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Abstract

It has been shown in ionospheric research that modelling total electron content (TEC) during

storm conditions is a big challenge. In this study, mathematical equations were developed

to estimate TEC over Sutherland (32.38oS, 20.81oE), during storm conditions, using the

Empirical Orthogonal Function (EOF) analysis, combined with regression analysis. TEC

was derived from GPS observations and a geomagnetic storm was defined for Dst ≤ -50 nT.

The inputs for the model were chosen based on the factors that influence TEC variation, such

as diurnal, seasonal, solar and geomagnetic activity variation, and these were represented by

hour of the day, day number of the year, F10.7 and A index respectively. The EOF model was

developed using GPS TEC data from 1999 to 2013 and tested on different storms. For the

model validation (interpolation), three storms were chosen in 2000 (solar maximum period)

and three others in 2006 (solar minimum period), while for extrapolation six storms including

three in 2014 and three in 2015 were chosen. Before building the model, TEC values for the

selected 2000 and 2006 storms were removed from the dataset used to construct the model

in order to make the model validation independent on data. A comparison of the observed

and modelled TEC showed that the EOF model works well for storms with non-significant

ionospheric TEC response and storms that occurred during periods of low solar activity. High

correlation coefficients between the observed and modelled TEC were obtained showing that

the model covers most of the information contained in the observed TEC. Furthermore, it

has been shown that the EOF model developed for a specific station may be used to estimate

TEC over other locations within a latitudinal and longitudinal coverage of 8.7o and 10.6o

respectively. This is an important result as it reduces the data dimensionality problem for

computational purposes. It may therefore not be necessary for regional storm-time TEC

modelling to compute TEC data for all the closest GPS receiver stations since most of the

needed information can be extracted from measurements at one location.
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Chapter 1

Introduction

Magnetic storms cause disturbances in the Earth’s magnetic field which later cause changes

in the ionospheric electron density and hence in ionospheric total electron content (TEC)

(Yizengaw and Essex, 2002). TEC is defined as the total number of electrons within an

imaginary cylinder of cross-sectional area of 1 m2 between a satellite and a receiver on the

ground (Hofmann-Wellenhof et al., 1992; Misra and Enge, 2006; Habarulema et al., 2009;

Rao et al., 2013). TEC undergoes dramatic changes during geomagnetic storms resulting

into two major effects, classified as positive and negative storm effects, corresponding to the

increase and decrease in TEC respectively (Habarulema et al., 2013; Borries et al., 2015).

This important ionospheric parameter can be used for many purposes, including the study

of the ionosphere-plasmasphere system and Global Navigation Satellite Systems (GNSS)

applications (Stankov et al., 2010). For example, one can get information about the ionisa-

tion level of the ionosphere by measuring changes in the wave parameters when the signal

transmitted by a satellite interacts with the ionospheric plasma (Jakowski et al., 2012). On

the other hand, it is known that TEC perturbations have a significant impact on satellite

applications such as satellite navigation, communication, space weather forecasting, global

positioning systems (GPS) surveying and remote sensing systems, which rely on an electro-

magnetic signal that interacts with ionospheric plasma when it passes through the ionosphere

(Hofmann-Wellenhof et al., 1992; Habarulema et al., 2009; Borries et al., 2015). A typical

example is that TEC, encountered between satellites and ground receivers, is one of the main

sources of error for positioning applications, especially for single frequency users (Bergeot

et al., 2013). Thus, TEC modelling is of high importance for a better understanding of its

response to variations of solar activity and geomagnetic storms.

In the literature much has been reported on efforts to model TEC during both quiet and

storm conditions. Using Empirical Orthogonal Functions (EOF) analysis, TEC was mod-

elled during magnetically quiet days over China (Mao et al., 2005, 2008). A global model for

TEC based on EOF analysis using the global ionosphere maps provided by Jet Propulsion

Laboratory has been developed using data for the period 1999 - 2009 (A et al., 2012). A

comparison between modelled TEC using the International Reference Ionosphere (IRI) model
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and TEC modelled by means of EOF model has shown that EOF model performs better than

IRI model and its accuracy is high (Mao et al., 2005, 2008; A et al., 2012). However, when

A et al. (2012) applied the global EOF model to modelling TEC during storm conditions,

the model did not perform well. It was then suggested that the use of TEC data of high

spatial-temporal resolution, specifically during storm conditions, could improve the modelling

results. TEC was also predicted over Chumphon (10.72o N, 99.37o E), an equatorial latitude

station in Thailand, using Neural network (NN) model, and the outcome was compared with

TEC predicted by the IRI-2007. It has been shown that the NN model predicts TEC better

when compared with the IRI-2007 model (Watthanasangmechai et al., 2012). Furthermore,

the most recently available IRI-2012 model was applied to TEC modelling during quiet and

storm periods. GPS TEC over a low-latitude Singapore station (01.37o N, 103.67o E) was

used and the IRI model was not able to predict the storm’s impact. It has thus been suggested

that to model TEC behaviour during storms, significant improvements in the IRI model are

required (Kumar et al., 2014).

Recently, the NN and the IRI models were applied in modelling GPS TEC over South Africa.

A comparison of GPS TEC predicted by the NN model and GPS TEC predicted by the IRI-

2001 over South Africa, showed that the NN model predicts GPS TEC with higher accuracy

than IRI-2001 (Habarulema et al., 2007). The NN and IRI-2007 models have also been ap-

plied in modelling TEC over Southern Africa during storm conditions. Although both models

are good in following storm dynamics in TEC variations, the accuracy is still low and needs

to be improved (Habarulema et al., 2010).

A study of variations of the ionospheric critical frequency of the F2 layer (foF2) and GPS

TEC over the Antarctic sector, has confirmed that diurnal, seasonal and solar activity varia-

tions of TEC are similar to those observed in the foF2 values (Mosert et al., 2011). Therefore,

it is important to mention reports on the modelling of foF2, an ionospheric parameter that is

influenced by ionospheric dynamics in the same way as TEC. Using ionosonde data over Rome

(41.8o N, 12.5o E), Italy, and over Grahamstown (33.32o S, 26.50o E) in South Africa, for a

period of 50 days from November 12 to December 31, 1997, a comparison of the monthly mean

values computed from the observed data, with the values predicted by the IRI model showed

that the predicted values from the IRI model were in a good approximation of the monthly

mean values of foF2. However, quantitative model/data comparisons did not produce very

encouraging results. For the winter mid-latitude the model reproduces the magnitude of foF2

day-to-day variability and follows the positive phase during storms; however for the summer

mid-latitude both day-to-day variability and the magnitude of the negative phase were un-

derestimated (Fuller-Rowell et al., 2000). The NN technique was also used to develop a near

real-time global foF2 (NRTNN) empirical model. Comparisons between the observed and
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predicted values of foF2 during two magnetic storms that occurred during 17-19 September

1979 and during 17-19 November 1989, showed good agreement (Oyeyemi et al., 2006).

Modelling ionospheric parameters such as TEC and foF2 during storm conditions is a big

challenge. Auroral precipitation and uncertainty in the magnitude and spatial distribu-

tions of the magnetospheric electric field have been mentioned as some of the causes that

make difficult to model the response to a specific disturbance at a particular location in the

mid-latitude region (Fuller-Rowell et al., 2000). On the other hand, due to an incomplete

understanding of ionospheric dynamics, and of sudden changes in the ionospheric electron

density observed during storm conditions, especially when both positive and negative storm

effects are observed during one storm period, it has been noticed that modelling storm-time

TEC is a difficult task (Habarulema et al., 2010).

This thesis therefore focuses on the improvement of TEC modelling during magnetic storms

using South African GPS data. The task was to develop a model to accurately predict both

TEC magnitude and its dynamics during magnetic storm conditions, i.e., a model that es-

timates TEC with high accuracy and capable to capture both positive and negative storm

effects.

EOF analysis together with regression analysis were used to model TEC during storm con-

ditions over Sutherland (32.38o S, 20.81o E), South Africa, during the period 1999 - 2013.

EOF analysis was chosen because it is capable of identifying hidden patterns in the data and

classifying them according to how much of the information stored in data they account for.

In addition to this particular advantage of EOF analysis, it has been shown that the EOF

model performs well when it is applied to modelling some ionospheric parameters, including

TEC during magnetically quiet days (Mao et al., 2005, 2008; A et al., 2012). Regression

analysis was introduced to model the EOF coefficients in terms of solar and geomagnetic

indices in order to introduce the influence of solar and geomagnetic activities on TEC within

the model.

1.1 Research Objective

The main objective of the project was to develop mathematical equations to estimate TEC

over Sutherland (32.38o S, 20.81o E), during storm conditions.

To achieve this objective, a TEC database for storm days was built for the period 1999-

2013, using GPS TEC over Sutherland. Magnetic storms that occurred during the period

under study were identified by means of the disturbance storm time (Dst) index, the storm
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criterion being Dst ≤ −50 nT. The fact that TEC varies with time of the day and seasons

was taken into account to build the model as well as solar and magnetic activities which are

considered as the main causes of TEC variability.

1.2 Thesis outline

The thesis is divided into five chapters:

The first chapter gives a brief description of the project, specifying the project objective,

period under study, region of interest, modelling techniques and the outcome of the project.

The second chapter gives theoretical background on TEC, geomagnetic storms, solar and

geomagnetic indices.

The third chapter provides details about data measurements and processing, and a descrip-

tion of the modelling techniques.

The fourth chapter presents the results and a discussion on TEC modelling during storm

conditions.

Finally, conclusions and future work are presented in chapter 5.
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Chapter 2

Theoretical background

In this chapter a brief introduction to the ionosphere is given and details about TEC and its

variation are discussed. An introduction to magnetic storms, as well as a description of the

solar and geomagnetic indices that were used in this project, are provided.

2.1 Brief introduction to the ionosphere

Depending on temperature variation with height, the Earth’s atmosphere is divided into

regions named, from the ground to the upper limit of the atmosphere, troposphere, strato-

sphere, mesosphere, thermosphere and exosphere (Rishbeth and Garriott, 1969; Hunsucker

and Hargreaves, 2002). The ionosphere is the partially ionised region of the Earth’s atmo-

sphere, within the mesophere and thermosphere, which extends from about 50 km above the

surface of the Earth to about 1000 km (Hunsucker and Hargreaves, 2002; Moeketsi, 2008).

The ionisation process originates mainly from the extreme ultraviolet (EUV) radiation and

the X-rays from the sun that interact with neutral atmospheric constituents (McNamara,

1991). When a photon from the sun hits a neutral atom, an electron can escape from the

atom and the latter becomes a positive ion. This process is called photoionisation and only

takes place during the day when the sun is above the horizon. The reverse process of pho-

toionisation is called recombination, simply because electrons and positive ions combine to

produce neutral atoms. While photoionisation is a process by which positive ions are pro-

duced in the ionosphere, recombination is a process by which electrons are lost in the lower

and upper ionosphere and only takes place when photoionisation ceases at sunset (McNa-

mara, 1991).

The ionosphere is subdivided into three regions, termed lower ionosphere, bottomside iono-

sphere and topside ionosphere. Since the EUV radiation that mainly causes the photoioni-

sation is attenuated as it passes through the ionosphere towards the lower atmosphere, the

intensity of EUV radiation decreases as the radiation penetrates deeper. On the other hand,

the density of neutral atoms that can be photoionised decreases as the altitude increases, i.e.

towards the topside ionosphere. A net result of these opposing effects is the formation of a
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layer of maximum electron density at some altitude in the ionosphere, whereas above and

below this altitude, layers with lower electron density are produced. Thus, the bottomside

ionosphere is subdivided into three regions according to the altitude, namely D, E, and F,

and the latter in turn contains two layers named F1 and F2 (McNamara, 1991).

� The D layer is the lowest ionospheric layer with an altitude range from 50 km to 90

km (McNamara, 1991; Moldwin, 2008). The main source of ionisation is cosmic rays

and X-rays from solar flares. The electron density is lower in the D layer compared

to other layers, since the D layer is weakly ionised, and at approximately 90 km,

is typically 1010 m−3, during the daytime (Ondoh and Marubashi, 2001; Moeketsi,

2008; Habarulema, 2010). During the nighttime, the D layer disappears due to the

recombination process, and its electron density is recovered during the daytime due to

photoionisation (Moldwin, 2008).

� The E layer is above the D layer at an altitude ranging from 90 km to 120 km. X-rays

and UV solar radiation of molecular oxygen (O2) are the major sources of ionisation

(Moldwin, 2008). At an altitude of about 105 km, the typical peak electron density is

1011 m−3 (Moeketsi, 2008). Except for the remaining ionisation during the night, the

E layer disappears at sunset and appears at sunrise (Davies, 1990; Moldwin, 2008).

