
i

THE DEVELOPMENT OF A DISCOVERY AND

CONTROL ENVIRONMENT FOR

NETWORKED AUDIO DEVICES BASED ON A

STUDY OF CURRENT AUDIO CONTROL

PROTOCOLS

A thesis submitted in fulfillment of the requirements for the degree of

 DOCTOR OF PHILOSOPHY (Science)

of

RHODES UNIVERSITY

by

ANDREW ARNOLD EALES

June 2015

ii

Abstract

This dissertation develops a standard device model for networked audio devices and

introduces a novel discovery and control environment that uses the developed device

model. The proposed standard device model is derived from a study of current audio

control protocols. Both the functional capabilities and design principles of audio control

protocols are investigated with an emphasis on Open Sound Control, SNMP and

IEC-62379, AES64, CopperLan and UPnP. An abstract model of networked audio devices

is developed, and the model is implemented in each of the previously mentioned control

protocols. This model is also used within a novel discovery and control environment

designed around a distributed associative memory termed an object space. This

environment challenges the accepted notions of the functionality provided by a control

protocol. The study concludes by comparing the salient features of the different control

protocols encountered in this study. Different approaches to control protocol design are

considered, and several design heuristics for control protocols are proposed.

iii

Acknowledgments

I wish to acknowledge the many individuals who kindly made their expertise and

experience available to me. The following people cheerfully responded to requests for

information, added functionality to software libraries, fixed software bugs and

commented on my ideas:

 Attendees at the 129th and the 133rd Conventions of the AES, San Francisco, in

2010 and 2012, as well as the 134th convention in New York in 2013 and the 137th

Convention in Los Angeles in 2014.

 Anton Prins (DD&R Electronics and Bosch Communication Systems) for

providing the specification of the MambaNet control protocol.

 Bradley Klinkradt (Universal Media Access Networks and Rhodes University)

for providing his implementation of AES-24.

 Jeff Berryman (Bosch Communication Systems) for providing information

about the Open Control Architecture control protocol.

 Jeff Koftinoff (Meyer Sound) for sharing his experiences of using Open Sound

Control.

 Nigel Warren (Zink Digital) for answering questions about the Fly Object Space

and providing example code.

 Nyasha Chigwamba (Universal Media Access Networks) for providing

information about the AES64 API.

 Peter Stevens (British Broadcasting Corporation R&D) who provided

information about IEC-62379.

 Philip Nye (Engineering Arts) for providing information about the ACN

protocol specification.

 Philippe Cailleau (Klavis Technologies) for clarifying aspects of the CopperLan

architecture and API.

 Rhys Owen (Wellington Institute of Technology) who provided many valuable

comments about a wide range of computational issues.

 The delegates to the 2011 Audio Engineering Society (AES) Conference on Audio

Networking at CalIT2, University of California, San Diego.

 The graduate students of the Audio Engineering Group at Rhodes University -

Philip Faulkes, Fred Orman, Osedum Igumbor and James Dibley.

The research group kindly held a seminar series to coincide with time spent at

Rhodes University during January and February 2011.

iv

 Uli Clemens Franke (Weiss Engineering), developer of the Weiss Engineering

OSC Library (WOscLib) for bug fixes and modifications to WOscLib.

 Richard Foss, for introducing me to the world of audio networks and control

protocols, and then enthusiastically promoting this dissertation.

I must also thank:

 My colleague, Mariekie Farell for kindly proofreading early drafts of the text.

My students, Ana Boyd and Karl Ellis, who developed a query system for

SNMP as a research project.

 My wife, Mari, and son Peter, for putting up with me …

v

Table of Chapters

Chapter 1 Introduction ... 1

Chapter 2 Control Protocol Concepts .. 15

Chapter 3 An Overview of Control Protocols ... 44

Chapter 4 Development of a Standard Device Model ... 81

Chapter 5 Open Sound Control ... 119

Chapter 6 The Simple Network Management Protocol ... 142

Chapter 7 AES64 ... 186

Chapter 8 CopperLan .. 210

Chapter 9 Universal Plug and Play .. 223

Chapter 10 Control Protocol Design and Implementation ... 245

Chapter 11 Fli2: An Associative Discovery and Control Environment 266

Chapter 12 Conclusions .. 312

Appendix 1 Principles of Control Protocol Design .. 320

Appendix 2 XML Representation of the Standard Device Model 333

Appendix 3 SNMP Specifications .. 358

Appendix 4 Protocol Implementations ... 360

Appendix 5 Fli2 Class Diagrams .. 382

Appendix 6 Fli2 Sequence Diagrams ... 390

Appendix 7 Standard Device Model OSC Address Space ... 407

Appendix 8 Standard Device Model MIB Schema and MIB ... 410

Appendix 9 UPnP Device and Service Descriptions .. 445

Appendix 10 Control Protocol Command Analysis and Comparison 449

Appendix 11 Control Protocol Packet Formats .. 459

Glossary .. 464

References .. 472

vi

Table of Contents

Chapter 1 Introduction 1

1.1 Motivation for this Study.. 1

1.1.1 Topics Addressed in this Dissertation .. 3

1.2 Writing Conventions and Terminology .. 4

1.3 An Introduction to Control Protocols ... 6

1.3.1 Protocols Discussed in this Dissertation .. 7

1.4 Standard Control Protocols... 8

1.4.1 Characteristics of Successful Standards ... 9

1.4.2 Standardizing Functionality ... 10

1.5 Protocol Implementations ... 11

1.5.1 Controller Architecture .. 11

1.6 Chapter Layout ... 13

Chapter 2 Control Protocol Concepts 15

2.1 Introduction .. 15

2.2 Fundamental Control Protocol Concepts .. 15

2.3 Network Architectures.. 16

2.3.1 Client-Server Network Architectures ... 17

2.3.2 Peer-to-Peer Network Architectures .. 18

2.3.2.1 Partial-Peer Network Architectures .. 19

2.3.3 Hybrid Network Architectures ... 19

2.3.4 The Control Protocol Stack .. 20

2.4 Network Management .. 21

2.4.1 Device Discovery ... 21

2.4.2 Monitoring Device Reachability .. 22

2.5 Service Discovery and Service Enumeration ... 22

2.5.1 Service Discovery and Network Architectures .. 22

2.5.2 Service Enumeration .. 23

2.6 Control Surface Representation and Creation .. 24

2.7 Parameter Organization and Addressing .. 25

2.7.1 Parameter Classifications ... 26

2.7.2 Representing Parameter Values ... 27

2.8 Parameter Management .. 28

2.8.1 Joining Parameters ... 28

vii

2.8.1.1 Static and Dynamic Parameter Joins ... 28

2.8.2 Grouping Parameters .. 31

2.8.2.1 Static and Dynamic Parameter Groups ... 31

2.8.2.2 Grouping Controls .. 32

2.8.3 Bulk Parameter Operations .. 32

2.9 Control Protocol Commands .. 33

2.9.1 Implementing Control Commands ... 34

2.9.1.1 Commands and Services ... 34

2.9.1.2 Action Parameters ... 35

2.9.1.3 Blocking and Non-Blocking Protocol Operations 36

2.9.1.4 Command Acknowledgments ... 36

2.9.2 Monitoring Parameter Values .. 37

2.9.2.1 Bulk Transmission of Monitored Parameter Values 37

2.9.3 Automation ... 39

2.9.3.1 Ramping Parameter Values ... 39

2.10 Connection Management Principles ... 40

2.10.1 Audio Connection Management .. 40

2.10.1.1 Message-Based Race Conditions .. 41

2.10.2 Control Connection Management .. 42

2.11 Clocks and Timing ... 42

2.12 Summary .. 42

Chapter 3 An Overview of Control Protocols 44

3.1 Introduction .. 44

3.2 Computer Music Applications .. 45

3.2.1 Open Sound Control ... 45

3.2.2 CopperLan .. 46

3.3 Professional Studio and Live Sound Environments ... 46

3.3.1 AES-24 ... 46

3.3.1.1 Network Architecture .. 47

3.3.1.2 Device Representation .. 47

3.3.1.3 AES-24 Classes ... 48

3.3.1.4 AES-24 Methods and Events .. 49

3.3.1.5 AES-24 - Commentary and Evaluation .. 49

3.3.2 Open Control Architecture (X-210) ... 50

3.3.2.1 The OCA Protocol Stack .. 51

3.3.2.2 Device Representation .. 51

viii

3.3.2.2.1 Signal Path Representation .. 52

3.3.2.2.2 Device and Service Discovery... 53

3.3.2.3 Control and Monitoring Functionality .. 53

3.3.2.3.1 Control Class Identifiers .. 54

3.3.2.3.2 Subscriptions and Monitoring ... 54

3.3.2.4 OCA - Commentary and Evaluation ... 55

3.3.3 EuCon ... 55

3.3.3.1 Network Architecture .. 56

3.3.3.1.1 Device and Service Discovery... 57

3.3.3.1.2 Control Surface Architecture ... 57

3.3.3.2 EuCon - Commentary and Evaluation .. 58

3.3.4 HiQnet .. 58

3.3.4.1 Network Implementation .. 59

3.3.4.2 Device Architecture .. 59

3.3.4.3 Parameter Organization .. 60

3.3.4.4 Control, Subscription and Connection Management Messages 61

3.3.4.5 HiQnet Software Applications .. 62

3.3.4.6 HiQnet - Commentary and Evaluation .. 62

3.3.5 Media-Accelerated Global Information Carrier ... 62

3.3.5.1 Device Representation .. 63

3.3.5.2 Control Messages and Connection Management 64

3.3.5.3 MaGIC - Commentary and Evaluation ... 64

3.3.6 AES64 .. 64

3.4 Fixed Sound Installations ... 65

3.4.1 IEEE 1722.1-2013 .. 66

3.4.1.1 Representing Device Architectures ... 66

3.4.1.1.1 Service Enumeration ... 67

3.4.1.2 Control and Monitoring Functionality .. 68

3.4.1.3 Connection Management .. 69

3.4.1.4 IEEE 1722.1-2013 - Commentary and Evaluation 69

3.5 Lighting Applications ... 69

3.5.1 Architecture for Control Networks .. 69

3.5.1.1 Network Transport .. 70

3.5.1.2 Device and Service Discovery .. 71

3.5.1.3 ACN Device Description .. 71

3.5.1.4 Parameter Organization .. 71

3.5.1.5 Control and Monitoring Commands ... 73

ix

3.5.1.6 ACN - Commentary and Evaluation ... 74

3.6 Broadcast Environments ... 75

3.6.1 Mamba Net ... 75

3.6.1.1 Protocol Architecture .. 75

3.6.1.1.1 Service Discovery .. 76

3.6.1.2 Control Commands ... 76

3.6.2 Ember+ ... 77

3.6.2.1 Protocol Structure ... 77

3.6.2.2 Device and Parameter Representation .. 77

3.6.2.3 Parameter Operations .. 78

3.6.2.4 Implementation Environments .. 78

3.6.3 IEC-62379-2 ... 78

3.7 Home Networks .. 79

3.8 Miscellaneous Control Protocols .. 79

3.9 Summary .. 79

Chapter 4 Development of a Standard Device Model 81

4.1 Introduction .. 81

4.2 Device Models within Existing Control Protocols ... 82

4.2.1 Device Architecture Representations ... 83

4.2.2 Parameter Address Representations ... 83

4.2.3 Control Surface Representations .. 84

4.2.4 Representing Audio Signals and Audio Connections 85

4.3 Development of a Standard Device Model... 86

4.3.1 Audio Mixer Architecture .. 86

4.3.2 An Analysis of Audio Mixer Data and Data Relationships 87

4.3.2.1 An Analysis of Parameter Data ... 89

4.3.2.2 Descriptive Data.. 91

4.3.2.2.1 Descriptive Attributes .. 92

4.3.2.2.2 Layout Attributes ... 93

4.3.2.2.3 Representing Meta-Data .. 94

4.3.3 Structural Characteristics of a Device Model .. 94

4.3.4 Representing Device Structure and Device Parameters 95

4.3.4.1 The Device Architecture Layer ... 95

4.3.4.2 The Parameter Description Layer ... 96

4.3.4.2.1 Parameter Values and Action Parameters 97

4.3.4.3 Parameter Addresses ... 98

x

4.3.4.3.1 Full Parameter Addresses .. 98

4.3.4.3.2 Short Parameter Addresses .. 98

4.3.4.3.3 Parameter Address Interoperability ... 100

4.3.4.4 A Full Parameter Address Example .. 101

4.3.4.5 Parameter and Device Component Naming Conventions 102

4.4 A Connection Management Model .. 103

4.4.1 Representing Audio Terminals and Audio Connections 104

4.4.1.1 A Partially-Enumerated Connection Model .. 104

4.4.1.2 A Fully-Enumerated Connection Model ... 105

4.4.1.3 An Independent Connection Model .. 106

4.4.1.4 Comparing Connection Models .. 106

4.4.1.5 Representing Connection Assignments and Internal Connections 108

4.4.1.6 Representing and Managing Networked Audio Streams 109

4.4.2 Connection Management Controls ... 110

4.4.2.1 Multi-Parameter Controls ... 110

4.4.3 A Summary of Connection Management Representations 111

4.5 Alternative Device Models ... 111

4.5.1 A Channel-Oriented Model .. 112

4.6 Implementation of the Standard Device Model .. 113

4.7 Summary of the Proposed Model ... 115

4.8 Conclusions .. 117

Chapter 5 Open Sound Control 119

5.1 Introduction .. 119

5.2 An Overview of OSC ... 120

5.2.1 Parameter Data and Data Types ... 120

5.2.1.1 OSC Data Types ... 120

5.3 The OSC Address Space .. 121

5.3.1 Processing OSC Messages ... 122

5.3.2 Address Space Organization .. 124

5.3.2.1 Address Space Pattern-Matching .. 125

5.3.3 Automation in OSC .. 126

5.4 An OSC Representation of the Standard Device Model .. 127

5.4.1 Parameter Address Representation... 127

5.4.2 Device Representation ... 128

5.4.2.1 Representing Description and Layout Records 128

5.4.3 Service Discovery and Service Enumeration ... 130

xi

5.4.3.1 Address Space Operators .. 130

5.4.3.1.1 Address Space Traversal ... 130

5.4.3.1.2 Retrieving Description and Layout Records 131

5.4.3.1.3 Bulk Data Retrieval ... 131

5.4.4 Parameter Operations ... 133

5.4.4.1 Parameter Persistence and Querying Parameter Values 133

5.4.4.2 Parameter Subscription ... 133

5.4.4.3 Parameter Relationships .. 133

5.4.4.3.1 Dynamic Parameter Joins .. 134

5.5 Connection Management .. 135

5.6 An Implementation of the Standard Device Model .. 137

5.7 Commentary and Evaluation .. 138

5.7.1 A Summary of OSC Features ... 138

5.7.2 Strengths and Weaknesses of OSC .. 140

5.7.2.1 Scenarios Suited to OSC ... 141

Chapter 6 The Simple Network Management Protocol 142

6.1 Introduction .. 142

6.1.1 SNMP Terminology ... 142

6.2 Data Specification and Translation .. 143

6.2.1 SNMP Data Types.. 144

6.2.2 The SNMP Address Space ... 145

6.2.2.1 Tabular Objects ... 146

6.2.3 MIB Organization and Specification .. 146

6.2.3.1 MIB Headers and Scalar Definitions .. 147

6.2.3.2 MIB Table Definitions .. 148

6.2.3.3 MIB Implementation ... 150

6.3 SNMP Table Relationships .. 151

6.3.1 Row References and Row Pointers .. 151

6.3.2 Composite Indexes ... 152

6.3.3 Expansion Tables ... 153

6.3.4 Relationship Tables .. 153

6.4 Device and Service Discovery .. 154

6.5 Requests and Notifications ... 155

6.5.1 Reading and Writing Parameter Data... 155

6.5.1.1 Optimizing SNMP Requests ... 156

6.5.1.2 Bulk Parameter Access ... 157

xii

6.5.2 SNMP Notification Mechanisms ... 157

6.5.2.1 Using SNMP Traps for Audio Metering ... 158

6.5.3 User-Defined SNMP Requests ... 158

6.6 IEC-62379 .. 159

6.6.1 Device Representation ... 160

6.6.2 Service Discovery .. 161

6.6.3 Parameter Description .. 162

6.6.3.1 Connection Management .. 164

6.6.4 An Evaluation of IEC-62379-2 .. 164

6.6.4.1 Device Representation in IEC-62379-2 .. 164

6.6.4.2 Representing Parameter Data and Descriptive Data 165

6.6.5 Conclusions .. 166

6.7 An SNMP Representation of the Standard Device Model 166

6.7.1 Representing Devices, Sub-Devices and Controls ... 166

6.7.2 Representing Descriptive and Layout Attributes ... 168

6.7.2.1 Fixed-Length and Variable-Length SNMP Indexes 169

6.7.2.2 Representing Meta-Data ... 170

6.7.3 Parameter Organization .. 171

6.7.3.1 Parameter Groups .. 173

6.7.4 Parameter Monitoring .. 174

6.7.5 Connection Management ... 175

6.7.6 Automation ... 177

6.8 Implementing SNMP Devices and Controllers .. 178

6.9 Commentary and Evaluation .. 179

6.9.1 A Summary of SNMP Features .. 179

6.9.2 An Evaluation of SNMP .. 181

6.9.2.1 SNMP Table Indexing Schemes ... 181

6.9.2.2 Retrieval of Logical Data Records .. 181

6.9.2.3 Dynamic Behavior in SNMP .. 181

6.9.2.4 SNMP Management Applications .. 182

6.9.2.5 Strengths and Weaknesses of SNMP .. 183

6.9.3 The Use of SNMP for Networked Audio Applications 184

Chapter 7 AES64 186

7.1 Introduction .. 186

7.2 Networked Device Management .. 186

7.3 Parameter Organization and Addressing .. 187

xiii

7.3.1 Parameter Addressing .. 187

7.3.1.1 Parameter Address Wildcards ... 188

7.3.2 Accessing AES64 Parameters .. 189

7.3.2.1 Parameter Flags ... 189

7.3.3 Parameter Relationships ... 190

7.3.3.1 Parameter Joins ... 190

7.3.3.2 Parameter Groups .. 190

7.3.3.3 Parameter Modifiers .. 192

7.3.4 Bulk Parameter Management ... 193

7.4 Device Control and Monitoring .. 195

7.4.1 Command Messages... 195

7.4.1.1 Command Message Format .. 195

7.4.2 Device Monitoring ... 197

7.4.3 Automation in AES64 .. 198

7.5 Audio Connection Management ... 199

7.5.1 The Multicore Concept .. 199

7.5.1.1 Routing Audio between Subnets ... 200

7.5.2 AES64 Connection Parameters .. 201

7.6 Control Surface Representation and Creation .. 203

7.6.1 Representing AES64 Desk Items ... 203

7.6.2 Desk Item Retrieval and Configuration ... 204

7.7 Commentary and Evaluation .. 204

7.7.1 A Summary of AES64 Features ... 204

7.7.2 Comparing AES64 to the Standard Device Model .. 206

7.7.2.1 Parameter Address Interoperability .. 206

7.7.2.2 Representing Controls and Control Surfaces 207

7.7.2.3 Functional Interoperability .. 207

7.7.3 Protocol Interoperability with AES64 .. 207

7.7.4 An Evaluation of AES64 .. 208

Chapter 8 CopperLan 210

8.1 Introduction .. 210

8.2 Network Implementation .. 210

8.2.1 The Network Transport Layer .. 211

8.2.2 Network Management .. 211

8.2.2.1 Device Discovery and Identification ... 212

8.2.2.2 Service Discovery ... 213

xiv

8.2.2.2.1 Dynamic Controller Figuration ... 213

8.2.2.3 CopperLan Device Types ... 213

8.3 Device Architecture and Parameter Organization .. 214

8.3.1 Device Architecture ... 214

8.3.2 Parameter Organization .. 214

8.4 Control Functionality.. 215

8.4.1 Asynchronous Messages .. 216

8.5 Connection Management .. 216

8.5.1 Control Connection Management .. 216

8.5.2 Audio Connection Management... 217

8.6 Development of a CopperLan Device .. 218

8.6.1 The CopperLan Manager Application.. 218

8.7 Commentary and Evaluation .. 219

8.7.1 A Summary of CopperLan Features... 219

8.7.2 An Evaluation of CopperLan ... 221

8.7.2.1 Object-Oriented Design in CopperLan ... 222

8.7.3 CopperLan Support for the Standard Device Model 222

Chapter 9 Universal Plug and Play 223

9.1 Introduction .. 223

9.1.1 UPnP Terminology... 224

9.2 Service-Oriented Architectures .. 224

9.2.1 UPnP Services .. 226

9.3 UPnP Protocol Design .. 227

9.3.1 Network Addressing... 227

9.3.2 Device and Service Discovery ... 227

9.3.3 Specification of Device and Service Descriptions ... 229

9.3.4 Invoking UPnP Actions.. 229

9.3.5 The UPnP Subscription Mechanism .. 229

9.3.6 Presentation .. 230

9.4 UPnP Network Protocols .. 231

9.4.1 Unicast Messages ... 231

9.4.2 Multicast Messages .. 232

9.5 Device Representation and Service Specification .. 233

9.5.1 Device Descriptions ... 233

9.5.2 Service Descriptions ... 234

9.5.2.1 UPnP Data Types .. 236

xv

9.5.2.1.1 State Variables Persistence .. 236

9.5.3 Connection Management ... 236

9.6 Implementation ... 237

9.6.1 Control Serialization .. 238

9.6.2 Implementing GENA Subscriptions... 239

9.7 Commentary and Evaluation .. 239

9.7.1. A Summary of UPnP Features .. 240

9.7.2 Comparing UPnP to the Standard Device Model ... 241

9.7.2.1 Independent Parameter Access ... 242

9.7.3 Strengths and Weaknesses of UPnP ... 242

9.7.3.1 Use of SOAP as an Access Protocol ... 242

9.7.3.2 Scalability of UPnP Networks .. 243

9.7.3.3 Service Implementation .. 243

9.7.4 The Significance of Object Serialization ... 244

Chapter 10 Control Protocol Design and Implementation 245

10.1 Introduction .. 245

10.2 Control Protocol Designs ... 245

10.2.1 Static and Dynamic Specifications ... 246

10.2.2 Design Concepts... 247

10.2.2.1 Primary Design Concepts ... 247

10.2.2.1.1 Parameter and Entity-Based Control Protocol Designs 248

10.2.2.2 Secondary Design Concepts.. 249

10.2.3 Comparing Approaches to Control Protocol Design 251

10.2.3.1 Fixed and Freely-Defined Specifications .. 252

10.2.3.2 Evaluating Static Specifications.. 253

10.2.3.2.1 Parameter Organization and Addressing Schemes 253

10.2.3.2.2 Representation of Relationships between Data Items 256

10.2.3.3 Evaluating Dynamic Specifications .. 256

10.3 Overcoming Entity-Based Design Limitations ... 257

10.3.1 Approaches to Object-Oriented Control Protocol Designs 257

10.3.2 Combining Entity-Based and Parameter-Based Designs 259

10.3.3 Representing Parameters within Inheritance Hierarchies 260

10.3.4 Aspect-Oriented Software Designs .. 261

10.3.4.1 Aspect-Oriented Concepts .. 261

10.3.4.2 An Aspect-Oriented Example ... 262

10.3.5 The AES64 Approach .. 263

xvi

10.4 Conclusions .. 264

Chapter 11 Fli2: An Associative Discovery and Control Environment 266

11.1 Introduction .. 266

11.1.1 Optimizing Operations within Distributed Environments............................ 266

11.1.1.1 Optimizing Service Discovery and Service Enumeration 267

11.1.1.2 Optimizing Control Surface Creation ... 268

11.1.1.3 Optimizing Parameter Management Functionality 269

11.2 Tuple Spaces and Object Spaces .. 269

11.2.1 Space Characteristics ... 269

11.2.1.1 Comparing Spaces to RESTful Architectures 271

11.2.2 Space Operations .. 271

11.2.2.1 Object Discovery using an Associative Memory 273

11.2.2.1.1 Granularity of Service Discovery .. 274

11.2.2.1.2 Space Subscriptions ... 275

11.2.2.2 The Role of Object Serialization ... 276

11.2.3 Space Network Architectures ... 276

11.2.3.1 Monitoring Reachability ... 278

11.3 A Space-Based Discovery and Control Environment .. 278

11.3.1 Selecting a Space Implementation ... 278

11.3.1.1 MOZART Spaces .. 278

11.3.1.2 SQL Spaces ... 279

11.3.1.3 JavaSpaces .. 279

11.3.1.4 The Fly Object Space .. 279

11.3.1.5 Software Development using Java .. 280

11.3.2 An Overview of the Fli2 Environment ... 280

11.3.2.1 System Architecture .. 281

11.3.2.2 Classes Implementing SDM Components .. 282

11.3.2.2.1 Service Implementations ... 284

11.3.3 Operation of the Fli2 Environment .. 286

11.3.3.1 Device and Service Advertisements ... 287

11.3.4 Controller Implementation ... 289

11.3.4.1 Device Discovery .. 290

11.3.4.2 Service Discovery ... 291

11.3.4.3 Control Surface Creation .. 292

11.3.4.3.1 Service Implementations ... 294

11.3.4.3.2 Implementing Metering Subscriptions 295

xvii

11.3.5 Implementation Considerations.. 296

11.3.5.1 Implementing Serialized Objects .. 296

11.3.5.2 Implementing Parameters ... 296

11.4 Connection Management .. 298

11.4.1 Managing Concurrency .. 298

11.4.2 Approaches to Implementing Connection Management 299

11.4.2.1 Use of a Shared Connection Manager ... 300

11.4.2.2 Using Shared Terminal Objects .. 301

11.4.2.3 Using Connection Objects .. 302

11.4.3 Inconsistent Connection States and Starvation .. 303

11.5 Use of Existing Control Protocols .. 304

11.5.1 Advertising an OSC Stack ... 305

11.6 Commentary and Evaluation .. 305

11.6.1 A Summary of Fli2 Features .. 305

11.6.2 Advantages of Object Spaces ... 307

11.6.3 Disadvantages of Spaces .. 308

11.6.3.1 Value and Reference Semantics within Serialized Objects 309

11.7 Summary .. 310

Chapter 12 Conclusions 312

12.1 Introduction .. 312

12.2 The Value of a Standard Device Model ... 313

12.2.1 Standardization of a Conceptual Model ... 313

12.2.2 Parameter Address Interoperability .. 313

12.3 Evaluating Control Protocols ... 315

12.3.1 Evaluating Control Protocol Designs ... 315

12.4 Distributed Discovery and Control Environments ... 316

12.4.1 The Significance of Object Spaces... 317

12.4.1.1 Device and Service Discovery .. 317

12.4.1.2 Service Implementations ... 317

12.4.1.3 Connection Management .. 318

12.5 Final Observations .. 318

12.5.1 Zero Configuration Networking ... 318

12.5.2 Control Protocol Standardization ... 319

xviii

Appendix 1 Principles of Control Protocol Design .. 320

A1.1 General Protocol Design Heuristics ... 320

A1.2 Object-Oriented Protocol Design Heuristics .. 322

A1.3 Service Discovery and Enumeration Heuristics ... 323

A1.4 Parameter Representation and Access Heuristics... 324

A1.5 Control Functionality Heuristics .. 327

A1.6 Descriptive Data Heuristics .. 327

A1.7 Device Representation Heuristics .. 327

A1.8 User interface Heuristics .. 328

A1.9 Comparing Design Heuristics across Different Control Protocols 328

A1.10 Anti-Patterns in Control Protocol Design and Implementation 332

Appendix 2 XML Representation of the Standard Device Model 333

Appendix 3 SNMP Specifications .. 358

Appendix 4 Protocol Implementations ... 360

A4.1 Fli2 Device and Controller Applications .. 360

A4.1.1 A Fli2 Mixing Console Device ... 361

A4.1.2 The Fli2 Controller Application .. 362

A4.1.3 Connection Management .. 363

A4.2 A Device and Controller using OSC .. 367

A4.3 SNMP Development Environments ... 370

A4.3.1 SNMP MIB Development ... 370

A4.3.2 AES64 Development Environments and Toolsets 373

A4.3.2.1 Desk Item Retrieval and Configuration 373

A4.3.2.2 Viewing Parameters ... 375

A4.4 A CopperLan Example Device and Controller .. 377

A4.5 A UPnP Device and Controller .. 379

A4.6 EmBer+ .. 380

Appendix 5 Fli2 Class Diagrams .. 382

A5.1 Device Design and Implementation ... 382

A5.1.1 Device Creation... 383

A5.1.2 Object Space Interactions .. 383

A5.1.3 Implementing Control and Metering Functionality 383

A5.2 Controller Design and Implementation .. 385

A5.2.1 Object Space Interactions .. 386

A5.2.2 SDM Classes Used by Devices and Controllers 387

A5.2.2.1 Implementing Parameter Groups ... 388

xix

Appendix 6 Fli2 Sequence Diagrams ... 390

A6.1 Device and Service Advertisements ... 390

A6.2 Device Discovery ... 392

A6.3 Service Discovery .. 393

A6.4 Control Surface Creation .. 395

A6.5 Implementing Metering Subscriptions ... 397

A6.6 Connection Management using a Shared Connection Manager 399

A6.7 Connection Management using Audio Terminals .. 400

A6.8 Connection Management Using Connection Objects 401

A6.9 Implementing Parameter Joins ... 404

A6.10 Discovering and Registering a Protocol Stack ... 405

Appendix 7 Standard Device Model OSC Address Space ... 407

Appendix 8 Standard Device Model MIB Schema .. 410

Appendix 9 UPnP Device and Service Descriptions .. 445

Appendix 10 Control Protocol Command Analysis and Comparison 449

A10.1 Native and Synthesized Commands ... 449

A10.1.1 SET(..) Commands .. 449

A10.1.2 GET() Commands ... 452

A10.1.3 Subscription (Monitoring) Commands ... 453

A10.1.4 Parameter Management and Automation .. 454

A10.2 A Comparative Summary of Control Protocol Features 454

A10.3 A Subjective Control Protocol Comparison ... 457

Appendix 11 Control Protocol Packet Formats .. 459

A11.1 OSC Message Structure ... 459

A11.2 SNMP Message Structure .. 461

Glossary .. 464

References .. 472

xx

List of Figures

Figure 1.1 Block Diagram of a Simple Mixing Console. ... 12

Figure 1.2 A Virtual Controller for a Mixing Console. .. 12

Figure 2.1 A Client-Server Network Architecture. .. 17

Figure 2.2 A Peer-to-Peer Network Architecture. .. 18

Figure 2.3 A Partial-Peer Network Architecture. ... 19

Figure 2.4 A Control Protocol Network Stack. .. 20

Figure 2.5 Hierarchical Ordering of Numerical Parameter Addresses. 25

Figure 2.6 Control Values and Control Parameters. ... 26

Figure 2.7 A Static Parameter Join. .. 29

Figure 2.8 Dynamic Parameter Joins. ... 30

Figure 2.9 Invoking an Action Parameter. ... 35

Figure 2.10 Aperiodic Non-Work-Conserving Data Transmission. 38

Figure 2.11 Periodic Non-Work-Conserving Data Transmission. 39

Figure 2.12 Message-Based Race Conditions. ... 41

Figure 3.1 AES-24 Device Structure and Network Architecture. 47

Figure 3.2 The AES-24 Core Class Hierarchy. .. 48

Figure 3.3 The OCP Protocol Stack. .. 51

Figure 3.4 The OCA Device Model. .. 52

Figure 3.5 OCA Microphone Channel Block Example. ... 52

Figure 3.6 OCA Object Control Protocol Actuator Classes. .. 53

Figure 3.7 OCA Control Class Identifiers. ... 54

Figure 3.8 Euphonix ‘MC Control’ Control Surface. ... 56

Figure 3.9 EuCon Network Architecture. ... 56

Figure 3.10 EuCon Application Architecture. .. 57

Figure 3.11 The HiQnet Protocol Stack. .. 59

Figure 3.12 HiQnet Device Architecture. ... 60

Figure 3.13 HiQnet Parameter Address Format. .. 60

Figure 3.14 MaGIC Device Organization. ... 63

Figure 3.15 Column Array Loudspeakers from Meyer Sound. .. 65

Figure 3.16 IEEE IEEE 1722.1-2013 Entity Model. .. 67

Figure 3.17 IEEE 1722.1-2013 Entity Architecture. .. 68

Figure 3.18 The ACN Protocol Suite. .. 70

Figure 3.19 Broadcast Consoles from D&R Electronics and Axia Audio. 75

Figure 3.20 MambaNet Node Architecture and Object Structure. 76

file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319709
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319710
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319711
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319712
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319713
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319714
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319715
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319716
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319717
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319718
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319719
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319720
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319721
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319722
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319723
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319724
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319725
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319726
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319727
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319728
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319729
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319730
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319731
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319732
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319733
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319734
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319735
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319736
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319737
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319738
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319739
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319740
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319741
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319742

xxi

Figure 3.21 Ember+ Parameter Organization. .. 77

Figure 4.1 Audio Signal Paths Within a Typical Audio Mixer. 86

Figure 4.2 An Analysis of Audio Device Data. .. 88

Figure 4.3 Local and Remote Control and DSP Parameters. ... 90

Figure 4.4 Layout Relationships Between Device Components. 93

Figure 4.5 The Device Architecture Layer. .. 95

Figure 4.6 The Parameter Description Layer. .. 96

Figure 4.7 Examples of Parameter Values and Parameter Actions. 97

Figure 4.8 Examples of Full and Short Parameter Addresses. ... 99

Figure 4.9 Examples of Parameter Implementations. ... 99

Figure 4.10 A Deterministic Parameter Address. ... 100

Figure 4.11 An Example of a Full Parameter Address. .. 101

Figure 4.12 An Example of Regular Naming Conventions. ... 102

Figure 4.13 Partially-Enumerated Connection Models. ... 105

Figure 4.14 Fully-Connected Connection Models. .. 105

Figure 4.15 SDM Connection Assignment Models. ... 108

Figure 4.16 Stream Connection Parameters. .. 109

Figure 4.17 Common Connection Management Controls. ... 110

Figure 4.18 An Example of a Multi-Parameter Control. .. 111

Figure 4.19 A Channel-Oriented Device Model. ... 112

Figure 4.20 An Implementation of the Standard Device Model. 114

Figure 4.21 Schema for the Standard Device Model. ... 116

Figure 5.1 An Example OSC Address Space Representing the SDM. 121

Figure 5.2 OSC Message Structure. ... 122

Figure 5.3 Processing Received OSC Messages. ... 123

Figure 5.4 OSC Address Space Organization. ... 124

Figure 5.5 Parameter Address Representation. .. 127

Figure 5.6 Representing Description and Layout Records in OSC. 129

Figure 5.7 OSC Address Space Traversal Operators. .. 132

Figure 5.8 Dynamic Parameter Joins Implemented in OSC. .. 134

Figure 5.9 OSC Address Space for Network Connection Management. 136

Figure 5.10 Signal Description Records Implemented in OSC. 136

Figure 5.11 OSC Address Space for Audio Input Assignments. 137

Figure 6.1 SNMP Hierarchical Data Tree and OIDs. ... 145

Figure 6.2 SNMP MIB Model of a Device. ... 147

Figure 6.3 A Typical SNMP Network Environment. ... 150

Figure 6.4 Relating Tabular Entries using a Row Index. ... 151

file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319743
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319744
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319745
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319746
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319747
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319748
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319749
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319750
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319751
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319752
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319753
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319754
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319755
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319756
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319757
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319758
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319759
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319760
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319761
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319762
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319763
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319764
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319765
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319766
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319767
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319768
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319769
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319770
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319771
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319772
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319773
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319774
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319775
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319776
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319777
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319778
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319779

xxii

Figure 6.5 Object Relationships using Composite Indexes. ... 152

Figure 6.6 Containment Relationships using Base and Expansion Tables. 153

Figure 6.7 A Relationship Table Example. .. 154

Figure 6.8 Variable Bindings Within an SNMP PDU. ... 155

Figure 6.9 Optimizing SNMP SET(..) Requests. ... 156

Figure 6.10 IEC-62379 Device Representation. ... 160

Figure 6.11 IEC-62379-2 Block and Block Connector Tables....................................... 161

Figure 6.12 Representing Parent-Child Relationships using OIDs. 167

Figure 6.13 Representing Device Structure using OIDs as Indexes. 167

Figure 6.14 Accessing Attributes using OIDs as Table Indexes. 169

Figure 6.15 Representing Descriptive and Layout Records. .. 171

Figure 6.16 Representing SDM Short Parameter Addresses. ... 172

Figure 6.17 A Full Parameter Addresses Represented by SNMP Indexes. 173

Figure 6.18 Representing Master-Slave Parameter Relationships. 173

Figure 6.19 SNMP Tables Depicting Networked Audio Streams. 175

Figure 6.20 Tables Representing Signal Description Records. 176

Figure 6.21 Instrumented SNMP Parameter Objects. .. 178

Figure 6.22 A User Interface for Connection Management. .. 183

Figure 7.1 An AES64 Mapping Table and Parameter Store. .. 186

Figure 7.2 Parameter Access in AES64. .. 189

Figure 7.3 AES64 Parameter Group Representation using Lists. 192

Figure 7.4 An AES64 Value Parameter Modifier. ... 193

Figure 7.5 The AES64 Snapshot Mechanism. .. 195

Figure 7.6 Example of an AES64 Event Modifier. .. 198

Figure 7.7 Connecting Multicores and Multicore Sequences. .. 199

Figure 7.8 UNOS Creator Connection Management Tools. .. 200

Figure 7.9 Routing AES64Multicores Across Sub-Networks. 201

Figure 7.10 AES64 Connection Management Parameters. .. 202

Figure 7.11 An SNMP Implementation of AES64 Parameter Addressing. 208

Figure 8.1 CopperLan Network Architecture. .. 211

Figure 8.2 Allocating Application and Instance Identifiers in CopperLan..................... 212

Figure 8.3 The CopperLan Device Hierarchy. ... 214

Figure 8.4 CopperLan Audio Connection Management Classes.................................... 217

Figure 8.5 The Parameter Editor View of a Virtual Device. .. 219

Figure 9.1 Relationships Between Objects, Components and Services. 225

Figure 9.2 The UPnP Protocol Stack. ... 231

Figure 9.3 HTTPMU and HTTPU Protocol Stacks. ... 231

file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319780
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319781
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319782
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319783
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319784
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319785
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319786
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319787
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319788
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319789
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319790
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319791
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319792
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319793
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319794
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319795
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319796
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319797
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319798
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319799
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319800
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319801
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319802
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319803
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319804
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319805
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319806
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319807
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319808
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319809
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319810
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319811
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319812
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319813
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319814
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319815
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319816

xxiii

Figure 9.4 UPnP Unicast Messages. ... 232

Figure 9.5 UPnP Multicast Messages. .. 232

Figure 9.6 UPnP Device and Service Organization. .. 233

Figure 9.7 A UpnP Browser View of an Audio Mixing Console. 237

Figure 9.8 Base64 Encoding and Decoding of Objects. ... 238

Figure 9.9 Comparing the SDM to the UPnP Service Model. 241

Figure 10.1 Parameter-Based Control Protocol Design. .. 248

Figure 10.2 Entity-Based Control Protocol Design. ... 249

Figure 10.3 Parameter Relationships Across Different Entities. 257

Figure 10.4 Separating Concerns Within Object-Oriented Designs. 258

Figure 10.5 Combining Entity-Based and Parameter-Based Designs. 259

Figure 10.6 Comparing OCA Level Identifiers to the SDM. ... 260

Figure 10.7 Parameter Access using Aspects. .. 262

Figure 10.8 The Design of AES64. .. 264

Figure 11.1 Object Space Architecture and Operations. .. 272

Figure 11.2 Maintaining Multiple, Replicated Spaces. .. 277

Figure 11.3 Fli2 Environment Deployment Diagram. .. 281

Figure 11.4 Audio Device and Controller Deployment Artifacts................................... 282

Figure 11.5 Classes Representing an Audio Device. .. 283

Figure 11.6 RMI Related to the OSI Model. .. 284

Figure 11.7 Audio Mixer Device Remote Services. ... 285

Figure 11.8 The Fli2 Discovery and Control Environment. ... 286

Figure 11.9 Object Relationships Within a Space. ... 288

Figure 11.10 Controller Application Class Diagram. ... 289

Figure 11.11 The Network Browser Window. ... 292

Figure 11.12 Adding Components to a Control Surface. ... 293

Figure 11.13 De-Coupling Service Implementations. .. 297

Figure 11.14 Remote Service Implementation. .. 297

Figure 11.15 Connection Management using a Connection Manager. 300

Figure 11.16 Connection Management using Connection Objects. 302

Figure 11.17 ‘Pushing’ a Protocol Stack to Controllers. .. 304

Figure 11.18 Copy by Value Semantics Within an Object Space. 310

Figure A2.1 A Simplified Audio Mixer Architecture. ... 335

Figure A4.1 A Fli2 Audio Mixer Device. .. 361

Figure A4.2 Managing Parameter Joins. .. 362

Figure A4.3 Managing Slave Parameter Groups. ... 363

Figure A4.4(a) A Shared Connection Manager. ... 364

file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319817
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319818
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319819
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319820
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319821
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319822
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319823
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319824
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319825
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319826
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319827
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319828
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319829
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319830
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319831
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319832
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319833
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319834
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319835
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319836
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319837
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319838
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319839
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319840
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319841
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319842
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319843
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319844
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319845
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319846
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319847
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319848
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319849
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319850
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319851
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319852
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319853

xxiv

Figure A4.4(b) Advertising a Shared Connection Manager. .. 364

Figure A4.4(c) Advertising Terminal Objects (1). ... 365

Figure A4.4(d) Advertising Terminal Objects (2). ... 366

Figure A4.4(e) Creating Audio Connections. ... 366

Figure A4.5 An OSC Audio Mixer Device. ... 367

Figure A4.6 An OSC Audio Mixer Controller Application. .. 368

Figure A4.7 OSC Parameter and Device Browsers. ... 369

Figure A4.8 The MG-Soft MIB Development Environment. .. 371

Figure A4.9 MIB Browser View of the Standard Device Model. 372

Figure A4.10 A Virtual Controller for a Mixing Console. ... 373

Figure A4.11 A Desk Item Browser – UNOS Creator. .. 374

Figure A4.12 UNOS Creator Connection Management Tools. 375

Figure A4.13 The UNOS Creator Parameter Browser. .. 376

Figure A4.14 The CopperLan Manager Network View. .. 377

Figure A4.15 The Parameter Editor View of a CopperLan Virtual Device. 378

Figure A4.16 The ‘ConnectorView’ of CopperLan Devices.. 379

Figure A4.17 Object Serialization using UPnP. ... 380

Figure A4.18 The Ember+ Device Creator Application. .. 381

Figure A5.1 Fli2 Audio Device Classes. .. 382

Figure A5.2 Fli2 Classes used to Implement Metering. ... 384

Figure A5.3 Fli2 Controller Classes. .. 385

Figure A5.4 Fli2 Controller Classes Implementing Space Interactions. 386

Figure A5.5 SDM Classes in Package Common. ... 388

Figure A6.1 Device and Service Advertisement Sequence Diagram. 391

Figure A6.2 Device Discovery Sequence Diagram. ... 393

Figure A6.3 Service Discovery Sequence Diagram. .. 394

Figure A6.4 Adding a Sub-Device to a Control Surface Sequence Diagram. 396

Figure A6.5 Meter Value Subscription Sequence Diagram. .. 398

Figure A6.6 Using a Connection Manager Sequence Diagram. 399

Figure A6.7 Connection Management using Audio Terminals Sequence Diagram....... 400

Figure A6.8 Creating Connections using Connection Objects Sequence Diagram. 403

Figure A6.9 Creating Parameter Joins Sequence Diagram. ... 404

Figure A6.10 Discovering and Registering a Protocol Stack Sequence Diagram. 406

Figure A8.1 SNMP Data Model for the SDM. .. 411

Figure A10.1 A Subjective Control Protocol Comparison. .. 457

file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319854
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319855
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319856
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319857
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319858
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319859
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319860
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319861
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319862
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319863
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319864
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319865
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319866
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319867
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319868
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319869
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319870
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319871
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319872
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319873
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319874
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319875
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319876
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319877
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319878
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319879
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319880
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319881
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319882
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319883
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319884
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319885
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319886
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319887
file:///C:/000Thesis/Thesis%20Revised.docx%23_Toc440319888

xxv

List of Tables

Table 3.1 HiQnet Device Architecture. .. 61

Table 3.2 Relative and Virtual ACN Property Addresses. ... 73

Table 4.1 Representational Capabilities of Different Control Protocols. 82

Table 4.2 Relating Device Structure to Parameter Addresses. ... 84

Table 4.3 Comparing Audio Signals and Audio Connections. ... 85

Table 4.4 Examples of Different Categories of Descriptive Data. 92

Table 4.5 Comparing Different Connection Models. ... 107

Table 5.1 OSC Data Types. .. 121

Table 5.2 A Summary of OSC Features. .. 139

Table 5.3 A Summary of the Strengths and Weaknesses of OSC. 140

Table 6.1 SNMP Data Types. ... 144

Table 6.2 Table Relationships in SNMP. ... 151

Table 6.3 IEC-62379-2 Audio Functional Blocks. ... 160

Table 6.4 An IEC-62379-2 Audio Port Table. ... 162

Table 6.5 Example of an SNMP Parameter Attribute Table. ... 163

Table 6.6 An SNMP Attribute Table Having Fixed Attributes. 168

Table 6.7 SNMP Standard Trap Fields. .. 174

Table 6.8 An SNMP Table Depicting Internal Connection States. 176

Table 6.9 A Summary of SNMP Features. ... 180

Table 6.10 A Summary of the Strengths and Weaknesses of SNMP. 184

Table 7.1 The AES64 Parameter Address Hierarchy. .. 188

Table 7.2 Master-Slave Parameter Relationships. .. 191

Table 7.3 Peer-to-Peer Parameter Relationships. ... 191

Table 7.4 AES64 USG Commands. ... 194

Table 7.5 AES64 Message Types. .. 196

Table 7.6 AES64 Executive Commands. ... 196

Table 7.7 AES64 Command Qualifiers. ... 197

Table 7.8 Multicore Parameters Representing IEEE 1722 Streams. 201

Table 7.9 A Summary of AES64 Features. .. 205

Table 7.10 Comparing AES64 and SDM Addresses. ... 206

Table 7.11 A Summary of the Strengths and Weaknesses of AES64. 209

Table 8.1 A Summary of CopperLan Features. .. 220

Table 8.2 A Summary of the Strengths and Weaknesses of CopperLan. 221

Table 9.1 UPnP Service Advertisements. ... 228

file:///C:/000Thesis/Thesis.docx%23_Toc422692080
file:///C:/000Thesis/Thesis.docx%23_Toc422692081
file:///C:/000Thesis/Thesis.docx%23_Toc422692082
file:///C:/000Thesis/Thesis.docx%23_Toc422692083
file:///C:/000Thesis/Thesis.docx%23_Toc422692084
file:///C:/000Thesis/Thesis.docx%23_Toc422692085
file:///C:/000Thesis/Thesis.docx%23_Toc422692086
file:///C:/000Thesis/Thesis.docx%23_Toc422692087
file:///C:/000Thesis/Thesis.docx%23_Toc422692088
file:///C:/000Thesis/Thesis.docx%23_Toc422692089
file:///C:/000Thesis/Thesis.docx%23_Toc422692090
file:///C:/000Thesis/Thesis.docx%23_Toc422692091
file:///C:/000Thesis/Thesis.docx%23_Toc422692092
file:///C:/000Thesis/Thesis.docx%23_Toc422692093
file:///C:/000Thesis/Thesis.docx%23_Toc422692094
file:///C:/000Thesis/Thesis.docx%23_Toc422692095
file:///C:/000Thesis/Thesis.docx%23_Toc422692096
file:///C:/000Thesis/Thesis.docx%23_Toc422692097
file:///C:/000Thesis/Thesis.docx%23_Toc422692098
file:///C:/000Thesis/Thesis.docx%23_Toc422692099
file:///C:/000Thesis/Thesis.docx%23_Toc422692100
file:///C:/000Thesis/Thesis.docx%23_Toc422692101
file:///C:/000Thesis/Thesis.docx%23_Toc422692102
file:///C:/000Thesis/Thesis.docx%23_Toc422692103
file:///C:/000Thesis/Thesis.docx%23_Toc422692104
file:///C:/000Thesis/Thesis.docx%23_Toc422692105
file:///C:/000Thesis/Thesis.docx%23_Toc422692106
file:///C:/000Thesis/Thesis.docx%23_Toc422692107
file:///C:/000Thesis/Thesis.docx%23_Toc422692108
file:///C:/000Thesis/Thesis.docx%23_Toc422692109
file:///C:/000Thesis/Thesis.docx%23_Toc422692110
file:///C:/000Thesis/Thesis.docx%23_Toc422692111
file:///C:/000Thesis/Thesis.docx%23_Toc422692112
file:///C:/000Thesis/Thesis.docx%23_Toc422692113

xxvi

Table 9.2 UPnP Primitive Data Types. .. 236

Table 9.3 A Summary of UPnP Features. .. 240

Table 9.4 A Summary of the Strengths and Weaknesses of UPnP. 242

Table 10.1 Examples of Primary and Secondary Design Concepts. 250

Table 10.2 Comparing Approaches to Control Protocol Design. 252

Table 10.3 Comparing Fixed and Variable Parameter Addresses. 255

Table 11.1 Example Object Templates for Associative Matching. 275

Table 11.2 A Summary of Fli2 Features. ... 306

Table 12.1 Parameter Address Representation Within Different Control Protocols. 314

Table A1.1(a) Comparing Control Protocols using Design Heuristics – Part 1. 329

Table A1.1(b) Comparing Control Protocols using Design Heuristics – Part 2. 330

Table A1.1(c) Comparing Control Protocols using Design Heuristics – Part 3. 331

Table A10.1 A Comparison of SET(..) Commands. .. 451

Table A10.2 A Comparison of GET Commands. .. 452

Table A10.3 Comparing Subscription Management Commands. 453

Table A10.4 Comparing Parameter Management Commands. 454

Table A10.5 A Comparative Summary of Control Protocol Features. 455

Table A10.6 A Comparative Weighting of Protocol Features. 456

Table A11.1 OSC Packet Structure .. 460

Table A11.2 SNMPv1 General Packet Structure. .. 461

Table A11.3 SNMPv1 and SNMPv2c PDU Structure. .. 462

Table A11.4 SNMPv1 Trap Packet Structure. ... 463

file:///C:/000Thesis/Thesis.docx%23_Toc422692114
file:///C:/000Thesis/Thesis.docx%23_Toc422692115
file:///C:/000Thesis/Thesis.docx%23_Toc422692116
file:///C:/000Thesis/Thesis.docx%23_Toc422692117
file:///C:/000Thesis/Thesis.docx%23_Toc422692118
file:///C:/000Thesis/Thesis.docx%23_Toc422692119
file:///C:/000Thesis/Thesis.docx%23_Toc422692120
file:///C:/000Thesis/Thesis.docx%23_Toc422692121
file:///C:/000Thesis/Thesis.docx%23_Toc422692122
file:///C:/000Thesis/Thesis.docx%23_Toc422692123
file:///C:/000Thesis/Thesis.docx%23_Toc422692124
file:///C:/000Thesis/Thesis.docx%23_Toc422692125
file:///C:/000Thesis/Thesis.docx%23_Toc422692126
file:///C:/000Thesis/Thesis.docx%23_Toc422692127
file:///C:/000Thesis/Thesis.docx%23_Toc422692128
file:///C:/000Thesis/Thesis.docx%23_Toc422692129
file:///C:/000Thesis/Thesis.docx%23_Toc422692130
file:///C:/000Thesis/Thesis.docx%23_Toc422692131
file:///C:/000Thesis/Thesis.docx%23_Toc422692132
file:///C:/000Thesis/Thesis.docx%23_Toc422692133
file:///C:/000Thesis/Thesis.docx%23_Toc422692134
file:///C:/000Thesis/Thesis.docx%23_Toc422692135

xxvii

List of Listings

Listing 3.1 An Example of the ACN Device Description Language. 72

Listing 5.1 A SDM Fader Control Represented in OSC. ... 129

Listing 6.1 An Example of a MIB Scalar Object Definition. ... 148

Listing 6.2 An Example of a MIB Table Definition. .. 149

Listing 6.3 The IEC-62379-2 ‘AudioLevel’ Textual Convention. 162

Listing 6.4 IEC-62379-2 Mixer Block MIB Design. .. 163

Listing 7.1 An AES64 XML Desk Item Description. .. 203

Listing 8.1 An Example of a CopperLan Class. ... 222

Listing 9.1 An Example UPnP Device Description. .. 234

Listing 9.2 An Example UPnP Service Description for a Fader Service. 235

Listing 10.1 A CopperLan Class Example. .. 258

Listing 10.2 Updating Parameter Groups using Aspects. ... 263

Listing A5.1 Fli2 Parameter Methods and Attributes. .. 389

file:///C:/000Thesis/Thesis.docx%23_Toc422088570
file:///C:/000Thesis/Thesis.docx%23_Toc422088571
file:///C:/000Thesis/Thesis.docx%23_Toc422088572
file:///C:/000Thesis/Thesis.docx%23_Toc422088573
file:///C:/000Thesis/Thesis.docx%23_Toc422088574
file:///C:/000Thesis/Thesis.docx%23_Toc422088575
file:///C:/000Thesis/Thesis.docx%23_Toc422088576
file:///C:/000Thesis/Thesis.docx%23_Toc422088577
file:///C:/000Thesis/Thesis.docx%23_Toc422088578
file:///C:/000Thesis/Thesis.docx%23_Toc422088579
file:///C:/000Thesis/Thesis.docx%23_Toc422088580
file:///C:/000Thesis/Thesis.docx%23_Toc422088581
file:///C:/000Thesis/Thesis.docx%23_Toc422088582

1

Chapter 1

Introduction

1.1 Motivation for this Study

The previous two decades have provided technological advances in networking that allow

local area networks to transmit digital audio with an acceptable quality of service.

These technological advances have led to the development of complex audio devices such

as mixing consoles that use network transports for both audio and control data.

Management of both the networked audio streams and the networked devices themselves

are critical features of an audio network:

"Networks have a legacy of association with control and monitoring in audio

systems … Especially in installed sound, the primary draw of an audio network

may be in the control and monitoring capabilities."

(Gross K. , 2006, p. 66).

During the writing of this dissertation, several new audio control protocols were in

development, undergoing standardization, or being brought to the commercial

marketplace. Recently developed audio control protocols provide an integrated approach

to device control, monitoring and connection management. This integration of

functionality has resulted in vendors providing sophisticated control and management

application software. Examples of these applications and their underlying control

protocols (indicated in parentheses) include:

 UNOS Creator and UNOS Vision (AES64) from Universal Media Access

Networks (Universal Media Access Networks, n.d.);

 Audio Architect (HiQnet) from Harman Corporation (Harman Pro Corporation,

n.d.);

 The CopperLan Manager (CopperLan) from Klavis Technologies (Klavis

Technologies, n.d.).

These protocols support the management and control of both networked audio streams

and audio devices, and may be termed ‘second-generation’ control protocols. Control

protocols that do not support this integrated approach may be termed ‘first-generation’

control protocols. First-generation control protocols typically only support the reading,

2

writing and monitoring of parameter values. An example is the Simple Network

Management Protocol (SNMP) (Case, Fedor, Schoffstall, & Davin, 1990) which is a

standard, general-purpose control protocol that has been used to configure audio

networks and to control audio devices.

Managing audio networks requires sophisticated and expressive control protocols.

Unfortunately, no sources exist that identify or discuss the desirable features of a control

protocol. Existing works dealing with protocol design consider network protocols in

general, and often do not specifically discuss control protocols. In addition, these works

typically emphasize the formatting and transmission of network data. For example,

a rigorous work entitled Principles of Protocol Design (Sharp, 2008), emphasizes protocol

implementation within the lower levels of the ‘Open Systems Interconnection’ (OSI)

(ISO/IEC, 1994) model. This model is commonly used to describe the architecture of

network protocols and is discussed in Section 2.3.4 The Control Protocol Stack (p.20).

A limited and incomplete study of both packet structures and flow control (the regulation

of data transmission rates) for control protocols (Roddey, 2011) does not address the

representation and use of parameter data, nor does it address the control mechanisms

used to access parameter data. The control of networked devices in general and audio

devices in particular, has never been systematically examined.

Evaluating the characteristic features of a control protocol is difficult, as an

evaluation can be approached from several vantage points. These include the:

 Semantics of the high-level commands provided by a control protocol;

 Organization, storage and addressing of parameter data;

 Representation of controlled devices within a control protocol;

 Encoding, formatting and transport of packet data.

At the highest level, users focus on the semantic outcomes of protocol commands. At the

network level, a control protocol can be described in terms of the different network layers

forming the OSI model or the ‘Transmission Control Protocol’ (TCP) Model (Cerf, Dalal,

& Sunshine, 1974). Except for CopperLan, all of the control protocols emphasized in this

study are built on top of the OSI layer 3 ‘Internet Protocol’ (IP).

These control protocols typically use the two commonly encountered OSI transport layer

(layer four) protocols: the ‘User Datagram Protocol’ (UDP) (Postel, 1980) and the

‘Transmission Control Protocol’ (TCP) (Defense Advanced Research Projects Agency,

1981).

A discussion of a control protocol with reference to a layered network model is not

required to investigate and evaluate the functionality provided by the protocol.

3

Control protocols typically provide commands that are high-level abstractions of control

functionality. These higher-level abstractions such as the ability of a protocol command to

address multiple parameters have never been systematically studied. In addition,

the organization and storage of parameter data, as well as the representation of devices

within a control protocol both warrant a detailed investigation.

1.1.1 Topics Addressed in this Dissertation

In addition to a general investigation and evaluation of different control protocols, three

additional topics that provide an original contribution to the field of audio networking are

emphasized throughout this dissertation:

1. The development of a standard device model (SDM) that provides:

 A standard representation of the structural organization and

representation of an audio device, and

 A standard addressing scheme used to reference parameter data.

This standard device model supports service discovery and service enumeration

for networked devices, and specifies the representation of a control surface.

Although intended to represent audio devices, this generic device model can

represent any networked device. A standard representation of parameter

addresses promotes interoperability among different control protocols by

supporting parameter address translation. Where service discovery requests and

parameter addresses use a common abstract representation, gateways can

translate between different control protocols. Translation between AES64 and

OSC (Igumbor & Foss, 2013) has used this approach.

2. The development of an original environment for the discovery and control of

networked devices. This environment avoids many of the complexities associated

with service enumeration and control surface creation.

3. The development of a conceptual framework that is used to examine and

illustrate principles of control protocol design without emphasizing any specific

implementation. These concepts and general design principles are of greater

importance than the characteristics of specific platforms or development

environments.

The formulation of a device model required a preliminary study to compare and evaluate

the different features and capabilities of existing control protocols. These features include

parameter representation, as well as the discovery, control and connection management

capabilities provided by different control protocols. A comparison of the implementations

4

of the SDM within different control protocols led to the development of an original

discovery and control environment. In addition, comparisons of the capabilities of

different control protocols:

1. Identified the desirable design features and characteristics of a sophisticated and

expressive control protocol. Conversely, negative features (anti-patterns) of

control protocol design that constrain the capabilities of a protocol were

identified.

2. Required the development of original terminology to describe control protocol

concepts. Many control protocol concepts lack an accepted, standard

terminology.

Implementations of the SDM using the native data representations and commands of

different control protocols highlighted both the capabilities and inherent limitations of a

specific protocol. Attempts to overcome these limitations led to the development of the

discovery and control environment presented in Chapter 11. This environment uses the

SDM to support service discovery and encapsulates functionality within device

components conforming to the SDM. A device component is defined as a control such as

a fader or a logical section of a device such as the equalization section of a mixing console.

A study of the design of different control protocols resulted in the formulation of

concepts describing control protocol designs that are presented in Chapter 10.

Identification of the strengths and weaknesses of different control protocols suggested

many control protocol design heuristics. These heuristics are discussed throughout this

dissertation and summarized in Appendix 1.

1.2 Writing Conventions and Terminology

The following section clarifies the writing conventions and the different uses of

terminology in this dissertation. The following conventions are used:

 Terminology that is specific to a particular control protocol is adhered to when

discussing the protocol and the first occurrence of a technical term is placed in

single quotation marks.

 First occurrences of original terms developed during this study are underlined and

placed in single quotation marks.

 Names of classes, data structures, variables and technical terms may be placed in

single quotation marks to make the text more readable.

 Proper names such as the name of an organization or the name of a control

protocol may be italicized to make the text more readable.

5

 Direct quotations from external sources are italicized, indented and placed within

double quotation marks.

The subject areas that embrace networking and network protocols often use

terminology that is ambiguous or inadequately defined, especially when compared to

accepted computer science terminology. The description of audio networks and audio

device functionality also pose significant challenges:

“We’ve always struggled with terminology when referring to audio input/output

from devices such as codecs and hybrids where there’s local audio I/O as well as a

combined network I/O port.”

 (Axia Audio, n.d.).

Commonly encountered terms and their denotations within this dissertation are defined

below. Additional terms are defined as they are encountered and are placed in a glossary

for the convenience of the reader. Technical terms that are not specifically associated with

a particular control protocol or audio transport are preferred.

 ‘Argument' refers to an actual or formal parameter within the context of the

invocation of a function or remote procedure call.

 ‘Attribute’ refers to a descriptive characteristic such as the color of a control or

meta-data used to describe the characteristics of data. Standard object-oriented

usage of the term is always clearly indicated by further qualifying an attribute as

an ‘object attribute’.

 ‘Protocol’ refers to a control protocol unless the context obviously refers to other

network protocols.

 ‘Parameter' always refers to a data item that is associated with the state of a device.

The term ‘parameter’ is never used to refer to actual or formal arguments to a

function, nor is it used to refer to other data such as general descriptive data. The

term may be qualified further as in ‘control parameter’, ‘DSP parameter’ or

‘connection parameter’.

 ‘Component’ refers to a logical or physical part of a device. This term is also used

to refer to logical groups of objects within service-oriented architectures.

 ‘Control’ refers to a control (commonly a fader, knob or switch) implemented in

hardware or implemented as a software widget. The term may be qualified further

by using the terms

o ‘Hardware control’ when referring to a physical control, or,

o ‘Virtual control’ or ‘software control’ when referring to software controls.

6

 ‘Controller’ may refer to any hardware or software device that controls another

device. An application or device that only performs control may be referred to as a

‘dedicated controller’.

 ‘Device’ refers to any controller or device, whether physical or virtual. A device is

typically the recipient of control messages.

 ‘Connection management’ refers to the management of audio connections between

devices on a network. Some control environments provide connection

management functionality between streams of control data. This type of

connection management is termed ‘control connection management’ to

distinguish it from audio connection management.

 ‘Audio Stream’ refers to a group of source or destination audio channels.

This term may be further qualified by referring to an ‘audio source stream’ or an

‘audio destination stream’. The abbreviated forms ‘audio source’ and ‘audio

destination’ are also be used.

 A ‘control point’ is a remote procedure invoked to provide control functionality or

invoked as a side effect of a parameter access. Note that UPnP uses the term

‘control point’ to denote a controller process.

 ‘Service’ denotes a well-defined functional capability provided by a device.

The most rudimentary service consists of a parameter access or control point

invocation.

 Commands that read and write parameter values are generically termed ‘GET()’

and ‘SET(..)’ commands respectively. Note that standard SNMP commands also

use these names.

References may be repeated within different chapters if such repetition improves the

coherence of individual chapters.

1.3 An Introduction to Control Protocols

A network protocol may be defined as:

"The formats and procedures that govern the transmission and reception of data in

a network. The term comes from the Greek “protokollon”, which was the cover page

to a manuscript that provided a description of the contents."

 (The Computer Language Company Inc., n.d.).

As discussed in Section 1.1 Motivation for this Study, the concept of a ‘control protocol’

may have many different meanings and connotations that are determined by the

conceptual level that a control protocol is viewed from. Control protocols typically

7

implement higher-level functionality using existing, open network protocols or

proprietary network transport layers. Audio control protocols have developed from the

functional requirements of different networked environments such as live sound and

broadcast environments. Chapter 3 provides an overview of current audio control

protocols with reference to these application areas.

1.3.1 Protocols Discussed in this Dissertation

Several control protocols were selected for detailed analysis according to three selection

criteria:

1. IP-based control protocols are emphasized as the use of IP-based control protocols

has become common within the audio networking community.

2. Protocols having freely available specifications and implementations were selected

for further investigation. The availability of specifications and software libraries

supported the development of software to evaluate and analyze the capabilities of

each control protocol.

3. Protocols that have achieved standardization or protocols that are undergoing

standardization are emphasized.

Using the above selection criteria, the protocols discussed in detail in this study include:

1. Open Sound Control (OSC) (Wright, 2002a), developed at the Center for New

Music and Audio Technology, University of California, Berkeley.

2. SNMP in general and IEC-62379 (International Electrotechnical Commission,

2008), a standard SNMP-based control protocol.

3. AES64 developed by Universal Media Access Networks (UMAN) which became

an AES standard in 2012 (Audio Engineering Society, 2012).

4. CopperLan, developed by Klavis Technologies that uses a proprietary Ethernet

transport layer (Klavis Technologies, n.d.). CopperLan is the only non IP-based

protocol that is discussed in detail.

5. Universal Plug and Play (UPnP) (UPnP Forum, 2013) has many valuable

features, and is built using open protocols with an emphasis on HTTP-based

network protocols.

6. Fli2, an original object-oriented environment for discovery and control developed

during this study. It uses an associative memory space for discovery and

emphasizes the use of the standard model developed in Chapter 4 of this

dissertation.

8

CopperLan was included because of the availability of development tools and the ability

of the protocol to co-exist with other IP-based protocols. Protocols that are of interest, but

were not selected for a detailed evaluation, as they did not meet the previously mentioned

selection criteria are discussed in Chapter 3. These protocols include:

 Architecture for Control Networks (ACN);

 EuCon;

 HiQnet;

 MambaNet;

 IEEE 1722.1-2013;

 Open Control Architecture (OCA);

 Amber+.

Although ACN is an American National Standards Institute (ANSI) standard, no freely

available implementations exist. IEEE 1722.1-2013 is designed for use within IEEE 1722

(Institute of Electrical and Electronics Engineers, 2012) environments and is not a

general-purpose control protocol. A control protocol that is likely to become significant is

the OCA protocol that is currently undergoing standardization within the Audio

Engineering Society (AES) as project X-210. An implementation of this control protocol

is only available to clients of Bosch Communications Systems (Berryman, Private

correspondence, 2012). Amber+ does not have a high-level specification or detailed API,

but provides example applications that are discussed in Chapter 3 and Appendix 4.

1.4 Standard Control Protocols

As briefly mentioned in the previous section, standard control protocols exist within the

IEC (IEC-62379), the ANSI (ACN), and the AES (AES64). Although intended as a general

control protocol, ACN has its roots in lighting control, where it was initially conceived as

a replacement for the serial Digital MultipleX (DMX512) protocol first developed in 1986.

(United States Institute for Theatre Technology Inc., n.d.). In 2008, IEC-62379 became

an IEC standard, while AES64 became an AES standard in 2012 (Audio Engineering

Society, 2012).

The IEC-62379 and ACN standards have a status similar to the status of the Service

Location Protocol (SLP), which is an Internet Engineering Task Force (IETF) standard

(Veizades, Guttman, Perkins, & Kaplan, 1997) for service discovery. Despite its status as

an IETF standard, SLP is not as widely used as other protocols such as DNS-Based Service

Discovery (DNS-SD) which by virtue of its widespread use has become a de-facto

standard. Although Apple Computer has proposed that DNS-SD be accepted as an IETF

9

standard since 2002 (Cheshire & Krochmal, 2013), this proposal has never been accepted

by the IETF. As mentioned previously, no freely available implementations of ACN exist,

despite the availability of network switches that support ACN

(Electronic Theatre Controls, Inc., 2009). These two control protocols are not supported

by any audio hardware or software vendors. Chapter 3 discusses ACN and Chapter 6

discusses IEC-62379.

A control protocol is likely to become widely adopted if an associated audio transport

is widely adopted. IEEE 1722.1-2013 – ‘Standard for Device Discovery, Connection

Management and Control Protocol for AVTP Devices’, (also referred to as ‘AVB-DECC’)

(Koftinoff, Audio Video Bridging - A collection of links, tools and open source code for

Audio Video Bridging (AVB) technologies., 2013) is likely to be widely used if the

underlying IEEE 1722 audio transport gains widespread acceptance. It is too early to

speculate on the impact of AES64 and OCA (X-210); AES64 became a standard in 2012,

and X-210 is likely to become a standard in early 2015. The current status of ‘standard’

control protocols intimates that the absence of a widely accepted standard (and the

resultant lack of control interoperability) is likely to continue for the near future.

1.4.1 Characteristics of Successful Standards

John Huntington (Huntington, 2012) defines four characteristics of widely adopted

(‘successful’) standards:

Of particular interest is the assertion that a minimum level of functionality should be

provided by a standard. The original environment presented in Chapter 11 illustrates this

2. “They are limited in scope and ambition and optimized for some task.

Consensus standards making processes ensure this, since only a

minimal level of functionality will be agreed upon by all the parties

involved.”

4. “They leave clear room for expansion and allow shortcomings to be

corrected.”

1. “Successful standards are pulled into existence by the market; they are

not pushed. They fill a clear commercial demand in the market,

especially one driven by users. Often, this means that multiple, non-

interoperable systems already exist in a market segment and users are

screaming for interoperability.”

3. “They are open for all to use. All of the standards (of which I'm

aware) that have caused our market to grow have been open.”

10

concept and conform to the last three characteristics cited by Huntington.

It is easier to define the general characteristics of a standard - obtaining a consensus from

vendors on how to implement these characteristics is much more difficult:

 “Although it is clear that a common protocol such as OCA makes true

interoperability and peer-to-peer communications possible, there is disagreement

as to the importance of this. Frank Vernon, an engineer at Peavey Electronics,

argued that a requirement for peer-to-peer communications is rare in these

systems and there’s usually a way to accomplish the intended functionality in other

ways.”

 (Gross K. , 2011).

AES-24 (Audio Engineering Society, 1999) was the first attempt to provide a standard

control protocol and created a legacy that has inspired the development of other control

protocols including OCA. These descendants of AES-24 are discussed in Chapter 3.

1.4.2 Standardizing Functionality

The core functionality of a control protocol may be defined in a generalized, abstract

manner by specifying standard protocol commands and a standard parameter

representation scheme. A standard parameter representation should standardize the:

 Organization of parameters;

 Parameter-addressing scheme;

 Representation of parameter values.

A standard parameter organization must specify both parameter identifiers and the

representation of parameter addresses. Section 10.2.3.2.1 Parameter Organization and

Addressing Schemes (p.253), discusses different parameter-addressing schemes.

Standardization of audio parameter names and their associated parameter addresses is a

non-trivial task. Unless such standardization is carefully considered, the result may only

achieve a degree of interoperability at the expense of flexibility. The only existing example

of attempts at parameter address and parameter identifier standardization are the

hierarchical addressing scheme found in AES64 (discussed in Chapter 7) and OCA

parameter addresses (discussed in Chapter 3 and Chapter 10). Standardizing parameter

addresses is difficult within protocols that are designed around objects or data records.

IEEE 1722.1-2013 standardizes parameters as a consequence of the standardization of

descriptors. Thus, IEEE 1722.1-2013 parameter addresses themselves are not

standardized, only their relative addresses within descriptors are standardized.

11

The machine representation of parameter values depends on the data types

supported by a control protocol. For example, values encoded as binary numeric types, or

the textual representations required by protocols such as HTTP. Irrespective of the

machine representation, parameter values can be conceptually standardized by using a

common unit of measurement. A trend towards this practice exists with standard

measurement units found in AES64 and CopperLan. Standard data units avoid the

conversions that must occur when expressing values within different measurement units

that have different ranges. For example, conversions between control values and decibel

units.

1.5 Protocol Implementations

Virtual controllers and virtual devices for different control protocols were developed using

several development environments including C++, Java and C#.NET environments.

Chapters dealing with specific control protocols introduce these control protocol

implementations that are also discussed in Appendix 4. The performance of different

programming languages is a contentious issue that falls outside the scope of this study.

Java and .NET environments may become more widely used for audio applications in the

future, as their performance is likely to become comparable to the performance of

languages such as C++. The System Architect software from Harman Pro Corporation

that uses the HiQnet control protocol is written in C# using the .NET environment

(Kreifeldt & Holladay, 2005, p. 84).

1.5.1 Controller Architecture

The architecture of several mixing consoles were examined to determine the characteristic

properties of a typical mixing console. These included the ‘TOA CX-124’ from TOA

Electronics Inc. (TOA electronics Inc., 2008), the Yamaha O1V96 (Yamaha Corporation,

n.d.), and the ‘Soundcraft Spirit 328’ (Soundcraft Inc., n.d.). With the exception of the CX-

124, these are all digital mixers. Despite the considerable complexity of these devices, the

fundamental architecture of an audio mixing console is not overly complex.

A virtual four-channel input, two-channel output mixer containing a single stereo

bus was implemented within different development environments. Figure 1.1 shows the

architecture of this device. Available external inputs (network audio source streams) can

be assigned to the device inputs and the two device outputs can be assigned to any

available network destination streams. An input selector allows device input channels to

be routed to channel strips and an output selector allows the two output channels to be

routed to any of the external output streams.

12

Figure 1.2 illustrates an SNMP controller that interacts with this device.

Figure 1.2 A Virtual Controller for a Mixing Console.

Figure 1.1 Block Diagram of a Simple Mixing Console.

External Inputs (Network streams)

Input Channel Selector

Input Section
Channel Strips

Left and Right
Master Channels

External Outputs (Network streams)

Output Channel Selector

13

Channel strips contain:

 Mute buttons;

 Gain controls;

 Equalization sections that contain two equalization controls;

 PAN controls;

 Button groups that perform bus assignments;

 Fader controls;

 Meters for monitoring the volume of each input channel;

 Buttons below each meter that subscribe to remote meter parameters;

A master section connected to the left and right buses containing left and right faders and

meters. Drop-down list boxes allow available network audio source channels to be

assigned to each channel strip and master output channels to be assigned to a set of

available network audio destination channels.

Although defined in abstract terms, parameters managing network streams use the

connection management parameters supported by AES64 as examples. These controls

and control sets reflect most of the commonly encountered mixing console control

configurations.

1.6 Chapter Layout

Chapter 2 introduces and discusses the core concepts that relate to control protocols in

general and audio control protocols in particular. Chapter 3 provides an overview of the

current audio control protocol landscape and discusses some of the salient features of

different control protocols. Chapter 4 examines device models and proposes a standard

device model for networked audio devices. This chapter is followed by five chapters

devoted to a detailed discussion of OSC, SNMP and IEC-62379, AES64, CopperLan and

UPnP. Chapter 10 develops concepts used to compare control protocol designs, and

provides a comparison of the protocols discussed in the preceding chapters. Chapter 11

introduces an original discovery and control environment named Fli2 that utilizes a

distributed associative memory. Chapter 12 summarizes the findings of this study and

presents the conclusions with reference to the areas of investigation outlined in Section

1.1.1 Topics Addressed in this Dissertation.

The appendices provide additional information on control protocols and discuss

software developed during this study. Appendix 1 proposes heuristics for control protocol

design. Appendix 2 provides an XML representation of the standard device model

developed in Chapter 4. Appendix 3 lists the most important SNMP specification

14

documents. Appendix 4 discusses the protocol implementations developed during this

study. Appendices 5 and 6 provide class diagrams and sequence diagrams describing the

design of the original environment presented in Chapter 11. Appendices 7, 8 and 9 list the

OSC address spaces, SNMP MIB and UPnP service descriptions discussed in the chapters

devoted to these protocols. Appendix 10 provides a quantitative and qualitative

comparison of control protocols, and provides a detailed analysis of control protocol

commands. Appendix 11 describes the structure and content of OSC and SNMP network

packets, as these packet formats are discussed in the chapters devoted to these two control

protocols.

15

Chapter 2

Control Protocol Concepts

2.1 Introduction

This chapter provides a basis for the discussion and evaluation of different control

protocols in the chapters that follow. The following sections introduce the core concepts

encountered when discussing and evaluating different control protocols. As mentioned in

the introduction, original terminology is underlined when it is first introduced.

2.2 Fundamental Control Protocol Concepts

Several core concepts exist that describe the responsibilities and functional capabilities of

a control protocol. These concepts are discussed within the context of eight areas of

investigation:

1. Network architectures and the messages transmitted between networked devices.

2. Discovery of networked devices and monitoring the reachability of devices.

3. Service discovery and service enumeration which consists of:

 Discovering the services (functional capabilities) provided by a device;

 Enumerating the specific characteristics of a particular service. For example,

determining the arguments required to invoke a service.

4. Control surface representation and creation which encompasses the:

 Representation of a control surface, and

 Implementation of a control surface.

5. Device control and monitoring which involves:

 Reading and writing one or more parameter values;

 Monitoring changes to parameter values or monitoring other device state

changes;

 Recording and playback of protocol commands (commonly referred to as

‘automation’).

6. Parameter management which includes operations such as:

 Linking controls to parameters;

 Joining (linking) parameters to other local or remote parameters;

16

 Grouping parameters so that changes to the value of a single parameter within

a group of parameters are propagated to the entire group;

 Reading and writing multiple parameters (bulk parameter access).

7. Connection management which involves:

 Managing the audio connections between devices;

 Managing the audio connections within a device;

 Managing the sources and destinations of control commands.

8. Security features such as:

 Managing access to a network, and

 Providing secure transmissions of network messages.

The above division of responsibilities reflects some arbitrariness, as a division of these

concepts can be done in different ways. For example, both connection management and

control functionality typically involve the reading and writing of parameter values.

These areas could conceivably be combined. Additionally, connection management

between devices can also be seen as network management. Despite these possible

ambiguities and shortcomings, the eight areas listed above cover all the areas of

responsibility that are commonly encountered within different control protocols.

This arrangement also attempts to separate areas that can be implemented separately such

as control functionality and connection management functionality. These two areas are

typically handled by different processes within a single application or by distinct

applications. Security features are not discussed in detail, as they do not influence the

control and monitoring capabilities of a control protocol.

All control protocols have characteristic features that are rigidly defined or may be

defined within a flexible framework. A framework is defined as an abstract architecture

that does not prescribe any content. To provide scalability, all protocols have design

features that are characteristic of a framework. For example, many control protocols

define a limited number of protocol commands that operate on a freely defined parameter

address space. Control protocol designs and the notion of a control framework are

discussed in Chapter 10 of this dissertation.

2.3 Network Architectures

Control protocols are typically designed to function within particular network

architectures. Second-generation protocols such as AES64, HiQnet and CopperLan favor

peer-to-peer network topologies, while general-purpose, first-generation control

protocols tend to be client-server based.

17

2.3.1 Client-Server Network Architectures

Client–server architectures exist when client applications initiate service requests and

server applications respond to these service requests. This implies that servers provide

remotely addressable services. The roles played by client and server applications are often

not well defined:

“The terms client and server are not firm designations for particular parts of an

application; rather, they denote roles that are taken by parts of an application for

the duration of a request.... Similarly, clients are often not “pure” clients, in the sense

that they only request service from an object. Instead, clients are frequently client-

server hybrids.” (ZeroC Corporation, 2012).

These observations emphasize that network connectivity does not necessarily occur at the

application level, but may occur between objects or modules that form part of an

application. Figure 2.1 illustrates a classic client-server network architecture where only

the server provides services.

The most rudimentary service consists of a single parameter access. Chapter 9 discusses

service-oriented architectures where a service may represent a higher-level operation that

accesses multiple parameters or invokes other services. Within a client-server

architecture, clients only receive messages from a server that are mandatory or optional

responses to received control messages. Clients only receive fixed responses following

communication with a server; a server never initiates communication with a client.

Responses are typically status messages that are handled by a one or more client-side

callback functions shown in Figure 2.1 termed ‘return points’. Return points are used by a

controller to process response messages received from a controlled device.

Figure 2.1 A Client-Server Network Architecture.

Service1
 …
ServiceN Return Messages

 Control Messages

 Client (Controller)
Server (Device)

 Return
 Points Parameters

N
et

w
o

rk

 S

ta
ck

N
et

w
o

rk

 S

ta
ck

18

2.3.2 Peer-to-Peer Network Architectures

The term 'peer-to-peer' is often used to describe the architecture of distributed file sharing

systems (Steinmetz & Wehrle, 2005) and should not be confused with networked devices

having peer relationships. The terminology is in itself problematical:

"Although the term peer-to-peer refers to a number of generic ideas and

mechanisms, the idea of peer-to-peer is applied in different contexts and hence peer-

to-peer systems do not necessarily have many characteristics in common; neither

do they have to adhere to a determined set of attributes. A formal definition of peer-

to-peer computing does not exist."

 (Mauthe & Hutchison, 2003).

In this study, peer-to-peer architectures are defined as relationships between networked

devices where any device can assume the role of a client, a server, or a combination of

these roles. Figure 2.2 shows that each controlled device can also function as a controller.

Each peer device, also termed a ‘servent’ (server + client) (ENCYCLO Online

Encyclopedia, 2012) provides parameters or higher-level services that can be accessed by

other peer devices and also functions as a controller. Return messages in client-server

architectures can be optional or mandatory, and may also address a client parameter

and/or invoke a return point. The main advantage of peer-to-peer architectures is that

they provide synchronized states between devices. In a client-server relationship, local

changes made to server parameter values are not reflected by client states. Client-server

state relationships are unidirectional, while peer state relationships are bi-directional.

Because peer devices have a local parameter address space, return messages can target

specific parameters (or return points that may be generic acknowledgements, or may be

associated with specific parameters).

 Control Messages

Figure 2.2 A Peer-to-Peer Network Architecture.

 Control Messages

Service1
 …
ServiceN

 Return Messages

 Peer (Controller/Device) Peer (Controller/Device)

 Return points

Service1
 …
ServiceN

 Return points

 Return Messages

Parameters Parameters

N
et

w
o

rk

 S

ta
ck

N
et

w
o

rk

 S

ta
ck

19

2.3.2.1 Partial-Peer Network Architectures

It is possible for a client-server architecture to exhibit characteristics of a peer-to-peer

architecture. Figure 2.3 shows that a ‘partial-peer’ network architecture consists of clients

that have a local parameter address space.

Partial-peer network architectures support a client controller where:

 The controller has its own local parameters provided by a control protocol, and

 These parameters can be accessed remotely by return messages from a server

process.

Rather than using generic acknowledgments, a partial peer-to-peer protocol allows a

server to provide context-sensitive responses to received messages. Client parameters that

can be addressed by a server provide this context-sensitivity. This allows monitoring data

such as meter values or data returned from discovery queries to be received by a specific

parameter or return point specified by a controller. The message does not require a field

indicating the semantics of the message as the end-point itself provides the context for the

message. An example of a partial-peer network architecture is illustrated in Chapter 5 with

reference to OSC.

Client and server applications can also be combined to create peer-to-peer nodes on

a network. Client and server processes that execute on the same network node

communicate with each other to form a servent process.

2.3.3 Hybrid Network Architectures

Networks can have a topology that combines the client-server model with a peer-to-peer

approach. This hybrid model is commonly used in file-sharing systems (Subramanian &

Goodman, 2005, p. 29), where a server provides security functionality or maintains a list

 Return points

Figure 2.3 A Partial-Peer Network Architecture.

Server (Device) Client (Controller)

Service1
 …
ServiceN

 Control Messages

 Return Messages Parameters Parameters

N
et

w
o

rk

 S

ta
ck

N
et

w
o

rk

 S

ta
ck

20

Audio Application

 Control Protocol

7 Application Layer

6 Presentation Layer

5 Session Layer

4 TCP/UDP

3 IP

 …

Parameter
data access

Control point
 invocation

Control
Protocol
 Stack

Network

Figure 2.4 A Control Protocol Network Stack.

of devices on the network for peer nodes. A partial-peer network architecture discussed in

the previous section does not support transactions between different clients. Hybrid

network architectures do not reduce dependencies on a centralized server as peer nodes

must communicate with a server before initiating transactions with other networked

peers. Other accepted network architectures such as ‘multi-peer’ architectures where

peers are divided into subsets, and ‘agent’ architectures (Sharp, 2008, p. 321), that allow

different processes to collaborate have not been used within networked audio

environments.

2.3.4 The Control Protocol Stack

A control protocol is a software process built on top of the OSI (ISO/IEC, 1994) or TCP/IP

(Cerf, Dalal, & Sunshine, 1974) network models illustrated in Figure 2.4.

IP-based protocols commonly use UDP for transmitting protocol messages. Messages are

represented by ‘Protocol Data Units’ (PDUs) that are transmitted and received by the

underlying layers of the network stack. A PDU typically represents a single protocol

message encoded as binary data according to an encoding and organization scheme

defined by the control protocol.

The network stack for a control protocol is often regarded as an extension of the layered

network model shown in Figure 2.4. The entire stack is commonly referred to as a ‘protocol

stack’. For lower latency and greater throughput, UDP is commonly used to transport

control protocol PDUs. However, comparisons of TCP and UDP performance is a complex

topic (Goel, Krasic, & Walpole, 2008).

A control protocol must have the capability to:

21

 Create protocol PDUs and insert these into network packets for transmission;

 Pass the created packets to lower stack layers for transmission;

 Extract control protocol PDUs from received network packets;

 Parse the PDUs to determine:

o The parameters to be updated, and/or

o The control points to be invoked as well as the arguments for each control

point invocation.

 Invoke the control points, supplying the required arguments;

 Create and transmit a return PDU if an acknowledgment is required.

2.4 Network Management

Network management within the context of a control protocol involves the:

 Discovery and identification of networked devices and their services, as well as

monitoring the reachability of devices;

 Discovery of other networked resources such a service registry.

2.4.1 Device Discovery

Protocols that support device discovery typically also support service discovery and may

implement this functionality in a variety of different ways, including:

 Using existing open network protocols such as the Domain Name System –

Service Discovery (DNS-SD) protocol (Cheshire & Krochmal, 2013), or the Service

Location Protocol (SLP) (Veizades, Guttman, Perkins, & Kaplan, 1997) that were

mentioned in Chapter 1.

 Using proprietary device discovery mechanisms or enhancing existing discovery

mechanisms. Examples include the proprietary discovery mechanism used by

CopperLan and HiQnet’s ‘Disco’ discovery protocol (Kreifeldt, 2010) that is a

UPnP-compliant discovery mechanism.

 Downloading information from a registry dedicated to providing information

about devices and their services. This approach is found in AES-24 and is discussed

in Chapter 11 with reference to the Fli2 environment. Use of a registry implies that

the registry itself must be discoverable.

DNS-SD uses ‘multicast DNS’ (mDNS) for ad-hoc networks (Cheshire & Krochmal, 2013).

The use of the conventional ‘Domain Name System’ (DNS) allows DNS-SD to be used on

wide-area networks. Discovery protocols for device discovery are generally registry-based

or use peer-to-peer discovery (Al-Mejibli, Colley, & Al-Majeed, 2011). Registry-based

discovery protocols can use a centralized registry as found in DNS-SD or a distributed

22

registry as implemented by SLP. Protocols that use a single centralized registry create an

undesirable network-wide dependency. If the registry is not reachable then all devices on

the network are potentially affected.

Discovery processes are typically implemented using a query model or an

announcement model (Zhu, Mutka, & Ni, 2005). While mDNS uses a query model where

a client (controller) must determine the available devices on a network, UPnP uses an

announcement model where devices periodically announce their presence on a network.

The environment developed in Chapter 11 supports both of these two discovery models.

2.4.2 Monitoring Device Reachability

To ensure that networked devices are reachable, devices may periodically confirm their

presence on a network via a ‘heartbeat’ message sent to other devices on the network.

Alternatively, controllers can monitor devices by ‘polling’ (requesting a response to a

periodically transmitted message).

“By having the device generate the heartbeat, the controller is not burdened by

having to send a nuisance poll periodically just to make sure the device is still there.”

(Open DeviceNet Vendor Association, n.d., p. 5).

Assignment of responsibilities when verifying reachability depends on the network

architecture; a registry may monitor devices and maintain a list of reachable devices or

devices may communicate directly with each other via multicast or unicast network

messages.

2.5 Service Discovery and Service Enumeration

Service discovery concerns itself with discovering the functionality supported by a device.

At a low-level, services are typically represented by data values and thus map directly to

parameters. Services can also be higher-level operations that reference multiple

parameters or other services. These ‘Service-Oriented Architectures’ are discussed in

Chapter 9 with reference to UPnP. Service enumeration involves discovering the

characteristics of a service as discussed later in this section.

2.5.1 Service Discovery and Network Architectures

Service discovery is usually implemented within three broad network architectures:

decentralized, centralized and distributed (peer-to-peer) network architectures (Johnsen,

et al., 2008). Decentralized discovery exists within client-server models where each server

is responsible for managing and advertising its own services. Changes to service

advertisements are immediate and services are not available if the server node is not

23

reachable. Centralized discovery architectures use a centralized registry that advertises

services for multiple network nodes. A centralized registry is easier to manage but creates

a critical dependency for the entire network. Peer-to-peer architectures such as UPnP are

tolerant of node failure but use unnecessary bandwidth, as all nodes must periodically

advertise their services. Each peer node maintains a registry of services and service

advertisements occur even when clients for these services are not available. Multiple

centralized registries attempt to eliminate the drawbacks of both the single centralized

registry and peer-to-peer approaches by duplicating a service registry. Section 11.2.3

Space Network Architectures (p.276) illustrates how multiple, synchronized registries can

be implemented.

A formal classification of the different components of a service-discovery system

(Zhu, Mutka, & Ni, 2005) identifies different traits of these systems and the sequence of

events that occur during service discovery and service enumeration. These include the:

 Naming scheme used for services and service attributes;

 Registration of services;

 Initial communication method (query or announcement);

 Discovery of services and service attributes (service enumeration);

 Selection of the required services.

Service discovery is commonly implemented using the discovery protocols discussed

previously in Section 2.4.1 Device Discovery (p.21).

2.5.2 Service Enumeration

Service enumeration involves determining how a service must be invoked.

Exposing service characteristics using a registry or by using existing discovery protocols

such as DNS-SD or SLP requires knowledge of the naming scheme and structure of the

service information. Services are commonly represented as <key, value pairs> (Walker,

2005), where the keys must be recognizable as representing the required services. Because

of this requirement, protocols such as UPnP (Golden III, 2002) provide facilities for

service browsing that are designed for user interaction rather than for machine processing.

When a large number of services are available, services must be filtered by a discovery

process or represented in a hierarchy that can be selected by users.

The location of a service is commonly indicated by a URL or by an IP address and port

number, as well as a service address or service identifier. Discovering how services are

invoked involves discovering the required arguments to a service invocation, as well as the

properties of the specified arguments. These arguments and properties are commonly:

24

 The data type and allowable range of values for a parameter value;

 The data type and allowable range of values for any other arguments required by a

parameter access or remote procedure call.

Parameter values as well as other arguments such as status flags may not always require

discovery if these values are defined by a protocol specification. The commands used to

invoke a service are often fixed by a control protocol’s specification and do not require

discovery, only the service targets invoked by commands must be discovered.

For example, the GET() and SET(..) operations used by SNMP are well defined and need

not be discovered. Service discovery and enumeration are thus dependent on the

standardization of commands, as well as service names and service attributes. The wide

variety of networked devices and control scenarios make this standardization a

non-trivial task. The environment presented in Chapter 11 solves this problem by

providing a ‘zero-configuration’ environment that does not require service enumeration.

2.6 Control Surface Representation and Creation

Irrespective of the design philosophy or capabilities of different protocols, protocols are

likely to be used in conjunction with a control surface consisting of the familiar faders,

knobs and switches found on most audio devices. Protocols that support the

representation and creation of control surfaces may:

 Provide an external representation of a control surface using XML or some other

representation. Controller applications must retrieve and parse the representation

to create a control surface. AES64 is an example of a protocol that represents

control surfaces using XML.

 Specify a control surface using the API provided by a control protocol. Using this

approach, devices are designed in a standard manner to support service discovery

and service enumeration queries from controllers. For example, CopperLan

objects used to implement a control surface are instances of classes derived from

API base classes. These derived objects must implement inherited abstract

methods that expose a control surface to controller applications.

 Specify a control surface using a device model that is implemented using the data

structures provided by the control protocol. The chapters that follow develop this

idea with reference to different control protocols.

 Use a component-based approach where a component such as a single control or

a set of related controls such as the controls forming a channel strip are discovered

as atomic units and added to a control surface. Chapters 9 and 11 explore this

approach to control surface creation.

25

A distinction exists between ‘active controls’ that support user interaction, and

‘passive controls’ that do not allow user interaction such as lights and status indicators.

Active controls read and write parameter values while passive controls only read or

subscribe to parameter values. There is usually no advantage gained by distinguishing

between control types unless such a distinction is required by the protocol. For example,

protocols such as SNMP and UPnP require that access constraints (commonly ‘read’,

‘write’, or ‘read-write’) be specified for parameter values. These access constraints create

a distinction between active and passive controls by virtue of the access constraints of the

parameters that different controls reference.

2.7 Parameter Organization and Addressing

The conceptual representation of parameter data varies widely among different control

protocols. A logical organization of parameters is often closely related to the addressing

mechanism used to address parameters. Machine implementations of parameter data are

not mandated by many protocol specifications; implementation of a specified logical data

organization is left to different implementations. Irrespective of the data structures used

to store parameter data, parameters are conceptually represented in different protocols

as:

 Distinct scalar values (SNMP);

 Distinct or related scalar values (ACN);

 Tables of related scalar values (SNMP);

 Variable sized hierarchies (SNMP, OSC);

 Fixed-size hierarchies (AES64);

 Record fields or object attributes (the AES-24 family, CopperLan, UPnP, and

IEEE 1722.1-2013).

Scalar values may be organized within a flat address space to denote hierarchical

relationships. For example the numeric parameter addresses or identifiers:

1000 1100 1110 1120 1200 1210 imply the hierarchy illustrated in Figure 2.5.

 Figure 2.5 Hierarchical Ordering of Numerical Parameter Addresses.

 Legend:
 ■ Level one
 ■ Level two
 ■ Level three

1110 1120 1210

1000

1100 1200

26

These types of numerical relationships are directly supported by ACN commands and are

discussed in Section 3.5.1.5 Control and Monitoring Commands (p.73).

SNMP is the only control protocol discussed in this dissertation that supports tabular

representations of parameter data. These tables are similar to relational database tables.

CopperLan uses a flat, numeric address space that is contained within different sub-

devices; a device object is partitioned into different sub-device objects where each sub-

device has its own address space. CopperLan parameter addresses can be related using the

numeric relationships defined in Figure 2.5. IEEE 1722.1-2013 uses fixed-address offsets

within fixed record data structures. These different parameter addressing schemes are

discussed in the chapters dealing with specific protocols and summarized in Chapter 10.

2.7.1 Parameter Classifications

Four types of parameters are commonly encountered within audio networks: control

parameters, DSP parameters, connection parameters, and configuration parameters.

Figure 2.6(a) shows that a control parameter is a protocol parameter that represents the

current state of a control.

Control widget values (representing the current states of controls) are outside of the

parameters defined by a control protocol and should be referred to as ‘control values’ to

distinguish them from the parameters defined by a control protocol. In Figure 2.6(b),

a control parameter is the recipient of a local or remote control value. ‘DSP parameters’

represent the state of DSP functions such as a gain value or a filter value. Although DSP

values are commonly tightly coupled to control values or to control parameters, they can

exist independently of controls or other parameters. As an example, consider an audio

device such as a digital effects unit that does not have a control surface. This device

contains signal processing functions that are controlled by directly addressing parameter

values via a network connection.

Figure 2.6 Control Values and Control Parameters.

Device

 Control
 Value

Controller

Controller

 Control
 Value

 2.6(a)
 2.6(b)

 Control
 Value

Network

 Control
Parameter

 Control
Parameter

27

Connection parameters represent connections between audio signals or control

streams. Connection parameters also identify audio source and destination terminals and

represent the status of connections. For example, AES64 defines identification, status and

connection parameters used to manage IEEE 1722 audio streams. Connection parameters

are discussed in Section 4.4.1 Representing Audio Terminals and Audio Connections

(p.104). Configuration parameters are parameters that are used to represent status

information. Examples include parameters that are used to indicate reachability, and

parameters that indicate the active layers of a ‘split’ mixing console design (Izhaki, 2012,

p. 137).

Finer distinctions may be used to differentiate parameters. For example, parameters

describing audio connections can be defined as external connection parameters and

internal connection parameters. These values define connections between different

devices and connection states that are internal to a device.

The theoretical differentiation of parameter types raises the question of whether such a

differentiation offers any practical advantage. This topic is investigated in Chapter 4.

2.7.2 Representing Parameter Values

Representing parameter values that use different measurement units, ranges and step

sizes across different devices poses significant challenges. Providing values that conform

to the range of data values used by a particular device or control involves discovering the

conventions used by the device or control, and converting values to conform to these

conventions. Control protocols typically represent parameter data using a wide variety of

machine data types. Different units of measurement are then accommodated within these

data types. For example, decibels may be converted to integral or floating-point data types.

To support different units of measurement and the implementation of these units within

different data types, protocols such as AES64 and CopperLan define proprietary data

measurement units. Protocol implementations usually provide conversion functions that

enable different data types to be converted to and from these proprietary units. The use of

a global unit of measurement allows different types of values to be expressed in a

standardized format. For example, values expressed in decibels or hertz can be mapped to

global measurement units. AES64 and Ember+ (discussed in Chapter 3) allow parameter

values to be modified by applying a function to a parameter’s value. AES64 ‘modifiers’ that

provide translation and scaling functions are discussed in Section 7.3.3.3 Parameter

Modifiers (p.192).

28

2.8 Parameter Management

Parameter management includes managing parameter relationships and providing atomic

access to large numbers of parameters. A distinction should be made between:

 Parameter groups where parameters are related to other parameters;

 Addressing schemes that address multiple parameters via a single protocol

command, and

 Bulk parameter access mechanisms.

Although all of these mechanisms access multiple parameter values, the intentions (and

implementation) of each mechanism are significantly different. A parameter group

consists of a set of parameters and a set of relationships among the members of the group.

A change to the value of any member of the group may trigger changes to the values of

other group members according to the defined relationships.

Addressing mechanisms that reference multiple parameters are commonly derived

from a matching process within a hierarchical addressing scheme. By using wildcards

within a hierarchical parameter address, a single protocol command may target multiple

parameters whose addresses match the wild-carded parameter address. Although these

mechanisms can be used to address groups of parameters, they differ from parameter

groups in that relationships between parameters within a group are not explicitly

specified. Bulk parameter access mechanisms are typically used to retrieve or initialize a

large number of parameters. Bulk parameter access allows the state of a device to be saved

or restored to an earlier state, allowing different device configurations to be saved and

loaded by devices or controllers.

2.8.1 Joining Parameters

A control relationship between two processes creates implicit relationships between data

values on each side of the relationship. These relationships have been formalized by the

developers of the AES64 protocol (Chigwamba, Foss, Gurdan, & Klinkradt, 2010), and

incorporated into the protocol. AES64 refers to these relationships as ‘parameter joins’

and provides API functions (Foss, 2009) that manage these relationships. A parameter

join is a type of subscription mechanism where changes to a parameter’s value are

propagated to the parameters joined to it. Relationships between joined parameters can

be unidirectional or bi-directional in nature.

2.8.1.1 Static and Dynamic Parameter Joins

Parameter joins that exist until the relationship is explicitly terminated are termed

‘static parameter joins’. Although join relationships can occur between any local or remote

29

parameters, they are commonly found between local control parameters and remote

parameters that are the recipients of local control parameter values as illustrated in

Figure 2.7. Note that an implied join relationship exists between the control and the local

control parameter. Static parameter joins are found in peer-to-peer protocols where each

networked device has a local address space, and can be implemented in partial-peer

networks.

The implementation of static parameter joins in client-server protocols where the

client does not have a local parameter address space is not possible. The concept of a

parameter join is an AES64 concept where parameters themselves store relationships to

other parameters. Many control protocol parameter representations do not provide this

capability. However, relationships between local and remote parameters can be

dynamically implemented by:

 Specifying arguments to a control point invocation, or

 Specifying multiple target parameters within a single command message when a

protocol (such as SNMP) allows multiple commands to be packed into a single

PDU.

These relationships are termed ‘dynamic parameter joins’. Figure 2.8(a) illustrates an

implementation of a dynamic parameter join where a control specifies a remote ‘joined’

parameter. When the control changes state, the address of a remote target parameter is

passed to the control's event handler. The specified remote parameter is then updated,

creating a dynamic join relationship between the local control variable and the remote

parameter. The term 'local control variable' is used because the controller does not have a

local parameter address space.

In Figure 2.8(b), a control directly updates a remote parameter (the target

parameter) which updates a specified joined parameter. The name of the joined parameter

is provided as an argument to the accessed parameter (or control point invocation that

Figure 2.7 A Static Parameter Join.

Network

Remote Device Control
 Value

 Control
 Parameter

 Remote
 Parameter

Parameter Join

 Local Device

30

implies a parameter access). The remote control point receives the name of the joined

parameter as an argument and updates the specified join parameter as well as the target

parameter managed by the control point. This creates a dynamic join relationship between

the two remote parameters. These types of dynamic updates can be implemented within

client-server architectures where a controller does not have a local parameter address

space. OSC and UPnP are examples of protocols where these dynamic parameter

relationships can be implemented. Dynamic updates can also be implemented in SNMP

where a single command can specify multiple target parameters.

There is no accepted terminology to refer to relationships between:

 A control and its local event handler;

 A control and its associated control parameter;

 A local event handler and a remote parameter or remote control point.

Control
 Value

Figure 2.8 Dynamic Parameter Joins.

Figure 2.8(b)

Controller

Device

Target Parameter,
Joined Parameter,
Control Value

 Event Handler

 Target Joined
Parameter Parameter

 SET Target Parameter
 (Joined Parameter,
 Control Value)

 Control Point
 (JoinedParameter,
 ControlValue)

Device

Controller

 Event Handler
 (Target Parameter,
 Control Value)

 Target
Parameter

 SET Target Parameter
 (Control Value)

 Control Point
 (Control Value)

Target Parameter,
 Control Value Control

 Value

 Control
 Variable

Figure 2.8(a)

Control
 Value

Control
 Value

31

The relationship between a control and a control parameter is termed a

‘linked relationship’ to distinguish this relationship from a parameter join.

These different relationships define a ‘control path’. A control path is defined as the

sequence of event handlers, remote procedure calls, callback functions or parameter

accesses that are triggered by an event such as a control state change.

2.8.2 Grouping Parameters

Grouping parameter values is a concept that was described by Roey Izhaki (Izhaki, 2012)

and refined and formalized by the AES64 developers (Chigwamba, Foss, Gurdan, &

Klinkradt, 2010). An example of a parameter group is a master-slave group where changes

to the value of the master parameter are propagated to all slave parameters.

A parameter group is essentially a set of parameter joins. Three broad approaches exist to

the implementation of parameter groups:

 Represent all related parameters using collections of parameters where a collection

of related parameters is maintained by each parameter;

 Represent the group using an appropriate data structure or group class within an

object-oriented representation;

 Represent the group dynamically as arguments to a parameter update or control

point invocation as discussed in the previous section.

Group representations within control protocols that do not natively support groups must

use the data structures provided by a protocol. Choice of a group representation is often

constrained by the sophistication of the parameter representation. Parameters that are

represented by unrelated scalar values such as the parameters defined within UPnP

services cannot represent relationships to other parameters.

2.8.2.1 Static and Dynamic Parameter Groups

A ‘static parameter group’ is a parameter group represented within one or more data

structures. Static parameter groups must be created and managed by a control protocol.

This approach to implementing parameter relationships is only possible if a protocol

explicitly supports groups or provides data structures that can be used to represent

parameter groups. Examples of different types of parameter groups and group

relationships are provided in Section 7.3.3 Parameter Relationships (p.190) with

reference to AES64. AES64 allows different relationships between parameter values

within a parameter group to be specified.

In a similar manner to dynamic parameter joins, parameter groups can be

represented dynamically. This type of parameter group is referred to as a

32

‘dynamic parameter group’. Grouping relationships within a dynamic parameter group

only exists while the protocol command that addresses the grouped parameters is

executing. Dynamic parameter groups are implemented by:

 Parameters (or their associated control points) being addressed using wildcard

mechanisms within a parameter address.

 Using addressing schemes where parameters are ordered by an identification

scheme that uses known numeric offsets as found in ACN. Protocol commands

can then address several parameters by simply specifying the starting parameter

identifier and the number of parameters to be addressed.

 Using arguments to protocol commands that specify the members of a parameter

group, as well as the relationships among group members.

This dynamic grouping scheme is similar to the dynamic join relationships shown

previously in Figure 2.8.

 Specifying multiple target parameters within a single command PDU.

 Linking controls on a control surface.

Wildcard mechanisms are found in OSC and AES64 and are discussed in the chapters

devoted to these protocols. A wildcarded parameter address does not indicate the

relationships between matching parameter values; all targeted parameters are updated to

the same value. The use of arguments to represent parameter joins and parameter

relationships require that protocol commands support a variable number of arguments.

These implementations are discussed further with reference to OSC in Chapter 5.

SNMP allows a single command to address multiple target parameters as discussed in

Section 6.5.1 Reading and Writing Parameter Data (p.155).

2.8.2.2 Grouping Controls

Parameters can also be naively grouped by grouping the controls on a control surface to

create a ‘control join’. When a control changes state, the state change triggers state changes

in all of the other local controls that are grouped together. All parameters linked to the

grouped controls will be updated when the controls change states. The EuCon control

protocol discussed in Chapter 3 is built around the notion of control joins between a

controller’s control surface and the controls of a controlled device.

2.8.3 Bulk Parameter Operations

Control protocols may provide commands that address large numbers of parameters.

These operations, introduced earlier in this chapter include:

33

 The use of wildcards within hierarchical parameter addresses to reference groups

of parameters;

 Dedicated bulk parameter-addressing mechanisms that allow groups of

parameters to be managed and accessed.

Parameter addresses that contain wildcards are typically used for control functionality.

Dedicated grouping mechanisms such as the mechanism provided by AES64 (discussed in

Section 7.3.4 Bulk Parameter Management (p.193)) are typically used for:

 Bulk initialization or retrieval of parameters, and

 Saving and restoring specific device configurations.

Bulk access mechanisms may require flow control support or buffer management to deal

with the transfer of large data blocks across a network.

2.9 Control Protocol Commands

The three core control functions provided by nearly all control protocols are:

 GET () operations that read remote parameter values;

 SET(..) operations that update remote parameter values;

 Subscription - monitoring changes to remote parameter values or other remote

events using a subscription mechanism.

Two models of control protocol design have been identified by Gross and Holtzen (Gross

& Holtzen, 1998):

 A ‘descriptive approach’ that emphasizes the definition of parameters in

conjunction with a small set of commands;

 A ‘functional approach’ that emphasizes the functional requirements of a control

protocol using remote procedure calls. This approach is typically used by object-

oriented control protocols.

These two approaches were conceived by comparing SNMP to AES-24. The descriptive

approach is built around changes to parameter values that describe the state of a device

and only uses commands that read and write parameter values. The functional approach

uses methods that are executed within the context of the functional requirements of

managed objects. This distinction is analogous to the Reduced Instruction SET

Computing (RISC) and Complex Instruction SET Computing (CISC) approach to

microprocessor design. An advantage of the descriptive approach is that it reduces the

number of commands required by a protocol. However, useful operations exist that cannot

be elegantly expressed by variable state changes. Examples include determining the

34

children of a device component during service discovery, and the management of

parameter groups. These operations must be implemented as side effects of GET() and

SET(..) commands that access parameter values and are discussed in Section 2.9.1.2

Action Parameters (p.35) and Section 6.5.3 User-Defined SNMP Requests (p.158).

