStreamParamEntry 2 }    
    
srcStreamInstName OBJECT-TYPE 
   SYNTAX        NameString 
   MAX-ACCESS    read-write  -- echo instance or friendly name 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { srcStreamParamEntry 3 } 
 
 -- filled in by Agent (protocol specific e.g. advertise) 
srcStreamParamName OBJECT-TYPE 
   SYNTAX        NameString 
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { srcStreamParamEntry 4 } 
                                   
srcStreamParamValue OBJECT-TYPE 
   SYNTAX        OCTET STRING (SIZE (1..6)) 
   MAX-ACCESS    read-write 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { srcStreamParamEntry 5 }          
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-- ___________________________________________    
--  _____  Destination Stream Parameter Table ______  
--   
destStreamParamTable OBJECT-TYPE 
   SYNTAX        SEQUENCE OF DestStreamParamEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " "  
   ::= { netDest 1 } 
 
destStreamParamEntry OBJECT-TYPE 
   SYNTAX        DestStreamParamEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   INDEX        { devIdx, paramDescIdx, paramTypeIdx,  
                             paramInstIdx, destStreamParamIdx } 
   ::= { destStreamParamTable 1 } 
         
DestStreamParamEntry ::= SEQUENCE { 
   destStreamParamIdx     TableIndex,  
   destStreamInstName     NameString, 
   destStreamParamID      NameString, 
   destStreamParamName    NameString,   
   destStreamParamValue   NameString 
} 
     
destStreamParamIdx OBJECT-TYPE 
   SYNTAX        TableIndex 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { destStreamParamEntry 1 } 
    
destStreamParamID OBJECT-TYPE 
   SYNTAX        NameString   
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { destStreamParamEntry 2 }     
    
 destStreamInstName OBJECT-TYPE 
   SYNTAX        NameString 
   MAX-ACCESS    read-write  -- echo instance or friendly name 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { destStreamParamEntry 3 } 
 
-- filled in by Agent (protocol specific e.g. listen) 
destStreamParamName OBJECT-TYPE 
   SYNTAX        NameString 
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { destStreamParamEntry 4 } 
                                   
destStreamParamValue OBJECT-TYPE 
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   SYNTAX        NameString 
   MAX-ACCESS    read-write 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { destStreamParamEntry 5 } 
 
-- _______________________________________________    
-- ____ Device InputParameter (Connection) Table _______ 
--   
inConnTable OBJECT-TYPE 
   SYNTAX        SEQUENCE OF InConnEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " "  
   ::= { input 1 } 
 
inConnEntry OBJECT-TYPE 
   SYNTAX        InConnEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   INDEX        { devIdx, paramDescIdx, paramTypeIdx,  
                                 paramInstIdx, inConnIdx } 
   ::= { inConnTable 1 } 
         
InConnEntry ::= SEQUENCE { 
   inConnIdx          TableIndex, 
   inConnID            NameString,   
   inConnSrc          NameString,    -- e.g. dup sigDescriptEntries  
   inConnDest        NameString,    -- e.g. ch1 dup inParamInstName   
   inConnValue      NameString     -- connectivity 
} 
     
inConnIdx OBJECT-TYPE 
   SYNTAX        TableIndex 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { inConnEntry 1 }        
 
inConnID OBJECT-TYPE        -- net ID 
   SYNTAX        NameString 
   MAX-ACCESS    read-only    
   STATUS        current 
   DESCRIPTION   " " 
   ::= { inConnEntry 2 } 
   
inConnSrc OBJECT-TYPE 
   SYNTAX        NameString 
   MAX-ACCESS    read-only   
   STATUS        current 
   DESCRIPTION   " " 
   ::= { inConnEntry 3 }     
    
inConnDest OBJECT-TYPE 
   SYNTAX        NameString 
   MAX-ACCESS    read-only   
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   STATUS        current 
   DESCRIPTION   " " 
   ::= { inConnEntry 4 } 
                           
inConnValue OBJECT-TYPE 
   SYNTAX        NameString 
   MAX-ACCESS    read-write 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { inConnEntry 5 } 
  
-- ________________________________________________    
-- _____ Device Output Parameter (Connection) Table _____ 
--   
outConnTable OBJECT-TYPE 
   SYNTAX        SEQUENCE OF OutConnEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " "  
   ::= { output 1 } 
 
outConnEntry OBJECT-TYPE 
   SYNTAX        OutConnEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   INDEX        { devIdx, paramDescIdx, paramTypeIdx,  
                             paramInstIdx, outConnIdx } 
   ::= { outConnTable 1 } 
         
OutConnEntry ::= SEQUENCE { 
   outConnIdx     TableIndex,   
   outConnID      NameString,  
   outConnSrc     NameString,   
   outConnDest    NameString, 
   outConnValue   NameString 
} 
     
outConnIdx OBJECT-TYPE 
   SYNTAX        TableIndex 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { outConnEntry 1 } 
  
outConnID OBJECT-TYPE     -- net ID if required 
   SYNTAX        NameString 
   MAX-ACCESS    read-only    
   STATUS        current 
   DESCRIPTION   " " 
   ::= { outConnEntry 2 }  
                                   
outConnSrc OBJECT-TYPE     
   SYNTAX        NameString 
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
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   ::= { outConnEntry 3 }   
         
outConnDest OBJECT-TYPE 
   SYNTAX        NameString 
   MAX-ACCESS    read-only   
   STATUS        current 
   DESCRIPTION   " " 
   ::= { outConnEntry 4 } 
 
outConnValue OBJECT-TYPE 
   SYNTAX        NameString 
   MAX-ACCESS    read-write 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { outConnEntry 5 } 
  
-- ____________________________________    
-- _______ Internal Connection Table _______ 
--   
intConnTable OBJECT-TYPE 
   SYNTAX        SEQUENCE OF IntConnEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " "  
   ::= { intConnect 1 }      
    
intConnEntry OBJECT-TYPE 
   SYNTAX        IntConnEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   INDEX        { devIdx, paramDescIdx, paramTypeIdx,  
                          paramInstIdx, intConnIdx } 
   ::= { intConnTable 1 } 
         
IntConnEntry ::= SEQUENCE { 
   intConnIdx      TableIndex,  
   intConnName     NameString,          
   intConnSrc      NameString,    
   intConnDest     NameString,   
   intConnValue    TruthValue }   
     
intConnIdx OBJECT-TYPE 
   SYNTAX        TableIndex 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { intConnEntry 1 }  
    
intConnName OBJECT-TYPE 
   SYNTAX        NameString 
   MAX-ACCESS    read-write 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { intConnEntry 2 }           
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intConnSrc OBJECT-TYPE        -- e.g. ch1-LBus, ch1-RBus 
   SYNTAX        NameString 
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { intConnEntry 3 } 
 
intConnDest OBJECT-TYPE         -- e.g. LBus, RBus 
   SYNTAX        NameString 
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { intConnEntry 4 } 
                                   
intConnValue OBJECT-TYPE 
   SYNTAX        TruthValue 
   MAX-ACCESS    read-write 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { intConnEntry 5 }  
       
-- _______________________________________   
-- ____________ Automation Table ___________  
--  
autoTable OBJECT-TYPE 
   SYNTAX        SEQUENCE OF AutoEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " "       
   ::= { automation 1 } 
 
autoEntry OBJECT-TYPE 
   SYNTAX        AutoEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   INDEX        { autoIdx } 
   ::= { autoTable 1 } 
         
AutoEntry ::= SEQUENCE { 
   autoIdx       TableIndex,    
   autoName      NameString, 
   autoRecSwitch      TruthValue, 
   autoPlaySwitch     TruthValue,  
   autoDeleteSwitch   TruthValue 
   } 
     
autoIdx   OBJECT-TYPE 
   SYNTAX        TableIndex 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { autoEntry 1 } 
 
autoName  OBJECT-TYPE 
   SYNTAX        NameString 
   MAX-ACCESS    read-write 
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   STATUS        current 
   DESCRIPTION   " " 
   ::= { autoEntry 2 }   
      
autoRecSwitch  OBJECT-TYPE 
   SYNTAX        TruthValue  -- INTEGER or BOOLEAN { true(1), false(2) } 
   MAX-ACCESS    read-write 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { autoEntry 3 }   
 
autoPlaySwitch  OBJECT-TYPE 
   SYNTAX        TruthValue 
   MAX-ACCESS    read-write 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { autoEntry 4 }  
    
autoDeleteSwitch  OBJECT-TYPE 
   SYNTAX        TruthValue 
   MAX-ACCESS    read-write 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { autoEntry 5 }  
 