� The F layer is the ionospheric region that starts from an altitude of 120 km, just above

the E layer and contains two layers, F1 and F2, that are present during the daytime.

The F layer formation is due mainly to the solar EUV radiation that ionises oxygen

atoms, and the typical daytime maximum electron density is 1012 m−3 (Moeketsi, 2008;

Moldwin, 2008). At night, since recombination is the dominating process, the F1 layer

almost completely disappears, while F2 survives but gets depleted. For this reason,

the F2 layer is the most important for the propagation of HF radio waves (McNamara,

1991).

2.2 Ionospheric TEC variations

As previously defined, TEC is a measure of the total number of electrons encountered inside

an imaginary cylinder with a cross-sectional area of 1 m2 between a satellite and a receiver

on the ground. Mathematically, TEC is computed by integrating the electron density with

respect to the altitude (Hofmann-Wellenhof et al., 1992; Misra and Enge, 2006):

TEC =

∫ R

S

Ne(l)dl (2.1)
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where R and S in the integration limits stand for receiver and satellite, respectively. Ne(l)

represents the electron density profile (number of electrons per volume unit) along the signal

path and dl is an element of distance in such a way that

l =

∫

dl (2.2)

represents the geometric distance measured along the straight line between the satellite and

the receiver. TEC is expressed in TEC unit (TECU) and 1 TECU = 1016 electrons/m2.

Since TEC depends on the electron density according to the Equation 2.1 and the electron

density in turn depends on the solar radiation which is the main source of photoionisation,

TEC variability is highly influenced by several factors that cause changes in the intensity

of the solar radiation received on the Earth. Solar and geomagnetic activity, geographic

location of a particular region on the Earth (latitude and longitude), and changes in solar

radiation with time, are the primary causes of spatial and temporal variations of the iono-

spheric TEC (Huang and Roussel-Dupré, 2005). The spatial variation of TEC is generally

influenced by various ionospheric latitude zones, while temporal variation is due to changes

in solar radiation with time. Temporal variation includes diurnal variation i.e. over a period

of 24 hours of a day, seasonal variation, and solar cycle variation observed over an 11-year

period between high and low solar activity (Huang and Roussel-Dupré, 2005). The different

factors that influence/cause TEC variation are summarised below.

2.2.1 Diurnal variation of TEC

High TEC values are usually observed around local midday, since the photoionisation rate is

higher due to the maximum solar radiation intensity. Low TEC values are observed at night

from sunset until just before sunrise due to the decrease in ionisation rate, since solar radiation

intensity is low at night. The general trend of the diurnal variation of TEC is illustrated by

the Figure 2.1 which shows an example of diurnal variation of TEC over Sutherland (32.38o

S, 20.81o E), South Africa, during a magnetically quiet day on 01-11-2014.

Similar observations have been reported for different regions. A study of diurnal variation

of TEC over a low latitude station, Agran (27.12o N, 78.89o E), India, using TEC data

for a period from 01 August 2006 to 31 July 2009, showed that minimum values of TEC

were observed around 05:00 LT of the morning while the diurnal peak in TEC was generally

observed between 12:00 and 14:00 LT, in the afternoon (Chauhan et al., 2011). Other authors

described the general pattern of diurnal variation of TEC as follows: a short time depression

in TEC early in the morning, followed by an increase in TEC in the morning until it reaches

its maximum in the early afternoon, and then a decrease in TEC after the sunset (Huang

and Roussel-Dupré, 2005; Ya’acob et al., 2010).
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Figure 2.1: Diurnal variation of TEC over Sutherland (32.38o S, 20.81o E), South Africa, on
01-11-2014. Local time (LT) = UT + 2 hours.

2.2.2 Seasonal variation of TEC

Usually high TEC values are observed around the equinoxial months (March and September)

and in summer while low TEC values are observed in winter (McNamara, 1991; Habarulema,

2010). During the equinoxes, the sun is at zenith over the equator, which means that it

shines more directly on the Earth. Therefore, due to the high level of photoionisation,

the ionospheric electron density increases and consequently, high TEC values are observed.

Furthermore, it has been found that the zenith angle at noon in winter is always greater than

the corresponding solar zenith angle in summer. This means that the sun is more overhead in

summer than it is in winter and as consequence, higher electron density and TEC in summer

than in winter. Although the seasonal variation of TEC has been described as above, it may

not always be the case, since ionospheric variability also relies on the changes of the neutral

atmosphere from which the ionosphere is created (McNamara, 1991).

Figure 2.2 illustrates the 2003 annual variation of TEC over Sutherland. Only TEC values

at 10:00 UT (which corresponds to 12:00 South African LT) were chosen to represent diurnal

values of TEC. It is noticeable that high TEC values were observed in March and in the

October-November period, just close to the equinoxial months. From a semiannual view,

the trend of TEC looks like a periodic function characterised by high TEC values at the

equinoxes and low TEC values at the solstices (June and December).

A similar trend has been reported for other latitude regions. For example, for the low-
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Figure 2.2: Annual variation of TEC during 2003, over Sutherland (32.38o S, 20.81o E), South
Africa.

latitude stations, Agran (27.120 N and 78.890 E) and Rajkot (22.29o N, 70.74o E), India, it

was reported that high TEC values were observed during the equinoxial months, low TEC

value were observed in winter, while intermediate values were observed in summer (Bagiya

et al., 2009; Chauhan et al., 2011).

2.2.3 TEC variation with latitude

High TEC values are usually found in low latitude regions, i.e. near the equator. This is due to

the high level of photoionisation that is produced over the equatorial region, since the sunlight

is more direct over this region than elsewhere. As ones moves from the equator towards the

poles, the zenith angle increases and the solar radiation hits the Earth’s atmosphere at an

oblique angle, meaning that the rate at which the photoionisation occurs is less than over

low latitudes (McNamara, 1991; Habarulema, 2010).

Figure 2.3 shows TEC variation over different latitude regions. It is clear that high TEC

values are observed near the geomagnetic equator within a latitude range of 20o above and

below the geomagnetic equator. Peak TEC values are found in the equatorial ionisation

anomaly region. A similar observation was also reported by Huang and Roussel-Dupré (2005).

The equatorial ionisation anomaly is characterised by a trough in ionization concentration

at the magnetic equator and an enhancement of ionization at approximately ± 15o from the

geomagnetic equator. It is caused by a vertical upward drift of plasma across the geomagnetic

field lines at equatorial latitudes due to E x B forces and the subsequent downward diffusion
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Figure 2.3: Global TEC map for 09-03-2012, at 12:00 UT. Data used for the generation of
the map was obtained from ftp://cddis.gsfc.nasa.gov/pub/gps/products/ionex.

of plasma along the field lines to higher latitudes under the influence of gravity and pressure

gradient forces (Balan et al., 1997). .

2.2.4 TEC variation with solar activity

The sunspot number (SSN) and the solar radio flux index at a wavelength of 10.7 cm (F10.7)

are highly correlated and both can be used as indicators of the general level of solar activity

(McNamara, 1991). The period over which the sunspot number changes from a minimum

to a maximum and then decreases to a minimum has been found to be approximately 11

years, and it is known as the solar or sunspot cycle (Herman and Goldberg, 1978; McNamara,

1991). The solar maximum occurs when the solar cycle is at its peak while the solar minimum

occurs when the solar cycle is at its minimum. During the solar maximum the number of

sunspots is high which indicates that there are many active regions (sunspots) on the sun’s

surface which could possibly release energy towards the Earth. Solar flares and CMEs that

are released from the solar active regions are associated with the energy transported to the

Earth. During the period of solar maximum, solar flares are frequent (Davies, 1990) and thus,

we expect the ionisation rate to be higher during the solar maximum than during the solar

minimum. As a consequence, enhanced ionospheric electron density and TEC are observed.

The top panel of Figure 2.4 shows the solar activity as represented by the F10.7 index during

the period from 1999 to 2014. It is noticeable that the solar maximum occurred in the period

around 2000-2001 and then around 2012-2014, while the solar minimum period was between

2006-2010 as shown by F10.7 values which are higher during solar maximum period than

during solar minimum. The bottom panel of the Figure 2.4 represents TEC variation over
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Figure 2.4: TEC variation with solar activity over Sutherland (32.38o S, 20.81o E), in South
Africa.

the period 1999 - 2014, and it is clear that TEC values are high during the solar maximum

period, whereas TEC values are low during the solar minimum. Note that only TEC values

at 10:00 UT were used to represent TEC variation for the period 1999-2014.

2.3 Geomagnetic storm

The Earth’s magnetic field controls the behaviour of electrically charged particles that lie

within a region surrounding the Earth, called the Earth’s magnetosphere (Campbell, 2001).

Due to dynamic processes on the sun, it happens that a stream of charged particles, commonly

known as the solar wind (mostly electrons and protons), released from the sun, perturbs the

Earth’s magnetic field when it hits the Earth’s magnetosphere. This temporary disturbance

caused by interaction between charged particles and the associated magnetic field (the inter-

planetary magnetic field (IMF) or solar wind magnetic field) with the geomagnetic field is

called a geomagnetic storm or simply a magnetic storm (Campbell, 2001, 1997).
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Geomagnetic storms are generally observed when the solar wind magnetic field or IMF is

southward directed for a prolonged period of time, a condition commonly known as the

“southward IMF Bz component”. When this happens, the IMF cancels the Earth’s magnetic

field at the Earth’s magnetopause and the solar wind plasma enters the Earth’s magneto-

sphere (Tsurutani and Gonzalez, 1997).

2.3.1 Phases of a geomagnetic storm

A geomagnetic storm can have four phases: the sudden storm commencement (SSC), an

initial phase, a main phase and a recovery phase (Toffoletto, 2004).

A sudden change in the Earth’s magnetic field associated with a wave shock due the arrival

of the solar wind at the Earth’s magnetosphere is known as the storm sudden commencement

(SSC) (Campbell, 1997). However two cases need to be distinguished: after the shock, if the

IMF associated with the disturbance remains northward behind the shock, normally no storm

will follow and the shock is called a geomagnetic sudden impulse. If the IMF associated with

the disturbance is southward oriented (as seen from negative values of Bz) behind the shock,

a geomagnetic storm follows and the impulse is called a SSC (Campbell, 1997).

The initial phase is caused by an increase in ram pressure of the solar wind associated

with the increase in density and speed at and behind the shock, as the interplanetary shock

wave hits the magnetosphere (Tsurutani and Gonzalez, 1997).

The onset of a main phase of a storm is initiated by a physical process known as magnetic

reconnection that takes place at the Earth’s magnetopause. The magnetic reconnection be-

tween the IMF and the Earth’s magnetic field is a mechanism during which the solar wind

energy is transferred into the Earth’s magnetosphere (Tsurutani, 2001). When the IMF

Bz component is southward oriented, the solar wind and the Earth’s magnetic fields are

oppositely directed. When this phenomenon takes place, there is a cancellation of the mag-

netic field and hence a creation of a neutral region and magnetic reconnection takes place:

plasma outside the magnetosphere recombines with the plasma inside the magnetosphere

since the solar wind just opens up the magnetosphere like a can-opener, and matter squirts

in. Due to the particles injected into the inner magnetosphere, the ring current is enhanced

and as consequence, a depression in the magnetic field is observed (Baumjohann et al., 1997).

The storm recovery phase is associated with the loss of the ring current particles from the

magnetosphere via different physical mechanisms such as plasma convection, charge exchange
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with particles of the neutral atmosphere, Coulomb collisions and wave-particles resonant in-

teractions (Tsurutani, 2001).

2.3.2 Causes of geomagnetic storms

Coronal mass ejections (CMEs) from the sun and the associated interplanetary shock waves,

and the so-called Corotating Interaction Regions (CIRs) that result from interactions between

high-speed solar wind streams emanating from the coronal holes and slow-speed solar winds

in the interplanetary medium, are the main causes of magnetic storms that occur in the

Earth’s magnetosphere (Srivastava and Venkatakrishnan, 2004). During the solar maximum,

i.e. when the solar activity is high, CMEs associated with solar events such as solar flares and

eruptive prominences, are the main causes of large geomagnetic storms (Veenadhari et al.,

2012). During the solar minimum, i.e. when the solar activity is low, or during the declining

phase of the solar cycle, the CIRs are the main cause of moderate storms that occur when

they impinge on the Earth’s magnetosphere (Tsurutani et al., 2006; Veenadhari et al., 2012).

2.4 Geomagnetic and solar indices

Some details about solar and geomagnetic indices are provided here. In the following, only

the Disturbance storm-time (Dst), K, A and F10.7 indices are described. Dst is used to

define the storm period and strength, the local geomagnetic indices A and K, are commonly

used to determine the level of geomagnetic activity at a particular observatory, and F10.7 is

a good indicator of solar activity.

