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Abstract

For a non-negative integer n an ordered partition of a set X n with n dis

tinct elements is called a preferential arrangement (PA). A barred preferential 

arrangement (BPA) is a preferential arrangement with bars in between the 

blocks of the partition. An integer sequence an  associated with the counting 

PA's of X n  has been intensely studied over a century and a half in many 

different contexts. In this thesis we develop a unified combinatorial frame

work to study the enumeration of BPAs and a special subclass of BPAs. The 

results of the study lead to a positive settlement of an open problem and a 

conjecture by Nelsen. We derive few important identities pertaining to the 

number of BPAs and restricted BPAs of an n element set using generating- 

functionology. Later we show that the number of restricted BPAs of X n  are 

intricately related to well-known numbers such as Eulerian numbers, Bell 

numbers, Poly-Bernoulli numbers and the number of equivalence classes of 

fuzzy subsets of X n  under some equivalent relation.

Mathematics Subject Classifications:05A18,05A19,05A16, 2013

Keywords: Barred preferential arrangements, Chain in power set, restricted and free 

sections, Eulerian numbers, Bell numbers, and Poly-Bernoulli numbers.
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Chapter 1

Introduction.

The integer sequence 1,1,3,13,75,541... with exponential generating function 

has been a subject of study for more than a century now. The sequence 

seem to first have been proposed by Arthur Cayley in [Cay59], an 1859 paper 

in connection with analytical forms called trees. The sequence has since then 

attracted much attention in combinatorics, being given interpretations in 

various contexts for instance in [VC95, Gro62, Men82, Slo, Mur06a, Mur06b, 

Mac90]. The sequence is A000670 on the On-line encyclopedia of integer 

sequences [Slo]. MacMahon in [Mac90] has interpreted the sequence in a 

graph theoretic context using Yoke-chains and multipartite decompositions.
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Mendelson in [Men82] has interpreted the sequence as giving the number of 

outcomes in a race in which ties are allowed. Murali in [Mur06a, Mur06b] has 

interpreted the sequence as giving the number of preferential fuzzy subsets of 

a set X n. In [Gro62] Gross has interpreted the sequence as giving the number 

of preferential arrangements of a set X n. The term preferential arrangement 

is due to Gross [Gro62].

We now give two examples of preferential arrangements of the set 

X 4 =  {1, 2, 3, 4}.

a) 2 13 4

b) 3 1 4 2

The preferential arrangement in a) has three blocks. The first block of 

the preferential arrangement contains the element 2. The second block of 

the preferential arrangement contains two elements: the elements 1 and 3. 

The third block of the preferential arrangement contains the element 4. The 

spacing between elements indicates which elements are on the same block 

and which elements are not. The preferential arrangement in b) contains 

four blocks of which each of the blocks contains a singleton element.
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Barred Preferential Arrangements.

The introduction of bars in between blocks of preferential arrangements 

results in the notion of barred preferential arrangements [CAP13]. Barred 

preferential arrangements with a single bar seem to first appear in [Pip10], a 

2010 paper by Nicholas Pippenger. The idea was later generalised by Ahlbach 

et al in [CAP13] to multiple bars, a 2013 paper. We now give two examples 

of barred preferential arrangements of X 4, the first one having three bars and 

the second one having two bars.

a) |4 13| |2

b) 3 4 2 | | 1

The barred preferential arrangement in a) has four sections. The first 

section being the empty section to left of the first bar (from left to right). 

The second section being the section in between the first and second bar i.e 

the section having the two blocks, where the first block contains the element 

4 and the second block contains the two elements 1 and 3. The third section 

is the empty section in between the second and the third bar. The fourth 

section is the section containing the element 2.
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The barred preferential arrangement in b) has three sections. The first 

section contains three blocks. The second section is empty. The third section 

contains the element 1. In general r E No =  { 0,1 ,2 , . . . ,  n }  bars separate a 

barred preferential arrangement into r +  1 sections [CAP13]. We denote by 

Jn the number of barred preferential arrangements of X n having r bars.

In Chapter 2 and [NM15a] we propose identities and a property satisfied 

by the number of barred preferential arrangements.

Roger Nelsen and Harvey Schmidt in [NJ91] have proposed the family 

of generating functions , where r E  N0. The generating function for 

r =  0 is known to be the generating function for the number of preferential 

arrangements [Gro62]. In [NJ91] Nelsen and Schmidt proposed that for r =  2, 

the generating function is that of the number of chains in the power set of 

X n. They then asked the following question.
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Question

Could there be other combinatorial structures that can be associated with 

either the set X n or the power set of X n whose integer sequences are gen

erated members of the family 2— , for other values of r other than for the 

two values? Benjamin in [Ben96] proposed an answer to a campus security 

problem, his solution to the campus security problem also answers the ques

tion of Nelsen and Schmidt problem for r =  1. In [Mur06b] the author has 

proposed an answer to the question of Nelsen and Schmidt for the value of 

r =  0,1, 2, 3 using the idea of preferential fuzzy subsets of a set X n. The 

main aim of this study is to propose an answer to this question of Nelsen and 

Schmidt for all values of r in non-negative integers. We do this by putting a 

restriction on barred preferential arrangements of Xn that some sections to 

have a maximum of one block. This we do in Chapter 3 and [NM17]. In the 

same chapter we show how the generating function of Nelsen and Schmidt 

can be interpreted for negative values of r as well.

Chapter 4 is a literature survey chapter. In the chapter we show how the 

number of restricted barred preferential arrangements are related to some
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well known integer sequences. Which are Bell numbers, Eulerian numbers,

the number of chains in power set of Xn and the number of equivalence classes 

of fuzzy subsets of X n. In Chapter 5 and [NM15b] we show relations between 

number of restricted barred preferential arrangements and poly-Bernoulli 

numbers. We also discuss some common properties between poly-Bernoulli 

numbers and number of restricted barred preferential arrangements.

In this study we will refer to generating functions of the form 2— . where 

r E N0 a family of generating functions of Nelsen-Schmidt type since the 

original problem regarding the generating functions first proposed by Nelsen 

and Schmidt in [NJ91]. The entries in the tables presented in this study 

were generated using a computer program code in python which the author 

developed in his thesis [Nko14]. In this study when referring to a generat

ing function of a sequence we will be referring to its exponential generating 

function unless stated otherwise.
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Preliminaries
We denote by Qn the set of all barred preferential arrangements of X n hav

ing (r E N0) bars, and the number of these barred preferential arrangements 

by Jn. We end this chapter by stating a closed form, recurrence relation and 

a generating function for the numbers Jn.

Theorem 1.1. [CAP13] For all n, r E N0,

n
Jn =  E m T ) .s=0

where jn } are the Stirling numbers of the second kind.

Theorem 1.2. [CAP13] For r E N0.

n
Jn =  e  0 ) J0j n-1 where J0 = 1

s=0
r0 =  1.

for all n E  N0.

Theorem 1.3. [CAP13] For r E N0,

qr (x) En=0
Jr
n!

1
(2- ex)r+1 .

Remark. Whether we view a barred preferential arrangement as a result 

of the introduction of bars in between blocks of a preferential arrangement
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Or viewing it as a result of first placing and then preferentially arranging

elements on the sections, the resulting number of barred preferential arrange

ments is the same [Pip10].

Note. A list of symbols and notations used in this study is given in Ap

pendix B (see Page 83). The set X n throughout this study is assumed to 

have elements which are all distinct.
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Chapter 2

Barred Preferential 

Arrangements.

In this chapter we discuss properties of barred preferential arrangements and 

prove combinatorial identities satisfied by the number Jnr of barred pref

erential arrangements of X n. In the process we highlight some important 

consequences of the identities.
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2.1 Properties of Barred Preferential Arrange

ments.

A table for the number of barred preferential arrangements.

Table 2.1: Table for the number of barred preferential arrangements [Nko14].

n\r 0 1 2 3 4
1 1 2 3 4 5
2 3 8 15 24 35
3 13 44 99 184 305
4 75 308 807 1704 3155
5 541 2612 7803 18424 37625
6 4683 25988 87135 227304 507035
7 47293 296564 1102419 3147064 7608305
8 545835 3816548 15575127 48278184 125687555
9 7087261 54667412 242943723 812387704 2265230825
10 102247563 862440068 4145495055 14872295784 44210200235
11 1622632573 14857100084 76797289539 294192418744 928594230305
12 28091567595 277474957988 1534762643847 6251984167464 20880079975955

We observe that the last digit of entries in the first column of Table 2.1 

has a four cycle 1,3,3,5. On the second column the four cycle of the last digit 

is 2,8,4,8. We also observe that the other columns have four cycles.

15



We state the result as a lemma.

Lemma 2.1. [Nko14] For fixed r E No the last digit of the number Ff has a 

four cycle for n E  N =  { 1, 2 , . . . } .

We will prove the property presented in the lemma in a generalised form 

in Chapter 4 as Theorem 4.9.

A Duality Property of Preferential Arrangements.