 Commands used for purposes other than control and monitoring vary considerably

across different control protocols. For example, commands may manage groups of

parameters as found in AES64 or iterate through a collection of parameters as found in

SNMP. Control protocol design is discussed further in Chapter 10 and control protocol

design heuristics are presented in Appendix 1.

2.9.1 Implementing Control Commands

The implementation of control commands within connection-oriented or connectionless

network messages influences reliability. For example, the ‘Quality of Service’ (QoS)

provided by UDP is a controversial topic, as the reliability of UDP control messages is

dependent on many factors including general TCP traffic patterns (Sawashima &

Sunahara, 1997).

Control protocols update parameter values when control messages are received and

processed by a protocol stack. Parameter data is usually defined and managed by the

control protocol. Corresponding control points are invoked as side effects of parameter

accesses. Control point invocations support application-specific functionality such as the

scaling of parameter values. Where applications must define and update parameter data,

parameter access is commonly associated with the invocation of a control point.

This creates a correspondence between a parameter value and a specific control point.

Chapter 5 illustrates this type of functionality with reference to OSC.

2.9.1.1 Commands and Services

A distinction must be made between services and commands. Protocol commands are

atomic operations defined by a protocol’s specification. A service may consist of multiple

atomic operations and may also use other services. For example, a service that retrieves

layout information for a control may require multiple GET() commands.

Consider a control that has a relative position to another control on a control surface.

Before the control can be rendered, the referential position used to derive the relative

position must be determined. Where the order of these operations is significant (such as

in the previous example), the operations are referred to as the ‘process of the service’

(Johnsen, Rustad, Hafsoe, Eggen, & Gagnes, 2010, p. 10).

‘Native commands’ are the commands defined by a control protocol’s specification.

Functionality not natively supported by a control protocol can sometimes be implemented

35

by a native command. Such an implementation is termed a ‘synthesized command’. An

example of a synthesized command is where arguments to a protocol command are used

to provide data that allows the semantics of the command to be extended. As discussed

previously, arguments to control protocol commands can be used to implement dynamic

parameter joins and dynamic parameter groups. These commands are synthesized

commands. Synthesized commands must always execute atomically, updating all of the

members of a parameter group by using distinct SET(..) commands does not constitute a

synthesized command. Synthesized commands are discussed in some of the chapters

devoted to specific control protocols and the use of synthesized commands in different

protocols is summarized in Appendix 10.

All control messages are discrete in nature, as temporal relationships between

successive data packets do not influence the interpretation of the transmitted data.

By contrast, media streams are continuous in nature, temporal relationships between

streamed data packets (determined by the sampling frequency) are a fundamental

property of the stream itself. Continuous control messages are thus transmitted as a

stream of discrete messages. For example, when fader movements generate multiple

control messages, temporal relationships among the generated messages are a side effect

of the message generation and are not a property of the message stream itself.

2.9.1.2 Action Parameters

Implementations of functional requirements such as managing parameter groups within

protocols that do not explicitly support these concepts may require that a parameter be

accessed only for the side effect of the invocation of its corresponding control point. Figure

2.9 shows a parameter that is accessed solely for the side effect of the parameter access.

This type of parameter that triggers functionality provided by a control point is termed an

‘action parameter’.

Device

Control Point
{ Execute f()
}

Controller

 SET
Parameter
 Value

 1. Update Parameter
 Value

2. Invoke

Network

Command

Figure 2.9 Invoking an Action Parameter.

 Parameter
 Value

Protocol Stack

 Action
Parameter

Side Effect

36

Action parameters trigger arbitrary functionality that cannot be represented by parameter

states. Examples include adding a parameter to a parameter group or triggering the

execution of a search algorithm. An example of the use of an action parameter is provided

in Section 6.5.1.1 Optimizing SNMP Requests (p.156).

A control protocol may invoke more than one control point when a parameter is

accessed. This design is found within many SNMP implementations although it is not

mandated by the protocol’s specification. These control points are typically invoked before

and after a parameter is accessed, and may be termed ‘pre-update control points’ and

‘post-update control points’. Pre-update control points support parameter value

modifications that occur before parameter values are written to a protocol stack and

exposed to the network. For example, a pre-update control point can scale parameter

values or translate parameter values between different measurement units. Conversely,

control points may be invoked without reference to any particular parameter value.

This type of dynamic behavior is possible in control protocols such as OSC and UPnP that

support generic control points implemented as remote procedure calls.

However, invocation of a control point within these control protocols typically implies one

or more parameter accesses.

2.9.1.3 Blocking and Non-Blocking Protocol Operations

Control protocol commands that generate a response can be implemented to exhibit

blocking or non-blocking behavior. Blocking implementations wait until a response to a

transmitted command is received. Non-blocking implementations allow a response to be

handled within a separate thread while the transmission of other control commands

continues. This improves the performance of protocol commands and allows responses

that are not of interest to be ignored by a controller. A non-blocking implementation of a

protocol command is usually provided if the command is likely to take a significant

amount of time to complete. For example, bulk parameter requests that require multiple

responses will have a significant influence on the performance of a control protocol.

Blocking and non-blocking commands are also referred to as ‘synchronous’ and

‘asynchronous’ commands respectively. This terminology is potentially ambiguous as

asynchronous network communications also refer to communications that are not

dependent on a clock signal.

2.9.1.4 Command Acknowledgments

Protocols that return a command acknowledgment should be implemented so that

parameter data changes are ‘idempotent’ (Gross & Holtzen, 1998, p. 3). Idempotence

describes the properties of an operation that can be applied more than once to provide an

37

outcome (or state) that would be achieved by a single application of the operation. This

ensures that if a response is not received, the re-transmission of the command does not

create unwanted side effects. For example, when an offset value is used to update a

parameter by adding the offset to the parameter’s current value, each transmission will

alter the parameter’s value. If idempotence is required, absolute values must always be

used to update parameter values.

Mandatory acknowledgments that are not required by a particular control scenario

consume bandwidth unnecessarily. Streamed control commands such as the sequence of

messages generated by moving a fader do not require acknowledgments.

Acknowledgments are only required for critical operations such as service discovery

requests.

2.9.2 Monitoring Parameter Values

Subscriptions to parameter values in object-oriented software designs are often

implemented by the ‘observer’ design pattern (Gamma, Helm, Johnson, & Vlissides,

1995). Observers are subscribers that register an interest in specific data (parameter)

values and receive update messages when these values change. The observer pattern has

several possible implementations (Eales, 2006). An application typically subscribes to

notifications of changes in specific parameter values and provides a callback function to

process received notifications. Audio applications commonly use remote parameter

subscriptions to monitor meter levels. Parameter subscriptions can be:

 ‘Periodic subscriptions’ that transmit parameter values at regular intervals.

 ‘Aperiodic subscriptions’ that only transmit parameter values when a parameter’s

value changes or following an event such as the filling of a buffer of values.

Periodic subscriptions are thus always ‘event-based subscriptions’; aperiodic

subscriptions may be ‘value-based subscriptions’ or ‘event-based subscriptions’. Although

a change to a parameter’s value can be regarded as an event, for semantic clarity, event-

based subscription exclude parameter value changes. Examples of periodic and event-

based subscriptions within the context of monitoring meter values are provided in the next

section. Monitoring can also be achieved by polling a parameter’s value. Polling remote

parameter values by a controller is an anachronism that is only used by control protocols

that do not support parameter subscriptions.

2.9.2.1 Bulk Transmission of Monitored Parameter Values

Performance and quality of service are influenced by two common transmission schemes.

If parameter values are immediately transmitted as they become available, the system is

38

P1 … … PN

T1 T1 Sleep TN TN Sleep

TN Write T1 Write

If (N writes)
 send Transmit Buffer
 wake N threads

Figure 2.10 Aperiodic Non-Work-Conserving Data Transmission.

called ‘work-conserving’, otherwise it is referred to as a ‘non-work-conserving’ system

(Microsoft Corporation, 1999). Work-conserving implementations are event-based

subscriptions that have a minimum latency and a maximum bandwidth overhead. These

implementations can cause buffer overflows when receive buffers are not large enough to

support the bandwidth used. Non-work-conserving implementations are event-based or

periodic subscriptions that typically reduce bandwidth usage but may introduce an

unacceptable latency as the size of the transmitted buffer increases.

Non-work-conserving implementations often use data queuing schemes that are referred

to as ‘packet-shaping’ schemes (Microsoft Corporation, 1999). Packet shaping is

commonly used to limit bandwidth usage by using a real-time clock to enforce periodic

transmissions of queued data. Using metering as an example, Figure 2.10 illustrates a non-

work-conserving system where each meter executes in its own thread and writes its

current parameter value into a determined transmit buffer slot.

Following a write operation, the metering thread is put to sleep indefinitely. When all

threads have written their values, the buffer is transmitted and all threads resume

execution. This implementation may introduce an unacceptable latency as the number of

threads increases. Assuming constant network performance, latency will be linearly

proportional to the number of metering threads. Buffer transmission time will not be

significantly influenced by the buffer size, and the time to process and display the data is

linearly dependent on N and cannot undergo further optimization. The total time to

display N metering threads on a remote controller is given by:

To improve QoS, the time taken to produce the transmit buffer must be improved.

To implement an update where QoS has a bounded latency, a timer thread shown in Figure

2.11 is used to transmit the data buffer. The buffer is transmitted when all values have been

updated or on expiry of the timer period. Where buffer slots are not filled, jitter occurs for

the values having unfilled slots. Assuming a fair thread scheduling algorithm, jitter will be

N

∑

i=1
 t thread i + t transmit + t display Ttotal =

39

randomly introduced across the transmitted values in exchange for a QoS that places an

upper bound on the latency for all transmitted values.

If multi-threaded applications are not deemed to be desirable (Ousterhout, 1995),

meter values may be randomly read within a timer period. On expiry of the timer period,

the buffer is transmitted.

2.9.3 Automation

The ability to record time-stamped commands and execute these commands at a future

time is commonly found in applications such as ProTools (ProTools Automation Modes,

2012), which is widely used within the film and video industries to edit and synchronize

audio and video tracks. This capability is also extremely valuable for real-time control

scenarios where the complexity of the settings does not allow an engineer to make accurate

changes to control states. Automation is an integral feature of Musical Instrument Digital

Interface (MIDI) sequences where MIDI commands are separated by delta times. The use

of MIDI for non-musical applications is supported by the MIDI Show Control protocol

and the MIDI Visual Control protocol (MIDI Manufacturers Association, 2011). With the

exceptions of OSC’s ability to store time-stamped commands and the ability of AES64 to

generate time-stamped events, automation features are not generally supported by control

protocols. OSC time stamps (Schmeder & Freed, 2008) are discussed in Section 5.3.3

Automation in OSC (p.126). Support for automation in AES64 is discussed in Section 7.4.3

Automation in AES64 (p.198).

2.9.3.1 Ramping Parameter Values

Ramping is commonly found in lighting control systems where lights are brightened

(‘ramped up’) or dimmed (’ramped down’) over a specified time frame. The term is derived

from the ‘Ramp Function’ (Tan & Jiang, 2008, p. 12) found in signal processing. ACN

allows parameters to be ramped by a protocol command that updates a parameter by

specifying a start value, step size and an update period. Within each update period the step

size is applied to the parameter’s value. The previously mentioned automation features

found in OSC allow a parameter to be ramped by repeatedly changing a parameter value

 P1 … … PN

Figure 2.11 Periodic Non-Work-Conserving Data Transmission.

T1 T1 Sleep

T1 Write

Ttimer

TN Write If (N writes OR t (timer expired))
 { Transmit Buffer
 wake N threads
}

TN TN Sleep

40

at specific times over a fixed time period. AES64 has a dedicated mechanism discussed in

Section 7.4.3 Automation in AES64 (p.198) that supports ramping of parameter values.

2.10 Connection Management Principles

Two broad types of connection management exist within audio devices and audio

applications, audio connection management and control connection management.

Both of these types of connection management involve the configuration of sources and

destinations for audio streams and control streams.

2.10.1 Audio Connection Management

No standard protocol exists for the management of connections between media streams.

A protocol that supports peer-to-peer connection management of media streams for

teleconferencing was described in 1993 (Schooler, 1993) and has a published specification

(Schooler, 1992). Standard protocols used for stream reservation that provide limited

support for connection management include the Session Description Protocol (Handley,

Jacobson, & Perkins, 2006) and the Real Time Streaming Protocol (Schulzrinne, Rao, &

Lanphier, 1998). These protocols are used by the Ravenna audio transport protocol

(Hildebrand, 2010). Connection management functionality is often implemented using

the general control capabilities of a control protocol. This approach is used in CopperLan,

AES64, and an OSC implementation (named AVBC) to configure IEEE 1722 media

streams (Koftinoff, 2010).

Implementation of audio connection management involves three fundamental

activities:

 Discovery of the available audio sources and audio destinations, collectively

referred to as ‘audio terminals’;

 Determination of the candidate destinations for each audio source or vice-versa;

 Creating or tearing down the connections between audio sources and audio

destinations.

Audio terminals may be associated with a single audio channel or a group of audio

channels. A group of networked audio channels is referred to as an ‘audio stream’.

Sophisticated connection management applications require a view of all audio streams

and all devices on the network. Connection management requires that devices advertise

their audio input and output connection points to a network, allowing these connection

points to be managed by connection management applications. Client-server architectures

may not provide this view as only the local audio streams of a controlled device are

41

advertised to controllers. Peer-to-peer architectures allow devices to determine all

available network streams.

Devices can expose connections to a network using the capabilities of a control

protocol, by using third-party service discovery protocols, or by using the discovery

capabilities that may be provided by the audio transport technology. Second-generation

control protocols such as AES64, HiQnet and CopperLan are able to manage connections

across an entire network. This study does not examine the service discovery and

enumeration capabilities offered by different audio transports. A detailed discussion of

different aspects of connection management is provided in Section 4.4 A Connection

Management Model (p.103).

2.10.1.1 Message-Based Race Conditions

Concurrent control messages have the potential to create race conditions. The creation of

connections between audio streams and bandwidth reservation requests are scenarios

where race conditions may produce inconsistent states between networked devices.

Race conditions caused by access to shared memory are termed ‘data races’, while race

conditions among messages within a distributed system are termed ‘message races’

(Huang & Elrad, 1998, p. 273). Figure 2.12 illustrates message races using

Message Sequence Charts. This notation was developed by the International

Telecommunication Union (International Telecommunication Union, 1998) to depict

message flows in concurrent systems.

An example scenario shown in Figure 2.12 consists of two controllers that both transmit

SET(..) commands to a single target device. When these commands are received, the first

message triggers event E1, while the second message triggers event E2. Events E1 and E2

occur non-deterministically as a message-based race condition exists between the two

messages. A formal model of message-based race conditions and race condition detection

are discussed in a thesis entitled Detecting Race Conditions in Distributed Concurrent

 Controller1 Device Controller2

SET()

SET() Time
E2

E1

E1

Network

Figure 2.12 Message-Based Race Conditions.
 (Adapted from (Lu, 2000, pp. 23-24)).

42

Systems (Lu, 2000). Solutions to race conditions created by connection management

scenarios that utilize the inherent characteristics of the implementation environment are

presented in Chapter 11.

2.10.2 Control Connection Management

As the sources and destinations of control data flows are parameter values, control

connections may be implemented as parameter joins or parameter groups.

CopperLan and AES64 both support the notion of control connection management.

However, these protocols approach connection relationships differently.

CopperLan creates connections between control streams by linking their control points;

AES64 creates parameter joins to link parameters directly to each other.

2.11 Clocks and Timing

Execution of control commands at a time specified by a clock source or synchronization

between control commands and audio streams are not commonly found in control

protocols. The only protocols that specify clocks are IEEE 1722.1-2013 and CopperLan.

IEEE 1722.1-2013 uses the Precision Time Protocol (Institute of Electrical and Electronics

Engineers, 2008), while CopperLan defines proprietary timing messages. IEEE 1722.1-

2013 must manage media streams having different sample rates; CopperLan specifies a

master clock source to synchronize different audio and MIDI streams. Control commands

are usually generated within time spans defined by human perception, and are not linked

to the timing resolutions found within computers or other network hardware. This is a

result of control commands being generated by human interaction with devices rather

than by machine events.

2.12 Summary

This chapter has introduced and discussed the core concepts that are encountered when

studying control protocols. These concepts were discussed with reference to:

 Network Architectures;

 Device discovery and monitoring device reachability;

 Service discovery and enumeration;

 Control surface representation and creation;

 Device control and monitoring;

 Parameter organization and addressing;

 Parameter management;

 Connection management.

43

As no standard, formal definitions of many of the concepts discussed in this chapter exist,

terminology was introduced to describe concepts as these concepts were encountered.

44

Chapter 3

An Overview of Control Protocols

3.1 Introduction

This chapter provides an overview of the current control protocol landscape with reference

to the various environments within which these protocols are commonly employed.

Design characteristics and the salient features of several control protocols that are not

examined in detail in later chapters are discussed. These control protocols are typically

proprietary protocols, or protocols that do not have a mature implementation as

previously outlined in Section 1.3.1 Protocols Discussed in this Dissertation (p.7).

Control protocols are often initially conceived and developed to cater for specific

application areas such as:

 The control of software and hardware for computer music applications;

 Professional studio and live sound environments;

 Sound installations that are found in stadiums, exhibitions and conference

centers;

 Broadcast environments;

 Lighting applications;

 The control of scenery and effects for stage productions and theme parks

(commonly referred to as ‘show control’);

 Home networks that support consumer devices used to store and play media

streams.

Many control protocols can be used within different application areas. To provide

coherence, this chapter discusses different control protocols within the context of their

intended usage, or with reference to the environments within which they are currently

being used.

45

3.2 Computer Music Applications

The field of computer music embraces many application areas including:

 Music composition;

 Recording and performance;

 Sound synthesis;

 Music education.

An early control protocol for computer music applications, the Remote Music

Control Protocol (RMCP) (Goto, Neyama, & Muraoka, RMCP: Remote Music Control

Protocol - Design and Applications, 1997) never gained widespread usage. RMCP was

primarily designed to support MIDI over Ethernet and to support coordinated

performances by distributed ensembles. An RMCP conductor and an RMCP animation

server provided synchronization and graphical communication between remote

performers (Goto & Hashimoto, 1993). Two protocols discussed in this section that

provide a general control environment for computer music applications are Open Sound

Control and CopperLan.

3.2.1 Open Sound Control

Open Sound Control (OSC) (Wright & Freed, 1997), originally conceived as a replacement

for MIDI, has become a widely used control protocol for computer music applications.

These application areas are varied (Phillips, 2008), and include controlling physical

devices, as well as controlling software used for sound synthesis and algorithmic

composition. The conceptual simplicity of OSC has resulted in a wide variety of

implementations supporting different hardware platforms and programming languages.

OSC has also been used for lighting control (Burghardt & Minini, 2010), as well as larger

control systems that integrate lighting, audio and show control functionality.

Examples include the D-Mitri audio and control environment from Meyer Sound

(Meyer Sound, n.d.), and show control installations at Disneyland in Anaheim, California

(Fraietta, 2008, p. 20). An OSC implementation termed AVB Control (AVBC) has been

developed to manage AVB media steams (Koftinoff, 2010).

OSC is designed around a hierarchical organization of remote procedure calls and is

easily adapted to serve a wide range of control scenarios. The protocol also supports

automation by scheduling the execution of time-stamped OSC commands.

These features of OSC are discussed in Chapter 5.

46

3.2.2 CopperLan

In addition to general control capabilities, CopperLan supports MIDI over Ethernet

(Klavis Technologies, n.d.) and networked audio stream management. CopperLan uses a

proprietary transport layer, and provides both device and service discovery using

proprietary discovery mechanisms. Networked devices expose their architectures and

services to controllers using the capabilities of a proprietary OSI level three middleware

layer. Device components and services are specified by extending abstract library classes.

The middleware layer exposes this information to controllers that use the information to

create control surfaces that are automatically linked to the services advertised by remote

devices.

Although CopperLan can be used as a general-purpose control protocol, its support

for MIDI allows the protocol to be used with many existing computer music applications.

Like the EuCon protocol (discussed later in this chapter), CopperLan emphasizes the

synchronization of control surfaces between a controller and a controlled device.

The CopperLan protocol is discussed in Chapter 8.

3.3 Professional Studio and Live Sound Environments

The first attempt to provide a standard control protocol for professional audio

environments was AES-24, developed by the Audio Engineering Society (AES)

(Audio Engineering Society, 1999). Protocols derived from AES-24 include MambaNet

(Prins, 2009), and the Open Control Architecture (OCA) (Open Control Alliance, 2013).

OCA is being developed by Bosch Communication Systems, and is undergoing

standardization within the AES as Project X-210 (Audio Engineering Society, 2012).

This section discusses the control protocols derived from AES-24, as well as EuCon (Milne,

Campbell, Boyer, McTigue, & Kloiber, 2006), HiQnet (Harman Pro Corporation, n.d.),

AES64 (Audio Engineering Society, 2012) and the Media-Accelerated Global Information

Carrier (Juszkiewicz, et al., 2003).

3.3.1 AES-24

AES-24 was designed to be used with different network transports and to provide

interoperability among different networked audio devices, while also being extensible.

Although the design of AES-24 uses an object-oriented approach, the terminology used

differs from accepted object-oriented terminology. Object attributes (including device

parameters) are termed ‘properties’ (Audio Engineering Society, 1999).

Object methods that read or write properties are referred to as ‘property access methods’.

The only known implementation of AES-24 is the implementation done by Bradley

47

Sub-Network

Figure 3.1 AES-24 Device Structure and Network Architecture.

 Device
 Manager

 Device

 Device

 Device
 Manager

 Unit

 AES-24 Functional Objects

 Unit

 NetworkManager

 Registry
 Manager

 Registry Device

 Unit
 Gateway Device

 Sub-Network

Klinkradt (Klinkradt, 1999) at Rhodes University. AES-24 was officially withdrawn by the

AES in 2004 (Audio Engineering Society, 1999).

3.3.1.1 Network Architecture

Each AES-24 node is termed a ‘unit’ and contains a ‘NetworkManager’ object that acts as

an interface between the node and a network. Figure 3.1 shows that a unit may contain

multiple ‘devices’ where each device has a single ‘DeviceManager’ object.

Devices represent a physical or logical partitioning of a unit where multiple devices may

share a single network address. However, each device must have a unique transport layer

endpoint. A registry device is regarded as a specialized device that contains a

‘RegistryManager’ object. The registry manager assigns identifiers to networked devices

and polls devices to determine their reachability. An AES-24 network may span multiple

sub-networks where each sub-network is managed by one registry device.

3.3.1.2 Device Representation

There are three broad categories of devices: ‘standard devices’, ‘gateway devices’ and

‘registry devices’. Gateway devices provide connectivity between different sub-networks,

while registry devices provide service discovery. Figure 3.1 illustrates the AES-24 network

architecture as well as the structure of AES-24 networked devices.

48

Standard devices contain instances of different AES-24 ‘functional’ objects that

implement the control and monitoring functionality provided by devices.

3.3.1.3 AES-24 Classes

The different components of the AES-24 protocol are implemented as an object-oriented

class hierarchy where all classes are derived from an abstract base class termed the ‘Root’

class shown in Figure 3.2. Classes ‘UserInterface’, ‘Functional’ and ‘Intermediate’ are all

derived from the Root class that provides common properties and methods required by all

classes. For example, all objects have a name and a handle (provided by the root class) that

uniquely identify each object.

Intermediate objects provide translation between instances of different classes such

as ‘UserInterface’ and ‘Functional’ objects. The ‘Functional’ class serves as a base class for

classes that provide control and monitoring capabilities. ‘Actuator’ objects are responsible

for updating parameter data by dispatching control messages across the network. ‘Sensor’

objects provide monitoring functionality by acting as observers that transmit monitoring

messages in response to events such as parameter value changes. Actuators and sensors

provide object-oriented implementations of the core functionality (GET(), SET(..) and

parameter subscription commands) found in most control protocols. Figure 3.2 shows

that ‘UserInterface’ objects and the ‘Actuator’ and ‘Sensor’ objects that they interact with

are clearly separated.

Additional classes provide authorization and connection management capabilities.

Security and network management functionality are provided by the ‘SecurityManager’

and ‘NetworkManager’ classes. A ‘SignalFlowManager’ class provides audio connection

management capabilities.

Figure 3.2 The AES-24 Core Class Hierarchy.

 Sensor Actuator
Level 2

 Root Level 0

Level 1 UserInterface Functional Intermediate

49

3.3.1.4 AES-24 Methods and Events

Property access methods are used to access object properties that typically represent

device parameters. AES-24 also supports a subscription mechanism where state changes

termed ‘events’ cause objects to transmit network messages. The state of an object

(as determined by the values of an object’s attributes) triggers events. Events are defined

in a data structure termed an ‘event table’ that specifies the contents of event messages

and the target objects for these messages. Messages that are generated as the result of an

event can invoke any object method and do not differ from other AES-24 messages.

An event table can be dynamically modified as changes occur within an AES-24 network.

Examples of these changes include the conditions that trigger event messages and the list

of subscribers for a specified event.

3.3.1.5 AES-24 - Commentary and Evaluation

Use of a centralized registry creates a critical vulnerability where the entire network is

dependent on the registry. Recent control protocols have tended to prefer peer-to-peer

network architectures that do not use a centralized registry. A solution to this vulnerability

that uses multiple distributed registries is presented in Chapter 11.

The design of AES-24 has influenced the development of other control protocols that

are discussed in the later sections of this chapter. John Huntington has commented on the

failure of AES-24 to become an accepted standard:

"Two primary factors led to the failure of this standard effort. The first is that no

clear market demand or commercial pressure ever developed for the creation of a

unified audio control standard….. The second factor is that with the growth and

power of modern DSP technologies, audio systems are becoming increasingly

centralized with more power housed in less physical devices, so there are less

devices and types of devices that need to be connected and controlled…"

 (Huntington, 2012).

The first factor cited in this quotation is plausible, as many proprietary protocols such as

HiQnet and EuCon (discussed later in this chapter) appear to have a customer base that is

sufficient to support these protocols. The second factor is more contentious. A typical live

sound scenario will typically consist of multiple mixing consoles and several microphones,

amplifiers and effects units. Additionally, conference centres and broadcast studios

usually have multiple venues that contain a variety of hardware devices. Centralization

may reduce network dependencies, but it does not eliminate the need for managing and

controlling multiple networked devices.

50

The chair of the AES working group (AES working group SC-10) that was responsible

for AES-24 commented on the withdrawal of the AES-24 standard:

"What was missing, however, was a marketing model for how a common control

protocol would benefit all producers of control systems. Without a clear ability to

profit from a standard, it was difficult to keep the attention of the very companies

for whom it was intended. In the end, AES-24 languished... None of this is to say that

the ideas behind AES-24 were poor or that the work that was performed was

insignificant." (Karagosian, 1999).

These comments reiterate the first point made by John Huntington quoted in Section 1.4.1

Characteristics of Successful Standards (p.9), that a successful standard must have a

commercial market that requires the standard.

3.3.2 Open Control Architecture (X-210)

Open Control Architecture (OCA) can use the standard IP-based network protocols

illustrated in Figure 3.3. The goals of the protocol (Berryman, 2011) include:

 Compatibility with standard IP networks and the ability to use other transports;

 Both local-area and wide-area scalability;

 Independence from any specific hardware or software environments;

 Reliability mechanisms for acknowledging operations and handling the loss of

control messages;

 The provision of a minimum QoS;

 Platform independence;

 Device and service discovery capabilities;

 The provision of network security.

OCA uses an object-oriented design that is conceptually related to AES-24.

The OCA specification (Open Control Alliance, 2011) consists of three main parts, the:

 Open Control Framework (OCF) that is used to describe devices and provides a

generic communication model that can be used with different network

transports;

 Open Control Classes (OCC) that define object-oriented classes which

implement all OCA functionality;

 Open Control Protocols (OCP) that describe the implementation of OCA

commands on different network transports. For example, the OCP.1 specification

defines OCA for TCP/IP networks.

51

OCA defines a large set of abstract data types that represent common scalar values,

collections and specialized data types representing values associated with clocks and DSP

functions (Bosch Communication Systems, 2013).

3.3.2.1 The OCA Protocol Stack

The OCA protocol stack is illustrated in Figure 3.3 with reference to the levels of the OSI

network model. DNS-SD is used for service-discovery, while control functionality is

provided by the OCP that forms the core of the OCA protocol. The OCP also supports

connection management between audio and video streams. The Transport Layer Security

(TLS) is a cryptographic protocol that provides security for OCP network traffic. Lower

levels of the protocol stack consist entirely of standard, open network protocols.

Implementations of the OCP have been made for several platforms

(Bosch Communication Systems, n.d., p. 2). To enable portability, the OCP consists of a

Host Interface Layer and an OCA Layer consisting of the Open Control Classes.

The Host Interface Layer provides platform-specific support for the OCC. Version 1.2 of

the OCA API defines 114 classes.

3.3.2.2 Device Representation

Figure 3.4 shows that the OCA device model includes ‘Manager’, ‘Worker’ and ‘Agent’

classes. Worker classes are base classes for ‘Actuator’ and ‘Sensor’ classes that are similar

to their AES-24 counterparts as illustrated in. ‘Agent’ classes provide specialized control

functionality that is not concerned with signal processing. These classes typically provide

extended capabilities that are not found in AES-24. Examples of ‘Agent’ sub-classes

include:

 A ‘Grouper’ class that supports parameter groups where changes to the value of a

group member are propagated to all other parameters within the group;

 7

 6

 5

 OCP
 mDNS DNS-SD

 TLS

 4 TCP UDP

 3 IPv4 - IPv6

 1-2 Ethernet

(Open Control Alliance, 2011, p. 11).

Figure 3.3 The OCP Protocol Stack.

O
SI

 L
ev

el
s

52

Pad

Phantom
Power Switch

Figure 3.5 OCA Microphone Channel Block Example.

(Bosch Communication Systems, 2012, p. 23).

2-pos
switch

2-pos
switch

in

gain equal-
izer

gain mute

out

Audio level meter

Blocks Ports

 A ‘Ramper’ class that supports automation by allowing parameter values to change

over time.

Additional management classes that are not elaborated on are also shown in Figure 3.4.

These include classes that provide functionality pertaining to security, timing, and the

management of networked devices.

Devices are automatically discovered on a network using a ‘service browser’ that is

implemented as a part of the OCP (Bosch Communication Systems, 2014). OCA does not

support the specification of user interfaces.

3.3.2.2.1 Signal Path Representation

Representation of the signal paths within a device is not mandated by the OCA, but is

optionally supported via ‘blocks’ that represent the path of an audio signal as illustrated

in Figure 3.5.

(Open Control Alliance, 2011, p. 14).

Figure 3.4 The OCA Device Model.

 Device
 Manager

 Firmware
 Manager

 Power
 Manager

 Security
 Manager

Subscription
 Manager

 Network
 Manager

Media Clock
 Manager

 Audio
 Processing
 Manager

 Library
 Manager

 Workers

 Agents

Actuator

 Sensor

53

Blocks may be nested and contain worker and agent objects. Figure 3.5 illustrates the block

topology of a mixer microphone channel. Circles denote signal connections between

blocks termed ‘ports’. The phantom power switch shows that blocks are not required to

have signal connections. It is debatable whether a control protocol requires a depiction of

signal paths to implement control functionality, as the fixed connections between internal

blocks shown in Figure 3.5 do not influence the functionality provided by the channel

block. Signal path representations are discussed in Section 4.5.1 A Channel-Oriented

Model (p.112) and in Chapter 6 with reference to IEC-62379-2.

3.3.2.2.2 Device and Service Discovery

Device discovery uses DNS-SD. OCA defines a discovery mode termed ‘capability

discovery’ (Open Control Alliance, 2011, p. 16) that discovers:

 All OCA objects belonging to a device;

 Signal paths within a device (as discussed in the previous section) for media

devices.

These capabilities are provided by the OCA device model.

3.3.2.3 Control and Monitoring Functionality

Most control messages are sent over TCP while monitoring traffic uses UDP.

Both periodic subscriptions and event-based subscriptions are supported. Figure 3.6

shows different ‘Actuator’ sub-classes that provide control functionality within the OCA.

All routing and functionality that affects audio signals are performed by these classes. OCA

provides abstractions for different types of controls and different types of DSP functions.

Actuators are typically defined according to their functionality or the data types that they

transmit.

Figure 3.6 OCA Object Control Protocol Actuator Classes.

(Open Control Alliance, 2011).

OcpBasicDelay OcpDelay

 OcpScalar OcpGain OcpFilter

OcpWorker

 OcpSwitch

 OcpFilterFIR OcpBasicSwitch

OcpSignalGenerator

Abstract Base Classes

 OcpActuator

Classes Derived from Class OcpActuator

54

Example classes shown in Figure 3.6 include a signal generator, a Finite Impulse Response

(FIR) filter and a class representing arbitrary scalar values. OCA data values conform to

International System of Units (SI) data units (National Institute of Standards and

Technology, 2000). OCA allows these units to be translated into OCA ‘presentation units’

for display on a user interface (Bosch Communication Systems, 2013, p. 34).

The OCA API provides proxy classes for these classes that implement both blocking

and non-blocking commands. All proxy classes implement an event handler that allows

applications to respond to OCP control commands (Bosch Communication Systems,

2014).

3.3.2.3.1 Control Class Identifiers

Control classes are identified by their level within the OCA class hierarchy. For example,

in Figure 3.7, the ‘OcpGain’ class has an identifier of 1.1.1.7 starting from the root node as

it is the seventh class defined within level four of the class hierarchy. The properties,

methods and events within each class are identified by identifier strings having the format:

LLCNN where LL is the level number, C denotes a class member (property, method or

event) and NN is a sequence number. The second method within the ‘OcpGain’ class in

Figure 3.7 would have a method identifier of 04m02, while the third property would have

a property identifier of 04p03.

3.3.2.3.2 Subscriptions and Monitoring

Objects that support subscriptions are termed ‘emitters’, while messages that signal events

are termed ‘notifications'. Notifications may be connection-oriented ‘reliable notifications’

Figure 3.7 OCA Control Class Identifiers.

Level 03

1 OcaRoot Level 01

Level 02

Level 04

 Properties Methods Events

 04p01 … 04pN 04m01 … 04mN 04e01 … 04eN
Identifier
 Strings

1 OcaWorker

1 OcaActuator

7 OcaGain

55

or ‘fast notifications’ that use TCP and UDP respectively within the IP implementation of

the OCP. All OCA classes are potentially emitters, as all classes have a ‘PropertyChanged’

event that is inherited from the root base class ‘OcaRoot’.

Controllers monitor changes to an object’s property values by subscribing to

‘PropertyChanged’ events.

3.3.2.4 OCA - Commentary and Evaluation

OCA is a sophisticated control protocol that has ambitious design and implementation

goals. Without developing and studying an implementation of the protocol, it is only

possible to make superficial observations. Implementations of this sophistication are

likely to create a complex software environment that suffers from the adverse effects of

the ‘functional approach’ introduced in Section 2.9 Control Protocol Commands (p.33).

This disadvantage is the result of a large number of classes (of the order of 100) and

methods needed to implement the required functionality. Specific functionality is not

always handled in an abstract manner. As an example, the ‘OcpDanteManager’ class that

supports the Dante audio transport (Audinate Corporation, 2013) is a singleton class that

contains several methods that are applicable to all media transports. ‘StartSending()’,

‘StopSending()’, ‘StartReceiving()’ and ‘StopReceiving()’ are methods applicable to all

media transports. These methods are not abstracted into a base class, but are declared

within the concrete ‘OcpDanteManager’ class. Implications of object-oriented and

functional approaches to control protocol design are discussed Chapter 10.

Identifier strings provide a basis for the standardization of parameter addresses in a

similar manner to the parameter address hierarchy defined by AES64 that is discussed in

Chapter 7.

3.3.3 EuCon

EuCon (Milne, Campbell, Boyer, McTigue, & Kloiber, 2006) is a proprietary, object-

oriented control protocol developed by Euphonix Corporation. This protocol is designed

to link traditional hardware control surfaces to virtual (software) control surfaces. A

library of virtual control objects allows developers to create virtual control surfaces.

Euphonix Corporation markets generic hardware control surfaces such as the

MC Control control surface shown in Figure 3.8. Hardware devices have an embedded

system that implements a EuCon protocol stack.

EuCon addresses limitations inherent in the structure of many traditional

analogue control surfaces. For example, grouping controls and ramping control values are

difficult to achieve when using traditional hardware control surfaces that do not explicitly

support this functionality.

56

EuCon provides control mappings between hardware devices or maps hardware

controls to controls on a software control surface. The protocol stack provides bi-

directional communication that synchronizes all mapped controls. EuCon does not

represent parameters; all functionality is achieved by linking (‘joining’) controls. Note that

unlike the use of the term ‘control’ in this dissertation, EuCon ‘controls’ are logical units

that may contain more than one physical control or user interface widget. This concept is

examined further in Section 3.3.3.1.2 Control Surface Architecture (p.57).

3.3.3.1 Network Architecture

EuCon uses TCP for network transport and is written in the C++ programming language.

A distributed object system provides the required remote functionality. Figure 3.9 shows

that a EuCon network consists of a set of control surfaces and workstations. EuCon uses

the term ‘workstation’ to refer to any processor that runs an application.

Any computer or embedded device is thus a workstation. Workstations execute one or

more applications where each application has a single ‘node’ object that provides all

distributed functionality.

(Euphonix Corporation, 2013).

Figure 3.8 Euphonix ‘MC Control’ Control Surface.

(Milne, Campbell, Boyer, McTigue, & Kloiber, 2006).

Figure 3.9 EuCon Network Architecture.

Workstation

Control Surface

 TCP/IP
Network

 Application-1 Node-1

 Application-N

 Node EuCon Discovery

EuCon Discovery

Workstation

Node-N

57

3.3.3.1.1 Device and Service Discovery

All nodes register with a distributed database called EuCon Discovery that runs within

each control surface and workstation. Using TCP/IP multicast protocols, this database

maintains information about all discovered nodes on a network. Controllers access the

database to obtain IP addresses and port numbers for networked devices. On Microsoft

Windows platforms, the database is closely coupled to the operating system as it is

installed as a Windows Service (Avid Technology, 2010, p. 23).

3.3.3.1.2 Control Surface Architecture

Multiple control surfaces can be defined within a single application. This allows a

controller to present different views of a controlled device. Each EuCon application

consists of one or more ‘processors’ where processors contain controls termed ‘primitive

control objects’ that can be optionally grouped into the ‘control arrays’ illustrated in Figure

3.10. The term ‘processor’ refers to a signal-processing unit and may represent a single

DSP function or larger, composite units that process an audio signal path such as a channel

strip.

Related controls such as those found within a channel strip, an equalization section,

or sets of controls performing the same DSP function for multiple audio signals are

typically grouped within a single control array. At the lowest level are ‘control primitive’

objects. These are hardware or software widgets that are logically grouped to create

‘primitive control’ (control) objects.

Figure 3.10 EuCon Application Architecture.

 Processor-1 … Processor-N

Control Array

16

Control-1

Control-2
 Control
Primitives

ON/OFF

EuCon Application

(Milne, Campbell, Boyer, McTigue, & Kloiber, 2006).

Primitive
 Control
 Objects

58

For example, the fader control shown in Figure 3.10 consists of a fader control

primitive and a display control primitive indicating the fader’s current value. The second

control of Figure 3.10 is a primitive switch control object consisting of three control

primitives: an LED, a switch and a text label. Control surfaces are configured by browsing

for controls within each application node. ‘Browser’ objects search each processor within

an application node to discover the processor’s control objects. When a ‘Browser’ object

discovers and selects required controls, the control surface creates virtual copies of these

controls (Milne, Campbell, Boyer, McTigue, & Kloiber, 2006, p. 7). Each control on a

device has a unique identifier termed a ‘layout name’. This identifier is used to map the

control to an identical virtual control on a virtual control surface.

Layout names are associated with ‘layout rules’ that define the structure and visual

appearance of groups of controls. An example is provided by the controls found within a

channel strip. These controls would be grouped together to create a ‘channel strip layout

rule’.

3.3.3.2 EuCon - Commentary and Evaluation

EuCon is an unusual protocol in that it does not represent parameter values.

Parameters are not required to achieve the primary objective of the protocol, which is to

link and synchronize control surfaces. The protocol provides a sophisticated

representation of control surfaces where layout rules are similar to the AES64 ‘desk item’

concept discussed in Section 7.6.1 Representing AES64 Desk Items (p.203). EuCon is used

in a variety of application areas, including video environments, recording studios and

computer music applications. Euphonix Corporation maintains a list of products that

support the EuCon protocol (Euphonix Corporation, 2014).

3.3.4 HiQnet

HiQnet is an object-oriented, proprietary control protocol designed to be both transport

independent and scalable:

“HiQnet is Harman’s proprietary control protocol and is the mechanism by which

HiQnet devices communicate with each other and control software such as HiQnet

Audio Architect or HiQnet Performance Manager … it is used to inform devices on

the network which audio signals to transmit and which to receive, regardless of

which audio transport they are using.”

 (Harman Pro Corporation, 2012).

This allows the protocol to be used with several supported audio transports as well as a

range of products developed by Harmon Pro Corporation (Kreifeldt, HiQnet Third Party

Programmer Documentation, 2007). Scalability is achieved by supporting software

59

‘plugins’ that interact with the core protocol architecture. Plugins are typically developed

to support specific functionality required by different HiQnet-enabled products. All

devices and applications within a HiQnet system are represented by a hierarchy consisting

of sub-devices, objects and parameters.

3.3.4.1 Network Implementation

Proprietary network layers are used on top of the standard lower-level protocols shown in

Figure 3.11.

The ‘Routing Layer’ forwards HiQnet network packets using different network protocols

managed by the ‘Packet Layer’. The ‘Message Layer’ manages messages for specific

applications. Applications can also communicate directly with the ‘Routing Layer’ if

different network protocols are used by an application (Kreifeldt, 2007, p. 66). The UPnP

discovery mechanism is used by HiQnet’s ‘Disco’ discovery protocol:

“All HiQnet devices conform to the Universal Plug and Play (UPnP) standards, so in

the majority of situations, the system designer/engineer will not even have to

consider IP addresses.” (Kreifeldt & Holladay, 2005).

UPnP discovery messages are discussed in Section 9.4 UPnP Network Protocols (p.231).

3.3.4.2 Device Architecture

An audio device is termed a ‘node’ and consists of sub-devices termed ‘virtual devices’. The

first virtual device always functions as a node manager shown in Figure 3.12.

Proprietary
 Network
 Layers

Routing Layer

Packet Layer

TCP (Transport Layer)

IP (Network Layer)

RS485 / USB
 Support

(Kreifeldt, 2007, p. 64).
Figure 3.11 The HiQnet Protocol Stack.

Application Layer (HiQnet Applications)

Message Layer

60

L1 Device Address (16 bits)

L2

Virtual Device
Address (8 bits)

Object Address (16 bits)

L3 Parameter Index (16 bits)

(Kreifeldt, 2007, p. 11).

Byte1 Byte2 Byte3

Figure 3.13 HiQnet Parameter Address Format.

Each virtual device contains (possibly nested) objects that define parameters.

Following UPnP conventions, parameters are termed ‘state variables’. Virtual devices may

contain parameters that are not associated with an object as shown by the shaded

parameters in Figure 3.12. HiQnet does not distinguish between device components,

control surface widgets or any other entity defined by the protocol. All elements within

HiQnet devices are defined in terms of virtual devices, objects and parameters.

3.3.4.3 Parameter Organization

HiQnet parameters are divided into two categories:

 Parameters where values change periodically, such as meter values are termed

‘sensor parameters’;

 Parameters whose values only change when they are explicitly updated termed

‘non-sensor’ parameters.

Parameter addresses are derived from the device structure and are termed ‘fully qualified

addresses’. These addresses consist of the three levels shown in Figure 3.13.

 Virtual Device1 (Node Manager) Virtual DeviceN

HiQnet Node

Object

Object

 Param

 Param

 Param

Param

Param

Param

Object

 Param

 Param

 Param

 Param

 Param

 Param

 … …

(Kreifeldt, 2007, p. 7).

Figure 3.12 HiQnet Device Architecture.

61

 Attribute ID Attribute Value Category

0 Data Type Data Type Static

1 Name String STRING Instance

2 Minimum Data Type Instance

3 Maximum Data Type Instance

4 Control Law Static

5 Flags UWORD Static

Table 3.1 HiQnet Device Architecture.

(Kreifeldt, 2007, p. 9).

These three addressing levels allow objects and parameters to be related in a logical

manner. All Harman Pro Corporation software products represent parameter addresses

within these three levels using a dotted notation similar to IP address notation to denote

fully qualified addresses.

Objects group related parameters; for example, an object would group all parameters

found within a parametric equalizer. A parameter index identifies individual parameters

defined within a single object. All parameters are described by a fixed structure that

defines five descriptive attributes shown in Table 3.1. Entries specify a parameter name, a

data type and an indication of whether the parameter is a class attribute or an instance

attribute. The ‘Control Law’ specifies how a parameter’s value should change. For example

a value may change logarithmically or have a step size specifying the minimum change to

a parameter’s value. The ‘Flags’ attribute is used to specify a sensor or a non-sensor

parameter.

Note how attribute identifiers separate meta-data (indicated by the shaded rows) from

descriptive data.

3.3.4.4 Control, Subscription and Connection Management Messages

HiQnet PDUs may contain multiple control messages, allowing a single network message

to transport multiple control messages. Protocol commands (USA Patent No.

US20050239396 A1, 2005) include commands that:

 GET() or SET(..) multiple parameter values within multiple objects or multiple

virtual devices;

 GET() or SET(..) parameter values as a percentage of a specified value;

 Subscribe or unsubscribe to specific parameters or all parameters within a

specified virtual device.

Control messages used to address non-sensor parameters are implemented using

connection-oriented messages. Connectionless messages are only used to transmit data

62

received from sensor parameters. Subscription requests for a specific node are handled by

the node manager shown previously in Figure 3.12. A HiQnet message can request:

 A response to be transmitted with guaranteed delivery;

 That an operation be implemented using multiple messages if the size of the

message payload requires multiple network transmissions.

HiQnet parameter subscriptions may be value-based or event-based subscriptions.

The protocol does not support parameter relationships. Connection management is

supported between HiQnet objects and between virtual devices.

3.3.4.5 HiQnet Software Applications

Sophisticated software tools that use HiQnet are available from Harman Pro Corporation

(HiQnet™ Software, n.d.). These include the JBL Performance Manager, and the Audio

Architect, which replaces the previous System Architect. Audio Architect is written in C#

using the Microsoft .NET platform. The Performance Manager is intended to manage live

sound for venues such as theatre, and conferencing venues. Audio Architect is designed

for performance venues by supporting a range of audio equipment such as microphones

and amplifiers. These applications:

 Allow plug-ins to be developed that provide HiQnet functionality for specific

devices;

 Provide device discovery and service discovery;

 Provide control surfaces that interact with discovered devices;

 Perform connection management among networked devices.

3.3.4.6 HiQnet - Commentary and Evaluation

A detailed description of the features of HiQnet is not possible as information describing

HiQnet is not publicly available. Additionally, the information used as a basis for this

discussion is likely to be dated. However, the sophisticated applications described in the

previous section indicate that the protocol is able to support complex networked

applications and environments.

3.3.5 Media-Accelerated Global Information Carrier

The Media-Accelerated Global Information Carrier (MaGIC) was developed by the

Gibson Guitar Corporation (Juszkiewicz, et al., 2003) to provide an open architecture for

audio and control data. The technology has not enjoyed widespread acceptance, being

confined to digital guitars developed by Gibson (Gibson Guitar Corporation, n.d.). MaGIC

transports audio using a proprietary layer three protocol that use the IEEE 802.3 Ethernet

http://hiqnet.harmanpro.com/general/performance_manager

63

 Unit

Legend:
 Control link Component
 Access point Controls
 Virtual Media Pipe

 Unit Unit

Figure 3.14 MaGIC Device Organization.

Device Controller

 Control
Link Table

IN Ports Network OUT Port

 Internal
Routing Table

data link layer. Connection management is provided by audio stream transmitters termed

'ports' that are advertised to a network; ‘Media Slot Router’ objects are responsible for

routing these streams within a network.

The ‘MaGIC Control Protocol’ (MCP) is used to control MaGIC-enabled devices.

Media and control information are transported within fixed parts of the same data frame

where a forty-four octet ‘control packet’ is reserved for control information. Because of

this size restriction, a single high-level control message may require multiple packets to

be transmitted.

3.3.5.1 Device Representation

A device consists of sub-devices termed ‘units’. Units consist of ‘components’ that provide

control points (termed ‘access points’) for control messages as illustrated in Figure 3.14.

Devices have ports that transmit and receive media data transported within OSI layer 2

IEEE 802.2 LLC-SNAP frames (Postel & Reynolds, 1988). The MCP provides control

communication between access points. Although the specification is incomplete, access

points appear to include both independent access points and the access points linked to

controls shown in Figure 3.14.

Control message target addresses are termed ‘full component addresses’, and consist of a

sixteen-bit unit address and a sixteen-bit component address. All devices have an

‘attribute descriptor’ consisting of eleven mandatory entries that describe all device

components and MaGIC network ports. Bi-directional communication channels between

64

a controller and a MaGIC device are termed ‘control links’ and are used to link access

points between units. Each unit has a ‘control link table’ that specifies the control

connections that exist between local and remote controls.

3.3.5.2 Control Messages and Connection Management

There are three categories of MaGIC control messages:

1. ‘Network management messages’ that are standardized by the protocol;

2. ‘Well known application protocol messages’ encapsulate messages from other

protocols such as UDP, TCP or MIDI;

3. ‘User control messages’ that are proprietary control messages.

The most common messages are those that read and write control values or invoke access

points.

Within a device, 'virtual media pipes' are used to transfer audio between device units.

Each device maintains an ‘internal routing table’ that connects virtual media pipes to and

from device input and output ports.

3.3.5.3 MaGIC - Commentary and Evaluation

The MaGIC protocol does not define any parameters. Components are typically controls

that can be connected (joined) to each other. In this respect, MaGIC strongly resembles

the EuCon protocol discussed earlier in this chapter. The ability to define master-slave

control relationships and to encapsulate other network protocols are notable features of

MaGIC. The design decision to allow media traffic and control traffic within the same

network frame is unusual. To achieve a desired QoS for media traffic, network frames

containing only control traffic can be regulated. The protocol appears to be no longer

developed or marketed by Gibson Guitar Corporation.

3.3.6 AES64

AES64 is a recent control protocol that became an AES standard in 2012

(Audio Engineering Society, 2012). This protocol provides an integrated approach to

control, monitoring, connection management and control surface creation. AES64 has

many unique features, including:

 A fixed, hierarchical parameter-addressing scheme;

 Support for the parameter joins and parameter groups that were introduced in

Section 2.8 Parameter Management (p.28);

 A universal measurement unit;

 A dedicated bulk parameter transfer mechanism;

65

 The ability to dynamically scale or modify parameter values;

 Support for control surface creation;

 The provision of connection management capabilities.

AES64 fixed-level parameter addresses are intended to provide parameter address

interoperability (and thus control interoperability) between similar devices. AES64 and

OCA are the only control protocols to date that have suggested comprehensive solutions

to the problem of device interoperability. For example, an AES64 pan parameter for a

specific mixing console channel will have the same symbolic address across all mixing

consoles that support AES64. Parameter addresses also allow control commands to

address sets of parameters. The various features provided by AES64 are discussed in

Chapter 7.

3.4 Fixed Sound Installations

Examples of fixed sound installations include stadium installations from Meyer Sound

(Koftinoff, 2013) and the OSC-controlled installations used at Disneyland that are

mentioned in Chapter 5. The CA-96 Beam Steering Column Array Loudspeakers from

Meyer Sound shown in Figure 3.15 are configured and controlled using the

IEEE 1722.1-2013 control protocol.

 (Koftinoff, Audio Video Bridging - A collection of

links, tools and open source code for Audio Video

Figure 3.15 Column Array Loudspeakers from Meyer Sound.

66

3.4.1 IEEE 1722.1-2013

IEEE 1722.1-2013 – Standard for Device Discovery, Connection Management and

Control Protocol for AVTP Devices (Institute of Electrical and Electronics Engineers,

2012), is also referred to as ‘AVDECC’. The commonly used term for the underlying audio

transport technology (IEEE 1722) is Audio Video Bridging (AVB). IEEE 1722 consists of

several standards defining different aspects of the protocol as well as other network

protocols used by the protocol. These include standards that define:

 Distributed synchronization and timing – Standard for Local and Metropolitan

Area Networks - Timing and Synchronization for Time-Sensitive Applications in

Bridged Local Area Networks (802.1AS) (Institute of Electrical and Electronics

Engineers, 2011);

 Traffic classification and shaping - IEEE Standard for Local and Metropolitan

Area Networks---Virtual Bridged Local Area Networks - Amendment:

Forwarding and Queuing Enhancements for Time-Sensitive Streams. (802.1Qav)

(Institute of Electrical and Electronics Engineers, 2009);

 Bandwidth reservation to guarantee QoS - Standard for Local and Metropolitan

Area Networks - Virtual Bridged Local Area Networks - Amendment: 9: Stream

Reservation Protocol (SRP) (Institute of Electrical and Electronics Engineers,

2010);

 Transport protocols for different media formats (Institute of Electrical and

Electronics Engineers, 2011).

IEEE 1722.1-2013 is an ISO layer two protocol consisting of three components: A discovery

protocol, an enumeration and control protocol, and a connection management protocol.

An overview of the protocol was presented at the 2013 New York Convention of the Audio

Engineering Society (Koftinoff, 2013). Although IEEE 1722 media streams are applicable

to a variety of scenarios, IEEE 1722.1-2013 is discussed with reference to fixed-sound

installations due to the example from Meyer Sound illustrated in Figure 3.15.

3.4.1.1 Representing Device Architectures

IEEE 1722.1-2013 uses an Entity Model (Institute of Electrical and Electronics Engineers,

2012) to describe the internal components and connections within a device that is termed

an ‘entity’. Figure 3.16 shows that this model consists of a variable-sized hierarchy of

objects or structures. Each parent object provides links to its child objects. An entity is

represented by multiple configurations where each configuration describes

‘one operating mode of the entity’ (Institute of Electrical and Electronics Engineers, 2012,

p. 41). Each configuration consists of predefined units that are audio, video or sensor units,

67

as well as the audio and video signal connections between units.

For example, a specific configuration may stream both audio and video data to specific

stream and jack outputs.

Fixed-field objects or structures termed ‘descriptors’ describe entity model objects

at every level of a device description hierarchy. The top of the hierarchy contains an ‘entity

descriptor’ that describes the various configurations defined by the entity. ‘Configuration

descriptors’ allow an entity to be configured in different ways and describe a particular

mode of operation of an entity. Descriptors are implemented as XML documents provided

by device vendors to describe entity models for different devices. These XML files can be

loaded by IEEE 1722.1-2013-enabled controllers.

 Figure 3.17 shows that audio functionality is represented by ‘audio units’ that are

defined around a common clock domain. Each audio unit can also contain controls.

An ‘audio map’ maps stream audio channels to ‘audio cluster’ channels where an audio

cluster represents one or more channels within a unit.

3.4.1.1.1 Service Enumeration

The functional capabilities of a device are determined by tracing signal paths from AVB

stream entry points to AVB stream exit points, and between the other entry and exit points

defined by the entity architecture shown in Figure 3.17. IEEE 1722.1-2013 describes three

types of ports using ‘port descriptors’:

 Ports connected to media streams;

 External ports that are connected to jacks;

 Internal ports for connections between different units.

Audio
 Map

Figure 3.16 IEEE IEEE 1722.1-2013 Entity Model.

 Unit

 Entity

 Configuration
External IO

Control

 Entity
Descriptor

Configuration
 Descriptor

 Unit
Descriptor

 Control
Descriptor

Link

Internal IO

 Audio Map
 Descriptor

68

Unit

Controls Ports

Figure 3.17 IEEE 1722.1-2013 Entity Architecture.

(Koftinoff, 2013).

Legend: Clock Audio Signal

Entity

Configuration 0

Jack Input 0

Jack Input 1

Audio Unit 0

External Port
Input 0

External Port
Input 1

Control 1
Mute

Control 2
Mute

StreamPort Input 0

Audio Map 0 Audio Cluster
0

Audio Cluster
1

StreamPort Output 0

Audio Map 1 Audio Cluster
2

Audio Cluster
3

Control 3
Volume

Control 4
Volume

Stream Input
0

Stream
Output 0

Clock Source
1

Clock Source
0

Clock
Domain 0

Jack Output
0

Jack Output
1

External Port
Output 1

External Port
Output 1

AVB Interface
0

Control 0
Identity

Jack connections are connections for signals that are not media streams. Controls and DSP

functions such as mute and volume controls, as well as signal mixers and signal selectors

are described with reference to the signal paths found within a unit.

Control data is comprehensively described by meta-data within descriptors.

3.4.1.2 Control and Monitoring Functionality

IEEE 1722.1-2013 defines nine types of control objects (Institute of Electrical and

Electronics Engineers, 2012, p. 41). A generic control is termed ‘control point’, differing

from the use of this term in this dissertation. Controls and parameters are defined within

the various descriptors. An entity transmits notification messages (termed ‘unsolicited

notifications’) when the entity’s state is updated. Scaling of parameter data is supported

by the protocol.

69

3.4.1.3 Connection Management

P172.1 defines the ‘AVDECC Connection Management Protocol’ that manages media

connections between IEEE 1722.1-2013 entities. Connections are made between AVB

source streams termed ‘talkers’ and AVB destination streams termed ‘listeners’.

Connections can be made persistent by using a locking mechanism and the status of

connections can be monitored. For example a connection may exist but not be active if an

AVB talker stream is not transmitting a media stream. Commands and responses are listed

in the draft specification (Institute of Electrical and Electronics Engineers, 2012, pp. 264-

5) and the XMOS AVB Design Guide (XMOS Limited, 2011).

3.4.1.4 IEEE 1722.1-2013 - Commentary and Evaluation

Experience with IEC-62379-2 suggests that the use of signal paths to represent device

structure provides significant parsing challenges during service discovery. In particular,

the use of descriptors to represent device components, signal paths and parameters means

that the device’s state is always contained within descriptors. Without the experience of

developing IEEE 1722.1-2013 applications, it is difficult to provide a detailed evaluation of

the protocol. A design that represents control parameters and connections within separate

representations that are closely coupled to an entity model would possibly provide greater

simplicity and flexibility. These control protocol design considerations are discussed in

Chapter 10. For the reasons outlined in the introduction, IEEE 1722.1-2013 is not

discussed in greater detail.

3.5 Lighting Applications

ANSI E1.11 – USITT DMX512-A (American National Standards Institute, 2008) is the de-

facto standard for lighting control. It is not a network protocol, being implemented as a

balanced serial connection (OpenDMX, n.d.). Many protocols have been designed to

transport DMX over Ethernet networks. An example is E1.31, ‘Lightweight Streaming

Protocol for Transport of DMX512 using ACN’ that is often referred to as ‘Streaming ACN’

(sACN). (Entertainment and Services Technology Association, 2009). Note that this

protocol only uses the proprietary ACN transport layer termed the ‘Session Data

Transport’ and should not be confused with the ACN protocol discussed in the next section

(Jands Technical Resource Group, 2010).

3.5.1 Architecture for Control Networks

Originally conceived as a control environment for lighting control, Architecture for

Control Networks (ACN) became an ANSI standard in 2010. (Entertainment and Services

Technology Association, 2010). ACN is designed as a general control protocol that can also

be used within other application areas. ACN consists of a suite of network protocols for:

70

 (ACN Architecture p.9, 2006).

 DDL

XML File

Figure 3.18 The ACN Protocol Suite.

ACN Application

 SLP

 DMP

 SDT

ROOT Layer

 UDP

 Device control;

 Reliable network transmission of control and management commands;

 Device and service discovery using the Service Location Protocol (SLP).

The ACN protocol suite is illustrated in Figure 3.18. Use of a proprietary transport layer

termed the ‘Session Data Transport’ (SDT) provides reliable delivery of PDUs between

network nodes. The ‘Root Layer Protocol’ (RLP) is an interface layer that connects ACN

protocols to the transport layer. Control functionality is provided by the

‘Device Management Protocol’ (DMP). An XML-based ‘Device Description Language’

(DDL) is used to represent a device’s architecture and to specify device parameters

(Entertainment and Services Technology Association, 2006). An example of the use of the

DDL is provided in Section 3.5.1.3 ACN Device Description (p.71).

Network packets are structured according to a standard PDU format that provides

two main advantages:

 Network packets from different protocols within the protocol suite have the same

format. These protocols can use the same protocol stack processes to pack, unpack

and parse network packets.

 Bandwidth usage is optimized by allowing multiple messages to be packed into a

single PDU.

3.5.1.1 Network Transport

The ‘Session Data Transport Protocol’ (SDT) supports both connection-oriented and

connectionless transports. The SDT supports the ordered delivery of multicast messages

using a subset of TCP/IP that avoids much of the inherent complexity of TCP.

The ‘Component Identifier’ (CID) uniquely identifies a source or destination for network

messages. A CID is a ‘Universally Unique Identifier’ (UUID) as defined by the IETF (Leach,

Mealling, & Salz, 2005).

71

3.5.1.2 Device and Service Discovery

A simplified version of SLP, SLPv2bis (Guttman & Kempf, 2000) is used to discover

devices on an ACN network. Service discovery is initiated by retrieving and parsing an

XML device description and then using SLP to bind device services to network addresses.

Device descriptions can be vendor-supplied or stored within the device itself. A summary

of the services provided by a device can also be obtained via SLP in the form of a ‘Device

Class Identifier’ (DCID). Devices of the same device class will provide the same services.

During service discovery, if a controller does not recognize a device’s DCID, it must obtain

a DDL file from the device. Once a controller has parsed a DDL file, it can interoperate

with all devices having the same DCID.

Service requests allow wildcards as specified by SLPv2bis, and can select services

associated with specific descriptive attributes. Services are identified by ACN component

attributes described by <key, value> pairs. Each ACN component (a root device and its

sub-devices) can advertise separate DDL files or a device may represent all services within

a single DDL file.

3.5.1.3 ACN Device Description

An ACN XML device description links a structural device representation to parameter

addresses and the control messages specified by the Device Management Protocol. Listing

3.1 illustrates a device description for the input section of a mixing console.

This simple example consists of eight channel strips each having a gain and fader control.

A device description is able to specify sub-devices and link these to a device using the

numeric component identifiers shown in Listing 3.1. Parameters are termed ‘properties’

and are linked to a standard set of abstract behaviors that indicate the practical influence

of different controls on a media stream. For example, a fader has a standard ‘stream

regulator’ behavior, while a gain control exhibits a ‘stream ratio’ behavior.

3.5.1.4 Parameter Organization

ACN supports four types of property (parameter) addresses (Entertainment and Services

Technology Association, 2006, p. 37):

 Absolute addresses;

 Relative addresses that are specified as offsets to a base address;

 ‘Ranged addresses’ used to group properties;

 Virtual addresses that map to absolute or relative addresses.

In Listing 3.1, the DDL specifies absolute addresses using a ‘property reference’ tag.

A numerical organization of parameters, where offsets specify a hierarchical ordering was

72

introduced in Section 2.7 Parameter Organization and Addressing (p.25).

ACN property address offsets are also used to represent property groups. For example,

a group of four properties at addresses 500, 520, 540 and 560 can be defined by a starting

address of 500, an increment of 20 and a range of 4.

Property groups are addressed using a ‘ranged address’ (Entertainment and Services

Technology Association, 2006). Ranged addressing specifies the address of the first

<!-- Generic Channel Strip -->
<DDL version=“1.0”>
 <device UUID=“4fcb433d-7dd4-4318-9559-cb1a8e51638a”

provider=“Andrew Eales” date=“2008-11-11”>
 <useprotocol name=“ESTA.DMP”/>
 <label>ChannelStrip</label>
 <property>
 <label>Gain</label>
 <behavior name=“streamRatio” set=“setGain”/>
 <protocol name=“ESTA.DMP”>
 <propref_DMP loc=“500” inc=“1” size=“1” read=“true” write=“true />
 </protocol>
 </property>
 <property>
 <label>Fader</label>
 <behavior name=“streamRegulator” set=“setFader”/>

<protocol name=“ESTA.DMP”>
 <propref_DMP loc=“600” inc=“1” size=“1” read=“true” write=“true />
 </protocol>
 </property>
 </property>
 </device>

<!-- Generic mixing console -->
 <device UUID=“9fcb433e-8dd4-4418-9559-cb1a8e51648a”
 provider=“Andrew” date=“2008-11-11”>
 <label>GenericMixer</label>
 <useprotocol name=“ESTA.DMP”/>
 <parameter id=“ChannelCount” fields=“#text”/>
 <property array=“8”>
 <includedev UUID=“4fcb433d-7dd4-4318-9559-cb1a8e51638a”>
 <setparam name=“ChannelCount”>
 <fix field=“text”>8</fix>
 </setparam>
 </includedev>
 </property>
 </device>
</DDL>

Component
Identifiers

Listing 3.1 An Example of the ACN Device Description Language.

Fader Behavior Fader Set Command

Fader Parameter
Address

Nested child
channel strip
sub-devices

Gain Behavior Gain Set Command

Property
Reference

73

 Gain Property Relative Addresses

Base Address Offset Parameter1 Parameter2 ParameterN

 100 Gain = 20 Gain1 =120 Gain2 = 140 GainN = Base Address
 + N * Gain offset

 Gain Property Virtual Addresses
 Base Address Offset Parameter1 Parameter2 ParameterN

 1000 1

Gain1 =1001
(Maps to
address 120)

Gain2 = 1002
(Maps to
address 140)

 GainN = 1000 + N
(Maps to address Base
Address + N * Gain
offset)

Table 3.2 Relative and Virtual ACN Property Addresses.

property, an increment between each address in the range, and the number of addresses

in the range.

ACN also allows ‘virtual addresses’ to be mapped to absolute, relative or ranged

property addresses. These addresses thus become aliases for the addresses that they are

mapped to. For example, the ranged property address [100, 20, 4] may be mapped to

virtual addresses numbered from 1001 to 1004. This organization is illustrated in

Table 3.2 where relative gain property addresses are mapped to virtual addresses.

An ACN ‘binding behavior’ (Chigwamba, Foss, Gurdan, & Klinkradt, 2010, p. 7) that

defines property relationships also allows parameter joins and parameter groups to be

implemented in ACN. Bindings between properties create three types absolute

parameter relationships:

 Unidirectional master-slave relationships;

 Bi-directional relationships between properties that ensure that all bound

properties share the same value;

 ‘Multiway bindings’ consisting of a set of unidirectional bindings.

Bindings that occur between different networked devices provide a parameter join

mechanism.

3.5.1.5 Control and Monitoring Commands

Control commands support absolute and relative addressing, and can also address

multiple properties using ranged property addresses. Controllers may subscribe to a single

ACN property or to a range of properties using ranged addressing. A list of subscribers is

maintained for each property or ranged property address. Changes to property values are

transmitted to all listed subscribers.

74

3.5.1.6 ACN - Commentary and Evaluation

ACN consists of a complex suite of protocols that are unfortunately described by a poorly

presented and sometimes less than lucid specification. The DDL represents an extremely

high-level of abstraction. The XML markup is like a meta-language that describes the

abstractions used to describe a device. The language does not directly describe a device in

terms of the commonly encountered concepts of device components, parameters and

control surfaces. Because of these device description characteristics, parsing an ACN XML

description is likely to be a difficult task. The DDL lacks cohesion, as different concerns

are not separated. Device structure, parameters and control functionality are all described

within a complex, single description document. Jeff Berryman of Bosch Communication

Systems has commented on ACN with particular reference to the ACN DDL:

“We found it a bit fragmented but not functionally rich…. It's been a while since we

did the investigation, but as I remember, ACN does not have a particularly rich

device model.” (qtd. inHuntington, 2012).

The meaning of a “rich device model” is not clear, but may refer to the levels of abstraction

within the DDL that do not directly provide the abstractions that would be expected when

describing networked devices.

The flexibility provided by the different DMP addressing schemes is one of the

strongest points of ACN. The offset-addressing scheme used for organizing controls and

parameters implies standard base-addresses for controls and parameters, supporting

interoperability between different ACN applications. The grouping of controls rather than

the grouping of the parameters modified by controls creates a naive grouping mechanism.

The lack of security in ACN, as well as the use of the ‘Trivial File Transport Protocol’

(TFTP) to retrieve a DDL device description have been criticized by Erwin Rol (Rol, 2003).

Retrieval of a DDL file is a critical operation which is dependent on the connectionless

UDP protocol (Rol, 2003, p. 234) used by TFTP. By contrast, the reliable transport layer

provides a guaranteed quality of service.

The only freely available implementations of ACN are OpenACN (OpenACN, 2012)

written in C++ and CodePlex ACN (CodePlex, 2012) written in C#. Unfortunately, both

implementations are incomplete and further development appears to have been

discontinued. Only sACN (Huntington, 2007) has gained commercial acceptance for

lighting control and is supported by lighting control consoles marketed by

Electronic Theatre Controls Inc. (Electronic Theatre Controls Inc., n.d.). ACN achieved

the status of an ANSI standard without an implementation of the protocol being freely

available.

75

3.6 Broadcast Environments

Broadcast facilities commonly use hardware control consoles that are specifically designed

for these facilities such as the examples shown in Figure 3.19.

Broadcast consoles are typically designed with a small number of channels and support

broadcast studio devices such as microphones and CD and DVD-players.

These consoles may provide DSP functions for voice processing and usually support

transport functions (load, play, stop etc) for media playback devices. The control protocols

discussed in this section include MambaNet (D&R Electronics, n.d.), Ember+ (Keuck &

Boger, 2014) and IEC-62379-2 (International Electrotechnical Commission, 2008).

3.6.1 MambaNet

MambaNet is a proprietary protocol developed by D&R Electronics (D&R Electronics,

n.d.). Derived from AES-24, MambaNet is an object-oriented protocol where node objects

consist of sensor and actuator objects (Prins, 2009). The protocol is message oriented and

can be implemented on different network transport layers. Implementations include an

IP version and a version that supports the High-Speed Controller Area Network Bus

(CAN) protocol (Corrigan, 2008) used in automotive and building automation

environments. Like AES-24, an address server allocates MambaNet addresses to all nodes

on a network.

3.6.1.1 Protocol Architecture

The protocol utilizes a peer-to-peer organization where all networked controllers and

devices are termed ‘nodes’. Nodes contain ‘actuator’ and ‘sensor’ child objects that

correspond to their AES-24 counterparts. Figure 3.20 illustrates the architecture of a

MambaNet node, and the representation of sensor and actuator objects. Sensor and

actuator objects define standard parameter data types as well as meta-data describing the

(D&R Electronics, n.d.), (Axia Audio, n.d.).

Figure 3.19 Broadcast Consoles from D&R Electronics and Axia Audio.

76

allowable values for a parameter. User interface controls contain sensor or actuator

objects. An ‘Object Engine’ functions as an AES-24 registry. It provides service discovery

and facilitates subscriptions to sensor objects.

3.6.1.1.1 Service Discovery

Each node on a network is described by a ‘Default Node Structure’. Data records termed

‘Object Information Structures’ describe the data provided by sensor and actuator objects

(Prins, 2009, p. 39). For example, minimum, maximum and default values for actuator

and sensor objects, and the update frequency for sensor objects.

Discovery messages are defined to obtain these descriptive records from a MambaNet

node.

3.6.1.2 Control Commands

Control commands are implemented by invoking methods to GET() or SET(..) the

attributes of a node’s sensor and actuator objects. Unicast and broadcast control

commands can be transmitted with an optional response request. The response is a

unicast message directed at the node requesting the response. ‘Interface Structures’ define

control points used to process received messages.

Object Engine

Node

Object

 Sensor

Actuator

Object

 Sensor

Actuator

 Inherited Attributes
 Object Identifier
 Description
 Services
 Update
 Frequency

 Attributes
 Parameter Type
 Parameter Size
 Parameter Min
 Parameter Max
 Parameter Default

 Object Information Structure

Figure 3.20 MambaNet Node Architecture and Object Structure.

Network

 Callback1()
 …
CallbackN()

 Interface Structure

MambaNet
 Stack

 Default Node Structure

77

3.6.2 Ember+

Ember+ is a control protocol developed by L-S-B Broadcast Technologies GmbH that

allows a device to advertise a hierarchy of parameters. The protocol consists of three

components (Keuck & Boger, 2014):

 A data schema named ‘Glow’ that defines Ember+ data types using Abstract

Syntax Notation (ASN.1) (Larmouth, 1999);

 An encoding scheme that is a subset of the Basic Encoding Rules (BER) encoding

standard (Larmouth, 1999) termed Embedded Basic Encoding Rules (‘EmBER’);

 The S101 framing protocol developed to transmit EmBER encoded data.

These data representation and encoding schemes are used by SNMP, allowing Ember+ to

be integrated with SNMP (L-S-B Broadcast Technologies GmbH, 2014).

3.6.2.1 Protocol Structure

The Glow data schema defines an ‘element’ type that enumerates different types where

each element is one of the following types – ‘Parameter’, ‘Node’, ‘Command’, ‘Stream’,

‘Collection’, ‘Matrix’ or ‘Function’. These types are arranged in an M-way tree data

structure. Supported primitive data types are similar to the SNMP data types discussed in

Section 6.2.1 SNMP Data Types (p.144).

3.6.2.2 Device and Parameter Representation

Device architecture and the services provided by a device are represented by a hierarchy

of Ember+ elements illustrated in Figure 3.21 that create a tree.

The position of a parameter within this tree is designated by an SNMP-compatible ‘relative

Figure 3.21 Ember+ Parameter Organization.

Device

 Channnel-1

InputSection

GainContrl-1

 gain-1

Child Parameters addSlave removeSlave

 Parameter

Nodes

1

3

1

1

1

78

object identifier’ data type that denotes a path in the tree. For example, the ‘gain-1’

parameter shown in Figure 3.21 is identified by the relative object identifier:

 1.3.1.1.1 (Device – InputSection – Channel-1 – GainControl-1 – gain-1)

where the input section is the device’s third child sub-device.

Each node and parameter has a ‘GetDiretory()’ command that obtains all child nodes

and parameters (Keuck & Boger, 2014, p. 29). When applied to a parameter it returns the

properties describing the parameter’s value such as the minimum and maximum

parameter values. A noteworthy feature of the protocol shown in Figure 3.21 is the ability

to define child parameters. In this example, child parameters (implemented as action

parameters or Ember+ ‘command’ types) add or remove slave parameters belonging to

the parent parameter.

3.6.2.3 Parameter Operations

Ember+ follows a declarative approach to control protocol design by only defining

commands that GET() and SET(..) parameter values. Operations can also be defined on

parameter values when they are transmitted by a device or received by a client.

These operations are simply defined as algebraic formulas (Boger, 2014). This capability

allows parameter values to be scaled or modified, and allows parameter values to be

converted to and from proprietary measurement units.

3.6.2.4 Implementation Environments

Ember+ uses the QT framework that is a cross-platform application and UI framework

(Digia Plc, n.d.). The Ember+ SDK and an example parameter management (controller)

application are provided by L-S-B Broadcast Technologies. Use of this software is

discussed and illustrated in Appendix 4.

3.6.3 IEC-62379-2

IEC-62379-2 is an SNMP-based protocol for audio device control that is used by the

British Broadcasting Corporation (BBC) (Stevens, 2010). This protocol adds support for

audio devices to the general control capabilities of the IEC-62379 SNMP specification.

It is used by the BBC in conjunction with the EBU IPM SNMP Stream Monitor that

supports the monitoring of networked SNMP-enabled devices (Yang, Stevens, & Yuan-

xing, 2010). IEC-62379-2 creates a model of an audio device by linking together audio

components termed ‘functional blocks’. Sets of functional blocks represent the paths

followed by audio signals entering and leaving a device. The standard functional blocks

provided by IEC-62379-2 are designed to support the functionality provided by broadcast

consoles. IEC-62379-2 is discussed in detail in Chapter 6.

79

3.7 Home Networks

Universal Plug and Play (UPnP) is a protocol intended for home networks that is

supported by a consortium initiated by Sony Corporation named the Digital Living

Network Alliance (DLNA) (Digital Living Network Alliance, n.d.). The DLNA provides

device profiles for different categories of devices such as video players and promotes

interoperability among networked consumer devices.

UPnP provides a simplified implementation of a service-oriented architecture for

controlling devices and supports the use of an HTTP user interface that can be used with

standard Web browsers. An announcement discovery scheme provides device and service

discovery. UPnP and a UPnP implementation of the SDM are discussed in Chapter 9.

3.8 Miscellaneous Control Protocols

Several protocols used for show control, lighting and industrial automation were also

examined. Examples include MIDI Show Control (MIDI Manufacturers Association,

1995) and the ‘Building Automation and Control Network’ (BACNet) protocol

(Swann, n.d.). Examples of hardware and software systems for show control are discussed

in the book Control Systems for Live Entertainment (Huntington, 2007). A summary of

control protocols used for lighting control and building facilities management are

provided by the Illuminating Engineering Society (Illuminating Engineering Society,

2011). These protocols typically support a limited number of data types, and are restricted

to providing fundamental GET() and SET(..) commands.

Audio transport environments such as Dante (Audinate Corporation, 2013) and

LiveWire (Church & Pizzi, 2010) typically provide connection management for networked

audio streams or channels. Because these environments do not support device monitoring

and control, they are not discussed in this dissertation.

3.9 Summary

This chapter has introduced a variety of audio control protocols with specific reference to

the different networked environments that use these control protocols. The core features

of different control protocols were introduced, and the salient characteristics of these

protocols were mentioned. A more detailed description of the protocols that are not

examined in depth in the chapters that follow was provided.

Control protocols may be broadly divided into two groups of protocols: protocols

that emphasize parameters and protocols that are built around higher-level data or

functional abstractions. These two categories of control protocols were introduced in

Section 2.9 Control Protocol Commands (p.33). Examples of these abstractions that are

80

collectively termed ‘entities’ include objects, records and service descriptions.

Parameter organization is emphasized by OSC, SNMP, AES64 and Ember+. The AES-24

family (AES-24, MambaNet and OCA), CopperLan, IEEE 1722.1-2013 and OCA are built

around the representation of entities that define both parameters and protocol

functionality. UPnP creates a hierarchy of services that define functions and parameters

associated with a specific service. UPnP services and parameters are very similar to objects

where parameters are embedded within services. UPnP does not provide a complete

service-oriented architecture as discussed in Section 9.2 Service-Oriented Architectures

(p.224). Differences among control protocol designs are discussed in Chapter 10.

The control protocols discussed in this chapter differ widely when considering the

organization of parameter data, the depiction of a device’s architecture, and the

representation of control surfaces. Commonality among different control protocols is only

found in terms of:

 A hierarchical representation of a device’s architecture, and/or

 A hierarchical representation of parameter addresses or higher-level services.

These two characteristics provide a basis for the development of a standard device model

that is discussed in the next chapter.

81

Chapter 4

Development of a Standard Device

Model

4.1 Introduction

The absence of a widely accepted standard control protocol, as well as a lack of

interoperability among existing control protocols prevents networked application

software from supporting a wide variety of devices. A standard device model (SDM)

provides a framework for developing interoperability among different networked devices

by providing:

 A common device representation that supports the discovery and enumeration

of the services provided by a device, and

 A standard representation of parameter addresses.

A SDM also supports translation between different service discovery protocols as the

model creates a fixed framework within which such translations can take place.

More importantly, a standard parameter address format supports functional

interoperability among different control protocols. This approach was used to translate

commands between AES64 (at the time AES-X170) and OSC (Igumbor & Foss, 2013).

This model, first proposed at the 44th International Conference of the Audio

Engineering Society (Eales & Foss, 2011) was derived from a study of existing control

protocols. An early version of the model was also published in the Journal of the Audio

Engineering Society (Eales & Foss, 2013). This chapter discusses the development of an

abstract device model for networked devices that is simple, scalable and expressive.

The model is by necessity an abstract model (Rumsey, 2012), that represents the

architecture and functionality of networked devices in general and audio devices in

particular.

82

4.2 Device Models within Existing Control Protocols

An investigation of existing control protocols compared different representations of:

1. The architecture of an audio device;

2. Parameter addresses;

3. Control surfaces used to interact with a device;

4. Audio signals and audio connections between different devices, and internal

signals and connections within a single device.

Table 4.1, summarizes the features of different control protocols with reference to the first

three of these areas of interest:

[1] SNMP data relationships are not confined to the tree structure used to store SNMP data. Chapter 6
 discusses data relationships in SNMP.

 Device Architecture

Parameter Address
 Representation

 Control Surface
 Representation

OSC
Not supported. Related hierarchical

addresses stored in an M-
way tree.

Not supported.

IEC-62379

(SNMP)

Functional units
(‘blocks’) and their
interconnections.

Unrelated entries within
different SNMP tables.

Not supported.

SNMP Not supported.
Hierarchical addresses
stored in an M-way tree. [1]

Not supported.

ACN

XML ‘Device
Description
Language’.

Hierarchically organized
numeric identifiers shown
in Figure 2.5 (p.25).

Represented within the
device description.

EuCon

Not supported.

Does not define
parameters. Controls are
directly linked.

Hierarchical representation
of device components shown
in Figure 3.10 (p.57).

CopperLan
Device partitioned
into sub-devices.

Linear numeric identifiers
within sub-devices.

Described by deriving classes
from library abstract classes.

AES64
Implied by hierarchical
parameter addresses.

Fixed-level hierarchical
parameter addresses.

XML description.

HiQnet
Devices consist of sub-
devices containing
objects.

Composite addresses
derived from the device
architecture.

Unknown proprietary
representation.

IEEE
1722.1-
2013

Configurations created
by interconnected
device components.

Fixed, standardized
addresses within descriptor
records.

Controls specified within
device components.

OCA

‘Blocks’ of functional
objects.

Derived from the class
hierarchy as illustrated in
Figure 3.7 (p.54).

Controls surfaces are not
represented.

 Table 4.1 Representational Capabilities of Different Control Protocols.

83

4.2.1 Device Architecture Representations

IEC-62379, ACN and IEEE 1722.1-2013 explicitly support a model of a device, while

EuCon only depicts a control surface. ACN represents device architecture, device

parameters and depicts a control surface within a single XML device description. HiQnet

and OCA do not represent control surfaces. HiQnet-enabled applications specify control

surfaces (Harman Pro Corporation, n.d.) AES64 implies a device model within its

hierarchical parameter-addressing scheme.

4.2.2 Parameter Address Representations

Different control protocols have different parameter address representations. Although

OSC, SNMP and AES64 all store parameters within an M-way tree, SNMP uses the tree in

conjunction with an indexing scheme which is described in Section 6.2.2 The SNMP

Address Space (p.145). When a parameter address consists of multiple, hierarchical levels,

some of these levels can also depict the hierarchical architecture of a device.

This type of parameter address organization is commonly found within OSC

implementations and is mandated by HiQnet and AES64. By contrast, the numeric

parameter identifiers defined by ACN and CopperLan do not necessarily provide any

information about a device’s architecture. Numeric parameter identifiers can be carefully

assigned to relate parameters to a device’s architecture as previously illustrated in

Figure 2.5 (p.25). IEC-62379-2 and IEEE 1722.1-2013 embed parameters within higher-

level representations of device components as SNMP tables and records respectively. OCA

and UPnP represent parameters within higher-level abstractions (objects and services)

that provide device functionality.

Table 4.2 indicates relationships between parameter addresses and device

architecture, and relationships between parameters and a control surface within different

control protocols. Only ACN, HiQnet, AES64 and IEEE 1722.1-2013 relate parameter

addresses to a device’s structure. EuCon only represents the values of controls used to

create a control surface and does not define any parameters.

84

[1] OSC, SNMP and UPnP provide frameworks describing control points, parameter data and services.
 These frameworks can depict a device’s structure, although such a description is not mandated by
 these protocols.
[2] UPnP describes parameters in the context of services that need not be related to a device’s structure.

4.2.3 Control Surface Representations

ACN, CopperLan and AES64 all have dedicated mechanisms to represent control surfaces.

AES64 provides an XML representation of a control surface that associates parameters

with a control surface. ACN represents a control surface within an XML device description.

EuCon creates control surfaces where virtual controls are directly linked to corresponding

physical device controls that are discovered by controllers. Details of how this mechanism

is implemented are not known. CopperLan uses API methods to advertise a control surface

to a CopperLan-enabled controller but does not distinguish between the architecture of a

device and the representation of a control surface.

 Parameter Addresses
 Device Architecture

 Parameter Addresses
 Control Surface

OSC Not required. [1] Not supported.

IEC-62379 Not related. Not supported.

SNMP Not required. [1] Not supported.

ACN XML description. XML description.

EuCon Not supported. No parameters defined.

CopperLan Parameters are declared
locally within sub-devices.

Control parameters are tightly
coupled to controls.

AES64
Parameter addresses have a
fixed relationship to device
structure.

XML description.

UPnP Not required. [2] Not supported.

HiQnet (Unknown proprietary
mechanism).

(Unknown proprietary
mechanism).

IEEE
1722.1-
2013

Parameters defined within
descriptors that define the
architecture of a device.

Defined within control
objects.

OCA Not related. Not supported.

Table 4.2 Relating Device Structure to Parameter Addresses.

85

Table 4.3 Comparing Audio Signals and Audio Connections.

 Audio Signal Representation Audio Connection Representation

OSC Not supported. Not supported.

IEC-62379-2
Inputs and outputs to and
from audio functional blocks.

Connections between audio functional
blocks.

ACN XML description. XML description.

EuCon Not supported. Not supported.

CopperLan
Audio streams defined by
implementing object-oriented
interface classes.

Connections created by inherited
methods that require connection
parameters to be defined [1].

AES64
Description of network
streams and internal audio
signals.

Connection parameters representing
audio connections.

UPnP XML representation. Standard connection manager service.

HiQNet Unknown. Unknown proprietary mechanism.

IEEE IEEE
1722.1-2013

Description of network
streams and internal audio
signals.

Connections between units having a
common clock format.

OCA Media stream objects.

Device media port objects that are
bound to media stream objects and an
optional representation of connections
between internal blocks.

4.2.4 Representing Audio Signals and Audio Connections

Connection management requires a representation of source and destination audio signals

as well as the connections between signals. External connections between networked

devices, connection assignments and internal connections were introduced in Section

2.10 Connection Management Principles (p.40). Table 4.3 summarizes the

representations of audio signals and audio connections used by different control

protocols.

[1] CopperLan also supports connections between control parameters. This generalized connection
 mechanism can also be used to create connections between audio signals.

Characteristics of different control protocols discussed in the previous sections

provided concepts that were used to develop a standard device model that is described in

the remaining sections of this chapter.

86

4.3 Development of a Standard Device Model

An audio mixing console provided an example of a networked audio device. From the

previous discussion of device models, a sophisticated device model of a physical or virtual

device must represent:

1. Well-defined logical components that define the architecture of a device.

For example, mixing consoles have an input section consisting of channel strips that

group different controls and an output section containing a mastering section.

Sections may be nested, such as the equalization section commonly found within a

channel strip.

2. The visual layout and appearance of different device components.

3. The representation of parameter addresses and the relationships between

parameter addresses and a device’s architecture. Parameters must be related to

specific locations on a device. For example, a fader parameter that is associated with

an input channel strip or the mastering section of a mixing console.

4. The audio signals and the connections between audio signals. Connections may

occur between different devices and within a device itself.

The following section examines the architectural components of a mixing console and

considers the audio signal paths within an audio mixer.

4.3.1 Audio Mixer Architecture

By considering the audio signal paths through a mixer, ten signal stages illustrated in

Figure 4.1 were identified.

.
 Legend:
 Primary Connection points

Figure 4.1 Audio Signal Paths Within a Typical Audio Mixer.

1. External Inputs

10. External Outputs

2. Internal Inputs

9. Internal Outputs

3. Input Signal Path

7. Output Signal Path

5. Bus Inputs

6. Bus Outputs

4. Input Controls

8. Input Controls

87

These stages are:

1. Inputs that provide connection points for audio signals coming into the mixer.

2. Internal input connection points that route external inputs to input channels.

3. An input signal path from an input channel to a bus.

4. Signal processing functions represented by controls associated with the input

signal path.

5. Bus Inputs.

6. Bus Outputs.

7. An output signal path from a bus to an output channel.

8. Signal processing functions associated with the output signal path.

9. Internal connection points that route channels to outputs.

10. Outputs that provide connection points for audio signals leaving the mixer.

These stages provide ‘primary connection points’ that represent points within a signal path

where connections can be made. Connections between signal processing controls are

termed ‘secondary connection points’. These connection points are of no value to a control

protocol unless the device has a dynamically configurable, modular architecture. For

example, the signal paths from a pan control that divides an audio signal need not be

depicted by a control protocol.

A bus may have inputs and outputs, where connections between buses are

supported. If a device does not support connections between individual buses, this

capability can be ignored, or each bus can be assigned to itself. Signal sends, signal returns,

and signal inserts form sub-paths that also provide primary connection points. Bus

assignments and the commonly encountered ‘pre-fader’ and ‘post-fader’ signal sends are

typically managed by channel strip controls.

4.3.2 An Analysis of Audio Mixer Data and Data Relationships

An analysis of the different categories of data describing both the dynamic behavior and

the structure of a mixing console identified three broad categories of data shown in Figure

4.2. Data describing an audio device consists of:

1. Parameter data that represents:

 Control parameter values and parameter values internal to the device (DSP

parameter values);

 Configuration parameters such as power status indicators and network

connectivity indicators;

 Connection parameters representing the state of signal connections found

at primary connection points.

88

 Action parameter values;

Figure 4.2 does not depict relationships between parameters. A change to the value of

any parameter will typically trigger changes to any other related parameter values.

2. Descriptive data consisting of:

 Attributes that describe:

o A device (including the attributes of its components and

relationships between different device components);

o Controls;

o Audio signals;

o Audio connections;

 Layout attributes that describes the visual layout of device components.

3. Meta-data that describes the attributes of data such as ranges of data values and

units of measurement.

In Figure 4.2, solid arrows depict dependencies that change parameter values, dashed

arrows indicate device components and control described by descriptive data as well as

data described by meta-data. For example, Figure 4.2 shows that device functions (such

as DSP functions) or changes to control values cause changes to parameter values and that

parameter values and descriptive data values are described by meta-data.

 (2) Descriptive
 Data

 (3) Meta-Data

Figure 4.2 An Analysis of Audio Device Data.

Controls or Device f() Control
parameter
 values

 DSP
parameter
 values

 Configuration
 parameter
 values

< describes >

< change>

Descriptive Attributes

 Device and device component attributes
and their relationships

 Control attributes

 Audio signal attributes

 Audio connection attributes

Layout Attributes

(1) Parameter Data

 Connection
 parameter
 values

< describes >

 Action
 parameter
 values

Categories of parameter data

Device Components

Device

 Audio Signals and
 Audio Connections

< describes >

89

For greater clarity, clear context-sensitivity, and as a practical aid to parsing data,

descriptive data is divided into two categories of data:

 ‘Descriptive attributes’ that describe a device, its component parts, and audio

signals and audio connections;

 ‘Layout attributes’ that describes the visual appearance of device components.

Although meta-data may be regarded as descriptive data, it should be distinguishable from

the data that it describes as indicated in Figure 4.2. Parsing data is simplified when a clear

distinction is easily made between data and meta-data. The following sections discuss

these different data categories.

4.3.2.1 An Analysis of Parameter Data

Parameter data representing a device’s state forms the most important part of a control

protocol. Parameters may be classified according to many different criteria, including:

1. Parameter Functionality

A parameter can be classified according to the functional context in which it is used.

Parameters can represent control states (‘control parameters’), internal signal

processing functions (‘DSP parameters’), device configuration states (‘configuration

parameters’), and connection states (‘connection parameters’). Parameters can also be

action parameters. The multi-layer architecture supported by many mixing consoles

where a physical control surface is mapped to audio channels provides an example of

the use of a configuration parameter. Where an input section of N channel strips can

address 2N audio channels, the configuration state determines whether channels 1...N

or channels N+1…2N are assigned to the control surface.

2. Parameter Location on a Network

Local parameter addresses exist within the memory address space of a local process.

Remote parameters are addressed across a network connection. Because all parameters

typically have symbolic names, it may be useful to distinguish between local and remote

parameters where parameter names are possibly duplicated.

Join relationships between parameters may require this differentiation, as these

relationships are usually defined between local and remote parameters.

3. Parameter Location on a Device

Parameters can be classified according to their relationship to the architecture of the

device. For example, input parameters, output parameters or equalization parameters.

This distinction may be required where both the input and output sections of a device

90

provide similar controls or functionality. For example, fader parameters that occur

within both the input and output sections of a mixing console.

4. Parameter Dependencies

Changes to a parameter value may cause changes to other parameter values.

‘Passive parameters’ do not trigger changes to other parameter values, while

‘active parameters’ can trigger changes to other parameter values. For example,

parameters joined to other parameters and parameters that are members of parameter

groups are all active parameters.

5. Parameter Behavior

 Parameter values can change discretely or continuously. For example, discrete

parameter values typically represent switch states. Parameter values representing

meter and fader values are continuous, as they change continuously within an arbitrary

update period.

Figure 4.3 illustrates a device that has both user interface controls and internal DSP

functions. The controller has its own local parameters and addresses remote parameters

on the controlled device.

It is useful to allow parameters to represent a control value, while also representing DSP

parameters that are not associated with a control. Figure 4.3 shows that parameter values

are often updated by control values (making them control parameters), or by relationships

to other parameters. The controller is able to address a remote control via a remote control

parameter, and a remote DSP function via a remote DSP parameter.

A DSP function such as a filter is typically associated with a specific audio channel.

Figure 4.3 Local and Remote Control and DSP Parameters.

Control
 value

Control
 value

Audio
channel

DSP f() value

Remote DSP Parameter

Local control
 parameter

Remote control
 parameter

Controller

Device

Parameter
 Joins

91

To distinguish between multiple similar DSP parameters, each DSP parameter must be

associated with an audio channel.

A parameter is a data variable and thus does not have any unique intrinsic

characteristics that distinguishes it from any other parameter. While a distinction between

active and passive parameters may be of interest to a software engineer, such a distinction

is not likely to be useful to users of the software. Parameters are thus differentiated by the

roles that they play, not by any intrinsic qualities of the parameter value. Association with

another entity, or the semantics attached to a parameter value defines the role of the

parameter. For example, a parameter bound to a control becomes a control parameter and

a parameter representing the status of a connection becomes a connection parameter.

Additionally, it is conceivable that the role of a parameter can change if it is assigned a

different role by a controller.

Controls always have an associated value representing the current state of the control.

These control values should not be directly transmitted across a network, as they do not

form part of a control protocol. Controls should always ‘push’ their control values to local

protocol control parameters. This preferred organization of parameters is not always

possible, as controller clients within a client-server relationship may not have a local

parameter address space. Use of local control parameters supports parameter joins and

parameter groups introduced in Section 2.8 Parameter Management (p.28).

4.3.2.2 Descriptive Data

Descriptive data representations must always adhere to three principles:

 Data must be represented by <key, value> pairs or lists of data associated with a

key such as <key, value1 … valueN>;

 The size of a collection of descriptive data must be variable;

 Different attributes such as descriptive attributes and layout attributes must be

represented separately.

Use of <key, value> pairs is commonly found in service discovery protocols and reduces

ambiguity, as no assumptions are made concerning the composition and location of

descriptive data values. For example, the assumption that the first descriptive attribute of

a list of attributes is always a unique identifier, or that the Nth attribute is always a specific

attribute. The use of variable sized attribute collections is important, as it supports

extensibility by allowing both new standard attributes and non-standard attributes to be

added to a collection.

92

Descriptive
Attribute

Meta-Data
c

Layout Attribute Meta-Data

Control name
and/or control
 identifier (Primary).

 Control type, for
example rotary
potentiometer.

Value of the control.

Data type. Position - x and y co-
ordinates.

Measurement unit
such as pixels or
millimeters.

Maximum value.

Minimum value. Absolute or
relative x and y
values.

Step size.

Measurement
unit.

Images used for
rendering the control.

URL for images.

Scale factor. Image format.

Parent sub-device
(channel strip sub-
device).

Relationship to a
parent such as
strong or weak
aggregation.

Target parameter
address.

Table 4.4 Examples of Different Categories of Data.

4.3.2.2.1 Descriptive Attributes

Two types of descriptive attributes exist: ‘primary descriptive attributes’, and ‘secondary

descriptive attributes’. The most common form of a primary descriptive attribute is a

unique name analogous to a primary key within a relational database. A primary

descriptive attribute is commonly a single value but may also be a set of values.

For example, where both a device name and an IP address identify a device, both attributes

are primary descriptive attributes. Primary descriptive attributes should always be defined

within the entity that they describe. Although this principle may appear to be self-evident,

a protocol such as SNMP typically uses one or more tables to represent parameters.

Because SNMP tables have a fixed structure, additional tables are required to represent

variable-sized sets of descriptive attributes. Primary descriptive attributes that define

parameters should be defined within the parameter table, not within the descriptive

tables. This principle simplifies service discovery processes.

As an example, consider the data describing a simple rotary potentiometer control

that exists within a channel strip. Table 4.4 lists typical descriptive attributes and layout

attributes that describe this control. Examples of meta-data that qualify these attributes

are also provided.

93

4.3.2.2.2 Layout Attributes

Layout attributes describe how different device components are rendered when creating a

control surface. Controls rendered as software widgets, and containers used to group other

components are two commonly encountered visual components. Positions of components

can be absolute positions or positions that are relative to other device components. Figure

4.4 illustrates the use of x and y co-ordinate offsets that specify the position of a

component with reference to another component. Some of the sub-device components

function as containers for other components.

Figure 4.4(a) shows components (sub-devices and controls) positioned relative to

parent components. Figure 4.4(b) includes positions that are relative to sibling

sub-devices and controls. The use of relative positions is logically satisfactory but

unfortunately assumes the existence of a related component. This assumption may limit

the options available when creating a control surface. For example, it may be useful to add

a fader to a control surface without the fader having any relationships to other objects on

the control surface. Absolute positions for device components are therefore preferred, and

should always be used if components are to be independently rendered.

Software environments often define layout managers that manage the positions of

components or may support drag-and-drop operations. The environment presented in

Chapter 11 uses a layout manager, making the specification of component positions

unnecessary.

Figure 4.4 Layout Relationships Between Device Components.

Figure 4.4(a) Figure 4.4(b)

(x,y)

(x,y) offset

 (x,y)
offsets

(x,y) offsets

(x,y)

(x,y) offset

 (x,y)
offsets

(x,y) offset

Sub-Device

Sub-device Sub-device

Sub-Device

Sub-device

Legend:

Parent offset Sibling offset

94

4.3.2.2.3 Representing Meta-Data

As mentioned previously, meta-data should not be interspersed with the data that it

describes. This clear separation avoids the possibility of ambiguities when parsing

attribute data. Although the SDM does not prescribe any specific data representations, the

following textual example places meta-data in parentheses to distinguish it from the data

that it describes. This example illustrates the descriptive attributes of a gain parameter:

“name=gain, value=1 [min=0, max =10, step=1], type =int32 “

This meta-data defines the range and behavior of the ‘value’ attribute and is clearly

associated with this attribute and separated from all other attributes.

4.3.3 Structural Characteristics of a Device Model

A universal device model should consist of high-level, abstract building blocks that are

applicable to all audio devices. For example, a ‘channel strip’, or a ‘bus’ are specific

structural abstractions associated with mixing consoles that are not applicable to all audio

devices. Representing device inputs and outputs for connection management provides

another example that illustrates this principle. Connection points created by input and

output audio signals that can be connected to each other are collectively termed ‘audio

terminals’.

Two types of structural device model exist: a ‘physical device model’ and a

‘logical device model’. A physical model provides a replica of the structure and appearance

of a physical device. A device can also be represented by a logical model that provides

interaction with the device, but does not attempt to replicate the appearance of, or provide

access to all of the functionality provided by a physical device. For example,

a logical model of a mixing console may group all controls that address a specific

parameter type rather than the traditional grouping of controls on a signal path as

represented by a channel strip. A physical model is thus always a logical model but the

converse need not be true. As an additional example, consider the bus assignment controls

commonly implemented as buttons within each channel strip of a mixer.

A logical model can represent these physical bus assignment controls as a connection

matrix that provides a logical connection management model for bus assignments.

The abstractions provided by the proposed model can be represented in many

different ways. They may be represented within a control protocol itself, use XML

(as illustrated in Appendix 1), or may be used in conjunction with service discovery

protocols such as DNS-SD (Cheshire & Krochmal, 2013) or the ‘Service Location Protocol’

(Guttman, Perkins, Veizades, & Day, 1999). What is important is that the model must have

a standardized representation that provides a meta-model from which specific

95

implementations can be created. Implementations can use any hardware or software

technologies or combinations of different technologies.

4.3.4 Representing Device Structure and Device Parameters

A descriptive hierarchy consisting of two related hierarchies represents the structural

architecture of a device and the organization of device parameters. These two hierarchies

are termed the ‘device architecture layer’ and the ‘parameter description layer’.

4.3.4.1 The Device Architecture Layer

Figure 4.5 shows that devices are partitioned into sub-devices that may recursively contain

nested sub-devices. Each sub-device contains a combination of zero or more controls, and

zero or more audio channel references. Channel references allow parameters to be

associated with DSP functions without being associated with a control as previously

illustrated in Figure 4.3. Because level two sub-device entries may be repeated to represent

nested sub-devices, the total number of levels used within the device architecture layer is

often greater than the three conceptual levels shown in Figure 4.5.

Devices and sub-devices may be tangible entities in the sense that they can be

rendered on a control surface while also grouping collections of device components. These

components are termed ‘visual components’, and always have associated layout attributes

represented within a ‘layout record’. The optional existence of layout records is denoted

by square brackets. Sub-devices forming part of the logical organization of a device that

do not have a visual representation are termed ‘container components’. The diagrams

below illustrate the association of description and layout records with the different levels

of the device architecture layer and parameter description layer. The cardinality of

relationships occurring between different levels are also indicated.

1
1..*

Figure 4.5 The Device Architecture Layer.

Level 1 Device

Level 3 Control

Level 2 Sub-device

[Layout Record] Description Record

Description Record

Description Record

Layout Record
 AND/OR

 Channel Identifier

[Layout Record]

0..*

1

0..*

[Description Record]

Legend: [] Optional occurrence

 Association

 Containment / Association

96

Container sub-device components are typically only used to group other sub-devices and

controls. Mixing consoles commonly visually group related controls such as the controls

found within an equalization section. The equalization section of a virtual mixing console

may be represented by a visual sub-device or a container sub-device, according to the

visual design of the control surface. A visual sub-device would typically provide a border

and a caption to be rendered on a control surface. A container sub-device would only

logically group related controls within the device model without providing a visual

representation.

Descriptive attributes are represented within each level of the device architecture

layer and the parameter description layer by a ‘description record’. The device architecture

layer identifies specific controls that are then associated with parameters that are

organized as described in the next section.

4.3.4.2 The Parameter Description Layer

Parameters are described by the hierarchical parameter description layer shown in Figure

4.6. This layer depicts a logical organization of parameters. Level four distinguishes

parameters of the same type that occur within different components of a specific device.

For example, where faders exist within the input and output sections of a mixing console,

this level will indicate these sections. Level five represents similar types of parameters

such as gain parameters or fader parameters.

Level six identifies a specific parameter of a level five parameter type such as a gain

parameter belonging to a specific channel strip. This representation views parameters as

abstract entities. The data and operations associated with a parameter identifier are

implemented at level seven as described below.

 Level 6 Parameter
 Identifier

1

1…*

1

1…*

1
1..*

Figure 4.6 The Parameter Description Layer.

 Parameter
Description

 Level 5 Parameter
 Type

 Level 4

 Level 7 0..* Parameter AND/OR 0..* Parameter
 Values Actions

 [Description
 Record]

 Description
 Record

 [Description
 Record]

97

4.3.4.2.1 Parameter Values and Action Parameters

Level seven represents one or more parameter values and/or parameter actions that are

used to invoke any required functionality associated with a specific level six parameter.

Most parameters have a single value that simply represents the current value of the

parameter. Examples of additional values are a value that denotes access restrictions (such

as read-only or read-write), and a flag indicating a subscription status as depicted in

Figure 4.7(a). Examples of action parameters shown in Figure 4.7(a) include values that

trigger the transmission of a subscribable parameter, and actions that add or remove a

specified slave parameter provided as an argument to the action.

Parameters depicting audio streams commonly have both parameter values and

parameter actions. For example, Figure 4.7(b) shows that an AES64 audio source stream

has an identifier value and a parameter action that advertises the parameter to a network.

The following section explains how the device architecture layer and the parameter

description layer represent parameter addresses.

 Parameter Action

id advertise

Figure 4.7(b).

 Source Stream1
 Level6

 Level7

 Parameter Identifier

 Parameter Values Parameter Actions

 subStatus access value subscribe addSlave remSlave

Figure 4.7 Examples of Parameter Values and Parameter Actions.

 gain7 Level6

 Level7

 Parameter Identifier

Figure 4.7(a).

 Parameter Value

 gain Level5

 Level4 inParameter

 sourceStream Level5

 Level4 netStream

98

4.3.4.3 Parameter Addresses

The two layers describing device architecture and parameter organization introduced

previously create two types of parameter addresses termed ‘full parameter addresses’ and

‘short parameter addresses’.

4.3.4.3.1 Full Parameter Addresses

A full parameter address is created by combining the device architecture layer and the

parameter description layer. Full parameter addresses:

 Link parameters to a device’s architecture;

 Provide compatibility with control protocols such as AES64 that define parameter

addresses using more levels than the four levels provided by the parameter

description layer.

Use of description records (or signal description records discussed later in this chapter)

and layout records at different levels of a full parameter address must adhere to the

following rules:

 Layout records for devices and sub-devices are optional. A device may or may not

have a visual representation. A container sub-device used only to group child sub-

devices and/or controls will not have a layout record.

 Controls must specify a layout record.

 Level four and level three (when only containing a channel identifier) have

optional description records.

 Description (or signal description) records for parameter identifiers at level six

are not forbidden by the model. However, these records typically describe a level

five parameter type. The parameter type description may often be applicable to all

parameters of the same type.

An example of a full parameter address is provided in Section 4.3.4.4 A Full Parameter

Address Example (p.101).

4.3.4.3.2 Short Parameter Addresses

The parameter description layer on its own provides ‘short parameter addresses’

illustrated in Figure 4.8 using OSC notation. Short parameter addresses are used to:

 Make parameters discoverable without having to traverse a complete device model

to discover parameters;

 Provide simple, concise parameter addresses that implement control

functionality.

99

Controllers may only be interested in discovering parameter addresses and not the

components of a device. Short parameter addresses provide this capability.

Devices should implement both types of parameter addresses as discussed and illustrated

in Chapters 5 and 6 with reference to OSC and SNMP respectively.

In Figure 4.8, OSC short parameter addresses are enumerated below the device node

of the device description layer. This allows parameter address discovery without having to

traverse a complete device model.

