at 30, 40, 80 and 158 A GeV

Michael Mitrovski for the NA49 Collaboration¹

Institut für Kernphysik, August-Euler-Strasse 6, 60486 Frankfurt, Germany

E-mail: Michael.Mitrovski@cern.ch

C. Alt⁹, T. Anticic²¹, B. Baatar⁸, D. Barna⁴, J. Bartke⁶, M. Behler¹³, L. Betev⁹, H. Białkowska¹⁹ A. Billmeier⁹, C. Blume⁷, B. Boimska¹⁹, M. Botje¹ J. Bracinik³, R. Bramm⁹, R. Brun¹⁰, P. Bunčić^{9,10}. V. Cerny³, P. Christakoglou², O. Chvala¹⁵, Cramer¹⁷, P. Csató⁴, N. Darmenov¹⁸ J.G. A. Dimitrov¹⁸, P. Dinkelaker⁹, V. Eckardt¹⁴, P. Filip¹⁴, H.G. Fischer¹⁰, D. Flierl⁹, Z. Fodor⁴, P. Foka⁷, P. Freund¹⁴, V. Friese⁷, J. Gál⁴, M. Gaździcki⁹ G. Georgopoulos², E. Gładysz⁶, S. Hegyi⁴, C. Höhne¹³ K. Kadija²¹, A. Karev¹⁴, M. Kliemant⁹, S. Kniege⁹ V.I. Kolesnikov⁸, T. Kollegger⁹, E. Kornas⁶, R. Korus¹², M. Kowalski⁶, I. Kraus⁷, M. Kreps³ M. van Leeuwen¹, P. Lévai⁴, L. Litov¹⁸, B. Lungwitz⁹ M. Makariev¹⁸, A.I. Malakhov⁸, C. Markert⁷, M. Mateev¹⁸, B.W. Mayes¹¹, G.L. Melkumov⁸, C. Meurer⁹, A. Mischke⁷, M. Mitrovski⁹, J. Molnár⁴. St. Mrówczyński¹², G. Pálla⁴, A.D. Panagiotou², D. Panayotov¹⁸, K. Perl²⁰, A. Petridis², M. Pikna³, L. Pinsky¹¹, F. Pühlhofer¹³, J.G. Reid¹⁷, R. Renfordt⁹, W. Retyk²⁰, A. Richard⁹ C. Roland⁵, G. Roland⁵ M. Rybczyński¹², A. Rybicki^{6,10}, A. Sandoval⁷, H. Sann⁷, N. Schmitz¹⁴, P. Seyboth¹⁴, F. Siklér⁴, B. Sitar³, E. Skrzypczak²⁰, G. Stefanek¹², R. Stock⁹, H. Ströbele⁹, T. Susa²¹, I. Szentpétery⁴, J. Sziklai⁴ T.A. Trainor¹⁷, D. Varga⁴, M. Vassiliou², G.I. Veres⁴ G. Vesztergombi⁴, D. Vranić⁷, S. Wenig¹⁰, A. Wetzler⁹, Z. Włodarczyk¹² I.K. Yoo¹⁶, J. Zaranek⁹, J. Zimányi⁴

¹NIKHEF, Amsterdam, Netherlands.

²Department of Physics, University of Athens, Athens, Greece.

³Comenius University, Bratislava, Slovakia.

⁴KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.

⁵MIT, Cambridge, USA.

⁶Institute of Nuclear Physics, Cracow, Poland.

 $^7\mathrm{Gesellschaft}$ für Schwerionenforschung (GSI), Darmstadt, Germany.

⁸Joint Institute for Nuclear Research, Dubna, Russia.
⁹Fachbereich Physik der Universität, Frankfurt, Germany.

¹⁰CERN, Geneva, Switzerland.

¹¹University of Houston, Houston, TX, USA.

 12 Institute of Physics Świetokrzyska Academy, Kielce,

¹⁴Max-Planck-Institut für Physik, Munich, Germany.
¹⁵Institute of Particle and Nuclear Physics, Charles University, Prague, Czech Republic.

many.

¹⁶Department of Physics, Pusan National University, Pusan, Republic of Korea.

¹⁷Nuclear Physics Laboratory, University of Washington, Seattle, WA, USA.

¹⁸Atomic Physics Department, Sofia University St. Kliment Ohridski, Sofia, Bulgaria.

¹⁹Institute for Nuclear Studies, Warsaw, Poland.

²⁰Institute for Experimental Physics, University of Warsaw, Warsaw, Poland.

²¹Rudjer Boskovic Institute, Zagreb, Croatia.

