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PREFACE 

This thesis comprises a series of chapters organised as scientific papers, some of which have 

been published, others which are in press or have been submitted to journals. Each chapter 

appears in paper format and as a consequence, there is some degree of repetition, particularly 

in the introduction of each chapter and reference sections. 
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ABSTRACT 

A 3-year study was carried out on the role of micro,Zooplankton in carbon cycling in the south 

Atlantic and the Atlantic sector of the Southern Ocean. Microzooplankton grazing impact on 

phytoplankton was estimated during austral summer and winter employing the dilution 

technique. Carnivory by larger zooplankton on microzooplankton during- summer was 

estim_ated using in vitro incubations. Microzooplankton assemblages were always dominated 

by protozoans comprising ciliates and dinoflagellates. Densities in winter « 1000 cells rl) 

were, however, approximately 50% lower than summer densities (> 1500 cells 1-1). During 

summer, when larger microphytoplankton cells (> 20 !lm) dominated total chlorophyll, 

micro zooplankton removed"" 15% of the initial standing stock or < 25% of the daily potential 

phytoplankton production. Size selectivity experiments showed that microzooplankton 

preferentially feed on the nano- (20 - 2.0 !lm) and picophytoplankton « 2.0 !lm) chlorophyll 

fractions. Indeed, during summer the grazing impact of micro zooplankton was significantly 

correlated with the contribution of the < 20 !lm fraction to total chlorophyll (P < 0.05). In 

the < 20 !lm chlorophyll fraction, microzooplankton grazing was sufficient to control the 

growth of the nano- and picophytoplankton suggesting that, where larger microphytoplankton 

cells dominate, micro zooplankton maintain the background concentrations of the nano- and 

picophytoplankton. During winter, when small nano- and picophytoplankton cells dominate 

total chlorophyll concentrations, the microzooplankton grazing impact on phytoplankton is 

dramatically increased. Microzooplankton removed on average 37% of the initial 

phytoplankton stock or"" 70% of the daily phytoplankton production. These results suggest 

that in winter, micro zooplankton are the main sink for phytoplankton production. Carnivory 

experiments conducted with selected meso- (copepods) and macro zooplankton (euphausiids 

and tunicates) showed that all species examined consumed micro zooplankton in the presence 

of substantial chlorophyll concentrations. Microzooplankton can, therefore, be regarded as 

trophic intermediates between bacterioplankton, small phytoplankton cells and larger 

zooplankton species in the Southern Ocean. The results of this investigation suggest a spatio

temporal shift in efficiency of the biological pump mediated by changes in the size 

composition of the phytoplankton assemblages. South of the Antarctic Polar Front (APF) large 
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microphytoplankton cells dominate the summer chlorophyll biomass, suggesting that larger 

zooplankton grazers represent the main sink for phytoplankton production. Under these 

conditions, carbon flux to the interior of the ocean will be high due to diel vertical migrations 

by grazers and the production of large, fast sinking faecal pellets. The sedimentation of large 

phytoplankton cells also contributes to flux. In the permanently open waters south of the APF 

and throughout the Southern Ocean during winter, small phytoplankton cells dominate total 

chlorophyll, resulting in the microbial loop being the main sink for phytoplankton production. 

The c!ose coupling between the micro zooplankton and the microbial loop dramatically reduces 

the transfer of organic carbon from the surface layers to depth. Carnivory by metazoans on 

microzooplankton may reduce the high grazing impact of micro zooplankton and, may also 

represent an important source of carbon flux originating from the microbial loop. 
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CHAPTER 1 

GENERAL INTRODUCTION 

Human activities have led to considerable anthropogenic emissions of greenhouse gases such 

as carbon dioxide (C02), methane (CH4) and nitrous oxide (N20) (Siegenthaler & Sarmiento, 

1993;- Kerr, 1995). Greenhouse gases trap longwave infra-red reradiation from the earth, 

thereby, reducing heat losses. Increased emmissions of CO2 from burning of fossil fuels and 

reduced uptake through tropical deforestation have increased atmospheric CO2 concentrations 

from the pre-industrial values of 280 p.p.m. to present day concentrations of 355 p.p.m. 

(Siegenthaler & Sarmiento, 1993). Based on these rates of increase in CO2 levels, the 

International Panel on Climatic Change (IPCC) concluded that the mean global increase in 

temperature would be about 0.3 ± 0.2-0.5°C per decade, with the greatest increases occurring 

at the polar regions (Watson et aI., 1990). More recently, however, the estimates of 

temperature increase have been revised in the light of recent findings which suggest that 

aerosols induce atmospheric cooling (Kerr, 1995). The latest model incorporating both 

aerosols and the increases in atmospheric CO2 levels predict a 0.08 to 0.30°C per decade. 

These increases in temperature are likely to result in the melting of the ice caps and 

consequent sea level rise (Mikalajewicz et at., 1990; Nerem 1995). Changes in climatic 

conditions such as rainfall patterns are also expected to occur (Lindesay, 1990; Rosenwig & 

Parry, 1994). 

Despite the production of "" 7 Giga (G) t C y-l, atmospheric increases of anthropogenic CO2 

account for only half the emissions (Siegenthaler & Sarmiento, 1993). Models of global 

carbon uptake by the sea yield a mean uptake of 2 ± 0.6 G t y-l, leaving 1.8 ± 1.3 G t C 

unaccounted for. Tans et at. (1990) have proposed the existence of a large "missing sink", 

probably located in the terrestrial biosphere. The uncertainties on the role of the sources and 

sinks of CO2 arise largely because of the incomplete understanding of the terrestrial and 

oceanic sources and sinks for atmospheric CO2 (Denning et ai., 1995; Francey et at., 1995). 
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The world's oceans are the largest of global carbon reservoirs and the major sink for 

anthropogenic carbon (Longhurst, 1991; Williamson & Gribbin, 1991). The oceans contain 

"" 95% of the total circulating carbon within the biosphere and, therefore, control atmospheric 

CO2 concentrations (Siegenthaler & Sarmiento, < 1993). The sequestration of atmospheric 

carbon by the oceans is mediated by numerous processes operating over several temporal and 

spatial scales including physical (solubility pump, see Siegenthaler & Sarmiento, 1993) and 

biological processes. The biological processes which sequester CO2 are collectively termed 

the bjological pump (Longhurst & Harrison 1989; Longhurst, 1991; Siegenthaler & 

Sarmiento, 1993). This discussion will focus on the role of biological processes in 

sequestering atmospheric CO2, It should be noted, however, that the biologically mediated flux 

is small when compared with the transfer of CO2 across the surface waters driven by diffusion 

and solubility (Siegenthaler & Sarmiento, 1993). 

The marine biota acts as a carbon pump by producing particulate (POC) and dissolved organic 

carbon (DOC) through the processes of photosynthesis by phytoplankton cells, sinking of dead 

or senescent plant cells, animal debris, and the feeding and migratory activities of zooplankton 

(Longhurst, 1991; Karl et al., 1991; Mann & Lazier, 1991). The net effect of these processes 

is a reduction in the partial pressure of CO2 in the surface waters and a resulting drawdown 

of atmospheric carbon (Longhurst & Harrison 1989; Longhurst, 1991; Siegenthaler & 

Sarmiento, 1993). In addition, it also provides a source of carbon to the deep ocean 

(Siegenthaler & Sarmiento, 1993). It should be noted, however, that the properties of tire" sea 

surface are not uniform over a range of spatial and temporal scales suggesting variability in 

the efficiency of the biological pump. At steady state, however, the biogenic flux to the deep 

waters is largely offset by an equally large transport of organic carbon via upwelling, 

respiratory losses associated with all biological activity, and diffusion processes across the 

surface layer (Huntley et al., 1991; Longhurst, 1991). Thus, with the exception of a relatively 

small fraction of organic carbon that accumulates in the ocean sediments, there is no net 

uptake of atmospheric CO2 by the biological pump. The organic carbon which accumulates 

in the oceanic sediments remains inactive for between 100 and 1000 years and can therefore 

be regarded as removed from the carbon cycle (Siegenthaler & Sarmiento, 1993). The 

dynamics of carbon uptake mediated by the biological pump in the ocean are, therefore, 
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determined by the rate and magnitude of the downward transport of DOC and POC from the 

surface waters to the oceans depths (Longhurst & Harrison, 1989; Longhurst, 1991). 

The two major biological pathways for the transfer of particulate carbon from the surface 

waters to the deep ocean are the sinking of dead or senescent phytoplankton cells (von 

Bodungen et al., 1986) and the grazing activity of zooplankton (Longhurst & Harrison, 1989; 

Longhurst, 1991). Generally, the contribution of dead or senescent plant ceHs to vertical flux 

is considered minor. Exceptions include periods when dense phytoplankton blooms occur such 

as those found at oceanic fronts or during ice melt in summer where sinking cells contribute 

significantly to carbon flux (Fischer et al., 1988). For example, a recent study conducted 

during the ice retreat in the Scotia-Weddell Sea showed that::::: 12% of the total phytoplankton 

standing stock was transported from the surface waters to depth through sedimentation 

(Cadee, 1992). 

It is widely accepted that the community structure of the consumers dramatically affects the 

transfer of carbon within the pelagic subsystem (Michaels & Silver, 1988; Roman et al., 

1993). In particular, the partitioning of phytogenic carbon between the "classical food web" 

and the "microbial loop" determines the magnitude of carbon flux to depth (Sherr & Sherr, 

1988; Longhurst, 1991; Fortier et al., 1994). Thus, the partitioning of phytoplankton 

production between the two food webs dramatically affects the efficiency of the biological 

pump. 

In the classical food web, large metazoan grazers (macrozooplankton such as tunicates and 

euphausiids) represent the dominant grazers. In areas where metazoans dominate, carbon flux 

to the interior of the ocean will be high due to the production of large, compact, fast-sinking 

faecal pellets which have a relatively high carbon content (Fortier et al., 1994). For example, 

tunicates such as salps produce faecal pellets which can sink up to 2700 m d-1 and have a 

carbon content of up to 37% (Fortier et al., 1994). Die! migrations, both within the euphotic 

zone and between the euphotic zone and the mesopelagic region, further contribute to the 

vertical flux of carbon through respiratory losses of carbon and egestion at depth (Longhurst, 

1991; Fortier et at., 1994). Therefore, in areas where the larger grazers represent the sink for 

phytoplankton production, biogenic flux to the interior of the ocean can be expected to be 
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high (see Fortier et al., 1994). The contribution of the smaller metazoan herbivores (e.g. 

cope pods) to carbon flux is, however, less than that of larger grazers largely due to the 

relatively low sinking rates of their small faecal pellets. Also, copepods often feed on their 

own faecal material (Fortier et ai., 1994). The. resultant re-ingestion (coprophagy) or 

disintegration (coprorhexy) of faecal pellets greatly reduces the proportion of material that 

is transported to depth (Fortier et ai., 1994). 

In contrast, phytoplankton production consumed by the microbial loop, which is broadly 

defined as a system of prokaryote and eukaryote unicellular organisms including bacteria and 

protozoans (Azam et ai., 1983; Sherr & Sherr, 1988), contributes little to organic flux to 

depth on the basis of the following observations. Protozoans produce minifaecal pellets which 

remain in suspension for long periods. The close coupling between protozoans and 

bacterioplankton results in most of the small buoyant protozoan minifaecal pellets being 

decomposed in the euphotic zone (Azam et ai., 1983). Carbon is therefore, recycled in the 

surface waters. Also, protozoans do not appear to undergo extensive diel migrations thus, the 

nutrients contained in the protozoans and respiratory losses of carbon are restricted to the 

surface waters. Finally, recent studies have shown that many protozoans either sequester 

chloroplasts (Stoecker et at., 1987a) or have algal symbionts (Taylor, 1982) which results in 

regenerated nutrients being recycled within the symbiosis. Thus, in ecosystems dominated by 

microbial food webs, most of the biogenic carbon is retained and recycled within the upper 

surface layer. A recent study in the Gulf of Mexico found that < 1 % of the total prodoction 

was transferred to depth when the microbial food web represented the main sink for 

phytoplankton production (Fahnenstiel et al., 1995) 

Microzooplankton is the term used to describe the heterotrophic phagotrophic component of 

the plankton of < 200 pm and consisting mainly of protozoans and metazoan larvae of < 

200 pm (Beers & Stewart, 1967). Generally, protozoans comprise ciliates and dinoflagellates 

and are the most abundant component of the micro zooplankton assemblages (Porter et al., 

1985; Pierce & Turner, 1992). Field studies have shown that micro zooplankton often form 

up to 75% of the total heterotrophic plankton biomass (Porter et at., 1985; Hansen, 1991; 

Smetacek, 1991). Consequently, the role of these organisms in pelagic systems has received 

considerable attention in recent years (Porter et at., 1985; Smetacek, 1991). Since protozoans 
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span several orders of magnitude in size, they exhibit considerable trophic diversity including 

bacterivory (Capriulo, 1991; Bernard & Rassoulzadegan, 1993), carnivory (Verity et al., 1993) 

and herbivory (Pierce & Turner, 1992). In addition, microzooplankton are the major agents 

of nutrient remineralization in the ocean (Goldman et al., 1987; Probyn, 1987); and are 

thought to act as important trophic intermediates between bacterioplankton and the larger 

zooplankton (Stoecker & Capuzzo, 1990; Pierce & Turner, 1992). Microzooplankton can, 

therefore, be regarded as a key component in pelagic systems. The role of these organisms 

as cODsumers of phytoplankton production in marine environments has been the subject of 

some recent investigation. 

Quantitative microzooplankton grazing studies conducted in various marine environments in 

the northern hemisphere are well documented (see Table 1.1). The results of these studies 

show that micro zooplankton play an important role in determining the fate of phytogenic 

carbon and that they may even constitute the dominant grazers (Table 1.1). Size selectivity 

grazing studies show that micro zooplankton preferentially graze on particles < 20 pm 

(Rassoulzadegan et al., 1988; Hansen et al., 1994). Indeed, studies conducted in various 

marine environments have shown that grazing by micro zooplankton is sufficient to control 

the growth of phytoplankton in regions where nano- (20 - 2.0 pm) and picophytoplankton (2 -

0.2 pm) cells dominate (Verity & Vernet, 1992; Verity et al., 1993). Recently, it has been 

recognised that dinoflagellates are able to consume phytoplankton cells up to four times their 

size, implying that microzooplankton may be able to feed efficiently on particles ilf the 

microphytoplankton (> 20 pm) size range (Hansen et al., 1994). The microzooplankton 

grazing impact may, therefore, be significant within all chlorophyll size fractions (Hansen et 

al., 1994). 
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Table 1.1 Comparative results of microzooplankton grazing studies conducted in various 

marine environments using the dilution technique. 

Study Location % Primary production grazed 

Landry & Hassett, 1982. Coastal waters, Washington 17-52 

CampeU & Carpenter, 1986. Northwest Atlantic 37-52 

Burkill. et ai., 1987. Celtic Sea 13-42 

Paranjape, 1987. Arctic Sea 13-114 

Paranjape, 1990. Grand Bank 50-70 

Strom & We1schmeyer, 1991 Subarctic 40-50 

Verity & Vemet, 1992. Norwegian Sea 20-100 

Burkill et al., 1993. northwest Atlantic 39-115 

Verity et al., 1993. north Atlantic 37-100 

Fahnenstiel et ai., 1995. Gulf of Mexico 42-214 

Microzooplankton are now recognised as important consumers of phytoplankton production 

in pelagic systems (Pierce & Turner, 1992). More recently, it has been shown that many 

metazoan zooplankton consume micro zooplankton (Stoecker & Capuzzo, 1990; Gifford & 

Dagg, 1988; 1991; Pierce & Turner, 1992; Porter et al., 1992). Recent studies of gut content 

and faecal pellet analyses (Stoecker et al., 1987b; Gifford & Dagg, 1991; Tiselius; -1989; 

Jeong, 1994) have shown that planktonic protozoans are consumed by several metazoan taxa 

(Stoecker & Capuzzo, 1990; Pierce & Turner, 1992). Quantitative grazing studies show that 

the rates at which microzooplankton are consumed are of physiological significance to the 

consumer organism (Stoecker & Capuzzo, 1990; Gifford & Dagg, 1988; 1991). For example, 

studies conducted in the subarctic northern Pacific Ocean have shown that the copepod 

Neocalanus plumchrus may obtain up to 59% of its total daily carbon requirements from the 

ingestion of protozoan prey (Gifford & Dagg, 1991). Microzooplankton can, therefore, be 

regarded as important trophic intermediates between bacterioplankton, small phytoplankton 

cells and larger zooplankton. The consumption of protozoans by larger metazoans may reduce 

the high grazing impact of micro zooplankton within the pelagic system and represent an 

important source of carbon flux originating from the microbial loop. 
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The role of the oceans in the carbon cycle has been the subject of extensive investigations 

(Longhurst, 1991; Siegenthaler & Sanniento, 1993). Several studies have focused on the role 

of the Southern Ocean in the global carbon cycle. The Southern Ocean is a circumpolar water 

mass delimited to the north by the Subtropical CDnvergence (corresponding to "" 400S) and 

by the Antarctic continent to the south (Tomczak & Godfrey, 1994). This ocean comprises 

several water masses including the South Atlantic, Indian and Pacific Ocean. In addition, 

several distinct but smaller water masses are found around the Antarctic continent. The 

surfaG.e area encompassed by the Southern Ocean represents roughly 77 x 106 km2
, or 

approximately 22% of the surface of the world's oceans (Tomczak & Godfrey, 1994). The 

large geographic extension of the Southern Ocean suggests that it may play an important role 

in the global carbon cycle. 

Studies in the Southern Ocean have largely been restricted to primary production studies (see 

reviews of El-Sayed, 1988; Jacques, 1989; Laubscher et al., 1993) and the trophic role of the 

larger zooplankton. In particular, extensive investigations have been carried out on the 

distribution and ecology of the principal herbivore, the Antarctic krill Euphausia superba (e.g. 

Schnack, 1985). Recently, the distribution, abundance and the role of other larger zooplankton 

including copepods (Conover & Huntley, 1991; Bathmann et al., 1993; Pakhomov et ai., 

1994; Voronina et ai., 1995) and tunicates (Perissinotto & Pakhomov, in prep) in carbon 

cycling have also been examined. In contrast, the role of micro zooplankton in carbon cycling 

in the Southern Ocean is poorly documented. Although recent models of the Antarctic- food 

web incorporate a microzooplankton/microbial loop component (Hempel, 1985; Garrison, 

1991, Moloney & Ryan, 1995), quantitative aspects of their feeding ecology are poorly 

studied. In particular, the grazing impact of micro zooplankton and its role in carbon cycling 

in the Southern Ocean are not known. Thus the fate of phytogenic carbon and the partitioning 

of carbon between the protozooplankton and metazoan taxa in the Southern Ocean is poorly 

understood. 

Presently, two opposing models are available to account for the fate of photosynthetic carbon 

production in Antarctic waters. The first, proposed by Huntley et al. (1991) assume that the 

majority of the net carbon production (at least 80%) is directly channelled into the 

macrozooplankton, with the remaining 20% of the production entering the microbial loop. On 
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the basis of this model, the biological pump would be relatively efficient in the sequestration 

of biogenic carbon to depth (Longhurst & Harrison, 1989; Longhurst, 1991). In contrast, a 

subsequent model of the Antarctic food web proposes that the microbial loop, rather than 

macrozooplankton, represents the main sink f(}r. net production in the Southem Ocean 

(Moloney, 1992), Biogenic flux into the interior of the ocean would, therefore, be 

dramatically reduced due to the close coupling of the microzooplankton and the microbial 

loop, which results in the recycling of carbon in the euphotic zone. The partitioning of carbon 

betw~en the metazoan and micro zooplankton grazers is, therefore, of particular importance 

in determining the efficiency of the biological pump. 

Studies of micro zooplankton in the Southern Ocean began at the beginning of the twentieth 

century (Garrison, 1991). These studies have, however, largely focused on examining the 

abundance, distribution and taxonomy of the dominant component of the microzooplankton 

assemblages, namely protozooplankton. The results of these studies have indicated that 

micro zooplankton are dominated by ciliates and dinoflagellates and the densities are in the 

same range as those recorded in oligotrophic and meso trophic lower latitude areas, comprising 

between 10 and 75% of the heterotrophic biomass (Garrison, 1991; Gowing & Garrison, 

1992; Garrison et ai., 1993). The distribution of micro zooplankton typically mirrors that of 

phytoplankton with highest biomasses found in the euphotic zone, suggesting a close coupling 

with the sources of primary production. Geographically, maximum abundances are typically 

encountered in areas of elevated phytoplankton production such as oceanic fronts (Jacques, 

1989), in the waters surrounding oceanic islands, in the marginal ice zone (MIZ) and in the 

neritic waters of Antarctica (El-Sayed, 1988; Jacques, 1989). Few seasonal studies of 

microzooplankton abundance, species composition and distribution have ben carried out. 

Recent studies suggest summer maxima in microzooplankton biomass with densities 

decreasing by an order of magnitude during winter (Garrison, 1991). While considerable data 

on the abundance, distribution and species composition of microzooplankton in the Southern 

Ocean are available, little is known about the role of microzooplankton grazing in carbon 

cycling. 

There is only indirect evidence for the importance of microzooplankton grazing in the trophic 

dynamics of the plankton communities in the Southern Ocean. Faecal material and sediment 
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trap studies provide evidence of the importance of microzooplankton grazing on 

phytoplankton (Nothig & von Bodungen, 1989; Gowing & Garrison, 1992). However, they 

do not provide any estimates of grazing impact 9f microzooplankton on phytoplankton. 

Garrison & Buck (1989) estimated the grazing impact of microzooplankton by extrapolating 

published feeding rates of protozoans from the northern hemisphere to community feeding 

rates based on biomass estimates. Using this approach, they estimated that microzooplankton 

removed up to 41 % of the daily phytoplankton production. In a subsequent-study, Bjornsen 

and Kuparinen (1991) estimated the grazing losses of phytoplankton due to dinoflagellates by 

measuring changes in phytoplankton and dinoflagellates biomass. The results of this study 

suggested that grazing by microzooplankton may be sufficient to account for the low 

chlorophyll concentrations generally found in the Southern Ocean. Similarly using grazing 

data obtained in subarctic regions, Frost (1991) suggested that grazing by micro zooplankton 

was sufficient to control the growth of phytoplankton in the Southern Ocean. 

Direct quantitative estimates of micro zooplankton grazing impact on phytoplankton in the 

Southern Ocean are, however, very few. Studies conducted in the Bransfield Strait quring 

austral summer have shown that grazing losses of phytoplankton may be equivalent to < 48% 

of the daily potential phytoplankton production (Taylor & Haberstroh, 1988). However, this 

study was restricted to only 4 grazing stations. A more recent study, conducted at the ice-edge 

of the Weddell Sea during winter, has demonstrated that in regions where small phytoplankton 

cells dominate, micro zooplankton are the most important grazers (Garrison et ai., 1993). As 

with the previous study, few grazing stations were occupied within a limited region. Thus, 

only tentative conclusions could be made about the importance of microzooplankton grazing 

in the trophic dynamics of the plankton assemblages, and their role in carbon cycling in the 

Southern Ocean as a whole. Presently, the high contribution of micro zooplankton to the total 

microplankton biomass provides the most compelling argument for the importance of 

protozoans in the Antarctic pelagic system (Garrison, 1991; Kivi & Kuosa, 1994). 

Microzooplankton may represent important grazers of phytoplankton in the Southern Ocean. 

Studies conducted in the northern hemisphere have shown that many metazoan taxa feed on 

micro zooplankton (Gifford & Dagg, 1989; Pierce & Turner, 1992). Zooplankton feeding on 

micro zooplankton may, therefore, reduce the grazing impact of microzooplankton on 
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phytoplankton which will increase the efficiency of the biological pump in the Southern 

Ocean. Evidence for the role of micro zooplankton in the diets of larger zooplankton in the 

Southern Ocean is primarily derived from microscopic examinations of gut contents (Hopkins 

& Torres, 1989; Hopkins et al., 1993). These<s!udies have shown that all the principal 

components of the meso- (copepods) and macrozooplankton (euphausiids and tunicates) of 

the Southern Ocean consume protozoans. In particular, protozoans constitute a significant 

component of the diets of copepods (Hopkins & Torres, 1989). More recently, gut content 

analysis of the two dominant euphausiids of the Southern Ocean, Euphausia superba and E. 

crystallorophias has shown that microzooplankton comprise"'" 25% of the total identifiable 

items in their gut contents (Perissinotto et al., in press; Pakhomov et at., in press). These 

results, however, do not provide estimates of the daily rations of these organisms or their 

grazing impact on the micro zooplankton assemblages. The contribution of protozoans to the 

natural diets of zooplankton is also likely to be underestimated due to the fragility of many 

of the micro zooplankton cells (Gifford & Dagg; 1988; Hopkins & Torres, 1989). 