-- ____________________________________________   
--  ___________  Automation Data Table ____________  
--  
autoDataTable OBJECT-TYPE 
   SYNTAX        SEQUENCE OF AutoDataEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " "     
   ::= { automation 2 } 
 
autoDataEntry OBJECT-TYPE 
   SYNTAX        AutoDataEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   INDEX        { autoIdx, autoDataIdx } 
   ::= { autoDataTable 1 } 
         
 AutoDataEntry ::= SEQUENCE { 
   autoDataIdx    TableIndex,    
   autoDataOID   OBJECT IDENTIFIER,  
   autoDataValue    Integer32, 
   autoDataTime     TimeTicks 
   } 
     
autoDataIdx   OBJECT-TYPE 
   SYNTAX        TableIndex 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   ::= {  autoDataEntry 1 } 
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autoDataOID OBJECT-TYPE 
   SYNTAX        OBJECT IDENTIFIER 
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
   ::= {  autoDataEntry 2 }        
     
autoDataValue OBJECT-TYPE 
   SYNTAX        Integer32 
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
   ::= {  autoDataEntry 3 }    
    
autoDataTime OBJECT-TYPE 
   SYNTAX        TimeTicks 
   MAX-ACCESS    read-only 
   STATUS        current 
   DESCRIPTION   " " 
   ::= {  autoDataEntry 4 }  
     
-- ____________________________________   
-- _____________ Meter Table ____________   
--  
meterTable OBJECT-TYPE 
   SYNTAX        SEQUENCE OF MeterEntry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " "       
   ::= { meter 1 } 
 
meterEntry OBJECT-TYPE  -- Thread directly transmist values 
   SYNTAX        MeterEntry   -- NO value entry 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   INDEX        { meterIdx } 
   ::= { meterTable 1 } 
         
MeterEntry ::= SEQUENCE { 
   meterIdx         TableIndex,  
   meterName        NameString,   
   meterValue       Integer32, 
   meterStatus      TruthValue, 
   meterTransmit    TruthValue 
} 
     
meterIdx    OBJECT-TYPE 
   SYNTAX        TableIndex 
   MAX-ACCESS    not-accessible 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { meterEntry 1 } 
 
meterName OBJECT-TYPE 
   SYNTAX         NameString 
   MAX-ACCESS     read-only 
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   STATUS         current 
   DESCRIPTION    " " 
   ::= { meterEntry 2 }     
 
meterValue OBJECT-TYPE 
   SYNTAX         Integer32 
   MAX-ACCESS     read-write    
   STATUS         current 
   DESCRIPTION    " " 
   ::= { meterEntry 3 }     
 
meterStatus OBJECT-TYPE 
   SYNTAX        TruthValue 
   MAX-ACCESS    read-write 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { meterEntry 4 }       
 
meterTransmit OBJECT-TYPE 
   SYNTAX        TruthValue 
   MAX-ACCESS    read-write 
   STATUS        current 
   DESCRIPTION   " " 
   ::= { meterEntry 5 }    
  
-- _________________________________________     
-- _______________ Notifications _______________    
 
meterTrap  NOTIFICATION-TYPE 
    OBJECTS  { meterName, meterValue }   
    STATUS current 
    DESCRIPTION " " 
    REFERENCE " " 
    ::=  { meter 2 }   
 
-- _________________Object Groups __________________      
deviceGroup OBJECT-GROUP 
OBJECTS  
{  devType, devName, devIPAddress, devPort, devChildCount, 
   currentDevice, deviceChildren, deviceRow, deviceNames,  
   deviceAttributes 
} 
STATUS  current 
DESCRIPTION " " 
::= { audioMIBGroups 1 }     
        
subDeviceGroup OBJECT-GROUP 
OBJECTS  
{  sdName, sdChildCount, sdControlCount, currentSubDevice,  
   subDeviceChildren,      
   currentSubDevice, subdeviceRow, subdeviceNames, subdeviceAttributes, 
   subdeviceLayout 
} 
STATUS  current 
DESCRIPTION " " 
::= { audioMIBGroups 2 } 
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controlGroup OBJECT-GROUP 
OBJECTS  
{  controlName, controlType, controlValue, controlParam,  
   currentControl, controlChildren, 
   controlRow, controlAttributes, controlLayout 
} 
STATUS  current 
DESCRIPTION " " 
::= { audioMIBGroups 3 } 
    
attributeGroup OBJECT-GROUP 
OBJECTS  
{  attribListSize, attribDataKey, attribDataValue, attribDataType,  
   attribMetaDataKey, attribMetaDataValue, attribMetaDataType 
} 
STATUS  current 
DESCRIPTION " " 
::= { audioMIBGroups 4 }      
       
layoutGroup OBJECT-GROUP 
OBJECTS  
{  layoutListSize, layoutDataKey, layoutDataValue, layoutDataType, 
   layoutMetaDataKey, layoutMetaDataValue, layoutMetaDataType 
} 
STATUS  current 
DESCRIPTION " " 
::= { audioMIBGroups 5 }         
       
parameterGroup OBJECT-GROUP 
OBJECTS  
{  paramDescName, paramTypeName, paramTypeAttribName,  
   paramTypeAttribType, paramTypeAttribValue, paramInstName,  
   paramName, paramType, paramUnit, paramValue, 
   fullParamName,fullParamValue, paramInstSlaveList, 
   paramInstPeerList, addSlaveList, remSlaveList, slaveListIdx,  
   slaveParamPointer, slaveRelType, addSlave, remSlave, addPeerList,  
   remPeerList, peerListIdx, addPeer, remPeer, peerParamPointer,  
   peerRelType, currentParam, paramRow, paramAttributes     
} 
STATUS  current 
DESCRIPTION " " 
::= { audioMIBGroups 6 }    
 
automationGroup OBJECT-GROUP 
OBJECTS  
{  autoName, autoRecSwitch, autoPlaySwitch, autoDeleteSwitch, autoDataOID,  
   autoDataValue, autoDataTime              
} 
STATUS  current 
DESCRIPTION " " 
::= { audioMIBGroups 7 }    
  
meterGroup OBJECT-GROUP 
OBJECTS  
{  meterName, meterValue, meterStatus, meterTransmit             
} 
STATUS  current 
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DESCRIPTION " " 
::= { audioMIBGroups 8 }  
  
netIOGroup OBJECT-GROUP 
OBJECTS  
{  srcStreamParamName, srcStreamParamID, srcStreamInstName,  
   srcStreamParamValue,destStreamParamName, destStreamParamID,  
   destStreamInstName, destStreamParamValue        
} 
STATUS  current 
DESCRIPTION " " 
::= { audioMIBGroups 9 }     
  
assignIOGroup OBJECT-GROUP 
OBJECTS  
{  inConnID, inConnSrc, inConnDest, inConnValue,  
   outConnID, outConnSrc, outConnDest, outConnValue             
} 
STATUS  current 
DESCRIPTION " " 
::= { audioMIBGroups 10 }    
               
intConnectGroup OBJECT-GROUP 
OBJECTS  
{  intConnName, intConnSrc,  
   intConnDest, intConnValue 
}    
 
STATUS  current 
DESCRIPTION " " 
::= { audioMIBGroups 11 }    
         
meterNotification  NOTIFICATION-GROUP  
NOTIFICATIONS 
{  meterTrap 
}    
STATUS  current 
DESCRIPTION " " 
::= { audioMIBGroups 12 }  
      
END 
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Appendix 9 

UPnP Device and Service Descriptions 

 

For brevity, only a single fader service description is listed. This service illustrates the 

declaration of the base64-encoded control that is transferred as a serialized object from a 

device to a controller as discussed in Chapter 9. 