We recall that J  denotes the number of barred preferential arrangements of 

X n having r bars, where the set of these barred preferential arrangements is 

denoted by Qn

Definition 2.1. A dual of a preferential arrangement of X n is the same 

preferential arrangement only now being read from right to left instead of left 

to right.

Given the preferential arrangement 3 1 4 2 of X 4, its dual is 2 4 1 3 .

Definition 2.2. The t r iv ia l  p r e fe r e n t ia l  arrangement of X n is the

preferential arrangement which has only one block.
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So on the set

Q2 =  { 12; 1 2; 2 1},

which is the set of all preferential arrangements of X 2. The preferential 

arrangement 12 is the trivial preferential arrangement. The preferential ar

rangements 1 2 and 2 1 are duals of each other.

Illustration. In this illustration we generate the set Q° of all preferential 

arrangements of the set X 3 using the duality property. From Table 2.1 on 

Page 15 we observe that |Q°| =  13.

We collect as below a random list of 6 non-trivial preferential arrange

ments of X 3 whose dual are all not in the collected list to form a set C6.

3 12

2 1 3

3 2 1

1 3 2

23 1

13 2

We generate duals of the above preferential arrangements by reading the
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preferential arrangements from right to left to form a set Cg.

12 3 

3 1 2

1 2 3

2 3 1

1 23

2 13

Combining the sets Cg, Cg and the trivial preferential arrangement 123, we 

obtain the set Q3.

Indeed |Cg| +  |Cg| +  1 =  6 +  6 +  1 =  13 =  |Q°|.

C onjecture 2.1. We conjecture that in general the set Q(f  of all preferential 

arrangements of X n, for n > 2 can be partitioned into three subsets. Where 

the first subset Cn contain all non-trivial preferential arrangements of X n 

such that each preferential arrangement of Cn does not have its dual in Cn. 

The second subset being the collection Cn of all those preferential arrange

ments of X n and whose duals are in Cn. The third subset being composed 

of the trivial preferential arrangement. The two sets Cn and Cn are each of
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J 0 — 1cardinality -n- - .

The statement of the conjecture is supported by Lemma 2.1 above. From 

the conjecture we deduce that J° =  |Cn| +  |Cn| +  1 =  2r +  1 (where r E N) 

i.e J  is odd. From Lemma 2.1 we deduce that the last digit of the sequence 

Jn has the four cycle 1-3-3-5, meaning J° is odd for all integer n >  2.

2.2 Identities on Barred Preferential Arrange

ments.

Lemma 2.2. For r E  N,

J rJn
n - 1

j ; -1 + 1-  C) j js=0 ;

for all n E N .

The lemma will be proved in Chapter 3 in a more general form as Theo

rem 3.6.

19



Theorem 2.1. For r E N,

for all n E N.

J rJn Jr—1n
n 1

+  £  C) Js=°

Proof. We recall that J ; is the number of barred preferential arrangements 

of X n having r bars, where the set of these barred preferential arrangements 

is denoted by Q ;. On each barred preferential arrangement in Q;  either the 

first section is empty or non-empty.

When the first section is empty, it means that all the elements of X n are 

preferentially arranged on the r other section. Hence the number of elements 

of Qn having this property is J ;-1 .

In the second scenario the first section being non-empty means that the 

first section will always have at least one block. From left to right there 

will always be a first block on the first section in this case. The maximum 

number of elements which are not to form part of the first block of the first 

section is n — 1 and the minimum number is 0. Lets says there are s elements 

which are not to form part of the first block of the first section. The s can 

be chosen in (;) ways. The s elements can be preferentially arranged on the 

r +  1 sections in JJ ways. The remaining n — s elements attach them on the
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first section as the first block. Taking the product and summing over s we
n—1

obtain £  (; ) JJ x  1n—s. □
s=° s s

Lem m a 2.3. [Pip10]For n E N°

n
j ;+ . =  e  o  j ,1.s=°

We end this chapter with the following theorem which is a generalization 

of Lemma 2.3.

Theorem  2.2. For r E N°,

n
J;+1 =  (r +  1 ) E  C) J,r+1 where J  =  1,

s=°

for all n E N°.

Proof. Considering the set X n+1 we base our argument on one element of 

X n+1 say the element Xj. In all barred preferential arrangements of X n+1 

having r E N° bars we determine the position of x  using two entities; the 

section in which the element is in and the block within that section to which 

the element belongs. On barred preferential arrangements of X n+1 having r 

bars the element x  can be in anyone of the r +  1 sections, say the element 

is in the section. On all barred preferential arrangements of X n+1 the
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maximum number of elements which are not in the same block as x  is n

and the minimum number is 0. Lets say there are s elements which are not 

in the same block as x  in the section. Treating the marked element as 

a bar, those elements in the same block with x  will be interpreted as the 

first block to the right of x*. We now have r +  1 bars, consequently r +  2 

sections. There are (;) ways of selecting the s elements. The s elements 

can be preferentially arranged in the r +  2 sections in JJ+1 ways. Hence the
n

number of barred preferential arrangements is (r +  1) ^  (;) JJ+1.
s=° S

□
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Chapter 3

Generating functions of 

Nelsen-Schmidt type.

Roger Nelsen and Harvey Schmidt in [NJ91] proposed the family of gener

ating functions where r E  N°, which for r =  0 and r =  2 are known to 

be the generating functions for the number of preferential arrangements of 

X n and the number of chains in the power set of X n respectively. They then 

asked, “could there be other combinatorial structures that can be associated 

with either the set X n or the power set of X n whose integer sequences are

generated by members of the family for other values of r in N° other
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than the two values?” In this chapter we proposed an answer to this open

problem of Nelsen and Schmidt. Here we propose an answer to the question 

for all values of r in N°. We further propose a much more general family 

of generating functions ^ , for r , j  g n °^ of which the family of Nelsen

and Schmidt is a subset.

3.1 A  family of Nelsen-Schmidt type.

In finding the total number of barred preferential arrangements of X n having

r E N° bars, here we view a barred preferential arrangement as a result of

bars having been placed first and then elements being distributed into the

resulting sections between the bars. We generalise Equation 24 of [Pip10]

from one bar to r bars using the same kind of argument. We argue as follows:

r bars result in r +  1 sections. We assume there are w  elements on the ith

section, where 0 <  i <  r +  1. There are C(n; w., w2, . . . ,  wr+1) =  7+^—
n w i'-

i =  1
number of ways of distributing the n elements of X n into r +  1 sections 

(C(n; w., w2, . . . ,  wr+1) is the multinomial coefficient). There are ways of 

preferentially arranging elements in the ith section for 0 <  i <  r + 1 . Hence 

the total number J ; of barred preferential arrangements of X n having r bars
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is given by the following theorem.

Theorem  3.1. For r, n g N°,

J r
W1+-

E
■+Wi+---hwr+i=n

C(n; w., i wr+1
r+1

) n  J° , Wi , (3.1)
i=1

r+1
where the summation is taken over all solutions of the equation Wj =  n

i=1

in non-negative integers.

Equation 3.1 is a dual of the closed form in Theorem 1.1 on Page 12 

above. Theorem 1.1 is proved in [CAP13] using an argument where barred 

preferential arrangements are viewed as being a result of elements first be

ing preferentially arranged into blocks, and then bars being introduced in 

between the blocks of preferential arrangements.

Definition 3.1. [NM17] A free section of a barred preferential arrange

ment is a section which contains elements that are preferentially arranged 

into any number of blocks.

What Definition 3.1 means is that, elements on a free section can be pref

erentially arranged into any possible number of blocks. For Wj elements on 

a free section, the number of possible ways of preferentially arranging the
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elements on the free section is JW..

Definition 3.2. [NM17] “A restricted section of a barred preferential 

arrangement is a section containing elements arranged into a single block.”

What Definition 3.2 means is that, for any number of elements on a restricted 

section, there is one way of preferentially arranging them.

N ote 3.1. Either kind of sections above, free or restricted may be empty.

Definition 3.3. A restricted barred preferential arrangement is a

barred preferential arrangement which has some of its sections restricted and 

others free.

We denote by p.(n) the number of restricted barred preferential arrange

ments of X n having r g N° restricted sections and one fixed predefined free 

section. We choose the free section to be the (r +  1)st section without loss of 

generality. In the case r =  0 we have p°(n) =  j ; .  The (r +  1)st section being 

a free section means that elements which go into the section can be preferen

tially arranged in any possible number of blocks. The r other sections being 

restricted sections means that each of the sections can have at most a single 

block. In getting the total number p. (n) of such restricted barred preferen-
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tial arrangements we argue as follows. There are C(n; w., ■ ■ ■ , w,, ■ ■ ■ , wr+.) 

number of ways of distributing the n elements of X n into r +  1 sections. 

There is one way of preferentially arranging elements on each of the r re

stricted sections. There are JW ways of preferentially arranging elements

on the (r +  1)st section (since the section is a free section). Hence the total 

number p. (n) is given by,

Pi (n) Y  C  (n; w^ •••
wi+--- +WiH--- hwr+i =n

Wj, . . . , wr+.) (1)
i=1

J°
-i>r

(3.2)

r+1
where the summation is taken over all solutions of the equation w, =  n

i=1

in N° .

