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Abstract

We propose a method to experimentally study the equation of state of

strongly interacting matter created at the early stage of nucleus–nucleus col-

lisions. The method exploits the relation between relative entropy and energy

fluctuations and equation of state. As a measurable quantity, the ratio of

properly filtered multiplicity to energy fluctuations is proposed. Within a

statistical approach to the early stage of nucleus-nucleus collisions, the fluc-

tuation ratio manifests a non–monotonic collision energy dependence with a

maximum in the domain where the onset of deconfinement occurs.
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1. Nucleus–nucleus (A+A) collisions at high energies provide a unique opportunity to

study properties of strongly interacting matter which at sufficiently high energy density is

predicted to exist in a deconfined or quark-gluon-plasma phase. Success of the statistical

models to strong interactions [1] suggests that the system created in these collisions is close

to thermodynamical equilibrium. Consequently, the properties of the matter are naturally

expressed in terms of its equation of state (EoS) which in turn is sensitive to possible phase

transitions. Increasing the energy of nuclear collisions, one expects to achieve at the collision

early stage higher and higher energy density that at a certain point is sufficient for creation

of the quark-gluon plasma. Then, EoS should experience a qualitative change. Observing a

clear signal of this change is among main tasks of the whole experimental program of study

A+A collisions. The task, however, has appeared rather difficult. It is far not simple to

express thermodynamical characteristics at the early stage through the directly measurable

quantities. The entropy is of particular interest, as it is believed to be conserved during

the expansion of the matter, and several methods to determine it experimentally have been

suggested [2–4]. Other observables, which may be sensitive to the EoS of the early stage

matter, have been also proposed. Transverse momentum spectra [5], two pion correlations

[6], anisotropic flow [7] and strangeness production [8] are discussed in this context.

2. The recently measured energy dependence of the pion multiplicity, which is related to the

system’s entropy, and kaon (system’s strangeness) production in central Pb+Pb collisions

[9,10] show the changes which are consistent with the hypothesis [8,11] that a transient state

of deconfined matter is created at the collision energies higher than about 30 A·GeV in fixed

target experiments. This conclusion is reached within the Statistical Model of the Early

Stage, SMES [8], which assumes creation of the matter (in confined, mixed or deconfined

phase) at early stage of the collision according to the maximum entropy principle.

3. In this letter we propose a new method of study of EoS which uses the ratio of properly

filtered multiplicity and energy fluctuations as directly measurable quantity and refers to

SMES [8] as a physical framework. Within this model the ratio is directly related to the
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fluctuations of the early stage entropy and energy and thus is sensitive to the EoS of the early

stage matter. We show here that the model predicts a non-monotonic energy dependence of

the ratio with the maximum where the onset of deconfinement occurs.

4. In thermodynamics, the energy E, volume V and entropy S are related to each other

through EoS. Thus, various values of the energy of the initial equilibrium state lead to

different, but uniquely determined, initial entropies. When the collision energy is fixed the

energy, which is used for particle production, still fluctuates. These fluctuations of the

inelastic energy are caused by the fluctuations in the dynamical process which leads to

the particle production. They are called here the dynamical energy fluctuations. Clearly,

the dynamical energy fluctuations lead to the dynamical fluctuations of entropy, and the

relation between them is, in the thermodynamical approach, given by EoS. Consequently,

simultaneous event–by–event measurements of both the entropy and energy should yield an

information on EoS. Since EoS manifests an anomalous behavior in a phase transition region

the anomaly should be also visible in the ratio of entropy to energy fluctuations.

5. The energy and entropy can be defined in any form of matter, confined, mixed and

deconfined, in the collision early stage and in the system’s final state. If the produced

matter can be treated as an isolated system, the energy is obviously conserved. The entropy

is also expected to be conserved during the system’s expansion and freeze–out. However,

there is a significant difference between the two quantities. While the energy is defined for

every event the entropy refers to an ensemble of events.

6. Since we are going to discuss the collision energy dependence of the fluctuations within the

SMES [8], let us present the model’s basic assumptions. The volume, V , where the matter

in confined, mixed or deconfined state is produced at the collision early stage, is given by the

Lorentz contracted volume occupied by wounded nucleons. For the most central collisions

the number of wounded nucleons NW ≈ 2A. The net baryonic number of the created matter

equals zero. Even in the most central A+A collisions, only a fraction of the total collision

energy is used for a particle production. The rest is taken away by the baryons which
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contribute to the baryon net number.