Device Description 
<?xml version="1.0" ?> 
<root xmlns="urn:schemas-upnp-org:device-1-0"> 
    <specVersion> 
        <major>1</major> 
        <minor>1</minor> 
    </specVersion> 
    <device> 
        <deviceType>urn:schemas-upnp-org:device:mixer:1</deviceType> 
        <friendlyName>AudioMixer</friendlyName> 
        <manufacturer> Rhodes University</manufacturer>> 
 <modelName>VirtualDevice1</modelName> 
                 <!-- <UDN>uuid:75802409-bccb-40e7-8e6c-fa095ecce10e</UDN> --> 
 <UDN>uuid:vConsole1</UDN> 
        <iconList> 
            <icon> 
                <mimetype>image/gif</mimetype> 
                <width>48</width> 
                <height>32</height> 
                <depth>8</depth> 
                <url>icon.gif</url> 
            </icon> 
        </iconList> 
        <deviceList> 

<device>  <!--   INPUT STREAM1   --> 
  <deviceType>urn:schemas-upnp-org:subdevice:NetworkIn:1</deviceType> 
                                <friendlyName>Audio IN Stream1</friendlyName> 
                                <UDN>uuid:AAin</UDN> 
                                <UPC>MIXER IGE</UPC> 
  <serviceList> 
                                    <service> 
                                 <serviceType>Talkers1</serviceType> 
                                 <serviceId>Talkers_1</serviceId> 
                                 <SCPDURL>/service/state/talkers1.xml</SCPDURL> 
                                 <controlURL>/service/talkers1/control</controlURL> 
                                 <eventSubURL>/service/talkers1/eventSub</eventSubURL> 
   <talkerID>1</talkerID> 
                                 </service> 
               </serviceList> 

</device> 
               <device>  <!--   INPUT SECTION  --> 

                   <deviceType>urn:schemas-upnp-org:subdevice:Input Section:1</deviceType> 

Root Device 

Network Destination Stream 

 Mixer Input Section Sub-Device 
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                   <friendlyName>Input Section</friendlyName> 
                    <!-- <UDN>uuid:75802409-bccb-40e7-8e6c-fa095ecce11e</UDN> --> 
    <UDN>uuid:AInput_Section</UDN> 
                   <UPC>MIXER IGD</UPC> 
                   <deviceList> 
 
                       <device>  <!--CHANNEL STRIP 1--> 
                           <deviceType>urn:schemas-upnp-org:subdevice:Channel1:1</deviceType> 
                           <friendlyName>Channel1</friendlyName> 
                           <!-- <UDN>uuid:75802409-bccb-40e7-8e6c-fa095ecce13e</UDN> --> 
          <UDN>uuid:Channel_1</UDN> 
                         <UPC>MIXER IGE</UPC> 
                         <serviceList> 
                             <service> 
                                 <serviceType>Gain1</serviceType> 
                                 <serviceId>Gain_1</serviceId> 
                                 <SCPDURL>/service/state/gain1.xml</SCPDURL> 
                                 <controlURL>/service/gain1/control</controlURL> 
                                 <eventSubURL>/service/gain1/eventSub</eventSubURL> 
                             </service> 
                             <service> 
                                  <serviceType>Fader1</serviceType> 
                                  <serviceId>Fader_1</serviceId> 
                                  <SCPDURL>/service/state/fader1.xml</SCPDURL> 
                                  <controlURL>/service/fader1/control</controlURL> 
                                  <eventSubURL>/service/fader1/eventSub</eventSubURL> 
   <channel>1</channel> 
                             </service> 
                             <service> 
                                 <serviceType>Meter1</serviceType> 
                                 <serviceId>Meter_1</serviceId> 
                                 <SCPDURL>/service/state/meter1.xml</SCPDURL> 
                                 <controlURL>/service/meter1/control</controlURL> 
                                 <eventSubURL>/service/meter1/eventSub</eventSubURL> 
                             </service> 
                        </serviceList> 
                    <deviceList> 
 
                     <device>  <!--  EQU SECTION  --> 
                             <deviceType>urn:schemas-upnp-org:subdevice:EquSection:1</deviceType> 
                             <friendlyName>Equ1</friendlyName> 
                             <UDN>uuid:75802409-bccb-40e7-8e6c-fa095ecce14d</UDN> 
                             <UPC>MIXER IGE</UPC> 
                                  <serviceList> 
                                       <service> 
                                          <serviceType>HiEqu1</serviceType> 
                                          <serviceId>urn:schemas-upnp-org:serviceId:HiEqu:1</serviceId> 
                                          <SCPDURL>/service/state/hiequ1.xml</SCPDURL> 
                                         <controlURL>/service/gain/hiequ1</controlURL> 
                                         <eventSubURL>/service/hiequ1/eventSub</eventSubURL> 
                                     </service> 
                                </serviceList> 
                            </device> 
                        </deviceList> 
                    </device>  <!-- channel strip 1 --> 
        <device>  <!-- OUTPUT SECTION  -->  
            <deviceType>urn:schemas-upnp-org:subdevice:Output Section:1</deviceType> 

Channel Strip1 Sub-Device 

Gain1 Control 

EQU Section Sub-Device 

 Mixer Output Section Sub-Device 
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            <friendlyName>Output Section</friendlyName> 
            <UDN>uuid:75802409-bccb-40e7-8e6c-fa095ecce12e</UDN> 
            <UPC>MIXER IGE</UPC> 
            <deviceList> 
 
                 <device>  <!--MASTER SECTION  --> 
                     <deviceType>urn:schemas-upnp-org:subdevice:Master Section:1</deviceType> 
                     <friendlyName>Master Section</friendlyName> 
                     <UDN>uuid:75802409-bccb-40e7-8e6c-fa095ecce13e</UDN> 
                     <UPC>MIXER IGE</UPC> 
                    <serviceList> 
                        <service> 
                            <serviceType>urn:schemas-upnp-org:control:L-Master Fader:1</serviceType> 
                            <serviceId>urn:schemas-upnp-org:serviceId:L-Master Fader:1</serviceId> 
                            <SCPDURL>/service/state/masterfader.xml</SCPDURL> 
                            <controlURL>/service/LMaster/control</controlURL> 
                            <eventSubURL>/service/LMaster/eventSub</eventSubURL> 
                        </service> 
                        <service> 
                            <serviceType>urn:schemas-upnp-org:control:R-Master Fader:1</serviceType> 
                            <serviceId>urn:schemas-upnp-org:serviceId:R-Master Fader:1</serviceId> 
                            <SCPDURL>/service/state/masterfader.xml</SCPDURL> 
                            <controlURL>/service/RMaster/control</controlURL> 
                            <eventSubURL>/service/RMaster/eventSub</eventSubURL> 
                        </service> 
                    </serviceList> 
                </device> 
            </deviceList> 
        </device>   <!-- master --> 
  
        <device> <!-- OUTPUT STREAM1  --> 
                  <deviceType>urn:schemas-upnp-org:subdevice:NetworkOut:1</deviceType> 
                 <friendlyName>Audio OUT Stream1</friendlyName> 
                 <UDN>uuid:AOUT</UDN> 
                  <UPC>MIXER IGE</UPC> 
 </device> 
      </deviceList>     
    <presentationURL>http://www.cybergarage.org</presentationURL> 
  </device> 
</root> 
 

Fader Service Description 
<?xml version="1.0"?> 
<scpd xmlns="urn:schemas-upnp-org:service-1-0" > 
      <specVersion> 
 <major>1</major> 
 <minor>0</minor> 
</specVersion> 
<actionList> 
    <action> 
        <name>SetFader1</name> 
        <argumentList> 
 <argument> 
     <name>InFaderArg</name> 
     <relatedStateVariable>vFader1</relatedStateVariable> 
     <direction>in</direction> 
     </argument>    

 Master Section Sub-Device 

Network Source Stream 
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      </argumentList> 
</action> 
 

<action> 
     <name>GetFader1</name> 
        <argumentList> 
             <argument> 
      <name>RetFaderValue</name> 
      <relatedStateVariable>vFader1</relatedStateVariable> 
      <direction>out</direction> 
 </argument>  
          </argumentList> 
    </action> 
   <action> 