Making parameters independently accessible also implies that parameters should

not be encapsulated within other device components such as controls. In Figure 4.9(a),

parameters are represented as control attributes. These parameters can only be accessed

via the controls themselves. In Figure 4.9(b), parameters are stored in an independently

accessible parameter table and referenced (using short or full parameter addresses) by the

two example controls. Therefore, ‘independently accessible’ means that parameter

discovery and parameter access should never be dependent on the controls that address

parameters.

Figure 4.8 Examples of Full and Short Parameter Addresses.

 Short Parameter Address:

 /console1/ inParameter/fader/fader5/value

Full Parameter Address:

/console1/inputSection/channelStrip5/faderControl5/inParameter/fader/fader5/value

Level 1 2 3 4 5 6 7

 Level 1 Device entry

Figure 4.9 Examples of Parameter Implementations.

Control

P2

P1

Control

Figure 4.9(a) Figure 4.9(b)

Control

P2

P1

Control

Parameter Table

Device Device

Parameter
 Address

Parameter
 Address

100

Object-oriented control protocols commonly represent parameters within higher-level

abstractions such as controls. Chapter 10 discusses the implications of representing

parameters within objects.

4.3.4.3.3 Parameter Address Interoperability

The combination of a variable-sized device architecture layer with a fixed-sized parameter

description layer means that only level two (the sub-device level) is recursively repeated.

This allows the different levels within a full parameter address to be easily determined.

For example, the parameter address 1.2.2.3.2.1.4.2 (using SNMP notation) illustrated in

Figure 4.10 is interpreted as follows:

 The last value is the address of a parameter value or an parameter action;

 The second from last value is a parameter identifier;

 A parameter identifier is preceded by a parameter type identifier, which is in turn

preceded by a parameter description identifier;

 A parameter description identifier is preceded by a control or channel identifier;

 As the first value is always a device, the remaining values are therefore sub-

devices.

This structural format holds for parameter addresses of any length. A parameter address

that allows the levels within the address to be determined by inspection or parsing is

termed a ‘deterministic parameter address’. The deterministic full parameter addresses of

the SDM combines the unambiguous semantics of a fixed-level parameter address with

the flexibility of representing different device architectures. Deterministic addresses

support protocol interoperability via address translation. For example, the SNMP-style

full parameter address 1.2.2.3.2.1.4.2 used in Figure 4.10 can be translated into a short OSC

parameter address such as /inPan/pan/pan4/value where a mapping specification between

the two formats exists. If compatibility with larger size parameter addresses such as

AES64 addresses is required, the full parameter address must be translated. Section 7.7.2

Comparing AES64 to the Standard Device Model (p.206) discusses the translation of full

parameter addresses into AES64 parameter addresses.

 Parameter Description
 Sub-devices and Parameter Type

Device Control Parameter ID

 1. 2. 2. 3. 2. 1. 4. 2

Figure 4.10 A Deterministic Parameter Address.

Parameter Value

101

Chapter 11 introduces an environment where parameter addresses are transparent

to the controller processes that access parameters. This environment makes the notion of

parameter address interoperability redundant by allowing the use of different parameter

address formats.

4.3.4.4 A Full Parameter Address Example

Figure 4.11 provides an example of a full parameter address with all associated description

and layout records.

This example, taken from the OSC implementation of the SDM shown in Listing 5.1 (p.129)

shows that:

 The fader control references a control parameter represented by a short parameter

address.

 Meta-data is placed within square brackets that clearly separate it from the data

that it describes.

L1

L2

L3

L4

L5

L6

L7

Figure 4.11 An OSC Example of a Full Parameter Address.

 dev

 inputSection

 ch1

 inp

fader1

 fader

val addPeer addSlave

desc: node=dev, name=Mackie1, loc=studio1

desc: node=sd, name=inputSection

desc: node=sd, name=ch1

layout: widget=cont, layout: x=56, y=124,
w=70, h=492, label=ch1

desc: node=ctrl, ch=1, name=fader1,val=int,
meta=[min=-8, max=16, step=1, def=0],
p=/dev/inp/fader/fader1/val/

layout: ctype=5, x=56, y=460, w=48, h=122,
label=fader1

desc: node=paramtype, ptype=fader, (value=val,
meta=[type=int, min=0, max=20, step=1])
(action=peer, args=1, type=string) (action=slave,
args=1, type=string)

 fader 1

desc: node=paramDesc, desc=inParameter

D
evice A

rch
itectu

re Layer
P

aram
eter D

e
scrtip

tio
n

 Layer

102

 A 'node' attribute within each level assists the parsing of description records.

The model does not mandate this identifier, as attributes are not standardized.

 Level four identifies the parameter as an input parameter ('inp').

 A description record for the level five parameter type identifier describes all

parameter values and parameter actions for the fader type parameter.

Implementations of description and layout records within an OSC address space are

described in Chapter 5.

4.3.4.5 Parameter and Device Component Naming Conventions

Although naming conventions for parameters are not prescribed by the model, the use of

regular, logical naming schemes:

 Supports control protocols such as OSC and AES64 that allow parameter

addresses to contain wildcard characters;

 May optimize service discovery by allowing controls and sub-devices to be

locally created by replicating previously discovered controls and sub-devices;

 Allows parameter addresses to be determined from previously discovered

parameter addresses.

Figure 4.12 illustrates this principle by using numeric suffixes for container and parameter

names that provide sub-device (channel) and control information for an example device

that has two gain controls for each input channel.

L1

L2

L3

L4

L5

L6

L7

Figure 4.12 An Example of Regular Naming Conventions.

 device

 inputSection

 input1 input2

 inp inp inp inp
gain-22

 gainCtrl1-1 gainCtrl1-2 gainCtrl2-1 gainCtrl2-2

 gain1-1 gain1-2 gain2-1 gain2-2

 gain gain gain gain

 value1-1 value1-2 value2-1 value2-2

D
evice A

rch
itectu

re Layer
P

aram
eter D

e
scrip

tio
n

 Layer

103

Wildcard naming schemes can be level-based, as found in AES64, or both level-based and

name-based as found in OSC. For example, within OSC addresses the ‘*’ character matches

any sequence of characters and the ‘?’ character matches any single character. Each level

three control identifier, level six parameter identifier and level seven parameter value in

Figure 4.12 indicate related sub-devices and controls using numeric suffixes. Thus

/device/inputSection/input?/gainCtrl*/gain?-1/value* references the value of the first gain

parameter across all sub-device (input) channels.

Naming schemes that indicate a naming convention, as well as a range of named

values support local replication of device components and parameters from previously

discovered components and parameters. Descriptive attributes of a sub-device, control or

parameter can indicate the naming convention used, as well as the number of sibling

entities that use the prescribed naming convention. For example, a new channel strip can

be created by simply copying an existing (previously discovered) channel strip and then

changing the numeric prefixes or suffixes used to name components and parameters. This

replication makes further service discovery unnecessary. Service discovery becomes

applicable to a set of similar entities rather than a specific individual entity.

The principle of standard naming conventions can be extended to meta-data that describes

parameter values. For example, parameter values can have a minimum value, maximum

value and a step size where the type of parameter is identified as a suffix.

The meta-data describing a fader parameter value might be encoded as ‘minFader’,

‘maxFader’ and ‘stepFader’, and becomes applicable to all fader controls or fader

parameters.

4.4 A Connection Management Model

Connection management functionality is considered within three categories of

connections:

1. Network-wide connections between source and destination audio streams that

create terminals. The management of these connections is termed ‘external

connection management’.

2. Connections between available network audio terminals and the audio signals

entering and leaving an audio device. The management of these connections is

termed ‘connection assignment’. For example, assigning network audio signals to

input channels on a mixing console.

3. Internal connections within a device such as bus assignments. The management

of these connections is termed ‘internal connection management’.

A device model that supports the management of audio connections must represent:

104

1. The audio terminals that can be connected to each other;

2. Connections between audio terminals;

3. Parameters that define the possible states of audio terminals and connections.

Parameters representing the states of terminals are usually only found in the context of

connections between networked audio streams. For example, a source audio stream may

be transmitting or not transmitting. A representation of audio connections must also be

associated with controls that create or tear down audio connections and manage terminal

states.

4.4.1 Representing Audio Terminals and Audio Connections

A connection management model requires connection parameters that represent audio

connections. Three different abstract parameter-based connection management models

were identified: a ‘partially-enumerated connection model’, a ‘fully-enumerated

connection model’, and an ‘independent connection model’.

The following sections discuss the characteristics of these models and provide

examples of the use of these models for connection assignment, internal connections and

connections between networked streams.

4.4.1.1 A Partially-Enumerated Connection Model

Where a parameter represents an audio terminal and the value of the parameter

represents a second (connected) audio terminal, the model is termed a

partially-enumerated connection model. Each connection point is represented by a level

seven connection parameter illustrated in Figure 4.13. Two connected terminals are

represented by the connection parameter’s value and an implied level six audio terminal.

This representation raises the question of whether connection parameters should depict

source terminals or depict destination terminals. As an example, consider an audio input

that is assigned to one or more channels on a device. Figure 4.13(a) shows that an audio

input can distribute its signal to one or more channels. In this representation, the model

depicts audio inputs. The values of the SDM level seven connection parameters therefore

represent one or more destination channels. If the model is inverted so that parameters

represent destination channels, each device channel is depicted by a level seven

connection parameter and the value of the parameter represents an audio input.

Figure 4.13(b) shows that each channel can only be connected to exactly one audio input.

Where a source terminal parameter represents connections as found in

Figure 4.13(a), the parameter must be able to represent multiple values as the source

signal may be split. This representation cannot be accommodated within a single scalar

value. However, connections that are represented by a destination terminal parameter as

105

found in Figure 4.13(b) only require a single value, unless the destination terminal

provides signal-mixing capabilities such as a mixing console bus.

When audio signals must be mixed together, depiction of the connection parameters

as source terminals allows multiple source terminals to be assigned the same destination

value as discussed in the next section.

4.4.1.2 A Fully-Enumerated Connection Model

In a fully-enumerated connection model, each possible connection is represented by a

connection parameter as illustrated in Figure 4.14.

 Legend: ■ Source Terminal ■ Destination Terminal

 [true / false] [true / false]

inParameters

 inChannels

 ch1-LBus ch1-RBus

L4

L5

L6

L7 conn conn

Figure 4.14 Fully-Connected Connection Models.

connParameters

 busParameter

 LBus-ch1 LBus-ch2

 conn conn L7

L6

L5

L4

Figure 4.14(a) Figure 4.14(b)

 Connection
 Terminals

 Connection
 States

Connection
Parameters

Connection
 Points

 Dest
Terminals

Figure 4.13 Partially-Enumerated Connection Models.

inParameters

parameterType

 input1 input2

inParameters

parameterType

 inCh1 inCh2

 [inCh1, inCh2]

 Figure 4.13(a) Figure 4.13(b)

L4

L5

L6

 conn conn L7

 [inCh1]

L4

L5

L6

L7 conn conn

 [input1] [input2]

 Src
Terminals

 Legend: ■ Parameters [■] Parameter Values

Audio Inputs
(src terminals)

Input Channel
(dest terminal)

inCh1

 Audio Input
(src terminal)

Input Channels
(dest terminals)

inCh1 inCh2

Input1 Input1 Input2

106

Although restricted to two entries for the sake of brevity in Figure 4.14, level six parameter

identifiers must represent all possible source and destination terminal combinations.

Level seven connection parameter values represent connection states. This type of model

naturally represents many-to-one audio connections where the destination terminal

provides signal-mixing capabilities. Figure 4.14(a) represents parameters in terms of

destination terminals (all candidate connections to a bus), while Figure 4.14(b) represents

parameters in terms of source terminals (all candidate connections from an input

channel).

4.4.1.3 An Independent Connection Model

A connection model where parameter actions are used to create or tear down audio

connections is termed an ‘independent connection model’. Connections are created by

control points termed ‘connection points’. A connection point is defined as a control point

that is used to create or tear down a connection between audio signals.

As previously discussed in Section 2.9.1.2 Action Parameters (p.35), when a parameter

represents a connection point, the parameter is accessed solely for the side effects of the

parameter access. This type of connection management model is termed an

‘independent connection model’ as the remote procedure call or action parameter invoked

to create the connection does not imply a source or destination audio terminal. Connection

points are not used by the SDM as:

 Connection points require commands having multiple arguments that are not

found in all control protocols;

 Connection points must update the required connection parameters, implying the

existence of additional connection parameters.

An independent connection model may require that parameters representing connections

are dynamically added to or removed from the address space as connections are created

or torn down. The SDM does not support dynamic modification of the parameter address

space because protocols such as OSC and UPnP do not support address space

modification. Ember+ addresses this limitation by allowing a parameter to specify child

parameters. This capability allows a parameter representing a source or destination

terminal to add child parameters representing the terminals connected to the parent

parameter.

4.4.1.4 Comparing Connection Models

Table 4.5 summarizes the advantages and disadvantages of the three different connection

models.

107

An independent connection model allows the granularity of connection management

processes to be controlled as connection points can be specified to manage different types

of connections. For example, different connection points can manage connections for

different types of audio inputs to a mixing console. It is also possible for the source and

destination arguments to be a collection of parameters, allowing multiple connections to

be specified by a single protocol command. The most significant disadvantage of this

approach is that connections cannot be created by control commands that do not support

multiple arguments. Control protocols such as Ember+ and SNMP cannot implement this

model. Additionally, the states of parameters representing connections must be managed

by the protocol stack. This approach is thus a functional approach to connection

management where parameters do not describe connections.

The main advantage of the fully-enumerated approach is that all possible

connections are specified by the model and the semantics of each connection parameter

(as determined by the source and destination terminals) is indicated by the components

of the parameter’s address. This prevents connections between incompatible audio

formats and reduces the parsing effort required during service discovery. However, the

model grows exponentially at the order of O (SRC • DEST) and can become very large as

all possible terminal combinations are represented.

A partially-enumerated model offers the best general representation. It is a compact

representation that supports efficient service discovery as a single parameter represents a

 Model Advantages Disadvantages

Independent

1. Compact representation
where a single connection
point can manage many
connections.

2. Granularity of managing
connections is flexible as
connection points can be
freely defined.

1. Illegal connections are not prevented
by the representation.

2. Service discovery must determine the
terminals to be connected, as well as
the required connection point.

3. Requires multiple arguments to
protocol commands to specify both
source and destination terminals.

4. Does not depict connection
parameters.

Partially-
enumerated

1. Both terminals do not have to
be discovered - the connection
point represents one of the
connection terminals.

1. Illegal connections are not prevented
by the representation.

Fully-
enumerated

1. Only legal connections are
possible.

1. Space-intensive because all possible
connections are explicitly represented.

Table 4.5 Comparing Different Connection Models.

108

terminal, and the parameter’s value depicts a connection by representing a second,

connected terminal. These connection models exist solely in terms of audio terminals and

connection parameters and do not imply a user interface model.

The use of a connection model with a control surface is discussed in Section 4.4.2.1 Multi-

Parameter Controls (p.110).

4.4.1.5 Representing Connection Assignments and Internal Connections

Figure 4.15(a) shows device outputs represented as destination terminals where the values

of these terminals depict source terminals. In this example, the left master outputs of a

mixing console are the candidate source terminals and the available analog output

channels are the candidate destination terminals. In Figure 4.15(a), the left master output

channel is connected to an analog output named ‘outCh1’. In a similar manner, a source

channel is connected to a device input channel (‘ch1’) in Figure 4.15(b) where level 6 analog

source channels are connected to device input channels.

Sub-devices can be used to group different audio inputs and outputs.

Description records for these sub-devices describe the inputs or outputs contained within

each sub-device are shown in Figure 4.15. A description record that describes a level five

audio signal parameter type is termed a ‘signal description record’.

A signal description record is a description record that:

 Describes the characteristics of an audio stream or audio signal;

 Value [ch1] [ch4] Connections

 Terminals

Figure 4.15 SDM Connection Assignment Models.

Value [LMaster] [RMaster]

 Figure 4.15(a) Figure 4.15(b)

L4 outParameters

L5 analogOut

L6 outCh1 … outChN

conn conn L7

L4 inParameters

L6 inCh1 … inChN

L7 conn conn

Signal Description Record

<channels><8>
<signal><balanced>
<parameter><conn>
<values><in1 … in8 >

L1 device

L2 out sub-device

L2 analogOut sub-device

L3 control or channelID

L1 device

L2 in sub-device

L2 balanced line sub-device

L3 control or channelID

L5 analogIn

<channels><8>
<signal><balanced

Description Record

 Terminals

109

Signal Description Record

Value

 Receiver

L7

L6

L5

L4

Figure 4.16 Stream Connection Parameters.

 ID Advertise ConnectID Listen

 Stream

 Transmitter

T1

 Stream

R1

<clock><48>
<channels><8>
<format><AES64>
<parameter><ConnectID>
 <values><T3, T4, T6>
<parameter><Listen >
 <values><true, false>

<clock><48>
<channels><8>
<format><AES64>
<parameter><ID>
 <values><1234>
<parameter><Advertise >
 <values><true, false>

Signal Description Record

Value

 Describes the parameter used to represent a connection;

 Lists the candidate values that may be assigned to a connection parameter.

Examples of these values are shown in Figure 4.15. A level five description record describes

all parameters of the same type, avoiding descriptions to be duplicated at level six. All

internal connections that are not many-to-one connections such as an auxiliary send use

the same partially-enumerated model discussed in the previous section.

In cases where many-to-one connections must be represented, a fully-connected model

that represents source terminals (shown previously in Figure 4.14(b)) must be used.

4.4.1.6 Representing and Managing Networked Audio Streams

Connections are managed by the partially-enumerated connection model of Figure 4.16

that shows connections between network streams using the parameters supported by

AES64.

The associated signal description record describes both the parameters used to create

connections and the parameters that control the behavior of the audio stream.

The receiver’s signal description record lists the candidate transmitter streams that can be

connected to the receiver. If a device is not able to discover networked streams, it cannot

list candidate transmitter streams in a signal description record. In this case, the candidate

streams are omitted from the signal description record.

110

4.4.2 Connection Management Controls

It is important to emphasize that the connection models presented in the previous sections

are only expressed in terms of connection parameters and connection points. The controls

used to perform connection management are independent of these models. Figure 4.17

provides examples of three commonly encountered controls used to create audio

connections.

Figure 4.17(a) illustrates a connection matrix; Figure 4.17(b) illustrates a channel strip

where a selector switch (or list box widget) is used to select an input from the available

device inputs, while Figure 4.17(c) illustrates two buttons used to assign the signal from a

channel strip to the left and right channels of a stereo bus.

Selector switches and context-sensitive button controls can easily be used with a simple

partially-enumerated model. A control such as the connection matrix of Figure 4.17(a)

must address more than one parameter. These types of controls are discussed in the next

section.

4.4.2.1 Multi-Parameter Controls

In order to accommodate the representation of connection parameters used in

conjunction with a connection matrix the SDM defines a ‘multi-parameter’ control.

A multi-parameter control defines multiple level five parameter types that allow a

connection matrix to be represented such as the connection matrix that assigns input

channels to buses shown in Figure 4.18. Level five parameter types depict source

terminals; level six defines parameter identifiers representing all possible connections for

the level five source terminals. In this example, the source terminals ‘ch1’ and ‘ch2’ can be

connected to the destination terminals ‘ch1L’, ‘ch1R, ‘ch2L’ and ‘ch2R’ that represent

Figure 4.17 Common Connection Management Controls.

Figure 4.17(c) An Assignment
 Button Group.

Figure 4.17(b) An Assignment
 List Box.

 s c

1-1

1-2

1-3

1-4

2-1

2-2

 I
n
P
u
t

s 1 1 1 1 2 2
c 1 2 3 4 1 2

 Output

Figure 4.17(a) A Connection
 Matrix.

Stream /
Channel

Device Inputs In1 ... InN

111

connections to the two channels of a stereo bus. Level seven connection parameter values

(named 'conn' in this example) indicate the state of each connection.

A level five signal description record lists all level five source terminals and level six

destination terminals that may be connected. The connection parameters and the

arguments for each connection parameter are also listed. These values provide the values

required for the two axes of a connection matrix. This representation is a fully-connected

connection management model.

4.4.3 A Summary of Connection Management Representations

The following summarizes the SDM parameter models used to perform connection

management:

1. A partially-enumerated model is used for connections between:

1.2 Connection assignments and internal connections that are not many-to-

one connections (shown previously in Figure 4.15).

1.1 Network streams (shown previously in Figure 4.16).

2. A fully-enumerated model is used for many-to-one connections such as bus

assignments illustrated in Figure 4.18 where a mixing capability is required.

4.5 Alternative Device Models

Development of the proposed model raised the question whether alternative models to the

proposed model could be identified. A channel-oriented architecture based on the signal

paths within a device was identified as an alternative device model and warrants further

L3 MatrixControl

L4 input

L5

<src> <ch1, ch2>
<dest> <LBus, RBus>
<parameter> < conn>
<args> <0, 1 >

RBus LBus

ch1L ch1R

ch2L ch2R

ch1

ch2 Description Record

ch1 ch2

L6 LBus RBus LBus RBus

 <controlType> <multi>

Signal Description Record

L7 conn conn conn conn

Figure 4.18 An Example of a Multi-Parameter Control.

112

discussion. This type of model is used by IEC-62379 (discussed in Chapter 6), IEEE 1722.1-

2013, and is an optional feature of OCA as was mentioned in Section 3.3.2.2.1 Signal Path

Representation (p.52).

4.5.1 A Channel-Oriented Model

This model consists of audio signal segments that are segmented by primary connection

points. A simple four-channel mixer represented according to this model is shown in

Figure 4.19, where related signal segments are partitioned into sets. Each signal path set

is associated with a set of controls.

Controls are depicted by colored shapes; black circles indicate primary connection points

between signal segments. Each signal path provides source and destination audio

terminals. Connections between signal segments can be accomplished by using the

connection models discussed previously. This channel-oriented model was discarded for

three reasons:

1. The model creates the same logical partitioning as the structural device model

presented earlier in this chapter. Signal segments and sets of signal segments

correspond to sub-devices in the previously proposed model. These sub-devices

are shown by dashed rectangles in Figure 4.19.

2. The lack of hierarchical containment provided by nested sub-devices makes

control surface representation less flexible. For example, equalization controls are

not distinguishable from any other controls within a single channel strip that is

Figure 4.19 A Channel-Oriented Device Model.

Input Signal
Path Set

Output Signal
Path Set

Control
 Sets

Channel1 . . . Channel4

Bus Signal
Path Set

Legend:
 Implied sub-device
 Controls
 Primary Connection
 Point

113

represented by a single signal path segment. A separate depiction of the grouping

and layout of controls is required to depict relationships between controls

associated with a specific signal path segment.

3. A model derived from signal paths and signal connections does not provide any

advantage. Unless the device has a modular architecture, or must support different

media types and clock sources, the depiction of signal paths is not required for the

configuration and control of a device.

This type of model is discussed with reference to IEC-62379-2 in Chapter 6.

4.6 Implementation of the Standard Device Model

Different implementations of the SDM are dependent on the capabilities of the specific

control protocols used within a networked environment. Although the model supports the

representation of connections using connection parameters, applications can also

determine connections by examining the states of controls. For example, to determine all

bus assignments for a mixer, the states of the assignment buttons within each channel

strip can be examined.

Figure 4.20 illustrates relationships between different components of the SDM and

the control surface of a controller. For greater clarity, parent device and sub-device names

are indicated in parentheses after each sub-device name. The device component in Figure

4.20 is not renderable - it has its own descriptive attributes, and serves as a container for

child sub-devices. Input and output section sub-devices function as containers for other

sub-devices where the output section sub-device is also a renderable sub-device. Channel

strip sub-devices are renderable, and contain controls and equalization sub-devices that

are also renderable sub-devices. Other representations are also possible. For example, the

audio input and output sub-devices can be represented as child sub-devices of the input

and output sections respectively.

114

It is important to emphasize that a full or short parameter address is a logical,

hierarchical parameter address. Parameter addresses may be implemented in a variety of

ways using the data structures or conventions available to a specific control protocol.

These implementations include:

 The hierarchical representations used by OSC, Ember+ and AES64.

 An organization where parameters of the same type explicitly reference the same

parameter type description. An example of this type of organization is provided in

Chapter 6 with reference to SNMP.

 Storing all parameters of the same type in a collection - referencing a member of

the collection implies the type. This type of parameter organization is possible

within the environment introduced in Chapter 11.

These distinctions are subtle, and are created by the data structures and data

representations provided by different control protocols. As the model is an abstract model,

 EQ sub-devices
 (Channel strip)

Figure 4.20 An Implementation of the Standard Device Model.

 Input
 section
sub-device
 (Device)

 Master section
 sub-device (Output Section)

 Channel strip
 sub-devices
 (Input section)

 Audio Output
sub-device
 (Device)

 Output
 section
sub-device
 (Device)

Audio Input
sub-device
(Device)

115

it does not concern itself with implementation constraints. Subsequent chapters illustrate

how different implementations are significantly influenced by both the data structures and

command formats provided by different control protocols.

4.7 Summary of the Proposed Model

The schema of the complete standard device model is shown in Figure 4.21 where optional

occurrences are denoted by square brackets. When parameters represent connections or

terminals, the description record becomes a signal description record. The following

principles summarize the core features of the standard device model:

1. Parameter and their relationships to a device’s architecture are described by a two-

tiered hierarchical parameter address consisting of a device architecture layer and

a parameter description layer. These two hierarchies are combined to create a full

parameter address.

2. The device architecture layer consists of a device and its child sub-devices where

sub-devices may contain nested sub-devices and controls. These components are

the abstract building blocks used to model the physical or logical architecture of a

device.

3. Controls only exist within sub-devices.

4. Devices and sub-devices may optionally have a visual representation. If no visual

representation is specified, devices and sub-devices function as containers for

child sub-devices or nested sub-devices and controls respectively.

5. A level three control entry may contain one or more channel identifiers if a device

contains DSP functions that do not have an associated control.

6. Controls should always be associated with local control parameters where a local

parameter address space is available.

7. Parameters are represented by a four-level parameter description layer consisting

of a parameter description, a parameter type, a parameter identifier, and value,

connection or action parameters.

8. Each parameter identifier has at least one value parameter or action parameter.

9. The parameter description layer provides short parameter addresses that must be

implemented to be either:

 Globally accessible, or

 Accessible from a level one device entry.

10. Entries within the hierarchical levels that constitute a full parameter address

should adopt regular naming schemes.

116

11. Descriptive data is associated with different levels of the model. These data sets

are description records, layout records, and signal description records.

12. Records contain attributes consisting of unordered sets of <key, value> pairs or

<key, value1, … valueN> lists.

13. Meta-data describing attribute data also consists of <key, value> pairs.

Meta- data must be clearly distinguishable from the data that it describes.

14. Connection parameters are represented using a partially-enumerated connection

model for one-to-one or one-to-many connections. A fully enumerated model is

used to represent many-to-one connections.

Parameter
Description
 Layer

Figure 4.21 Schema for the Standard Device Model.

 Device
Architecture
 Layer

 Device

 Parameter
 Description

 Control

 AND

 Channel Identifier

 Parameter

 [Layout Record]

 [Layout Record]

 Layout Record

 Description
 Record

 [Description
 Record]

Description
 Record

 Description
 Record

 Parameter
 Type

 Description
 Record

Short Parameter Addresses

Level 1

Level 2

Level 3

Level 4

Level 5

1

1
1...*

1

0…*

1...*
 SubDevice

 1

1

1

1

1...*

0..*

Level 6

 Value AND/OR Action

1...*

1

1...*

1

0..*

Level 7

1

 [Description
 Record]

 [Description
 Record]

Globally Accessible

0…*

117

4.8 Conclusions

This chapter has described the design of an abstract standard device model for networked

audio devices. The SDM provides a complete conceptual framework for representing an

audio device that is independent of any particular control protocol.

The model supports a multifaceted description of a device consisting of a:

 Description of the logical organization or physical architecture of a device.

 Description of services represented by context-sensitive parameter addresses;

 Description of the visual appearance of a control surface;

 Representation of parameters within a logical parameter hierarchy;

 Representation of how parameters are linked to a control surface or to internal

device functionality.

Advantages of this model include the following:

1. It is a simple, scalable model that is able to depict any networked device.

2. It is an abstract, conceptual framework that is independent of any particular control

protocol, deployment platform or development environment.

3. The model supports multiple views of a networked device’s architecture.

For example, different logical representations of a device such as a set of channel

strips, or a set of related controls are supported.

4. The hierarchical nature of the model allows controllers to explore the structure of a

device and the service provided by a device.

5. Parameters are directly exposed to controllers. Controllers do not have to process

the full device model to discover parameters.

6. Different units of measurement are easily implemented. Controls, parameters and

parameter types can each specify measurement units as required. A device can also

specify a global measurement unit such as the proprietary units found in AES64,

OCA and CopperLan. Parameters may also specify scaling and mapping functions

within description records.

7. Parameters are represented by fixed addresses consisting of four levels.

The number of levels can be extended by using the levels defined by the device

architecture layer to accommodate protocols that use more than four levels to

represent parameter addresses.

The SDM is a meta-model that prescribes the organization of a model but does not

prescribe the content of the model. By using a small set of abstract entities, the model is

as simple as possible while also being highly scalable. To be functionally useful, the model

118

would have to standardize the identifiers within each layer of a full parameter address and

the contents of description and layout records. Standardization of the parameter

description layer is of particular importance if interoperability between different control

protocols is required. This standardization is not pursued further for two reasons.

Firstly, Chapter 11 introduces a novel environment that makes such standardization

unnecessary. This environment only depends on the identification of the different levels

of the SDM for service discovery. Remote parameter addresses are transparently used and

do not require standardization. Secondly, this non-trivial task falls outside of the scope of

this dissertation. This type of standardization should be entrusted to a standards

committee within organizations such as the AES or IEEE.

119

Chapter 5

Open Sound Control

5.1 Introduction

Open Sound Control (OSC) was developed at the Center for New Music and Audio

Technology (CNMAT) of the University of California, Berkeley (Wright & Freed, 1997).

OSC was conceived as a protocol for controlling sound synthesizers and computer music

applications. However, the protocol provides a high level of flexibility, allowing it to be

used in a wide variety of networked control and communication scenarios.

OSC is described by the developers as:

“... a digital media content format for streams of real-time audio control messages

... such a format has application outside of audio technology, and OSC has found use

in domains such as show control and robotics.”

 (Schmeder, Freed, & Wessel, 2010).

The protocol is described by the version 1.0 specification (Wright, 2002a). Features of the

proposed version 1.1 specification are described in a paper presented at the 2009 New

Interfaces for Musical Expression Conference (Freed & Schmeder, 2009).

This paper also discusses the future development of OSC. A variety of OSC

implementations for different development environments, including embedded

environments (Schmeder & Freed, 2008) are freely available.

The following sections provide an overview of the protocol and examine the use of

the protocol within the context of the SDM. Of particular interest are:

 The representation of the SDM within the tree data structure that defines the

structure of OSC control commands;

 The implementation of service discovery;

 The implementation of service enumeration by providing access to SDM

description and layout records.

120

5.2 An Overview of OSC

OSC is a transport-independent protocol that is typically implemented within client-server

architectures. However, the specification does not differentiate between client and server

process. Any process can create one or more address spaces, transmit messages and parse

incoming messages. Server processes use a hierarchical, symbolic naming scheme termed

an ‘OSC address space’ to represent remote control points that are referred to as ‘OSC

methods’. OSC methods are implemented as remote procedure calls and correspond to the

services provided by an OSC application Clients invoke OSC methods using URL-like ‘OSC

addresses’ derived from the hierarchical structure of an OSC address space. A single OSC

address can invoke more than one OSC method and time-stamped OSC methods may be

grouped together within a single OSC bundle.

5.2.1 Parameter Data and Data Types

OSC is unusual, in that it does not persistently store parameter data. All of the other

protocols discussed in this dissertation define parameters where parameter values are

accessed by protocol commands. Parameter access is thus managed by the protocol stack.

Within these protocols, control points are typically invoked as a side effect of reading or

writing parameter data. This supports the execution of application-specific functionality

within the context of accessing specific parameter values. The OSC protocol consists

entirely of remote control points that correspond to OSC methods. Implementation of the

parameter data accessed by OSC methods is thus application-specific.

Because parameters are not defined, the protocol does not differentiate between read

and write operations. Although many different addressing conventions have been

proposed to differentiate between these operations (Place, Lossius, Jensenius, Peters, &

Baltazar, 2008), these conventions are typically application-specific. One of the OSC

developers, Mathew Wright has acknowledged that standardized parameter read

operations should be considered for inclusion within the OSC standard (Schmeder &

Wright, A Query System for Open Sound Control, 2004) (Wright, 2005). Section 5.4.4.1

Parameter Persistence and Querying Parameter Values (p.133) discusses parameter

persistence and parameter access.

5.2.1.1 OSC Data Types

The OSC data types (Wright, 2002a) used as arguments to OSC methods are listed in

Table 5.1. Messages contain an ASCII character ‘type tag’ that identifies the data types

found within a message. For example, a MIDI message has a type tag of ‘m’ followed by a

four-byte MIDI message. Applications can represent non-standard data types within OSC

messages by defining new type tags. Additional bytes are added to OSC string and blob

121

 Type Description

 int32 32-bit big-endian two's complement integer

 timetag 64-bit big-endian fixed-point time tag

 float32 32-bit big-endian IEEE 754 floating point number

 string

Sequence of non-null ASCII characters terminated
by a null character.
 blob

An int32 data size, followed by the specified number
of 8-bit bytes of arbitrary binary data.

Table 5.1 OSC Data Types.
 (Wright, Open Sound Control Specification 1.0, 2002a).

data types to align the data to a thirty-two bit word boundaries. This data alignment

(illustrated in Appendix 11) enhances the processing of OSC messages and is discussed

later in this chapter.

Emphasis of four-byte data types reflects the data word size commonly supported by

microprocessors at the time (2000-2002) when OSC was developed.

5.3 The OSC Address Space

An OSC address space defining OSC methods is implemented as an M-way tree.

Figure 5.1 illustrates an example SDM OSC address space for a simple two-channel mixing

device.

Figure 5.1 An Example OSC Address Space Representing the SDM.

 Root
Container

Child
Containers

/

mixer1

output

fader1 fader2 fader3

input

vol1 vol2 vol3

 volType volType volType

 OSC Methods value value value

 inParam inParam outParam

L1

L2

L3

L4

L5

L6

L7

SDM full parameter
address levels

122

Root and interior nodes are termed ‘containers’, while OSC methods form the leaves of the

tree. The two input faders and an output fader are controlled by invoking the OSC ‘value’

methods of the parameters ‘vol1’, ‘vol2’ and ‘vol3’. Although OSC does not define

parameters, OSC methods typically imply a parameter value access. A forward slash

delimited string forming a path through the tree from the root container to a leaf node

method denotes an OSC address. Thus, each OSC address uniquely identifies an OSC

method. Figure 5.2 shows that this scheme allows containers and methods to be logically

organized, and indicates the context of an OSC method invocation.

This OSC address is interpreted as follows:

 The first forward slash is the root container of the OSC address space;

 ‘value’ is an OSC method and the integer 56 is an argument passed to the

corresponding remote control point when the method is invoked;

 The remaining components separated by forward slashes are nested child

containers of the root container.

The OSC container hierarchy illustrated in Figure 5.2 implies the context within which the

OSC method ‘value’ is executed – a parameter value for the channel one fader found on

the input section of a mixing console. OSC addresses typically reflect a logical device

structure or a logical organization of parameters. While the address space shown in Figure

5.1 only contains methods at the lowest level of the tree, any container may have both child

methods and child containers.

5.3.1 Processing OSC Messages

A client-side OSC protocol stack translates OSC addresses and their associated arguments

into word-aligned protocol data units. These PDUs are then transmitted across the

network by the OSC implementation’s transport layer. When an OSC server receives the

network packet, the PDU is extracted and passed to the OSC stack for processing as

illustrated in Figure 5.3. The stack extracts argument data and then invokes one or more

OSC methods (control points) specified by the OSC address within the PDU. All argument

/mixer1/input/fader1/inParam/volType/vol1/value 56

Figure 5.2 OSC Message Structure.

OSC Method

argument

 Method
Argument

OSC Address

Nested Child Containers

123

Figure 5.3 Processing Received OSC Messages.

1. Determine control point/s

2. Parse argument data

3. Invoke callbacks
 f (<argType1> .. <argTypeN >
 OR
 f (<&argType1> . . <&argTypeN]>

OSC packet

OSC Stack

OSC PDU

OSC PDU

Network Buffer

OSC Address

Argument type tag strings

< argument1 >
 …
< argument N >

Value Arguments

Reference Arguments

Network

data is provided to all invoked methods. A single OSC address can invoke multiple OSC

methods as explained in the next section.

OSC methods are variadic functions in both type and arity. This means that methods

can be invoked with a varying number of arguments, where each argument is a collection

of one of the data types supported by the protocol. The receiving application must then

process the provided arguments. Argument data can be passed by value (copied from the

network buffer) or passed by reference using the address of each argument in the network

buffer as shown in Figure 5.3. Type tag strings identify the different arguments within a

PDU.

PDUs are aligned at word boundaries to allow an OSC stack to efficiently process

arguments as explained by Adrian Freed:

“For computational efficiency: data will be word aligned in memory of the sender

and receiver. This means that a copy-free ‘pass by reference’ is possible.”

 (Freed, 2008).

The meaning of ‘pass by reference’ was clarified by Matt Wright in an earlier paper:

“… OSC data is parsed in the PacketBuffer, and eventually a number of callback

procedures are invoked with arg values that point into the PacketBuffer.”

 (Wright, 1998).

124

Protocol performance is enhanced when data is not copied from the network buffers that

receive OSC messages.

5.3.2 Address Space Organization

In the absence of a standard address space topology, address spaces are typically designed

to reflect the organization of a specific device, or to meet the requirements of a specific

application. Andrew Schmeder, one of the developers of OSC has commented on address

space design:

"… pattern matching an address against the space of known addresses should

terminate with the fewest possible comparisons."

 (Schmeder, 2008).

The fewest number of comparisons implies that the address space should branch as early

as possible, resulting in each path having as many distinct containers as possible.

Matt Wright has also commented on address space design in the source code of the

original OSC implementation, OSC-Kit:

"The free list of containers should actually be a “free forest”, so all the sub

containers recursively under a freed container are automatically freed."

 (Wright, 1998).

This means that each container should have one and only one parent. This type of address

space topology may not reflect a desired logical organization of parameter addresses and

often requires OSC containers to be duplicated.

Figure 5.4 OSC Address Space Organization.

 Figure 5.4(a) Figure 5.4(b)

mixer1

input

fader1 fader2

/

vol1 vol2

mixer1

input

fader1 fader2

 volume

/

vol1 vol2

 volume volume Parameter Type

Parameter

125

It is logical to organize controls and parameters as shown in Figure 5.4(a), where each

volume parameter is a distinct member of a set of volume type parameters. Because OSC

does not allow this organization, the volume type container must be duplicated for each

leaf method (parameter) as in Figure 5.4(b). This restriction occurs because container

deletion may be implemented recursively from the leaf nodes of the OSC address space.

Deletion of one branch of the address space in Figure 5.4(a) will result in references to

non-existent containers or create orphaned nodes within the address space. Because of

this design restriction, OSC addresses commonly contain duplicate container entries that

are not conceptually required.

5.3.2.1 Address Space Pattern-Matching

OSC allows a single OSC address to invoke multiple control points by using wildcards and

sets of values within an address. An OSC stack executes a pattern-matching algorithm that

creates a set of matching OSC addresses by comparing a received OSC address to all the

addresses defined by an address space. The syntax used by OSC addresses is derived from

the syntax used by regular-expressions where:

 The '?' character matches any single character;

 The *' character matches any sequence of zero or more characters;

 A string of characters in square brackets matches any character in the string

where the minus sign and exclamation mark symbols have special meanings:

o Two characters separated by a minus sign indicate a range of characters.

o An exclamation mark at the beginning of a bracketed string matches any

character not in the list.

For example, the following OSC message:

 /mixer1/input/*/volume/vol? 57 56 will match the OSC addresses

/mixer1/input/fader1/volume/vol1 57 56 and

/mixer1/input/fader2/volume/vol2 57 56

Characters used in address matching can also be explicitly listed as a set. The following

address provides the same matching semantics as the previous example:

 /mixer1/input/fader[1,2]/ volume/vol[1,2] 57 56

As illustrated by the above examples, all arguments are passed to method invocations.

Because it is an application’s responsibility to identify the arguments that it requires from

each typed set provided as an argument, OSC method names commonly have numeric

suffixes that denotes an argument index within an N-sized argument list.

126

Using the example of Figure 5.4(b), the example OSC methods use the nth argument

corresponding to their numeric suffixes:

The OSC specification does not specify the ordering of multiple OSC method invocations

by an OSC stack. Method invocations resulting from pattern matching are executed

non-deterministically. Method invocations should thus not be semantically dependent on

each other (Wright, 2002a).

The design of an address space obviously influences the capabilities of the grouping

mechanism, as address matching is restricted to sibling containers within an address

space. The proposed version 1.1 OSC specification introduces a ‘multiple-level wildcard-

matching operator’ (Freed & Schmeder, 2009, p. 2), denoted by a double forward slash.

This symbol is derived from the XML Path Language (XPath) which is used to traverse

XML documents (World Wide Web Consortium, 1999). The ‘//’ operator provides

matching at any level across distinct branches of an address space. For example, //vol? will

match all the leaf methods of Figure 5.4(b). Andrew Schmeder has commented on the

influence of the XPath and XQuery (World Wide Web Consortium, n.d.) mechanisms.

"…if we were to re-invent the protocol today it would probably be based on one of

the binary XML formats, and XPath would serve a similar role as does OSC pattern

matching syntax. However... possibly with some restrictions: OSC patterns are

restricted considerably compared to XPath/XQuery, so they can be evaluated in

bounded time (e.g., there is no backtracking, non-greedy qualifiers, etc)."

(Schmeder, 2008).

XQuery is a functional programming language that uses XPath to extract data from one

or more XML documents.

5.3.3 Automation in OSC

OSC ‘bundles’ allow multiple time-stamped OSC messages to be grouped together within

a single PDU. As mentioned in the previous section, the execution order of methods

grouped by a single OSC message using pattern matching is non-deterministic.

By contrast, messages grouped in bundles are executed in transmission order. A bundle

containing the following three OSC addresses:

/vol1 (<57, 56>)

/vol2 (<57, 56>)

127

1. /device/input/channel1/fader

2. /device/input/channel[3,4]/pan

3. /device/input/channel*/fader

will be executed as follows: message one, followed by the two messages matching message

two in any order, followed by the messages matching message three in any order.

The time stamping mechanism used with OSC bundles allows messages to be time

stamped and stored for later execution. The time tag represents a future time as a

sixty-four bit fixed point number (Wright, 2002a), specifying the number of seconds since

January 1, 1900, and has a precision of around two-hundred picoseconds

(a picoseconds is 10−12 of a second). Stored sets of time stamped commands are commonly

employed to provide automation within video and show control applications.

The OSC bundle mechanism can also be used to control network latency.

By specifying a future execution time for each OSC message within a bundle, all messages

within the bundle will have a fixed latency.

5.4 An OSC Representation of the Standard Device Model

The following section describes the use of the OSC address space to represent the standard

device model developed in the previous chapter.

5.4.1 Parameter Address Representation

Full parameter addresses are represented by the OSC addresses shown in Figure 5.5.

 fader-1

Figure 5.5 Parameter Address Representation.

 Legend:
 Reference

fader1

/

inputSection

faderType

device

inParam Parameter
Description
 Layer

value

vol1

faderType

inParam

val

 fader-1

/

inputSection

device

fader1

faderType

inParam

value

Figure 5.5(a)

Figure 5.5(b)

L1

L2

L3

L4

L5

L6

L7

128

The SDM parameter description layer is duplicated at the device level to provide short

parameter addresses that are independently accessible as illustrated by the dashed arrow

in Figure 5.5(a). As explained in Section 4.3.4.2 The Parameter Description Layer (p.96),

short parameter addresses allow parameter discovery without traversing the device

architecture layer of a full parameter address. OSC implementations typically relate

containers by programming language pointers or references. This means that short

parameter addresses need not be replicated. Figure 5.5(b) shows that a control container

and a device container can both reference a single implementation of the parameter

address layer.

The OSC implementation of the SDM discussed in Section 5.6 An Implementation

of the Standard Device Model (p.137) supports container ‘aliases’ that are references to

child containers. The following section discusses the representation of an audio device

within an OSC address space.

5.4.2 Device Representation

Because an OSC address space is a generalized M-way tree structure, any hierarchical

structure can be represented within an OSC address space. Several different

representation schemes were investigated before an elegant implementation of the SDM

within an OSC address space was achieved. The sections that follow describe this

implementation.

5.4.2.1 Representing Description and Layout Records

Figure 5.6 illustrates a device representation that preserves the OSC addresses used for

control functionality and also represents descriptive data. Child containers are used to

implement description and layout records belonging to a parent container.

Container names used to create an OSC address are simply string identifiers, and may

consist of any sequence of characters except for the characters used for OSC pattern

matching. A container name is thus used to represent a list of descriptive attributes.

A null OSC method is added to each container that functions as a description or layout

record to ensure that the address space is well formed i.e. all leaf nodes are valid OSC

methods. A null method is an OSC method named ‘null’ that does not perform any action

and returns the null string when invoked. Figure 5.6 shows that the containers used to

represent description and layout records are clearly separated from the OSC addresses

used to implement control functionality.

129

Listing 5.1 illustrates an OSC implementation of a SDM representation of a fader

control.

Figure 5.6 Representing Description and Layout Records in OSC.

“desc: <K,V>…”

 Legend:
 ■ OSC containers
 ■ Descriptive attributes
 ■ OSC methods

fader1

/

fader-1

inputSection

fader

“desc: <K,V>…”

“desc: <K,V>…”

null

null

null

 device

inParam

L1

val

L2

L3

L4

L5

L6

L7

“layout: <K,V>…”

null

“desc: <K,V>…”

null Parameter value

L1 /dev/desc: node=dev, name=Mackie1, loc=studio1/0

L2 /dev/ins/desc: node=sd, name=inputSection/0

L2 /dev/ins/ch1/desc: node=sd, name=ch1/0
/dev/ins/ch1/layout: widget=cont, layout: x=56, y=124, w=70, h=492, label=ch1/0

L3 /dev/ins/ch1/fader-1/desc: node=ctrl, ch=1, name=fader1,val=int,
 meta=[min=-8, max=16, step=1, def=0], p=/dev/inp/fader/fader1/val/0
 /dev/ins/ch1/fader-1/layout: ctype=5, x=56, y=460, w=48, h=122, label=fader1/0

L4 / dev/ins/ch1/fader-1/inp/ desc: node=paramDesc, desc=inParameter/0

L5 /dev/ins/ch1/fader-1//inp/fader/desc: node=paramtype, ptype=fader, (value=val,
 meta=[type=int, min=0, max=20, step=1]) (action=peer, args=1, type=string)
 (action=slave, args=1, type=string)/0
L6 / dev/ins/ch1/fader-1/inp/fader/fader1

L7 (action) /dev/ins/ch1/fader-1/inp/fader/fader1/peer
L7(action) / dev/ins/ch1/fader-1/inp/fader/fader1/slave
L7(value) / dev/ins/ch1/fader-1/inp/fader/fader1/val

/dev/ inp/fader/fader1/peer
/ dev/ inp/fader/fader1/slave
/ dev/ inp/fader/fader1/val

Short Parameter addresses

Listing 5.1 A SDM Fader Control Represented in OSC.

Description
Records

Layout
Records

Description
Records

130

Description and layout records are implemented for the channel strip sub-device and the

fader control. The parameter description (level 4) and parameter type (level 5) parameter

address entries also have description records. The following section describes the

functionality required to discover and enumerate services and descriptive data

 (Eales & Foss, 2012) represented within an OSC address space.

5.4.3 Service Discovery and Service Enumeration

OSC does not natively support device or service discovery. OSC applications such as

OSCGroups (Bencina, 2012) often implement device and service discovery using

DNS Service Discovery (DNS-SD) (Cheshire & Steinberg, 2006). The use of DNS-SD by

different OSC implementations is discussed on the Open Sound Control Website

(Open Sound Control Technical Documents, n.d.). The creators of OSC have proposed a

query system (Schmeder & Wright, 2004) for service discovery that provides a level-by-

level traversal of an OSC address space tree. This proposal has not been adopted by the

standard. The following sections discuss an OSC implementation of service discovery that

supports the requirements of the SDM.

5.4.3.1 Address Space Operators

OSC methods termed ‘address space operators’ were added to the OSC protocol stack to

implement the functionality required for service discovery. These operators traverse the

address space and retrieve description and layout records for the various components of

the SDM represented within an OSC address.

5.4.3.1.1 Address Space Traversal

OSC address space traversal requires OSC methods that:

 Perform a level-by-level traversal of an address space;

 Identify descriptive and layout records for a specified parent container.

An OSC address space is extended by simply inserting additional methods into every

container. The ‘+’ OSC method is termed the ‘child enumeration operator’ and returns the

names of its child containers within the context of the SDM. For example, when applied

to the example address space of Figure 5.1 the OSC method /mixer1/+ returns the string

“input output” representing the SDM sub-devices that are children of the ‘mixer1’ device.

This method is applied recursively to each of the returned strings to traverse the address

space. When applied to a parameter (leaf) node, the child enumeration operator returns

null to indicate that the node does not have any child containers. The operator can be

qualified further where:

131

/mixer1/+p returns only child parameters.

/ mixer1/+s returns only child sub-devices.

/ mixer1/+c returns all child containers.

The command +p is used to discover short parameter addresses from an OSC root node.

5.4.3.1.2 Retrieving Description and Layout Records

The ‘-‘ OSC method returns a description record describing its parent container.

This method is termed the ‘attribute enumeration operator’. Two variations of this

operator return a description record (-d) and a layout record (-l). Using Listing 5.1 as an

example:

 /dev/ins/ch1/fader-1/-d returns the string:

 “node=ctrl, ch=1, name=fader1,val=int, meta=[min=-8, max=16, step=1, def=0],
 p=/dev/inp/fader/fader1/val”

 /dev/ins/ch1/fader-1/-l returns the string:

 “ctype=5, x=56, y=460, w=48, h=122, label=fader1”

 /dev/ins/ch1/fader-1/-c returns both the description and layout records for the
 ‘fader-1’ control .

Where descriptive or layout attributes do not exist for a specific container the attribute

enumeration operator returns a null string.

5.4.3.1.3 Bulk Data Retrieval

A level-by-level tree traversal does not perform efficient data retrieval, as it is a

fine-grained operation that incurs a large bandwidth overhead. A solution to this problem

is to retrieve an entire branch of an address space with a single query.

To achieve this, a ‘branch extraction operator’, represented by the ‘^’ character is

implemented as an OSC method. This method returns a set of strings represented within

a single string where component strings are separated using whitespace. For example, the

OSC command:

 /dev/ins/ch1/^

will return all description and layout records for all the controls belonging to the first

channel strip of the example mixing console device. The operator only returns all records

within either the device architecture layer or the parameter description layer.

This restriction is a result of the reference connecting the two layers illustrated previously

in Figure 5.5(b). The use of this operator will be constrained by the size of the network

buffers used to transmit and receive OSC data. The example OSC application discussed in

Appendix 4 illustrates that a level-by-level traversal of the SDM tree is sufficient to provide

service discovery and service enumeration capabilities. In addition, bandwidth is

132

conserved and traffic burstiness reduced when only the nodes of a SDM tree that are

required by a controller are retrieved.

Figure 5.7 shows an extended OSC address space containing address space operators

as well as description and layout records. It is important to note that the organization of

the address space operators and records preserve the OSC addresses used for control

functionality. The OSC address:

 /device/input/cstrip1/gainCtrl/gain/inp/gainType/gain1/value

in Figure 5.7 is not influenced by the additional OSC address space methods and OSC

containers that function as description and layout records.

 Legend:
 ■ Device Structure
 ■ Control
 ■ Description / Layout Records
 ■ Parameter Identifier
 ■ Address Space Operators
 ■ Parameter Value

Figure 5.7 OSC Address Space Traversal Operators.

value

/

gainCtrl

gainType

cstrip1

input

device + - (d,l,c) ^ L1

L2

L2

L3

L4

L6

Level

 inp

L5

+ -(d,l,c) ^

+ -(d,l,c) ^

desc layout

desc layout

desc layout

desc layout + - (d,l,c) ^

+ -(d,l,c) ^ desc

+ -(d,l,c) ^

gain1

L7

desc

+ -(d,l,c) ^ desc

null null

null null

null null

null null

null

null

null

133

5.4.4 Parameter Operations

The following sections discuss parameter operations with reference to OSC.

5.4.4.1 Parameter Persistence and Querying Parameter Values

An investigation into both the storage of parameter values and the storage of parameter

groups within the OSC address space was abandoned for two reasons. Firstly, dynamic

modification of the OSC address space is permitted but not required by the OSC standard.

Secondly, dynamic address space modification introduces potential race conditions and

may corrupt the address space. A simple scheme for parameter persistence would be to

specify a map data structure, where the key is an OSC address that maps to a parameter

value.

It is logical to implement a command to query a parameter’s value as an argument

to an OSC address string such as

/console/input/parameter/gain/val ?

or, to use an OSC message that does not have any associated arguments.

The proposals for OSC extensions used in the Minuit system include the use of the

‘?’ character as a query operator (Virage Group, 2009). This scheme closely resembles the

proposal for a query system made by the developers of OSC that appends the

‘#’ character to an OSC method to denote a query (Schmeder & Wright, 2004).

Many other proposals for parameter data storage and parameter access within OSC exist.

Notable are the extensions proposed for use within two computer music environments.

These environments are the Jamoma system (Place, Lossius, Jensenius, Peters, &

Baltazar, 2008), and the Open Sound Control Interface Transfer (oscit) system (Bucher,

2008). Both of these extensions to OSC use object-oriented implementations of OSC

containers and OSC methods, where object methods provide access to parameter values.

5.4.4.2 Parameter Subscription

OSC does not provide a subscription mechanism. A partial-peer network architecture

(introduced in Section 2.3.2.1 Partial-Peer Network Architectures (p.19)) is implemented

by the OSC controller application discussed later in this chapter. This allows a device to

transmit meter values to specific OSC addresses defined by a controller. OSC

implementations that provide a local, client-side address space support the invocation of

controller-defined OSC methods by a device that functions as a server.

5.4.4.3 Parameter Relationships

Because OSC does not provide persistent storage for parameters, OSC cannot implement

static parameter joins and parameter groups. However, the use of variadic arguments

allows OSC methods to implement dynamic relationships between control points.

134

Section 2.8 Parameter Management (p.28) introduced these parameter relationships.

Because control points often imply a parameter access, these relationships will be referred

to as ‘dynamic parameter joins’.

5.4.4.3.1 Dynamic Parameter Joins

OSC can dynamically specify a relationship between two parameters by specifying the

address of a dependent parameter when executing an OSC method as illustrated by the

following example:

A string argument to the OSC method ‘g1’ is itself an OSC method. When the method ‘g1’

is invoked, it executes one or more methods provided as arguments.

Figure 5.8 illustrates a dynamic parameter join between a local OSC address space and a

remote address space. A control updates a local control parameter that is provided with

the OSC address of a remote parameter dynamically joined to it.

A dynamic parameter join only exists while the function or method call implementing it is

executing.

5.4.4.3.2 Grouping Parameters

Grouping OSC methods using OSC pattern matching allows a single OSC message to

update a group of parameters. The argument list supplied with the OSC address specifies

an argument for each of the methods matching the address as explained previously in

/console/input/parameter/gain/g1 56 “/console/input/parameter/gain/g2 67”

Arguments

Local OSC
 address

Figure 5.8 Dynamic Parameter Joins Implemented in OSC.

 Local OSC method
 (Remote OSC address)

Controller

Local OSC Address Space
 /

Remote OSC Address Space
 /

Remote OSCmethod()

Device

Control

Remote OSC
address

135

Section 5.3.2.1 Address Space Pattern-Matching (p.125). In this example, each member of

a group of three OSC methods is provided with an argument that occupies the same ordinal

position as the numeric suffix to each ‘input’ container that functions as a channel identifier.

The variadic organization of OSC arguments supports the specification of dynamic

parameter groups. This example groups the fader parameters for three input channels of

a mixing console. When each OSC method is invoked, the application extracts the required

argument at the position given by the channel identifier.

When invoked, the OSC method ‘value’:

/console1/input3/param/fader/value 5.5 2.0 4.5 7.0

extracts the third argument (4.5) from the argument list.

5.5 Connection Management

The hierarchical organization of an OSC address space naturally represents the

hierarchical organization of the SDM. This supports the implementation of

partially-connected and fully-connected connection management models. Figure 5.9

illustrates the OSC command address space for managing connections between networked

devices. This connection management model was described in Section 4.4.1.6

Representing and Managing Networked Audio Streams (p.109) and illustrated

previously in Figure 4.16.

 Argument position 1 2 3 4

/console1/input[2 3 4]/param/fader/value 5.5 2.0 4.5 7.0

136

The signal description records shown in Figure 5.10 describe the audio source and

destination streams for a level 5 stream type. The record lists the stream types, as well as

the parameters associated with each stream. Candidate connections for destination

streams are also indicated. Signal description records are implemented in the same way

as the description and layout records described in Section 5.4.2.1 Representing

Description and Layout Records (p.128).

Figure 5.11 illustrates a signal description record describing input parameters used

for connection assignment. Connections connect audio source stream channels to device

input channels. This is a partially-enumerated connection model described in

Section 4.4.1.1 A Partially-Enumerated Connection Model (p. 104).

“stream=AES64 clock = 48
source = s1, s2
parameters =
 connect (type = bool)
 listen (type = bool)”

 netOutput

Figure 5.10 Signal Description Records Implemented in OSC.

 netInput

“stream=AES64 clock = 48
parameters =
 advertise(type = bool)
 id(type = int)”

L5

 null (OSC method)

 null (OSC method)

Figure 5.9 OSC Address Space for Network Connection Management.

netIn1 … netInN

audioInput

control

/

device

 Legend:
 ■ Device Description Layer
 ■ Parameter Description Layer
 ■ Connection Parameter

advertise id id advertise

netInput

 deviceInput

 netInput

audioOutput

control

netOutput

 deviceOutput

 netOutput

netOut1 … netOutN

 id listen id listen

L1

L2

L2

L3

L4

L5

L6

L7

137

Bus assignments are represented in a similar manner following the representation

illustrated previously in Figure 4.14 (p.105).

5.6 An Implementation of the Standard Device Model

The OSC library from Weiss Engineering, Switzerland (WOscLib) is a complete open

source implementation of the OSC standard developed by Uli Clemens Franke

 (Franke, WOscLib: The Weiss OpenSound Control Library, 2005). WOscLib is an object-

oriented C++ implementation that uses some of the code from the first OSC

implementation – the C-based OSC-Kit developed by Matt Wright (Wright, The

OpenSound Control Kit, n.d.). WOscLib allows both client and server processes to define

an OSC address space. OSC controller and device applications described in this chapter

used this OSC implementation. The address space operators discussed in this chapter were

implemented within the WOscLib protocol stack. Network traffic was monitored using an

OSC monitor application developed by Frieder Weiss (Weiss, 2013). The monitor was used

to verify that the Address Space Operators in Section 5.4.3.1 (p. 130) executed correctly.

Creation of a control surface using the data obtained by the address space operators is

illustrated in Figure A4.7 (p.369). This implementation is discussed in Appendix 4 and

examples of the OSC address spaces used by the software are listed in Appendix 7.

L1

L2

L7

L3

L4

L5

L6

L2

Figure 5.11 OSC Address Space for Audio Input Assignments.

ch1 … chN

audioInput

control

/

device

 Legend:
 ■ Device description layer
 ■ Parameter description layer
 ■ Connection parameter

connect connect

“source = s1-ch1 … s1-chN
parameters =
 connect (type = string)”

null

Signal Description
 Record

Short Parameter
 Addresses

netInput

 deviceInput

 chanInput

Connection parameter arguments

[“s1-ch1”] [“s1-ch2”]

138

5.7 Commentary and Evaluation

OSC emphasizes dynamic behavior by providing a functional framework that defines and

invokes remote control points. The protocol is easily adapted to a wide range of control

scenarios. OSC methods (corresponding to parameters) are typically ordered within the

address space to reflect the physical layout or functional organization of a device.

This chapter has demonstrated that an OSC address space that conforms to the OSC

standard can be used to implement service discovery and support service enumeration.

The WOscLib protocol stack was extended to support standard OSC methods that traverse

the address space and retrieve SDM descriptive and layout records stored within the

address space. By discovering descriptive and layout records, and then transmitting these

records to controllers, service discovery and service enumeration capabilities are added to

OSC. These enhancements adhere to the OSC v1.0 specification and do not alter OSC

addresses used to provide control functionality.

5.7.1 A Summary of OSC Features

Table 5.2 summarizes the native features of OSC with reference to the summary of control

protocol features outlined in Chapter 2.

139

[1] Non-blocking commands are not required by the protocol specification.

 Protocol Feature Comment

1. Network Management

 1.1 Device Discovery

 1.2 Monitoring Reachability

2. Service Discovery and Enumeration

3. Control Surface Representation

2. and creation

4. Control Commands
 4.1 Write Single Parameter Value Control point invocation.

 4.2 Write Multiple Parameter Values OSC address wildcards.

control points 4.3 Read Single Parameter Value
No parameter values defined. 4.4 Read Multiple Parameter Values

 4.5 Non-Blocking (Asynchronous)
 Commands

[1]
Implementation dependent.

 4.6 Variable Number of Arguments

 4.7 User-Defined Arguments

 4.8 Multiple Return Values

 4.9 Error Checking Implementation dependent.

 4.10 Control Point Invocation OSC method invocation.

 4.11 Automation Bundle mechanism.

5. Subscription (Monitoring)

5.1 Single Value Subscription

5.2 Multiple Value Subscription

5.3 Event-based Subscription

6. Parameter Management
5. 6.1 Linking Controls to Parameters

6.2 Joining Parameters Not natively supported. Can be
dynamically implemented as
synthesized commands.

6.3 Grouping Parameters

6.4 Bulk Parameter Access

Only OSC address wildcards and
bundles.

6.5 Dynamic Parameter Modification

6.6 Save / Load Configuration

7. Connection Management

8. Serialization Arbitrary binary data type.

9. Security

 Table 5.2 A Summary of OSC.

140

 Strengths

1. Easy to develop applications.

2. Supports bulk parameter access using wildcards.

3. Bundle mechanism can represent different device
 configurations and supports automation.

4. Variadic arguments provide flexibility.

5. Implementations exist for a wide variety of platforms and
programming languages. Connectionless and
connection-oriented implementations are available.

 Weaknesses

1. Persistent parameter data is not supported.

2. No subscription mechanism exists.

3. No address space standardization exists.

4. Device discovery, service discovery and service enumeration

 are not supported.

5. Control surfaces are not represented.

6. Does not support security features such as data encryption

 or user access control.

Table 5.3 A Summary of the Strengths and Weaknesses of OSC.

5.7.2 Strengths and Weaknesses of OSC

The most significant strengths and weaknesses of OSC are summarized in Table 5.3.

The simplicity of the OSC protocol, as well as its ability to freely organize an address space

to suit the needs of different applications are two reasons for the widespread adoption of

OSC. However, this simplicity and flexibility places constraints on the scenarios within

which the protocol can be usefully deployed. In particular:

1. The absence of persistent parameter data within the protocol stack means that

OSC cannot support permanent relationships between parameters.

Parameter data must be stored in application-specific data structures that are

independent of the protocol stack.

2. Because no parameter values are represented, parameter subscriptions are not

supported. As discussed in this chapter, subscriptions can be implemented

outside of the protocol, using the local address space for return values.

‘Outside of the protocol’ means that although subscribed messages can be

received using OSC messages, the subscription mechanism must be

implemented by additional code. In the context of metering, both parameter data

141

and the threads used to implement metering processes are outside of the OSC

protocol stack.

3. Different address space topologies create monolithic applications, restricting

interoperability between OSC-enabled devices and applications. The ‘SYN’

namespace (Ehrentraud, 2010) is an attempt to provide a standard address space

for the control of software synthesizers. A standard OSC address space for

lighting applications (Burghardt & Minini, 2010) has attempted to provide

interoperability with existing lighting control protocols such as DMX (American

National Standards Institute, 2008).

4. The protocol does not support device discovery, service discovery, or service

enumeration.

5. OSC does not support the representation or creation of control surfaces.

6. No security mechanisms are provided by the protocol.

These limitations are significant, and constrain the control scenarios within which OSC

can be effectively employed.

5.7.2.1 Scenarios Suited to OSC

OSC is ideally suited to device control and connection management using small, easily

implemented address spaces within client-server network architectures. This is the reason

for the widespread use of OSC to control computer music applications such as sequencers

and software synthesizers. Lighting and show control are application areas that are also

suited to OSC, as monitoring of parameter data and parameter persistence are often not

required. OSC is not suitable for use within large networks where device and service

discovery are necessary, and monitoring capabilities are required.

The protocol is thus not suitable for live sound and studio environments.

142

Chapter 6

The Simple Network Management

Protocol

6.1 Introduction

The Simple Network Management Protocol (SNMP) is one of the most widely-used

network management environments for IP-based networks. Derived from the

Simple Gateway Monitoring Protocol (Davin, Case, Fedor, & Schoffstall, 1987), SNMP

uses a client-server model to configure, monitor and control networked devices.

The protocol uses a connectionless transport service and provides asynchronous request-

response commands (Rose, 1994). Core components of the protocol include:

 A formal representation of data and data relationships;

 A standardized encoding of data for network transmission;

 Operations termed ‘requests’ that read and write remote parameter values;

 A notification mechanism that provides messages from servers to clients;

 Two security mechanisms that are defined for different versions of the protocol

(Blumenthal & Wijnen, 2002).

Three versions of SNMP exist; version two (v2c) consists of minor enhancements to the

first version. Version 3 provides a more sophisticated notification mechanism,

and replaces the simple community-based security model of earlier versions (Case, 1996)

with a more robust user-based security model. The SNMP specification is covered by many

RFCs. The most important of these are listed in Appendix 3.

6.1.1 SNMP Terminology

SNMP has a unique terminology:

 A ‘managed device’ is a controlled device.

 An ‘agent’ is the SNMP software that executes on a managed device, providing

control services, monitoring services and any other capabilities supported by a

managed device.

143

 A ‘manager’ is a remote software application that interacts with one or more

agents and is analogous to a network client or controller application.

 A ‘community name’ is similar to a network domain or name space.

 An ‘object’ is an SNMP data variable. Parameters are implemented as SNMP

objects.

 Agents ‘instrument’ (create and initialize) SNMP objects. ‘Instrumentation’ also

refers to any required functionality that is implemented by an agent. An example

of this functionality is provided in Section 6.5.3 User-Defined SNMP Requests

(p.158).

 An ‘object identifier’ (OID) consists of a sequence of integers in dotted-decimal

notation used to uniquely identify SNMP objects that are stored in an M-way

tree.

 A ‘varbind’ (‘variable binding’) is a record that specifies an SNMP object (Leuwer,

2006) by its OID and data value. A single SNMP PDU can contain one or more

varbinds, allowing a single PDU to reference multiple SNMP objects.

 A ‘management information base’ (MIB) is a text file that defines SNMP objects

and relationships between objects using a formal syntax. MIBs are similar to

relational database schemas or record definitions.

 Standard SNMP operations (typically GET() and SET(..) operations) that access

SNMP objects are termed ‘requests’.

6.2 Data Specification and Translation

SNMP data objects for a specific device or a generic family of devices are specified within

a MIB using a formal syntax that allows different translation schemes to encode objects

into Protocol Data Units (PDUs) for network transmission. SNMP objects are denoted by

a syntax termed the Structure of Management Information (SMI)

(McCloghrie, et al., 1999) which is a subset of Abstract Syntax Notation One (ASN.1)

(International Telecommunication Union, 2008), (Rose & McCloghrie, 1990). ASN.1 is a

data description language (Dubuisson, 2000) developed for the OSI Protocol Suite.

Because ASN.1 does not prescribe the encoding of network data, ‘Basic Encoding

Rules’ (BER) define how SNMP messages are translated from ASN.1 data definitions into

PDUs for network transmission. BER is one of several ASN.1 encoding schemes

(Larmouth, 1999) standardized by the International Telecommunications Union

(International Telecommunication Union, 2002). BER encoding eliminates

interoperability problems caused by endianness, processor architectures and character

144

encoding schemes (Gross & Holtzen, 1998, p. 4). The structure of SNMP packets and

SNMP PDUs is summarized in Appendix 11.

6.2.1 SNMP Data Types

Native ASN.1 data types (ASN.1 ‘Universal Types’) and data types added to ASN.1

specifically for SNMP (ASN.1 ‘Application Types’) are both termed ‘Base Types’.

These data types are listed in Table 6.1. The types having numeric suffixes are defined by

SMIv2 and were developed specifically for SNMP v2c.

User-defined types are created by SNMP ‘textual conventions’ which are type

assignments typically used to define sub-types. For example, the following textual

convention defines a new single-digit assigned type named ‘DecimalInteger’ that is a sub-

type of the universal SNMP INTEGER type:

DecimalInteger ::= TEXTUAL-CONVENTION SYNTAX INTEGER (0 . . 9)

Textual conventions also allow strings to be used as synonyms for numeric values.

This convention is similar to the definition of enumerated types found in many

programming languages and allows meaningful names can be assigned to integer values.

The example below maps integers to different control widgets:

 Legend:
 SMIv1 SMIv2

(Perkins & McGinnis, 1997, p. 38).

SNMP Type Type Name Implementation

 Universal
 Types

INTEGER 32-bit unsigned integer

OCTET STRING Byte string - max size 65535 bytes

OBJECT IDENTIFIER Integer sequence

Application
 Types

Integer32 32-bit signed integer

IPAddress (IPv4) 4-byte OCTET STRING

Counter
Countert32

32-bit unsigned INTEGER

Counter64 64-bit unsigned INTEGER

Gauge
Gauge32
Unsigned32

32-bit unsigned INTEGER

TimeTicks
32-bit unsigned integer representing
hundredths of a second

Opaque
OCTET STRING representation of binary
data (Deprecated in SNMP v2c and v3)

BITS Bit enumeration

Table 6.1 SNMP Data Types.

145

WidgetType ::= TEXTUAL-CONVENTION
 SYNTAX INTEGER { linear(1), rotary(2), switch(3), meter(4), display(5) }

Support for arbitrary binary data provided by the opaque data type is only provided in

SNMPv.1 and is not supported by later versions of the protocol.

6.2.2 The SNMP Address Space

SNMP objects are stored in an ordered M-way tree where each SNMP object is addressed

by a unique OID represented by dotted-decimal notation as illustrated by the two SNMP

objects shown in Figure 6.1. User-defined SNMP objects are either scalar objects or objects

arranged within tables (tabular objects) denoted by the leaf nodes of the tree.

An OID provides an object address by depicting a path from the root node to the leaf

location of the specified SNMP object.

Scalar objects are addressed by appending a zero to the OID that identifies the scalar

value as shown by the scalar OID 1.0.99.1.0 in Figure 6.1. Values at higher levels of the

object tree are fixed, consisting of a unique node identifiers assigned by the Internet

Figure 6.1 SNMP Hierarchical Data Tree and OIDs.

Columnar Objects

 Level1 1(iso)

 Level2 0 (standard) 1 2 3 (org) 6 (dod)

 Level3

 …

 1 (Scalar1) . . . N (ScalarN) N+1 (TableName)

 1 (TableEntry)

1 (column) 2 (column) 3 (columN) N (column)

99 (typically a specific organization or standard)

 1 (Row1) 1 (Row1) 1 (Row1) 1 (Row1)

N (RowN) N (RowN) N (RowN) N (RowN)

Scalar Entries

Conceptual
 Rows

Index Entries

Scalar Object 1.0.99.1.0

Tabular Object 1.0.99.1.(N+1).1.3.1

Conceptual
 Table

146

Assigned Numbers Authority (IANA, 2012). For example, the level two identifiers ‘0’, ‘3’

and ‘6’ denote standard MIBS, MIBS defined by a specific organization and Department

of Defense MIBS respectively. A specific standard or organization can apply for a unique

level three identifier, which ensures that all OIDs defined within a MIB are globally

unique.

6.2.2.1 Tabular Objects

SNMP does not provide a distinct representation for collections of SNMP objects.

‘Conceptual tables’ are created by grouping scalar variables into ‘conceptual rows’.

All tabular entries have a prefix consisting of a table identifier followed by a .1 denoting a

table entry. Figure 6.1 shows vertical lists of scalar variables representing each column in

a conceptual table. The data item occupying the first row of column three (shown within a

dashed ellipse) has an OID of 1.0.99.TableName.1.3.1 where 3 denotes the third column.

The suffix (.1) is an integer index used to identify a ‘columnar instance’ (row entry) within

column three. The leftmost column entries in this example table provide indexes used to

identify each conceptual row. Because tabular entries are stored as scalar values in

column-major order, an index is always required to identify a specific columnar entry.

Thus, all columnar entries having the same index form a conceptual row.

It is common practice but not mandatory for the first columnar entry to be an integer that

is used as a table index. Any SNMP object type (including strings and complex types such

as IP addresses) may be used as table indexes.

6.2.3 MIB Organization and Specification

A MIB (Perkins & McGinnis, 1997), Walsh (Walsh, 2008) is a text file written in ASN.1

that:

 Defines the data type and optionally the range of values for each defined SNMP

scalar or tabular object;

 Designates the position of objects within the SNMP data tree by assigning an OID

to each object. A MIB can also associate a label with an OID. For example, the OID

1.0.99 shown in Figure 6.1 can also be expressed as

‘iso.standard.organizationName’.

Figure 6.2 shows that a MIB is a meta-model that describes the format of an instrumented

MIB where the instrumented MIB is an instance of the meta-model. A meta-model of a

device is defined by the SNMP objects specified by a MIB. A MIB thus typically represents

a set of similar devices, while an instrumented MIB denotes a specific device. In

programming language terminology, the MIB meta-model is analogous to a structure

definition, while the model is an instance variable of the structure’s type.

147

Figure 6.2 SNMP MIB Model of a Device.

Meta-Model

 Model

 MIB

 Instrumented MIB

Describes

Represents
 Device

 SNMP Objects SNMP Requests

 Agent
 Functionality

SNMP Commands and Data

SNMP agents instrument a MIB by instantiating SNMP objects and providing values

for the instantiated objects. Standard SNMP requests operate on the OIDs defined by an

instrumented MIB. Additional functionality for the meta-model (and thus instances of the

meta-model) must be implemented by the additional agent functionality shown in Figure

6.2. For example, a function may be implemented within an agent that searches a MIB

table for a specified object value.

MIBs also define the contents of trap and notification messages that are sent from an agent

to a manager. These notification messages are discussed in Section 6.5.2 SNMP

Notification Mechanisms (p.157).

6.2.3.1 MIB Headers and Scalar Definitions

Examples of MIB entries that define SNMP objects are shown in Listings 6.1 and 6.2.

Listing 6.1 provides an example of a definition of a single scalar object. The OID

declarations indicate that a scalar object ‘faderValue’ has an OID of 1.0.99.1.1. All MIBS

have a root node of 1. This object is described by the following ASN1 clauses:

 SYNTAX – defines the SNMP data type;

 UNITS – optionally describes the units used by the data type;

 DEFVAL – optionally defines a default value for the object;

 MAX-ACCESS defines the access level of the object. From the highest to lowest

levels this value may be ‘read-create’, ‘read-write’, ‘read-only’,

or ‘not-accessible’.

148

standard OBJECT IDENTIFIER ::= { iso 0 }
 audio OBJECT IDENTIFIER ::= { standard 99 }

scalars OBJECT IDENTIFIER ::= { audio 1 }

faderValue OBJECT-TYPE
 SYNTAX Integer32
 UNITS dB
 DEFVAL 0
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION “value of a fader control in decibel units”
 ::= { scalars 1 }

Listing 6.1 An Example of a MIB Scalar Object Definition.

OID declarations

First child object of the ‘scalars’ node.

The read and write access specifiers are self-explanatory. A ‘not-accessible’ access specifier

is commonly used for table indexes that can be used within an OID, but cannot be directly

accessed by SNMP GET() or SET(..) requests sent by management applications. The

UNITS and DESCRIPTION clauses are not processed by a MIB compiler, serving only as

human-readable comments. The DEFVAL clause is used to indicate an acceptable default

value to an agent implementing the MIB.

SNMP is not rigorous in its data definitions as ranges and units of measurement are

commonly indicated by DESCRIPTION clauses. Off-the-shelf management applications

do not process these clauses and as a result do not enforce the restrictions specified by

DESCRIPTION clauses.

6.2.3.2 MIB Table Definitions

Table definitions perform four main functions, they:

1. Assign an OID to a table;

2. Specify the structure of a conceptual row by defining the name and type of each

columnar object within the row;

3. Assign an OID to each columnar object;

4. Specify one or more indexes used to identify columnar entries within a table.

An example audio device table is shown in Listing 6.2. The table is a child node of a ‘device’

node. Each conceptual row of the table is defined as a ‘Device Entry’ object that defines

the objects used for each columnar entry. In this example, each device has an index entry,

a name and an IP address. As a conceptual row specification is not an atomic SNMP object,

the access specifier (‘not-accessible’) does not allow reading or writing of this object.

Following the row specification, each columnar object is defined. SNMP v1 and SNMPv2c

149

provide different row insertion mechanisms that allow managers to insert rows into

existing tables (ZOHO Corporation, 2012). As these mechanisms are not used by the

SNMP implementations discussed later in this chapter, they are not examined in detail.

It is important to note that it is not necessary for a controller (manager) to parse a

MIB during service discovery as a specific MIB defines a standard structure and

addressing scheme for all defined SNMP objects. The ‘deviceName’ and ‘deviceIPAddr’

deviceTable OBJECT-TYPE

 SYNTAX SEQUENCE OF DeviceEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION ““
 ::= { device 1 }

deviceEntry OBJECT-TYPE
 SYNTAX DeviceEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION ““
 INDEX { deviceIndex }
 ::= { deviceTable 1 }

DeviceEntry ::= SEQUENCE {
 deviceIndex TableIndex,
 deviceName NameString,
 deviceIPAddr IpAddress
}

deviceIndex OBJECT-TYPE
 SYNTAX TableIndex
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION ““
 ::= { deviceEntry 1 }

deviceName OBJECT-TYPE
 SYNTAX NameString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION ““
 ::= { deviceEntry 2 }

deviceIPAddr OBJECT-TYPE
 SYNTAX IpAddress
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION ““
 ::= { deviceEntry 3 }

Listing 6.2 An Example of a MIB Table Definition.

 Conceptual row

 Structure of each conceptual row

 Table Index

 Columnar objects for each row

 Columnar object definitions

 Table is the first child of a ‘device’ node

150

entries in Listing 6.2 have fixed OIDs defined by the MIB. A controller that is designed to

interact with this specific MIB can determine the devices listed within the device table by

iterating through the fixed OIDs of the device table entries. For example, by appending the

index values 1 through N to the OID of the ‘deviceName’ entry, the names of all N device

entries can be determined. Off-the-shelf ‘MIB Browser’ applications do parse a MIB, and

then query an agent to provide a view of the object entries within an instrumented MIB.

These applications are generic in nature and must be capable of parsing different MIB

files.

6.2.3.3 MIB Implementation

The relationship between a MIB and a typical SNMP environment is shown in Figure 6.3.

A MIB compiler validates a MIB by performing syntax checking and type checking.

The compiled MIB is then stored in a proprietary format that is accessible to an agent.

When the agent executes as a server process, it instruments the MIB by creating object

instances and inserting them into the SNMP object tree. The instrumentation process is

thus application dependent, using the APIs provided by an SNMP development

environment.

A generic MIB browser reads the MIB to determine object addresses and then issues

SNMP requests that address agent objects. As mentioned previously, dedicated controllers

do not usually parse a MIB as object OIDS are standardized by the MIB. SNMP messages

from an agent to a manger are collectively termed ‘notifications’.

These operations are discussed in Section 6.5 Requests and Notifications (p.155).

Figure 6.3 A Typical SNMP Network Environment.

Optionally read
and parse MIB

MIB Database

SNMP Agent (Device)

 MIB Compiler

Compiled
 MIB

SNMP Manager
 (Controller)

Requests

Notifications

Instrumented MIB

Read and
instrument
MIB

 MIB
Source File

Network

151

Figure 6.4 Relating Tabular Entries using a Row Index.

Index Table2Ref …

1 5

…

Index …

1

…

5

…

Table2 Table1

6.3 SNMP Table Relationships

SNMP provides a variety techniques for specifying relationships among tabular entries

(Chisholm, 2003), (Fuchs, 2006), (Perkins, 1998) and (Perkins & McGinnis, 1997).

As previously illustrated in Figure 6.1, tabular entries are commonly organized around a

unique index column that is used to select columnar entries in a table. An index can also

be a composite value, consisting of multiple values that uniquely identify columnar objects

in a table. Composite indexes can be created from any SNMP objects, allowing conceptual

rows from different tables to be related. These techniques are listed in

Table 6.2 along with the semantics of each technique expressed in relational or

object-oriented terms.

The following sections examine these techniques in detail.

6.3.1 Row References and Row Pointers

An index value can be used as a reference to relate rows in different tables. In Figure 6.4,

the first row of ‘Table1’ references the fifth row of ‘Table2’ by using a ‘Table2’ index value

as a row reference in Table1.

SNMP Technique Semantics

1. Indexes or OIDs used as
references or pointers.

Composition, binary association or extension
(inheritance).

2. Multiple indexes forming
a composite index.

N-way association / unique identification
using a composite key.

3. Expansion Tables. Composition, multiple association or
extension (Inheritance).

4. Relationship
(Association) Tables.

Association.

5. Sparse Table Extensions. Selective addition of information to an
existing table (Inheritance).

6. Dependency Tables. Table extension or abstract inheritance.

Table 6.2 Table Relationships in SNMP.

152

DeviceType Table
{ typeIndex }

Address Table
{ addrIndex }

addrIndex IPAddress …

1 192.165.4.2

…

typeIndex type …

1 mixer

…

 Device Table
{ devIndex , typeIndex, addrIndex }

Figure 6.5 Object Relationships using Composite Indexes.

devIindex …

1

…

An OID can also be used to reference a conceptual row. This type of reference is termed a

‘row pointer’ (Case J. , McCloghrie, Rose, & Waldbusser, 1996). A row pointer is by

convention usually the OID of the table’s index but may be the OID of any columnar object

within the referenced row.

6.3.2 Composite Indexes

A table can have an arbitrary number of indexes, allowing table entries to be identified by,

and associated with information from other tables. In Figure 6.5, each entry in a ‘Device’

table is identified by a composite index consisting of an index from a

‘Device Type’ table, an IP address entry from an ‘Address’ table, and its own index.

The index for each table is indicated within braces below the table name.

Composite indexes are specified by an ‘INDEX’ clause in a MIB that was introduced in

Listing 6.2.

As can be seen in Figure 6.5, the ‘typeIndex’ and ‘addrIndex’ indexes are not

contained within the ‘Device’ table. Each entry in the ‘Device’ table thus represents a

specific type of device at a specific IP address. For example, the OIDs from:

DeviceTableOID.DeviceTableEntry.1.typeIndex . addrIndex to

DeviceTableOID.DeviceTableEntry.N.typeIndex . addrIndex

will identify all entries within the ‘Device’ table for devices of the specified type at the

specified IP address.

Note that the compound index is not represented within the ‘Device’ table. When an agent

inserts device entries, the three index values used to select entries within the ‘Device’ table

are specified. In the context of the standard model developed in

Chapter 4, composite indexes allow the individual components of a device to be related.

Composite Index
{ typeIndex }

153

baseIndex …

1

2

3

…

expIndex …

 1

 1 (2.1)

 2

 1 (3.1)

…

Figure 6.6 Containment Relationships using Base and Expansion Tables.

Base Table
{ baseIndex }

Expansion Table
{ baseIndex, expIndex }

Row 1

Row 2

Row 3

Row 4

For example, parent-child relationships can be captured by identifying child component

entries in a table using a composite index consisting of a parent table index and a child

table index.

6.3.3 Expansion Tables

Composite or containment relationships are represented by a base table and an expansion

table, where zero or more entries (rows) in the expansion table are associated with a row

in the base table. In Figure 6.6, rows two and three of the ‘Expansion’ table are

conceptually contained within row two of the ‘Base’ table, while row four of the ‘Expansion’

table is contained within row three of the ‘Base’ table. Each entry in the ‘Expansion’ table

is identified by a composite index consisting of a base table index and an expansion table

index. An expansion table allows index values that are not unique as the composite index

(2.1 and 3.1 in Figure 6.6) provides uniqueness. In the context of the SDM, expansion

tables are used to represent:

 Description and layout records by associating a variable number of table entries

(corresponding to a list of <key><value> pairs) with a specific base table entry

(representing a record instance);

 Parent-child relationships where a parent may have an arbitrary number of

children.

This flexibility is extremely valuable, as standard SNMP requests cannot modify the

structure of a table, which is fixed by a MIB definition. However, an agent can insert an

arbitrary number of entries into an expansion table when instrumenting a MIB.

6.3.4 Relationship Tables

These tables capture a relationship between two entries in different tables. A relationship

table has entries indexed by entries from two or more tables containing objects that must

be related. A relationship table only indicates the status of an M-way relationship, where

M is the number of objects forming a composite index. An entry in a relationship table

154

indicates that the M-way relationship exists; if an entry is not found the relationship does

not exist.

In audio applications, relationship tables can represent connections between audio

signals. In Figure 6.7, each ‘Connection’ table entry is indexed by entries in an ‘AudioSrc’

table and an ‘AudioDest’ table. A connection name column in the ‘Connection’ table

defines an SNMP object for each row entry. If a row entry having the OID

connName.srcIndex.destIndex exists in the ‘Connection’ table, then a connection exists

between the entries in the ‘AudioSrc’ table and ‘AudioDest’ table at the specified indexes.

Other types of relationships between SNMP tables such as ‘sparse table

relationships’ and ‘dependent relationships’ (Perkins & McGinnis, 1997, pp. 29-32) are not

discussed as they were not used to implement the SDM.

6.4 Device and Service Discovery

SNMP version 1 and version 2c were never designed to support device discovery. SNMP is

commonly used to configure devices such as gateways and routers where IP addresses are

known. These devices typically use other protocols such as DNS-SD for device discovery.

An SNMPv3 device that has a security subsystem is termed an ‘SNMP Engine’

(Harrington, Presuhn, & Wijnen, 2002). Each engine has a unique network identifier and

may contain multiple agents that provide different functionality.

“SNMP Engines can be discovered by probing their transport endpoints. Once

a transport has been found, SNMP messages can be sent to the SNMP engine

listening on that transport endpoint to discover the engine identifier and

existing contexts. The variables within a context are discovered by using an

iterator which traverses the name space while retrieving variables.”

(Bergstra & Burgess, 2008).

connName

mic1-ch1

…

Figure 6.7 A Relationship Table Example.

destIndex Name

1 ch1

 2 …

 3

…

srcIndex …

 1

 2 Mic1

 3

…

AudioSrc Table
{ srcIndex }

 Connection Table
{ srcIndex, destIndex }
 AudioDest Table

{ destIndex }

2.1

155

SNMPv3 thus uses a brute-force approach to service discovery by traversing the entire

SNMP address space of a discovered SNMP engine. Service enumeration is not required

when using SNMP as management applications address standard, fixed OIDs that are

defined by a MIB. Namespace iteration retrieves SNMP objects advertised by a device that

represent the current state of a device. A novel, context-sensitive approach to service

discovery that makes use of composite table indexes is presented later in this chapter.

6.5 Requests and Notifications

SNMP allows parameter data to be accessed by:

 Standard SNMP requests that read and write SNMP object values;

 Messages that are subscription responses received by mangers from agents;

 User-defined operations that implement specific functionality as a side effect of

executing standard requests on action parameters.

6.5.1 Reading and Writing Parameter Data

The standard SNMPv1 requests are GET(), SET(..), GET-RESPONSE() and GETNEXT().

GET() and SET(..) requests read or write the values of one or more objects.

A PDU implementing a single GET() or SET(..) request (as defined by the command

specifier entry in Figure 6.8) may contain multiple varbinds. This allows a single request

message to reference the multiple SNMP objects shown in Figure 6.8.

A GETNEXT() request retrieves an object instance with an OID that

lexicographically succeeds the OID provided as an argument to the request. This type of

request supports a traversal of an SNMP data tree and is usually used to traverse tabular

data. Because GETNEXT() access objects in lexicographical order, tabular objects are

accessed in column-major order. To retrieve an SNMP conceptual row, the entire table

UDP Packet

Protocol Data Unit

 Command Specifier

 Variable Binding1

 Variable BindingN

 …

Figure 6.8 Variable Bindings Within an SNMP PDU.

 OID – value

 OID – value

Object1

ObjectN
 …

156

must be retrieved and then processed locally by a manger to extract the desired row, or a

conceptual row must be retrieved by using a GET() request to read each columnar entry

within the row.

GET-RESPONSE() messages are transmitted from an agent to a manager in

response to receiving SET(..), GET(), or GETNEXT() requests. A GET-RESPONSE()

message also functions as an acknowledgment for SET(..) requests. Responses to SET(..)

requests contain an index field that allows a manager to match SET(..) requests with

received responses. For GET() and GETNEXT() requests, responses contain the requested

SNMP variables or the response indicates an error condition.

6.5.1.1 Optimizing SNMP Requests

A SET(..) request can be used to return data if the requested data is inserted into the

mandatory acknowledgment message. This non-standard optimization of SNMP (used in

the implementation of the SDM) is possible because a response message may contain an

arbitrary number of varbinds. The sequence diagram shown in Figure 6.9 illustrates how

an agent monitors SET(..) requests. If the SET(..) request does not generate an error and

the agent recognizes the OID as an action parameter, one or more varbinds are inserted

into the acknowledgment to the SET(..) request.

As an example application scenario, consider a level-by-level traversal of the SDM where

each SDM level entry is represented by a table row entry. A SET(..) request specifies a

parent node and the response contains a list of child nodes.

Figure 6.9 Optimizing SNMP SET(..) Requests.

157

6.5.1.2 Bulk Parameter Access

The ‘GETBULK()’ request was added to SNMPv2c. These requests retrieve a range of

object values returned as a list of varbinds within a single response message.

A GETBULK() request specifies the number of OIDs that are atomic (termed ‘non-

repeaters) and the number of OIDs that must have GETNEXT() applied to them (termed

‘repeaters’) (Perkins & McGinnis, 1997, pp. 180-81). An agent applies the GETNEXT()

operations to the specified repeaters. For example, if a request specifies the OIDs oid1,

oid2, oid3, and oid4 where the first two OIDs are atomic values - the total number of

varbinds returned is given by N + (M * R) where N is the number of atomic OIDS, and M is

the number of GETNEXT() operations to be performed on the number of repeater OIDs

denoted by R. Repeaters are typically used to read sets of objects using a single request

message. Bandwidth is conserved as the repeated GETNEXT() operations are performed

by an agent rather than by a manager. SNMPv1 managers must retrieve bulk data by

executing multiple GETNEXT() requests.

GETBULK() has several performance issues (Chandragiri, 2001), including not

being able to determine the size of a table before retrieving tabular data. A proposal has

been made to enhance this request to return a specified number of rows (Jagadish,

Prakash, & Gonsalves, 2008) rather than returning a specified number of OIDs.

The number of varbinds that can be contained within a single SNMP message is

application-dependent and is not defined by the SNMP protocol:

“The maximum size of an SNMP message is limited to the minimum of:

 (1) the maximum message size which the destination SNMP entity can accept; and,

(2) the maximum message size which the source SNMP entity can generate.”

 (Case J. , McCloghrie, Rose, & Waldbusser, 2002).

The SNMP implementation of the SDM presented later in this chapter provides a

novel direct-access mechanism for service discovery that makes the use of standard

GETNEXT() and GETBULK() requests unnecessary.

6.5.2 SNMP Notification Mechanisms

SNMP provides three different forms of communication between an agent and one or

more managers. These are ‘traps’, ‘notifications’ and ‘informs’, and are collectively

referred to as notifications. SNMP v.1 traps and SNMP v.2c notifications are asynchronous

network messages sent from an SNMP agent to an SNMP manager when a particular event

occurs on a monitored device. SNMP v.2 notifications are trivially different from SNMP

v.1 traps, and both invoke callback functions within a management application. The

differences between the two types of messages are found in the format of the PDUs used

158

for each message (Net-SNMP, 2011). The granularity of trap handling implementations

can range from a single trap handling many different events to many dedicated traps that

process specific events. It is important to note that a MIB only defines notifications; agent

instrumentation must implement the creation and transmission of notifications.

Informs are typically used as traps that must be acknowledged by the receiving

management application but their usage is not well defined:

“This operation, sent by an SNMP “informer” entity advises an SNMP manager

of an event on a system … we made up the term “informer, since the SNMP WG

cannot decide if agents or managers send INFORMS.” (Perkins & McGinnis,

1997, p. 185).

Because informs are acknowledged, they can be used to provide reliable transactions for

critical operations such as service discovery and device initialization. An inform message

is re-transmitted by an agent or manager if no acknowledgment is received.

SNMP allows the number of times an inform request is re-transmitted to be specified

(Levi, Meyer, & Stewart, 1998).

6.5.2.1 Using SNMP Traps for Audio Metering

Both the work-conserving and non-work-conserving transmission schemes introduced in

Section 2.9.2 Monitoring Parameter Values (p.37) for monitoring meter levels can be

implemented as SNMP traps. Work-conserving implementations do not require varbinds

as it is possible to use the existing fixed-header fields within an SNMP trap PDU.

Non-work-conserving implementations transmit a collection of values by representing

each meter value as a distinct varbind within a single trap PDU. The format of SNMP traps

and the use of trap messages to transmit meter values are discussed in

Appendix 11.

6.5.3 User-Defined SNMP Requests

Standard SNMP requests such as GET(), SET(..), GETNEXT() and GETBULK() address

specific SNMP objects, or follow the numeric ordering of objects within the SNMP

address tree. In order to invoke context-sensitive functionality, SNMP objects

representing action parameters (introduced in Section 2.9.1.2 Action Parameters

(p.35)) are created and then addressed for the side effects of addressing the objects.

“Since SNMP has no concept of an explicit action, all actions are represented in

terms of implicit actions which do their work through side effects.”

 (Perkins & McGinnis, 1997, p. 193).

159

Agent environments commonly invoke one or more control points as a side effect of a

standard SNMP request. GET() or SET(..) requests that address an action parameter allow

control point to provide functionality such as:

 Returning a conceptual row from a table;

 Returning a list of descriptive attributes;

 Returning the names of child objects for a specified parent object where objects

are arranged in a hierarchy.

These types of subroutines are also commonly used to add and delete rows from tables, as

agent development APIs commonly provide elegant table management functions.

The SNMPv2c standard procedure to add rows to a table is designed to accommodate off-

the-shelf browsers that must implement row creation by using several SET(..) requests

(ZOHO Corporation, 2012). Additionally, row ‘deletion’ is often indicated by a flag within

a conceptual row; the data is not deleted from the SNMP object tree.

Context-sensitive requests are implemented by using pairs of SNMP objects.

An argument to a SET(..) request provides the context within which the following GET()

request occurs. As an example, a GET() request that returns a list of object identifiers

representing child nodes within an arbitrary hierarchy must return a list of children for a

specific parent node. One SNMP object denotes the parent node, while a second object is

an action parameter used to trigger an agent subroutine that determines and returns a list

of child node identifiers for the specified parent. This type of operation can be optimized

further as previously discussed previously in Section 6.5.1.1 Optimizing SNMP Requests

(p.156).

The remainder of this chapter examines two SNMP implementations: the

IEC-62379 control protocol and an implementation of the standard device model.

6.6 IEC-62379

The International Electro-Technical Commission (IEC) publishes a set of standards for

the control of networked audio devices. IEC-62379 (International Electrotechnical

Commission, 2008) is a standard SNMP-based control protocol intended for use within

the broadcasting industry. Part one of the standard, IEC-62379-1 (International

Electrotechnical Commission, 2007) describes how SNMP represents devices. Part two,

IEC-62379-2 (International Electrotechnical Commission, 2008) extends the standard to

represent and control audio devices. This protocol only exists as a specification and a set

of SNMP MIBs. No freely available software tools or software libraries support the

protocol.

160

6.6.1 Device Representation

IEC-62379-2 is designed around the concept of ‘functional blocks’ that perform signal

processing functions and the representation of audio signal connections between different

functional blocks. Table 6.3 lists the different functional blocks defined by the protocol

and the OIDs of the SNMP tables used to represent different functional blocks. Each block

typically performs a single signal processing function or provides a specific type of

functionality. Some blocks can be configured to provide a variety of different audio

functions. For example, a ‘crosspoint’ block can be used to swap stereo channels or convert

stereo signals to a mono signal (IEC-62379-2, p.25).

Device architecture is represented by a set of IEC-62379-2 functional blocks and a

specification of the connections between these functional blocks. A simple, hypothetical

audio device modeled using a set of interconnected audio functional blocks is shown in

Figure 6.10. This example uses the legacy AES3 standard (Audio Engineering Society,

2010). The AES3 two-channel format (frequently referenced within the IEC-62379-2

specification) was adopted as an IEC standard named IEC-60958-4 (International

Electrotechnical Commission, 2003). A unique integer identifier (shown within circles in

Figure 6.10) identifies each functional block. Functional blocks are connected by assigning

the outputs from one block to the inputs of the next block on the audio signal path. Integer

identifiers (indicated below each signal path in Figure 6.10) identify specific inputs and

outputs for each functional block.

(IEC-62379-2 Specification, p.77,
International Electrotechnical Commission, 2008).

Figure 6.10 IEC-62379 Device Representation.

AES/EBU Input

1 3

4 5

AES/EBU Output
1 1

1 2

1 1 1 1
Limiter 2

AES/EBU Input

Mixer

Block Identifier

Input Identifier Output Identifier

OID Functional Block

 2 mixer

 3 audioCrosspoint

 4 audioClipPlayer

 5 audioLimiter

 6 audioConverter

 7 audiolLevelAlarm

Table 6.3 IEC-62379-2 Audio Functional Blocks.

161

Figure 6.11 IEC-62379-2 Block and Block Connector Tables.

6.11(a)

 BlockID BlockType

 1 1.0.62379.2.1.1 (Audio port)

 2 1.0.62379.2.1.1 (Audio port)

 3 1.0.62379.2.1.2 (Mixer)

 4 1.0.62379.2.1.5 (Limiter)

 5 1.0.62379.2.1.1 (Audio port)

BlockId BlockIn BlockId BlockOut

 3 1 1 1

 3 2 2 1

 4 1 3 1

 5 1 4 1

Block Connector Table Block Table

6.11(b)

Source Destination

Row entries within a specific functional block table thus represent instances of the table’s

block type. Figure 6.11 shows a ‘Block’ table that lists all functional block instances and a

‘Block Connector’ table that enumerates the connections between functional blocks. These

tables depict the simple device shown previously in Figure 6.10.

A ‘BlockType’ column indicates the block type of each entry. For example, the SNMP OID

entry 1.0.62379.2.1.2 in the ‘Block’ table of Figure 6.11(a) identifies block number three as

a mixer block. Block types were previously listed in Table 6.3. Each row in Figure 6.11(b)

represents an audio connection where the last two columns specify a block output and the

first two columns specify a block input.

IEC-62379-2 allows a single block input or output to depict multiple channels.

For example, a single input consisting of two channels depicts a stereo input.

Functional blocks do not address individual channels when modifying a signal;

modifications are propagated to all channels within the block.

6.6.2 Service Discovery

Discovery of the services provided by a particular IEC-62379-2 device involves:

 Discovering the functional blocks for a specific signal path.

 Determining the attributes describing the data associated with each of the

parameters defined within functional blocks. These attributes will define the

specific functionality provided by a functional block.

The block topology for a device is determined by tracing the connections from input ports

to the audio inputs and audio outputs for each successive functional block that exists on a

signal path. The IEC-62379 ‘Audio Port’ table illustrated in Table 6.4 lists all audio input

and output signals for a device shown previously in Figure 6.10.

162

Audio port blocks are identified in the ‘Block’ table by their OID, 1.0.62379.2.1.1.

The ‘Direction’ entry in an audio port table indicates whether a port is used for input or

output. Each ‘Block Connector’ table entry lists connections between the input and output

ports of different functional blocks. To determine audio connections within a device, the

‘Block Connector’ table is traversed to identify all signal paths between functional blocks

as illustrated by the entries in Figure 6.11(b). If blocks 1 and 2 are known to be ports (as

they have entries in the ‘Audio Port’ table), entries in the

‘Block Connector’ table will also indicate port directions. Input ports have no input

connection and output ports have no output connection as each input or output port is

connected to only one functional block. For example, blocks one and two in

Figure 6.11(b) each have a single output connection and no input connections,

while block five has one input connection and no output connections.

6.6.3 Parameter Description

Parameters are only defined within functional blocks. IEC-62379-2 does not rigorously

define parameter attributes, as these attributes are commonly defined using ASN1

‘DESCRIPTION’ clauses and MIB comments. For example, the IEC-62379-2 ‘AudioLevel’

textual convention shown in Listing 6.3 defines an integral sub-type having a range of -20

000 to 20 000 that represents hundredths of a decibel.

An SNMP ‘DESCRIPTION’ clause shown in Listing 6.3 indicates the unit of measurement

and step size. This information is not intended to be a machine-readable as previously

 AudioLevel ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION “An absolute or relative audio level in units of 0.01dB.”
 SYNTAX INTEGER (-20000 .. 20000)
 -- {
 -- mInfinity (-20000),
 -- fullScale (0),
 -- pInfinity (20000)
 -- } (mInfinity .. pInfinity)

MIB Comments

Listing 6.3 The IEC-62379-2 ‘AudioLevel’ Textual Convention.
 (IEC-62379-2 Specification, p.57, International ElectroTechnical Commission, 2008).

Table 6.4 An IEC-62379-2 Audio Port Table.

 ID Direction Data Format Transport Name

 1 1 (In) 1.0.62379.2.2.1.3.2.2.24.48000 1.0.62379.2.2.2.2 Channel1

 2 1 (In) 1.0.62379.2.2.1.3.2.2.24.48000 1.0.62379.2.2.2.2 Channel2

 3 2 (Out) 1.0.62379.2.2.1.3.2.2.24.48000 1.0.62379.2.2.2.2 Output1

163

 Name Min Max Step Type Unit UnitStep UnitType InitVal
 Gain 0 10 1 Int dB 0.01 float 0

Table 6.5 Example of an SNMP Parameter Attribute Table.

discussed in Section 6.2.3.1 MIB Headers and Scalar Definitions (p.147). The integral

representation of a floating point value, as well as the unit of measurement cannot be

determined by a parser as they are indicated by SNMP comments. SNMP does not support

a floating-point data type (Perkins, 1997); floating-point types are represented by integral

or string data types.

A full and unambiguous description of the descriptive attributes of a parameter

requires a parameter attribute table such as the hypothetical table shown in Table 6.5.

All the information required by a controller to dynamically control the parameter and label

a control surface is contained within this table.

The IEC-62379-2 specification does not clearly differentiate among parameters, the

attributes describing parameters, and how the dynamic behavior of a control modifies

parameter values. As an example, consider a mixer block (IEC-62379-2, p.21), which is

represented by the two SNMP tables shown in Listing 6.4.

(IEC-62379-2 Specification, p.21,
International ElectroTechnical Commission, 2008).

aMixerBlockTable(1)
 │
SEQUENCE OF
AMixerBlockEntry

└aMixerBlockEntry (1) AMixerBlockEntry
├aMixerBlockId (1) BlockId
├aMixerFadeDuration (2) CardinalNumber
└aMixerFadeNow (3) TruthValue

aMixerInputTable(2)
 │
SEQUENCE OF
AMixerInputEntry

└aMixerInputEntry (1) AMixerInputEntry
├aMixerInputBlockId(1) BlockId
├aMixerInputNumber (2) IndexNumber m
├aMixerInputLevel (3) AudioLevel
├aMixerInputFadeToLevel (4) AudioLevel
└aMixerInputDelay (5) CardinalNumber

Listing 6.4 IEC-62379-2 Mixer Block MIB Design.

164

The first table represents the mixer block itself, while each entry in the second table

represents an input to the mixer block. Each input to the mixer has an input level and an

output level (‘aMixerFadeToLevel’) contributing to the combined signal level.

Dynamic behavior is controlled by ‘aMixerFadeNow’ and ‘aMixerFadeDuration’ objects

that specify the level to fade to and the time taken for a fade operation.

Parameters describing the operation of a mixer block are the ‘aMixerInputLevel’ and

‘aMixerFadeToLevel’ objects. Dynamic behaviors associated with the block

(‘aMixerFadeDuration’ and ‘aMixerFadeNow’) are included with the data describing the

block. There is no clear distinction between the dynamic behaviors of a functional block

(triggered by action parameters), the data and parameter values defined within a

functional block and objects that describes connections (‘aMixerInputBlockId’ and

‘aMixerInputNumber’).

6.6.3.1 Connection Management

Block and connector tables similar to the tables shown in the tables shown in Figure 6.11

are used to connect audio source and destination terminals to the input and output ports

of a device (International Electrotechnical Commission, 2007, p. 28).

6.6.4 An Evaluation of IEC-62379-2

The design of IEC-62379-2 violates several principles of the SDM, including the:

1. Use of a non-hierarchical model of device components based on the audio signal

connections between components.

2. Representation of device components as specific components (concrete

functional blocks rather than abstract functional blocks).

3. Definition of parameters within functional blocks. Parameter discovery requires

a traversal of the full device model or a traversal of each block table.

4. Representation of the semantics of functional blocks as comments that are not

machine-readable within the IEC-62379-2 MIB.

5. Lack of clear separation between parameter data, descriptive data and

meta-data.

These design features significantly constrain the use of this control protocol as discussed

in the following section.

6.6.4.1 Device Representation in IEC-62379-2

The functional blocks defined by IEC-62379-2 are not capable of representing a complex

audio device such as a mixing console. IEC-62379-2 defines a small set of blocks but does

allow blocks to be added to the standard as required (Grant, 2009).

165

A flat, linear device model rather than a hierarchical device model means that it is not

possible to directly access specific device components required by a controller.

For example, the master faders found within the output section of a mixing console must

be discovered by tracing audio connections between functional blocks starting at the

device’s inputs. This is a complex process, requiring one or more graph traversals using

the ‘Block’ table and ‘Block Connector’ table entries shown previously in Figure 6.11.

A device model that depicts connections between functional blocks resembles a

circuit diagram. As previously noted in Section 4.5.1 A Channel-Oriented Model (p.112),

this type of model does not offer any advantages for controlling a device, as the

identification of all of the connection points that exist along a signal path is not a

requirement to control a device. Additionally, because functional blocks define a specific,

concrete functionality, the protocol is not dynamically scalable. An agent cannot add new

functional blocks when instrumenting the IEC-62379-2 MIB as the addition of new

functional blocks requires the IEC-62379-2 MIB to be extended. Adding SNMP objects to

a MIB defeats the purpose of a MIB, which is to provide fixed, standard OIDs for SNMP

objects.

Descriptions of functional block semantics and meta-data describing parameter

values occur as comments within the IEC-62379-2 MIB and are not machine-readable.

This means that the functionality provided by a functional block cannot be determined by

machine parsing. A user must examine the structure of a functional block using a MIB

browser to determine the semantics of the block.

6.6.4.2 Representing Parameter Data and Descriptive Data

Because functional blocks encapsulate parameters, parameters are not independently

accessible. This means that parameter relationships cannot be represented and bulk

parameter operations (commonly used to save or restore the state of a device) are not

easily implemented. The location of parameters (represented as object identifiers) is

dependent on the device structure.

