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Abstract
Ocean acidification is a phenomenon associated with global change and 

anthropogenic CO2 emissions that is changing the chemistry of seawater. These 

changes result in elevated pCO2 and reduced pH in seawater and this is impacting 

marine organisms in various ways. Marine fishes are considered generally tolerant to 

conditions of ocean acidification; however, these assumptions are based on juvenile 

and adult fish tolerance and the larval stages have not been frequently assessed. 

Furthermore, it has been suggested that temperate species, particularly those with an 

estuarine association, may be tolerant to variable CO2 and pH.

This study used an eco-physiological approach to understand how the early life stages 

of Argyrosomus japonicus, an estuarine dependent marine fisheries species found in 

warm-temperate regions, may be impacted by ocean acidification. The metabolic 

response of early stage larvae (hatching to early juvenile stage) was assessed under 

conditions of elevated pCO2 and reduced pH in a controlled laboratory setting. Small 

volume static respirometry was used to determine the oxygen consumption rate of 

larvae raised in three pCO2 treatments including a low (pCO2 = 327.50 ± 80.07 ^atm 

at pH 8.15), moderate (pCO2 477.40 ± 59.46 ^atm at pH 8.03) and high treatment 

(PCO2 910.20 ± 136.45 ^atm at pH 7.78). These treatment levels were relevant to the 

present (low) and projected conditions of ocean acidification for the years 2050 

(moderate) and 2100 (high). Prior to experimentation with ocean acidification 

treatments, baseline metabolic rates and diurnal variation in oxygen consumption 

rates in early stage A. japonicus was determined.

Distinct ontogenetic structuring of metabolic rates was observed in early stage A. 

japonicus, with no cyclical fluctuations in metabolic rate occurring during the 24 hour 

photoperiodic cycle. Pre-flexion larvae showed no metabolic response to ocean 

acidification treatments; however post-flexion stage larvae showed metabolic 

depression of standard metabolic rate in the moderate (32.5%) and high (9.5%) pCO2 

treatments (P = 0.02). Larvae raised in the high pCO2 treatment also showed high 

levels of mortality with no individuals surviving past the post-flexion stage. Larvae 

raised in the moderate pCO2 treatment were unaffected.
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This study concluded that ocean acidification conditions expected for the end of the 

century will have significant impacts on the metabolism of early stage A. japonicus, 

which may result in reduced growth, retardation of skeletal development and ultimately 

survival as a result of increased mortality. Furthermore, the timing of reduced 

metabolic scope will significantly impact the recruitment ability of A. japonicus larvae 

into estuarine habitats. This could ultimately impact the sustainability of A. japonicus 

populations. Most importantly, this study highlighted the need to consider the 

combined effect of ontogeny and life-history strategy when assessing the vulnerability 

of species to ocean acidification.
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Chapter One

Chapter One
Ecophysiology and its role in climate change research with details 
on methodology

Global change and ocean acidification
Human influence is the primary driver of changes in atmospheric composition, 

specifically carbon dioxide concentration, which is ultimately the largest contributor to 

changes in global climate (Vitousek 1994). Increased burning of fossil fuels and land 

use change are the main contributors to increased concentrations of CO2 in the 

atmosphere, which have increased exponentially (~ 40%) since the industrial 

revolution (Doney et al. 2009; Zeebe 2012; Field et al. 2014) from 280 to 387 ppm, 

with 50% of this increase having occurred in the last 30 years (Feely et al. 2009). At 

high concentrations, CO2 in the atmosphere results in radiative forcing and general 

warming of the atmosphere (Doney et al. 2009; Serreze 2010; Zeebe 2012). This 

change in global climate has disrupted terrestrial and marine ecosystems and is 

expected to have severe consequences in the future as emissions of CO2 continue 

unabated. It is therefore not surprising that climate change research is currently 

receiving considerable attention.

The fifth and most recent assessment report of the Intergovernmental Panel on 

Climate Change states with very high confidence that the physical ocean environment 

is changing as a result of anthropogenic CO2 emissions (Hoegh-Guldberg et al. 2014). 

In the marine environment, climate change manifests itself by changes in seawater 

temperature, oxygen concentration, salinity and sea level (Howes et al. 2015). Global 

average sea surface temperatures have gradually increased by ~ 0.25 °C between 

1971 and 2010 (Rhein et al. 2013). Ocean warming and stratification of surface waters 

have resulted in reduced oxygen availability due to the solubility effect (Howes et al. 

2015) as well as the availability of inorganic nutrients in these areas (Rhein et al. 

2013). Coastal areas appear to be more affected by hypoxia and stratification than the 

open ocean (Hoegh-Guldberg et al. 2014). A sea level rise of 3.0 ± 0.7 mm per year 

has also been documented to have occurred globally between 1993 and 2010 (Hay et 

al. 2015), which is considered to be a result of thermal expansion induced by warming 

as well as the melting of glaciers (Church et al. 2013).
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Ocean acidification occurs as a secondary result of increasing atmospheric 

concentrations of carbon dioxide. Carbon dioxide from the atmosphere rapidly 

equilibrates with surface ocean water and causes a dramatic rise in seawater pCO2 

and a resultant decline in pH (Michaelidis et al. 2007; Doney et al. 2009; Feely et al. 

2009; Rhein et al. 2013; Howes et al. 2015). This accumulation of CO2 in seawater 

ultimately affects ocean chemistry through a series of complex equilibrium reactions 

(Figure 1.1) according to the equation:

C02(atmos) ^  ^ 2  (aq) + #2 O ^  H2 CO3  ^  H+ + HC03- ^ 2  H+ + CO^~ 

(Doney et al. 2009).

The outcome of these reactions includes an increase in dissolved CO2 and bicarbonate 

ion (HCO3-) concentration as well as a reduction in carbonate ions (CO32-) and pH (- 

log10 [H+]), resulting in more acidic conditions (Guinotte and Fabry 2008; Doney et al. 

2009; Field et al. 2014; Hoegh-Guldberg et al. 2014). The ocean absorbs up to 25­

30% of the CO2 emitted by human activity, and since the industrial revolution average 

ocean pH has already declined by 0.1 units (Orr et al. 2005; Feely et al. 2009; Field et 

al. 2014; Hoegh-Guldberg et al. 2014). Even though this may seem an insignificant 

amount, considering that pH is measured on a log scale, it is actually a substantial 

decline (Doney et al. 2009). Furthermore, ocean pH is projected to decline by a further 

0.3 units by the year 2100 resulting in a 150% increase in H+ and a 50% decrease in 

CO23- (Guinotte and Fabry 2008; Portner 2008; Doney et al. 2009; Feely et al. 2009). 

This amounts to a decline of pH by 0.0015 and 0.0024 annually under conditions of 

continued CO2 emissions at the current rate (RCP emission scenario 8.5) (Field et al. 

2014). These changes in carbonate chemistry also alter the concentration of related 

carbonate compounds, such as calcium carbonate (CaCO3), calcite (Qca) and 

aragonite making seawater corrosive (Qar) (Doney et al. 2009; Zeebe 2012).
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Figure 1.1: Concentrations for the reactions of carbon dioxide in seawater based on 

pH (Bjerrum plot) at DIC = 2100 pmol L-1, salinity = 35 and temperature = 25 °C. The 

arrow shows the ocean acidification expected for the year 2100 under the business as 

usual emission scenario (RCP 8.5) (Hofmann and Schellnhuber 2010).

The effects of ocean acidification on marine organisms
Several recent studies have shown that ocean acidification is having considerable 

impacts on marine ecosystems (Orr et al. 2005; Guinotte and Fabry 2008; Kroeker et 

al. 2010). It has also been suggested that previous mass extinction events (Permian- 

Triassic) may have been partly driven by the effect of high CO2 concentrations (Knoll 

et al. 1996; Portner et al. 2004; Knoll et al. 2007), which in turn suggests that our 

biodiversity may be at risk due to changes in ocean chemistry predicted for the future, 

particularly when faced with additional stressors associated with climate change.

Warming and hypoxia effects are by far the most frequently researched climate 

change stressors for marine organisms. Studies on numerous species have shown 

that organism performance and fitness is reduced outside their species-specific 

temperature optima due to physiological constraints (Portner 2001; Portner and Knust 

2007). Many mobile organisms, such as fishes, are able to avoid unfavourable
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temperatures in some cases by changes in distribution and latitudinal movements 

(Portner 2001; Portner 2010). However, there is no such refuge from ocean 

acidification, which occurs relatively uniformly across the global oceans, and it is 

therefore not possible for organisms to find refuge through spatial migrations (Doney 

et al. 2009; Sunday et al. 2014).

Changes in seawater CO2 and pH, like changes in temperature, induce physiological 

performance constraints (Portner 2008). Interestingly, it appears that species 

responses to ocean acidification are highly variable among taxa. Some species have 

been classified as extremely vulnerable and face the risk of extinction, whereas others 

are able to tolerate both moderate and high levels of acidification (e.g. species adapted 

to surviving near hydrothermal vents or in intertidal areas) (Portner 2008). Although 

there are differences in tolerance among species, the general consensus is that ocean 

acidification poses a threat to most marine organisms (Dupont et al. 2010a; Kroeker 

et al. 2010). Changes in species composition and survival will ultimately have 

significant consequences on marine ecosystems (Dupont et al. 2010a). In light of this, 

there is a clear need to understand the species-specific responses (including all 

phases of their life history) to contribute to our understanding of the ecosystem level 

responses to ocean acidification.

A number of biological responses occur in marine organisms when faced with the 

changes in seawater chemistry associated with ocean acidification. A range of 

chemical stressors may be involved, which are variable depending on the process that 

is affected. For example, calcifying organisms are most affected by the reduced 

saturation state of calcium carbonate (CaCO3) in seawater as a result of acidification 

(Gattuso et al. 1998; Riebesell et al. 2000), whereas fish are more affected by 

increasing concentrations of dissolved CO2, which affects acid-base regulation and 

metabolism (Fabry et al. 2008).

To date, invertebrates, specifically calcifying organisms, have received the most 

research attention (Ishimatsu et al. 2008). Responses of invertebrates to ocean 

acidification include have been shown to include developmental delays (Stumpp et al. 

2011), reduced calcification rates (Ries et al. 2009) and negative metabolic responses 

(Lannig et al. 2010; Stumpp et al. 2011), which may ultimately affect survival (e.g.
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Dupont et al. 2008). These effects have been documented in a number of corals 

(Hoegh-Guldberg et al. 2007; Kleypas and Yates 2009), bivalves (Gazeau et al. 2007), 

plankton (Orr et al. 2005) and echinoderms (Dupont et al. 2010b; Stumpp et al. 2011). 

Few invertebrate species have shown high levels of tolerance to ocean acidification 

and are able to comfortably withstand the levels predicted for the near and distant 

future (Kroeker et al. 2010). Significantly fewer studies have assessed the effects of 

increased ocean acidification on marine vertebrates, especially fishes (Ishimatsu et al. 

2008).

Studies that have assessed the effect of ocean acidification on fishes show variation 

in stress responses among species (e.g. Ishimatsu et al. 2005; Cattano et al. 2016). 

This is likely attributed to which biological or physiological process is affected, whether 

some form of adaption is taking place and what implications the stress has on fitness 

and survival (Kroeker et al. 2010). However, the general conclusion is that there is a 

strong likelihood that conditions of high CO2 in the ocean may affect the physiological 

function and behaviour of fishes, at one or more stages in development, causing both 

subtle and potentially lethal consequences in the long term (Ishimatsu et al. 2005; 

Munday et al. 2009b; Munday et al. 2014). These consequences include reduced 

growth and survival (Baumann et al. 2012; Murray et al. 2016), changes in otolith 

development (Checkley et al. 2009; Munday et al. 2011), tissue damage (Frommel et 

al. 2012) and changes in sensory function and behaviour (Munday et al. 2009b; Dixson 

et al. 2010; Simpson et al. 2011).

Habitat, life history strategy and ontogeny are thought to influence species tolerances 

to ocean acidification (Ishimatsu et al. 2005; Cattano et al. 2016). For example, it has 

been suggested that temperate species are generally more tolerant to ocean 

acidification as a result of regular exposure to highly variable environments (Ishimatsu 

et al. 2005; Fabry et al. 2008; Munday et al. 2009a). In addition, highly active, migratory 

species (e.g. epipelagic fishes) are also suggested to show higher tolerance as a result 

of high metabolic rates and a capacity for anaerobic metabolism which may buffer the 

increased costs of acid-base regulation (Fabry et al. 2008). The influence of ontogeny 

on the tolerance of fishes to ocean acidification is relevant to this study as there is 

increasing evidence to suggest that the early developmental stages in fishes are likely 

to be more vulnerable to the effects of ocean acidification compared to the juvenile
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and adult stages (Ishimatsu et al. 2004; Guinotte and Fabry 2008; Frommel et al. 2013; 

Pimentel et al. 2014a; Cattano et al. 2016). As such, the early life stages may present 

a CO2 tolerance bottleneck, which will ultimately affect population survival.

Although changes in pH can often be managed over short-term exposure using 

adaptive responses, e.g., by passive buffering of extracellular pH or metabolic 

suppression (Fabry et al. 2008), these cannot be maintained in the long-term and may 

result in metabolic changes, defective development, reduced growth or impairment of 

some other process, and even mortality. Due to technical constraints (such as the 

small size and low metabolic rates), these responses are rarely measured in larval 

fishes and it is therefore difficult to determine whether fish larvae respond in the same 

way that invertebrate larvae do or if they are more comparable to juvenile fishes. 

Therefore, research on the effects of ocean acidification in early stages of fishes is 

critical to obtain a better understanding of its impacts on fishes.