        <name>GetControlFader1</name>          Action Returns Serialized Fader Control 
             <argumentList> 
   <argument> 
       <name>ControlID</name> 
       <relatedStateVariable>ControlType</relatedStateVariable> 
       <direction>in</direction> 
    </argument> 
    <argument> 
        <!-- FadeControl --> 
      <name>Control</name> 
      <relatedStateVariable>FaderControl1</relatedStateVariable> 
     <direction>out</direction> 
 </argument> 
           </argumentList> 
   </action> 
</actionList> 
 
<serviceStateTable> 
    <stateVariable sendEvents="no"> 
         <name>vFader1</name> 
        <dataType>i4</dataType> 
        <defaultValue>15</defaultValue> 
        <allowedValueRange> 
            <minimum>-12</minimum> 
            <maximum>20</maximum> 
            <step>1</step> 
       </allowedValueRange> 
  </stateVariable> 
 <stateVariable sendEvents="no"> 
     <name>FaderControl1</name> 
     <dataType>bin.base64</dataType>   
  </stateVariable> 
  <stateVariable sendEvents="no"> 
      <name>ControlType</name> 
     <dataType>i4</dataType> 
     <allowedValueRange> 
         <minimum>0</minimum> 
         <maximum>5</maximum> 
     </allowedValueRange> 
</stateVariable> 
</serviceStateTable> 
</scpd> 
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Appendix 10 

Control Protocol Command Analysis 

and Comparison 

 

 
A10.1 Native and Synthesized Commands 

The ‘expressiveness’ of a control protocol is introduced as a measurement of both the 

capabilities and flexibility of a control protocol. To measure expressiveness,  

each protocol command is assigned a value denoting the command’s capabilities and 

flexibility. The sum of these values creates an index for a category of related commands; 

the sum of the values for each category measures the total expressiveness of a control 

protocol. Commands are evaluated and compared within the two command categories 

introduced in Section 2.9.1.1 Commands and Services  (p.34): 

1. Native commands that are directly supported by a protocol and parsed by the 

protocol stack.  

2. Synthesized commands that use native commands to provide extended 

functionality. 

Action parameters are not considered because they do not form a specific, well-defined 

feature of a control protocol. It is important to reiterate that synthesized commands do 

not include the execution of multiple distinct native commands. For example, multiple 

SET(..) commands are not equivalent to a single command that addresses multiple 

parameters. A synthesized command must always consist of a single, atomically executed 

command. All commands listed in the tables that follow are native commands. 

Synthesized commands are explicitly indicated as such. The fundamental operations 

found within any protocol are the control and monitoring commands listed in  

Tables A10.1, A10.2 and A10.3. The following sections provide a detailed examination of 

these commands as well as the different commands used for parameter management. 

A10.1.1 SET(..) Commands 

Different argument configurations support different semantic interpretations of SET(..) 

commands that may be implemented as: 
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1. Native SET(..) Commands 

1.1 SET a single parameter value. 

1.2 SET multiple related parameter values using: 

1.2.1 Pattern matching. 

1.2.2 Range selection.  

1.2.3 Multiple variable bindings within a single PDU. 

1.3 SET multiple unrelated parameter values using: 

1.3.1 Pattern matching. 

1.3.2 Multiple variable bindings within a single PDU. 

1.4 SET a large group (bulk) of parameters. 

2. Synthesized SET(..) Commands 

2.1 SET multiple related or unrelated parameter values using the arguments of a 

native set command to specify target parameters: 

setValue (p1…pN,  arg1 ... argN ) 

This command sets the values of the parameters p1 … pN using the arguments  

arg1 ... argN as described in Section 5.3.2.1 Address Space Pattern-Matching (p.125) with 

reference to OSC. This type of command is available to any protocol having a  

SET (string) command where a single string represents an arbitrary delimited set of 

argument values.  

Table A10.1 compares SET(..) commands where footnote references are indicated in 

boldface for clarity. The following notation denotes the characteristics of different protocol 

commands: 

 

 

 

 

 

 

 

The command ‘SET multiple related’ includes commands that address a continuous range 

of parameter values, parameter values separated by a fixed offset, as well as values related 

by their positions within a data structure. ‘SET multiple unrelated’ addresses a set of 

parameters where at least one of the parameters has no known relationship to any other 

parameter within the set. For example, Table A10.1 (row 11) shows that OSC supports the 

grouping of multiple unrelated parameters using a bundle of commands. SNMP also 

            Directly supported by the protocol. 
Blank            Not supported. 
Opt  = optional      Argument or return value is optional. 
F = fixed           Argument structure or return type is fixed. 
V = variable      Argument structure or return type is variable. 
Ack = acknowledgment      The command is acknowledged by the protocol. 
Err = error      Error reporting is applicable to arguments and/or return values. 
SE = side effect      Command is implemented as a side effect of a parameter update. 
Syn       Synthesized command. 
Imp       Implementation dependent. 
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Table A10.1 A Comparison of SET(..) Commands. 

Command OSC SNMP AES64 CopperLan UPnP 

1. SET single [2]     Action 

       Argument V(0 ..*) V( 0..*), Err  1, V  
[1] 

          1 V(0 ..*) 

       Return Imp Ack, Err 
and V(0 ..*) 

 

Opt [3]    Opt [3] F(1) or 
Err 

       Stack data update [2]    Imp [4] 

        Control Point  
        (Callback f() ) 

 SE SE SE  

2. SET multiple 
related       

    

U
ser-d

efin
ed

   A
ctio

n
s 

        Argument V(0 ..*) V(0 ..*)   

        Return     Imp  Ack and 
V(0 ..*)  

    Opt  

       Stack data update     

        Control Point  
        (Callback f() ) 

        SE       SE  

3. SET multiple 
unrelated  

 [5]    

        Argument V(0 ..*) 
V( 0..*) 
Err 

1,V [1]  

        Return     Imp V(0 ..*), Err     Opt  

       Stack data update     

        Control Point  
       (Callback f() ) 

 SE SE  

4. SET bulk 
parameter group 

    

5.  Non-blocking  
versions 

     

 

supports addressing of unrelated parameter values by allowing multiple unrelated 

varbinds to be attached to a single GET() or SET(..) command. SET multiple unrelated 

commands can also be synthesized in OSC by using the variable argument structure 

supported by OSC. Command analysis is not applicable to UPnP where commands are 

freely implemented as service actions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[1] AES64 allows an arbitrary user defined VOID argument to be supplied to many commands. 
[2] OSC does not provide parameter data. Only a control point invocation is implemented by the OSC 

protocol stack. 
[3] Return values are optional as the protocol provides non-blocking versions of SET(..) commands. 
[4] UPnP implementations typically update state variables from within a UPnP action. Actions are not 

automatically linked to state variables. 
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                 Command    OSC SNMP AES64 CopperLan UPnP 

1. GET single   Syn [1]    Service 

          Argument V(0 ..*) F(1) 1, V     [2]   

          Return    Impl V(0 ..*), E         F(1)      F(1) 

         Control Point 
         (Callback f() ) 

 SE SE SE 
 

2. GET ext In Sequence     

U
ser-d

efin
ed

   A
ctio

n
s 

          Argument      F(1)   

          Return   F(1), Err   

          Control Point 
         (Callback f() ) 

 SE SE SE 

3. GET multiple Related     Syn [3]      

          Argument V(0 ..*)      0 ..*   

          Return   Impl      F,E    

          Control Point 
          (Callback f()) 

      SE   

4. GET multiple unrelated     Syn  [4]  

          Argument V(0 ..*)    

          Return     

          Control Point 
          (Callback f()) 

      SE   

5. GET bulk  [5]   

 
Table A10.2 A Comparison of GET Commands. 

[5] OSC bundles allow multiple unrelated parameters to be addressed. This capability is extended further 
in the proposed version 2 of the protocol by the ‘multiple-level wildcard-matching operator’ as 
described in Section 5.3.2.1 Address Space Pattern-Matching (p.125). 