Parameters should be fully described by explicitly listing all the attributes of a

parameter value. Attributes should not be implied or dependent on MIB annotations that

are not machine readable. Parameter attribute descriptions may be non-existent,

incomplete, or defined alongside the parameter values themselves in IEC-62379-2.

Thus parameter data, descriptive data and meta-data are not clearly separated or

informally represented within a MIB as discussed in Section 6.6.3 Parameter Description

(p.162). These traits mean that the discovery of parameters and the attributes describing

parameter values is a non-deterministic process.

166

6.6.5 Conclusions

IEC-62379-2 appears to have been designed to allow users to examine a device using a

MIB browser, and has not considered the machine interactions between a manager and

an agent. Unfortunately, the IEC-62379-2 MIB structure does not provide an intuitive

interface when viewed in a MIB browser. For example, creating connections to a device

using block tables and connection tables similar to the tables shown previously in

Figure 6.11 is not an intuitive task. The limitations discussed in the previous section stem

from using:

 A device model based on audio signal paths;

 Comments to describe MIB objects;

 High-level abstractions (functional blocks) that do not clearly separate different

concerns. Parameter data, descriptive data and the functionality required to

modify parameter values are all defined or specified within functional blocks.

However, a small number of well-defined functional units creates a functional simplicity.

As a result, IEC 62379-2 provides a high degree of interoperability and avoids

interpretative errors that can occur during service discovery. The following sections

describes an SNMP implementation of the SDM that avoids the limitations discussed

above, and introduces a novel use of SNMP indexes to represent parameter relationships

and structural relationships between device components.

6.7 An SNMP Representation of the Standard Device Model

The remainder of this chapter describes an implementation of the standard device model

developed in Chapter 4. A robust implementation of the SDM must:

 Implement relationships between components of the model (devices, sub-devices

and controls), as well as parameters in an elegant manner using SNMP tables;

 Simplify the retrieval of data during service discovery – inefficient retrieval of

entire tables using GENEXT() or GETBULK() should be avoided;

 Provide a parameter representation that allows direct access to parameters and

supports relationships between parameters;

 Attempt to design a MIB that satisfies the above requirements and also supports

the use of off-the-shelf SNMP MIB browsers.

6.7.1 Representing Devices, Sub-Devices and Controls

Hierarchical relationships can be elegantly represented using SNMP table indexes

(Eales & Foss, 2013). Figure 6.12 shows that table indexes that are variable-length OIDs

allow a single sub-device table to capture nested relationships. The ‘childCount’ entry in

167

devIndex childCount ...

1 2

...

Device Table { devIndex }

Control Table { controlOID }
 controlOID ...

1.1.1

1.1.2

...

SubDevice Table { subDeviceOID }
 subDeviceOID childCount ctrlCount ...

 1.1 0 2

 1.2 2 0

 1.2.1 0 0

2.2 1.2.2 0 0

...

Figure 6.12 Representing Parent-Child Relationships using OIDs.

the ‘Device’ table indicates that the first device entry has two children.

Indexes for these two children in the ‘SubDevice’ table are trivially computed as

deviceIndex.1 and deviceIndex.2.

Indexes for the two child sub-devices of sub-device 1.2 are computed in a similar way as

deviceIndex.subDeviceIndex.1 and deviceIndex.subDeviceIndex.2, giving 1.2.1 and

1.2.2 respectively. Sub-device one (identified by the index 1.1) contains two controls

indexed as 1.1.1 and 1.1.2 in the ‘Control’ table. Figure 6.13 illustrates the device

architecture defined by the SNMP tables in Figure 6.12.

Inspection of a control’s index indicates all parent components as it represents the

complete device description layer of the SDM. For example, a control index of 1.1.2

denotes that the control at index entry 2 in the ‘Control’ table has a parent sub-device

identified by the index value 1 in the ‘SubDevice’ table. This sub-device is a child

sub-device of the device at index 1 in the ‘Device’ table. Representing the device

Figure 6.13 Representing Device Structure using OIDs as Indexes.

Device 1

Sub-device 1.1

 Controls

 1.1.1 1.1.2

Sub-device 1.2

 Sub-devices

 1.2.1 1.2.2

168

Table 6.6 An SNMP Attribute Table Having Fixed Attributes.

index xPos yPos width height graphicID

1 20 100 40 100 23

…

LayoutAttribute Table

architecture layer of the SDM using indexes provides a deterministic representation as the

first and last indexes are always a device and a control respectively.

This representation of a device supports a logical ordering of device components

when using standard SNMP requests. All child sub-devices and child controls are

lexicographically ordered following the index of their parent sub-device. An SNMP

traversal of the sub device table using GETNEXT() or GETBULK() will perform a depth-

first traversal as these requests perform a traversal ordered by an increasing

lexicographical ordering of OIDs. By indicating the number of children using the

‘childCount’ entry, the exact number of GETNEXT() or GETBULK() requests required to

retrieve all child entries of a given component can be calculated by an SNMP controller.

However, the direct-access capabilities provided by this representation make the use of

these requests unnecessary.

6.7.2 Representing Descriptive and Layout Attributes

SNMP tables that describe attributes within a single table must represent a fixed number

of attributes, as the structure of an SNMP table cannot be dynamically modified.

Table 6.6 shows such a table that describes commonly encountered layout attributes. This

representation violates a principle of the standard model that states that attributes must

always be represented by a variable-sized (extensible) set or list. For example, if the color

or transparency is specified for the graphic image (represented as an identifier in the

‘LayoutAttribute’ table), the table cannot accommodate these additional attributes.

SNMP expansion tables provide a solution to this limitation by allowing a variable-

sized list to be associated with a specific tabular entry. Each entry in a base table thus

identifies a specific description or layout record. Expansion table entries store all

<key, value> pairs belonging to the description or layout record. Description and layout

records require an indexing scheme to uniquely identify each record entry in a base table.

It is both logical and economical to use the unique, variable-length OIDs that describe a

device’s architecture to access corresponding description and layout records. For example,

given a control entry in the ‘Control’ table having an index value of 1.1.2 (as illustrated

previously in Figures 6.12 and 6.13), the corresponding description and layout record table

169

Figure 6.14 Accessing Attributes using OIDs as Table Indexes.

ctrlIndex …
1.1.1
1.1.2
…

Control Table
{ ctrlIndex }

LayoutRecord Table
{ layoutRecIndex }
 layoutListIndex size
 111 2
 112 N

…

LayoutData Table
{ layoutRecIndex, layoutDataIndex }
 layoutDataIndex key value

1 (111.1)
2 (111.2)
1 (112.1)

…
N (112.N)

Base Table

Expansion Table

entries for this control will be indexed by the same composite

index value.

6.7.2.1 Fixed-Length and Variable-Length SNMP Indexes

OIDs and strings used as table indexes commonly have a fixed-length. Variable-length

indexes have the length added as a prefix to the index. For example, the string index

“microphone1” is represented as “11microphone1”. The ‘IMPLIED’ keyword used with a

MIB index definition specifies that an index is a variable-length (implied) index that does

not contain a length prefix. Unfortunately, tables that use implied OIDs as indexes cannot

be expanded (Fuchs & Schoenwaelder, 2007). The reason for this restriction is trivially

obvious. Given two OIDs 1.1 and 1.1.1, appending an expansion table index value of 1 to

the first OID duplicates the second OID creating an address clash in the SNMP object tree.

A solution to this limitation is to convert an IMPLIED OID index value to an IMPLIED

string or to an integer value. These unique values can then have values appended to them

to create indexes for expansion tables.

Figure 6.14 shows a ‘LayoutRecord’ table, where each entry identifies a single SDM

layout record. Expansion table entries represent each entry in the layout record.

For example, the OID index value 1.1.2 for the control entry in the ‘Control’ table of Figure

6.14 is converted to an integer index value of 112, which is then used to access the record

identifier in the ‘LayoutRecord’ table. Each <key, value> entry in the associated

‘LayoutData’ expansion table now has a unique index ranging from 112.1 to 112.N where

N is the number of data entries contained within layout record 112. Description records

are represented in an identical manner using SNMP base and expansion tables.

170

Use of an integer as an index is possible as the largest SNMP integer value is able to

represent extremely complex devices. The size of an OID is limited to 128 sub-identifiers

(Fuchs, 2006) and the largest available integer value is a four-byte SNMP integer type.

This value is 2147483647 (231-1) and allows ten decimal digits to be used as an index. More

importantly, the integer index value will always be unique because of the nested device

structure. Attempting to use an index that does not exist will result in an SNMP error

message. For example, if a sub-device functions as a container and thus does not have

associated layout information, attempting to use the sub-device’s index to access an entry

in the layout record table will return an SNMP error indicating that the OID used for the

SNMP request does not exist. It is thus easy to probe an agent to discover whether a layout

record exists for a specific device component.

6.7.2.2 Representing Meta-Data

Expansion tables represent meta-data in the same way that expansion tables represent

descriptive and layout records. These expansion tables, illustrated in Figure 6.15 provide

information about the values listed in their base tables (the data items within a description

or layout record). This representation of descriptive data and meta-data has several

advantages:

 Dedicated controllers are provided with a direct-access mechanism that does not

require GETNEXT() and GETBULK() requests to be used as OIDs are easily

calculated and executed by GET() requests.

 It is simple and intuitive to use and does not require any additional agent logic to

implement.

 Off-the-shelf MIB browsers can traverse the architecture of a device and examine

descriptive attributes. Standard GETNEXT() and GETBULK() requests can

retrieve all attribute data belonging to a specific context as these requests are

ordered by an increasing lexicographical ordering of OIDs such as 111, 111.1,

111.1.1, 111.1.2 etc.

 Base table ‘size’ entries indicate the number of attribute entries and the number

of meta-data entries. This supports efficient SNMP requests as both GETNEXT()

and GETBULK() requests can be deterministically executed when traversing

expansion tables.

Figure 6.15 illustrates the representation of SDM device architecture layer with

description and layout record entries as discussed in the previous sections.

171

Exp

Exp

Exp

Exp

Figure 6.15 Representing Descriptive and Layout Records.

AttribMetaData Table
{ attrRecIndex, attrDataIndex, attrMetaIndex }

SubDevice Table { subDeviceOID }

devIndex childCount ...

1 2

...

Device Table { devIndex }
 subDeviceOID childCount ctrlCount ...

 1.1 0 2

 1.2 2 0

AttributeData Table
{ attrRecIndex, aDataIndex }

AttributeRecord Table
{ attrListIndex }

attrDataIndex key value size
1 (111.1) 3

 1 (112.1)
 2 (112.2)

…

attrRecIndex size
111 1
112 2
… …

ctrlIndex …
1.1.1

1.1.2

 …

Control Table
{ ctrlIndex }

LayoutLRecord Table
{ layoutListIndex }

layoutRecIndex size
 11
 12
 111 2
 112 1
 … …

 LayoutData Table
{ layoutListIndex, layoutDataIndex }

 layDataIndex key value size
 1 (111.1) 2
 2 (111.2)
 1 (112.1)

…

LayoutMetaData Table
{ layoutRecIndex, layoutDataIndex,
 layoutMetaIndex }

 layoutMetaIndex key value

 1 (111.1.1)
 2 (111.1.2)

 …

 attrMetaIndex key value
 1 (111.1.1)
 2 (111.1.2)

 3 (111.1.3)
…

Base

Base

Base

Base

6.7.3 Parameter Organization

Parameters can be stored in different tables according to parameter type, or stored in a

single parameter table. There are two main disadvantages to representing parameters in

separate tables organized by parameter type:

 The representation is not scalable as new parameter types require the addition

of new tables to the MIB;

 Representing parameter joins and parameter groups becomes difficult to

implement, as these relationships may span multiple tables.

172

paramTypeIndex description

1 (1.1) Gain

 2 (1.2) Pan

... ...

Figure 6.16 Representing SDM Short Parameter Addresses.

L6 ParameterInstance Table
 { devIndex, paramDescIndex ,
 paramTypeIndex, paramInstIndex }

paramInstIndex name

1 (1.2.1) Pan1

2 (1.2.2) Pan2

 ... …

 N (1.2.N) 2

L5 ParameterType Table
 { devIndex, paramDescIndex ,
 paramTypeIndex }

paramDescIndex name

1 Input

2 Input

... ...

L4 ParameterDesc Table
 { devIndex, paramDescIndex }

paramIndex value ...

1 (1.2.1.1) -2

 ... …

 N (1.2.2.N) 2

L7 Parameter Table
 { devIndex, paramDescIndex ,
 paramTypeIndex,
 paramInstIndex, paramIndex }

A compromise that also allows parameters to be easily located when using off-the-shelf

SNMP browsers is to provide separate tables for categories of parameters. For example,

control parameters and connection management parameters are represented within one

or more distinct parameter instance tables and parameter value tables. To ensure that

parameter data can be accessed independently of the device model, the levels of a SDM

short parameter address are used to identify short parameter addresses. Figure 6.16 shows

that the indexes of the four levels of the SDM parameter address layer are used to create a

composite index that uniquely identifies a parameter.

A ‘ParamDesc’ (parameter description) table, a ‘ParameterType’ table and a

‘ParameterInstance’ table provide a composite index that identifies parameter values and

parameter actions within a parameter table. In this example, identification of the value of

a specific pan parameter (the value of a channel one pan parameter) is shown to be -2.

In a similar manner, support is provided for full parameter addresses by storing

parameters in a table. Figure 6.17 illustrates how SDM full parameter address tabular

entries are referenced by a composite SNMP index. Note that a device index is not required

by the SDM but allows an agent to represent parameters from multiple devices within a

single parameter table. Representation of AES64 parameter addresses within SNMP is

discussed in Section 7.7.3 Protocol Interoperability with AES64 (p.207).

173

Figure 6.18 Representing Master-Slave Parameter Relationships.

Parameter Table
{ deviceIndex, parameterDescIndex,
 paramTypeIndex, paramInstIndex.
 paramIndex }

paramIndex value ...

1 (1.1.1.1.1) 6

2 (1.1.1.1.2) 4

 3 (1.1.1.1.3) 6

 1 (1.2.1.1.1) 3

…

SlaveList Table
{ slaveListIndex }
(Integer of parameter table index)

SlaveParamTable
{ slaveListIndex, slaveIndex }

slaveListIndex name

11111

...

 BaseTable

ExpansionTable

OID to int

6.7.3.1 Parameter Groups

Expansion tables support an elegant implementation of master-slave parameter groups as

illustrated in Figure 6.18. Two expansion tables are associated with each parameter:

A ‘SlaveList’ table defines a list of slave parameters for an entry in the ‘Parameter’ table

that is the master parameter. An expansion ‘SlaveParam’ table lists all slave parameters

belonging to the specified slave group. Each slave list is associated with a parameter by

using the integer representation of the parameter’s OID as a ‘SlaveList’ table index.

It is also possible to create multiple slave lists. In this case, each list in the ‘SlaveList’ table

has an index that is extended to indicate the list identifier. The ‘SlaveList’ table in Figure

6.18 would use indexes from 11111.1 to 11111.N where N slave lists are defined. This allows

multiple predefined slave configurations to be defined for a specific master parameter.

Peer parameters are defined in an identical manner using base and expansion tables

to represent a list of peers and the members of each particular list. Each expansion

Figure 6.17 A Full Parameter Addresses Represented by SNMP Indexes.

 Device Control Parameter Type

Sub-devices Parameter Parameter
 Description Instance

 1 . 2 . 1 . 2 . 1 . 1 . 4 . 2 Parameter

174

Table 6.7 SNMP Standard Trap Fields.

 Trap Field Description

Enterprise Unique trap identifier.

Agent Address IP Address of the Agent.

Generic Type Predefined SNMP trap types.

Specific Type Application-defined trap types.

parameter table entry that denotes a slave or peer parameter also indicates the

relationship type (absolute or relative) for the parameter entry.

6.7.4 Parameter Monitoring

SNMP traps were designed to provide automated device monitoring. Traps signal

exceptional conditions where the time interval between trap invocations is typically

measured in hours or even longer periods. However, traps can also be used for continuous

real-time monitoring. The only restriction is that the buffers that receive trap PDUs must

be sufficiently large to store the received data. Some SNMP implementations such as

Snmp#Net allow the size of trap buffers to be specified (SNMP#NET, n.d.).

Trap messages do not have a high size overhead; SNMP v1 trap messages can be restricted

to as little as twenty bytes (Mukhtar, 2009).

To implement monitoring functionality, SNMP v1 trap messages are used to

transmit meter values. Variable bindings are not required when implementing a work-

conserving scheme as standard trap fields are used to represent a meter’s value.

SNMP v.1 traps offer greater flexibility than SNMP v2c traps due to the larger number of

fields defined for these messages. An SNMP v1 trap message consists of the four fields

listed in Table 6.7 followed by a list of variable bindings. The structure of SNMP v1 trap

PDUs is illustrated in greater detail in Appendix 11.

The ‘Enterprise’ trap field is used to uniquely identify traps within an application. In

the context of metering, this field can be used to identify a specific meter or set of meters.

Although generic trap types are reserved for specific conditions within SNMP, this field

can be used for application-specific purposes (ZOHO Corporation, 2012).

For example, this field can indicate a meter identifier and the ‘Specific Type’ field can

contain the meter’s value. It is also possible to identify a specific meter by specifying a

meter’s OID within the enterprise field. This arrangement allows filtering as SNMP

supports trap filtering based on the different fields of a trap PDU. Non-work conserving

schemes cannot use standard trap header fields as multiple values must be transmitted

175

Figure 6.19 SNMP Tables Depicting Networked Audio Streams.

srcStreamParamIndex paramID instName name value

1 (1.1.14.1.1) 1024 srcStream1 id 1024
 2 (1.1.14.1.2) 1025 srcStream1 advert true
 1 (1.1.14.2.1) 1026 srcStream2 id 1025
 2 (1.1.14.2.4) 1027 srcStream2 advert false

…

srcStreamParam Table
{ deviceIndex, parameterDescIndex,
 paramTypeIndex, paramInstIndex. srcStreamParamIndex }

 destStreamParamIndex paramID instName name value

 1 (1.1.15.1.1) 1044 destStream1 id 1024
 2 (1.1.15.1.2) 1046 destStream1 listen true

 1 (1.1.15.2.1) 1045 destStream2 id 1025
 2 (1.1.15.2.4) 1047 destStream2 listen false

…

destStreamParam Table
{ deviceIndex, parameterDescIndex,
 paramTypeIndex, paramInstIndex, destStreamParamIndex }

Connection

within a single trap message. Each meter value must be encoded within a separate variable

binding where the OID within each varbind identifies a specific meter.

6.7.5 Connection Management

Dedicated tables provide connection management parameters for connections between

network streams, input and output assignments, and internal connections. Figure 6.19

illustrates the SNMP tables used to represent parameters that describe network streams

and connections between streams. This example uses parameters that are compatible with

AES64 as described in Section 7.5.2 AES64 Connection Parameters (p.201).

Tables are designed to be both machine-readable and to be used from within a MIB

browser. In Figure 6.19, <name, value> pairs represent parameter identifiers and their

parameter values.

The ‘paramID’ entry specifies a fixed internal identifier as:

 Parameter names can be optionally edited by the user to assign meaningful

identifiers;

 Representing connection parameters in different tables requires a value used as

an index to identify an associated signal record table. Signal record tables are

implemented as description records for two reasons. Firstly, the <key, value> data

format is identical and secondly, there is no reason to create an additional table as

the table entries are intended to only be machine-readable.

176

Figure 6.20 Tables Representing Signal Description Records.

BaseTable

ExpansionTable

descRecIndex

1024
1046
…

 descMetaDataIndex key value

1 src 1024
2 src 1025
…

 inTypeIndex key value

 1 (1024.2) clock 48
 1 (1046.1) clock 48
 2 (1046.2) srclist list

…

DescData Table
{ descRecIndex, descDataIndex }

DescRecord Table
{ descRecIndex }

DescMetaData Table
{ descRecIndex, descDataIndex,
 descMetaDataIndex }

Table 6.8 An SNMP Table Depicting Internal Connection States.

 intConnIndex name src dest conn

1 (1.7.11.1.1) StereoBus ch1 LBus 1
1 (1.7.11.2.1) StereoBus ch2 RBus 0

…

intConn Table
{ deviceIdx, parameterDescIndex, paramTypeIndex,
 paramInstIndex, intConnIndex }

Although the indexing scheme representing the parameter description layer discussed

previously indicates parameter instances, these instances are explicitly listed to provide a

coherent user interface. Figure 6.19 shows how these tables are displayed by a MIB

browser. Tables can contain any number of parameter value entries as this generic model

is designed to accommodate any connection management parameters that may be defined

by different audio transports.

Figure 6.20 illustrates a signal description record that describes network streams.

Signal description records are implemented in the same manner as the generic description

records described earlier in this chapter. A stream identifier is used as an index to identify

a specific signal description record in the ‘DescRecord’ table.

The ‘DescMetaData’ table is an expansion table used to describe audio streams and to

represent candidate connections for the audio streams shown in Figure 6.20.

The destination stream identified by the identifier 1046 has two candidate source streams

(the streams having identifiers 1024 and 1025).

Table 6.8 shows a depiction of internal connections. Source and destination entries are

listed and the connection status depicted by a connection (‘conn’) parameter value.

177

The ‘name’, ‘src’ and ‘dest’ fields of the ‘intConn’ table are not required to create

connections, as the composite index value and the connection state given by the ‘conn’

entry are sufficient to denote a connection. These columns provide an intuitive user

interface when using a MIB browser to perform connection management.

Connection management tables are designed to support machine parsing (using the

parameter indexing scheme), and to allow off-the-shelf management applications to be

used to perform connection management. Connection assignments are created in a similar

manner using the objects defined in the SDM MIB.

6.7.6 Automation

Automation can be implemented in SNMP by:

 Using varbinds to represent time-stamped commands within a single SNMP

PDU;

 Recording commands for later execution by an agent process.

Although SNMP supports grouping SET(..) requests as multiple varbinds within a single

PDU, it does not support any scheduling of these commands. SNMP does provide a ‘time-

tick’ data type that provides a resolution of one centisecond (one-hundredth of a second).

It is therefore feasible to implement the OSC bundle mechanism described in Section 5.3.3

Automation in OSC (p.126) using multiple SNMP varbinds. Pairs of varbinds denote a

timestamp and a parameter value respectively. Agent instrumentation must process the

varbinds and execute the parameter updates at the specified times.

An alternative design stores received SET(..) requests. Setting a scalar object that

functions as an action parameter triggers a function that starts recording changes made to

object values. When recording is enabled, the agent inserts the target OID, string value,

type and timestamp of each received SET(..) request into an ‘Automation’ table and an

‘AutomationData’ table. Each entry in the Automation table represents a command

sequence. Entries in the ‘AutomationData’ table define the SET(..) requests that constitute

each sequence. An agent uses the API of the development environment to execute these

OID assignments using the stored data and timestamps. Generation of a clock process,

and the storage and updating of object values during recording and playback of SNMP

requests becomes the responsibility of the agent’s instrumentation. Although not

mandated by the SDM, the developed MIB defines these two tables.

178

6.8 Implementing SNMP Devices and Controllers

Development of an SNMP environment requires the design of a MIB, development of an

agent application (device) that instruments the MIB, and development of a manager

application (controller) that interacts with the agent. A MIB that represents the SDM was

developed using the MG-Soft MIB compiler and editor (MG-Soft Corporation, n.d.).

Additional MIB validation was provided by an Internet MIB validator (SimpleWeb, n.d.).

Appendix 8 contains a design schema for the developed MIB. Agent and management

(controller) applications were developed using:

 A C#.NET SNMP environment (SNMP#NET, n.d.) that was used to develop a

virtual SNMP controller, and

 An SNMP MIB browser and agent development environment from iReasoning

Corporation (iReasoning Networks, 2013).

Figure 6.21 shows parameter table values from the instrumented agent displayed in the

iReasoning MIB Browser (iReasoning Networks, 2012).

Figure 6.21 Instrumented SNMP Parameter Objects.

179

The SNMP indexing scheme (deviceID – parameter description – parameter type – parameter

instance – parameter value) can be seen in the index for the highlighted parameter. This

parameter is the value of the second instance (channel two) of the pan parameter type. As

mentioned previously in Section 6.7.1 Representing Devices, Sub-Devices and Controls

(p.166), use of a device identifier as an index component allows a single agent to manage

multiple devices. Appendix 4 mentions these SNMP development environments and

provides additional information about the agent and manager applications.

6.9 Commentary and Evaluation

There is a significant difference between the capabilities of native SNMP features and the

capabilities of SNMP implementations such as IEC-62397-2 and the SDM.

Agent functionality provided by code developed to interact with a specific MIB becomes a

part of the SNMP meta-model and thus is applicable to specific instances of the

meta-model as illustrated previously in Figure 6.2 (p.147).

6.9.1 A Summary of SNMP Features

Table 6.9 provides a summary of the native features supported by SNMP.

180

Protocol Feature Comment

1. Network Management

 1.1 Device Discovery SNMP v3 only.

1.2 Monitoring Reachability

2. Service Discovery and Enumeration [1] GET(), GETNEXT() and
GETBULK() requests.

3. Control Surface Representation

4. Control Commands

 4.1 Write Single Parameter Value SET() request.

 4.2 Write Multiple Parameter Values [1] Multiple varbinds.

 4.3 Read Single Parameter Value GET() and GETNEXT() requests.

 4.4 Read Multiple Parameter Values [2] GETBULK() request.

 4.5 Non-Blocking (Asynchronous)
 Commands

 4.6 Variable Number of Arguments

 4.7 User-Defined Arguments

 4.8 Multiple Return Values Multiple varbinds.

 4.9 Error checking All requests are acknowledged

 4.10 Control Point Invocation Side effect of GET ()and SET()

 4.11 Automation

5. Subscription (Monitoring)

5.1 Single Value Subscription Traps, Informs, Notifications

5.2 Multiple Value Subscription
 Agent Instrumentation must

add varbinds to messages.

5.3 Event-based Subscription

6. Parameter Management

6.1 Linking Controls to Parameters

6.2 Joining Parameters Synthesized by multiple
varbinds. 6.3 Grouping Parameters [3]

6.4 Bulk Parameter Access GETNEXT() and GETBULK()

6.5 Dynamic Parameter Modification

Values

6.6 Save / Load Configuration

7. Connection Management

8. Serialization Binary objects in v1 only.
Deprecated in later versions.

9. Security Different models in v2c and v3.

 Table 6.9 A Summary of SNMP Features.

[1] No context-sensitive service discovery.
[2] Reading and writing of multiple parameters can be accomplished within a single PDU.
[3] A single PDU can contain multiple variable bindings. This is not a true ‘grouping’ mechanism, being
 intended to reduce the UDP overhead incurred when transmitting multiple PDUs.

181

6.9.2 An Evaluation of SNMP

This section highlights significant features of SNMP and the strengths and weaknesses of

the protocol.

6.9.2.1 SNMP Table Indexing Schemes

The most expressive and flexible features of the SNMP data model are the object

identifiers and object relationships supported by table indexing schemes. This chapter has

demonstrated that SNMP indexing schemes support an elegant, context-sensitive

implementation of the SDM. Table indexes are used to represent the device architecture

layer and parameter description layer of the SDM. These indexes provide a novel direct-

access mechanism that is used to locate child components and to access description and

layout records. This representation avoids the use of GETNEXT() and GETBULK()

requests that return large sets of data containing logical data records (table rows) rather

than directly accessing specific data records. However, this representation also preserves

the lexicographical ordering of SNMP objects allowing GETNEXT() and GETBULK()

requests to be used as these requests are supported by off-the-shelf MIB browsers.

6.9.2.2 Retrieval of Logical Data Records

SNMP data models do not support logical, context-sensitive operations that make use of

the defined data relationships. Standard SNMP requests are not able to efficiently retrieve

logically organized SNMP objects. Column-order table traversal using GETNEXT() and

GETBULK() requests retrieve all rows from a table when only a small number of rows may

be required by an application. A scheme to retrieval logical rows of data has been proposed

(Chen & Chan, 2007) as an addition to the standard SNMP requests. Because of the

conceptual organization of tables where data items are stored in a tree, a complex SNMP

data model may not provide a useful, logical view to users. Logically related data is

commonly implemented across multiple tables. This means that off-the-shelf MIB

browsers may not provide a meaningful view of related SNMP objects.

6.9.2.3 Dynamic Behavior in SNMP

The simple structure of SNMP GET() and SET(..) requests does not match the

sophistication of the data representation capabilities of the protocol. These limitations

have been commented on by Juergen Schoenwalder, who is actively involved in the

development of SNMP:

“There is often a semantic mismatch between the task-oriented view of the world ...

and the data-centric view of the world provided by SNMP. Mapping from a task-

oriented view to the data-centric view often requires some non-trivial code on the

management application side.” (Schoenwaelder, 2003).

182

To address these limitations, GET() and SET(..) requests should be enhanced to provide

greater expressive capabilities. These enhancements could include the use of wildcards

within target addresses and support for variadic arguments. More sophisticated command

capabilities require services to be defined in terms of a service process (introduced in

Section 2.9.1.1 Commands and Services (p.34)), or, requires a query language that

formulates complex requests. An example of an SNMP service process that uses multiple

GET requests was discussed in Section 6.5.3 User-Defined SNMP Requests (p.158). A

hypothetical example of a query to select all gain parameters from a parameter table using

a command syntax that is similar to the Structured Query Language (SQL) is shown

below.

SELECT * from ParameterTable where name EQUALS “Gain”

A proposal for an SNMP Query Language was made as far back as 1990 (Yeong, 1990).

Patents describing the use of SQL with SNMP were filed in 1999 (Compaq Computer

Corporation, 2002) and in 2012 (IBM Corporation, 2012). An SNMP query language that

uses pattern matching has been developed at the Wellington Institute of Technology

(Boyd, Ellis, Eales, & Owen, 2013). This system provides a small set of SQL-like queries

that are implemented using pattern matching to retrieve context-sensitive tabular data.

The large number of network messages generated by a request-response model that

typically addresses single parameters (Jagadish, Prakash, & Gonsalves, 2008) mars SNMP

performance. Each SET(..) request generates a mandatory acknowledgment that is not

required when control messages are streamed across a network. A technique that

addresses this issue by using the response message to provide requested data was

discussed in Section 6.5.1.1 Optimizing SNMP Requests (p.156).

6.9.2.4 SNMP Management Applications

SNMP can be useful for implementing connection management using off-the-shelf

manager applications, as only a small number of discrete SET(..) operations are required.

However, as illustrated by the implementation of the SDM in Figure 6.22,

data is often not displayed in an intuitive manner by MIB browsers. In this example, the

linear depiction of tabular entries does not display the required connection parameters in

a logical manner. The monitoring of exceptional conditions such as the detection of

dropouts or distortion levels in audio signals is also easily accomplished using

off-the-shelf manager applications. However, these applications cannot elegantly display

meter states, as they are not designed to display data streams. All received trap fields and

varbinds are typically displayed as scrolling text values.

183

The wide availability of management applications appears to be a benefit of SNMP.

This may be a superficial advantage as off-the-shelf management applications are typically

not sophisticated enough to support complex applications:

“The typical off-the-shelf SNMP manager is not designed for displaying and

processing telemetry data for effective network monitoring, especially for the kind

of real-world monitoring tasks network managers most need performed. These

capabilities can be added to an SNMP manager, but it usually requires substantial

custom software development.” (SNMP Tutorial: An Introduction to SNMP, n.d.).

6.9.2.5 Strengths and Weaknesses of SNMP

Table 6.10 summarizes the major strengths and weaknesses of SNMP that were identified

and discussed in this chapter.

Figure 6.22 A User Interface for Connection Management.

http://www.dpstele.com/dpsnews/free_snmp_manager.php?alink=SNMP%20manager&r=2&cls=ylink
http://www.dpstele.com/layers/l3/snmp_l3_iam_7_multiple_notification_display_options.php?%3C!--#echo%20var=%27qs%27--%3Ereal_world_tasks
http://www.dpstele.com/layers/l2/snmp_l2_tut_part1.php?alink=SNMP&r=4&cls=ylink

184

6.9.3 The Use of SNMP for Networked Audio Applications

SNMP is not widely used to control audio devices. Existing applications are confined to

providing connection management and configuring simple devices as mentioned in the

introduction to this chapter. There are four possible reasons why SNMP-based protocols

have not been widely used to control and manage audio devices:

1. Development using the C and C++ development environments descended from the

three low-level legacy implementations described in Section A4.3 SNMP

Development Environments (p. 370) can be a tedious process.

2. The expertise required to develop SNMP applications is similar to the expertise

required to develop relational databases. A cursory examination of SNMP does not

expose the full capabilities of the protocol, especially the use of indexing schemes

to implement data relationships.

3. SNMP implementations can be complex, typically consisting of multiple

configuration requirements. For example, a typical SNMP implementation within

a Microsoft Windows environment:

 Has a specific repository for MIB files;

 Requires compiled MIB files to be registered with the MIB repository;

 Strengths

1. Flexible tabular data structures are provided.

2. Indexing schemes provide expressive representations
of relationships between tabular data.

3. A flexible subscription mechanism is provided.

4. Service discovery can be reliably implemented using

‘Inform’ messages.

5. Off-the-shelf browsers provide universal management
applications.

 Weaknesses

1. The simplicity of commands does not match the
sophistication of data relationships.

2. Mandatory acknowledgments waste bandwidth and
degrade performance.

3. Bulk data access is not context-sensitive.

4. SNMP runtime environments are typically complex.

5. Off-the-shelf browsers may not display SNMP objects and
object values in an intuitive manner.

Table 6.10 A Summary of the Strengths and Weaknesses of SNMP.

185

 Requires configuration files and registry entries to describe MIB files and

the SNMP environment;

 Must have SNMP implemented as an operating system service that is

correctly configured.

These different requirements can create a fragile runtime environment having

multiple interrelated dependencies.

4. The literature dealing with MIB design and SNMP is limited. Using the appropriate

RFC’s for learning SNMP is a difficult undertaking.

Despite these limitations, SNMP provides all the core control and monitoring capabilities

required by a control protocol. In addition, the sophisticated data representations make

the protocol suitable for representing audio devices. SNMP requires further development

to provide more sophisticated requests and to enhance the performance of existing

requests. Unfortunately, this development is unlikely to occur. SNMP has been deprecated

in Windows Server 2012 (Microsoft Corporation, 2012) in favor of the Common

Information Model (Distributed Management Task Force, Inc., 2013). Although it is still

possible to install SNMP on Microsoft Windows operating systems, support for SNMP is

likely to be removed from future versions of Windows.

186

Index DeviceID IP Address

 1 128-bit ID 122.140.201.66

 2 128-bit ID 122.140.201.23

 … … …

 N 128-bit ID IP Address

 Index AES64 Parameter

 1 AES64 Parameter

 2 AES64 Parameter

 … …

 N AES64 Parameter

Figure 7.1 An AES64 Mapping Table and Parameter Store.

Mapping Table

Parameter Store

Chapter 7

AES64

7.1 Introduction

AES64 is a control protocol developed by Universal Media Access Networks GmbH

(UMAN). Formerly named X170, it was based on the earlier Cross-Fire Network (XFN)

protocol developed at Rhodes University in South Africa (Foss, 2009). AES64 became an

AES standard in 2012 (Audio Engineering Society, 2012). Although designed as a general-

purpose peer-to-peer control protocol, this UDP-based protocol has been strongly

influenced by the control and connection management requirements of complex audio

devices. AES64 is a ‘second generation’ control protocol that integrates discovery,

connection management and control functionality by supporting a network-wide view of

devices and their capabilities. AES64 also provides sophisticated parameter management

capabilities and supports conversion and scaling operations on parameter data.

7.2 Networked Device Management

Devices broadcast discovery requests to discover AES64 devices. The peer-to-peer

network architecture supported by AES64 requires that each device maintain a list of other

known devices on a network. This list is termed a ‘mapping table’

(Audio Engineering Society, 2012, p. 11). Indexed device entries within a mapping table

have a unique device identifier and IP address illustrated in Figure 7.1.

187

When a device functions as a controller it stores parameter addresses used to access

parameters on remote devices. Each remote device is identified by a mapping table entry

where each AES64 parameter references the index of a device in the mapping table.

This referencing scheme provides a compact representation of remote device identifiers

and provides significant practical benefits. As an example, consider a scenario where a

malfunctioning device is replaced on a network. By simply changing the device identifier

and IP address entries in the mapping table, all existing parameter references to the old

device are automatically applied to the new device. This compatibility assumes that similar

devices have parameters that are addressed in a consistent and uniform manner. An

important design goal of AES64 is to provide equivalent parameter addresses across

similar devices.

Each device is represented by an AES64 ‘device node’. This device node is a container

for a tree of device parameters where each parameter is referenced by a unique

hierarchical parameter address.

7.3 Parameter Organization and Addressing

The organization of parameter data and the fixed-addressing scheme used to identify

parameters are the core concepts around which the AES64 protocol is designed.

7.3.1 Parameter Addressing

AES64 protocol has the ability to address any parameter using a fixed hierarchical

seven-level conceptual addressing scheme or by using a more compact unique parameter

identifier. This fixed addressing mechanism offers several advantages that are discussed

in Section 10.2.3.2 Evaluating Static Specifications (p.253). AES64 parameters consist of

the following levels:

Level1 - ‘Section Block’ entries partition a device into logical sections.

Level2 - ‘Section Type’ entries partition a section block into logical sub-

 sections.

Level 3 - A ‘Section Number’ is typically used to specify an audio channel.

Level 4 - ‘Parameter Blocks’ group related parameters such as the

 parameters within an equalization block.

Level 5 - A ‘Parameter Block Index’ provides sub-groupings of parameters

 within a parameter block.

Level 6 - A ‘Parameter Type’ entry groups parameters representing

 identical functionality into a set of parameters.

188

Level 7 - A ‘Parameter Index’ differentiates among multiple parameters

 having the same parameter type. For example, a channel may

 have two gain parameters.

Table 7.1 illustrates the use of these seven addressing levels by providing specific examples

of values for each address level.

Although the hierarchical organization of parameters implies the structure of the

underlying device, this organization is not intended to provide a model of a device.

Parameter addresses indicate the audio processing context of a parameter or indicate the

location of a parameter within a device’s architecture. While it is certainly possible to parse

the parameter structure to determine a device model, such a model was not envisaged by

the designers of the protocol. The organization scheme was conceived to provide fixed,

standardized parameter addresses that provide interoperability among networked

devices. Section 7.6 Control Surface Representation and Creation (p.203) discusses how

parameters are linked to control surface representations. Linking a parameter model to a

control surface representation dispenses with the need for a device model to specify a

control surface.

7.3.1.1 Parameter Address Wildcards

A wildcard where all bits denoting the value of an address level entry are set can occur at

any level of a parameter address. This mechanism allows a single parameter address to

reference multiple parameters. AES64 wildcards differ from OSC in that they are level-

based rather than character-based. This reduces the costs of processing wildcarded

parameter addresses. Wildcard entries can also be used to perform selective service

discovery as controllers can retrieve a specific set of parameters from a device. For

example, a GET command that reads parameter values using a wildcard entry for a specific

 Number Level Name Examples

 1 Section Block Mixer Input section, Output section

 2 Section Type Microphone input, Line input, ADAT input

 3 Section Number Channel number

 4 Parameter Block Equalizer block

 5 Parameter Block Index Equalization sub-grouping (Q, freq)

 6 Parameter Type Low frequency, gain, threshold

 7 Parameter Index A specific parameter of a level 6 type

Table 7.1 The AES64 Parameter Address Hierarchy.

189

level will retrieve all available device parameters matching the wildcarded parameter

address.

7.3.2 Accessing AES64 Parameters

The steps required to access AES64 parameters stored within a tree data structure are

listed in Figure 7.2. Each parameter is represented by a record (structure) within the tree.

The AES64 protocol stack processes received commands (1) that reference parameters by

traversing the parameter address tree (2) to locate one or more seven-level conceptual

addresses for the parameters referenced by the command.

Each conceptual parameter address maps to a physical memory address. One or more

callback functions associated with the referenced parameters are then executed (3). These

callback functions are executed as a side effect of a parameter access, allowing arbitrary

functionality to be associated with accessing a parameter. Parameter values at specific

memory address are then accessed (4). Parameter values are updated, modified or

returned according to the requirements of the processed AES64 command.

7.3.2.1 Parameter Flags

Each parameter has an associated set of flags that describe characteristics of the

parameter. Examples of parameter flags include:

 Access specifiers (READ or WRITE);

(Foss, De-Mystifying Sound Control Protocols with a
Focus on XFN, 2011)

AES64 Device

Parameter Entry
 Structures

(1) AES64
 Message

Network

 AES64
 Stack

 Callback
Function (3) Invoke

 Callback
 Functions

(4) Access
 Parameters

(2) Traverse
 Address Tree

Ox000

0xD10

0x100

 ...

Root Node

Hierarchical
Parameter
 Address
 Tree

Figure 7.2 Parameter Access in AES64.

190

 An ALERT flag that is set or cleared according to a parameter’s current value ;

 A HIDE flag that can be set to make the parameter not visible to controllers;

 PUSH interval and PUSH delta flags that govern the behavior of parameter

subscriptions. These behaviors are discussed in Section 7.4.2 Device Monitoring

(p.197).

ALERT flags are typically used to generate AES64 messages when parameter values

exceed set limits. A complete list of parameter flags is provided in Table 5 of the AES64

specification (Audio Engineering Society, 2012, p. 25).

7.3.3 Parameter Relationships

AES64 explicitly supports static parameter joins and static parameter groups by

providing:

 Data representations of all related parameters for each parameter;

 Commands that create and manage parameter relationships as described in the

following sections.

Translation between different data units and the scaling parameter values is also

supported.

7.3.3.1 Parameter Joins

Parameter joins are typically found between a local parameter and a remote parameter as

previously discussed in Section 2.8.1 Joining Parameters (p.28) and illustrated in Figure

2.7. Controls typically reference local control parameters that can be joined to different

remote parameters. Parameter joins allow a single control to be configured to control

different remote device functions or multiple remote devices. For example,

a fader can be joined to parameters on different remote devices to control the output levels

of a set of remote devices.

7.3.3.2 Parameter Groups

Static parameter groups are represented in AES64 by a parameter maintaining lists of the

parameters that it is related to (Foss, 2010). AES64 supports two types of parameter

groups:

 ‘Master-Slave’ parameter groups, where changes to the value of the master are

propagated to all slaves. Changes to a slave parameter only affect the specific slave

parameter.

 ‘Peer-to-peer’ parameter groups where a change to any parameter value within

the group is propagated to all other members of the group.

191

Relationships between parameter values may be absolute relationships where values

mirror each other, or relative relationships. Relative relationships may express the change

in a value as an absolute value or as a percentage. Table 7.2 shows the results of updating

master and slave parameter values having relative, absolute and percentage relationships.

Percentage relationships are similar to relative offset relationships but produce more

floating-point values. These two relationships are essentially different ways of calculating

the same type of relationship. AES64 supports absolute and relative relationships.

Table 7.3 shows the results of update events within peer parameter groups.

Parameter groups are implemented by each parameter maintaining three relationship

lists: a slave list, a peer list, and a master list. A master-slave parameter group and its

relationship lists are illustrated in Figure 7.3. Each master parameter maintains a list of

its slave and peer parameters, while each slave maintains a list of its master parameters.

Empty lists that are not required by a parameter’s current role are depicted as null lists in

Figure 7.3.

Several rules apply to parameter relationships (Chigwamba, Foss, Gurdan, &

Klinkradt, 2010). For example, if a master parameter becomes a member of a peer group,

Table 7.2 Master-Slave Parameter Relationships.

Legend:
 Change Event Updated master values
 Updated slave values

Relationships Event Relationship
Type

Initial Values Updated Values

P1 P2 P3 P1 P2 P3

MS

P1 (M)

 P2,P3 (S)

P1=12
MS ABS 10 12 6 12 12 12

MS REL 10 12 6 12 14 8

MS % 10 12 6 12 14.4 7.2

P2=14 All Types 10 12 6 10 14 6

Relationships Event Relationship
Type

Initial Values Updated Values

P1 P2 P3 P1 P2 P3

 P2P

P1=12

 ABS 10 12 6 12 12 12

 REL 10 12 6 12 14 8

 % 10 12 6 12 14.4 9.6

P2=14

 ABS 10 12 6 14 14 14

 REL 10 12 6 12 14 8

 % 10 12 6 11.6 14 6.96

Table 7.3 Peer-to-Peer Parameter Relationships.

192

all of the other members of the peer group automatically become slaves of the master

parameter.

In this example, a master parameter references two slave parameters in its slave list.

7.3.3.3 Parameter Modifiers

When AES64 messages address parameters, parameter modifiers allow the values

specified by a message to be translated between different measurement units or scaled.

Example scenarios that can make use of parameter modifiers include:

 Situations where scaling must occur between related parameter values;

 Automation scenarios where the timing of messages must be modified;

 Scenarios where a compact control surface is used to a control a large, complex

device.

Because a single control can potentially address many different parameters on a device,

control parameter values may require scaling to accommodate a target parameter’s value

range. Automation scenarios may require stored delta times that separate commands to

be converted to actual clock times. Split-level mixing consoles may require that a channel

identifier be modified to reflect the current device configuration. For example, channel

numbers from one to eight specified within a command may require modification to

address channels nine to sixteen. An AES64 ‘value modifier’ modifies parameter values

using a function that expresses a relationship between the values of two parameters.

Modifications are implemented by a ‘modifier block’ that consists of an input parameter,

an output parameter and a modifier function.

Slave list

Master list

 Master-Slave
 Parameter Group

Figure 7.3 AES64 Parameter Group Representation using Lists.

Null

Null

Null

Null

Null

Null

 Peer list

M1

M1

S1 S2

S1

M1

S2

193

The example illustrated in Figure 7.4 defines a function that changes the value field

of an AES64 message sent from one parameter to another parameter. The values of two

fader parameters have a relationship defined by the modifier block as they are joined to

the input and output parameters of the modifier block. The value of the output parameter

represents the result of the modifier function applied to the value of the input parameter

7.3.4 Bulk Parameter Management

AES64 supports bulk parameter management via the Universal Snap Group (USG)

mechanism (Universal Media Access Networks, n.d.). This protocol feature is not included

in the 2012 specification but is intended for future updates to the specification (Foss,

2015).

This mechanism allows:

 Retrieval and updating of a defined set of parameters;

 Periodic bulk parameter updates using unicast that are sent from a device to a

controller;

 Periodic bulk parameter updates that are sent to a number of controllers using

broadcast or multicast transmissions.

The USG commands shown in Table 7.4 illustrate how the mechanisms functions in practice

with command responses provided in the shaded rows. A controller transmits a ‘CreateUSG()’

command to create a USG group for the specified parameters and also specifies the size of the

buffer to be used to return parameter values. A device returns a ‘ListNo()’ response to the

‘CreateUSG()’ command that indicates the numbers of messages required to transmit the

specified USG group for the specified fragmentation size. ‘USGData’ is a list of parameter

identifiers and values sent from a device to one or more controllers.

 Modifier
 Parameter Block

 (Audio Engineering Society, 2012, p. 14).

 AES64
Message

 Join

 Input
 Value
Parameter

 Join

 AES64
Message

 Value
Change f()
 function

 Output
 Value
Parameter

Figure 7.4 An AES64 Value Parameter Modifier.

 Fader
Parameter

 Fader
Parameter

194

‘GetUSGList()’ returns a list of parameter values for the specified list number. ‘SetUSG’()

allows a controller to update the specified USG parameters. When a controller has

obtained a list of parameter identifiers, it can subscribe to the specified parameters and

specify the frequency and parameter for the list of returned values. Frequency is in

messages per second. For broadcast messages, the device determines the frequency of the

broadcast. Devices maintain a ‘broadcast list’ that can be updated by controllers using the

‘AddUSGBroadcast()’ command.

AES64 also supports saving and restoring parameter values using a Snapshot Model

that provides efficient retrieval or updating of large sets of parameters (Audio Engineering

Society, 2012, p. 22). Periodic bulk updates are also supported for monitoring purposes

and are discussed in Section 7.4.2 Device Monitoring (p.197).

Bulk parameter operations allow a snapshot of a device’s state to be saved or restored. This

supports device initialization to different predefined configurations using a previously

saved state. Figure 7.5 illustrates how a device responds to a snapshot command from a

controller to create snapshots of different parameter groups as required by different

control scenarios. These parameter values are stored on the device. A device parameter

functions as an action parameter that manages snapshot parameter values. When a device

receives a ‘SAVE SNP’ command addressed to its snapshot parameter, the device saves the

required parameter values to the specified snapshot data store; when a device receives a

Message Context Message

Controller - -> Device CreateUSG < Fragment size ,full
 address1… fulladressN>

Device - -> Controller ListNo < No of Lists >

Controller - -> Device GetUSGList < ListN >

Device - -> Controller ListData < … >

Controller - -> Device SetUSG < xfnID1, value1, …
 xfnIDN, valueN >

Controller - -> Device PushUSGUnicast < xfnID1, … sfnIDN >
 < Frequency > < Controller parameter address >

Device - -> Controller USGData < xfnID1, value1, …
xfnIDN, valueN >

Controller - -> Device AddUSGBroadcast <xfnID1…xfnIDN, >
 <fragment size >

Device - -> Controller USGData < xfnID1, value1, …
xfnIDN, valueN >

 Table 7.4 AES64 USG Commands.

195

‘SET VAL’ command addressed to its snapshot parameter, it restores parameter values

from the specified snapshot data store.

7.4 Device Control and Monitoring

AES64 command messages allow a variety of options to be specified.

Command messages are implemented as blocking and non-blocking messages

transported using UDP.

7.4.1 Command Messages

AES64 messages are request messages sent between devices, or responses to request

messages. Request messages can specify a full (seven level) parameter address or may use

a unique parameter identifier. Messages that use a parameter identifier are termed

‘indexed messages’. Command messages can also be forwarded to a second parameter

address. Messages having a second destination parameter address are sent to the first

parameter address and then forwarded to the second parameter address. This capability

is required by the ‘modifier’ messages that were discussed in Section 7.3.3.3 Parameter

Modifiers (p.192). Modifier blocks modify received messages and then forward them to

the specified recipient. Request messages have a sequence identifier that is incremented

each time a response is transmitted. This allows the response to be matched to the request

that generated the response.

7.4.1.1 Command Message Format

AES64 commands contain of three fields within a message that identify the semantics of

the message. These are the ‘message type’, ‘command executive’ and ‘command qualifier’

fields. Table 7.5 lists the different message types that identify the format of a message.

 Snapshot2

Figure 7.5 The AES64 Snapshot Mechanism.

 AES64 Parameters

Snapshot Parameter

Parameter1

Parameter2

 …

 …

 …

 …

 …

ParameterN

Network

Device Controller

SAVE SNP S1

 Snapshot1

AES64 Stack

SET VAL S2

S1

S2

Save

Restore

196

 Executive ID Executive Description

 0x00 GET Read one or more data values.

 0x01 SET Write one or more data values.

 0x02 ACT Perform an action.

 0x03 JOIN Join a parameter to a group.

 0x04 UNJOIN Detach a parameter from a group.

 0x05 CREATE Create a structure such as a list.

 0x06 SAVE Save a structure such as a list.

Table 7.6 AES64 Command Executives.
(Audio Engineering Society, 2012, p. 20).

The command executives illustrated in Table 7.6 define the operation performed on a

parameter or parameter value.

A command qualifier adds semantic details to a specified command executive by

specifying a parameter value, a parameter attribute, or a parameter group referenced by

the command executive. Command qualifiers are listed in Table 7.7.

Examples of AES64 commands (Gurdan & Foss, 2010) that combine a command

executive with a command qualifier include:

 SET VAL – the SET executive is applied to the value of a parameter;

 JOIN PTP <parameter>,<…> – the JOIN executive is applied to a

peer-to-peer join relationship with the specified arguments;

 GET FLAG <address of parameter> – retrieves the flag field for the specified

parameter.

 Type ID Message Type

 0x00 Full address block requiring a response.
 0x01 Full address block requiring no response.
 0x02 Indexed message requiring a response.
 0x03 Indexed message requiring no response.
 0x04 Response message.
 0x05 Full address block with second destination and requiring a response.
 0x06 Full address block with second destination and requiring no response.
 0x07 .. 0xFF Reserved for future standardization

Table 7.5 AES64 Message Types.

(Audio Engineering Society, 2012, p. 17).

197

This three-tiered specification of commands promotes functional scalability by allowing

existing command executives to be extended using command qualifiers.

7.4.2 Device Monitoring

Parameters may have subscription relationships to other parameters where one parameter

periodically updates the parameters that subscribe to it. AES64 calls this a ‘push

mechanism’ as a parameter pushes its value to all subscribers. This is an implementation

of the ‘observer’ design pattern discussed previously in Section 2.9.2 Monitoring

Parameter Values (p.37).

Each AES64 parameter maintains a ‘push list’ of all subscribers to the parameter.

Controllers typically provide a local parameter address to a remote parameter and this

local parameter is added to a ‘push list’ maintained by the remote parameter. Network

bandwidth can be conserved by constraining the rate at which update messages are sent

to subscribers. This is achieved by:

 Implementing periodic subscriptions by specifying a wait time in milliseconds

before update messages are transmitted, and

 Specifying a ‘push delta’ value that specifies the maximum amount that a

parameter value may change without triggering update messages.

Table 7.7 AES64 Command Qualifiers.

 Qualifier ID Qualifier Description

0x00 VAL Refers to a parameter's value.

0x01 VTBL Refers to the value names of a parameter.

0x02 CLA Refers to the child level alias.

0x03 FLAG Refers to the various flags of a device.

0x04 SEC Refers to the user access level.

0x05 PUSH Adds a parameter to a Push list.

0x06 PUSH_OFF Removes from the Push list of a parameter.

0x07 DATA_BLOCK Refers to a set of values pushed by a parameter.

0x08 MASTERS Refers to the master group of a slave parameter.

0x09 SLAVES Refers to the slave group of a master parameter.

0x0A MASTER_OFF Refers to the removal of a master group parameter.

0x0B SLAVE_OFF Refers to the removal of a slave group parameter.

0x0C PEER_OFF Refers to the removal of a peer group parameter.

0x0D MSTGRP Refers to the master group associated with a

0x0E PTPGRP Refers to the peer-to-peer group of a parameter.

0x0F GRPVAL Refers to the value of a parameter within a group.

0x10 PTP Used with the JOIN command executive.

0x11 MSTSLV Used with the JOIN command executive.

0x12 SNP Refers to a snapshot of a device's parameters.

198

Periodic parameter updates are also used for transmitting meter values to one or more

controllers using a non-work-conserving transmission that was introduced in

Section 2.9.2.1 Bulk Transmission of Monitored Parameter Values (p.37). If the push

delta value is exceeded, a data block of parameter values is transmitted even if a specified

delta time has not expired. Periodic transmission of a set of parameters provides an

efficient use of bandwidth when multiple parameters are monitored. Bandwidth usage is

also reduced by only transmitting parameter values that have changed since the last

transmission.

Controllers must periodically refresh their subscriptions as devices periodically
remove subscriptions that have expired. This ensures that devices that are not
reachable do not have parameter values pushed to them. Parameters can also push a
parameter’s value as a result of the parameter’s ALERT flag (discussed in Section

7.3.2.1 Parameter Flags (p.189)) being set.

7.4.3 Automation in AES64

AES64 supports automation by using ‘event modifiers’ where an event triggers a sequence

of other events that are scheduled to occur at specified times.

The different components of an event modifier illustrated in Figure 7.6 include:

 A time-stamped event list consisting of a sequence of event structures that define

(Audio Engineering Society, 2012, p. 41).

ClkOUT
clock parameter
to another
modifier

ClkIN
clock parameter
to another
modifier

 Clock

 Timer
Parameters

 Event
Parameters

Time-stamped
event list

Time value
type interpolate

Figure 7.6 Example of an AES64 Event Modifier.

Output value
parameter

Control

add to

provides
time for

199

event parameters;

 A set of timer parameters used to start, stop, pause or continue the internal clock

of an event modifier;

 An ‘output value parameter' representing the current state of the event modifier

with reference to a particular timestamp;

 Interpolation parameters that ramp the output parameter value.

 An event list consisting of a start event, zero or more change events and an end

event.

Execution of the start event triggers the execution of the other events in the event list.

A detailed description of the event modifier mechanism is provided in Section 12.5, ‘Event

Modifier’ of the AES64 specification (Audio Engineering Society, 2012, p. 40).

7.5 Audio Connection Management

AES64 connection management is designed to be compatible with IEEE 1722

multi-channel audio streams (Audio Engineering Society, 2012, p. 82).

7.5.1 The Multicore Concept

AES64 uses the concept of a ‘multicore’ (Foulkes, Foss, & Gurdan, 2011) to represent audio

signal paths between devices. A multicore forms a multi-channel network stream for audio

and derives its name from the structure of analog audio cables. Each channel within a

multicore illustrated in Figure 7.7 is termed a ‘multicore sequence’.

By only transmitting data in one direction, each multicore provides a simplex data

Figure 7.7 Connecting Multicores and Multicore Sequences.

 Out1 .. In1 ..
 OutN InN

Multicore

Multicore

Multicore
Sequences

Network

 Out1 .. In1 ..
 OutN InN

200

connection. Bi-directional communication requires two multicore connections, one for

each direction. Figure 7.7 illustrates two multicores that are both transmitted through the

same network connection. Two devices are connected by assigning the same multicore

sequence to an input on the first device and an output on the second device. Creating

connections between audio channels thus requires multicore connections as well as

connections between the device channels and multicore sequences shown in Figure 7.7.

UNOS Creator, shown in Figure 7.8 is a toolset supporting AES64 networks from

UMAN. UNOS Creator provides four user views of connections between multicores and

connection assignments to and from multicores (Gurdan & Foss, 2010):

1. A ‘devices view’ that allows two devices to be connected by a multicore.

2. A ‘multicore view’ that allows a user to connect a transmitting multicore to a

receiving multicore.

3. A ‘talker view’ that maps audio channels from the transmitting device to

multicore audio channels.

4. A ‘listener view’ that maps device inputs on the receiving device to multicore

channels.

7.5.1.1 Routing Audio between Subnets

Figure 7.8 UNOS Creator Connection Management Tools.
 (Gurdan & Foss, 2010).

s

201

 Level Talker Parameters Listener Parameters

1 SECBLK FN_SCT_BLOCK_OUTPUT FN_SCT_BLOCK_INPUT

2 SECTYPE XFN_SCT_TYPE_STREAM XFN_SCT_TYPE_STREAM

3 SECNR Interface No. Interface No.

4 PBLK XFN_PRM_BLOCK_AVB_MULTICORE XFN_PRM_BLOCK_AVB_MULTICORE

5 PBLIX Multicore number Multicore number

6 PARTP
XFN_PTYPE_STREAM_ID
XFN_PTYPE_ADVERTISE

XFN_PTYPE_STREAM_ID
XFN_PTYPE_LISTEN
 7 PARIX 1 Specific parameter type index

Table 7.8 Multicore Parameters Representing IEEE 1722 Streams.
(Gurdan & Foss, 2010).

Multicore audio channels can also be routed between subnets using AES64-enabled

routers that are seen on the network as AES64-enabled devices. Routers are thus able to

function as source and destination points for the multicore connections illustrated in

Figure 7.9 (Zeisberger, 2010).

AES64 enabled routers make all connected multicores available to devices across

sub-networks by making the multicores connected to a specific router interface available

to all other interfaces of the same router. In Figure 7.9, an input multicore on one subnet

is visible to devices on all other subnets that are connected using the same

AES64-enabled router.

7.5.2 AES64 Connection Parameters

The AES64 parameter format listed in Table 7.8 represents parameters used for

connection management between IEEE 1722 audio streams where the shaded level six

entries show the available talker and listener parameter entries.

Figure 7.9 Routing AES64Multicores Across Sub-Networks.

Router

 Input
Multicore1

 Input
Multicore1

 Input
Multicore1

Network
Interfaces

Subnet1

Subnet2

Subnet3

202

 Parameter Parameter Parameter Parameter
 Index Index Index Index

L5

L6

L7

Talker ID Advertise Listener ID Listen

Figure 7.10 AES64 Connection Management Parameters.

 Multicore Number Multicore Number

value value
Con nection

Talker Listener

Stream
Identifiers

Audio connections are described by AES64 parameters where multicores represent

IEEE 1722 audio streams (Dibley & Foss, 2013). These AES64 parameters are illustrated

in Figure 7.10 where each stream type has a unique stream identifier.

Audio transmitters (‘talkers’) have an ‘advertise’ parameter that indicates whether the

terminal has been advertised to the network. Audio receivers (‘listeners’) have a ‘listen’

parameter that requests a talker to stream audio data to the listener.

Establishing a connection between an IEEE 1722 talker device and an IEEE 1722

listener device is a four-step process (Gurdan & Foss, 2010), (Dibley & Foss, 2013):

1. Obtain the stream ID of the required talker;

2. Set the talker’s ‘advertise’ parameter to ‘true’ to enable the talker to be advertised

to the network.

3. Bind a talker stream to a listener stream by setting the stream ID parameter of the

listener stream to an ID value of a talker stream as illustrated in Figure 7.10;

4. Set the listener’s ‘listen’ parameter to ‘true’.

Setting a ‘listen’ parameter to true causes the listener stream to send a ‘Listener Ready’

message to the talker that is bound to the listener stream. The talker then streams data to

the specified listener. To tear-down a stream between talker and listener devices, the

device tearing down the stream needs to set the value of the listener’s ‘listen’ parameter to

false.

203

7.6 Control Surface Representation and Creation

An AES64 control surface consists of controls termed ‘desk items’ (Audio Engineering

Society, 2012, p. 47). Desk items are typically graphical controls such as switches, faders,

pan pots, meters and display components. The concept also includes groups of related

controls similar to SDM sub-devices. Specification of the images used to create desk items

allows the appearance of control surfaces to be customized. Descriptions of desk items are

provided by a device and stored within the device itself.

7.6.1 Representing AES64 Desk Items

XML is used to define the appearance of desk items and to link controls to control

parameters. Each desk item is represented by an XML element that describes the desk

item, including the graphical elements required to render the desk item. Listing 7.1

illustrates the representation of the attributes of a fader desk item.

This desk item is associated with a control parameter that is described by the seven levels

of the parameter address shown in boldface. The value of an AES64 control parameter is

always the value of the associated desk item (Audio Engineering Society, 2012, p. 47).

Depending on the function of a particular desk item, AES64 control parameters receive

values from desk items, or desk items display control parameter values. These control

parameters can then be joined to any other local or remote parameters. Listing 7.1 shows

that desk item specifications also indicate connections to AES64 value modifiers.

When desk item control parameters are joined to remote parameters, the remote

parameters are termed ‘action parameters’. This definition of the term ‘action parameter’

<UMANFADERDESKITEM name=““ IP_Address=“146.231.121.154” xfnid=““

XFN_Level_1=“1” XFN_Level_2=“d1” XFN_Level_3=“1”
XFN_Level_4=“11” XFN_Level_5=“1” XFN_Level_6=“201” XFN_Level_7=“1”

Control_Param_ID=“1”
xfnUnitBitRange=“8” connected_to_modifier=“0” jointype=“0” id=“2a2f87c164a2a11c”
explicitFocusOrder=“0” pos=“48 48 44 296” backimage_plain=“FaderbackNoTrack.PNG”
 backimage_plainrect=“0 0 0 0” backimage_plainzOrder=“0”
backimage_plainhundredPercent=“1” trackimage=“Fadertrack.png”
trackimagerect=“0 0 0 0” trackimagezOrder=“0”
trackimagehundredPercent=“1” thumbimage=“FaderButton.png”
thumbimagerect=“0 0 0 0”thumbimagezOrder=“0” thumbimagehundredPercent=“1”
xfnUnitTableFile=““ trackX=“20” trackY=“30” trackHeight=“240” trackWidth=“10”
thumbX=“15” thumbHeight=“40” thumbWidth=“20” thumbNeedleOffset=“23”
thumbNeedRangeOffset=“33” thumbNeedleRangeLength=“240”/>

Listing 7.1 An AES64 XML Desk Item Description.

204

differs from the use of the term in this dissertation as defined in Section 2.9.1.2 Action

Parameters (p.35).

7.6.2 Desk Item Retrieval and Configuration

The XML desk item description file, as well as the graphics files referenced by the

description file are stored on a device and can be retrieved from a device by controller

applications. An application that is able to display and configure desk items is termed a

‘desk item browser’ (Foss, 2010). Desk item browsers can support different types of

functionality, including:

 Downloading or uploading desk item descriptions and graphics files from or to a

device;

 Associating desk items with parameters;

 Editing the visual appearance of desk items.

The desk item concept moves much of the responsibility of representing and creating a

control surface from the controller to the device. This approach has three advantages:

 Device manufacturers are able to specify a control surface that is independent of

any computing platform or programming language;

 Controllers do not have to compute the layout of a control surface;

 Controllers do not need to store information about a potentially large number of

devices.

7.7 Commentary and Evaluation

AES64 contains a rich set of features. These features are a result of the designers carefully

considering different control scenarios and functional requirements of complex audio

devices and then designing the protocol around these scenarios and functional

requirements.

7.7.1 A Summary of AES64 Features

Table 7.9 provides a summary of the features found in AES64.

205

 Protocol Feature Comment

1. Network Management

 1.1 Device Discovery

 1.2 Monitoring Reachability

2. Service Discovery and Enumeration

3. Control Surface Representation Desk item concept.

4. Control Commands

 4.1 Write Single Parameter Value

 4.2 Write Multiple Parameter Values Wildcard mechanism.

 4.3 Read Single Parameter Value

 4.4 Read Multiple Parameter Values Wildcard mechanism.

 4.5 Non-Blocking Commands

 4.6 Variable Number of Arguments Fixed commands.

 4.7 User-Defined Arguments

 4.8 Multiple Return Values Fixed commands.

 4.9 Error Checking

 4.10 Control Point Invocation As a side effect of commands.

 4.11 Automation

5. Subscription (Monitoring)

 5.1 Single Value Subscription

 5.2 Multiple Value Subscription

 5.3 Event-based Subscription

6. Parameter Management

 6.1 Linking Controls to Parameters

 6.2 Joining Parameters

 6.3 Grouping Parameters

 6.4 Bulk Parameter Access Snapshot mechanism.

 6.5 Dynamic Parameter Modification

 6.6 Save / Load Configuration Snapshot mechanism.

7. Connection Management

 7.1 External Connection Management

 7.2 Internal Connection Management

 7.3 Control Connection Management Using Parameter Joins

8. Serialization User-defined argument.

9. Security

Parameter flags define access
levels.

Table 7.9 A Summary of AES64 Features.

206

 AES64 SDM

 1. Device

1. Section Block 2. Sub-device

2. Section Type 2. Sub-device

3. Section Number 3. Channel Identifier

4. Parameter Block 4. Parameter
 Description + Index

5. Parameter Block Index

6. Parameter Type 5. Parameter Type

7. Parameter Index

6. Parameter Identifier
7. Parameter Value

 Device
Description
 Layer

 Parameter
Description
 Layer

Table 7.10 Comparing AES64 and SDM Addresses.

7.7.2 Comparing AES64 to the Standard Device Model

The three main differences between AES64 and the SDM are the:

1. Specification of parameter addresses.

2. Representation of controls and control surfaces.

3. Implementation of functionality such as managing parameter groups that is not

supported by the SDM.

7.7.2.1 Parameter Address Interoperability

A comparison of the structure of a SDM full parameter address and an AES64 parameter

address is shown in Table 7.10. An AES64 root node corresponds to the standard model

device node. Level one of an AES64 address corresponds to a sub-device, while levels two

and three correspond to nested sub-devices. Levels four to seven are parameter

description levels. AES64 parameter addresses are essentially a fixed-level, specific

implementation of the proposed standard model.

The differences between the two representations include:

 The absence of a device identifier within an AES64 address. An AES64 root node

does not form a part of a parameter address.

 One or more sub-devices (corresponding to the first three levels of an AES64

address) are permitted by the SDM.

 Controls are not represented within an AES64 parameter address.

 Operations on parameters are specified by API functions. The SDM specifies all

functionality in terms of updating parameter values and invoking parameter

actions for a specific parameter identifier.

207

Parameter address compatibility with AES64 is achieved by mapping SDM full

parameter addresses to AES64 parameter addresses. The level one SDM device identifier

is disregarded and an index value is appended to entries within the level four parameter

description level of the SDM. This allows both levels four and five of an AES parameter

address to be represented within the parameter description level. For example, the

parameter description ‘EqualizerBlock’ can be rewritten as ‘EqualizerBlock1’, where the

numeric suffix represents a level five parameter block index. Parameter actions are

disregarded, as the concept is not found in AES64. A SDM parameter identifier thus only

has a value allowing the identifier to denote the parameter’s value.

7.7.2.2 Representing Controls and Control Surfaces

Representation of controls within the SDM is the most significant difference between the

two different parameter address formats. While it is easy to replace a SDM control entry

with a channel identifier, which is allowed by the SDM structure, the creation of an AES64

desk item from a SDM control description, is more difficult. AES64 does not link

parameters to controls; controls are linked to parameters. As a result, translation between

XML desk item representations and SDM description and layout records is required.

7.7.2.3 Functional Interoperability

AES64 does not use a pure parameter-based approach as API functions are used to provide

extended functionality. The concept of an ‘action parameter’ does not occur in AES64.

Parameter group management provides an example where slave and peer parameters are

added to a master parameter by invoking an action parameter within the SDM. AES64

provides API functions to manager parameter groups. SDM action parameters must be

recognized and translated into the appropriate AES64 commands to provide functional

interoperability with AES64.

7.7.3 Protocol Interoperability with AES64

Because AES64 is an international standard, this section briefly considers interoperability

with other control protocols. An OSC address space can be designed to represent the

AES64 seven-layer addressing scheme. However, the combinatorial explosion created by

the possible values for each of the seven layers makes the address space extremely large.

UPnP provides a service-oriented architecture where services consist of one or more

parameters that are embedded in sub-devices. Services are not represented hierarchically

as discussed in Section 9.5 Device Representation and Service Specification (p.233).

Hierarchical parameter addresses cannot be converted into arbitrary service identifiers.

An SNMP indexing scheme that supports an elegant implementation of AES64

parameter addresses is shown in Figure 7.11. Each level of an AES64 address is

208

Figure 7.11 An SNMP Implementation of AES64 Parameter Addressing.

L7Index paramIndex

3 2

…

Parameter Table
{ L1Index,
 L2Index ,
 …
 L7Index }

Level2 Table
{ L2Index }

ParamID paramValue …

1026

…

L1Index SectionBlock

1 input

…

 L2Index SectionType

1 LineInput

…

Level1 Table
{ L1Index }

Level7 Table
{ L7Index }

represented by an SNMP table where the table entries reflect the allowable values for a

specific level. A parameter table is indexed by a composite index consisting of seven values

where each value indicates an entry in a table representing each level. Parameter table

entries provide a unique AES64 parameter ID and also specify parameter values.

AES64 compatibility with control protocols that do not have a hierarchical

organization of parameters is difficult or impossible to achieve. Thus, AES64 parameter

addresses can be translated into OSC and Ember+ addresses. AES64 addresses can also

be compatible with OCA control class identifiers described in Section 3.3.2.3.1 Control

Class Identifiers (p.54). AES64 parameter addresses are not compatible with the non-

hierarchical parameter addresses used by CopperLan and UPnP.

7.7.4 An Evaluation of AES64

A comparison of AES64 to the other protocols discussed in this dissertation is difficult to

achieve. Features such as parameter, joins, parameter groups, modifiers and desk items

are not found in any of the protocols discussed in this dissertation. These features provide

an extremely sophisticated control and monitoring environment. Table 7.11 summarizes

the strengths and weaknesses of AES64.

209

The use of ‘dummy’ values for simple devices that cannot make use of all parameter

address levels is a potential weakness of the addressing scheme. It is easy to assign dummy

values to different levels to represent the same parameter when not all address levels are

utilized. A consistent application of parameter addresses by different vendors is vitally

important if the interoperability benefits provided by a fixed-addressing scheme are to be

realized. Use of seven levels to denote a parameter address means that in practice selecting

address level entries can be a difficult task.

Table 7.11 A Summary of the Strengths and Weaknesses of AES64.

 Strengths

1. Provides an integrated approach to all aspects of control, discovery,
monitoring and connection management.

 2. Supports parameter relationships and bulk parameter addressing.

3. Provides standardized parameter addresses.

4. Allows scaling between parameter values.

5. Supports automation.

6. Rich toolset for creating control surfaces and performing connection
management.

 Weaknesses

1. A seven level parameter address is not required to describe parameters
for simple audio devices. ‘Dummy’ values must be placed in unused levels.

2. Interoperability requires that all vendors assign parameter addresses
in a consistent manner.

210

Chapter 8

CopperLan

8.1 Introduction

CopperLan, developed by Klavis Technologies (Klavis Technologies, n.d.), is a protocol for

configuring, connecting and controlling networked devices that is available for several

different operating systems:

“CopperLan is really multi-purpose. It was initially designed [for] the Music

Industry, but it can be used each time an efficient command & control [protocol] is

needed. We have validated usage in show control, pro-audio, broadcast, stage and

studio, and theoretically, it could be even used in industrial automation.”

 (Cailleau, "Whatever over CopperLan", 2012).

In addition to network management and control capabilities, CopperLan also supports the

transport of MIDI data and connection management between MIDI devices. CopperLan

uses an abstract, proprietary network layer that can be implemented on different transport

layers.

8.2 Network Implementation

The CopperLan proprietary OSI level three layer termed a ‘Network Adaption Layer’

(Klavis Technologies, n.d.) can co-exist with other protocols such as IP-based protocols.

The protocol is registered with the IEEE (Institute of Electrical and Electronics Engineers,

2012) as having an Ethernet type (‘EtherType’) field of 8927. This field identifies the

transported protocol from an Ethernet/802.3 data frame.

Because CopperLan implements a peer-to-peer network architecture, there is no

distinction between devices and controllers. They are both regarded as

CopperLan-enabled applications. Support is also provided for embedded devices and

several different transports including Ethernet, Universal Serial Bus (USB) and

IEEE 1394 (FireWire) (Klavis Technologies, 2012).

211

8.2.1 The Network Transport Layer

CopperLan applications execute on a ‘Host Machine’ which is any computer, network node

or embedded system running the CopperLan ‘Virtual Network Manager’ (VNM).

Applications are managed and controlled by the VNM which is a multiport virtual device

that accepts control connections from multiple CopperLan applications. CopperLan uses

the concept of ‘control connections’ (control joins) to link control parameters between

networked devices. The VNM also provides connection management capabilities for both

network control streams and audio streams (Klavis Technologies, 2012a).

8.2.2 Network Management

The ‘CopperLan Host Application Interface’ (CHAI) is a proprietary level three network

protocol that connects all applications to the level two transport layer and manages

network communication among CopperLan applications. The CHAI functions as a

middleware layer that is linked into each executable application. It manages the

underlying transport layer and provides the developer with a high-level programming

interface.

Figure 8.1 illustrates the relationship between two applications, the CHAI and the

VNM where the applications are executing on two distributed host machines. Applications

are discovered and managed by the VNM running on each host machine.

In Figure 8.1 a controller application running on ‘Machine1’ uses the services provided by

the VNM and the CHAI to discover the services provided by the second application. This

information is used to create a control surface that is linked to the discovered services

(controls and parameters) defined by the second application.

Applications derive objects from the abstract base classes provided by software

libraries that access the CHAI. These application objects must implement inherited

abstract methods that expose parameters and controls to the CHAI. Each application has

Device (App2)

Figure 8.1 CopperLan Network Architecture.

 VNM

Host Machine2

Host Machine1

Ethernet

CHAI CHAI

 VNM

Controller (App1)

 Root
 Device

 Root
 Device

212

a ‘Root Device’ object that identifies the device on a network by responding to CHAI device

discovery queries. This reflective capability where devices expose services and controls to

the CHAI is discussed in later sections of this chapter.

8.2.2.1 Device Discovery and Identification

CopperLan devices may contain embedded sub-devices. Each CopperLan device is

identified by an application identifier and an instance identifier separated by a dot

character. Application identifiers identify device categories. For example, amplifiers and

mixers would constitute two different device categories. Both these identifiers are usually

assigned to applications by the VNM. An application identifier typically consists of a

manufacturer’s identifier and a device model identifier. Figure 8.2 illustrates the sequence

of events that occur during device discovery.

Applications may also specify a preferred application identifier or a fixed application

identifier. Preferred identifiers can be changed by the VNM if identifier conflicts are

Figure 8.2 Allocating Application and Instance Identifiers in CopperLan.

213

detected while fixed identifiers may prevent an application from connecting to the network

if identifier conflicts exist.

The VNM preserves the state of all devices across sessions. The VNM is able to

recreate device and connection configurations by storing information about different

applications as well as multiple instances of the same application (CopperLan Forum -

Where is the 'unique identity' stored?, 2012). When a device is discovered, the VNM checks

if an entry for a newly created device exists in the ‘Duplicate Number Repository’ (DNR).

If not, a random instance identifier that does not conflict with existing devices of the same

type is assigned and stored as an instance identifier for the device. If an application

identifier entry (representing a device category) exists in the repository, the VNM checks

if an instance identifier is present for the device. If the instance identifier does not exist, a

new instance identifier is assigned to the device. If the instance identifier exists, the device

is restored to its previously saved state. If an application identifier entry is not found,

an application identifier is created for the device category and the device instance is then

registered.

8.2.2.2 Service Discovery

Each CopperLan device configures itself on the network by using the capabilities of the

CHAI middleware layer that exposes services to controller applications.

The ‘IBaseLocalDevice_ExplorationNotificationHandler’ class contains methods that

must be overridden by an implementation to support service discovery. The CHAI calls

these methods to request information about locally defined controls and parameters.

8.2.2.2.1 Dynamic Controller Figuration

CopperLan supports an automatic configuration mode for controller applications where a

control on a control surface is placed into a ‘learning’ state. When a control that is in a

learning state receives a CopperLan message, it stores the sub-device identifier and

parameter address specified within the message. These remote parameter addresses then

become the future remote targets that are invoked when the control changes state.

This capability allows a generic control surface to be dynamically configured for use within

a variety of control scenarios.

8.2.2.3 CopperLan Device Types

CopperLan differentiates between different device types and provides classes that serve as

a base class for applications that require the functionality provided by the different base

classes. The three core types of devices are MIDI devices, ‘plugin’ devices, and ‘general-

purpose’ devices. General-purposes devices (derived from class ‘ILocalDevice’) are defined

as any devices that do not require MIDI capabilities and do not support a plugin

214

architecture. Plugins allow additional functionality to be added to existing CopperLan

devices. The object-oriented design of devices emphasizes a dynamic, behavioral view

rather than a structural view as the behavior of a device and its

sub-devices forms the nucleus of the reflective discovery and control mechanism that

exposes device services to the CHAI. Two classes also allow a device to share its

user interface with other devices. Device and sub-device objects are derived from the

abstract base classes illustrated in Figure 8.3.

Devices can be dynamically configured and these changes are broadcast to all

manager (controller) applications on the network. Changes include changes to the device

architecture typically caused by the addition of plugins to a device, as well as changes to

the states of device inputs and outputs.

8.3 Device Architecture and Parameter Organization

Devices are partitioned into sub-devices where parameters are defined within each

child sub-device.

8.3.1 Device Architecture

Each device has a ‘root device’ that is used for device discovery and provides information

about the device such as the serial number, device name, and where applicable, firmware

version. Root devices are created with an instance identifier value of zero. Root devices

consist of embedded sub-devices termed ‘modules’. CopperLan device models are

centered on the functionality provided by each module.

8.3.2 Parameter Organization

Parameters are not arranged hierarchically, having a distinct linear address space within

each sub-device for each of the parameter categories defined within CopperLan.

 IObject

ILocalDevice

 ISharedDisplayLocalDevice

 IBaseLocalDevice

Figure 8.3 The CopperLan Device Hierarchy.

IPluginLocalDevice IHybridMIDILocalDevice

ISharedDisplayClientLocalDevice

file:///C:/CopperLAN/SDK/CopperLanFreewareSDKDoc%5b20120113_1.0(6)%5d/class_c_p_n_s_1_1_i_plugin_local_device.html
file:///C:/CopperLAN/SDK/CopperLanFreewareSDKDoc%5b20120113_1.0(6)%5d/class_c_p_n_s_1_1_i_shared_display_client_local_device.html

215

For example, continuous parameters and discrete parameters each have their own address

space. Parameters can also be organized in related groups termed ‘sections’.

In addition to value parameters, parameters can also be ‘modifier parameters’, ‘selector

parameters’, or ‘text parameters’. Parameters definitions also specify the controls that

modify the parameter’s value and the command messages used to access the parameter:

“During Parameter creation, the application provides information such as:

-The Parameter's identity;

-The related message description (type, number, index or selector item lists,

labels...);

-The preferred controller type (slider, knob, push-button, absolute, relative, with

return-to-zero, ...).”

 (Klavis Technologies, n.d., p. 'The Parameter')

Value parameters are thus control parameters that are tightly coupled to controls.

Specification of both parameters and controls occurs within the context of a sub-device.

Sub-devices are derived from one or more abstract library classes. These classes have

abstract methods that are implemented to provide methods used by the CHAI to perform

service discovery and service enumeration.

8.4 Control Functionality

Parameters are accessed by remote procedure calls termed ‘messages’. Real-time control

messages are termed ‘performance messages’. There are four types of performance

messages:

 ‘Modifier messages’ deal with parameters that have a continuous range of values.

These parameters are typically associated with continuous controls such as

knobs and sliders. Modifier messages typically contain two values:

a parameter representing the position of the control and an optional typed value.

This optional value typically represents a value that is scaled or converted from

the value denoting the control position. When this value is not used, the target of

the message must be able to interpret the parameter value.

 ‘Selector messages’ deal with non-continuous parameter data, supporting

controls having a fixed set of states. Examples include logical states associated

with switches and data lists used in menus.

 ‘Event messages’ encapsulate MIDI messages or represent parameters

associated with audio, synthesizers and musical functions. Examples include

MIDI note on/off messages as well as messages controlling gating and pitch.

216

 ‘Text messages’ are used to associate a string with a target item and are usually

used to label controls.

Modifier and selector messages support ‘parameter indexing’ where each type of

parameter has a selectable index that is typically used to identify a particular audio

channel. In the context of a mixing console, parameter indexing provides a horizontal

grouping of related parameters across channel strips. Two other types of messages are

used to encapsulate MIDI ‘System Exclusive’ (SYSEX) messages and messages that

contain a payload of arbitrary binary data. SYSEX and ‘IDataTransfer’ messages are non-

real time messages that are implemented using a handshaking scheme. This scheme

automatically gives priority to real-time messages when the bandwidth utilization

increases. Performance messages address a numeric parameter identifier within a specific

sub-device.

8.4.1 Asynchronous Messages

Devices and their notification handlers (callback methods) pertaining to the specific

functionality provided by a device are registered with the CHAI. There are two types of

notifications that are implemented within the API as pure virtual classes:

 ‘Notification handlers’ are called to inform an application about an event or to

request information from an application;

 ‘Asynchronous return handlers’ that are called when an asynchronous function

returns.

Because notification handlers and asynchronous return handlers are called from the

CHAI's execution thread, local attributes become shared variables and the code that access

these variables become critical sections. These shared variables must be protected from

concurrent access when implementing CopperLan applications.

8.5 Connection Management

CopperLan does not directly support any specific networked audio format.

All connection management functionality is represented in an abstract manner.

Both control connection management and audio connection management are supported.

8.5.1 Control Connection Management

CopperLan emphasizes join relationships between control parameters. Devices expose

control connections in the form of input objects, output objects and pipe objects to the

network (Klavis Technologies, n.d.). A pipe is a bidirectional object that is conceptually

217

similar to the fusion of an input object and an output object. These objects function as

follows:

 Inputs receive network messages from outputs. Messages are received by the

inputs when a parameter is accessed, or when connections to an input are made

or terminated.

 Inputs may be defined as clock listeners, receiving data from a clock source.

 A single output may multicast messages to multiple inputs and multiple outputs

can be merged to a single input.

 An output can be locked to prevent third party applications from changing the

current destination assignments associated with that output.

These communication endpoints transmit and receive the messages outlined in the

previous section.

8.5.2 Audio Connection Management

Connection management support was added to version 1.3 of the SDK using the classes

and interfaces (C++ fully abstract base classes) shown in Figure 8.4. These additions are

being used by the Swiss company ArchWave AG (Archwave AG, n.d.) to support the

Ravenna audio transport (Hildebrand, 2010).

 Interface IAudioLanManager

AddUnmanagedSourceStream()
AssignDecoder(wDecoderIndex,
 SourceStreamName)
SetSamplingRate()
GetPossibleSourceStreamList()

Figure 8.4 CopperLan Audio Connection Management Classes.

 Interface IAudioLanRemoteDevice

GetNumSourceStreams (…)
GetSourceStreamFromIndex(…)
SetConnection (…)
ClearConnection(…)
ClearConnectionsFrom(…)

 Class AudioLanSourceStream

SetAudioLanRemoteDevice (…)

uint32 StreamID
String StreamName
Uint16 ChannelCount

 Device

 Controller

 Interface IAudioLanLocalDevice

AddSourceStream (id)
OnSetConnection() //Callback
OnClearConnection() //Callback
AddAudioParameterGroup (…)
SetAudioParameter(…)
AddAudioSourceStreamParameterGroup (…)
SetSourceStreamParameter(…)

http://www.copperlan.org/chaidoc/class_c_p_n_s_1_1_i_audio_lan_local_device.html#a8f97eafb89bb56cdd15b8946f726c746
http://www.copperlan.org/chaidoc/class_c_p_n_s_1_1_i_audio_lan_local_device.html#a8f97eafb89bb56cdd15b8946f726c746
http://www.copperlan.org/chaidoc/class_c_p_n_s_1_1_i_audio_lan_local_device.html#a8f97eafb89bb56cdd15b8946f726c746

218

Audio streams are registered with the network using methods provided by the

‘IAudioLanManager’ interface. The ‘AddUnmanagedSourceStream()’ method adds

streams to a network and assigns decoders to a specific source streams. A decoder

processes a specific audio transport such as Ravenna or IEEE 1722. The currently used

sampling rate can be set and the ‘GetPossibleSourceStreamList()’ method obtains a list of

network source audio streams for the currently active decoder. Devices create

‘AudioLanSourceStream’ objects and advertise these objects using the

‘IAudioLanLocalDevice’ interface. This interface also creates and tears down connections.

The ‘IAudioLanRemoteDevice’ interface is implemented by connection management

applications that wish to control remote devices. This interface defines the callback

methods that are invoked when controllers create or tear down connections between

devices. Use of these classes in the context of IEEE 1722 media streams supported by

AES64 was explained by Philippe Caillou:

“We use a Device to represent the audio talker or listener, and these devices have

inputs exposing parameters related to the source stream (issued from a talker) and

output stream (reception endpoint on the listener side)... We just need to access to

the talker and listener's parameters in order to manage audio [connection]

parameters.”

 (Cailleau, Private correspondence, 2015)

8.6 Development of a CopperLan Device

A mixing console device was created in CopperLan that is discovered by the management

applications provided by the protocol vendor. These applications are discussed in the

following section.

8.6.1 The CopperLan Manager Application

A CopperLan management application provided by the protocol vendor consists of a

network management toolset consisting of:

1. An ‘Overview tool’ that displays all networked devices and their current

connections;

2. A ‘Connector tool’ that manages connections between networked devices;

3. An ‘Editor’ tool (shown in Figure 8.5) that provides a control surface to edit

parameter values;

4. A ‘Snapshot Tool’ that stores network configuration and settings.

These tools are discussed further in Appendix 4.

219

A control surface created using the service discovery capabilities provided by the CHAI is

illustrated in Figure 8.5. This control surface represents the architecture of the developed

mixing console. Devices are partitioned into sub-devices (shown on the left in Figure 8.5)

that specify a set of controls. In this example a set of controls are created for each channel

strip. It is also possible to specify other logical control groupings. The index selector shown

in Figure 8.5 allows multiple controls to be grouped together.

The selector is then used to select specific controls from each control group. This is termed

‘parameter indexing’ and provides efficient utilization of resources by not duplicating

controls. Using this arrangement, a single input section sub-device can represent all

channel strips.

Communication is implemented as a bi-directional (peer-to-peer) model where the

control surface also receives updates from the device.

8.7 Commentary and Evaluation

8.7.1 A Summary of CopperLan Features

Table 8.1 summarizes the capabilities of CopperLan.

Figure 8.5 The Parameter Editor View of a Virtual Device.

220

Protocol Feature Comment

1. Network Management

 1.1 Device Discovery

1.2 Monitoring Reachability

2. Service Discovery and Enumeration

3. Control Surface Representation

4. Device Control

 4.1 Write Single Parameter Value

 4.2 Write Multiple Parameter Values

 4.3 Read Single Parameter Value

 4.4 Read Multiple Parameter Values

4.5 Non-Blocking (Asynchronous)
 Commands

4.6 Variable Number of Arguments

4.7 User-Defined Arguments

4.8 Multiple Return Values

4.9 Error Checking Forty-five standard error
messages.

 4.10 Control Point Invocation As a side effect of commands.

4.11 Automation

5. Subscription (Monitoring)

5.1 Single Value Subscription Not parameter based.
Implemented by registering
notification handlers attached
to commands.

5.2 Multiple Value Subscription

5.3 Event-based Subscription

6. Parameter Management

6.1 Linking Controls to Parameters

6.2 Joining Parameters As a side effect of control joins.

6.3 Grouping Parameters

6.4 Bulk Parameter Access

6.5 Dynamic Parameter Modification Enumerated types define
modifier profiles.

6.6 Save / Load Configuration

7. Connection Management

7.1 External Connection Management

 7.2 Internal Connection Management

 7.3 Control Connection Management

8. Serialization

9. Security (Proprietary transport layer).

10. Clocks Supports different clocks.

Table 8.1 A Summary of CopperLan Features.

221

8.7.2 An Evaluation of CopperLan

CopperLan is a sophisticated control protocol that supports a wide range of features, and

has the ability to translate between different clock formats. A variety of clock formats are

supported, including Sample Position and SMPTE time (Society of Motion Picture &

Television Engineers, 2008).

The task-oriented design of CopperLan provides an example of the ‘functional

approach’ to control protocol design (Gross & Holtzen, 1998) discussed in Section 2.9

Control Protocol Commands (p.33). This approach has resulted in an explosion in the

number of objects and methods found within the CopperLan API (version 1.3 of the SDK

contains 103 classes). Table 8.2 summarizes the strengths and weaknesses of CopperLan.

Despite publishing revision 1.3 of the SDK API (Klavis Technologies, n.d.),

the documentation is incomplete and does not provide a sufficiently detailed level of

information for developers. The protocol appears to provide many of the sophisticated

features found in AES64. Unfortunately, development using the protocol is challenging,

as it does not have an elegant division of responsibilities. In particular, the use of multiple

inheritance to create devices and controllers as illustrated in Listing 8.1 creates a complex

software architecture that mandates the implementation of many abstract methods.

 Parameters are grouped within sub-devices according to functional roles as

mentioned previously in Section 8.3.2 Parameter Organization (p.214). Parameters are

not independently accessible and are not organized by logical groups of related parameter

types such as gain parameters or fader parameters.

Table 8.2 A Summary of the Strengths and Weaknesses of CopperLan.

 Strengths

1. Automatic device and service discovery

2. Automatic control surface creation where controls are linked to
services.

3. Toolset provided by a management application that creates a
control surface and performs connection management.

4. Support for connection management of control streams and audio
streams.

 Weaknesses
1. API is extremely large and complex.

2. The protocol design does not clearly separate different concerns.

3. Parameters are not logically grouped and independently accessible.

222

8.7.2.1 Object-Oriented Design in CopperLan

The use of multiple inheritance to provide required functionality leads to implementations

such as the class design illustrated in Listing 8.1. This example class is taken from a

CopperLan-enabled controller (ICT7 Corporation, n.d.).

As mentioned previously, inheritance from library classes links applications to the CHAI

middleware layer to provide service discovery and control capabilities for

CopperLan-enabled controllers. In the class example of Listing 8.1, the device functions

as a timer, a button event handler and handles remote parameter update messages and

connection requests. Unlike OCA, where classes are represented within a deep

single-inheritance hierarchy, CopperLan classes are typically implemented using a

shallow class hierarchy that uses multiple-inheritance. This design provides a

development environment that is complex and not always intuitive.

8.7.3 CopperLan Support for the Standard Device Model

CopperLan supports the use of arbitrarily nested sub-devices and the representation of

controls and parameters within sub-devices. The functional design of the protocol and the

linear organization of parameters do not support the core design features of the SDM that

emphasize hierarchical relationships between device components and parameters. Only

the device architecture layer portion of a full parameter address can be represented within

CopperLan. The use of descriptive data records is also not supported by CopperLan. A

functional design means that it is difficult to dynamically create a device as devices tend

to be monolithic applications. As a consequence, translation to and from a representation

of the SDM (such as the XML representation provided in Appendix 2) is likely to be a

difficult undertaking.

Listing 8.1 An Example of a CopperLan Class.

class XYController : public Component,
 protected Button::Listener,
 protected Timer,
 protected AsyncUpdater,
 protected IOutput_NotificationHandler

223

Chapter 9

Universal Plug and Play

9.1 Introduction

Universal Plug and Play (UPnP) was developed from the Plug and Play device discovery

protocol developed for the Microsoft Windows95 operating system (Microsoft

Corporation, 2013). UPnP is an open, peer-to-peer networking architecture that uses

standard text-based IP protocols (UPnP Forum, 2013). The protocol supports automatic

discovery of devices and services:

“UPnP provides an architectural framework for creating self-configuring, self-

describing devices and services. Networks managed by UPnP require no setup by

users or network administrators because UPnP supports automatic discovery.”

(Microsoft Corporation, 2010).

UPnP allows each networked device to maintain an in-memory registry of all other devices

on the network that is automatically updated as devices are added to or removed from the

network. In addition to discovery and control functionality, UPnP also supports audio and

video (AV) streaming using a separate, dedicated AV stack that is incorporated into the

core UPnP stack (Bobek, Bohn, & Golatowski, 2005). The UPnP-QoS Architecture v.3

(UPnP Forum, 2008) provides quality of service by implementing bandwidth reservation

for AV streams. A subset of UPnP developed by the Digital Living Network Alliance

(DLNA) is supported by many consumer media devices. UPnP is available on a wide range

of platforms, including mobile devices, as the use of standard protocols provides

interoperability among different hardware platforms, software environments and network

transport mediums. Version 1.1 of the specification adds support for IPv6 (Baugher, Chan,

Stark, Saaranen, & Hain, 2011).

UPnP is the only HTTP-based control protocol discussed in this dissertation.

Web-based environments using the Simple Object Access Protocol (SOAP) (World Wide

Web Consortium, 2000) that build on the features of UPnP have also been developed for

embedded devices. Microsoft’s Devices Profile for Web Services (Schlimmer, 2004) is an

example of this type of environment. This chapter only investigates the device

224

representation, service discovery and control features of UPnP, as the AV streaming

capabilities are not relevant to the provision and implementation of device control

functionality.

9.1.1 UPnP Terminology

Like SNMP, UPnP uses several terms that are specific to the protocol:

 UPnP devices consist of a ‘root device’ that may optionally contain nested child

sub-devices termed ‘embedded devices’.

 Controller applications are referred to as ‘control points’. This differs from the

use of the term in this dissertation. As defined in the introduction, the term

‘control point’ is used within UPnP to denote a remote callback function.

The UPnP meaning of the term is followed in this chapter.

 UPnP parameters are referred to as ‘state variables’.

 An ‘action’ defines one or more behaviors associated with a UPnP service.

Actions are implemented as remote procedure calls that have optional input and

output arguments (state variables).

 Monitoring state variables is termed ‘eventing’, as monitored state variables

generate callback events within a control point when their values change.

A monitored state variable is termed an ‘evented state variable’.

 ‘Presentation’ refers to the specification of a Web page that provides a user

interface for a control point. This user interface is used to interact with a

controlled device.

9.2 Service-Oriented Architectures

‘Service’ and ‘Service-Oriented Architecture’ (SOA) are terms that have unfortunately been

used in many different contexts, and are subject to many different (and often conflicting)

interpretations (Microsoft Corporation, 2012). SOAs are commonly used to describe

HTTP-based architectures (Erl, 2004) that are commonly referred to as

‘Web Services’. SOAs have also been used to describe services for networked devices that

do not use HTTP-based protocols. The Service-Oriented Device Architecture (SODA)

applies service-oriented principles to embedded devices (de Deugd, Carroll, Kelly, Millett,

& Ricker, 2006). A SOA is defined by the World Wide Web Consortium (W3C) as:

“A set of components which can be invoked, and whose interface descriptions

can be published and discovered.” (World Wide Web Consortium Working

Group, 2004).

225

‘Components’ are defined as abstract units of software or software objects (World Wide

Web Consortium, 2004). ‘Interface descriptions’ are typically the identifiers of remote

procedure calls and the arguments required to invoke these RPCs. The following definition

of a service within the context of a SOA emphasizes the use of remote procedure calls:

“Service in terms of SOA is an independent working functional unit, that can be used

remotely by a defined interface, that means outside of the own [its] runtime

environment.” (Bobek, Bohn, & Golatowski, 2005).

For example, a device may provide an audio streaming service and a video streaming

service. An “independent working functional unit” does not necessarily imply a component

part of a device. It refers to a software module (unit) that performs a

well-defined task such as enumerating layout attributes or creating an audio connection.

These definitions and descriptions emphasize four core characteristics of a SOA:

 A SOA has a modular architecture, made up of independent and fully functional

tasks;

 A device must advertise its services as well as the interface descriptions to these

services;

 Service interface descriptions (and the services themselves) must be remotely

accessible.

Within the context of a SOA, ‘components’ are containers that are used to logically group

related software units (typically implemented as objects) that form the parts of the services

illustrated in Figure 9.1.

 Figure 9.1 Relationships Between Objects, Components and Services.

 Adapted from (Hanson, 2003).

 Object

 Object Object

 Component

 Object Object

 Component

 Object

Service A Service B

 Object Object

 Component

 Object

 Object Object

 Component

 Object

 Service A

 Service B

Service C

Legend
Service Interface
Service Connection

226

Services can be created from both components and objects that may both be shared across

different services. In Figure 9.1, round connectors depict service interfaces and arrows

depict connections to these interfaces. Components can also be combined to create higher-

level components, and services can be combined to create higher-level services. For

example, a service that finds a control on a remote device may be combined with a service

that renders a control on a control surface to create a higher-level service.

A more detailed definition (McGovern, Tyagi, Stevens, & Mathew, 2003), lists the

following characteristics of services within the context of a SOA:

 Services are self-contained and modular;

 Services stress interoperability among different platforms and programming

languages;

 Services are loosely coupled;

 Services are discoverable and dynamically bound;

 Services have a network-addressable interface;

 Services have coarse-grained interfaces;

 Services are location-transparent.

‘Self-contained’ means that the resources required by a service are obtained by the service

itself, resources need not be provided to a service. Loosely coupled services do not require

users (clients) of the service have any knowledge of the implementation details of the

service. Dynamically bound services are discovered and accessed at

run-time by service clients; client applications do not require information about services

at compile time. A network-addressable interface means that locations of remote services

are independent of the location of the service users.

9.2.1 UPnP Services

Devices expose services to a network and provide URLs for these services. Services define

UPnP actions that are implemented as methods or functions bound to SOAP RPCs. The

term ‘service’ within the context of UPnP is misleading as a service functions as a container

for executable actions (that are analogous to service implementations). UPnP services

themselves cannot be executed atomically.

UPnP services are implemented within a device by means of a ‘state table’,

a ‘control server’ and an ‘event server’ (Fout, 2001). The control server executes actions

and responses to actions; the state table monitors service actions and updates state

227

variables as actions are executed. The event server transmits events to remote subscribers

when the values of evented state variables change.

Services are typically associated with one or more state variables that are referenced

by a service’s actions. Parameters are thus implemented as state variables, and the actions

that access parameters are encapsulated within UPnP services.

For example, a SET(..) command would be implemented as an action having an input

argument that modifies the value of a parameter implemented as a state variable.

A GET() command is implemented as an action having an output argument that returns

the value of a state variable. Both of these actions would be defined within a UPnP service.

9.3 UPnP Protocol Design

The core UPnP specification (UPnP Device Architecture 1.1, 2008) provides a

UPnP Device Architecture (UDA) specification. UPnP protocol stacks are

implementations of the UDA for a specific platform or development environment. The

UDA specification divides the implementation of a UPnP-enabled device into six different

areas termed ‘phases’. These phases are:

 Network Addressing;

 Device and Service Discovery;

 Accessing Device and Service Descriptions;

 Control;

 Eventing;

 Presentation that specifies a Web interface to UPnP services.

9.3.1 Network Addressing

Devices use the Dynamic Host Configuration Protocol (DHCP) (Droms, 1997) to acquire

an IP address. If no DHCP server is available, devices must assign an IPv4 link-local

address to themselves using a technique known as ‘AutoIP’ (Cheshire, Aboba, & Guttman,

2005). AutoIP addresses are 169.254/16 prefix addresses excluding the first and last 256

addresses that are reserved addresses. Devices that select an AutoIP address must send an

Address Resolution Protocol (Plummer, 1982) message to ensure that the selected address

is not being used by another device on the network.

9.3.2 Device and Service Discovery

UPnP uses the Simple Service Discovery Protocol (SSDP) (Cai, Leach, Gu, Goland, &

Albright, 1999) that utilizes UDP multicasting to advertise devices and services.

SSDP is a text-based protocol derived from HTTPU (Goland, 1999), which provides UDP

228

Device Discovery Messages

 Notification Type Unique Service Name

1. upnp:rootdevice uuid:deviceUUID::upnp:rootdevice

2. uid:device-UUID uuid:device-UUID

3.

urn:schemas-upnp-
org:device:deviceType:ver
 OR
urn:domain-
name:device:deviceType:ver

uuid:device-UUID::urn:schemas-
upnp-org:device:deviceType:ver
 OR
uuid:device-UUID::urn:domain-
name:device:deviceType:ver

(UPnP Forum, 2008, p. 20).

Table 9.1 UPnP Service Advertisements.

transport for HTTP messages. SSDP search requests can control the granularity of service

searches where searches can be are restricted to one or more specific

UPnP service types. For example, an audio device might define a fader service type.

Responses to SSDP search requests are echoed to the port that was used for sending the

request. UPnP supports two modes of device and service discovery that are termed:

1. ‘Lazy discovery’, where UPnP-enabled devices periodically advertise their root

devices, embedded devices and services. Advertisements must be periodically

repeated as advertisements expire after a specified lease time.

2. ‘Aggressive discovery’, where control points search for devices or services by

multicasting SSDP search requests. Search requests may contain a list of

qualifications specifying the required type of device or required service.

Each UPnP device is identified by a Universally Unique Identifier (UUID)

(Leach, Mealling, & Salz, 2005). A UUID is a number consisting of thirty-two hexadecimal

digits arranged in a sequence of 8-4-4-4-12 digits that is designed to avoid identifier

clashes. All devices advertise a UUID, a device type and a device version. Service

advertisements include information describing the enclosing (parent) device. Root devices

multicast all three of the discovery messages shown in Table 9.1.

Embedded devices (sub-devices) only multicast the second and third discovery messages.

Lazy discovery may generate many service advertisements that can cause network traffic

bursts. Each root device transmits three advertisements, two advertisements are

transmitted for each embedded device, and one advertisement is transmitted for each

service (Jeronimo & Weast, 2003). A root device having d embedded devices and

s distinct services must transmit 3 + 2d + s service advertisements to advertise all of its

services. The SSDP attempts to alleviate this problem by introducing delays into the

229

responses to search requests. SSDP search request messages contain a header field (UPnP

Forum, 2008, p. 19) that is used by devices to calculate a delay when responding to a

search request. This value, termed a ‘jitter bound’ (Mills & Dabrowski, 2003) represents

an upper bound (in milliseconds) on the time that device must wait before sending a

response. Devices generate a random value less than the specified jitter bound and use

this value as a delay before transmitting a response to an SSDP discovery request. Mills

and Dabrowski have improved the jitter bounds used by standard UPnP by using a scheme

called ‘adaptive jitter control’ and have also suggested a more efficient alternative to SSDP

search requests.

As mentioned in Section 3.3.4.1 Network Implementation (p.59), UPnP is used by

HiQnet’s ‘Disco’ discovery protocol.

9.3.3 Specification of Device and Service Descriptions

Device and service descriptions are specified by XML documents that are reliably retrieved

by control points from a device using HTTP requests over TCP. A device’s response to a

discovery query includes the Uniform Resource Locator (URL) of its XML device

description document. A device description provides the URLs for each of the device’s

XML service description documents. Related service descriptions are often grouped

within a single service description document or each service may be specified by a distinct

service description document. A service description lists the actions and state variables

implemented by the described services. Control points create and execute action requests

from the service descriptions as described in the following section.

9.3.4 Invoking UPnP Actions

 SOAP is used to communicate ‘action requests’ that execute remote UPnP service actions

and return the responses generated by these service actions. SOAP is a network protocol

that implements remote procedure calls using XML. UPnP SOAP messages specify the

UPnP action to invoke, as well as the arguments to the action. The response to an action

request is a SOAP message consisting of an error status and any number of return values.

Although commonly transmitted via HTTP, SOAP can also be implemented using other

network protocols (Skonnard, 2003).

9.3.5 The UPnP Subscription Mechanism

Control points monitor device parameters by subscribing to device services rather than

specific evented state variables. A service subscription automatically creates subscriptions

to all the evented state variables declared within the service. This is a limitation of UPnP,

as clients cannot control the granularity of subscription by subscribing to specific events

230

associated with a service (Mazuryk & Lukkien, n.d.). If a fine-grained subscription model

is required, services must be restricted to providing a single evented state variable.

UPnP implements an event-based subscription model using the ‘General Event

Notification Architecture’ (GENA) (Cohen, Aggarwal, & Goland, 1999). GENA messages

are transmitted using HTTP over TCP/IP. A GENA ‘Subscribe’ message is sent by a control

point to a device to subscribe to a specific service. When a service accepts a subscription,

it responds with a lease time value. Control points must periodically renew subscriptions

before the lease time expires as devices cancel a subscription on expiry of the

subscription’s lease time. Control points may also explicitly cancel a subscription by

transmitting a GENA ‘Unsubscribe’ message to a device. All evented state variables are

transmitted within a single message when a subscription is created which allows a control

point to synchronize its state to a device’s state. Following this initial event message, the

UPnP specification allows both work conserving and non-work conserving transmissions

of evented state variables:

9.3.6 Presentation

Devices can specify a URL from where a Web page that implements a user interface to

control functionality can be retrieved. This allows Web browsers to interact with UPnP

devices via HTTP. A <presentationURL> tag in the device description provides the URL

of a presentation page. This tag is mandatory; if the device has no presentation page, the

tag should be empty. A UPnP presentation interacts with controlled devices in two

different ways:

 By means of client-side scripting that creates and sends SOAP control requests

to the device;

 By using HTTP POST messages to invoke device services. The device then parses

the received messages and uses APIs from the development environment to

control the device. This model requires the device to process POST messages.

Controller implementations are not limited to Web browsers as they can also be created

using the API’s provided by a specific UPnP development environment.

231

 (Jeronimo, 2004), (Fout, 2001).

Figure 9.3 HTTPMU and HTTPU Protocol Stacks.