7. The fluctuations occurring in the collision early stage, which are local in coordinate or

momentum space, are washed out, at least partially, in the course of temporal evolution of

the fireball due to relaxation processes such as particle diffusion, see e.g. [12]. This probably

explains why the electric charge fluctuations generated at the QGP phase [13,14], which

are significantly smaller than those in the hadron phase, are not seen in the experimental

data [15–17]. It should be stressed, however, that the relaxation processes are irrelevant

for our considerations as we are interested in the fluctuations of total inelastic energy and

entropy of the system created at the collision early stage. Because of the exact energy

and approximate entropy conservation the fluctuations observed in the final state equal to

the early stage fluctuations. We assume here that all produced particles are detected but

further we relax this assumption. The inelastic energy deposited in the fireball for the

particle production should not be confused with the collision energy. While the former one

fluctuates the latter is fixed and it does not fluctuate at all.

8. We denote by δE the event–by–event deviations of the energy from its average value E

caused by the dynamical fluctuations which occur in the thermalization process. We assume

that δE ≪ E. As E = ε V , where ε is the energy density. One has δE = V δε + ε δV ,

i.e. the change of the system’s energy is due to the changes of the system’s energy density

and volume which are considered further as two independent thermodynamical variables.

The energy density is usually a unique function of the temperature, T , but when the system

experiences a first order phase transition, ε in the mixed phase depends on the relative

abundance of each phase.

9. According to the first and the second principles of thermodynamics, the entropy change

δS is given as TδS = δE + pδV , which provides TδS = V δε + (p + ε)δV , where p is the

pressure. Using the identity TS = E + pV one finds

δS

S
=

1

1 + p/ε

δε

ε
+

δV

V
. (1)
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10. When δε = 0, i.e. when the fluctuations of the initial energy and entropy are entirely

due to the volume fluctuations at a constant energy density, Eq. (1) provides: δS/S =

δV/V = δE/E. Thus, the relative dynamical fluctuations of entropy are exactly equal to

those of energy and they are insensitive to the form of EoS. The δε = 0 limit may serve as an

approximation for all inelastic A+A collisions where fluctuations of the collision geometry

dominate all other fluctuations. This case, however, is not interesting from our point of

view.

11. When δV = 0 the fluctuations of the initial energy, δE, are entirely due to the energy

density fluctuations. In this case Eq. (1) gives:

δS

S
=

δE

E

1

1 + p/ε
. (2)

As seen, δS/S is now sensitive, via the factor (1 + p/ε)−1, to the EoS at the early stage of

A+A collision. We are interested just in such a situation.

12. The number of wounded nucleons can, in principle, be measured on the event–by–event

basis. This can be achieved by measuring the number of spectator nucleons, NS, in the so-

called zero degree calorimeter, used in many experiments. Then, NW ≈ 2(A−NS). Selecting

the most central events, we can neglect contribution from the impact parameter variation.

Since the system’s volume, as defined in SMES, is then fixed the entropy fluctuations are

given by Eq. (2).

13. To study the entropy fluctuations it appears convenient to introduce the ratio of relative

fluctuations:

Re ≡
(δS)2/S2

(δE)2/E2
=

(

1 +
p

ε

)

−2

, (3)

which qualitatively behaves as follows. The ratio p/ε is about 1/3 in both the confined

phase and in the hot quark-gluon plasma (QGP). Then, Re ≈ (3/4)2 ∼= 0.56 and it is

rather independent of the collision energy except the domain where the initially created

matter experiences the deconfinement phase transition. An exact nature of the transition
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is unknown but modelling of the transition by means of the lattice QCD [18] shows a very

rapid change of the p/ε ratio in a narrow temperature interval ∆T ∼= 5 MeV where the

energy density grows by about an order of magnitude whereas the pressure remains nearly

unchanged. One refers to this temperature interval as a ‘generalized mixed phase’. The

ratio p/ε reaches minimum at the so-called softest point of the EoS [6] which corresponds

to a maximum of Re ≈ 1. Consequently, we expect a non–monotonic behavior of the ratio

Re as a function of the collision energy.