Quantitative grazing estimates of larger zooplankton feeding on micro zooplankton are poorly 

documented. It has been suggested that copepods may be responsible for up to 75% of the 

total zooplankton production (Conover & Huntley, 1991 cited in Huntley & Nordhausen, 

1995). This indicates that the consumption of microzooplankton by copepods may represent 

an important trophic route in the Southern Ocean. Recent studies conducted by Atkinson 

(1994; 1995) and Atkinson & Shreeve (1995), have shown that the consumptien of 

microzooplankton (ciliates and dinoflagellates) by the dominant copepods of the Southern 

Ocean contribute on average 43% of the total daily carbon intake. Furthermore, these studies 

suggest that, while large copepods consume micro zooplankton at the same rate as 

phytoplankton of similar size, small copepods appear to consume preferentially non-motile 

taxa such as protozoans. Small copepods feeding on microzooplankton may, therefore, 

represent an important trophic route in the Southern Ocean pelagic system. At present, no 

quantitative grazing data for larger macro zooplankton feeding on micro zooplankton are 

available. 

The Southern Ocean is the region with the greatest uncer~ainty in CO2 sink and source 

behaviour (Attwood & Monteiro, 1994). It is apparent that microzooplankton may play an 
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important role in the trophic dynamics of plankton communities in the Southern Ocean. To 

improve our understanding of the biogeochemical processes that determine carbon flux to the 

interior of the ocean, a 5-year investigation on the micro zooplankton of the Southern Ocean 

was conducted. 

The mam aim of this work is to address the general question, "What is the role of 

microzooplankton in carbon cycling in the Southern Ocean 7". This is defined more clearly 

as 3 ~pecific research objectives aimed at investigating spatio-temporal variations in the 

grazing impact of micro zooplankton on phytoplankton and the role of microzooplankton as 

trophic intermediates between small phytoplankton cells and larger zooplankton. The major 

research objectives of this investigation are: 

1. To investigate spatial variations in microzooplankton grazing impact on phytoplankton 

in the Southern Ocean, including the open waters and the regions of elevated 

biological activity such as the SUbtropical Convergence and the Marginal Ice Zone 

(MIZ). 

2. To examine temporal variations in micro zooplankton grazing impact, more specifically 

in the region of the Subtropical Convergence. 

3. To examine the role of micro zooplankton as trophic intermediates between 

bacterioplankton, small phytoplankton cells and larger metazoan zooplankton. 
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CHAPTER 2 

MICRO ZOOPLANKTON GRAZING AND PROTOZOOPLANKTON 

COMMUNITY STRUCTURE IN THE SOUTH ATLANTIC AND IN THE 

ATLANTIC SECTOR OF THE SOUTHERN OCEAN 

Abstract 

Microzooplankton grazing and proto zooplankton community structure in the South Atlantic 

and Atlantic sector of the Southern Ocean were investigated along a transect during late 

austral summer (Jan./Feb.) 1993. Grazing rates and numerical abundances of proto zooplankton 

were estimated in the surface waters and at the subsurface chlorophyll maximum (SCM) by 

employing the dilution technique and epifluorescent microscopy. Proto zooplankton abundance 

co-varied with chlorophyll concentrations at both depths. Nanoheteroflagellates « 20 pm) 

dominated numerically at all stations while the > 20 pm component was dominated by 

ciliates, comprising aloricate ciliates and tintinnids. Instantaneous growth rates of algae along 

the transect ranged between 0.24 and 1.86 d-1 in surface waters and between 0.06 and 1.87 

d-1 at the SCM. Instantaneous grazing rates of microzooplankton on phytoplankton varied 

from 0 to 0.33 d-1 in the surface waters and between 0 and 0.58 d-1 at the SCM. This level 

of grazing corresponds to a daily loss of 0 - 23% of the initial standing stock (0 - 46% of 

potential production) in the surface waters and between 0 and 44% (0 - 60% of potential 

production) of the initial standing stock at the SCM. Analysis of variance and multiple range 

tests indicate that both the initial standing stock and potential production removed were not 

significantly different between depths (F = 0.84; F = 0.29: P < 0.05). Indirect evidence 

suggests that microzooplankton grazed preferentially on the nano- and picophytoplankton size 

fractions. The spatial distribution of phytoplankton size classes in the different regions of the 

Southern Ocean has important ecological implications for the oceanic carbon flux. South of 

the Antarctic Polar Front (APF), where larger netphytoplankton dominate chlorophyll 

concentration, the bulk of the photosynthetically fixed carbon appears to be channelled into 

the meso/macrozooplankton component or lost by sedimentation. However, north of the APF, 

the contribution of the smaller fractions to total chlorophyll increases, suggesting a relative 

increase in the amount of carbon channelled into the smaller grazing fractions. 
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2.1 Introduction 

Microzooplankton constitute a significant pro!,ortion of total zooplankton biomass in a variety 

of neritic and oceanic environments and have consequently been the subject of numerous 
.;; . 

studies (Gast, 1985; Porter et al., 1985; Goldman et al., 1987; Mazumder et al., 1990). 

Theoretical studies on oceanic food-web dynamics have suggested that micro zooplankton are 

capable of consuming a significant proportion of primary production (Fros!,_1991). Indeed, 

field studies have demonstrated that microzooplankton consume between 10 and 75% of daily 

primary production (Bjornsen & Kuparinen, 1991; Garrison, 1991; see review by Pierce & 

Turner, 1992). Furthermore these studies have shown that microzooplankton grazing can play 

an important role in regulating bacterial populations (Andersen & Fenchel, 1984; Andersen 

& Sorensen, 1986; Albright et al., 1987; McManus & Fuhrman, 1988; Reid & Karl, 1990) 

and regenerating nutrients (Goldman et al., 1987; Probyn, 1987). Microscopic examinations 

of consumer gut contents, feeding structures and faecal material show that a number of 

invertebrate and vertebrate larvae consume microzooplankton. Microzooplankton thus act as 

trophic intermediates between the small bacteria, nanoplankton and the larger 

mesozooplankton (Gifford, 1991; Gifford & Dagg, 1988; 1991). 

Recent field studies suggest that microzooplankton not only control the size of phytoplankton 

populations but may also control the growth of certain species by selective grazing (Reynolds 

et al., 1982; Corliss & Snyder, 1986; Burkill et ai., 1987; Strom & Welschmeyer, 1989). 

This size-selective grazing depends on the feeding mechanisms employed (Haas & Webb, 

1979; Peters, 1994). For example, tintinnids typically consume phytoplankton which are "" 

45 % of their lorica diameter (Graziano, 1989), while dinoflagellates, which feed by means 

of pseudopodia, are able to consume prey even larger than themselves (Goldman & Dennett, 

1990; Peters, 1994). 

Microzooplankton studies in the Southern Ocean have primarily been limited to species 

description and estimates of abundance and distribution in Antarctic waters, especially in the 

Weddell and Scotia Seas (Buck & Garrison, 1983; Hara & Tanoue, 1985; Buck & Garrison, 

1983; Boltovskoy et al., 1989; Gowing & Garrison, 1991; 1992; Ishiyama et al., 1993; 

Stoecker et al., 1993) and in waters surrounding oceanic islands (Dodge & Priddle, 1987). 

The few grazing studies that have been undertaken have been restricted to waters close to the 
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continental margins (Taylor & Haberstroh, 1988; Bird & Karl, 1990; Bjornsen & Kuparinen, 

1991; Gowing & Garrison, 1992). The results of these studies suggest that micro zooplankton 

grazing may be sufficiently high to account for the generally low phytoplankton biomass in 

the Southern Ocean (Bjomsen & Kuparinen, 1991): 

In this paper we estimate microzooplankton grazing and protozooplankton community 

structure in the South Atlantic and in the Atlantic sector of the Southern Ocean during late 

austral summer 1993. Grazing rates were determined at 22 stations along a transect from 

SANAE (Antarctica) to Cape Town in conjunction with epifluorescence microscopy studies 

to determine proto zooplankton community structure. 

2.2 Materials and methods 

Microzooplankton grazing experiments were conducted during the second cruise of the South 

African Antarctic Marine Ecosystem Study (SAAMES) aboard the MV. S.A. Agulhas during 

late austral summer (Jan. - Feb.) 1993 (Figure 2.1). Grazing experiments were carried out 

using water from two depths, the surface layer (5 m) and the subsurface chlorophyll 

maximum (SCM), by the sequential dilution technique (Landry & Hassett, 1982). Water 

samples were obtained with a submersible pump (Flygt-Kyokuto model L 40- 25S), operated 

at a flow rate of "" 15 I min- 1 and supplied to 25 I polyethylene containers through PVC 

piping. The water was then filtered through a 200 ).1m mesh to separate the microzoopla!1!<:ton 

fraction. Particle-free water was obtained by passing surface water collected with the 

shipboard pump (lwaki Magnetic pump), operated at a flow rate of"" 1.5 I min-1 through a 

0.2 ).1m Milli Q system (Millipore). Dilution series of 1:0 3:1; 1:1; 1:3 filtered to particle

free water were made in 2 I acid washed polyethylene bottles. Three replicas for each 

dilution series were prepared. The dilution series were then incubated on deck for 24 hours 

in perspex incubators cooled with running surface water and screened with shade cloth 

(neutral density) to simulate the light intensity at the depth of collection. 

Before incubation was begun, a water sample (250 ml) for initial chlorophyll-a concentration 

was taken from each bottle of the dilution series. The corresponding bottles were sampled 

again (250 ml) at the end of the incubation period to determine final chlorophyll-a 

concentration. 
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Figure 2.1 

Atlantic 
Ocean 

40°-r-----_ 

6(i-------

5 

_ __ SAF 

Cruise track and position of the stations (every 5th station numbered) occupied 

during the SAAMES II cruise aboard the MV. S.A Agulhas in late austral 

summer in the Atlantic sector of the Southern Ocean. C.T.= Cape Town; STC 

= Subtropical Convergence; SAF = Subantarctic Front; APF = Antarctic Polar 

Front. 
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To assess the dynamics of the algal community during the incubation period, water samples 

taken from the 1:0 dilution series were fractionated into net- (~ 20 pm), nano- (2.0 - 20 pm) 

and pico- (0.2 - 2.0 pm) plankton size fractions at the onset and at the end of the incubation 

period. Chlorophyll-a concentrations were determined fluorometrically (Turner 111 

fluorometer) after extraction in 100% methanol (Holm-Hansen & Riemann, 1978). 

To estimate the numerical abundance of the proto zooplankton community, a 50m! sample of 

unfiltered seawater was stained with Proflavine (50 pl/ml; 2min), fixed with glutaraldehyde 

(final conc. 6%) and then filtered (vacuum ~ 5 cm Hg) through a 2.0 pm Nuclepore filter 

which had been prestained with Irgalan black (Haas, 1982). Permanent slides were then 

prepared according to the method of Booth (1987) and frozen at -20°C. Slides were 

examined within two months of collection at 400 x magnification using a Zeiss fluorescent 

microscope equipped with a 450-490 excitation filter, a Ff 510 chromatic beam splitter and 

a long pass 528 barrier filter (Haas, 1982). No significant loss in the autofluorescence of the 

chlorophyll-containing organisms was anticipated (Booth, 1987). Phototrophic organisms 

were distinguished from heterotrophic organisms by the red autofluorecence of chlorophyll-a. 

Protozooplankton were separated into the following groups: tintinnids, aloricate ciliates, 

dinoflagellates and nanoheterotrophs (2 - 20 pm). The number of cells in the 50 ml sample 

was calculated from the following relation (Waterbury et al., 1986): 

No. cells in 100 fields x (total area of filter) 

(area of 1 00 fields) 

All data were then multiplied by 20 to express proto zooplankton density data as cells 1-1. 

The apparent growth rate of chlorophyll-a at each dilution is calculated as: 

1 
t In (~) 

where Po and Pt are chlorophyll concentrations at the beginning and end of the experiment; 

t is duration of experiment. This is the observed change in chlorophyll in the presence of 
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grazers. The theoretical growth rate of phytoplankton in the absence of grazers (k) is taken 

to be the y intercept from the regression analysis between apparent growth rate and dilution 

(Figure 2.2). The slope of the regression is the instantaneous grazing coefficient (g) of the 

microzoplankton (Figure 2.2). This regression was calculated by using the computer package, 
", . 

Statgraphics Version 5.0 (Statistical Graphics Corporation). 

To normalise chlorophyll values, all data were transformed using the f'!.cJoI log (x + 1) 

(Legendre & Legendre, 1983). Grazing rates (expressed as %) were transformed using the 

arcsin transformation (Sokal & Rohlf, 1969). Correlation analysis (Statgraphics, 5.0) was then 

performed to identify possible relationships between grazing rates and chlorophyll size 

fraction (Sokal & Rohlf, 1969). 

2.3 Results 

Chlorophyll distribution 

Chlorophyll concentrations at the surface and at the subsUlface chlorophyll maximum (SCM) 

did not differ dramatically (Figure 2.3). Peaks in chlorophyll concentration were identified 

in the neritic waters of Antarctica, in the marginal ice zone (MIZ), in the vicinity of the 

Antarctic Polar Front (APF), at the Subtropical Convergence (STC) and in continental shelf 

waters south of Africa. South of the APF, total chlorophyll concentration in surface waters 

was generally higher than at the SCM. North of the APF, the situation was reversed,. with 

chlorophyll concentrations at the SCM higher than in surface waters, except in continental 

shelf waters south of Africa. 

Size fractionated chlorophyll 

The contribution of the three size fractions to total chlorophyll concentration differed north 

and south of the APF (Figures 2.4A and 2.4B). The netphytoplankton contribution to total 

chlorophyll concentration was greatest at stations south of 57°S (station 8), with the exception 

of station 2 in the subsurface waters and station 5 at the SCM. This pattern extended to 53°S 

(station 10) in the surface waters (Figure 2.4A). In the surface waters north of 57°S, the 

nanophytoplankton dominated the chlorophyll concentration. At the SCM, nanophytoplankton 

dominated chlorophyll concentration between stations 8 and 11, while netphytoplankton 
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Interpretation of an idealised dilution experiment. Slope of the regression is the 

instantaneous grazing coefficient (g); intercept of the y axis is the 

instantaneous algal growth coefficient (k). 
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Total chlorophyll-a distribution in surface waters and at the subsurface 

maximum (SCM). MIZ = marginal ice zone; APF = Antarctic Polar Front; 

SAF = Subantarctic Front; STC = Subtropical Convergence. 
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SCM (B). MIZ = marginal ice zone; APF = Antarctic Polar Front; SAF = 
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dominated in the region of the APF. The picophytoplankton contribution to total chlorophyll 

concentrations at all stations south of the APF was less than 5%. 

North of the APF, the contribution of the three fractions to total chlorophyll concentrations 

varied considerably, with the smaller size fractions typically dominating. The contribution of 

netphytoplankton to total chlorophyll concentration north of the APF was greatest in the 

region of the STC and in continental shelf waters south of Africa. The n~nophytoplankton 

dominated at stations immediately north of the APF and at station 19 at both depths. The 

contribution of picophytoplankton increased northwards towards Cape Town, dominating at 

station 17 in the surface waters and station 20 at the SCM. 

Population structure 

Total protozooplankton abundance co-varied with chlorophyll concentration at both depths 

(Figures 2.3 and 2.5). Indeed, chlorophyll-a concentration accounted for:::; 40% of the 

variance associated with microzooplankton abundance in the surface waters (P < 0.05). Peaks 

in proto zooplankton abundance at both depths were recorded in the vicinity of the APF and 

Subantarctic Front (SAF). At the STC only the surface waters exhibited a ,peak in 

concentrations. In addition, in surface waters microzooplankton abundance increased 

dramatically in the region of the MIZ, while at the SCM peaks were identified in the region 

of 63°S (station 3) and at station 20, where a dinoflagellate bloom (dominated by Ceratium 

spp. and Gymnodinium spp.) was found. At both depths, abundances decreased dramatically 

in continental shelf waters (stations 21 and 22). Although the contribution of the various 

components of the microzooplankton assemblage varied between depths, total abundances did 

not differ significantly (t = 0.281; P < 0.05). 

Nanoheterotrophs dominated numerically at all stations with the exception of station 20 at the 

SCM where a dinoflagellate bloom was identified (Table 2.1A and 2.1B). Densities ranged 

between 981 and 2310 ind.rl in surface waters and between 980 and 2100 indX1 at the SCM 

(Table 2.1 A and 2.1 B). The > 20 pm fraction was dominated numerically by ciliates 

(tintinnids and aloricate ciliates). The contribution of the tintinnids to total ciliate densities 

was less than that of the aloricate ciliates at all stations. Dinoflagellates were the second 

most abundant component of the> 20 pm fraction. 
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Total protozooplankton abundance along the SANAE- Cape Town transect in 

units of cells. 1"1. MIZ = marginal ice zone; APF = Antarctic Polar Front; SAF 

= Subantarctic Front; STC = Subtropical Convergence. 
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Table 2.IA Composition of the heterotrophic protozooplankton assemblages in the surface 

waters during the SAAMES II cruise of austral summer (Jan./Feb.) 1993. 

Results are expressed as indXl. 

Stations Aloricate ciliates Heterotroph ic Heterotrophic Nano-
Tintinnids Dinoflagellates )tetlSotrophs 

- 1 438 189 377 1782 

2 695 202 502 1974 

3 440 185 343 2311 

4 565 98 468 981 

5 387 36 176 1003 

6 422 351 194 1033 

7 367 88 326 1321 

8 290 35 297 1221 

9 406 17 453 1487 

10 229 20 264 581 

11 633 '~ 88 713 1437 

12 476 88 467 1245 

13 405 141 581 1742 

14 264 17 282 704 

15 572 35 493 1408 

-16 651 88 651 1566 

17 312 101 131 1547 

18 554 220 440 1566 

19 1336 504 840 978 

20 377 112 547 1078 

21 73 17 74 843 

22 211 35 198 553 
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Table 2.1B Composition of the heterotrophic protozooplankton assemblages at the 

chlorophyll maximum during the SAAMES II cruise of austral summer 

(Jan./Feb.) 1993. Results are expr~s.sed as indX1
• 

Stations Alorlcate ciliates Heterotrophic Heterotrophic ~ - Nano-
Tintinnids Dinoflagellates heterotrophs 

1 397 88 352 2117 

2 510 255 528 983 

3 763 101 662 1021 

4 565 131 652 963 

5 422 181 317 1830 

6 532 134 467 1468 

7 216 131 323 986 

8 320 180 243 1034 

9 379 88 443 1543 

10 282 35 229 968 

11 299 0 581 1478 

12 261 17 436 1331 

13 528 107 528 1830 

14 299 17 422 915 

15 368 88 296 867 -
16 387 123 669 1443 

17 437 88 121 987 

18 422 158 290 563 

19 498 285 498 1323 

20 123 194 408 968 

21 61 14 27 560 

22 142 0 211 669 
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Microzooplankton grazing 

Instantaneous growth and grazing coefficients are listed in Tables 2.2A and 2.2B, which show 

that significant linear correlations (P < 0.05) were found between dilution and apparent 

phytoplankton growth rates. 
..-; . 

Pigment specific coefficients (k) were highly variable along the transect. Increased growth 

rates were recorded in the vicinity of the MIZ, APF, STC and in the continental shelf waters -- ~ 

of Africa (Tables 2.2A and 2.2B). At both depths, the lowest growth coefficients were 

recorded in the neritic waters of Antarctica, while the highest growth rates were recorded in 

the vicinity of the APF. At the SCM, algal growth coefficients ranged between 0.24 and 1.86 

d- 1
, equivalent to 0.35 and 2.68 chlorophyll doublings d- 1

• At the SCM, algal growth 

coefficients were in the same range, between 0.17 and 1.87 d-1 or between 0.25 and 2.69 

chlorophyll doublings d-1
• 

Instantaneous grazing coefficients of microzooplankton in the surface waters ranged between 

o and 0.33 d- 1
• This level of grazing represents a loss of 0 to 28% of the initial standing stock, 

or between 0 and 46% of the potential production along the transect. At the SCM, 

instantaneous grazing coefficients ranged from between 0 to 0.58 d-1
• This level of 

instantaneous grazing activity is equivalent to a loss of 0 to 44% of the initial standing stock 

and 0 to 60% of the potential production along the transect. Analysis of variance and 

multiple range test indicate that both the initial standing stock and potential prodyction 

removed were not significantly different at the two depths considered (F = 0.84; F = 0.29; P 

> 0.05). 
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Table 2.2A Rate estimates with regression coefficients (r) and confidence limits of microzooplankton grazing studies conducted in surface 
I 

waters during late austral summer (Jan/Feb) 1993. (** = P < 0.05; * = P < 0.001). Values in brackets = standard error. Doublings 

d- l = k/ln2 (Gifford, 1988). MIZ = Marginal Ice Zone; APF = Antarctic Polar Front; STC = Subtropical Convergence. 

Station Chi-a r Growth coeff. Grazing coeff. %Initial stock % Potential prod. Chlorophyll 
number conc. k (d· l

) g (d· l
) removed (d· l

) removed (d' l ) doublings (d' l ) 

1.88 0.47- 0.24 (0.04) 0.04 (0.02) 3.72 18.27 0.35 
2 1.01 0.42" 1.68 (0.25) 0.22 (0.09) 19.82 24.26 2.42 MIZ 
3 0.33 0.49" 1.31 (0.l3) 0.15 (0.05) 15.15 19.10 1.89 
4 0.68 0.60- 0.51 (0.07) 0.20 (0.02) 17.60 44.44 0.73 
5 0.39 0.65- 1.59 (0.16) 0.25 (0.06) 22.50 27.56 2.29 
6 0.44 0.44" 1.24 (0.07) 0.07 (0.02) 6.82 9.26 1.79 
7 0.14 0.32" 1.34 (0.10) 0.18 (0.02) 14.29 20.51 1.93 
8 0.l3 0.61-- 0.53 (0.12) 0.10 (0.05) 7.69 22.22 0.77 
9 0.l3 0.57" 0.87 (0.11) 0.11 (0.01) 7.69 16.67 '1.25 
10 0.10 0.82- 0.97 (0.04) 0.22 (0.02) 20.00 31.25 '1.39 
11 0.19 o.n- 0.85 (0.04) 0.06 (0.02) 5.26 8.00 1.22 
12 0.54 0.66" 1.86 (0.12) 0.33 (0.04) 27.78 33.44 2.68 APF 
13 0.48 0.82- 0.96 (0.05) 0.09 (0.02) 8.33 12.98 1.39 
14 0.37 0.74- 0.81 (0.l0) 0.19 (0.10) 16.22 34.78 1.17 
15 0.l9 0.31" 1.11 (0.15) 0.00 (0.00) 0.00 0.00 1.16 
16 0.49 0.87- 1.11 (0.l3) 0.20 (0.07) 22.50 27.00 1.60 
17 0.52 o.n- 0.87 (0.03) 0.08 (0.01) 7.69 12.50 1.25 STC 
18 0.62 0.65" 0.57 (0.07) 0.l3 (0.03) 12.90 29.17 0.83 
19 0.66 0.58" 1.80 (0.11) 0.26 (0.09) 22.72 27.32 2.60 
20 0.16 0.34-- 0.87 (0.10) 0.10 (0.02) 12.50 15.77 1.26 
21 0.09 0.43" 0.65 (0.09) 0.05 (0.01) 10.00 11.11 0.93 
22 0.31 0.35" 0.91 (0.10) 0.24 (0.04) 22.58 34.78 1.32 
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Table 2.2B Rate estimates with regression coefficients (r) and confidence limits of micro zooplankton grazing studies conducted at the 

chlorophyll maximum during late austral summer (Jan/Feb) 1993. (** = P < 0.05; * = P < 0.001). Values in brackets = standard 

error. Doublings d- l = k/ln2 (Gifford, 1988). MIZ = Marginal Ice Zone; APF = Antarctic Polar Front; STC = Subtropical 

Convergence. 