Discovery Presence Discovery
Requests Announcements Responses Events

 SSDP GENA SSDP GENA

 HTTPMU HTTPU

 UDP

 IP

UPnP Application
Layers

Figure 9.2 The UPnP Protocol Stack.

(Morgan, 2003).

UPnP Vendor Defined

UPnP Working Forum Defined

 UPnP Device Architecture

 SSDP SOAP GENA

 HTTPMU HTTPU HTTP

 UDP TCP

 IP

UPnP Protocol
Layers

9.4 UPnP Network Protocols

Figure 9.2 shows the HTTP-based protocols used to transmit device and service

descriptions as well as control, subscription and presentation messages. These network

protocols are all unicast protocols transported by TCP. UPnP application layers are

designated as ‘Vendor defined’, ‘Working Forum defined’ and a layer defined by the

standard UPnP device architecture.

Multicast protocols used by UPnP are shown in Figure 9.3. These specialized network

protocols support the transmission of HTTP messages using UDP rather than TCP.

HTTPMU is a protocol that multicasts HTTP messages over UDP, allowing device

presence announcements to be multicasted using UDP.

Responses to presence announcements are returned using HTTPU that is used to transmit

unicast HTTP messages over UDP. These HTTP variants avoid the overheads incurred by

TCP message transmissions.

9.4.1 Unicast Messages

Device responses to control points, SOAP control messages, as well as event subscription

and notification messages are all unicast network messages as illustrated in Figure 9.4.

HTTP responses use the ‘OK’ HTTP status code and include requested data (such as a

device description, or return value from a SOAP message) within the HTTP response. The

232

multicast SSDP ‘M-Search Request’ is included in Figure 9.4 to complement its unicast

response counterpart.

The security model for UPnP v1.0 (Ellison, 2003) is based on a digital signature

identifying users and authorizations to execute specific actions. This security model is only

applied to SOAP control messages and responses.

9.4.2 Multicast Messages

Devices indicate their presence on the network and control points search for devices using

a dedicated UPnP multicast address shown in Figure 9.5. Devices indicate their presence

by transmitting SSDP ‘Alive’ heartbeat messages.

Presence announcements also contain the URL of the device’s device description

document. SSDP ‘M-Search’ request messages are used by control points to find devices

and services on the network using ‘aggressive discovery’ as discussed in Section 9.3.2

Device and Service Discovery (p.227). An SSDP ‘Bye-Bye’ message is sent by devices

before they go off-line.

(EBS Inc., 2006).

Figure 9.4 UPnP Unicast Messages.

SOAP M-POST (HTTP)

(M-Search Request (UDP))
 Search Response (UDP)

Get Description Document (HTTP)

Event Subscribe/ Unsubscribe (HTTP)

SOAP Response (HTTP)

Event Subscription Response

Event Notify (HTTP)

Device
 Control
 Point

Get Description Response

Figure 9.5 UPnP Multicast Messages.

(EBS Inc., 2006).

 Multicast Address
238.255.255.250:1900

 Control
 Point

Device

SSDP:Alive

SSDP:Bye-Bye

 SSDP:M-Search
 Request

233

Both unicast and multicast event messages are tagged with an ‘event key’, which is

initialized to zero for the first event message. This value is a sequence number that is

incremented each time an event message is transmitted. Control points can determine if a

message has been lost or received out of order and take an appropriate action. Use of

multicasting confines UPnP discovery to a local network segment. A mechanism to

forward control messages beyond the local segment (Iyer & Warrier, 2001) has been

defined by the UPnP Forum.

9.5 Device Representation and Service Specification

Devices are represented by a model that partitions a device into embedded devices,

services, actions and state variables. A design for a single fader belonging to the input

section of a mixing console is shown in Figure 9.6. The UPnP descriptions of this device

and its associated services and state variables are illustrated in the sections that follow.

9.5.1 Device Descriptions

Listing 9.1 is the UPnP device description for the simple device shown in Figure 9.6.

Different UPnP devices can be embedded within a single UPnP control point.

Standard device and service descriptions are termed ‘Device Profiles’ in UPnP.

For example, a control point that streams audio according to the UPnP specification would

have a ‘standard’ device profile.

Figure 9.6 UPnP Device and Service Organization.

Mixer (UPnP Device)

Input Section (UPnP Embedded Device)

Fader (UPnP Service)

Fader Action
 SETFader (newFaderValue)
 { FaderValue = newFaderValue }

State Variable
 FaderValue

UPnP IN Argument

Channel Strip (UPnP Embedded Device)

234

Listing 9.1 An Example UPnP Device Description.

Service Description URL

Channel Strip - Embedded Device

Fader Control - Service

A control is represented in Listing 9.1 by a service, where the service’s ‘ServiceType’

tag specifies that the service implements a fader control service. The control is contained

within a channel strip embedded device.

 <?xml version=“1.0” ?>
 <root xmlns=“urn:schemas-upnp-org:device-1-0”>
 <device>

<deviceType>urn:schemas-upnp-org:device:mixer:1</deviceType>
<friendlyName>AudioMixingConsole</friendlyName>
<UDN>uuid:75802409-bccb-40e7-8e6c-fa095ecce10e</UDN>
 <serviceList>

 <service>
 …
 </service>

</serviceList>

<deviceList>
<device>

<deviceType>urn:schemas-upnp-org:device:Channel1:1</deviceType>
<friendlyName>Input Section</friendlyName>
…
<serviceList>

<service>
<serviceType>urn:schemas-upnp-org:control:Fader1:1</serviceType>
<serviceId>urn:schemas-upnp-org:serviceId:fader1:1</serviceId>
 <SCPDURL>/service/state/fader1.xml</SCPDURL>
 …
 </service>

 </serviceList>
</device>

</deviceList>

<presentationURL>http://www.someorganization.org</presentationURL>
 </device>
 </root>

A service description URL specifies the location of each XML service description defined

by a device or embedded device.

9.5.2 Service Descriptions

Listing 9.2 provides an example of a service description. A service description describes

the actions and state variables contained within a service. Each action description lists the

input arguments, output arguments (return values) and associated state variables for each

235

Action Name

Listing 9.2 An Example UPnP Service Description for a Fader Service.

 Input
Argument

 State Variable

 State Variable
 Attributes

defined action. Listing 9.2 enumerates the actions and state variables for the fader service

defined within the device description of Listing 9.1.

<?xml version=“1.0”?>
<scpd xmlns=“urn:schemas-upnp-org:service-1-0” >
 <actionList>

 <action>
 <name>SETFader1</name>
 <argumentList>
 <argument>
 <name>InFaderArg</name>

 <relatedStateVariable>Fader1Value</relatedStateVariable>
 <direction>in</direction>
 </argument>
 </argumentList>
 </action>

 </actionList>
 <serviceStateTable>
 <stateVariable sendEvents=“no”>
 <name>Fader1Value</name>
 <dataType>i4</dataType>

<stateVariable sendEvents=“no”>
<defaultValue>100</defaultValue>
<allowedValueRange>

<minimum>0</minimum>
<maximum>1024</maximum>
<step>1</step>

</allowedValueRange>
 </stateVariable>
 </serviceStateTable>
</scpd>

The fader service modifies a ‘FaderValue’ state variable. Attributes describe the data

type, default value and range of values for this state variable. The XML attribute

‘sendEvents’ indicates that it is not an evented state variable. All action arguments must

have a corresponding state variable (termed a ‘relatedStateVariable’) as illustrated by the

‘InFaderArg’ input argument to the SET(..) command that updates the fader’s value.

The type of an input or output argument is inferred from the type of the associated state

variable as input and output arguments do not explicitly define a data type.

Actions having multiple arguments typically require unused state variables that are

defined solely to provide type information for their associated input or output arguments.

The simplified UPnP service-oriented model uses service definitions that are similar to

236

Table 9.2 UPnP Primitive Data Types.

UPnP Type Implementation

 UPnP Type Implementation

ui1 Unsigned 1-byte integer r4 (float) 4-byte floating-point value

ui2 Unsigned 2-byte integer r8 8-byte floating-point value

Ui4 Unsigned 4-byte integer char Single Unicode character

i1 Signed 1-byte integer string Unicode string

i2 Signed 2-byte integer boolean 0 for false, 1 for true

i4 (int) Signed 4-byte integer base64 Arbitrary binary data

class definitions where actions and state variables are analogous to class methods and

class attributes.

9.5.2.1 UPnP Data Types

UPnP provides a rich set of data types (Jeronimo & Weast, 2003, p. 231). Table 9.2

summarizes the supported primitive data types. A number of other structured data types

representing dates, UUIDs and URIs are also supported.

Of particular interest is the ‘base64’ type which is a text format used to represent arbitrary

binary data. Base64 can be used to represent serialized object instances if the development

environment supports object serialization. This concept is explored further in Section 9.6.1

Control Serialization (p.238).

9.5.2.1.1 State Variables Persistence

A standard service termed the ‘DataStore’ service (UPnP Forum, 2013) allows the storage

and retrieval of a UPnP device’s state. A data store consists of data tables and a dictionary

(map) data structure that references data table entries. Data tables and data table entries

are stored within an XML document.

9.5.3 Connection Management

Connection management is provided by a standard UPnP connection manager service

(UPnP Forum, 2010). This service describes:

 Source and sink signal formats;

 Connections between media sources and media sinks;

 A list of attributes (termed ‘features’) for each connection;

 A clock source used for synchronization.

The connection manager determines compatibility between source and destination media

formats by matching the format and the transport used for media steams.

It is also able to discover all current streams and connections on a UPnP network, and to

create and tear down media connections.

237

9.6 Implementation

The Cyberlink for Java UPnP library (Cyber Garage, n.d.) was used for development of a

mixing console control point and a virtual controller. Intel’s UPnP Device Spy network

browser (Intel Corporation, n.d.) verified that the device functioned correctly. This

application provides a hierarchical view of a UPnP device and allows service actions to be

invoked. Figure 9.7 shows this application browsing the services defined previously in

Listing 9.2. The fader service contains GET() and SET(..) actions. Return values from

actions are implemented as output reference parameters. For example, the i4 type

returned by GetFader(i4 RetFaderValue).

The GetControlFader (i4 ControlID, bin.base64 Control) action specifies a control identifier

input parameter and returns a Base64 encoded control object corresponding to the control

Figure 9.7 A UpnP Browser View of an Audio Mixing Console.

 Fader
Service Action

Returns
Control
Object

Get and
Set Fader
Actions

 Input
Parameter

Output
Parameter

238

identifier. The use of object serialization to directly access control objects and their

associated user interface widgets is described in the next section.

9.6.1 Control Serialization

The Base64 data-encoding format (Internet Engineering Task Force Network Working

Group, 2003) allows a sequence of arbitrary bytes to be encoded as an ASCII string for

network transmission. This encoding is commonly used to encode binary data such as

image data, allowing binary data to be transmitted by text-based network protocols such

as HTTP.

Figure 9.8 illustrates that serialized object instances can be transferred across a

network using UPnP when the serialized object is encoded into the Base64 data format.

Serialization allows executable code to be exchanged between two processes. Figure 9.7

illustrated a ‘GetControl()’ action that allows control points to retrieve a fader object from

a device. This fader object is used by a control point to implement a UPnP fader service. A

library that supports Base64 representations (d'Heureuse, n.d.) was used to encode and

decode serialized control objects. The serialized control is transmitted to a control point

and then decoded to provide a control object instance.

All embedded references (nested object instances) contained within a serialized object are

also serialized by the Java Virtual Machine. Control points thus retrieve the user interface

components that implement a particular service and then use these to construct a control

surface. User interface objects contain methods that implement the remote actions

Service Request for
 an Object Instance

 Service
Response

Object Decoding Process

Control Point

Device

Figure 9.8 Base64 Encoding and Decoding of Objects.

 Base 64
ASCII string

Base64 Decoder

Object Instance

SOAP response

Base64 Encoder Base 64
ASCII string

Object Instance

SOAP response

Object Encoding Process

N
et

w
o

rk

239

required by the control. These remote actions allow the control to address the appropriate

parameters on the controlled device. The fader control object encapsulates a ‘SETFader(..)’

UPnP action that is triggered by changes to the control’s value.

The control object is rendered on a control surface as a fader widget.

Retrieval of user interface objects had to accommodate the Cyberlink library classes

that do not support object serialization. This means that the actions generated by a control

specified by a Cyberlink library ‘Action’ class cannot be used within a control object that

is to be serialized. Instead, the name (identifier) of the action must be specified as a control

attribute. When a control is retrieved by a control point from a device it must then have

the required UPnP functionality added to it by creating the required action instances.

These action instances are created from a control’s attributes that specify action

identifiers. This addition of functionality is implemented by using the Decorator object-

oriented design pattern (Gamma, Helm, Johnson, & Vlissides, 1995) which adds

functionality at run-time to an existing object. The existing object becomes an attribute of

the object providing additional functionality. Remote control objects retrieved from a

device by a controller are thus wrapped inside local control objects that provide the

required UPnP functionality for the wrapped remote control object.

9.6.2 Implementing GENA Subscriptions

The GENA architecture that implements subscription to a service rather than to individual

evented state variables allows the granularity of monitoring to be specified. Using

metering as an example, each meter can be implemented as a distinct service,

or all meter state variables can be contained within a single meter service.

Distinct services for each meter supports subscription to individual meters. Use of a single

service containing multiple evented state variables representing meter values provides a

bulk subscription mechanism. UPnP does not allow the granularity of a subscription to be

specified as mentioned in Section 9.3.5 The UPnP Subscription Mechanism (p.229).

Different services (subscribing to individual meters or groups of meters) are required to

implement different subscription granularities.

9.7 Commentary and Evaluation

Auto-discovery of devices and services are attractive features of UPnP. These features are

implemented using XML device and service descriptions. UPnP support for the Base64

data type is significant as it supports object serialization where a control can define an

action that creates the control’s user interface. This feature is discussed at the end of this

chapter.

240

9.7.1. A Summary of UPnP Features

Table 9.3 provides a summary of the features provided by UPnP.

 Protocol Feature Comment

1. Network Management
 1.1 Device discovery SSDP

 1.2 Monitoring reachability SSDP

2. Service Discovery and Enumeration

3. Control Surface Representation Within a Web page.

4. Control Functionality
 4.1 Write Single Parameter Values

SOAP
 4.2 Write Multiple Parameter Values

 4.3 Read Single Parameter Value

 4.4 Read Multiple Parameter Values

4.5 Non-Blocking (Asynchronous)
 Commands

4.6 Variable Number of Arguments Freely defined service actions.
4.7 User-Defined Arguments

4.8 Multiple Return Values

4.9 Error Checking

4.10 Control-Point Invocation Side effect of UPnP actions.

 4.11 Automation

5. Subscription (Monitoring)
5.1 Single Value Subscription Dependent on service design as

subscriptions are for all evented
state variables within a service.

5.2 Multiple Value Subscription

5.3 Event-based Subscription

6. Parameter Management
6.1 Linking Controls to Parameters

6.2 Joining Parameters

6.3 Grouping Parameters

6.4 Bulk Parameter Access

6.5 Dynamic Parameter Modification

 6.6 Save / Load Configuration Standardized XML data store.

7. Connection Management

7.1 External Connection Management Using standardized services.

 7.2 Internal Connection Management

 7.3 Control Connection Management

2. Serialization

3. Security

Table 9.3 A Summary of UPnP Features.

241

9.7.2 Comparing UPnP to the Standard Device Model

The SDM must be adapted to conform to the UPnP service architecture that does not

represent controls. Controls are specified within Web interfaces to UPnP services defined

by the presentation phase of operation for a UPnP device discussed previously in Section

9.3.6 Presentation (p.230). Figure 9.9 illustrates that controls and parameters must be

implemented as services within UPnP:

All dynamic functionality within UPnP must be represented by services and their

associated actions. The SDM does not define any functionality and therefore cannot

represent UPnP actions. UPnP actions must not be confused with action parameters.

Actions are functions implemented as remote procedure calls. Action parameters are

parameter values accessed for the side effects of a parameter access. Controls are

implemented as UPnP services that invoke actions when their state changes. Hierarchical

parameter addresses as found within the SDM cannot be represented in UPnP. The

retrieval of description and layout records from a device must also be implemented as

actions. The functional nature of services that have embedded parameters does not map

to the hierarchical, parameter-based design of the SDM.

 Level 1 Device Root Device

 Level 4 Parameter
 Description

 Level 3 Control Service

 Level 2 Sub-Device Embedded Device

 Level 5 Parameter Type

 Type Level 6 Parameter Identifier

 type type

 OR
 Channel Identifier

D
evice A

rch
ite

ctu
re Layer

P
aram

eter D
escrip

tio
n

 Layer

Standard Device Model UPnP

Figure 9.9 Comparing the SDM to the UPnP Service Model.

 Level 7 Parameter Value Parameter Action State Variable
 type type

 Service

242

Strengths

1. Use of standard open protocols. In particular, SOAP is independent of network
transports or platforms.

2. The granularity of service searches and can be specified.

3. HTTP interfaces for connection management allows standard Web Browsers to be
used. The use of HTTP also removes the need for firewall configuration.

4. An elegant device and service description model.

Weaknesses

1. Performance overhead caused by the parsing of SOAP XML messages.

2. Multicast discovery creates traffic bursts.

3. Limited network scalability, as each device communicates with all other devices
on a network.

4. Event subscription subscribes to all evented variables within a single service.
5. Unique Service naming requirements mandates a fine-grained implementation of

services.

6. Service-based subscriptions apply to all evented state variables contained within a
service.

7. No bulk parameter access mechanism.

 Table 9.4 A Summary of the Strengths and Weaknesses of UPnP.

9.7.2.1 Independent Parameter Access

Independent access to device parameters, which forms a core principle of the SDM, cannot

be directly achieved within the UPnP service model. State variables are declared within

different UPnP services and indirectly referenced by UPnP actions.

This organization means that bulk parameter access, parameter joins and parameter

relationships must be implemented by additional objects that create and manage

parameter relationships. However, it is trivial to extract state variables from services using

the APIs provided by UPnP implementations but is unnecessary within a

service-oriented architecture where services can be defined to provide required

functionality.

9.7.3 Strengths and Weaknesses of UPnP

UPnP applications have a simple, modular design. Only GET() andSET(..) and monitoring

functionality is provided by the protocol. Unfortunately, several weaknesses limit the

capabilities of UPnP. Some of the most significant weaknesses are discussed in the

sections that follow. Table 9.4 summarizes the strengths and weaknesses of UPnP.

9.7.3.1 Use of SOAP as an Access Protocol

The design principles of UPnP compared to a Representational State Transfer (REST)

(Fielding, 2000) approach are discussed by Jan Newmarch. The conclusion is that UPnP

243

performance can be significantly enhanced by services that directly use URLs rather than

by using SOAP as an access mechanism. Implementation of UPnP messages is not clearly

defined, as both actions and queries are implemented using POST requests:

“In general, SOAP just supplies a noise layer that increases traffic and obscures

semantics without adding anything to functionality.”

(Newmarch, 2005, p. 136).

Additionally, there is a performance overhead caused by the parsing XML messages.

To address these issues, W3C has developed the Message Transmission Optimization

Mechanism (World Wide Web Consortium, 2005). However, a study comparing Web

service models to SNMP concluded that Web services might be more efficient than SNMP

when many data objects are accessed:

“From these conclusions it seems that, from a performance point of view, there is

no convincing reason to refuse Web services for network monitoring.”

(Pras, Drevers, van de Meent, & Quartel, 2004).

Network monitoring and real-time control are application different scenarios.

HTTP-based protocols have not been used for control applications within the audio

industry. Widespread use of HTTP on networks may result in the future use of

web-based applications less time-critical tasks such as connection management.

9.7.3.2 Scalability of UPnP Networks

UPnP does not scale well as control points can potentially suffer from traffic burst

problems associated with multicast discovery protocols. The bandwidth used by the

discovery process is proportional to the number of clients initiating SSDP ‘Discovery’

requests, multiplied by the number of services made available by UPnP devices.

(Grimmett & O’Neill, 2012). The peer-to-peer discovery architecture means that devices

transmit advertisements even if no control points exist. A possible solution to this problem

is to violate the UPnP specification and only support aggressive discovery requests. This

means that service discovery is performed by clients as is commonly found in most control

protocols.

9.7.3.3 Service Implementation

UPnP services do not exhibit a modular architecture where services can be created from

components and objects that may both be shared across different services as previously

illustrated in Figure 9.1. Each service corresponds to a single remote procedure call that

addresses its associated state variables. UPnP services are similar to OSC methods;

the difference is that UPnP input arguments are fixed and cannot be dynamically specified

244

as found in OSC. The requirement that services and actions have unique names forces

implementations to follow a fine-grained approach. As an example, consider a ‘fader’

service that is designed to process all fader messages. An input argument to the service

would specify the audio channel number for a specific fader. This type of service

organization cannot be implemented in UPnP as actions such as ‘GETFader()’ and

‘SETFader(..)’ cannot be shared across different services. Fader services must thus be

implemented as several separate services where each service corresponds to a specific

audio channel. This violates the coarse-grained characteristic of SOAs as well as the ability

of services to share components that were mentioned in Section 9.2 Service-Oriented

Architectures 9.2 (p.224).

As discussed in Section 9.3.5 The UPnP Subscription Mechanism (p.229), UPnP

subscriptions are defined for services and not for specific evented state variables. Because

of this restriction, a single metering service that dynamically specifies a specific meter

cannot be implemented.

9.7.4 The Significance of Object Serialization

Retrieving serialized object instances is a significant departure from the retrieval of data-

centric descriptions that must be parsed to obtain the entity that is described by the data.

As a real-world analogy, consider consumer items such as a chair or television set.

Consumers often purchase a chair in kit-form that requires trivial assembly.

Complex items such as a television set are acquired in a fully constructed state as the

inherent complexity of these items prohibits self-construction. By contrast, software

environments commonly represent extremely complex entities using data descriptions.

These entities must then be constructed by parsing the descriptive data. Serialized objects

allow fully functional, complex representations to be constructed from a small number of

object instances.

Although data-centric descriptions such as XML descriptions appear to be an

attractive solution to providing technology-neutral representations, this approach does

have significant limitations. Because all data representations must be parsed to determine

the semantics of the data, a significant amount of standardization is often required to

realize the representation. By contrast, serialization allows any entity to be retrieved as a

fully constructed and functional component. Standardization is only required to identify

the required component or service. Where service discovery proceeds in a top-down

manner as illustrated in Figure 9.7, the hierarchy of embedded devices and services is

sufficient to identify the services and actions required by control points. Where a

hierarchical representation of a device’s structure and services is provided by a control

protocol, standardization of identifiers denoting the structure and services is not required.

245

Chapter 10

Control Protocol Design and

Implementation

10.1 Introduction

Previous chapters have discussed the design and implementation characteristics of

different control protocols. This chapter considers different approaches to control

protocol design and implementation. A control protocol comparison can examine:

 Protocol performance;

 The general (high-level) characteristics of a control protocol design;

 The different features provided by a control protocol.

Measuring control protocol performance may not be meaningful because results will

reflect the performance of a specific implementation rather than the protocol itself.

An example of the performance of specific implementations in OSC was discussed in

Section 5.3.1 Processing OSC Messages (p.122). In this case, performance was influenced

by how received OSC messages were copied from network buffers.

A more valuable approach is to compare and contrast the data representations and

commands supported by a control protocol. The sections that follow develop concepts for

comparing and evaluating control protocol designs. Appendix 10 provides a detailed

comparison of control commands across different control protocols. This chapter

concludes by considering issues surrounding object-oriented control protocol designs and

the unique approach to control protocol design provided by AES64.

10.2 Control Protocol Designs

A control protocol consists of one or more representations of logically structured data and

a well-defined dynamic functionality that accesses this data. Data representations

encompass the representation of:

 Parameter data and descriptive data;

 The architecture of devices;

 Control surfaces used by controllers to interact with a device;

246

 Data encoding schemes and the formats of protocol PDUs.

The most important characteristics of a control protocol are the specification of parameter

data and the specification of protocol commands. Differentiation of control protocol

designs into a ‘descriptive approach’ and a ‘functional approach’

(Gross & Holtzen, 1998) was introduced in Section 2.9 Control Protocol Commands

(p.33). This distinction was conceived by comparing AES-24 to SNMP:

“With regards to functional versus descriptive, we sided with the designers of SNMP

who in addition to recognizing the simplifying benefits of a descriptive approach,

identified the potential for an ever increasing command set including commands

with arbitrarily complex semantics in a functional approach.”

 (Gross & Holtzen, 1998, p. 3).

A descriptive approach recognizes that parameter values are sufficient to represent the

state of a device. However, functionality that is more sophisticated cannot be represented

solely by the states of parameter values. For example, the creation, management and

updating of parameter groups within a descriptive control protocol design requires

additional processing that must be achieved by dedicated functions that are activated by

action parameters:

“Mapping from a task-oriented view to the data-centric view often requires some

non-trivial code on the management application side.” (Schoenwaelder, 2003).

These limitations of a data-centric (descriptive) view were discussed with reference to

SNMP in Section 6.9.2.3 Dynamic Behavior in SNMP (p.181).

10.2.1 Static and Dynamic Specifications

Control protocols consist of a ‘static specification’ and a ‘dynamic specification’. A static

specification is defined as a specification of the representation and organization of the data

used by a control protocol. This data includes the parameter and descriptive data

identified in Figure 4.2 (p.88), as well as the machine data types, data encoding schemes

(such as ASN1.1 used by SNMP) and the format of PDUs. The most important static

specification is the representation of parameter data, as parameter data values control the

audio functions and control surface states that are the most common targets of control

protocol commands.

A ‘dynamic specification’ is defined as a specification of the different commands

provided by a control protocol. The most important part of a dynamic specification is the

set of protocol commands that address parameter data. Dynamic functionality is typically

247

implemented by fixed, specific commands (AES64 and SNMP), generic, freely defined

remote procedure calls (OSC, UPnP and Fli2), action parameters (SNMP and Ember+), as

well as object methods (the AES-24 family and CopperLan). Control protocol commands

are analyzed in detail in Appendix 10.

10.2.2 Design Concepts

The core ideas around which a control protocol is built are termed ‘design concepts’.

Design concepts are defined as the different design decisions that are reflected within the

characteristics of the static and dynamic specifications. For example, the design decisions

to allow SNMP objects stored in an M-way tree to be viewed as conceptual tables, the use

of fixed-level parameter addresses in AES64, and the use of wildcards within parameter

addresses found in OSC and AES64.

10.2.2.1 Primary Design Concepts

A ‘primary design concept’ is defined as the most important, fundamental design concept

within a control protocol. Primary design concepts are either:

1. ‘Parameter-based’, emphasizing a hierarchical organization of parameters, or

2. ‘Entity-based’, emphasizing a hierarchy of higher-level functionality or

abstractions. These abstractions are typically higher-level records, objects or

services.

Hierarchical representations provide scalability, regularity, and allow semantic

relationships to be expressed at different levels within a hierarchy. For example, a device

component (such as a control or sub-device) within a hierarchy has semantic relationships

to both its parent and child entities. A primary design concept consists of both a dynamic

and a static specification. These particular specifications are referred to as a ‘static primary

design concept’ and a ‘dynamic primary design concept’. Examples of static primary

design concepts include:

 SNMP’s conceptual organization of data objects within an M-way tree;

 The fixed length, hierarchical parameter addresses used by AES64;

 The hierarchy of descriptors defined by IEEE 1722.1-2013.

Examples of dynamic primary design concepts include:

 OSC methods that are implemented as RPCs supporting variadic arguments;

 The fundamental GET() and SET(..) operations provided by SNMP;

 The fixed set of commands defined by AES64.

248

The linear chaining of functional blocks within IEC-62379-2 is unusual, providing a

unique example of a non-hierarchical, static primary design concept.

 A primary design concept can be a framework that allows extensions or may be a

fixed representation. For example, SNMP and AES64 commands provide fixed dynamic

design concepts, while OCA class identifiers (introduced in Section 3.3.2.3.1 Control Class

Identifiers (p.54)) and AES64 parameter addresses define fixed static design concepts.

When a freely-defined static design concept is used to define parameter addresses (as

found in OSC, UPnP and CopperLan), standardization of parameter addresses cannot be

guaranteed.

10.2.2.1.1 Parameter and Entity-Based Control Protocol Designs

A descriptive approach to control protocol design (as referred to by Gross and Holtzen)

should rather be termed a ‘parameter-based design’. The organization of parameters and

the commands supporting this organization provide the primary design concept for a

parameter-based control protocol. This type of control protocol design that is found in

SNMP, AES64 and Ember+ is illustrated in Figure 10.1.

IEC-62379-2, IEEE 1722.1-2013, UPnP, and the AES-24 family of protocols are all

examples of protocols that have extensive entity-based designs but do not support an

independent organization of parameter data. Figure 10.2 shows that these protocols

embed parameters within the higher-level entities (objects in this example) defined by a

static specification. A dynamic specification consists of object methods that access

parameters defined locally within an object or in other objects.

An entity-based primary design concept can be designed so that:

1. Specific, concrete entities such as a gain control or a pan parameter are defined.

2. Abstract entities such as a generic rotary potentiometer control or an entity that

represents a generic DSP function (for example, an AES-24 actuator) are defined.

Figure 10.1 Parameter-Based Control Protocol Design.

Parameters

 F1()
 …
 FN()

 Commands

Static Specification Dynamic Specification

249

Defining specific entities means that a control protocol can only be extended by adding

new entities that extend both its static and dynamic specifications. Defining abstract

entities may require the specifications to be extended, but will typically allow new

additions to be accommodated within the existing specification. For example, by defining

or implementing a specific instance of an AES-24 actuator. This is achieved in object-

oriented designs by inheritance or by instantiating an object instance. However, this

approach means that standard parameter addresses cannot be guaranteed and easily leads

to monolithic implementations of a control protocol. When parameters are defined within

entities, it is difficult to standardize parameter addresses as parameter addresses are

always relative to a specific entity that contains parameters. A limited form of

standardization can be achieved by storing parameters at fixed offsets within entities. This

approach is found in IEEE 1722.1-2013 and ACN. The designers of OCA have recognized

this limitation, and have defined concrete entities within deep inheritance hierarchies

consisting of numbered levels. OCA control class identifiers provide unique parameter

addresses that also allow parameters to be referenced independently of the entities that

define parameters.

10.2.2.2 Secondary Design Concepts

A primary design concept is commonly used in conjunction with one or more

‘secondary design concepts’. Secondary design concepts either extend or enhance a

primary design concept, or may provide additional design concepts that are independent

of, or loosely coupled to a primary design concept. Examples of static secondary design

concepts include the:

 Description and layout records of the SDM;

 Use of SNMP indexing to represent relationships between SNMP tabular entries

as was illustrated in Chapter 6;

 AES64 desk item concept where XML is used to specify control surfaces;

 Depiction of audio signal paths found in OCA.

 Object1

 Method1(…)
 …
 MethodN(…)

 Attribute1
 …
 Attribut1N

 ObjectN

 Method1(…)
 …
 MethodN(…)

 Atrribute1
 …
 Atrribut1N

Dynamic
Specification

Static
Specification

Figure 10.2 Entity-Based Control Protocol Design.

Parameters

Parameter Access

Parameter
 Access

250

Protoco

Specific
ation

 Primary Design Concept Secondary Design Concept/s

OSC

Static

Dynamic

No static specification.

Device structure or a parameter
hierarchy implied by the hierarchical
addresses of the dynamic
specification. [1]

M-way tree address space
specifying control points.

1. Wildcard matching of parameter
Addresses.

2. OSC methods supporting variadic
 arguments.
3. Bundle Mechanism.

SNMP

Static
M-way tree address space
specifying SNMP objects.

Use of indexing to create conceptual
tables and to relate SNMP objects.

Dynamic SNMP requests - GET(), SET(..),
GETNEXT() and GETBULK().

Use of multiple varbinds within
commands and command
acknowledgments.

AES64

Static
Fixed-level parameter address
space forming an M-way tree.

XML representation of desk items

Dynamic

Fixed set of remote procedure
calls.

1. Wildcard matching of parameter
 addresses.
2. Parameter joins, parameter
 groups and parameter modifiers.

UPnP

Dynamic
Hierarchical organization of
services containing actions.

Specification of state variables
within services and linking these
state variables to actions and
subscription events.

Variadic number of arguments to
actions.

Static

Service-level subscriptions that
subscribe to all evented state
variables within a service.

IEEE
1722.1

Dynamic Distinct function calls operating on
descriptors.

Static Units described by a hierarchy of
descriptors defining data.

Representing audio signal paths that
link units.

OCA
(AES-24
Family)

Dynamic Methods within objects.

Attributes within objects.

Static

1. Ordering of classes within an
 inheritance hierarchy (OCA).
2. Signal path representation (OCA).

Table 10.1 Examples of Primary and Secondary Design Concepts.

Examples of dynamic secondary design concepts include the:

 Use of wildcards within hierarchical levels as found in OSC and AES64;

 Variadic arguments supported by OSC;

 Modifier mechanism provided by AES64.

 [1] Although OSC methods commonly imply a static specification by being used to update specific
parameters, the protocol does not have a static specification.

251

Primary and secondary design concepts that have distinct implementations may reference

each other as found in the parameter descriptions that reference parameters within AES64

desk item descriptions. Design concepts and the control protocol features that constituent

primary and secondary static and dynamic specifications for different control protocols

are summarized in Table 10.1. These examples only highlight the most prominent features

of each control protocol. Entities (classes or services) that form a primary design concept

are indicated by blue shading where the static and dynamic specifications are defined

within a single entity. Static and dynamic specifications are often only weakly related in

that a static specification must support the functionality implemented by the dynamic

specification. Examples of these relationships include:

 SNMP GETNEXT() requests that require SNMP objects to be ordered by object

identifiers;

 AES64 parameter joins and parameter groups that require parameters to maintain

lists of related parameters;

 Parameter organization within ACN that must support the ranged addressing used

by commands discussed in Section 3.5.1.4 Parameter Organization (p.71).

10.2.3 Comparing Approaches to Control Protocol Design

The term ‘functional approach’ as used by Gross & Holtzen can be misleading as their

notion of a functional approach is derived solely from the object-oriented design of

AES-24. Descriptive and functional approaches to control protocol design are not

necessarily mutually exclusive; they exist within a continuum. For example, consider an

enhanced version of SNMP having twelve different commands (SNMP requests).

This protocol design is still a parameter-based design, but has an extended dynamic

specification. It is not logically satisfactory for the addition of functionality to transform a

descriptive approach into a functional approach. An enhanced dynamic specification does

not alter the fundamental characteristics of a static specification. Gross & Holtzen’s notion

of a functional approach results from the use of an object-oriented (entity-based) design

rather than a parameter-based design as a primary design concept.

Table 10.2 summarizes both the advantages and disadvantages of parameter-based

and entity-based approaches to control protocol design. It is important to note that an

entity-based design can also be represented within a parameter-based environment.

This type of representation is exemplified by IEC-62379-2 entities (functional blocks)

being represented within the (parameter-based) static specification provided by SNMP.

252

[1] Unless an additional identification scheme is used, such as the identifiers used by OCA discussed in
Section 10.3.3 Representing Parameters within Inheritance Hierarchies (p.260).

As shown in Table 10.2, entity-based control protocol designs have a number of

disadvantages that pose significant challenges for the design and implementation of

sophisticated entity-based protocols.

10.2.3.1 Fixed and Freely-Defined Specifications

Static and dynamic specifications exist within a continuum that ranges from rigidly

defined specifications to specifications that are freely defined. Freely defined

specifications such as the conceptual tables found in SNMP and the services defined within

UPnP are always specified in an abstract manner. These abstractions create a framework

that can be tailored to meet the requirements of a specific application while also providing

scalability. A framework was defined in Section 2.2 Fundamental Control Protocol

Concepts (p.15) as an abstract architecture which does not prescribe any content. To

 Approach Advantages Disadvantages

Entity-Based

1. Provides all required
functionality.

2. Translates directly into
many programming
languages that are entity-
based.

1. A large number of entities are
typically required.

2. A large number of functions or
methods are required to address
and manage the different entities.

3. May only be scalable by adding
entities.

4. Difficult to represent parameter
relationships.

5. Difficult to provide bulk parameter
access.

6. May not provide global parameter
addresses [1].

7. Has a complex type system, as both
entities and parameter values are
data types.

8. May be difficult to standardize
parameter addresses.

Parameter-Based

1. Naturally supports bulk
parameter access.

2. Easier to implement
parameter relationships.

3. Allows commands to
provide generalized
functionality.

4. Has a simple type system
where only parameter
values are types.

1. Commands that only read and write
parameter values may not provide
all required functionality.

2. Does not have an extensible
dynamic specification as commands
are fixed by the protocol.

Table 10.2 Comparing Approaches to Control Protocol Design.

253

provide scalability, either a static or a dynamic specification (or both) have characteristics

of a framework.

Additions to a dynamic specification described as an ‘ever increasing command set’

by Gross and Holtzen do not only apply to dynamic specifications. A static specification

may also need to be extended to accommodate additional entities. IEC-62379-2 creates a

static specification from specific, concrete entities (functional blocks).

Additional functional blocks must be added to IEC-62379-2 to represent

signal-processing functions that are not provided by the protocol as was noted in Section

6.6.4.1 Device Representation in IEC-62379-2 (p.164). OCA classes such as the specific

actuator sub-classes illustrated in Figure 3.6 (p.53) are also examples of concrete entities

defined by the OCA protocol. These concrete classes standardize the addresses of

parameters defined within objects as was discussed in Section 3.3.2.3.1 Control Class

Identifiers (p.54). Support for new audio functionality requires new classes to be added

that extend both the static and dynamic specifications defined by OCA. AES64 and the

SNMP implementation of the SDM presented in Chapter 6 address this problem by

supporting scalability only within fixed, clearly defined frameworks.

Scalability, without the need to expand a specification is provided by a generalization

of the commands forming a dynamic specification and an abstraction of the data items

that form a static specification. Examples of a generalized dynamic specification include

the GET() and SET(..) commands found in SNMP and the fixed set of AES64 commands.

These commands are generically applicable to any static specification defined by these

protocols.

10.2.3.2 Evaluating Static Specifications

The most important characteristics of a static specification are the:

1. Parameter organization and addressing schemes used.

2. Representation of relationships among data items.

3. Scalability of the representations used by the specification.

10.2.3.2.1 Parameter Organization and Addressing Schemes

Different parameter-addressing schemes are categorized as:

1. Variable-Sized Hierarchical Addressing Schemes

OSC, SNMP, Ember+ and SDM full parameter addresses are all able to implement

variable-sized parameter addresses that may be:

254

1.1 Variable-sized hierarchical addresses within a single semantic hierarchy.

For example, the device architecture layer of the SDM that only represents the

device structure.

1.2 Variable-sized hierarchical addresses consisting of multiple, related

semantic hierarchies. Full parameter addresses within the SDM provide an

example of this approach. A variable-sized hierarchy describing device

architecture is combined with a fixed-size hierarchy describing parameter

organization.

2. Fixed Hierarchical Addressing Schemes

This type of addressing scheme typically also provides additional information about the

context within which the parameter is used. Examples include HiQnet parameter

addresses shown previously in Figure 3.13, HiQnet Parameter Address Format (p.60),

AES64 parameter addresses, and the parameter description layer of the SDM. HiQnet

parameter addresses identify a sub-device and a specific object that contains the

specified parameter. AES64 parameter addresses provide additional device and

channel information encoded into the fixed seven levels forming a parameter address.

3. Linear Addressing Schemes

Examples of linear addressing schemes include the patch organization scheme used by

Standard MIDI (MIDI Manufacturers Association, 2003), as well as the linear

enumeration of parameter addresses starting from a fixed base address used by

CopperLan and ACN. Parameters are typically referenced by a numeric identifier.

Linear addressing schemes occur as:

2.1 Linear numeric addresses having no additional semantics

Denotation of parameter addresses provides no additional information within

this parameter-addressing scheme. Numeric parameter addresses have no

relationship to a device’s structure or the parameter type. CopperLan uses this

type of parameter address model where each numeric parameter address only

serves as a parameter identifier within a specific sub-device.

3.2 Linear numeric addresses having additional semantics

Numeric addresses may be organized by an address identifier indicating

additional semantics. Linear encoding of a hierarchical tree data structure was

illustrated in Figure 2.5 Hierarchical Ordering of Numerical Parameter

Addresses (p.25), and has not been encountered in the control protocols

discussed in this dissertation. ACN supports address offsets where parameters

of the same type have a fixed address offset relationship to each other.

255

IEEE 1722.1-2013 organizes parameters within descriptors where each

parameter occurs at an offset address from the base address of the descriptor.

Related parameters such as all gain parameters will thus have the same address

offset within a set of descriptors of the same type.

The linear addressing scheme used by CopperLan defines parameter addresses

within each sub-device. This type of addressing scheme promotes monolithic applications

and offers no advantage over hierarchical parameter addresses. AES64 is the only protocol

that uses an extended, standardized, fixed addressing scheme for parameter data. Fixed-

length parameter addresses have several advantages when compared to variable-length

addresses. Table 10.3 summarizes the advantages and disadvantages of fixed and variable-

length parameter addressing schemes.

Parameter addresses consisting of a few levels (as exemplified by HiQnet) will not have

unused levels. However, a small number of levels constrains the information that can be

provided by parameter addresses, as each level of a parameter address may provide

explicit or implicit information about a parameter. AES64 addresses will contain unused

levels for simple devices such as microphones. The SDM solves the problem of unused

levels by allowing variable-length full parameter addresses and fixed-size short parameter

addresses. With reference to the device architecture layer and the parameter description

layer of the SDM, devices can be classified as 5-4 devices for complex devices such as

mixing consoles or 2-4 devices for simple devices such as microphones. These values

Addressing
 Scheme

Advantages Disadvantages

Fixed

1. Supports parameter address standardization.
2. Devices may be controlled without service

discovery where parameter addresses can be
determined from other known addresses or
knowledge of the organization of similar devices.

3. Devices can be explored by probing for
parameters.

4. Parameter addresses can be determined from
existing addresses. Where the address is known
for a parameter, addresses for similar
parameters can be computed.

1. Unused levels within
parameter addresses
must be padded with
nulls for simple
devices which
may create ambiguous
parameter addresses.

Variable

1. Supports different device architectures and
logical parameter organization schemes without
any redundancy.

1. Usually requires
service discovery (As
discussed later in this
section).

Table 10.3 Comparing Fixed and Variable Parameter Addresses.

256

indicate the number of levels used within the device architecture and parameter

description layers respectively.

10.2.3.2.2 Representation of Relationships between Data Items

Representing relationships between data items (including parameter data and descriptive

data) is a useful capability. The only control protocols that explicitly represent parameter

relationships are AES64 and OCA. AES64 supports parameter joins and parameter

groups; OCA provides an ‘OcaGrouper’ class that represents and manages parameter

groups (Bosch Communication Systems, 2012, p. 101), while IEEE 1722.1-2013 supports

control grouping using a ‘CONTROL_BLOCK’ descriptor (Institute of Electrical and

Electronics Engineers, 2012). OSC and AES64 also allow relationships to be expressed

using wildcard values within parameter addresses. SNMP uniquely provides a generic

representation of different data relationships using the indexing schemes discussed in

Chapter 6.

The implementation and management of parameter relationships is difficult to

implement in a control protocol design that excludes an independent (and centralized)

parameter representation from a primary design concept. Parameter data that is

distributed across multiple entities must be managed by complex operations provided by

a dynamic specification. Later sections in this chapter suggest solutions to these

limitations that result from control protocol designs that have entity-based primary design

concepts.

10.2.3.3 Evaluating Dynamic Specifications

It is important to note that previous discussions of control protocols that provide

frameworks such as OSC, Ember+, SNMP and UPnP only considered the native

capabilities of these protocols. In order to provide a meaningful evaluation, an evaluation

should be made of a specific implementation of a framework. IEC-62379-2 is the only

known example of a control protocol built using a framework. IEC-62379 does not extend

the native dynamic specification represented by the standard SNMP requests discussed in

Chapter 6. As was discussed in Section 6.2.3 MIB Organization and Specification (p. 146),

additional functionality provided by libraries may form a part of the dynamic specification

of a control protocol built using these frameworks. Thus, the native capabilities of a

framework do not provide a true reflection of the capabilities of a specific control protocol

developed using the framework. For example, the action parameters that were used within

the SNMP implementation of the SDM to discover and return child device components

extend the native dynamic specification provided by SNMP.

257

10.3 Overcoming Entity-Based Design Limitations

As noted in previous sections, the representation of parameters forms a crucial element

within control protocol design. Limitations within entity-based control protocol designs

commonly stem from the characteristics of entities themselves because the fundamental

properties of entities encourage the embedding of related parameter data within separate,

disparate entities. In particular, object-oriented software design emphasizes class

cohesion and object relationships, rather than data relationships.

The following sections suggest how entity-based designs can be constructed to

provide the advantages of parameter-based designs.

10.3.1 Approaches to Object-Oriented Control Protocol Designs

The fundamental nature of objects requires each class to define both a static and a dynamic

specification. Static and dynamic specifications cannot be separated.

An object-oriented design thus forces the static and dynamic specifications to be fused

within individual classes and distributed across multiple object instances.

Entity-based designs must represent one or more secondary design concepts by

embedding these design concepts within the primary design concept, or by providing

separate representations for secondary design concepts. This is because a single entity

typically represents exactly one abstraction. As an example, consider an entity-based

primary design concept used to represent the architecture of a device shown in

Figure 10.3.

If this design requires parameter groups to be supported as a secondary design concept,

additional entities must be added to the entity-based design to represent and manage

 Device

 Sub-Device Sub-Device

 Sub-Device Sub-Device

Control

 Control Control

Parameters

Figure 10.3 Parameter Relationships Across Different Entities.

Parameter
Group

Parameter
 Group

258

these relationships that occur across different entities. In this example, a new entity must

be added to the static specification to represent parameter groups. This type of design is

found within OCA where a dedicated ‘OcaGrouper’ class mentioned previously represents

and manages parameter groups. A common principle advocated for object-oriented

software designs is that designs should attempt to separate different concerns. Figure

10.4(a) separates device architecture from parameters and also separates parameters from

the network transport that carries commands that address parameter values.

Figure 10.4(b) combines these different concerns using multiple inheritance to create a

complex implementation of a simple control component. While the separation of concerns

forms standard best practice in software design, the use of abstract inheritance to

implement both static and dynamic specifications easily leads to the complex

implementation of a class as found in Figure 10.4(b). An example CopperLan-enabled

controller (ICT7 Corporation, n.d.) uses a design similar to the design in Figure 10.4(b)

illustrated by the class declaration of Listing 10.1.

Listing 10.1 A CopperLan Class Example.

class XYController : public Component,
 protected Button::Listener,
 protected Timer,
 protected AsyncUpdater,
 protected IOutput_NotificationHandler

 DeviceComponent

Figure 10.4 Separating Concerns Within Object-Oriented Designs.

 Parameter NetworkFunctions

Figure 10.4(b).

 Control

Legend:
 Inheritance
 Reference
 Abstract Base Class

 Concrete Derived Class

 Control Actuator Sensor

 NetworkInterface

Figure 10.4(a).

 DeviceComponent Parameter NetworkFunctions

 SubDevice

259

In this example (shown previously in Chapter 8), an object of the ‘XYController’ device

class functions as a timer, a button event handler and also handles remote parameter

update messages and connection requests. In addition, the class must define parameter

addresses. OCA class designs that use a deep single-inheritance hierarchy provide greater

semantic coherence, while also supporting hierarchical parameter addresses as mentioned

previously. This type of class design is thus preferable to shallow class hierarchies that use

multiple inheritance as illustrated by the example in Listing 10.1.

10.3.2 Combining Entity-Based and Parameter-Based Designs

By combining an entity-based design with a parameter-based design, the advantages of

each approach can be realized while mitigating the disadvantages of each approach.

To achieve this synthesis, parameters must be separately defined outside of the entities

that form a primary design concept. In Figure 10.5, parameters are organized

independently from an entity-based model of a device. Parameters are then loosely

coupled to entities by being referenced from entities rather than being contained within

entities.

The implementation of the parameter model is not significant (it may also be entity-

based); the independence of the parameter model is what is important. This approach

follows the approach used by the SDM which uses an entity-based design for the device

architecture layer and a parameter-based design for the parameter description layer of a

full parameter address. SDM short parameter addresses ensure that parameters can

always be accessed independently of the device architecture layer. This allows parameter

relationships and operations on sets of parameters to be implemented without managing

entities that are not parameters.

Entity Model

Class1
 Attributes

 Methods

 ClassN

 …

 Static Context

Parameter Model

Device Model

Figure 10.5 Combining Entity-Based and Parameter-Based Designs.

Dynamic Context

260

 04p01 … 04e01 … 04m01 …
Identifier
 Strings

Figure 10.6 Comparing OCA Level Identifiers to the SDM.

 1 OcaActuator Level 03

1 OcaRoot

 1 OcaWorker

Level 01

Level 02

 8 OcaDelay Level 04

Properties Methods Events

Level 4 Parameter Description

Level 5 Parameter Type

Level 6 Parameter Identifier

OCA Level Identifiers SDM Parameter Description Layer

 Level 7
Value Parameters Action Parameters

 1 OcaDelayExtended Level 05

10.3.3 Representing Parameters within Inheritance Hierarchies

The use of classes within inheritance hierarchies where parameter values are identified by

linear numeric identifiers as found in CopperLan makes parameter address

interoperability with the SDM difficult to achieve. Numeric parameter identifiers must be

created to imply multiple hierarchical levels as previously illustrated in Figure 2.5 (p.25).

However, these parameter identifiers are not globally accessible as they are embedded

within CopperLan objects.

Because OCA assigns identifiers to class levels within a deep inheritance hierarchy

and identifies properties methods and events using identifier strings (discussed in Section

3.3.2.3.1 Control Class Identifiers (p.54)), it is possible to achieve parameter address

interoperability with AES and SDM parameter addresses.

For example, the ‘OcaDelay’ class (Bosch Communication Systems, 2012, pp. 17-18)

identified by the class identifier 1.1.1.8 and the property identifier 04p01 (referencing

the first property of the ‘OcaDelay’ class) can be mapped to the SDM parameter

description layer as shown in Figure 10.6. OCA level five classes may be specializations of

a concrete level four class as illustrated in Figure 10.6. This means that level five

representations cannot be accommodated within the four levels of the SDM parameter

261

address layer unless levels four and five are both accommodated within a SDM level six

parameter identifier entry. For example, a level six SDM identifier value of 8 would

represent the ‘OCADelay’ class, while a value of 81 would represented the

‘OcaDelayExtended’ class.

OCA demonstrates that parameter addresses can be conceptually independent of the

entities (classes) that define parameters. Parameter addresses are independently

represented by combining numbered inheritance levels and attribute identifiers.

10.3.4 Aspect-Oriented Software Designs

The use of entity-based designs is a direct result of the software development

environments used to implement control protocols. It is natural to consider a software

design in terms of records or objects, as these abstractions form the core building blocks

of the most widely used programming languages. A solution to some of the limitations of

entity-based designs is provided by a programming paradigm known as ‘aspect-oriented

programming’:

 “We have found many programming problems for which neither procedural nor

object-oriented programming techniques are sufficient to clearly capture some of

the important design decisions the program must implement. This forces the

implementation of those design decisions to be scattered throughout the code ...

We call the properties these decisions address ‘aspects’, and show that the reason

they have been hard to capture is that they crosscut the system’s basic

functionality.” (Kiczales, et al., 1997).

Aspects allow relationships that occur among objects that are not related by inheritance

or any other referential relationships to be captured. A detailed investigation into the use

of aspects in conjunction with entity-based control protocol designs falls outside of the

scope of this dissertation. However, a brief discussion and an example illustrate how

independent parameter access can be achieved by using aspects within entity-based

control protocol designs.

10.3.4.1 Aspect-Oriented Concepts

A ‘cross-cutting concern’ occurs where a semantic relationship exists across branches

within an inheritance hierarchy or between referentially related objects. For example,

a set of otherwise unrelated objects that all support subscriptions. Crosscutting concerns

create ‘aspects’ that are defined like classes and can be instantiated (O'Regan, 2004).

An aspect consists of:

 ‘Join Points’ that are defined as points of execution within one or more methods;

262

 ‘Pointcuts’ that represent a set of join points;

 ‘Advice’ consists of programming language code that is executed before or after

a pointcut.

Advice may be added to an existing object model. In Figure 10.7, a parameter group and a

parameter join are represented by aspects as these parameter relationships form

crosscutting concerns within the example class hierarchy.

Parameters that are implemented as unrelated class attributes are conceptually related

using aspects by joining their SET(..) methods. ‘Aspect1’ implements a parameter join,

while ‘Aspect2’ implements a parameter group consisting of three parameters.

10.3.4.2 An Aspect-Oriented Example

Assuming the existence of a ‘Parameter’ class and a ‘Group’ class, the code in Listing 10.2

provides an example of how a parameter group is implemented using an aspect.

This implementation is essentially the ‘Observer Pattern’ software idiom (Gamma, Helm,

Johnson, & Vlissides, 1995) implemented using an aspect (Eales, 2006).

The ‘GroupUpdater’ aspect represents and manages a group of parameters. When a

parameter belonging to a group is updated, the aspect updates all other members of the

group. Lines 3 and 4 in Listing 10.2 manage a parameter group by adding and removing

parameters to and from the group. Each parameter references the group that it belongs to.

Line 6 creates a pointcut that defines a parameter update operation. An update operation

Legend:
 Join Point
 Aspect

DSP Function

Figure 10.7 Parameter Access using Aspects.

Aspect1 – Parameter
 Join

 Control

 Device

 Sub-Device Sub-Device

 Sub-Device Sub-Device

 Control

Aspect2 - Parameter
 Group

 Control

Parameter

Parameter

Parameter

Parameter

Set(..)

Set(..)

Set(..)

Set(..)

263

Advice

1. aspect GroupUpdater {

2. private Vector Parameter.pGroup = new Vector();

3. public static void addParameter (Parameter p, Group g) { p.pGroup.add(g); }

4. public static void removeParameter (Parameter p, Group g) { p.pGroup.remove(g); }

5. public static void updateParameter Group(Parameter p, Group g) { g.update(p); }

6. pointcut update(Parameter p) : target(p) && call (void Parameter.set*(int));

7. after (Parameter p) : update(p) {

8. Iterator iter = p.pGroup.iterator();

9. while (iter.hasNext()) {

10. updateParameterGroup (p, (Group) iter.next())

 }

 } }

Listing 10.2 Updating Parameter Groups using Aspects.

 (Adapted from (Matuszek, 2003).

occurs when a method name beginning with ‘set’ is invoked as each SET(..) method forms

a join point. Following the invocation of any method having a name prefixed with ‘set’ the

‘after advice’ (lines 7 to 10) is executed. This updates the group by invoking an ‘update()’

method within each member of a group and specifying the group member parameter to be

updated as illustrated by the code in line 10 and line 5 in Listing 10.2.

To date, aspects have not been widely used within the software industry

(Bradley, 2003). Reasons for this situation include the added complexity that aspects

bring to software, and the specialized compilers that are required to develop aspect-

oriented software.

10.3.5 The AES64 Approach

AES64 provides an example of a novel approach to control protocol design in that it does

not define a device model. Figure 10.8 shows that AES64 uses two design concepts:

a fixed-level hierarchical organization of parameters is the primary design concept, and

the specification of desk items that link control surface components to parameters is the

secondary design concept. AES64 convincingly demonstrates that a model of a device is

not required by a control protocol to provide control functionality or to represent a control

surface. A parameter model and a distinct representation of a control surface that is linked

264

to the parameter model are sufficient to provide a complete static design for a control

protocol. Because the SDM explicitly represents a control surface within an extended

parameter hierarchy, it combines the two static design concepts found in AES64. AES64

implies a device architecture within the seven levels of a parameter address while the SDM

explicitly defines the architecture of a device.

The designers of AES64 realized that a device model does not influence the functionality

provided by a control protocol and is not required to specify a control surface.

10.4 Conclusions

Comparing the relative merits of approaches to control protocol design becomes more

valuable when approached from well-defined perspectives. Only when approaches to

protocol design are considered within the context of the characteristics of the static and

dynamic specifications that are derived from design concepts does a comparison become

meaningful. In particular, the capabilities of a control protocol are typically determined

by the:

 Characteristics of a primary design concept, and

 The interaction between primary and secondary design concepts. For example,

SNMP data objects stored in an M-way tree is a primary design concept. Different

indexing schemes provide a secondary design concept that enhances the primary

design concept.

The use of abstraction within a design concept significantly influences the scalability

and flexibility of a control protocol. As an example, consider the representations provided

Figure 10.8 The Design of AES64.

Parameter Model

 Desk item

 Desk item

 …

Device

 Desk item

 UI Model

265

by IEC-62379-2 and the SNMP implementation of the SDM presented in Chapter 6. The

static specification created by linking abstract device components using SNMP table

indexes and then relating these device components using a parameter indexing scheme

provides a much more sophisticated and expressive primary design concept than the

linear chaining of concrete functional blocks defined by IEC-62379-2. Within parameter-

based control protocol designs, a static specification should achieve scalability by

extending the content of the specification and not the specification itself. AES64, the

SNMP implementation of the SDM and UPnP are all examples of protocols that adhere to

this approach. Generalization of the commands within a dynamic specification means that

the dynamic specification does not require extension to meet the requirements of different

static specifications.

However, a simple dynamic specification (as provided by SNMP) may not meet the

functional requirements of a control protocol design or a specific application.

Object-oriented control protocols that endeavor to enforce standard parameter

addresses may have to extend a primary design concept to accommodate extensions to a

static or dynamic specification. For example, OCA adds sub-classes that have unique

control class identifiers to enforce the standardization of parameter addresses. If OCA

supported extension using different object instances (for example, different actuator

instances) the protocol would have characteristics of a framework that supports arbitrary,

non-standard extensions. Entity-based approaches that restrict direct access to

parameters by embedding parameters within entities require extensive additional

functionality to manage parameter relationships and bulk parameter transfers. A unique

set of functions or methods are typically required for each specific entity, and are also

required to manage a static specification that is distributed across multiple entities.

The SDM has a primary design concept that consists of two loosely coupled static

specifications. The device architecture layer provides one static specification that statically

describes a device’s architecture. A second static specification is provided by the

parameter address layer that describes parameters. Full parameter addresses are created

by combining these two static specifications. Because the SDM is an abstract model of a

device, the primary design concept does not include a dynamic specification.

Appendix 10 provides a detailed analysis of different commands that make up the

dynamic specification of different control protocols. The next chapter describes a novel

environment that directly supports the SDM, while also providing service discovery and

object serialization. This environment has a primary design concept based on SDM device

components. These components support a freely defined dynamic specification that

challenges the notion of what constitutes a ‘control protocol’.

266

Chapter 11

Fli2: An Associative Discovery and

Control Environment

11.1 Introduction

Investigation of the different capabilities of the control protocols discussed in the previous

chapters identified three areas that are often unsatisfactorily addressed, or not addressed

at all by many protocols. These areas include:

 Service discovery and service enumeration;

 The representation of a control surface that links a user interface to services;

 The management of parameter relationships;

 Bulk parameter initialization, including saving and restoring a device’s state.

Previous chapters demonstrated that a representation of an audio device’s architecture

could be accommodated within different control protocols that do not explicitly support

the representation of a device. In particular, the different data structures provided by OSC

and SNMP, and the parameter and device representations supported by AES64,

CopperLan and UPnP were used to represent a device according to the SDM developed in

Chapter 4.

This chapter presents a novel approach to service discovery and control surface

creation by using an object-oriented environment named ‘Fli2’ that naturally represents

the component-based architecture of the SDM. By directly supporting object serialization,

this environment also dispenses with the need for service enumeration. Controllers access

serialized objects that are able to automatically configure the required network

connectivity and automatically render controls on a control surface.

This environment challenges the accepted notion of what constitutes a ‘control protocol’.

11.1.1 Optimizing Operations within Distributed Environments

The following sections discuss the computational costs encountered when attempting to

optimize service discovery, service enumeration, and control surface creation within

distributed environments.

267

11.1.1.1 Optimizing Service Discovery and Service Enumeration

Performing service discovery and service enumeration using existing discovery protocols

such as SLP or DNS-SD typically requires:

 Multiple remote accesses to discover a service and enumerate the

characteristics of a service, and

 Local parsing of remotely retrieved data describing a service to transform the

data into the context-sensitive information required to implement the service.

The number of remote commands required to implement a service on a controller is

termed the ‘service implementation cost’. This metric consists of two component metrics:

1. ‘Access cost’, defined as the number of remote accesses required to locate a service

(‘location cost’) added to the number of remote accesses required to identify and

retrieve the resources required to implement the service

(‘retrieval cost’). Access cost can be a measure of bandwidth utilization;

a measure of the time required to access and retrieve remote data, or a combination

of these two metrics.

2. ‘Processing cost’, which is the overhead incurred by the local parsing and

processing of retrieved data. This can be measured by a metric similar to the

commonly used software complexity metric, the Lines of Code metric

(Chen, Wang, Zhou, & Bruda, 2011). The amount of data processed provides a

similar metric that equates complexity with data size. Processing cost can also be

measured by the time required to process retrieved data. The two metrics are

equivalent, as data size is typically linearly proportional to the time taken to

process the data if O(n) algorithms are used.

Implementing a remote service thus has a total cost given by:

 Service Implementation Cost = Access Cost + Processing Cost where

 Access Cost = Location Cost + Retrieval Cost

As an example, consider the OSC operators discussed in Section 5.4.3.1.1 Address Space

Traversal (p.130) that locate services within an OSC address space. The access cost is

proportional to the level of the service within the OSC address space tree. Before a

particular branch of the address space containing the required service is accessed,

a level-by-level traversal of the address space is required to locate the service. The access

cost consists of a single operation to retrieve the required data, while the processing cost

involves parsing the string representation of data that is used. A second example is

provided by standard SNMP requests that have a high access cost. To discover and

268

enumerate services, multiple GET() or GETNEXT() requests must be used. GETBULK()

requests optimize access cost, but have a high processing cost as all of the retrieved data

must be processed. UPnP appears to provide efficient access and processing costs, as

specific services are easily identified and then directly retrieved. However, the indirect

overheads encountered when discovering UPnP services are a consequence of using

HTTP-based protocols. In this case, time rather than bandwidth is more likely to provide

an accurate measurement of access cost.

Within the context of the SDM, the number of remote accesses required to find a

service is typically proportional to the depth of the service within the hierarchical

representation of the device. Further optimization can only occur if the required service is

directly accessible without requiring a top-down traversal of the device structure.

Additionally, standardized service identifiers are required to directly access services.

Service standardization was discussed previously in Section 1.4.2 Standardizing

Functionality (p.10).

11.1.1.2 Optimizing Control Surface Creation

Control protocols that support the specification of a control surface typically retrieve a

control surface description from a remote device. For example, both AES64 and UPnP

advertise XML descriptions to describe the content and organization of a control surface.

Optimization of the overhead encountered when retrieving the user interface to a service

was introduced in Section 9.6.1 Control Serialization (p.238), and discussed further in

Section 9.7.4 The Significance of Object Serialization (p.244) with reference to UPnP.

A single UPnP action was used to retrieve a remote control object using serialization at a

cost of a single remote access. More significantly, the processing cost required for service

enumeration was eliminated as serialized control objects encapsulate the functionality

required to render themselves on a control surface and to access remote services.

Bandwidth usage is reduced if control objects do not contain embedded widgets.

In this case, a control object specifies the required widgets that are then created locally.

Serialized control objects that include all required widgets, graphics and other resources

are termed ‘fully-serialized’ control objects. ‘Partially-serialized’ control objects only

contain resource identifiers indicating the required resources. These objects must be able

to obtain the required resources from local libraries available to a controller. The local

processing costs incurred when creating (deserializing) control objects are trivial.

Times between 0.01020 ms and 0.02740 ms for serializing objects, and 0.00995 ms and

0.03750 ms for deserializing objects have been benchmarked in Java applications

(Mesquita, 2006).

269

11.1.1.3 Optimizing Parameter Management Functionality

Providing bulk parameter access and supporting the efficient management of parameter

relationships requires parameters to be independently accessible as defined in

Section 4.3.4.3.2 Short Parameter Addresses (p.98). Complexity is introduced when

parameters are encapsulated within programming language abstractions such as classes

and structures (records). This complexity is a result of the overheads required to access

parameters as was discussed in Chapter 10.

The following section introduces a networked environment that supports the

optimizations discussed previously.

11.2 Tuple Spaces and Object Spaces

This section introduces an environment that uses a distributed, shared memory termed a

‘space’ that:

 Provides an integrated, object-oriented approach to the implementation of

device and service discovery, control functionality, parameter management and

connection management;

 Supports the dynamic creation of the remote communication endpoints required

by services;

 Supports the automatic creation of control surfaces;

 Allows parameter management operations to be easily and efficiently

implemented;

 Supports different approaches to preventing potential race conditions that can

occur when implementing connection management functionality.

Following from the ‘Linda’ co-ordination language developed by David Gelernter

and Nicholas Carreiro at Yale University (Gelernter D. , 1985), (Gelernter & Carreiro,

1992), several environments termed ‘spaces’ have been developed. These include

JavaSpaces from SUN Microsystems (Freeman, Hupfer, & Arnold, 1999), Fly from Zink

Digital (Zink Digital Ltd., 2011), MozartSpaces from the Technical University of Vienna

(Wittman, Efler, Dönz, & Planer, 2012) and SQLSpaces from the University of Duisberg-

Essen (Faculty of Engineering - University of Duisberg-Essen, n.d.).

11.2.1 Space Characteristics

 A space is a distributed, shared memory buffer that supports the discovery and retrieval

of structured data. Data is organized as tuples in the classic Linda model and as object

instances in object-oriented space implementations. A tuple is simply an ordered set of

data values that conceptually corresponds to a programming language structure, database

270

record or an SNMP conceptual row. Object spaces store objects within a space in a

serialized format. Serialized objects are termed ‘passive objects’, as they cannot be

instantiated within the space environment in which they are stored.

Processes can write objects to, and read objects from one or more remote spaces.

Because objects have methods consisting of executable code, spaces facilitate an exchange

of executable content between different remote processes. An object space can be

subjected to many different semantic interpretations. It may be viewed as:

 An environment for communication and synchronization between processes as

envisaged by the original Linda implementation;

 An object-oriented database;

 A solution to concurrent access problems and race conditions;

 A data cloud that provides a distributed storage environment.

Spaces have six characteristics (Mahapatra, 2004) that differentiate spaces from

traditional distributed environments:

1. Multiple processes can access space data concurrently;

2. There is a loose coupling between senders and receivers which enhances

software reuse and flexibility of design;

3. Spaces are highly scalable;

4. Spaces are simple and flexible;

5. Leasing of objects for a specified time is supported (objects are removed from a

space by the space if their lease times have expired);

6. Atomicity and thus transactional security are inherent properties of spaces.

These characteristic are the result of spaces allowing interactions between different

processes (Kühn, n.d.) to be decoupled with respect to:

 Time – communicating processes may read and write data to or from a space at

any time;

 Data storage – processes all use the same space as a data store without any

knowledge about each other;

 Reference – direct communication between client-server or peer applications

does not exist as all communication occurs via a space.

Processes that communicate using a space are loosely-coupled, as read and write

operations occur without any knowledge of any other processes. Applications using spaces

scale well because spaces can be accessed by any number of networked processes and can

271

store an extremely large numbers of objects. Objects may remain indefinitely in a space or

have a lifetime specified by a lease time. Because spaces store serialized, passive objects,

and a space does not record changes to its contents, both the space and its contents are

stateless.

11.2.1.1 Comparing Spaces to RESTful Architectures

Although intended to describe principles with reference to the World Wide Web,

Representational State Transfer (REST) principles (Fielding, 2000) can be applied to any

distributed software architecture. A RESTful architectural style (Servage Magazine, 2013)

strives to:

 Provide a uniform interface to the discovery and retrieval of all resources.

 Support stateless interactions between a client and a server.

 Allow clients to store responses obtained from a server.

 Support loosely coupled client-server relationships where the client is not aware of

how data is stored on a server and the server is not concerned with the client

interface to the server.

 Allow a server to extend the functionality of a client by transferring executable code

to a client.

It is interesting to note the close similarities between these features and the previously

listed characteristics of object spaces.

11.2.2 Space Operations

Space operations are atomic, meaning that the entire operation is guaranteed to complete

fully or to fail. Operations cannot be interrupted by time slicing algorithms that may pre-

empt different processes or threads. Space operations are not idempotent operations as

writing the same object to a space creates two identical object instances within the space.

However, read operations are easily designed to filter duplicate object instances. Spaces

are inherently transactionally secure, as they automatically guarantee mutual exclusion.

This property avoids the complexities associated with enforcing mutual exclusion in

distributed systems to prevent deadlock and starvation (Kshemkalyani & Singhal, 2011,

pp. 305-339). Enforcing mutual exclusion by using a space is discussed with reference to

connection management in Section 11.4.1 Managing Concurrency (p.298).

The four fundamental tuple space operations (Scientific Computing Associates,

2007) defined by the original Linda model are:

 in - removes a tuple from a tuple space;

 rd - copies a tuple from a tuple space;

272

 out - writes a tuple to a tuple space;

 eval() - writes the results of an evaluated expression in the form of a new tuple

to a tuple space.

Object-oriented spaces typically provide the following fundamental commands that are

similar to Linda operations but operate on object instances:

 READ - copies an object from an object space;

 TAKE - removes an object from an object space;

 WRITE (object) - writes an object to an object space.

Figure 11.1 illustrates these commands and shows the architecture of a space-based

network environment.

These commands typically also exist in forms that address multiple objects:

READ-MANY(), TAKE-MANY(), and WRITE-MANY(..). In addition to these fundamental

space operations, spaces allow processes to subscribe to:

Figure 11.1 Object Space Architecture and Operations.

Device / Controller

Device / Controller

Object Space

Network
 Stack

 WRITE REGISTER NOTIFY READ TAKE

Object Registry

 Space API

Listener Registry

Network
 Stack

 WRITE REGISTER NOTIFY READ TAKE

 Space API

Network
 Stack

Network

Network

273

 Changes to the contents (state) of a space;

 The execution of READ() operations by remote processes that do not change the

contents of a space.

A space maintains an object registry and a listener registry shown in Figure 11.1 that store

serialized objects and manage subscription requests respectively.

Although networked devices can execute all space operations, it will be seen later in this

chapter that devices are only required to advertise SDM components (devices, sub-devices

and controls) as well as parameters via WRITE(..) operations. These SDM component

objects encapsulate the remote services used by controllers.

Controllers are typically interested in service announcements or configuration

changes that are advertised when devices write objects to a space. Controllers register to

receive notifications when specific objects are written to a space. When objects that are of

interest to a controller arrive in a space, the controller is notified and then reads or

removes the objects from the space. These events are illustrated in later sections of this

chapter.

It is important to note that a space is never used to convey control commands from

a controller to a device. Control functionality is directly implemented between a controller

and a device. An object space is used solely to advertise services, to provide services

implementations, and to convey connection management requests.

Controllers can also remove objects from a space, update the objects and then return the

updated objects to a space. This update process is discussed with reference to

implementing connection management in Section 11.4.2 Approaches to Implementing

Connection Management (p.299).

11.2.2.1 Object Discovery using an Associative Memory

Serialized object instances in a space are located via ‘associative matching’. Unlike most

programming language environments, objects are not referenced by a memory location or

by an identifier that maps to a memory location. Objects are selected from a space during

READ() and TAKE() operations by an object matching process that uses a template object

(termed an ‘antituple’ in Linda) to select objects from a space.

A template object selects (associatively matches) objects of the same type having data

member values that are identical to the template’s data member values. This type of

organization of information is known as an ‘associative memory’ or ‘content addressable

memory’ and has its origins in hardware designs (Godse & Godse, 2003, p. 271) for

high-performance memory supporting parallel access. The use of a content addressable

memory was first suggested in 1955 by Dudley Allen Buck, an Electrical Engineer at the

274

Massachusetts Institute of Technology (TRW Computer Division, 1963, p. 17).

This concept is also found in neural networks (Hassoun, 1993), where associative

relationships are used to represent the evolution of a system’s state.

11.2.2.1.1 Granularity of Service Discovery

It is useful to be able to control the granularity of service discovery. By specifying different

templates used to select objects from a space, device components or parameters that

provide services that match the specified selection criteria can be selected.

For example, a controller may only require specific controls such as the faders belonging

to the mastering section of a mixing console. Using associative matching, the context of

the returned fader controls is determined by the query itself which specifies these

component relationships. In this case, the child controls of the mastering section

sub-device are specified. This type of query follows RESTful principles in that the query

itself is atomic and is thus never dependent on previous queries.

Associative matching provides a logical, user-centered approach to service discovery.

A parametric equalizer or channel strip are familiar components to an audio engineer and

do not require any further qualification. For example, template object attributes

containing keywords such as ‘INPUT CHANNEL’ or ‘CHANNEL STRIP’ would return a set

of matching channel strip objects from a space. A lack of standards for the specification of

services for audio devices makes this approach particularly attractive.

A list of keywords used for associative matching can be provided by a device, retrieved

from a space and then displayed on a control surface. An engineer can then compose

queries from the list of provided keywords. Service discovery queries that return arbitrary

sets of results are difficult or impossible to achieve with discovery protocols such as DNS-

SD or SLP. The granularity of an associative matching process is only dependent on the

number of object attributes that are available to formulate queries. Objects also allow the

granularity of discovery operations to be controlled via inheritance hierarchies if the

discovery of types and their subtypes is supported by a space environment.

Within the Fly Object Space environment discussed later in this chapter, object

attributes are matched to a template object by type and value. Unspecified attributes

within a template are implemented as null references. This provides a wildcard

mechanism where any attribute value will match a template attribute having a null value.

As an example, consider a class ‘Control’ having three attributes: a unique name,

a control type description and a parent component name. The control type description

identifies the control’s functionality such as a fader control or a gain control and the parent

component denotes the SDM sub-device that contains the control. Table 11.1 lists example

275

object templates used for associative queries and the returned objects that match these

templates.

Simple matching operations are limited in that these operations cannot express complex

queries, as Boolean expressions and attribute ranges cannot be expressed. For example,

queries to select the input section faders for all even-numbered channels or the faders for

channels one to six cannot be expressed. Associative matching consists solely of logical

AND operations with the addition of a wildcard ‘ANY’ represented by a null object

attribute. These limitations are often easily mitigated by carefully considering object

attributes. For example, a large device can divide controls into banks of N controls and a

bank identifier attribute allows selection of an arbitrary bank of controls.

11.2.2.1.2 Space Subscriptions

Networked processes subscribe to operations processed by a space as mentioned

previously. Subscribers are notified when READ(), WRITE(..) or TAKE() operations are

executed in the context of specific object instances by a space. A process creates a

subscription by specifying:

 The type of operation (READ(), WRITE(..) or TAKE()) that triggers a notification;

 An object template that is used to match objects that are the arguments or returned

results of a space operation.

Subscription requests are thus also implemented using associative matching.

For example, a WRITE(..) subscription with a template of class device where the device

class has a device type attribute of “mic” will inform a subscriber when microphone device

objects are written to the space.

 Template Template Attributes Matching Object/s

 Name Control Type Parent Name

Template1 Fader3 null null All controls having the
name ‘Fader3’.

Template2 null Fader null All device faders.

Template3 null null MasterSection Left and right master
faders and meters.

Template4 null

Fader InputSection All input channel strip
faders.

Template4 null

null

ChannelStrip2 All controls belonging to
channel strip two.

Template6 null null null All device controls.

Table 11.1 Example Object Templates for Associative Matching.

276

11.2.2.2 The Role of Object Serialization

A discovery environment that allows serialized objects to be located by associative

matching provides many advantages, including:

 Direct support for discovering components and parameters defined by the SDM;

 An efficient representation of controls that does not require service enumeration

as previously discussed in Section 9.6.1 Control Serialization (p.238) with

reference to UPnP;

 Allowing parameters to be accessed independently of any device components;

 The ability for devices to both advertise and provide executable code in the form

of object methods to controllers via serialization.

The exchange of executable content allows a wide range of functionality to be passed from

devices to controller applications. Devices are able to push the functionality required to

interact with them to controllers. Spaces also naturally support one of the key principles

of the SDM, namely that parameter access should not be dependent on accessing device

components. Parameters can be advertised to a space independently of SDM device, sub-

device and control components.

11.2.3 Space Network Architectures

Spaces commonly support many different network topologies, depending on the

requirements of a particular space environment. Reliability is increased if a space is

replicated on one or more different network nodes. Decentralized data storage is always

preferable to centralized solutions where the failure of a centralized network component

may cause the entire network to fail. JavaSpaces avoids centralized dependencies by

supporting a ‘federation’ of spaces. This allows a single logical space to consist of multiple

distributed spaces that are managed by Java’s distributed Jini technology (Apache

Software Foundation, n.d.). Environments that do not support a federation (such as the

Fly environment discussed later in this chapter) must use multiple spaces that interact

and synchronize with each other. The process of synchronizing multiple spaces is termed

‘replication’ (Wittmann, 2008).

In Figure 11.2(a), a process monitors a primary space and ensures that any changes

to the contents of the primary space are propagated to a secondary (replicated) space. The

‘Space Monitor’ process (on the same network node as the secondary space) registers with

the primary space to receive notifications when objects arrive in the primary space. It then

reads these objects and forwards (writes) them to the secondary space. Figure 11.2(b)

shows two object spaces, each having a monitoring process that monitors the other space.

This arrangement is similar to a per-to-peer network architecture and ensures that

277

changes to the content of either space are mirrored within the other space. In these

examples, the monitoring process is implemented on the same network node as the space.

It is also possible for a space and the process that monitors the space to be located on

different network nodes.

In the context of the SDM, it is not difficult to implement replication as the matching

criteria used to monitor state changes within a space are well-defined.

These criteria are simply the types of the different objects (“DEVICE”, “SUBDEVICE”,

“CONTROL” and “PARAMETER”) defined by the SDM. Template objects of these types

are used by a space monitor process to subscribe to the arrival or removal of objects of

these types to or from a monitored space.

Figure 11.2 Maintaining Multiple, Replicated Spaces.

Device1

Device2

Write / Take

Read

Write

Notify

Forward

Forward

Read

Notify

Write

Write / Take

Legend:
 ■ Device Operations ■ Replication Operations

Figure 11.2(a).

Device1

Device2

Write / Take Write / Take

Read

Space Monitor

Write

Notify

Forward

Figure 11.2(b).

 Primary
 Space

Secondary
 Space

 Space1

 Space2

Space Monitor

Space Monitor

278

11.2.3.1 Monitoring Reachability

As mentioned previously, objects within a space have a lease time which is specified when

the objects are written to a space. Lease times are typically expressed in milliseconds and

have an upper bound determined by the numeric data type storing the lease time. A

negative value commonly specifies an infinite lease time. A ‘heartbeat’ object having a

specified lease time may be written to a space by a device to signal that the device is

reachable. Controllers that subscribe to a specific heartbeat object are notified each time

the device writes a heartbeat object to the space. Controllers can easily maintain a list of

currently reachable devices by registering to receive all heartbeat notifications from a

space, or, may register to receive heartbeats from specific devices. Controllers can also poll

a space using READ() or READ-MANY() operations to verify the reachability of remote

devices.

11.3 A Space-Based Discovery and Control Environment

This section discusses the development of a space-based environment for the discovery

and control of networked audio devices.

11.3.1 Selecting a Space Implementation

Four object space implementations that were evaluated for developing a space-based

environment include:

 ‘Mozart Spaces’ from the Technical University of Vienna (Technical University of

Vienna - Space Based Computing Group, 2013);

 SQLSpaces (COLLIDE Project, n.d.) which supports several programming

languages including Prolog, Java, Ruby, C# and PHP.

 JavaSpaces (The Apache Software Foundation, n.d.);

 The Fly Object Space (Zink Digital Ltd., 2011) which is a lightweight associative

memory space implemented in Java that is freely available for non-commercial

use.

11.3.1.1 MOZART Spaces

This space implementation is based on a middleware layer named eXtensible Virtual

Shared Memory (Wittman, Efler, Dönz, & Planer, 2012) that supports the partitioning of

a space into logical collections termed ‘containers’. A distinction is made between ‘atomic

entries’ in a space and tuples which may contain sets of other tuples or atomic entries.

(Wittmann, 2008, p. 8). ‘Coordinator’ objects control the writing of data to a space, while

‘selector’ objects control read operations. For example, a selector may be implemented to

read objects from a space in the order that they were written to a space.

279

In addition to extended tuple space transactions, Mozart Spaces provides

aspect-oriented operations, persistence, and a query system. Aspect-oriented

programming (Kiczales, et al., Aspect Oriented Programming, 1997) allows functional

‘views’ to be constructed across objects that are not related by inheritance and is briefly

discussed in Section 10.3.4 Aspect-Oriented Software Designs (p.261). A sophisticated

query system

(Wittman, Efler, Dönz, & Planer, 2012, p. 21) allows a wide variety of matching operations

to be performed on a Mozart space.

11.3.1.2 SQL Spaces

In addition to the standard space operations discussed previously, SQLSpaces provides:

 Data storage within a relational database;

 A shell interface to the space environment;

 Matching templates that support ranges and wildcard characters;

 A security model that specifies user access privileges.

These extensions provide a level of flexibility and expressiveness for service discovery that

significantly surpasses the capabilities of the fundamental space operations. However, as

demonstrated later in this chapter, a sophisticated control environment can be developed

without discovery queries based on SQL.

11.3.1.3 JavaSpaces

This environment allows polymorphic matching and also allows multiple spaces to be

synchronized to form a ‘federation’ of spaces as discussed earlier in this chapter.

JavaSpaces support polymorphic type matching where query results can be subtypes of

the template type. JavaSpaces was eliminated as a candidate implementation

environment because it requires a Java-enabled server and has a complex configuration

that uses the distributed capabilities provided by Jini (Venners, 1999). Jini consists of Java

APIs and network protocols that support the development of distributed

service-oriented applications.

11.3.1.4 The Fly Object Space

Fly is a lightweight object space that supports discovery of spaces running on a local

network segment using multicasting and can be configured to distinguish between

different spaces. Fly was chosen as an implementation environment for two reasons:

1. It does not have complex configuration requirements, and

280

2. Fly only provides the fundamental space operations that are typically supported

by any object space.

Although the use of extended features provided by the space environments discussed

previously may appear to be attractive, the use of these features will create monolithic

applications. As will be demonstrated in this chapter, the fundamental space operations

introduced previously in this chapter are sufficient to elegantly support both service

discovery and control functionality. The combination of an associative memory, object

serialization and remote procedure calls creates an environment named ‘Fli2’ where

device components conforming to the SDM encapsulate the services typically provided by

a control protocol.

11.3.1.5 Software Development using Java

The implementation discussed in this chapter uses standard Java Remote Method

Invocation (RMI) (Oracle Corporation, 2010) for control messages between controllers

and devices. RMI is a Java technology that provides remote procedure calls that are

advertised by an RMI registry. Control protocols are traditionally developed using the

C and C++ programming languages. These languages provide higher performance than

languages such as C# and Java that use intermediate machine representations.

Standard RMI performance compares poorly to UDP or TCP socket connections (Taing,

2011). However, performance issues related to remote procedure calls within different

programming languages may become irrelevant in the near future. A Java environment

using remote procedure calls has recently published benchmarks where the average

performance of a SET(int) RPC achieved an order of eight million RPCs per second (Fast-

Cast Messaging Library, 2014). A version of the Fli2 environment uses this library to

stream metering messages to a controller. Tests performed using a transaction timer

supplied with the Fly distribution indicate that the Fly space takes of the order of a

millisecond to process a space transaction.

From a development perspective, the simplicity of the environment and the high

conceptual level of the software are particularly attractive. The Fli2 software provides

functionality that rivals the core functionality of sophisticated audio control protocols that

have been developed using corporate resources. Additionally, the use of remote procedure

calls avoids the multi-threaded message processing required to asynchronously process

socket communications.

11.3.2 An Overview of the Fli2 Environment

The following sections outline the design of the FLi2 environment that uses the Fly object

space to allow devices to:

281

 Implement device and service discovery;

 Provide object instances via serialization to remote controller applications.

11.3.2.1 System Architecture

The deployment diagram of Figure 11.3 illustrates a controller node, an audio device node

and an object space node that all communicate via TCP. Control traffic between a

controller and a device uses Java’s Remote Method Invocation (RMI) technology

discussed later in this section. However, it is possible to use any network protocol or

combination of protocols for control and monitoring traffic as indicated in Figure 11.3.

Controller and device applications are deployed within Java executable archives

(Controller.jar and Device.jar) and access shared common libraries on the controller and

device nodes shown in Figure 11.4. These libraries contain classes that are:

 Fly library classes required to communicate with the Fly space;

 Libraries containing GUI widgets such as the rotary potentiometer and signal level

meter classes used in this implementation. A layout manager class is also used to

create control surfaces. These libraries shown in Figure 11.4 and discussed in

Appendix 5 are ‘SteelSeries-3.9.3.jar’, ‘trident.jar’, ‘craigl.jar’ and ‘miglayout-

4.0.jar’.

Only five classes representing components of the SDM and three interface classes

defining control functionality, metering functionality and the rendering of controls are

required. These are the ‘AudioDevice’, ‘AudioSubDevice’, ‘AudioControl’,

<<protocol>>
 TCP

Figure 11.3 Fli2 Environment Deployment Diagram.

<<execution environment>>
 JVM

 <<artifact >>

 Device.jar

<<execution environment>>
 JVM

 <<artifact >>

Controller.jar

<<protocol>>
 TCP

Audio Device Audio Controller

Fly Space

<<protocol>>
 RMI
 (TCP)

<<artifact >>

 Libraries

<<artifact >>

 Libraries

<<protocol>>
(TCP OR ANY)

282

‘AudioParameter’ and ‘StateParameter’ classes, and the ‘IControl’, ‘IMeterControl’ and

‘IRenderable’ interface classes shown in Figure 11.4. These classes are contained within

the ‘common’ namespace and can be easily packaged as a library. ‘StateParameter’ objects

are used to save and restore a device’s state. These objects conserve bandwidth during bulk

parameter transfers as they only contain data defining the states of parameters and do not

reference any other objects.

The following sections discuss the deployment of these classes and the functionality

provided by these classes.

11.3.2.2 Classes Implementing SDM Components

Figure 11.5 summarizes the relationship between an audio device application and SDM

classes. Class ‘RemoteDevice’ represents a remote audio device and provides remote

services to controllers. The ‘DeviceCreator’ class constructs the different sub-devices,

controls and parameters required to represent the audio device.

Figure 11.4 Audio Device and Controller Deployment Artifacts.

GUI widget libraries

 <<artifact>>
 trident.jar

 <<artifact>>
 miglayout-4.0.jar

 <<artifact>>
 SteelSeries-3.9.3.jar

 <<artifact>>
 craigl.jar

Device.jar

 <<artifact>>
 com.zink.fly

 <<source>>
 common

 <<source>>
 device

 <<artifact>>
 trident.jar

 <<artifact>>
 miglayout-4.0.jar

 <<artifact>>
 SteelSeries-3.9.3.jar

 <<artifact>>
 craigl.jar

Controller.jar

 <<artifact>>
 com.zink.fly

 <<source>>
 common

 <<source>>
 controller

 <<source>>
 common

 AudioDevice.class
AudioSubDevice.class
 AudioControl.class
AudioParameter.class
StateParameter.class
 IControl.class
 IMeterControl.class
 IRenderable.class

Fly Libraries

Lib Lib

Device Controller

283

Class ‘DiscoverableDevice’ encapsulates the functionality required to write the device and

its constituent components to a Fly object space.

Device components conforming to the SDM consist of the ‘AudioDevice’,

‘AudioSubDevice’, ‘AudioControl’, ‘AudioParameter’ and ‘StateParameter’ classes.

These classes are packaged within the ‘common’ namespace (package) as discussed

previously and are used by both devices and controller applications. Devices create objects

from the first four of these classes and then advertise them to controllers via a space. These

classes all implement the Java ‘Serializable’ interface that enables binary serialization for

Java objects. This allows objects to be written to and read from a Fly object space. The

‘IRenderable’ interface contains methods to render sub-devices and controls on a control

surface.

The ‘device’ package consists of classes used to locally create and implement an audio

device:

 Class ‘DiscoverableDevice’ discovers Fly object spaces on a network and advertises

a device by writing ‘AudioDevice’, ‘AudioSubDevice’, ‘AudioControl’ and

‘AudioParameter’ objects to the discovered space;

 Class ‘RemoteDevice’ registers services provided by a device (as outlined in the

next section) and receives and processes control messages from controllers;

Figure 11.5 Classes Representing an Audio Device.

284

 Class ‘DeviceCreator’ is a factory class that creates the components of an audio

device, while class ‘MeterTask’ implements local multi-threaded meters for a

device.

11.3.2.2.1 Service Implementations

RMI in Java version v1.1 implements services as remote procedure calls using client and

server proxies for the called procedures (Soares, 1992), (Krzyzanowski, 2012). Figure 11.5

shows how an RMI system relates to the different OSI network layers.

A local proxy for a remote method is termed a ‘client stub’. Local stubs communicate with

a remote ‘server stub’ or ‘skeleton’ that is a proxy for the implementation of the remote

method. Local stubs marshal and add arguments to a network transmit buffer and

transmit the arguments to the remote Java Virtual Machine (JVM).

Skeletons retrieve values from a network receive buffer, invoke the required method and

then transmit the result back to the local stub. Marshalling and unmarshalling processes

translate objects to and from the data formats used for network transmission.

Java versions from version 1.2 implement an enhanced stub protocol that dispenses with

remote skeletons (Oracle Corporation, 2010).

Remote services within Fli2 are implemented using the RMI remote procedure calls

defined within interfaces illustrated in Figure 11.7. Control classes that access remote

services are derived from class ‘java.rmi.server.UnicastRemoteObject’.

Two interface types extend the ‘java.rmi.remote’ interface and define the RPC’s required

by service users for control and monitoring capabilities. The ‘IControl’ interface defines

the remote procedure calls defined by a device to implement control functionality.

Control functionality is provided by the parameter objects used by a controller.

The ‘IMeterValue’ interface provides the RPCs defined by a controller that receive

streamed meter values from devices.

Application Layer User Applications

Figure 11.6 RMI Related to the OSI Model.
 (Adapted from (Kogent Learning Solutions, 2012, p. 1446).

OSI RMI

Presentation Layer Stubs Skeletons

Client Server

Session Layer Remote Reference Layer

Transport Layer TCP

RMI
System

285

Remote procedure calls require the address of the remote procedure to be

determined in order to bind this address to the local stub. The RMI registry maps service

names to remote method calls. A service query returns an interface class reference (such

as a reference to the ‘common.IControl’ interface class) that declares the remote method

used to invoke a service. For example, a fader control or fader parameter would use the

remote registry to locate the required remote fader service on the controlled device.

The advantage of the use of a service registry is that services (represented by remote

procedure calls) can be configured dynamically. Dynamically configurable services:

 Allow controls to address different services. This supports the layered design of

modern mixing consoles where a small set of controls is able to control a larger

device. A typical example is a sixteen-channel control surface providing the

functionality of a thirty-two channel mixing console by addressing the first

sixteen channels or by addressing channels seventeen to thirty-two. Additionally,

compact control surfaces suitable for mobile devices that have small display sizes

allow controls to be dynamically configured.

 Provide support for parameter joins by allowing a local parameter to be

configured to address (be joined to) different remote parameters registered as

services.

Figure 11.7 Audio Mixer Device Remote Services.

286

The following section provides a detailed description of the operation of the Fli2

environment.

11.3.3 Operation of the Fli2 Environment

Figure 11.8 illustrates the events that occur during the operation of the Fli2 environment:

1. Devices register their services with an RMI service registry.

2. Controllers register to receive notifications from a space when devices advertise

services by writing SDM device component objects and parameter objects to the

space. These device components and parameters encapsulate the control and

monitoring services provided by devices.

3. Devices advertise device components and parameters by writing them to a space.

4. Controllers are notified when components or parameters arrive in the space.

5. Controllers read component and parameter objects from the space.

6. Components initialize themselves by determining their required remote services

from the service registry.

7. Components render themselves on the controller’s control surface providing a user

interface to their remote services.

8. Controllers execute the required services implemented as RPCs when users

interact with the control surface.

 Legend:

 ■ Discovery operations

 ■ Control operations (RPCs)

 SDM Component Object

Figure 11.8 The Fli2 Discovery and Control Environment.

 Device

Controller

Fly Space

(2) Register
 Discovery
 Query

(3) Advertise
 (Write)
 Objects

(5) Read
 Object/s

(7) Create
 Service User-
 Interface

 Service1
 …
 ServiceN

(4) Receive
 Discovery
 Response

 Registry

(1) Register
 Services

(6) Lookup
 Service/s

Service 1
 …
Service n

(8) Execute
 Remote
 Service/s

 Object

Network

287

These discovery operations and remote procedure calls are discussed in the sections that

follow.

11.3.3.1 Device and Service Advertisements

The following events that occur when a device, as well as its component parts and

parameters are advertised to a network by writing objects to a Fly space:

1. A networked mixer device searches for a Fly object space on the local network

segment. The discovered space returns a reference to itself to the mixer device.

2. The mixer device creates an ‘AudioDevice’ object that represents the mixer device.

3. All child sub-devices of the ‘AudioDevice’ object are created and written to the

space.

4. For each child sub-device in step two above, all child sub-devices are created and

written to the space.

For each child ‘AudioControl object’ of each ‘AudioSubDevice’ object:

5. Remote parameters are created and stored by the mixer device. These parameters

store service identifiers that identify specific parameters.

6. The service identifiers representing RPCs are registered with the RMI registry.

7. Control parameter objects are created. These parameters reference the remote

service identifiers registered in step six.

8. All child controls (‘AudioControl’ objects) are created.

9. All ‘AudioControl’ objects and ‘AudioParameter’ objects are written to the space.

10. The mixer device advertises itself on the network by creating an ‘AudioDevice’

object and writing it to the space.

The above events are illustrated by the sequence diagram of Appendix A6.1.

Relationships among the serialized objects within a space are depicted in Figure 11.9.

Parent-child relationships are represented by indirect references where each child has an

attribute that is the name of its parent component. Controllers must always wait for a

device object to be advertised before attempting to read device components from a space.

This restriction ensures that a complete representation of a device is available before any

read operations are executed by controllers, ensuring that indirectly referenced objects are

available when the objects that indirectly reference them are advertised. For example,

where a control indirectly references a parent sub-device as shown in Figure 11.9, the sub-

device must be available when the control is accessed. If the sub-device is not available,

attempting to read the sub-device will incorrectly return a null value. In addition, if a

controller is notified when each parameter object is written to a space, the controller

288

incurs an unnecessary bandwidth overhead by executing a read operation for each

individual parameter advertisement. Where a device is advertised after all parameter

advertisements, a single READ() operation can retrieve arbitrary sets of parameter

objects.

The serialization process automatically serializes all directly referenced object

instances when an object is serialized. For example, where a control directly references a

parameter as illustrated in Figure 11.9, the parameter is always available in the context of

the control. Reading the control retrieves the entire object graph created by direct

references.

By indirectly referencing parent objects using an identifier, the granularity of service

discovery can be controlled. If direct references are used within a hierarchy of objects,

retrieval of an object from a space will also retrieve all referenced objects. When applied

recursively, this will result in the undesirable retrieval of all ancestor objects and

potentially, all objects representing a device.

The remote parameter attribute ‘remoteServiceName’ shown in Figure 11.9 is the

name of the remote service to be invoked when the parameter’s value is updated.

This name is the name of the required remote service registered in the RMI Registry and

is used by the device to identify a joined remote parameter.

Control Parameter

Figure 11.9 Object Relationships Within a Space.

Object Reference

Space

 AudioDevice
 AudioSubDevice

parentName

 AudioControl

parentName
ctrlParameter

 AudioParameter

 remoteServiceName

 AudioParameter

 AudioSubDevice

 parentName

Legend:
 Indirect reference
 Direct reference

Remote Parameter

Indirect Reference

ObjectGraph

289

11.3.4 Controller Implementation

Figure 11.10 shows the class design of a controller application. The blue-shaded classes are

user interface classes consisting of a:

 ‘ControllerFrame’ class that provides a control surface for the controller;

 ‘SpaceMonitorFrame’ class that displays all space transactions and is only used

for development purposes;

 ‘NetworkFrame’ class that shows all devices discovered on a network within a

‘NetworkBrowser’ user interface tree. This tree provides a view of the

components and services for each discovered device;

 ‘ParameterFrame’ class that provides a view of all local and remote parameters

as well as join relationships between local and remote parameters.

Classes representing device components and parameters corresponding to the SDM

contained within the common package were previously illustrated in Figure 11.4. Instances

of these classes are serialized to a space by devices and retrieved from a space by

controllers. Class ‘AudioController’ maintains collections of these objects that are the

previously discovered components and parameters used by the controller.

The ‘DeviceListener’ class registers a template with the Fly space to receive notifications

when devices are advertised to the network and processes these notifications by

implementing a ‘NotifyHandler’ provided by the Fly library classes.

Figure 11.10 Controller Application Class Diagram.

290

The previous sections provided an overview of the Fli2 environment; the following

sections describe the core functionality of the Fli2 environment in greater detail.

11.3.4.1 Device Discovery

Networked devices and controllers query the network to discover available spaces using

the methods of a ‘FlyFinder’ class provided by the Fly object space. Following the discovery

of a space, a controller discovers all devices that have been advertised (written) to the

space. The sequence of events that occur during device discovery within the Fli2

environment are:

1. A controller creates a ‘NetworkBrowser’ object.

2. The controller creates an ‘AudioDevice’ template object that is used to select

‘AudioDevice’ objects from a space.

3. The controller uses the template to read all ‘AudioDevice’ objects currently

stored in the space.

4. The controller adds the discovered devices to the ‘Network Browser’ window.

5. The ‘Network Browser’ updates the device tree user interface (illustrated in

Figure 11.12).

6. The controller creates a callback as outlined in Section 11.2.2.1.2 Space

Subscriptions (p.275).

7. The controller subscribes to future ‘AudioDevice’ advertisements by registering

the ‘AudioDevice’ template object created in step two. The callback method

created in step six is invoked by the space when ‘AudioDevice’ objects matching

the template are written to the space.

8. A mixer device creates an ‘AudioDevice’ object that represents the mixer device.

9. The mixer device advertises itself by writing the ‘AudioDevice’ object to the space

and specifying a lease time.

10. The space invokes the callback created in step six to notify the controller that an

‘AudioDevice’ object has been written to the space.

11. The controller uses the ‘AudioDevice’ template created in step two to read the

‘AudioDevice’ object from the space.

12. The controller adds the newly discovered device to the ‘Network Browser’.

13. The ‘NetworkBrowser’ updates its device tree that provides a user interface.

The sequence of events that occur during device discovery is illustrated by the sequence

diagram in Appendix A6.2 As illustrated by these events, an object template that specifies

the attributes of the ‘AudioDevice’ objects required by the controller is provided as an

argument to a READ() transaction. This template is used to retrieve all current devices

291

matching the template from the space. The controller also registers an ‘AudioDevice’

template with the space. This template ensures that the space notifies the controller when

(future) devices arrive in the space after the initial READ() transaction has completed.

Discovery schemes were introduced in Section 2.4.1 Device Discovery (p.21). Spaces

support both query and announcement discovery schemes, allowing discovery of the

currently available devices and devices that are added to the network in the future. These

transactions were illustrated in the previously listed event sequence.

Read operations support query discovery while subscription to space operations supports

an announcement discovery scheme.

11.3.4.2 Service Discovery

Although services can be directly accessed as discussed previously in Section 11.2.2.1.1

Granularity of Service Discovery (p.274), the Fli2 environment currently implements

service discovery using a top-down traversal of a device’s components. All child

components for a specified parent component are retrieved from a space using the indirect

parent-child relationships shown previously in Figure 11.9. A controller is able to explore

a device’s structure and services by using READMANY() operations to retrieve all child

sub-devices and controls for a specified device or sub-device from a space.

The device structure is traversed by recursively applying READMANY() operations to each

child component.

The ‘NetworkBrowser’ displays the devices and device components (conforming to

the SDM) discovered on a network. The events that occur during service discovery are

listed alongside the ‘NetworkBrowser’ tree shown in Figure 11.11 and illustrated by the

sequence diagram in Appendix A6.3. Device components are only read from the space

when nodes in the ‘NetworkBrowser’ user interface tree are expanded. Retrieval of objects

from a space only when the objects are required by the controller application has two

advantages:

 It conserves bandwidth as the entire model of a device is not downloaded by a

controller;

 The sizes of network traffic bursts are reduced when space operations used to

read device components are temporally distributed.

292

Implementation of services is discussed in the next section that explains how controls are

initialized and added to a control surface, and discusses how remote services are

initialized.

11.3.4.3 Control Surface Creation

A user adds components to a control surface from the hierarchical view of a device

provided by the ‘NetworkBrowser’ as illustrated in Figure 11.12. The following events that

occur when a user adds a sub-device to a control surface are illustrated by the sequence

diagram in Appendix A6.4. Individual controls may also be added in a similar manner.

1. A user requests the ‘NetworkBrowser’ to add (‘Insert’) the currently selected

sub-device to the controller’s control surface.

2. The ‘NetworkFrame’ window (containing the ‘NetworkBrowser’) requests the

‘AudioController’ to add the specified ‘AudioSubDevice’ object (previously read

from the space when the user interface tree was expanded) to the control surface.

3. The ‘AudioController’ accesses the specified ‘AudioSubDevice’ object.

4. The ‘AudioController’ registers the ‘AudioSubDevice’ object with the control

surface (the control surface adds it to its collection of ‘AudioSubDevice’ objects).

5. The ‘AudioController’ accesses all child ‘AudioControl’ objects for the specified

‘AudioSubDevice’ object.

Discovered Device

Figure 11.11 The Network Browser Window.

1. The user selects a device displayed by the device tree

in the ‘NetworkBrowser’ window.

2. The controller reads the child ‘AudioSubDevice’

objects for the selected device from a space.

3. The names of child ‘AudioSubDevice’ objects read

from the space are displayed in the expanded device

tree in the ‘NetworkBrowser’ window.

4. The user selects a sub-device displayed in the device

tree.

5. Child ‘AudioSubDevice’ objects for the selected sub-

device are read from the space.

6. The names of child ‘AudioSubDevice’ objects read

from the space are displayed in the device tree.

7. The controller reads all child ‘AudioControl’ objects

for the selected sub-device from the space.

8. The names of child ‘AudioControl’ objects read from

the space are displayed in the device tree.

293

6. The ‘AudioController’ registers all child controls (‘AudioControl’ objects previously

read from the space when the user interface tree was expanded) for the added

‘AudioSubDevice’ object with the control surface.

7. The ‘AudioController’ requests each ‘AudioControl’ object to bind (initialize) its

parameters.

8. Each ‘AudioControl’ requests its ‘AudioParameter’ (control parameter) object/s to

bind (initialize) their remote services (representing joined remote parameters).

9. The ‘AudioParameter’ object obtains the required remote service from the RMI

registry. This service is defined by the ‘IControl’ remote interface (illustrated

previously in Figure 11.7).

10. The ‘AudioController’ obtains the control surface component (graphics surface)

from the parent ‘AudioSubDevice’ that must display the ‘AudioSubDevice’ and its

 Control Surface

Figure 11.12 Adding Components to a Control Surface.

294

child ‘AudioControl’ objects.

11. The controller requests the ‘AudioSubDevice’ to render itself on the graphics

surface.

12. The ‘AudioSubDevice’ object requests each child ‘AudioControl’ object to render

itself on the graphics surface.

13. Each ‘AudioControl’ object renders the appropriate user interface widget/s on the

provided graphics surface.

Figure 11.12 shows a user adding a channel strip to a control surface using the

‘NetworkBrowser’ tree. All child sub-devices and child controls are recursively read from

the space when the parent sub-device node in the tree is expanded. The user then adds

sub-devices (and/or controls) as illustrated by the previously listed events.

11.3.4.3.1 Service Implementations

Remote services are hard-coded into the control and parameter objects passed to a

controller via an object space. Controllers simply read control objects from a space and

invoke their methods. Service enumeration is not required as control and parameter

objects contain methods that initialize and implement the required local and remote

services. Parameters have ‘bind()’ and ‘unBind()’ methods and control objects have a

‘bindParameters()’ method. When a controller adds a control to a control surface it

invokes the control’s ‘bindParameters()’ method. This method calls the ‘bind()’ method

for each of its referenced parameters to initialize the required network interfaces that

address corresponding remote services.

A device thus provides the resources required to communicate with it to controllers.

Controllers are created using SDM components that require no configuration. Controllers

have no knowledge of how network messages are transported or how controls are

implemented or rendered. Devices push device components

(sub-devices and parameters) and services (parameters) to controllers via a space.

Controllers pull device components and service implementations from a space, initialize

the service implementations, and in the case of control or sub-device components that can

be rendered, render the components. This scheme allows remote functionality to be

implemented using different technologies. For example, remote services can be

implemented as RPCs, use network sockets or make use of third-party libraries to provide

network endpoints. This mixture of network technologies is demonstrated by an

implementation of the Fli2 environment that uses RMI for control functionality and the

FastCast Messaging Library mentioned in Section 11.3.1.5 Software Development using

Java (p.280) to stream meter values to a controller.

295

11.3.4.3.2 Implementing Metering Subscriptions

Metering subscriptions for monitoring are implemented in the same way as the controller

messages described previously. However, bi-directional communication is required for

metering: controllers invoke subscription services provided by devices; devices then

stream meter values to controllers that have requested subscriptions. Controllers thus

provide services that receive meter values from devices.

The ‘IMeterValue’ interface class shown previously in Figure 11.7 implements meter

subscriptions in the same manner as control messages sent by controllers to devices. This

interface class is implemented by controllers to provide a control point for meter values

streamed from a device. When a controller sends a meter subscription message to a device,

it provides the IP address and port of its local RMI registry. The device is then able to

obtain a reference to the required remote service (procedure call) from the controller’s

registry. The use of two registries is required because Java processes cannot add services

to a standard Java remote registry. For enhanced security, service advertisements can only

be added to a registry by processes executing on the same JVM as the registry process. An

RMI registry implementation that supports remote service registrations has been

developed at the Hochschule Konstanz University of Applied Sciences (Haase, Waesch, &

Zhao, 2008).

The following sequence of events illustrated by the sequence diagram A6.5 in

Appendix 6 occur when a controller subscribes to receive meter values from a remote

device:

1. A user requests a local meter to subscribe to meter values from a remote device.

2. The ‘LocalMeter’ object requests its local control parameter to subscribe to a

remote meter.

3. The local control parameter object (‘locParameter’) invokes the remote service

to subscribe to the remote meter.

4. An RMI RPC excites the service request provided by the ‘RemoteDevice’ object

on the remote device.

5. The ‘RemoteDevice’ object requests the specified ‘RemMeter’ (remote device

meter) object to start transmitting meter values.

6. If the remote meter process is executing, the remote meter process invokes an

RMI RPC to stream its meter values to the audio controller.

7. The audio controller receives meter values and updates the corresponding local

meter.

296

The previous sections described the core control functionality provided by the Fli2

environment. The sections that follow consider factors surrounding the implementation

of this functionality.

11.3.5 Implementation Considerations

Serialized objects and the remote network communications required to implement control

messages that invoke remote services can be implemented in several ways.

11.3.5.1 Implementing Serialized Objects

Objects placed in a space can be ‘fully-serialized objects’ or ‘partially-serialized’ objects.