A10.1.2 GET() Commands 

Table A10.2 compares the GET() commands supported by different control protocols. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
[1] OSC does not provide parameter data; the OSC stack only implements a control point invocation. 
[2] Many AE6464 commands provide an arbitrary user defined argument. 
[3] Implemented as multiple SNMP varbinds. 
[4] Wildcards within parameter addresses allow distantly related parameters to be addressed as a group. 
[5] Does not retrieve logically related parameters but groups of parameters lexicographically ordered by  
      their position within the SNMP object tree. 
 

1. Native GET() Commands 

1.1 GET a single parameter value. 

1.2 GET multiple parameter values using: 

1.2.1 Pattern matching (OSC and AES64). 

1.2.2 Range selection (ACN and OCA). 

1.3 GET the following parameter value in a sequence of parameter values (SNMP). 
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                 Command   OSC  SNMP AES64 CopperLan UPnP 

1. Subscribe to a single 
parameter value  

 [1]     

2. Subscribe to multiple 
parameter values 

 

 
    

3. Subscribe to a single 
event 

 
    

4. Subscribe to multiple 
events 

 
    

5.  Control Subscription 
  Transmissions 

 [2]  [2] 
   

 
Table A10.3 Comparing Subscription Management Commands. 

1.4 GET a large (bulk) group of parameters (AES64). 

2. Synthesized GET() Commands 

2.1 GET multiple parameter values (OSC and SNMP). 

OSC does not return any values; a partial-peer network organization must be used for a 

server to return values to a client. SNMP must use multiple varbinds to return more than 

one value. AES64 clearly separates bulk parameter access from accessing multiple 

parameters using wildcard characters within an AES64 parameter address. 

A10.1.3 Subscription (Monitoring) Commands 

These commands are typically implemented as value-based or event-based subscriptions. 

Table A10.3 summarizes the subscription capabilities of different control protocols. 

1. Value-Based Subscription 

1.  Subscribe or unsubscribe to a single parameter value change. 

2.  Subscribe or unsubscribe to changes within a set of parameter values.  

2.  Event-Based Subscription 

1.  Subscribe or unsubscribe to a single event. 

2.  Subscribe or unsubscribe to a set of events.  

 

 

 

 

 

 

 

 

 
 

[1] SNMP Notifications are specified by a MIB, but generated by agent instrumentation. Although 
subscriptions are typically defined by MIB definitions, SNMP agents are capable of generating 
notification messages that are not defined in a MIB as required by an application.  

[2] Different transmission schemes can be implemented in OSC and SNMP as discussed below. 
 

AES64 provides explicit control over the transmission of subscribed parameter data. Both 

the update frequency and delta value threshold triggering update messages can be 

specified as described in Section 7.4.2 Device Monitoring (p.197). Different transmission 

schemes (as defined in Section 2.9.2.1 Bulk Transmission of Monitored Parameter Values 

(p.37)) can be implemented in OSC and SNMP. Non-work conserving schemes can be 
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                 Command OSC  SNMP AES64 CopperLan UPnP 

1. Static JOIN/UNJOIN parameter      

2. Static CREATE/DEL group      

3. Dynamic Update Join Syn   Syn Syn 

4. Dynamic Update Group Syn Syn  Syn Syn 

5. Dynamically Modify  
Parameter  Values 

  


  

6. Automation      

 
Table A10.4 Comparing Parameter Management Commands. 

transmit multiple values as a bundle or as multiple arguments within a single OSC 

message. A single SNMP SET(..) request containing multiple varbinds provides a  

non-work conserving network transmission. UPnP implements a non-work conserving 

transmission scheme as all evented state variables defined within a service are transmitted 

when any state variable is updated. 

A10.1.4 Parameter Management and Automation 

Parameter management commands are only provided by AES64. Table A10.4 shows that 

these commands can be synthesized by some control protocols. 

1. Parameter Joins 

1.1 Create or terminate static parameter joins. 

1.2 Specify dynamic parameter joins as introduced in Section 2.8.1.1 Static and 

Dynamic Parameter Joins (p.28). 

2. Parameter Groups 

2.1 Create, delete, and modify parameter groups. 

 

 

 

 
 

 

 

 

SNMP commands can support dynamic parameter groups by addressing multiple 

parameters by means of multiple variable bindings. OSC and UPnP are also capable of 

expressing dynamic group relationships, as SET(..) commands support an arbitrary 

number of arguments or varbinds respectively. AES64 supports the modifier mechanism 

discussed previously in Section 7.3.3.3 Parameter Modifiers (p.192) that dynamically 

modifies parameter values. Only OSC and AES64 support time stamped command 

sequences that support automation. 

A10.2 A Comparative Summary of Control Protocol Features 

Table A10.5 summarizes the features of the control protocols discussed in this dissertation 

that were presented at the end of the chapters devoted to specific control protocols. 
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[1] Although OSC does not define parameters, invoking an OSC method typically implies a parameter  
       access. 
[2] UPnP actions providing a great degree of flexibility but do not natively support arrays or collections of  
      values. 
[3] Serialization is only supported by SNMP v1 as it is deprecated in later versions. 
[4] AES64 provides a VOID data type as an argument to protocol commands. 
[5] Not mandated by the protocol specification. 

Table A10.5 A Comparative Summary of Control Protocol Features. 
 

                      Protocol Feature  OSC SNMP AES64 CopperLan  UPnP 

1. Network Management 

1.1 Device discovery   [6]   

1.2 Monitoring reachability       

2. Service Discovery and Enumeration       

3. Control Surface Representation        

4.  Control Functionality 

    4.1 Write Single  Parameter Value [1]     

     4.2 Write Multiple Parameter Values     

    4.3 Read Single Parameter Value     

    4.4 Read Multiple Values     [2] 

   4.5 Non-Blocking  (Asynchronous)         
        Commands 

[5]     

4.6 Variable Number of Arguments   N/A   

4.7 User-Defined Arguments   [4]   

4.8 Multiple Return Values   N/A   

4.9 Error Checking      

4.10 Control Point Invocation      

    4.11 Automation      

5. Subscription (Monitoring) 

      5.1 Single Value Subscription     
Service
-based 

      5.2 Multiple Value Subscription      

      5.3 Event-based Subscription      

6. Parameter Management 

6.1  Linking Controls to Parameters        

6.2  Joining Parameters        

6.3  Grouping Parameters        

6.4  Bulk Parameter Access  [7]    
6.5 Dynamic Parameter Modification      
6.6 Save / Load Configuration      

7. Connection  Management 

  

   

7.1 External Connection Management   

    7.2 Internal Connection Management   

    7.3 Control Connection Management   

8. Serialization  [3] [4]   

9. Security     
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[6] Only supported by SNMP v3. 
[7] Only retrieving parameters using GETBULK(). 
 

Table A10.6 summarizes the control and monitoring features for the listed control 

protocols and assigns a score to each feature.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[1] Proposed for v2 of the protocol. 
[2] Not natively supported but easy to implement. 
[3] Cannot be determined, as the documentation is incomplete. 
[4] A flexibility score reflects the freely defined service provided by UPnP. 
 

The scores in Table 10.6 range from five (fully implemented) to zero (not implemented). 

Scores between these values indicate the ease with which the feature can be implemented. 

For example, setting multiple unrelated values via a synthesized command is easy to 

implement in OSC. A score is also provided for protocols that support connection 

Command    OSC SNMP  AES64  CopperLan UPnP 

1. SET single       5      5       5          5      5 

Flexibility       3      2       2               3 

2. SET multiple related       5      5       5          5     [4] 

Flexibility       3      2       2               3 

3. SET multiple unrelated       3 [1]      5       5                

Flexibility       3      2       2               3 

Score      22      21      21         10     14 

1. GET single        5       5          5      5 

Flexibility             2 

        [3] 

     3 

2. GET next in sequence      5       5  

Flexibility        2      3 

3. GET  multiple related      5       5  

Flexibility      2       2      3 

4. GET multiple unrelated      5         

Flexibility      2             3  

Score       0     24      21         5     17 

1. Subscribe / unsubscribe      [2]      3       5         5      5 

2. Start subscription              5         5      4    

3. Stop Subscription              5         5      4 

Flexibility       3      3       5       3 

Score       3      6      20        15     16 

1. Static Join                  5              

2. Dynamic Join       5      3    

3. Static Group               5   

4. Dynamic Group       5       3    

Score       10       6      10   

Automation       5        5         5  

Connection Management        10        10      5 

Total      35      57      87        40     52 

 
Table A10.6 A Comparative Weighting of Protocol Features. 
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management. A flexibility score of between zero and three is also provided for each 

command. 