Although preliminary studies have found that the early life stages of fishes may be 

extremely sensitive to conditions of high CO2, the findings are not yet sufficient to draw 

convincing conclusions (Baumann et al. 2012). This is mainly due to the fact that most 

studies assessing the tolerance of early stage fish to acidification have used 

treatments that by far exceed the predicted rates of ocean acidification. For example, 

some studies have documented between 60-100 % mortality over short exposure 

periods (24-48 h) in the early stages of numerous fish species (Kikkawa et al. 2003; 

Hayashi et al. 2004; Ishimatsu et al. 2004; Ishimatsu et al. 2005; Fabry et al. 2008). 

However, the levels of these acidification treatments far exceeded the bounds 

predicted for the end of the century (Hayashi et al. 2004). More studies are beginning 

to assess more relevant pCO2 levels predicted for the end of the century. For example, 

a recent study found that Atlantic cod survival is significantly reduced in the first 25 

days post-hatch (Stiasny et al. 2016), suggesting that high early mortality rates are a 

realistic expectation.

The role of eco-physiology in climate change research
While patterns of change are important for predictive science, the understanding of 

the processes driving change is necessary in order to make predictions at various 

levels of biological organisation (Horodysky et al. 2015). Eco-physiological research
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provides a suitable tool for linking changes in environmental conditions to organism 

fitness and behaviour (Horodysky et al. 2015), thereby providing a mechanistic 

understanding of the effects of climate variables on individuals (Portner and Knust 

2007). This information can ultimately be related to the patterns of change from 

species, to populations and to ecosystems.

Portner et al. (2004) highlighted the importance of assessing an organism’s 

physiological response to environmental stressors in order to determine the impacts 

of climate change on individuals. Physiological studies can be used to gain an 

understanding of the changes in fitness, or performance parameters such as 

behaviour, reproduction or movement, which are relevant at a population level 

(Horodysky et al. 2015). Ultimately, this understanding can also assist in predicting 

population and ecosystem responses to change (Horodysky et al. 2015).

Measurements of metabolic rate (oxygen consumption rate) have become a frequently 

used tool in assessing the biological response of organisms to climate change (Clark 

et al. 2013). This is because the overall animal performance and fitness is related to 

that animal’s physiology (Clark et al. 2013). In addition an organism’s physiology is 

related to, and influenced by, their environment. Therefore, it is expected that species 

evolve in order to maximise their physiological performance under certain 

environmental conditions (Clark et al. 2013). When exposed to non-optimal conditions, 

fish will respond with a decrease in physiological performance, and this in turn may 

negatively affect growth, development, fitness or reproduction (Clark et al. 2013).

When an organism is exposed to increased CO2 concentrations in their environment, 

CO2 diffuses more rapidly across body tissues and accumulates internally. The CO2 

reacts with body fluids and reduces the internal pH of the organism (Fabry et al. 2008). 

Organisms can use a number of methods to manage this internal pH balance, 

however, these mechanisms are generally limited to those species adapted to manage 

CO2 accumulation from respiratory processes, and therefore they are not efficient at 

managing extreme changes in CO2 (Fabry et al. 2008). The mechanisms of managing 

internal pH imbalances include: passive buffering of internal CO2; active ion transport 

and exchange across membranes; active CO2 transport out of the body; and metabolic 

suppression to conserve metabolic energy (Fabry et al. 2008). All but the final
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mechanism require metabolic energy to enforce and maintain, thereby potentially 

shifting energy allocations among different maintenance processes. Therefore, the 

management of internal pH often comes at a metabolic cost, which then reduces the 

energy available for other important survival processes, such as growth or 

reproduction. Comparisons of the metabolic rate of individuals exposed to different pH 

levels can therefore show if energy is allocated to acid-base regulation.

Climate change and ocean acidification in South Africa
Worldwide, it is predicted that coastal areas are especially sensitive to the impacts of 

global change, including ocean acidification (Harley et al. 2006). The South African 

coastal environment provides an ideal platform to investigate global climate change 

(Whitfield et al. 2016). This is attributed to the biogeographical diversity of the 

coastline, with which no other global coastline of a similar size can compare (Whitfield 

et al. 2016). The coastline spans a total length of 3650 km and supports numerous 

habitat types ranging from rocky shoreline (27%) sandy beach areas (42%) and areas 

of mixed shoreline (31%) (Bally et al. 1984). There are also a total of 250 functional 

estuaries along the coast of South Africa, the majority of which occur along the south 

(123) and east (117) coasts (Turpie et al. 2002). The South African coastline is divided 

into three major biogeographic regions including the subtropical region on the east 

coast, the warm temperate region on the south coast and the cool temperate region 

on the west coast (Potts et al. 2015). This variety in biogeography occurs as a result 

of the confluence of two major ocean currents, the warm Agulhas current on the east 

and the cool Benguela current on the west coast (Hutchings et al. 2002; Hutchings et 

al. 2009). The extent of biogeographical and species diversity of this coastline puts it 

at particular risk to environmental change.

Climate change is likely to affect the South African coastal and nearshore zones by 

changes in sea surface temperature, frequency of upwelling events, current strength, 

rainfall, pH and rising sea levels (Potts et al. 2015). Changes in the distribution and 

abundance of various biotic groups within South African waters have already been 

recorded, and these are primarily related to changes in temperature (James et al. 

2013, Potts et al. 2015, Whitfield et al. 2016). Regional changes in seawater chemistry 

as a result of ocean acidification in South African coastal areas have not been 

quantified or assessed in much detail and information on regional acidification is
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limited to the globally modelled scenarios (Figure 1.2). The limited data available for 

carbonate chemistry in South Africa suggest that inshore areas, particularly along the 

south of the west coast, are particularly vulnerable to ocean acidification (de Villiers 

and Tsanwani 2014).

Figure 1.2: Mean change in surface ocean pH (produced by a CMIP5 multi-model) for 

emission scenario RCP 8.5 from the period 1986 -  2005 to 2081 -  2200 (IPCC, 2013)

The effects of climate change and ocean acidification, in addition to harvesting and 

fishing pressure, may have detrimental effects on coastal marine resource 

populations. The impacts that these pose on marine resources is particularly relevant 

in a country like South Africa where many communities are still dependent on 

subsistence fishing and harvesting for their livelihoods. It has been recorded that 83% 

of the total catch in the South African recreational and commercial (seine and gillnet) 

fisheries are comprised of individuals of estuarine dependent species with these 

species representing 50% of all the species caught (Lamberth and Turpie 2009). This 

highlights the importance of prioritising research on estuarine dependent species, 

particularly those important in fisheries, to determine the impacts of climate change on 

vulnerable communities.

The response of fishes to climate change in South Africa has been found to vary 

depending on their life history and behaviour (Potts et al. 2015). One of the more 

complex life history styles is that of the estuarine dependent group. Estuarine 

dependent marine species are species with a marine origin that depend on estuarine 

areas as nursery habitats in specific stages of their life cycle in order to survive and 

complete their life cycle (Whitfield 1994). Estuarine environments provide benefits 

such as shelter, increased food availability, suitable physico-chemical conditions and 

reduced predation risk to these species (e.g. Able 1999; Whitfield 1999; Kandjou and
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Kaiser 2014; Davidson et al. 2016). South African estuarine dependent marine species 

are generally important in coastal fisheries (Potts et al. 2015).

Argyrosomus japonicus: a model species
Argyrosomus japonicus is a large sciaenid that occurs in nearshore coastal waters and 

estuaries of the Indian and eastern Pacific oceans (Griffiths 1996; Fitzgibbon et al. 

2007). As adults, Argyrosomus japonicus can attain a large size of up to 1.8 m (75 kg) 

(Griffiths and Heemstra 1995) and are a popular species in commercial and 

recreational fisheries in South Africa and Australia (Griffiths 1996; Brouwer et al. 1997; 

Silberschneider and Gray 2008), as well as in the subsistence fishery in South Africa 

(Brouwer et al. 1997; Childs and Fennessy 2013).

Argyrosomus japonicus has a wide distribution along the South African coastline, 

occurring along the warm-temperate south and subtropical east coasts (Whitfield 

1998). Adult A. japonicus spawn at sea, and the larvae (< 20 mm TL) occur in 

nearshore pelagic coastal regions and surf zones (Gray and McDonall 1993; Griffiths 

1996; Silberschneider and Gray 2008). Upon reaching a size of approximately 20 mm 

TL (early juvenile) they begin to recruit into estuaries (Beckley 1990; Gray and 

McDonall 1993; Griffiths 1996; Whitfield 1998). The occurrence of A. japonicus in 

estuaries as juveniles (< 150 mm TL) is thought to be obligatory and these early 

juveniles are completely dependent on estuarine nurseries (Cowley et al. 2008). Early 

development and growth in estuaries is rapid, with juveniles attaining approximately 

35 cm total length (TL) within their first year of life (Silberschneider and Gray, 2008).

Argyrosomus japonicus juveniles have been found to be more abundant in turbid 

estuaries with a high freshwater discharge (Marais 1988; Gray and McDonall 1993; 

Taylor et al. 2006). Griffiths (1996) suggested that turbid systems are the preferred 

nursery habitat for Argyrosomus japonicus as early juveniles are absent in non-turbid 

estuaries such as the Swartvlei and Knysna estuaries. A recent study investigating the 

role of turbidity in the recruitment of post-flexion A. japonicus found that post-flexion 

larvae are significantly attracted to turbid water, suggesting that they may follow 

turbidity plumes when recruiting into estuaries (Wilsnagh 2016). Many late juvenile 

and early adult A. japonicus (> 300 mm TL) continue to utilise estuarine areas, 

particularly the lower reaches before returning to sea as adults (Griffiths 1996; Cowley
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et al. 2008). The occurrence of adults in estuaries has been linked more to the 

availability of prey (Griffiths 1997a). Early juvenile (< 50 mm TL) A. japonicus feed on 

mysids and copepods, after which the diet gradually shifts to teleost fishes around a 

size of ~ 100 mm TL (Griffiths 1997a). Adults in the marine environment feed on a 

number of species but teleost fish contribute the largest proportion to their diet 

(Griffiths 1997b).

Argyrosomus japonicus is a popular angling species in areas throughout its range of 

distribution (Lenanton and Potter 1987; Gray and McDonall 1993) and is one of the 

most frequently caught species in the recreational fishery in South Africa (Mann et al. 

2002; Pradervand 2004). Due to its large size and late maturity, this species is 

particularly susceptible to the impacts of fishing (Ferguson et al. 2014). Argyrosomus 

japonicus is showing major stock declines in both Australia (Silberschneider et al. 

2009) and South Africa (Mirimin et al. 2016). The South African population has been 

described as collapsed (Griffiths 1997c) and the abundance of remaining wild adult 

populations is alarmingly low (Mirimin et al. 2016). The decline has been attributed to 

recruitment overfishing as mainly immature juveniles (< 1 000 mm TL) are targeted 

(Pradervand 2004) when they aggregate in estuarine environments (Griffiths 1997c) 

and removed before they attain sexual maturity. Despite the alarming stock status of 

A. japonicus in South Africa, management regulations remain suboptimal. In addition, 

there is little enforcement and compliance success to the regulations that do exist 

(Mirimin et al. 2016). Due to its popularity as an angling species, Whitfield and Cowley 

(2010) suggest that this species should be considered a flagship species representing 

the health of South African estuaries.

Recently, aquaculture of Sciaenids has increased in popularity to provide food 

resources and to offset the demand on wild stocks imposed by fisheries 

(Silberschneider and Gray 2008). Argyrosomus japonicus was identified as a suitable 

candidate for aquaculture as it is fast growing and is in high demand as a valuable 

food fish in South Africa (Daniel 2004; Collett et al. 2008). There has been a recent 

effort to develop aquaculture protocols to successfully rear this species (Daniel 2004; 

Collett et al. 2008; Collett et al. 2011; Musson and Kaiser 2014) and a few aquaculture 

companies in South Africa have succeeded in efficient breeding and farming of this 

species.
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The life history strategy of this species, combined with its recent successful rearing in 

aquaculture in South Africa, contributed to the selection of this species as a model for 

assessing the physiological impacts of ocean acidification on the marine larvae of 

estuarine dependent species. There is no information on the response of marine 

spawning, estuarine dependent fishes to the impacts of ocean acidification.

As juveniles, A. japonicus have been observed in large numbers in turbid, freshwater 

rich estuarine systems and in the upper reaches of marine dominated estuaries. Based 

on this occurence it is clear that they are tolerant of low levels of salinity (Ter 

Morshuizen et al. 1996; Cowley et al. 2008). As these freshwater dominated areas 

normally have low pH levels compared with the marine environment, it is likely that 

juveniles of this species will be tolerant to the impact of ocean acidification. However, 

the larvae of this species occur in nearshore coastal waters, which are subject to 

incremental acidification over time. Since these larvae are not likely to have developed 

sufficient acid-base regulation systems early on in development, these coastal- 

occurring life stages may be more vulnerable to the effects of acidification than the 

juveniles and adult stages. This could result in a bottleneck in development and 

survival to the juvenile and adult stages, eventually impacting A. japonicus populations 

in estuaries and surrounding coastal areas.

Overall aims and objectives
The overarching aim of this study was to examine the impacts of ocean acidification 

on the metabolism of the early marine life stages of the estuarine dependent, 

Argyrosomus japonicus. Baseline metabolism data were collected for the early life 

stages of the species in order to describe the metabolism for the larval stages. This 

was followed by an experiment designed to compare the metabolic response of early 

life stages exposed to present and future predicted pH levels for 2050 and 2100.
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Chapter Two
Baseline metabolic rates and 24 hour variation in oxygen 
consumption in the early development of Argyrosomus japonicus

Introduction
Metabolism can be quantified by the energy consuming activities of an organism 

(Nelson 2016) and is used as an indication of how organisms partition energy 

resources to activities that allow them to survive, grow and reproduce (Post and Lee 

1996). The metabolic profile, which is a composition of the various metabolic rates of 

a species, therefore gives an indication of the efficiency of energy intake, 

transformation and allocation (Fry 1971; Brown et al. 2004). McKenzie et al. (2016) 

suggested that an organism’s physiology determines its ability to successfully survive 

under specific environmental conditions. As a result, physiological condition is a 

reflection of the performance and fitness of an organism (Portner 2010). When 

combined with information on changing environmental conditions, physiological 

information can provide insight into species and community level responses (Portner 

and Farrell 2008). These kinds of data have served numerous ecological applications 

including resource management, conservation (McKenzie et al. 2016) and climate 

change assessments (Portner and Farrell 2008). With the prediction of the impacts of 

climate change at the forefront of global research priorities, there has been a recent 

interest in eco-physiological studies that assess the metabolic response of species to 

increasingly sub-optimal environmental conditions (Clark et al. 2013).