14. The energy dependence of the fluctuation ratio Re calculated within SMES [8] (using

its standard values of all parameters) is shown in Fig. 1. We repeat here that the model

correctly reproduces the energy dependence of pion and strangeness production and it relates

experimentally observed anomalies to the onset of deconfinement. Within the model, the

confined matter, which is modelled as an ideal gas, is created at the collision early stage

below the energy of 30 A·GeV. In this domain, the ratio Re is approximately independent

of collision energy and equals about 0.6. The model assumes that the deconfinement phase-

transition is of the first order. Thus, there is the mixed phase region, corresponding to the

energy interval 35÷60 A·GeV, where Re ratio increases and reaches its maximum, Re ≈ 0.8,

at the end of the transition domain. Further on, in the pure QGP phase represented by

an ideal quark-gluon gas under bag pressure, the ratio decreases and Re approaches its

asymptotic value 0.56 at the highest SPS energy 160A·GeV. Small deviations from p = ε/3

are in SMES due to non-zero masses of strange degrees of freedom, both in confined and

deconfined phases, and due to the bag pressure in QGP. The two effects can be safely

neglected at T ≫ Tc.

15. In principle, the initial energy fluctuations might be sizable while our analysis holds

for infinitesimally small fluctuations as the ratio Re (3) is defined above by introducing the

dynamical energy fluctuations δE and we use thermodynamical identities to calculate the

entropy fluctuations δS. However, the calculations with explicit initial energy distribution

show that the finite size of initial energy fluctuations does not much change our results. The
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dependence of Re on the collision energy shown in Fig. 1 remains essentially the same. The

only difference is a ‘smooth’ behavior of Re(F ) near the maximum.

16. The early stage energy and entropy fluctuations are not directly observable, however,

as we discuss in the remaining part of the paper, Re can be inferred from the experimentally

accessible information. Since the energy of an isolated system is a conserved quantity, one

measures the initial energy deposited for the particle production, summing up the final

state energies of all produced particles. The system’s entropy is not strictly conserved but,

as already discussed, it is approximately conserved. Therefore, the final state entropy of all

produced particles is close to the initial entropy. The entropy cannot be directly measured

but it can be expressed through measurable quantities.

17. As well known, the system’s entropy is related to the mean particle multiplicity. For

example, N = S/3.6 in the ideal gas of massless bosons. The relation is, in general, more

complex but we assume that the final state mean multiplicity is proportional to the initial

state entropy, i.e. N ∼ S. With the over-bar we denote averaging over events that have

identical initial conditions (the same amount of energy is deposited for the particle pro-

duction). It is clear that for the class of events with a fixed value of N , the multiplicity

N measured in each event fluctuates around N . These are statistical but not dynamical

fluctuations. We note that particle multiplicity can be determined for every event, in con-

trast to the entropy which is defined by averaging of hadron multiplicities in the ensemble

of events. Since N ∼ S, we get: δS/S = δN/N . Thus, the dynamical entropy fluctuations

are equal to the dynamical fluctuations of the mean multiplicity. It is crucial to distinguish

the dynamical fluctuations of N from the statistical fluctuations of N around N . We clarify

this point below.

18. The multiplicity N measured on event–by–event basis varies not only due to the dynami-

cal fluctuations at a collision early stage but predominately due to the statistical fluctuations

at freeze–out. Thus, the final multiplicity distribution, P(N), is given by:
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P(N) =
∫

∞

0

dN W (N) PN(N) , (4)

where W (N) describes fluctuations of N due to dynamical fluctuations of E, and PN(N) is

the statistical probability distribution of N for a given N . The finally measured mean value

of an observable f(N) results from averaging over the W and P distributions as

〈〈fN〉〉 ≡
∑

N

f(N)P(N) =
∫

∞

0

dN W (N)
∑

N

f(N)PN(N) ≡ 〈 f(N) 〉 . (5)

Thus, the complete averaging, 〈〈· · ·〉〉, is done in two steps: first – the statistical, · · · ≡
∑