A non-monotonic energy dependence of the K^+/π^+ ratio with a sharp maximum close to 30 A·GeV is observed in central Pb+Pb collisions [1]. Within a statistical model of the early stage [2], this is interpreted as a sign of the phase transition to a QGP, which causes a sharp change in the energy dependence of the strangeness to entropy ratio. This observation naturally motivates us to study the production of multistrange hyperons (Ξ , Ω) as a function of the beam energy.

Furthermore it was suggested that the kinematic freeze-out of Ω takes place directly at QGP hadronization. If this is indeed the case, the transverse momentum spectra of the Ω directly reflect the transverse expansion velocity of a hadronizing QGP [3, 4].

In this report we show preliminary NA49 results on $\Omega^$ and $\overline{\Omega}^+$ production in central Pb+Pb collisions at 40 and 158 A·GeV and compare them to measurements of Ξ^- and $\overline{\Xi}^+$ production in central Pb+Pb collisions at 30, 40, 80 and 158 A·GeV.

The NA49 detector [5] is a large acceptance hadron spectrometer at the CERN SPS, consisting of four TPCs. Two of them, the Vertex TPCs (VTPC), are inside a magnetic field for the determination of particle momenta and charge. The ionisation energy loss (dE/dx) measurements in the two Main TPCs (MTPC), which are outside the magnetic field, are used for mass determination. Central collisions were selected by a trigger using information from a downstream calorimeter (VCAL), which measures the energy of the projectile spectator nucleons.

In Fig.1 the NA49 $\bar{\Omega}^+/\Omega^-$ and $\bar{\Xi}^+/\Xi^-$ ratios as a function of the collision energy $(\sqrt{s_{NN}})$ are shown and compared to results of NA57 [6, 7] and STAR [8, 9]. The NA49 and NA57 results measured at the same energies are consistent. The data show a clear increase of the $\bar{\Omega}^+/\Omega^-$ ratio from a value of about 0.4 at SPS energies to about 1 at RHIC energies. The $\bar{\Xi}^+/\Xi^-$ ratio also increases from SPS energies to about

 $^{^1\}mathrm{Presented}$ at 25th International School of Nuclear Physics, Erice, Italy

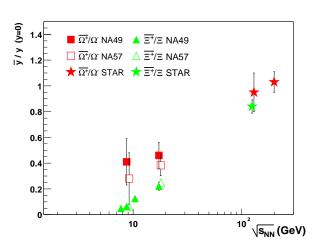


Figure 1: The antihyperon/hyperon (\bar{Y}/Y) ratio at midrapidity in the SPS-RHIC energy range.

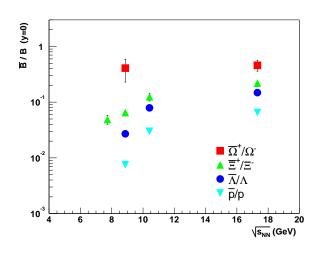


Figure 2: The antibaryon/baryon ratio (\overline{B}/B) at midrapidity in the SPS energy range measured by NA49.

The midrapidity $\bar{\Omega}^+/\Omega^-$ ratio is estimated to be 0.46 ± 0.1 and 0.41 ± 0.18 for central Pb+Pb collisions at 158 and 40 A·GeV, respectively. The values for the midrapidity $\bar{\Xi}^+/\Xi^-$ ratio are estimated to be 0.13 ± 0.02, 0.065 ± 0.05 and 0.0049 ± 0.009 for central Pb+Pb collisions at 80, 40 and 30 A·GeV, respectively. In Fig.2 the antibaryon/baryon ratios are shown as a function of the beam energy in the SPS energy domain. In addition to $\bar{\Xi}/\Xi$ and $\bar{\Omega}/\Omega$ ratios the results on $\bar{\Lambda}/\Lambda$ [10] and \bar{p}/p [11] are shown. The energy dependence of \bar{B}/B ratios gets weaker with increasing strangeness content.

Fig. 3 shows the energy dependence of the midrapidity

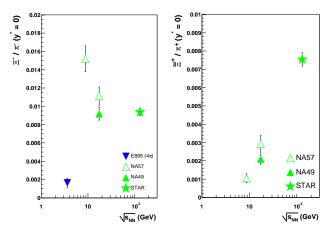


Figure 3: Energy dependence of the midrapidity Ξ^{-}/π^{-} (left) and $\bar{\Xi}^{+}/\pi^{+}$ (right) ratio in central Pb+Pb and Au+Au collisions.