In fishes, energy consuming activities include swimming, growth, reproduction and 

excretion, and large energy investments are made to accommodate these activities 

(Brown et al. 2004; Clark et al. 2013). Changes in physical ocean conditions are likely 

to affect these activities through metabolic pathways, which may compromise the 

fitness of individuals, populations and communities and may eventually lead to large 

scale changes in ecosystems (Portner and Farrell 2008). Understanding metabolic 

rates and metabolic profiles in marine organisms is therefore critical to assist with the 

prediction of their response to a rapidly changing climate.
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There are four types of metabolic rates that can be determined using various 

respirometry methods. These include the standard metabolic rate (SMR), routine 

metabolic rate (RMR), active metabolic rate (AMR), and maximum metabolic rate 

(MMR) (Fry 1971). Each of these is related to the activity of the organism during 

oxygen consumption measurements. For the purposes of this study, these will be 

explained with reference to individual fish as described by Fry (1971). Standard 

metabolic rate refers to the metabolic rate of a post-absorptive, acclimated, 

undisturbed, resting individual during the period of their circadian rhythm when they 

show the lowest oxygen consumption rate. This measurement translates to the 

minimum amount of energy required for survival (Nelson and Chabot 2011) and 

includes energetic processes such as biosynthesis of macromolecules, ion transport 

across membranes (e.g. osmoregulation) and other internal, life sustaining processes, 

which are independent of growth, activity or reproduction (Nelson and Chabot 2011). 

Normal physiological functioning is impaired below this metabolic rate. The RMR is 

the mean metabolic rate of a fish in a resting state but exhibiting random swimming 

activity as would be common for a fish acting in a natural way. The AMR is the average 

metabolic rate of an active fish swimming at a sustained, constant speed. Finally, MMR 

is the maximum rate of metabolism of a fish that is exercised to exhaustion prior to 

measuring oxygen consumption. Metabolic scope is calculated as the difference 

between AMR and SMR (Fry 1971) and represents the amount of energy available to 

the individual for activities over and above the energy required to maintain survival 

processes. This energy is apportioned to activities such as growth, feeding, 

reproduction and behavioural activities (Priede, 1985) and ultimately determines the 

survival and competitive ability of organisms and their ability to respond to changes in 

their environment (Killen et al. 2007; Clark et al. 2013). It is important to understand 

the eco-physiology of an organism in order to link physiology with ecological processes 

(Killen et al. 2010; Clark et al. 2013) such as life history strategy, distribution, habitat 

use and behaviour.

The larval stages of fishes are usually subject to high mortality, which has been 

attributed to a narrow metabolic scope in the early stages of development (Killen et al. 

2007). For example, a study on juvenile Argyrosomus japonicus showed a greater 

increase in oxygen consumption rate when small individuals were exposed to 

increased temperature than larger individuals (Pirozzi and Booth 2009). These
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changes in physiology can ultimately affect the adult population through changes in 

recruitment success when conditions are not favourable. Metabolic scope is therefore 

a useful measure to identify potential survival bottlenecks during ontogenetic 

development, because the life stages with the lowest metabolic scope are likely to be 

more vulnerable to adverse conditions due to a reduced energetic capacity for 

acclimation (physiological or behavioural). Apart from improving our understanding of 

fundamental physiological principles and the potential impacts of a changing climate, 

information on larval fish physiology can be used to determine the mechanistic drivers 

of species, population and community level responses to the environmental and 

anthropogenic pressures (Burggren and Blank 2009; Horodysky et al. 2015). In the 

case of larvae, a physiological approach is specifically useful when determining 

constraints limiting recruitment into adult populations, particularly in environments that 

are predicted to change in the future (Killen et al. 2007).This is because metabolic 

scope may highlight energy bottlenecks during early development.

Fishes are known to show endogenous fluctuations in metabolic rate over the 24 hour 

photoperiodic cycle, and this generally reflects their diurnal or nocturnal activity 

patterns (Marais 1978; Du Preez et al. 1986; Deacon and Hecht 1996). Therefore, the 

oxygen consumption of an individual may vary in the 24 hour cycle, without any change 

in the external environment, and it is important to determine the optimal time for 

measuring the baseline metabolic rates of SMR and AMR. This will also ensure a 

standardised measure of oxygen consumption and provide reference levels of 

metabolism before treatment conditions are assessed.

Detailed metabolic information on A. japonicus, particularly on the early life stages, 

remains limited (Fitzgibbon et al. 2007; Pirozzi and Booth 2009). There has been no 

previous assessment of metabolic rates in the larval stages or the fluctuations in 

metabolic rate during the photoperiodic cycle for this species. Such metabolic 

information will be useful for future studies as it will provide a reference to which time 

of day metabolic measurements should be taken (Kandjou and Kaiser 2014). 

Furthermore, there is a paucity of research that addresses the physiology of any 

species throughout ontogenetic development (Post and Lee 1996; Killen et al. 2007). 

The aims of this chapter were to 1) determine the baseline metabolic rates throughout 

the early development of A. japonicus in order to determine the reference metabolic
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rates and metabolic scope for this species and 2) determine the 24 hour fluctuations 

in oxygen consumption of this species. It was hypothesised that there will be an 

increase in metabolic rates (RMR, SMR, AMR, metabolic scope) with development in 

the early stages. It is proposed that this increase will be gradual during the pre-flexion 

stages due to lack of swimming ability and will then increase faster in the post-flexion 

stages when the individuals become more mobile. Due to the life history strategy of 

this species, it is also expected that metabolic rate will be higher in the day for the 

early stages due to their reliance on vision for feeding and estuarine recruitment.

Materials and methods
1. Experimental animals

Experimental fish were obtained from a single, induced spawning event from a wild 

broodstock (F1 generation) at the PureOcean aquaculture facility in East London, 

South Africa. The larvae were first hatched in darkness in three hatching cones after 

which the hatched larvae were moved to the 8 000 L cylindrical grow-out tanks with a 

stocking density of 30 larvae per litre. All experimental individuals were reared using 

standard aquaculture protocols (Table 2.1) in a single 8 000 L tank. The light cycle 

was kept at 16 L: 8 D in order to replicate optimal summer conditions in temperate 

South Africa, where these summer spawning species are regularly found in high 

abundance. Larvae were fed with rotifers Brachionus plicatilis enriched with 

Tetraselmis spp. and de-capsulated Artemia franciscana in the early stages and later 

weaned onto a pelleted diet (Skretting Gemma Wean 200-1 000 |jm) at 18 DAH (days 

after hatch) as per aquaculture protocol to ensure optimal survival and growth. Rotifers 

and artemia were provided in excess and maintained at an estimated concentration of 

two individuals per ml, which was checked regularly throughout the day to ensure 

consistent availability of food throughout the entire photoperiodic cycle. Rotifer feeding 

was terminated at 13 DAH and Artemia franciscana at 24 DAH. Water clarity was 

maintained at just below 1 m Secchi disk reading with green algae (Tetraselmis spp.) 

to ensure optimum feeding conditions for the larvae until 24 DAH. Once weaned onto 

the pelleted diet, the larvae were fed hourly throughout the photoperiod using a belt 

feeder. Pellet size was increased according to growth of larvae as per standard 

feeding protocols of A. japonicus aquaculture.
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Table 2.1: Water quality parameters maintained during the study period based on 

standard aquaculture protocol for early stage Argyrosomus japonicus

P aram ete r Va lue U nits

T em pera tu re 24 ± 1.0 °C

S a lin ity 35 PSU

pH 8.15  ± 0.5 -

D isso lved  oxygen 8.3 ± 1.0 ,-1
m g.l

2. Oxygen consumption measurements

Static respirometry was used to undertake 24 hour oxygen consumption 

measurements throughout development to include each life-stage of Argyrosomus 

japonicus, from hatching through to the settlement stage (0-27 DAH) (Table 2.2). Care 

was taken to include developmental milestones such as hatching, loss of the yolk sac, 

gas bladder formation, notochord flexion, first feeding and settlement (Table 2.2). 

Respirometry protocol was carefully designed according to recommendations made 

by Clark et al. (2013), Chabot et al. (2016) and Peck and Moyano (2016). Respirometry 

equipment was validated by assessing suitable respirometer volumes, oxygen ingress 

and drift associated with bacterial respiration prior to experimentation. Small volume 

static respirometry chambers (24 chamber microplates, Loligo systems), with volumes 

ranging from 200 jl ,  750 j l  and 4 ml, were used to assess oxygen consumption rates 

in pre-flexion larvae using a 24 channel microplate reader (SDR 436, PreSense) 

housed in a water bath that maintained temperature at 25 ± 0.05 °C. One individual 

larva was placed in each chamber and 20 larvae were measured for oxygen 

consumption per trial. For each trial, four blank seawater chambers were included to 

account for bacterial respiration.

For post-flexion larvae, larger respirometers with volumes of 5 ml and 15 ml were 

constructed from glass and stainless steel tubing and were placed in a dark-sided 

water bath that maintained water temperature at 25 ± 0.05°C under conditions that 

minimised disturbance. The larger volume static respirometers were used to reduce 

stress as the post-flexion larvae were more mobile. For oxygen measurement in the 

larger respirometers, water was circulated from the chambers through flow-through 

cells using a peristaltic pump; the oxygen concentration (mg.l-1) was recorded using 

red flash dye technology and readings were transmitted via a fiber-optic cable
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connected to a Firesting oxygen reader (Pyroscience e.K., Aachen, Germany). The 

flow of water re-circulating in a loop through the flow-through cells ensured adequate 

mixing of water in the chambers and maintained uniform oxygen distribution within the 

chambers. The large volume respirometry system consisted of four chambers per trial, 

of which three of the chambers contained individual fish and one blank chamber was 

included per respirometry trial. The seawater used in the respirometry trials was 

treated with 12.5% sodium hypochlorite (neutralised with thiosulfate) and ultraviolet 

light sterilisation to minimise the background respiration rates. The use of sodium 

hypochlorite is common practice in aquaculture and is used to reduce bacterial growth 

in seawater systems.

Nine randomly selected individuals were used to assess oxygen consumption per life 

stage (Table 2.2). Selected individuals were fasted for approximately 6 hours prior to 

each measurement by placing them in beakers filled with clean seawater. These 

purging/ acclimation chambers were housed in the water bath used for respirometry 

for approximately one to four hours to ensure the individuals used for respirometry 

were in a resting, post-absorptive state and acclimated to the measurement 

temperature to ensure the accurate determination of SMR (fasting, respirometer size 

and acclimation time depended on the size and activity of the individuals). Individuals 

were then placed in the respirometry chambers and oxygen consumption was 

measured for approximately one hour (depending on individual consumption rate) 

three times a day, at 08h00; 15h00 and 22h00 over a total period of 15 hours. This 

resulted in one measurement period for the morning, afternoon and night for each 

cycle.

Measurement time and chamber volume were adjusted to avoid a reduction in the 

oxygen concentration below 80% saturation. This was done to ensure that hypoxia 

induced stress and oxygen ingress were avoided. Oxygen concentration was 

measured in the chambers every 60 seconds during each one hour measurement 

period. After all measurements were completed, fish were removed from the chamber, 

placed on filter paper (membrane filter, 0 .2 jm ) and excess water was removed using 

suction from a vacuum pump. Fish were then weighed to the nearest 0.0001 mg. Due 

to their small size, it was not possible to weigh pre-flexion larvae and individual weights 

could only be determined from 13 DAH. For smaller individuals, a sample of 3 -5  larvae
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were weighed at a time and an average weight was calculated. Due to the inaccuracy 

of weighing smaller larvae, oxygen consumption was expressed as ^mol O2. indv-1.h- 

1 and mass specific oxygen consumption (mgO2 .g-1.h-1) was only calculated for larger 

individuals (13 DAH onwards) and therefore analysed separately. These 

measurement protocols were repeated over three consecutive days per life stage to 

avoid the influence of development on metabolic rate as development in A. japonicus 

occurs rapidly in the early stages.

Table 2.2: Developmental stages of Argyrosomus japonicus larvae from 0-27 DAH 

throughout the study period

DAH Life-stage Description

0 -  3 H atch ling From  hatch ing  to  com p le te  absorp tion  o f yo lk  sac ± 1.3 m m  TL

3 -  6 E arly  p re -flex ion From  yo lk  sac absorp tion  to  the  s ta rt o f no tochord  flex ion . G as 

b ladde r fo rm s  during  th is  s tage  and larvae begin active feed ing  

on ro tife rs

10 -  12 Late p re -flex ion Begin  feed ing  on A rtem ia  franc iscana

14 -  16 F lexion C om ple tion  o f no tochord  deve lo pm e n t and d eve lopm en t o f fin 

e lem en ts

20 -  22 Post-flex ion Increased sw im m ing  ac tiv ity  and feed ing  on pe lle ted  d ie t

26 -  27 S e ttlem en t C om ple tion  o f m etam orphos is ; appea r and behave  like fu lly  

fledged  young fish

2.1 Calculations of baseline metabolic rates 

The first five to ten minutes of the recorded measurements were excluded from the 

calculations to account for larval acclimation to the chambers. Any oxygen 

concentration readings that were below 80% saturation of normal seawater (5.3 mg L- 

1) were also excluded from the calculations. A least squares linear regression of 

oxygen concentration over time was performed on the oxygen consumption data. 