We denote by G.(n) the set of these restricted barred preferential ar

rangements. So p.(n) =  |G.(n)|. The set G.(n) is a subset of the set Q ; of 

all barred preferential arrangements of X n without any restrictions discussed 

in Chapter 2.
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We now ask the following question.

Question.

What sort of a family of exponential generating functions do the numbers 

p.(n) (denoting the generating function by P.r (x)) have and is it related to 

the family of Nelsen-Schmidt type?

By (3.2), we deduce that p.(n) is the coefficient of ;  in the following con

volution of exponential generating functions (for a discussion on convolution 

of generating functions see Appendix A on Page 80),

n e 3= 1 \ni=°
E nr +1

nr+i=° nr+i! £
n=°

p.(n )xn
n!

P.r (x). (3.3)

By Theorem 1.3 on Page 12 and the fact that n  =  ex, Equation 3.3
n=°

becomes

ni=1
1

2 -  ex 2 -  ex £  p1<n>x" =  pr (x).
n=° n! (3.4)

We recognise the generating function in (3.4) as being the same as the one

rxe
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proposed by Nelsen and Schmidt in [NJ91], introduced in this chapter. Hence 

the Nelsen-Schmidt generating function for an arbitrary fixed r G N° is that 

of the number of restricted barred preferential arrangements of X n, having 

r restricted sections and one free section. Thus in answering the question of 

Nelsen and Schmidt, a structure that can associate with the set X n whose 

integer sequences are generated by members of the family for all val

ues of r G N°, is restricted barred preferential arrangements of X n having 

r restricted sections and one free section. This settles the open question as 

posed by Nelsen and Schmidt.

We now propose theorems, lemmas and conjectures on the numbers p.(n). 

Theorem 3.2. For r G N,

n
Pi(n) =  { ; )Pi(s)rn-s where p.(0) =  1,

s=° s

for all n G N°.

Proof. We recall that p.(n) =  |G .(n )|, is the number of restricted barred 

preferential arrangements of X n having the first r sections restricted and 

the (r +  1)st section free, where G.(n) is the set of these conditional barred
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preferential arrangements. We base the proof of the theorem on the number 

of elements that are to go into (r +  1)st section. We argue as follows; the 

minimum number of elements which are to go to the (r +  1)st section on 

each 33 G G.(n) is 0 and the maximum number is n. Lets say there are 

s elements which are to go into the (r +  1)st section. There are (;) of 

selecting the s elements. There are p°(s) ways of preferentially arranging 

the s elements within the section. The remaining n — s elements can be 

preferentially arranged among the r restricted sections in rn-s ways. Taking 

the product and summing over s we obtain the result of the theorem. □

Lemma 3.1. For r G N°,

n
Pi+1(n) =  E  (n)Pi(s) where p .(0) =  1,

s=°

for all n G N°.

Proof. The proof of the lemma is similar to that of Theorem 3.2. In this 

lemma we are dealing with r +  2 sections, this is from the definition of 

Pi+1(n). In proving the lemma we base our argument on a single fixed re

stricted section, for argument sake say its the section. We recall that 

Pi+1(n) =  |Gn+1|. We argue as follows. The maximum number of elements
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of X n that can go into the section is n and the minimum number is 0. 

For s elements on the section (where 0 < s < n), there are (;) ways of 

selecting the s elements. There are p.(n) ways of preferentially arranging 

the s elements among the other r +  1 sections other than the section (by 

definition of p .+1(n)). The remaining n — s elements can be preferentially 

arranged on the section in 1 way (since the section is a restricted sec

tion). Taking the product and summing over s we obtain the result of the 

lemma. □

We will prove the result of Lemma 3.1 above in a more general form in 

Section 3.2 as Theorem 3.5.

Lemma 3.2. For r G N,

n—1
p. (n) =  rn +  (n) rsPi(n — s),

s=° s

for all n G N .

Proof. In proving the result of the theorem we consider two cases. Both 

cases will be based on the free section on elements of G.(n). The elements 

of G.(n) can be partitioned into two disjoint subsets. Where one subset
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contains those elements of G.(n) whose free section is empty, and the other 

subset containing those elements of G.(n) whose free section is non-empty.

In the first case, the free section being empty on % G G.(n) means that 

the n elements are distributed on the r restricted sections. The number 

of ways of preferentially arranging the n elements among these r restricted 

sections is rn.

In the second, case the free section being non-empty on % G G.(n) means 

that the maximum number of elements which are not in the free section 

on % in this case is n — 1. Lets say there are s elements which are not 

in the free section. There are ( ;)  ways of selecting the s which are not to 

go to the free section. There are rs ways of preferentially arranging the s 

elements among the r restricted sections. The remaining n — s elements 

can be preferentially arranged on the free section in p5(n — s) ways. Taking 

the product and summing over s we obtain the number of elements in this
n—1

case as rsp°(n — s). Combining the two cases we obtain the result of the
s=°

lemma. □
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Lemma 3.3. For r G N,

n—1
Pi(n) =  P.—.(n) +  (n)Pi- .(s) where p1(0) =  1,

s=°

for all n G N.

We will generalise Lemma 3.3 in Section 3.2 as Theorem 3.7 and give a 

proof of the theorem.

3.2 Generalised family of Nelsen-Schmidt type.

Apart from proposing an answer to the open question of Nelsen and Schmidt, 

we further ask the following..

Question.
In constructing restricted barred preferential arrangements X n having r bars, 

instead of the requirement we made in Section 3.1 that one fixed predefined 

section be a free section and the remaining r sections be restricted sections, 

what if we allow more that one section to be free? What sort of generating 

functions would such restricted barred preferential arrangements have and 

how would the family of such generating functions relate to that of Nelsen 

and Schmidt considered in Section 3.1 above?
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Answering the question we argue in the following way. Constructing re-

stricted barred preferential arrangements of X n having m G N° bars here we 

require without loss of generality the first r G N° of the m + 1  sections be re

stricted sections and the remaining j  fixed predefined sections be free (where 

j  =  m + 1  — r). We denote such restricted barred preferential arrangements 

of pr (n) and the set of these arrangements by Gr (n). The number pr (n) using 

a similar argument to that used to obtain (3.2) of Section 3.1 is,

Pr(n) =  Y 1 C  (n; wi>
n

, Wr i wr+1 j ' ' ' j wr+j) (1)
i=1

r+j
n  j ° (3.5)

s=r+1 s

where the summation is taken over all solutions Q in non-negative integers 

of the equation w. +  ■ ■ ■ +  w  +  ■ ■ ■ +  wr +  wr+. +  ■ ■ ■ +  +  ■ ■ ■ +  wr+j =  n.

Using a similar argument to that used in (3.4) of Section 3.1 the gener

ating function (denoting it by P j (x)) for the numbers pr (n) is given by the 

following theorem.
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Theorem  3.3. For j  G No the generating function for the number (n) of 

restricted barred preferential arrangements of X n having r G N0 restricted 

sections and j  G N0 free sections is,

(x) En=0
pr (n) xn 

n!
erx

(2- ex)j '

We observe that the family of generating functions 2z ^  proposed by Nelsen 

and Schmidt in Section 3.1 is a special case of the family of generating func

tions in Theorem 3.3, this occurs when j  =  1 on the generating function in 

Theorem 3.3. Hence Theorem 3.3 offers a generalised answer to the open 

problem of Nelsen and Schmidt.

We now propose theorems and conjectures on the numbers (n).

Theorem  3.4. For j  G N0 and r G N,

n
(n) =  E  (n) rsp0(n — s) where p0(0) =  1,

s=0 S

for all r G N.

Proof. We recall that (n) is the number of restricted barred preferential ar

rangements of X n having r G N0 restricted sections and j  G N0 free sections, 

and the set of these restricted barred preferential arrangements being (n).

In proving the theorem we view the r restricted sections as a single unit and
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the j  free sections also as a single unit. We argue as follows, on an element

G Gr (n) we assume there are s elements which are distributed within the 

r restricted sections (where 0 < s < n). There are Q) ways of selecting 

the s elements. The s elements can be preferentially arranging among the 

r sections in rs ways. The remaining n — s elements can be preferentially 

arrangement within the j  free sections in p0(n — s) ways. Taking the product 

and summing over s we obtain the result of the theorem. □

We now generalise Lemma 3.1 of Section 3.1.

Theorem  3.5. For r, j  G N0,

n
pi+1(n) =  Y, (n)Pr (n — s) where p0(0) =  1,

s=0

for all n G N.