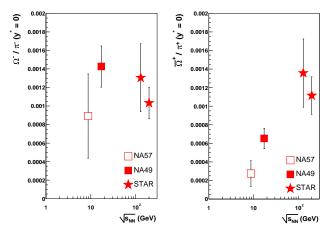


Figure 4: Energy dependence of the midrapidity Ω^{-}/π^{-} (left) and $\overline{\Omega}^{+}/\pi^{+}$ (right) ratio in central Pb+Pb and Au+Au collisions.

 Ξ^{-}/π^{-} (left) and $\bar{\Xi}^{+}/\pi^{+}$ (right) ratio in central Pb+Pb and Au+Au collisions. The Ξ^{-}/π^{-} ratio suggests that there is a non-monotonic energy dependence at SPS energies. The $\bar{\Xi}^{+}/\pi^{+}$ ratio increases with energy from SPS to RHIC energies. The Ω^{-}/π^{-} ratio shown in Fig. 4 seems to be energy independent, but the $\bar{\Omega}^{+}/\pi^{+}$ ratio shows again an increase from SPS to RHIC energies.

At 158 A·GeV, a high statistics data sample of central Pb+Pb collisions is available, which allows us to obtain fully corrected spectra of Ω^- and $\overline{\Omega^+}$. The transverse mass spectra are fitted by an exponential function :

$$\frac{1}{m_t}\frac{d^2N}{dm_tdy} = C \cdot e^{-m_t/T},\tag{1}$$

where the fit parameters are a normalization factor Cand the inverse slope parameter T. The slope parameter is similar for Ω^- and $\bar{\Omega}^+$: $T(\Omega^-) = 276 \pm 23$ MeV and $T(\bar{\Omega}^+) = 285 \pm 39$ MeV [11]. Our values agree with those measured by the NA57 collaboration $(T(\Omega^-) = 280 \pm 16 \text{ MeV} \text{ and } T(\bar{\Omega}^+) = 324 \pm 29 \text{ MeV})$ [12]. The large acceptance of the NA49 experiment allows us to measure the Ω^- ($\bar{\Omega}^+$) spectra in a large rapidity interval. The rapidity distributions for Ω^- and $\bar{\Omega}^+$ are obtained by extrapolating p_t spectra using the exponential. Both y-spectra were fitted by a Gaussian. The width of the Ω^- distribution ($\sigma(\Omega^-) = 1.0 \pm 0.2$) seems to be larger than the one of the $\bar{\Omega}^+$ ($\sigma(\Omega^-) = 0.7 \pm 0.1$). Mean multiplicities in full phase-space were estimated as integrals over measured points corrected for the missing rapidity coverage using the Gaussian parametrisations. The resulting yields are $<\Omega^- > = 0.47 \pm 0.07$ and $<\bar{\Omega}^+ > = 0.15 \pm 0.02$, where the errors are statistical only.

Acknowledgments

This work was supported by the US Department of Energy Grant DE-FG03-97ER41020/A000, the Bundesministerium fur Bildung und Forschung, Germany, the Polish State Committee for Scientific Research (2 P03B 130 23, SPB/CERN/P-03/Dz 446/2002-2004, 2 P03B 02418, 2 P03B 04123), the Hungarian Scientific Research Foundation (T032648, T032293, T043514), the Hungarian National Science Foundation, OTKA, (F034707), and the Polish-German Foundation.

References

- S. V. Afanasiev et al., (NA49 Collaboration), Phys. Rev. C66 (2002) 054902.
- [2] M. Gaździcki and M.I. Gorenstein, Acta Phys. Polon. B**30** (1999) 2705 [arXiv:hep-ph/9803462].
- [3] K.A. Bugaev, M. Gaździcki and M.I. Gorenstein, Phys. Lett. B544 (2002) 127.
- [4] D. Teaney, J. Lauret and E.V. Shuryak, arXiv:nucl-th/0110037.
- [5] S. V. Afanasiev et al. (NA49 Collaboration), Nucl. Instrum. Meth. A 430 (1999) 210.
- [6] R. Caliandro et al., (WA97 Collaboration), J.Phys. G: Nucl.Part.Phys. 25 (1999) 171.
- [7] V. Manzari et al., (NA57 Collaboration), Nucl. Phys. A7 15 (2003) 140.
- [8] C. Suire et al., (STAR Collaboration), Nucl. Phys. A7 15 (2003) 470.
- [9] J. Castillio et al., (STAR Collaboration), Nucl. Phys. A7 15 (2003) 521.
- [10] A. Mischke et al., (NA49 Collaboration), Nucl. Phys. A7 15 (2003) 453.
- [11] M. van Leeuwen et al., (NA49 Collaboration), Nucl. Phys. A7 15 (2003) 161.
- [12] F. Antinori private communication.