Residual analysis was first applied to determine whether the data were suitable for 

use in a linear regression model. The regression model was used to calculate AO 2 and 

the following equation was used to calculate M02 (oxygen consumption in mgO2. indv-

1. h-1) independent of mass for each life stage: M02 = [4°2|xroi where, A[02] is the

decrease of oxygen concentration in the water(A mg O2), t is the total recording time 

(h), vol is the volume of the respirometer (l). The average oxygen consumption values 

for the blank chambers were then subtracted from the final calculated oxygen
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consumption values for each individual to account for background respiration in the 

seawater.

For flexion, post-flexion and settlement larvae (13 DAH and older), mass specific 

oxygen consumption (mgO2.g-1.h-1) was calculated using: M0 2  = Â°2̂ x̂ ol/M where M

is the wet mass of an individual larva weighed to the nearest 0.0001 g. Mass- 

independent and mass-dependent oxygen consumption rates were analysed 

separately.

Standard (SMR) and active (AMR) metabolic rate were determined from the oxygen 

consumption rate by using the 5% and 95% percentile of all data obtained during the 

15 hour measurement period (Reid et al. 2012; Kandjou and Kaiser 2014) for each life 

stage separately. The RMR was calculated by averaging all remaining metabolic rates 

obtained in the 18 hour measurement period (Kandjou and Kaiser, 2014). Metabolic 

scope was then calculated using the following equation:

Metabolic scope (MS) = AMR — SMR.

All oxygen consumption data were analysed descriptively without the inclusion of 

statistical testing due to the constraint of all larvae being contained in a single tank 

during the rearing process and therefore not allowing for sufficient replication. Data 

were assessed for normality using visual distribution fitting and a Kolmogorov- 

Smirnov test at a significance level of P = 0.05. According to these tests, oxygen 

consumption data for each life stage were normally distributed (P > 0.05).

Results
1. Baseline metabolic rates

The RMR increased consistently throughout development barring a stable period 

during the pre-flexion stages (3-6 DAH) and a slight reduction during flexion (12-15 

DAH) (Figure 2.1). RMR increased more rapidly from flexion during the later life stages 

(20-27 DAH). There appeared to be more individual variation in the early stages 

(hatchling, early pre-flexion and flexion) evidenced by coefficient of variation (CV) 

values being around 80% (Table 2.3). CV values decreased in the post-flexion stages 

(< 60%) and both SD and SE peaking during the settlement phase (Table 2.3).
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Figure 2.1: Routine metabolic rate (RMR) on a logarithmic scale throughout the early 

development of Argyrosomus japonicus (hatching to settlement stage). RMR is the 

mean metabolic rate (pmol O2. indv-1.h-1 ± SD)

Both SMR and AMR remained relatively stable in early development. However, there 

was a dramatic increase in AMR during the settlement stage (22 DAH) when 

compared with the SMR (Figure 2.2). While the SMR increased gradually during the 

earlier life stages (0-22 DAH), the AMR peaked during the late pre-flexion stage (6­

11 DAH), declined during the flexion stage (12 -5  DAH) and increased rapidly after 

flexion (20-27 DAH, Figure 2.2).

Figure 2.2: Standard and active metabolic rate throughout the development of 

Argyrosomus japonicus (hatching to settlement stage) as determined by the 5 and 95 

percentiles of metabolic rates (gmol O2. indv-1.h-1)
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Metabolic scope was low during the early stages (0-6 DAH) and increased between 

6 and 12 DAH. There was a distinct reduction in metabolic scope ( ~ 0.30 gmol 

O2.indv-1.h-1) on day 14, which coincided with the beginning of flexion (Figure 2.3). 

This was attributed to a rapid decline in the AMR and a simultaneous increase in the 

SMR (Figure 2.3). The metabolic scope was highest following flexion (Figure 2.3).

The mean mass of larvae increased by 0.012 g from flexion to post-flexion and more 

rapidly by 0.088 g from post-flexion to settlement (Table 2.4). The mean mass specific 

metabolic rate declined slightly from the flexion to post flexion phase. However, it 

increased by more than five times by the settlement phase (Table 2.4). There was a 

significant, positive linear relationship (y = 0.3227x + 0.0011) between mass corrected 

standard metabolic rate and body mass (r2 = 0.955; P = 0.00014) (Figure 2.4).

Figure 2.3: Standard metabolic rate, active metabolic rate and metabolic scope

throughout the development of Argyrosomus japonicus (hatching to post-flexion stage) 

as determined by the 5 and 95 percentile of metabolic rate (gmol O2. indv-1.h-1) 

including details on the time of introduction of different feed types
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Table 2.3: Descriptive statistics for metabolic rates for each life stage in early stage 

Argyrosomus japonicus (gmol O2.indv"1.h"1)

Life stage DAH n Mean Median Min Max SD SE CV

(%)

H atch ling 0 1 ro 98 0.022 0.018 0 .00003 0.066 0.019 0.002 8 7 .1 9

E arly  p re -flex ion

CDlCO 105 0.049 0.041 0.00061 0.203 0.041 0.004 8 3 .3 0

Late pre -flex ion 10 - 12 99 0.139 0.121 0 .00035 0.409 0.088 0.010 6 3 .4 6

F lexion 14 - 16 13 0.132 0.127 0 .00716 0.383 0.108 0.023 8 2 .0 0

Post-flex ion 20 - 22 21 0.590 0.647 0 .15980 0.873 0.241 0.053 4 0 .8 2

S e ttlem ent 26 - 27 13 10.471 8.338 2 .00659 21.463 6.470 1.795 6 1 .7 8

Table 2.4: Mass specific (wet weight) baseline metabolic rates for flexion, post-flexion 

and settlement stage Argyrosomus japonicus (mg O2.g-1.h-1)

Life stage DAH n Mass

(g)

Mean Median Min Max SD SE

F lexion 14 - 16 12 0.0026 1.446 1.398 1.1106 2.0381 0.293 0.084

Post-flex ion 20 - 22 21 0.0149 1.390 1.060 0.3902 6.6537 1.295 0.282

S e ttlem en t 26 - 27 13 0.1031 5.516 4.813 2.6707 11.673 2.610 0.724

Figure 2.4: Mass corrected standard metabolic rate (mg O2.g-1.h-1) of flexion, post-

flexion and settlement stage Argyrosomus japonicus in relation to body mass (as g 

wet weight)
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2. Diurnal metabolic rates

Average oxygen consumption was similar in the morning, afternoon and night for fish 

in the early life stages (from hatching to post flexion) (Figure 2.5). However, average 

oxygen consumption during the settlement stage was highest in the morning (12.78 

gmol O2.indv1.h'1), followed by the afternoon (10.08 gmol O2.indv'1.h'1) and night (5.87 

gmol O2.indv1.h'1) (Figure 2.5). This resulted in a significant increase in the SMR 

during the daytime measurements in settlement stage A. japonicus.

Figure 2.5: Average oxygen consumption rate of Argyrosomus japonicus larvae at 

different life stages during different times of the 24 hour photoperiod (gmol O 2. indv 

1.h-1)

Discussion
Existing research on the metabolism of Argyrosomus japonicus is limited to the larger 

juvenile stages (60-1 000 g) of Australian populations (Fitzgibbon et al. 2007; Pirozzi 

and Booth 2009) in order to determine the energetic requirements of juveniles for 

aquaculture. There have been no assessments of the changes in metabolic rates with 

ontogenetic development, or diurnal fluctuations in metabolism for this species.
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Results from this study showed that there is distinct metabolic structuring during the 

early life stages of A. japonicus development, with the flexion (15 DAH) stage showing 

a significantly reduced metabolic scope. There was no variation in metabolic rates with 

photoperiod in the early life stages; however, metabolic rate was highest during 

daylight hours in settlement stage larvae.

The RMR (which is the average metabolic rate incorporating both AMR and SMR) 

increased with age and this is likely a result of the increased activity (represented by 

AMR) and energetic demands (represented by SMR) associated with rapid 

development in the early stages (Peck and Moyano 2016). A similar pattern was 

observed in the RMR of larval striped mullet (Mugil cephalus) during early 

development (Walsh et al. 1989). In A. japonicus, the initial increase in RMR appears 

to be most rapid after hatching, after which it increases at a more gradual rate in the 

later stages (early pre-flexion to flexion). In the early stages of development (prior to 

flexion), changes in metabolism were the least pronounced.

Interestingly, there appeared to be a slight decline in RMR during flexion, 

corresponding with a large decline in the active metabolic rate (AMR). Because AMR 

decreases rapidly during the flexion stage and SMR continues to increase there is a 

reduced metabolic scope during this stage. This is similar to the findings for gilthead 

seabream (Sparus aurata) (Parra and Yufera 2001), winter flounder 

(Pseudopleuronectes americanus) (Laurence 1975) and olive flounder (Paralichthys 

olivaceus) (Kurokura et al. 1995), which showed reduced metabolic rate during 

metamorphosis. Similarly, Killen et al. (2007) found that shorthorn sculpin 

(Myoxocephalus scorpius) had the lowest metabolic scope just after metamorphosis. 

It has been suggested that there is an increase in energetic demand during periods of 

rapid morphological development (von Herbing and Boutilier 1996; Killen et al. 2007) 

and that larval fish potentially manage this demand by reducing activity during this time 

(Parra and Yufera 2001).

The reduced metabolic scope observed during flexion suggests that energy 

bottlenecks (depressions in metabolic scope) occur during periods when energy is 

being allocated, specifically to development, thereby limiting the energy available for 

other energetically costly activities. Such activities could include the maintenance of
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homeostasis in changing environmental conditions (Killen et al. 2007). The flexion 

stage is frequently reported as the period of highest mortality in aquaculture of A. 

japonicus (Grant L., pers. comm., April 2016), which most likely occurs as a result of 

these bottlenecks. The recognition of energy bottlenecks is necessary as it allows for 

the successful identification of key life stages that should be considered when 

assessing vulnerability to changes in environmental conditions. This response may be 

species specific. For example, the highest metabolic rate for the larvae of red sea 

bream (Pagrus major) was observed during metamorphosis, suggesting that they have 

high energy availability during flexion (Ishibashi et al. 2005). This suggests that 

species-specific information is required to determine the timing of energy bottlenecks 

during early development. To do this the measurement of metabolic scope, which 

represents the energy available for adaptation, is critical as life stages with a limited 

metabolic scope often exhibit high mortality rates (Bailey and Houde 1989) and 

recruitment bottlenecks during unfavourable environmental conditions (Killen et al. 

2007).

The metabolic scope of A. japonicus increased after flexion, with the highest values 

observed at settlement. Killen et al. (2007) found that juveniles of three marine species 

(ocean pout, Macrozoarces americanus; lumpfish, Cyclopterus lumpus; and shorthorn 

sculpin, Myoxocephalus scorpius) had a considerably higher metabolic scope than the 

larval stages. They attributed this to a rapid increase in AMR during the early juvenile 

phase when individuals begin swimming actively. In the case of many estuarine 

dependent marine species, this also coincides with the time that individuals begin 

recruiting into estuaries (e.g. Griffiths 1996; Cowley et al. 2008). The elevated 

metabolic scope associated with this developmental stage in A. japonicus could 

facilitate the physical demands required to navigate to estuaries and the tolerance that 

is required to withstand the highly fluctuating estuarine environments.

It is possible that changes in metabolic rate in early-stage A. japonicus reflect changes 

in activity of fish during early development (von Herbing and Boutilier 1996). Although 

this study did not specifically measure activity of the individual due to difficulty of 

observing the small larvae in the respirometry chambers, the link between metabolic 

rate and swimming has been made in a study by von Herbing and Boutilier (1996) on 

larger Atlantic cod larvae. They found a positive relationship between metabolic rate
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and swimming activity, although this was only observed in the life stages following 

flexion (von Herbing and Boutilier 1996). This relationship was attributed to feeding 

activity and the onset of morphological development during flexion (von Herbing and 

Boutilier 1996).

In this study, the AMR seemed to respond to the addition of different food types. It is 

possible that this could be attributed to the different activity patterns required to 

capture different prey types. This is further supported by the views of Burggren and 

Blank (2009) who found that the onset of feeding increased both metabolic rate and 

swimming activity in larvae. It is likely that the larvae are able to consume and capture 

different prey items during development due to their increased metabolic capacity in 

conjunction with better developed swimming apparatus.

In addition to determining the reference metabolic levels of early stage A. japonicus, 

the relationship between metabolic rate and mass was also explored. The dependence 

of metabolic rate on organism mass is fairly well understood and the scaling of 

metabolic rate with mass seems to be relatively universal among all animal species 

and this phenomenon is termed "allometric law” (Giguere et al. 1988). However, the 

scaling of metabolic rates with body mass in fish is poorly understood (Killen et al. 

2007). Studies that have attempted to assess the mass specific metabolism in larval 

fishes have reported vast differences in mass dependence (Post and Lee 1996), and 

it has been suggested that the relationship between body mass and metabolic rate in 

fish larvae may vary among species (Burggren and Blank 2009). In this study, there 

was a positive linear relationship between SMR and body mass. Similar results have 

been described in the early stages of other marine fish species such as the short 

spined sea scorpion, Myoxocephalus scorpius, lumpfish Cyclopterus lumpus and 

eelpout, Macrozoarces americanus in a metabolic study by Killen et al. (2007) and 

also in the eggs and larvae of bay anchovy, Anchoa mitchilli, sea bream, Archosargus 

rhomboidalis and lined sole, Achiris lineatus (Houde and Schekter 1983). However, 

Killen et al (2007) stressed that the lack of standardised methods limits our current 

understanding of mass-dependent metabolic rates in larval fish.