N · · ·PN(N), and second – the dynamical averaging, 〈· · ·〉 ≡ ∫

∞

0
dN · · ·W (N), one after

another. One easily shows that

〈〈N〉〉 = 〈N〉 , (∆N)2 ≡ 〈〈N2〉〉 − 〈〈N〉〉2 = (δN)2 + 〈(δN)2〉 , (6)

where (δN)2 ≡ 〈N2〉 − 〈N〉2 and (δN)2 ≡ N2 − N
2
. Thus, the total fluctuations (∆N)2,

which are experimentally measured, are equal to the sum of the dynamical (early stage)

fluctuations (δN)2 and the dynamically averaged statistical fluctuations 〈(δN)2〉 at freeze–

out.

19. We have considered above the ideal detector which measures all produced particles. A

real detector, however, measures only a fraction of them, say charged particles in the limited

momentum acceptance of the detector. Let us denote the mean energy and multiplicity of

accepted particles as EA and NA. We assume that

δEA

EA

=
δE

E
,

δNA

NA

=
δS

S
, (7)

i.e. relative dynamical fluctuations of the mean energy and mean multiplicity of accepted

particles are equal to the relative dynamical fluctuations of the total energy and entropy in

the initial state. In our further considerations, we will omit the index ‘A’, however, it is

understood that we deal with the accepted particles.

20. There is a simple procedure to eliminate the statistical fluctuations, and thus, to

extract the dynamical fluctuations of interest from the measured fluctuations, if PN(N) is
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the Poisson distribution. Then, (δN)2 = N , and (δN)2 = (∆N)2 − 〈〈N〉〉. Therefore, the

relative dynamical fluctuations are expressed through the total relative fluctuations as

(

δN

〈〈N〉〉

)2

=
(

∆N

〈〈N〉〉

)2

− 1

〈〈N〉〉 . (8)

The distribution of energy E of the system of several particles is assumed to be of the form

P(E) =
∑

N

∫

dζ W (ζ) Pζ(N)
∫

dω1 Pζ(ω1) · · ·
∫

dωN Pζ(ωN) δ(E −
N

∑

i=1

ωi) , (9)

where W (ζ) describes dynamical fluctuations of the parameter ζ which controls the multi-

plicity and energy fluctuations. In principle, ζ can be understood as a whole set of parame-

ters. Pζ(N) is the multiplicity and Pζ(ω) single particle energy distribution, both giving the

statistical fluctuations. One easily finds that

〈〈E〉〉 = 〈N ω 〉 , (10)

(∆E)2 ≡ 〈〈E2〉〉 − 〈〈E〉〉2 = (δE)2 + 〈(δE)2〉 , (11)

where ωn ≡ ∫

dω ωn Pζ(ω) and

(δE)2 ≡ 〈E
2 〉 − 〈E 〉2 = 〈(N ω)2〉 − 〈N ω 〉2 , (12)

〈(δE)2〉 ≡ 〈E2 − E
2 〉 = 〈N(ω2 − ω2 )〉 + 〈(N2 − N

2
)ω2 〉 . (13)

One sees that δE = 0 for vanishing dynamical fluctuations i.e. when W (ζ) = δ(ζ − ζ0).

Assuming again that the multiplicity distribution Pζ(N) is poissonian, then N2 − N
2

= N ,

and 〈(δE)2〉 reads

〈(δE)2〉 = 〈N ω2〉 = 〈〈N〉〉
∫

dω ω2Pincl(ω) , (14)

where Pincl(ω) is the single particle inclusive energy distribution defined as

Pincl(ω) ≡ 1

〈〈N〉〉
∑

N

N
∫

dζ W (ζ) Pζ(N) Pζ(ω) . (15)

Thus, the relative dynamical fluctuations of energy equal

(

δE

〈〈E〉〉

)2

=
(

∆E

〈〈E〉〉

)2

− λ

〈〈N〉〉 , (16)
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where

λ ≡
∫

dω ω2Pincl(ω)
(

∫

dω ωPincl(ω)
)2

. (17)

21. In general, the statistical fluctuations are not poissonian, and a priori their form is even

not known. The dynamical fluctuations can be then measured by means of the so–called

sub–event method [19] where one considers two different, non-overlapping but dynamically

equivalent regions of the momentum space ‘1’ and ‘2’. These can be two equal to each other

non-overlapping rapidity intervals symmetric with respect to the center–of–mass rapidity.