2.4.1 Disturbance storm-time index

As shown in Figure 2.5, charged particles trapped by the Earth’s magnetic field execute

three types of motions: spiral motion around the magnetic field lines, bounce motion back

and forth along the magnetic field lines and drift motion across the field lines, in such a

way that positive ions drift westward, while electrons move eastward around the Earth .

The current associated with this drift motion of protons and electrons moving in opposite

directions is called the ring current and flows in the westward direction, in the equatorial

plane (Baumjohann et al., 1997).

The Dst index is related to the ring current in such a way that when the ring current intensity

increases, Dst decreases. During the main phase of magnetic storms, when particles are in-

jected into the magnetosphere, the ring current increases. Since the ring current itself induces

a magnetic field, this induced field opposes the Earth’s magnetic field and consequently, the

magnitude of the resulting field decreases. This is what is reported as the Dst index and the
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Figure 2.5: Motions of charged particles in the Earth’s magnetosphere (Baumjohann et al.,
1997).

ring current behaves like a diamagnetic current (Tsurutani, 2001; Davies, 1990). Therefore,

the Dst index is a measure of the decrease in the horizontal component of the Earth’s mag-

netic field near the magnetic equator due to an increase in the magnetospheric ring current.

The Dst index is normally expressed in nanotesla (nT) and four low-latitude magnetic obser-

vatories are used to measure the global average geomagnetic perturbation of the ring current

(Campbell, 1997).

The Dst index is used to define the occurrence of a geomagnetic storm, its intensity and

duration. Before the onset of a geomagnetic storm, Dst normally varies around 0 nT. The

SSC is characterised by a positive sudden rise in Dst. During the initial phase, Dst is posi-

tive and relatively constant, whereas during the main phase Dst decreases until it reaches its

minimum value. During the storm recovery phase, Dst slowly increases from its minimum

value towards normal values around zero which corresponds to quiet geomagnetic conditions

(Love and Gannon, 2010; Rathore et al., 2014).

Figure 2.6 illustrates four phases of a geomagnetic storm that occurred on 15-05-2005. Note

that not all magnetic storms necessarily have the four phases discussed above. Even if the

minimum Dst value reached during a geomagnetic storm is used to classify its strength, there

is no fixed minimum Dst value as a reference value to determine whether a storm has occurred

or not. For example, Rathore et al. (2014) defined a magnetic storm as Dst≤ -50 nT while

Loewe and Prölss (1997) defined a magnetic storm as Dst ≤ -30 nT.

Table 2.1 shows a common classification of geomagnetic storms based on the minimum Dst

value reached during the storm conditions (Loewe and Prölss, 1997). Based on this classifi-

cation, the storm that occurred on 15-05-2005 is classified as a severe storm.
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Figure 2.6: Four phases of a geomagnetic storm that occurred on 15-05-2005, as defined by
Dst index.

Table 2.1: Storm classification by Loewe and Prölss (1997).

Storm class Range of minimum Dst
Weak -30 nT to -50 nT

Moderate -50 nT to -100 nT
Strong -100 nT to -200 nT
Severe -200 nT to -350 nT
Great < -350 nT

2.4.2 K index

The K index is specified by an integer in the range 0 - 9, where 0 indicates very magneti-

cally quiet and 9 indicates extremely magnetically disturbed conditions. According to the

National Oceanic and Atmospheric Administration (NOAA) Space Weather Scale for Ge-

omagnetic Storms, for a specific magnetic observatory, any value of K in the range 5 - 9

indicates a geomagnetic storm. The K index provides information on the state of the ge-

omagnetic field at a particular observatory and is derived from the maximum fluctuations

of the horizontal component of the geomagnetic field observed on a magnetometer at that

particular observatory, during a three-hour interval: 0 - 3, 3 - 6,..., 21 - 24 UT (Davies, 1990;

Reeve, 2010).

Whereas the local K index is an indicator of disturbances in the Earth’s magnetic field
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at a particular observatory, the planetary K index or simply Kp index is a global geomag-

netic storm index based on 3 hour measurements of the K-indices. Kp index is derived by

computing a weighted average of K indices from a network of geomagnetic observatories.

Similar to K index, the Kp index ranges from 0 to 9 where a value of 0 means that there is

very little geomagnetic activity and a value of 9 means extreme geomagnetic storm (Davies,

1990; Reeve, 2010).
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Figure 2.7: Hermanus K-indices, on 17-03-2015.

Figure 2.7 illustrates K-values observed at the South African National Space Science Agency

(SANSA) Directorate, Hermanus, on 17-03-2015. It is clear that the Earth’s magnetic field

was magnetically disturbed, indicating a magnetic storm occurrence, as the observed K-values

are greater than 4 from 09:00 UT.

2.4.3 A index

The A index was invented due to the need for an index that provides information about the

daily average level of geomagnetic activity. However, the K index is not suitable for this

purpose, because of its quasi-logarithmic nature and hence, it cannot be averaged (Davies,

1990; Reeve, 2010). Rather than averaging K indices, each K index is converted into its

equivalent three hourly “a index”, and then, the daily A index is computed by taking the

average of the eight a indices (Reeve, 2010). Table 2.2 illustrates the conversion between K

and a (Reeve, 2010).

The following example shows how the A index is calculated. In Figure 2.7, the eight values

of K indices on 17-03-2015, were 2, 4, 4, 5, 6, 7, 6 7. Table 2.2 gives the corresponding “a”
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Table 2.2: Conversion between K and a.

K 0 1 2 3 4 5 6 7 8 9
a 0 3 7 15 27 48 80 140 240 400

value for each K value: 7, 27, 27, 48, 80, 140, 80, 140. The daily A index is the average of

the eight a indices:

A = (7 + 27 + 27 + 48 + 80 + 140 + 80 + 140)/8 = 68.625

2.4.4 F10.7 index

The solar radio flux at a wavelength of 10.7 cm, or simply F10.7, is a daily index commonly

used as a proxy for solar activity and to determine the level of radiation from the sun. It

is measured day-to-day at the Penticton Radio Observatory in British Columbia, Canada.

F10.7 represents the intensity of solar radio emissions at a frequency of 2800 MHz (which

corresponds to a wavelength of 10.7 cm), and is measured in solar flux units (1 SFU =

10−22 W.m−2.Hz−1) (Poole, 2002; Huang et al., 2009). F10.7 provides information about

conditions for long-distance communication since it is highly related to the rate of ionisation

and particularly to the electron density in the F2 layer (Poole, 2002). TEC variability is also

influenced by F10.7 in such a way that if the solar flux increases TEC magnitude increases

(Carrano and Groves, August 7-16, 2008).

2.5 Summary

This chapter provided a brief theoretical background on the ionosphere, including the iono-

spheric layers and their dynamics as controlled by photoionisation and recombination pro-

cesses. An overview of TEC variations such that diurnal, seasonal, solar cycle and latitudinal

variations was given and illustrated using GPS TEC over Sutherland. A brief mention of

causes and phases of geomagnetic storms was provided as well as an overview of solar and

geomagnetic indices used in this study.
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Chapter 3

Data sources, processing and modelling

techniques

This chapter presents a brief introduction to GPS and how TEC is derived fromGPS measure-

ments. Details about the data used in this project are provided. Methods used for modelling

TEC during storm conditions, i.e. EOF analysis and regression analysis, are mathematically

described.

3.1 GPS overview

GPS is a radio-based navigation system developed by the United States Department of De-

fense, the primary objective being to offer the U.S. military the accurate position, velocity

and time (Hofmann-Wellenhof et al., 1992; Misra and Enge, 2006). Although GPS was

specifically designed for U.S. military purposes and is still funded and controlled by the U.S.

Department of Defense, today many civil users benefit from different GPS applications, in-

cluding aviation, spacecraft guidance, maritime navigation, land transportation, Geographic

Information Systems (GIS), mapping, and agriculture (Kaplan and Hegarty, 2005; Misra and

Enge, 2006)

3.1.1 GPS structure

GPS is composed of three major segments, namely the space segment, control segment and

the user segment (Hofmann-Wellenhof et al., 1992; Misra and Enge, 2006).

3.1.1.1 Space segment

The space segment consists of a satellite constellation around the Earth. The baseline GPS

constellation consists of 24 satellites, each at an altitude of about 20 200 km above the Earth’s

surface. The satellite orbits are approximately circular and inclined at an angle of 55o relative

to the equatorial plane, with a semimajor axis of about 26 560 km and eccentricity less than

0.02. Each orbit contains four active satellites and each satellite has an orbital period of
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approximately 11.967 hours (Misra and Enge, 2006). Figure 3.1 shows the GPS constellation

of 24 satellites distributed in six orbital planes.

Figure 3.1: GPS constellation of 24 satellites distributed in six orbits (Kaplan and Hegarty,
2005)

Each satellite is identified by a letter that specifies its orbital plane (A, B, C, D, E, F corre-

sponding to six orbital planes) and a number specifying the satellite number in that orbital

plane (from 1 to 4 for a baseline constellation) (Misra and Enge, 2006). The pseudorandom

noise or pseudorandom number (PRN) is also used to identify a GPS satellite. Since all

PRN codes for all GPS satellites in a constellation are known and stored or generated in

GPS satellite signal receivers on the ground, when a particular GPS satellite transmits a

signal, the latter is processed in a GPS receiver and this makes it possible to determine the

position of the ground receiver and to identify the satellite that has transmitted the signal

(Hofmann-Wellenhof et al., 1992; Grewal et al., 2007).

3.1.1.2 Control segment

Satellite operations (commands and control functions) are monitored by the control seg-

ment also called Operational Control Segment (OPS) or Operational Control System. This

comprises three elements: the master control station, the monitor stations and the ground

antennas (Hofmann-Wellenhof et al., 1992; Misra and Enge, 2006).

� The master control station is where primary commands and control of GPS constellation

are performed (Misra and Enge, 2006). The main tasks of the master control station

include the generation and the uploading of navigation messages, monitoring of satellite

orbits and health, satellite maintenance, satellite repositioning when needed to maintain

the optimal GPS constellation, as well as the computation of the precise locations of

GPS satellites in space and the uploading of this data to the satellites (GPS.gov, 2015).
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� The monitor stations are used for tracking GPS satellites as they pass overhead. The

observations from these stations are channelled back to the master control. Further-

more, atmospheric data, range/carrier measurements, and navigation signals are also

collected by the monitor stations (GPS.gov, 2015).

� The ground antennas are used to communicate with the GPS satellites. Since the

ground antennas support S-band communications links, they transmit information

(satellite commands and data) to satellites via S-band radio signals (GPS.gov, 2015;

Kaplan and Hegarty, 2005).

Figure 3.2: The GPS operational control segment consists of a master control station, an al-
ternate master control station, 12 command and control antennas, and 16 monitoring stations
(GPS.gov, 2015).

Figure 3.2 shows the GPS control segment which consists of a master control station and an

alternate master control station, 12 command and control antennas including four ground

antennas co-located with the monitor stations and eight Air Force Satellite Control Network

(AFSCN) remote tracking stations, and sixteen monitoring stations including six belonging

to the Air Force and ten to the National Geospatial-Intelligence Agency (NGA).
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3.1.1.3 User segment

The user segment consists of user receiving equipment, typically referred to as a GPS receiver.

As coded signals are transmitted from GPS satellites, they are decoded and processed in a

GPS receiver to provide the position, velocity and time to the user. With the baseline

constellation, at least four satellites are in view for any GPS receiver since four satellites

are required to determine the position in three dimensions (X,Y,Z) and time (Kaplan and

Hegarty, 2005).

3.1.2 GPS signals

The L-band which covers a frequency range between 1 GHz to 2 GHz, is a subset of the

Ultra-High Frequency (UHF) band, which corresponds to radio frequencies in the range be-

tween 0.3 GHz and 3 GHz. Each GPS satellite continuously transmits signals, using two

radio frequencies in the L-band, referred to as Link 1 (L1) and Link 2 (L2). The center

frequencies of L1 and L2 are f1 = 1575.42 MHz and f2 = 1227.60 MHz, respectively (Misra

and Enge, 2006). These two frequencies are derived from the fundamental frequency fo =

10.23 MHz. Then f1 and f2 can be defined in term of fo as follows (Hofmann-Wellenhof

et al., 1992; Ya’acob et al., 2010)

f1 = 154·fo = 1575.42 MHz

f2 = 120·fo = 1227.60 MHz.