Proof. In proving the result we base our argument on a fixed predefined 

restricted section. For argument sake we say this fixed restricted section is 

the section. We assume, out of Gi+1(n) elements, there are s elements 

on the section (where 0 < s < n). There are (n) ways of choosing 

the s elements which are to go into the section. There is one way of 

preferentially arranging the s elements on the (since the section is
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a restricted section). There are pr(n — s) ways of preferentially arranging 

the remaining n — s elements among the other r +  j  sections, of which r of 

them are restricted and j  of them are free sections. Taking the product and 

summing over s we obtain the result of the theorem. □

The following theorem is a generalisation of both Lemma 2.2 of Chapter 2 

and Lemma 3.2 of Section 3.1.

Theorem  3.6. For r G N0 and j  G N,

n—1
Pr (n) =  Pr—i(n) +  Y, (n)Pr—i(s)Pi(n — s) where p°(0) =  1,

s=0

for all n G N.

Proof. In obtaining the number Pr (n) we base our argument on a fixed free 

predefined section. For argument sake we say the fixed free section is the 

section. We consider two scenarios, the first one being elements of Gr(n) 

having their section empty and the second one being elements of Gr (n) 

having their section being non-empty. In the first scenario on an element 

ip G Gr (n) the section being empty means that the n elements of X n are 

preferentially arranged among the other r +  j  — 1 sections of ip, of which j  — 1 

of them are free sections and r of them are restricted sections. The number
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of such restricted barred preferential arrangements is Pr—1(n) (by definition 

of Pr—1(n)) .

In the second scenario the section having at least one element means 

that on ip G Gr (n) the maximum number of elements which are not on the 

section is n — 1. The total number of such elements of Gr (n) whose section 

has at least one element is given as follows. Suppose there are s elements 

which are not to go into the section on elements of Gr (n). There are Q) 

ways of selecting the s. The s elements can be preferentially arranged on the 

r +  j  — 1 other sections in Pr—1 (s) ways. The remaining n — s elements can be 

preferentially arranged in the section in p5(n—s) ways. Taking the product
n—1

and summing over s we obtain the number ^  (ff)Pr—1(s)P0(n — s). □
s=0

We now generalise Lemma 3.3 of Section 3.1 to the following theorem. 

Theorem  3.7. For j  G N0 and r G N,

n— 1
Pr(n) =  Pr—1(n) +  E  (n)Pr—1(s) where p°](0) =  1,

s=0

for all n G N.

Proof. We prove the theorem in a similar way to Theorem 3.6. Here instead 

of basing our argument on a fixed free section we base our argument on a
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fixed restricted section. For a fixed predefined restricted section say the 

section, we argue as follows in obtaining the number pr (n). We have two 

cases, the first one being the section being empty and the second one 

being the section being non-empty. In the first case the section being 

empty on a 3  G Gr (n) means that the n elements of X n are preferentially 

arranged on the other r +  j  — 1 sections, r — 1 of which are restricted and j  

are free. The number of elements of Gr (n) having this property is pr—1(n).

In the second case, the section being non-empty means that, there can 

be a maximum of n — 1 elements which are not to go into the section. 

Suppose there are s elements which are not to go into the section. Then 

there are (n) ways of selecting them, there are pr—1(s) ways of preferentially 

arranging them into the r +  j  — 1 other sections. The remaining n — s 

elements can be preferentially arranged on the section in one way. Taking
n—1

the product and summing over s we obtain ^  (n)Pr—1(s) as the number of
s=0 S

elements of Gr (n) whose section is non-empty. □
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Lemma 3.4. [NJ91]For r G N0,

p1+1(n) =  2p1(n) — rn,

for all n G N0 .

Lemma 3.4 was proposed and proved by Nelsen and Schmidt in [NJ91] 

using an algebraic argument. We prove the lemma in a generalised form in 

the following theorem using a combinatorial argument instead.

Theorem  3.8. For r G N0 and j  G N,

pr+1(n) =  2pr (n) — pr—1(n) where p0 (0) =  1,

for all n G N0.

Proof. In proving the theorem we construct the set Gr+1(n) using elements 

of the set Gr (n). We assume that the last section (from left to right) of each 

element of Gr (n) is a free section. In obtaining the number of elements of

the set Gr+1(n) we argue as follows. On each element of Gr(n) we add an
*

extra bar | to the far right of each $  G Gr (n) to form a set D r (n). So the
* * 

bar | is to the right of the last section of 3ft G D r (n). To the left of the bar |

on each 3ft G (n) is a free section and to the right of the bar is an empty
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* *  
introduction of the extra bar | . We observe that the addition of the extra bar |

on elements of Gr (n) does not affect counting. So |Dr (n)| =  pr (n) =  |Gr (n)|.

We now form a new set Rr(n) =  {0 ,1 } x D r(n) which contains the same
*

elements as the set Dr (n) where the bar | now has an index 1 and separately

an index 0 (see [CAP13]). So the set Rr (n) has twice the number of elements
*

as the set D r (n), where on half of the elements of Rr (n) the bar | has the
*

index 0 and on the other half the bar | has index 1.

We now make use of elements of the set Rr (n) to construct elements of
*

the set Gr+1(n). We base our argument on the index of the bar | of each 

element of Rr(n) which is either 0 or 1. We argue as follows.

I. We collect all those elements of the set (n) whose index on the bar
*
| is 0 to form a subset L. The number of elements in the set L is pr (n) (this 

is so since half of elements of Rr (n) have the index 0). Elements of L have 

r +  j  +  1 sections of which the (r +  j  +  1)st section is empty. We interpret 

elements of L as those elements of Gr+1(n) whose (r +  j  +  1)nd section is 

empty.

section. Also each element of the set D r (n) has r +  j  +  1 sections due to the
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*
block of the free section closest to the bar | to be the only block to the right

*
of the bar | to form a set Y  (see [CAP13]). There are pr (n) elements on

*
Rr (n) whose index on the bar | is 1. So |Y | =  pr (n) with possibly empty 

(r +  j  +  1)st sections.
*

When not considering the indexing on the bar | on elements of Y  and 

elements of L we observe that some elements are common elements between 

the two sets when interpreted as elements of Gr+1(n). These common ele

ments occur in the construction of the set Y , where the free section closest
*

to the bar | is empty. In this case there is no block to shift to the right of *
*

the bar |. This occurs when the n elements of the underlying set X n are 

preferentially arranged on the r +  j  — 1 other sections on <9 G Gr (n) other 

than the (r +  j  +  1)st section. The number of elements of Gr(n) with this 

property is pr- 1(n) (by definition of pr- 1(n)). Hence |Y f  L| =  pr- 1(n). Now 

|Y U L| =  |Y| +  |L| — |Y f  L| ^  |Y U L| =  pr(n) +  pr(n) — pr- 1(n). The 

set |Y U L| is the set of all restricted barred preferential arrangements of X n 

having r +  1 restricted sections and j  free sections.. By definition of Gr+1(n) 

we have Y  U L =  Gr+1(n). This completes the proof. □

II. On those elements of Rr (n) whose index on the bar | is 1, we shift the
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Conjecture 3.1. For r , j  G No,

CO

Pr(n) =  E  (s=0
j+s-1 (r+s)n 

2J+S ,

for all n G N.

C onjecture 3.2. For r, j  G N,

j pr+1(n) =  pr (n +  1) — rpr (n^

for all n G N .

C onjecture 3.3. For r , j  G N0,

P1 (n +  1) =  rp1(n) +  E  0 P1(s)P1(n —
s=0 s),

for all n G N0.

It would be interesting to prove the above conjectures using a combinatorial 

argument.
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3.3 A  note on the family of generating func

tions of Nelsen-Schmidt type for negative

values.

Question.
We recall the question of Nelsen and Schmidt as discussed in Section 3.1 

above. “Can there be combinatorial structures that can be associated with 

either the set X n or the power set of X n, whose integer sequences are gen

erated by members of the family 2 -̂  ̂ for other values of r other than r =  0 

and r =  2 ?” Here we ask the same question now instead of asking it for non

negative integers as in Sections 3.1 and 3.2 we now ask for negative values of 

r, which we denote by r (where r G Z -  =  {0, —1, —2, —3 ,.. .} ) .

We recall the number pr (n) as defined in previous sections as the num

ber of restricted barred preferential arrangements of X n having r restricted 

sections and j  free sections, where r, j  G N0. The set of such restricted 

barred preferential arrangements being denoted by Gr (n). We now interpret 

restricted sections of restricted barred preferential arrangements of X n as a 

single unit. Where the number restricted sections is r and the number of free
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sections is j .  We refer to those restricted barred preferential arrangements

which are having an even number of elements on the restricted sections com

bined as even restricted barred preferential arrangements. We denote their 

set and their number by G ^ n )  and p^6 (n) respectively. Similarly we refer 

to those restricted barred preferential arrangements which are having an odd 

number of elements on the restricted sections combined as odd restricted 

barred preferential arrangements. We denote their set and their number by 

Gr,o(n) and pr,o(n) respectively.

Lem m a 3.5. For r, j  G N0,

L n J
Pr,e(n) =  E  (2S) X r2s x p0(n — 2s),

s=0

for all n G N0.