Let N1 and N2 are the numbers of hadrons (e.g. negative pions) in these regions. There

is a principal difference between the dynamical and statistical fluctuations discussed above.

The statistical event–by–event fluctuations of N1 and N2 in different parts of the momentum

space are uncorrelated: P (N1, N2) = P1(N1) ·P2(N2). The dynamical fluctuations represent,

according to Eq. (7), a correlated change of the average particle numbers N1 and N 2 with

that of total entropy. Since these average values are equal to each other, N 1 = N 2 ≡ N (the

regions ‘1’ and ‘2’ are dynamically equivalent), the distributions of statistical fluctuations

are also the same: P1(N1) ≡ PN (N1) and P2(N2) ≡ PN(N2). Therefore, the total probability

for detecting N1 particles in the region ‘1’ and N2 particles in the region ‘2’ is

P(N1, N2) =
∫

∞

0

dN W (N) PN(N1) · PN(N2) , (18)

and the total averaging of an observable f(N1, N2) provides:

〈〈f(N1, N2)〉〉 ≡
∑

N1,N2

f(N1, N2) P(N1, N2) (19)

=
∫

∞

0

dN W (N)
∑

N1,N2

f(N1, N2) PN(N1) · PN(N2) .

It follows from Eq. (19) that

1

2
〈〈(N1 − N2)2〉〉 = 〈N2〉 − 〈N2〉 ≡ 〈(δN)2〉 . (20)

Therefore, measuring the total fluctuations of (N1 − N2)/2, one obtains the dynamically

averaged statistical fluctuations in the region ‘1’ (equal to that in the region ‘2’). Sub-

tracting 〈(δN)2〉 from the total fluctuations in this region, (∆N)2, one finds the dynamical
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part, (δN)2, of interest. Similar analysis can be performed to get the dynamical energy

fluctuations.

22. We have assumed that only dynamical fluctuations generated at the collision early

stage lead to the particle correlations in the final state. Of course, it is not quite true.

The effects of quantum statistics also lead to the inter-particle correlations. However, the

correlation range in the momentum space is in this case rather small, ∆p ≈ 100 MeV/c. The

contribution of these effects can be accounted in 〈(δN)2〉 if the selected acceptance regions

are separated by the distance significantly larger than ∆p.

23. There are also long range correlations which have nothing to do with the early stage

dynamical correlations and cannot be accounted in 〈(δN)2〉 by the sub-event method de-

scribed above. In particular, there are correlations due to conservation laws. Those can be

effectively eliminated if one studies only a small part of a whole system which is constrained

by the conservation laws.

24. A large fraction of the final state particles comes from the decays of various hadron

resonances. The existence of resonances decaying into at least two hadrons enlarges the

final state multiplicity fluctuations. This effect can not be eliminated by use of the sub-

event method. It is because the decay products are correlated at the scale of approximately

one rapidity unit which at the SPS energy domain is comparable to the width of rapidity

distribution. To remove bias due to resonance production and decay, we suggest to study the

fluctuations of negatively charged hadrons as typically only one negatively charged hadron

comes from a single resonance decay.

25. In summary, we propose a new method to study the equation of state of strongly

interacting matter produced at the early stage of nucleus–nucleus collisions. The method

exploits the properly filtered relative fluctuations of multiplicity and energy. Within the

Statistical Model of the Early Stage [8] this ratio is directly related to the fluctuations of the

early stage entropy and energy and thus is sensitive to the EoS of the early stage matter.

We show that within the model the ratio is a non–monotonic function of the collision energy
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with the maximum at the end of the mixed phase (≈ 60 A·GeV). Consequently, it can be

considered as a further signal of deconfinement phase transition.
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FIGURES

FIG. 1. The dependence of Re calculated within SMES [8] on the Fermi’s collision energy

measure F ≡ (
√

s− 2m)3/4/s1/8 where
√

s is the c.m.s. energy per nucleon–nucleon pair and m is

the nucleon mass. The ‘shark fin’ structure is caused by the large fluctuations in the mixed phase

region.
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