While two signals are transmitted on L1, one for civilian users and other for users authorised

by U.S. Department of Defense, only one signal reserved for authorised users is transmitted on

L2. To distinguish civil and authorised users, the Coarse Acquisition (C/A) Code for civilian

use (also known as the Standard Positioning Service (SPS)), is modulated only onto the

L1 carrier whereas the Precision-Code (P-Code) (also designated as the Precise Positioning

Service (PPS)), is available for authorised users and modulated onto both L1 and L2 carriers

(Hofmann-Wellenhof et al., 1992; Misra and Enge, 2006).

3.1.3 The effect of the ionosphere on GPS signals

The signals transmitted by GPS satellites travel through the ionosphere to GPS receivers.

The ionosphere is not uniform in composition and the refractive index changes along the signal

path. As a consequence, due to refraction, the signal path is bent and becomes longer than

the geometrical straight-line path from the satellite to receiver. As a result, the ionosphere

causes the signal to arrive at a GPS receiver later than it would have had if it traveled

through the vacuum. The time taken by the signal to travel the distance from satellite to

receiver, through the ionosphere, is given by (Misra and Enge, 2006):
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τ =
1

c

∫ R

S

n(l)dl (3.1)

where the integration is along the signal propagation path, and n(l) is the refractive index

profile of the medium and changes along the signal path. c = 299, 792, 458 m.s−1 is the speed

of light in a vacuum. The time that the signal would take to travel the same distance if the

ionosphere behaved as the vacuum is

τo =
1

c

∫ R

S

1 · dl (3.2)

The time delay in the signal propagation due to refraction (Misra and Enge, 2006) is

∆τ =
1

c

∫ R

S

[n(l)− 1]dl (3.3)

The equivalent increase in path length is

∆ρ = c∆τ

=

∫ R

S

[n(l)− 1]dl
(3.4)

Since the ionosphere is a dispersive medium, both the wave propagation speed and the

refractive index depend on the frequency of the signal. The relation of dispersion of the

ionosphere is given by (esa navipedia, 2015)

ω2 = c2k2 + ω2

p (3.5)

where ω = 2πf and ωp = 2πfp are the angular frequencies of electromagnetic signals and

ionospheric plasma respectively, and k = 2π/λ is the wave number. The quantities f and

fp represent the signal and plasma frequencies respectively, and λ is the wavelength of the

electromagnetic signals. The frequency ωp is a critical frequency in the sense that signals

with ω < ωp will be reflected and signals with ω > ωp will cross through the plasma (Davies,

1990). The phase and the group velocities are defined by (Hofmann-Wellenhof et al., 1992;

Misra and Enge, 2006)

vph =
ω

k
(3.6)

vgr =
dω

dk
(3.7)

Using Equation 3.5, the phase and the group velocities become
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vph =
c

√

1−

(

ωp

ω

)2
(3.8)

vgr = c

√

1−

(

ωp

ω

)2

(3.9)

By definition, the refractive index (n) of a medium is the ratio of the speed of propagation of

the signal in a vacuum to the speed of propagation of the signal in that medium v (Hofmann-

Wellenhof et al., 1992):

n =
c

v
(3.10)

Using this definition, the phase refractive index of the ionosphere is given by (esa navipedia,

2015)

nph =
c

vph

=

√

1−

(

ωp

ω

)2 (3.11)

Similarly, the group refractive index is

ngr =
c

vgr

=
1

√

1−

(

ωp

ω

)2

(3.12)

Taking into account that ωp/ω = fp/f and using the approximation (1 + x)α ≃ 1 + αx, for

|x| ≪ 1, which is the case for the ratio fp/f (esa navipedia, 2015), one can write the phase

and the group refractive indices as follows:

nph = 1−
1

2

(

fp
f

)2

(3.13)

ngr = 1 +
1

2

(

fp
f

)2

(3.14)

Knowing that the angular plasma frequency is given by (Chen, 1984)
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ωp =

(

Nee
2

ǫome

)1/2

(3.15)

where me = 9.1094 × 10−31 kg is the electron mass, e = 1.6021 × 10−19 C is the electron

charge, and ǫo = 8.854×10−12 F· m−1 is the permittivity of free space, the plasma frequency

is then

fp =
ωp

2π

= 8.98
√

Ne

(3.16)

Substituting this expression into Equations 3.13 and 3.14, the expressions of the phase and

the group refractive indices become (Hofmann-Wellenhof et al., 1992; Misra and Enge, 2006):

nph = 1−
40.3

f 2
Ne (3.17)

ngr = 1 +
40.3

f 2
Ne (3.18)

It is clear that ngr > nph which implies that vgr < vph according to Equations 3.11 and 3.12.

The fact that the phase and group velocities are different, a group delay and a phase advance

are noticed. This simply means that GPS code measurements are delayed and the carrier

phases are advanced (Hofmann-Wellenhof et al., 1992).

By replacing the phase and the group refractive indices by their expressions into Equa-

tions 3.3 and 3.4, and taking into account Equation 2.1, we get the expression of the excess

phase delay (in seconds) experienced by a signal as it propagates through the ionosphere

(Hofmann-Wellenhof et al., 1992; Misra and Enge, 2006)

∆τph =
1

c

∫ R

S

[np(l)− 1]dl

= −
1

c

∫ R

S

40.3Ne(l)

f 2
dl

= −
40.3

cf 2
· TEC

(3.19)

The excess phase delay (in metres) is
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IΦ = c∆τph

= −
40.3

f 2
· TEC

(3.20)

Similarly, the group delay (in seconds) is

∆τgr =
40.3

cf 2
· TEC (3.21)

and when expressed in metres, it becomes

Iρ = c∆τgr

=
40.3

f 2
· TEC

(3.22)

The phase delay is negative, which means that the phase is advanced, whereas the group

delay is positive, which justifies the appellation “group delay” (Misra and Enge, 2006).

3.1.4 Deriving TEC from GPS measurements

Dual-frequency GPS satellites above the ionosphere transmit signals on two frequencies,

as mentioned above. Once the signals reach a dual-frequency receiver, the difference in

ionospheric delays between L1 (f1 = 1575.42 MHz) and L2 (f2 = 1227.60 MHz) carriers

of the GPS frequencies can be measured. Assuming that the electromagnetic signals travel

along the same path through the ionosphere, and using the Equation 3.22 for the group delay,

then TEC can be determined using the equation (Ya’acob et al., 2008, 2009, 2010)

P1 − P2 = 40.3× TEC

(

1

f 2
2

−
1

f 2
1

)

(3.23)

which becomes, after rearranging the terms

TEC =
1

40.3

(

1

f 2

2

−
1

f 2

1

)

−1

(P1 − P2) (3.24)

P1 and P2 are the group path lengths corresponding to the high GPS frequency f1 and the

low GPS frequency f2, respectively.

TEC measured along the signal path from satellite to receiver is called Slant Total Electron

Content (STEC). The STEC can be converted into vertical TEC (VTEC), which is measured

along the vertical direction, as shown in Figure 3.3. The ionosphere is assumed to be a single

thin shell at the average altitude in the range 300 km - 400 km, called the mean ionospheric
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Figure 3.3: STEC to VTEC mapping (Hofmann-Wellenhof et al., 1992; Misra and Enge,
2006)

height hI (Hofmann-Wellenhof et al., 1992; Misra and Enge, 2006). The point of intersection

of this spherical shell (at height hI) and the line of sight between a satellite and a receiver is

called the ionospheric pierce point (IPP). The conversion formula from STEC to VTEC is

STEC =
1

cosZ ′
V TEC (3.25)

where Z ′ is the zenith angle of the satellite at the IPP and (cosZ ′)−1 is the obliquity factor.

By applying the law of sines, the relationship between the satellite zenith angle Z at the

receiver position and Z ′ can be obtained:

sinZ

RE + hI

=
sinZ ′

RE

(3.26)

where RE = 6371 km is the average radius of the Earth.
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3.2 Data processing

The GPS TEC data used in this project was derived from GPS records at Sutherland (32.38o

S, 20.81o E). Using the TEC analysis software developed at Boston College (Seemala, 2004),

the data in RINEX (Receiver INdependent Exchange) format was processed to get both slant

and vertical TEC. Since the minimum satellite elevation angle was 4o, to remove the multipath

effects, the satellite elevation angle of 20o was chosen as a cut-off, and only TEC values

corresponding to elevation angles greater than this cut-off was considered in the modelling

techniques. Figures 3.4 (a) and (b) show the satellite paths before and after selecting elevation

angles greater than 20o, respectively.
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Figure 3.4: Satellite paths on 17-03-2015 over Sutherland (32.38o S, 20.81o E) (a) before
selecting elevation angles greater than 20o, and (b) after selecting elevation angles greater
than 20o.

The values of A index, which was used as one of the inputs to the model, were computed

from K indices recorded at SANSA, Hermanus (34.4o S, 19.2o E), following the same steps

as described in chapter 2. F10.7 and Dst indices were respectively downloaded from the

following websites:

1. http://omniweb.gsfc.nasa.gov/form/dx1.html

2. http://wdc.kugi.kyoto-u.ac.jp/dst_final/index.html
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3.3 Modelling techniques

In this section, the two methods that were applied to model TEC during storm conditions

are presented. These are the regression and EOF analyses methods. The EOF analysis was

used to decompose TEC data in terms of base functions and associated coefficients and to

reveal some hidden information in the data. Regression analysis was used to estimate the

relationship between the EOF coefficients and indices A and F10.7 used as inputs.

3.3.1 Regression analysis

Regression analysis is a statistical method for investigating relationships between one or more

response variables (also called dependent variables, explained variables, predicted variables,

or regressands) and several other variables called predictors (or independent variables, ex-

planatory variables, control variables, or regressors) (Chatterjee and Hadi, 2013). Denoting

the dependent variable by y and the set of independent variables by x1, x2, x3, ..., xp, where

p denotes the number of independent variables, the main goals of regression analysis can be

summarized as follows (Yan, 2009):

� Establish a relationship between the dependent variable y and independent variables

x1, x2, x3, ..., xp.

� Predict the dependent variable y, based on the set of independent variables x1, x2, x3,

..., xp.

� Identify which variables among x1, x2, x3, ..., xp contribute more than others to explain

the response variable y, so that the relationship between the dependent and independent

variables can be determined more efficiently and accurately.

The relationship between the dependent and independent variables can mathematically be

approximated by the expression

y = f(x1, x2, x3, ..., xp) + ε (3.27)

where ε is the random error representing the discrepancy in the approximation (Yan, 2009;

Chatterjee and Hadi, 2013). There are three types of regression: simple linear regression,

multiple linear regression and non-linear regression (Yan, 2009).

� Simple linear regression is used for modelling a linear relationship between two variables:

a dependent variable y and the independent variable x. It is stated in the form

y = β0 + β1x+ ε (3.28)
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where β0 is the y intercept, β1 is the slope of the regression line and ε is the random

error.

� Multiple linear regression is used for investigating a linear relationship between one

dependent variable and more than one independent variables. The general form of

multiple linear regression model is

y = β0 + β1x1 + β2x2 + β3x3 + ... + βpxp + ε (3.29)

where β0, β1, β2, β3, ..., βp are regression coefficients and ε is the random error.

� Non-linear regression is used for investigating the relationship between dependent vari-

able and independent variables, assuming that this relationship is not linear in regres-

sion parameters. An example of a non-linear regression model is

y =
α

1 + eβt
+ ε (3.30)

where α and β are the regression parameters and ε is the random error (Chatterjee and

Hadi, 2013).

The regression parameters in Equations 3.27, 3.28, 3.29 and 3.30, are unknown constants

and have to be estimated from the data. This is what is known as parameter estimation or

model fitting. The most commonly used method to determine the unknown coefficients is

the least squares method (Chatterjee and Hadi, 2013).

3.3.2 Empirical Orthogonal Function (EOF) analysis

The EOF analysis, also known as Principal Component Analysis (PCA) or Natural Orthog-

onal Component (NOC) algorithm, has been used by ionospheric researchers for modelling

ionospheric parameters. Some of these parameters are foF2 (A et al., 2011), TEC during

magnetically quiet conditions (Mao et al., 2005, 2008; A et al., 2012), the ionospheric F2

peak height or hmF2 (Zhang et al., 2009; Lin et al., 2014), and the maximum usable fre-

quency factor or M(3000)F2 (Liu et al., 2008). The accuracy of EOF analysis in modelling

these ionospheric parameters has been appreciated.

EOF analysis method is a mathematical method that consists of decomposing original dataset,

consisting mainly of a number of multiple intercorrelated variables, into a new dataset of a

small number of uncorrelated variables, using an orthogonal transformation. Hence, the

method reduces the dimensionality of the data, which means that a large set of variables

is reduced to a small set of new variables that still contains most of the information in the
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original dataset. The EOF analysis is used to decompose the original dataset in terms of

ordered base functions and their associated coefficients (A et al., 2012).