Station Chl-a r2 Growth coefT. Grazing coeff. %Initial stock Potential prod. Chlorophyll 
number conc. k (dol) g (dOl) removed (dOl) removed (dOl) doublings (dOl) 

1 0069 OAO" 0.17 (0.02) 0.02 (0.01) 2.02 15.74 0.25 
2 2.07 0.62- 1.50 (0.12) 0.18 (0.04) 16A7 21.22 2.16 MIZ 
3 0.64 0.63- lA9 (0.18) 0.26 (0.06) 23.21 29.82 2.14 
4 0.89 0.62- OA6 (0.07) 0.11 (0.03) IOA5 28.84 0.67 
5 0.73 0.76' 1.64 (0.13) 0.26 (0.05) 23.02 28.38 2.37 
6 0.39 0.43-- 0.49 (0.10) 0.27 (0.08) 23.84 60.97 0.71 
7 0.36 0.31-- 1.71 (0.15) 0.58 (0.09) 44.17 53.99 2.47 
8 0.26 0.61*- 0.76 (0.04) 0.13 (0.01) 12.31 22.95 ).10 
9 0.19 0.54- 0.70 (0.02) 0.05 (0.01) 4.89 9.32 1.00 
10 0.08 0.84- 1.34 (0.08) 0.18 (0.03) 16.25 22.12 1.93 
11 0.21 0.77- 1.87 (0.30) 0.31 (0.04) 26.67 31.56 2.70 
12 0.99 0.64' 1.44 (0.10) 0.25 (0.04) 22.12 28.98 2.08 APF 
13 0.49 0.82- 0.81 (0.11) 0.10 (0.01) 10.20 16.88 1.17 
14 0.17 0.48" 0.72 (0.10) 0.17 (0.05) 15.88 30.73 1.04 
15 0.18 0.37" 0.07 (0.01) 0.00 (0.00) 0.00 0.00 0.10 
16 0.18 0.39" 0.71 (0.28) 0.26 (0.10) 22.78 45.16 1.02 
17 0.53 0.38' 0.74 (0.10) 0.10 (0.07) 9.43 18.24 1.06 STC 
18 0.66 0.80- 0.54 (0.05) 0.14 (0.02) 13.63 31.29 0.78 
19 OA7 0.80' OA1 (0.03) 0.07 (0.01) 6.38 20.17 0.59 
20 0.50 OA7-- 0.06 (0.01) 0.01 (0.00) l1A5 21.88 0.09 
21 0.09 0.75' OA4 (0.08) 0.11 (0.03) 10.00 29.09 0.63 
22 0.83 0.83' 0.69 (0.02) 0.06 (0.08) 6.09 11.77 0.99 
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Dynamics of algal community 

The netphytoplankton size fraction increased in concentration at 16 stations in the surface 

waters and 15 stations at the SCM (Figure 2.6). The mean increase was 7.5% in the surface 

waters and 8.4% at the SCM. The greatest increase in netphytoplankton concentration at both 

depth was recorded at station 21. The nanophytoplankton concentration decreased at 14 

stations in the surface waters (mean decrease = 9.5%) and the SCM (mean decrease = 10.8%). 

The picophytoplankton fraction decreased at 17 stations in the surface waters and at 14 

stations at the SCM. 

Analysis of variance (ANOV A) and multiple range test indicated that at both depths the 

change in netphytoplankton concentration was significantly different from the percentage 

change in the nanophytoplankton and picophytoplankton concentrations (F = 6.03 in surface 

waters; F = 3.35 at the SCM; P < 0.05 in both cases). 
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2.4 Discussion 

The dilution technique is widely employed to estimate micro zooplankton herbivory and 

provides a simultaneous estimation of algal growth and mortality with the minimal 

manipulation of the natural assemblages (Landry & Hassett, 1982~ Paranjape, 1990~ Verity 

& Vernet, 1993). A potential source for the underestimation of microzooplankton grazing 

during this study may have been the water sampling method employed. Differences in the 

efficiency of sampling of the different size classes and damage to delicate, soft bodied 

organisms in water samples collected by submersible pumps have been documented (James, 

1991). However, comparative studies of microzooplankton samples collected by pump and 

sampling bottle found no significant differences in the compositions of the assemblages 

(Herman et al., 1984; Paranjape, 1991). Indeed, densities of proto zooplankton assemblages 

recorded during this study were in the same range reported from previous studies in the 

Southern Ocean (Garrison & Buck, 1989~ Garrison, 1991). Furthermore, our estimates of 

micro zooplankton grazing on phytoplankton were in the same range reported from other 

experiments employing the dilution technique (Table 2.3). These considerations suggest that 

underestimation of microzooplankton impact associated with pump sampling was,(Uinimal 

during this study. 

Algal growth coefficients along the transect ranged between 0.06 and 1.87 d-1 (0.25 to 2.70 

chlorophyll doublings d-1
) (Table 2.2A and 2.2B). Highest growth rates were recorded}n the 

marginal ice zone (MIZ) , at oceanic fronts and particularly the Antarctic Polar Front (APF) 

and the Subtropical Convergence (STC); and in the neritic waters off Africa (Table 2.2A and 

2.2B). Elevated algal production in these areas of the Southern Ocean are well documented 

(EI-Sayed, 1988~ Jacques, 1989). The highest growth rates along the transect were generally 

recorded at stations dominated by the < 20 pm chlorophyll fraction. These growth rates are 

consistent with results of microzooplankton grazing studies conducted in regions where the 

< 20 !lm fraction dominated chlorophyll biomass (Gifford, 1988; Gallegos, 1989; Wiese & 

Scheffel-Moser, 1990; Verity et al., 1993). Interfrontal algal growth rates compare well with 

results of dilution experiments conducted in open ocean environments (Strom & 

Welschmeyer, 1991). 
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Table 2.3 Comparative results of microzooplankton grazing experiments conducted in various oceanic environments employing the dilution , 
technique. Values omitted from the table were not listed in the reference. 

Author Region Growth coefficient Grazing coefficient % Initial standing % Potential production 

(k) d'! (g) d'! stock removed d'! removed d'! 

Landry & Hassett, 1982 Coastal, Washington 0.46-0.63 0.07-0.29 6-24 -

Paranjape, 1987 Arctic Sea, Pacific 0.00-0.34 0.08-0.17 5-31 13-114 

Burkill et al., 1987 Celtic Sea -0.07-1.04 0.14-1.66 13-65 -

Gifford, 1988 Halifax harbour 0.00-1.44 0.00-1.96 38 0-100 
·e 

Taylor & Haberstroh, 1988 Bransfield Strait -0.28-0.49 0.00-0.77 10.2 f~ _ 

Paran jape, 1990 Grand Bank 0.27-0.708 0.16-0.43 20-30 13-105 

Strom & Welschmeyer, 1991 Arctic Sea, Pacific 0.02-0.66 0.1-0.59 40-50 -

Present study South Atlantic and 0.24-1.86 0.00-0.33 0-59 0-60 

Southern Ocean 

! 
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Instantaneous grazing coefficients of the micro zooplankton assemblages ranged between 0 and 

0.58 d- 1 (Table 2.2A and 2.2B). This level of grazing is equivalent to a daily loss of 0 - 44% 

of the initial standing stock or 0 to 60% of potential phytoplankton production. Our results 

are in the same range reported from similar studies in the northern hemisphere (see Table 
..: . 

2.3). Several criteria are thought to involve food selection, including prey size, motility and 

surface characteristics (Strom & Welschmeyer, 1991; Hansen et al., 1994; Peters, 1994). 

Among these, prey size is considered to be the most important. A recent study suggests that 
~- ~ 

the optimum predator: prey ratio volume is 18: 1 for ciliates and 8: 1 for flagellates (Hansen 

et al.,-1994). On the basis of the species composition of the protozooplankton assemblages 

recorded along the transect at both depths, grazing impact should be greatest at stations 

dominated by the < 20 ).1m chlorophyll fraction. Indeed, grazing impact of micro zooplankton 

was greatest at stations dominated by the < 20 ).1m chlorophyll fraction (Figure 2.4; Tables 

2.2A and 2.2B). The lower grazing rates generally recorded at stations dominated by the 

larger netphytoplankton can be ascribed to morphological constraints on protozooplankton 

feeding (Graziano, 1989). It is worth noting that in the surface waters, the lowest grazing 

impact was recorded at stations dominated by chain-forming species of the genera 

Chaetoceros, Nitzschia and Corethron (i.e. stations 1, 11, 15, 20, 21). Exceptions presented 

may reflect the presence of large dinoflagellates, which are able to consume prey up to three 

times their size (Jacobson & Anderson, 1986; Suttle et al., 1986; Hansen, 1991). Although 

grazing rates have been demonstrated to be temperature dependent (Peters, 1993), the results 

of this investigation suggest that grazing impact was independent of temperature during this 

study (Figures 2.7 A and 2.7B). 

Station 15 was characterised by a lack of decrease in concentration of phytoplankton at both 

depths over the duration of the incubation period (Table 2.2A and 2.2B). This occurred 

despite relatively high cell densities of 3000 ind.l-1 (Table 2.1A and 2.1B). The impact of 

grazing on phytoplankton growth is largely determined by the phase of phytoplankton growth 

(Banse, 1991). During the exponential phase, the growth rate of the algae exceeds the grazing 

rate of the microzooplankton (i.e. k > g). This results in an increase and accumulation of 

chlorophyll biomass in the absence of larger herbivores. An indication of the growth status 

of the local phytoplankton can be derived from the photosynthetic capacity (PC). 
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This provides an index of the physiological status of a phytoplankton community. Results of 

an unpublished production study (R.K Laubscher, Southern Ocean Group, Rhodes University) 

show that the PC value of the phytoplankton community at station 15 was among the highest 

of the entire transect. This suggests that the phytoplankton community at station 15 was in 

the exponential phase of growth, resulting in an increase in biomass during the grazing 

experiments. 

A preliminary study of algal dynamics in the incubation bottles demonstrated that the nano

and the picophytoplankton contribution to total chlorophyll decreased over the duration of the 

incubation period (Figure 2.6). Bottling effects on plankton communities are well documented 

(Venrick et al., 1977; Cullen et al., 1986; Taguchi et at, 1993). Changes in the contribution 

of the phytoplankton fractions to total chlorophyll may result from nutrient limitation and the 

filtration procedure, including cell breakage and incomplete recovery of cells by the filter 

(Hilmer & Bate, 1989) or grazing by zooplankton. Changes associated with nutrient limitation 

and the filtration procedure will generally decrease the contribution of netphytoplankton, in 

the former case because of physiological limitations for the uptake of nutrients associated with 

their size (Fogg, 1991) and in the latter because of the fragile frustules. A potent~al source 

for the decrease in the < 20 )lm fractions may be selective grazing by the microzooplankton 

assemblages in the incubation bottles. The decrease in the nano- and picophytoplankton 

concentrations is consistent with the species composition of the proto zooplankton assemblages 

recorded (dominated by nanoheterotrophs and ciliates). Ciliates and nanoheter0!T0phs 

generally feed on particles < 20 pm (Rassoulzadegan et at., 1988; Mazumder et at., 1990; 

Hansen et at., 1994). 

Throughout the cruise period, proto zooplankton abundance co-varied with phytoplankton 

abundance (Figures 2.3 and 2.5). Numerous field studies have demonstrated the coupling 

between microzooplankton abundance and phytoplankton concentration (Silver et ai., 1984; 

Wasik & Mikolajczyk, 1990; Gowing & Garrison, 1991; 1992; Hansen, 1991). In particular, 

strong correlations between tintinnid growth rates and food availability have been 

demonstrated (Verity, (1986) cited in Pierce & Turner, 1992). The distribution and abundance 

of both ciliates and dinoflagellates have been shown to be greatest in the upper 50m of the 

water column where the chlorophyll concentration is greatest (Silver et al., 1984; Wasik & 

Mikolajczyk, 1990; Gowing & Garrison, 1991; 1992). Jonsson (1989) suggests that ciliates 
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may influence their own vertical distribution through direct motility and effects of geotaxis 

and turbulence. This implies that, as predators, they would be able to orientate themselves 

towards prey and therefore meet their metabolic demands at lower prey concentrations 

(Jonsson, 1989). In addition, ciliates would remain ih areas rich in prey. Analysis of variance 
-..: . 

indicated that neither the percentage initial stock nor potential primary production removed 

by micro zooplankton grazing was significantly different between depths. This suggests that 

the remaining components of the micro zooplankton assemblage may also be able to actively -- ~ 

determine their position within the water column, aggregating in regions where chlorophyll 

concentrations are highest. However, this may also represent a local response (increased 

specific growth rate) of the microzooplankton assemblage to enhanced levels of phytoplankton 

biomass. 

Densities of the various components of the protozooplankton assemblages along the transect 

varied considerably between stations (Tables 2.1A and 2:1B). Nanoheterotrophs « 20 pm) 

dominated at all stations, with ciliates dominating the> 20 pm proto zooplankton assemblage. 

The fixation of the samples with 6% glutaraldehyde solution, however, may have resulted in 

the underestimation of the ciliate contribution to total protozooplankton counts (Jam~s, 1991). 

According to Garrison (1991), an extreme range of variability within individual studies is a 

key feature of micro zooplankton studies in Antarctic waters. Indeed, mesoscale patchiness is 

highly developed in the Southern Ocean within both the phytoplankton and the zooplankton 

(Alder & Boltovskoy, 1991; Perissinotto & McQuaid, 1992). Factors that may influen~e the 

distribution and abundances of microzooplankton species include habitat availability (pack ice) 

and biological interactions. For example, Alder & Boltovskoy (1991) found a high spatial 

correlation between dinoflagellates and tintinnids in Antarctic waters, which they ascribed to 

a common food source (silico-flagellates) or the predatory nature of tintinnids, which feed on 

dinoflagellates (Stoecker et al., 1984). 

Microzooplankton grazing along the transect removed on average 14.4% of the initial standing 

stock ("" 24.1% of potential production; Tables 2.2A and 2.2B). Grazing experiments, 

however, were conducted in the absence of potential predators> 200 pm. A preliminary study 

of gut contents of adult Euphausia superba (n = 5) in the region of the APF indicates that 

protozooplankton (Ceratium spp., Dinophysis spp., Amphisolenia spp and Protoperidinium 

spp) constitute one third of all cells identified in the gut (P.W. Froneman, unpublished data). 
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.-
This result is consistent with the findings of Hopkins & Torres (1989), which demonstrated 

that macrozooplankton are major consumers of protozooplankton. This suggests that 

micro zooplankton grazing impact was overestimated and highlights the need for future studies 

on species interactions among the various size classes of zooplankton. 
":! • 

Microzooplankton grazing has been suggested as a potential reason for the low chlorophyll 

concentrations recorded in the Southern Ocean (Bjornsen & Kuparinen, 1991). However, the 

low microzooplankton grazing rates measured during this study suggest that in the Southern 

Ocean the role of microzooplankton in carbon flux may be minor and that {he bulk of the 

carbon is either lost to sedimentation (von Bodungen et al., 1986; 1988; Fischer et al., 1988) 

or is channelled into the larger herbivores (meso and macrozooplankton). This result partially 

supports the model proposed by Huntley et al. (1991), which suggests that up to 80% of the 

net production in the Southern Ocean is channelled directly to the macrozooplankton. 

However, the relative importance of micro zooplankton vs. macro zooplankton may shift 

seasonally as well as spatially when the size of the phytoplankton in the ecosystem shifts 

(Pierce & Turner, 1992). Size fractionated grazing studies suggest that in areas where the 

nano- and picophytoplankton size fractions dominate, the relative impor~nce of 

micro zooplankton would increase along with their grazing impact on total production. The 

total carbon channelled into the microzooplankton component would thus increase 

accordingly. Consequently, the role of micro zooplankton in carbon flow within the Southern 

Ocean should differ north and south of the APF as the netphytoplankton fraction dom!nates 

in Antarctic waters while smaller fractions (nano-/picophytoplankton) dominate in sub

Antarctic waters (Figure 2.4; Laubscher et at., 1993). The claim of Moloney (1992) that z 

60% of the primary production enters the microbial food web is likely to apply only to 

regions north of the APF, where the contribution of the smaller fractions to total chlorophyll 

increases. 

This has important implications for the biological pump as carbon flux through the micro and 

mesoplanktonic food webs differ substantially (Michaels & Silver, 1988). Microzooplankton 

produce relatively small faecal minipellets, which have low sinking rates, while 

meso/macroplankton produce larger, faster sinking faecal pellets (Fortier et at., 1994). 

Larger faecal pellets cause a rapid downward flux of organic material from the euphotic zone 

to the deep sea. This flux is reinforced by diel migrations of most mesoplankton over 

43 



hundreds of meters (Longhurst, 1991; Perissinotto & McQuaid, 1992). Through these 

pathways, production originating in the euphotic zone is consumed and transported below the 

zone of regenerated production, and the carbon available to the higher trophic levels is 

reduced. 

Microzooplankton minipellets are decomposed together with dissolved and particulate organic 

matter by heterotrophic bacteria in the zone of regenerated production (Azam et ai., 1983; 

Sherr & Sherr, 1988). Heterotrophic bacteria in turn represent a considerable source of 

secondary biomass production via the consumption by ciliate and flagellate bacterivores 

(Anderson & Fenchel, 1984; Albright et ai., 1987). Carbon that would otherwise be lost is, 

therefore, made available again as the rnicrozooplankton in turn are consumed by metazoan 

grazers (Hewes et al., 1985; Gifford, 1991; Gifford & Dagg, 1988; 1991). 
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CHAPTER 3 

STRUCTURE AND GRAZING OF THE MI~~OZOOPLANKTON COMMUNITIES 

OF THE SUBTROPICAL CONVERGENCE AND A WARM-CORE EDDY IN THE 

ATLANTIC SECTOR OF THE SOUTHERN OCEAN 

Abstract 

The comminity structure and grazing dynamics of micro zooplankton were investigated at 15 

stations during the SAAMES III cruise to the region of the Subtropical Convergence (STC) 

and across a warm-core eddy in subantarctic waters during austral winter (June/July) 1993. 

Microzooplankton abundance co-varied with the combined concentration of the nano- and 

picophytoplankton size fractions. Nano-flagellates dominated numerically at all stations while 

the > 20 pm fraction was generally dominated by ciliates (oligotrichs and tintinnids). 

Mixotrophs comprised between 0 and 5% of total chlorophyll concentration. Production in 

the region showed a weak seasonal trend with the exception of stations in the vicinity of the 

STC. Instantaneous growth and grazing co-efficients exhibited clear spatial trends, with the 

highest rates recorded at the edge of the eddy and in the region of the STC. Instantaneous 

grazing rates at stations at the edge of the eddy and at the STC varied from 0.347 to 0.701 

d-1
, equivalent to a loss of 30-51 % of the initial standing stock and between 56 and 69% of 

the potential primary production. In the warm core eddy, subantarctic and Agulhas waters, 

instantaneous grazing rates ranged from 0.281 to 0.433 d-1
• This is equivalent to a loss of 24 

- 35% of the initial standing stock and between 59 and 83% of the potential primary 

production. Size selectivity experiments suggest that micro zooplankton preferentially graze 

on the pico- and nanophytoplankton size fractions. The results of this study show that the 

bulk of photosynthetically fixed carbon is channelled into the microbial loop during austral 

winter. This implies that the carbon pump is relatively inefficient during winter and that 

atmospheric CO2 drawdown via sinking of organic matter into deep water may be very limited 

in this area_ 
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3.1 Introduction 

The Subtropical Convergence (STC) is one of the major frontal systems of the Southern 

Ocean and constitutes its northern boundary (De~c?n, 1982; Lutjehanns & Valentine, 1988). 

Production in the region of the front shows no seasonal trends, with periods of elevated 

production alternating with periods of lower production throughout the year (Comiso et al., 

1993). According to Dower & Lucas (1993), the STC may represent an il}1pQl1ant biogenic 

sink for atmospheric CO2, and may account for between 0.5 and 0.8% of the total global 

ocean production. 

The interaction of the Agulhas Retroflection Current (ARC) with the northern boundary of 

the STC in the oceanic region south of Africa results in a high variability in currents and the 

formation and shedding of wann-core eddies (Lutjeharms & Valentine, 1988; Duncombe Rae, 

1991). These eddies subsequently move southwards across the STC, contributing to meridional 

heat flux into the Southern Ocean and to the transfer of salt between the south Indian Ocean 

and the south Atlantic (Lutjeharms & Gordon, 1987; Duncombe Rae, 1991). Although the 

effects of these eddies on the physico-chemical parameters of the region have been the subject 

of several investigations (Lutjeharms & Gordon, 1987; Lutjeharms & Valentine, 1988; 

Duncombe Rae, 1991), their effects on the biological processes have largely been neglected 

in the past. 

Studies on the effects of eddies on biological processes elsewhere, and particularly in the Gulf 

Stream and East Australian Current, have demonstrated that eddies may result in localised 

areas of increased phytoplankton productivity (Tranter et al., 1980; Angel & Fasham, 1983; 

Smith & Baker, 1985; Franks et al., 1986) and may be important in the transportation of 

biological popUlations between different water masses (Angel & Fasham, 1983). Possible 

ecological consequences of eddy shedding from the ARC may be the transportation of warm 

water species across the STC which is regarded as an important biogeographical barrier 

(Deacon, 1982). Also, indirectly these eddies may result in changes in heat and CO2 flux 

which could influence the productivity of the region. A recent study by Dower & Lucas 

(1993) found enhanced productivity rates at the edge of a warm-core eddy shed from the 

ARC, in generally low productive subantarctic waters. 
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Several field studies have demonstrated the importance of microzooplankton in the marine 

environment (see reviews of Porter et at., 1985; Garrison, 1991; Pierce & Turner, 1992). In 

the Southern Ocean, a recent study by Froneman & Perissinotto (in press), suggests that the 

impact of micro zooplankton on phytoplankton stock may be determined by the contribution 

of smaller fractions (nano- and picophytoplankton) to total chlorophyll concentration. Indeed, 

it is well documented that in coastal environments where the phytoplankton are dominated 

by pico- and nanoplankton, proto zooplankton are often the most significant herbivores 

(Cap~iulo & Carpenter, 1980; Burkill et at., 1987). This implies that the impact of 

microzooplankton on the carbon flux of the Southern Ocean may shift seasonally, since the 

contribution of the netphytoplankton to total chlorophyll decreases during austral winter, when 

the nano- and picophytoplankton dominate chlorophyll concentration (Garrison et at., 1993). 

This may have important implications for the CO2 flux, as a food web dominated by 

micro zooplankton grazing is characterised by little sedimentation of particulate organic carbon 

(POC) out of the zone of regeneration where it is recycled by the microbial loop (Michaels 

& Silver, 1988; Longhurst & Harrison, 1989; Longhurst, 1991). Consequently, the transfer 

of atmospheric CO2 into deep waters may be reduced. In order to have a better understanding 

of the Southern Ocean system as a potential biogenic sink for atmospheric CO2, it is 'therefore 

essential that possible seasonal effects be investigated. 

In this paper, the community structure and grazing impact of micro zooplankton in the region 

of the Subtropical Convergence (STC) and in a warm-core eddy shed from the Agulhas 

Retroflection Current were investigated during austral winter (June/ July) 1993. Grazing rates 

were determined at 15 stations. 

3.2 Materials and methods 

Microzooplankton grazing experiments were conducted during the third cruise of the South 

African Antarctic Marine Ecosystem Study (SAAMES III) aboard the MV. SA. Agulhas in 

mid austral winter (June/July) 1993 (Figure 3.1). Grazing experiments were carried out using 

water from the surface layer (5 m), by employing the sequential dilution technique (Landry 

& Hassett, 1982). 
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Figure 3.1 

I 
0° 

CAPE TOWN 

SAAMES III 

Cruise track and position of stations (every station numbered) during the 

SAAMES III cruise aboard the MY. S.A Agulhas in late austral winter in the 

Atlantic sector of the Southern Ocean. STC = Subtropical Convergence. 

Contours are sea surface temperature. 
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Water samples were obtained using a submersible pump (Flyght-kyokuto model L 40- 25S), 

operated at a flow rate of ~ 15 I m- 1 and supplied to 25 I polyethylene containers through 

PVC piping. The water was then passed through a 200 pm mesh to separate the 

microzooplankton fraction. Particle-free water was obtained by passing surface water through 

a 0.2 pm Milli Q system (Millipore). Dilution series in 2 I acid-washed polyethylene bottles 

of 1:0 3: 1; 1: 1; 1: 3 filtered to particle-free water were made. Three replicas of each dilution 

series were prepared. The dilution series were then incubated on deck ~ for 24 hours in 

persp~x incubators cooled with running surface water and screened with shade cloth to 

simulate light intensity (500 - 1300 pE m-2 S-l) at the depth of collection. 

Before incubation was begun, water samples (250 ml) for the determination of initial 

chlorophyll-a concentration were taken from each bottle. Bottles were sampled again (250 

rnI) at the end of the incubation period to determine final chlorophyll-a concentration. 

Chlorophyll-a was then fractionated into the net- (~ 20 pm), nano- (2.0 - 20 pm) and 

picophytoplankton (0.2 - 2.0 pm) size fractions through multiple serial filtration. Size 

selectivity studies were also carried out in parallel. Using the same incubation settings, water 

samples taken from the 1:0 dilution series were fractionated into net (~ 20 pm), nano (2.0-

20 pm) and picophytoplankton (0.2 - 2.0 pm) size fractions at the onset and at the end of the 

incubation period. Chlorophyll-a concentrations were determined fluorometrically (Turner 111 

fluorometer), after extraction in 100% methanol (Holm-Hansen & Riemann, 1978). 