Proof. In proving the lemma we consider r +  j  sections of the arrangement, 

r of which are restricted, and the remaining j  are free. For s elements on 

the restricted sections (where 0 < s < |_nJ), there are (™) ways of choosing 

an even number of elements from the elements of X n. There are r2s ways 

of preferentially arranging the 2s elements on the restricted sections. The 

remaining n — 2s elements can be preferentially arranged on the j  free sections 

in p0(n — 2s) ways. This completes the proof. □
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L n J
p '’°(n) =  E  (2,”+1) x r2s+1 x p0(n — 2s — 1),

s=0

for all n G N0.

Using a similar argument to that of Lemma 3.5 we obtain the result of 

Lemma 3.6. We end this chapter with the following theorem.

Theorem  3.9. For fixed T G Z -  and j  G N0 the quantity pr(n) =  [n ] ^ -” 1̂  

is the difference between the number of restricted barred preferential arrange

ments of Gr (n) having an even number of elements on the restricted sec

tions minus the number of those restricted barred preferential arrangements 

of Gr (n) having an odd number of elements on their restricted sections.

Proof. Treating ^ -” 1̂  as a convolution, we have

(—1)s x rs x p0(n — s) for r G N0 (3.6)

Applying Lemmas 3.5 and 3.6 to (3.6) we obtain the result of the theorem. □

Lemma 3.6. For r, j  G N0,
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Chapter 4

A  Literature Survey of Some 

Studies Related to the Study of 

Restricted Barred Preferential 

Arrangements.

In this chapter we do a literature survey of some studies related to the study 

of restricted barred preferential arrangements and their associated generating 

functions.
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4.1 A  Generalisation of Nelsen’s Conjecture

and Related Problems.

We now study the generating function ^ -” 1̂  which was discussed in Chap

ter 3, here for r, j  G R, instead of r, j  G N0 as in Chapter 3. In [GLW+84]
n k ro

Nelsen conjectured that (S) (—1)k-s(r +  s)n =  2 ^  (where r G
k=0 s=0 s=0

R). Three alternative algebraic proofs of the conjecture were proposed by 

Donald Knuth et al in [NKBW87]. Here we propose and prove an alternative 

identity generalising Nelsen’s conjecture. We further show that such a gen

eralisation of Nelsen’s conjecture under certain restrictions of r and j , may 

be interpreted combinatorially using the idea of restricted barred preferential 

arrangements.

Lem m a 4.1. [GLW+ 84]'N elsen’s C on jectu re. For r G R,

n k ro
+ s)n =  2 E  ^ ,

k=0 s=0 s=0

for all n > 0.

We now generalise Nelsen’s conjecture. 

We let uj (n) =  [n ] Uj (x), where Uj (x) for r, j  G R .
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Theorem 4.1. For r, j  G R,

n k
E E (:) (») = 1 e

ro r+fc

k=0 s=0 2 ^  2k k=0

for all n G N .

Proof. Uj (x) =  (2- 1 erx =  1 Y
2 (2- ex)j-1 2k =  2

e(r+k)x
ex)j 2 (2- ex)j-1 2k 2 2k(2-ex)j-1k=0 k=0

OO r + k/ \, _ [ ] erx _ 1 Y"̂  uj - 1(n)
 ̂ [ n! ] (2- ex)j =  2 Ni 2k .-  k=0

ro
Also Ur(x) =  ^ -6^  =  (2_eX)j-1 E  (ex — 1)k. Since,

k=0

dxn( (2_ ^ j - !  ro (ex — 1)k)|x=0=0 for all k > n then
-  k=0

r o ndn / erx \—> / x -i \ k \ | dn / erx \—> / x i \ k \ I
dxn ( (2-ex)j-1 S  (e — 1) )|x=0 dxn ( (2-ex)j-1 S  (e — 1) )|x=0k=0

|x=0=

)k)

n k
= ^  [n ] ( (2e'e'X)j ) =  J2 Z ) (—1)k-s«r+i (n). The argument used in proving 

the theorem is the same kind of argument as that used in proving Equations

k=0

(2) and (4) of [Gro62].

□

N ote 4.1. On the statement of the Theorem4.1, when j  =  1 we have 

uj(n) =  (r +  s)n, which makes Theorem 4.1 corresponding to Nelsen’s con

jecture.

When we restrict the parameters r and j  to be non-negative integers 

on the generating function which we used in proving Theorem 4.1
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referring to Chapter 3, the generating functions have combinatorial interpre

tations of being the generating functions for the numbers pj (n) of restricted 

barred preferential arrangements. So pj(n) =  uj(n) for r, j  G N0.

Lem m a 4.2. [Gould&Mays[GM87]]  The number of chains in the power set 

of Xn is,

n k
E  E  (k')('2 +  s O -M )*-1 ,k=0 s=0

for all n G N0.

Lem m a 4.3. For r G N0, the number of restricted barred preferential ar

rangements of X n having r +  k restricted sections such that the k restricted 

sections are non-empty for k =  0, 1, 2, . . . ,  n is,

n k
E  E  (k)(r +  s )" (—1)k-k,k=0 s=0

for all n G N0.
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Theorem 4.2. For r G N0 and j  G N the number of all restricted barred

preferential arrangements of X n having r +  k restricted sections and j  — 1 

free sections such that the k fixed restricted sections are non-empty, 

for k =  0, 1, 2 . . . ,  n is,

n k
e  e  (k)p;+i(n)(—1)k-k,k=0 s=0

for all n G N0.

Proof. In proving the theorem we use the same kind of argument as that used 

by Gould and Mays in proving Theorem 1 of [GM87] even though the work 

is in a different context the argument used is relevant in proving this one. 

When there are r+ k  restricted sections and j  — 1 free sections. The number of 

restricted barred preferential arrangements of X n such that one of the chosen 

k sections is empty is pj+k-:L(n) and there are (1) ways of choosing one of the 

k sections. The number of restricted barred preferential arrangements of X n 

such that 2 of the k sections are empty is pr+k-1(n) and there are (n) ways of 

choosing 2 of the k sections,,,,,,,,,,,,,, Consequently by the inclusion/exclusion 

principle the number of restricted barred preferential arrangements of X n
n k

such that the k sections are non-empty is C)Pr+k-k(n)(—1)k-k.k=0 s=0 -

□

51



N ote 4.2. On Theorem 4.2 when j  =  1, we have

n k
Y) E  0  (—1)k-s(r+ s)n, which is one side of Nelsen’s conjecture. So the the-
k=0 k=0

orem offers a generalised combinatorial interpretation of one side of Nelsen’s 

conjecture.

N ote 4.3. On the above theorem when r =  2 and j  =  1 we have

n k
Y) E  ( J (—1)k-s(2 +  s)n which is one side of Gould & May’s lemma above
k=0 k=0

(see Lemma 4.2). This suggests that for r =  2 and j  =  1 there must be a 

1-1 correspondence between restricted barred preferential arrangements of X n 

and the number of chains in the power set of X n.

Lem m a 4.4. For r G N,

n k
E  E  (k)(—1)kpT k+r(n) =  pU ^k=0 k=0

for all n G N .

Theorem  4.3. For j  G N and r G N0,

n k
E  E  (k')(— V p ^ ' Mk=0 s=0 Pr (n^

for all n G N .

n k
Proof. By Theorem 4.2 we have Y) E  © ( —1)kPr+k-k(n) as the number of

k=0 s=0 -

restricted barred preferential arrangements of X n having r +  k restricted
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sections and j  — 1 free sections such that k fixed restricted sections are non

empty. Treating the k restricted sections as a single unit, the distribution 

of elements on the k restricted sections form a preferential arrangement of a 

subset of X n. So the k restricted sections as a single unit, may be interpreted 

as a single free section. Hence the number of arrangements of X n having 

r +  k restricted sections and j  — 1 free sections is the same as the number of 

restricted barred preferential arrangements of Xn having r restricted sections
k

and j  free sections. Thus C )(— 1)kPr+k-k(n) =  Pj (n). When summing

over k we obtain the result of the theorem.

□

4.2 Relation to Eulerian numbers.

In this section we relate the number pr (n) of restricted barred preferential ar

rangements to Eulerian numbers. We consider the permutation 6 2 3 4 1 5 

of the set X 6 =  {1, 2, 3, 4, 5, 6}. The permutation has three increasing runs, 

which are 6, 2-3-4 and 1-5. For n G N when the set of all permutations of 

X n =  {1, 2, 3 , . . . ,  n} is partitioned according to number of increasing runs, 

we obtain numbers called Eulerian numbers (see [VC95]). We denote by
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E(n, s) the number of all permutations of X n having s increasing runs

(where 1 < s < n). Following is a table for the Eulerian numbers, where the

entry on column i of row n is E(n, i).

Table 4.1: [VC95]

n E (n 1) E(n, 2) E(n, 3) E(n,
1 1
2 1 1
3 1 4 1
4 1 11 11 1
5 1 26 66 26

E(n, 5)

1

Lem m a 4.5. [VC95] For n G N,

Pi(n) =  E  E(n, s)2n s
s=1

TO1 sn
2 4^ 2s •s=0

Theorem  4.4. For r G N,

Pi (n)
n

2r E  E(n, y)2n-y
y=i

r—l2r-i yn2 Z_̂  2y ,y=0

for all n G N.