Of particular interest is the high score achieved by SNMP. UPnP and OSC are 

commonly awarded a flexibility score, as these protocols support arbitrary commands 

having an arbitrary number of arguments. AES64 commands allow an arbitrary type 

(expressed as a void pointer) to be used with API commands. 

A10.3 A Subjective Control Protocol Comparison 

The previous analysis of the capabilities of different protocols can be used to determine 

the ‘expressiveness’ of each protocol. ‘Expressiveness’ refers to both the number of 

commands supported by a protocol and the different ways in which these commands can 

be used. This is analogous to the ‘depth’ and ‘breadth’ of a protocol’s capabilities.  

 

 

 

A qualitative evaluation is provided for the following categories: 

 Expressiveness – a measurement of supported features; 

 Adoption – how widely the protocol is used; 

 Extensibility – a measurement of how well the protocol  can be adapted and 

scaled; 

 Complexity – the development effort required to implement the protocol. 

 Standard – the status of the protocol as a standard. 

The above comparisons are used to formulate the following observations: 

0

2

4

6

8

10

Expressiveness

Adoption

Effort

Extensibility

Standard

Figure A10.1 A Subjective Control Protocol Comparison. 
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1. Standardization has to date had no influence on the adoption of a control protocol. 

OSC (like HiQnet) is widely used without being a standard protocol. OSC is an open 

protocol, while HiQnet is a proprietary protocol. Conversely, although IEC-62379 

and ACN are IEC and ANSI standards respectively, this study has not identified 

any mature implementations or products supporting these standards.  

2. The sophistication of a protocol does not mean that it will be widely adopted. OSC 

is widely used but is the least sophisticated of all the control protocols. 

3. The amount of effort required to implement applications and the tools provided by 

a protocol vendor may influence the adoption of the protocol. It is conceivable that 

the complexity of ACN and the development effort associated with SNMP have 

negatively affected the adoption of these protocols. 
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Appendix 11 

Control Protocol Packet Formats 

 

 

Core TCP/IP protocols (IP, TCP, and UDP) use a header and payload organization where 

the payload has a fixed message format consisting of predefined, static fields.  

Common TCP/IP-based protocols such as HTTP, FTP, SMTP, POP3, and SIP use  

text-based ‘Field: Value’ pairs (Resnick, 2001). Information encoded as  

Type (or Tag)-Length-Value (TLV) triples (Medhi & Ramasamy, 2007, p. 25) within 

protocol data units provides a markup scheme. The type and length of values are indicated 

allowing values to be extracted and processed according to their types.  

The type field type is typically a binary or alphanumeric identifier; the length of the field 

is variable to allow future versions of the protocol to introduce new types. TLV encoding 

is also defined in the SMPTE 336M-2001 (ITU, 2002) specification where it is referred to 

as Key-Length-Value (KLV) encoding. 

Only OSC and SNMP PDUs are discussed in this appendix as they are discussed in 

the chapters dealing with these protocols. In particular, SNMP trap PDU fields were 

directly accessed in the SNMP software to implement metering subscriptions. 

A11.1 OSC Message Structure 

An OSC PDU follows the standard IP and UDP headers. PDUs are optimized for 32-bit 

machine architectures by aligning packet data on four-byte boundaries. OSC Addresses 

and string arguments are encoded as ASCII characters, while numeric arguments are 

encoded as binary data. Each argument is also aligned on a four-byte boundary within an 

OSC PDU. The number and type of arguments supplied to an OSC message is indicated by 

an OSC type tag string (Wright, 2002a) that begins with a comma character and is followed 

a sequence of characters indicating the arity and order of arguments. Commonly used type 

tags according to the OSC v1.0 specification include: 

i    32 bit integer 
f    32 bit floating point value 
s   OSC-string 
b   OSC-blob 
 

Table A11.1 illustrates the structure of an OSC Message with the address pattern /gain 

and five arguments specified for the ‘gain’ method. This example is adapted from the 
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 Legend: 
■   ASCII characters           ■  Type tag string 
■   Numeric arguments    ■   Null bytes used for data alignment 
 

Word Byte1 Byte2 Byte3 Byte4 Argument 

1 2F (/) 67 (g) 61 (a) 69 (i)  

2 6e (n) 0  0  0   

3 2C (,) 69 (i) 69 (i) 73 (s)  

4 66 (f) 66 (f) 0  0   

5 0  0 3  E8 1000 

6 FF  FF  FF FF -1 

7 76 (v) 61 (a) 6c (l) 75 (u) “value” 

8 65 (e) 0  0  0   

9 3F 9D  F3 B6 1.234 

10 40 B5 B2 2D  5.678 

 
Table A11.1 OSC Packet Structure 

examples provided with the OSC v1.0 specification (Wright, 2002a). The five arguments 

are: 

 an int32 with a value of 1000 

 an int32 with a value of -1 

 a string “value” 

 a float32 with a value of 1.234 

 a float32 with a value of 5.678 

 

The packet data shown below makes use of the following colors to illustrate  

data encoding: 

 

 

 

         

 

 

 

 

 

 

In table A11.1 the null separator (byte two of the second word, byte three of word four and 

byte two of word eight) are expanded to two or three bytes to align on a four-byte word 

boundary. The specification also allows for additional types that do not conform to the 

standard. In the above example, the format string iisff is padded with null bytes for 

alignment and each argument is also aligned. The example in Table A11.1 has a total packet 

length of forty bytes where eight null bytes are used for data alignment.  

As explained in Section 5.3.1 Processing OSC Messages (p.122), a small increase in packet 

size enhances performance, as OSC server processes do not have to copy received data 

from the network buffer. Word-aligned data allows pointers or references to OSC message 

arguments within a network buffer to be used when processing received messages as 

discussed in Chapter 5. 
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  (Kozierok, 2005). 

Field Name Syntax Size (bytes) Description 

Version Integer 4 
SNMPv1 = 0          

SNMPv2 = 1 

Community Octet 
String 

Variable SNMP ‘community’ 
string. 

PDU Payload — Variable PDUs forming the 
body of the message. 

 
  Table A11.2 SNMPv1 General Packet Structure. 

A11.2 SNMP Message Structure 

SNMP packets use BER encoded data where BER encoded fields are organized using a 

TLV format. PDU structure (Kozierok, 2005), (Cisco Systems Inc., n.d.) (Stumpf, 2009), 

depends on the type of message that is being sent. Both SNMP version 1 and version 2c 

PDUs contain SNMP data following the standard IP and UDP headers. This data consists 

of an: 

1. SNMP header made up  of: 

1.1 The SNMP version; 

1.2 An SNMP community string; 

2. SNMP PDU consisting of: 

2.1 The object identifier of sender and recipient (SNMP v2.); 

2.2 One or more SNMP PDUs consisting of: 

2.2.1 The SNMP PDU type (GET, SET etc.) 

2.2.2 An field used to identify the sender ; 

2.2.3 Two error fields, and 

2.2.4 A list of one or more SNMP variable Bindings. 

 

This PDU structure is used for: 

 Version 1 GET, GETNEXT, RESPONSE and SET PDUs; 

 Version 2c GET, GETNEXT, INFORM, RESPONSE, SET and TRAP PDUs. 

PDUs consist of a message header followed by one or more variable bindings.  

Table A11.2 shows that the header consists of a version identifier and a community access 

string that provides a simple security mechanism. 

 

 

 

 

 

 

 

 

 

 

 

The fields defined by an SNMP PDU and a description of each field are shown in  

Table A11.3. 
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Because GETBULK() requests are implemented using repeated GETNEXT() requests, two 

fields replace the error indicators shown in Table A11.3 for SNMPv2c  

GETBULK() requests:  

 Non-repeaters (replaces the error-status) - how many variables at the start at the 

head of varbind list are not to be repeated. These are scalar values that require a 

single GET() command. 

 Max-repetitions (replaces the error-index) - the number of GETNEXT() 

repetitions. 