3.3.2.1 Goals of EOF analysis

The main goal of EOF analysis is to reveal hidden structures in the data and classify them

according to how much of the information stored in data they account for. EOF analysis also

� reduces the dimensionality of the data (Suhr, 2005; Liu et al., 2008; Mankin, 2014)

� reduces redundancy in the data (Mankin, 2014)

� filters some of the noise in the data (Mankin, 2014)

� prepares data for other purposes (Mankin, 2014).

3.3.2.2 Mathematical description of EOF analysis

The original aim of EOF was to decompose a continuous space-time field X(t, s) in terms

of basis functions of space, Ek(s) and expansion functions of time Ak(t), in such a way that

(Hannachi et al., 2007)

X(t, s) =

p
∑

k=1

Ak(t)× ET
k (s) (3.31)

where t and s denote time and spatial position respectively, and p denotes the number of

modes contained in the field. The superscript T over Ek(s) denotes the transpose of the ma-

trix Ek(s). Matrix methods are usually used and the data to be analysed has to be arranged

in a matrix format.

Suppose that measurements of a variable, at locations X1, X2, X3, ..., Xp, were taken at

times t1, t2, t3, ..., tn. The measured values can be arranged in a data matrix X of p columns

corresponding to X1, X2, X3, ..., Xp and n samples. The original data matrix X is then

defined as























X11 X12 X13 ... X1p

X21 X22 X23 ... X2p

. . . . .

. . . . .

. . . . .

Xn1 Xn2 Xn3 ... Xnp
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Each of the p columns of X is interpreted as a time series for a given location and each of

the n rows of X , as a map for a specific time. For example, column one represents a time

series for location X1, while the first row is a map for time t1 (Björnsson and Venegas, 1997).

The matrix X can be decomposed in terms of basis functions Ek and associated coefficients

Ak, with k = 1, 2, ..., p. The basis functions Ek are the eigenvectors of the covariance matrix

Σ, constructed from the original data, and defined by (Smith, 2002; Yu, 2014)























cov(X1, X1) cov(X1, X2) ... cov(X1, Xp)

cov(X2, X1) cov(X2, X2) ... cov(X2, Xp)

. . . .

. . . .

. . . .

cov(Xp, X1) cov(Xp, X2) ... cov(Xp, Xp)























where the covariance between two variables Xi, Xj is defined by

cov(Xi, Xj) =
1

n

n
∑

l=1

(Xli −Xi)(Xlj −Xj) (3.32)

The mean values X i and Xj are defined by

X i =
1

n

n
∑

l=1

Xli

and

Xj =
1

n

n
∑

l=1

Xlj

where Xli and Xlj are elements of the ith and jth columns, respectively. Note that the

definition of the covariance matrix given above is not unique. Further definitions are found

in other literature. For example, Weare and Nasstrom (1982); Björnsson and Venegas (1997);

Xu and Kamide (2004); De Michelis et al. (2010) defined the covariance matrix as

Σ = XTX (3.33)

while Hannachi et al. (2007); Mao et al. (2008) defined the covariance matrix as

Σ =
1

n
XTX (3.34)

Another definition of the covariance matrix by Shlens (2003); Hannachi (2004); Mankin (2014)
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is

Σ =
1

n− 1
XTX (3.35)

However, the definition is not that critical, since basis functions and their time series will only

differ by a constant factor (Björnsson and Venegas, 1997). The covariance matrix is a square

symmetric matrix of dimension p× p and diagonal terms are just the variance of particular

measurement types whereas the off-diagonal terms are the covariance between measurement

types (Shlens, 2003).

In Algebra any symmetric matrix Σ of dimension p × p has a set of p orthonormal eigen-

vectors (E1, E2, E3, ..., Ep) and associated eigenvalues (λ1, λ2, λ3, ..., λp) (Mankin, 2014). The

eigenvalues of Σ are found by solving the characteristic equation

|Σ− λI| = 0 (3.36)

where λ is a parameter and I is a p× p identity matrix, i.e. a matrix of which the elements

are equal to 1 along the main diagonal, and zero elsewhere. 0 is a zero matrix, i.e. with

all elements equal to zero. The Equation 3.36 is a polynomial equation of degree p in the

parameter λ, and has p roots λi, i = 1, 2, 3, ..., p which are the eigenvalues of Σ. For each λi

there is a corresponding column vector Ei, the ith eigenvector of Σ, given by equation (Riley

et al., 2006)

ΣEi = λiEi (3.37)

The eigenvectors are the EOF base functions required. The matrix of the eigenvectors,

denoted by E, satisfies the following property:

ETE = EET = I (3.38)

This means that the EOF base functions are uncorrelated over space, or simply that the eigen-

vectors are orthogonal to each other; hence, the appellation Empirical Orthogonal Functions

(Björnsson and Venegas, 1997). The elements of an eigenvector are the weights eij and are

also known as loadings (Holland, 2008). Eigenvectors are the directions where the data is

most spread out. The eigenvector E1 corresponds to the highest eigenvalue and represents

the direction of the greatest variation. The second eigenvector, E2, corresponds to the second

largest eigenvalue and is the direction with the next highest variation, and so on (Björnsson

and Venegas, 1997). The eigenvalues of the covariance matrix indicate the fraction of the total

variation in the original data explained by each individual EOF component. The quantity
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ri = 100×
λi

∑p
j=1

λj

% (3.39)

which represents the ratio of ith eigenvalue to the sum of all eigenvalues is interpreted as the

proportion of the total variation in the original data explained by the ith EOF component

(Hannachi, 2004), while the quantity

ρk = 100×

∑k
i=1

λi
∑p

j=1
λj

% (3.40)

is interpreted as the proportion of the total variation in the original data explained by the

first k EOF components (Zhang et al., 2009).

The next task is to determine the expansion coefficients Ak. Once the eigenvectors of the

covariance matrix are known, the original data can be decomposed in a matrix product as

follow:

X = AET (3.41)

where E represents the p×p matrix of EOF base functions Ek (k = 1, 2, 3, ..., p) as columns,

and A represents the n × p matrix of Ak coefficients as columns (k = 1, 2, 3, ..., p). X

of dimension n × p represents the matrix of the original data. By multiplying both sides

of Equation 3.41 by [ET ]−1, taking into account the definition of the orthogonal matrix as

specified by Equation 3.37, the matrix A of Ak coefficients is calculated as

A = XE (3.42)

In general, for each Ek one can determine the corresponding Ak, by projecting the data onto

Ek:

Ak = XEk (3.43)

The Ak coefficients are called the principal components (PCs) or expansion coefficients of

EOF base functions, and are uncorrelated in time (Björnsson and Venegas, 1997; Zhang et al.,

2009).

One of the goals of the EOF analysis/PCA is to reduce the dimensionality of the data

and deal with a small number of variables. Therefore, several criteria have been proposed for

determining how many PCs should be retained or ignored when using EOF analysis (Holland,

2008; Bremner, 2009).

� Determine the number of PCs to be retained by ignoring the PCs of which the variance
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explained is less than 1 when a correlation matrix is used or less than the average

variance explained when a covariance matrix is used (Holland, 2008).

� The scree test is based on the scree plot which is a graph of variance as a function of

principal component rank (or eigenvalues against the corresponding PC). By looking at

a scree plot, the position of an “elbow” (the point at which the curve bends) indicates

the number of PCs to be retained.
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Figure 3.5: Example of a scree plot

Figure 3.5 shows that the elbow in the graph is between 2 and 3. Then, three PCs

(the maximum number between 2 and 3) can be retained. It is sometimes difficulty to

specify where exactly the position of an elbow is and therefore, the scree test is not

considered as a good method for deciding how many PCs should be retained (Bremner,

2009).

� Based on the cumulative proportion of variance, one can retain the PCs which account

for a specified proportion of the total variance. For example, if one is satisfied with 95

% of the total variance, then he should use the number of PCs that account for the

desired percentage. Although the neglected components account for some percentage of

the total variance in the data, they may not be significant enough to consider (Holland,

2008; Bremner, 2009).

� Ignore the last PCs of which the variances explained are all roughly equal (Holland,

2008).
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3.4 Summary

In this chapter, some basics of GPS satellites are offered, including GPS architecture and

functioning. The effect of the ionosphere on GPS signals is also explained. Due to the

ionosphere, the fact that GPS signals delays are proportional to TEC encountered along the

signal path from a GPS satellite to a receiver has been utilized to show how TEC can be

derived from GPS measurements. The sources and processing of the data were described, as

well as the mathematical background on the two modelling methods used in this project. The

regression analysis method estimates relationship between a dependent variable and several

independent variables and regression parameters are usually determined using the method

of least squares. EOF analysis consists of decomposing data in terms of base functions and

expansion coefficients. The base functions are the eigenvectors of the covariance matrix

obtained from the original data and the expansion coefficients are found by projecting the

data onto the base functions. Discovering hidden information in data and the reduction

of data dimensionality are primary applications of the EOF analysis. Details about the

application of the EOF analysis to TEC decomposition and modelling are presented in the

next chapter.
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Chapter 4

Results and discussion

This chapter presents results and discussion of TEC modelling during storm conditions.

Subsequent to the development of equations for estimating TEC during storm conditions by

means of EOF and regression analysis, a comparison of the estimated and the observed TEC,

for a number of selected storm periods, was made in order to test the model’s performance.

Statistical analysis methods were used to evaluate the accuracy of the model. Moreover, the

model was tested using TEC over different stations surrounding Sutherland (32.38o S, 20.81o

E) and its performance was also evaluated.

4.1 Model construction

The TEC modelling technique used in this project is based on two mathematical methods.

EOF analysis was used to decompose TEC data into the EOF base functions Ek(h) which

represent the diurnal variation of TEC with time, and the associated coefficients Ak(d) which

vary with day number of the year, and represent the long-term variation of TEC, i.e., annual,

semiannual, seasonal and solar cycle variations. After TEC decomposition, the EOF coeffi-

cients Ak(d) were then modelled in terms of A and F10.7 indices, using regression analysis,

in order to include geomagnetic and solar activities in the model.

4.1.1 TEC decomposition using EOF analysis

To decompose TEC into EOF base functions and associated coefficients, hourly TEC values

over Sutherland (32.38o S, 20.81o E), for storm days from 1999 to 2013, were first arranged

in a matrix of dimension 865 × 24 as shown in Figure 4.1. Between 1999 and 2013 there

were 257 storm periods with available TEC data and these consisted of 865 storm days.

Therefore, 865 rows and 24 columns correspond to 865 storm days and 24 hourly TEC values

respectively. Out of 257 storm periods, based on the storm classification by Loewe and Prölss

(1997), moderate, strong, severe and great storms were represented by 76.7 %, 19.1 %, 2.3 %

and 1.9 % respectively. Note that TEC values that correspond to the storm days of 2000 and

2006 for which the model was tested, were excluded from the matrix of observed TEC. The

choice of storm days within a storm period depended on the nature of the storm. Typically,
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for a storm which occurred on a particular day, three days of TEC variation were considered,

i.e. including one day before and after the storm day.

Figure 4.1: The 865 × 24 matrix of hourly TEC values.

The hourly TEC values were then decomposed into EOF base functions Ek and associated

coefficients Ak, according to the equation

TEC(h, d) =
24
∑

k=1

Ak(d)× ET
k (h) (4.1)

Here, the Ak(d) coefficient is defined as a 865 × 1 matrix while Ek(h) is a 24 × 1 matrix.

ET
k (h) is the transpose of the matrix Ek(h). Since ET

k (h) is a 1 × 24 matrix, the product

Ak(d) × ET
k (h) gives a 865 × 24 matrix, which has the same dimension as the matrix of

the observed TEC. The latter is reconstructed by summing 24 terms, as shown in Equation

4.1. Thus, TEC(h, d) represents the hourly TEC values of the observed data expressed as

a 865 × 24 matrix, d represents the storm days and h represents UT hour (h = 1, 2, 3,

..., 24). Ek(h) is the kth EOF base function of TEC(h, d) and represents diurnal variation,

while Ak(d) is the kth EOF coefficient and reflects long-term variation (solar cycle, annual,

semiannual, seasonal) of TEC.

As described in chapter 3, the covariance matrix was computed from the matrix of the

observed TEC. This is a 24 × 24 matrix since there are 24 variables which are represented

by 24 columns of hourly TEC values. From the covariance matrix, the eigenvalues of the the

covariance matrix were obtained. The EOF base functions are then the eigenvectors of the co-

variance matrix. Theoretically, the original dataset (a 865 × 24 matrix) should be expanded

into 24 EOF base functions and associated coefficients to represent the total variation of the
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observed TEC. However, due to the quick convergence of the EOF method, only twelve com-

ponents that account for 99.179 % of the total variation in the original dataset were retained.