To identify and enumerate the various components of the microzooplankton community, a 50 

ml seawater sample was stained with Proflavine (50 pVml; 2 min.), fixed with glutaraldehyde 

(final conc. 6%) and then filtered (vacuum ~ 13 cm Hg) through a 2.0 pm Irgalan black 

prestained Nuclepore filter (Haas, 1982). Permanent slides were then prepared according to 

the method of Booth (1987) and frozen at -20 Dc. Slides were examined within two months 

after the cruise using a Zeiss fluorescent microscope equipped with a 450-490 excitation filter, 

a FT 510 chromatic beam splitter and a long pass 528 barrier filter operated at 400 x 

magnification (Haas, 1982). No significant loss in the autofluorescence of the chlorophyll 

containing organisms was anticipated (Booth, 1987). Phototrophic organisms were 

distinguished from heterotrophic organisms by the red autofluorecence of chlorophyll-a (Haas, 

1982). 
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Microzooplankton were grouped into the following protozooplankton groups: tintinnids, 

aloricate ciliates, dinoflagellates, heterotrophic-nanoflagellates (h-nanoflagellates, < 20 pm) 

and mixotrophs. Enumerations were converted to cells rl by employing the equation of 

Waterbury et al. (1986): 

No. cells in 100 fields x (total area of filter) x 20 

(area of 100 fields) 

The apparent growth rate of chlorophyll-a at each dilution is calculated as: 

1 (ft) 
t In Po 

where Po and P, are chlorophyll concentrations at the beginning and end of the experiment; 

t is duration of experiment. This is the observed change in chlorophyll in the presence of 

grazers. The theoretical growth rate of phytoplankton in the absence of grazers (k) is taken 

to be the y intercept from the regression analysis between apparent growth rate and dilution 

(Figure 2.2). The slope of the regression is the instantaneous grazing coefficient (g) of the 

microzoplankton (Figure 2.2). This regression was calculated by using the computer package, 

Statgraphics Version 5.0 (Statistical Graphics Corporation). 

To normalise the chlorophyll values, all data were transformed using the factor: 

log (x + 1) (Legendre & Legendre, 1983) 

Also, grazing data expressed in % were normalised by the arcsin transformation (Sokal & 

Rolhf, 1969). Partial correlation analysis was then performed on the grazing data to identify 

possible relationships between grazing rates, temperature and concentrations of chlorophyll 

size fractions (Sokal & Rolhf, 1969). The computer package Statgraphics Version 5.0 was 

again used for this analysis. 
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3.3 Results 

Chlorophyll distribution 

Chlorophyll concentrations measured along the,1!ansect exhibited a clear spatial pattern. 

Highest concentrations (> 0.5 pg rl) were recorded at stations at the periphery of the eddy 

(stations 6 and 12) and in the region of the STC (stations 8-11) (Figure 3.2). An exception 

was provided by station 1, located at the periphery of the eddy, where the lowest chlorophyll 

concentration (0.16 pg rl) along the entire cruise track was recorded. Stations in the warm

core eddy (stations 2, 3, 5 and 15), in subantarctic (stations 4 and 14) and Agulhas waters 

(stations 7 and 13) were characterised by chlorophyll concentrations < 0.5 pg 1-1. The nano

and picophytoplankton size fractions dominated chlorophyll biomass at all stations (Figure 

3.2). The picophytoplankton in particular was the dominant component at all but four stations 

(stations 1, 2, 9 and 10) where the nanophytoplankton dominated chlorophyll concentration. 

The contribution of the netphytoplankton fraction to total chlorophyll concentration was < 

10% at all stations with the exception of station 8 where it contributed "" 20% of the total. 

Community structure 

Microzooplankton abundance generally co-varied with the combined concentrations of the 

nano- and picophytoplankton « 20 pm) size-fractions (Figure 3.3). Indeed, "" 35% of the 

variance associated with micro zooplankton abundance could be described by the 0.2 - 20 pm 

size fraction (P < 0.05). 

H-nanoflagellates « 20 pm) dominated numerically at all stations (Table 3.1). Densities 

ranged between 106 and 403 indXl. The > 20 pm micro zooplankton fraction was generally 

dominated by ciliates (oligotrichs and tintinnids), although dinoflagellates dominated at 5 of 

the 15 grazing stations (Table 3.1). The contribution of tintinnids to total ciliate densities was 

always less than the contribution of the oligotrichs. The least represented fraction was the 

plastid-containing micro zooplankton or mixotrophs, which comprised < 5% of total cell 

counts at all stations. Densities of this group never exceeded 14 indX1
• 
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Table 3.1 

Station 

number 

- 1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Abundance of heterotrophic protozooplankton at grazing stations during the 

SAAMES III cruise (June July) 1993. Results are expressed as ind.f1 
• 

. ~ . 

Aloricate Tintinnids Dinoflagellates Nano- Mixotrophs 

ciliates heterOfrophS 

60 21 64 230 3 

53 13 71 186 9 

21 0 32 149 3 

92 0 96 319 7 

74 11 82 294 11 

67 7 57 343 3 

50 4 124 213 3 

22 4 27 106 0 

124 21 117 358 14 

82 25 50 305 7 

149 21 128 258 - 3 

133 11 112 357 14 

129 14 124 340 3 

124 3 146 403 7 

116 13 142 319 0 
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Microzooplankton grazing 

Instantaneous phytoplankton growth rates, grazing rates and regression coefficients for the 

grazing experiments at the various oceanographic areas are shown in Table 3.2. During this 

investigation significant linear regressions (P < 0.05) were found between dilution and the 

apparent phytoplankton growth (Table 3.2). Both growth and grazing coefficients show similar 

spatial patterns with highest rates recorded at stations at the edge of the eddy and in the 

vicinity of the STC (Table 3.2). Algal growth coefficients (k) at the edge ~of the warm-core 

eddy ranged from 0.55 - 1.32 d- l and between 1.21 and 1.48 d- l at the STC (Table 3.2). These 

value-s are equivalent to chlorophyll doubling rates between 0.79 and 1.90 d-1 at the edge of 

the eddy, and between 1.75 and 2.13 d-1 at the STC. Within the warm-core eddy algal growth 

coefficients ranged from 0.51 to 0.71 d- l while within subantarctic waters they were lower 

between 0.45 - 0.56 d-1 (Table 3.2). At stations in the Agulhas waters, the algal growth 

coefficients ranged from 0.47 to 0.58 d-1
• This represents a chlorophyll doubling rate of 0.74 -

0.99 d'l in the core of the eddy, between 0.654 and 0.800 d- l in the subantarctic waters and 

from 0.71 to 0.84 d-1 in the Agulhas waters (Table 3.2). 

Grazing coefficients of micro zooplankton (g) were highest at stations at the periphery of the 

warm-core eddy (range: 0.35 - 0.70 d-1
) and in the region of the STC (range: 0.53 - 0.72 d- 1

). 

This level of instantaneous grazing activity by rnicrozooplankton represents a loss of between 

29 and 51 % of the initial standing stock at the edge of the warm-core eddy and at the STC, 

respectively (Table 3.2). The equivalent daily loss of potential production due to grazing in 

these regions was between 56 and 70% (Table 3.2). 

Instantaneous grazing rates of microzooplankton ranged from 0.28 - 0.43 d-1 in the warm core 

eddy, between 0.351 and 0.393 d- l in subantarctic waters and from 0.30 to 0.33 d- l in the 

Agulhas waters (Table 3.2). This level of grazing is equivalent to a loss of between 25 -33% 

of the initial standing stock in the three regions (Table 3.2). The potential primary production 

removed ranged between 62 and 83% of the total (Table 3.2). 

Partial Correlation Analysis performed between grazing data and selected variables indicated 

that the initial standing stock removed was correlated positively to the concentrations of pico

(t = 3.31; P < 0.001) and nanophytoplankton (t = 1.87; P < 0.05). Also, the relationship 
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between growth rate of phytoplankton and grazing impact of micro zooplankton was significant 

(t = 10.04; P< 0.001). To test whether this relationship was the result of auto correlation, a 

Box Jenkins test was applied to the data set. A significant correlation was again obtained 

between micro zooplankton grazing and the growth rate of phytoplankton (r = 0.51; P < 0.05) 
,;t • 

indicating that the relationship was not artefactual. 
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Table 3.2 Grazing rate and impact parameters of micro zooplankton assemblages of the region of the Subtropical Convergence during the , 
SAAMES III cruise in the Atlantic sector of the Southern Ocean in late austral winter (June/July) 1993. C = p < 0.001; * =p 

< 0.05). Values in parenthsis = standard error. Chlorophyll doublings d- l = k/ln2 (Gifford, 1988). 

oceanographic station chl-a r2 growth coeff. grazing coeff. %initial stock %potential prod. chlorophyll 
area conc. k (d-1) g (d-1). removed removed doublings (d-1

) 

eddy edge 1 0.160 0.48' 0.55 (0.123) 0.35 (0.046) 29.38 69.83 0.791 
6 0.780 0.53' 1.32 (0.178) 0.70 (0.091) 50.38 68.84 1.900 
12 0.656 0.76" 1.30 (0.073) 0.67 (0.078) 48.93 67.35 1.847 

eddy core 2 0.498 0.66" 0.51 (0.101) 0.40 (0.031) 33.33 82.63 0.740 
3 0.436 0.50' 0.71 (0.039) 0.38 (0.071) 31.42 61.83 1.019 
5 0.395 0.55' 0.58 (0.084) 0.28 (0.011) 24.55 55.62 0.838 
15 0.380 0.54' 0.69 (0.102) 0.43 (0.037) 35.26 70.37 0.994 

;, 

subantarctic 4 0.450 0.66' 0.45 (0.098) 0.35 (0.013) 29.56 81.08 0.654 
waters 14 0.393 0.35' 0.56 (0.107) 0.39 (0.037) 32.56 76.36 0.800 

Agulhas 7 0.376 067" 0.47 (0.081) 0.34 (0.044) 28.45 77.73 0.708 
waters 13 0.321 0.57' 0.58 (0.053) 0.30 (0.065) 25.55 71.54 0.838 

Subtropical 8 0.889 0.89" 1.23 (0.153) 0.60 (0.096) 45.11 63.58 1.779 
Convergence 9 0.725 0.74" 1.21 (0.108) 0.66 (0.080) 48.41 68.99 1.751 

10 0.614 0.32' 1.32 (0.127) 0.53 (0.073) 41.21 56.25 1.901 
11 0.581 0.39' 1.48 (0.278) 0.72 (0.103) 51.12 66.29 2.129 
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Size selectivity 

Microzooplankton preferentially grazed the smaller Size fractions (Figure 3.4). 

Picophytoplankton was the most intensely grazed fraction, decreasing in concentration during 

grazing experiments at 11 of the 15 stations. Me;a,! decrease in concentration along the cruise 

track was 20.8%. Nanophytoplankton was the second most intensely grazed fraction, 

decreasing in concentration at 7 stations, with a mean decrease of 7.6% along the transect. 

Analysis of variance (ANOY A) and multiple range tests indicate that- th€ % pico- and 

nanophytoplankton removed were not significantly different (F = 0.712; P = 0.41). The least 

grazed fraction was the netphytoplankton, which during the incubation period increased in 

concentration at 14 of the 15 stations examined (Figure 3.4). 

3.4 Discussion 

The role of micro zooplankton in determining carbon flux in marine systems has been the 

subject of extensive investigations (see review of Pierce & Turner, 1992). The results of many 

studies suggest that the impact of micro zooplankton varies greatly over both spatial and 

temporal scales. Recent studies have shown that the impact of microzooplartkton on 

phytoplankton standing stock is largely detennined by the contribution of the smaller 

chlorophyll fractions to total chlorophyll concentration (Froneman & Perissinotto, in press). 

Indeed, micro zooplankton may remove> 70% of potential primary production in subarctic 

regions where the < 20 pm fractions dominate chlorophyll concentration (Paranjape,- 1987; 

Verity et ai., 1993). During this study, microzooplankton removed> 50% of potential 

production, suggesting that micro zooplankton may represent the major route for the uptake 

of organic carbon (Table 3.2). This is consistent with results from previous studies conducted 

in regions where the < 20.0 pm chlorophyll fractions dominate chlorophyll biomass (see 

results of Gifford, 1988). 

The highest algal growth coefficients during the study were recorded in the areas of higher 

production, at the Subtropical Convergence (STC) and at the edge of the warm -core eddy 

while the lowest coefficients were associated with the regions of lower production, in the 

subantarctic and Agulhas waters and in the core of the eddy (Table 3.2). Growth rates in 

winter were generally lower than summer growth rates suggesting a seasonal influence on 
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production (Froneman & Perissinotto, in press). The result is consistent with size fractionated 

primary production study (determined by measuring 14C uptake) conducted simultaneously 

with the micro zooplankton grazing studies (Laubscher, unpublished). The exceptions presented 

were at stations in the vicinity of the STC where ?V!nter growth rates were in the same range 

as summer growth rates (Froneman & Perissinotto, in press). This result is consistent with 

the findings of Comiso et al. (1993) which demonstrated that production at the front shows 

no seasonal trends. The estimates estimates of algal growth in the low productive areas during 

this study compare well with a similar study conducted in the Bransfield Strait (Taylor & 

Haberstroh, 1988). The high algal growth coefficients recorded at the STC and edge of the 

eddy are among the highest published values in the Southern Ocean. Elevated production in 

the region of the STC and at the edge of warm-core eddies are well documented and are 

thought to be the result of a favourable light environment conferred by increased water 

column stability (EI-Sayed, 1988; Dower & Lucas, 1993; Comiso et ai., 1993). The spatial 

differences in production rates and chlorophyll concentrations are reflected in the amount of 

initial standing stock and potential production removed daily by microzooplankton (Table 

3.2). 

The initial standing stock removed by micro zooplankton grazing was highest at the edge of 

the warm-core eddy and in the region of the STC (Table 3.2). Several factors have been 

implicated in determining community grazing rates including temperature, predator abundance, 

and ingestion rates as determined by the food concentration (Strom & Welschmeyer, 1991; 

Peters, 1994). During the present study, the relationship between grazing impact and 

temperature was not significant (P < 0.05). However, the grazing impact of micro zooplankton 

was significantly correlated to protozooplankton abundance (Figure 3.5A) and to 

concentrations of the < 20 pm chlorophyll fraction (Figure 3.5B). These results suggest that 

the high grazing impact of micro zooplankton at the edge of the eddy and in the vicinity of 

the STC result from the high predator/prey concentrations. Also, the close coupling between 

phytoplankton growth rates and grazing impact suggest that the 

phytoplankton/microzooplankton transfer efficiency will be high. Exceptions presented may 

reflect the wide range of trophic interactions of micro zooplankton reported in the literature 

(Pierce & Turner, 1992; Peters, 1994). For example, non phytoplankton food such as bacteria 
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may represent an important trophic resource. Unfortunately, no information is available on 

microzooplankton bactivory. 

The levels of potential primary production remov~~ showed a weak inverse spatial pattern to 

the initial standing stock removed (Table 3.2). The lowest levels were recorded in the region 

of the STC and at the edge of the eddy (Table 3.2). The impact of microzooplankton grazing 

on potential algal production is largely determined by the growth phase of .tbe~gae (Banse, 

1991). Under favourable conditions, algal productivity exceeds micro zooplankton grazing rates 

(i.e. k> g), resulting in the accumulation of phytoplankton biomass in the absence of larger 

grazers (Banse, 1991). Phytoplankton production was highest at the edge of the warm -core 

eddy and in the region of the STC (Table 3.2). The impact of micro zooplankton on potential 

algal production in these regions should be lower when compared to regions of lower 

production (subantarctic and Agulhas waters and in the warm-core eddy). Indeed, the mean 

potential primary production removed from the STC and the edge of the eddy was z 65%, 

compared to z 73% in areas of lower productivity. These results compare favourably with 

microzooplankton grazing studies conducted in subarctic waters during a bloom, where 80-

100% of the potential algal production was grazed when z 80% of the chlorophyll passed 

through a 10 JIm mesh (Verity et ai., 1993). 

The concentrations of the nano- and picophytoplankton size fractions decreased during the 

size selectivity grazing study (Figure 3.4). An indication of the growth status of phytoplankton 

can be derived from the photosynthetic capacity (PC) value. Preliminary results of size 

fractionated production studies conducted during the cruise, indicate that chlorophyll 

normalised production rates (PC) were highest in the picophytoplankton and 

nanophytoplankton size fractions (Laubscher, unpublished). The decreases in concentration 

of the nano- and picophytoplankton fractions suggest, therefore, that microzooplankton are 

preferentially grazing on particles < 20 JIm. Indeed, during this study, the relationship between 

grazing impact and < 20 JIm chlorophyll fraction was significant (P < 0.05). This result is 

consistent with the community composition of the microzooplankton assemblages which were 

numerically dominated by nano-heterotrophs throughout the study (Table 3.1). Also, changes 

in the concentrations of the nano- and picophytoplankton were not significantly different 

suggesting that microzooplankton are able to feed efficiently on all particles < 20 JIm. It is 
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well documented that nano-heterotrophs and ciliates consume particles < 20 pm (Burkill et 

at., 1987; Rassoulzadegan et at., 1988; Verity & Vernet, 1993). 

Densities of proto zooplankton were < 1000 indo I-I throughout the study (Table 3.1). Despite 
.: . 

high food availability, densities were up to 50% lower than during a similar study undertaken 

in austral summer (Froneman & Perissinotto, in press). Generally, in the region of the STC 

chlorophyll concentration shows no seasonal trends (Comiso et at., 1993). !t0wyver, although 

absolute phytoplankton biomass does not vary seasonally, there is evidence suggesting that 

the composition of the phytoplankton changes from a community dominated by 

netphytoplankton in summer, to a community dominated by the nano- and picophytoplankton 

in winter (Hattori & Fukuchi, 1989; Laubscher et at., 1993). A recent study by Pakhomov et 

al. (1994) found high species richness and biomass in the macro zooplankton community in 

the region of the STC during winter, despite the absence of the netphytoplankton on which 

they normally feed. The low micro zooplankton densities recorded during this survey may, 

therefore, be due to predation by larger zooplankton which may switch from herbivory to 

carnivory in the absence of their preferred food. A similar situation occurs in the Weddell 

and Scotia Seas where zooplankton feed on micro zooplankton during austral winter when 

nanoautotrophs dominate chlorophyll concentrations (Garrison et at., 1993). 

The mixotrophic component was the most poorly represented in the micro zooplankton 

assemblage, exhibiting densities ranging from 0 to 14 indX I (Table 3.1). These low densities 

may be due to predation or to light limitation associated with seasonality. It is unlikely, 

therefore, that they contribute significantly to the primary production in the region. Assuming 

a chlorophyll-a content of:::::: 21 - 94 pg. cell- I per mixotrophic ciliate (Garrison et at., 1993), 

the mixotrophs would have accounted for 0-5% of total chlorophyll-a concentration. These 

estimates compare well with the results of Garrison et al. (1993) who found that mixotrophs 

comprised between 1 - 6% of the total chlorophyll of the ice edge zone of the Weddell and 

Scotia Seas during austral winter. The low densities of the mixotrophic component suggest 

that they may not playa significant role in community functioning with respect to carbon flux 

in winter. 
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During this study, microzooplankton grazing in the region of the STC removed> 50% of all 

potential production (Table 3.2). This suggests that the greater part of photosynthetically fixed 

carbon in the region is channelled into th.:.. micro zooplankton fraction. As a result, carbon 

flux into deep water may be reduced in that little, s.edimentation of organic carbon occurs as 

the minipellets produced by the micro zooplankton remain in suspension. In addition, the 

faecal pellets are readily decomposed by bacteria in the microbial loop (Michaels & Silver, 

1988). Bacteria in tum represent a large reservoir of carbon and nitrogen £01' bacterivores 

such as nano-heterotrophic flagellates (Andersen & Fenchel, 1984; Gast, 1985; Albright et al., 

1987; McManus & Furhman, 1988; Reid & Karl, 1990; Kirchman etal., 1993). Consequently, 

particulate organic carbon (POC) flux below the zone of regeneration is reduced as the carbon 

is recycled within the microbial loop, resulting in the reduction of the biological drawdown 

of atmospheric CO2 in the region (Longhurst & Harrison, 1989; Longhurst, 1991). The 

importance of the STC as a potential biogenic sink for atmospheric CO2 as proposed by 

Dower & Lucas (1993) appears, therefore, to vary seasonally. It should also be noted that 

the carbon: chlorophyll ratio can vary widely, depending on phytoplankton species 

composition and nutrient conditions, and may affect substantially the POC flux to depth. 

While the results presented here apply only to a small portion of the Southern Ocean, there 

is growing evidence suggesting that in a large variety of oceanic areas the largest portion of 

photosynthetically fixed carbon during austral winter is also channelled to the 

microzooplankton. The predominance of nanoautotrophs (the preferred food particle si-ze of 

micro zooplankton) in Antarctic waters during austral winter has been documented in various 

studies (Garrison et al., 1993; Kivi & Kuosa, 1994). This suggests that heterotrophic 

proto zooplankton may be the most important sink of winter phytoplankton production. In 

support of this, a recent study conducted in the Weddell and Scotia Seas during winter 

showed that micro zooplankton grazing itself was sufficient to prevent biomass accumulation 

in the water dominated by nanoautotrophs (Garrison et al., 1993). 

Shifts in the structure of the food web can alter the magnitude of particulate fluxes to the 

interior of the ocean (Roman et al., 1993). In the Southern Ocean, a seasonal shift in the 

contribution of the various size fractions to total chlorophyll concentration may dramatically 

alter the biological role of the system. During summer, only"'" 25% of the photosynthetically 
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fixed carbon is consumed by the micro zooplankton (Froneman & Perissinotto, in press). This 

would suggest that the bulk of the production is processed by meso- and macrozooplankton. 

Large faecal pellets produced by these grazers, coupled with diel migrations would result in 

a net downward flux of poe below the zone of ~e¥eneration (Longhurst & Harrison, 1989; 

Longhurst, 1991). Also, changes in sinking of poe are consistent with increases/ decreases 

in macro zooplankton biomass (Roman et al., 1993). During summer, therefore, the model 

proposed by Huntley et al. (1991), which suggests that up to 80% of ~et production is 

channelled into the larger grazers, appears to apply, suggesting that the biological pump is 

efficient in the drawdown of atmospheric CO2• 

However, during winter, a shift in the size of the phytoplankton results in the bulk of the 

photosynthetically fixed carbon being channelled into the microzooplanktonic food chain 

(Garrison et al., 1993). This provides partial support for the proposed model of Moloney 

(1992) in which it is suggested that up to 60% of the production is processed by the microbial 

loop. The net result of this reduction in the poe flux leaving the euphotic zone is that 

atmospheric CO2 drawdown by the biological pump in the Southern Ocean is reduced during 

winter. Oceanic features such as warm core eddies may, however, introduce small mesoscale 

changes in carbon flux, through the enhancement of phytoplankton productivity usually 

observed at their edges (Dower & Lucas, 1993). 
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CHAPTER 4 

SEASONAL V ARIA TIONS IN MICROZOQPLANKTON GRAZING IN THE 

REGION OF THE SUBTROPICAL CONVERGENCE 

Abstract 

Microzooplankton grazing and community structure were investigated in the region of the 

Subtropical Convergence (STC) during three cruises of the South African Antarctic Marine 

Ecosystem Study (SAAMES) in austral summer (Jan./Feb., 1993; Dec./Jan. 1995) and winter 

(June/July, 1993). Chlorophyll-a concentrations were consistently dominated by the < 20 pm 

size fraction during all three cruises while the contribution of the rnicrophytoplankton 

(> 20 pm) to total chlorophyll-a concentrations varied considerably between cruises. 

Microzooplankton communities were numerically dominated by protozoans comprising ciliates 

(aloricates and tintinnids) and dinoflagellates. Phytoplankton production in the vicinity of the 

STC showed no seasonal trends. However, marked seasonal differences were observed in the 

size structure of the phytoplankton. The grazing impact of micro zooplankton was highest 

when the < 20 pm chlorophyll fraction contributed> 95% of the total. Under these conditions, 

the instantaneous grazing rates ranged between 0.15 and 0.66 d-1
• These correspond to daily 

losses of 14-48% of the initial standing stock and between 45 and 81% of the potential 

primary production. At stations where microphytoplankton contributed significantly (:=.:: 20%) 

to total chlorophyll concentrations, the grazing coefficients were lower, ranging between 0 and 

0.26 d- 1
• This corresponds to a loss of < 25% of the initial standing stock, or between 0 and 

32% of the potential production. The results of this study suggest that microzooplankton 

represent the main grazing sink for production when the < 20 pm chlorophyll size class 

dominates. Thus, the efficiency of the biological pump in the vicinity of the STC may vary 

considerably over time, reflecting shifts in phytoplankton production rates and especially the 

size composition of the phytoplankton community. During periods when small phytoplankton 

cells dominate, the biological pump may be relatively inefficient in exporting biogenic carbon 

to depth because of the close coupling between rnicrozoopiankton and the microbial loop. 
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4.1 Introduction 

The Subtropical Convergence (STC) is one of the major oceanic fronts of the Southern Ocean 

and separates subantarctic waters in the soutP. from sUbtropical waters in the north 

(Lutjeharms & Valentine, 1984; Lutjeharms et ai., 1993). The front is characterised by strong 

horizontal temperature and salinity gradients and separates water masses with very different 

physico-chemical properties (Lutjeharms et ai., 1993). Consequently, the STG represents a 

strong biogeographical barrier to the distribution of phytoplankton (Deacon, 1982; Froneman 

et ai., 1995), zooplankton (pakhomov et al., 1994), cephalopods (Voss, 1985) and birds 

(Abrams, 1985). 