Fully-serialized objects contain all the resources that they require. All user interface

widgets or graphics required by the object are represented as referential attributes that are

serialized with the object instance. Partially-serialized objects contain identifiers

indicating the resources that they require. These resources must be locally available to the

controller that retrieves the objects. For example, a fully-serialized fader control would

contain the fader widget that forms the user interface to the control. A partially serialized

fader control would only contain an identifier indicating that the required user interface

widget is a fader widget. This widget must then be loaded from a local library by the

controller application that retrieves the control. These different implementations are an

example of the classic space-time tradeoff. Fully serialized objects use more bandwidth;

partially serialized objects require access to local data. The implementation discussed in

this chapter uses partially serialized objects where the required widgets are loaded from

the libraries shown in the deployment diagram of Figure 11.4.

11.3.5.2 Implementing Parameters

Parameters are hierarchically organized according to the levels prescribed by the

parameter description layer of the SDM. Each level is described by a parameter object

attribute that can be used to select parameters from a space using associative matching.

It is often difficult to distinguish between remote parameters and remote services as

remote services may access corresponding remote parameters or may be contained within

remote parameter objects. Parameters are loosely coupled to the services that access

parameters as illustrated in Figure 11.13(b) and Figure 11.13(c). Figure 11.13(a) shows a

tightly coupled implementation that is decoupled in Figure 11.13(b) by introducing a

parameter object. Figure 11.13(c) provides a parameter join between a local control

parameter and a remote proxy parameter. Decoupling parameters from controls supports

dynamic service configuration. A local parameter may select the remote service that it

interacts with using the relationships shown in Figure 11.13(b), or local parameters may

297

Figure 11.13 De-Coupling Service Implementations.

 Control

 Remote
 Service

11.13(a)

11.13(b)

 Control

11.13(c)

 Remote
 Parameter

 Local
 Parameter

 Local
 Parameter

 Control

 Remote
 Service

 Remote
 Service

be joined to remote parameters as illustrated by the object relationships shown in Figure

11.13(c).

In the Fli2 implementation, a ‘RemoteDevice’ object (created by a remote device)

implements control points for RPCs as explained previously. Figure 11.14 shows that

because a control parameter (advertised and retrieved via a space) exists on the controller

where it becomes a local parameter that encapsulates a remote service, the required

remote control can be updated directly by the invoked remote service.

It is also possible for the invoked remote service to be designed to update local control

parameters on the controlled device.

Because the control commands as well as the means to transport these commands

are contained within parameter objects (made available to controllers via a space),

different protocols and transports can easily be used. For example, a control surface can

conceivably have a control transmitting OSC over UDP, a second control transmitting

Local Parameter

Device

 Class RemoteDevice

Controller

 Remote Service

Control
 Value

 Remote
 Service Proxy

Network

Figure 11.14 Remote Service Implementation.

 Local
Parameter

RPC

298

UPnP actions over IEEE 1394 (FireWire) and a third control transmitting DMX over

TCP/IP. This arrangement allows a service to be implemented using different control

protocols and different network transports. For example, in Figure 11.14 the

‘Remote Service Proxy’ would transmit a protocol command rather than invoke a RPC.

This idea is explored further in Section 11.5 Use of Existing Control Protocols (p.304). As

emphasized throughout this dissertation, independent access to parameters is supported.

Independent parameters that are loosely coupled to a user interface allow parameter

relationships to be specified, and also allow the state of a device to be easily saved or

restored to a previous state. Creating parameter relationships and saving or restoring a

device’s state are discussed and illustrated in Appendix 6.

11.4 Connection Management

The inherent properties of spaces lend themselves to connection management

applications. The following sections discuss these properties and describe three different

space-based approaches to implementing connection management (Eales & Foss, 2014).

11.4.1 Managing Concurrency

The challenges posed when dealing with race conditions caused by concurrent access to

services and resources were introduced in Section 2.10.1.1 Message-Based Race

Conditions (p.41). This section discusses how spaces provide solutions to concurrent

access scenarios in the context of connection management.

Space transactions exhibit four properties termed the ‘ACID properties’

(Pinus, 2004), (Freeman, Hupfer, & Arnold, 1999, p. 243). These properties are:

 Atomicity, which means that space transactions execute atomically or not at all.

Transactions cannot be interrupted or pre-empted during execution.

 Consistency, which states that space transactions can never modify the state of

the objects within a space.

 Isolation, which means that different space transactions do not affect each other.

This principle differs from the idempotence principle discussed in Section 2.9.1.4

Command Acknowledgments (p.36). Writing the same object twice to a space

will add a duplicate object to the space.

 Durability, meaning that completed space transactions will be persistent and

survive a failure of the space. This property is implementation dependent and is

not supported by the Fly object space.

These properties enforce transactional security. In particular, atomicity ensures that data

race conditions cannot occur. However, general race conditions may exist if different

299

devices or controllers attempt to make concurrent audio connections. Spaces naturally

provide solutions to general race scenarios by making shared objects that represent or

create connections only available to a single process at any one time.

Applications wishing to manage connections must first remove one or more shared objects

from a space. After connections have been created or torn down, the shared objects are

returned to the space. Shared objects represent the states of a binary ‘mutual exclusion

semaphore’ (MUTEX). A binary MUTEX is typically implemented in software as a binary

variable that prevents race conditions by controlling access to shared resources (Dijkstra,

1965). A space functions as a binary MUTEX where MUTEX states are represented by the

space either containing or not containing the shared objects.

Because spaces support subscriptions to WRITE() operations, changes to audio

connections are automatically propagated to all interested devices on the network.

These devices receive update notifications when newly created connections are written to

a space. Devices and controllers can then read the required objects from a space and

update their views of the network.

11.4.2 Approaches to Implementing Connection Management

A space-based approach to audio connection management allows audio terminals and

connections to be represented and managed in a variety of ways. These include using:

1. A single, shared connection manager application that is retrieved from a space by

a controller and then returned to the space once the required connections have

been made.

2. Shared terminal objects that are removed from a space, updated, and then

returned to the space. Each source terminal maintains a list of connected

destination terminals or a destination terminal has an object attribute

representing a single source terminal. Representing connections using destination

terminals is compatible with the SDM and the AES64 representation of

connections discussed in Section 7.5.2 AES64 Connection Parameters (p.201).

3. Shared connection objects that have object attributes representing both the source

and destination terminals that create a connection.

The last two approaches can also use a shared connection manager that is provided to all

devices. In these cases, a connection manager is not used to enforce mutual exclusion.

A connection manager is only read once from a space by an application that performs

connection management. The connection manager is then used to read terminals or

connection objects from the space, update the objects and then write them back to the

space.

300

11.4.2.1 Use of a Shared Connection Manager

The use of a single shared connection manager that is written to a space when the audio

network is made available is illustrated in Figure 11.15. Devices are notified of the presence

of the connection manager and then read the connection manager to update their views of

audio terminals and audio connections. Terminal advertisements and connections are

made by removing the connection manager from the space, updating the connection

manager and then returning the updated connection manager to the space.

The sequence diagram of A6.6 in Appendix 6 illustrates the use of a shared connection

manager to advertise audio terminals:

1. A device creates an object template to identify a ‘Connection Manager’ object that

exists within a space.

2. A device removes the ‘ConnectionManager’ object from the space using the

template created in the previous step.

3. The device adds its audio terminals to the ‘ConnectionManager’ and returns the

object to the space.

4. Devices are notified that a connection manager has been written to the space.

5. Devices read the ‘ConnectionManager’ object from the space.

6. Devices update their view to display the available audio terminals on the network.

A similar sequence of events occurs when connections are made or torn down.

A connection manager may also provide a user interface that:

 Displays all terminals and the current connections on a network, and

 Provides a user interface that allows users to view and create connections.

Figure 11.15 Connection Management using a Connection Manager.

Space
Device1 Device2

 Connection
 Manager

 Connection
 Manager

 Connection
 Manager

Legend: Listen Notify Take / Write

301

This approach that encapsulates a user interface within a connection manager object is

explored later in this chapter.

11.4.2.2 Using Shared Terminal Objects

The use of a single, shared connection manager provides a coarse-grained approach to

managing connections, as only a single object (the connection manager) must be retrieved

from and written to a space. A more fine-grained approach makes use of objects

representing audio terminals. Each object advertised to a space by a device is a single audio

terminal representing a signal source or signal destination. These audio terminals can be

individual audio channels, streams of audio channels or the source and destination signals

that create primary connection points as described in Section 4.4.1 Representing Audio

Terminals and Audio Connections (p.104).

The sequence of events required to create connections between different networked

devices are similar to the events listed in the previous section. The difference is that each

connection is represented by an audio source or destination terminal that stores

references to the audio source terminal or terminals that it is connected to. Starvation can

occur if a device removes shared objects and does not return them to the space. Solutions

to starvation scenarios are discussed later in this chapter. Connections are created by the

following sequence of events:

1. Devices register to receive notifications when terminal objects are written to

a space.

2. A device advertises terminals by writing terminal objects to a space.

3. Devices are notified when terminal objects are written to the space and read

the terminal objects.

4. Devices are notified when terminal objects are written to the space and read

the terminal objects.

5. Devices update their view of the available audio terminals.

6. A user creates connections and commits the updated terminals to the space.

7. The device writes the updated terminals with their connected terminals to

the space.

8. Devices are notified that terminals have been written to the space and read

the updated terminals from the space.

9. Devices update their view of network connections.

Each terminal that maintains connections (by storing the terminals that it connects to)

functions as a MUTEX state within a space. This ensures that connections between

302

terminals occur in a deterministic manner. These events are illustrated in the sequence

diagram of Figure A6.7 in Appendix 6

11.4.2.3 Using Connection Objects

This approach uses distinct instances of a shared connection manager that is read (copied)

once from a space by each application that wishes to perform connection management as

illustrated in Figure 11.16. The connection manager application manages all space

transactions and provides controllers with a user interface.

This implementation does not use the connection manager application to represent the

states of a MUTEX as discussed earlier. Instead, a dedicated MUTEX state object must be

removed from the space before connection objects are advertised to the space.

Figure 11.16 illustrates an application that uses shared connection objects where:

1. A ‘ConnectionManager’ object and an object that functions as a ‘MUTEX’ state are

written to a space when the audio network becomes available.

Shared
Connection Manager

Figure 11.16 Connection Management using Connection Objects.

Devices/
Controllers

Space State
Monitor

303

2. Devices create a ‘Connection Manager’ template and read the ‘Connection

Manager’ object from the space.

3. Devices create and register a template to receive notifications when

‘AudioTerminal’ objects are written to a space.

4. Devices create and register a template to receive notifications when

‘ConnectionObject’ objects are written to a space.

5. Devices create a collection of all ‘AudioTerminal’ objects advertising source and

destination audio streams

6. Devices write all ‘AudioTerminal’ objects to a space.

7. Devices are notified when terminals are advertised to a space and read the

advertised ‘Terminal’ objects from the space.

8. A device provides its ‘ConnectionManager’ with the newly read ‘Terminal’ objects

and the connection manager updates its view of the terminals available on the

network.

9. Users create audio ‘ConnectionObject’ objects by associating a source terminal

with a destination terminal using the user interface provided by the connection

manager.

10. The MUTEX state object is removed from the space by a connection manager

wishing to make connections.

11. ‘ConnectionObject’ objects are written to the space and all connection managers

are notified that new connections have been made.

12. The controller returns the MUTEX state object to the space.

13. Devices are notified that 'ConnectionObject' objects have been written to the space.

14. Devices create template objects and read the newly made connections from the

space.

15. Devices request the connection manager to display the connections.

Figure A6.8 in Appendix 6 provides a sequence diagram of the above events.

The connection manager shown in Figure 11.16 also provides a summary of all space

transactions using a ‘Space State Monitor’ that is used during development to verify the

state of the object space. The user interface is illustrated in greater detail in Appendix 4.

11.4.3 Inconsistent Connection States and Starvation

Great care is required when designing space-based applications. When an object

representing the state of a MUTEX is removed from a space, other processes that require

the object must wait for it to become available. This situation introduces the possibility of

starvation if a process that has removed the MUTEX state object does not return it to the

304

space. To prevent starvation, a timer can be used to limit the time available to commit

audio connections to a space. When a device wishes to commit connections it removes the

required object (connection manager, terminal or dedicated MUTEX state object) from a

space. After expiry of a ‘lease period’, the object is returned to the space.

A simpler solution is to ensure that the object is only removed from a space when

committing connections to the space.

11.5 Use of Existing Control Protocols

If a protocol stack is available to a controller, control or parameter objects can use this

stack to execute protocol commands. An innovative approach is for devices to provide the

protocol stack to a controller via a space. When a required control protocol stack is not

locally available, a device ‘pushes’ a protocol stack for the required control protocol to

controllers. Figure 11.17 shows that this approach requires the control protocol stack to be

implemented as one or more objects that are serialized to a space. In this example, a device

contains a child control and an associated control parameter.

When applications retrieve a device object, an attribute indicates the objects that must be

read from the space to implement the required protocol stack.

Parameter objects are automatically pre-configured (by the devices that created and

advertised the parameters) to use the stack retrieved from a space. Use of a specific stack

can be localized to different sub-devices and controls, allowing a device to communicate

using different protocols. For example, control commands, subscriptions and connection

management requests can be implemented by different network communication protocols

or control protocols.

Figure 11.17 ‘Pushing’ a Protocol Stack to Controllers.

Space
Device Controller

 Control

Protocol
 Stack

 Device

Parameter

Network

Write
Read

Protocol Message

Parameter
Protocol
 Stack

Protocol
 Stack

 SubDevice

305

11.5.1 Advertising an OSC Stack

As an example, an OSC stack was developed using the classes from the JavaOSC library

(Ramakrishnan, n.d.). Parameters send OSC commands and their arguments to the OSC

stack, which then transmits the required OSC messages to the controlled device.

The sequence diagram of A6.10 in Appendix 6 illustrates the following event sequence:

1. A networked device creates a ‘ProtocolStack’ object and writes the object to a

space.

2. The device creates an ‘AudioDevice’ object and advertises itself by writing the

object to a space.

3. A controller creates an ‘AudioDevice’ object template and reads the

‘AudioDevice’ object from the space.

4. The controller obtains the name of the required protocol from the ‘Device’

object.

5. The controller creates the required ‘AudioDevice’ object template.

6. The controller reads the ‘ProtocolStack’ object from the space.

7. The ‘ProtocolStack’ object is registered with the controller.

8. The controller creates a protocol message.

9. The controller requests the ‘ProtocolStack’ object to execute the created

message.

A ‘ProtocolStack’ class encapsulates any protocol stack provided to controllers. Parameter

objects that use this protocol then direct their messages to the registered protocol stack.

In this example, because the device provides the protocol stack, the stack is automatically

initialized to the address and port of the controlled device.

11.6 Commentary and Evaluation

The use of one or more distributed, associative memories creates a flexible ‘distributed

discovery and control environment’ that can provide all of the control and monitoring

features associated with a control protocol.

11.6.1 A Summary of Fli2 Features

Table 11.2 summarizes the features found in the Fli2 environment.

306

[1] Simple access security models are easily implemented using spaces. Objects may have fields that specify passwords

or access levels that must be provided before services provided by the object may be invoked or control messages sent

to specific devices. Access security is implemented by matching passwords or access levels when retrieving objects from

a space.

Spaces require a different approach to application development where consideration

of the past, current and future states of a space is required.

Applications must maintain sets of current objects, discard objects that are no longer

useful, and register to receive notifications when objects arrive in the space in the future.

Great care is required when implementing applications that use a space as the ordering of

space transactions is significant. Because all transactions are atomic, the order of write

transactions influences the results of read operations as discussed previously in

Section 11.3.3.1 Device and Service Advertisements (p.287). For example, if a control

object indirectly references a parameter object (using an attribute identifier rather than a

reference); the parameter object should be written to the space before the control object

Fli2 Features Comments

1. Network Management

 1.1 Device discovery

4.3 Monitoring reachability

Service Discovery and Enumeration

1.1 Service Discovery

1.2 Service Enumeration -- Not required.

2. Control Surface Representation and
Creation.

 Performed by objects.

4. Device control and Monitoring

4.1 Writing Parameter Values Performed by objects.

4.2 Reading Parameter Values Performed by objects.

4.3 Automation (Not implemented).

5. Parameter Management

5.1 Linking Controls to Parameters

5.2 Joining Parameters

5.3 Grouping Parameters Absolute master-slave groups.

5.4 Bulk Parameter Access

6. Connection Management

6.1 External Connection Management Representing terminals or
connections as shared objects.

6.2 Internal Connection Management

6.3 Connection Assignment

7. Security
 Passwords or community-based

schemes [1].

Table 11.2 A Summary of Fli2 Features.

307

is written. If the reverse ordering is used, a controller may read the control from a space

but fail to read the associated parameter as the space has not yet received the parameter

object.

11.6.2 Advantages of Object Spaces

Using object spaces to provide service discovery and transfer service implementations

provide several unique advantages over existing control protocols, including:

1. An efficient use of network bandwidth during service discovery as continuous

service announcements or polling a registry to discover devices and services are

not required;

2. Service identifiers that are easily discovered by associative matching;

3. Control over the granularity of service discovery to support the functionality

required by a particular application. The amount of standardization (of descriptive

attributes used for associative matching) is directly proportional to the level of

granularity required during service discovery.

Additionally, object serialization via a space means that:

4. Service enumeration becomes redundant as services are fully implemented within

serialized objects;

5. Point-to-point network connectivity is automatically and transparently created by

objects retrieved from a space;

6. Control surface creation is performed automatically by objects retrieved from a

space;

7. Any network technology can be used to implement network connectivity for

control and monitoring messages. Examples include remote procedure calls,

socket connections and the use of existing control protocols;

8. The transfer of executable code between devices and controllers promotes

functional scalability by allowing functional modules (‘plugins’) to be added to an

existing application;

9. There is no technical distinction between client-server and peer-to-peer network

architectures. Any device may advertise services or discover and invoke remote

services.

These nine advantages are extremely significant. A coarse-grained approach to associative

matching allows service discovery to be implemented by a small set of descriptive

attributes. The attributes provided by the components of the device architecture layer of

the standard model (‘DEVICE’, ‘SUBDEVICE’ and ‘CONTROL’) are sufficient to provide

rudimentary service discovery capabilities. Matching of additional attributes allows finer

308

distinctions to be made, for example, discovering all gain controls or fader controls on a

mixing console. These operations require additional template attributes such as ‘FADER’

or ‘GAIN’ attributes to provide a finer resolution during the associative matching process.

Service enumeration is traditionally a difficult process that requires the properties

of a service that enable controllers to invoke the service to be recognizable and therefore

standardized. In the case of DNS-SD, properties of a specific service are described by ‘TXT’

records that are <key, value> pairs (Cheshire & Krochmal, 2013). These keys are

commonly parsed by a process to enumerate the characteristic attributes of a service.

To enable the recognition of key values, a significant amount of standardization is

required. By delegating the initialization or configuration of a service to executable content

implemented as object methods, standardization requirements are trivialized. For

example, method names such as ‘Render()’, ‘Initialize()’, ‘Terminate()’ and

‘BindToNetwork()’ are the only standardizations required.

Associative matching also promotes a direct, user-centric view of services as

previously illustrated in Figure 11.12. Associative matching allows a high-level graphical

view or description of services or a device’s architecture to be directly presented to users.

Enumeration of services becomes unnecessary, as objects retrieved from a space are

self-describing. For example, each fader for a mixing console can provide a meaningful

description of its functionality and the parameters that it references. This description is

easily displayed to a user without requiring any service enumeration to determine the

functionality provided by a service.

Associative matching underlies the discovery philosophy used when parsing XML

documents where unrecognized tags are simply ignored. This feature makes an associative

environment highly scalable, as the device model can evolve while maintaining backward

compatibility. Although Fli2 provides an object-oriented control environment, no

inheritance hierarchies are used. This simplifies the design of the environment and

supports scalability. New classes and methods are easily added to the environment

without influencing existing classes and methods.

11.6.3 Disadvantages of Spaces

Spaces have three main disadvantages:

1. Implementations are typically tightly coupled to a specific platform or

programming language;

2. Serialized objects exhibit value semantics rather than reference semantics.

This means that object states will not be maintained across identical object

instances as discussed in Section 11.6.3.1, below;

309

3. Associative matching operations are limited to logical AND, as well as wildcarded

(ANY) operations when using standard space operations derived from the Linda

model. These limitations were discussed in Section 11.2.2.1.1 Granularity of

Service Discovery (p.274). Use of extended operations provided by object space

implementations such as the Mozart Spaces implementation discussed in Section

11.3.1.1 MOZART Spaces (p.278) will create monolithic applications.

The implementation presented in this chapter is dependent on the Java programming

language as Fly object space operations are tightly coupled to a Java environment.

A space that is independent of any programming language is required to create

interoperability between applications created within different development

environments. This requires each application to have a protocol stack that can:

 Translate from a specific programming language to a common serialized object

format that is stored within a space;

 Process notifications from a space and invoke the required callback functions

belonging to an application.

Spaces that support different programming languages typically create ‘bindings’ for each

environment that support the serialized object format as well as the operations that access

a space (Walton & Warren, 2015). A programming language-neutral object format such as

Protocol Buffers (Schwitzer & Popa, 2011) or XML can easily be used to represent object

instances. The difficulties lie in providing a common notification mechanism that is

supported by different software environments. A commonly encountered solution to this

type of problem is to use an Interface Definition Language (IDL) that supports generic

remote procedure calls (McKinnon, n.d.). The use of IDLs is not discussed further in this

dissertation.

11.6.3.1 Value and Reference Semantics within Serialized Objects

When a control is serialized to a space as shown in Figure 11.18, all object instances that

are referenced by the control are also serialized. However, all referenced objects (a single

parameter in this example) can also be independently serialized to the space. Serialization

creates deep (different but identical) copies of objects. In Figure 11.18,

P1 (a copy of the remote parameter object P) is serialized with the control that updates

parameter P1. Parameter P2 is an identical copy of parameter P1 that has been

independently written to the space. Parameter objects P1 and P2 contain identical

methods that update the value of remote parameter P. However, P1 and P2 do not

reference each other. If a controller retrieves and updates the value of parameter P2,

310

the value of P will be updated but P1 will not reflect the change. Similarly, P2 will not

reflect changes made the control to P1.

These dependencies and relationships between objects must be managed by an

application. When controls (and their referenced parameters), as well as separate atomic

parameters are retrieved from a space, the parameters are stored in a set. By definition,

a set data structure ignores the addition of duplicate parameter instances.

Unlike technologies such as CORBA (Object Management Group, 2012) and RMI,

space environments do not pass objects by remote reference. Objects are always copied by

value to and from a space.

11.7 Summary

This chapter has demonstrated how object spaces support the development of novel

discovery and control environments. Control and monitoring capabilities are

implemented by any distributed communication capability, including the use of existing

middleware layers and control protocols. A control protocol was defined in Section 1.3 An

Introduction to Control Protocols (p.6) as a software system providing remote

communication that defines:

 Remote commands and their associated semantics;

 How these commands are encoded into PDUs;

 The transport of PDUs across a network;

 A representation and organization of parameter data.

The use of object serialization in conjunction with an associative space challenges the

accepted notions of what constitutes a control protocol. The following original,

higher-level definition of a control protocol was formulated to describe the space-based

environments discussed in this chapter:

Figure 11.18 Copy by Value Semantics Within an Object Space.

 Space

Control

 Remote
 Parameter P1

 Remote
 Parameter P2

 Device

 Parameter P

 X

Control

Write()

Write()

311

 “A set of transparent, independent point-to-point communications between the

clearly identifiable and discoverable components or services provided by different

distributed devices, where each communication has a well-defined semantics.”

This definition differs considerably from the earlier definition of a control protocol.

A client or peer process does not require any knowledge of remote commands, their

implementation details, encodings or transport. Remote commands are transparently

embedded into device components implemented as objects or parameter objects

according to the functional roles provided by different components or parameters as

discussed in the previous sections. Devices ‘push’ device components and their embedded

services to controllers. This type of environment that transparently uses existing network

protocols may be termed a distributed discovery and control environment. As this chapter

has demonstrated, object spaces support sophisticated and expressive mechanisms that

integrate service discovery and the provision of control functionality. The flexibility of

discovery operations and service implementations, as well as the scalability provided by

object serialization cannot be matched by traditional control protocols.

312

Chapter 12

Conclusions

12.1 Introduction

A substantial portion of this dissertation has investigated the control and monitoring

capabilities of different control protocols, as well as the representation of devices within

these protocols. Control protocols were discussed with specific reference to the standard

device model developed in Chapter 4. Chapter 10 developed concepts for evaluating

control protocol designs, while Chapter 11 introduced a novel distributed environment

that supports both service discovery and control functionality.

This closing chapter briefly summarizes the most important areas of this dissertation

and highlights the discoveries made during this study. The most significant original

contributions to the field of audio control protocols presented in this dissertation are the:

1. Development of a standard, generic device model that defines a standard format

for parameter addresses.

2. Use of an object space to provide the nucleus of a distributed discovery and

control environment that implements service discovery by identifying objects

representing components of the SDM.

3. Demonstration that serialized objects can transparently provide control

functionality.

4. Demonstration that serialized objects can be used as ‘plugin’ components that

can be transparently added to a control surface.

5. Development of concepts and terminology that provide reference points for

examining and evaluating control protocol designs.

6. Identification of both desirable and undesirable features of control protocol

designs. These features were codified to provide the set of control protocol design

heuristics listed in Appendix 1 that serve as guidelines for the design,

implementation and evaluation of control protocols.

Additionally, the discovery that compound SNMP indexes can represent a hierarchical

organization of device components and hierarchical parameter addresses was a discovery

that is valuable for SNMP control protocol implementations.

313

12.2 The Value of a Standard Device Model

The SDM provides a comprehensive basis for further standardization efforts by

formulating:

1. An abstract model of device architecture that can be implemented within different

control protocols as demonstrated in previous chapters.

2. A standard representation of parameter addresses that promotes functional

interoperability.

12.2.1 Standardization of a Conceptual Model

Standardization of the structure of an abstract device model is the first step to defining a

universal standard that supports service discovery and service enumeration.

As mentioned in the conclusions to Chapter 4, standardization of the contents of

description records, layout records, and signal description records is required to make the

SDM useful in practice.

The ability to implement the SDM varies considerably between different protocols,

as it is dependent on the data structures and parameter organization schemes provided by

a control protocol:

 The SDM may be entirely incompatible with a protocol (HiQnet, CopperLan);

 The SDM may be partially compatible with a protocol (UPnP and IEEE 1722.1-

2013);

 Only parameter addresses are compatible with a protocol (AES64);

 The protocol may fully support the SDM as was previously demonstrated in

Chapters 5 and 6 with reference to OSC and SNMP respectively.

CopperLan does not support control components, or hierarchical parameter addresses;

UPnP does not define controls, and AES64 specifies controls outside of parameter

addresses using XML. A direct mapping between an abstract device model and these

control protocols is thus not possible as the model must be accommodated within the data

structures and parameter-addressing scheme provided by each protocol.

However, in the case of AES64 it would be possible to translate between SDM control

descriptions and AES64 desk items.

12.2.2 Parameter Address Interoperability

The SDM promotes interoperability among different control protocols by providing

standardized (short) parameter addresses. As discussed in Chapter 4, the SDM combines

a variable-length device architecture layer with a fixed-length parameter description layer.

314

Table 12.1 Parameter Address Representation Within Different Control Protocols.

 SDM
Parameter
Description

SDM
Parameter

 Type

SDM
Parameter

 Instance

 SDM
Parameter
 Value

 SDM
Parameter
 Action

OSC
OSC

Container
OSC

Container OSC Container OSC Method

SNMP
Index Value Index Value Index Value Object Identifier

Ember+ Tree Node Tree Node Tree Node Parameter
Parameter or

Child Parameter

AES64
 Level 6

Address
entry

Level 7 Address
Entry

Level 7
Address Entry

UPnP Service State Variable State Variable

CopperLan
 Parameter

Address
 Parameter Address

HiQnet

Object
Parameter

Index
Parameter Index

IEEE
1722.1-
2013

 Descriptor Address Offset

OCA

 Class or
Control Class
Identifier

Object or
Control Class

Identifier

Object
Attribute or
Control Class
Identifier

Object Method
or Control Class

Identifier

This scheme provides the advantages of a fixed-level addressing scheme while also

dispensing with redundant address levels for very simple devices.

As was demonstrated in previous chapters, translation between different control

protocol parameter address formats and SDM parameter addresses is feasible.

However, these translations are often rather contrived as a one-to-one correspondence

between the different levels of parameter addresses found in protocols such as AES64,

OCA, HiQnet and SDM parameter addresses does not exist. The limited service hierarchy

provided by UPnP, and the absence of a hierarchical description of parameters in

CopperLan and IEEE 1722.1-2013 are not compatible with the SDM parameter dressing

scheme. Parameter addresses relationships between different protocols and SDM short

parameter addresses are summarized in Table 12.1.

Unfortunately, this dissimilarity between parameter address formats and the

commercial realities created by currently competing control protocols means that the

SDM is unlikely to make any impact as a possible basis for interoperability between

different control protocols. Parameter address structure as defined by the SDM is akin to

the development of a new control protocol, and is therefore unlikely to be adopted by

315

different vendors. Emergence of standards may often be driven by customer demand as

mentioned in Section 1.4.1 Characteristics of Successful Standards (p.9). At the present

time, users of audio networks have been concerned about audio stream interoperability,

resulting in the AES67 standard (Audio Engineering Society, 2013). There does not appear

to be a similar demand for control protocol interoperability, although concerns have been

raised about the issue:

"…we are seeing the emergence of competing standards to add to the abundance of

existing competing proprietary protocols … it looks like end users will be stuck with

competing protocols and their user interface control and monitoring software

applications for the foreseeable future."

 (Shuttleworth, 2012)

As of 2015, the challenges surrounding control protocol standardization have not changed

since 2012.

12.3 Evaluating Control Protocols

As pointed out in Appendix 10, the sophistication of a control protocol does not mean that

the protocol will be widely adopted. Thus, a ‘successful’ control protocol meets the user’s

needs, irrespective of the features provided by the protocol. The control protocols

discussed in this dissertation have marked differences in their designs and capabilities.

A control protocol is a software artifact that typically reflects the ideas of a single designer

or a small group of designers. Experience and creative insight are thus strongly reflected

in control protocol designs.

12.3.1 Evaluating Control Protocol Designs

The detailed analysis of different control protocol designs and features presented in

Chapter 10 and Appendix 10 suggested several desirable attributes of a control protocol.

A control protocol that is flexible, expressive and scalable should:

1. Define generalized commands that are applicable to all or significant sections of a

static specification.

2. Provide an abstract static specification that is scalable in the sense that the

contents of the static specification can be expanded without the need to expand

the specification itself. For example, AES64 parameters and SNMP objects can be

added to the tree data structures defined by these protocols without having to

modify the data structure itself. By contrast, IEC-62370-2 requires the static

specification to be extended to accommodate additions to the protocol.

Complexity is reduced and standardized representations are enforced when a

316

static specification is scalable without requiring additions to either the static or

the dynamic specifications.

3. Object-oriented control protocols may need to expand a static specification via

inheritance if an inheritance hierarchy provides standard parameter addresses as

pointed out in Chapter 10 with reference to the Open Control Architecture (OCA)

control protocol. OCA enforces standardization by the specifications created by

class hierarchies, not the object instances of OCA classes.

4. A static specification should be able to represent relationships between

parameters and relationships between descriptive data. Examples of mechanisms

that support the specification of data relationships include the representation of

AES64 parameters that support lists of related parameters and the indexing

schemes provided by SNMP. The ability to reference device components or

reference meta-data is a valuable feature of a control protocol.

5. A dynamic specification should be capable of using the relationships defined by a

static specification. Examples include the use of wildcarded addresses by OSC and

AES64, SNMP indexes and OCA control class identifiers.

6. Provide a balance between a static specification and a dynamic specification.

For example, the freely defined actions provided by UPnP do not match the static

specification where state variables are not hierarchically organized or related.

Conversely, the limited native SNMP commands do not match the sophistication

of the static specification provided by SNMP.

These general observations are covered by the heuristics for control protocol design that

are presented in Appendix 1.

AES64, IEEE 1722.1-2013 and OCA are the only control protocols discussed in this

dissertation that adhere to the above requirements. A flexible approach to both parameter

representation and command specification that is characteristic of frameworks such as

OSC, SNMP and UPnP appears to be attractive features of these control protocols.

However, this flexibility encourages monolithic implementations that inhibit

standardization attempts. A balance is required between flexible and scalable

representations that are designed around core, fixed concepts that promote

standardization.

12.4 Distributed Discovery and Control Environments

The previous chapter introduced the concept of a ‘distributed discovery and control

environment’ that denoted a multi-faceted software system for discovery and control that

utilizes different network and control protocols. This environment provides a higher-level

317

abstraction of the functionality traditionally associated with a control protocol by

supporting the transparent discovery, implementation and use of the services provided by

a networked device.

12.4.1 The Significance of Object Spaces

An associative space provides a novel distributed discovery and control environment

where executable code in the form of serialized objects is provided by remote devices to

controllers. Spaces provide simple solutions to the challenges associated with distributed

environments without sacrificing functionality or scalability. A space does not create the

distributed control environment; it facilitates the creation of the environment by

providing the means to advertise and transfer the objects required to implement the

environment. More significantly, spaces make the concepts of both service enumeration

and command interoperability redundant. These significant characteristics are briefly

commented on in the sections that follow.

12.4.1.1 Device and Service Discovery

Associative matching supports a flexible service discovery process similar to the queries

performed on a relational database. An associative memory is thus able to support

multiple views of a static specification that are created solely by the different associative

keys used to select objects. Examples include sets of related parameters and sets of

controls for a specified parent sub-device. In addition, an object space supports the

implementation of both query and announcement discovery schemes.

12.4.1.2 Service Implementations

Two significant characteristics of the services provided by serialized object instances

transferred via an object space are that:

 Controllers do not require any knowledge of how services are implemented, and

 Parameter objects are represented independently of the control objects that

reference them;

 A minimum level of standardization is required to discover services.

Services are self-configuring and transparent to controllers. Controllers do not derive

classes from abstract library classes or implement object instances belonging to specific

classes to provide the required control, monitoring or connection management functions.

A device provides the resources required by controllers to interact with the device as

discussed in Section 11.3.4.3.1 Service Implementations (p.294). Controllers are provided

with concrete classes that transparently implement all required functionality. Thus, object

318

spaces allow service implementations (rather than service descriptions) to be discovered

and utilized.

 The traditional notion of interoperability, where distributed processes

communicate via well-defined messages that are understood by both transmitters and

receivers does not exist in a space-based environment. Spaces allow processes to be loosely

coupled where interoperability is defined in terms of controllers possessing the means to

communicate rather than by the use of network communications having a standardized

format and content.

12.4.1.3 Connection Management

By enforcing atomic space transactions, object spaces prevent data races and also allow

applications to control general race conditions. Race conditions are prevented in a simple

manner without using complex locking mechanisms to enforce mutual exclusion.

Connection management functionality can be implemented in a variety of ways as

discussed in Chapter 11. Chapter 11 illustrated how a serialized connection manager

application is advertised to a network and provided to controllers. This application

transparently provides connection management functionality to a controller.

As demonstrated in the context of connection management, object serialization promotes

the development of plugin architectures where specific functionality is advertised by

devices. Controllers can read serialized objects to utilize the functionality provided by

these objects.

12.5 Final Observations

The following closing comments consider the current challenges posed by service

discovery and control protocol standardization.

12.5.1 Zero Configuration Networking

The term ‘zero configuration’ was first used by Stuart Cheshire to refer to DNS-SD service

discovery (Cheshire & Steinberg, 2006). By serializing executable content, the concept is

taken further. Service enumeration is made redundant and replaced by executable object

methods that automatically and transparently configure, initialize and realize services. A

device is able to provide all of the functionality (including a protocol stack if required as

described in Section

11.5.1 Advertising an OSC Stack (p.305)) to controllers that wish to control the device.

Devices thus ‘push’ complete implementations of control functionality to controllers. This

distributed model differs substantially from traditional discovery and control models

where service descriptions must be retrieved (‘pulled’) from a device or registry. With

319

these traditional models, a considerable amount of standardization and computational

effort is required for service descriptions to be parsed and implemented by controllers.

12.5.2 Control Protocol Standardization

A minimum level of standardization is one of the features mentioned previously in Section

1.4.1 Characteristics of Successful Standards (p.9) that is believed to lead to a widespread

acceptance of a standard. Standardization to achieve interoperability between different

control protocols requires:

 Standardization of the format of symbolic parameter addresses, and

 Standardization of the meaning of specific parameter addresses. For example,

a pan parameter for a specified channel of a mixing console.

Distributed control environments that use both existing network and control

protocols can focus on a higher-level view of discovery and control functionality.

Object spaces reduce the level of standardization required to implement a distributed

control environment. As was demonstrated in Chapter 11, standardization of the

identifiers denoting high-level device components and the parameter address levels

defined by the SDM is sufficient to provide a sophisticated distributed control

environment. By simply discovering devices, sub-devices, controls and parameters that

contain all required control and monitoring functionality, controllers can interact with any

discovered device.

Given the number of network protocols and the number of competing control

protocols currently available, the question of whether new control protocols are necessary

should be posed. The insights gained from this study suggests that support for service

discovery, user interface creation and the specification of zero-configuration services are

more important than the standardization of lower-level implementations of control,

monitoring and network transport capabilities. As demonstrated in the previous chapter,

sophisticated control environments can be developed using the capabilities of existing

network and control protocols.

“The nice thing about standards is that you have so many to choose
from.”

 (Tannenbaum, 1988), with reference to (Postel, 1983).

320

Appendix 1

Principles of Control Protocol Design

As outlined in Section 1.1.1 Topics Addressed in this Dissertation (p.3), this section

formulates a set of heuristics that should be carefully considered when designing a control

protocol. These heuristics are derived from experience gained in studying and

implementing the different control protocols discussed in previous chapters.

Heuristics are organized within the following categories:

1. General protocol design heuristics.

2. Object-oriented design heuristics.

3. Service discovery and enumeration heuristics.

4. Parameter representation and parameter access heuristics.

5. Control functionality heuristics.

6. Descriptive data heuristics.

7. Device representation heuristics.

8. User interface heuristics.

Dependencies or relationships between different heuristics are indicated by placing a

dependent or elated heuristic within parentheses following the heuristic.

A1.1 General Protocol Design Heuristics

G1. A control protocol should provide direct access to parameters.

Irrespective of whether a protocol design uses a parameter-based approach or an

entity-based approach, parameters should be directly accessible. AES64, OCA and the

SDM all adhere to this principle. IEC-62379-2, UPnP, CopperLan and IEEE 1722.1-

2013 all violate this principle. Section 10.3 Overcoming Entity-Based Design

Limitations (p.257) discussed how independent parameter access can be achieved

within control protocols that have an entity-based primary design concept.

G2. A protocol that is built around a primary design concept that also explicitly or

implicitly defines one or more secondary design concepts will provide greater

flexibility.

Examples of the application of this principle include:

321

1. The specification of full parameter addresses that represent both device structure

and parameter addresses within the SDM.

2. Relationships among SNMP tabular entries that are specified using indexing

schemes as described in Section 6.7.1 Representing Devices, Sub-Devices and

Controls (p.166).

3. The AES64 parameter-addressing scheme that relates parameters to a device’s

architecture.

Further examples of secondary design concepts were provided in Table 10.1 Examples

of Primary and Secondary Design Concepts (p.250).

G3. Parameter data should never be organized to only serve the dynamic functionality

specified by a control protocol. (G1)

Parameter data should be logically organized with reference to other related

parameters and/or a device’s architecture. These characteristics are clearly seen in

the SDM and the AES64 parameter-addressing model. Many entity-based designs

violate this heuristic as dynamic behavior is implemented in terms of functionality

that operates on an entity rather than in terms of parameter access. For example, IEC-

62379-2 parameters only serve the functionality of a specific IEC-62379-2 functional

block.

G4. Functionality (dynamic design specifications) should be determined by logical

requirements rather than fundamental data operations.

Protocol commands should not be limited to GET() and SET(..) operations.

This principle does not dismiss the declarative approach used by SNMP but states

that these fundamental commands need to have more expressive options available as

discussed in Section 6.9.2.2 Retrieval of Logical Data Records (p.181). The use of

wildcards within AES64 and OSC provide examples of a dynamic specification being

extended to support logical functional requirements.

G5. A balance should be achieved between the representation of parameter data and the

dynamic functionality provided by a protocol. (G3, G4)

A sophisticated parameter representation is of little use if the provided functionality

cannot efficiently make use of the parameter representation or vice-versa.

AES64 achieves this balance by providing an API were fundamental commands are

extended was as discussed in Section 7.4.1 Command Messages (p.195). SNMP and

Ember+ violate this principle, as the functionality provided by SNMP commands does

not match the sophistication of its data representation capabilities.

Conversely, UPnP violates this principle by having freely designed services that are

322

not supported by a logical organization of parameters. However, these protocols are

frameworks and not specific control protocols that may provide more sophisticated

commands as pointed out in Section 10.2.3.3 Evaluating Dynamic Specifications

(p.256). Entity-based protocols must typically achieve this balance by providing a

large repertoire of commands to support different entities as was discussed in

Chapter 10.

G6. Peer-to-peer network relationships should be preferred over client-server

relationships.

Peer-to-peer relationships subsume client-server relationships but the converse does

not hold. As mentioned in Section 2.3.2 Peer-to-Peer Network Architectures(p.18),

peer relationships maintain synchronization among the states of different networked

devices and controllers.

G7. Audio signal paths should not form the primary-concept for a control protocol

unless a compelling reason to do so exists.

Controls or primary connection points for audio signals should not have to be

determined by tracing the path of an audio signal through a device. As discussed in

Section 4.5.1 A Channel-Oriented Model (p.112), secondary connection points offer

no advantage to a control protocol. Device representations based on signal paths

introduce unnecessary complexity. IEC-62379-2 violates this principle, as there is no

compelling reason to depict signal paths within this protocol. IEEE 1722.1-2013 must

represent signal connections between IEEE 17722 configurations within different

clock domains that create different IEEE 1722 configurations as discussed in

Section 3.4.1.1.1 Service Enumeration (p.67).

G8. Abstract entities should be preferred over concrete entities.

This is a common software engineering principle. Basing a protocol design on

concrete entities rather than abstract entities limits the extensibility of the protocol.

For example, IEC-62379-2 defines concrete functional blocks that represent a specific

signal processing function. As each functional block is represented within a dedicated

SNMP table, the SNMP MIB must be expanded to add new functional blocks to the

protocol.

A1.2 Object-Oriented Protocol Design Heuristics

The following heuristics apply specifically to object-oriented control protocol designs.

OO1. Object-oriented control protocol designs should ensure that inheritance

 relationships do not mix different concerns.

323

This principle was discussed in Section 10.3 Overcoming Entity-Based Design

Limitations (p.257) with reference to the AES-24 family of protocols and CopperLan.

OO2. Object-oriented control protocol designs should define inheritance hierarchies

that can be used to represent hierarchical parameter addresses.

OCA uses level identifiers and identifier strings to identify properties, methods and

actions as discussed in Section 3.3.2.3.1 Control Class Identifiers (p.54).

OO3. Object-oriented inheritance hierarchies should be deep, single- inheritance

hierarchies rather than shallow, multiple-inheritance hierarchies. (OO2, OO4)

Deep, single inheritance hierarchies represent a single entity and support

hierarchical parameter address representations as found in OCA.

OO4. A class should represent a single abstract entity. (OO1)

A software engineering cliché. For example, representing parameters within a

control class.

OO5. Consider the use of aspects within object-oriented protocol designs.

The use of aspects is an area that requires further investigation. Aspects provide

independent access to parameters contained within objects, while also supporting

arbitrary parameter relationships as illustrated in Section 10.3.4.2 An Aspect-

Oriented Example (p.262).

A1.3 Service Discovery and Enumeration Heuristics

S1. Controller applications should be able to directly discover required services.

A controller may only wish to access specific functionality such as the mastering

section of a mixing console. Traversal of a service hierarchy where services are only

discovered and retrieved on demand is possible within OSC, SNMP, AES64 and UPnP

as was illustrated in the chapters devoted to these protocols. IEC-62379-2 violates

this principle as controllers discover all services provided by a device.

The organization of services within OCA is application specific.

S2. A control protocol should support the retrieval of arbitrary logical device

components, services or descriptive data. (S1)

The Fli2 environment allows arbitrary services to be selected using associative

matching. Bandwidth is conserved, traffic burstiness is avoided, and the local

overheads required to process discovered services are reduced when services can be

selectively discovered and retrieved from a device. SNMP violates this principle as

GETNEXT() and GETBULK() operations retrieve SNMP objects according to the

324

ordering of SNMP data within the SNMP object tree. AES64 and OCA devices may

not require service discovery as parameters have standardized address identifiers.

S3. Prefer the retrieval of high-level entities themselves, not the data describing the

entity.

Serialized entities (objects or data records) allow a complete and fully functional

entity to be retrieved rather than a description of the entity. This principle makes

service enumeration redundant and was discussed in Chapter 9 with reference to

UPnP and in Chapter 11 with reference to the Fli2 environment.

S4. Optimize service discovery and service enumeration for repeating items.

Service discovery can be optimized if previously discovered device components or

parameters can be locally replicated from previously discovered components or

parameters as outlined in Section 4.3.4.5 Parameter and Device Component Naming

Conventions (p.102).

S5. A control protocol should not be dependent on a centralized resource.

Examples of centralized dependencies include the AES-24 registry and a centralized

object space. Object spaces are able to overcome this limitation as multiple object

spaces can easily be synchronized as discussed in Section 11.2.3 Space Network

Architectures (p.276).

A1.4 Parameter Representation and Access Heuristics

Irrespective of the parameter storage mechanism or addressing scheme used to reference

parameters, the following principles support parameter management and the

specification of parameter relationships.

P1. Access to parameter data should not be dependent on accessing controls or other

device components. (G1)

This heuristic restates heuristic G1. Parameters should be clearly separated from, and

loosely coupled to device controls and components. Control parameter values should

not be implemented as attributes within control objects; controls should push their

values to control parameters as discussed in Section 2.7.1 Parameter Classifications

(p.26). This principle is only enforced by AES64.

P2. Related parameters should be stored within one or more logical collections, not as

distinct scalar variables. (P1)

CopperLan, UPnP and most entity-based control protocols violate this principle

either by using linear numeric parameter identifiers or by embedding parameters

within entities. IEEE 1722.1-2013 (like ACN) attempts to mitigate this limitation by

325

storing parameters at addresses that have an offset relationship. OCA uses class level

identifiers to provide a logical grouping of parameters.

P3. Protocol commands should be able to address logical parameter collections or

parameter groups. (P1, P2)

By addressing groups or ranges of parameters, bulk initialization is supported.

Addressing parameter groups also supports capturing a device’s state and restoring a

device’s state to a previous configuration.

P4. Parameter naming and/or parameter-addressing conventions should consider the

use of wildcard characters used for accessing parameter groups.

OSC and AES64 both support wildcard characters within parameter addresses.

A regular, coherent naming scheme such as always appending a channel number to a

parameter name supports these naming conventions.

P5. Carefully considered parameter and service naming conventions can reduce

service discovery requirements. (S4)

When carefully considered, regular naming schemes are used; services can be

deduced from previously discovered services as discussed in Section 4.3.4.5

Parameter and Device Component Naming Conventions (p.102).

P6. Consider parameter relationships when designing data structures to represent

parameters.

Parameter relationships should be considered when designing data structures to

represent parameters. Implementing commands to access and manage parameter

groups is difficult if a parameter representation does not also support the

representation of parameter relationships.

P7. Prefer explicit remote relationships between parameters rather than implicit

relationships between local control values and remote parameter values. (P6)

This heuristic states that parameter joins support additional functionality and

flexibility that cannot be obtained if remote parameter values are directly accessed.

Controls should push values to local protocol parameters if a local protocol address

space exists, rather than directly updating remote parameter values. This principle

allows parameter values to be scaled and modified and also allows a compact control

surface to control a complex device as discussed in Section 7.3.3.1 Parameter Joins

(p.190).

326

P8. Distinctions between different types of parameters should be minimized.

As previously discussed in Section 2.7.1 Parameter Classifications (p.26),

no advantage is usually gained by distinguishing parameters according to criteria

other than the functional type of the parameter. Distinctions between local and

remote parameters may be of value where users must select parameters as found in

the Fli2 environment. The SDM also distinguishes between parameters representing

control or DSP values and connection parameters. These types of parameters typically

have different functionality associated with them. For example, control parameters

may belong to parameter groups, while connection parameters typically imply the

existence of additional parameters such as parameters representing the transmission

state of an audio source stream.

P9. Parameter names and parameter addresses should be context-sensitive by having

a relationship to a device’s architecture.

 This heuristic reinforces and overlaps heuristic G2. Parameters are typically

duplicated across different device components or sections. For example, fader

parameters are associated with the input and mastering sections of a mixing console.

The context within which a parameter exists should be easily determined from the

name or address of a parameter.

P10. Deterministic parameter addresses should be preferred over non-deterministic

parameter addresses.

Parameter addresses should be parsable. This heuristic implies that fixed-length

addresses, or parameter addresses that contain a fixed-length component such as

the SDM parameter address layer should be preferred over variable-length

hierarchical parameter addresses.

P11. Use of a common unit of measurement for parameter values minimizes data

conversions and promotes efficient scaling of data values.

Where parameter values utilize a common unit of measurement, controls can

provide values that conform to parameter values or provide values that can be easily

converted or scaled to the required parameter values.

P12. Protocols should provide support for arbitrary binary data types.

As illustrated in Chapters 9 and 11 with reference to UPnP and the Fli2 environment,

arbitrary binary data types allow controls and control surfaces to be transmitted in

a serialized form across a network. This principle enables heuristics S3 and UI4 to

be implemented.

327

A1.5 Control Functionality Heuristics

CF1. Commands should be designed to optionally request acknowledgments.

A control protocol that uses connectionless communication protocols should be

able to enable or disable acknowledgments. Commands such as service discovery

queries may require acknowledgments, while streaming control messages do not

require acknowledgments. Mandatory acknowledgments (as found in SNMP

requests) use unnecessary bandwidth and impose a performance overhead.

CF2. Commands that have mandatory acknowledgments should provide

non- blocking implementations.

Where a protocol must provide mandatory acknowledgments, blocking and

non- blocking implementations of commands should be provided.

A1.6 Descriptive Data Heuristics

DD1. Descriptive data should be clearly separated from parameter data.

Parameter data should never be stored with descriptive data. Mixing parameter

data with descriptive data requires additional parsing to separate these two

categories of data.

DD2. Data should be meaningfully formatted if it is to be displayed to users.

Control protocol data may be displayed to users or may be intended to be machine

parsable. Data that is displayed to users should be stored in a format that can be

displayed without further processing. This heuristic supports applications such as

UPnP service browsers and SNMP MIB browsers that must directly display service,

parameter and descriptive data identifiers.

A1.7 Device Representation Heuristics

DR1. Device models should be abstract models.

Abstract representations of the different components and data representations used

to define a device model promote scalability, and allow a model to be used to

represent a wide range of devices. IEC-62379-2 uses concrete functional blocks to

represent a device. This design decision requires additional functional blocks to be

added to the protocol if functionality that is not provided by existing functional

blocks is required.

328

DR2. Device representations should be organized hierarchically unless a more

sophisticated query model supports the arbitrary discovery of device

components or services.

A hierarchical model supports a top-down service discovery process that was

demonstrated in the OSC, SNMP, UPnP and Fli2 implementations of the SDM

discussed in the chapters devoted to these protocols. However, the Fli2

environment does not require this organization because associative matching

provides direct discovery of device components.

A1.8 User interface Heuristics

UI1. Users should be able to select the service user interfaces that they require.

This heuristic restates heuristic S1 from a user interface perspective. A user may only

wish to access specific functionality such as the mastering section faders of a mixing

console.

UI2. Users should be able to determine the composition and layout of a control surface.

(S1, UI1)

User should be able to arrange control surfaces in an arbitrary manner. The layout

of a control surface should not be required to mirror the layout of controls on a

controlled device.

UI3. User interface components should use absolute positions rather than relative

positions.

Related to heuristic UI1 and discussed in Section 4.3.2.2.2 Layout Attributes (p.93).

A controller may require components such as individual faders or switches. Where

these components have positions that are relative to parent components, relative

positions become meaningless unless the parent components are also included

within the user interface.

UI4. Prefer the retrieval of user interface components rather than the data describing

user interface components.

Restates heuristic S3 with reference to creating user interfaces.

A1.9 Comparing Design Heuristics across Different Control Protocols

Table A1.1 provides a comparison of different control protocols with reference to the

principles discussed in the previous section. Blank entries indicate that the heuristic is not

applicable or that support for the heuristic is not known.

329

 Design Principle

O
SC

IEC
-6

2
3

7
9

A
ES6

4

SN
M

P

C
o

p
p

erLan

 Fli2

U
P

n
P

O
C

A

1. General Design Heuristics

G1
Control Protocols should provide
direct access to parameters.

[1]

G2

Control protocol designs should
support multiple design concepts.

G3
Organization of parameter data
should not only serve functionality.

G4
Functionality should be determined
by logical requirements rather than
data operations.

G5
Balance parameter representation
and functionality.

[2]

[9]

G6
Prefer peer-to-peer network
relationships.

[3]

G7
Avoid a primary design concept
based on audio signal paths.

G8
Prefer abstract entities over
concrete entities.

2. Object-Oriented Design Heuristics

OO1
Inheritance relationships should
not mix different concerns.

OO2
Inheritance hierarchies should
support parameter addresses.

OO3
Prefer deep single-inheritance
rather than shallow multiple-
inheritance relationships.

OO4
A class should represent a single
abstract entity. [10]

OO5
Consider using aspects
within object-oriented designs.

3. Service Discovery and Enumeration Heuristics

S1 Controller applications should be
able to directly discover required
services.

[4]

[5]

S2

Support the retrieval of arbitrary
logical device components, services or
descriptive data.

S3

Retrieve complete high-level
entities rather that descriptions of
entities.

[7]

S4 Optimize discovery for repeating items.
[8]

[11]

S5 Avoid centralized resources.

Table A1.1(a) Comparing Control Protocols using Design Heuristics – Part 1.

330

 Design Principle
O

SC

IEC
-6

2
3

7
9

A
ES6

4

SN
M

P

C
o

p
p

erLan

 Fli2

U
P

n
P

O
C

A

4. Parameter Representation and Parameter Access Heuristics

P1

Independent parameter
representation.

P2
Related parameters stored
within logical collections.

P3
Commands address logical
parameter groups.

P4

Parameter-naming /
addressing conventions
support wildcards.

P5
Naming conventions can
reduce service discovery.

P6
Data structures support
parameter relationships.

P7
Prefer explicit remote
parameter relationships.

P8
Minimize differences
between parameters.

P9
Relate parameter addresses
 to device architecture.

 ()
Note1

P10
Prefer deterministic
parameter addresses.

P11

Use common measurement
units.

P12 Support binary data types.
 Note3

Table A1.1(b) Comparing Control Protocols using Design Heuristics – Part 2.

[1] Only SET(..) commands.
[2] Not applicable as no static specification exists.
[3] Although client-server implementations are common, peer-to-peer architectures are also found.
[4] OSC does not natively support service discovery.
[5] IEC-62379 does not natively support service discovery.
[6] GETNEXT() and GETBULK() requests provide a coarse-grained retrieval that may often not match
 logical requirements.
[7] Retrieval of arbitrary binary types only supported by SNMP v1.
[8] Indexing allows repeating items to be accessed within a logical ordering scheme.
[9] Functionality not determined by the environment.
[10] The design of the protocol encourages the mixing of concerns.
[11] Using numbered levels within inheritance hierarchies and identifier strings within classes.

[1] Not mandated by the protocol but commonly encountered.
[2] Implementation dependent.

331

[1] OSC and SNMP v1c both support serialization.

 Design Principle

O
SC

IEC
-6

2
3

7
9

A
ES6

4

SN
M

P

C
o

p
p

erLan

 Fli2

U
P

n
P

O
C

A

5. Control Functionality Heuristics

CF1

Make command
acknowledgments optional.
for streamed commands.

CF2
Provide non-blocking
commands. [2] [2]

6. Descriptive Data Heuristics

DD1 Clearly separate descriptive
data from parameter data.

DD2 Format descriptive data.

7. Device Representation Heuristics

DR1
 Device models should
 be abstract models.

Note1

DR2
Prefer hierarchical
device models.

8. User interface Representation

UI1
Users should select
required services.

UI2
Users select control surface
composition and layout.

UI3
Prefer absolute positioning of
user interface components.

UI4

Retrieve user interface
components rather than
data describing
user interface components.

[1] [1]

Table A1.1(c) Comparing Control Protocols using Design Heuristics – Part 3.

332

A1.10 Anti-Patterns in Control Protocol Design and Implementation

Although most of the following ‘anti-patterns’ are covered by the principles discussed

previously, it is useful to emphasize the most important negative features of control

protocol design that were highlighted by this study. These include:

1. Preventing direct, independent access to parameters by embedding parameters

within entities.

2. Unnecessary software complexity. This is a software design cliché that is

unfortunately encountered in control protocols. Examples include the ACN

Device Description Language discussed in Section 3.5.1.3 ACN Device

Description (p.71), and the large and complex API provided by CopperLan.

3. The use of a signal path as a primary design concept. This design feature found

in IEC-62379-2 results in a complex service discovery process. Signal paths must

be traversed from device inputs to device outputs to discover services.

As signal paths typically connect entities, this type of architecture necessitates

the anti-pattern described above in point two.

4. Basing a protocol design on concrete entities (as found in IEC-62379-2) rather

than abstract entities. This type of design is not scalable, as the protocol must be

expanded to accommodate new entities. OCA defines concrete entities to enforce

standardization as discussed in Chapter 10.

5. Not clearly separating different concerns. For example, control functionality,

parameter representation and a representation of a device’s architecture.

CopperLan applications typically mix different concerns because of an object-

oriented design that uses multiple inheritance.

As discussed in Chapter 10, current software design practices (and in particular

object-oriented software) design emphasize entities and not data relationships.

333

Appendix 2

XML Representation of the Standard

Device Model

An XML Document Type Definition (DTD) (World Wide Web Consortium, 1998)

describes the structure of an XML document. The DTD presented in this appendix defines

the structure of an XML document that represents a device using the standard device

model. The structure and configuration of a simplified mixing console shown in Figure

A2.1 is represented by the XML listed in this appendix. For brevity, only two channel strips

are represented.

Several representations of audio terminals and audio connections for providing

connection management functionality exist. These representations depend on whether the

device supports service discovery and provides controller capabilities for connection

management. The device model reflects device capabilities where a device:

 1. Must advertise local audio transmitters and audio receivers available to the device.

2. May discover transmitters on the network and add these as candidate connections

for the local receivers.

3. May discover receivers on the network and add these as candidate connections for

the local transmitters.

4. May provide controls to perform connection management or may only define

connection management parameters.

The device illustrated in Figure A2.1 was used for the development of an XML DTD and as

an example device represented in XML. Notable features of the DTD include:

1. Lines 16-30 define the device architecture layer of the SDM.

2. Lines 41 to 52 define the parameter description layer.

3. Lines 54-58 define remote parameter references and remote parameter instances.

The distinction between different parameter types was discussed in Section 4.3.2.1

An Analysis of Parameter Data (point 2, p.89).

334

4. Line 37 defines parameter identifiers that are referenced by DTD identifier

references (IDREF attributes). Line 52 shows that parameter addresses are

implemented as DTD identifiers (ID attributes). This organization ensures that all

parameter references refer to parameters defined as shot parameter addresses.

5. Slave and peer parameter lists are also defined. Although not required by the SDM,

these lists allow a device’s state to be saved.

6. An AES64 modifier’ function is defined using a simple expression expressed in a

manner compatible with the ‘Mathematical Markup Language’ (World Wide Web

Consortium, 2003).

7. Description and layout records are defined in lines 4 to 14. Description records

may have <key><value> pairs or associate a list of values with a key.

Within the XML example device:

1. Connection management controls and parameter declarations use the AES64

‘id’, ‘advertise’ and ‘listen’ parameters as example parameters.

2. Lines 772-896 provide an example of a signal description record that advertises

transmitter streams and lists previously discovered candidate connections for

these streams.

335

 Figure A2.1 A Simplified Audio Mixer Architecture.

Output Section
Sub-device

Channel Strip
 Sub-Devices

Bus
Sub-Device

Input
Assignment
Control

Device Input
 Sub-Devices

Input Section
Sub-Device

Master Section
Sub-Device

Equ. Section
 Sub-Devices

 Stereo-L Bus
 Stereo-R Bus

 Tra-1 Tra-2

X4

Receiver-1 Receiver-2

Stream In
Sub-Device

X4

Receiver Streams

Stream
Assignment
Control

Device
Output
Sub-
Devices

Stream Out
Sub-Device

Bus
Assignment
Matrix Control

Mute

Gain

Analog
 Out-1

Analog
 Input

mic-1

Transmitter Streams
Sub-Device

X4 X4

Transmitter-10 Transmitter-11

Recever-10 Receiver-11

Phantom
Power Switch

HiEqu
LoEqu

Bus Assignment
Switches

 L
R

LM
RM

336

<?xml version="1.0" encoding="UTF-8"?> 1
<!DOCTYPE DEVICE [2
 3
<!ELEMENT KEY (#PCDATA)> 4
<!ELEMENT VALUE (#PCDATA)> 5
<!ELEMENT META (KEY , VALUE)+> 6
<!ELEMENT LIST (VALUE , VALUE+)> 7
 8
<!ELEMENT ATTRIBSET (KEY , VALUE , META?)+> 9
<!ELEMENT ATTRIBLIST (KEY , VALUE , VALUE+ , META?)> 10
<!ELEMENT ATTRIBREC (ATTRIBSET*, ATTRIBLIST*, REMPARAMETER*)> 11
 12
<!ELEMENT LAYOUTREC (KEY , VALUE , META?)+> 13
 14
<!ELEMENT DEVICE (ATTRIBREC? , LAYOUTREC? , SUBDEVICE+ , SHORTADDRESS)> 15
<!-- --><!ATTLIST DEVICE name CDATA #REQUIRED> 16
 17
<!ELEMENT SUBDEVICE (ATTRIBREC? , LAYOUTREC? , CONTROLITEM* , SUBDEVICE*)> 18
<!-- --><!ATTLIST SUBDEVICE name CDATA #REQUIRED> 19
 20
<!ELEMENT CONTROLITEM ((CONTROL* | MULTICONTROL | CHANNELID))> 21
<!-- --><!ATTLIST CONTROLITEM name CDATA #IMPLIED> 22
 23
<!ELEMENT CONTROL ((PARAMREF | REMOTEREF) , CONTROLVALUE, ATTRIBREC?, LAYOUTREC)> 24
<!-- --><!ATTLIST CONTROL name CDATA #REQUIRED> 25
<!-- --><!ATTLIST CONTROL controlType (rotary | fader | selector | switch | meter) "rotary"> 26
<!ELEMENT MULTICONTROL ((PARAMREF | REMOTEREF)+, CONTROLVALUE , ATTRIBREC?, LAYOUTREC)> 27
<!-- --><!ATTLIST MULTICONTROL name CDATA #REQUIRED> 28
<!-- --><!ATTLIST MULTICONTROL controlType (selector | matrix) "matrix"> 29
<!ELEMENT CONTROLVALUE (#PCDATA)> 30
 31
<!ELEMENT NETADDRESS (#PCDATA)> 32
<!ATTLIST NETADDRESS IPAddress CDATA #REQUIRED> 33
<!ATTLIST NETADDRESS port CDATA #REQUIRED> 34
 35
<!ELEMENT CHANNELID (#PCDATA)> 36
<!ELEMENT PARAMREF (ARGS*)> 37
<!-- --><!ATTLIST PARAMREF address IDREF #REQUIRED> 38
<!ELEMENT ARGS (VALUE*)> 39
 40
<!ELEMENT SHORTADDRESS (PARAMDESC+, MODIFIER*)> 41
 42
<!ELEMENT PARAMDESC (ATTRIBREC?, PARAMTYPE+)> 43
<!-- --><!ATTLIST PARAMDESC name CDATA #REQUIRED> 44
<!ELEMENT PARAMTYPE (ATTRIBREC?, PARAMINST+)> 45
<!-- --><!ATTLIST PARAMTYPE name CDATA #REQUIRED> 46
<!ELEMENT PARAMINST (PARAMETER+)> 47
<!-- --><!ATTLIST PARAMINST name CDATA #REQUIRED> 48
<!-- Action params have no value within a device state --> 49
<!ELEMENT PARAMETER (LIST?, VALUE?, JOIN?, SLAVELIST?, PEERLIST?)> 50
<!----><!ATTLIST PARAMETER name CDATA #REQUIRED> 51
<!-- --><!ATTLIST PARAMETER address ID #REQUIRED> 52
 53
<!ELEMENT REMOTEREF (VALUE?)> 54
<!-- --><!ATTLIST REMOTEREF name CDATA #REQUIRED> 55
<!-- --><!ATTLIST REMOTEREF address CDATA #IMPLIED> 56
<!ELEMENT REMPARAMETER (NETADDRESS, REMOTEREF+)> 57

 XML DTD and Example Device

337

<!-- --><!ATTLIST REMPARAMETER name CDATA #REQUIRED> 58
 59
<!ELEMENT JOIN (PARAMREF | REMOTEREF)> 60
<!ELEMENT SLAVELIST (PARAMREF, RELATION)+> 61
<!ELEMENT PEERLIST (PARAMREF, RELATION)+> 62
<!ELEMENT RELATION (#PCDATA)> 63
<!-- --><!ATTLIST RELATION relType (abs | rel) "abs"> 64
 65
<!ELEMENT AUTOMATION (SEQUENCE+)> 66
<!ELEMENT SEQUENCE (EVENT+)> 67
<!-- --><!ATTLIST SEQUENCE name CDATA #REQUIRED> 68
<!ELEMENT EVENT (TIMESTAMP, (PARAMREF | REMOTEREF), TYPE, VALUE)> 69
<!ELEMENT TIMESTAMP (#PCDATA)> 70
<!ELEMENT TYPE (#PCDATA)> 71
 72
<!ELEMENT MODIFIER (FUNCTION)> 73
<!ATTLIST MODIFIER name CDATA #REQUIRED> 74
<!ELEMENT FUNCTION (MROW)> 75
<!ELEMENT MROW (MROW?, (MI? | PARAMREF) , MO , (MI? | PARAMREF))> 76
<!ELEMENT MI (#PCDATA)> 77
<!ELEMENT MO (#PCDATA)> 78
]> 79
 80
<!-- _________________________ DEVICE _________________________ --> 81
<DEVICE name="Main Console"> 82
 <ATTRIBREC> 83
 <ATTRIBSET> 84
 <KEY> deviceType </KEY> <VALUE> mixer </VALUE> 85
 <KEY> location </KEY> <VALUE> studio1 </VALUE> 86
 <KEY> MAC </KEY> <VALUE> 00:1C:B3:09:85:15 </VALUE> 87
 <KEY> IP </KEY> <VALUE> 192.56.56.5 </VALUE> 88
 <KEY> Port </KEY> <VALUE> 4534 </VALUE> 89
 <KEY> Units </KEY> <VALUE> AES64</VALUE> 90
 </ATTRIBSET> 91
 <ATTRIBLIST> 92
 <KEY> Children </KEY> 93
 <VALUE> Device Inputs </VALUE> 94
 <VALUE> Input Section </VALUE> 95
 <VALUE> Bus Section </VALUE> 96
 <VALUE> Output Section </VALUE> 97
 <VALUE> Device Outputs </VALUE> 98
 </ATTRIBLIST> 99
 </ATTRIBREC> 100
 101
 <!-- _______________________ DEVICE INPUTS _______________________ --> 102
 <SUBDEVICE name="Device Inputs"> 103
 104
 <!-- ____________________ ANALOG INPUTS _________________ --> 105
 <SUBDEVICE name="Analog Inputs"> 106
 <SUBDEVICE name="Mic Inputs"> 107
 <ATTRIBREC> 108
 <ATTRIBSET> 109
 <KEY> intype </KEY> <VALUE> mic </VALUE> 110
 <KEY> name </KEY> <VALUE> mic-1 </VALUE> 111
 <KEY> model </KEY> <VALUE> U87 </VALUE> 112
 </ATTRIBSET> 113
 </ATTRIBREC> 114

338

 <LAYOUTREC> 115
 <KEY> x </KEY> <VALUE> 200 </VALUE> 116
 <KEY> y </KEY> <VALUE> 80 </VALUE> 117
 <KEY> image </KEY> <VALUE> mic.jpg </VALUE> 118
 </LAYOUTREC> 119
 <CONTROLITEM name = "Mic1"> 120
 <CHANNELID> m1 </CHANNELID> 121
 </CONTROLITEM> 122
 <CONTROLITEM> 123
 <CONTROL name="phantom1" controlType="switch"> 124
 <PARAMREF address="input.phantom.ph-1.value"/> 125
 <CONTROLVALUE> true </CONTROLVALUE> 126
 <ATTRIBREC> 127
 <ATTRIBSET> 128
 <KEY> type </KEY> <VALUE> binary </VALUE> 129
 </ATTRIBSET> 130
 </ATTRIBREC> 131
 <LAYOUTREC> 132
 <KEY> x </KEY> <VALUE> 200 </VALUE> 133
 <KEY> y </KEY> <VALUE> 80 </VALUE> 134
 </LAYOUTREC> 135
 </CONTROL> 136
 </CONTROLITEM> 137
 </SUBDEVICE> <!-- Mic Inputs --> 138
 </SUBDEVICE> <!-- Analog Inputs --> 139
 140
 <!-- ___________________ RECEIVER STREAMS _____________________ --> 141
 <SUBDEVICE name="Receiver Streams"> 142
 <!--______ Transmitter Stream Selector Control Receiver1 ______--> 143
 <CONTROLITEM> 144
 <CONTROL name="SrcStreamSelector1" controlType="selector"> 145
 <PARAMREF address="networkStream.recStream.rec-1.id"/> 146
 <CONTROLVALUE> tra-10 </CONTROLVALUE> <!-- current transmitter id --> 147
 <ATTRIBREC> 148
 <ATTRIBLIST> 149
 <KEY> states </KEY> <!-- discovered transmitters --> 150
 <VALUE> tra-10 </VALUE> <VALUE> tra-11 </VALUE> 151
 </ATTRIBLIST> 152
 </ATTRIBREC> 153
 <LAYOUTREC> 154
 <KEY> x </KEY> <VALUE> 136 </VALUE> 155
 <KEY> y </KEY> <VALUE> 16 </VALUE> 156
 </LAYOUTREC> 157
 </CONTROL> 158
 </CONTROLITEM> 159
 160
 <!--_________ Transmitter Stream Selector Control Receiver2 _________--> 161
 <CONTROLITEM> 162
 <CONTROL name="SrcStreamSelector2" controlType="selector"> 163
 <PARAMREF address="networkStream.recStream.rec-2.id"/> 164
 <CONTROLVALUE> tra-11 </CONTROLVALUE> <!-- current transmitter id --> 165
 <ATTRIBREC> 166
 <ATTRIBLIST> 167
 <KEY> states </KEY> <!-- discovered transmitters --> 168
 <VALUE> tra-10 </VALUE> <VALUE> tra-11 </VALUE> 169
 </ATTRIBLIST> 170
 </ATTRIBREC> 171

339

 <LAYOUTREC> 172
 <KEY> x </KEY> <VALUE> 200 </VALUE> 173
 <KEY> y </KEY> <VALUE> 36 </VALUE> 174
 </LAYOUTREC> 175
 </CONTROL> 176
 </CONTROLITEM> 177
 </SUBDEVICE> <!-- Receiver Streams --> 178
 </SUBDEVICE> <!-- Device Inputs --> 179
 180
 <!--______________________ INPUT SECTION _____________________--> 181
 <SUBDEVICE name="Input Section"> 182
 <ATTRIBREC> 183
 <ATTRIBSET> 184
 <KEY> channels </KEY> <VALUE> 2 </VALUE> 185
 </ATTRIBSET> 186
 <ATTRIBLIST> 187
 <KEY> Children </KEY> 188
 <VALUE> ChannelStrip-1 </VALUE> <VALUE> ChannelStrip-2</VALUE> 189
 </ATTRIBLIST> 190
 </ATTRIBREC> 191
 192
 <!--_____________________ CHANNEL STRIP1 ____________________--> 193
 <SUBDEVICE name="ChannelStrip-1"> 194
 <LAYOUTREC> 195
 <KEY> x </KEY> <VALUE> 56 </VALUE> 196
 <KEY> y </KEY> <VALUE> 124 </VALUE> 197
 <KEY> w </KEY> <VALUE> 60 </VALUE> 198
 <KEY> h </KEY> <VALUE> 220 </VALUE> 199
 </LAYOUTREC> 200
 201
 <!--_________ Source Assignment Control1 (IN to channel strip1) ______ --> 202
 <CONTROLITEM> 203
 <CONTROL name="Stream Assignment1" controlType="selector"> 204
 <PARAMREF address="inputSection.Channel1.srcChannel.value"/> 205
 <CONTROLVALUE> ch-2 </CONTROLVALUE> 206
 <ATTRIBREC> 207
 <ATTRIBLIST> 208
 <KEY> states </KEY> 209
 <VALUE> ch-1 </VALUE> <VALUE> ch-2 </VALUE> 210
 <VALUE> mic-1 </VALUE> 211
 </ATTRIBLIST> 212
 </ATTRIBREC> 213
 <LAYOUTREC> 214
 <KEY> x </KEY> <VALUE> 56 </VALUE> 215
 <KEY> y </KEY> <VALUE> 130 </VALUE> 216
 </LAYOUTREC> 217
 </CONTROL> 218
 </CONTROLITEM> 219
 220
 <!-- __________________ Mute Control ________________ --> 221
 <CONTROLITEM> 222
 <CONTROL name="mute1" controlType="switch"> 223
 <PARAMREF address="inputSection.mute.mute1.value"/> 224
 <CONTROLVALUE> true </CONTROLVALUE> 225
 <ATTRIBREC> 226
 <ATTRIBSET> 227
 <KEY> switchtype </KEY> <VALUE> binary </VALUE> 228

340

 </ATTRIBSET> 229
 </ATTRIBREC> 230
 <LAYOUTREC> 231
 <KEY> x </KEY> <VALUE> 56 </VALUE> 232
 <KEY> y </KEY> <VALUE> 140 </VALUE> 233
 </LAYOUTREC> 234
 </CONTROL> 235
 </CONTROLITEM> 236
 237
 <!-- __________________ Gain Control ________________ --> 238
 <CONTROLITEM> 239
 <CONTROL name="gain1" controlType="rotary"> 240
 <PARAMREF address="inputSection.gain.gain1.value"/> 241
 <CONTROLVALUE> 5 </CONTROLVALUE> 242
 <ATTRIBREC> 243
 <ATTRIBSET> 244
 <KEY> min </KEY> <VALUE> 0 </VALUE> 245
 <KEY> max </KEY> <VALUE> 10 </VALUE> 246
 <KEY> step </KEY> <VALUE> 1</VALUE> 247
 </ATTRIBSET> 248
 </ATTRIBREC> 249
 <LAYOUTREC> 250
 <KEY> x </KEY> <VALUE> 56 </VALUE> 251
 <KEY> y </KEY> <VALUE> 150 </VALUE> 252
 </LAYOUTREC> 253
 </CONTROL> 254
 </CONTROLITEM> 255
 256
 <!-- _________________ Fader control _______________ --> 257
 <CONTROLITEM> 258
 <CONTROL name="fader1" controlType="fader"> 259
 <PARAMREF address="inputSection.fader.fader1.value"/> 260
 <CONTROLVALUE> 12 </CONTROLVALUE> 261
 <ATTRIBREC> 262
 <ATTRIBSET> 263
 <KEY> min </KEY> <VALUE> -12 </VALUE> 264
 <KEY> max </KEY> <VALUE> 24 </VALUE> 265
 <KEY> step </KEY> <VALUE> 1 </VALUE> 266
 </ATTRIBSET> 267
 </ATTRIBREC> 268
 <LAYOUTREC> 269
 <KEY> x </KEY> <VALUE> 50 </VALUE> 270
 <KEY> y </KEY> <VALUE> 180 </VALUE> 271
 </LAYOUTREC> 272
 </CONTROL> 273
 </CONTROLITEM> 274
 275
 <!-- __________________ Meter Display _________________ --> 276
 <CONTROLITEM> 277
 <CONTROL name="meter1" controlType="meter"> 278
 <PARAMREF address="inputSection.meter.meter1.value"/> 279
 <CONTROLVALUE> 12 </CONTROLVALUE> 280
 <ATTRIBREC> 281
 <ATTRIBSET> 282
 <KEY> min </KEY> <VALUE> 0 </VALUE> 283
 <KEY> max </KEY> <VALUE> 30 </VALUE> 284
 <KEY> step </KEY> <VALUE> 1</VALUE> 285

341

 </ATTRIBSET> 286
 </ATTRIBREC> 287
 <LAYOUTREC> 288
 <KEY> x </KEY> <VALUE> 56 </VALUE> 289
 <KEY> y </KEY> <VALUE> 180 </VALUE> 290
 </LAYOUTREC> 291
 </CONTROL> 292
 </CONTROLITEM> 293
 294
 <!-- ________________ BUS Selector Control ______________ --> 295
 <CONTROLITEM> 296
 <CONTROL name="L-Bus" controlType="switch"> 297
 <PARAMREF address="inputSection.bus.LStereoBus1.value"/> 298
 <CONTROLVALUE> true </CONTROLVALUE> 299
 <ATTRIBREC> 300
 <ATTRIBLIST> 301
 <KEY> states </KEY> 302
 <VALUE> true </VALUE> <VALUE> false </VALUE> 303
 </ATTRIBLIST> 304
 </ATTRIBREC> 305
 <LAYOUTREC> 306
 <KEY> x </KEY> <VALUE> 50 </VALUE> 307
 <KEY> y </KEY> <VALUE> 190 </VALUE> 308
 </LAYOUTREC> 309
 </CONTROL> 310
 311
 <CONTROL name="R-Bus" controlType="switch"> 312
 <PARAMREF address="inputSection.bus.RStereoBus1.value"/> 313
 <CONTROLVALUE> true </CONTROLVALUE> 314
 <ATTRIBREC> 315
 <ATTRIBLIST> 316
 <KEY> states </KEY> 317
 <VALUE> true </VALUE> <VALUE> false </VALUE> 318
 </ATTRIBLIST> 319
 </ATTRIBREC> 320
 <LAYOUTREC> 321
 <KEY> x </KEY> <VALUE> 60 </VALUE> 322
 <KEY> y </KEY> <VALUE> 190 </VALUE> 323
 </LAYOUTREC> 324
 </CONTROL> 325
 </CONTROLITEM> 326
 327
 <!-- nested subdevices MUST be last to conform to DTD--> 328
 <!--_____________________ EQU SECTION ____________________--> 329
 <SUBDEVICE name="EQU Section"> 330
 <LAYOUTREC> 331
 <KEY> x </KEY> <VALUE> 56 </VALUE> 332
 <KEY> y </KEY> <VALUE> 360 </VALUE> 333
 </LAYOUTREC> 334
 <CONTROLITEM> 335
 <CONTROL name="HiEqu1" controlType="rotary"> 336
 <PARAMREF address="inputSection.hiEqu.hiEqu1.value"/> 337
 <CONTROLVALUE> 3 </CONTROLVALUE> 338
 <ATTRIBREC> 339
 <ATTRIBSET> 340
 <KEY> min </KEY> <VALUE> 0 </VALUE> 341
 <KEY> max </KEY> <VALUE> 12 </VALUE> 342

342

 <KEY> step </KEY> <VALUE> 1 </VALUE> 343
 </ATTRIBSET> 344
 </ATTRIBREC> 345
 <LAYOUTREC> 346
 <KEY> x </KEY> <VALUE> 56 </VALUE> 347
 <KEY> y </KEY> <VALUE> 150 </VALUE> 348
 </LAYOUTREC> 349
 </CONTROL> 350
 </CONTROLITEM> 351
 352
 <CONTROLITEM> 353
 <CONTROL name="LoEqu1" controlType="rotary"> 354
 <PARAMREF address="inputSection.loEqu.loEqu1.value"/> 355
 <CONTROLVALUE> 6 </CONTROLVALUE> 356
 <ATTRIBREC> 357
 <ATTRIBSET> 358
 <KEY> min </KEY> <VALUE> 0 </VALUE> 359
 <KEY> max </KEY> <VALUE> 12 </VALUE> 360
 <KEY> step </KEY> <VALUE> 1 </VALUE> 361
 </ATTRIBSET> 362
 </ATTRIBREC> 363
 <LAYOUTREC> 364
 <KEY> x </KEY> <VALUE> 56 </VALUE> 365
 <KEY> y </KEY> <VALUE> 160 </VALUE> 366
 </LAYOUTREC> 367
 </CONTROL> 368
 </CONTROLITEM> 369
 </SUBDEVICE> <!-- Equ Section1 --> 370
 </SUBDEVICE> <!-- Channel Strip1 --> 371
 372
 <!--___________________ CHANNEL STRIP2 ____________________--> 373
 <SUBDEVICE name="ChannelStrip-2"> 374
 <ATTRIBREC> 375
 <ATTRIBSET> 376
 <KEY> name </KEY> <VALUE> Channel-2 </VALUE> 377
 <KEY> deviceType </KEY> <VALUE> mixer </VALUE> 378
 </ATTRIBSET> 379
 </ATTRIBREC> 380
 <LAYOUTREC> 381
 <KEY> x </KEY> <VALUE> 80 </VALUE> 382
 <KEY> y </KEY> <VALUE> 124 </VALUE> 383
 <KEY> w </KEY> <VALUE> 60 </VALUE> 384
 <KEY> h </KEY> <VALUE> 220 </VALUE> 385
 </LAYOUTREC> 386
 387
 <!--____________ Source Stream Assignment Control _________ --> 388
 <CONTROLITEM> 389
 <CONTROL name="Stream Assignment2" controlType="selector"> 390
 <PARAMREF address="inputSection.Channel2.srcChannel.value"/> 391
 <CONTROLVALUE> ch-2 </CONTROLVALUE> 392
 <ATTRIBREC> 393
 <ATTRIBLIST> 394
 <KEY> states </KEY> 395
 <VALUE> ch-1 </VALUE> <VALUE> ch-2 </VALUE> 396
 <VALUE> mic-1 </VALUE> 397
 </ATTRIBLIST> 398
 </ATTRIBREC> 399

343

 <LAYOUTREC> 400
 <KEY> x </KEY> <VALUE>86 </VALUE> 401
 <KEY> y </KEY> <VALUE> 130 </VALUE> 402
 </LAYOUTREC> 403
 </CONTROL> 404
 </CONTROLITEM> 405
 406
 <!-- __________________ Mute Control ________________ --> 407
 <CONTROLITEM> 408
 <CONTROL name="mute2" controlType="switch"> 409
 <PARAMREF address="inputSection.mute.mute2.value"/> 410
 <CONTROLVALUE> true </CONTROLVALUE> 411
 <ATTRIBREC> 412
 <ATTRIBSET> 413
 <KEY> switchtype </KEY> <VALUE> binary </VALUE> 414
 </ATTRIBSET> 415
 </ATTRIBREC> 416
 <LAYOUTREC> 417
 <KEY> x </KEY> <VALUE> 86 </VALUE> 418
 <KEY> y </KEY> <VALUE> 140 </VALUE> 419
 </LAYOUTREC> 420
 </CONTROL> 421
 </CONTROLITEM> 422
 423
 <!-- __________________ Gain Control ________________ --> 424
 <CONTROLITEM> 425
 <CONTROL name="gain2" controlType="rotary"> 426
 <PARAMREF address="inputSection.gain.gain2.value"/> 427
 <CONTROLVALUE> 5 </CONTROLVALUE> 428
 <ATTRIBREC> 429
 <ATTRIBSET> 430
 <KEY> type </KEY> <VALUE> int </VALUE> 431
 <META> 432
 <KEY> max </KEY> <VALUE> </VALUE> 433
 <KEY> min </KEY> <VALUE> 0 </VALUE> 434
 <KEY> step </KEY> <VALUE> 1 </VALUE> 435
 </META> 436
 </ATTRIBSET> 437
 </ATTRIBREC> 438
 <LAYOUTREC> 439
 <KEY> x </KEY> <VALUE> 116 </VALUE> 440
 <KEY> y </KEY> <VALUE> 150 </VALUE> 441
 </LAYOUTREC> 442
 </CONTROL> 443
 </CONTROLITEM> 444
 445
 <!-- _________________ Fader control _______________ --> 446
 <CONTROLITEM> 447
 <CONTROL name="fader2" controlType="fader"> 448
 <PARAMREF address="inputSection.fader.fader2.value"/> 449
 <CONTROLVALUE> 12 </CONTROLVALUE> 450
 <ATTRIBREC> 451
 <ATTRIBSET> 452
 <KEY> type </KEY> <VALUE> int</VALUE> 453
 <META> 454
 <KEY> min </KEY> <VALUE> -12 </VALUE> 455
 <KEY> max </KEY> <VALUE> 24 </VALUE> 456

344

 <KEY> step </KEY> <VALUE> 1 </VALUE> 457
 </META> 458
 </ATTRIBSET> 459
 </ATTRIBREC> 460
 <LAYOUTREC> 461
 <KEY> x </KEY> <VALUE> 82 </VALUE> 462
 <KEY> y </KEY> <VALUE> 400 </VALUE> 463
 </LAYOUTREC> 464
 </CONTROL> 465
 </CONTROLITEM> 466
 467
 <!-- __________________ Meter Display _________________ --> 468
 <CONTROLITEM> 469
 <CONTROL name="meter2" controlType="meter"> 470
 <PARAMREF address="inputSection.meter.meter2.value"/> 471
 <CONTROLVALUE> 12 </CONTROLVALUE> 472
 <ATTRIBREC> 473
 <ATTRIBSET> 474
 <KEY> min </KEY> <VALUE> 0 </VALUE> 475
 <KEY> max </KEY> <VALUE> 30 </VALUE> 476
 <KEY> step </KEY> <VALUE> 1</VALUE> 477
 </ATTRIBSET> 478
 </ATTRIBREC> 479
 <LAYOUTREC> 480
 <KEY> x </KEY> <VALUE> 88 </VALUE> 481
 <KEY> y </KEY> <VALUE> 400 </VALUE> 482
 </LAYOUTREC> 483
 </CONTROL> 484
 </CONTROLITEM> 485
 486
 <!-- _________________ Bus Selector Control ______________ --> 487
 <CONTROLITEM> 488
 <CONTROL name="L-Bus" controlType="switch"> 489
 <PARAMREF address="inputSection.bus.LStereoBus2.value"/> 490
 <CONTROLVALUE> true </CONTROLVALUE> 491
 <ATTRIBREC> 492
 <ATTRIBLIST> 493
 <KEY> states </KEY> 494
 <VALUE> true </VALUE> <VALUE> false </VALUE> 495
 </ATTRIBLIST> 496
 </ATTRIBREC> 497
 <LAYOUTREC> 498
 <KEY> x </KEY> <VALUE> 200 </VALUE> 499
 <KEY> y </KEY> <VALUE> 400 </VALUE> 500
 </LAYOUTREC> 501
 </CONTROL> 502
 503
 <CONTROL name="R-Bus" controlType="switch"> 504
 <PARAMREF address="inputSection.bus.RStereoBus2.value"/> 505
 <CONTROLVALUE> true </CONTROLVALUE> 506
 <ATTRIBREC> 507
 <ATTRIBLIST> 508
 <KEY> states </KEY> 509
 <VALUE> true </VALUE> <VALUE> false </VALUE> 510
 </ATTRIBLIST> 511
 </ATTRIBREC> 512
 <LAYOUTREC> 513

345

 <KEY> x </KEY> <VALUE> 200 </VALUE> 514
 <KEY> y </KEY> <VALUE> 400 </VALUE> 515
 </LAYOUTREC> 516
 </CONTROL> 517
 </CONTROLITEM> 518
 519
 <!-- nested MUST be last --> 520
 <!--_____________________ EQU SECTION ____________________--> 521
 <SUBDEVICE name="EQU Section"> 522
 <LAYOUTREC> 523
 <KEY> x </KEY> <VALUE> 28 </VALUE> 524
 <KEY> y </KEY> <VALUE> 360 </VALUE> 525
 </LAYOUTREC> 526
 <CONTROLITEM> 527
 <CONTROL name="HiEqu2" controlType="rotary"> 528
 <PARAMREF address="inputSection.hiEqu.hiEqu2.value"/> 529
 <CONTROLVALUE> 3 </CONTROLVALUE> 530
 <ATTRIBREC> 531
 <ATTRIBSET> 532
 <KEY> min </KEY> <VALUE> 0 </VALUE> 533
 <KEY> max </KEY> <VALUE> 12 </VALUE> 534
 <KEY> step </KEY> <VALUE> 1 </VALUE> 535
 </ATTRIBSET> 536
 </ATTRIBREC> 537
 <LAYOUTREC> 538
 <KEY> x </KEY> <VALUE> 200 </VALUE> 539
 <KEY> y </KEY> <VALUE> 400 </VALUE> 540
 </LAYOUTREC> 541
 </CONTROL> 542
 </CONTROLITEM> 543
 544
 <CONTROLITEM> 545
 <CONTROL name="LoEqu2" controlType="rotary"> 546
 <PARAMREF address="inputSection.loEqu.loEqu2.value"/> 547
 <CONTROLVALUE> 6 </CONTROLVALUE> 548
 <ATTRIBREC> 549
 <ATTRIBSET> 550
 <KEY> min </KEY> <VALUE> 0 </VALUE> 551
 <KEY> max </KEY> <VALUE> 12 </VALUE> 552
 <KEY> step </KEY> <VALUE> 1 </VALUE> 553
 </ATTRIBSET> 554
 </ATTRIBREC> 555
 <LAYOUTREC> 556
 <KEY> x </KEY> <VALUE> 86 </VALUE> 557
 <KEY> y </KEY> <VALUE> 500 </VALUE> 558
 </LAYOUTREC> 559
 </CONTROL> 560
 </CONTROLITEM> 561
 </SUBDEVICE> <!-- Equ Section2 --> 562
 </SUBDEVICE> <!-- Channel Strip2 --> 563
 </SUBDEVICE> <!-- Input Section --> 564
 565
<!-- ________________ OUTPUT SECTION SUB-DEVICE _______________ --> 566
 <SUBDEVICE name="Output Section"> 567
 <ATTRIBREC> 568
 <ATTRIBSET> 569
 <KEY/> <VALUE/> 570

346

 </ATTRIBSET> 571
 </ATTRIBREC> 572
 573
 <!-- ___________ MASTER SECTION SUB-DEVICE ___________ --> 574
 <SUBDEVICE name="Master Section"> 575
 <ATTRIBREC> 576
 <ATTRIBSET> 577
 <KEY/> <VALUE/> 578
 </ATTRIBSET> 579
 </ATTRIBREC> 580
 581
 <!-- ________________ Bus Selector Matrix ______________ --> 582
 <CONTROLITEM> 583
 <MULTICONTROL name="Bus Selector" controlType="matrix"> 584
 <PARAMREF address="outSection.master.Lmaster.bus"/> 585
 <PARAMREF address="outSection.master.Rmaster.bus"/> 586
 <CONTROLVALUE> L--bus </CONTROLVALUE> 587
 <ATTRIBREC> 588
 <ATTRIBLIST> 589
 <KEY> states </KEY> 590
 <VALUE> L-bus </VALUE> 591
 <VALUE> R-bus </VALUE> 592
 </ATTRIBLIST> 593
 </ATTRIBREC> 594
 <LAYOUTREC> 595
 <KEY> x </KEY> <VALUE> 20 </VALUE> 596
 <KEY> y </KEY> <VALUE> 23 </VALUE> 597
 </LAYOUTREC> 598
 </MULTICONTROL> 599
 </CONTROLITEM> 600
 601
 <!-- _______________ Left Master Fader control ______________ --> 602
 <CONTROLITEM> 603
 <CONTROL name="L Master Fader" controlType="fader"> 604
 <PARAMREF address="outMasterSection.fader.leftFader.value"/> 605
 <CONTROLVALUE> 12 </CONTROLVALUE> 606
 <ATTRIBREC> 607
 <ATTRIBSET> 608
 <KEY> min </KEY> <VALUE> -12 </VALUE> 609
 <KEY> mAX </KEY> <VALUE> 60 </VALUE> 610
 </ATTRIBSET> 611
 </ATTRIBREC> 612
 <LAYOUTREC> 613
 <KEY> x </KEY> <VALUE> 20 </VALUE> 614
 <KEY> y </KEY> <VALUE> 23 </VALUE> 615
 </LAYOUTREC> 616
 </CONTROL> 617
 </CONTROLITEM> 618
 619
 <!-- _____________ Right Master Fader Control ____________ --> 620
 <CONTROLITEM> 621
 <CONTROL name="R Master Fader" controlType="fader"> 622
 <PARAMREF address="outMasterSection.fader.rightFader.value"/> 623
 <CONTROLVALUE> 12 </CONTROLVALUE> 624
 <ATTRIBREC> 625
 <ATTRIBSET> 626
 <KEY> min </KEY> <VALUE> -12 </VALUE> 627

347

 <KEY> mAX </KEY> <VALUE> 60 </VALUE> 628
 </ATTRIBSET> 629
 </ATTRIBREC> 630
 <LAYOUTREC> 631
 <KEY/> <VALUE/> 632
 </LAYOUTREC> 633
 </CONTROL> 634
 </CONTROLITEM> 635
 636
 <!-- _________ OUTPUT SECTION CONNECTION TO STREAMS _________ --> 637
 <CONTROLITEM> 638
 <CONTROL name="output assignment"> 639
 <REMOTEREF name="Transmitter1" 640
 address="networkStream.recStream.rec-10.advertise"/> 641
 <CONTROLVALUE> networkStream.recStream.rec-1.id </CONTROLVALUE> 642
 <LAYOUTREC> 643
 <KEY> x </KEY> <VALUE> 436 </VALUE> 644
 <KEY> y </KEY> <VALUE> 86 </VALUE> 645
 </LAYOUTREC> 646
 </CONTROL> 647
 </CONTROLITEM> 648
 649
 <!--- __________ Tranmsitter1 Output Stream Selector Control _________ --> 650
 <CONTROLITEM> 651
 <CONTROL name="Transmitter1" controlType="selector"> 652
 <REMOTEREF name="Transmitter1" 653
 address="networkStream.recStream.rec-10.advertise"/> 654
 <CONTROLVALUE> networkStream.recStream.rec-1.id </CONTROLVALUE> 655
 <ATTRIBREC> 656
 <ATTRIBLIST> 657
 <KEY> states </KEY> 658
 <VALUE> networkStream.traStream.tra-1.id </VALUE> 659
 <VALUE> networkStream.traStream.tra-2.id </VALUE> 660
 </ATTRIBLIST> 661
 </ATTRIBREC> 662
 <LAYOUTREC> 663
 <KEY> </KEY> <VALUE> </VALUE> 664
 </LAYOUTREC> 665
 </CONTROL> 666
 </CONTROLITEM> 667
 668
 <!--- _________ Transmitter2 Output Stream Selector Control _________ --> 669
 <CONTROLITEM> 670
 <CONTROL name="Transmitter2" controlType="selector"> 671
 <REMOTEREF name="Transmitter2" 672
 address="networkStream.recStream.rec-11.advertise"/> 673
 <CONTROLVALUE> networkStream.traStream.tra-11 </CONTROLVALUE> 674
 <ATTRIBREC> 675
 <ATTRIBLIST> 676
 <KEY> states </KEY> 677
 <VALUE> networkStream.traStream.tra-1.id </VALUE> 678
 <VALUE> networkStream.traStream.tra-2.id </VALUE> 679
 </ATTRIBLIST> 680
 </ATTRIBREC> 681
 <LAYOUTREC> 682
 <KEY> </KEY> <VALUE> </VALUE> 683
 </LAYOUTREC> 684

348

 </CONTROL> 685
 </CONTROLITEM> 686
 </SUBDEVICE> <!-- master section --> 687
</SUBDEVICE> <!-- output section --> 688
 689
<!-- ______________________ DEVICE OUTPUTS ____________________ --> 690
 <SUBDEVICE name="Device Outputs"> 691
 <!-- ___________________ ANALOG OUTPUTS _________________ --> 692
 <SUBDEVICE name="Analog Output"> 693
 <ATTRIBREC> 694
 <ATTRIBSET> 695
 <KEY> outtype </KEY> <VALUE> line </VALUE> 696
 <KEY> name </KEY> <VALUE> lineout-1 </VALUE> 697
 </ATTRIBSET> 698
 </ATTRIBREC> 699
 <CONTROLITEM> 700
 <CONTROL name="streamChannelSelector" controlType="selector"> 701
 <PARAMREF address="output.analogOut.out-1.value"/> 702
 <CONTROLVALUE> R-Bus </CONTROLVALUE> 703
 <ATTRIBREC> 704
 <ATTRIBLIST> 705
 <KEY> states </KEY> 706
 <VALUE> R-Bus </VALUE> <VALUE> L-Bus </VALUE> 707
 </ATTRIBLIST> 708
 </ATTRIBREC> 709
 <LAYOUTREC> <!-- if displayed --> 710
 <KEY> x </KEY> <VALUE> 20 </VALUE> 711
 <KEY> y </KEY> <VALUE> 23 </VALUE> 712
 </LAYOUTREC> 713
 </CONTROL> 714
 </CONTROLITEM> 715
 </SUBDEVICE> <!-- Analog Outputs --> 716
 717
 <!-- _______________ TRANSMITTER STREAMS _______________ --> 718
 <SUBDEVICE name="Transmitter Streams"> 719
 <SUBDEVICE name="Stream1"> 720
 <ATTRIBREC> 721
 <ATTRIBSET> 722
 <KEY> outtype </KEY> <VALUE> stream </VALUE> 723
 <KEY> name </KEY> <VALUE>Transmitter Stream1 </VALUE> 724
 <KEY> address </KEY> <VALUE> networkStream.traStream.tra-1.id </VALUE> 725
 <KEY> channels </KEY> <VALUE> 2 </VALUE> 726
 <KEY> clock </KEY> <VALUE> 96 </VALUE> 727
 </ATTRIBSET> 728
 </ATTRIBREC> 729
 </SUBDEVICE> 730
 <SUBDEVICE name="Stream2"> 731
 <ATTRIBREC> 732
 <ATTRIBSET> 733
 <KEY> outtype </KEY> <VALUE> stream </VALUE> 734
 <KEY> name </KEY> <VALUE>Transmitter Stream1 </VALUE> 735
 <KEY> address </KEY> <VALUE> networkStream.traStream.tra-1.id </VALUE> 736
 <KEY> channels </KEY> <VALUE> 2 </VALUE> 737
 <KEY> clock </KEY> <VALUE> 96 </VALUE> 738
 </ATTRIBSET> 739
 </ATTRIBREC> 740
 <LAYOUTREC> <!-- if displayed --> 741

349

 <KEY> x </KEY> <VALUE> 380 </VALUE> 742
 <KEY> y </KEY> <VALUE> 560 </VALUE> 743
 <KEY> w </KEY> <VALUE> 180 </VALUE> 744
 <KEY> h </KEY> <VALUE> 60 </VALUE> 745
 </LAYOUTREC> 746
 </SUBDEVICE> 747
 </SUBDEVICE> <!-- Transmitter streams --> 748
 </SUBDEVICE> <!-- Device Outputs --> 749
 750
 <!-- ___ --> 751
 <!-- _____________________ SHORT PARAMETER ADDRESSES __________________ --> 752
 <SHORTADDRESS> 753
 <PARAMDESC name="mic input"> 754
 <PARAMTYPE name="phpower"> 755
 <ATTRIBREC> 756
 <ATTRIBSET> 757
 <KEY> datatype </KEY> <VALUE> bool </VALUE> 758
 </ATTRIBSET> 759
 </ATTRIBREC> 760
 <PARAMINST name="phantom1"> 761
 <PARAMETER name = "value" address="input.phantom.ph-1.value"> 762
 <VALUE> true </VALUE> 763
 </PARAMETER> 764
 </PARAMINST> 765
 </PARAMTYPE> 766
 </PARAMDESC> 767
 768
 <!-- ________________ Advertise Transmitter Streams ______________ --> 769
 PARAMDESC name="network source"> 770
 <PARAMTYPE name="Transmitter"> 771
 <ATTRIBREC> <!-- Signal Desscription Record --> 772
 <ATTRIBSET> 773
 <KEY> clock </KEY> <VALUE> 96 </VALUE> 774
 <KEY> channelcount </KEY> <VALUE> 2 </VALUE> 775
 </ATTRIBSET> 776
 <!-- Candidate connections --> 777
 <REMPARAMETER name="dest10"> 778
 <NETADDRESS IPAddress="194.66.82.11" port="3456"/> 779
 <REMOTEREF name="id" address="networkStream.destStream.dest-10.id"> 780
 <VALUE> 10 </VALUE> 781
 </REMOTEREF> 782
 <REMOTEREF name="listen" address="networkStream.destStream.dest-10.listen"> 783
 <VALUE> 1 </VALUE> 784
 </REMOTEREF> 785
 </REMPARAMETER> 786
 <REMPARAMETER name="dest11"> 787
 <NETADDRESS IPAddress="194.66.82.11" port="3456"/> 788
 <REMOTEREF name="id" address="networkStream.destStream.dest-11.id"> 789
 <VALUE> 11 </VALUE> 790
 </REMOTEREF> 791
 <REMOTEREF name="listen" address="networkStream.destStream.dest-11.listen"> 792
 <VALUE> 1 </VALUE> 793
 </REMOTEREF> 794
 </REMPARAMETER> 795
 </ATTRIBREC> 796
 797
 <PARAMINST name="TransStream1"> 798

350

 <PARAMETER name="id" address="networkStream.traStream.tra-1.id"> 799
 <VALUE> 1001 </VALUE> 800
 </PARAMETER> 801
 <PARAMETER name="advertise" address="networkStream.traStream.tra-1.advertise"> 802
 <VALUE> true </VALUE> 803
 </PARAMETER> 804
 </PARAMINST> 805
 806
 <PARAMINST name="TransStream2"> 807
 <PARAMETER name="id" address="networkStream.traStream.tra-2.id"> 808
 <VALUE> 1002 </VALUE> 809
 </PARAMETER> 810
 <PARAMETER name="advertise" address="networkStream.traStream.tra-2.advertise"> 811
 <VALUE> true </VALUE> 812
 </PARAMETER> 813
 </PARAMINST> 814
 </PARAMTYPE> 815
 </PARAMDESC> 816
 <!-- _____________________ Advertise Receiver Streams _____________________ --> 817
 <PARAMDESC name="Receiver Stream"> 818
 <PARAMTYPE name="Multicore"> 819
 <ATTRIBREC> <!-- Signal Desscription Record --> 820
 <ATTRIBSET> 821
 <KEY> clock </KEY> <VALUE> 96 </VALUE> 822
 <KEY> channelcount </KEY> <VALUE> 2 </VALUE> 823
 </ATTRIBSET> 824
 </ATTRIBREC> 825
 826
 <PARAMINST name="receiver-1"> 827
 <PARAMETER name="id" address="networkStream.recStream.rec-1.id"> 828
 <VALUE> 201 </VALUE> 829
 </PARAMETER> 830
 <PARAMETER name="listen" address="networkStream.recStream.rec-1.listen"> 831
 <VALUE> true </VALUE> 832
 </PARAMETER> 833
 </PARAMINST> 834
 835
 <PARAMINST name="receiver-2"> 836
 <PARAMETER name="id" address="networkStream.recStream.rec-2.id"> 837
 <VALUE> 202 </VALUE> 838
 </PARAMETER> 839
 <PARAMETER name="listen" address="networkStream.recStream.rec-2.listen"> 840
 <VALUE> true </VALUE> 841
 </PARAMETER> 842
 </PARAMINST> 843
 </PARAMTYPE> 844
 </PARAMDESC> 845
 846
 <!--________________ CHANNEL STRIP PARAMETERS _____________ --> 847
 <PARAMDESC name="inputSection"> 848
 <!-- ______ Stream channel to Input channel Parameters _____ --> 849
 <PARAMTYPE name="channel"> 850
 <ATTRIBREC> 851
 <ATTRIBSET> 852
 <KEY> channeID </KEY> <VALUE> tr1-ch-1 </VALUE> 853
 </ATTRIBSET> 854
 <ATTRIBLIST> 855

351

 <KEY> channelID </KEY> <VALUE> tr1-ch-1 </VALUE> 856
 <VALUE> tr1-ch-2 </VALUE> 857
 </ATTRIBLIST> 858
 </ATTRIBREC> 859
 860
 <PARAMINST name="channel1 Input"> 861
 <PARAMETER name="channel1 Input" address="inputSection.Channel1.srcChannel.value"> 862
 <VALUE> src1-ch1 </VALUE> 863
 </PARAMETER> 864
 </PARAMINST> 865
 866
 <PARAMINST name="channel2 Input"> 867
 <PARAMETER name="channel2 Input" address="inputSection.Channel2.srcChannel.value"> 868
 <VALUE> src1-ch2 </VALUE> 869
 </PARAMETER> 870
 </PARAMINST> 871
 </PARAMTYPE> 872
 873
 <!-- ____________________ Mute Parameters __________________ --> 874
 <PARAMTYPE name="mute"> 875
 <ATTRIBREC> 876
 <ATTRIBSET> 877
 <KEY> type </KEY> <VALUE> bool </VALUE> 878
 </ATTRIBSET> 879
 </ATTRIBREC> 880
 881
 <PARAMINST name="mute1"> 882
 <PARAMETER name="value" address="inputSection.mute.mute1.value"> 883
 <VALUE> false </VALUE> 884
 </PARAMETER> 885
 </PARAMINST> 886
 <PARAMINST name="mute2"> 887
 <PARAMETER name="value" address="inputSection.mute.mute2.value"> 888
 <VALUE> false </VALUE> 889
 </PARAMETER> 890
 </PARAMINST> 891
 </PARAMTYPE> 892
 893
 <!-- ____________________ Gain Parameters __________________ --> 894
 <PARAMTYPE name="gain"> 895
 <ATTRIBREC> 896
 <ATTRIBSET> 897
 <KEY> type </KEY> <VALUE> unsigned</VALUE> 898
 <KEY> min </KEY> <VALUE> 0 </VALUE> 899
 <KEY> max </KEY> <VALUE> 10 </VALUE> 900
 <KEY> step </KEY> <VALUE> 1</VALUE> 901
 </ATTRIBSET> 902
 </ATTRIBREC> 903
 904
 <PARAMINST name="gain1"> 905
 <PARAMETER name="value" address="inputSection.gain.gain1.value"> 906
 <VALUE> 1 </VALUE> 907
 </PARAMETER> <!-- Action parameters do not have a value --> 908
 <PARAMETER name="addSlave" address="inputSection.gain.gain1.addSlave"/> 909
 <PARAMETER name="remSlave" address="inputSection.gain.gain1.remSlave"/> 910
 <PARAMETER name="addPeer" address="inputSection.gain.gain1.addPeer"/> 911
 <PARAMETER name="remPeer" address="inputSection.gain.gain1.remPeer"/> 912

352

 </PARAMINST> 913
 914
 <PARAMINST name="gain2"> 915
 <PARAMETER name="value" address="inputSection.gain.gain2.value"> 916
 <VALUE> 3 </VALUE> 917
 </PARAMETER> 918
 <PARAMETER name="addSlave" address="inputSection.gain.gain2.addSlave"/> 919
 <PARAMETER name="remSlave" address="inputSection.gain.gain2.remSlave"/> 920
 <PARAMETER name="addPeer" address="inputSection.gain.gain2.addPeer"/> 921
 <PARAMETER name="remPeer" address="inputSection.gain.gain2.remPeer"/> 922
 </PARAMINST> 923
 </PARAMTYPE> 924
 925
 <!-- ___________________ Volume Parameters _________________ --> 926
 <PARAMTYPE name="volume"> 927
 <ATTRIBREC> 928
 <ATTRIBSET> 929
 <KEY> type </KEY> <VALUE> signed</VALUE> 930
 <KEY> min </KEY> <VALUE> 0 </VALUE> 931
 <KEY> max </KEY> <VALUE> 40 </VALUE> 932
 <KEY> step </KEY> <VALUE> 1</VALUE> 933
 </ATTRIBSET> 934
 </ATTRIBREC> 935
 936
 <PARAMINST name="volume1"> <!-- Example of internal DSP parameters --> 937
 <PARAMETER name="value" address="inputSection.volume.volume1.value"> 938
 <VALUE> 12 </VALUE> 939
 </PARAMETER> 940
 </PARAMINST> 941
 942
 <PARAMINST name="volume2"> 943
 <PARAMETER name="value" address="inputSection.volume.volume2.value"> 944
 <VALUE> 4 </VALUE> 945
 </PARAMETER> 946
 </PARAMINST> 947
 </PARAMTYPE> 948
 949
 <!-- ___________________ Fader Parameters _________________ --> 950
 <PARAMTYPE name="fader"> 951
 <ATTRIBREC> 952
 <ATTRIBSET> 953
 <KEY> type </KEY> <VALUE> signed</VALUE> 954
 <KEY> min </KEY> <VALUE> 0 </VALUE> 955
 <KEY> max </KEY> <VALUE> 10 </VALUE> 956
 <KEY> step </KEY> <VALUE> 1</VALUE> 957
 </ATTRIBSET> 958
 </ATTRIBREC> 959
 960
 <PARAMINST name="Fader1"> 961
 <PARAMETER name="value" address="inputSection.fader.fader1.value"> 962
 <VALUE> 12 </VALUE> 963
 <JOIN > 964
 <PARAMREF address="inputSection.volume.volume1.value"/> 965
 </JOIN> 966
 <SLAVELIST> 967
 <PARAMREF address="inputSection.fader.fader2.value"/> 968
 <RELATION relType = "abs" /> 969

353

 </SLAVELIST> 970
 </PARAMETER> 971
 </PARAMINST> 972
 973
 <PARAMINST name="Fader2"> 974
 <PARAMETER name="value" address="inputSection.fader.fader2.value"> 975
 <VALUE> 12 </VALUE> 976
 </PARAMETER> 977
 </PARAMINST> 978
 </PARAMTYPE> 979
 980
 <!-- _______________ Meter Value Parameters ______________ --> 981
 <PARAMTYPE name="meter"> 982
 <ATTRIBREC> 983
 <ATTRIBSET> 984
 <KEY> type </KEY> <VALUE> unsigned</VALUE> 985
 <KEY> min </KEY> <VALUE> 0 </VALUE> 986
 <KEY> max </KEY> <VALUE> 30 </VALUE> 987
 <KEY> step </KEY> <VALUE> 1</VALUE> 988
 </ATTRIBSET> 989
 </ATTRIBREC> 990
 991
 <PARAMINST name="meterValue1"> 992
 <PARAMETER name="value" address="inputSection.meter.meter1.value"> 993
 <VALUE> 16 </VALUE> 994
 </PARAMETER> 995
 </PARAMINST> 996
 997
 <PARAMINST name="meterValue2"> 998
 <PARAMETER name="value" address="inputSection.meter.meter2.value"> 999
 <VALUE> 14 </VALUE> 1000
 </PARAMETER> 1001
 </PARAMINST> 1002
 </PARAMTYPE> 1003
 1004
 <!-- _______________ Meter Subscription Parameters ______________ --> 1005
 <PARAMTYPE name="meterSub"> 1006
 <ATTRIBREC> 1007
 <ATTRIBSET> 1008
 <KEY> min </KEY> <VALUE> 0 </VALUE> 1009
 <KEY> max </KEY> <VALUE> 10 </VALUE> 1010
 <KEY> step </KEY> <VALUE> 1</VALUE> 1011
 </ATTRIBSET> 1012
 </ATTRIBREC> 1013
 1014
 <PARAMINST name="metersub1"> 1015
 <PARAMETER name="value" address="inputSection.metersub.metersub1.value"> 1016
 <VALUE> 1 </VALUE> 1017
 </PARAMETER> 1018
 </PARAMINST> 1019
 1020
 <PARAMINST name="metersub2"> 1021
 <PARAMETER name="value" address="inputSection.metersub.metersub2.value"> 1022
 <VALUE> 1 </VALUE> 1023
 </PARAMETER> 1024
 </PARAMINST> 1025
 </PARAMTYPE> 1026

354

 <!-- _________________ Meter Value Parameters _______________ --> 1027
 <PARAMTYPE name="meter"> 1028
 <ATTRIBREC> 1029
 <ATTRIBSET> 1030
 <KEY> min </KEY> <VALUE> 0 </VALUE> 1031
 <KEY> max </KEY> <VALUE> 26 </VALUE> 1032
 <KEY> step </KEY> <VALUE> 1</VALUE> 1033
 </ATTRIBSET> 1034
 </ATTRIBREC> 1035
 1036
 <PARAMINST name="meter1"> 1037
 <PARAMETER name="value" address="inputSection.meterval.meter1.value"> 1038
 <VALUE> 12 </VALUE> 1039
 </PARAMETER> 1040
 </PARAMINST> 1041
 1042
 <PARAMINST name="meter2"> 1043
 <PARAMETER name="value" address="inputSection.meterval.meter2.value"> 1044
 <VALUE> 12 </VALUE> 1045
 </PARAMETER> 1046
 </PARAMINST> 1047
 </PARAMTYPE> 1048
 1049
 <!-- _______________ Bus Assignment Parameters ____________ --> 1050
 <PARAMTYPE name="busAssign"> 1051
 <ATTRIBREC> 1052
 <ATTRIBSET> 1053
 <KEY> type </KEY> <VALUE> bool </VALUE> 1054
 </ATTRIBSET> 1055
 </ATTRIBREC> 1056
 1057
 <PARAMINST name="LBus1"> 1058
 <PARAMETER name="value" address="inputSection.bus.LStereoBus1.value"> 1059
 <VALUE> true </VALUE> 1060
 </PARAMETER> 1061
 </PARAMINST> 1062
 1063
 <PARAMINST name="RBus1"> 1064
 <PARAMETER name="value" address="inputSection.bus.RStereoBus1.value"> 1065
 <VALUE> false </VALUE> 1066
 </PARAMETER> 1067
 </PARAMINST> 1068
 1069
 <PARAMINST name="LBus2"> 1070
 <PARAMETER name="value" address="inputSection.bus.LStereoBus2.value"> 1071
 <VALUE> true </VALUE> 1072
 </PARAMETER> 1073
 </PARAMINST> 1074
 1075
 <PARAMINST name="RBus2"> 1076
 <PARAMETER name="value" address="inputSection.bus.RStereoBus2.value"> 1077
 <VALUE> false </VALUE> 1078
 </PARAMETER> 1079
 </PARAMINST> 1080
 </PARAMTYPE> 1081
 </PARAMDESC> 1082
 1083

355

 <!-- ___________________ EQU SECTION PARAMETERS _________________ --> 1084
 <PARAMDESC name="Equ Section"> 1085
 <!-- ___________________ HiEqu Parameters _________________ --> 1086
 <PARAMTYPE name="HiEqu"> 1087
 <ATTRIBREC> 1088
 <ATTRIBSET> 1089
 <KEY> type </KEY> <VALUE> unsigned </VALUE> 1090
 <KEY> min </KEY> <VALUE> 0 </VALUE> 1091
 <KEY> max </KEY> <VALUE> 10 </VALUE> 1092
 <KEY> step </KEY> <VALUE> 1</VALUE> 1093
 </ATTRIBSET> 1094
 </ATTRIBREC> 1095
 1096
 <PARAMINST name="hiEqu1"> 1097
 <PARAMETER name="value" address="inputSection.hiEqu.hiEqu1.value"> 1098
 <VALUE> 1 </VALUE> 1099
 </PARAMETER> 1100
 </PARAMINST> 1101
 1102
 <PARAMINST name="hiEqu2"> 1103
 <PARAMETER name="value" address="inputSection.hiEqu.hiEqu2.value"> 1104
 <VALUE> 3 </VALUE> 1105
 </PARAMETER> 1106
 </PARAMINST> 1107
 </PARAMTYPE> 1108
 1109
 <!-- ___________________ LoEqu Parameters _________________ --> 1110
 <PARAMTYPE name="LoEqu"> 1111
 <ATTRIBREC> 1112
 <ATTRIBSET> 1113
 <KEY> type </KEY> <VALUE> unsigned </VALUE> 1114
 <KEY> min </KEY> <VALUE> 0 </VALUE> 1115
 <KEY> max </KEY> <VALUE> 10 </VALUE> 1116
 <KEY> step </KEY> <VALUE> 1</VALUE> 1117
 </ATTRIBSET> 1118
 </ATTRIBREC> 1119
 1120
 <PARAMINST name="LoEqu1"> 1121
 <PARAMETER name = "value" address="inputSection.loEqu.loEqu1.value"> 1122
 <VALUE> 4 </VALUE> 1123
 </PARAMETER> 1124
 </PARAMINST> 1125
 1126
 <PARAMINST name="LoEqu2"> 1127
 <PARAMETER name = "value" address="inputSection.loEqu.loEqu2.value"> 1128
 <VALUE> 4 </VALUE> 1129
 </PARAMETER> 1130
 </PARAMINST> 1131
 </PARAMTYPE> 1132
 </PARAMDESC> 1133
 1134
 <!-- ______________ OUTPUT SECTION PARAMETERS _____________ --> 1135
 <PARAMDESC name="Output Section"> 1136
 <PARAMTYPE name="Bus Assign"> 1137
 <ATTRIBREC> 1138
 <ATTRIBSET> 1139
 <KEY> type </KEY> <VALUE> string </VALUE> 1140

356

 </ATTRIBSET> 1141
 <ATTRIBLIST> 1142
 <KEY> value </KEY> <VALUE> L-bus </VALUE> <VALUE> R-bus </VALUE> 1143
 </ATTRIBLIST> 1144
 </ATTRIBREC> 1145
 1146
 <PARAMINST name="L Master Bus Assign"> 1147
 <PARAMETER name="bus" address="outSection.master.Lmaster.bus"> 1148
 <VALUE> Lbus </VALUE> 1149
 </PARAMETER> 1150
 </PARAMINST> 1151
 1152
 <PARAMINST name="R Master Bus Assign"> 1153
 <PARAMETER name="bus" address="outSection.master.Rmaster.bus"> 1154
 <VALUE> Rbus </VALUE> 1155
 </PARAMETER> 1156
 </PARAMINST> 1157
 </PARAMTYPE> 1158
 1159
 <PARAMTYPE name="Fader"> 1160
 <PARAMINST name="L Master Fader"> 1161
 <PARAMETER name="L Master Fader" 1162
 address="outMasterSection.fader.leftFader.value"> 1163
 <VALUE> 12 </VALUE> 1164
 </PARAMETER> 1165
 </PARAMINST> 1166
 1167
 <PARAMINST name="R Master Fader"> 1168
 <PARAMETER name="R Master Fader" 1169
 address="outMasterSection.fader.rightFader.value"> 1170
 <VALUE> 10 </VALUE> 1171
 </PARAMETER> 1172
 </PARAMINST> 1173
 </PARAMTYPE> 1174
 </PARAMDESC> 1175
 1176
 <!-- ___________ MASTER SECTION CONNECTION TO STREAMS ___________ --> 1177
 <PARAMDESC name="Device Outputs"> 1178
 <PARAMTYPE name="stream connection"> 1179
 <PARAMINST name = "stream connection ch1"> 1180
 <PARAMETER name = "c1-1" address="networkStream.traStream.tra-1.c1-1"> 1181
 <VALUE> </VALUE> 1182
 </PARAMETER> 1183
 </PARAMINST> 1184
 <PARAMINST name = "stream connection ch2"> 1185
 <PARAMETER name = "c1-2" address="networkStream.traStream.tra-1.c1-2"> 1186
 <VALUE> </VALUE> 1187
 </PARAMETER> 1188
 </PARAMINST> 1189
 </PARAMTYPE> 1190
 1191
 <!-- __________ Receiver Stream Channel Selection Parameters ________ --> 1192
 <PARAMTYPE name="stream channel"> 1193
 <ATTRIBREC> 1194
 <ATTRIBSET> 1195
 <KEY> min </KEY> <VALUE> 0 </VALUE> 1196
 <KEY> max </KEY> <VALUE> 10 </VALUE> 1197

357

 <KEY> step </KEY> <VALUE> 1</VALUE> 1198
 </ATTRIBSET> 1199
 </ATTRIBREC> 1200
 1201
 <PARAMINST name="stream channel selector"> 1202
 <PARAMETER name="ch" address="networkStream.recStream.rec-1.ch"> 1203
 <LIST> 1204
 <VALUE> ch-1 </VALUE> <VALUE> ch-2 </VALUE> 1205
 </LIST> 1206
 <VALUE> ch-1 </VALUE> 1207
 </PARAMETER> 1208
 </PARAMINST> 1209
 </PARAMTYPE> 1210
 1211
 <PARAMTYPE name="analog out"> 1212
 <PARAMINST name="analog out selector"> 1213
 <PARAMETER name="value" address="output.analogOut.out-1.value"> 1214
 <LIST> 1215
 <VALUE> L-master </VALUE> <VALUE> R-master </VALUE> 1216
 </LIST> 1217
 <VALUE> L-master </VALUE> 1218
 </PARAMETER> 1219
 </PARAMINST> 1220
 </PARAMTYPE> 1221
 </PARAMDESC> 1222
 1223
 <MODIFIER name="fader modifier"> 1224
 <FUNCTION> 1225
 <MROW> 1226
 <MROW> 1227
 <PARAMREF address="inputSection.fader.fader1.value"/> 1228
 <MO>=</MO> 1229
 <PARAMREF address="inputSection.volume.volume1.value"/> 1230
 </MROW> 1231
 <MO>+</MO> 1232
 <MI> 12 </MI> 1233
 </MROW> 1234
 </FUNCTION> 1235
 </MODIFIER> 1236
 </SHORTADDRESS> 1237
 <AUTOMATION> 1238
 <SEQUENCE name = "Scene-1"> 1239
 <EVENT> 1240
 <TIMESTAMP> 4000 </TIMESTAMP> 1241
 <PARAMREF address="inputSection.mute.mute1.value"/> 1242
 <TYPE> bool </TYPE> 1243
 <VALUE> true</VALUE> 1244
 </EVENT> 1245
 <EVENT> 1246
 <TIMESTAMP> 1000 </TIMESTAMP> 1247
 <PARAMREF address="inputSection.fader.fader1.value"/> 1248
 <TYPE> int </TYPE> 1249
 <VALUE> 12 </VALUE> 1250
 </EVENT> 1251
 </SEQUENCE> 1252
 </AUTOMATION> 1253
</DEVICE> 1254

358

Appendix 3

SNMP Specifications

SNMPv1 is defined by:

 RFC1089 - SNMP over Ethernet (Schoenwaelder & Jeffree, 2006);

 RFC1155 - Structure and Identification of Management Information for TCP/IP-

based Internets (Rose & McCloghrie, 1990);

 RFC1157 - Simple Network Management Protocol (Case, Fedor, Schoffstall, &

Davin, 1990).