Proof• By Theorem 4.1 and 4.3 of Section 4.1 we have,

P l(n) 1 ^  pQ+s(n)
2 ^  2ss=0

1
2 Es=0

(r +  s)n 
2s (4.1)
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Letting y =  r +  s on (4.1) we obtain,

Pi(n) =  2 £  E E  =  2r—1 £2 ^  2ss=0 2yy=r
(4.2)

^  r—1 ^
We write E  yy =  E  yy +  E  yy. It follows that

y=0 y=0 y=r
^ r—1 ^

f- E  yy =  2r—1 yy +  2r—1 E  yy. Using (4.2) we have
y=0 y=0 y= r

p1(n) =  y  E  y2y — 2r—1 E  yy. Applying Lemma 4.5 we have
y=0 y=0

r—1
P1(n) =  2r £  E(n, y)2n—y — 2r—1 £  y

y=1 y=0
2y (4.3)

□

4.3 Relation to Bell numbers.

In this section we establish a relation between the number of restricted barred 

preferential arrangements and Bell numbers (Bn). Combinatorially the Bell 

numbers give the number of unordered partitions of X n [Slo]. A definition of 

the Bell numbers Bn is E  B2nT" =  e6*- 1 (see [Wil, Slo]).
n=0
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We consider the sequence having code A059099 on the oeis (see [Slo]); which 

is the sequence 1,2,7,33,198,1453,.. .We denote the nth term of the sequence 

A059099 by m(n) and the generating function of the sequence by M (x). The 

generating function M (x) is given by (see [Slo]);

eex- 1
M  (x) =  2^  (4.4)

We recall as defined in Chapter 3 that the generating function for the number 

p1(n) of restricted barred preferential arrangements of X n having r G N0 

predefined restricted sections and 1 free section is given by,

P r (x) 2 -  ex
(4.5)

Theorem  4.5. A bivariate generating function for the numbers pr (n),

OO OO x
p (x,y) =  E  E  P1(n)Syrf =  f —y  .

r=0 n=0

Proof. P (x ,y ) =  E  E  P1(n)nyr (from definition of P(x, y))
n=0 r=0

CO CO

E  ( E  P1(n) s  r-r=0 n=0 
oo

r=0 2—exE  ( yr [By (4.5)]

rxe
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1 ™ r —— Pr*y2—eM e r!r=0

2-ex

Theorem  4.6. For n G N0

m(n(n) =  1 E  ^r=0

Proof. By Theorem 4.5 we have P (x ,y ) =  2ze'x y
r=0 2—ex r!

_ 1 t)( \ e—1 (exy)r ee y—1e 1p (x ,y) =  26-ex E  ~^T  =  " ^ " ^ •
r=0

Implying that,

e 1P  (x, 1) eex 1

2 -  ex

It follows that,

eexy

dn /(ve—1p (x , 1) |x=0
1 ^  p1(n) 
e ^  r!r=0

□

(4.6)

(4.7)

By (4.4),(4.6) and (4.7) we obtain the result of the theorem. □

Theorem  4.7. For n G N0,

m(n) E  C)P?(s)B„—,s=0

Proof. We construct barred preferential arrangements of X n having 1 bar 

in the following way. We require one fixed predefined section to be a free
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section and elements which are to go to the other section to be partitioned 

into non-empty unordered subsets in any possible way. In obtaining the total 

number of such barred preferential arrangements we argue as follows. There 

are (n) ways of choosing s elements which are to go into the free section 

(where 0 < s < n). There are p?(s) ways of preferentially arranging the s 

elements within the section. The remaining n — s elements can be arranged 

on the second section in Bn—s ways. Taking the product and summing over
n

s we obtain the number ^  Q)p°(s)Bn—s . □s=0 s 1

The author has submitted the interpretation of the sequence m(n) given in 

Theorem 4.7 on the oeis [Slo], as the sequence A059099.

4.4 On Some Properties of the Number of 

Restricted Barred Preferential Arrange

ments.

In this section we propose two theorems generalising equations in [Gro62]. 

We recall from Chapter 3 that for r, j  G N0 the generating function
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P j(x) =  2̂<-ex)i is that of the number pr(n) of restricted barred preferen

tial arrangements of X n having r fixed predefined sections restricted and j  

sections free.

Lem m a 4.6. [Gro62] For n G N,

E E
p0(n) =  E  V kkn =  E  V kkn .

k=0 k=0

In the above lemma, V  is the backward difference operator defined as, 

V f(x )  =  /  (x +  1) — /  (x) (see [Sch88]).

Theorem  4.8. For r G N0,

E E
p1(n) =  E  E r V kkn =  E  V kE rkn,

k=0 k=0

for all n G N.

Proof. The following proof of the theorem uses the same kind of argument

as that used in obtaining Equation 8 of [Gro62].

P [ (x)
E k

E (e "  — 1)k =  erx E E  (k) (—1)s(ex)2—ex 1—(ex —1)
k

s/" gX\k—s
k=0 k=0 s=0

Pi(n) =  E  E  © (—1)s(k — s +  r)n
k=0 s=0
E k

Pi(n) =  E  E r E  ©  (—1)s(k — s)n
k=0 s=0

The fact that V k =  [1 — E —1]k =  E  (k) (—1)sE —s (see [Sch88])
s=0

XXe e rxe
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= ^  Pl(n) =  E  E r V kkn = 5 2  V kE rkn.
k=0 k=0

The second equality is due to the fact that V E  =  E V  (see [Sch88]). □

On Lemma 2.1 of Chapter 2 we have illustrated a four cycle property 

satisfied by the last digit of the number of barred preferential arrangements, 

here we prove the result for the number of restricted barred preferential 

arrangements, which in a certain way can be viewed as a generalisation of 

barred preferential arrangements.

Lem m a 4.7. [Gro62] For a fixed s G N0 the following congruence holds,

sn+4 — sn =  o mod 10 ,

for all n G N .

Lem m a 4.8. [Gro62] The last digit of the sequence p0(n) has a four cycle 

for all n G N .

Theorem  4.9. For fixed r , j  G N0 the last digit of the sequence pj (n) has a 

four cycle for all n G N .

Proof. The theorem and its proof are generalisations of an equation in [Gro62] 

using the same kind of argument. Showing that the last digit of pj(n) has a
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four cycle is equivalent to showing that

pr (n +  4) — pj (n) =  0 mod 10 (see [Gro62]).

rx , E  (- j )( —1)se(r+s)x
We have P j (x) =  (2—ex y =  27 £  — — 2s-------- .

s=0
dn
dxn P r(x) ) lx=0 =  27 E  (s) (  2S ^ a) =  Pr (n). We make the change j 2 s=0 2

e  ( - j v_ i)c-rcn
of variable c =  r +  s. So pr(n) =  27 ^  Vc-r̂ 2c-r-----

E ( -j )(_1)c-r cn+4
Pr(n +  4) =  27 E  (c-r)( 2!  C .

So

P7(n +  4) — P7(n) =  2j S1 (— •) (—1) [cn+4 — cn] (4.8)
c—r

c—r

Applying Lemma 4.7 to the expression cn+4 — cn on (4.8) we obtain the result 

of the theorem. □

We now illustrate the four cycle property in the theorem for some well known 

integer sequences.

Illustration 1.

We consider the sequence p2(n) for n > 1 generated by the generating

function 2x
2- ex *

The last digit of the sequence has the four cycle 1-3-1-1-3. The sequence

for n G N0 has the code A007047 in [Slo] (the on-line encyclopedia of integer
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Table 4.2

n p i(n)
1 3
2 11
3 51
4 299
5 2163
6 18731
7 189171
8 2183339
9 28349043
10 408990251

sequences). The sequence gives the number of chains in the power set of X n 

(see [NJ91]).

62



Illustration 2.

Here we illustrate the four cycle property of the last digit of the sequence

p^(n) whose generating function is e3x
2—ex .

Table 4 3

n p i(n)
1 4
2 18
3 94
4 582
5 4294
6 37398
7 378214
8 4366422
9 56697574
10 817979478

The sequence has the four cycle property 4 — 8 — 4 2. The author

submitted the sequence on the oeis as A259533.

4.5 Relation to Fuzzy Sets.

We use I  =  [0,1] the unit interval of real numbers. For a given set

X n =  {x 1,x2, . . .  , xn} a fuzzy subset wn of X n is a mapping wn : X n ^  [0,1]

(see [Zad65]). We denote by I Xn the set of all fuzzy subsets of X n.
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Definition 4.1. [MM05] Two fuzzy subsets iwn and ^n of X n are equivalent 

if and only if,

1 • ^n(xi) 1 '   ̂ ^n(xi) 1-

I I . ^n(xi) F ^n(xj ) '   ̂ ^n(xi) F ^n(xj ) -

I I I . ^n (xi) 0 '   ̂ ^n(xi) 0*

The relation in Definition 4.1 is an equivalence relation [MM05]. We de

note by F(n) the number of resultant equivalence classes. We recall from 

Chapter 3 that pr (n) is the number of restricted barred preferential arrange

ments of X n having r G No restricted sections and j  G No free sections, whose 

generating function is denote by PJ (x) =  (2—e_ - The exponential generating 

function of F(n) is 23^  (see [Mur06a]). This implies that F(n) =  p2(n).