This study also assessed the variation in metabolic rate within the 24 hour photoperiod 

and provided the first comprehensive assessment of the diurnal rhythmic changes in 

metabolic rate throughout the early development of Argyrosomus japonicus. There
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were no clear changes in metabolic rate during the morning, afternoon and night in the 

early stages (hatching to post-flexion). This suggests that no cyclical changes in 

activity occur in response to day/night rhythms. This result is contradictory to the 

findings suggested for numerous adult marine fish species. Black sea mullet (Liza 

saliens) (Shekk 1986), flounder (Paralichthys olivaceus) (Liu et al. 1997), 

Mediterranean yellowtail (Seriola dumerili) (De la Gandara et al. 2002), white 

steenbras (Lithognathus lithognathus) (Kandjou and Kaiser 2014) and the estuarine 

dependent spotted grunter (Pomadasys commersonnii) (Radull et al. 2002) have all 

shown diurnal changes in metabolic rate. However, it is important to consider that all 

these studies have only been conducted on the adult stages of fish and no study has 

previously identified diurnal rhythms in metabolism in the larval stages.

Metabolic rate was highest during daylight hours in settlement stage larvae. Because 

measurements of metabolic rates reflect activity, this finding suggests that settlement 

stage A. japonicus are more active during daylight than at night. The variation in 

metabolic rate in settlement stage A. japonicus among time of day is potentially 

explained by the findings in a study by Ballagh (2011) which suggests that optimal 

feeding of early juvenile (10-50 mm TL) A. japonicus (fed on a pelleted diet) occurred 

when all sensory functions were available in daylight conditions in A. japonicus. It is 

also thought that settlement stage larvae may be attracted to a turbidity plume, which 

is likely identified using vision, when recruiting into estuaries (Wilsnaugh 2016). The 

measurement of diurnal variation in metabolism in this study was done with the 

intention to determine at which time of day metabolic measurements should be taken. 

The results imply that, because activity does not change over the 24 hour photoperiod 

in the early stages of A. japonicus raised in a controlled laboratory environment, 

metabolic measurements are not restricted to any specific time of day, barring in the 

settlement stage when readings should be taken at night in order to avoid the over­

estimation of SMR.

Conclusion
The results from this study provide a detailed description of the metabolic structure of 

Argyrosomus japonicus throughout early ontogenetic development. This contributes 

to our limited understanding of metabolism in fish larvae and provides insight into the
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physiological bottlenecks in development that may render the species vulnerable to 

environmental change. The study also provided the first insight into the diurnal 

metabolic fluctuations for the early life stages of the species, which is required to 

optimise studies examining the metabolic structure of the species. Future research 

should aim to examine the metabolic structure through the life stages of the species. 

This baseline data are essential if further population level questions are to be 

understood.
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Chapter Three
The effects of CO2 induced seawater acidification on metabolism in 
early stage Argyrosomus japonicus

Introduction
Ocean acidification occurs as a result of increasing atmospheric CO2, which results in 

a direct increase in dissolved CO2 in seawater as the ocean absorbs this gas to remain 

at equilibrium with the atmosphere (Henry’s Law) (Portner et al. 2004). Recent 

research suggests that some fish species are able to compensate for oxygen demands 

by managing acid-base regulation (Michaelidis et al. 2007; Munday et al. 2009a). 

However, this compensation may come at an energetic cost, affecting physiological 

functions such as metabolic rates (Michaelidis et al. 2007; Melzner et al. 2009b). 

Increases in the metabolic rate of fishes exposed to acidification have been attributed 

to an increase in energetic requirements to maintain internal acid-base balance as 

blood pH declines. A decline in internal pH and increase in CO2 reduces the ability of 

blood to retain O2 and is defined as the Bohr effect (Crocker and Cech Jr 1997; 

Ishimatsu et al. 2005; Michaelidis et al. 2007). This results in increased oxygen 

demands to which organisms have to respond physiologically in order to maintain 

functionality. As a result, many organisms attempt to regulate internal pH in order to 

avoid physiological stress. Acid-base regulation, however, is limited by energy 

availability, a concept similar to the oxygen and capacity limited thermal tolerance 

model (OCLTT) as described by Portner H-O (2010). As a result, shifts in metabolic 

energy allocation occur in order to maintain internal acid-base balance. The re­

allocation of energy from various physiological sources differentially affects the energy 

available for survival, growth and additional activities (Michaelidis et al. 2007).

Several studies have found that increased concentrations of CO2 in seawater directly 

affect the physiology and metabolism of fish species; however, tolerance to high pCO2 

appears to be species specific, with species showing either an increase or decrease 

in metabolic scope in response to acidification (e.g. Munday et al. 2009a, Michaelidis 

et al. 2007, Grans et al. 2014). Due to the contrasting responses to changing pH, 

species specific research on the physiological response to changes in environmental
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conditions as a result of climate change is necessary (Rijnsdorp et al. 2009; Ern and 

Esbaugh 2016).

The early developmental life stages of fish have been identified as the most vulnerable 

to ocean acidification (Ishimatsu et al. 2005; Munday et al. 2009a; Rijnsdorp et al. 

2009; Portner and Peck 2010; Ern and Esbaugh 2016), with adult and juvenile fish 

showing higher tolerance to high treatments of pCO2 than larvae (Stiasny et al. 2016). 

The tolerance of the adult and juvenile fish to ocean acidification has been attributed, 

in part, to their relatively high metabolic tolerance to increased CO2 concentrations in 

seawater (Kikkawa et al. 2003; Cattano et al. 2016; Murray et al. 2016) when 

compared to the egg, larval and juvenile stages (Ishimatsu et al. 2005; Killen et al. 

2007; Guinotte and Fabry 2008; Murray et al. 2016). Based on this, several authors 

have concluded that the vulnerability of the early life stages can be attributed to a less 

developed acid-base regulation system (Melzner et al. 2009b; Frommel et al. 2013; 

Murray et al. 2016; Stiasny et al. 2016). Larval sensitivity to ocean acidification is also 

common in many invertebrate species which, more often than not, show negative 

responses in growth and survival in the larval stages (Kroeker et al. 2010).

It is thought that estuarine-associated species may be physiologically tolerant to pH 

fluctuations due to the variable pH conditions in estuarine environments (Ringwood 

and Keppler 2002). Indeed, Lonthair et al. (2017) found that red drum (Sciaenops 

ocellatus), which has an egg and larval estuarine phase, were tolerant of ocean 

acidification. No studies have been conducted on the early life stages of estuarine 

dependent species, and this presents a major gap in our understanding as the early 

life stages occupy the marine environment.

The aim of this study was to compare the metabolic response of early life stages of 

the estuarine dependent Argyrosomus japonicus exposed to ambient levels of pH and 

those predicted for 2050 and 2100. This type of research has never been undertaken 

in South Africa and will provide the first indication of how a popular fishery resource 

will be affected by ocean acidification. It was hypothesised that:

1) Increased pCO2 in seawater, and the resultant decline in pH, would alter the 

metabolic structure of larval and early juvenile A. japonicus through a reduction 

in metabolic scope.
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2) This reduction in metabolic scope would be caused by an elevation in standard 

metabolic rate.

3) These differences would be significant in the flexion life stage, which was 

shown to have the lowest metabolic scope (Chapter 2).

Materials and methods
1. Experimental animals

Fertilised Argyrosomus japonicus eggs from a first generation, wild, spawning 

broodstock were obtained from the PureOcean aquaculture facility in East London 

(Eastern Cape, South Africa). The fertilized eggs were stocked directly into nine 800 

L static systems at a stocking density of 15 larvae per litre. To do this, fertilized eggs 

were mixed to ensure a uniform distribution in a five litre bucket and the density (by 

volume) was estimated from 20 replicate 2 ml samples. The seawater in each tank 

was treated with 12.5% Sodium Hypochlorite neutralized with 3.6 g Thiosulfate as well 

as activated carbon to prevent bacterial and algal fouling and to remove any toxic 

contamination before the initiation of the experiment. This practice is standard for 

Argyrosomus japonicus aquaculture in South Africa. Ammonia and nitrite levels were 

measured daily using a Palintest Photometer (Benchtop Kit 7100) and relevant tablet 

reagents. Water quality was maintained at desired levels (ammonia and nitrite < 1 

mg.l-1 NH4 and NO2) by siphoning out debris from the bottom of the tanks and replacing 

10-20% of the seawater every two days or when necessary.

Larvae were fed according to feeding protocols that have been developed for the 

optimal growth of Argyrosomus japonicus larvae in aquaculture. Larvae were fed with 

rotifers Brachionus plicatilis enriched with dead algal paste consisting of the species 

Nanno chloropsis (Nanno 3600, Reed Mariculture inc.). Dead algal cells were used to 

avoid pH fluctuations related to respiration that would be unrelated to the treatment of 

CO2. Extra Nanno chloropsis (± 1 ml/ day to achieve an estimated concentration of 1 

ml per million rotifers) was also added to maintain desired turbidity in the tanks to 

ensure a dark background, which ensures optimum feeding conditions for the larvae 

(Chesney 2005; Shields and Lupatsch 2012). The larvae were weaned onto a diet of 

capsulated Artemia franciscana at 6 DAH (days after hatch) and then onto a pelleted 

diet (Skretting GEMMA Micro, 1 mm) at 18 DAH. Brachionus plicatilis and hatched
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Artemia franciscana were provided in excess and maintained at an estimated 

concentration of 2 -5  individuals per ml, which was checked at regular intervals 

throughout the day to ensure consistent availability of food. Rotifer feeding was 

terminated at 13 DAH and Artemia spp. at 24 DAH. Once weaned onto the pelleted 

diet, the larvae were fed regularly throughout the day (every two hours).

2. Experimental treatments

The nine rearing tanks were allocated one of three different pH treatments, with three 

replicate tanks per treatment in a randomised block design (Figure 3.1). The three CO2 

treatments were based on the IPCC business as usual emission scenario RCP 8.5 

(Riahi et al. 2011) and included a low (pH 8.15, untreated seawater), moderate CO2 

treatment level, predicted for the year 2050 (pH 8.03) and a high CO2 treatment level, 

predicted for the year 2100 (pH 7.78) (Table 3.1).The pH treatments in each tank were 

maintained by trickling regulated amounts of CO2 from a single CO2 cylinder. The 

inflow of CO2 was controlled using pH regulators, which measured pH in each tank 

with a regularly calibrated glass pH electrode (TUNZE) and regulated the inflow of CO2 

through a solenoid valve (TUNZE 7070/2, Germany). Temperature and pH (total scale) 

were measured three times daily (Aqualytic AL15 multi-parameter meter) and total 

alkalinity was measured every three days using an automated titration system 

(Hannah instruments HI84531 mini-titrator) using an endpoint titration method to pH 

8.30 (phenolphthalein) and 4.5 (bromcresol green-methyl red). Seawater pCO2 

concentration and associated saturation states of Q Ca and Q Ar were determined 

using the program CO2SYS (Lewis and Wallace 1998) on the basis of measured input 

parameters, pH and total alkalinity (set of constants of Merbach et al. 1973, refitted by 

Dickson and Millero 1987); KHSO4 by Dickson; Total pH scale (mol.kg-1-H2O).

Salinity was maintained at 35 (seawater) and temperature at ~23.50 ± 0.50 °C (mean 

± SD), which are the optimal rearing conditions for A. japonicus. Dissolved oxygen 

was maintained at 6.6 mg.l-1 to ensure 100% saturation in the seawater. Turbidity was 

maintained at just under 1 m Secchi disk reading to optimise the feeding of the larvae. 

Photoperiod was maintained at 16 L: 8D using an automatic timer in order to replicate 

the photoperiod experienced by the larvae at the time of spawning in their natural 

environment.
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Figure 3.1. Schematic diagram of randomised block experimental design indicating 

the pCO2 treatments in each tank. T1 = low at 8.15 pH; T2 = moderate at 8.03 pH; T3 

= high at 7.78 pH.

3. Metabolic measurements

Static respirometry was used to determine the oxygen consumption rate in the A. 

japonicus larvae throughout early development. One individual larva was placed in 

each respirometry chamber and oxygen uptake was measured. Small volume 

respirometry trials measured six larvae from each treatment per trial and included 

measurements of six blank chambers to account for drift (24 chambers per trial). 

These chambers were used from hatching until the flexion stage. In the larger volume 

respirometers one larva per treatment and one blank chamber were measured (four 

respirometry chambers per trial). Volume of the respirometry chambers and duration 

of the trials were adjusted based on the rate of oxygen uptake.

Seawater used for respirometry trials was sterilised using sodium hypochlorite 

(neutralised with thiosulfate) and UV sterilisation prior to each trial. Larvae were 

allowed to acclimate to the seawater and measurement temperatures for 2 -6  hours 

(depending on size), also allowing for complete gut evacuation. Two to three trials 

were conducted per day over three consecutive days per life stage. Most trials lasted 

between 40 and 60 minutes, and oxygen concentration readings were taken every 30 

seconds. Details on the respirometry methods are given in Chapter Two.
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After each trial, the larvae were removed from each chamber and euthanised with an 

overdose of 2-phenoxyethanol and stored in 5% formalin solution for later 

measurements. The larvae were categorised by life stage and measured to the 

nearest 0.001 mm total length (TL) using a stereomicroscope at 36X magnification 

with a digital camera (BestScope BS 3040, 5 MP camera).

4. Statistical analysis

Physico-chemical data did not meet the assumptions of normality and therefore 

physico-chemical variability was compared among the three pCO2 treatments using a 

Kruskal-Wallis test.

Data on body length was found to show heteroscedasticity and was therefore log 

transformed prior to regression analysis. Data on body length were compared among 

treatments using analysis of covariance (ANCOVA) with age (DAH) as a covariate. A 

Tukey post-hoc test was used to identify which treatment combinations contributed to 

the differences observed.