The region of the front typically exhibits chlorophyll biomass enhancements (Laubscher et 

al., 1993; Weeks & Shillington, 1994; Froneman et ai., 1995). Several hypotheses have been 

proposed for elevated chlorophyll concentrations at the front, including passive transport 

(Lutjeharms & Walters, 1985; Franks, 1992) and increased in situ phytoplankton production 

rates resulting from increased water column stability (Laubscher et aI., 1993). High regional 

rates of primary production may also be due to the input of dissolved iron from shelf 

sediments (Comiso et al., 1993; Sullivan et ai., 1993; de Baar et ai., 1995). Composite 

satellite data in the region of the front show no seasonal trends in chlorophyll biomass, with 

periods of elevated chlorophyll concentrations alternating irregularly with periods of lower 

phytoplankton biomass (Comiso et ai., 1993). 

On the other hand, recent studies in waters south of Africa suggest that the size composition 

of the phytoplankton exhibits a marked seasonal trend, with the rnicrophytoplankton (> 

20 pm) size class dominating in summer and the nanophytoplankton « 20 pm) in winter 

(Weber & EI-Sayed, 1987; Lutjeharms et al., 1994). When phytoplankton communities are 

dominated by the nano- and pico- fractions, micro zooplankton are often the most significant 

herbivores (Burkill et ai., 1987). Indeed, a recent study in the vicinity of the STC during 

winter has shown that micro zooplankton represent the main biological sink for primary 

production when the picophytoplankton dominates total chlorophyll (Lutjeharms et ai., 1994). 

Under these conditions, carbon flux from the surface waters to the deep ocean would be 

dramatically reduced as nutrients are recycled within the zone of regeneration due to the close 
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coupling of the microzooplankton and the microbial loop (Sherr & Sherr, 1987; Longhurst, 

1991). Thus, biological processes could act antagonistically to the efficient transfer of organic 

carbon from surface to deep waters (Longhurst, 1991). 

In contrast, where microphytoplankton dominate total chlorophyll concentration, macro- and 

mesozooplankton are expected to be the dominant grazers. Carbon flux from the surface 

waters to the deep ocean would be high due to the vertical migration patterns ~f the grazers 

and their large, fast sinking faecal pellets which transport production originating from the 

surface waters to depth (Perissinotto & McQuaid, 1992; Fortier et al., 1994). It should be 

noted, however, that the role of meso zooplankton faecal pellets in the transfer of biogenic 

carbon to depth is not always important as recent studies have shown that copepods may in 

fact be responsible for the retention of faecal pellets in the surface waters (Gonzalez & 

Smetacek, 1994). The sedimentation oflarge microphytoplankton cells may further contribute 

to carbon flux (von Bodungen et at., 1986). The biological pump would therefore, be 

relatively efficient in exporting biogenic carbon to the deep ocean (Longhurst, 1991). 

The large area of the STC suggests that this front may be an important biogenic- sink for 

atmospheric carbon dioxide. Indeed, studies in the vicinity of the front have shown that large 

gradients in the partial pressure of CO2 in surface waters can be related to enhanced biological 

activity at the front (Poisson et at., 1993). A recent study conducted in the waters south of 

Africa, has estimated that the production at this front may be responsible for betweeR -0.5-

0.8% of the total global oceanic production (Dower & Lucas, 1993). However, the transfer 

of biogenic carbon to depth by the biological pump in this region may vary widely because 

of shifts in the size composition of phytoplankton which mediate changes in the grazing 

impacts of the various classes of herbivores. The aim of this study is to present seasonal data 

over a period of two years on the role of microzooplankton grazing in carbon cycling in the 

region of the STC to the south of Africa. 

4.2 Materials and methods 

Microzooplankton grazing experiments were conducted during three cruises within the South 

African Antarctic Marine Ecosystem Study (SAAMES II, III and IV) in late austral summer 
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(Jan./Feb., 1993; Dec./Jan., 1995) and winter (June/ July, 1993) (Figure 4.1). All experiments 

were carried out using water from the surface chlorophyll maximum (5-10 m), by employing 

the dilution technique (Landry & Hassett, 1982). 

Water for the grazing experiments was collected with a submersible pump or Niskin sampling 

bottles. Previous studies have shown that water samples collected with a submersible pump 

do not differ significantly from samples collected with sampling bottles (He~a~n et al., 1984; 

Paranjape, 1991). For each experiment, 20 I carboys were filled with natural seawater. The 
-

water was then gently filtered through a 200 pm mesh to isolate the micro zooplankton 

component. Particle-free water was obtained by passing surface water (obtained with a 

shipboard metal free pump, Iwaki Magnetic Pump, operated at a flow rate of ::::: 5 I min-i) 

through a 0.2 pm Milli Q system (Millipore). Dilution series in ratios of 1:0: 3:1; 1:1 and 1:3 

of natural to particle-free water were then prepared in 2 I acid-washed polyethylene bottles. 

Three replicates for each dilution series were prepared. The dilution series were then 

incubated on deck for 24 h in perspex incubators cooled with running surface waters and 

screened with shade cloth (neutral spectral irradiance) to simulate light intensity at the depth 

of collection. 

Before the incubations were begun, a 250 ml water sample was taken for initial chlorophyll-a 

concentration from each bottle. The corresponding bottles were sampled again at the end of 

the incubation to determine the final pigment concentration. After extraction for 6-12: h in 

methanol, the fluorescence of the suspension was measured before and after acidification with 

a few drops of 10% HCI using a Turner 111 fluorometer calibrated with pure chlorophyll-a 

(Holm-Hansen & Riemann, 1978). To determine the size-fractionated pigment concentrations 

at each of the grazing stations, a single 250 ml water sample was fractionated into the micro

(200 - 20 pm), nano- (2.0 - 20 pm) and picophytoplankton (2.0 - 0.2 pm) fractions. 

Chlorophyll-a and phaeopigment concentrations were then determined fluorometrically as 

above. 

Two techniques were employed to identify and enumerate the various components of the 

microzooplankton assemblages. During the first two cruises (1993), a 50 rnl water sample was 

stained with Proflavine (Haas, 1982), fixed with glutaraldehyde (final conc. ::::: 6%) and gently 
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filtered (vacuum < 5cm Hg) through a 2.0 pm Irgalan black-stained Nuc1epore filter. 

Permanent slides were then prepared according to the method of Booth (1987) and frozen at 

-20°C until the analysis. The slides were examined using a Zeiss epifluorescence microscope 

equipped with a 450-490 excitation filter, an Ff ~19 chromatic beam splitter and a long-pass 

528 barrier filter (Haas, 1982). All slides were examined within two months of collection. 

During the third cruise, a 250 m1 water sample was passed gently through a 200 pm mesh and 

fixed with 10% Lugol's solution (Leakey et ai., 1994; Stoecker et ai., ~994). The water 

samples were then examined using the Utermohl settling technique, employing a Nikon TMS 

inverted microscope operated at 400X magnification. The micro zooplankton species were 

identified from the works of Wood (1954) and Boltovskoy (1981). 

Quantitative microphytoplankton samples were collected from a depth of "" 5 m using a 

20 pm mesh filtration unit (Berman & Kimor, 1983) connected to the shipboard pump (as 

above). A constant volume of 20 I was filtered for each sample and preserved in 250 ml of 

2% hexamine-buffered formalin solution. The species composition of each sample was then 

determined from a 10 rnl subsample (4% of the total, equivalent to 0.8 1 of the original 

seawater filtered) using the Utermohl settling technique as above. A minimum of 100 fields 

or 500 cells per sample were counted. For the identification of the microphytoplankton 

species, the works of Priddle & Fryxell (1985) and Boden & Reid (1989) were used as main 

references. 

The apparent growth rate of chlorophyll-a at the observed dilution was calculated by the 

exponential model of Landry & Hassett (1982): 

P = P e(k-g)1 
I ° 

where PI = chlorophyll-a concentration at time t; Po = initial chlorophyll-a concentration; k 

and g are the instantaneous algal growth and microzooplankton grazing coefficients, 

respectively. The coefficients were determined from regression analysis (95% confidence 

limits) between the apparent growth rate of chlorophyll-a and dilution using the computer 

package Statgraphics, Version 6.0 (Statistical Graphics Corporation, 1992). 
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Correlation analyses were performed to identify possible relationships between grazing impact, 

chlorophyll and the measured physico-chemical parameters. Grazing rate data expressed as 

% were transformed using arcsin transformation (Sokal & Rohlf, 1969) while the remaining 

data were transformed using the model: 

log (x + 1) 

A Box-Jenkins test was then applied to the data to detect whether the significance of the 

correlation was spurious. The computer programme Statgraphics was again employed for this 

analysis. 

4.3 Results 

Phytoplankton concentrations and size composition 

Size fractionated chlorophyll-a samples collected during the microzooplankton grazing studies 

indicated that the < 20 pm phytoplankton fraction dominated the total chlorophyll stock at all 

stations (Figure 4.2). Indeed, with the exception of the first summer cruise in 1993~ where 

microphytoplankton comprised"" 15- 20% of the total chlorophyll concentration (Figure 

4.2A), the contribution of this fraction to total chlorophyll was generally < 5%. An exception 

was station 5 during the winter cruise, where microphytoplankton formed ",,15% of the total 

chlorophyll-a (Figure 4.2B). During the summer cruises, chain-forming diatom species ef the 

genera Chaetoceros and Nitzschia numerically dominated the microphytoplankton 

assemblages, while in winter the most abundant species was Pseudoeunotia doliolus. 

Chlorophyll-a concentrations during the summer 1993 cruise were dominated by 

nanophytoplankton with the exception of station 4 and 6 where the picophytoplankton 

dominated total chlorophyll (Figure 4.2A). The contribution of the microphytoplankton to total 

chlorophyll was < 20% at all stations. An exception was station 5, where microphytoplankton 

contributed 39% of the total chlorophyll. Total chlorophyll-a concentrations seemed to be 

highest in the Agulhas waters while the lowest levels were recorded in the subantarctic waters 

and at the station located at the southern boundary of the STC. Chlorophyll-a concentrations 

increased substantially at the northern boundary of the front (Figure 4.2A). 
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In winter, chlorophyll-a concentrations were dominated by picophytoplankton (Figure 4.2B). 

The contribution of microphytoplankton to total chlorophyll was < 10% with the exception 

of station 5 where it contributed 26% of the total. Total chlorophyll-a concentrations were 

highest at stations located in the vicinity of the ~~C, ranging between 0.61 and 0.89 pg I-I. 

Stations north and south of the front were characterised by similar pigment levels (Figure 

4.2B). At stations located south of the front, chlorophyll-a concentrations w,erell.39 and 0.45 

pg 1-1, while north of the STC, the chlorophyll concentrations were 0.32 and 0.38 pg I-I at 

stations north of the front (Figure 4.2B). 

During the second summer cruise, in January 1995, the contribution of the various size 

fractions to total chlorophyll-a differed in the samples from north and south of the STC 

(Figure 4.2C), with nanophytoplankton dominating to the south of the convergence and 

picophytoplankton to the north. Chlorophyll-a concentrations were highest at stations in the 

Subantarctic waters (0.98 pg rl) and the lowest in the waters of the Agulhas system (0.27 

pg rl; Figure 4.2C). Intermediate chlorophyll-a concentrations (0.60 pg I-I) were recorded 

inside the STC (Figure 4.2C). 
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Microzooplankton community structure 

Total micro zooplankton abundance during the summer 1993 cruise increased from south to 

north with the exception of station 4 located at the northern boundary of the STC where 

densities decreased (Figure 4.3A). Microzoop!a!lkton were numerically dominated by 

protozoans, with ciliates (aloricate and tintinnids) being the dominant group. Densities of 

ciliates ranged between 280 and 1080 indXI. Dinoflagellates constituted the second most 

numerous group with densities ranging from 280 to 840 indXI. Well represented species 

included Protoperidinium, Amphidinium and Amphisolenia. Amongst the larger protozoans, 

two species of foraminiferans were recorded, Acanthochiasma and Globigerina. Densities of 

these were however less than 25 cells. rl. 

During the winter cruise, the dominant components of the micro zooplankton assemblages 

were similar to those observed during the summer 1993 cruise. However, total abundances 

of micro zooplankton during winter were nearly an order of magnitude lower than summer 

densities (Figure 4.3B). Ciliates (aloricate and tintinnids) were again the dominant group, 

with densities ranging between 90 and 120 indXI. Dinoflagellate densities ranged between 100 

and 150 indo rl. Microzooplankton abundance showed no distinct patterns although amarked 

decrease in total abundance was recorded at station 4, located within the STC (Figure 4.3B). 

During the second summer cruise (Jan. 1995), micro zooplankton densities were in the same 

range as those of the summer 1993 (Figure 4.3C). Protozoans, chiefly ciliates and tintinnids, 

were again the dominant components of the micro zooplankton assemblages. Densities of 

aloricate ciliates ranged between 625 and 1275 ind.l-I and those of tintinnids between 75 and 

250 indo rl. Amongst the dinoflagellates, species of the genus complex Protoperidinium and 

Amphidinium were the most abundant, exhibiting densities in the range of 225-400 indX I
. 

Also, well represented amongst the dinoflagellates were species of the genera Amphisolenia. 

Densities of these two genera exceeded 75 ind.l- l at all stations. Two species of foraminiferans 

were identified, Acanthochiasma sp. and Globigerina sp. Densities of these large 

protozooplankton varied between 25 and 50 indX1
• 
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Figure 4.3 
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Grazing experiments 

The instantaneous growth and grazing coefficients derived from the microzooplankton grazing 

experiments conducted during the three cruises are shown in Tables 4.1 to 4.3. In all 

experiments, the relationship between apparent groWth rate and observed dilution factor was 
-~ . 

significantly linear (P < 0.05). 

During the first summer cruise (1993), both grazing and growth rate estimates. tended to be 

highest in the region of the STC (Table 4.1). Instantaneous growth coefficients of 

phytoplankton ranged between 0.07 and 0.81 d-\ equivalent to rates of 0.10 - 1.17 chlorophyll 

doublings d- 1
• Instantaneous grazing coefficients of microzooplankton on phytoplankton ranged 

from 0.00 to 0.26 d-1
, corresponding to daily losses of between 0 and 17.1% of the initial 

standing stock, or between 0.1 and 32.0% of the phytoplankton potential production 

(Table 4.1). 

During the winter cruise, instantaneous growth and grazing coefficients exhibited a clear 

spatial pattern with the highest rates recorded in the vicinity of the STC (Table 4.2). Indeed, 

both grazing and growth coefficients in the vicinity of the STC were significantly higher than 

rates to the north and south of the front (F = 22.1; F = 98.6; P < 0.01). Instantaneous growth 

coefficients of phytoplankton ranged from 0.45 to 1.32 d- 1
, equivalent to between 0.66 and 

1.90 chlorophyll doublings d-1
• Instantaneous grazing coefficients of micro zooplankton ranged 

between 0.34 and 0.66 d-1
• This corresponds to a daily loss of between 29.6 and 48.4% of the 

initial standing stock, or between 56.3 and 81.1 % of the daily potential primary production 

(Table 4.2). 

During the second summer cruise (1995), no spatial patterns in either the growth or grazing 

coefficients were evident (Table 4.3). The highest values were recorded in Agulhas waters 

north of the STC, while the lowest occurred in the region of the STC (Table 4.3). 

Phytoplankton growth coefficients ranged between 0.27 and 0.36 d- 1 (0.38 to 0.52 chlorophyll 

doublings d-1
). Instantaneous grazing coefficients of microzooplankton ranged from 0.150 to 

0.25 d-1
, which correspond to a loss of between 14.0 and 21.8% of the initial standing stock. 

The percentage of potential primary production removed by microzooplankton at these 

stations ranged from 45.4 to 75.3% (Table 4.3). 
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Pearson correlation analysis indicated that the microzooplankton grazmg impact was not 

significantly correlated to temperature or total chlorophyll concentration. The relationship 

between grazing and growth coefficients during both the summer and winter cruises (1993) 

was, however, significant (r = 0.81; r = 0.61 resp~ctively; P < 0.05). Using the Box-Jenkins 

test, significant correlations were again obtained between growth and grazing coefficients 

during the summer and winter 1993 cruises (r = 0.44; r = 0.40 respectively; P < 0.05), 

suggesting that the significance of the relationship was not spurious. 

4.4 Discussion 

Biogeographic studies in the waters south of Africa have indicated that the Subtropical 

Convergence (STC) represents a strong barrier to the distribution of warmer water 

phytoplankton and zooplankton species (Deacon, 1982; Pakhomov et ai., 1994; Froneman et 

ai., 1995). During this study, the widely distributed subtropical diatom species Hemiaulus 

hauckii, an indicator of Agulhas waters (Boden et ai., 1988; Boden & Reid, 1989), was 

found north of the STC but was absent from subantarctic waters. A separate study conducted 

during the winter cruise showed that the STC also represents a strong biogeographical barrier 

to macro zooplankton distribution (Pakhomov et ai., 1994). 

The algal growth coefficients were highest in the vicinity of the STC during the summer and 

winter cruises of 1993 (Tables 4.1 and 4.2). Elevated chlorophyll-a concentrations were, 

however, only recorded in the vicinity of the STC during the winter cruise (Figure 4.2B). Our 

grazing studies show that during the summer cruise, micro zooplankton removed < 10% of the 

initial standing stock (Table 4.1). These data suggest that the absence of elevated 

chlorophyll-a concentration during the summer (1993) cruise may have resulted from grazing 

by larger zooplankton. Indeed, a recent study conducted across the STC in the mid Atlantic 

Ocean has shown a strong negative correlation between mesozooplankton biomass and surface 

chlorophyll concentrations in the vicinity of the front (Barange et al., in press). The generally 

lower growth rates of phytoplankton recorded in the waters north of the STC are attributable 

to nutrient impoverishment of the Agulhas waters (Allanson et aI., 1981). 
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Table 4.1 

Station 

2 

3 

4 

5 

6 

Grazing rates and impact parameters derived from micro zooplankton grazing experiments conducted during the SAAMES II study 

conducted in late austral summer (Jan./Feb) 1993. Significance levels: * = P < 0.01; ** = P < G.D5. Values in brackets represent 

standard errors. Stations 1 & 2 = Subantarctic waters; Stations 3 & 4 = Subtropical Convergence; Stations 5 & 6 = Agulhas 

waters. 

Chl-a conc. r Growth coeff. Grazing coeff. % Initial stock % Potential prod. Chlorophyll 

(pg I-I) (k) d-I (g) d-I removed (d- l
) removed (d-I

) doublings (d-I
) 

0.368 0.74' 0_81 (0_10) 0.19 (0.01) 17.12 30.69 1.17 

0_183 0.37" 0.07 (0.01) 0.00 (-) 0.10 0.l0 0.10 

0.177 0.39" 0.71 (0.21) 0.26 (0.09) 6.78 13.25 l.02 

0_532 0.38" 0_74 (0.11) 0.10 (0.07) 9.77 18.89 l.06 

0.655 0.80' 0.54 (0.05) 0.14 (0.02) 13.28 31.91 0.78 

00465 0.80' 0041 (0.03) 0.07 (0.01) 6.66 19.83 0.59 
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Table 4.2 

Station 

2 

3 

4 

5 

6 

7 

, 
Grazing rate and impact parameters of micro zooplankton grazing studies conducted during the SAAMES III study in late austral 

winter (Jun./Jul.) 1993. Significance levels: * = p < 0.01; ** = P 0.05. Stations 1-2 = Subantarctic waters; Stations 3-5 = 
Subtropical Convergence; Stations 6-7 = Agulhas waters. Values in brackets represent standard errors. 

Chl-a conc. 
(/lg rI) 

0.450 

0.393 

0.889 

0.725 

0.614 

0.376 

0.321 

r2 

0.66" 

0.35" 

0.89' 

0.74" 

0.32' 

0.67' 

0.57' 

Growth coeff. 
(k) d·I 

0.45 (0.09) 

0.56 (0.11) 

1.23 (0.15) 

1.21 (0.11) 

1.32 (0.13) 

0.47 (0.08) 

0.58 (0.05) 

Grazing coeff. 
(g) d·I 

0.35 (0.01) 

0.39 (0.04) 

0.60 (0.09) 

0.66 (0.08) 

0.53 (0.07) 

0.34 (0.04) 

0.30 (0.07) 

% Initial stock 
removed (d·I ) 

29.56 

32.56 

45.11 

48.41 

41.21 

28.45 

25.55 

90 

% Potential prod. 
removed (d·I

) 

81.08 

76.36 

63.58 

68.99 

·56.26 

77.73 

71.54 

Chlorophyll 
doublings (d-I) 

0.65 

0.80 

1.78 

1.75 

1.90 

0.71 

0.84 



Table 4.3 

Station 

2 

3 

Grazing rate and impact parameters of micro zooplankton grazing experiments conducted during the SAAMES IV study in late 

austral summer (Jan.) 1995. Significance levels: * = p < 0.01; ** = P < 0.05. Station 1 = Subantarctic waters; Station 2 = 
Subtropical Convergence; Station 3 = Agulhas System waters. Values in brackets represent standard errors. 

Chl-a conc. r2 Growth coeff. Grazing coefT. % Initial stock % Potential prod. Chlorophyll 

(/lg )"1) (k) dol (g) dol removed (dol) removed (dOl) doublings (dOl) 

00979 0.70' 0.36 (0.01) 0.15 (0.04) 13.97 45.37 0.52 

0.597 0061" 0.27 (0.01) 0016 (0.03) 14.74 62.98 0.38 

00272 0.88" 0.34 (-) 0.25 (0.01) 21.76 75031 0.49 

,\ 
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Decreases in micro zooplankton densities were recorded at a single station in the vicinity of 

the STC, during both the summer and winter cruises of 1993 (Figure 4.3A and 4.3B). 

Zooplankton studies conducted during the winter cruise found high species richness and 

biomass of macro zooplankton (tunicates and euphausiids) in the region of the front despite 
".: . 

the absence of the rnicrophytoplankton on which they normally feed (Pakhomov et al., 1994). 

Shifts in zooplankton prey in the absence of phytoplankton are well documented (Landry, 

1981, cited in Hopkins & Torres, 1989). Thus, the coincidence of hjgh~ densities of 

macro zooplankton with low densities of microzooplankton during winter suggests that the 

macro zooplankton may have been feeding on the micro zooplankton due to the scarcity of 

phytoplankton. Indeed, recent gut analyses conducted in the Atlantic sector of the Southern 

Ocean indicate that microzooplankton comprise a significant proportion of the diet of some 

macro zooplankton species (Pakhomov, pers. comm.; pers. observation). While the impact of 

macro zooplankton on micro zooplankton could be reduced in winter due to seasonal 

adjustments of metabolic rates, recent studies suggest that seasonality is very reduced in the 

region of the STC (Comiso et al., 1993; Pakhomov et al., 1994). Although summer 

macro zooplankton communities are similar in composition to winter communities (Pakhomov 

et al., 1994), the impact of macro zooplankton feeding on micro zooplankton is much reduced 

in summer as microphytoplankton are present in higher concentrations. This suggests that the 

STC represents an area of increased trophic interaction mediated by phytoplankton size 

composition and concentration. 

During this study, micro zooplankton removed between 0 and 48% of the initial phytoplankton 

standing stock (Tables 4.1 to 4.3). This compares well with similar studies employing the 

dilution technique in various oceanic environments (Gifford, 1988; Paranjape, 1987; 1990; 

Verity & Vernet, 1992; Verity et al., 1993). The results also show that their impact on the 

initial standing stock is highest when the contribution of the microphytoplankton is < 5% of 

the total stock (Figure 4.2). Most laboratory and field studies of microzooplankton grazing 

dynamics suggest that micro zooplankton preferentially graze on particles < 20 pm (Hansen 

et al., 1994; Peters, 1994). In particular, a strong trophic link between nano- and picoplankton 

concentrations and microzooplankton has been observed on many occasions (Jonsson, 1986). 

Although temperature has been implicated as a key factor controlling grazing rates of 

proto zooplankton (Choi & Peters, 1992), the relationship between grazing impact and 

92 



temperature range (between 11 and 22°C) during our studies was not significant. Our data 

indicate that micro zooplankton grazing impact in the region of the STC was determined 

primarily by the contribution of the < 20 pm chlorophyll fraction to total chlorophyll 

concentrations. This result is consistent with similar studies conducted both in the Southern 
< 

Ocean (Lutjeharms et aI., 1994) and in the Gulf of Mexico (Fahnenstiel et ai., 1995). The 

dynamic nature of micro zooplankton grazing is demonstrated by the high grazing impact on 

the generally faster growing phytoplankton in the vicinity of the front (TabJ~s~4.1-4.3). The 

relationship between grazing and growth rates was significant (P< 0.05) during the 1993 

cruises. This suggests a close coupling between growth rates of phytoplankton and grazing 

by micro zooplankton, and provides further evidence of the important role that 

micro zooplankton play in the carbon cycling in the Southern Ocean. 