Theorem  4.10. For j  G N,

n — 1
pr (n) =  pr— i (n) +  X] (n)pr (s) ,

s=0

for all n G N.

Proof. The theorem is a generalisation of Equation 3.4 of [Mur06a]. By
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Theorem 4.1 and 4.3 of Section 4.1 we have

pr (n)
1 ^  pr+S (n)
2 ^  2ss=0

(4.9)

This implies that (see [Gro62]);

n — i /  \

e  ( : }m=0 ' '
pL (n — : )

1
2 Es=0

n — 1

m=0
: )

1
2s '

Which implies that (see [Gro62]);

n 1

em=0 ' '
pr (n — : )

1
2 Es=0

n
e  (m) pr+s (n —: )  x 1s— 1m=0

1
2s (4.10)

On the convolution Pj+f (x) x PQ (x) of Pj+f (x) (2—j and Po1(x) ex

the term [n][PJ+1s(x) x PQ(x)] is (by convolution);

pj+1+1(n)
e  ( : )m=0 '  '

pr+s(n : )  x 1 s
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So (4.10) becomes,

n-1 , x

e  o
m=0 '  '

pL (n — m)
1
2

X

E;=0
Pr+;+1Pj-1 (n) — 1

1
2s '

Hence,

n-i /  \

b  m )m=0 '  '
pr (n — m)

1
2

“  pj+;+1(n) 
2;;=0

1
2 E;=0

1
2s '

It follows that,

n- 1

b  m )m=0 '  '
r jj ( n — m ) 1

2
~  p j+ r 1 (n) 

2;;=0
1 .

We let s +  1 =  p,

Which is,

n—1 / \ x  r+p/ \
E  (m )p r(n  — m) =  £  Pj—1(n)
m=0 ' 'm=0 p=1

2p 1

n 1n— 1 / \ x  r+p/ \

E  (m )r5 (n  — m) =  E  Pj#  — Pj—1(n) — 1
m=0 '  ' p=0
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By (4.9) we have (see [Gro62])

n—1 /  \

m=0 '  '
pr (n m) =  2pr (n) — pr-1 (n) — 1 .

This implies that,

pjj (n) ± om= 1 v 7
pr (n m) +  Pr-1 (n) .

It follows that,

pr (n)
n-1 /  \

£  ns=0 v 7
pr (s) +  pTj—1 (n) .

□

C orollary 4.1. [Gro62] For j  E N,

p?(n)
n— 1
Es= 1

n s) +  1

for all n E N.
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C orollary 4.2. [Mur06a] For j ,n  E  N,

n
F (n + 1 ) = £  (n+ 1)F (s) + 2n+1 ,

s=0

for all n E  N0.

Proof. On the theorem when r =  2 and j  =  1 we have,

n—1 /  \
p?(n) =  p0(n) +  £  ( J p ? ( s ) .

This implies that,

n—1 /  \
p2(n) = 2n +  £  ( n )p i ( s ) .

s=0 s

This is so since the sequence p0(n) has the exponential generating function

e2x

Letting n + 1  equal to n we have,

p2(n +  1) =  2n+1 +  £  ( n +  r )p?(s)
s=0 '

(4.11)

Substituting p1(n) by F(n) we obtain the result. □
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We end this chapter with three theorems of which the three theorems fol-

2xlow from the property that the generating function of F(n) is 2-—̂ (see [Mur06a]).

Theorem  4.11. For n G N0

F(n) =  E  C)p1(s) .s=0

The theorem follows from convolution of ex and 1
2- -x '

Theorem  4.12. For n G N0

F (n) =  p1(n) +  J2 (n)p 1 (n — s)
s=1

The theorem follows from convolution of ex and -2 -x

Theorem  4.13. For n G N0

F (n) =  2n +  £  (n )p0(s)2n—s
s=1

The theorem follows from convolution of e2x and 1
2—-x '
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Chapter 5

Poly-Bernoulli Numbers.

In this chapter we study the generating function (2-—-7) which was discussed 

in Chapter 3, generalising that of Nelsen and Schmidt. Here we study the 

generating function for r and j  now both being non-positive integers. We 

relate the generating function to poly-Bernoulli numbers for non-positive 

values of r and j .  We also interpret poly-Bernoulli numbers as giving the 

number of restricted barred preferential arrangements.
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5.1 Poly-Bernoulli numbers.

Clearly the requirement that r and j  be non-positive integers on the gen

erating function (2—-X)7 is equivalent to having r and j  being non-negative 

integers on the generating function (2—rex )J. We denote, P—J (x) =  (2—rex )J and 

p—r(n) =  [xn]P—j(x ), for r, j  e N0.

Poly-Bernoulli numbers (denoting them by Bn, for k e Z  and n e N0) 

seem to first appear in [Kan97], in which the author defined them as,

S  BrkXnf =  i_——x— , where Lik (x) is a poly-logarithm defined as
n=0

Life (x) =  xk (for a fixed k e Z).
s=1

In this section we establish relationships between poly-Bernoulli numbers 

of index -2 and the number of restricted barred preferential arrangements.

The poly-Bernoulli numbers B— 2 of index -2 have the code A027649 on the 

oeis [Slo].

A closed form for B— 2 (see [Kam13]),

B— 2 =  2 x 3n -  2n where n e N0 . (5.1)
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The formula in (5.1) also appear in [hay09] in a different context without 

reference to poly-Bernoulli numbers.

Theorem  5.1. For r e N0,

p—r (n) =  (—1)nB—2 ,

for all n e N0.

Proof. The result follows from the generating function

P—J (x) =  of the numbers p—r (n). □

Theorem  5.2. For j  e N and natural number r > 3,

n
j  i(n) =  E C  ) ( - 1 ) ‘ B r2 X pr (n -  s) ,

s=0

for all n e N0.

Proof. The theorem follows from the convolution of the generating functions 

and (2 ——xj  , where j  e N and natural number r > 3. □
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5.2 Multi-poly-Bernoulli numbers

Arakawa and Kaneko in [AK99] generalised poly-Bernoulli numbers to multi- 

poly-Bernoulli numbers (denoting them by B^'1 ’"'Jb) for ji , j 2, . . .  , j b e Z) in

the following way: E  Bn1’" '  (1_ xNe— , where
n=0 (1—e-x)

(x) =  Sl h°b.Sb h . Here we show how multi-poly-Bernoulli num
0<si<---<«b

bers can be related to the number pr (n) of restricted barred preferential 

arrangements. We then show how a four cycle of last digit property satis

fied by the numbers pr (n) as shown in Theorem 4.9 is also satisfied by the 

multi-poly-Bernoulli numbers.

Theorem  5.3. [Kam13] A multivariate generating function for multi-poly- 

Bernoulli numbers,

^e  ^e  ,
E  E  ••• E  x E B i —j1

' 1=0 ' 2=0 'b=0 n=0
■'b) pH 

' 1!
rj2 r 2
' 2!

rjb n r b mn
'b! n!

______________________1______________________
(e-r1-r2 rb +e-m — 1)(e-r2 '-rb +e-m — 1)---(e-rb +e-m — 1) .
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Corollary 5.1. For fixed b e  N,

B (—',0, 0, ■ ■ ■ , 0) _  ^  (n) B (0, 0 ,' ' '  , 0) ' '  D—'
S=0

B

for all e  N0.

Proof. On Theorem 5.3 when we let r2 =  r3 =  ■ ■ ■ =  rb =  0 we obtain,

OO CO

V  V  B (—' ’0 ,0, •••, 0) r !  x !  =  e(b—1)xn
'=0 n=0 r! n!

1
e-r+e-x — 1 (5.2)

The corollary follows from (5.2) by the convolution property. □

Theorem  5.4. [Kam13] For a fixed b e N and j , j 2, . . . ,  j b e N0 such that 

( j1, j 2, . . . ,  jb) =  (0, 0 , . . . ,  0). Let j  =  j 1 +  j 2 +-------+ jb. Then the following

identity holds

Bn— ' 1’- ’—' b) =  £  ^S'1’- ’' b)(s +  b)
S=1

Where ^S'1’" '  are integers recursively defined in the following way.

I. IXS'1) =  ( - 1 ) s+ '1 s!{'S^

TT |(('1’- ’'b-1’0) _  , ,('1’- ’'b-1)J-J-. Xs -- Xs

III. xS'1’- ’' b-1’' b+1) =  (s +  b -  1)xS-1'"’' b-1 ’' b) -  s X xS'1’- ’' b-1’' b)

b1 b1

b1

n
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1 ( j i , . . . , j 6-I, j b) =  (0, 0 , . . . ,  0)
Where 0̂J1’"'jb-1 jb) 

and ^ j 1’" ^ -1 jb)

<

0 otherwise 

0 for all s > j .