Metabolic rate was calculated from the oxygen consumption data. Readings taken in 

the first five minutes and any readings below 80% oxygen saturation (< 5.3 mg L-1) of 

saturated seawater were removed before analysis to account for acclimation to the 

respirometry chamber and stress induced by oxygen limitation respectively. A least 

squares linear regression of oxygen concentration over time was calculated. Residual 

analysis was applied to ensure that the data met the assumptions of a regression 

analysis. The regression model was used to calculate AO2 and the following equation 

was used to calculate oxygen consumption (mgO2. indv-1. h-1) independent of mass for

each life stage: M02 = [4°2|xroi, where, A [02] is the linear decline of oxygen

concentration in the water(A mg O2), t is the total recording time (h), vol is the volume 

of the respirometer (L). The average oxygen consumption values for the blank 

chambers were then subtracted from the final calculated oxygen consumption values 

for each individual to account for background respiration in the seawater.

Standard (SMR) and active (AMR) metabolic rate were determined from the calculated 

oxygen consumption rate by using the 5% and 95% percentile (Reid et al. 2012;
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Kandjou and Kaiser 2014) of all data obtained during each measurement period per 

treatment. The RMR was calculated by averaging all remaining metabolic rates 

obtained in the 18 hour measurement period (Kandjou and Kaiser, 2014). Metabolic 

scope was then calculated using the following equation: Metabolic scope (MS) = 

AMR-SMR.

Data for each life stage were analysed separately. Data were assessed for normality 

and homogeneity of variance using Shapiro-Wilk and Levene’s tests at a significance 

level of P = 0.05. Analysis of co-variance (ANCOVA) was used to assess the effect of 

pCO2 treatments on metabolic rate with total length (mm) as a covariate. All 

assumptions of ANCOVA were tested prior to analysis in order to ensure the data was 

appropriate for this analysis. All analyses were conducted using Statistica 13 (Dell Inc. 

2015).

Results
1. Physico-chemical conditions

Treatment levels of pCO2 and values for associated carbonate system species were 

calculated based on seawater pH, the mean and standard deviation of treatment 

parameters are displayed in Table 3.1. Although temperature generally fluctuated 

around a mean of 23.50 ± 0.05°C, it declined by ± 2 °C from 8-11 DAH in the high and 

low treatments and by ± 1 °C in the moderate treatment and then increased again and 

declined by ± 1 °C again in all treatments at day 26 DAH (Figure 3.2). However, 

analysis of variance (ANOVA) revealed no significant difference in temperature among 

treatments (n = 125; H = 1.01; P = 0.60). Total alkalinity also did not differ significantly 

among treatments whereas pH (n = 125; H = 92.21; P < 0.01) (Figure 3.3), and 

therefore pCO2 (n = 125; H = 91.73; P < 0.01) and associated parameters (Q Ca and 

Q Ar), did differ significantly among treatments (P < 0.05).
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Table 3.1. The pCO2 treatment conditions and associated speciation values of the 

carbonate system maintained throughout the duration of the study. The pCO2 values 

were calculated from pH (total scale) and At using the program CO2SYS. All values 

are displayed as means +S.D. Parameters that differed significantly among treatment 

indicated in bold* (P < 0.05).

P  Low Moderate High

Tem pera tu re  (°C)
0.6 23 .57  ± 0.70 23.65  ± 0.53 23.49  ± 0.74

pH
< 0.01* 8.16  + 0 .08 8.01 + 0.04 7.78 ± 0.06

-  -1
TA (|jm o l H C O 3 .kg SW )

0.08 2561 .30  + 190.35 2484 .70  + 133.68 2494 .10  + 124.33

p C O 2 ( ja tm )
< 0.01* 327.50  + 80.07 477 .40  + 59.46 910 .20  + 136.45

Q  Ca
< 0.01* 5.33  + 0 .97 3.88 + 0.41 2.42  + 0.27

Q  A r
< 0.01* 3.50  + 0 .64 2.54  + 0.27 1.59 + 0.28

Figure 3.2. Mean temperature of each treatment throughout the duration of the study 

(DAH = days after hatch).
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Figure 3.3. Mean pH of each treatment throughout the duration of the study (DAH = 

days after hatch).

2. Body length of larvae raised under different pCO2 treatments 

There was a linear relationship between larval size (TL) and age (DAH) in all three 

pCO2 treatments (R2 > 0.9) (Figure 3.4). There was a significant effect of age and 

treatment on total length (ANCOVA - P < 0.01). A similar growth rate occured in the 

low (y = 0.024x + 0.35; R2 = 0.96) and moderate (y = 0.025x + 0.34 ; R2 = 0.95) pCO2 

treatment larvae and these growth rates were higher compared to larvae from the high 

(y = 0.018x + 0.36 ; R2 = 0.93) pCO2 treatment (Figure 3.4). This finding is confirmed 

by the Tukey post-hoc test, which revealed that the high pCO2 treatment differed 

significantly from both the low treatment and the moderate pCO2 treatment (P < 0.01). 

There was no difference between the growth rate in the low and moderate pCO2 

treatment larvae. A larger variation in size was observed in the later life stages (22­

28 DAH) compared to the earlier life stages (0-22 DAH), where length was more 

uniform suggesting that size disparity increases in the later developmental stages 

(Figure 3.4). No larvae were available for measurement from 22-28 DAH in the high 

pCO2 treatment, as there were no survivors in this treatment from 22 DAH (Figure 3.4).
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Figure 3.4. Total length (TL) of early stage A. japonicus throughout early development 

(0-28 DAH).

3. Effect of pCO2 treatments on metabolic rate 

Metabolic rates in early stage Argyrosomus japonicus raised under all three pCO2 

treatments showed similar metabolic structuring as the larvae studied in Chapter Two 

(Figure 2.3). Metabolic scope was reduced during flexion in all three pCO2 treatments, 

with treatment having no significant effect on metabolic scope during this life stage (15 

DAH). The SMR and AMR increased rapidly in the post-flexion stages (Figures 3.6 

and 3.7). There was increasing variability in RMR with age, with low variability in the 

early life stages (CV < 13%) and the highest variability occurring in the post-flexion 

(CV = 18 -23%) and settlement stages (CV = 14 -  20%) (Table 3.2).
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Table 3.2. Descriptive statistics of RMR (gmol O2.indv-1. 

hatching to settlement (0-28 DAH)

h-1) for each life stage from

Life stage DAH T rea tm en t n M ean Min M ax SD SE C V

(%)

H atch lings 0 1 ro Low 41 2.43 2.13 2.62 0.12 0.02 4.94

M oderate 40 2.41 2.17 2.65 0.15 0.02 6.22

High 40 2.41 2.03 2.70 0.20 0.03 8.30

E arly  p re -flex ion 3 - 6 Low 41 2.93 2.73 3.26 0.17 0.03 5.80

M oderate 44 2.88 2.56 3.16 0.20 0.03 6.94

High 48 2.88 2.66 3.10 0.13 0.02 4.51

Late p re -flex ion 10 - 12 Low 45 3.84 3.27 4.61 0.46 0.07 11.98

M oderate 45 3.74 3.00 4.32 0.34 0.05 9.09

High 50 3.42 3.22 3.80 0.21 0.03 6.14

F lexion 14 - 16 Low 27 4.56 4.25 4.84 0.18 0.03 3.95

M oderate 29 4.59 4.08 5.50 0.57 0.11 12.42

High 29 4.15 4.00 4.33 0.13 0.03 3.13

Post flex ion 20 - 22 Low 8 7.32 5.96 9.36 1.34 0.47 18.31

M oderate 9 7.13 5.17 8.79 1.30 0.43 18.23

High 8 6.05 4.33 8.35 1.43 0.51 23.64

S e ttlem en t 26 - 28 Low 6 11.73 9.04 13.44 1.71 0.70 14.58

M oderate 9 12.35 8.03 15.89 2.39 0.80 19.35

High - - - - - - -

There was no significant effect of pCO2 treatment on RMR, AMR and metabolic scope 

in any of the life stages (ANCOVA, P > 0.05) (Table 3.3). The RMR was also similar 

between the treatments (Figure 3.5). There was no significant effect of treatment on 

the SMR up to the flexion stage (Table 3.3). However, there was a significant effect of 

treatment on SMR in the post-flexion stage (P = 0.02), with a 32.5% and 9.5% 

reduction in the moderate and high pCO2 treatments, respectively, when compared 

with the low (Figure 3.6).

40



Chapter Three

Table 3.3. Analysis of Covariance results (P) for metabolic rates of larvae raised under 

the three pCO2 treatment conditions. RMR = routine metabolic rate; SMR = Standard 

metabolic rate; AMR = active metabolic rate; DAH = days after hatch. Significant 

values in *bold.

Life stage M etabo lic  rate TL  (mm ) T rea tm en t

H atch ling R M R 0.15 0.79

SM R 0.58 0.87

A M R 0.15 0.64

M etabo lic  scope 0.29 0.79

E arly  p re -flex ion R M R *0.01 0.90

SM R 0.11 0.63

A M R 0.15 0.80

M etabo lic  scope 0.37 0.82

Late p re -flex ion R M R 0.06 0.94

SM R 0.66 0.92

A M R *0.02 0.50

M etabo lic  scope *0.02 0.43

F lexion R M R 1.00 0.86

SM R 0.79 0.80

A M R 0.71 0.97

M etabo lic  scope 0.71 0.97

Post-flex ion R M R 0.03 0.28

SM R *<0.01 *<0.01

A M R 0.47 0.89

M etabo lic  scope 0.33 0.46

The AMR did not differ significantly among treatment in any of the life stages; however, 

when compared with the low and medium treatment, there was no peak in metabolic 

rate in the high pCO2 treatment at 21 DAH (Figure 3.7). The metabolic scope was 64% 

lower on 21 DAH when compared to the larvae in the low treatment (Figure 3.8). 

Interestingly, there was a mass mortality of larvae in the high pCO2 treatment on 21 

DAH, and all larvae had died by 22 DAH.

The larvae in the moderate treatment had the highest metabolic scope at 21 DAH 

(Figure 3.8). These larvae also grew the fastest, although there was no significant 

difference in the growth between the larvae from the low and the medium treatment
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(Figure 3.4). In contrast, the larvae raised in the high pCO2 treatment showed the 

lowest metabolic scope at 21 DAH (Figure 3.8) and these larvae showed significantly 

reduced growth (Figure 3.4).

Figure 3.5. Routine metabolic rate for larvae raised in each pCO2 treatment from age 

0-22 DAH (days after hatch)

Figure 3.6. Standard metabolic rate for larvae raised in each pCO2 treatment from age 

0-22 DAH (days after hatch)
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Figure 3.7. Active metabolic rate for larvae raised in each pCO2 treatment from age 

0-22 DAH (days after hatch)

Figure 3.8. Metabolic scope for larvae raised in each pCO2 treatment from age 

0-22 DAH (days after hatch)

Discussion
The findings from this study suggest that metabolic energy allocation in A. japonicus 

may be impacted with increased acidification following flexion and this may potentially 

impact growth and survival. However, this effect was only evident in the high pCO2 

treatment (~ 910 gatm), which reflects the levels expected for the end of the century. 

The moderate pCO2 treatment (~ 480 gatm) expected for the year 2050 did not
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significantly affect larval A. japonicus growth and survival or metabolic rate. 

Interestingly, the larvae raised in the moderate treatment had the highest metabolic 

scope and faster growth rates suggesting they are tolerant to the level of ocean 

acidification expected in the year 2050.

The effect of ocean acidification treatments was not uniform among the life-stages. 

Elevated seawater pCO2 had little effect on the overall metabolic structure of 

Argyrosomus japonicus in the earliest life stages (preceding flexion). In contrast, 

larvae from other fish species seem to show sensitivity to elevated pCO2 early on in 

their development, resulting in impaired growth and development. For example, the 

embryos and pre-flexion larvae of Atlantic herring (Clupea harengus) (Franke and 

Clemmesen 2011), Atlantic cod (Gadus morhua) (Frommel et al. 2012), dolphinfish 

(Coryphaena hippurus) (Pimentel et al. 2014a) and the Mediterranean wrasse 

(Symphodus ocellatus) (Cattano et al. 2016) were negatively impacted by increased 

pCO2 levels. Only two similar studies found that the CO2 tolerance of two marine fish 

species, Japanese sillago (Sillago japonica) and red seabream (Pagrus major), 

decreased from the pre to post-flexion and juvenile stages (Kikkawa et al. 2003; 

Ishimatsu et al. 2004). These authors could not determine why sensitivity changed 

with life-stage, however, they hypothesised that the reduced tolerance in the post­

flexion stages is a result of the larger surface area for gas exchange facilitated by the 

development of the gill lamellae, whereas gas diffusion in early stage larvae is limited 

by diffusion across body surfaces (Ishimatsu et al. 2004). It is possible that this may 

be the case for the larvae of A. japonicus and that the metabolic effects of increased 

pCO2 are only evident when internal concentrations reach a level where they require 

active acid-base regulation.

Metabolic scope, AMR and SMR did not differ significantly among treatments in the 

pre-flexion life-stages. The comparatively low and stable SMR and AMR during early 

developmental stages (egg -  pre-flexion) of A. japonicus suggests that they have low 

energetic demands. In addition, the similarity in metabolic structure from 0-15  DAH, 

between the three pCO2 treatments suggests that acidification does not have a 

metabolic impact on these stages. Despite this, there appeared to be at least one 

energy bottleneck during these early phases. The metabolic scope of A. japonicus 

larvae declined during the period of notochord flexion (15 DAH) in the baseline
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experiment and again in all three treatments. It is possible that the decline in metabolic 

scope signals the termination of feeding, which occurs during metamorphosis, when 

additional energy is thought to be allotted towards development (Parra and Yufera 

2001). However, it appears that low energetic demands prior to this developmental 

milestone in fish larvae buffer the metabolic costs required to maintain acid-base 

balance in conditions of high pCO2.