The operation of SNMP GETBULK() requests were discussed in Chapter 6. 
 

SNMP v1 traps use a PDU consisting of the five standard fields shown in  

Table A11.4. Each trap contains at least two variable bindings that form a type of ‘trap 

header’: 

 The first variable binding contains a timestamp;  

 The second variable binding contains an OID that identifies each trap. 

These variable bindings are followed by zero or more variable bindings forming the 

payload of the trap PDU. Table A11.4 lists the allowable values for each trap field.  

The fields highlighted in blue were used to represent meter identifiers and meter values. 

 

 

Field Name         Syntax Size  
(Bytes) 

                        Description 

 PDU Type Integer        4 

0  = GET Request PDU 
1  = GETNEXT Request PDU 
2  = Get Response PDU 
3  = SET Request PDU 

Request ID Integer        4 
Matches requests with replies. Generated by 
 the sender and then copied into this field  
for a GET response PDU by the responder. 

Error Status 
Enumerated 
Integer 

       4 See below 

Error Index Integer        4 
When Error Status is non-zero, this field contains a 
pointer that specifies which object generated the 
error. Always zero in a request PDU. 

Variable 
Bindings 

Variable Variable 
SNMP objects and their current values. For a  
SET PDU or a GET response PDU it also  
contains their values.  

 

 (Kozierok, 2005). 

Table A11.3 SNMPv1 and SNMPv2c PDU Structure. 
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SNMP v2 traps use the general format SNMP PDU illustrated previously in Table A11.3. 

 

 

 

 

 

 

 

 

 

 

(Cisco Systems Inc., n.d.). 
 

Field  Values                              Description 

Enterprise 
 The type of the managed object  

(device) generating the trap. 

Agent 
address 

 IP address of the managed object  
generating the trap. 

  Generic  
Trap type 

0 = Cold Start Agent is starting up (typically booting). 

1 = Warm Start Agent is starting up (typically a restart). 

2 = Link Down Agent communication link failure 

3 = Link Up 
 

Agent communication link has been  
restored. 

4 Authentication  
   failure 

Invalid community name or  
insufficient permissions to execute a  
request/ 

5 EGP Neighbour  
    Loss 

Relationship between an External / 
Gateway Protocol (EGP) neighbor and an  
EGP peer no longer exists. 

6 Enterprise              
   Specific 

Agent has detected an enterprise-specific 
event. The value of the specific trap type  
field indicates the type of event. 

Specific  
trap code 

 See above 

Timestamp 
 Time elapsed since network initialization  

and time of the trap. 

Variable 
bindings 

 A set of <OID, value> pairs  representing 
 SNMP objects and their current values. 

 
Table A11.4 SNMPv1 Trap Packet Structure. 
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Glossary 

 

Original terminology developed during this study is underlined. 

 

Accessor – A method that returns the value of an object attribute.  

Access Cost – The overhead required to locate a remote service (‘location cost’), added 

to the overhead required to retrieve the data or resources (‘retrieval cost’) required to 

implement a service (See ‘Retrieval cost’ and ‘Location cost’).   

Action Parameter – A parameter that that is accessed solely for the side effect of the 

functionality implemented by an associated control point. 

Active Control – A control that supports user-interaction such as a fader control. 

Active Parameter – A parameter that causes changes to other parameter values when 

its own value changes. 

Actual Argument (Actual Parameter) – Arguments that are provided by the invocation 

of a function or procedure call. (See ‘Formal Argument’). 

Actuator – Term used by the AES-24 family of control protocols (MambaNet and OCA)   

to refer to objects that update parameter data. 

Argument – An actual or formal parameter within the context of the invocation of a 

function or remote procedure call. 

Audio Connection Management – The management of audio connections between 

networked devices or within a single audio device. 

Audio Engineering Society (AES) – An organization that promotes the audio industry, 

supports audio research, and also creates and publishes standards. 

AES (See above) 

AES-24 – An object-oriented control protocol developed by the Audio Engineering 

Society during the late 1990’s. 

Architecture for Control Networks (ACN) – An ANSI standard control protocol. 

Argument – A parameter to a function call or procedure call. Avoids ambiguity when 

using the computer science term ‘parameter’ in the context of control protocols.  

(See ‘actual argument’, ‘formal argument’ and ‘parameter’). 

Attribute – Descriptive data (non-parameter data) within a description of an audio 

device. In computer science, a data field of an object. 

Audio Stream – A continuous transmission of one or more channels of audio across a 

network. 
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Audio Receiver – An audio terminal that receives an audio stream termed a ‘listener’ in 

AVB. 

Audio Transmitter – An audio terminal that transmits an audio stream termed a ‘talker 

in AVB. 

Audio Video Bridging (AVB) – (See ‘IEEE 1722’). Formally designated by the standard 

IEEE 1722. 

AVB (See above) 

AVB Audio Discovery Enumeration Connection Management and Control 

(AVDECC) – A control and connection management environment for AVB developed in 

OSC. 

AVDECC (See above) 

Complex Static Design Concept – A hierarchical representation that has multiple 

semantic interpretations. For example, a hierarchical parameter address that also 

represents a device’s structure. 

Connection Management – The management of connections between data streams, 

media streams or audio channels. (See ‘Audio Connection Management’ and ‘Control 

Connection Management’). 

Connection Parameter – A parameter representing an audio connection between an 

audio source signal and an audio destination signal. 

Connection Point – A remote procedure call or a remote callback function triggered by 

a parameter access used to manage audio connections. 

Connection State Parameter – A parameter representing the current state of an audio 

connection. 

Continuous Monitoring – Process where a stream of data (such as meter values) is 

transmitted by a device and received by a controller application. 

Container – In the context of the standard device model, a sub-device used to group 

other device components. (See ‘Non-Visual Component’). 

Control – A hardware or software user interface item such as a fader, rotary 

potentiometer or switch. 

Control Path – A sequence of events triggered by a control value change or a parameter 

value change. These events can be event handler invocations, parameter updates, control 

point invocations or procedure calls. 

Control Stream – A continuous transmission of a set of commands across a network. 

Controller - A physical or virtual device that is able to interact with and control other 

devices. 

Control Connection Management – The management of connections between 

controls on two, distinct, networked control surfaces. 
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Control Parameter – A parameter (usually defined by a control protocol) that stores 

the current value of a control. (See ‘Parameter’ and ‘DSP parameter’). 

Control Path – The sequence of events triggered by a change to a control’s state or a 

parameter value. 

Control Join – The linkage of two controls where a change in control value for one of the 

controls triggers a control value change in the other control. 

Control Point – A remote procedure call or a remote callback function triggered by a 

parameter access. 

Control Value – A value representing the current state of a control. 

CopperLan – A control protocol from Klavis Technologies. 

Dedicated Controller – A controller that only consists of a control surface that does not 

perform any audio processing. 

Descriptive Attribute – An attribute describing a characteristic of a device component, 

parameter or audio connection. 

Description Record – A set of descriptive attributes describing a device component or 

a parameter used by the standard device model. 

Design Concept – The concepts on which the design of a control protocol are based. 

See ‘Primary Design Concept’ and ‘Secondary Design Concept’. 

Device – A physical device such as an amplifier or a virtual (software) device or controller. 

Device Component – A logical or physical part of a device such as a control or sub-

device. (See ‘Logical Component’ and ‘Physical Component’). 

Digital MultipleX (DMX) – A serial control protocol that is widely used for lighting 

control. 

Discrete Monitoring – Process where a single (status) message is transmitted by a 

device and received by a controller application. 

Disco – A discovery protocol used by HiQnet based on UPnP. 

Digital Signal Processing (DSP) – Modification of the digital representation of a digital 

signal. 

DSP – (See above) 

Domain Name System Service Discovery (DNS-SD) – Also known as ‘Bonjour’ is a 

service discovery network protocol developed by Apple Computer. 

DNS-SD (See above) 

DSP Parameter – A parameter that represents the value of a DSP function.  

(See ‘Parameter’, ‘Control parameter’ and ‘Connection parameter’). 

Dynamic Specification – A specification of the commands provided by a control 

protocol. 
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Dynamic Parameter Join – A parameter relationships that is dynamically expressed 

by a protocol command. 