SNMPv2c is defined by:

 RFC1902 - Structure of Management Information for Version 2 of the Simple

Network Management Protocol (SNMPv2) extends the SMI for SNMPv2.

(Case J. , McCloghrie, Rose, & Waldbusser, 1996);

 RFC1903 - Textual Conventions for Version 2 of the Simple Network Management

Protocol (SNMPv2) (Case J. , McCloghrie, Rose, & Waldbusser, 1996);

 RFC1904 - Conformance Statements for Version 2 of the Simple Network

Management Protocol (SNMPv2). (Case J. , McCloghrie, Rose, & Waldbusser,

1993c);

 RFC1905 - Protocol Operations for Version 2 of the Simple Network Management

Protocol (SNMPv2) (Case J. , McCloghrie, Rose, & Waldbusser, 1996a);

 RFC1906 - Transport Mappings for Version 2 of the Simple Network

Management Protocol (SNMPv2) (Case J. , McCloghrie, Rose, & Waldbusser,

1996b).

SNMPv3 is defined by:

 RFC2570 - Introduction to Version 3 of the Internet-standard Network

Management Framework (Case, Mundy, Partain, & Stewart, 1999);

 RFC2571 - An Architecture for Describing SNMP Management Frameworks

(Harrington, Presuhn, & Wijnen, 1999);

 RFC2572 - Message Processing and Dispatching for the Simple Network

Management Protocol (SNMP) (Case, Harrington, Presuhn, & Wijnen, 1999);

359

Several enhancements to version two (Hassan & Yaghobi, 2001) did not gain widespread

acceptance. These versions, ‘SNMPsec’, ‘SNMPv2p’, ‘SNMPv2u’ and ‘SNMPv2*’ are of

historical interest only.

Two versions of the SMI exist, SMIv1 is described by:

 RFC1155 - Structure and Identification of Management Information for TCP/IP-

based Internets (Rose & McCloghrie, 1990);

 RFC1212 - Concise MIB Definitions (Rose & McCloghrie, 1991);

 RFC1215 - A Convention for Defining Traps for use with the SNMP

(Rose, 1999);

SMIv2 is described by:

 RFC1442 - Structure of Management Information for version 2 of the Simple

Network Management Protocol (SNMPv2) (Case J. , McCloghrie, Rose, &

Waldbusser, 1993a);

RFC1443 - Textual Conventions for version 2 of the Simple Network Management

Protocol (SNMPv2) (Case J. , McCloghrie, Rose, & Waldbusser, 1993b);

360

Appendix 4

Protocol Implementations

This appendix describes the software that was developed to investigate and illustrate the

capabilities of different control protocols. These implementations are listed below.

1. Four different implementations of the Fli2 environment that are described in

the next section.

2. A Fli2 connection management application.

3. An OSC device and controller.

4. An SNMP agent and controller.

5. An AES64 device and controller.

6. A CopperLan device and controller and a device that demonstrates

connection management between CopperLan devices.

7. A UPnP device and controller.

8. An EmBer+ parameter implementation.

The AES64 and UPnP implementations only implement basic control and monitoring

functionality. Development was not continued within these protocols following the

discovery of object serialization and the possibilities suggested by the Fly object space. The

Ember+ device creator utility (‘TinyEmberPlus’) provided with the Ember+ distribution

was used to investigate the implementation of SDM parameters within Ember+.

A4.1 Fli2 Device and Controller Applications

Four versions of the Fli2 environment were developed:

1. A version designed for use on a local-area network.

2. A version that used uses the local loopback address for demonstration on a single

machine. Instructions for running this application are included with the software

distribution.

3. A version that used the Fast-Cast message library (Fast-Cast Messaging Library,

2014) described in Section 11.3.1.5 Software Development using Java (p.280) for

transmitting metering subscriptions.

361

An environment where an OSC-enabled device provides an OSC stack to controllers.

This novel use of serialized objects was described in Section

11.5.1 Advertising an OSC Stack (p.305).

A4.1.1 A Fli2 Mixing Console Device

Figure A4.1 illustrates a four-channel audio mixer developed in Java. The device, sub-

device and control components of this device are advertised to controller applications

using a Fly space as described in Chapter 11. Four channel strip sub-devices contain

equalization section sub-devices. A mastering section consists of sub-devices representing

the left and right channels of a stereo output. In addition to standard Java button and

slider widgets the following third-party components and classes were used:

 Rotary potentiometer widgets adapted from the code developed by Craig Lindley

(Lindley, 1999);

 Meter widgets obtained from the SteelSeries gauge component library (Grunwald,

n.d.);

 A layout manager named MiGLayout that supports grids (MiG Components, n.d.).

All parameters are also separately advertised by writing them to a space. This supports the

Figure A4.1 A Fli2 Audio Mixer Device.

362

development of universal, locally-created controllers. This type of controller can link

discovered remote parameters to existing controls on a generic (‘universal’) control

surface.

A4.1.2 The Fli2 Controller Application

Use of a ‘NetworkBrowser’ object to add SDM components to a control surface was

illustrated in Chapter 11. This object also manages parameter joins and parameter groups.

Figure A4.2 shows how parameter joins between local control parameters and remote

parameters are managed.

Figure A4.2 Managing Parameter Joins.

Parameter
Join

363

Each local parameter has an attribute specifying the name of the remote service that is

invoked when the local parameter value changes. A ‘Parameter Browser’ window is opened

from the ‘Network Browser’ windows and allows local parameters (listed in the left-hand

column) to be joined to remote parameters (listed in the right-hand column). Parameter

joins are implemented by a parameter having an attribute that is the name of the remote

RMI service representing the join relationship. Figure A4.2 shows a local control

parameter named ‘Fader1’ joined to a remote parameter named ‘rem_Volume1’.

Figure A4.3 illustrates the management of parameter groups. This implementation

supports absolute master-slave relationships between a local master parameter and

remote slave parameters. Local parameters maintain a list of remote slave parameters.

Slave parameters (listed in the right-hand column) are added to and removed from local

parameters (listed in the left-hand column) of the ‘Slave Parameter Manager’ window.

Figure A4.3 shows that slave parameters can be added to or removed from a master

parameter by selecting or deselecting slave parameters for a specified master parameter.

A4.1.3 Connection Management

Figure A4.4 consists of a set of five diagrams illustrating the sequence of events that occur

when a shared connection manager is used to create audio connections as described in

Section 11.4.2.3 Using Connection Objects (p.302). Figure A4.4(a) shows two networked

devices or controllers that can perform connection management and a networked process

that contains a connection manager application that is a part of the Fli2 connection

management environment.

Figure A4.3 Managing Slave Parameter Groups.

Master

Slaves

364

Controllers that wish to perform connection management register to receive a notification

when the connection manager is made available to the network. In Figure A4.4(b), the

connection manager is advertised to the network by writing it to a space.

Network

Connection Manager

Figure A4.4(a) A Shared Connection Manager.

Space

Figure A4.4(b) Advertising a Shared Connection Manager.

Connection Manager

Network

Space

Read()

Read()

Notify()

Notify()

Connection Manager

Connection Manager Write() (Advertise)

365

Devices receive a notification that the connection manager is available and then read the

connection manager application from the space. Figure A4.4(b) shows the connection

manager being added to the software user interface for each device. This architecture

supports a modular, plugin-design where modules that perform specific functionality can

be obtained from a space and added to an existing application.

In Figure A4.4(c), a device advertises audio source and destination terminals by

writing them to a space. The device also displays these terminals in its connection

manager.

The second device’s connection manager is notified of these service advertisements and

the device reads the terminals. The connection manager then updates its user interface by

displaying a connection matrix that shows the discovered terminals.

In Figure A4.4(d) the second device advertises audio source and destination

terminals by writing them to a space. The first device’s connection manager reads these

terminals and adds these to its connection matrix. The space transactions are identical to

those illustrated in Figure A4.4(c) with the device roles reversed.

Figure A4.4(c) Advertising Terminal Objects (1).

Advertise Terminals Device ID D158

Space Create
 Terminals

 Display
 Terminals

Write()

Read()

 Display
 Terminals

366

Figure A4.4(e) shows that connections made by either device are propagated to the

other device. When a connection is made or torn down using the connection matrix user

interface provided by the connection manager, a connection object is written to a space.

Figure A4.4(d) Advertising Terminal Objects (2).
.

Device ID D159

Figure A4.4(e) Creating Audio Connections.

Write()

Read()

Space

367

The connection object is then propagated to all network devices that have registered with

the space to receive connection notifications. Devices read the connection object and

update their views of the connections on the network.

As discussed in Chapter 11, an object that functions as a mutex value within a space

is obtained from the space before connections may be committed to the space.

The mutex value object is returned to the space after newly made connections are written

to the space.

A4.2 A Device and Controller using OSC

An OSC device built using the WOscLib (Franke, 2005) OSC implementation is shown in

Figure A4.5. A portion of the OSC address space can be seen with the OSC address space

operators discussed in Chapter 5 listed at the bottom of the screen.

Figure A4.5 An OSC Audio Mixer Device.

368

Metering threads implemented on the device using the JUCE (ROLI Ltd., n.d.) thread

libraries target OSC addresses defined in the controller’s local OSC address space.

This ‘partial-peer network architecture was introduced in Section 2.3.2.1 Partial-Peer

Network Architectures (p.19).

An OSC controller shown in Figure A4.6 mimics the architecture (provides a physical

model) of the controlled device.

Use of the SDM and the OSC address space operators for service discovery are

illustrated in Figure A4.7. A ‘Parameter Browser’ window on the left displays the

parameters discovered on the remote device. A ‘Device Browser’ frame displays the

Figure A4.6 An OSC Audio Mixer Controller Application.

369

Figure A4.7 OSC Parameter and Device Browsers.

discovered sub-devices and controls of the remote device. Device components are only

retrieved from the device when the used expands node within the Device Browser tree.

Discovered controls and sub-devices can be added to the control surface provided by the

device browser by selecting the desired node in the tree, right-clicking the node with the

mouse and selecting ‘Insert’ from the displayed popup menu. Figure A4.7 shows the

addition of the first channel strip to the control surface.

Examples sections of the OSC address spaces for the above device and controller

applications are listed in Appendix 7. Instructions for running these applications are

included with the software distribution.

Uli Franke has kindly fixed errors discovered in the WOscLib libraries and enhanced

and optimized WOscLib. In particular, he added support for dynamic address space

 Control Surface

 Parameter Browser

 Device Browser

370

modification. This allowed an investigation into storing parameter data within the OSC

address space to be conducted (Franke, Personal correspondence, 2011).

A4.3 SNMP Development Environments

Development environments for the Microsoft Windows platform that use C or C++ are

commonly based on three legacy SNMP Implementations:

 The 1995 implementation from the University of California, Davis that later

became NET-SNMP (Schönwälder, 2002).

 Windows SNMP, a 1993 implementation from the American Computer &

Electronics Corporation (Natale, 1995) used by the MG-Soft SNMP development

tools;

 SNMP++, a 1997 implementation from the Hewlett Packard Company

(Mellquist, 1997).

Development of agent applications using these environments is a challenging, low-level

process that is not suitable for implementing a complex MIB design. In addition, NET-

SNMP handles traps within a reporting module that is tightly integrated to a relational

database. This module is not suitable for transmitting remote meter parameter values as

SNMP traps. A tool that generates C++ classes for a MIB from MG-Soft Corporation was

evaluated and abandoned because it was not stable. Updated libraries provided by the

vendor did not resolve these issues. These SNMP development environments were

abandoned in favor of:

 A C#.NET SNMP environment (SNMP#NET, n.d.) that was used to develop an

SNMP controller;

 An SNMP MIB browser and agent development environment from iReasoning

Corporation (iReasoning Networks, 2013).

A4.3.1 SNMP MIB Development

A MIB was developed using the MG-Soft MIB Compiler (MG-Soft Corporation, n.d.).

Additional validation of the developed MIB was provided by an online MIB validator

(SimpleWeb, n.d.). Figure A4.8 shows the SDM MIB being compiled by the MG-Soft MIB

Compiler.

371

The developed MIB is shown in the SNMP MIB browser application from iReasoning

Networks (iReasoning Networks, 2012) in Figure A4.9. Only the tables and the data within

the expanded ‘Device’ table are shown, as this is a view of the MIB without any

instrumentation. Relationships among the different tables defined by the MIB are

illustrated by the design schema provided in Appendix 8.

Figure A4.8 The MG-Soft MIB Development Environment.

372

An SNMP controller developed using C#.NET is shown in Figure A4.10. This controller

has a similar design to the OSC controller illustrated previously in Figure A4.6.

Figure A4.9 MIB Browser View of the Standard Device Model.

373

A4.3.2 AES64 Development Environments and Toolsets

Note that the development tools used refer to AES64’s predecessor X170.

A4.3.2.1 Desk Item Retrieval and Configuration

The XML desk item description file, as well as the graphics files referenced by the

description file are stored on a device and can be retrieved from a device by controller

applications. An application that is able to display and configure desk items such as the

‘UNOS Creator’ application from UMAN shown in Figure A4.11 is termed a ‘desk item

browser’ (Foss, 2010). Desk item browsers can support different types of functionality,

including:

 Downloading or uploading desk item descriptions and graphics files from or to a

device;

 Associating desk items with parameters;

Figure A4.10 A Virtual Controller for a Mixing Console.

374

 Editing the visual appearance of desk items.

The desk item concept moves much of the responsibility of representing and creating a

control surface from the controller to the device. This approach has three advantages:

 Device manufacturers are able to specify a control surface that is independent of

any computing platform or programming language;

 Controllers do not have to compute the layout of a control surface;

 Controllers do not need to store information about a potentially large number of

devices.

UNOS Creator also supports:

 Device Discovery;

 Connection management;

 Parameter joins and parameter group.

Figure A4.11 A Desk Item Browser – UNOS Creator.

(Foss, 2011).

375

IEEE 1722 talker and listener streams are viewed as multicores to provide interoperability

between IEEE 1722 and AES64 as illustrated in Figure A4.12. Stream identification is done

using AES64 parameters as discussed in Chapter 7.

A4.3.2.2 Viewing Parameters

Figure A4.13 shows the parameters of an implemented AES64 device displayed in the

parameter browser provided by UNOS Creator. The figure is annotated with the level

numbers of the address components defining a fader parameter.

 Devices Desk Item

Talkers Listener

Multicores

(Gurdan & Foss, 2010).

Figure A4.12 UNOS Creator Connection Management Tools.

s

376

A Controller similar to the OSC controller shown in Figure A4.6 was developed to interact

with the AES64 device.

L1

L2

L3

L4
L5
L6
L7

Figure A4.13 The UNOS Creator Parameter Browser.

377

A4.4 A CopperLan Example Device and Controller

An example device developed in CopperLan is shown within the CopperLan Manager in

Figure A4.14. The CopperLan Manager interacts with the proprietary network layer and

CHAI middleware layer to discover networked devices and to retrieve information about

the device’s structure and services as explained in Chapter 8.

A control surface is then created from the discovered information as illustrated by the

control surface created by the CopperLan Manager’s ‘Editor’ application shown in

Figure A4.15 that creates a control surface to interact with discovered remote parameters.

Devices are partitioned into sub-devices (shown on the left in Figure A4.15) that specify a

set of controls. The first channel strip sub-device is selected. In this application, a single

set of controls are created for each channel strip. The index selector shown for each control

allows multiple related controls to be grouped together. This is termed ‘parameter

indexing’ in CopperLan and provides efficient utilization of resources by not duplicating

controls. Using this arrangement, a single set of controls representing the controls of a

single channel strip can be shared between all channel strips.

Figure A4.14 The CopperLan Manager Network View.

378

 Figure A4.15 The Parameter Editor View of a CopperLan Virtual Device.

Parameter Index
Selectors

379

A ‘Connector View’ shown in Figure A4.16 provides connection management between

devices. In this example, two instances of the mixing console application. The left master

output of the one mixer is connected to an input channel of the second mixer.

Although designed for control connection management, this connection model can also be

used for audio connection management.

A4.5 A UPnP Device and Controller

The Cyberlink for Java UPnP library (Cyber Garage, n.d.) was used for developing a

mixing console device (control point) and a controller. Intel’s UPnP Device Spy network

browser (Intel Corporation, n.d.) facilitated interaction with the device to verify that the

device conformed to the UPnP specification and functioned correctly.

Figure A4.17 shows the controller application browsing the discovered control point

(device) services. Controls are represented by services that implement GET() and SET(..)

actions. Services also define a 'GetControl()' action that obtains a serialized control from

the remote device and adds the control to a control surface. In Figure A4.17, a fader control

and a gain control have been obtained from a discovered device using serialization. These

controls are then added to the controller’s control surface.

Figure A4.16 The ‘ConnectorView’ of CopperLan Devices.

380

A4.6 EmBer+

A device creator and controller application included with the Ember+ distribution were

examines to determine the characteristics of the Ember+ parameter address space.

The services provided by a device are represented by the tree of Ember+ elements

illustrated in Figure A4.18. Nodes are designated by blue circles and parameters

designated by green leaves. As found in SNMP, the position of a parameter within this tree

is designated by a ‘relative object identifier’ data type. For example, the ‘value’ parameter

of the ‘gain1’ parameter instance shown in Figure A4.18 is identified by the object

identifier:

 1.1.1.3.1.1.1 (Device – InputSection – Channel-1 – GainCtrl-1 – inParameter –

gaintype – gain1 – value).

Each node and parameter has a ‘GetDiretory()’ (Keuck & Boger, 2014, p. 29)

command that obtains all child nodes and parameters. When applied to a parameter it

Figure A4.17 Object Serialization using UPnP.

Control Surface

381

returns the properties (meta-data) describing the parameter’s value. For example, the

minimum and maximum values of a parameter.

Figure A4.18 also illustrates the use of parameters having a string type that can be

used to represent descriptive attributes and layout attributes. In this example, the layout

attributes for the ‘GainCtrl-1’ control.

 Figure A4.18 The Ember+ Device Creator Application.

Parameter Instance

Parameter Value

Parameter Action

Layout Attributes

382

Appendix 5

Fli2 Class Diagrams

This appendix provides detailed class diagrams and discusses the functionality of the Fli2

classes introduced and discussed in Chapter 11.

A5.1 Device Design and Implementation

Figure A5.1 shows the classes that implement a mixing console device.

Methods are provided to initialize the local controls (‘setLocalControls()’) and render

these controls on the local control surface.

Legend:
 Java RMI classes UI classes
 Fly Class Device classes

Figure A5.1 Fli2 Audio Device Classes.

383

Class ‘AudioConsole’ implements a mixing console and:

 Provides a user interface;

 Stores collections of its components (instances of classes ‘AudioSubDevice,

‘AudioControl’ and ‘AudioParameter’);

 Provides methods to manage these collections.

Parameters are stored in a map data structure, allowing parameter objects to be retrieved

by name. This allows a remote service to access the required parameters when the service

is invoked.

A5.1.1 Device Creation

Objects instances of class ‘DeviceCreator’ are factory objects that:

 Creates device components;

 Implements parent-child relationships among components;

 Creates parameters and links parameters to controls;

 Links remote (control) parameters to local parameters;

 Registers remote services for parameters with the RMI registry.

Control parameters are serialized to the Fly space with their associated control

objects. Device components and parameters created by a ‘DeviceCreator’ object are

added to the local ‘AudioConsole’ object using the different ‘add()’ and ‘set()’ methods

provided by class ‘AudioConsole’.

A5.1.2 Object Space Interactions

Class ‘DiscoverableDevice’ functions as a proxy class that handles all space

interactions. It has methods to write the ‘AudioDevice’, ‘AudioSubDevice’,

‘AudioControl’ and ‘AudioParameter’ objects created by a ‘DeviceCreator’ factory

object to a Fly object space. Writing an ‘AudioDevice’ object to a space advertises the

device on a network.

A5.1.3 Implementing Control and Metering Functionality

Class ‘RemoteDevice’ (derived from the class ‘java.rmi.UnicastRemoteObject’ that

supports remote procedure calls) defines two callback methods that receive control

messages from controllers. One method provides an integer argument and the other

method provides a Boolean argument. These callbacks are declared in the ‘IControl’

interface class that extends the ‘java.rmi.Remote’ interface. Thus, classes derived

from class ‘java.rmi.UnicastRemoteObject’ accepts remote procedure calls; a class

384

implementing the ‘java.rmi.Remote’ interface class declares the target RPCs that are

implemented by the classes derived from class ‘UnicastRemoteObject’.

Class ‘MeterTask’ shown in Figure A5.2 implements a multi-threaded metering

process that execute on the device. The ‘RemoteDevice’ class handles meter

subscription requests issued by controllers. Class ‘MeterTask’ implements a

multithreaded meter on a device and transmits (streams) current meter values to

remote controllers that have subscribed to receive meter values.

The ‘running’ and ‘transmitting’ flags are declared as ‘volatile’ attributes because they

may be accessed concurrently by both local and remote processes.

Volatile attributes will never block and are always atomically updated (Coffey, n.d.).

Method ‘setMeterValue()’ is the remote procedure call used to transmit meter values

to a controller. The ‘RemoteDevice’ class discussed in the previous section provides a

callback method that processes meter subscriptions.

Figure A5.2 Fli2 Classes used to Implement Metering.

385

A5.2 Controller Design and Implementation

In a similar manner to the device architecture discussed in the previous section, the

controller application consists of a ‘ControllerFrame’ application class and an

‘AudioController’ class shown in Figure A5.3. Class ‘AudioController’ stores sets of

device components and parameters read from the Fly space (for clarity, methods that

implement space interactions are shown in Figure A5.4). Methods are also provided

to access locate specific objects stored in these collections.

The controller also functions as a server because it provides metering services for the

remote device. In the same manner as the implantation of device services shown

previously in Figure A5.2, this controller-provided service is implemented by the

‘java.rmi.server.UnicastRemoteObject’ base class and the ‘IMeterValue’ interface that

extends the ‘java.rmi.Remote’ interface class.

Figure A5.3 Fli2 Controller Classes.

386

A5.2.1 Object Space Interactions

Controllers need only monitor a space for ‘AudioDevice’ objects and optionally,

‘AudioParameter’ objects. When a controller reads a device it can recursively read all

child sub-devices and controls to perform a top-down traversal of a device’s

architecture. Classes ‘DeviceListener’ and ‘ParameterListener’ illustrated in

Figure A5.4 implement the ‘fly.NotifyHandler’ interface class. These classes receive

callback notifications from a space when ‘AudioDevice’ or ‘AudioParameter’ objects

are written to a space. The different ‘read()’ methods read ‘AudioDevice’,

‘AudioSubDevice’, ‘AudioControl’ and ‘AudioParameter’ objects from a space and

store these objects in the appropriate collection implemented as a set.

Sets are commonly used in conjunction with spaces as they allow filtering of

duplicate entries returned by multiple space READ() operations. In addition, a set

difference operation between two sets (a previously discovered set of objects and a

newly read set of objects) identifies the set of objects that have been added to a space

since the last READ() transaction.

Figure A5.4 Fli2 Controller Classes Implementing Space Interactions.

387

As illustrated in the previous class diagrams, software that interacts with a space is

often designed in terms of object collections and the status of these collections.

Examples include:

 Sets of objects previously read from a space;

 Sets of objects that will be read in the future;

 Sets of currently active and currently rendered objects.

A5.2.2 SDM Classes Used by Devices and Controllers

Figure A5.5 shows the SDM component classes ‘AudioDevice’, ‘AudioSubDevice’,

‘AudioControl’ and ‘AudioParameter’ that are used by both devices and controllers.

‘AudioSubDevice’ objects that are renderable and ‘AudioControl’ objects implement

the ‘IRenderable’ interface class that renders these objects on the graphics surface of

a specified parent (container) component. ‘AudioSubDevice’ objects that are

renderable reference a Java panel component and the ‘MigLayout’ layout manager

mentioned in Chapter 11.

Figure A5.5 shows that class ‘AudioParameter’ specifies a remote RMI service

name that represents a remote, joined parameter. Parameter objects can also be used

as local parameter objects that do not specify any remote services.

All classes that must be serialized to a Fly space implement the ‘java.io.serializable’

interface class that enables binary serialization.

Class ‘StateParameter’ has been omitted from Figure A5.5. Instances of this class

simply represent the define name, type and value attributes that represent a

corresponding ‘AudioParameter’ object. This compact representation conserves

bandwidth during bulk parameter transfers as mentioned previously in

Section 11.3.2.1 System Architecture (p.281).

388

A5.2.2.1 Implementing Parameter Groups

With the exception of AES64, the creation and management of parameter relationships

within many control protocols requires a service process that is awkward to implement.

Managing data relationships such as parameter joins and groups requires data structures

and dynamic behavior that are able to represent and manage these relationships.

An object-oriented approach to representing parameters allows parameter relationships

Figure A5.5 SDM Classes in Package Common.

389

to be elegantly represented and managed. Listing A5.1 shows that an ‘AudioParameter’

object contains the attributes and methods required to represent and manage

relationships to other parameters. Methods are provided to add members to and remove

members from a parameter group. The SETValue(..) method iterates through the lists of

slave or peer parameters and updates their values.

The last first three object attributes in Listing A5.1 represent the first three levels defined

by the SDM parameter address layer. This allows ‘AudioParameter’ objects to be retrieved

from a Fly space access by using object templates that match sets of parameter

descriptions, sets of parameter types or specific parameter instances.

class AudioParameter {
 public:

void addSlave(AudioParameter p);
void addPeer (AudioParameter p);
void removeSlave(AudioParameter p);
void removePeer (AudioParameter p);
void setValue(<type> newValue);

 private:
 Collection <AudioParameter> slaveList;
 Collection <AudioParameter> peerList;
 int relationType;

 String parameterDesc;
 String parameterType;
 String parameterInst;
 String parameterName;

Listing A5.1 Fli2 Parameter Methods and Attributes.

390

Appendix 6

Fli2 Sequence Diagrams

The sequence diagrams provided in this appendix illustrate the event sequences described

in Chapter 11. For the sake of clarity, these events sequences are provided with each

sequence diagram.

A6.1 Device and Service Advertisements

The sequence diagram of Figure A6.1 illustrates the following sequence of events that

occur when a device and its component parts and parameters are advertised to a network

by writing objects to a Fly space:

1. A networked mixer device searches for a Fly object space on the local network

segment. The discovered space returns a reference to itself to the mixer device.

2. The mixer device creates an ‘AudioDevice’ object that represents the mixer device.

3. All child sub-devices of the ‘AudioDevice’ object are created and written to the

space.

4. For each child sub-device in step two above, all child sub-devices are created and

written to the space.

For each child ‘AudioControl object’ of each ‘AudioSubDevice’ object:

5. Remote parameters are created and stored by the mixer device. These parameters

store service identifiers that identify specific parameters.

6. The service identifiers representing RPCs are registered with the RMI registry.

7. Control parameter objects are created. These parameters reference the remote

service identifiers registered in step six.

8. All child controls (‘AudioControl’ objects) are created.

9. All ‘AudioControl’ objects and ‘AudioParameter’ objects are written to the space.

10. The mixer device advertises itself on the network by creating an ‘AudioDevice’

object and writing it to the space.

391

D
ev

ic
e

an
d

 S
er

vi
ce

 A
d

ve
rt

is
e

m
en

ts

Fi
gu

re
 A

6
.1

 D
ev

ic
e

an
d

 S
er

vi
ce

 A
d

ve
rt

is
em

en
t

Se
q

u
en

ce
 D

ia
gr

am
.

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0

)

392

A6.2 Device Discovery

The sequence of events that occur during device discovery is illustrated by the sequence

diagram in Figure A6.2.

1. A controller creates a ‘NetworkBrowser’ object

2. The controller creates an ‘AudioDevice’ template object that is used to select

‘AudioDevice’ objects from a space.

3. The controller uses the template to read all ‘AudioDevice’ objects currently

stored in the space.

4. The controller adds the discovered devices to the ‘Network Browser’ window.

5. The ‘Network Browser’ updates the device tree user interface (illustrated in

Figure 11.11).

6. The controller creates a callback as outlined in Section 11.2.2.1.2 Space

Subscriptions (p.275).

7. The controller subscribes to future ‘AudioDevice’ advertisements by registering

the ‘AudioDevice’ template object created in step two. The callback method

created in step six is invoked by the space when ‘AudioDevice’ objects matching

the template are written to the space.

8. A mixer device creates an ‘AudioDevice’ object that represents the mixer device.

9. The mixer device advertises itself by writing the ‘AudioDevice’ object to the space

and specifying a lease time.

10. The space invokes the callback created in step six to notify the controller that an

‘AudioDevice’ object has been written to the space.

11. The controller uses the ‘AudioDevice’ template created in step two to read the

‘AudioDevice’ object from the space.

12. The controller adds the newly discovered device to the ‘Network Browser’.

13. The ‘NetworkBrowser’ updates its device tree that provides a user interface.

393

A6.3 Service Discovery

The following events shown in the sequence diagram A6.3 take place when a user browses

for services using the ‘NetworkBrowser’ provided by a controller:

1. The user selects a device displayed by the device tree in the ‘NetworkBrowser’

window.

2. The controller reads the child ‘AudioSubDevice’ objects for the selected device

from a space.

3. The names of child ‘AudioSubDevice’ objects read from the space are displayed

in the expanded device tree in the ‘NetworkBrowser’ window.

4. The user selects a sub-device displayed in the device tree.

Fi
gu

re
 A

6
.2

 D
ev

ic
e

D
is

co
ve

ry
 S

eq
u

en
ce

 D
ia

gr
am

.

D
ev

ic
e

D
is

co
ve

ry

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0

)

(1
1

)

(1
2

)

(1
3

)

394

5. Child ‘AudioSubDevice’ objects for the selected sub-device are read from the

space.

6. The names of child ‘AudioSubDevice’ objects read from the space are displayed

in the device tree.

7. The controller reads all child ‘AudioControl’ objects for the selected sub-device

from the space.

8. The names of child ‘AudioControl’ objects read from the space are displayed in

the device tree.

(1)

(2)

(3)

Service Discovery

(4)

(5)

(6)

(7)

 Figure A6.3 Service Discovery Sequence Diagram.

(8)

395

A6.4 Control Surface Creation

A user adds components to a control surface from the hierarchical view of a device

provided by the ‘NetworkBrowser’ window. The sequence diagram of Figure A6.4

illustrates the following events that occur when a user adds a sub-device to a control

surface:

1. A user requests the ‘NetworkBrowser’ (illustrated previously in Figure 11.11) to add

(‘Insert’) the currently selected sub-device to the controller’s control surface.

2. The ‘NetworkFrame’ window (containing the ‘NetworkBrowser’) requests the

‘AudioController’ to add the specified ‘AudioSubDevice’ object (previously read

from the space when the user interface tree was expanded) to the control surface.

3. The ‘AudioController’ accesses the specified ‘AudioSubDevice’ object.

4. The ‘AudioController’ registers the ‘AudioSubDevice’ object with the control

surface (the control surface adds it to its collection of ‘AudioSubDevice’ objects).

5. The ‘AudioController’ accesses all child ‘AudioControl’ objects for the specified

‘AudioSubDevice’ object.

6. The ‘AudioController’ registers all child controls (‘AudioControl’ objects previously

read from the space when the user interface tree was expanded) for the added

‘AudioSubDevice’ object with the control surface.

7. The ‘AudioController’ requests each ‘AudioControl’ object to bind (initialize) its

parameters.

8. Each ‘AudioControl’ requests its ‘AudioParameter’ (control parameter) object/s to

bind (initialize) their remote services (representing joined remote parameters).

9. The ‘AudioParameter’ object obtains the required remote service from the RMI

registry. This service is defined by the ‘IControl’ remote interface (illustrated

previously in Figure 11.7).

10. The ‘AudioController’ obtains the control surface component (graphics surface)

from the parent ‘AudioSubDevice’ that must display the ‘AudioSubDevice’ and its

child ‘AudioControl’ objects.

11. The controller requests the ‘AudioSubDevice’ to render itself on the graphics

surface.

12. The ‘AudioSubDevice’ object requests each child ‘AudioControl’ object to render

itself on the graphics surface.

13. Each ‘AudioControl’ object renders the appropriate user interface widget/s on the

provided graphics surface.

396

(1
)

A
d

d
 S

u
b

-D
e

vi
ce

 t
o

 a
 C

o
n

tr
o

l S
u

rf
ac

e

Fi
gu

re
 A

6
.4

 A
d

d
in

g
a

Su
b

-D
ev

ic
e

to
 a

 C
o

n
tr

o
l S

u
rf

ac
e

Se
q

u
en

ce
 D

ia
gr

am
.

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0

)

(1
1

)

(1
2

)

(1
3

)

397

A6.5 Implementing Metering Subscriptions

Figure A6.5 shows the sequence of events that occur when a controller subscribes to

receive meter values from a remote device.

1. A user requests a local meter to subscribe to meter values from a remote device.

2. The ‘LocalMeter’ object requests its local control parameter to subscribe to a

remote meter.

3. The local control parameter object (‘locParameter’) invokes the remote service

to subscribe to the remote meter.

4. An RMI RPC excites the service request provided by the ‘RemoteDevice’ object

on the remote device.

5. The ‘RemoteDevice’ object requests the specified ‘RemMeter’ (remote device

meter) object to start transmitting meter values.

6. If the remote meter process is executing, the remote meter process invokes an

RMI RPC to stream its meter values to the audio controller.

7. The audio controller receives meter values and updates the corresponding

local meter.

398

Fi
gu

re
 A

6
.5

 M
et

e
r

V
al

u
e

Su
b

sc
ri

p
ti

o
n

 S
eq

u
en

ce
 D

ia
gr

am
.

(2
)

(1
)

(3
)

(4
)

(5
)

(6
)

C
o

n
tr

o
lle

r
Su

b
sc

ri
b

e
s

to
 M

et
e

r
V

al
u

es

(7
)

399

A6.6 Connection Management using a Shared Connection Manager

Figure A6.6 illustrates the events that occur when devices perform connection

management using a shared ‘ConnectionManager’ object:

1. A device creates an object template to identify a ‘Connection Manager’ object that

exists within a space.

2. A device removes the ‘ConnectionManager’ object from the space using the

template created in the previous step.

3. The device adds its audio terminals to the ‘ConnectionManager’ and returns the

object to the space.

4. Devices are notified that a connection manager has been written to the space.

5. Devices read the ‘ConnectionManager’ object from the space.

6. Devices update their view to display the available audio terminals on the network.

Connection Management using a Shared Connection Manager

(1)

(2)

(3)

(4)

(5)

(6)

Figure A6.6 Using a Connection Manager Sequence Diagram.

400

Figure A6.7 Connection Management using Audio Terminals Sequence Diagram.

Advertise Audio Terminals and Create Audio Connections

(1)

(2)

(1)

(3)

(4)

(5)

(6)

(7)

(8)

A6.7 Connection Management using Audio Terminals

Connections are created by the sequence of events listed below that are shown in the

sequence diagram of Figure A6.7. The red rectangle indicates events that can cause

starvation as discussed in Section 11.4.2.2 Using Shared Terminal Objects (p.301).

1. Devices register to receive notifications when ‘Terminal’ objects are written to a

space.

2. A device advertises audio terminals by writing ‘Terminal’ objects to a space.

3. Devices are notified when ‘Terminal’ objects are written to the space and read the

objects.

4. Devices update their view of the available audio terminals on the network.

401

5. A user creates connections and commits the updated ‘Terminal’ objects that reflect

these connections to the space.

6. The device writes the updated ‘Terminal’ objects terminals to the space.

7. Devices are notified that terminals have been written to the space and read the

updated ‘Terminal’ objects from the space.

8. Devices update their view of connections among networked devices.

A6.8 Connection Management Using Connection Objects

The sequence diagram of Figure A6.8 illustrates the use of connection objects to represent

audio connections between networked devices:

1. A ‘ConnectionManager’ object and an object that functions as a ‘MUTEX’ state are

written to a space when the audio network becomes available.

2. Devices create a ‘Connection Manager’ template and read the ‘Connection

Manager’ object from the space.

3. Devices create and register a template to receive notifications when

‘AudioTerminal’ objects are written to a space.

4. Devices create and register a template to receive notifications when

‘ConnectionObject’ objects are written to a space.

5. Devices create a collection of all ‘AudioTerminal’ objects advertising source and

destination audio streams

6. Devices write all ‘AudioTerminal’ objects to a space.

7. Devices are notified when terminals are advertised to a space and read the

advertised ‘Terminal’ objects from the space.

8. A device provides its ‘ConnectionManager’ with the newly read ‘Terminal’ objects

and the connection manager updates its view of the terminals available on the

network.

9. Users create audio ‘ConnectionObject’ objects by associating a source terminal

with a destination terminal using the user interface provided by the connection

manager.

10. The MUTEX state object is removed from the space by a connection manager

wishing to make connections.

11. ‘ConnectionObject’ objects are written to the space and all connection managers

are notified that new connections have been made.

12. The controller returns the MUTEX state object to the space.

402

(1
)

(2
)

(3
)

(4
)

(5
)

403

(6
)

Fi
gu

re
 A

6
.8

 C
re

at
in

g
C

o
n

n
ec

ti
o

n
s

u
si

n
g

C
o

n
n

ec
ti

o
n

 O
b

je
ct

s
Se

q
u

en
ce

 D
ia

gr
am

.

(7
)

(8
)

(9
)

(1
0

)

(1
1

)
(1

2
)

(1
3

)

(1
4

)

(1
5

)

404

13. Devices are notified that 'ConnectionObject' objects have been written to the space.

14. Devices create template objects and read the newly made connections from the

space.

15. Devices request the connection manager to display the connections.

A6.9 Implementing Parameter Joins

The sequence diagram in Figure A6.9 illustrates how the Fli2 environment supports

parameter joins where ‘remote’ parameters encapsulate remote services.

1. The user selects a control and then requests that the parameters associated with

the control to be displayed.

Joining Parameters

(1)

(2)

(3)

(4)

(5)

(6)

Figure A6.9 Creating Parameter Joins Sequence Diagram.

(7)

405

2. The parameter view frame is created and then obtains the local control parameters

from the controller. The controller extracts the control parameters from each

control within a set of controls that have been previously retrieved from a space.

3. If remote parameters have not been previously retrieved from the space,

a template is created and all remote parameters are read from the space.

4. The control and remote parameters for the currently selected control are

determined.

5. The control parameter associated with the selected control is displayed in the

parameter view frame.

6. The user selects a remote parameter.

7. The user joins the selected remote parameter to the local control parameter.

A6.10 Discovering and Registering a Protocol Stack

The sequence diagram of Figure A6.10 illustrates the following events:

1. A networked device creates a ‘ProtocolStack’ object and writes the object to a

space.

2. The device creates an ‘AudioDevice’ object and advertises itself by writing the

object to a space.

3. A controller creates an ‘AudioDevice’ object template and reads the

‘AudioDevice’ object from the space.

4. The controller obtains the name of the required protocol from the ‘Device’

object.

5. The controller creates the required ‘AudioDevice’ object template.

6. The controller reads the ‘ProtocolStack’ object from the space.

7. The ‘ProtocolStack’ object is registered with the controller.

8. The controller creates a protocol message.

9. The controller requests the ‘ProtocolStack’ object to execute the created

message.

406

Discovering and Using a Control Protocol Stack

(1)

(2)

(3)

(4)

Figure A6.10 Discovering and Registering a Protocol Stack Sequence Diagram.

(5)
(6)

(7)

(8) (9)

407

Appendix 7

Standard Device Model OSC Address

Space

A section of the OSC address spaces for the controller and device discussed in Chapter 5

are provided below. For the sake of brevity, only the OSC addresses for the network stream

inputs and the gain control of the first channel strip of the device are listed.

Implementation of the address space operators requires each container to have the

required OSC methods attached to it. All operators are always added to each OSC

container even if the operator is not applicable to a specific container: for example,

a device container may not have an associated layout record. Adding all operators ensures

that queries that are not applicable to a particular container return a null string rather

than an OSC error message. As discussed in Chapter 5, the WOscLib protocol stack was

modified to provide the functionality associated with each operator.

The controller is an example of a ‘partial-peer’ network node that has its own address

space.

Controller Address Space

/rGetParams

/rSubtree

/rLayout

/rAttributes

/rChildren

/rMeter

Mixer Device Address Space

/^

/+p

/+c

/+s

/+

/-l

/-d

/-

Root-level address space
operators

OSC methods for descriptive data and meter
values returned from the device

408

-------- Device--------

/dev/^

/dev/+p

/dev/+c

/dev/+s

/dev/+

/dev/-l

/dev/-d

/dev/-

/dev/inp/^

/dev/inp/+p

/dev/inp/+c

/dev/inp/+s

/dev/inp/+

/dev/inp/-l

/dev/inp/-d

/dev/inp/-

/dev/inp/gain/^

/dev/inp/gain/+p

/dev/inp/gain/+c

/dev/inp/gain/+s

/dev/inp/gain/+

/dev/inp/gain/-l

/dev/inp/gain/-d

/dev/inp/gain/-

/dev/inp/gain/gain1/peer

/dev/inp/gain/gain1/slave

/dev/inp/gain/gain1/val

/dev/inp/gain/gain1/^

/dev/inp/gain/gain1/+p

/dev/inp/gain/gain1/+c

/dev/inp/gain/gain1/+s

/dev/inp/gain/gain1/+

/dev/inp/gain/gain1/-l

/dev/inp/gain/gain1/-d

/dev/inp/gain/gain1/-

/dev/inp/gain/desc: node=paramtype, ptype=gain, (value=val,

meta=[type=int, min=0, max=5, step=1]) (action=peer, args=1,

 type=string) (action=slave, args=1, type=string)/0

/dev/netin/^

/dev/netin/+p

/dev/netin/+c

/dev/netin/+s

/dev/netin/+

/dev/netin/-l

/dev/netin/-d

/dev/netin/-

/dev/netin/stype1/^

/dev/netin/stype1/+p

/dev/netin/stype1/+c

/dev/netin/stype1/+s

/dev/netin/stype1/+

/dev/netin/stype1/-l

/dev/netin/stype1/-d

/dev/netin/stype1/-

/dev/netin/stype1/stream2/id2

/dev/netin/stype1/stream2/listen2

/dev/netin/stype1/stream2/^

Description Record

 Parameter Actions

Parameter Value

Short Parameter Addresses

SDM Gain Parameter Type

Network Destination Streams

SDM Input Parameter Description

SDM Gain1 Parameter Instance

409

/dev/netin/stype1/stream2/+p

/dev/netin/stype1/stream2/+c

/dev/netin/stype1/stream2/+s

/dev/netin/stype1/stream2/+

/dev/netin/stype1/stream2/-l

/dev/netin/stype1/stream2/-d

/dev/netin/stype1/stream2/-

/dev/netin/stype1/stream1/id1

/dev/netin/stype1/stream1/listen1

/dev/netin/stype1/stream1/^

/dev/netin/stype1/stream1/+p

/dev/netin/stype1/stream1/+c

/dev/netin/stype1/stream1/+s

/dev/netin/stype1/stream1/+

/dev/netin/stype1/stream1/-l

/dev/netin/stype1/stream1/-d

/dev/netin/stype1/stream1/-

/dev/netin/stype1/signal: node=param, type=AVB, clock=48, param=listen,

param=id/0

/dev/netin/stype1/desc: node=param/0

/dev/netin/desc: node=param/0

/dev/ins/^

/dev/ins/+p

/dev/ins/+c

/dev/ins/+s

/dev/ins/+

/dev/ins/-l

/dev/ins/-d

/dev/ins/-

/dev/ins/ch1/^

/dev/ins/ch1/+p

/dev/ins/ch1/+c

/dev/ins/ch1/+s

/dev/ins/ch1/+

/dev/ins/ch1/-l

/dev/ins/ch1/-d

/dev/ins/ch1/-

/dev/ins/ch1/gain-1/^

/dev/ins/ch1/gain-1/+p

/dev/ins/ch1/gain-1/+c

/dev/ins/ch1/gain-1/+s

/dev/ins/ch1/gain-1/+

/dev/ins/ch1/gain-1/-l

/dev/ins/ch1/gain-1/-d

/dev/ins/ch1/gain-1/-

/dev/ins/ch1/gain-1/layout: ctype=1, x=67, y=182, w=47, h=54,

label=gain1/0

/dev/ins/ch1/gain-1/desc: node=ctrl, ch=1, name=gain1,val=int,

meta=[min=0, max=5, step=1, def=1], p=/dev/inp/gain/gain1/val/0

Signal Description Record

Channel Strip 1 Sub-Device

Gain1 Control

1

Description Record

Layout Record

410

Appendix 8

Standard Device Model MIB Schema

and MIB

The SNMP data model for the SDM MIB is summarized in Figure A8.1. The complete MIB

file is included with the example software. Table indexes are indicated above each table.

Device Architecture Layer Tables

Metering and Automation Tables

Automation Automation Data

MeterTable

Int, int … int

 Device

SubDevice

Control Attribute Data Layout Data

 Meta-Data Meta-Data

int

int (from implied OID)

int, int int, int

int, int, int

AttributeRecord

int, int, int

Layout Record

Implied
OID

int (from implied OID)
Implied
OID

Parameter

Legend:

 Table Row Pointer Relationship
 Expansion Table Parameter Description Layer
 Decriptive Data OID Index Relationship
 (Base Table) Indexed Relationship

411

Parameter Description Tables

External (Network) and Internal Connection Management Tables

int, int, int

 Parameter
 Description

Parameter Inst

 Parameter
 Type

Attribute Data Meta-Data

 Slave Parameters Peer Parameters Parameter

int (device), int, int

int (device), int, int, int int, int int, int

int (device), int

int, int

int (device), int, int,
int, int

 Slave List Peer List

Figure A8.1 SNMP Data Model for the SDM.

 Parameter Inst

 SrcStream

int, int, int, int

int, int, int, int, int

 Parameter
 Description

 Parameter
 Type

Meta-Data

int (device), int, int
int, int

SignalDesc

(Attribute
Record)
 Description

 Parameter Inst

 Int Connection

int, int, int, int

int, int, int, int, int

 Parameter
 Description

 Parameter
 Type

int (device), int, int

DestStream

External Internal

412

Audio Device Mib Listing

AUDIO-DEVICE-MIB DEFINITIONS ::= BEGIN
IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE, -- OBJECT-IDENTITY,
 Integer32, IpAddress, NOTIFICATION-TYPE, TimeTicks
 FROM SNMPv2-SMI
 OBJECT-GROUP, NOTIFICATION-GROUP -- MODULE-COMPLIANCE,
 FROM SNMPv2-CONF
 TEXTUAL-CONVENTION, TruthValue -- RowPointer, DisplayString, RowStatus
 FROM SNMPv2-TC;
audioDevice9MIB MODULE-IDENTITY

 LAST-UPDATED "201001250000Z"
 ORGANIZATION "Rhodes University"
 CONTACT-INFO "Andrew Eales"
 DESCRIPTION "MIB for audio device control Nov - 2014 v0.9.16"
 REVISION "201001250000Z"
 DESCRIPTION " "
 ::= { audio 1 }
iso OBJECT IDENTIFIER ::= { 1 }
standard OBJECT IDENTIFIER ::= { iso 0 }
audio OBJECT IDENTIFIER ::= { standard 9 }
-- ___
-- Object identifier values for MIB object groups
device OBJECT IDENTIFIER ::= { audioDevice9MIB 1 }
deviceCommand OBJECT IDENTIFIER ::= { device 2 }
subDevice OBJECT IDENTIFIER ::= { audioDevice9MIB 2 }
subdeviceCommand OBJECT IDENTIFIER ::= { subDevice 2 }
control OBJECT IDENTIFIER ::= { audioDevice9MIB 3 }
controlCommand OBJECT IDENTIFIER ::= { control 2 }
attribute OBJECT IDENTIFIER ::= { audioDevice9MIB 4 }
layout OBJECT IDENTIFIER ::= { audioDevice9MIB 5 }
parameter OBJECT IDENTIFIER ::= { audioDevice9MIB 6 }
paramCommand OBJECT IDENTIFIER ::= { parameter 12 }
groupCommand OBJECT IDENTIFIER ::= { parameter 15 }
io OBJECT IDENTIFIER ::= { parameter 18 }
net OBJECT IDENTIFIER ::= { io 1 }
netSrc OBJECT IDENTIFIER ::= { net 1 }
netDest OBJECT IDENTIFIER ::= { net 2 }
assign OBJECT IDENTIFIER ::= { io 2 }
input OBJECT IDENTIFIER ::= { assign 1 }
output OBJECT IDENTIFIER ::= { assign 2 }
intConnect OBJECT IDENTIFIER ::= { parameter 20 }
automation OBJECT IDENTIFIER ::= { audioDevice9MIB 7 }
meter OBJECT IDENTIFIER ::= { audioDevice9MIB 8 }
audioMIBGroups OBJECT IDENTIFIER ::= { audioDevice9MIB 9 }
-- __
-- ______________________ Textual Conventions ______________________
DeviceTypeID ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION " "
 SYNTAX INTEGER { console(1), microphone(2), amplifier(3),
 effectsUnit(4), keyboard(5) }

413

-- ChildType ::= TEXTUAL-CONVENTION
-- STATUS current
-- DESCRIPTION " "
-- SYNTAX INTEGER { subdevice(1), control(2) }

-- used as part of index into a global layout table
-- ComponentType ::= TEXTUAL-CONVENTION
-- STATUS current
-- DESCRIPTION " "
-- SYNTAX INTEGER { device(1), subdevice(2), control(3) }

-- NumericDataType ::= TEXTUAL-CONVENTION
-- STATUS current
-- DESCRIPTION " "
-- SYNTAX INTEGER { int(1), double(2) }

-- NumericString ::= TEXTUAL-CONVENTION
-- STATUS current
-- DESCRIPTION " "
-- SYNTAX OCTET STRING (SIZE (0..12))

-- DataUnit ::= TEXTUAL-CONVENTION
-- STATUS current
-- DESCRIPTION " "
-- SYNTAX INTEGER { system(1), dB(2) }

NameString ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION " "
 SYNTAX OCTET STRING (SIZE (0..32))

TableIndex ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION " "
 SYNTAX Integer32 (1..512)

WidgetType ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION " "
 SYNTAX INTEGER { linear(1), rotary(2),
 switch(3), meter(4), display(5) }

--SourceType ::= TEXTUAL-CONVENTION
-- STATUS current
-- DESCRIPTION " "

-- SYNTAX INTEGER { extInput(1), inputSubDevice(3),
-- bus(4), outputSubDevice(5), intOutput(6) }

--SourceType ::= TEXTUAL-CONVENTION
-- STATUS current
-- DESCRIPTION " "
-- SYNTAX INTEGER { extInput(1), intOutput(2), bus(3) }

--SinkType ::= TEXTUAL-CONVENTION
-- STATUS current
-- DESCRIPTION " "

414

-- SYNTAX INTEGER { intInput(1), bus(2), extOutput(3) }

RelType ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION " "
 SYNTAX INTEGER { abs(1), rel(2) }

-- SignalFormat ::= TEXTUAL-CONVENTION
-- STATUS current
-- DESCRIPTION " "
-- SYNTAX INTEGER { aes(1) }

-- SignalDirection ::= TEXTUAL-CONVENTION
-- STATUS current
-- DESCRIPTION " "
-- SYNTAX INTEGER { input(1), output(2) }
-- __
-- _____________ Scalar Tiggers (Device)______________
--
currentDevice OBJECT-TYPE
 SYNTAX OCTET STRING
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { deviceCommand 1 }

deviceChildren OBJECT-TYPE
 SYNTAX OCTET STRING
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { deviceCommand 2 }

deviceRow OBJECT-TYPE
 SYNTAX OCTET STRING
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { deviceCommand 3 }

deviceNames OBJECT-TYPE
 SYNTAX OCTET STRING
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { deviceCommand 4 }

deviceAttributes OBJECT-TYPE
 SYNTAX Integer32
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { deviceCommand 5 }

415

-- __
-- _________ Scalar Tiggers (SubDevice) ___________
--
currentSubDevice OBJECT-TYPE
 SYNTAX OCTET STRING
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { subdeviceCommand 1 }

subDeviceChildren OBJECT-TYPE
 SYNTAX OCTET STRING
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { subdeviceCommand 2 }

subdeviceRow OBJECT-TYPE
 SYNTAX OCTET STRING
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { subdeviceCommand 3 }

subdeviceNames OBJECT-TYPE
 SYNTAX OCTET STRING
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { subdeviceCommand 4 }

subdeviceAttributes OBJECT-TYPE
 SYNTAX Integer32
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { subdeviceCommand 5 }

subdeviceLayout OBJECT-TYPE
 SYNTAX Integer32
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { subdeviceCommand 6 }

-- __
-- ____________ Scalar Tiggers (Control) ______________
--
currentControl OBJECT-TYPE
 SYNTAX OCTET STRING
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { controlCommand 1 }

controlChildren OBJECT-TYPE
 SYNTAX OCTET STRING

416

 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { controlCommand 2 }

controlRow OBJECT-TYPE
 SYNTAX OCTET STRING
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { controlCommand 3 }

controlAttributes OBJECT-TYPE
 SYNTAX Integer32
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { controlCommand 4 }

controlLayout OBJECT-TYPE
 SYNTAX Integer32
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { controlCommand 5 }

-- __
-- ___________ Scalar Tiggers (Parameter) ___________
--
currentParam OBJECT-TYPE
 SYNTAX OCTET STRING
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { paramCommand 1 }

paramRow OBJECT-TYPE
 SYNTAX OCTET STRING
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { paramCommand 2 }

paramAttributes OBJECT-TYPE
 SYNTAX OCTET STRING
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { paramCommand 3 }

-- __
-- ___________ Scalar Tiggers (Slaves - Peer) ___________
--
addSlaveList OBJECT-TYPE
 SYNTAX Integer32 -- group number is list entry index
 MAX-ACCESS read-write
 STATUS current

417

 DESCRIPTION " "
 ::= { groupCommand 1 }

remSlaveList OBJECT-TYPE
 SYNTAX Integer32 -- group number - list entry index
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { groupCommand 2 }

addPeerList OBJECT-TYPE
 SYNTAX Integer32 -- group number - list entry index
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { groupCommand 3 }

remPeerList OBJECT-TYPE
 SYNTAX Integer32 -- group number - list entry index
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { groupCommand 4 }

addSlave OBJECT-TYPE
 SYNTAX OCTET STRING -- parameter name
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { groupCommand 5 }

remSlave OBJECT-TYPE
 SYNTAX OCTET STRING -- parameter name
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { groupCommand 6 }

addPeer OBJECT-TYPE
 SYNTAX OCTET STRING -- parameter name
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { groupCommand 7 }

remPeer OBJECT-TYPE
 SYNTAX OCTET STRING -- parameter name
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { groupCommand 8 }

-- _____________________________________
-- ____________ Device Table _____________
--
deviceTable OBJECT-TYPE
 SYNTAX SEQUENCE OF DeviceEntry

418

 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { device 1 }

deviceEntry OBJECT-TYPE
 SYNTAX DeviceEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 INDEX { devIdx }
 ::= { deviceTable 1 }

DeviceEntry ::= SEQUENCE {
 devIdx TableIndex,
 devType DeviceTypeID,
 devName NameString,
 devIPAddress IpAddress,
 devPort Integer32,
 devChildCount Integer32
}

devIdx OBJECT-TYPE
 SYNTAX TableIndex
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { deviceEntry 1 }

devType OBJECT-TYPE
 SYNTAX DeviceTypeID
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { deviceEntry 2 }

devName OBJECT-TYPE
 SYNTAX NameString
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { deviceEntry 3 }

devIPAddress OBJECT-TYPE
 SYNTAX IpAddress
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { deviceEntry 4 }

devPort OBJECT-TYPE
 SYNTAX Integer32
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { deviceEntry 5 }

419

devChildCount OBJECT-TYPE
 SYNTAX Integer32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { deviceEntry 6 }

-- _____________________________________
-- ___________ SubDevice Table ____________
--
subDeviceTable OBJECT-TYPE
 SYNTAX SEQUENCE OF SubDeviceEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { subDevice 1 }

subDeviceEntry OBJECT-TYPE
 SYNTAX SubDeviceEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 INDEX { IMPLIED subDeviceIdx }
 ::= { subDeviceTable 1 }

SubDeviceEntry ::= SEQUENCE {
 subDeviceIdx OBJECT IDENTIFIER,
 sdName NameString,
 sdChildCount Integer32,
 sdControlCount Integer32
}

subDeviceIdx OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { subDeviceEntry 1 }

sdName OBJECT-TYPE
 SYNTAX NameString
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { subDeviceEntry 2 }

sdChildCount OBJECT-TYPE
 SYNTAX Integer32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { subDeviceEntry 3 }

sdControlCount OBJECT-TYPE
 SYNTAX Integer32
 MAX-ACCESS read-only
 STATUS current

420

 DESCRIPTION " "
 ::= { subDeviceEntry 4 }

-- ____________________________________
-- ___________ Control Table ____________
--
controlTable OBJECT-TYPE
 SYNTAX SEQUENCE OF ControlEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { control 1 }

controlEntry OBJECT-TYPE
 SYNTAX ControlEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 INDEX { IMPLIED controlIdx }
 ::= { controlTable 1 }

ControlEntry ::= SEQUENCE {
 controlIdx OBJECT IDENTIFIER,
 controlName NameString,
 controlType WidgetType,
 controlValue Integer32,
 controlParam OBJECT IDENTIFIER
}

controlIdx OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { controlEntry 1 }

controlName OBJECT-TYPE
 SYNTAX NameString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { controlEntry 2 }

controlType OBJECT-TYPE
 SYNTAX WidgetType
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { controlEntry 3 }

controlValue OBJECT-TYPE
 SYNTAX Integer32
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { controlEntry 4 }

421

controlParam OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { controlEntry 5 }

-- __
-- ______ Component Attrib Table - Device Subdevice Control ______
-- index -> integer of implied OID
--
attribListTable OBJECT-TYPE
 SYNTAX SEQUENCE OF AttribListEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { attribute 1 }

attribListEntry OBJECT-TYPE
 SYNTAX AttribListEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 INDEX { attribListIdx }
 ::= { attribListTable 1 }

AttribListEntry ::= SEQUENCE {
 attribListIdx TableIndex,
 attribListSize Integer32 -- num entries for GETNEXT
}

attribListIdx OBJECT-TYPE
 SYNTAX TableIndex
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { attribListEntry 1 }

attribListSize OBJECT-TYPE
 SYNTAX Integer32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { attribListEntry 2 }

-- ___
-- _______ Attrib Data Table <key, value>__________
--
attribDataTable OBJECT-TYPE
 SYNTAX SEQUENCE OF AttribDataEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { attribute 2 }

attribDataEntry OBJECT-TYPE
 SYNTAX AttribDataEntry

422

 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 INDEX { attribListIdx, attribDataIdx }
 ::= { attribDataTable 1 }

AttribDataEntry ::= SEQUENCE {
 attribDataIdx TableIndex,
 attribDataKey NameString,
 attribDataValue NameString,
 attribDataType NameString
}

attribDataIdx OBJECT-TYPE
 SYNTAX TableIndex
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= {attribDataEntry 1 }

attribDataKey OBJECT-TYPE
 SYNTAX NameString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { attribDataEntry 2 }

attribDataValue OBJECT-TYPE
 SYNTAX NameString
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { attribDataEntry 3 }

attribDataType OBJECT-TYPE
 SYNTAX NameString
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { attribDataEntry 4 }

-- ___
-- ______ Attrib Meta-Data Table <key, value> ______
--
attribMetaDataTable OBJECT-TYPE
 SYNTAX SEQUENCE OF AttribMetaDataEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { attribute 3 }

attribMetaDataEntry OBJECT-TYPE
 SYNTAX AttribMetaDataEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 INDEX { attribListIdx, attribDataIdx, attribMetaDataIdx }

423

 ::= { attribMetaDataTable 1 }

AttribMetaDataEntry ::= SEQUENCE {
 attribMetaDataIdx TableIndex,
 attribMetaDataKey NameString,
 attribMetaDataValue NameString,
 attribMetaDataType NameString
}

attribMetaDataIdx OBJECT-TYPE
 SYNTAX TableIndex
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= {attribMetaDataEntry 1 }

attribMetaDataKey OBJECT-TYPE
 SYNTAX NameString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { attribMetaDataEntry 2 }

attribMetaDataValue OBJECT-TYPE
 SYNTAX NameString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { attribMetaDataEntry 3 }

attribMetaDataType OBJECT-TYPE
 SYNTAX NameString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { attribMetaDataEntry 4 }

-- ___
-- _____ Layout Table - index -> integer of implied OID ______
--
layoutListTable OBJECT-TYPE
 SYNTAX SEQUENCE OF LayoutListEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { layout 1 }

layoutListEntry OBJECT-TYPE
 SYNTAX LayoutListEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 INDEX { layoutListIdx }
 ::= { layoutListTable 1 }

LayoutListEntry ::= SEQUENCE {
 layoutListIdx TableIndex,

424

 layoutListSize Integer32
}

layoutListIdx OBJECT-TYPE
 SYNTAX TableIndex
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { layoutListEntry 1 }

layoutListSize OBJECT-TYPE
 SYNTAX Integer32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { layoutListEntry 2 }

-- ___
-- _______ Layout Data Table <key, value> _______
--
layoutDataTable OBJECT-TYPE
 SYNTAX SEQUENCE OF LayoutDataEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { layout 2 }

layoutDataEntry OBJECT-TYPE
 SYNTAX LayoutDataEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 INDEX { layoutListIdx, layoutDataIdx }
 ::= { layoutDataTable 1 }

LayoutDataEntry ::= SEQUENCE {
 layoutDataIdx TableIndex,
 layoutDataKey NameString,
 layoutDataValue NameString,
 layoutDataType NameString
}

layoutDataIdx OBJECT-TYPE
 SYNTAX TableIndex
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { layoutDataEntry 1 }

layoutDataKey OBJECT-TYPE
 SYNTAX NameString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { layoutDataEntry 2 }

layoutDataValue OBJECT-TYPE

425

 SYNTAX NameString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { layoutDataEntry 3 }

layoutDataType OBJECT-TYPE
 SYNTAX NameString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { layoutDataEntry 4 }

-- ___
-- ______ Layout Meta-Data Table <key, value> ______
--
layoutMetaDataTable OBJECT-TYPE
 SYNTAX SEQUENCE OF LayoutMetaDataEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { layout 3 }

layoutMetaDataEntry OBJECT-TYPE
 SYNTAX LayoutMetaDataEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 INDEX { layoutListIdx, layoutDataIdx, layoutMetaDataIdx }
 ::= { layoutMetaDataTable 1 }

LayoutMetaDataEntry ::= SEQUENCE {
 layoutMetaDataIdx TableIndex,
 layoutMetaDataKey NameString,
 layoutMetaDataValue NameString,
 layoutMetaDataType NameString
}

layoutMetaDataIdx OBJECT-TYPE
 SYNTAX TableIndex
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { layoutMetaDataEntry 1 }

layoutMetaDataKey OBJECT-TYPE
 SYNTAX NameString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { layoutMetaDataEntry 2 }

layoutMetaDataValue OBJECT-TYPE
 SYNTAX NameString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "

426

 ::= { layoutMetaDataEntry 3 }

layoutMetaDataType OBJECT-TYPE
 SYNTAX NameString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { layoutMetaDataEntry 4 }

-- ______________________________________
-- _______ Parameter Description Table _______
--
paramDescTable OBJECT-TYPE
 SYNTAX SEQUENCE OF ParamDescEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { parameter 1 }

paramDescEntry OBJECT-TYPE
 SYNTAX ParamDescEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 INDEX { devIdx, paramDescIdx }
 ::= { paramDescTable 1 }

ParamDescEntry ::= SEQUENCE {
 paramDescIdx TableIndex,
 paramDescName NameString
}

paramDescIdx OBJECT-TYPE
 SYNTAX TableIndex
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { paramDescEntry 1 }

paramDescName OBJECT-TYPE
 SYNTAX NameString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { paramDescEntry 2 }

-- _______________________________________
-- __________ Parameter Type Table __________
--
paramTypeTable OBJECT-TYPE
 SYNTAX SEQUENCE OF ParamTypeEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { parameter 2 }

paramTypeEntry OBJECT-TYPE

427

 SYNTAX ParamTypeEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 INDEX { devIdx, paramDescIdx, paramTypeIdx }
 ::= { paramTypeTable 1 }

ParamTypeEntry ::= SEQUENCE {
 paramTypeIdx TableIndex,
 paramTypeName NameString
}

paramTypeIdx OBJECT-TYPE
 SYNTAX TableIndex
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { paramTypeEntry 1 }

paramTypeName OBJECT-TYPE
 SYNTAX NameString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { paramTypeEntry 2 }

-- __
-- _____ Parameter Type Attrib Table (META-DATA) _______
--
paramTypeAttribTable OBJECT-TYPE
 SYNTAX SEQUENCE OF ParamTypeAttribEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { parameter 3 }

paramTypeAttribEntry OBJECT-TYPE
 SYNTAX ParamTypeAttribEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 INDEX { paramTypeIdx, paramTypeAttribIdx }
 ::= { paramTypeAttribTable 1 }

ParamTypeAttribEntry ::= SEQUENCE {
 paramTypeAttribIdx TableIndex,
 paramTypeAttribName NameString,
 paramTypeAttribType NameString,
 paramTypeAttribValue NameString
}

paramTypeAttribIdx OBJECT-TYPE
 SYNTAX TableIndex
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { paramTypeAttribEntry 1 }

428

paramTypeAttribName OBJECT-TYPE
 SYNTAX NameString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { paramTypeAttribEntry 2 }

paramTypeAttribType OBJECT-TYPE
 SYNTAX NameString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { paramTypeAttribEntry 3 }

paramTypeAttribValue OBJECT-TYPE
 SYNTAX NameString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { paramTypeAttribEntry 4 }

-- __
-- __________ Parameter Instance Table __________
--
-- Only indexed type and index - parmeter description placed IN table
paramInstTable OBJECT-TYPE
 SYNTAX SEQUENCE OF ParamInstEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { parameter 4 }

paramInstEntry OBJECT-TYPE
 SYNTAX ParamInstEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 INDEX { devIdx, paramDescIdx,
 paramTypeIdx, paramInstIdx }
 ::= { paramInstTable 1 }

ParamInstEntry ::= SEQUENCE {
 paramInstIdx TableIndex,
 paramInstName NameString,
 paramInstSlaveList TableIndex,
 paramInstPeerList TableIndex
}

paramInstIdx OBJECT-TYPE
 SYNTAX TableIndex
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { paramInstEntry 1 }

paramInstName OBJECT-TYPE

429

 SYNTAX NameString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { paramInstEntry 2 }

 paramInstSlaveList OBJECT-TYPE
 SYNTAX TableIndex
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { paramInstEntry 3 }

paramInstPeerList OBJECT-TYPE
 SYNTAX TableIndex
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { paramInstEntry 4 }

-- _______________________________________
-- ____________ Parameter Table ____________
--
paramTable OBJECT-TYPE
 SYNTAX SEQUENCE OF ParamEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { parameter 5 }

paramEntry OBJECT-TYPE
 SYNTAX ParamEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 INDEX { devIdx, paramDescIdx, paramTypeIdx,
 paramInstIdx, paramIdx }
 ::= { paramTable 1 }

ParamEntry ::= SEQUENCE {
 paramIdx TableIndex,
 paramName NameString,
 paramType NameString,
 paramUnit NameString,
 paramValue OCTET STRING -- (SIZE (1..6))
}

paramIdx OBJECT-TYPE
 SYNTAX TableIndex
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { paramEntry 1 }

paramName OBJECT-TYPE
 SYNTAX NameString
 MAX-ACCESS read-only

430

 STATUS current
 DESCRIPTION " "
 ::= { paramEntry 2 }

paramType OBJECT-TYPE -- parameter value or action parameter
 SYNTAX NameString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { paramEntry 3 }

paramUnit OBJECT-TYPE
 SYNTAX NameString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { paramEntry 4 }

paramValue OBJECT-TYPE
 SYNTAX OCTET STRING (SIZE (1..6))
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { paramEntry 5 }

-- ___
-- __________ Full Address Parameter Table __________
--
fullParamTable OBJECT-TYPE
 SYNTAX SEQUENCE OF FullParamEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { parameter 6 }

fullParamEntry OBJECT-TYPE
 SYNTAX FullParamEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 INDEX { IMPLIED fullParamIdx }
 ::= { fullParamTable 1 }

FullParamEntry ::= SEQUENCE {
 fullParamIdx OBJECT IDENTIFIER,
 fullParamName NameString,
 fullParamValue OCTET STRING
}

fullParamIdx OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { fullParamEntry 1 }

fullParamName OBJECT-TYPE

431

 SYNTAX NameString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { fullParamEntry 2 }

fullParamValue OBJECT-TYPE
 SYNTAX OCTET STRING (SIZE (1..6))
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { fullParamEntry 3 }

-- ____________________________________
-- ____________ Slave List Table __________
-- NB allows different lists to be defined

slaveListTable OBJECT-TYPE
 SYNTAX SEQUENCE OF SlaveListEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { parameter 7 }

slaveListEntry OBJECT-TYPE
 SYNTAX SlaveListEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 INDEX { paramIdx, slaveListIdx }
 ::= { slaveListTable 1 }

SlaveListEntry ::= SEQUENCE {
 slaveListIdx TableIndex
}

slaveListIdx OBJECT-TYPE
 SYNTAX TableIndex
 MAX-ACCESS read-only -- one index accessible strict compilers
 STATUS current
 DESCRIPTION " "
 ::= { slaveListEntry 1 }

-- ___
-- ________ Slave List param Table ________
--
slaveParamTable OBJECT-TYPE
 SYNTAX SEQUENCE OF SlaveParamEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { parameter 8 }

slaveParamEntry OBJECT-TYPE
 SYNTAX SlaveParamEntry
 MAX-ACCESS not-accessible
 STATUS current

432

 DESCRIPTION " "
 INDEX { slaveListIdx, slaveParamIdx }
 ::= { slaveParamTable 1 }

SlaveParamEntry ::= SEQUENCE {
 slaveParamIdx TableIndex,
 slaveParamPointer OBJECT IDENTIFIER, -- points to slave parameter
 slaveRelType RelType
}

slaveParamIdx OBJECT-TYPE
 SYNTAX TableIndex
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { slaveParamEntry 1 }

slaveParamPointer OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { slaveParamEntry 2 }

slaveRelType OBJECT-TYPE
 SYNTAX RelType
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { slaveParamEntry 3 }

-- ______________________________________
-- ____________ Peer List Table ____________
-- NB allows different lists to be defined

peerListTable OBJECT-TYPE
 SYNTAX SEQUENCE OF PeerListEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
::= { parameter 9 }

peerListEntry OBJECT-TYPE
 SYNTAX PeerListEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 INDEX { paramIdx, peerListIdx } -- one index accessible strict compilers
 ::= { peerListTable 1 }

PeerListEntry ::= SEQUENCE {
 peerListIdx TableIndex
 }

peerListIdx OBJECT-TYPE
 SYNTAX TableIndex
 MAX-ACCESS read-only -- one index accessible strict compilers

433

 STATUS current
 DESCRIPTION " "
 ::= { peerListEntry 1 }

-- ___
-- __________ Peer List param Table ____________
--
peerParamTable OBJECT-TYPE
 SYNTAX SEQUENCE OF PeerParamEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
::= { parameter 10 }

peerParamEntry OBJECT-TYPE
 SYNTAX PeerParamEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 INDEX { peerListIdx, peerParamIdx }
 ::= { peerParamTable 1 }

PeerParamEntry ::= SEQUENCE {
 peerParamIdx TableIndex,
 peerParamPointer OBJECT IDENTIFIER, -- points to slave parameter
 peerRelType RelType
 }

peerParamIdx OBJECT-TYPE
 SYNTAX TableIndex
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { peerParamEntry 1 }

peerParamPointer OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { peerParamEntry 2 }

peerRelType OBJECT-TYPE
 SYNTAX RelType
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { peerParamEntry 3 }

-- ___
-- ___________ Source Stream Parameter Table ___________
--
srcStreamParamTable OBJECT-TYPE
 SYNTAX SEQUENCE OF SrcStreamParamEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "

434

 ::= { netSrc 1 }

srcStreamParamEntry OBJECT-TYPE
 SYNTAX SrcStreamParamEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 INDEX { devIdx, paramDescIdx, paramTypeIdx,
 paramInstIdx, srcStreamParamIdx }
 ::= { srcStreamParamTable 1 }

SrcStreamParamEntry ::= SEQUENCE {
 srcStreamParamIdx TableIndex,
 srcStreamParamID NameString,
 srcStreamInstName NameString,
 srcStreamParamName NameString,
 srcStreamParamValue OCTET STRING
}

srcStreamParamIdx OBJECT-TYPE
 SYNTAX TableIndex
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { srcStreamParamEntry 1 }

srcStreamParamID OBJECT-TYPE
 SYNTAX NameString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { srcStreamParamEntry 2 }

srcStreamInstName OBJECT-TYPE
 SYNTAX NameString
 MAX-ACCESS read-write -- echo instance or friendly name
 STATUS current
 DESCRIPTION " "
 ::= { srcStreamParamEntry 3 }

 -- filled in by Agent (protocol specific e.g. advertise)
srcStreamParamName OBJECT-TYPE
 SYNTAX NameString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { srcStreamParamEntry 4 }

srcStreamParamValue OBJECT-TYPE
 SYNTAX OCTET STRING (SIZE (1..6))
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { srcStreamParamEntry 5 }

435

-- ___
-- _____ Destination Stream Parameter Table ______
--
destStreamParamTable OBJECT-TYPE
 SYNTAX SEQUENCE OF DestStreamParamEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { netDest 1 }

destStreamParamEntry OBJECT-TYPE
 SYNTAX DestStreamParamEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 INDEX { devIdx, paramDescIdx, paramTypeIdx,
 paramInstIdx, destStreamParamIdx }
 ::= { destStreamParamTable 1 }

DestStreamParamEntry ::= SEQUENCE {
 destStreamParamIdx TableIndex,
 destStreamInstName NameString,
 destStreamParamID NameString,
 destStreamParamName NameString,
 destStreamParamValue NameString
}

destStreamParamIdx OBJECT-TYPE
 SYNTAX TableIndex
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { destStreamParamEntry 1 }

destStreamParamID OBJECT-TYPE
 SYNTAX NameString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { destStreamParamEntry 2 }

 destStreamInstName OBJECT-TYPE
 SYNTAX NameString
 MAX-ACCESS read-write -- echo instance or friendly name
 STATUS current
 DESCRIPTION " "
 ::= { destStreamParamEntry 3 }

-- filled in by Agent (protocol specific e.g. listen)
destStreamParamName OBJECT-TYPE
 SYNTAX NameString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { destStreamParamEntry 4 }

destStreamParamValue OBJECT-TYPE

436

 SYNTAX NameString
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { destStreamParamEntry 5 }

-- ___
-- ____ Device InputParameter (Connection) Table _______
--
inConnTable OBJECT-TYPE
 SYNTAX SEQUENCE OF InConnEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { input 1 }

inConnEntry OBJECT-TYPE
 SYNTAX InConnEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 INDEX { devIdx, paramDescIdx, paramTypeIdx,
 paramInstIdx, inConnIdx }
 ::= { inConnTable 1 }

InConnEntry ::= SEQUENCE {
 inConnIdx TableIndex,
 inConnID NameString,
 inConnSrc NameString, -- e.g. dup sigDescriptEntries
 inConnDest NameString, -- e.g. ch1 dup inParamInstName
 inConnValue NameString -- connectivity
}

inConnIdx OBJECT-TYPE
 SYNTAX TableIndex
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { inConnEntry 1 }

inConnID OBJECT-TYPE -- net ID
 SYNTAX NameString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { inConnEntry 2 }

inConnSrc OBJECT-TYPE
 SYNTAX NameString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { inConnEntry 3 }

inConnDest OBJECT-TYPE
 SYNTAX NameString
 MAX-ACCESS read-only

437

 STATUS current
 DESCRIPTION " "
 ::= { inConnEntry 4 }

inConnValue OBJECT-TYPE
 SYNTAX NameString
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { inConnEntry 5 }

-- __
-- _____ Device Output Parameter (Connection) Table _____
--
outConnTable OBJECT-TYPE
 SYNTAX SEQUENCE OF OutConnEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { output 1 }

outConnEntry OBJECT-TYPE
 SYNTAX OutConnEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 INDEX { devIdx, paramDescIdx, paramTypeIdx,
 paramInstIdx, outConnIdx }
 ::= { outConnTable 1 }

OutConnEntry ::= SEQUENCE {
 outConnIdx TableIndex,
 outConnID NameString,
 outConnSrc NameString,
 outConnDest NameString,
 outConnValue NameString
}

outConnIdx OBJECT-TYPE
 SYNTAX TableIndex
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { outConnEntry 1 }

outConnID OBJECT-TYPE -- net ID if required
 SYNTAX NameString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { outConnEntry 2 }

outConnSrc OBJECT-TYPE
 SYNTAX NameString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "

438

 ::= { outConnEntry 3 }

outConnDest OBJECT-TYPE
 SYNTAX NameString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { outConnEntry 4 }

outConnValue OBJECT-TYPE
 SYNTAX NameString
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { outConnEntry 5 }

-- ____________________________________
-- _______ Internal Connection Table _______
--
intConnTable OBJECT-TYPE
 SYNTAX SEQUENCE OF IntConnEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { intConnect 1 }

intConnEntry OBJECT-TYPE
 SYNTAX IntConnEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 INDEX { devIdx, paramDescIdx, paramTypeIdx,
 paramInstIdx, intConnIdx }
 ::= { intConnTable 1 }

IntConnEntry ::= SEQUENCE {
 intConnIdx TableIndex,
 intConnName NameString,
 intConnSrc NameString,
 intConnDest NameString,
 intConnValue TruthValue }

intConnIdx OBJECT-TYPE
 SYNTAX TableIndex
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { intConnEntry 1 }

intConnName OBJECT-TYPE
 SYNTAX NameString
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { intConnEntry 2 }

439

intConnSrc OBJECT-TYPE -- e.g. ch1-LBus, ch1-RBus
 SYNTAX NameString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { intConnEntry 3 }

intConnDest OBJECT-TYPE -- e.g. LBus, RBus
 SYNTAX NameString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { intConnEntry 4 }

intConnValue OBJECT-TYPE
 SYNTAX TruthValue
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { intConnEntry 5 }

-- _______________________________________
-- ____________ Automation Table ___________
--
autoTable OBJECT-TYPE
 SYNTAX SEQUENCE OF AutoEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { automation 1 }

autoEntry OBJECT-TYPE
 SYNTAX AutoEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 INDEX { autoIdx }
 ::= { autoTable 1 }

AutoEntry ::= SEQUENCE {
 autoIdx TableIndex,
 autoName NameString,
 autoRecSwitch TruthValue,
 autoPlaySwitch TruthValue,
 autoDeleteSwitch TruthValue
 }

autoIdx OBJECT-TYPE
 SYNTAX TableIndex
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { autoEntry 1 }

autoName OBJECT-TYPE
 SYNTAX NameString
 MAX-ACCESS read-write

440

 STATUS current
 DESCRIPTION " "
 ::= { autoEntry 2 }

autoRecSwitch OBJECT-TYPE
 SYNTAX TruthValue -- INTEGER or BOOLEAN { true(1), false(2) }
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { autoEntry 3 }

autoPlaySwitch OBJECT-TYPE
 SYNTAX TruthValue
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { autoEntry 4 }

autoDeleteSwitch OBJECT-TYPE
 SYNTAX TruthValue
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { autoEntry 5 }

-- __
-- ___________ Automation Data Table ____________
--
autoDataTable OBJECT-TYPE
 SYNTAX SEQUENCE OF AutoDataEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { automation 2 }

autoDataEntry OBJECT-TYPE
 SYNTAX AutoDataEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 INDEX { autoIdx, autoDataIdx }
 ::= { autoDataTable 1 }

 AutoDataEntry ::= SEQUENCE {
 autoDataIdx TableIndex,
 autoDataOID OBJECT IDENTIFIER,
 autoDataValue Integer32,
 autoDataTime TimeTicks
 }

autoDataIdx OBJECT-TYPE
 SYNTAX TableIndex
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { autoDataEntry 1 }

441

autoDataOID OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { autoDataEntry 2 }

autoDataValue OBJECT-TYPE
 SYNTAX Integer32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { autoDataEntry 3 }

autoDataTime OBJECT-TYPE
 SYNTAX TimeTicks
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION " "
 ::= { autoDataEntry 4 }

-- ____________________________________
-- _____________ Meter Table ____________
--
meterTable OBJECT-TYPE
 SYNTAX SEQUENCE OF MeterEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { meter 1 }

meterEntry OBJECT-TYPE -- Thread directly transmist values
 SYNTAX MeterEntry -- NO value entry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 INDEX { meterIdx }
 ::= { meterTable 1 }

MeterEntry ::= SEQUENCE {
 meterIdx TableIndex,
 meterName NameString,
 meterValue Integer32,
 meterStatus TruthValue,
 meterTransmit TruthValue
}

meterIdx OBJECT-TYPE
 SYNTAX TableIndex
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION " "
 ::= { meterEntry 1 }

meterName OBJECT-TYPE
 SYNTAX NameString
 MAX-ACCESS read-only

442

 STATUS current
 DESCRIPTION " "
 ::= { meterEntry 2 }

meterValue OBJECT-TYPE
 SYNTAX Integer32
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { meterEntry 3 }

meterStatus OBJECT-TYPE
 SYNTAX TruthValue
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { meterEntry 4 }

meterTransmit OBJECT-TYPE
 SYNTAX TruthValue
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION " "
 ::= { meterEntry 5 }

-- ___
-- _______________ Notifications _______________

meterTrap NOTIFICATION-TYPE
 OBJECTS { meterName, meterValue }
 STATUS current
 DESCRIPTION " "
 REFERENCE " "
 ::= { meter 2 }

-- _________________Object Groups __________________
deviceGroup OBJECT-GROUP
OBJECTS
{ devType, devName, devIPAddress, devPort, devChildCount,
 currentDevice, deviceChildren, deviceRow, deviceNames,
 deviceAttributes
}
STATUS current
DESCRIPTION " "
::= { audioMIBGroups 1 }

subDeviceGroup OBJECT-GROUP
OBJECTS
{ sdName, sdChildCount, sdControlCount, currentSubDevice,
 subDeviceChildren,
 currentSubDevice, subdeviceRow, subdeviceNames, subdeviceAttributes,
 subdeviceLayout
}
STATUS current
DESCRIPTION " "
::= { audioMIBGroups 2 }

443

controlGroup OBJECT-GROUP
OBJECTS
{ controlName, controlType, controlValue, controlParam,
 currentControl, controlChildren,
 controlRow, controlAttributes, controlLayout
}
STATUS current
DESCRIPTION " "
::= { audioMIBGroups 3 }

attributeGroup OBJECT-GROUP
OBJECTS
{ attribListSize, attribDataKey, attribDataValue, attribDataType,
 attribMetaDataKey, attribMetaDataValue, attribMetaDataType
}
STATUS current
DESCRIPTION " "
::= { audioMIBGroups 4 }

layoutGroup OBJECT-GROUP
OBJECTS
{ layoutListSize, layoutDataKey, layoutDataValue, layoutDataType,
 layoutMetaDataKey, layoutMetaDataValue, layoutMetaDataType
}
STATUS current
DESCRIPTION " "
::= { audioMIBGroups 5 }

parameterGroup OBJECT-GROUP
OBJECTS
{ paramDescName, paramTypeName, paramTypeAttribName,
 paramTypeAttribType, paramTypeAttribValue, paramInstName,
 paramName, paramType, paramUnit, paramValue,
 fullParamName,fullParamValue, paramInstSlaveList,
 paramInstPeerList, addSlaveList, remSlaveList, slaveListIdx,
 slaveParamPointer, slaveRelType, addSlave, remSlave, addPeerList,
 remPeerList, peerListIdx, addPeer, remPeer, peerParamPointer,
 peerRelType, currentParam, paramRow, paramAttributes
}
STATUS current
DESCRIPTION " "
::= { audioMIBGroups 6 }

automationGroup OBJECT-GROUP
OBJECTS
{ autoName, autoRecSwitch, autoPlaySwitch, autoDeleteSwitch, autoDataOID,
 autoDataValue, autoDataTime
}
STATUS current
DESCRIPTION " "
::= { audioMIBGroups 7 }

meterGroup OBJECT-GROUP
OBJECTS
{ meterName, meterValue, meterStatus, meterTransmit
}
STATUS current

444

DESCRIPTION " "
::= { audioMIBGroups 8 }

netIOGroup OBJECT-GROUP
OBJECTS
{ srcStreamParamName, srcStreamParamID, srcStreamInstName,
 srcStreamParamValue,destStreamParamName, destStreamParamID,
 destStreamInstName, destStreamParamValue
}
STATUS current
DESCRIPTION " "
::= { audioMIBGroups 9 }

assignIOGroup OBJECT-GROUP
OBJECTS
{ inConnID, inConnSrc, inConnDest, inConnValue,
 outConnID, outConnSrc, outConnDest, outConnValue
}
STATUS current
DESCRIPTION " "
::= { audioMIBGroups 10 }

intConnectGroup OBJECT-GROUP
OBJECTS
{ intConnName, intConnSrc,
 intConnDest, intConnValue
}

STATUS current
DESCRIPTION " "
::= { audioMIBGroups 11 }

meterNotification NOTIFICATION-GROUP
NOTIFICATIONS
{ meterTrap
}
STATUS current
DESCRIPTION " "
::= { audioMIBGroups 12 }

END

445

Appendix 9

UPnP Device and Service Descriptions

For brevity, only a single fader service description is listed. This service illustrates the

declaration of the base64-encoded control that is transferred as a serialized object from a

device to a controller as discussed in Chapter 9.

Device Description
<?xml version="1.0" ?>
<root xmlns="urn:schemas-upnp-org:device-1-0">
 <specVersion>
 <major>1</major>
 <minor>1</minor>
 </specVersion>
 <device>
 <deviceType>urn:schemas-upnp-org:device:mixer:1</deviceType>
 <friendlyName>AudioMixer</friendlyName>
 <manufacturer> Rhodes University</manufacturer>>
 <modelName>VirtualDevice1</modelName>
 <!-- <UDN>uuid:75802409-bccb-40e7-8e6c-fa095ecce10e</UDN> -->
 <UDN>uuid:vConsole1</UDN>
 <iconList>
 <icon>
 <mimetype>image/gif</mimetype>
 <width>48</width>
 <height>32</height>
 <depth>8</depth>
 <url>icon.gif</url>
 </icon>
 </iconList>
 <deviceList>

<device> <!-- INPUT STREAM1 -->
 <deviceType>urn:schemas-upnp-org:subdevice:NetworkIn:1</deviceType>
 <friendlyName>Audio IN Stream1</friendlyName>
 <UDN>uuid:AAin</UDN>
 <UPC>MIXER IGE</UPC>
 <serviceList>
 <service>
 <serviceType>Talkers1</serviceType>
 <serviceId>Talkers_1</serviceId>
 <SCPDURL>/service/state/talkers1.xml</SCPDURL>
 <controlURL>/service/talkers1/control</controlURL>
 <eventSubURL>/service/talkers1/eventSub</eventSubURL>
 <talkerID>1</talkerID>
 </service>
 </serviceList>

</device>
 <device> <!-- INPUT SECTION -->

 <deviceType>urn:schemas-upnp-org:subdevice:Input Section:1</deviceType>

Root Device

Network Destination Stream

 Mixer Input Section Sub-Device

446

 <friendlyName>Input Section</friendlyName>
 <!-- <UDN>uuid:75802409-bccb-40e7-8e6c-fa095ecce11e</UDN> -->
 <UDN>uuid:AInput_Section</UDN>
 <UPC>MIXER IGD</UPC>
 <deviceList>

 <device> <!--CHANNEL STRIP 1-->
 <deviceType>urn:schemas-upnp-org:subdevice:Channel1:1</deviceType>
 <friendlyName>Channel1</friendlyName>
 <!-- <UDN>uuid:75802409-bccb-40e7-8e6c-fa095ecce13e</UDN> -->
 <UDN>uuid:Channel_1</UDN>
 <UPC>MIXER IGE</UPC>
 <serviceList>
 <service>
 <serviceType>Gain1</serviceType>
 <serviceId>Gain_1</serviceId>
 <SCPDURL>/service/state/gain1.xml</SCPDURL>
 <controlURL>/service/gain1/control</controlURL>
 <eventSubURL>/service/gain1/eventSub</eventSubURL>
 </service>
 <service>
 <serviceType>Fader1</serviceType>
 <serviceId>Fader_1</serviceId>
 <SCPDURL>/service/state/fader1.xml</SCPDURL>
 <controlURL>/service/fader1/control</controlURL>
 <eventSubURL>/service/fader1/eventSub</eventSubURL>
 <channel>1</channel>
 </service>
 <service>
 <serviceType>Meter1</serviceType>
 <serviceId>Meter_1</serviceId>
 <SCPDURL>/service/state/meter1.xml</SCPDURL>
 <controlURL>/service/meter1/control</controlURL>
 <eventSubURL>/service/meter1/eventSub</eventSubURL>
 </service>
 </serviceList>
 <deviceList>

 <device> <!-- EQU SECTION -->
 <deviceType>urn:schemas-upnp-org:subdevice:EquSection:1</deviceType>
 <friendlyName>Equ1</friendlyName>
 <UDN>uuid:75802409-bccb-40e7-8e6c-fa095ecce14d</UDN>
 <UPC>MIXER IGE</UPC>
 <serviceList>
 <service>
 <serviceType>HiEqu1</serviceType>
 <serviceId>urn:schemas-upnp-org:serviceId:HiEqu:1</serviceId>
 <SCPDURL>/service/state/hiequ1.xml</SCPDURL>
 <controlURL>/service/gain/hiequ1</controlURL>
 <eventSubURL>/service/hiequ1/eventSub</eventSubURL>
 </service>
 </serviceList>
 </device>
 </deviceList>
 </device> <!-- channel strip 1 -->
 <device> <!-- OUTPUT SECTION -->
 <deviceType>urn:schemas-upnp-org:subdevice:Output Section:1</deviceType>

Channel Strip1 Sub-Device

Gain1 Control

EQU Section Sub-Device

 Mixer Output Section Sub-Device

447

 <friendlyName>Output Section</friendlyName>
 <UDN>uuid:75802409-bccb-40e7-8e6c-fa095ecce12e</UDN>
 <UPC>MIXER IGE</UPC>
 <deviceList>

 <device> <!--MASTER SECTION -->
 <deviceType>urn:schemas-upnp-org:subdevice:Master Section:1</deviceType>
 <friendlyName>Master Section</friendlyName>
 <UDN>uuid:75802409-bccb-40e7-8e6c-fa095ecce13e</UDN>
 <UPC>MIXER IGE</UPC>
 <serviceList>
 <service>
 <serviceType>urn:schemas-upnp-org:control:L-Master Fader:1</serviceType>
 <serviceId>urn:schemas-upnp-org:serviceId:L-Master Fader:1</serviceId>
 <SCPDURL>/service/state/masterfader.xml</SCPDURL>
 <controlURL>/service/LMaster/control</controlURL>
 <eventSubURL>/service/LMaster/eventSub</eventSubURL>
 </service>
 <service>
 <serviceType>urn:schemas-upnp-org:control:R-Master Fader:1</serviceType>
 <serviceId>urn:schemas-upnp-org:serviceId:R-Master Fader:1</serviceId>
 <SCPDURL>/service/state/masterfader.xml</SCPDURL>
 <controlURL>/service/RMaster/control</controlURL>
 <eventSubURL>/service/RMaster/eventSub</eventSubURL>
 </service>
 </serviceList>
 </device>
 </deviceList>
 </device> <!-- master -->

 <device> <!-- OUTPUT STREAM1 -->
 <deviceType>urn:schemas-upnp-org:subdevice:NetworkOut:1</deviceType>
 <friendlyName>Audio OUT Stream1</friendlyName>
 <UDN>uuid:AOUT</UDN>
 <UPC>MIXER IGE</UPC>
 </device>
 </deviceList>
 <presentationURL>http://www.cybergarage.org</presentationURL>
 </device>
</root>

Fader Service Description
<?xml version="1.0"?>
<scpd xmlns="urn:schemas-upnp-org:service-1-0" >
 <specVersion>
 <major>1</major>
 <minor>0</minor>
</specVersion>
<actionList>
 <action>
 <name>SetFader1</name>
 <argumentList>
 <argument>
 <name>InFaderArg</name>
 <relatedStateVariable>vFader1</relatedStateVariable>
 <direction>in</direction>
 </argument>

 Master Section Sub-Device

Network Source Stream

448

 </argumentList>
</action>

<action>
 <name>GetFader1</name>
 <argumentList>
 <argument>
 <name>RetFaderValue</name>
 <relatedStateVariable>vFader1</relatedStateVariable>
 <direction>out</direction>
 </argument>
 </argumentList>
 </action>
 <action>

 <name>GetControlFader1</name> Action Returns Serialized Fader Control
 <argumentList>
 <argument>
 <name>ControlID</name>
 <relatedStateVariable>ControlType</relatedStateVariable>
 <direction>in</direction>
 </argument>
 <argument>
 <!-- FadeControl -->
 <name>Control</name>
 <relatedStateVariable>FaderControl1</relatedStateVariable>
 <direction>out</direction>
 </argument>
 </argumentList>
 </action>
</actionList>

<serviceStateTable>
 <stateVariable sendEvents="no">
 <name>vFader1</name>
 <dataType>i4</dataType>
 <defaultValue>15</defaultValue>
 <allowedValueRange>
 <minimum>-12</minimum>
 <maximum>20</maximum>
 <step>1</step>
 </allowedValueRange>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>FaderControl1</name>
 <dataType>bin.base64</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>ControlType</name>
 <dataType>i4</dataType>
 <allowedValueRange>
 <minimum>0</minimum>
 <maximum>5</maximum>
 </allowedValueRange>
</stateVariable>
</serviceStateTable>
</scpd>

449

Appendix 10

Control Protocol Command Analysis

and Comparison

A10.1 Native and Synthesized Commands

The ‘expressiveness’ of a control protocol is introduced as a measurement of both the

capabilities and flexibility of a control protocol. To measure expressiveness,

each protocol command is assigned a value denoting the command’s capabilities and

flexibility. The sum of these values creates an index for a category of related commands;

the sum of the values for each category measures the total expressiveness of a control

protocol. Commands are evaluated and compared within the two command categories

introduced in Section 2.9.1.1 Commands and Services (p.34):

1. Native commands that are directly supported by a protocol and parsed by the

protocol stack.