In contrast to the early life stages, metabolic structure began to differ among 

treatments in the post-flexion life stages. Although there was no statistically significant 

change in the average metabolic scope for each of the life stages among the three 

treatments, there was a large reduction in metabolic scope on Day 21 in the larvae 

reared in the high pCO2 treatment (7.78 pH), with a 67% reduction in scope between 

the moderate and high treatment and a 64% reduction in scope between the low and 

high treatment. In the context of metabolic rates in small fish larvae, these are large 

changes. Metabolic scope specifically has not previously been assessed in the early 

larval stages of fish in response to ocean acidification. However, the juveniles of two 

species of cardinalfish (Ostorhinchus doederleini and O. cyanosoma) from the Great 

Barrier reef that were exposed to pCO2 levels for 2100, also showed reduced 

metabolic scope of up to 30% (Munday et al. 2009a). These authors suggest that the 

vulnerability of these coral reef species to ocean acidification is a result of being 

adapted to stable tropical marine environments, unlike species that are adapted to 

environments that show large natural variations in pCO2 (Munday et al. 2009a). These 

findings on coral reef fish highlight that reduced aerobic scope ultimately affects 

individual performance and therefore could have significant impacts on the success of 

marine fishes by reducing their capacity for aerobic activity (Munday et al. 2009a).

Metabolic scope is determined by the difference in AMR and SMR. The decline in 

metabolic scope during the post-flexion stage in the high pCO2 treatment in this study 

was caused by a decline in AMR, which represents the energy available for activity 

over and above survival processes. Munday et al. (2009a) found that both species of 

cardinalfish studied showed an increase in SMR resulting in reduced metabolic scope 

and this was attributed to some energetic costs of acid-base regulation. One of the 

species studied, Ostorhinchus cyanosoma, also showed a decrease in maximum
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metabolic rate. This resulted in a greater decrease in metabolic scope, compared to 

O. doederleini, making this species especially sensitive to ocean acidification.

The larvae from the low and moderate treatments showed a significant peak in AMR 

at 21 DAH, which was absent in the high pCO2 treatment. This peak in AMR in the low 

and moderate treatment can most likely be attributed to the energy dedicated to 

swimming activity, which is facilitated by the development of the notochord and fins 

during flexion. Interestingly a concurrent study found significantly reduced skeletal 

development at this stage (Erasmus in prep.). This suggests that fish in the high pCO2 

treatment lack the skeletal structures necessary to initiate active swimming and 

explains the absence of a peak in AMR.

The peak in AMR also coincided with significant changes in SMR. The SMR was 

significantly lower in the high pCO2 treatments in post-flexion larvae, suggesting 

potential metabolic depression. This result was unexpected as previous research on 

juvenile cardinalfish and red drum exposed to acidification treatments (Munday et al. 

2009a; Ern and Esbaugh 2016) has suggested that the SMR should be elevated or 

remain constant in fishes due to the increased energetic expenditure required for acid- 

base regulation in high pCO2 treatments. This is due to the fact that acid-base 

regulation is a survival process that is achieved through ion transport mechanisms. 

This process requires additional energy, particularly in species that are not well 

adapted to regulate internal pH (Portner et al. 2004) to allow them to meet their oxygen 

demands (Munday et al. 2009a; Melzner et al. 2009b). Few studies have examined 

the SMR response of fish larvae to changes in pCO2 concentration, despite the general 

consensus in literature that fish larvae have a poorer acid-base regulation efficiency 

than juveniles and adults (Ishimatsu et al. 2004; Melzner et al. 2009b; Stiasny et al. 

2016). The larval stages may not be able to regulate pH as efficiently due to lack of 

specialised ion-regulation apparatus prior to the formation of gills (Falk-Petersen 2005; 

Stiasny et al. 2016) and may therefore display metabolic depression of SMR as a 

response in order to conserve energy (Melzner et al. 2009b).

Metabolic depression is a physiological phenomenon frequently documented in the 

larval stages of invertebrates (e.g. Portner et al. 2004; Michaelidis et al. 2005; Melzner 

et al. 2009b) and has been suggested to be a mechanism to conserve energy as a
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result of poor acid-base regulation (evidenced by low extracellular pH) (Portner et al. 

2004; Melzner et al. 2009b). This has been observed in the larvae of sipunculids 

(Reipschlager and Portner 1996), mussels (Michaelidis et al. 2005), sea urchins 

(Stumpp et al. 2011) and corals (Nakamura et al. 2011). The reduced SMR observed 

in fish larvae raised in the high pCO2 treatment in this study suggest that larval A. 

japonicus may respond similarly to the impact of elevated pCO2.

Both metabolic depression and reduced metabolic scope are thought to result in 

decreased growth, development and survival of marine species (e.g. Melzner et al. 

2009b). Many studies have documented these negative effects of end of century pCO2 

levels on larval fish (Baumann et al. 2012; Kim et al. 2015); however, only a few studies 

have tried to link survival, growth and development to physiological processes (Seibel 

and Walsh 2003; Michaelidis et al. 2007; Pimentel et al. 2014b). Grans et al. (2014) 

found a negative response in growth of juvenile Atlantic halibut (Hippoglossus 

hippoglossus) to ocean acidification. The results from this study suggest that there is 

a potential link between metabolic scope and growth rate in A. japonicus, as shifts in 

metabolic scope appear to correlate with the timing of developmental delays in larvae 

raised in the high pCO2 treatment (Figure 3.9).

Figure 3.9: Total length of larvae raised in each pCO2 treatment from a concurrent 

study by Erasmus et al. 2016 (in prep) (mean ± SE).

There is evidence to suggest that ocean acidification influences the development of 

skeletal structures in fish. For example it has been found that bone density was
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reduced in larval olive flounder (Paralichthys olivaceus) (Kim et al. 2015) and skeletal 

deformities increased in frequency in early stage sole (Solea senegalensis) (Pimentel 

et al. 2014b) with increasing CO2 in seawater. This study also revealed a potential link 

between physiology and development of A. japonicus. For example, changes in SMR 

occurred during the period following notochord flexion. This may be an indication of 

the high energetic demands of completing metamorphosis prior to estuarine 

recruitment, which occurs at approximately 20 mm TL (Griffiths 1996), such that even 

small changes in metabolic structure may be detrimental to development during this 

time. This was supported by the findings of a concurrent study on the development of 

skeletal and morphological structures of A. japonicus (Erasmus et al., in prep.). There 

was rapid skeletal development on 21 DAH (Erasmus et al. in prep.), which is likely to 

require a large portion of metabolic energy, and this process was retarded in the larvae 

reared in the high pCO2 treatment, in addition to their AMR being significantly reduced 

at 21 DAH.

Mortality has been documented in larval Atlantic cod (Gadus morhua) (Stiasny et al. 

2016) and Atlantic silverside (Menidia menidia) (Baumann et al. 2012) under high 

pCO2 treatments (1100 qatm). Changes in metabolic structure of A. japonicus post­

flexion larvae at 21 DAH coincided with an observed mass mortality of individuals in 

the high (~ 910 ppm) pCO2 treatment. This suggests that changes in metabolism may 

impact the survival of post-flexion A. japonicus in high pCO2 waters predicted for the 

end of the century. Fish with reduced metabolic scope likely did not have sufficient 

energy available to maintain some survival process under the stress of acidification. 

However, the exact reason for the high mortality rates observed in this study were not 

clear.

The timing of these developmental and energetic limitations could potentially be 

detrimental to this species as these changes occur specifically in the flexion stage, 

which coincides with the stage at which the larvae of this species begin to recruit into 

estuaries (from 20 mm TL, Griffiths 1996). This phase is likely to have high energy 

costs related to the swimming effort required to recruit into estuaries as well as to 

physiologically manage the variable conditions in these dynamic systems (such as 

salinity, pH and temperature). The reduction in SMR at this stage may ultimately result 

in less energy being available for basic survival functions. The reduction in AMR and
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metabolic scope may make this species even more sensitive to acidification, as less 

energy will be available for rapid swimming against tidal and estuarine currents. High 

mortality during recruitment has been identified as one of the main reasons for 

population collapses of A. japonicus (Griffiths 1996), with ocean acidification 

potentially posing an additional threat to this process.

Conclusion
The findings of this study suggest that the tolerance of A. japonicus larvae to the 

current rate of ocean acidification is likely to continue for the next 50 years; however, 

by the end of the century, high pCO2 levels may have significant consequences for the 

survival of this species. It appears that this tolerance is potentially linked to metabolic 

physiology and differs among life-stages during early development. This study 

provides the first evidence that estuarine dependent species, with a marine larval 

phase, may be sensitive to ocean acidification in their early life stages. This highlights 

the importance of including all life stages and species with contrasting life-history 

strategies in assessments of species tolerance to ocean acidification. Furthermore, 

energetic limitations will likely limit development and recruitment ability of post-flexion 

larvae as well as reducing their ability to tolerate fluctuating estuarine environments. 

Regardless, if larvae are unable to breach the post-flexion energy bottleneck induced 

by acidification the recruitment of the species to adult populations may be 

compromised.
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Chapter Four
General discussion and conclusion

The use of metabolic rate measurements (oxygen consumption rate) has become a 

frequently used tool in addressing biological responses to climate change (Clark et al. 

2013). Increased concentrations of CO2, associated with acidification, have been 

found to directly affect the physiology and metabolism of marine fish species, with 

significant reductions in metabolic scope documented in the juveniles of two tropical 

coral reef species (Munday et al. 2009a) and warm-temperate adult gilthead seabream 

(Michaelidis et al. 2007). In contrast, other species, such as the temperate juvenile 

Atlantic halibut (Hippoglossus hippoglossus) (Grans et al. 2014) as well as other 

species of coral reef fish (Rummer et al. 2013), have shown an increase in metabolic 

scope in response to acidification. Changes in organism physiology are strongly 

associated with the vulnerability of species to stressors such as ocean acidification. 

Although previous research has furthered our understanding of the sensitivity of 

marine fish to ocean acidification, there are still large gaps in our understanding, with 

little known about the response of the larval stage of fish species or how life-history 

may influence sensitivity to acidification (particularly when life-history strategy 

changes with ontogenetic development). This study looks at the response of larval A. 

japonicus to ocean acidification and how vulnerability is influenced by life-history 

strategy. This is the first assessment of an estuarine dependent marine species with 

a pelagic marine egg and larval phase.

Ontogenetic and life-history considerations for vulnerability
Various authors have suggested that the early larval stages of marine organisms are 

particularly vulnerable to environmental change when compared to juveniles and 

adults (Reipschlager and Portner 1996; Ishimatsu et al. 2004; Frommel et al. 2013). 

This vulnerability has been extensively assessed in invertebrate larvae (e.g. Dupont 

et al. 2008; Kurihara 2008; Stumpp et al. 2011) but much less frequently in fish larvae 

(Wittmann and Portner 2013). The few studies that have assessed the larval stages 

of marine fish have shown reduced growth and survival (Baumann et al. 2012; Murray 

et al. 2016), changes in otolith development (Checkley et al. 2009; Munday et al.
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2011), and tissue damage (Frommel et al. 2012). Only one study (Murray et al. 2016) 

considered the entire ontogenetic development of the early life-stage, and this lack of 

information presents a large research gap in our understanding of how ocean 

acidification will impact populations. This study, which assessed the complete early 

development of A. japonicus, showed that vulnerability varied among life-stages and 

identified metabolic bottlenecks. Understanding and identifying these bottlenecks is 

essential if we are to understand how species will respond to ocean acidification in the 

future. For example, ontogenetic bottlenecks early in development have been 

identified in the thermal tolerance of larval sole (Solea solea) from the North Sea 

(Rijnsdorp et al. 2009) (Figure 4.1).

Figure 4.1: Ontogenetic changes in thermal tolerance in sole (Solea solea) from the 

North Sea (Rijnsdorp et al. 2009) indicating the increased thermal sensitivity in the 

earlier life stages (Portner and Peck 2010).

The vulnerability of Argyrosomus japonicus to ocean acidification during early 

development is due to their association with the pelagic marine environment during 

this stage. This species has a warm-temperate distribution and is wholly dependent 

on estuaries in the juvenile stages, however, during early development (prior to 

settlement) they have a pelagic marine phase (Beckley 1990; Gray and McDonall
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1993; Griffiths 1996; Whitfield 1998). Recruitment into estuaries in A. japonicus occurs 

in the post-flexion, settlement stage (20 mm TL, ± 30 DAH (days after hatch)) (Griffiths 

1996). This coincides with the time when this species showed the highest sensitivity 

to the effects of ocean acidification, suggesting that this stressor will induce a 

recruitment bottleneck to estuarine populations. Different strategies of recruitment into 

estuaries are apparent among marine fish species (Boehlert and Mundy 1988).

A recent study on the estuarine dependent red drum (Sciaenops occelatus) from 

America, found that this species appears to be tolerant to ocean acidification showing 

resilience in survival, growth and behaviour (Lonthair et al. 2017). Based on their 

results Lonthair et al. (2017) concluded that estuarine-associated species may be less 

sensitive to the effect of ocean acidification than marine species with no estuarine 

association. While Sciaenops occelatus and A. japonicus are from the same family 

(Sciaenidae), the fundamental difference between the two species lies in their early 

developmental life-history strategy. Sciaenops occelatus broadcast spawn in 

estuarine channels and the embryos are carried into estuaries prior to hatching (Holt 

et al. 1983; Lonthair et al. 2017). Once hatched the larvae continue to develop in 

estuarine areas, and this is obligatory, after which they migrate to adult marine habitats 

(Holt et al. 1983). Estuary pH is correlated to changes in salinity, photosynthetic cycles 

and dissolved oxygen (Ringwood and Keppler 2002) as well as the pH of the marine 

environment resulting in strong pH gradients in estuarine environments (James et al. 

2013). Because A. japonicus are not exposed to the variable pH environment of 

estuaries during the most sensitive egg and larval stages, this may explain their 

vulnerability to ocean acidification. This highlights the importance of considering the 

variability in life-history strategy and developmental stage when determining the 

vulnerability of species to ocean acidification.