Entity – A high-level logical unit of data or functionality (or both of these) found within 

a control protocol. Typical examples include records, objects or services. 

Entity-Based Protocol – A control protocol that uses entities as a primary design 

concept. (See ‘Design concept’ and ‘Entity’.) 

EuCon – A proprietary control protocol from Euphonix Corporation. 

Expressiveness (of a control protocol) – A measurement of the functional capabilities 

of a protocol. 

First-Generation Control Protocols – Control protocols that only support the 

reading, writing and monitoring of parameter values. 

Flow Control – Management of the rate of data transmissions on a network. 

Formal Argument (Formal Parameter) – arguments that are received by function or a 

procedure. (See ‘Actual argument’). 

Fully-Serialized Object – A binary representation of an object or data structure that 

includes all the resources such as images that it requires. (See ‘Partially-Serialized 

Object’). 

GET() Command – A protocol command that reads (retrieves) a parameter value. 

Hardware Control – A physical control such as a fader or button. 

Heartbeat – A message sent on a network to indicate that the sender of the message is 

reachable. 

HiQnet – A proprietary control protocol from Harmon Pro Corporation. 

Hybrid Network Architecture – A network architecture that consists of both servers 

and peer processes.  

IEEE 1722.1-2013 – A control protocol designed specifically for devices on IEEE 1722 

media networks. 

IEEE 1722 – An open ISO layer two media transport protocol that uses dedicated network 

switches to provide high-performance media networks with a guaranteed QoS. 

Internet Engineering Task Force (IETF) – A body that publishes standards 

applicable to the Internet. 

IETF – (See above) 

Location Cost – The number of remote accesses required to locate a remote service. (See 

‘Access Cost’ and ‘Processing cost’). 

Linked Relationship – The relationship between a control and a control parameter. 

Logical Component – A software component that represents a logical view of a device 

(for example a set of faders) that need not correspond to the device’s physical structure. 
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MambaNet – A control protocol developed by D&R Electronics for use in the 

broadcasting industry. 

Media Accelerated Global Information Carrier – A control protocol developed by 

Gibson Guitar Corporation. Development was not completed. 

MaGIC (See ‘Media Accelerated Global Information Carrier’). 

MambaNet – A control protocol derived from AES-24. 

Middleware – Software that forms a layer between networking software and application-

specific software. 

Modifier – A mechanism used by AES64 that provides functions for data translation and 

scaling between parameters. 

Native Command – A control command that is directly supported by a control protocol. 

Native Dynamic Specification – The set of native commands provided by a control 

protocol. (See ‘Native Command’) 

Network Protocol – A well-defined method of communication between nodes or 

processes on a computer network. 

Node – A connection point to a network. A single node may host multiple devices or 

processes. 

Non-Visual Component – A logical component of a device that has no visual 

representation. Typically, a container used to group other device components.  

For example, the input section of a mixing console. 

Open Control Architecture (OCA) – A control protocol from Bosch Communication 

Systems. 

OCA – (See above) 

Open Control Classes (OCC) – The class hierarchy provided by the ‘Open Control 

Architecture’. 

OCC – (See above) 

Open Control Framework (OCF) – A high-level device description and generic control 

framework used by the ‘Open control Architecture’. 

OCF – (See above) 

Open Sound Control (OSC) – A control protocol developed at the University of 

California, Berkeley. 

OSC (See above) 

Partial-Peer Network – A client-server network architecture where the client has its 

own services or parameters. 

Parameter – A data value found defined by a control protocol that can be accessed by 

remote applications.  

Parameter Modifier – An AES64 function that modifies the value of a parameter. 
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Partially-Serialized Object – A serialized object instance that requires resources (such 

as widgets or graphics) from a library or run-time environment.  

(See ‘Fully-serialized’). 

Passive Control – A control that does not support user-interaction such as a status light. 

Passive Parameter – A parameter that does not cause changes to other parameter 

values when its own value changes. 

Peer-To-Peer – A network architecture where a process on a network function as both a 

client process and a server process. (See ‘Servent’) 

Physical Control – See (‘Hardware Control’). 

Pre-Update Control Point – A control point that is called before a parameter value is 

updated.  

Primary Design Concept – The core design principle around which a control protocol 

is designed. (See ‘Secondary Design Concept’). 

Polling – A technique used to update status or determine network reachability where a 

process periodically sends a network message to another process. 

Post-Update Control Point – A control point that is called after a parameter value has 

been updated. (See ‘Pre-update Control Point’). 

Process (of a service) – The number of discrete operations required to implement a 

service. 

Processing Cost – The overhead required to process (parse) remotely retrieved data. 

(See ‘Location Cost’ and Retrieval Cost’). 

Property Access Method (PAM) – A term used in AES-24 for methods that access 

parameter values. 

PAM (See above) 

Primary Design Concept – The most important concept used in the design of a control 

protocol. (See ‘Secondary Design Concept’). 

Protocol – A well-defined method of communication. (See also ‘Network Protocol’). 

Protocol Data Unit (PDU) – A logical data unit defined by a network protocol found 

within a network packet. Typically encapsulates a single protocol parameter or a single 

protocol command. 

PDU (See above) 

Remote Music Control Protocol (RMCP) – An early control protocol that provided 

MIDI over Ethernet. 

RMCP (See above) 

Retrieval Cost – The overhead required to retrieve the data or resources required to 

implement a service. (See ‘Access cost’ and ‘Processing Cost’). 
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Request for Comments (RFC) – Publications by the Internet Engineering Task Force 

that define standards and provide information applicable to the Internet. 

RFC – (See above) 

Sensor – Used by the AES-24, OCA and MambaNet control protocols to refer to objects 

that provide monitoring functionality. 

Second-Generation Control Protocols – Control protocols that provide an 

integrated approach to control, monitoring, connection management and the 

representation of control surfaces. 

SET(..) Command – A protocol command that writes a parameter value. 

Servent – A networked process that functions as both a server process and a client 

process. Found within a peer-to-peer network architecture. 

Service – Functionality provided by a software system. Examples include a simple 

parameter access and a complex operation or transaction involving multiple parameter 

accesses and/or the invocation of other services.   

Service Location Protocol (SLP) – An IETF standard network protocol for service 

discovery. 

SLP (See above) 

Service-Oriented Architecture – Organization of the functionality provided by a 

server into logical (and typically high-level) capabilities termed ‘services’. 

Signal Description Record – A descriptive record that describes an audio signal or 

audio stream and the connections that can be made to the signal or stream. 

Simple Network Management Protocol (SNMP) – A control protocol that is an 

Internet Engineering Task Force standard. 

SNMP (See above) 

Software Control – A control such as a fader implemented as a software widget.  

(See ‘Virtual Control’). 

Standard Device Model – A model for networked media device proposed in this 

dissertation. 

Static Specification – A specification of the data used within a control protocol that 

includes parameter data, attribute and layout data, as well as the data format used by 

PDUs. 

SDM (See above) 

Static Parameter Group – A relationship between a group of parameters.  

‘Static’ means that the relationship state can be stored and remains until explicitly 

terminated. 
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Static Parameter Join – A relationship that is statically specified between two 

parameters where one parameter references another parameter. ‘Statically’ means that the 

relationship remains until explicitly terminated. 

Static Specification – The representation and organization of the data used by a control 

protocol.   

Stream – See ‘Audio Stream’ and ‘Control Stream’. 

Synthesized Command – A protocol command whose semantics can be simulated by 

another protocol command. (See ‘Native Command). 

Time Tag – Timestamps used by the OSC control protocol. 

Universal Media Access Networks (UMAN) – A corporation that provides networked 

control solutions using the AES64 control protocol. 

UMAN (See ‘Universal Access Media Networks’). 

Universal Plug and Play – A control protocol intended for consumer devices that 

provides automatic device and service discovery. 

UPnP (See above) 

Virtual Control (See ‘Software Control’). 

Visual Component – A device component that has a visual representation on a software 

control surface. (See ‘Non-Visual Component’) 

X-210 – Standardization project of the ‘Open Control Architecture’ control protocol 

within the Audio Engineering Society (See ‘Open Control Architecture’). 

XFN (See AES64) 
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