The modelling of storm-time TEC variability is complicated which is the major reason why

twelve components are required for convergence, otherwise previous results have shown that

convergence is achieved even after only 3 - 4 components for quiet time foF2, TEC, hmF2

and M(3000)F2 variability (Mao et al., 2005; Liu et al., 2008; Mao et al., 2008; Zhang et al.,

2009; A et al., 2011, 2012; Lin et al., 2014). Table 4.1 presents the variances explained by 24

EOF components. The eigenvalue of the covariance matrix is a number which indicates how

much variance there is in the data, in the direction of the corresponding eigenvector. Then,

what is presented as standard deviations in Table 4.1, are the square roots of the eigenvalues

of the covariance matrix.

Table 4.1: Proportion of variance accounted for by each EOF component.

.

EOF component Standard deviation Variances (%) Cumulative variances (%)
A1 × ET

1
47.0498 72.860 72.860

A2 × ET
2

21.2023 14.790 87.650
A3 × ET

3
11.1475 4.090 91.740

A4 × ET
4

7.48319 1.843 93.585
A5 × ET

5
7.04793 1.635 95.219

A6 × ET
6

6.27843 1.297 96.517
A7 × ET

7
4.90091 0.791 97.307

A8 × ET
8

4.04910 0.540 97.850
A9 × ET

9
3.85219 0.488 98.335

A10 × ET
10

3.20430 0.338 98.673
A11 × ET

11
2.89474 0.276 98.949

A12 × ET
12

2.64644 0.231 99.179
A13 × ET

13
2.33150 0.179 99.358

A14 × ET
14

1.93128 0.123 99.481
A15 × ET

15
1.80190 0.107 99.588

A16 × ET
16

1.66369 0.091 99.679
A17 × ET

17
1.60300 0.085 99.764

A18 × ET
18

1.39172 0.064 99.827
A19 × ET

19
1.19576 0.047 99.874

A20 × ET
20

1.10360 0.040 99.910
A21 × ET

21
1.06291 0.037 99.952

A22 × ET
22

0.94750 0.030 99.980
A23 × ET

23
0.61897 0.013 99.994

A24 × ET
24

0.42997 0.006 100.00

Table 4.1 shows that the first and the second EOF components account for 72.860 % and

14.79% respectively of the total variance in the original TEC data, while combined, they

explain 87.650 % of the total variance in the original TEC data. Figure 4.2 shows the diurnal

variation of 12 EOF base functions. It is clear that the two first EOF base functions are
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characterised by trends which are similar to the general diurnal variation trend of TEC.

0.
00

0.
20

E
1

−
0.

4
0.

2

E
2

−
0.

4
0.

2

E
3

−
0.

4
0.

2

E
4

−
0.

4
0.

2

E
5

−
0.

4
0.

2

E
6

−
0.

4
0.

2

E
7

−
0.

4
0.

2

E
8

−
0.

4
0.

2

E
9

−
0.

4
0.

2

E
10

4 8 12 16 20 24

Time [UT Hours]

−
0.

4
0.

2

E
11

4 8 12 16 20 24

Time [UT Hours]

−
0.

4
0.

2

E
12

4 8 12 16 20 24

Time [UT Hours]

Figure 4.2: Diurnal variation of the first twelve EOF base functions.

0.
0

0.
1

0.
2

0.
3

0.
4

E
1

T
E

C
 [T

E
C

U
]

0
10

20
30

40

2 4 6 8 10 12 14 16 18 20 22 24

Time [UT Hours]

E1
TEC

Figure 4.3: Diurnal variation of the first EOF base function and the average TEC.

The first EOF base function is shown in Figure 4.3 together with the average diurnal varia-

tion of TEC. The average TEC was calculated over the 865 storm days. For example, to get
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the average TEC at time 01:00 UT, we took the sum of all the 865 TEC values at 01:00 UT

divided by 865. It is clearly seen that the diurnal variation of the first order base function E1

and diurnal variation of the average TEC are quite similar, and a high correlation coefficient

of 0.9821 was found. Thus, the first order base function E1 represents the average diurnal

variation trend of TEC. A similar observation was also reported in other modelling works of

ionospheric parameters by means of EOF analysis (Mao et al., 2005; Liu et al., 2008; A et al.,

2011, 2012; Lin et al., 2014). For example, when modelling foF2 with EOF analysis, it was

shown that the first order base function E1 represents the average diurnal variation trend of

foF2 (A et al., 2011). In modelling the ionospheric F2 peak height (hmF2) with EOF anal-

ysis, Lin et al. (2014) found that the first order base function E1 shows a diurnal variation

of hmF2. A similar result was reported by Liu et al. (2008) when modelling M(3000)F2,

and by A et al. (2012); Mao et al. (2005) when modelling TEC. The modelling of these two

paremeters has demonstrated that the first order base function E1 represents, on the one

hand, the mean diurnal variation of M(3000)F2, and on the other hand, the average diurnal

TEC.

Moreover, the diurnal variation of the second order base function E2 tends towards a trend

of diurnal variation slightly similar to the one represented by E1. The correlation coefficient

between E2 and the average diurnal TEC was found to be 0.6897. However, the high order

EOF base functions (from E3 to E12) represent mainly the short-term variations of TEC, as

shown in Figure 4.2, and they are less correlated with the average diurnal TEC. A similar

observation was reported by Mao et al. (2005). It is important to point out that previous

studies employed EOF analysis largely during quiet conditions (Mao et al., 2005; Liu et al.,

2008; Mao et al., 2008; Zhang et al., 2009; A et al., 2011, 2012; Lin et al., 2014), while this

study attempted to investigate the possibility of using the EOF method on TEC data during

disturbed conditions. The remaining EOF base functions may also represent short-term vari-

ations of TEC as well as noise effects, and redundancy in data can be decreased by ignoring

them.

Once the EOF base functions were determined, Equation 3.43 was used to determine the

associated EOF coefficients Ak. Figure 4.4 represents the variation of twelve Ak coefficients

for the period 1999 - 2013. Figure 4.4 shows that the long-term variation of the EOF coeffi-

cients is characterised by high amplitudes during the solar maximum period (around 2000 -

2003 and 2011 - 2013) and small amplitudes during the solar minimum (around 2005 - 2010).

This demonstrates that the EOF coefficients relate to the solar activity. The gap in 2009 is

due to missing TEC data for a single storm that occurred on 22-07-2009.
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Figure 4.4: Long-term variations of the EOF coefficients Ak.

Figure 4.5 shows the variation of the first EOF coefficient A1 and F10.7 index, for the period

1999 - 2013. It is clear that the trend of A1 is similar to that of F10.7, which represents

the general level of solar activity. The correlation coefficient between A1 and F10.7 index

was found to be 0.7042. Therefore, the first EOF component A1 ×ET
1
which explains 72.860

% of the variance of the whole TEC dataset, contains the first order EOF base function

which represents the average diurnal variation of TEC, and the first EOF coefficient, which

represents long-term variation of TEC. The highest percentage explained by the first EOF

component A1×ET
1
justifies the view that the dominant factor that controls TEC variability is

solar activity. A similar observation was reported by Mao et al. (2008) during TEC modelling

over China.

4.1.2 Modelling the EOF coefficients Ak(d) using the regression

analysis

After TEC decomposition into base functions Ek(h) and associated coefficients Ak(d), the

coefficients Ak(d) need to be modelled in terms of A and F10.7 indices, in order to introduce

the influence of solar and geomagnetic activities on TEC into the model. For this purpose, the

coefficients Ak(d) were modelled by using the formal Fourier series according to the equation

Ak(d) = Bk1(d) +Bk2(d) +Bk3(d) + ǫ (4.2)
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Figure 4.5: Variations of A1 and F10.7 index for the storm periods of 1999 - 2013.

where ǫ is the model residual error and k = 1, 2, 3, ..., 12, since we need twelve EOF

coefficients. Equation 4.2 is a short form of the following equation

Ak(d) = Ck1 +Dk1.F10.7(d) + Ek1.A(d) (4.3)

+ [Ck2 +Dk2.F10.7(d) + Ek2.A(d)]cos

(

2πd

365.25

)

+ [Fk2 +Gk2.F10.7(d) +Hk2.A(d)]sin

(

2πd

365.25

)

+ [Ck3 +Dk3.F10.7(d) + Ek3.A(d)]cos

(

4πd

365.25

)

+ [Fk2 +Gk2.F10.7(d) +Hk2.A(d)]sin

(

4πd

365.25

)

where the factor 0.25 stands for leap years. When comparing Equations 4.2 and 4.3, the

coefficients Bk1(d), Bk2(d) and Bk3(d) are
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Bk1(d) = Ck1 +Dk1.F10.7(d) + Ek1.A(d) (4.4)

Bk2(d) = [Ck2 +Dk2.F10.7(d) + Ek2.A(d)]cos

(

2πd

365.25

)

+ [Fk2 +Gk2.F10.7(d) +Hk2.A(d)]sin

(

2πd

365.25

)

Bk3(d) = [Ck3 +Dk3.F10.7(d) + Ek3.A(d)]cos

(

4πd

365.25

)

+ [Fk3 +Gk3.F10.7(d) +Hk3.A(d)]sin

(

4πd

365.25

)

Bk1(d) represents a linear function of the F10.7 and A indices, Bk2(d) and Bk3(d) are harmonic

functions with periods of one year and a half year respectively, and amplitudes expressed as

linear functions of F10.7 and A indices. Thus, Bk1(d), Bk2(d) and Bk3(d) correspond to the

solar cycle, annual, and semiannual variation components in EOF coefficients, respectively.

The unknown coefficients Ck1, Dk1, Ek1, ..., Fk3, Gk3 and Hk3, in the equations above,

were determined by using the linear regression method. However, to reconstruct TEC for

all 865 storm days, F10.7 and A can be used as inputs to estimate the EOF coefficients,

and then combine the latter with the EOF base functions to get TEC, using Equation 4.1.

In particular, for a specific day d, the F10.7 and A indices for day d were used as inputs

to estimate the coefficients Ak(d). These were combined with the EOF base functions Ek

according to Equation 4.1 to get TEC for that specific day. All the TEC values for storm

days for which the model was tested, were obtained by means of this procedure.

4.2 Application of EOF model to selected storms

To test the EOF model, specific storms were chosen based on their strength as defined by the

minimum value of the Dst index, the storm criterion being Dst ≤ -50 nT, and on the solar

activity period during which the storm occurred. Three storms were chosen in 2000 and three

others in 2006 to represent the solar maximum and solar minimum periods, respectively. TEC

values corresponding to the storms selected for verification were excluded from the original

dataset of TEC used to build the model, in order to make the model validation independent of

data. Since the selected 2000 and 2006 storm periods fell within the database period (1999 -

2013) used for model construction, this validation can also be referred to as interpolation. For

extrapolation, the EOF model was used for modelling storms that occurred during 2014 and

2015. Three storms were chosen for 2014 and 2015, based on the available data, and on the

provisional Dst index (http://wdc.kugi.kyoto-u.ac.jp/dst_provisional/index.html).
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4.2.1 TEC modelling during the storms of 2000 and 2006 (Inter-

polation)

Figure 4.6 shows the observed and modelled TEC variation for selected storms of 2000. For

each storm period, the Dst index indicating the strength of the storm is also presented.

Figure 4.6 (a) shows the observed and the modelled TEC variation during a strong storm

that occurred on 24-05-2000, with a minimum Dst index of about -147 nT. The EOF model

is capturing well the TEC magnitude before the storm main phase, during the nighttime

and in the early morning, but underestimating TEC during the main and recovery phases.

Figure 4.6 (b) shows the observed and modelled TEC variation during a severe storm that

occurred between 15 - 17 July 2000, characterised by a minimum Dst of about -301 nT.

During the SSC, the EOF model is overestimating TEC while it slightly follows the negative

TEC response observed during the main phase. Although the EOF model is not capturing

the TEC dynamics of the observed data, it is estimating quite well TEC magnitude during

the main and recovery phases.

Figure 4.6 (c) shows the observed and modelled TEC variation during two consecutive storms:

strong and severe storms that occurred on 11-08-2000 and 12-08-2000, with minimum Dst

values of -106 nT and -235 nT respectively. For both storms, the EOF model is underesti-

mating TEC magnitude but a slight positive response predicted by the model was observed

for the storm of 12-08-2000.