Microzooplankton grazing impact was lowest during the first summer cruise, in Jan.- Feb. 

1993 (Table 4.1) when microzooplankton removed < 15% of the initial standing stock. This 

is equivalent to < 25% of the potential phytoplankton production (Table 4.1). A feature of this 

cruise was the high contribution of microphytoplankton ("" 20%) to total chlorophyll-a 

(Figure 4.2). Indeed, microphytoplankton concentrations during the summer 1993 cruise were 

significantly higher than those recorded during the other cruises (F = 3.94; P < 0.05). Analysis 

of the microphytoplankton species composition at the stations occupied during this cruise 

showed that chain-forming diatoms of the genera Chaetoceros and Nitzschia and large 

diatoms such as Rhizosoienia spp. were the most numerous. Although several studies- have 

demonstrated that dinoflagellates are able to consume microphytoplankton (Jacobson & 

Anderson, 1986; Suttle et ai., 1986; Hansen et ai., 1994), the available literature on the whole 

largely suggests that microphytoplankton are not grazed by micro zooplankton due to 

morphological constraints associated with feeding. In particular, the ciliates which were the 

dominant component of the micro zooplankton during this study, show a strong preference for 

cells < 20 pm (Rassoulzadegan et ai., 1988; Hansen et al., 1994; Peters, 1994). This suggests 

that, under conditions when microphytoplankton dominate chlorophyll-a at the STC, 

sedimentation of phytoplankton cells or grazing by larger metazoan grazers form the primary 

sinks for photosynthetically fixed carbon. Similarly, in the Atlantic sector of the Southern 

Ocean, micro zooplankton consume < 25% of the potential phytoplankton production when 
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microphytoplankton dominate chlorophyll-a concentrations (Froneman & Perissinotto, in 

press). These findings fit well with the model of Huntley et al. (1991) which estimates that 

"" 80% of the net production enters the macrozooplankton fraction. 

The role of the STC as a biological sink for atmospheric CO2, proposed by Dower & Lucas 

(1993), may change substantially over time. This variability seems to be mediated by changes 

in phytoplankton production rates and chlorophyll biomass (Comiso et al., 19~3; Sullivan et 

al., 1 ~93) and shifts in the size composition of the phytoplankton (Figure 4.2). Unfortunately, 

in the absence of sediment trap collections during the investigation, no conclusive evidence 

can be presented on the magnitude and seasonal variations of the flux of organic carbon in 

the area. It may be useful, however, to consider some circumstantial evidence derived from 

more general studies. Shifts in the composition of the phytoplankton may dramatically affect 

the flux of particulate organic carbon (POC) from surface waters to the deep ocean. For 

example, when the < 20 pm chlorophyll fraction dominates total chlorophyll concentration, 

the bulk of the phytoplankton production would be channelled to the micro zooplankton and 

therefore, the microbial loop. This suggests that relatively little carbon may be exported to 

the deep ocean because most of the organic matter is recycled within the zone of regeneration 

(Longhurst, 1991; Fahnenstiel et aI., 1995). A recent study conducted in the Gulf of Mexico 

showed that sedimentation rates of the < 20 urn chlorophyll fraction were < 1 % of total 

growth where micro zooplankton constituted the major grazers (Fahnenstiel et ai., 1995). 

Also, although macro zooplankton feeding on rnicrozooplankton may represent an impe>rtant 

source of carbon flux in winter, the efficiency of the biological pump is reduced due to the 

increase in trophic steps. In this context, therefore, our results provide some support for the 

model proposed by Moloney (1992) which suggests that the microbial loop represents the 

major sink for phytoplankton production in the Southern Ocean. This would appear to be the 

case at the Subtropical Convergence during winter. 

In contrast, during periods when the rnicrophytoplankton dominate chlorophyll-a biomass, the 

macro- and meso zooplankton appear to represent the major trophic route for the uptake of 

phytoplankton production, thereby resulting in the direct transport of carbon to the deep ocean 

via vertical migrations (Perissinotto & McQuaid, 1992; Fortier et al., 1994) and the 

production of large, fast sinking faecal pellets (Roman et al., 1993; Fortier et al., 1994). The 
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sinking of dead, senescent phytoplankton cells may further contribute carbon flux to the deep 

ocean (von Bodungen et al., 1986). The biological pump will, therefore, be particularly 

efficient in the transfer of biogenic carbon to depth (Longhurst, 1991). Our data indicate that 

while the use of satellite composite data provide invaluable information on total chlorophyll-a 

distribution, these should be used in combination with size fractionated chlorophyU-a data 

to account for the differential partitioning of carbon between size classes of grazers and the 

biochemical processes operating in the region. 
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CHAPTER 5 

DYNAMICS OF MICROPLANKTON COMMUNITIES AT THE ICE EDGE ZONE 

OF THE LAZAREV SEA DURING A SUMMER DROGUE STUDY 

Abstract 

Microzooplankton grazing and community structure were investigated in austral summer 1995 

during a Southern Ocean Drogue and Ocean Flux Study (SODOFS) at the ice edge zone of 

the Lazarev Sea. Grazing was estimated at the surface chlorophyll maximum (5-10 m) by 

employing the sequential dilution technique. Chlorophyll-a concentrations were dominated by 

chain-forming microphytoplankton (> 20 pm) of the genera Chaetoceros and Nitzschia. 

Microzooplankton were numerically dominated by ciliates (aloricate and Strombidium spp.) 

and dinoflagellates (Protoperidinium sp. and Gymnodinium sp.). Instantaneous growth rates 

of nanophytoplankton « 20 pm) varied between 0.019 and 0.080 d-t, equivalent to bet~een 

0.03 and 0.16 chlorophyll doublings d-1
• Instantaneous grazing rates of microzooplankton on 

nanophytoplankton varied from 0.012 to 0.052 d-1
• This corresponds to a nanophytoplankton 

daily loss of between 1.3 and 7.0% (mean = 3.7%) of the initial standing stock, and between 

48 and 97% (mean = 70.4%) of the daily potential production. Growth rates of 

microphytoplankton (> 20 pm) were lower, varying between 0.011 and 0.070 d-1
, equivalent 

to 0.015 - 0.097 chlorophyll doublings d-1
• At only three of the 10 stations did grazing by 

microzooplankton result in a decrease in microphytoplankton concentration. At these stations 

instantaneous grazing rates of micro zooplankton on microphytoplankton ranged between 0 and 

0.015 d- 1
, equivalent to a daily loss of < 1.5% (mean = 1.11%) of initial standing stock and 

less than 40% (mean = 28.55%) of the potential production. Time series grazing experiments 

conducted at 6 h intervals did not show any diel patterns of grazing by micro zooplankton. The 

results of this investigation show that microzooplankton grazing at the ice-edge was not 

sufficient to prevent chlorophyll-a accumulation in regions dominated by microphytoplankton. 

Here, the major biological routes for the uptake of carbon therefore appears to be grazing by 

metazoans or the sedimentation of phytoplankton cells. Under these conditions, the biological 

pump will be relatively efficient in the drawdown of atmospheric CO2, 
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5.1 Introduction 

The fate of photosynthetically fixed carbon in marine environments can dramatically affect 

the magnitude of particulate flux, and hence the efficiency of the biological pump in the 

uptake of atmospheric CO2 (Longhurst, 1991). Although sinking of dead or senescent 

phytoplankton cells contributes significantly to the magnitude of carbon flux (Schnack, 1985; 

von Bodungen et ai., 1986; Michaels & Silver, 1988), grazing by zooplankton represents the 
r- ---: 

primary biological route for the transfer of organic carbon from the surface waters to the 

interior of the ocean. The extent of carbon flux through grazers is strongly determined by the 

community structure of the consumers and the subsequent partitioning of photosynthetically 

fixed carbon (Michaels & Silver, 1988; Roman et al., 1993). In regions where macro- and 

mesozooplankton consume the bulk of the phytoplankton production, the organic flux from 

the surface waters to the deep ocean in the form of large, compact and fast sinking faecal 

pellets,is generally high (Schnack, 1985; von Bodungen, 1986; Cadee et al., 1992; Gonzalez, 

1992a; Fortier et al., 1994). Carbon flux below the zone of regeneration is further enhanced 

as many of the larger herbivores undertake vertical migrations from the surface waters where 

they feed to below the zone of regeneration (Fortier et al., 1994). Production originating in 

the surface waters is, therefore, transported below the zone of regeneration. 

In contrast, phytoplankton consumed by micro zooplankton contribute less to particulate flux 

for several reasons: 1. the close coupling between the micro zooplankton and the microbial 

loop results in the recycling of nutrients in the zone of regeneration (Sherr & Sherr, 1988). 

2. microzooplankton produce small faecal pellets (rninipellets) which remain in suspension 

for long periods (Nothig & von Bodungen, 1989; Elbrachter, 1991; Gonzalez; 1992b); 3. 

many protozoans, the dominant component of the micro zooplankton (Garrison & Buck, 1989), 

sequester chloroplasts (Stoecker et al., 1987); 4. microzooplankton do not undergo vertical 

migration, thus nutrients contained within the micro zooplankton are not transported below the 

zone of regeneration; 5. a substantial proportion of the faecal carbon may be retained in the 

zone of regeneration as a result of coprophagy (Nothig & von Bodungen, 1989); Therefore, 

there appears to be little material available for direct export to the deep ocean. 
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A major feature of the Southern Ocean is sea ice, which in winter may extend as far north 

as 56°S (Sullivan et al., 1993). Associated with the retreating ice during summer are 

phytoplankton blooms which are thought to result from increased in situ production associated 

with increased water column stability imparted,by ice melt (Heywood & Whitaker, 1984; 

Homer, 1985; Smith & Nelson, 1986; Smith & Sakshaug, 1990). The release of epontic cells 

during ice melt further contributes to increased chlorophyll concentrations in this region 

(Smith & Nelson, 1986). The species and size composition and maximum- biGmass reached 

by ice-edge blooms are, however, greatly variable (Lancelot et al., 1993; Kailg & Fryxell, 

1993). Although microphytoplankton generally dominate the ice-edge phytoplankton blooms, 

moderate nanophytoplankton blooms have been recorded in the Weddell Sea (Lancelot et aI., 

1993). 

Studies in marine environments have shown that when nano- and picophytoplankton dominate 

phytoplankton communities, micro zooplankton are often the most significant herbivores 

(Garrison et al., 1993; Kivi & Kuosa, 1994; Lutjeharms et ai., 1994). In contrast where food 

webs are dominated by microphytoplankton, metazoans often represent the sink for primary 

production (Huntley et al., 1989). Thus the pathways of energy flux may vary according to 

the size composition of phytoplankton at the ice edge zone. 

It has been estimated that production at the MIZ contributes "" 40% of the annual primary 

production south of the Antarctic Divergence (Smith & Sakshaug, 1990). The fate ~f the 

photosynthetically fixed carbon in this region is therefore of particular importance for the total 

carbon budget. This study was initiated with the aim of characterising and quantifying the 

grazing impact of micro zooplankton at the ice-edge zone of the Lazarev Sea, and provide data 

on temporal changes in microzooplankton grazing within the same body of water. 

5.2 Materials and methods 

Microzooplankton grazing experiments were conducted at 14 stations during the Southern 

Ocean Drogue and Ocean Flux Study (SODOFS) in austral summer (Dec./Jan.) 1995 (Figure 

5.1). The grazing experiments were carried out at the surface chlorophyll maximum (5-10 m) 

by employing the seawater dilution technique (Landry & Hassett, 1982). 
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Drogue drift track and position of microzooplankton grazing studies conducted 

during the Southern Ocean Drogue Ocean Aux Study (SODOFS) cruise in 

austral summer (Dec./Jan.) 1995. _ denotes the position of the time series 

grazing experiment. 
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Water samples for the grazing experiments were collected with 8 1 Niskin bottles. For each 

experiment, 20 1 polyethylene carboys were filled with seawater. The water in the carboys was 

then gently passed through a 200 pm mesh to isolate the micro zooplankton community. 

Particle free water was obtained by passing surf~c~ water (obtained using a shipboard pump 

Iwaki Magnetic Pump operated at a flow rate of "" 5 1 min-I) through a 0.2 pm Milli Q 

(Millipore) filtration system. Dilution series in ratios of 1:0; 3:1; 1:1 and 1:3 in 2 1 

polyethylene bottles of filtered to unfiltered seawater were then prepared. The nilution series 

were incubated on deck for 24 h in perspex incubators cooled with running surface water and 

screened with shade cloth (neutral spectral transmission) to simulate light intensity at the 

depth of collection. To assess diel patterns of grazing by microzooplankton, duplicate time 

series grazing experiments were conducted over 24 h with sampling at 6 h intervals, 

beginning at 06hOO. During the entire study, wind speed, surface irradiance and cloud cover 

were monitored. 

Before the incubations were begun, water samples (250rnl) were taken for the initial 

chlorophyll-a concentration and micro zooplankton abundance. The corresponding bottles were 

sampled again at the end of the incubation to determine the final chlorophyll-a concentrations. 

Chlorophyll-a was fractionated into the nano- « 20 pm) and microplankton (> 20 pm) size 

classes. The picophytoplankton size class (0.2 - 2.0 pm) was not sampled during this study 

as it constituted :s; 5% of the total stock throughout the period of the investigation. 

Chlorophyll-a concentrations were determined flourometrically (Turner 111 fluorometer) after 

extraction in 100% methanol for 6-12 h (Holm-Hansen & Riemann, 1978). 

To identify and enumerate the various components of the microzooplankton communities at 

each grazing station, a 250 rnl sample of natural seawater was passed gently through a 

200 pm mesh and fixed with 10% Lugols' solution (Leakey et al., 1994a; Stoecker et al., 

1994). The water samples were then examined using the Utermohl settling technique and 

employing a Nikon-TMS inverted microscope operated at X400 magnification (Reid, 1983). 

A minimum of 500 cells or 100 fields were counted for each sample. 
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The apparent growth rate of chlorophyll-a at each dilution is calculated as: 

1 (E) 
t In Po 

where Po and Pt are chlorophyll concentrations at the beginning and end of the experiment; 

t is duration of experiment. This is the observed change in chlorophyll in the presence of 

grazers. The theoretical growth rate of phytoplankton in the absence of grazers (k) is taken 

to be Lhe y intercept from the regression analysis between apparent growth rate and dilution 

(see Figure 2.2). The slope of the regression is the instantaneous grazing coefficient (g) of the 

microzoplankton (Figure 2.2). This regression was calculated by using the computer package, 

Statgraphics Version 5.0 (Statistical Graphics Corporation). 

Correlation analysis was perfonned to identify possible relationships between grazing rate, 

temperature and chlorophyll. Grazing rate data, expressed as a %, were transformed using the 

arcsin transformation (Sokal & Rolhf, 1969), while chlorophyll concentration values were 

transformed using the factor: log (x + 1) (Legendre & Legendre, 1983). The computer 

package, Statgraphics, Version 5.0, was again used for this analysis. 

5.3 Results 

Chlorophyll-a and phytoplankton 

The contribution of the nano- « 20 11m) and microphytoplankton fractions to total 

chlorophyll-a concentrations varied considerably during the drogue study. However, the 

contribution of the microphytoplankton, with 54-70% of total chlorophyll, was always greater 

than that of the nanophytoplankton fraction (Figure 5.2). Microphytoplankton concentrations 

ranged between 0.215 and 0.581 I1g r 1 and were dominated by chain-forming Chaetoceros 

spp. and Nitzschia spp., and large cells such as Corethron criophilum and Rhizosolenia spp. 

(Table 5.1). Concentrations of nanophytoplankton ranged from 0.172 to 0.356 I1g r 1 and were 

dominated by unidentified flagellates. 
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Table 5.1 Cor,1position of microplankton communities during the Southern Ocean Drogue and Ocean Flux Study (SODOFS) experiment 

conducted in austral summer (Dec./Jan.) 1994/ 1995. Results expressed are cells r'. 

Day 

SQecies 1 2 3 4 5 6 7 8 9 10 

Diatoms 
Astermo~halus sp. 25 75 100 200 50 25 
Biddu/!,., ia sp. 50 50 75 200 75 25 75 
Cylin rotheca closterium 125 225 75 325 150 250 125 50 225 125 
Dactyliosolen antarcticus 75 25 125 50 75 50 50 50 
Chaetoceros sp. 375 575 800 575 625 525 475 1225 1050 900 
C. atlanticus 175 125 300 125 50 275 225 225 100 175 
C. dichaeta 525 1200 925 850 1425 925 875 1350 1550 1600 
Concinodiscus s~. 25 25 50 25 - -
Corethron criop ilum 250 275 475 450 675 425 650 300 600 575 
Eucampia antarctica 50 25 25 25 50 
Navicula sp. 150 125 25 175 25 75 175 25 
Nitzschia sp. ~cells) 625 450 525 175 575 225 100 475 400 375 
Nitzschia sp. chains) 425 380 500 375 175 250 225 175 725 125 
N. pelagica 75 75 75 125 150 200 175 50 50 75 
Pseudonitzschia group 75 175 100 100 25 100 25 175 
Rhizosolenia sp. 150 75 150 175 125 250 175 150 200 125 
Proboscia alala 200 175 100 125 225 150 125 150 225 175 
R.hebetata var. semispina 50 75 50 100 25 75 50 50 75 25 
Thalassiosira sp. 25 100 150 25 75 150 75 50 50 50 
Silicoflagellates 

50 Diste~hanus speculum 200 550 175 100 150 675 525 200 50 
Dino agellates 
Amphisolenia sp. 125 175 275 225 325 325 350 175 400 350 
Amphidinium sp. 25 25 75 150 175 275 125 50 25 100 
Ceratium sp. 25 50 25 - - 50 25 25 25 75 
Dinophysis sp. 75 25 - 25 25 50 25 25 50 
Gymnodinium sp. 275 300 350 250 275 300 275 325 325 325 
Gonyaulax slJ. 25 25 - -
Prot0feeridimum sp. 375 475 750 725 700 650 475 725 375 575 
Cilia es 
Strombidium sre. 50 125 200 325 225 175 200 75 75 175 
Aloricate cilia es 1600 1475 1075 1400 1225 1325 1525 1625 1575 1725 
Tintinnids 25 50 75 50 100 75 25 75 75 100 
Foraminiferans 
Acanthochiasma sp. 25 25 

" 

Globigerina sp. 25 25 25 25 
Nanoplankton 2225 2450 2475 1950 2325 2650 1975 2000 2475 2600 
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Microzooplankton community and species composition 

During the entire drogue study, the microzooplankton community was numerically dominated 

by protozoans (Table 5.1), with densities ranging between 2550 and 3400 indX I
. The ciliates, 

comprising aloricate ciliates (Oligotrichs), Stronibidium spp. and tintinnids dominated 

numerically the protozooplankton stock, accounting for 48-62% of the total. Aloricate fOnTIS 

constituted the main component of the ciliate group, with densities ranging between 1075 and 

1725 indo I-I. Members of the Strombidiidae (Strombidium spp.) were !be~ second most 

numerous component of this group and their densities ranged from 50 to 325 indo I-I. 

Tintinnid densities were always < 100 indo r l (Table 5.1). 

Among the flagellates, members of the genus Protoperidinium were the most abundant species 

with densities ranging from 375 to 725 indo I-I (Table 5.1). The second most abundant 

dinoflagellates during the study were Gymnodinium spp. with densities ranging between 250 

and 450 indo rl. Also, well represented were unidentified species of the genus Amphidnium 

(densities of between 125 and 400 indo rl) and Amphisolenia spp. (densities range from 25 

to 275 indo rl). Amongst the dinoflagellates, the least well represented group recorded during 

the study was the genus Gonyaulax. Densities of this group were always < 25 indo ·1-J . 

Abundances of larger protozooplankton, e.g. foraminiferans, were low « 25 indo rl) 

throughout the drogue study. Two species of foraminiferans, Acanthochiasma sp. and 

Globigerina sp. were recorded (Table 5.1). 

Grazing rates 

Instantaneous growth and grazing co-efficients with the confidence limits derived from the 

grazing experiments are shown in Tables 5.2 and 5.3. In all dilution experiments, the 

relationship between apparent growth rate and dilution was significantly linear (p < 0.05 in 

all cases). 

No temporal patterns in growth or grazmg were identified in the nanophytoplankton 

community (Table 5.2A) . Instantaneous growth rates (k) of the nanophytoplankton ranged 

between 0.02 and 0.08 d- I
. This level of growth is equivalent to between 0.03 and 0.12 

chlorophyll doublings d- I (Table 5.2A). Instantaneous grazing rates (g) of microzooplankton 
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on nanophytoplankton ranged from 0.01 to 0.05 d-'. These correspond to daily losses of 

between 1.3 and 7.0% (mean = 3.8%) of the initial standing stock and 48 - 97% (mean = 

70.4%) of the potential primary production of the nanophytoplankton fraction. During these 

experiments the relationship between algal growth and grazing mortality were always 
.; . 

significant (r = 0.58; P < 0.05). Using a Box Jenkins test to detennine whether this 

relationship was due to autocorrelation, a significant correlation was again obtained between 

microzooplankton grazing and algal growth (r = 0.45; P < 0.05) indicating that this 

relationship was real. 

Instantaneous growth rates in the microphytoplankton fraction were lower and ranged between 

0.02 and 0.07 d-' (Table 5.2B). These rates correspond to chlorophyll doubling rates ranging 

between 0.02 and 0.10 d-'. Microzooplankton grazing resulted in a decrease in the 

microphytoplankton concentration in only three experiments (Table 5.2B). Here, the 

instantaneous grazing rates of micro zooplankton on microphytoplankton ranged between 0.008 

and 0.01 d-'. This level of grazing corresponds to a daily loss of initial standing stock < 1.5% 

(range 0.9 - 1.5%) or < 40% of the potential production (range 19 - 41 %). Pearson and 5th 

Order Partial correlation analysis between microzooplankton abundance, herbivory and 

chlorophyll concentration showed no significant relationships during the entire investigation. 

During the time series grazing experiments, both the growth co-efficients of the nano- and 

microphytoplankton fractions and microzooplankton grazing impact on the two fractions-were 

in the same range as that obtained in the previous grazing experiments (Tables 5.3A and 

5.3B). Grazing by microzooplankton resulted in a decrease in nanophytoplankton 

concentration during all experiments (Table 5.3A), while decreases in the microphytoplankton 

concentration were observed only at three stations (Table 5.3B). No diel patterns in grazing 

impact of micro zooplankton on nano- or microphytoplankton were evident during the time 

series experiments (Tables 5.3A and 5.3B). Indeed, analysis of variance indicates that the 

grazing impact of micro zooplankton on the nanophytoplankton and microphytoplankton did 

not differ significantly between different times of the day (F = 0.897; F = 0.352 respectively; 

P < 0.05 in all cases). 
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Table S.2A Estimates of phytoplankton production in the < 20 JIm size fraction and grazing by microzooplankton measured with the dilution 

technique during a Southern Ocean Drogue and Ocean Flux Study (SODOFS). Values in brackets are standard error. Significance 

levels :* = P< 0.05; ** = P< 0.01. 

Station Chl-a r Growth coeff. Grazing coeff. % Initial stock % Potential Chlorophyll 
number (pg 101) (k) dol (xlO02) g (dOl) (xlo02) removed (dol) prod grazed (dOl) doublings dol 

0.183 40.04' 1.85 (0.005) -1.24 (0.002) 1.26 67.31 0.027 

2 0.172 49.55' 7.96 (0.004) -4.78 (0.002) 4.71 60.83 0.115 

3 0.224 49.56' 7.58 (00003) -3058 (0.001) 3.57 48.30 0.109 

4 0.215 43.18' 6.21 (0.005) -4.68 (0.002) 4.65 76.09 0.082 

5 0.296 52.18" 4.52 (0.002) -2.01 (-) 3.71 44.62 0.065 

6 0.338 66.87" 7.16 (0.003) -4.22 (-) 4.37 59.76 0.103 

7 0.245 57.71" 3.36 (0.004) -3.16 (0.001) 3.26 94.37 0.048 

8 0.226 69.31' 4.68 (0.002) -3.98 (-) 0042 85.03 0.067 

9 0.215 56.31' 4.68 (0.001) -4.56 (0.002) 4.65 97.09 O.oI5 

10 0.356 51.53' 7 Al (0.008) -5.16 (0.003) 6.99 70.33 0.107 

111 



Table S.2B Estimates of phytoplankton production in the> 20 Jlm size fraction and grazing by microzooplllnkton measured with the dilution 

technique during a Southern Ocean Drogue and Ocean Flux Study (SODOFS). Values in brackets are standard error. Significance 

levels: * = P< 0.05; ** = P< 0.01. 