The levels of pCO2 and pH are also considered to be more variable in temperate 

environments and, as such, authors working on tropical species have suggested that 

temperate species may be more tolerant to ocean acidification than tropical marine 

species due to the variable nature of their habitats (Fabry et al. 2008; Munday et al. 

2009a). This resilience seems to be more evident in the juvenile and adult life-history 

stages. For example, juvenile wolfish (Anarhichas minor) (Foss et al. 2003) and 

salmon (Salmo salar) (Fivelstad et al. 2003) did not show reduced growth performance
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when exposed to high levels of CO2 (5900 ^atm) for prolonged periods. Melzner et al. 

(2009a) also found that juvenile Atlantic cod (Gadus morhua) did not show alterations 

in swimming performance, active metabolism or metabolic scope when exposed to 

similar levels of CO2 (3000 to 5900 uatm) (Melzner et al. 2009a). Argyrosomus 

japonicus appeared to respond similarly to the abovementioned species when 

exposed to the moderate pCO2 levels showing some resilience to the 8.03 pH 

treatment. This could be due to the fact that this pH level may be intermittently 

experienced in coastal areas where these larvae occur, thereby falling within their 

range of tolerance. However, results for this study found that the post-flexion larvae of 

A. japonicus may not be as resilient to the effects of acidification once they surpass 

this naturally occurring range (7.78 pH) as the juvenile and adult phases of other 

temperate species. This is evidenced by the reduced metabolic scope, metabolic 

depression and high levels of mortality observed in A. japonicus post-flexion larvae 

under ocean acidification treatments predicted for the end of the century.

Synergistic pressures and vulnerability of Argyrosomus japonicus 
Coastal areas have been identified as areas of particular concern due to the pressures 

associated with anthropogenic climate change (Harley et al. 2006). This concern is 

based on the various abiotic changes occurring in these areas as a result of natural 

variability in combination with human activities (Figure 4.2) as well as the resultant 

ecological responses (Harley et al. 2006). These changes are threatening the social, 

economic and ecological resources provided by coastal regions (Harley et al. 2006). 

Understanding the ecological effects of climate change on ecosystems is complex as 

1) not all species respond in the same way to factors of change, with some species 

being more tolerant than others and 2) variables of change are not independent from 

one another and generally species face a combination of multiple stressors related to 

environmental change and anthropogenic impacts.
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Figure 4.2: The abiotic changes influencing coastal ecosystems as a result of human 

activity (Harley et al. 2006)

From the results of this research it becomes evident that the pressures of ocean 

acidification faced by A. japonicus are not consistent throughout their ontogenetic 

development, and that this is related to their changing life-history strategies as they 

develop from larvae to adults (Figure 4.3). Griffiths (1996) divided the life-cycle of A. 

japonicus into four phases, each with a differing habitat association, namely: 1) eggs 

and larvae which occur in the nearshore, marine pelagic environment, 2) early 

juveniles which occur in the upper reaches of estuaries, 3) juveniles which occur in 

both the upper and lower reaches of estuaries and the surf zone and 4) adults which 

occur in the nearshore marine environments and surf zones but also frequent 

estuaries. It is well documented that the later three phases (juveniles and adults) are 

vulnerable to the influence of human activities, particularly fishing (Griffiths 1996). As 

a result, stocks of this species are targeted heavily during their juvenile phase as well 

as in the fecund adult stages, significantly reducing the abundance of individuals 

recruiting and surviving to an age where they themselves can reproduce (Ferguson et 

al. 2014). This has resulted in the collapse of the A. japonicus fishery in South Africa 

(Griffiths 1996; Mirimin et al. 2016) as a result of a combined effect of recruitment and 

growth overfishing (Childs et al. 2015). Australian populations of A. japonicus have 

been similarly affected (Ferguson et al. 2014). Fishing is regarded as one of the most
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serious anthropogenic pressures facing fishes and more recently it has been 

suggested that overfishing may increase the vulnerability of some species to variability 

in climate and marine environments, thus amplifying the threat to populations (Hsieh 

et al. 2005; Harley et al. 2006; Hsieh et al. 2008). This is attributed to reduced spatial 

heterogeneity as a result of modified age structures and constriction of their 

distribution (Hsieh et al. 2008). This change in spatial heteregoneity renders heavily 

exploited species more vulnerable to environmental change (Hsieh et al. 2008). In 

addition, climate change is modifying the impacts of fishing by the addition of 

pressures that change fish community structure, distribution and production (MacNeil 

et al. 2010).

Habitat Coastal nearshore Estuarine Estuarine & marine

Pressures

Ocean ac id ifica tion
Other climate change drivers 

Naturally variable physico-chemistry

Variable estuarine physico-chemistry 
Fishing

Fishing
Natural physico-chemical variables

Developmental
stage

Larvae Juvenile Adult

Figure 4.3: Diagrammatic representation of the synergistic pressures faced by A. 

japonicus throughout ontogenetic development and changing life-history strategy

In addition to the pressures of fishing, marine species with an estuarine life-phase are 

also significantly impacted by other anthropogenically induced abiotic changes facing 

estuaries, such as freshwater abstraction, habitat destruction, pollution, land use 

change and other climate change drivers (warming, sea level rise and storms, changes 

in rainfall and salinity) (Whitfield 1992; James et al. 2013). These synergistic pressures 

compromise the nursery function of estuaries for A. japonicus and other estuarine 

dependent species. The combined effects of multiple stressors is likely to have 

significant impacts on A. japonicus populations surviving to the adult stages. This 

highlights the necessity of recognising the complex of pressures faced by species in 

various stages of development as these pressures may vary in type and intensity with 

developmental stage, habitat occurrence and life-history strategy (Figure 4.3).
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Reduced growth, survival and recruitment to juvenile and adult populations are 

particularly concerning for species that are ecologically, economically and socially 

important. For most fish species, these benefits are often interrelated as it is usually 

the large, predatory fish that play key ecological roles that are targeted in fisheries. 

Argyrosomus japonicus is an excellent example of such a species that serves a key 

ecological role, both in estuaries and coastal habitats, and is also a popular fishery 

species. Argyrosomus japonicus is a piscivorous predator in estuaries and surf zones 

(Griffiths 1997c). As a result, reductions in biomass of this species can have indirect 

effects on populations of other species that they interact with, thereby leading to 

alterations in shallow water food webs. In addition to its ecological relevance as a 

predator, Argyrosomus japonicus is also valued in the South African and Australian 

capture fisheries (Griffiths 1997c; Silberschneider and Gray 2008). A. japonicus is one 

of the most important species fished in estuaries throughout South Africa (Lamberth 

and Turpie 2003) and is highly sought after in the commercial, recreational and 

subsistence fisheries (Brouwer et al. 1997; Childs and Fennessy 2013). The influence 

that overfishing has had on this species is well understood; however, the impacts of 

climate change variables and the combined effects of these pressures has not been 

assessed in much detail. The continuing pressures of fishing and climate change at 

the current rate is likely to have detrimental consequences for the persistence of this 

species, particularly considering the high mortality rate of larvae under treatments of 

ocean acidification predicted for the end of the century as revealed in this study.

The A. japonicus stock is deemed to have collapsed in South Africa (DAFF 2014) and 

is overfished in Australia (Silberschneider and Gray 2008) and it is therefore not 

surprising that aquaculture of this species has increased in popularity in both South 

Africa (Bolton et al. 2013) and Australia (Silberschneider and Gray 2008). It is 

anticipated that the aquaculture industry of A. japonicus is likely to continue to expand 

to larger scale productions (Mirimin et al. 2016). Highly variable pH in aquaculture 

systems has to be managed accordingly in order to maintain productivity, and this is 

already a challenge in hatchery systems resulting in larger size disparities and 

increased cannibalism (Grant L., pers. comm., April 2016). The additional pressure of 

ocean acidification facing these systems may require further assessment in order to 

negate the effect it might have on A. japonicus larvae farmed in hatcheries.
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Limitations of this study and recommendations for future research
This research was the first known attempt to assess the combined effect of life-history 

strategy and developmental stage on the vulnerability of a warm-temperate marine 

fish species with an obligatory estuarine phase to ocean acidification. Furthermore, 

this study is the first known attempt at completing a comprehensive experimental 

ocean acidification study on a temperate marine fish species in Africa, thereby setting 

a valuable benchmark for future research in this field. The results from this study 

highlighted the definite need for continuous global and local research in order to 

unravel the effects that ocean acidification may have, in combination with other 

pressures, on both individual species and their ecosystems.

Understanding the physiological implications of ocean acidification, particularly in early 

stage fishes, should be a priority as this area is significantly lacking in understanding. 

However, physiological endpoints and energetics are complex to measure and 

understand. As an example, the results from this study revealed metabolic shifts in 

larvae exposed to high ocean acidification treatments, however, the consequence and 

mechanisms behind this require further investigation. This revealed the need for 

understanding acid-base regulation mechanisms in fish larvae and how this process 

develops with growth and development. This information, together with a 

comprehensive understanding of larval energy budgets can reveal significant 

information on how acid-base regulation is energetically compensated when facing 

pressures during early development. Describing these processes will provide a 

valuable addition to understanding the effects of ocean acidification and other drivers 

on early stage fishes.

Although it is useful to understand the effects of single drivers of environmental change 

on organisms as a baseline, following this it would be beneficial to assess how 

exposure to one factor may affect the sensitivity to another. For example, there is 

evidence to suggest that exposure to ocean acidification amplifies the effect of 

increasing ocean temperatures on marine organisms (O’Donnell et al. 2009; Lannig et 

al. 2010). This will be particularly important when assessing dynamic environments 

such as coastal zones and estuaries. A logical progression of research following this 

study would be to assess how exposure to ocean acidification in the early life stages 

may affect the vulnerability of later stage juveniles to variability in environmental
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parameters, such as salinity, temperature and pH experienced in estuaries. For 

example, Ern and Esbaugh (2016) examined the cost of acid-base regulation and 

osmoregulation on the overall energy budget in red drum (S. ocellatus) under the 

stress of both acidification and hypoxia. In addition they quantified the cost of 

osmoregulation in order to determine whether exposure to CO2 and hypoxia would 

affect osmoregulation in variable estuarine environments (Ern and Esbaugh 2016). 

This approach is useful to determine the trade-offs of various physiological processes 

when organisms are exposed to varying environmental conditions.

Another relationship that should potentially be explored for fish species is how food 

availability may impact the sensitivity of organisms to ocean acidification. Such 

integrated research has already been conducted on invertebrate species (e.g. Melzner 

et al. 2011; Kroeker et al. 2014), which have shown amplified negative effects as a 

result of increased energy demands under acidic conditions.

Although, in most laboratory based studies, it is near impossible to measure all 

processes and endpoints due to the complexity of maintaining and controlling multiple 

variables, it is useful to first identify the response of organisms to single variables in a 

controlled setting in order to understand specific mechanisms before attempting more 

complex, ecological approaches (Figure 4.4).

For A. japonicus specifically, following this laboratory based research it would be 

beneficial to assess the effects that exposure to ocean acidification may have on 

behaviours such as feeding, cannibalism and response to stimuli. This could provide 

useful knowledge to assist in inferring the effects that ocean acidification might have 

in a natural setting, where larvae compete for food, interact with other animals and 

respond to stimuli to recruit into estuarine nurseries.
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Figure 4.4: The level of complexity of three ecophysiology research approaches 

associated with assessing the effects of environmental drivers on marine organisms 

(Spicer 2014).

Another interesting result revealed by this study is that the effects of ocean 

acidification may not be significant at levels predicted for the next 50 years as opposed 

to the apparently lethal effects of treatments representing the next 100 years. This 

suggests that there may be a "tipping point” in the tolerance of the early life stages of 

these species to the effects of ocean acidification. Establishing these tipping points in 

tolerance will be useful to estimate realistic time-frames for the management of this 

species under these conditions. Non-linear relationships between pH and response 

variable in other studies have been suggested to be indicative of the presence of 

tipping points in tolerance (Ries et al. 2009; Kroeker et al. 2010). A common example 

of a tipping point in a marine environment is the relationship between coral survival 

and water temperature. These organisms, generally have a narrow thermal tolerance 

and any deviation from these during extreme weather events can result in mass 

mortality (Laurance et al. 2011).

The complexity of marine organisms and their relationship with the environment calls 

for a broader approach to climate change research. Global ocean acidification 

research is tending towards a multi-driver, ecosystem approach in order to understand 

the complex effect of ocean acidification on marine systems. This involves including 

the interactions of various climate change drivers on a host of interacting species in 

order to try and infer the impact of global change on entire ecosystems. This type of 

research will provide a valuable addition to the currently popular single species
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studies. Priority ecosystems should also be identified for future research. For example, 

coastal areas are generally subject to the effects of human influence (Harley et al. 

2006) as well as contributing significant resources for human benefit (Harley et al. 

2006; Costanza et al. 2014).

Although ocean acidification research has increased in popularity, there has been very 

little research on this subject in Africa and presents a major research gap. This study, 

in addition to contributing to the global understanding of ocean acidification, provides 

a particularly good benchmark to continue ocean acidification research in Africa. It is 

recommended that this research is continued in various fields in Africa in order to 

understand the impacts it may have on our highly valued coastal ecosystems. It is 

suggested that this includes an effort to conduct long term monitoring of in situ, real­

time acidification, and to include multiple drivers and species. If this approach is taken, 

South Africa will soon contribute significantly to the global picture of the effects of this 

phenomenon.

Final conclusion
This study revealed that ocean acidification has the potential to significantly impact an 

estuarine dependent marine species, Argyrosomus japonicus. The metabolic 

physiology of A. japonicus was negatively influenced by ocean acidification predicted 

for the end of the century, particularly during the energy bottlenecks associated with 

the post-flexion stage. These results suggest that this species may not survive the 

predicted levels of ocean acidification for the future. However, further research, which 

includes other species and drivers is necessary to contribute to our understanding of 

how ocean acidification will impact our valuable marine ecosystems.
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