Briefly, for the storms that occurred during the high solar activity period, the EOF model

predicts TEC well during the nighttime and early in the morning, while it doesn’t perform

very well during positive and negative TEC responses.

Figures 4.7 (a) and (b) show the observed and modelled TEC during two moderate storms

that occurred on 09-04-2006 and 14-04-2006 with minimum Dst values of -82 nT and -98

nT respectively. For both storms, the EOF model is overestimating TEC during the day-

time, except on 09-04-2006. However, the EOF model predicts TEC quite well during the

nighttime. It is clear that short-term features in the observed TEC are not captured by the

EOF model. Figure 4.7 (c) illustrates the observed and the predicted TEC during a strong

storm that occurred on 15-12-2006, with minimum Dst value of -162 nT. Although there is

an overestimation of TEC, the EOF model attempts to capture short-term features in TEC

variability. The EOF model is empirical in nature and is not expected to perform very well

for periods which were not well represented in model development. As Figure 4.5 demon-

strates, there was little data for storm periods used in developing the EOF model during low

solar activity period.
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Figure 4.6: Comparison between observed and modelled TEC for storms that occurred during
the high solar activity period on (a) 24-05-2000 (b) 16-07-2000 and (c) 11-12-08-2000

To summarize, the EOF model is overestimating TEC for storms that occurred during 2006,

during the low solar activity period. Short-term features are captured only for a strong storm,

while the EOF model predicts the TEC magnitude well only for the nighttime.

4.2.2 TEC modelling during the storms of 2014 and 2015 (Extrap-

olation)

Figure 4.8 shows the observed and modelled TEC during selected storms of 2014. Except for

the storm that occurred on 19-02-2014 which is classified as a strong storm with a minimum

Dst of -112 nT, all other storms that occurred in 2014 are moderate and most of them do not

present any significant TEC response. In addition to the storm of 19-02-2014, three other
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Figure 4.7: Comparison between observed and modelled TEC for storms that occurred during
the low solar activity period on (a) 09-04-2006 (b) 14-04-2006 and (c) 15-12-2006

storms selected in February 2014 occurred on 20-02-2014, 22-02-2014 and 23-02-2014, and

had provisional minimum Dst values of -86 nT, -66 nT and -56 nT respectively. Furthermore,

two storms occurred on 27-08-2014 and 12-09-2014 with provisional minimum Dst values of

-80 nT and -75 nT respectively, were also selected. For all these storms, the EOF model

predicts the observed TEC well, although there is a small discrepancy between the modelled

and observed TEC values.

Figure 4.9 shows observed and modelled TEC during the storms of 2015. The 2015 storms

included a moderate (04-01-2015), strong (07-01-2015), and severe storm (17-03-2015) with

provisional minimum Dst values of -75 nT, -105 nT and -223 nT respectively. The 17-03-2015

storm caused a positive followed by a negative TEC response and exhibited a long recovery
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phase of about four days. Figure 4.9 (a) shows that the EOF model captures quite well

short-term features in TEC variation as well as TEC magnitude during the main phase of

the 04-01-2015 storm. However the model is overestimating TEC for other days.
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Figure 4.8: Comparison between observed and modelled TEC for storms that occurred (a)
February 2014 (b) 27-08-2014 and (c) 12-09-2014

Figure 4.9 (b) shows that, although the model estimates quite well TEC magnitude on the

6th and the 8th of January, 2015, it fails to capture the positive TEC response observed on

07-01-2015. Figure 4.9 (c) shows that the EOF model also fails to capture the TEC en-

hancement and depression observed on 17-03-2015 and on 18-03-2015 respectively. However,

during the recovery phase from 19-03-2015, the EOF is predicting TEC magnitude well. In

summary, the EOF doesn’t perform well in predicting TEC enhancement and depression for

storms in 2015, but it predicts TEC quite well for the remaining storm period.
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Figure 4.9: Comparison between observed and modelled TEC for storms that occurred (a)
04-01-2015 (b) 07-01-2015 and (c) 17-03-2015

According to the observations above, the EOF performs well for storms with a non-significant

TEC response and during the nighttime. However, the EOF model sometimes fails to capture

short-term features observed in TEC. The daily indices A and F10.7 may be the main cause

of the failure of the EOF model to follow TEC dynamics since these indices represent the

average level of geomagnetic and solar activities over a day, while geomagnetic storm features

are short-term varying phenomena.

4.3 Statistical analysis

To evaluate the accuracy of the EOF model for TEC estimation during storm conditions,

the root mean square error (RMSE) for each storm was computed, as well as the correla-
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tion coefficient between the observed and modelled TEC. For TEC modelling, the RMSE is

a measure of the spread between the observed and modelled TEC in such a way that the

smaller the RMSE, the better the model. However, when interpreting the RMSE values,

other considerations such as solar activity periods and the level of ionospheric disturbance

which are correlated to TEC variability, should be taken into account.

For N different observations/predictions, the RMSE for each storm was computed with the

formula:

RMSE =

√

√

√

√

1

N

N
∑

i=1

(TECmod − TECobs)2 (4.5)

where TECmod and TECobs represent the modelled and observed TEC respectively. The

RMSE values of the twelve selected storms are presented in Figure 4.10.
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Figure 4.10: RMSE values for selected storm periods. The RMSE of each storm period is
shown by a bar that corresponds to the storm date.

Figure 4.10 shows that RMSE values are small for storms that occurred during the solar

minimum, i.e. in 2006, and for storms with no significant TEC response. These are specifi-

cally the storms which occurred in 2014. However, RMSE values obtained during the solar

maximum, i.e. in 2000, and in 2015 when storms with a high significant TEC response

were observed, are high. The small RMSE values indicate that on average, the EOF model

performs better for storms with no significant TEC response, where deviations between the
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observed and modelled TEC are smaller than elsewhere.

Correlation coefficients between the observed and modelled TEC for selected storm periods,

were computed to show the relationship between the two variables. Correlation coefficients

specify the degree to which the observed and modelled TEC tend to move together. For each

storm period, the correlation coefficient was calculated with the formula:

R =
cov(TECmod, TECobs)

σmodσobs

(4.6)

=

∑n
i=1

(TECmodi − TECmod)(TECobsi − TECobs)
√

∑n
i=1

(TECmodi − TECmod)2
√

∑n
i=1

(TECobsi − TECobs)2

where cov(TECmod, TECobs) is the covariance between the observed and modelled TEC, and

σmod and σobs are the standard deviations of the modelled and observed TEC respectively.

TECmodi and TECobsi are the ith modelled and observed TEC while TECmod and TECobs

are the average values of the modelled and observed TEC, respectively. The correlations

between the observed and modelled TEC for twelve storm periods are shown in Figure 4.11.
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Figure 4.11: Comparison between the modelled and observed values of TEC for twelve se-
lected storms. Also shown, are the correlation coefficients between the observed and modelled
TEC. The storm period is specified for each storm.

For all storm periods, the correlation coefficients are high (in the range 0.82 - 0.98), which

means that the observed and modelled TEC are highly and positively correlated. The ob-

served and modelled TEC tend to move in the same direction, i.e. the modelled TEC covers

most of the information contained in the observed TEC. The highest correlation coefficients
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were generally observed for storms in 2000 and 2014, which implies that most of the informa-

tion was covered for storms that occurred during years of high solar activity and storms with

no significant TEC response. Comparing both representations of low and high solar activity

periods in the dataset used for the EOF model development, the solar minimum period was

not well represented, meaning that the original TEC dataset was dominated by TEC values

observed during the solar maximum period. This may be the reason why correlation coeffi-

cients are generally higher for storms of 2000 compared with the 2006 storms.

Although the storm periods were not the same, the RMSE values obtained when modelling

TEC using the neural network technique (Habarulema et al., 2010) for storms that occurred

during both high and low solar activity period were found to be relatively in the same range

as the ones given by the EOF model. However, in some cases it was found that the RMSE

values for EOF model were smaller, although a further study is needed in order to make a

general conclusion.

4.4 Model validation over other stations

Although the EOF model was specifically developed for Sutherland (32.38o S, 20.81o E), it

was tested with data from other GPS receiver stations and its performance was evaluated.

Table 4.2 provides the geographical latitudes and longitudes of the stations where the EOF

model was validated.

Table 4.2: Geographic latitudes (GLAT) and longitudes (GLON) of GPS receiver stations
used in this project.

Station name Station code GLat (o) S GLon (o)E
Sutherland SUTH 32.38 20.81
Cape Town CTWN 33.95 18.47
Port Elizabeth PELB 33.98 25.61
Aliwal North ANTH 30.68 26.72
Springbok SBOK 29.67 17.88
Bethlehem BETH 28.25 28.33
Mafikeng MFKG 25.81 25.54
Ellisras ERAS 23.69 27.70
East London ELDN 33.04 27.83
George GEOA 34.00 22.38
Ulundi ULDI 28.29 31.42

Figure 4.12 shows the positions of these stations relative to the ionospheric pierce points

(IPPs) over Sutherland (32.38o S, 20.81o E), after selecting satellites with elevation angles

greater than 20o to reduce the multipath effects. The rationale behind validating the EOF
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model with data from different GPS receiver stations is to determine an appropriate latitu-

dinal separation that will be useful in regional TEC modelling during storm conditions.
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Figure 4.12: Locations of different GPS receiver stations relative to IPPs over Sutherland
(32.38o S, 20.81o E) after selecting satellites with elevation angles greater than 20o.

As previously explained, the EOF base functions and coefficients were obtained from TEC

over Sutherland (32.38o S, 20.81o E) and the modelled TEC was obtained using A and F10.7

indices as inputs to get the modelled EOF coefficients, which in turn, were combined with the

base functions. A study was thus done to compare the observed TEC over different stations

with the modelled TEC over Sutherland (32.38o S, 20.81o E), for selected storm periods.

This was done to determine whether the EOF model developed for a specific location could

be used to estimate TEC over other stations/locations. For this purpose, different storm

periods were selected. The selected storm periods are 18 - 24 February, 2014 (4 storms), 21 -

26 January, 2004 (2 storms) and 06 - 10 March, 2012 (2 storms). For each storm the observed

and modelled TEC were compared taking into account sets of stations/locations within and

outside the IPP coverage area. Note that it was not possible to validate the EOF model

over other stations using the same selected storm periods for Sutherland since for most of

the stations, no data was available for 2000 and 2006.

Figure 4.13 shows observed and modelled TEC variations during the storm period 18 - 24

February, 2014. Figures 4.13 (a) and (b) are for stations within and outside the IPP cover-

age area over Sutherland (32.38o S, 20.81o E) respectively. Graphically, it is clear that the

EOF model predicts TEC quite well over all eight stations around Sutherland. Figure 4.14 is

similar to Figure 4.13, but covers the storm period of 21 - 26 January, 2004. Since there was

52



no data for CTWN and PELB during this storm period, the two stations were replaced by

their respective closest stations GEOA and ELDN. Although most of GPS receiver stations

had incomplete datasets (as shown in Figures 4.14 (a) and (b)), the EOF model overesti-

mates TEC, except in a few cases, such as over SBOK and MFKG. Figure 4.15 is similar to

Figures 4.13 and 4.14, but covers the storm period 06 - 10 March, 2012. The EOF model

predicts TEC quite well over all stations within and outside the IPP coverage area, as shown

in Figures 4.15 (a) and (b).

Errors (RMSE) were also computed for each storm period. For the storm period 18 - 24

February, 2014 the RMSE values calculated for different stations are close to the error val-

ues obtained when the EOF model was validated over Sutherland (32.38o S, 20.81o E). The

same result was obtained for the storm period 06 - 10 March 2012. It is observed that the

RMSE values generally tend to increase as the distance from Sutherland increases. Thus, for

the two storm periods, these results indicate that the EOF model developed for Sutherland

can be used to predict TEC over different stations. For example, the RMSE between the

modelled and observed TEC over Sutherland for the 18 - 24 February, 2014 storm period is

3.94 TECU compared to the RMSE of 5.23 TECU over ERAS which is separated latitudi-

nally from Sutherland by 8.7o. Similarly, concerning longitudinal separation, the RMSE for

the farthest station (ULDI), at a longitudinal distance of about 10.6o from Sutherland, was

estimated as 4.19 TECU.

However, for the storm period 21 - 26 January, 2004, only RMSE values obtained over

SBOK and MFKG are comparable to the RMSE obtained for Sutherland, while for other

stations, including GEOA (the closest station to Sutherland) they are higher since the EOF

overestimates TEC. This discrepancy may have been influenced by the large amount of the

missing data for this storm period and which thus didn’t contribute to the computation of

RMSE.