Station Chl-a r2 Growth coefT. Grazing coefT. % Initial stock % Potential Chlorophyll 
number (p.tg 1-1

) k (d-l) (xlo-2) g (d-l) (xlO-2) removed (d-l) prod.grazed (d-l) doublings dol 

0.215 46.81· 6.14 (0_003) -1.49 (0.001) 1.49 25.00 0.088 

2 0.315 59.73· 2.31 (0.01) -0.93 (0.004) 0.94 40.76 0.033 

3 0.371 48.55·· 2.04 (0.004) 3.14 (0.002) 0.029 

4 0.389 47.60· 1.06 (0.002) 0.14 (-) 0.015 

5 0.488 75.36·· 1.09 (0.003) 0.55 (-) 0016 

6 0.371 39.63·· 1.67 (0.002) 0.21 (-) 0.024 

7 0.581 53.37· 2.32 (0.002) 0.28 (-) 0.032 

8 0.264 59.43· 6.76 (0.005) 0.38 (-) 0.097 

9 0.441 50.01· 4.73 (0.001) -0.87 (0.001) 0.91 19.19 0.068 

10 0.532 76.23·· 1.19 (0.003) 0.67 (0.001) 0.017 

,\ 
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Table S.3A Diel variations in the < 20 pm phytoplankton and grazing by micro zooplankton during a Southt;rn Ocean Drogue and Ocean Flux 

Study (SODOFS). Values in brackets are standard error. Significance levels: * = P< 0.05; ** = P< 0.01. 

Time Chi-a r Growth coeff. Grazing coeff. % Initial stock % Potential Chlorophyll 
(pg 1.1) (k) d·1 (g) d·1 removed (d· l

) prod grazed (d· l
) doublings d·1 

06hOO 

0.387 58-13" 2.98 (0.005) -2.56 (0.003) 2.53 86.32 OJ)43 

2 00401 47.69" 3.01 (0.008) -1.79 (0.004) 1.97 60.41 0.043 
I2iiffi) - -- --~ 

---_ .. _--- ----_ .... - ---- - ------

0.356 48.90" 3041 (0.001) -3.16 (0.005) 3.12 92.68 0.049 

2 00403 53.19** 2.01 (0.003) -1.11 (0.004) 1.09 56.22 0.029 

I8iim) -

0.304 49.57" 4.31 (0.007) -2.78 (0.003) . 2.73 64.93 0.062 

2 0.289 68.33** 3.63 (0.003) -2.01 (0.009) 1.76 56.60 0.052 

IDiffi}~ .. ~~ -.~ 

0.424 41.89" 4.56 (0.009) -3.89 (0.007) 3.82 85.53 0.066 

2 0.427 67.97" 4.03 (0.005) -2.96 (0.003) 
1 

2.92 73.86' 0.058 
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Table 5.38 Diel variations in the> 20 pm production and grazing by microzooplankton during a Souther,n Ocean Drogue and Ocean Flux 

Study (SODOFS). Values in brackets are standard error. Significance levels: * = P< 0.05; ** = P< 0.01. 

Time Chl-a r Growth coefl'. Grazing coeff. % Initial stock %Potential Chlorophyll 
(,.g 1'1) k (d'1) (xlO'2) g (d'l) (xlO'2) removed (d'l) prod grazed (d·l) doublings d'i 

06hOO 

0.378 59.31" 4.56 (0.004) -0.03 (-) 0.31 6.25 0.066 

2 0.398 65.23' 4.07 (0.001) -0.01 (-) 0.50 8.31 0.059 
ITii1Ri --~.~ --------

00477 78.56' 6.75 (0.003) -0.04 (0.001) 0042 1.50 0.097 

2 0.394 43.67' 1.72 (0.001) 0040 (0.003) 0.025 

18hOO 

0.389 43.92' 3045 (0.001) 0.03 (-) 0.050 

2 00401 55.32' 3.67 (0.002) 0.05 (-) 0.053 

0ii00 

00400 63.21" 1.31 (0.004) 0.10 (-) 0.019 

2 00406 59.02' 1.23 (0.001) 0.09 (-) 0.018 
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5.4 Discussion 

In the course of this study the drogue drifted < 25nm in a westerly direction in approximately 

12 days (Figure 5.1), suggesting that it had drifted in the Eastwind Drift flowing adjacent to 

the Antarctic continent (Gow & Tucker, 1990). Oceanographic data show that the entire study 

was carried out in the same water mass (Rigg, pers. comm.). Conditions during the 

experiment were characterised by low wind speeds (between 1.4 and 19.8 !rn.ots), and high 
r _ 

surface light intensities ranging between 564 and 2797 pE. m-2
• S-l. The phytoplankton 

community was dominated by microphytoplankton which comprised 54-70% of total 

chlorophyll-a measured (Figure 5.2). 

During the entire study, the micro zooplankton assemblages were numerically dominated by 

proto zooplankton with densities ranging between 2550 and 3400 cells r 1 (Table 5.1). The 

densities and species composition of the proto zooplankton assemblages were in the same 

range as previously found with similar studies conducted at the ice-edge zone of the Weddell 

Sea (Garrison & Buck, 1989; Garrison, 1991). Assuming that total phytoplankton carbon can 

be calculated using the equation Ca = 80chlo.6 (Hewes et al., 1990), and the carbon content 

of micro zooplankton calculated from 1 um3 = 0.19 pg C (Sime-Ngando et al., 1992), 

micro zooplankton carbon contributed ~ 5% of total carbon in the < 200 pm fraction during 

this study. This result is similar to the < 12% cited by Buck & Garrison (1989) in a study 

conducted at the ice-edge zone of the Weddell Sea. Our estimate is, however, conservative 

since cell shrinkage of up to 44% in samples fixed with Lugols' solution have been 

documented (Leakey et al., 1994a). 

Growth rate estimates of phytoplankton during the drogue study ranged between 0.02 and 

0.07 d- 1
, equivalent to 0.03 - 0.12 chlorophyll doublings d-1 (Tables 5.2A and 5.2B). These 

results compare well with phytoplankton growth rate estimates obtained in various marine 

environments employing the dilution technique (Table 5.4). These estimates are, however, 

lower than estimates obtained during one of our previous studies conducted in the same 

region (Chapter 2). Bacterial growth rate estimates and size fractionated primary production 

studies were also low during the entire study (Tibbles, pers. comm.; Laubscher, pers. comm) 

suggesting that the activity of the entire biological system was low during this period. 
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Although the elevated production of ice algae is well documented (Smith, 1987; Lizotte & 

Sullivan, 1991), the degree to which ice algae released during ice melt remain active in the 

water column is unclear (Smith & Sakshaug, 1990). Ecophysiological studies of ice flora have 

shown that they exhibit photo-inhibition at high light intensities (Smith & Sakshaug, 1990; 
. 

Lizotte & Sullivan, 1991). For example, the optimum light intensity (IJ at which maximum 

production occurs for ice algae has been shown to be between 13 and 25 pE m.-2 
S:1 (Jacques, 

1983; Smith & Sakshaug, 1990). Thus high light intensities in the surface waters would 

inhibit growth of phytoplankton communities dominated by ice flora (e.g. Chaetoceros spp.). 

Indeed, photo-inhibition is likely to be of significance in water bodies of high solar irradiance 

and low wind speeds (Kirk, 1994). This, however, does not preclude high production rates 

of ice flora at reduced light intensities. Also, the presence of Rhizosolenia spp. and 

Corethron criophilum, which are regarded as the second stage in the succession of diatom 

species (Samyshev, 1991), suggests some degree of overlap between the ice associated and 

open water communities, possibly reflecting the effects of mesoscale hydrography or diatom 

succession patterns. 

Microzooplankton grazing removed < 10% of the initial standing stock . of the 

nanophytoplankton during the grazing experiments (Table 5.2A and 5.3A). Despite the low 

impact on the initial standing stock, the grazing impact on the potential production was ~ 70% 

(Table 5.2A). This reflects the low growth rates of phytoplankton during the study (Tables 

5.2A and 5.2B). The relationship between grazing and growth rate of nanophytoplankton was 

significant (P < 0.05), suggesting a close coupling between phytoplankton and 

micro zooplankton. Although the grazing rates reported in this study (0.03 - 0.05 dol) are 

among the lowest reported in the literature (Table 5.4), data suggest that microzooplankton 

grazing alone was sufficient to control the growth of the nanophytoplankton fraction. This 

result is consistent with similar studies conducted in the Marginal Ice Zone of the Weddell 

Sea during spring which demonstrated that protozoan grazing rates were higher than primary 

production in areas dominated by nanoplankton (Lancelot et al., 1993; Garrison et aI., 1993; 

Kivi & Kuosa, 1994). Therefore, protistan grazing at the ice-edge appears only to control 

phytoplankton in regions dominated by nanoflagellates (Kivi & Kuosa, 1994; Scharek et al., 

1994). Similar grazing patterns have also been reported from studies conducted in the northern 

hemisphere (Paranjape, 1990; Verity & Vernet, 1992). It must be pointed out, however, that 
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the use of chlorophyll-a as an indicator of grazing excludes other potential food sources such 

as heterotrophic components. The absence of significant correlations between 

microzooplankton abundance, grazing impact and nanophytoplankton concentrations may be 

explained by the wide range of trophic responses reported in the literature. 

Table 5.4. Microzooplankton grazing and phytoplankton growth rates derived from 

grazing studies conducted in various oceanic environments employing the 

dilution technique. 

Author Region Grazing coefficient (d- l
) Growth coefficient (d- l

) 

Burkill et al_, 1987. Coastal 0.14 - 1.04 -0_07 - 1.04 

Paranjape, 1987. Shelf waters 0.08 - 0_17 -0.01 - 0.30 

Gifford, 1988. Shelf waters 0.02 - 1.44 0.24 - 1.92 

Verity & Vernet, 1992. Shelf waters 0_08 - 0.34 -0.13 - 0.21 

Burkill et al., 1993. Oceanic 0.02 - 0_57 -

Verity et al_, 1993. Oceanic 0.21 - 1.09 -0.05 - 0.97 

Throughout the SODOFS ~tudy, grazing by micro zooplankton generally did not result in a 

decrease in the microphytoplankton concentration (Table 5.2B and 5.3B). Consequently 

grazing by micro zooplankton is not sufficient to control biomass accumulation in communities 

dominated by microphytoplankton. The inability of protozoans to graze on 

microphytoplankton reflects morphological constraints associated with feeding (see Hansen 

et ai., 1994; Peters 1994). Meso- and macrozooplankton grazing studies conducted during the 

same period showed that grazing by the tunicate, Salpa thompsoni, was sufficient to control 

phytoplankton growth during the pre-bloom period (Perissinotto & Pakhomov, in prep). Under 

blooms conditions, however, sedimentation of phytoplankton cells was probably the main 

contributor to carbon flux_ Recent studies suggest that ice algae released into the water 

column have a tendency to form aggregates with high sinking rates (Riebesell et al., 1991, 

cited by Scharek et ai., 1994). Indeed, sediment trap studies conducted at the ice edge zone 
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have shown the important contribution of sinking phytoplankton cells to carbon flux (von 

Bodungen et al., 1986; 1988; Matsuda et al., 1987; Fisher et al., 1988). 

Microzooplankton grazing did not display any diel patterns throughout the period of 

investigation (Tables 5.3A and 5.3B). Diel feeding patterns by larger metazoan grazers are 

primary the result of vertical migrations from below the zone of regeneration to the surface 

waters as a predator avoidance strategy (Gliwicz, 1986; Perissinotto, 1989; Longhurst, 1991). -- ~ 

Depth profile studies of the Southern Ocean have demonstrated that proto zooplankton biomass 
"-

is most concentrated in the upper water column, suggesting a close relationship with the 

sources of primary production (Garrison & Buck, 1989; Pierce & Turner, 1992; Garrison et 

ai., 1993). Microzooplankton, therefore, do not appear to vertically migrate. Recent studies 

on the feeding dynamics of ciliates showed no clear-cut diurnal grazing patterns (Kivi & 

SetaUi, 1995). On the basis of their results, Kivi & SetaHi (1995) suggest that natural ciliate 

populations are always, within the framework of their temperature limited metabolism, 

exercising clearance activity at their maximum possible rates. Similar grazing patterns for 

flagellates have also been documented (Peters, 1994). These data suggest that 

proto zooplankton do not exhibit diel grazing patterns. 

The results of the grazing experiments conducted during this study largely indicate that 

microphytoplankton are not grazed by micro zooplankton (Table 5.2B). This result implies that 

the sedimentation of phytoplankton cells, or grazing by macro- and mesozooplankton _at the 

ice edge represent the primary trophic route for summer production in regions of the ice edge 

where microphytoplankton dominate. Indeed, a previous study on micro zooplankton grazing 

in the Southern Ocean showed that micro zooplankton removed < 25% of summer production 

when microphytoplankton dominated chlorophyll biomass (Froneman & Perissinotto, in prep). 

This provides partial support for the model proposed by Huntley et al. (1991) which suggests 

that up to 80% of the net primary production is channelled into macrozooplankton. 

Dramatic seasonal differences in the physical conditions in the MIZ and associated changes 

in phytoplankton abundance and distributional patterns have been observed (Kang & Fryxell, 

1993). Recent studies in the Weddell Sea and Atlantic sector of the Southern Ocean have 

demonstrated a shift in the size composition of phytoplankton from a community dominated 
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by microphytoplankton in summer, to one dominated by nanophytoplankton in winter 

(Garrison et ai., 1991; 1993; Leakey et ai., 1994b). In winter, therefore, grazing by 

microzooplankton is sufficient to control the growth of phytoplankton (Garrison et ai, 1993; 

Lancelot et ai., 1994; Lutjeharms et al., 1994) arid particulate organic carbon (POC) flux 

to the deep ocean is reduced due to the close coupling between the microzooplankton and the 

microbial loop, with consequent recycling of nutrients in the zone of regeneration (Longhurst, 

1991). Evidence of this is presented in a number of sediment trap studies conducted in 
r- ~ 

Antarctic waters (Matsuda et ai., 1987). These show that minimum POC flux rates « 10 mg 

C rn-2~ d-1
) coincide with the winter months, while the highest rates (120 - 135 mg C m-2

• d-1
) 

are recorded in the summer, when microphytoplankton dominate the chlorophyll biomass. 

This result reflects a decrease in phytoplankton standing stock and lower grazing impact of 

the meso- and macro zooplankton during winter. 

A potentially important source of POC flux in winter may, however, result from carnivory 

by meso- and macro zooplankton eating micro zooplankton in the absence of 

microphytoplankton. In the Southern Ocean, carnivory on micro zooplankton by larger 

metazoan grazers is well documented for the summer period (Hopkins & Torres,1989; 

Hopkins et aI., 1993; Perissinotto & Pakhomov, in prep). A general shift to zooplankton prey 

when phytoplankton become scarce has also been shown in a variety of other oceanic areas 

(Landry, (1981), cited in Hopkins & Torres, 1989). Recent studies conducted in the Weddell 

Sea in winter have shown that copepods feeding exclusively on phytoplankton can no~ meet 

their metabolic costs (Bathmann et al., 1993). Alternative food sources which could 

potentially meet these energy demands include detritus and proto zooplankton. Also, recent 

studies conducted in coastal waters west of the Antarctic Peninsula have concluded that 

camivory is the dominant trophic mode during winter (Huntley & Norhausen, 1995). These 

results point to importance of protozoans as trophic links, coupling production in the nano

and picoplankton to the higher trophic levels during winter. However, their contribution to 

the increase in the number of trophic steps would result in a less efficient biological pump. 
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CHAPTER 6 

CARNIVORY BY SELECTED MACROZOQ~LANKTON SPECIES FEEDING ON 

MICROZOOPLANKTON IN THE ATLANTIC SECTOR OF THE SOUTHERN 

OCEAN IN AUSTRAL SUMMER 

Abstract 

Carnivory by the two dominant euphausiid species Euphausia crystallorophias and E. superba 

and the salp Sa/pa thompsoni on microzooplankton was investigated using in vitro incubations 

during the fourth South African Antarctic Marine Ecosystem Study (SAAMES IV) cruise in 

the marginal ice zone of the Lazarev Sea during late austral summer (Dec./Jan.) 1994/95. 

Chlorophyll-a concentrations used in the incubations varied from 0.203 to 1.430 pg tl and 

were dominated by chain forming microphytoplankton (> 20 pm) species of the genera 

C haetoceros and Nitzschia. Microzooplankton densities during the study ranged between 1725 

and 2735 cells tl and were entirely dominated by protozoans, comprising aloricate ciliates and 

dinoflagellates. Ingestion rates calculated from biovolume: carbon estimates for E. superba 

varied between 50 and 301 pg C ind·1
• dol (x = 188 + 87.98) and those for E. crystallorophias 

between 58 and 247 pg C ind-l. dol (x = 158 ± 61.23). S. thompsoni ingestion rates were the 

highest recorded, ranging between 98 and 356 pg C ind-l. dol (x = 232 + 83.2). Based on the 

estimated minimum carbon uptake (MCV) values of the three species reported in the 

literature, carbon derived from the consumption of micro zooplankton alone contributes 

between 107 and 185% of the MCV requirements for juvenile E. superba, between 61 and 

75% for E. crystallorophias and from 166 to 432% for S. thompsoni. These results show that 

even in the presence of high chlorophyll concentrations, micro zooplankton represent an 

important source of carbon for the three dominant Antarctic macrozooplankton species. 

Microzooplankton are therefore important trophic intermediates between bacterioplankton, 

small phytoplankton cells and macrozooplankton. 
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6.1 Introduction 

Recent observations have shown that the role of microzooplankton in aquatic food webs is 

more important than previously thought. Microzooplankton have been shown to consume a 

significant proportion of daily primary production (Paranjape, 1990; see review of Pierce & 

Turner, 1992; Froneman & Perissinotto, in press a and b), to be important in regulating 

bacterial populations (Andersen & Fenchel, 1984; Albright et ai., 1987; Bernard & 

Rassoulzadegan, 1993) and are important agents in nutrient regeneration (Probyn, 1987; 
-

Goeyens et ai., 1991). In addition to these roles, microzooplankton may be regarded as 

important trophic intermediates between the bacterioplankton and the larger meso- and 

macrozooplankton (Gifford & Dagg, 1988; 1991). On the basis of these observations, the 

classical paradigm of pelagic food webs simply composed of diatoms, copepods and fish has 

been revised. 

Feeding studies of the larger zooplankton in the Southern Ocean have largely used the gut 

fluorescent technique to estimate daily rations and grazing impact (Perissinotto, 1992). 

Because the gut florescent technique uses chlorophyll as an index of feeding, the contribution 

of heterotrophic food items, e.g. micro- and mesozooplankton, to total daily carbon intake is 

not measured. Consequently, daily rations of these grazers may be substantially 

underestimated. Indeed, energy budgets for the dominant Antarctic grazer, Euphausia superba, 

show that carbon derived from the grazing of phytoplankton alone can hardly meet th~ ,daily 

metabolic requirements (Drits & Pasternak, 1993; Pakhomov et ai., in press; Perissinotto et 

ai., in press). Similarly, studies conducted in the Weddell Sea during winter showed that 

carbon derived from phytoplankton accounted for only 2-5% of daily carbon requirements of 

copepods (Bathmann et ai., 1993). Alternative sources of carbon included detritus and 

protozooplankton. These results indicate that heterotrophic carbon may be an important 

component of the natural diets of grazers which are traditionally considered herbivorous. 

Gut content analyses of the dominant grazers in the vicinity of the marginal ice zone (MIZ) 

have shown that protozoans comprise a significant proportion of the total number of items 

identified (Hopkins & Torres, 1989; Hopkins et ai., 1993). Indeed, a recent study has shown 

that protozoans constitute"", 25% of the total identifiable items in the gut of the two dominant 
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Antarctic euphausiids, Euphausia crystallorophias (Pakhomov et al., in press) and E. superba 

(Perissinotto et al., in press) in the Atlantic sector of the Southern Ocean. These estimates are, 

however, likely to be underestimated due to the fragility of microzooplankton components. 

These studies do also fail to provide any quantit~t~ve data on the grazing impact of the two 

euphausiids on micro zooplankton populations or the contribution of these organisms to their 

daily energy intake. 

The aim of this study was, therefore, to present the first quantitative grazing rate data of the 

three dominant macro zooplankton species on micro zooplankton in the vicinity of marginal ice 

zone of the Lazarev Sea during austral summer 1995. 

6.2 Materials and methods 

Carnivory experiments using selected macrozooplankton feeding on microzooplankton were 

conducted during the fourth South African Antarctic Marine Ecosystem Study (SAAMES IV) 

cruise in the marginal ice zone of the Lazarev Sea during summer (Dec.! Jan.) 1994 -1995 

(Figure 6.1). The consumption of micro zooplankton was estimated employing the techniques 

of Gifford & Dagg (1988; 1991). The grazing impact of the three most abundant species of 

the local macrozooplankton community were investigated: Euphausia crystallorophias, 

juvenile E. superba and the tunic ate, Salpa thompsoni. 

Macrozooplankton collected with net tows (500 ).lm Bongo nets) were acclimated in natural 

seawater for 24 h in 20 1 polyethylene carboys under ambient conditions. Prior to the start of 

the carnivory experiments, 6 replicate samples were prepared in 20 I polyethylene containers 

filled with natural seawater and allowed to stand for 2 h. According to Gifford (1993), this 

time period is sufficient to allow for the stabilization of the plankton assemblage in the 

containers. For each experiment, 2 replicate samples containing only natural seawater were 

used as controls. In the experimental treatments, 4 replicate samples each containing one 

individual macrozooplankton were used. The controls and treatments were then incubated on 

deck under ambient conditions for 24 h. Each container was gently stirred with a plastic 

spatula at 6 h intervals to prevent the settlement of plankton. 
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Location of the study area with an inset illustrating the position of the stations 

where the camivory experiments were conducted during the SAAMES IV 

cruise to the region of the ice-edge zone of the Lazarev Sea in austral summer 

(Dec./Jan.) 1994/95. Stations 1 and 2 = Euphausia superba; 3 and 4 = 

Salpa thompsoni; 5 and 6 = E. crystallorophias. 
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At the beginning of the experiment, two 250 ml water samples were taken from each 

container for the detennination of initial chlorophyll-a concentration and micro zooplankton 

species composition and abundance. This procedure was repeated at the end of the 

experiments to estimate the final chlorophyll-a concentration and microzooplankton densities. 
- . 

Chlorophyll-a concentrations were determined fluorometrically (Turner 111 fluorometer) after 

extraction in 100% methanol for 6 h (Holm-Hansen & Riemann, 1978). Total phytoplankton 

carbon was estimated employing the equation of Hewes et ai. (1990): 

C = 80 chf6 
a 

Water samples for the determination of microzooplankton species composition and 

abundances were fixed with 10% Lugols solution (Leakey et ai., 1994). Microzooplankton 

species composition and densities were then estimated using the Utermohl settling technique 

after sedimentation in a 10 ml settling chamber (Reid, 1983). From each sample, three 

subsamples of lOrnl, representing 30% of the total were counted. A Nikon TMS inverted 

microscope operated at 400X magnification was used for this analysis. A minimum of 100 

fields or 500 cells were counted for each sample. The total carbon of the microzoQplankton 

fraction was estimated by calculating the mean biovolume of 50 ciliates and 50 dinoflagellates 

(Boltovoskoy et ai., 1989). The carbon biomass of the micro zooplankton was then estimated 

assuming that 1 pm3 = 0.19 pg C (Putt & Stoecker, 1989; Sime-Ngando et ai., 1992). 

In all experimental treatments macro zooplankton organisms were preserved in buffered 

formalin at the end of the incubation period. The dry weight of specimens from each grazing 

study was determined by oven drying at 60°C for 36 h. 

The grazing impact of macrozooplankton on microzooplankton was estimated by employing 

the following equations: 

a) growth coefficient (k) of the microzooplankton: 
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where Co and C1 are the prey concentrations in the control at time zero (to) and at the end 

of the experiment (tl). 

b) grazing coefficient (g) of macrozooplankton: 

where C I is prey concentration in the experimental treatment at the end of the incubation. 

c) the mean prey concentration <C> was derived from: 

<C> = Co (e(k·gXtl-tO)-l)l(tl-tO)(k-g). 

d) the clearance rate (F) was calculated using the following equation: 

F = Vg/N 

where V is the volume of the incubation chamber; g is the grazing coefficient of the 

macrozooplankton; and N the number of macrozooplankton per experimental container 

treatment. 