By the above theorem we have the following results.

B^-2) =  2 x 3n -  2n

B^-2’0 =  2 x 4n -  3n 

B(-2>°>o) =  2 x 5n -  4n 

B^-2’0’0’0 =  2 x 6n -  5n 

B^-2’0’0’0’0 =  2 x 7n -  6n

Inductively we have,

2 x (3 +  b)n -  (3 +  b -  1)n where b G No . (5.3)
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Theorem 5.5. For r, b G N0

p1+b(n) =  £  (S )(-1 )s+1BS-2’0, 0  ■■■ , 0) x p3+b(n -  s)
S=1

for all n G N0.

Proof. We recall the generating function P_[ (x) 2-ex for the numbers

p— (n) as defined in Section 5.1. For r > 3 the generating function P— (x) 

can be rewritten as follows; P_1 3+b)(x) =  (3+t,)x, where b G N0.

P--13+b)(n) =  (—1)n [2 x (3 +  b)n -  (3 +  b -  1)n]

So by (5.3)

P 113+b) (n) =  ( - i r B ( -2>°> 0, ■■■ , 0) . (5.4)

Since the generating function of ( - 1)raB i-2’0, 0  , 0) and that of the

number p3+b(n) of restricted barred preferential arrangements are reciprocals 

then by the reciprocal property of generating functions (for a discussion on 

the reciprocal property of generating functions see Appendix A on Page 80) 

we have,

p3+b(n) =  ^  ( -  1)*+1B<-2’0' 0  ”  ' ’ 0) x p3+b(n -  s) (5.5)

rx
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□

Theorem  5.6. For fixed b G N0, on restricted barred preferential arrange

ments of having 3 +  b bars where all the sections are restricted. For two

fixed sections (ist and j st)  the poly-Bernoulli number B,(-2,0,0, ■ ■ ■ , 0) is the

number of restricted barred preferential arrangements of such that the ist

or the j st section is empty.

Proof. We consider restricted barred preferential arrangements of having 

3 +  b bars where all the sections are restricted. We fix two sections (the 

ist and the j st section). The number of those restricted barred preferential 

arrangements whose ist section is empty is (3 +  b)n and the number of those 

arrangements whose j st section is empty is also (3 +  b)n. The number of 

those restricted barred preferential arrangements whose ist and j st section 

are empty is (3 +  b -  1)n. Hence the number of those barred preferential 

arrangements whose ist or j st section are empty is,

2 x (3 +  b)n -  (3 +  b -  1)n .

Using (5.3) (see Page 75) we obtain the result of theorem. □
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Theorem  5.7. For n G N and fixed b G N0 the last digit of the sequence

B l 2,0,0, , 0) has a four cycle.

Proof. The theorem and its proof are generalisations of an equation in [Gro62]

using the same kind of argument. To show that the sequence B,(-2,0, 0

has a four cycle we need to show that B l 2,0, 0  , 0) and B ^ ^ 0, 0  , 0)
b b

have the same last digit. We need to show that B l-2,0, 0  , 0)-Bln-2,0, 0,
b

is divisible by 10 (see [Gro62]). From (5.3) B^-2,0, 0, , 0) =  2 x (3 +  b)n -

(3 +  b -  1)n. Now,

Bi+240, 0,  ̂  ̂  ̂ , 0) -  B l 2,0, 0, ■ ■ ■ , 0) =  2[(3 +  b)n+4 -  (3 +  b)n] -  [(2 +  b)n+4 -

(2 +  b)n]. By Lemma 4.7 of Chapter 4 (see page 60) both

[(3 +  b)n+4 -  (3 +  b)n] and [(2 +  b)n+4 -  (2 +  b)n] are divisible by 10. This

completes the proof □

We conclude this chapter and the thesis by discussing some problems that 

arose.

Firstly the concept of barred preferential arrangements may be generalised 

by replacing the underlying set with a multi-set (a set with certain elements 

repeated). The sequences and their combinatorial parameters, their gener
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ating functions, closed forms, and recurrence relations of sequences arising

from counting barred preferential arrangements of such multi-sets generalis

ing those studied in [NM15a, NM15b, NM17] would prove to be interesting 

to study.

Secondly as generating functions can be viewed as analytic objects (map

pings of the complex plane into itself) it would be interesting to investigate 

the asymptotic behaviour of the integer sequences arising from counting of 

restricted barred preferential arrangements. The singularities of the associ

ated generating functions determine their coefficients in an asymptotic way, 

as in [Gro62, CAP13].

Thirdly MacMahon in [Mac90] has shown a way on how the generating func

tion

P°(x) =  21^ can be interpreted in a graph theoretic context using the idea 

of yokes and chains. What could be done is to take up the argument to the 

general generating function P [(x) =  êr-z of Nelsen and Schmidt. We suspect 

when you glue r of these yoke-chain graphs, the generating function for the 

number of yoke-chains is related to the Nelsen-Schmidt generating function 

P1[ (x) =  2- z  and possibly even to the generating function PJ (x) =  (2-eX)j.
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Appendix A

Properties of Generating

Functions

Convolution of ordinary generating functions. * •

Some of standard books in combinatorics which include a discussion on 

convolution of generating functions are Riodarn [Rio03], Stanley [Sta97], 

Comtet [Com74] and Wilf [Wil].

Below we discuss how a convolution of generating functions is done.

• We consider the three ordinary generating functions; X 1 =  bnixni,
ni=0

X 2 =  bn2 xn2 and X 3 =  bn3 xn3. A convolution of the three
n2=0 n3=0
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generating functions is the generating function X 1 x X 2 x X 3 defined by

X i x X 2 x X 3 =  E  brai xni x E  bn2 xn2 x E  b ,xn3
ym=0

^  ̂ bni x bn2 x b
ni,n2,n3>0

\ n2=0 J Vn3=0

ni+n2+n3x

We let n1 +  n2 +  n3 =  n.

So X i x X 2 x X 3 =  ^  ( E  bni x b„2 x b. xn ns ’
n=0 \ni+n2 +n3 =n

where the inner summation is taken over all solutions of the equation

n1 +  n2 +  n3 =  n in non-negative integers.

In general [xn] ( X t x X 2 x ■ ■ ■ x x J  =  E
ni+n2+--- +nr=n

bni x bn2 x * * * x bnr .

Convolution of Exponential Generating Functions.

We consider the three exponential generating functions X 1 =  ^2
ni=0

bniXni 
ni!

n2 n3
X 2 =  n2 i and X 3 =  n  i . Their convolution is the generating

n2 =0 «3 =0
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function X 1 x X 2 x X 3 defined as

X i x X 2 x X 3 Eni=0
bniXni 

ni ! X E
n2=0

bn2 Xn2 
02! X En3=0

bn3Xn3 
03! 5

Eni ,n2 ,n3 > 0
bni v bni v bni xni+n2+n3 .nil 02 03! I

We let n1 +  n2 +  n3 =  n.

So X i x X 2 x X 3 =  ^  £1 x X2 x X3 =  l^ \  ^  ni!xn12!xn3! x b™2 x bn J  X”  >n=0 \ni+02+03=0

E  En=0 \oi+02+03=0

x
!x02!x03!b°i x b°2 x b°3 ] n! ,

where the inner summation is taken over all solutions of the equation 

n1 +  n2 +  n3 =  n in non-negative integers.

• In general

[ 0  ] (̂  X 1 x X 2 x ■ ■ ■ x X r j E0i+02H---+0r =0 nl!xn2!x•"Xnr! 0ixb„, xb„ 2 x - ■ -xb„0! r

Reciprocal of a Generating Function.

P roposition  A .1. [AIKZ14, Wil, Com74] A reciprocal of a formal power

series p(x) =  c0 x x° exists if c0 =  0, where p i) is defined as ply =
0=0

^ 0
c0 x x° such that c0

0=0
- 1
co E  csc0-s 

s=1
with c0 co '
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Appendix B

List of symbols/Abbreviations.

• N„={0,1,2,3,.. .}

• Z - = {0 ,-1 ,-2 ,-3 ,...}

• R, N have the usual meaning of being real and natural numbers.

• Q0 : the set of all barred preferential arrangements of an n-element set 

having r bars.

• J0 : the number of all barred preferential arrangements of an n-element 

set having r bars.

• Gi (n) : the number of barred preferential arrangements of an n - element 

set having r fixed sections restricted and one section being a free section.
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• Gr (n) : the number of barred preferential arrangements of an n - element 

set having r fixed sections being restricted sections and j  sections being free 

sections.

• {0 } : Stirling numbers of the second kind.

We denote as [ 0 ] f  (x) the coefficient of 0 on a generating function f  (x).

• oeis : the on-line encyclopedia of integer sequences.

• Z  : the set of all integers.
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