2. Synthesized commands that use native commands to provide extended

functionality.

Action parameters are not considered because they do not form a specific, well-defined

feature of a control protocol. It is important to reiterate that synthesized commands do

not include the execution of multiple distinct native commands. For example, multiple

SET(..) commands are not equivalent to a single command that addresses multiple

parameters. A synthesized command must always consist of a single, atomically executed

command. All commands listed in the tables that follow are native commands.

Synthesized commands are explicitly indicated as such. The fundamental operations

found within any protocol are the control and monitoring commands listed in

Tables A10.1, A10.2 and A10.3. The following sections provide a detailed examination of

these commands as well as the different commands used for parameter management.

A10.1.1 SET(..) Commands

Different argument configurations support different semantic interpretations of SET(..)

commands that may be implemented as:

450

1. Native SET(..) Commands

1.1 SET a single parameter value.

1.2 SET multiple related parameter values using:

1.2.1 Pattern matching.

1.2.2 Range selection.

1.2.3 Multiple variable bindings within a single PDU.

1.3 SET multiple unrelated parameter values using:

1.3.1 Pattern matching.

1.3.2 Multiple variable bindings within a single PDU.

1.4 SET a large group (bulk) of parameters.

2. Synthesized SET(..) Commands

2.1 SET multiple related or unrelated parameter values using the arguments of a

native set command to specify target parameters:

setValue (p1…pN, arg1 ... argN)

This command sets the values of the parameters p1 … pN using the arguments

arg1 ... argN as described in Section 5.3.2.1 Address Space Pattern-Matching (p.125) with

reference to OSC. This type of command is available to any protocol having a

SET (string) command where a single string represents an arbitrary delimited set of

argument values.

Table A10.1 compares SET(..) commands where footnote references are indicated in

boldface for clarity. The following notation denotes the characteristics of different protocol

commands:

The command ‘SET multiple related’ includes commands that address a continuous range

of parameter values, parameter values separated by a fixed offset, as well as values related

by their positions within a data structure. ‘SET multiple unrelated’ addresses a set of

parameters where at least one of the parameters has no known relationship to any other

parameter within the set. For example, Table A10.1 (row 11) shows that OSC supports the

grouping of multiple unrelated parameters using a bundle of commands. SNMP also

 Directly supported by the protocol.
Blank Not supported.
Opt = optional Argument or return value is optional.
F = fixed Argument structure or return type is fixed.
V = variable Argument structure or return type is variable.
Ack = acknowledgment The command is acknowledged by the protocol.
Err = error Error reporting is applicable to arguments and/or return values.
SE = side effect Command is implemented as a side effect of a parameter update.
Syn Synthesized command.
Imp Implementation dependent.

451

Table A10.1 A Comparison of SET(..) Commands.

Command OSC SNMP AES64 CopperLan UPnP

1. SET single [2] Action

 Argument V(0 ..*) V(0..*), Err 1, V
[1]

 1 V(0 ..*)

 Return Imp Ack, Err
and V(0 ..*)

Opt [3] Opt [3] F(1) or
Err

 Stack data update [2] Imp [4]

 Control Point
 (Callback f())

 SE SE SE

2. SET multiple
related

U
ser-d

efin
ed

 A
ctio

n
s

 Argument V(0 ..*) V(0 ..*)

 Return Imp Ack and
V(0 ..*)

 Opt

 Stack data update

 Control Point
 (Callback f())

 SE SE

3. SET multiple
unrelated

 [5]

 Argument V(0 ..*)
V(0..*)
Err

1,V [1]

 Return Imp V(0 ..*), Err Opt

 Stack data update

 Control Point
 (Callback f())

 SE SE

4. SET bulk
parameter group

5. Non-blocking
versions

supports addressing of unrelated parameter values by allowing multiple unrelated

varbinds to be attached to a single GET() or SET(..) command. SET multiple unrelated

commands can also be synthesized in OSC by using the variable argument structure

supported by OSC. Command analysis is not applicable to UPnP where commands are

freely implemented as service actions.

[1] AES64 allows an arbitrary user defined VOID argument to be supplied to many commands.
[2] OSC does not provide parameter data. Only a control point invocation is implemented by the OSC

protocol stack.
[3] Return values are optional as the protocol provides non-blocking versions of SET(..) commands.
[4] UPnP implementations typically update state variables from within a UPnP action. Actions are not

automatically linked to state variables.

452

 Command OSC SNMP AES64 CopperLan UPnP

1. GET single Syn [1] Service

 Argument V(0 ..*) F(1) 1, V [2]

 Return Impl V(0 ..*), E F(1) F(1)

 Control Point
 (Callback f())

 SE SE SE

2. GET ext In Sequence

U
ser-d

efin
ed

 A
ctio

n
s

 Argument F(1)

 Return F(1), Err

 Control Point
 (Callback f())

 SE SE SE

3. GET multiple Related Syn [3]

 Argument V(0 ..*) 0 ..*

 Return Impl F,E

 Control Point
 (Callback f())

 SE

4. GET multiple unrelated Syn [4]

 Argument V(0 ..*)

 Return

 Control Point
 (Callback f())

 SE

5. GET bulk [5]

Table A10.2 A Comparison of GET Commands.

[5] OSC bundles allow multiple unrelated parameters to be addressed. This capability is extended further
in the proposed version 2 of the protocol by the ‘multiple-level wildcard-matching operator’ as
described in Section 5.3.2.1 Address Space Pattern-Matching (p.125).

A10.1.2 GET() Commands

Table A10.2 compares the GET() commands supported by different control protocols.

[1] OSC does not provide parameter data; the OSC stack only implements a control point invocation.
[2] Many AE6464 commands provide an arbitrary user defined argument.
[3] Implemented as multiple SNMP varbinds.
[4] Wildcards within parameter addresses allow distantly related parameters to be addressed as a group.
[5] Does not retrieve logically related parameters but groups of parameters lexicographically ordered by
 their position within the SNMP object tree.

1. Native GET() Commands

1.1 GET a single parameter value.

1.2 GET multiple parameter values using:

1.2.1 Pattern matching (OSC and AES64).

1.2.2 Range selection (ACN and OCA).

1.3 GET the following parameter value in a sequence of parameter values (SNMP).

453

 Command OSC SNMP AES64 CopperLan UPnP

1. Subscribe to a single
parameter value

 [1]

2. Subscribe to multiple
parameter values

3. Subscribe to a single
event

4. Subscribe to multiple
events

5. Control Subscription
 Transmissions

 [2] [2]

Table A10.3 Comparing Subscription Management Commands.

1.4 GET a large (bulk) group of parameters (AES64).

2. Synthesized GET() Commands

2.1 GET multiple parameter values (OSC and SNMP).

OSC does not return any values; a partial-peer network organization must be used for a

server to return values to a client. SNMP must use multiple varbinds to return more than

one value. AES64 clearly separates bulk parameter access from accessing multiple

parameters using wildcard characters within an AES64 parameter address.

A10.1.3 Subscription (Monitoring) Commands

These commands are typically implemented as value-based or event-based subscriptions.

Table A10.3 summarizes the subscription capabilities of different control protocols.

1. Value-Based Subscription

1. Subscribe or unsubscribe to a single parameter value change.

2. Subscribe or unsubscribe to changes within a set of parameter values.

2. Event-Based Subscription

1. Subscribe or unsubscribe to a single event.

2. Subscribe or unsubscribe to a set of events.

[1] SNMP Notifications are specified by a MIB, but generated by agent instrumentation. Although
subscriptions are typically defined by MIB definitions, SNMP agents are capable of generating
notification messages that are not defined in a MIB as required by an application.

[2] Different transmission schemes can be implemented in OSC and SNMP as discussed below.

AES64 provides explicit control over the transmission of subscribed parameter data. Both

the update frequency and delta value threshold triggering update messages can be

specified as described in Section 7.4.2 Device Monitoring (p.197). Different transmission

schemes (as defined in Section 2.9.2.1 Bulk Transmission of Monitored Parameter Values

(p.37)) can be implemented in OSC and SNMP. Non-work conserving schemes can be

454

 Command OSC SNMP AES64 CopperLan UPnP

1. Static JOIN/UNJOIN parameter

2. Static CREATE/DEL group

3. Dynamic Update Join Syn Syn Syn

4. Dynamic Update Group Syn Syn Syn Syn

5. Dynamically Modify
Parameter Values

6. Automation

Table A10.4 Comparing Parameter Management Commands.

transmit multiple values as a bundle or as multiple arguments within a single OSC

message. A single SNMP SET(..) request containing multiple varbinds provides a

non-work conserving network transmission. UPnP implements a non-work conserving

transmission scheme as all evented state variables defined within a service are transmitted

when any state variable is updated.

A10.1.4 Parameter Management and Automation

Parameter management commands are only provided by AES64. Table A10.4 shows that

these commands can be synthesized by some control protocols.

1. Parameter Joins

1.1 Create or terminate static parameter joins.

1.2 Specify dynamic parameter joins as introduced in Section 2.8.1.1 Static and

Dynamic Parameter Joins (p.28).

2. Parameter Groups

2.1 Create, delete, and modify parameter groups.

SNMP commands can support dynamic parameter groups by addressing multiple

parameters by means of multiple variable bindings. OSC and UPnP are also capable of

expressing dynamic group relationships, as SET(..) commands support an arbitrary

number of arguments or varbinds respectively. AES64 supports the modifier mechanism

discussed previously in Section 7.3.3.3 Parameter Modifiers (p.192) that dynamically

modifies parameter values. Only OSC and AES64 support time stamped command

sequences that support automation.

A10.2 A Comparative Summary of Control Protocol Features

Table A10.5 summarizes the features of the control protocols discussed in this dissertation

that were presented at the end of the chapters devoted to specific control protocols.

455

[1] Although OSC does not define parameters, invoking an OSC method typically implies a parameter
 access.
[2] UPnP actions providing a great degree of flexibility but do not natively support arrays or collections of
 values.
[3] Serialization is only supported by SNMP v1 as it is deprecated in later versions.
[4] AES64 provides a VOID data type as an argument to protocol commands.
[5] Not mandated by the protocol specification.

Table A10.5 A Comparative Summary of Control Protocol Features.

 Protocol Feature OSC SNMP AES64 CopperLan UPnP

1. Network Management

1.1 Device discovery [6]

1.2 Monitoring reachability

2. Service Discovery and Enumeration

3. Control Surface Representation

4. Control Functionality

 4.1 Write Single Parameter Value [1]

 4.2 Write Multiple Parameter Values

 4.3 Read Single Parameter Value

 4.4 Read Multiple Values [2]

 4.5 Non-Blocking (Asynchronous)
 Commands

[5]

4.6 Variable Number of Arguments N/A

4.7 User-Defined Arguments [4]

4.8 Multiple Return Values N/A

4.9 Error Checking

4.10 Control Point Invocation

 4.11 Automation

5. Subscription (Monitoring)

 5.1 Single Value Subscription
Service
-based

 5.2 Multiple Value Subscription

 5.3 Event-based Subscription

6. Parameter Management

6.1 Linking Controls to Parameters

6.2 Joining Parameters

6.3 Grouping Parameters

6.4 Bulk Parameter Access [7]
6.5 Dynamic Parameter Modification
6.6 Save / Load Configuration

7. Connection Management

7.1 External Connection Management

 7.2 Internal Connection Management

 7.3 Control Connection Management

8. Serialization [3] [4]

9. Security

456

[6] Only supported by SNMP v3.
[7] Only retrieving parameters using GETBULK().

Table A10.6 summarizes the control and monitoring features for the listed control

protocols and assigns a score to each feature.

[1] Proposed for v2 of the protocol.
[2] Not natively supported but easy to implement.
[3] Cannot be determined, as the documentation is incomplete.
[4] A flexibility score reflects the freely defined service provided by UPnP.

The scores in Table 10.6 range from five (fully implemented) to zero (not implemented).

Scores between these values indicate the ease with which the feature can be implemented.

For example, setting multiple unrelated values via a synthesized command is easy to

implement in OSC. A score is also provided for protocols that support connection

Command OSC SNMP AES64 CopperLan UPnP

1. SET single 5 5 5 5 5

Flexibility 3 2 2 3

2. SET multiple related 5 5 5 5 [4]

Flexibility 3 2 2 3

3. SET multiple unrelated 3 [1] 5 5

Flexibility 3 2 2 3

Score 22 21 21 10 14

1. GET single 5 5 5 5

Flexibility 2

 [3]

 3

2. GET next in sequence 5 5

Flexibility 2 3

3. GET multiple related 5 5

Flexibility 2 2 3

4. GET multiple unrelated 5

Flexibility 2 3

Score 0 24 21 5 17

1. Subscribe / unsubscribe [2] 3 5 5 5

2. Start subscription 5 5 4

3. Stop Subscription 5 5 4

Flexibility 3 3 5 3

Score 3 6 20 15 16

1. Static Join 5

2. Dynamic Join 5 3

3. Static Group 5

4. Dynamic Group 5 3

Score 10 6 10

Automation 5 5 5

Connection Management 10 10 5

Total 35 57 87 40 52

Table A10.6 A Comparative Weighting of Protocol Features.

457

management. A flexibility score of between zero and three is also provided for each

command.

Of particular interest is the high score achieved by SNMP. UPnP and OSC are

commonly awarded a flexibility score, as these protocols support arbitrary commands

having an arbitrary number of arguments. AES64 commands allow an arbitrary type

(expressed as a void pointer) to be used with API commands.

A10.3 A Subjective Control Protocol Comparison

The previous analysis of the capabilities of different protocols can be used to determine

the ‘expressiveness’ of each protocol. ‘Expressiveness’ refers to both the number of

commands supported by a protocol and the different ways in which these commands can

be used. This is analogous to the ‘depth’ and ‘breadth’ of a protocol’s capabilities.

A qualitative evaluation is provided for the following categories:

 Expressiveness – a measurement of supported features;

 Adoption – how widely the protocol is used;

 Extensibility – a measurement of how well the protocol can be adapted and

scaled;

 Complexity – the development effort required to implement the protocol.

 Standard – the status of the protocol as a standard.

The above comparisons are used to formulate the following observations:

0

2

4

6

8

10

Expressiveness

Adoption

Effort

Extensibility

Standard

Figure A10.1 A Subjective Control Protocol Comparison.

458

1. Standardization has to date had no influence on the adoption of a control protocol.

OSC (like HiQnet) is widely used without being a standard protocol. OSC is an open

protocol, while HiQnet is a proprietary protocol. Conversely, although IEC-62379

and ACN are IEC and ANSI standards respectively, this study has not identified

any mature implementations or products supporting these standards.

2. The sophistication of a protocol does not mean that it will be widely adopted. OSC

is widely used but is the least sophisticated of all the control protocols.

3. The amount of effort required to implement applications and the tools provided by

a protocol vendor may influence the adoption of the protocol. It is conceivable that

the complexity of ACN and the development effort associated with SNMP have

negatively affected the adoption of these protocols.

459

Appendix 11

Control Protocol Packet Formats

Core TCP/IP protocols (IP, TCP, and UDP) use a header and payload organization where

the payload has a fixed message format consisting of predefined, static fields.

Common TCP/IP-based protocols such as HTTP, FTP, SMTP, POP3, and SIP use

text-based ‘Field: Value’ pairs (Resnick, 2001). Information encoded as

Type (or Tag)-Length-Value (TLV) triples (Medhi & Ramasamy, 2007, p. 25) within

protocol data units provides a markup scheme. The type and length of values are indicated

allowing values to be extracted and processed according to their types.

The type field type is typically a binary or alphanumeric identifier; the length of the field

is variable to allow future versions of the protocol to introduce new types. TLV encoding

is also defined in the SMPTE 336M-2001 (ITU, 2002) specification where it is referred to

as Key-Length-Value (KLV) encoding.

Only OSC and SNMP PDUs are discussed in this appendix as they are discussed in

the chapters dealing with these protocols. In particular, SNMP trap PDU fields were

directly accessed in the SNMP software to implement metering subscriptions.

A11.1 OSC Message Structure

An OSC PDU follows the standard IP and UDP headers. PDUs are optimized for 32-bit

machine architectures by aligning packet data on four-byte boundaries. OSC Addresses

and string arguments are encoded as ASCII characters, while numeric arguments are

encoded as binary data. Each argument is also aligned on a four-byte boundary within an

OSC PDU. The number and type of arguments supplied to an OSC message is indicated by

an OSC type tag string (Wright, 2002a) that begins with a comma character and is followed

a sequence of characters indicating the arity and order of arguments. Commonly used type

tags according to the OSC v1.0 specification include:

i 32 bit integer
f 32 bit floating point value
s OSC-string
b OSC-blob

Table A11.1 illustrates the structure of an OSC Message with the address pattern /gain

and five arguments specified for the ‘gain’ method. This example is adapted from the

460

 Legend:
■ ASCII characters ■ Type tag string
■ Numeric arguments ■ Null bytes used for data alignment

Word Byte1 Byte2 Byte3 Byte4 Argument

1 2F (/) 67 (g) 61 (a) 69 (i)

2 6e (n) 0 0 0

3 2C (,) 69 (i) 69 (i) 73 (s)

4 66 (f) 66 (f) 0 0

5 0 0 3 E8 1000

6 FF FF FF FF -1

7 76 (v) 61 (a) 6c (l) 75 (u) “value”

8 65 (e) 0 0 0

9 3F 9D F3 B6 1.234

10 40 B5 B2 2D 5.678

Table A11.1 OSC Packet Structure

examples provided with the OSC v1.0 specification (Wright, 2002a). The five arguments

are:

 an int32 with a value of 1000

 an int32 with a value of -1

 a string “value”

 a float32 with a value of 1.234

 a float32 with a value of 5.678

The packet data shown below makes use of the following colors to illustrate

data encoding:

In table A11.1 the null separator (byte two of the second word, byte three of word four and

byte two of word eight) are expanded to two or three bytes to align on a four-byte word

boundary. The specification also allows for additional types that do not conform to the

standard. In the above example, the format string iisff is padded with null bytes for

alignment and each argument is also aligned. The example in Table A11.1 has a total packet

length of forty bytes where eight null bytes are used for data alignment.

As explained in Section 5.3.1 Processing OSC Messages (p.122), a small increase in packet

size enhances performance, as OSC server processes do not have to copy received data

from the network buffer. Word-aligned data allows pointers or references to OSC message

arguments within a network buffer to be used when processing received messages as

discussed in Chapter 5.

461

 (Kozierok, 2005).

Field Name Syntax Size (bytes) Description

Version Integer 4
SNMPv1 = 0

SNMPv2 = 1

Community Octet
String

Variable SNMP ‘community’
string.

PDU Payload — Variable PDUs forming the
body of the message.

 Table A11.2 SNMPv1 General Packet Structure.

A11.2 SNMP Message Structure

SNMP packets use BER encoded data where BER encoded fields are organized using a

TLV format. PDU structure (Kozierok, 2005), (Cisco Systems Inc., n.d.) (Stumpf, 2009),

depends on the type of message that is being sent. Both SNMP version 1 and version 2c

PDUs contain SNMP data following the standard IP and UDP headers. This data consists

of an:

1. SNMP header made up of:

1.1 The SNMP version;

1.2 An SNMP community string;

2. SNMP PDU consisting of:

2.1 The object identifier of sender and recipient (SNMP v2.);

2.2 One or more SNMP PDUs consisting of:

2.2.1 The SNMP PDU type (GET, SET etc.)

2.2.2 An field used to identify the sender ;

2.2.3 Two error fields, and

2.2.4 A list of one or more SNMP variable Bindings.

This PDU structure is used for:

 Version 1 GET, GETNEXT, RESPONSE and SET PDUs;

 Version 2c GET, GETNEXT, INFORM, RESPONSE, SET and TRAP PDUs.

PDUs consist of a message header followed by one or more variable bindings.

Table A11.2 shows that the header consists of a version identifier and a community access

string that provides a simple security mechanism.

The fields defined by an SNMP PDU and a description of each field are shown in

Table A11.3.

462

Because GETBULK() requests are implemented using repeated GETNEXT() requests, two

fields replace the error indicators shown in Table A11.3 for SNMPv2c

GETBULK() requests:

 Non-repeaters (replaces the error-status) - how many variables at the start at the

head of varbind list are not to be repeated. These are scalar values that require a

single GET() command.

 Max-repetitions (replaces the error-index) - the number of GETNEXT()

repetitions.

The operation of SNMP GETBULK() requests were discussed in Chapter 6.

SNMP v1 traps use a PDU consisting of the five standard fields shown in

Table A11.4. Each trap contains at least two variable bindings that form a type of ‘trap

header’:

 The first variable binding contains a timestamp;

 The second variable binding contains an OID that identifies each trap.

These variable bindings are followed by zero or more variable bindings forming the

payload of the trap PDU. Table A11.4 lists the allowable values for each trap field.

The fields highlighted in blue were used to represent meter identifiers and meter values.

Field Name Syntax Size
(Bytes)

 Description

 PDU Type Integer 4

0 = GET Request PDU
1 = GETNEXT Request PDU
2 = Get Response PDU
3 = SET Request PDU

Request ID Integer 4
Matches requests with replies. Generated by
 the sender and then copied into this field
for a GET response PDU by the responder.

Error Status
Enumerated
Integer

 4 See below

Error Index Integer 4
When Error Status is non-zero, this field contains a
pointer that specifies which object generated the
error. Always zero in a request PDU.

Variable
Bindings

Variable Variable
SNMP objects and their current values. For a
SET PDU or a GET response PDU it also
contains their values.

 (Kozierok, 2005).

Table A11.3 SNMPv1 and SNMPv2c PDU Structure.

463

SNMP v2 traps use the general format SNMP PDU illustrated previously in Table A11.3.

(Cisco Systems Inc., n.d.).

Field Values Description

Enterprise
 The type of the managed object

(device) generating the trap.

Agent
address

 IP address of the managed object
generating the trap.

 Generic
Trap type

0 = Cold Start Agent is starting up (typically booting).

1 = Warm Start Agent is starting up (typically a restart).

2 = Link Down Agent communication link failure

3 = Link Up

Agent communication link has been
restored.

4 Authentication
 failure

Invalid community name or
insufficient permissions to execute a
request/

5 EGP Neighbour
 Loss

Relationship between an External /
Gateway Protocol (EGP) neighbor and an
EGP peer no longer exists.

6 Enterprise
 Specific

Agent has detected an enterprise-specific
event. The value of the specific trap type
field indicates the type of event.

Specific
trap code

 See above

Timestamp
 Time elapsed since network initialization

and time of the trap.

Variable
bindings

 A set of <OID, value> pairs representing
 SNMP objects and their current values.

Table A11.4 SNMPv1 Trap Packet Structure.

464

Glossary

Original terminology developed during this study is underlined.

Accessor – A method that returns the value of an object attribute.

Access Cost – The overhead required to locate a remote service (‘location cost’), added

to the overhead required to retrieve the data or resources (‘retrieval cost’) required to

implement a service (See ‘Retrieval cost’ and ‘Location cost’).

Action Parameter – A parameter that that is accessed solely for the side effect of the

functionality implemented by an associated control point.

Active Control – A control that supports user-interaction such as a fader control.

Active Parameter – A parameter that causes changes to other parameter values when

its own value changes.

Actual Argument (Actual Parameter) – Arguments that are provided by the invocation

of a function or procedure call. (See ‘Formal Argument’).

Actuator – Term used by the AES-24 family of control protocols (MambaNet and OCA)

to refer to objects that update parameter data.

Argument – An actual or formal parameter within the context of the invocation of a

function or remote procedure call.

Audio Connection Management – The management of audio connections between

networked devices or within a single audio device.

Audio Engineering Society (AES) – An organization that promotes the audio industry,

supports audio research, and also creates and publishes standards.

AES (See above)

AES-24 – An object-oriented control protocol developed by the Audio Engineering

Society during the late 1990’s.

Architecture for Control Networks (ACN) – An ANSI standard control protocol.

Argument – A parameter to a function call or procedure call. Avoids ambiguity when

using the computer science term ‘parameter’ in the context of control protocols.

(See ‘actual argument’, ‘formal argument’ and ‘parameter’).

Attribute – Descriptive data (non-parameter data) within a description of an audio

device. In computer science, a data field of an object.

Audio Stream – A continuous transmission of one or more channels of audio across a

network.

465

Audio Receiver – An audio terminal that receives an audio stream termed a ‘listener’ in

AVB.

Audio Transmitter – An audio terminal that transmits an audio stream termed a ‘talker

in AVB.

Audio Video Bridging (AVB) – (See ‘IEEE 1722’). Formally designated by the standard

IEEE 1722.

AVB (See above)

AVB Audio Discovery Enumeration Connection Management and Control

(AVDECC) – A control and connection management environment for AVB developed in

OSC.

AVDECC (See above)

Complex Static Design Concept – A hierarchical representation that has multiple

semantic interpretations. For example, a hierarchical parameter address that also

represents a device’s structure.

Connection Management – The management of connections between data streams,

media streams or audio channels. (See ‘Audio Connection Management’ and ‘Control

Connection Management’).

Connection Parameter – A parameter representing an audio connection between an

audio source signal and an audio destination signal.

Connection Point – A remote procedure call or a remote callback function triggered by

a parameter access used to manage audio connections.

Connection State Parameter – A parameter representing the current state of an audio

connection.

Continuous Monitoring – Process where a stream of data (such as meter values) is

transmitted by a device and received by a controller application.

Container – In the context of the standard device model, a sub-device used to group

other device components. (See ‘Non-Visual Component’).

Control – A hardware or software user interface item such as a fader, rotary

potentiometer or switch.

Control Path – A sequence of events triggered by a control value change or a parameter

value change. These events can be event handler invocations, parameter updates, control

point invocations or procedure calls.

Control Stream – A continuous transmission of a set of commands across a network.

Controller - A physical or virtual device that is able to interact with and control other

devices.

Control Connection Management – The management of connections between

controls on two, distinct, networked control surfaces.

466

Control Parameter – A parameter (usually defined by a control protocol) that stores

the current value of a control. (See ‘Parameter’ and ‘DSP parameter’).

Control Path – The sequence of events triggered by a change to a control’s state or a

parameter value.

Control Join – The linkage of two controls where a change in control value for one of the

controls triggers a control value change in the other control.

Control Point – A remote procedure call or a remote callback function triggered by a

parameter access.

Control Value – A value representing the current state of a control.

CopperLan – A control protocol from Klavis Technologies.

Dedicated Controller – A controller that only consists of a control surface that does not

perform any audio processing.

Descriptive Attribute – An attribute describing a characteristic of a device component,

parameter or audio connection.

Description Record – A set of descriptive attributes describing a device component or

a parameter used by the standard device model.

Design Concept – The concepts on which the design of a control protocol are based.

See ‘Primary Design Concept’ and ‘Secondary Design Concept’.

Device – A physical device such as an amplifier or a virtual (software) device or controller.

Device Component – A logical or physical part of a device such as a control or sub-

device. (See ‘Logical Component’ and ‘Physical Component’).

Digital MultipleX (DMX) – A serial control protocol that is widely used for lighting

control.

Discrete Monitoring – Process where a single (status) message is transmitted by a

device and received by a controller application.

Disco – A discovery protocol used by HiQnet based on UPnP.

Digital Signal Processing (DSP) – Modification of the digital representation of a digital

signal.

DSP – (See above)

Domain Name System Service Discovery (DNS-SD) – Also known as ‘Bonjour’ is a

service discovery network protocol developed by Apple Computer.

DNS-SD (See above)

DSP Parameter – A parameter that represents the value of a DSP function.

(See ‘Parameter’, ‘Control parameter’ and ‘Connection parameter’).

Dynamic Specification – A specification of the commands provided by a control

protocol.

467

Dynamic Parameter Join – A parameter relationships that is dynamically expressed

by a protocol command.

Entity – A high-level logical unit of data or functionality (or both of these) found within

a control protocol. Typical examples include records, objects or services.

Entity-Based Protocol – A control protocol that uses entities as a primary design

concept. (See ‘Design concept’ and ‘Entity’.)

EuCon – A proprietary control protocol from Euphonix Corporation.

Expressiveness (of a control protocol) – A measurement of the functional capabilities

of a protocol.

First-Generation Control Protocols – Control protocols that only support the

reading, writing and monitoring of parameter values.

Flow Control – Management of the rate of data transmissions on a network.

Formal Argument (Formal Parameter) – arguments that are received by function or a

procedure. (See ‘Actual argument’).

Fully-Serialized Object – A binary representation of an object or data structure that

includes all the resources such as images that it requires. (See ‘Partially-Serialized

Object’).

GET() Command – A protocol command that reads (retrieves) a parameter value.

Hardware Control – A physical control such as a fader or button.

Heartbeat – A message sent on a network to indicate that the sender of the message is

reachable.

HiQnet – A proprietary control protocol from Harmon Pro Corporation.

Hybrid Network Architecture – A network architecture that consists of both servers

and peer processes.

IEEE 1722.1-2013 – A control protocol designed specifically for devices on IEEE 1722

media networks.

IEEE 1722 – An open ISO layer two media transport protocol that uses dedicated network

switches to provide high-performance media networks with a guaranteed QoS.

Internet Engineering Task Force (IETF) – A body that publishes standards

applicable to the Internet.

IETF – (See above)

Location Cost – The number of remote accesses required to locate a remote service. (See

‘Access Cost’ and ‘Processing cost’).

Linked Relationship – The relationship between a control and a control parameter.

Logical Component – A software component that represents a logical view of a device

(for example a set of faders) that need not correspond to the device’s physical structure.

468

MambaNet – A control protocol developed by D&R Electronics for use in the

broadcasting industry.

Media Accelerated Global Information Carrier – A control protocol developed by

Gibson Guitar Corporation. Development was not completed.

MaGIC (See ‘Media Accelerated Global Information Carrier’).

MambaNet – A control protocol derived from AES-24.

Middleware – Software that forms a layer between networking software and application-

specific software.

Modifier – A mechanism used by AES64 that provides functions for data translation and

scaling between parameters.

Native Command – A control command that is directly supported by a control protocol.

Native Dynamic Specification – The set of native commands provided by a control

protocol. (See ‘Native Command’)

Network Protocol – A well-defined method of communication between nodes or

processes on a computer network.

Node – A connection point to a network. A single node may host multiple devices or

processes.

Non-Visual Component – A logical component of a device that has no visual

representation. Typically, a container used to group other device components.

For example, the input section of a mixing console.

Open Control Architecture (OCA) – A control protocol from Bosch Communication

Systems.

OCA – (See above)

Open Control Classes (OCC) – The class hierarchy provided by the ‘Open Control

Architecture’.

OCC – (See above)

Open Control Framework (OCF) – A high-level device description and generic control

framework used by the ‘Open control Architecture’.

OCF – (See above)

Open Sound Control (OSC) – A control protocol developed at the University of

California, Berkeley.

OSC (See above)

Partial-Peer Network – A client-server network architecture where the client has its

own services or parameters.

Parameter – A data value found defined by a control protocol that can be accessed by

remote applications.

Parameter Modifier – An AES64 function that modifies the value of a parameter.

469

Partially-Serialized Object – A serialized object instance that requires resources (such

as widgets or graphics) from a library or run-time environment.

(See ‘Fully-serialized’).

Passive Control – A control that does not support user-interaction such as a status light.

Passive Parameter – A parameter that does not cause changes to other parameter

values when its own value changes.

Peer-To-Peer – A network architecture where a process on a network function as both a

client process and a server process. (See ‘Servent’)

Physical Control – See (‘Hardware Control’).

Pre-Update Control Point – A control point that is called before a parameter value is

updated.

Primary Design Concept – The core design principle around which a control protocol

is designed. (See ‘Secondary Design Concept’).

Polling – A technique used to update status or determine network reachability where a

process periodically sends a network message to another process.

Post-Update Control Point – A control point that is called after a parameter value has

been updated. (See ‘Pre-update Control Point’).

Process (of a service) – The number of discrete operations required to implement a

service.

Processing Cost – The overhead required to process (parse) remotely retrieved data.

(See ‘Location Cost’ and Retrieval Cost’).

Property Access Method (PAM) – A term used in AES-24 for methods that access

parameter values.

PAM (See above)

Primary Design Concept – The most important concept used in the design of a control

protocol. (See ‘Secondary Design Concept’).

Protocol – A well-defined method of communication. (See also ‘Network Protocol’).

Protocol Data Unit (PDU) – A logical data unit defined by a network protocol found

within a network packet. Typically encapsulates a single protocol parameter or a single

protocol command.

PDU (See above)

Remote Music Control Protocol (RMCP) – An early control protocol that provided

MIDI over Ethernet.

RMCP (See above)

Retrieval Cost – The overhead required to retrieve the data or resources required to

implement a service. (See ‘Access cost’ and ‘Processing Cost’).

470

Request for Comments (RFC) – Publications by the Internet Engineering Task Force

that define standards and provide information applicable to the Internet.

RFC – (See above)

Sensor – Used by the AES-24, OCA and MambaNet control protocols to refer to objects

that provide monitoring functionality.

Second-Generation Control Protocols – Control protocols that provide an

integrated approach to control, monitoring, connection management and the

representation of control surfaces.

SET(..) Command – A protocol command that writes a parameter value.

Servent – A networked process that functions as both a server process and a client

process. Found within a peer-to-peer network architecture.

Service – Functionality provided by a software system. Examples include a simple

parameter access and a complex operation or transaction involving multiple parameter

accesses and/or the invocation of other services.

Service Location Protocol (SLP) – An IETF standard network protocol for service

discovery.

SLP (See above)

Service-Oriented Architecture – Organization of the functionality provided by a

server into logical (and typically high-level) capabilities termed ‘services’.

Signal Description Record – A descriptive record that describes an audio signal or

audio stream and the connections that can be made to the signal or stream.

Simple Network Management Protocol (SNMP) – A control protocol that is an

Internet Engineering Task Force standard.

SNMP (See above)

Software Control – A control such as a fader implemented as a software widget.

(See ‘Virtual Control’).

Standard Device Model – A model for networked media device proposed in this

dissertation.

Static Specification – A specification of the data used within a control protocol that

includes parameter data, attribute and layout data, as well as the data format used by

PDUs.

SDM (See above)

Static Parameter Group – A relationship between a group of parameters.

‘Static’ means that the relationship state can be stored and remains until explicitly

terminated.

471

Static Parameter Join – A relationship that is statically specified between two

parameters where one parameter references another parameter. ‘Statically’ means that the

relationship remains until explicitly terminated.

Static Specification – The representation and organization of the data used by a control

protocol.

Stream – See ‘Audio Stream’ and ‘Control Stream’.

Synthesized Command – A protocol command whose semantics can be simulated by

another protocol command. (See ‘Native Command).

Time Tag – Timestamps used by the OSC control protocol.

Universal Media Access Networks (UMAN) – A corporation that provides networked

control solutions using the AES64 control protocol.

UMAN (See ‘Universal Access Media Networks’).

Universal Plug and Play – A control protocol intended for consumer devices that

provides automatic device and service discovery.

UPnP (See above)

Virtual Control (See ‘Software Control’).

Visual Component – A device component that has a visual representation on a software

control surface. (See ‘Non-Visual Component’)

X-210 – Standardization project of the ‘Open Control Architecture’ control protocol

within the Audio Engineering Society (See ‘Open Control Architecture’).

XFN (See AES64)

472

References

Al-Mejibli, I., Colley, M., & Al-Majeed, S. (2011, November). Networks Utilization

Improvements for Service Discovery Performance. Retrieved from Cornell

University Library Website:

http://arxiv.org/ftp/arxiv/papers/1112/1112.2410.pdf

American National Standards Institute. (2008). ANSI E1.11-2008 (R2013)

Entertainment Technology - USITT DMX512-A Asynchronous Serial Digital

Data Transmission Standard for Controlling Lighting Equipment and

Accessories. Retrieved from ANSI Website:

http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+E1.11-2008+(R2013)

Apache Software Foundation. (n.d.). AR - Jini Architecture Specification. Retrieved from

Apache Software Foundation Website:

http://river.apache.org/doc/specs/html/jini-spec.html

Archwave AG. (n.d.). Archwave. Retrieved from Archwave AG Website:

http://archwave.net/

Audinate Corporation. (2013). About Dante. Retrieved from Audinate Website:

http://www.audinate.com/index.php?option=com_content&view=article&id=13

8

Audio Engineering Society. (1999). AES24-1-1999 (w2004): AES standard for sound

system control - Application protocol for controlling and monitoring audio

devices via digital data networks - Part 1: Principles, formats, and basic

procedures (Revision of AES24-1-1995). Retrieved from AES Website:

http://www.aes.org/publications/standards/search.cfm?docID=26

Audio Engineering Society. (2010, November 1). AES3-2009: AES standard for digital

audio engineering - Serial transmission format for two-channel linearly

represented digital audio data. Retrieved from AES Website:

http://www.aes.org/publications/standards/search.cfm?docID=13

Audio Engineering Society. (2012). AES64-2012 AES Standard for Audio Applications of

Networks - Command, Control and Connection Management for Integrated

Media. Audio Engineering Society.

473

Audio Engineering Society. (2012). AES64-2012 AES Standard for Audio Applications of

Networks - Command, Control and Connection Management for Integreated

Media. Audio Engineering Society.

Audio Engineering Society. (2012, November 7). Audio Engineering Society And OCA

Alliance To Collaborate On 'Open Control Architecture' Standard. Retrieved

from SRD Website: http://www.aes.org/press/?ID=183

Audio Engineering Society. (2013). AES67-2013: AES standard for audio applications of

networks - High-performance streaming audio-over-IP interoperability.

Retrieved from AES Website:

http://www.aes.org/publications/standards/search.cfm?docID=96

Avid Technology. (2010, June). Avid Knowledge Base MCPro and S5-MC Manuals and

Guides. Retrieved from Avid Technology Website:

http://avid.force.com/pkb/articles/en_US/compatibility/MCPro-and-S5-MC-

Manuals-and-Guides

Axia Audio. (n.d.). Axia Products. Retrieved from Axia Audio / TLS Corp. Website:

http://www.axiaaudio.com/radius

Axia Audio. (n.d.). Introduction to Livewire - IP-Audio System Design Reference &

Primer. Retrieved from Axia Audio Website: http://axiaaudio.com/tech

Baugher, M., Chan, C., Stark, B., Saaranen, M., & Hain, T. (2011). UPnP Specifications -

UPnP Device Architecture V1.1 Annex A – IP Version 6 Support. Retrieved from

UPnP Forum Website: http://upnp.org/specs/arch/UPnP-arch-

DeviceArchitecture-v1.1-AnnexA.pdf

Bencina, R. (2012). Ross Bencina - Life, Music, Software. Retrieved from Ross Bencina

Website: http://www.rossbencina.com/code/oscgroups

Bergstra, J., & Burgess, M. (Eds.). (2008). Handbook of Network and System

Administration. Elsevier B.V.

Berryman, J. (2011). Technical Criteria for Professional Media Networks. Proceedings of

the 44th International Conference of the Audio Engineering Society - Audio

Networking. San Diego: Audio Engineering Society.

Berryman, J. (2012). Private correspondence.

Blumenthal, U., & Wijnen, B. (2002, December). RFC 3414 - User-based Security Model

(USM) for version 3 of the Simple Network Management Protocol (SNMPv3).

Retrieved from Internet Engineering Task Force (IETF) Website:

http://tools.ietf.org/html/rfc3414

474

Bobek, A., Bohn, H., & Golatowski, F. (2005). UPNP AV ARCHITECTURE - GENERIC

INTERFACE DESIGN AND JAVA IMPLEMENTATION. In T. Fahringer, & M. H.

Hamza (Ed.), Proceedings of the 23rd IASTED International Conference on

Applied Informatics - Parallel and Distributed Computing and Networks (pp.

699-704). Innsbruck: ACTA Press.

Boger, P. (2014, January). ember-plus. Retrieved from Google Code Website:

http://ember-plus.googlecode.com/svn/tags/embersdk-1-0-

0/documentation/Ember+%20Documentation.pdf

Bosch Communication Systems. (2012, May 4). OCC: Class Structure Control Classes.

Bosch Communication Systems. (2012). Open Control Architecture - OCF: Framework

rev11.

Bosch Communication Systems. (2013, October 17). OCC: Class Structure Control

Datatypes.

Bosch Communication Systems. (2014). OCA Application Programming Interface v1.2.

Bosch Communication Systems. (n.d.). Bosch OCA Reference Implementation -

Frequently Asked Questions.

Boyd, A., Ellis, K., Eales, A., & Owen, R. (2013). Regular Expression-Based Queries for

SNMP. Project Report, Wellington Institute of Technology.

Bradley, J. T. (2003). An Examination of Aspect-Oriented Programming in Industry.

Colorado State University, Department of Computer Science, Fort Collins,.

Retrieved from http://www.eecs.wsu.edu/~rta/publications/CS-03-108.pdf

Bucher, G. (2008). oscit. Retrieved from lubyk Website:

http://lubyk.org/en/software/oscit

Burghardt, F., & Minini, M. (2010, January 10). Open Sound Control Protocol A

candidate for lighting applications? Retrieved from Slideshare Website:

http://es.slideshare.net/DMXCFrank/osc-and-dmxcontrol

Cai, T., Leach, P., Gu, Y., Goland, Y. Y., & Albright, S. (1999, April). Simple Service

Discovery Protocol/1.0. Retrieved from Internet Engineering Task Force (IETF)

Website: http://tools.ietf.org/html/draft-cai-ssdp-v1-01

Cailleau, P. (2012, January). "Whatever over CopperLan". Retrieved from CopperLan

Forum Website: http://www.copperlan.org/forum/viewtopic.php?f=21&t=89

Cailleau, P. (2015, January 10). Private correspondence.

475

Case, J. (1996, January). RFC 1901 - Introduction to Community-based SNMPv2.

Retrieved from Internet Engineering Task Force (IETF) Website:

http://www.ietf.org/rfc/rfc1901.txt

Case, J., Fedor, M., Schoffstall, M., & Davin, J. (1990, May). RFC 1157 - A Simple

Network Management Protocol (SNMP). Retrieved from Internet Engineering

Task Force (IETF) Website: http://www.ietf.org/rfc/rfc1157.txt

Case, J., Harrington, D., Presuhn, R., & Wijnen, B. (1999, April). RFC 2672 - Message

Processing and Dispatching for the Simple Network Management Protocol

(SNMP). Retrieved from Internet Engineering Task Force (IETF) Website:

http://www.ietf.org/rfc/rfc2572.txt

Case, J., McCloghrie, J., Rose, M., & Waldbusser, S. (2002, December). RFC 3416 -

Version 2 of the Protocol Operations for the Simple Network Management

Protocol (SNMP). (R. Presuhn, Ed.) Retrieved from Internet Engineering Task

Force (IETF) Website: http://tools.ietf.org/html/rfc3416#section-2.3

Case, J., McCloghrie, K., Rose, M., & Waldbusser, S. (1993a, April). RFC 1442 - Structure

of Management Information for version 2 of the Simple Network Management

Protocol (SNMPv2). Retrieved from Internet Engineering Task Force (IETF)

Website: http://tools.ietf.org/html/rfc1442

Case, J., McCloghrie, K., Rose, M., & Waldbusser, S. (1993b, April). RFC 1443 - Textual

Conventions for version 2 of the Simple Network Management Protocol

(SNMPv2). Retrieved from Internet Engineering Task Force (IETF) Website:

http://tools.ietf.org/html/rfc1443

Case, J., McCloghrie, K., Rose, M., & Waldbusser, S. (1993c, April). RFC 1444 -

Conformance Statements for version 2 of the Simple Network Management

Protocol (SNMPv2). Retrieved from Internet Engineering Task Force (IETF)

Website: http://tools.ietf.org/html/rfc1444

Case, J., McCloghrie, K., Rose, M., & Waldbusser, S. (1996, January). RFC 1902 -

Structure of Management Information for Version 2 of the Simple Network

Management Protocol (SNMPv2). Retrieved from Internet Engineering Task

Force (IETF) Website: http://tools.ietf.org/html/rfc1902

Case, J., McCloghrie, K., Rose, M., & Waldbusser, S. (1996, January). RFC 1903 - Textual

Conventions for Version 2 of the Simple Network Management Protocol

(SNMPv2). Retrieved from Internet Engineering Task Force (IETF) Website:

http://tools.ietf.org/html/rfc1903

476

Case, J., McCloghrie, K., Rose, M., & Waldbusser, S. (1996a, January). RFC 1905 -

Protocol Operations for Version 2 of the Simple Network Management Protocol

(SNMPv2). Retrieved from Internet Engineering Task Force (IETF) Website:

http://www.ietf.org/rfc/rfc1905.txt

Case, J., McCloghrie, K., Rose, M., & Waldbusser, S. (1996b, January). RFC 1906 -

Transport Mappings for version 2 of the Simple Network Management Protocol

(SNMPv2). Retrieved from Internet Engineering Task Force (IETF) Website:

http://www.rfc-editor.org/rfc/rfc1906.txt

Case, J., Mundy, R., Partain, D., & Stewart, B. (1999, April). RFC 2570 - Introduction to

Version 3 of the Internet-standard Network Management Framework.

Retrieved from Internet Engineering Task Force (IETF) Website:

http://www.ietf.org/rfc/rfc2570.txt

Cerf, V., Dalal, Y., & Sunshine, C. (1974, December). RFC 675 - Specification of Internet

Transmission Control Program. Retrieved from IETF Web Site:

https://tools.ietf.org/html/rfc675

Chandragiri, S. (2001, April). Efficient Transfer of Bulk SNMP Data. Retrieved from

Internet Engineering Task Force (IETF) Website:

http://tools.ietf.org/html/draft-ietf-eos-snmpbulk-00

Chen, J., Wang, H., Zhou, Y., & Bruda, S. (2011, March). Complexity Metrics for

Component-based Software Systems. International Journal of Digital Content

Technology and its Applications, 5(3), 235-244.

Chen, Y.-C., & Chan, I.-K. (2007, January). SNMP GetRows: an effective scheme for

retrieving management information from MIB tables. International Journal of

Network Management, 17(1), 51-67.

Cheshire, S., & Krochmal, M. (2013, February). RFC 6762 - Multicast DNS. Retrieved

from Internet Engineering Task Force (IETF) Website:

http://tools.ietf.org/html/rfc6762

Cheshire, S., & Krochmal, M. (2013, February). RFC 6763 - DNS-Based Service

Discovery. Retrieved from Internet Engineering Task Force (IETF) Website:

http://tools.ietf.org/html/rfc6763

Cheshire, S., & Steinberg, D. H. (2006). Zero Configuration Networking: The Definitive

Guide. Sebastopol, CA: O'Reilly Media.

477

Cheshire, S., Aboba, B., & Guttman, E. (2005, May). RFC 3927 - Dynamic Configuration

of IPv4 Link-Local Addresses. Retrieved from Zero Configuration Networking

Website: http://files.zeroconf.org/rfc3927.txt

Chigwamba, N., Foss, R., Gurdan, R., & Klinkradt, B. (2010, November). Parameter

Relationships in High-Speed Audio Networks - Convention Paper 8301.

Retrieved from Audio Engineering Society (AES) Website: http://www.aes.org/e-

lib/browse.cfm?elib=15723

Chisholm, S. (2003, June). The SNMP Information Model. Retrieved from Internet

Engineering Task Force (IETF) Website: http://trac.tools.ietf.org/html/draft-

chisholm-snmp-infomode-00

Church, S., & Pizzi, S. (2010). Audio Over IP - Building Pro AoIP Systems with Livewire.

Oxford: Focal Press.

Cisco Systems Inc. (n.d.). Simple Network Management Protocol. Retrieved from Cisco

Systems docwiki Website:

http://docwiki.cisco.com/wiki/Simple_Network_Management_Protocol

CodePlex. (2012). Architecture for Control Networks (ACN). Retrieved from CodePlex

Website: http://acn.codeplex.com/

Coffey, N. (n.d.). The volatile keyword in Java. Retrieved from Javamex Website:

http://www.javamex.com/tutorials/synchronization_volatile.shtml

Cohen, J., Aggarwal, S., & Goland, Y. Y. (1999, June 24). General Event Notification

Architecture Base: Client to Arbiter. Retrieved from Internet Engineering Task

Force (IETF) Website: http://tools.ietf.org/html/draft-cohen-gena-client-00

COLLIDE Project. (n.d.). SQLSpaces. Retrieved from COLLIDE Projects Website:

http://projects.collide.info/projects/sqlspaces

Compaq Computer Corporation. (2002). SQL Queries for Simple Network Management

Protocol Management Information Base Tables. Retrieved from Google Patents

Website: http://www.google.com/patents/US20120271815

CopperLan Forum - Where is the 'unique identity' stored? (2012). Retrieved from

CopperLan Forum Website:

http://www.copperlan.org/forum/viewtopic.php?f=17&t=90

Corrigan, S. (2008, January). Controller Area Network Physical Requirements.

Retrieved from Texas Instruments Website:

http://www.ti.com/lit/an/slla270/slla270.pdf

478

Cyber Garage. (n.d.). CyberLink for Java. Retrieved from Cyber Garage Website:

http://www.cybergarage.org/twiki/bin/view/Main/CyberLinkForJava

D&R Electronics. (n.d.). D&R Broadcast Mixing Consoles. Retrieved from D&R

Electronics Website: http://www.d-r.nl/airlab.html

D&R Electronics. (n.d.). MambaNet - Virtual reality controlled with knobs: White

paper. Retrieved from D&R Electronics Website: www.d-r.nl/assets/mambanet-

whitepaper.pdf

Davin, J., Case, J., Fedor, M., & Schoffstall, M. (1987, November). RFC 1028 - A Simple

Gateway Monitoring Protocol. Retrieved from Internet Engineering Task Force

(IETF) Website: http://tools.ietf.org/html/rfc1028

de Deugd, S., Carroll, R., Kelly, K. E., Millett, B., & Ricker, J. (2006). SODA: Service-

Oriented Architecture. Pervasive computing, 5(3), 94-96.

Defense Advanced Research Projects Agency. (1981, September). RFC 793 -

Transmission Control Protocol. Retrieved from Internet Engineering Task Force

(IETF) Website: http://tools.ietf.org/html/rfc793

d'Heureuse, C. (n.d.). Base64Coder - an Open-Source Base64 Encoder/Decoder in Java.

Retrieved December 28, 2012, from source-code.biz Website: www.source-

code.biz/base64coder/java

Dibley, J., & Foss, R. (2013). Implementation of AES-64 Connection Management for

Ethernet Audio/Video Bridging Devices. Retrieved from Audio Engineering

Society (AES) Website: http://www.aes.org/e-lib/browse.cfm?elib=17014

Digia Plc. (n.d.). Qt. Retrieved from Qt Website: http://qt-project.org/downloads

Digital Living Network Alliance. (n.d.). DLNA Home Page. Retrieved from Digital Living

Network Alliance Website: http://www.dlna.org/

Dijkstra, E. W. (1965). Solution of a problem in concurrent programming control.

Communications of the ACM, 8(9).

Distributed Management Task Force, Inc. (2013, December 14). Common Information

Model. Retrieved from Distributed Management Task Force (DTM) Website:

http://www.dmtf.org/standards/cim

Droms, R. (1997, March). RFC 2131 : Dynamic Host Configuration Protocol. Retrieved

from Internet Engineering Task Force (IETF) Website:

http://tools.ietf.org/html/rfc2131#section-7

479

Dubuisson, O. (2000). ASN.1 - Communication Between Heterogeneous Systems.

Morgan Kaufmann.

Eales, A. (2006). Implementing the Observer Pattern. New Zealand Journal of Applied

Computing and Information Technology, 10(1).

Eales, A., & Foss, R. (2011). Towards a Standard Model for Networked Audio Devices.

Proceedings of the 44th International Conference of the Audio Engineering

Society - Audio Networking. San Diego: Audio Engineering Society.

Eales, A., & Foss, R. (2012, October). Service Discovery using Open Sound Control -

Convention Paper 8689. Retrieved from Audio Engineering Society (AES)

Website: http://www.aes.org/e-lib/browse.cfm?elib=16432

Eales, A., & Foss, R. (2013, October). Audio Device Representation, Control and

Monitoring using SNMP - Convention Paper 8962. Retrieved from Audio

Engineering Society (AES) Website: http://www.aes.org/e-

lib/browse.cfm?elib=17012

Eales, A., & Foss, R. (2013, April). Modeling Complex Networked Audio Devices. Journal

of the Audio Engineering Society, 61(4), 212-222.

Eales, A., & Foss, R. (2014, October 2014). An Associative Shared Memory Approach to

Connection Management - Convention Paper 9216. Retrieved from Audio

Engineering Society (AES) Website: http://www.aes.org/e-

lib/browse.cfm?elib=17539

EBS Inc. (2006, November). EBS UPnP Control Point Software Development Kit User

Manual. Retrieved from EBS Website:

http://www.ebsembeddedsoftware.com/download/rtupnp/secure/rtupnp_contr

olpoint_manual.pdf

Ehrentraud, F. (2010). SynOSCopy. Retrieved from GitHub Website:

https://github.com/fabb/SynOSCopy/wiki

Electronic Theatre Controls Inc. (n.d.). Eos Lighting Console. Retrieved from Electronic

Theatre Controls Inc. Website:

http://www.etcconnect.com/community/wikis/products/eos-lighting-

console.aspx

Electronic Theatre Controls, Inc. (2009, 12). Net3 Show Control Gateway Specification.

Retrieved from http://selador.in/product.downloads.aspx?ID=20365

Ellison, C. (2003, October 3). Device Security and Security Console V 1.0. Retrieved

from UPnP Forum Website: http://upnp.org/specs/sec/security/

480

ENCYCLO Online Encyclopedia. (2012). Look up: Servent. Retrieved from ENCYCLO

Online Encyclopedia Website: http://www.encyclo.co.uk/define/Servent

Entertainment and Services Technology Association. (2006, October 19). ANSI E1.17 -

Architecture for Control Networks – Device Management Protocol. Retrieved

from ANSI Website:

http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+E1.17+-+2009

Entertainment and Services Technology Association. (2006, October 19). ANSI E1.17-

2006 Architecture for Control Networks - Device Description Language.

Retrieved from ANSI Website:

http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+E1.17+-+2010

Entertainment and Services Technology Association. (2009). ANSI E1.31 - 2009:

Entertainment Technology - Lightweight streaming protocol for transport of

DMX512 using ACN. Retrieved from ANSI Website:

http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+E1.31+-+2009

Entertainment and Services Technology Association. (2010). ANSI E1.17 - 2010 -

Entertainment Technology - Architecture for Control Networks (ACN).

Retrieved from ANSI Website:

http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+E1.17+-+2010

Erl, T. (2004). Service-Oriented Architecture: A Field Guide to Integrating XML and

Web Services. Upper Saddle River, NJ: Prentice-Hall.

Euphonix Corporation. (2013). MC Control User Guide. Retrieved from

http://connect.euphonix.com/documents/MC_Control_User_Guide_rG_Eng.p

df

Euphonix Corporation. (2014). Artist Series - EUCON Connected Media Applications.

Retrieved from Euphonix Corporation Website:

http://euphonix.avid.com/artist/support/euconapps.php

Faculty of Engineering - University of Duisberg-Essen. (n.d.). SQLSpaces. Retrieved

from Collide Project Website: http://www.collide.info/content/sqlspaces

Fast-Cast Messaging Library. (2014). Retrieved from Google Code Website:

http://code.google.com/p/fast-cast/

Fielding, R. T. (2000). Architectural Styles and the Design of Network-based Software

Architectures (Ph.D. Dissertation). Retrieved from University of California,

Irvine Website: http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

Foss, R. (2009). XFN Specification 0.9. Universal Media Access Networks GmbH.

481

Foss, R. (2010). UNOS Creator User Manual. Retrieved from Universal Media Access

Networks (UMAN) Website: http://www.unosnet.com/index.php/unos-

core.html

Foss, R. (2011, October 21). De-Mystifying Sound Control Protocols with a Focus on

XFN. Tutorial Session, 131st Convention of the Audio Engineering Society. New

York.

Foss, R. (2015, May). Private correspondence.

Foulkes, P., Foss, R., & Gurdan, R. (2011, November). Network Neutral Control over

Quality of Service Networks. Journal of the Audio Engineering Society, 835-844.

Fout, T. (2001, July 1). Universal Plug and Play in Windows XP. Retrieved from

Microsoft Technet Library Website: http://technet.microsoft.com/en-

us/library/bb457049.aspx

Fraietta, A. (2008). Proceedings of the 8th International Conference - New Interfaces

for Musical Expression (NIME), (pp. 19-23). Genova.

Franke, U. (2005). WOscLib: The Weiss OpenSound Control Library. Retrieved from

SourceForge Website.

Franke, U. (2011, May 16). Personal correspondence.

Freed, A. (2008, January 24). audio.osc.devel Mailing List Subject: Re: 4 Byte Padding

- msg#00028. Retrieved from osdir Mailing List Archive Website:

http://osdir.com/ml/audio.osc.devel/2008-01/msg00028.html

Freed, A., & Schmeder, A. (2009, June). Features and Future of Open Sound Control

version 1.1. Retrieved from Center for New Music and Audio Technologies

(CNMAT) Website:

http://cnmat.berkeley.edu/publication/features_and_future_open_sound_cont

rol_version_1_1_nime

Freeman, E., Hupfer, S., & Arnold, K. (1999). JavaSpaces Principles, Patterns and

Practice. Palo Alto: SUN Microsystems.

Fuchs, D. (2006, December 11). Welcome to the SNMP Table! Retrieved from Oracle

Corporation Website:

https://blogs.oracle.com/jmxetc/entry/welcome_to_the_snmp_table!

Fuchs, D., & Schoenwaelder, J. (2007, February). FixUnix Forum. Retrieved from

FixUnix Website: http://fixunix.com/snmp/64520-implied-keyword-index-

clause.html

482

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley.

Gelernter, D. (1985, January). Generative Communication in Linda. ACM Transactions

on Languages and Systems, 7(1), 80-112.

Gelernter, D., & Carreiro, N. (1992, February). Coordination languages and their

Significance. Communications of the ACM, 97-107.

Gibson Guitar Corporation. (n.d.). HD.6X-Pro Digital Guitar. Retrieved from Gibson

Guitar Corporation Website: http://www2.gibson.com/Products/Electric-

Guitars/Les-Paul/Gibson-USA/HD-6X-Pro-Digital-Guitar/Features.aspx

Godse, D. A., & Godse, A. P. (2003). Computer Architecture & Organisation. Pune:

Technical Publications.

Goel, A., Krasic, C., & Walpole, J. (2008). Low-Latency Adaptive Streaming over TCP.

ACM Transactions on Multimedia Computing, Communications, and

Applications, 4(3), 1-20.

Goland, Y. Y. (1999, November 9). Multicast and Unicast UDP HTTP Messages.

Retrieved from Internet Engineering Task Force (IETF) Website:

http://tools.ietf.org/html/draft-goland-http-udp-01

Golden III, G. R. (2002, July 1). Service Discovery Protocols and Programming.

McGraw-Hill.

Goto, M., & Hashimoto, Y. (1993, December). A Distributed Cooperative System to play

MIDI Instruments - Towards a Remote Session. Information Processing Society

of Japan SIG Notes, 93(109). Retrieved from

https://staff.aist.go.jp/m.goto/PROJ/rmcp.html

Goto, M., Neyama, R., & Muraoka, Y. (1997). RMCP: Remote Music Control Protocol -

Design and Applications. Proceedings of the 1997 International Computer Music

Conference, (pp. 446-449). Thessaloniki.

Grant, J. (2009, 02). Private Correspondence.

Grimmett, J., & O’Neill, E. (2012). UPnP: Breaking out of the LAN. Wireless

Communications and Networking Conference Workshops (WCNCW) (pp. 170-

174). Paris: Institute of Electrical and Electronics Engineers (IEEE). Retrieved

December 15, 2012, from

http://www.cs.bath.ac.uk/pervasive/publications/2012/grimmett_iwcnc2012.pd

f

483

Gross, K. (2006, January/February). Audio Networking - Applications and

Requirements. Journal of the Audio Engineering Society, 54(1/2), 66. Retrieved

from http://www.aes.org/e-lib/browse.cfm?elib=13692

Gross, K. (2011, November 16). Alphabet Soup - Developments in the Media and Control

Networking Landscape. Retrieved from AVA Networks Website:

http://www.avnetwork.com/features/0014/alphabet-soup/86976

Gross, K. P., & Holtzen, T. (1998, September). Controlling and Monitoring Audio

Systems with Simple Network Management Protocol (SNMP) - Convention

Paper 4760. Retrieved from Audio Engineering Society (AES) Website:

http://www.aes.org/publications/conventions/

Grunwald, G. (n.d.). Harmonic Code. Retrieved from Blogspot Website:

http://harmoniccode.blogspot.co.nz/2010/08/java-swing-component-

library.html

Gurdan, R., & Foss, R. (2010). AES X-170 Presentation. Retrieved from IEEE 1722.1

Working Group Website: grouper.ieee.org/groups/1722.1/1722.1-foss-X-170-

Uman-2010-04-07-v1.ppt

Gurdan, R., & Foss, R. (2010, April 5). Device Discovery, Enumeration, Connection

Management & Control Protocol for AVTP devices. Retrieved from P1722.1

Working Group Website:

http://grouper.ieee.org/groups/1722/1/contributions/2010/

Guttman, E., & Kempf, J. (2000). Proposed Modifications to the Service Location

Protocol, Version 2. Retrieved from Internet Engineering Task Force (IETF)

Website: http://tools.ietf.org/id/draft-guttman-svrloc-slpv2bis-01.txt

Guttman, E., Perkins, C., Veizades, J., & Day, M. (1999). RFC 2608 - Service Location

Protocol, Version 2. Retrieved from Internet Engineering Task Force (IETF)

Website: ttp://tools.ietf.org/html/rfc2608

Haase, O., Waesch, J., & Zhao, B. (2008, November 6). A Remote Java RMI Registry.

Retrieved from Dr Dobb's Website: http://www.drdobbs.com/jvm/a-remote-

java-rmi-registry/212001090

Handley, M., Jacobson, V., & Perkins, C. (2006, July). RFC 4566 - SDP: Session

Description Protocol. Retrieved from Internet Engineering Task Force (IETF)

Website: http://tools.ietf.org/html/rfc4566

Hanson, J. (2003, August 29). Coarse-grained Interfaces Enable Service Composition

in SOA. Retrieved from TechRepublic Website:

484

http://www.techrepublic.com/article/coarse-grained-interfaces-enable-service-

composition-in-soa/5064520

Harman Pro Corporation. (2012, October). HiQnet® guide to audio networking.

Retrieved from Harman Pro Corporation Website:

http://hiqnet.harmanpro.com/content/images/misc/hiqnet_guide_to_audio_n

etworking.pdf

Harman Pro Corporation. (n.d.). HiQnet Software. Retrieved from Harman Corporation

Website: http://hiqnet.harmanpro.com/software/

Harrington, D., Presuhn, R., & Wijnen, B. (1999, April). RFC 2571 - An Architecture for

Describing SNMP Management Frameworks. Retrieved from Internet

Engineering Task Force (IETF) Website: http://www.ietf.org/rfc/rfc2571.txt

Harrington, D., Presuhn, R., & Wijnen, B. (2002, December). RFC 3411 - An

Architecture for Describing Simple Network Management Protocol (SNMP)

Management Frameworks. Retrieved from Internet Engineering Task

Force(IETF) Website: http://tools.ietf.org/html/rfc3411

Hassan, K., & Yaghobi, M. (2001, June). Retrieved from Mid Sweden University Website:

http://apachepersonal.miun.se/~loveke/magister/uppsatser/masth06-25.pdf

Hassoun, M. H. (Ed.). (1993). Associative Neural Memories: Theory and

Implementation. Oxford University Press.

Hildebrand, A. (2010, September). RAVENNA : The IP-based Real-Time Audio

Network. Retrieved from Lawo AG Website:

http://www.lawo.de/fileadmin/dam_frontend_uploads/O-MarCom/2-

Power_Points/Partner_Training_2010/RAVENNA%20Solution%20Presentatio

n%20Lawo%20Partner%20Meeting%202010.pptx.

HiQnet™ Software. (n.d.). Retrieved from Harmon Corporation Website:

http://hiqnet.harmanpro.com/software/

Huang, E.-H., & Elrad, T. (1998). Race Scheduling Controls for Object Systems. In M. E.

Orlowska, & R. Zicari (Ed.), Proceedings of the International Conference on

Object Oriented Information Systems (pp. 272-285). Brisbane: Springer-Verlag.

Huntington, J. (2007). Control Systems for Live Entertainment (3rd ed.).

Burlington,MA: Focus Press.

Huntington, J. (2007, September). The ACN Future is Here. Lighting and Sound

America, pp. 86-92. Retrieved from https://controlgeek.net/articles-and-other-

work/2007/9/1/the-acnfuture-is-here.html

485

Huntington, J. (2012, March 27). Open Control Alliance (OCA): Deja Vu or A View To

The Future? Retrieved from Control Geek Website:

http://controlgeek.net/blog/2012/3/27/open-control-alliance-oca-deja-vu-or-a-

view-to-the-future.html

IANA. (2012). Internet Assigned Numbers Authority. Retrieved from IANA Website:

http://www.iana.org/

IBM Corporation. (2012, July 2). United States Patent Application Publication.

Retrieved from FreshPatents Website:

http://images3.freshpatents.com/pdf/US20120271815A1.pdf

ICT7 Corporation. (n.d.). XYController. Retrieved from SourceForge Website:

http://sourceforge.net/p/xycontroller/home/Home/

Igumbor, O. P., & Foss, R. (2013, April). Control Protocol Translation for Device

Interoperability in the Context of Ethernet AVB. (J. Cooperstock, & R. Foss, Eds.)

Journal of the Audio Engineering Society, 61(4), 224-234. Retrieved from

http://www.aes.org/journal/online/JAES_V61/4/

Illuminating Engineering Society. (2011). IES TM-23-11 Lighting Control Protocols. New

York. Retrieved from http://www.ies.org/PDF/Store/TM-23-11_FINAL.pdf

Institute of Electrical and Electronics Engineers. (2008). IEEE Standard 1588-2008 -

IEEE Standard for a Precision Clock Synchronization Protocol for Networked

Measurement and Control Systems. Retrieved from IEEE Web Site:

https://standards.ieee.org/findstds/standard/1588-2008.html

Institute of Electrical and Electronics Engineers. (2009, December 10). 802.1Qav -

Forwarding and Queuing Enhancements for Time-Sensitive Streams. Retrieved

from IEEE802 Website.

Institute of Electrical and Electronics Engineers. (2010, September 30). 802.1Qat -

Stream Reservation Protocol. Retrieved from IEEE802 Website:

http://www.ieee802.org/1/pages/802.1at.html

Institute of Electrical and Electronics Engineers. (2011, March 30). 802.1AS - Timing

and Synchronization. Retrieved from IEEE802 Website:

http://www.ieee802.org/1/pages/802.1as.html

Institute of Electrical and Electronics Engineers. (2011, May 6). IEEE 1722 - Layer 2

Transport Protocol Working Group for Time-Sensitive Streams. Retrieved from

IEEE Website: http://grouper.ieee.org/groups/1722/

486

Institute of Electrical and Electronics Engineers. (2012). ETHERTYPE. Retrieved from

IEEE Website: http://standards.ieee.org/develop/regauth/ethertype/eth.txt

Institute of Electrical and Electronics Engineers. (2012, July). IEEE P1722.1™/D21

Standard Device Discovery, Connection Management and Control Protocol for

P1722 based devices. Retrieved from IEEE Website:

http://standards.ieee.org/develop/wg/P1722.1.html

Institute of Electrical and Electronics Engineers. (2012). P1772.1 Working Group .

Retrieved from IEEE Website: http://grouper.ieee.org/groups/1722/1/AVB-

DECC/IEEE-1722.1_Working_Group.html

Intel Corporation. (n.d.). Developer Tools for UPnP Technologies. Retrieved from Open

Software Projects Website: http://opentools.homeip.net/dev-tools-for-upnp

International Electrotechnical Commission. (2003, May). IEC Webstore. Retrieved from

IEC Website: http://webstore.iec.ch/preview/info_iec60958-

4%7Bed2.0%7Den.pdf

International Electrotechnical Commission. (2007). IEC62379-1: Common Control

Interface – Part1: General. International Electrotechnical Commission.

International Electrotechnical Commission. (2008). IEC62379-2: Common Control

Interface – Part2: Audio. International Electrotechnical Commission.

International Telecommunication Union. (1998, April). SERIES Z: LANGUAGES AND

GENERAL SOFTWARE ASPECTS FOR TELECOMMUNICATION SYSTEMS

Formal description techniques (FDT) – Message Sequence Chart (MSC).

Retrieved from ITU Website: http://www.itu.int/ITU-T/2001-

2004/com17/languages/Z.120AnnB-0498.pdf

International Telecommunication Union. (2002, 07). International Telecommunication

Union (ITU). Retrieved from ITU Website: http://www.itu.int/ITU-

T/studygroups/com17/languages/X.690-0207.pdf

International Telecommunication Union. (2008, November). X.680 : Information

technology - Abstract Syntax Notation One (ASN.1): Specification of basic

notation. Retrieved from ITU Website: http://www.itu.int/rec/T-REC-X.680-

200811-I/en

Internet Engineering Task Force Network Working Group. (2003, July). RFC 3548 - The

Base16, Base32, and Base64 Data Encodings. (S. Josefsson, Ed.) Retrieved from

Internet Engineering Task Force (IETF) Website:

http://tools.ietf.org/html/rfc3548

487

iReasoning Networks. (2012). iReasoning Products - Products. Retrieved from

iReasoning Website: http://ireasoning.com/products.shtml

iReasoning Networks. (2013). SNMP Agent Builder. Retrieved from iReasoning

Networks Website: http://ireasoning.com/snmpagent.shtml

ISO/IEC. (1994, November 15). ISO/IEC 7498-1 Information Technology - Open

Systems Interconnection - Basic Reference Model: The Basic Model. (2nd).

Retrieved from International Organization for Standardization (ISO):

http://standards.iso.org/ittf/PubliclyAvailableStandards/s020269_ISO_IEC_74

98-1_1994(E).zip

ITU. (2002). RECOMMENDATION ITU-R BT.1563 Data encoding protocol using key-

length-value. Retrieved from United Nations Agency for Information and

Communication Technologies Website: http://www.itu.int/dms_pubrec/itu-

r/rec/bt/R-REC-BT.1563-0-200204-S!!PDF-E.pdf

Iyer, P., & Warrier, U. (2001). Internet Gateway Device Specification. Retrieved from

UPnP Forum Website: upnp.org/specs/gw/upnp-gw-internetgatewaydevice-v1-

device.pdf

Izhaki, R. (2012). Mixing Audio Concepts, Practices and Tools (2nd ed.). Focal Press.

Jagadish, C., Prakash, S., & Gonsalves, T. (2008). Network Management Traffic

Optimization. Proceedings of the 14th National Conference on Communications

(pp. 344-348). Bombay: National Conference on Communications. Retrieved

May 23, 2010, from

http://www.ncc.org.in/download.php?f=NCC2008/2008_B4_1.pdf

Jands Technical Resource Group. (2010, September). Architecture for Control Networks

(ACN) - What's the Big Idea? (Part 2 of 2). Retrieved from JANDS Website:

http://www.jands.com.au/support/product_support/lighting_technical_materia

ls/acn_whats_the_big_idea_part_2

Jeronimo, M. (2004, October 5). It Just Works: UPnP in the Digital Home. Retrieved

from Artima Developer Website:

http://www.artima.com/spontaneous/upnp_digihome2.html

Jeronimo, M., & Weast, J. (2003). UPnP Design by Example - A Software Developer’s

Guide to Universal Plug and Play. INTEL Press.

Johnsen, F. T., Flathagen, J., Gagnes, T., Haakseth, R., Hafsøe, T., Halvorsen, J., . . .

Skjegstad, M. (2008, May 09). Norwegian Defence Research Establishment.

488

Retrieved from Norwegian Defence Research Establishment Website:

http://www.ffi.no/no/Rapporter/08-01064.pdf

Johnsen, F. T., Rustad, M., Hafsoe, T., Eggen, A., & Gagnes, T. (2010). Semantic Service

Discovery for Interoperability in Tactical Military Networks. The International

C2 Journal, 4(1).

Juszkiewicz, H., Yeakel, H., Arora, S., Beliaev, A., Frantz, R., & Flaks, J. (2003, May 03).

Media-Accelerated Global Information Carrier- Engineering Specification Rev.

3.0c. Retrieved from Gibson Corporation Website:

www.gibson.com/files/_audio/magic/magic3_0c.pdfCached

Karagosian, M. (1999, September). New Directions For SC-10. Retrieved from MKPE

Consulting Website: http://mkpe.com/publications/theme_park_systems/sc-

10.php

Keuck, M., & Boger, P. (2014, January). ember-plus. Retrieved from Google Code

Website: http://ember-plus.googlecode.com/svn/tags/embersdk-1-0-

0/documentation/Ember+%20Documentation.pdf

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-m., & Irwin,

J. (1997). Aspect Oriented Programming. Proceedings of the 11th European

Conference on Object-Oriented Programming (pp. 220-242). Springer-Verlag.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-m., & Irwin,

J. (1997). Aspect-oriented Programming. European Conference on Object-

Oriented Programming (pp. 220-242). Jyväskylä: Springe-Verlag. Retrieved

from http://cseweb.ucsd.edu/users/wgg/CSE218/aop-ecoop97.pdf

Klavis Technologies. (2012, February). CHAILink SDK Version 1.0. Retrieved from

CopperLan Website:

http://www.copperlan.org/doxygenEmbedded/_architecture.html

Klavis Technologies. (2012a). CopperLan Manager User Manual. Retrieved from

CopperLan Website:

http://www.copperlan.org/phocadownload/autoupdate/Package/CopperLan%2

0Manager%20User%20Manual.pdf

Klavis Technologies. (n.d.). CHAI SDK Version 1.3. Retrieved from CopperLan Website:

http://www.copperlan.org/chaidoc/_s_d_k_o__messaging.html

Klavis Technologies. (n.d.). CopperLan home. Retrieved from CopperLan Website:

http://www.copperlan.org/

489

Klavis Technologies. (n.d.). Q&A MIDI. Retrieved from CopperLan Website:

http://www.copperlan.org/index.php/q-a/q-a-midi

Klavis Technologies. (n.d.). The Network. Retrieved from CopperLan Website.

Klinkradt, B. (1999). Evaluation of AES-24: Audio Device and Monitoring Protocol.

M.Sc. Thesis, Rhodes University, Department of Computer Science.

Koftinoff, J. (2010, April 7). AVBC - A Protocol for Connection Management and System

Control for AVB. Retrieved from IEEE P1722.1 Working Group Website:

http://grouper.ieee.org/groups/1722/1/contributions/1722.1-koftinoff-AVBC-

2010-04-07-v1.pdf

Koftinoff, J. (2010, April 7). Device Discovery, Enumeration, Connection Management

& Control Protocol for AVTP devices. Retrieved from IEEE P1772.1 Working

Group Website: http://grouper.ieee.org/groups/1722/1/AVB-DECC/IEEE-

1722.1_Working_Group.html

Koftinoff, J. (2013). Audio Video Bridging - A collection of links, tools and open source

code for Audio Video Bridging (AVB) technologies. Retrieved from AVB

Statusbar Website: https://avb.statusbar.com/files/presentation/avdecc-aes-ny-

2013.pdf

Kogent Learning Solutions. (2012). Figure A.1. In Java Server Programming - Java EE5

Black Book (p. 1446). Kogent Learning Solutions.

Kozierok, C. M. (2005). SNMPVersion1SNMPv1MessageFormat. Retrieved from The

TCP/IP Guide Website:

http://www.tcpipguide.com/free/t_SNMPVersion1SNMPv1MessageFormat.htm

Kreifeldt, R. (2007). HiQnet Third Party Programmer Documentation. Harmon

International Industries.

Kreifeldt, R. (2010, February). 1722.1 Contributions. Retrieved from IEEE P1722.1

Working Group Website:

http://grouper.ieee.org/groups/1722/1/contributions/1722.1-kreifeldt-HiQnet-

AVB-dev-behavior-ppt-2010-02-10-v1.pdf

Kreifeldt, R., & Holladay, A. (2005, March). One Language, One Network. Live Sound

International, pp. 82-86.

Kreifeldt, R., Lee, J., Plunkett, W., Shuttleworth, T., Stevenson, A., Werf, B., & Zolinger,

H. (2005, October 27). USA Patent No. US20050239396 A1. Retrieved from

https://www.google.com/patents/US20050239396

490

Krzyzanowski, P. (2012, October 30). Distributed Systems. Retrieved from Department

of Computer Science - Rutgers University:

https://www.cs.rutgers.edu/~pxk/417/notes/08-rpc.html

Kshemkalyani, A., & Singhal, M. (2011). Distributed Computing: Principles, Algorithms,

and Systems. Cambridge: Cambridge University Press.

Kühn, E. (n.d.). Space Based Computing- Leveraging the Coordination Paradigm.

Retrieved from Space-Based Computing Website:

http://www.spacebasedcomputing.org/fileadmin/files/SBC-Paradigm-v1.0.pdf

Larmouth, J. (1999). ASN.1 Complete. Open Systems Solutions Nokalva Inc. Retrieved

from http://www.oss.com/asn1/resources/books-whitepapers-pubs/larmouth-

asn1-book.pdf

Leach, P., Mealling, M., & Salz, R. (2005, July). RFC 4122 - A Universally Unique

Identifier (UUID) URN Namespace. Retrieved from Internet Engineering Task

Force (IETF) Website: http://www.ietf.org/rfc/rfc4122.txt

Leuwer, H. (2006, March). LuaSNMP - Reference. Retrieved from LuaSNMP Website:

http://luasnmp.luaforge.net/objects.html

Levi, D., Meyer, P., & Stewart, B. (1998, January). RFC 2273 - SNMPv3 Applications.

Retrieved from Internet Engineering Task Force (IETF) Website:

https://www.ietf.org/rfc/rfc2273.txt

Lindley, C. (1999). Digital Audio with Java. Upper Saddle River, NJ: Prentice Hall PTR.

L-S-B Broadcast Technologies GmbH. (2014). SNMP. Retrieved from L-S-B Broadcast

Technologies GmbH Website: http://www.l-s-

b.de/products/vsm/monitoring/snmp.html

Lu, R. (2000, July). Detecting Race Conditions in Distributed Concurrent Systems.

Retrieved from http://digitool.library.mcgill.ca/R/?func=dbin-jump-

full&object_id=33422&local_base=GEN01-MCG02

Mahapatra, S. (2004). Introducing JAVASPACES. Retrieved from SYS-COM Media

Website: http://www2.sys-

con.com/ITSG/virtualcd/Java/archives/0509/Mahapatra/index.html

Matuszek, D. (2003). Aspect-Oriented Programming. Retrieved from

http://www.cis.upenn.edu/~matuszek/cit597-2003/Lectures/45-aop-

programming.ppt

491

Mauthe, A., & Hutchison, D. (2003, June). Peer-to-Peer Computing: Systems, Concepts

and Characteristics. (J. Eberspächer, & R. Steinmetz, Eds.) PIK - Praxis der

Informationsverarbeitung und Kommunikation(2), 59-119. Retrieved from

ftp://ftp.kom.e-technik.tu-darmstadt.de/papers/MH03-1-paper.pdf

Mazuryk, Y., & Lukkien, J. J. (n.d.). Improved Eventing Protocol for Universal Plug and

Play. Retrieved from Department of Mathematics and Computer Science,

Eindhoven University of Technology:

http://www.win.tue.nl/~johanl/projects/EES5413/mazuryk.pdf

McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., McCloghrie, K., Rose, M., &

Waldbusser, S. (1999, April). RFC 2578 - Structure of Management Information

Version 2 (SMIv2). Retrieved from Internet Engineering Task Force (IETF)

Website: http://tools.ietf.org/html/rfc2578

McGovern, J., Tyagi, S., Stevens, M., & Mathew, S. (2003). Java Web Services

Architecture. Morgan Kaufmann.

McKinnon, A. D. (n.d.). Interface Definition Language. Retrieved from PACE University

- Seidenberg School of Computer Science and Information Systems Website:

http://csis.pace.edu/~marchese/CS865/Papers/interface-definition-

language.pdf

Medhi, D., & Ramasamy, K. (2007). Network Routing: Algorithms, Protocols, and

Architectures. San Francisco: Morgan Kaufmann.

Mellquist, P. E. (1997). SNMP++: An Object-Oriented Approach to Developing Network

Management Applications. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.

Mesquita, L. (2006). Faster Java Serialization. Retrieved from SourceForge Website:

http://jserial.sourceforge.net/faq.html

Meyer Sound. (n.d.). D-Mitri. Retrieved from Meyer Sound Website:

http://www.meyersound.com/products/d-mitri/versatility.htm

MG-Soft Corporation. (n.d.). MG-SOFT MIB Compiler. Retrieved from MG-Soft

Corporation Website: http://www.mg-soft.com/mgmibc.html

Microsoft Corporation. (1999, September 3). Appendix A - Queuing and Scheduling

Hardware/Software. Retrieved from Microsoft TechNet Website:

http://technet.microsoft.com/en-us/library/bb742480.aspx

Microsoft Corporation. (1999). Windows 2000 Server: Appendix A - Queuing and

Scheduling Hardware/Software. Retrieved from Microsoft TechNet Website:

http://technet.microsoft.com/en-us/library/bb742480.aspx

492

Microsoft Corporation. (2010, August 4). UPnP Application Development. Retrieved

from Microsoft Developer Network Website: http://msdn.microsoft.com/en-

us/library/aa924141.aspx

Microsoft Corporation. (2012, February 29). Features Removed or Deprecated in

Windows Server 2012. Retrieved from Microsoft TechNet Website:

http://technet.microsoft.com/en-us/library/hh831568.aspx

Microsoft Corporation. (2012). Service-Oriented Architecture (SOA). Retrieved from

Microsoft Developer Network Website: http://msdn.microsoft.com/en-

us/library/bb977471.aspx

Microsoft Corporation. (2013). Plug and Play - Architecture and Driver Support.

Retrieved from Microsoft Developer Network Website:

http://msdn.microsoft.com/en-us/library/windows/hardware/gg463189.aspx

MIDI Manufacturers Association. (1995). The Complete MIDI 1.0 Detailed Specification.

Retrieved from MIDI Manufactures Association Website:

http://www.midi.org/techspecs/midispec.php

MIDI Manufacturers Association. (2003). General MIDI 2 Specification. Retrieved from

MIDI Manufacturers Association Website:

http://www.midi.org/techspecs/gm.php#gm2

MIDI Manufacturers Association. (2011, February 15). MIDI Visual Control

Specification. Retrieved from http://www.midi.org/techspecs/rp50public.pdf

MiG Components. (n.d.). MigLayout - Java Layout Manager for Swing, SWT and

JavaFX 2! Retrieved from MiG Components Website:

http://www.miglayout.com/

Mills, K., & Dabrowski, C. (2003). Adaptive Jitter Control for UPnP M-Search.

Proceeding of the IEEE International Conference on Communications. 2, pp.

1008 - 1013. Anchorage: IEEE. Retrieved from National Institute of Standards

and Technology: http://www.antd.nist.gov/~mills/papers/Paper521.pdf

Milne, S., Campbell, P., Boyer, R., McTigue, J., & Kloiber, M. (2006, October). Eucon:

An Object-Oriented Protocol for Connecting Control Surfaces - Convention

Paper 6957. Retrieved from Audio engineering Society (AES) Website:

http://www.aes.org/e-lib/browse.cfm?elib=13791

Morgan, M. (2003). Topic Coverage - ECE 8990 Real-time Systems Design. Retrieved

from Mississippi State University Website:

http://www.ece.msstate.edu/~jwbruce/rtes/upnp_ppt.pdf

493

Mukhtar, H. (2009). SNMP optimizations for 6LoWPAN. Retrieved from Internet

Engineering Task Force (IETF) Website: http://tools.ietf.org/html/draft-hamid-

6lowpan-snmp-optimizations-02#appendix-A

Natale, B. (1995, August 9). Windows SNMP - WinSNMP/Manager API v.1.1a.

Gaithersburg, MD, USA.

National Institute of Standards and Technology. (2000, October). The NIST Reference

on Constants, Units and Uncertainty. Retrieved from National Institute of

Standards and Technology (NIST) Website: http://physics.nist.gov/cuu/Units/

Net-SNMP. (2011, June). TUT : snmptrap. Retrieved from Net-SNMP Website:

http://net-

snmp.sourceforge.net/wiki/index.php/TUT:snmptrap#SNMPv3_Notifications

Newmarch, J. (2005). A RESTful Approach: Clean UPnP without SOAP. Proceedings of

the 2nd IEEE Consumer Communications and Networking Conference (CCNC)

(pp. 134 - 138). Las Vegas: IEEE.

Object Management Group. (2012, November). Documents Associated with CORBA, 3.3.

Retrieved from Object Management Group Website:

http://www.omg.org/spec/CORBA/3.3/

Open Control Alliance. (2011, August 31). OCF Framework 1.0 rev3. Retrieved from

Open Control Architecture Alliance Website.

Open Control Alliance. (2013). Open Control Architecture Alliance. Retrieved from Open

Control Architecture Alliance Website: http://www.oca-alliance.com/

Open DeviceNet Vendor Association. (n.d.). DeviceNet Brochure. Retrieved from

University of Washington Website:

http://depts.washington.edu/cpac/NeSSI/12_ISA_2001/DNet-brochure.pdf

Open Sound Control Technical Documents. (n.d.). Discovery of OSC Clients and Servers

on a Local Network. Retrieved from Open Sound Control Website:

http://opensoundcontrol.org/discovery-osc-clients-and-servers-local-network

OpenACN. (2012). Retrieved from SourceForge Website:

http://openacn.svn.sourceforge.net/

OpenDMX. (n.d.). DMX512-A. Retrieved from OpenDMX Website:

http://www.opendmx.net/index.php/DMX512-A

494

Oracle Corporation. (2010). 3.1 Stubs and Skeletons. Retrieved from Oracle Corporation

Website: http://docs.oracle.com/javase/7/docs/platform/rmi/spec/rmi-

arch2.html

Oracle Corporation. (2010). Java™ Remote Method Invocation Specification. Retrieved

from Oracle Corporation Website:

http://docs.oracle.com/javase/jp/8/platform/rmi/spec/rmi-title.html

O'Regan, G. (2004, January 14). Introduction to Aspect-Oriented Programming.

Retrieved from O'Reilly Media On Java:

http://www.onjava.com/pub/a/onjava/2004/01/14/aop.html

Ousterhout, J. (1995). Why Threads Are A Bad Idea (for most purposes). Sun

Microsystems Laboratories. Retrieved from

https://web.stanford.edu/~ouster/cgi-bin/papers/threads.pdf

Perkins, D. (1998). Table Indexing in SNMP MIBs. Retrieved from SNMP Info Website:

http://www.snmpinfo.com/tables.pdf

Perkins, D., & McGinnis, E. (1997). Understanding SNMP MIBs. Prentice Hall.

Phillips, D. (2008, November 12). An Introduction To OSC. Retrieved from Linux

Journal Website: http://www.linuxjournal.com/content/introduction-osc

Pinus, H. (2004). Middleware: Past and Present a Comparison. Retrieved from

University of Maryland Website:

http://www.research.umbc.edu/~dgorin1/451/middleware/middleware.pdf

Place, T., Lossius, T., Jensenius, A., Peters, N., & Baltazar, P. (2008). Addressing Classes

by Differentiating Values and Properties in OSC. 8th International Conference -

New Interfaces For Musical Expression (NIME), (pp. 181-184). Genova.

Plummer, D. (1982, November). RFC 826 - An Ethernet Address Resolution Protocol.

Retrieved from Internet Engineering Task Force (IETF) Website:

http://tools.ietf.org/html/rfc826

Postel, J. (1980, August 28). RFC 768 - User Datagram Protocol. Retrieved from

Internet Engineering Task Force (IETF) Website:

http://www.ietf.org/rfc/rfc768.txt

Postel, J. (1983, March). RFC 865 - Quote of the Day Protocol. Retrieved from Internet

Engineering Task Force (IETF) Website: http://tools.ietf.org/html/rfc865

495

Postel, J., & Reynolds, J. (1988, February). RFC 1042 - A Standard for the Transmission

of IP Datagrams over IEEE 802 Networks. Retrieved from Internet Engineering

Task Force (IETF) Website: https://www.ietf.org/rfc/rfc1042.txt

Pras, A., Drevers, T., van de Meent, R., & Quartel, D. (2004, December). Comparing the

Performance of SNMP and Web Services-Based Management. IEEE

Transactions on Network and Service Management, 1(2), 72-82. Retrieved from

http://doc.utwente.nl/66407/1/2004-eTNSM.pdf

Prins, A. (2009). MambaNet Specification 0.9. Weesp: D&R Electronics.

ProTools Automation Modes. (2012). Retrieved from WikiAudio Website:

http://en.wikiaudio.org/Pro_Tools:automation_modes

Ramakrishnan, C. (n.d.). Illposed Software — Java OSC Download. Retrieved from

Illposed Software Website: http://www.illposed.com/software/javaosc.html

Resnick, P. (2001, April). RFC 2822 - Internet Message Format. Retrieved from Internet

Engineering Task Force (IETF) Website: http://www.ietf.org/rfc/rfc2822.txt

Roddey, D. (2011, June 2). Control Protocol Design A Guide for Controllable Hardware

Manufacturers. Retrieved from Charmed Quark Systems Website:

http://www.charmedquark.com/Web2/Downloads/Documents/VersionInd/Goo

dProtocolDesign.pdf

Rol, E. (2003). Public Review Comments BSR.E1.17 Entertainment Technology

Multipurpose Control Protocol Suite. Retrieved from Erwin Rol Website:

http://downloads.erwinrol.com/documents/esta_acn_reply.sxw.pdf

ROLI Ltd. (n.d.). JUCE. Retrieved from JUCE Website: http://www.juce.com/

Rose, M. (1994). The Simple Book (2nd ed.). Englewood Cliffs: Prentice-Hall.

Rose, M. (1999, March). RFC 1215 - A Convention for Defining Traps for use with the

SNMP. Retrieved from Internet Engineering Task Force (IETF) Website:

http://www.ietf.org/rfc/rfc1215.txt

Rose, M., & McCloghrie, K. (1990, May). RFC 1155 - Structure and Identification of

Management Information for TCP/IP-based Internets. Retrieved from Internet

Engineering Task Force (IETF) Website: http://tools.ietf.org/rfc/rfc1155.txt

Rose, M., & McCloghrie, K. (1991, March). RFC 1212 - Concise MIB Definitions.

Retrieved from Internet Engineering Task Force (IETF) Website:

http://www.ietf.org/rfc/rfc1212.txt

496

Rumsey, F. (2012, April). Audio Networking. Journal of the Audio Engineering Society,

60(4), 282-286.

Sawashima, H., & Sunahara, H. (1997). http://www.isoc.org/inet97/proceedings/.

Retrieved from Internet Society Website:

http://www.isoc.org/inet97/proceedings/F3/F3_1.HTM

Schlimmer, J. (2004, May). A Technical Introduction to the Devices Profile for Web

Services. Retrieved from Microsoft Developer Network Website:

http://msdn.microsoft.com/en-us/library/ms996400.aspx

Schmeder, A. (2008). audio.osc.devel. Retrieved from osdir All Things open Website:

http://osdir.com/ml/audio.osc.devel/2008-08/msg00001.html

Schmeder, A., & Freed, A. (2008). Implementation and. Applications of Open Sound

Control Timestamps. Proceedings of the International Computer Music

Conference (pp. 655-658). Belfast: ICMC.

Schmeder, A., & Freed, A. (2008, July 4). micro-OSC: The Open Sound Control

Reference Implementation for Embedded Devices. Retrieved from Open Sound

Control Website: http://opensoundcontrol.org/publication/micro-osc-open-

sound-control-reference-implementation-embedded-devices

Schmeder, A., & Wright, M. (2004). A Query System for Open Sound Control. Retrieved

from Open Sound Control Website: http://opensoundcontrol.org/files/osc-

query-system.pdf

Schmeder, A., Freed, A., & Wessel, D. (2010). Best Practices for Open Sound Control.

Retrieved from Open Sound Control Website:

http://opensoundcontrol.org/files/osc-best-practices-final.pdf

Schoenwaelder, J. (2003, May). RFC 3535 - Overview of the 2002 IAB Network

Management Workshop. Retrieved from Internet Engineering Task Force (IETF)

Website: http://www.ietf.org/rfc/rfc3535.txt

Schoenwaelder, J., & Jeffree, T. (2006). RFC 4789 - Simple Network Management

Protocol (SNMP) over IEEE 802 Networks. Retrieved from Internet Engineering

Task Force (IETF) Website: http://tools.ietf.org/html/rfc4789

Schönwälder, J. (2002, April 29). Evolution of Open Source SNMP Tools. Retrieved

from Braunschweig Technical University Website: http://www.ibr.cs.tu-

bs.de/users/schoenw/papers/sane-2002.pdf

497

Schooler, E. M. (1992, January). The Connection Control Protocol Specification Version

1.1. Retrieved from USC Information Sciences Institute Website:

ftp://ftp.mosis.org/pub/hpcc-papers/mmc/ccp-spec.ps

Schooler, E. M. (1993, June). Case Study: Multimedia Conference Control in a Packet-

Switched Teleconferencing System. Journal of InterNetworking: Research and

Enterprise, 4(2), 99-120.

Schulzrinne, H., Rao, A., & Lanphier, R. (1998, April). RFC 2326 - Real Time Streaming

Protocol (RTSP). Retrieved from Internet Engineering Task Force (IETF)

Website: http://www.ietf.org/rfc/rfc2326.txt

Schwitzer, W., & Popa, V. (2011). Using Protocol Buffers for Resource-Constrained

Distributed Embedded Systems. Institut für Informatik. Munich: Munich

Technical University.

Scientific Computing Associates. (2007). Scientific Computing Associates Downloads.

Retrieved from Scientific Computing Associates Website:

http://www.lindaspaces.com/downloads/lindamanual.pdf

Sharp, R. (2008). Principles of Protocol Design. Berlin: Springer.

Shuttleworth, T. (2012, January 23). ARE WE THERE YET? - Audio networking over

Ethernet in 2012. Sound and Communications, 58(1), 46-50. Retrieved from

ftp://ftp.renkus-

heinz.com/Technical_Papers/WhitePapers/SC_Jan2012_AudioNetworking.pdf

SimpleWeb. (n.d.). MIB module validation. Retrieved from SimpleWeb Website:

http://www.simpleweb.org/ietf/mibs/validate/

Skonnard, A. (2003, March). Understanding SOAP. Retrieved from Microsoft Developer

Network Website: http://msdn.microsoft.com/en-us/library/ms995800.aspx

SNMP Tutorial: An Introduction to SNMP. (n.d.). Retrieved from DPS Telecom

Website: http://www.dpstele.com/layers/l2/snmp_tutorials.php

SNMP#NET. (n.d.). SNMP#NET. Retrieved from SNMP#Net Website:

http://www.snmpsharpnet.com/

Soares, P. G. (1992). On Remote Procedure Call. Proceedings of the 1992 Conference of

the Centre for Advanced Studies on Collaborative Research (pp. 215-267).

Toronto: IBM Corporation.

Society of Motion Picture & Television Engineers. (2008). ST 12-1:2008 Television -

Time and Control Code. Retrieved from Society of Motion Picture & Television

498

Engineers Website: http://standards.smpte.org/content/978-1-61482-268-4/st-

12-1-2008/SEC1.abstract?sid=4761eec1-2441-4d3a-9b3e-c4e720f296f8

Soundcraft Inc. (n.d.). Spirit Digital 328 User Guide. Retrieved from ManualsOnline

Website: http://pdfstream.manualsonline.com/1/123c2064-c471-499b-b6b0-

e10f2098cf6d.pdf

Steinmetz, R., & Wehrle, K. (2005). Peer-to-Peer: Notion, Areas, History and Future. In

R. Steinmetz, & K. Wehrle (Eds.), Peer-To-Peer Systems and Applications.

Berlin: Springer.

Stevens, P. (2010, November). Private Conversation.

Stumpf, J. (2009, 12 01). Basic SNMP API - Objects. Retrieved from Upplysa Website:

http://www.upplysa.com/Projects/1/Basic-SNMP/24/1/Objects

Subramanian, R., & Goodman, B. D. (2005). Peer to Peer Computing: The Evolution of a

Disruptive Technology. Hershey: Idea Group Publishing.

Swann, B. (n.d.). The Language of BACnet-Objects, Properties and Services. Retrieved

from American Society of Heating, Refrigerating and Air-Conditioning Engineers

(ASHRAE) Website: http://www.bacnet.org/Bibliography/ES-7-96/ES-7-96.htm

Taing, N. (2011, March 22). TCP UDP and RMI Performance Evaluation. Retrieved

from LYCOG Website: http://lycog.com/performance-evaluation/tcp-udp-rmi-

performance-evaluation/

Tan, L., & Jiang, J. (2008). Fundamentals of Analog and Digital Signal Processing (2nd

ed.). Bloomington: Author House.

Tannenbaum, A. S. (1988). Computer Networks (2nd ed.). Upper Saddle River: Prentice-

Hall.

Technical University of Vienna - Space Based Computing Group. (2013, July). Space

Based Computing Group. Retrieved from Technical University of Vienna -

Faculty of Informatics Website: http://www.complang.tuwien.ac.at/eva/SBC-

Group/sbcGroupIndex.html

The Apache Software Foundation. (n.d.). JS - JavaSpacesTM Service Specification.

Retrieved from Apache Software Foundation Website:

https://river.apache.org/doc/specs/html/js-spec.html

The Computer Language Company Inc. (n.d.). network protocol - Computer Definition.

Retrieved from Your Dictionary: http://www.yourdictionary.com/network-

protocol

499

TOA electronics Inc. (2008). Products. Retrieved from TOA Electronics Website:

http://www.toaelectronics.com/products/downloads/disc/manuals/cx-

124_164.pdf

TRW Computer Division. (1963, June). Accession Number : AD0408276. Retrieved from

Defense Technical Information Center:

http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=A

D0408276

United States Institute for Theatre Technology Inc. (n.d.). DMX512. Retrieved from

United States Institute for Theatre Technology (USITT) Website:

http://www.usitt.org/content.asp?contentid=370

Universal Media Access Networks. (n.d.). Enhanced USG Mechanism.

Universal Media Access Networks. (n.d.). UNOS Home Page. Retrieved from Universal

Media Access Networks (UMAN) Website: http://www.unosnet.com/

UPnP Forum. (2008, October 15). UPnP Device Architecture 1.1. Retrieved from UPnP

Forum Website: http://upnp.org/sdcps-and-

certification/standards/international-standards/

UPnP Forum. (2008, November 30). UPnP-QoS Architecture:3. Retrieved from UPnP

Forum Website: http://upnp.org/specs/qos/UPnP-qos-Architecture-v3.pdf

UPnP Forum. (2010, December 31). ConnectionManager:3 Service For UPnP Version

1.0. Retrieved from UPnP Forum Website:

http://www.upnp.org/specs/av/UPnP-av-ConnectionManager-v3-Service-

20101231.pdf

UPnP Forum. (2013, July 1). UPnP Specifications. Retrieved from UPnP Forum Website:

http://upnp.org/specs/ds/UPnP-ds-DataStore-v1-Service.pdf

Veizades, J., Guttman, E., Perkins, C., & Kaplan, S. (1997, June). RFC 2165 - Service

Location Protocol. Retrieved from Internet Engineering Task Force (IETF)

Website: http://www.ietf.org/rfc/rfc2165.txt

Venners, B. (1999, June 9). Jini: New technology for a networked world. Retrieved

from JavaWorld Website: http://www.javaworld.com/article/2076430/learn-

java/jini--new-technology-for-a-networked-world.html

Virage Group. (2009, July 29). Minuit : Propositions for a query system over OSC.

Retrieved from Virage Website: http://virage.blueyeti.fr/?p=1444&lang=en

500

Walker, A. (2005, December). Service Discovery by Automated Structural and

Semantic Matching. Retrieved from The University of Texas Arlington Website:

http://dspace.uta.edu/handle/10106/414

Walsh, L. (2008). SNMP MIB Handbook. Stanwood: Wyndham Press.

Walton, C., & Warren, N. (2015, April). Permission Developing the Scala Bindings to the

Fly Object Space. Retrieved from Researchgate Website:

http://www.researchgate.net/publication/267852911_Permission_Developing_t

he_Scala_Bindings_to_the_Fly_Object_Space

Weiss, F. (2013, March 10). Open Sound Control (OSC) related software. Retrieved from

Frieder Weiss Website: http://frieder-weiss.de/OSC/

Wittman, M., Efler, B., Dönz, T., & Planer, M. (2012, December 21). MozartSpaces

Tutorial. Retrieved from Mozart Spaces Website:

http://www.mozartspaces.org/2.2-SNAPSHOT/docs/MozartSpaces_Tutorial.pdf

Wittmann, M. (2008, April 14). Application Scenarios (Mozart Spaces). Retrieved from

Mozart Spaces Website: www.mozartspaces.org/

World Wide Web Consortium. (1998, September 10). Data Modeling Report Prepared

for: W3C XML Specification DTD (“XMLspec”). Retrieved from W3C Website:

http://www.w3.org/XML/1998/06/xmlspec-report-19980910.htm

World Wide Web Consortium. (1999, November 16). XML Path Language (XPath)

Version 1.0. Retrieved from W3C Website: http://www.w3.org/TR/xpath/

World Wide Web Consortium. (2000, May 8). Simple Object Access Protocol (SOAP) 1.1.

Retrieved from W3C Website: http://www.w3.org/TR/2000/NOTE-SOAP-

20000508/

World Wide Web Consortium. (2003, October 21). Mathematical Markup Language

(MathML) Version 2.0 (Second Edition). Retrieved from W3C Website:

http://www.w3.org/TR/MathML2/

World Wide Web Consortium. (2004, February 11). Web Services Glossary. Retrieved

from W3C Website: http://www.w3.org/TR/ws-gloss/

World Wide Web Consortium. (2005, January 25). SOAP Message Transmission

Optimization Mechanism. Retrieved from W3C Website:

http://www.w3.org/TR/soap12-mtom/

World Wide Web Consortium. (n.d.). W3C XML Query (XQuery). Retrieved from W3C

Website: http://www.w3.org/XML/Query/

501

World Wide Web Consortium Working Group. (2004, February 11). Web Services

Architecture. Retrieved from W3C Website: http://www.w3.org/TR/ws-arch/

Wright, M. (1998). Open Sound Control Archive. Retrieved from The Center for New

Music and Audio Technologies (CNMAT) Website:

http://archive.cnmat.berkeley.edu/OpenSoundControl/src/OSC-Kit/OSC-

address space.c

Wright, M. (2002a). Open Sound Control Specification 1.0. Retrieved from Open Sound

Control Website: http://opensoundcontrol.org/spec-1.0

Wright, M. (2005). Open Sound Control: an Enabling Technology. Organised Sound,

10(3), 193-200.

Wright, M. (n.d.). The OpenSound Control Kit. Retrieved from Center for New Music

and Audio Technologies (CNMAT) Website:

http://archive.cnmat.berkeley.edu/OpenSoundControl/Kit/

Wright, M., & Freed, A. (1997). Open Sound Control: A New Protocol for Communicating

with Sound Synthesizers. International Computer Music Conference, (pp. 101-

104). Thessaloniki: International Computer Music Association.

XMOS Limited. (2011). XMOS AVB Design Guide. Retrieved from The XCore Open

Source Project Website: http://xcore.github.io/sw_avb/

Yamaha Corporation. (n.d.). O1V96. Retrieved from Yamaha Website:

http://usa.yamaha.com/products/live_sound/mixers/digital-mixers/01v96/

Yang, X., Stevens, P., & Yuan-xing, Z. (2010, October). BBC Research White Paper - An

Integrated Monitoring Solution for Media Streams on IP Networks. Retrieved

from British Broadcasting Corporation (BBC) Website:

http://downloads.bbc.co.uk/rd/pubs/whp/whp-pdf-files/WHP187.pdf

Yeong, W. (1990, March 31). SNMP Query Language. Retrieved from stuff MIT

students' portal Website:

http://stuff.mit.edu/afs/athena/astaff/project/snmp/nyser.3.5/snmpql/techrpt.

PS

ZeroC Corporation. (2012). Ice Manual v3.4 - Terminology. Retrieved from ZeroC

Corporation Website: http://doc.zeroc.com/display/Ice/Terminology

Zhu, F., Mutka, M. W., & Ni, L. M. (2005, April). Service Discovery in Pervasive

Computing Environments. IEEE Pervasive Computing, 4(4), 81-90.

Zink Digital Ltd. (2011). Fly Object Space. http://www.flyobjectspace.com.

502

ZOHO Corporation. (2012). Adding Rows. Retrieved from ZOHO Corporation Website:

http://www.webnms.com/cagent/help/mibbrowser/table_handling/addingarow

.html

ZOHO Corporation. (2012). Sending Traps and Informs. Retrieved from ZOHO

Corporation Website:

http://www.webnms.com/cagent/help/snmp/c_snmp_traps.html#trapsbasedon

instance