Correlation coefficients between the observed and modelled TEC for different stations were

computed. Figure 4.17 shows that high correlation coefficients were observed for the storm

periods 18 - 24 February, 2014 and 06 - 10 March 2012. This confirms that most of the

information contained in the observed TEC is covered in the modelled TEC. For the storm

period 21 - 26 January, 2004, the observed and modelled TEC are generally less correlated

and this may be due to the missing data in the observed TEC which would have contributed in

the computation of the correlation coefficients. The validation of the EOF model for different

locations is important, because it contributes to solving the problem of data dimensionality

in modelling regional TEC during storm periods, especially in mid-latitudes.
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Figure 4.13: Comparison between observed and modelled TEC during the storm period 18
- 24 February, 2014 over (a) ANTH, CTWN, PELB and SBOK (b) BETH, MFKG, ERAS
and ULDI.

4.5 Model improvement

Several alternatives were investigated to improve the EOF model developed for Sutherland

(32.38o S, 20.81o E) by modifying A and F10.7 indices, which had previously been used as

inputs. Since most of the storms had a storm period of three days, a 3-day running average
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Figure 4.14: Comparison between observed and modelled TEC during the storm period from
21 - 26 January, 2004, over (a) ANTH, GEOA, SBOK and ELDN (b) BETH, MFKG, ERAS
and ULDI.

of A and F10.7 indices were used as inputs. The reason for this, was to try to capture on

average of three days, the general information of the level of geomagnetic and solar activities.

Different combinations of indices derived from A and F10.7 indices (hereafter referred to as

(A, F10.7)), were used as inputs to see if any of them could contribute to improving the EOF

model:
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Figure 4.15: Comparison between observed and modelled TEC during the storm period 06
- 10 March 2012, over (a) ANTH, CTWN, PELB and SBOK (b) BETH, MFKG, ERAS and
ULDI.

� a 3-day running average of A index was used with F10.7 values as inputs (Amod, F10.7)

� a 3-day running average of F10.7 was used with A values as inputs (A, F10.7mod)

� a 3-day running averages of both A and F10.7 indices were used as inputs (Amod,

F10.7mod).

56



SUTH CTWN SBOK ANTH PELB MFKG BETH ERAS ULDI

Stations
R

M
S

E
 [T

E
C

U
]

0
1

2
3

4
5

6
(a)

SUTH GEOA SBOK ANTH ELDN MFKG BETH ERAS ULDI

Stations

R
M

S
E

 [T
E

C
U

]

0
2

4
6

8
10

12

(b)

SUTH CTWN SBOK ANTH PELB MFKG BETH ERAS ULDI

Stations

R
M

S
E

 [T
E

C
U

]

0
1

2
3

4
5

(c)

Figure 4.16: RMSE values for selected storms (a) 18 - 24 February, 2014 (b) 21 - 26 January,
2004 (c) 06 - 10 March 2012.

In addition to these, another option was to replace F10.7 by F10.7p, where the latter is

computed by using the F10.7 of the day of interest and its average over the previous 81 days

(F10.7A), according to the formula

F10.7p =
F10.7 + F10.7A

2
(4.7)

F10.7p represents, in statistical sense, the intensity of the solar EUV flux and it has been

shown that it is a better solar proxy for common use than F10.7, since it has the advantage of

long-term records (Liu and Chen, 2009; Bergeot et al., 2013). The F10.7p index was recently

used as input in modelling foF2 and TEC during quiet conditions using EOF analysis (A

et al., 2011, 2012).
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Figure 4.17: Comparison between observed and modelled TEC for storms that occurred (a)
18 - 24 February, 2014 (b) 21 - 26 January, 2004 (c) 06 - 10 March 2012. Also shown, are
the correlation coefficients between the observed and modelled TEC.
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Figure 4.18 shows the errors (RMSE) obtained for each combination of inputs used dur-

ing the EOF model development for Sutherland (32.38o S, 20.81o E). It is clear that small

RMSE values were generally observed when A and F10.7p were used as inputs. For a sample

of twelve selected storms, 58.33 % of the total number of storms gave the smallest errors

(RMSE) when A and F10.7p indices were used as inputs. For other cases, the corresponding

percentages are also shown in Figure 4.19. Thus, the use of the A and F10.7p indices may

improve the results, compared to other combinations of indices, as specified above.
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Figure 4.18: RMSE values for selected storms using modified indices. The RMSE values for
each storm are shown by bars that correspond to the storm date.

Figure 4.20 compares the observed and modelled TEC over Sutherland (32.38o S, 20.81o E),

obtained by using different combinations of indices for the storm periods 10 - 13 August,

2000 and 13 - 15 April, 2006. Figure 4.20 (a), shows that the EOF model predicts TEC

magnitude better when A and F10.7p indices are used as inputs than in other cases. The

predicted TEC values are the highest for almost the whole storm period (except on 10-08-

2000 where (Amod, F10.7mod) gave the highest values), and closer to the observed TEC

values than for any other combination of inputs. Although the model is still underestimating

TEC, the deviation between the observed and the modelled TEC has reduced. In Figure 4.20

(b) the modelled TEC values are close to the observed ones when A and F10.7p are used

as inputs. For this case, although the predicted TEC values are the smallest for almost the
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Figure 4.19: Frequency of occurrence each set of indices was found to give the smallest
RMSE values.

whole storm period, the model is still overestimating TEC. While further improvement of the

EOF model is necessary for better prediction, these observations indicate that A and F10.7p

give optimum solutions in modelling storm-time TEC, among different sets of investigated

inputs.
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Figure 4.20: Comparison between observed and modelled TEC using modified indices as
inputs: (a) storms of 11-12 August, 2000, (b) storm of 14-04-2006.
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4.6 Summary

EOF and regression analyses were used to develop analytical equations to estimate TEC

over Sutherland (32.38o S, 20.81o E) during storm conditions. Specifically, this is the first

modelling effort to investigate the usage of EOF analysis in estimating storm-time behaviour.

Previous studies used the EOF model to estimate foF2 and TEC during magnetically quiet

conditions and the results were very impressive (Mao et al., 2005, 2008; A et al., 2011, 2012).

However, having tried to apply the EOF model to storm-time conditions using the global

ionospheric maps provided by Jet Propulsion Laboratory, A et al. (2012) recommended the

use of TEC data of high spatial-temporal resolution for the model to perform well. In

this study, EOF analysis was used to decompose the observed TEC dataset into EOF base

functions, which mainly represent the diurnal variation of TEC, and associated coefficients,

which represent the long-term variation of TEC. Regression analysis was applied to model

the EOF coefficients in terms of A and F10.7 indices. Tested on different storms, it was

found that the EOF model estimates TEC for storms with no significant TEC response quite

well, but it fails to capture some features in the observed TEC. Improvements are therefore

still required to capture storm-time behaviour during different phases of geomagnetic storms.

The model validation by other stations showed that the EOF model developed for a specific

station can be used to estimate TEC over other locations within a latitudinal and longitudinal

coverage of 8.7o and 10.6o respectively. This is particularly important since it contributes

to the reduction of data for storm-time regional TEC modelling. The model improvement

based on modified indices has shown that the use of A and F10.7p indices as inputs improves

the modelling results.
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Chapter 5

Conclusions and future work

The main objective of this study was to develop mathematical equations for estimating TEC

over Sutherland (32.38o S, 20.81o E) during storm conditions. EOF and regression analyses

methods have been used to achieve the objective. This chapter presents conclusions about

TEC modelling during storm conditions, challenges related to storm-time TEC modelling,

as well as future work.

5.1 Conclusions

The use of EOF analysis to decompose the observed TEC data over Sutherland in terms of

EOF base functions and associated coefficients led to the following observations:

� The EOF base functions represent mainly the diurnal variation of TEC as noticed from

the first and the second order EOF base functions. The first EOF base function E1

in particular represents the diurnal variation of the average TEC. The higher order

EOF base functions represent short-term variation of TEC as well as noise effects. A

similar result was stated in different studies related to the EOF modelling of ionospheric

parameters (foF2, TEC, hmF2, M(3000)F2) during magnetically quiet conditions (Mao

et al., 2005; Liu et al., 2008; Mao et al., 2008; Zhang et al., 2009; A et al., 2011, 2012;

Lin et al., 2014).

� The EOF coefficients represent the long-term variation of TEC. The first order EOF

coefficient A1 in particular represents the solar cycle variation pattern of TEC.

� Twelve EOF components were able to explain 99.179 % of the total variance in the

original TEC dataset, leaving only 0.821 % unexplained. Hence, twelve EOF compo-

nents were used to develop the model. For other works related to modelling of the

ionospheric parameters based on EOF method, it was shown that the EOF method

converges quickly during quiet conditions and only 3 to 4 EOF components were re-

tained to build the model (Mao et al., 2005; Liu et al., 2008; Mao et al., 2008; Zhang

et al., 2009; A et al., 2011, 2012; Lin et al., 2014). However, since modelling storm-time
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TEC is complicated due to high variability in the data, it has been necessary to retain

12 EOF components. The first component A1 ×ET
1
, which accounts for 72.86% of the

total variance in the original TEC dataset, justifies the conclusion that the main cause

of TEC variation is solar activity.

The use of regression analysis after TEC decomposition, allowed for:

� the introduction of solar and geomagnetic activities in the model by modelling the EOF

coefficients in terms of the A and F10.7 indices.

� the identification of the solar cycle, annual, and semiannual variation components in

the EOF coefficients.

For a specific storm day, the A and F10.7 indices were used as inputs to get the modelled

EOF coefficients, which were then combined with the base functions to get the modelled

TEC for that specific day. A comparative study of the modelled and the observed TEC for

selected storm periods, led to the following conclusions:

� The EOF model predicts the TEC magnitude well for storms with no significant iono-

spheric TEC response.

� For storms with significant TEC response, the EOF predicts the TEC magnitude well

during the nighttime and early morning and for some storms, during the recovery

phase. However, TEC enhancement and depression and some short-term features in

the observed TEC are not captured sufficiently by the EOF model.

� The failure of the EOF model to capture positive and negative TEC response and,

to an extent short-term features in the observed TEC well, may be due to the use of

the daily indices A and F10.7 as inputs. These indices represent on average, the daily

level of geomagnetic and solar activity while geomagnetic storm features are short-term

varying phenomena.

A statistical analysis of the observed and modelled TEC showed that:

� Small RMSE values for storms with no significant TEC response and storms that

occurred during periods of low solar activity, confirm that the EOF model performs

better for storms with no significant TEC response and for storms that occurred during

periods of low solar activity.

� The high correlation between the observed and modelled TEC indicates that the mod-

elled TEC covers most of the information contained in the observed TEC.
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The model validation with data from other stations showed that the EOF model developed

for a specific station may be used to estimate TEC over other locations within a latitudinal

and longitudinal coverage of 8.7o and 10.6o respectively. This result indicates that during

regional storm-time TEC modelling, it may not be necessary to compute TEC data for all

the closest receiver stations, since most of the needed information can be extracted from mea-

surements at one location. This is an important step towards reducing data dimensionality

problem especially for high temporal resolution modelling.

The improvement of the model by using the modified A and F10.7 indices, showed that

the use of the A and F10.7p indices as inputs to model the EOF coefficients, improves the

accuracy of the model. However, this is not enough to achieve a better performance and

further improvements to the EOF model are still needed.

5.2 Challenges in modelling storm-time TEC using the

EOF analysis

The EOF model was based on TEC data derived from GPS records at Sutherland (32.38o

S, 20.81o E), for storm periods only. However, during the solar minimum a small number of

storms were observed, compared to the solar maximum period. This means that the TEC

dataset used to develop the EOF model was dominated by TEC values for storms during

solar maximum.

The A and F10.7 daily indices are recorded for each day and this is a long-time compared

to the timescale of geomagnetic storms features. This may be the cause of the failure of the

EOF model to capture short-term features in the observed TEC.

5.3 Future work

The EOF model needs to be improved for better performance. To improve modelling of

TEC over Sutherland (32.38o S, 20.81o E), an alternative would be to replace the A index

by the Dst index and then use the combination (Dst, F10.7p) as inputs to model the EOF

coefficients. Since the Dst index is an hourly index, while the F10.7p is a daily index, the

minimum or the average daily for a specific day would be used with the F10.7p for that day,

as inputs. The output would be compared with the modelled TEC, using the combination

(A, F10.7p) to determine which inputs would be the best.

Future work will involve comparisons of the EOF technique with other modelling approaches
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such as neural networks, auto-covariance prediction methods, and other empirical models,

e.g. IRI.

The EOF model was used to perform single station TEC modelling in mid-latitude region.

In future this method will be extended to other African latitudes for region storm -time TEC

modelling. It is hoped that the success of this will form a basis of applying this method to

global storm-time ionospheric TEC modelling.
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