Finally, the ingestion rate of macrozooplankton was estimated from: 

1= F. <C> 

6.3 Results 

Microplankton community structure 

The initial conditions at each grazing station are summarised in Table 6.1. Chlorophyll-a 

concentrations during the period investigated ranged between 0.203 and 1.430 )lg 1-1 and were 

dominated by microphytoplankton. The contribution of the < 20 )lm chlorophyll fraction 

(nano- and picophytoplankton) to total chlorophyll was < 20% at all stations. An exception 
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occurred in the first Euphausia crystallorophias experiment (station 5), where the < 20 pm 

chlorophyll fraction dominated the total. Among the microphytoplankton, chain-forming 

diatom species of the genera Chaetoceros and Nitzschia, as well as large cells such Corethron 

criophilum and Rhizosolenia dominated numerically (Table 6.2). In particular, the single most 

abundant species was Chaetoceros dichaeta which contributed> 20% of the total cell counts 

at all the grazing stations (Table 6.2). 

Table 6.1 

Station 

1 

2 

3 

4 

5 

6 

Initial experimental conditions of the macro zooplankton carnivory experiments 

conducted during the SAAMES IV cruise in the marginal ice zone of the 

Lazarev Sea during late austral summer (Dec. IJan.) 1994/95. 

Temperature Macrozooplan kton Total Chl·a Microzooplankton Autotrophic Heterotrophic 
("C) species conc. densities carbon carbon 

(pg .-') (cells r~ (pg C'-~ (pg C r~ 

·1.15 Euphausia superba 0.203 1725 30.73 21.36 

-1.19 E. superba 1.214 2225 89.97 27.55 

0.40 Salpa thompsoni 1.390 2650 94.48 32.81 

-0.30 S. thompsoni 1.430 2735 99.15 33.86 

-1.27 Euphausia 0.204 2765 30.82 "34.23 
crystallorophias 

-0.86 E. crystallorophias 0.406 1800 46.58 22.28 

The micro zooplankton fraction was entirely dominated by protozoans with densities ranging 

between 1725 and 2765 cells r1 (Table 6.1). The biomass of the microzooplankton r~nged 

from 21 to 34 pg r 1 contributing between 23 and 52% of the total (microphytoplankton and 

micro zooplankton) available carbon during the investigation. 

Among the protozoans, dinoflagellates were the most numerous, with densities rangmg 

between 828 and 1340 cells I-I. Protoperidinium, Gymnodinium and Amphisolenia were 

identified as the most abundant components of this group. Also recorded were representatives 

of the genera Dinophysis, Procentrum and Ceratium. Densities of these taxa were, however, 

always < 50 cells. r1. Aloricate forms constituted the main component of the ciliates, with 

densities ranging between 774 and 1230 cells 1-1. The contribution of tintinnids was < 5% of 

the total at all stations. Abundances of the larger protozoans e.g. acantharians and 

foraminiferans were always < 5 cells r1. 
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Table 6.2 

Station 

1 

2 

3 

4 

5 

6 

Microphytoplankton species composition and abundance during the SAAMES 

IV cruise in the region of the Marginal Ice zone of the Lazarev Sea in austral 

summer (Dec./Jan.) 1994/95. Only species contributing> 5% of total cell 

counts at each station are listed. Stations 1 and 2 = Euphausia superba; 3 

and 4 = Salpa thompsoni; 5 and 6 = E. crystallorophias. 

Species composition and % contribution to total cell counts - - -

Chaetoceros sp. (23%); C. dichaeta (30%); Nitzschia sp. (12%); Corethron 

criophilum (lO%); Distephanus speculum (5%); Rhizosolenia bergonii (5%); 

Navicula spp. (5%). 

Chaetoceros sp. (19%); C. dichaeta (24%); Nitzschia sp. (13%); Corethron 

criophilum (8%); Rhizosolenia bergonii (5%); Navicula sp. (5%). 

Chaetoceros sp. (27%); c. dichaeta (22%); Nitzschia sp. (13%); Corethron 

criophilum (8%);Rhizosolenia bergonii (5%); Navicula sp. (5%). 

Chaetoceros sp. (27%); c. dichaeta (34%); Nitzschia sp. (8%); N. pelagica 

(5%); Corethron criophilum (8%); Rhizosolenia bergonii (8%); Navicula sp. 

(5%). 

Chaetoceros sp. (27%); C. dichaeta (31 %); Nitzschia sp. (8%); Rhizosolenia 

bergonii (8%); Navicula sp. (5%). 

Chaetoceros sp. (38%); C. dichaeta (27%); Nitzschia sp. (9%); Corethron 

criophilum (9%); Rhizosolenia begonii (5%); Navicula sp. (5%). 
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Feeding experiments 

The rate estimates for all carnivory experiments conducted are shown in Figures 6.2 and 6.3. 

Although the clearance and ingestion rates varied considerably between experimental 

treatments, a {-test showed that the grazing impact of macrozooplankton on micro zooplankton 

were not significantly different between experiments (P > 0.05). During the first carnivory 

experiments with Euphausia superba juveniles, clearance rates ranged between 229 and 400 

ml ind:1 h- I (x = 271 ml ind:1 h-I) (Figure 6.2A). This level correspoRcls~to individual 

ingestion rates ranging from 165 to 1016 cells ind:1 h-I, equivalent to a daily intake of 

between 50 and 301 pg C ind- I d- I (x = 226 pg C ind-I d-I )(Figure 6.3A). During the second 

E. superba experiment, the clearance rates were higher, ranging between 121 and 162 rnl ind

I. h- I (x = 363 rnl ind:1 h-I) (Figure 6.2B), equivalent to an ingestion rate of between 405 and 

547 cells ind:1 h-I. This implies a daily consumption of between 120 and 162 pg C ind- l d-I 

(x = 149 pg C ind-I d-I) (Figure 6.3B). 

Clearance rates of Salpa thompsoni during the early summer experiment ranged from 210 to 

218 ml ind:1 h- I (Figure 6.2C), equivalent to an ingestion rate of between 510 and S74cells 

ind:1 h-I. This level translates into a daily ingestion rate of between 152 and 259 pg C 

ind:1 d- I (x = 173 pg C ind:1 d-I) (Figure 6.3C). The estimated grazing parameters during the 

second experiment were higher. On this occassion, the clearance rates of salps ranged between 

225 and 281 rnl ind:1 h-I (Figure 6.2D), or between 328 and 1035 cells ind:1 h-I. Daily carbon 

ingestion rates from the consumption of microzooplankton ranged between 98 and 356 pg C 

ind:1 d-I (x = 255 pg C ind-I d-I) (Figure 6.3D). 

Clearance rates for adult E. crystallorophias ranged between 119 and 246 rnl ind:1 h-I and 

between 76 and 150 ml ind:1 h-I during the first and second carnivory experiments, 

respectively (Figures 6.2E and 6.2F). These rates correspond to ingestion rates varying 

between 216 and 833 cells ind:1 h-I and between 105 and 805 cells ind:1 hoI, respectively. 

Daily estimates of carbon derived from the consumption of microzooplankton, ranged between 

124 and 247 pg C ind-I d- I ex = 173 pg C ind:1 d-I) during the first experiment, and between 

59 and 239 pg C ind:1 d- I (x = 143 pg C ind-I d-I) during the second experiment. 
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6.4 Discussion 

The substantial consumption of microzooplankton by copepods in the northern hemisphere 

(Tisleus, 1989; Gifford & Dagg, 1988; 1991;)geng, 1994) and in the Southern Ocean 

(Atkinson, 1994) is well documented. Feeding by larger macro zooplankton on 

micro zooplankton is, however, poorly understood (Hopkins & Torres, 1989; Hopkins et ai., 

1993). The results of our study show that microzooplankton represent an important source of 

carbo_n for the three dominant macro zooplankton species of the higher Antarctic throughout 

the austral summer. Antarctic microzooplankton can, therefore, be regarded as important 

trophic intermediates between bacterioplankton, small phytoplankton cells and the larger 

meso- and macro zooplankton. 

During the investigation period microplankton assemblages were dominated by chain forming 

diatoms and protozoans (Table 6.2). The dominance of typical ice associated 

microphytoplankton species such as Nitzschia and Chaetoceros (Heywood & Whitaker, 1984; 

Homer, 1985) suggests that the microphytoplankton community encountered during this study 

may have originated from ice melt. The numerical dominance of flagellates and ciliates in the 

microzooplankton community is consistent with the results of previous studies in the marginal 

ice zone (MIZ) (see review of Garrison, 1991). Our estimates of micro zooplankton biomass 

ranged between 24 and 34 pg C r l (Table 6.1), and are among the highest values recorded 

for the Southern Ocean (see review of Garrison, 1991). These elevated microzooplankton 

abundances are probably the result of increased phytoplankton biomass typically associated 

with the MIZ during summer (see review of Garrison, 1991). 

During our grazing studies, the clearance rates of Euphausia superba varied between 121 and 

401 ml ind.- I h- I (Figures 6.2A and 6.2B). These estimates are in the same range as those 

obtained by Price et ai. (1988). According to Price et ai. (1988), clearance rates of E.superba 

are strongly affected by the size of the container in which the organisms are incubated and 

the concentration of prey. Reductions in the filtration rates of E. superba feeding on 

Chaetoceros spp. have been documented (Schnack, 1985). During our investigation, 
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C haetoceros spp. were identified as being the dominant component of the microphytoplankton 

assemblages (Table 6.2). However, since E. superba is able to feed selectively (Schnack, 

1985), the filtration rates on microzooplankton can be considered to be realistic. 

The ingestion of carbon derived from micro zooplankton by E. superba during our study 

ranged between 50 and 301 pg C ind.- l d- l (Figures 6.3A and 6.3B). According to Holm

Hansen and Huntley (1984), the minimum carbon uptake (MCV) of E. ~ superba can be 

calculated from the equation: MCV (/lg C ind.-1 h-1
) = 0.452 WO'97S

, where W is the dry 

weight of an individual krill. Thus, with krill of average size 23 mm (mean dry weight 

13.6 mg), the MeV for krill during the study was estimated at 0.138 mg C ind- l d- l
. The 

ingestion data obtained in this study show that the amount of carbon derived from the 

consumption of microzooplankton may comprise between 107 and 185% of the MCV. The 

energy derived from the consumption of micro zooplankton is, therefore, sufficient to cover 

the minimum daily carbon requirements. 

Energy budgets for E. superba based on its feeding rates on phytoplankton only have 

concluded that ingestion rates are inadequate to meet daily metabolic requirements (Drits & 

Pasternak, 1993; Pakhomov et aI., in press). E. superba requires ::::: 5% of its total body 

carbon per day for maintenance, activity, growth and reproduction (Clarke & Morris, 1983). 
-

In our experiments, the carbon required to meet its daily metabolic requirements would have 

been 0.270 mg Cd-I. The ingestion rates (x = 0.214 mg Cd-I) derived from our grazing 

experiments show that carbon derived exclusively from the consumption of micro zooplankton 

accounts for 79% of the total daily carbon requirements of krill. This is, however, likely to 

be an overestimation since it is well documented that E. superba generally do not ingest 

diatoms of the genera Chaetoceros and Rhizosoienia (Maciejewska & Opalinski, 1993; 

Perissinotto et ai., in press). These were the dominant microphytoplankton species during our 

study. Thus, E. superba may have fed selectively on the microzooplankton in the presence 

of these diatom species. Also a substantial consumption of heterotrophic carbon by 

macrozooplankton may account for the discrepancy between ingestion and egestion rates 

recorded in the Antarctic krill (Drits & Pasternak, 1993; Pakhomov et ai., in press). Clearly, 
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the extent of carnivory of macrozooplankton has important implications for the use of the gut 

fluorescent method for the estimation of daily rations. 

The clearance rates of Satpa thompsoni (1-2cm total length) ranged between 210 and 285 ml. 

indo h-' (Figures 6.2C and 6.2D). These rates are in the same range as those of Reinke (1987) 

and Huntley et al. (1989). However, the rates are generally lower than tunicates of similar 

size cited in the literature (see Huntley et at., 1989). Reductions in salp cleru-;nce rates may 

result-from bottling effects or the inability of salps to regulate their feeding rates. A recent 

study showed that the feeding efficiency of salps decreased at chlorophyll concentrations 

> 1 pg r' (Perissinotto & Pakhomov, submitted). It is worth noting that a similar study 

conducted in the Southern Ocean measured filtration rates for S. thompsoni, of between 410 

and 600 ml ind.-' h-' in regions where the chlorophyll concentrations were < 0.6 pg r1 (Drits 

& Semenova, 1989). Using an in situ technique, Perissinotto & Pakhomov (submitted) 

obtained rates averaging 430 ml. h-1 for salps in the size range 1-5 cm length. 

During grazing experiments, the ingestion rates of S. thompsoni ranged from 98 to 255 pg 

C. ind-1.d-1 (Figures 6.3C and 6.30). The MCV of this salp species can be estimated by 

assuming that individuals require::::: 2.57% (mean value) of dry body weigh carbon per day 

(Ikeda & Bruce, 1986). Salps of 1 cm length with a dry body weight of 2.3 mg would require 

::::: 59 pg Cd-I. The carbon derived from the consumption of microzooplankton thus contrib~tes 

between 166 and 432% of the daily Mev. Although these values are far in excess of 

minimum carbon requirements, the MeV value does not take into account the high energy 

demands of salps associated with their rapid growth and reproduction rates (Fortier et at., 

1994). Also, faecal pellets produced by salps have a high (up to 37%) carbon content (Fortier 

et at., 1994). A similar study conducted using the gut fluorescent technique measured 

consumption rates> 3.6 mg C ind.-' d-', which is more than 400 times the MeV value for 

salps (Perissinotto & Pakhomov, submitted). 

The estimated total daily carbon requirements for salps range between 17 and 25% of body 

carbon (Huntley et at., 1989; Drits & Pasternak, 1993). Assuming a mean value of 21 %, the 
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daily carbon requirements of S. thompsoni during the experiments would have been::::: 0.483 

mg Cd-I. Thus, with the daily ingestion rates ranging from 98 to 255 pg C d-1
, carbon derived 

from the consumption of rnicrozooplankton cOl'!d contribute between 20 and 53% of the total 

daily ration. It is well established that animal preY,are assimilated more efficiently than plant 

prey (Gifford & Dagg, 1991). Thus, by consuming microzooplankton rather than algal cells, 

salps may gain energetic advantages. 

The _amount of carbon derived from the consumption of micro zooplankton ill E. 

crystallorophias ranged between 142 and 173 pg C. ind.- 1 d-1 (Figures 6.3E and 6.3F). 

Generally, the Antarctic neritic krill require::::: 1.72% (mean value) of its carbon body weight 

to meet its minimum energy demands (Ikeda & Bruce, 1986). Assuming a carbon content 

of 45% dry weight (Ikeda & Bruce, 1986), the MCV for adult E. crystallorophias, ::::: 30 mm 

long (dry weight 30 mg) used in our experiments, was equal to 0.232 mg Cd-I. Carbon 

derived from the consumption of micro zooplankton by the Antarctic neritic krill would 

therefore contribute between 61 and 75% of the daily MCV. 

On the assumption that adult E. crystallorophias also require::::: 5% of their total body carbon 

daily, the minimum amount of carbon required to meet all the metabolic costs associated with 

growth and reproduction can be estimated as described above. Thus, the carbon requirements 

of an adult E. crystallorophias of 30 mm length (dry weight 30 mg) is estimated at::::: 0.6' mg 

Cd-I. The mean daily C derived from the ingestion of microzooplankton during our study was 

0.152 mg C ind.-1 d-1 which accounts for only 25% of the total daily carbon requirements of 

E. crystallorophias adults. This suggests that consumption of phytoplankton food must have 

represented the main carbon source for E. crystallorophias during the study period or that 

they were losing weight. 

Recent observations suggest that small nano- and picophytoplankton cells dominate the total 

chlorophyll biomass of the Southern Ocean in winter (Garrison et al., 1993; Kivi & Kuosa, 

1994). This suggests that the grazing impact of macrozooplankton on micro zooplankton may 

vary seasonally. Shifts in the diet of many macrozooplankton groups have been recorded in 

139 



the absence of microphytoplankton (Landry, 1981). Thus, carnivory by macro zooplankton can 

be expected to increase dramatically in the absence of the microphytoplankton size fraction. 

Indeed, a recent study conducted in the Weddell Sea during winter has shown that 

phytoplankton may accounted for only 2-5% of. daily carbon requirements of cope pods 

(Bathmann et al., 1993). Detritus and protozooplankton have been suggested as the major 

contributors to daily carbon requirements. Also, a recent study conducted in the region of the 

Antarctic Peninsula in mid-winter has concluded that carnivory by zooplimkton is the 

dominant trophic mode of the pelagic community during this season (Huntley & Nordhausen, 

1995). Winter is also the period when the micro zooplankton appear to represent the main sink 

for phytoplankton production (Garrison et al., 1993; Lutjeharms et ai., 1994). The 

consumption of micro zooplankton by meso- and macrozooplankton may then represent an 

important source of carbon flux and provide a mechanism capable of increasing the efficiency 

of the biological pump. 

The results of this investigation indicate that Antarctic micro zooplankton represent a 

significant source of carbon for macrozooplankton and can thus be regarded as important 

trophic intermediates between bacerioplankton, small phytoplankton cells and the larger 

metazoan grazers. Future studies should focus on the seasonal variations in macro zooplankton 

feeding in order to obtain a more accurate estimate of the fate of micro zooplankton and their 

role in carbon flux. 
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CHAPTER 7 

THE ROLE OF MICROZOOPLANKTON IN THE DIET AND DAILY RATION OF 

SELECTED ANTARCTIC COPEPODS DURING AUSTRAL SUMMER. 

Abstract 

Predation of the dominant Antarctic copepod species Calanus propinquus, Calanoides acutus, 

Rhincalanus gigas and Metridia gerlachei on microzooplankton was estimated using in vitro 

incubations during the fourth South African Antarctic Marine Ecosystem study (SAAMES IV) 

cruise to the region of the ice edge in the Lazarev Sea during austral summer (Dec./Jan.) 

1994- '95. Initial chlorophyll-a concentrations used in the incubations ranged between 0.19 and 

0.93 pg r1 and were dominated by ice associated chain-forming microphytoplankton species 

of the genera Chaetoceros and Nitzschia and large diatoms such as Corethron criophilum and 

Rhizosolenia indica. The microzooplankton were entirely dominated by protozoans comprising 

dinoflagellates (Amphisolenia, Goniaulax, ProiOperidinium sp.) and naked ciliates. Densities 

of protozoans ranged between 1375 and 2125 cells 1-1
• Carbon derived from the consumption 

of micro zooplankton was highest for Metridia gerlachei (x "" 9 pg C ind.-1 d-1
) and lowest for 

Rhincalanus gigas (X "" 2 pg C ind.-1 d-1
). The mean carbon ingested by Calanoides acutus 

and Calanus propinquus was"" 6 and 5 pg C ind.-1 d-1 respectively. Daily rations for R:gigas 

were only 2% body carbon. This low value contrasts with those obtained for the smaller 

copepods, Metridia gerlachei, Calanoides acutus and Calanus propinquus where daily rations 

were 9.1, 4.9 and 5.5% body C, respectively. Based on the minimum carbon uptake (MCV) 

of the four species examined, carbon derived from micro zooplankton contributed> 120% of 

the MCV. The ingestion rates of the copepod species feeding on micro zooplankton were 

highest for Metridia gerlachei, Calanoides acutus and Calanus propinquus, suggesting that 

the smaller copepod species used in this investigation feed more efficiently on 

microzooplankton than Rhincalanus gigas. Copepods are important consumers of 

microzooplankton and may, therefore, playa major role in reducing the grazing impact of 

microzooplankton on the local phytoplankton stock. 
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7.1 Introduction 

The role of micro zooplankton as trophic intennediates between bacterioplankton, small 

phytoplankton cells and larger zooplankton is well documented for the northern hemisphere 

(Stoecker & Capuzzo, 1990; Jonsson & Tiselius, 1992; Pierce & Turner, 1992). In particular, 

extensive investigations have been carried out on the role of microzooplankton in the natural 

diets of calanoid copepods (Gifford & Dagg, 1988; 1991; Jonsson & TisdiuS; 1992; Pierce 

& Turner, 1992; Fessenden & Cowles, 1994; Jeong, 1994). The results of these studies have 

shown that microzooplankton are quantitatively important in meeting the daily dietary 

requirements of copepods. For example, the copepod Acartia tansa may obtain up to 58% of 

its total carbon requirements from the ingestion of protozoan prey (Gifford & Dagg, 1989; 

1991). 

Microzooplankton are a ubiquitous component of the plankton assemblages in the Southern 

Ocean (Garrison, 1991; Garrison et al., 1993) and are now recognised as major consumers 

of phytoplankton production (Froneman & Perissinotto, in press). The close coupling between 

the microbial loop and micro zooplankton suggests that little carbon is available for export to 

depth in regions where microzooplankton are the major grazers (Longhurst, 1991). Grazing 

by zooplankton on micro zooplankton may, however, represent an important source of carbon 

that can potentially be transferred from the microbial loop to the long-living pool. 

Copepods and euphausiids are the two most important components of the zooplankton 

standing stock of the Southern Ocean (Schnack-Schiel & Mujica, 1994). Since copepods 

often dominate zooplankton biomass and have a higher production: biomass ratio than larger 

zooplankton, they account for the bulk of the zooplankton production in the high Antarctic 

(Boysen- Ennen et al., 1991 cited in Schnack-Schiel & Mujica, 1994; Voronina et al., 1994). 

Thus, copepods may make a proportionately higher contribution to carbon cycling in.the high 

Antarctic than the larger macrozooplankton, especially in regions where the Antarctic krill, 

Euphausia superba, is scarce. 

The role of copepods in carbon cycling in the Southern Ocean is well documented (Conover 

& Huntley, 1992). The grazing impact of copepods on phytoplankton has been estimated 
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using in vitro (Schnack, 1983; Schnack et al., 1985) and in situ (Atkinson, 1992; Lopez & 

Huntley, 1995) techniques. The contribution of microzooplankton to the natural diets of 

copepods has, however, not been investigated adequately. Preliminary studies based on gut 

content analysis, have provided some evidence of the importance of micro zooplankton in the 

natural diets of all the dominant copepod species in the Southern Ocean (Hopkins & Torres, 

1989; Hopkins et aI., 1993). These results do not, however, provide estimates of daily ration 

or ingestion rates. Also, due to the fragility of these microzooplankton, it is widely accepted 

that t~ey are grossly underestimated in studies of gut content analysis (Tanoue & Hara, 1986). 

A recent in vitro grazing study, conducted by Atkinson (1994), has shown that the 

consumption of dinoflagellates, ciliates and cryptomonads by the dominant copepods in the 

shelf region of South Georgia contributes a median of 43% of their total carbon uptake. 

Furthermore, this study has suggested that larger copepods consume microzooplankton at rates 

equivalent to those observed using diatoms of similar size (Atkinson, 1994; Atkinson & 

Shreeve, in press). Small copepods, however, feed selectively on motile taxa such as 

protozoans (Atkinson, 1994; 1995). This may have important implications for the efficiency 

of the biological pump in the high Antarctic. 

The main aim of this study was to examine the role of microzooplankton in the diet and daily 

rations of the four dominant Antarctic copepod species in the ice-edge zone of the Lazarev 

Sea during austral summer. 

7.2 Materials and methods 

Carnivory experiments with the dominant copepods species were conducted during the fourth 

South African Antarctic Marine Ecosystem Study (SAAMES IV) cruise in the region of the 

ice edge zone of the Lazarev Sea during austral summer (Dec./Jan.) 1994-'95 (Figure 7.1). 

The consumption of micro zooplankton by the four dominant copepod species Calanus 

propinquus, Calanoides acutus, Rhincalanus gigas and Metridia gerlachei were estimated by 

employing the methods of Gifford & Dagg (1988; 1991) and Gifford (1993). 
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Location of the study area with inset showing the position of the stations 

where carnivory experiments were conducted during the SAAMES IV cruise 

to the ice-edge zone of the Lazarev Sea in austral summer (Oec./Jan.) 1995. 

Station 1 = Calanoides acutus; 2 = Rhincalanus gigas; 3 = Metridia gerlachei; 

4 = Calanus propinquus. 
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Copepods were collected during net tows (500 pm Bongo net) and acclimated for 24 h in 

20 1 polyethylene carboys containing natural sea water under ambient conditions on deck. 

Prior to the onset of the feeding experiments, 6 replicate samples were prepared in 2 I 

polyethylene bottles filled with natural sea water <avd allowed to stand for 2 h. According to 

Gifford (1993), this time period is sufficient for the stabilisation of the plankton assemblages 

in the containers. 

For e_ach experiment, 2 replicate samples containing only natural seawater were used as 

controls. For the experimental treatments, 4-5 replicate samples each containing 4-5 copepods 

were used. To prevent the settlement of plankton in the containers, the water in each bottle 

was gently stirred at 4 hour intervals. At the beginning of the experiments, a 250 ml water 

sample was taken for chlorophyll-a analysis. Another 100 ml water sample was taken for the 

determination of micro zooplankton species composition and abundance. This procedure was 

repeated at the end of each experiment to estimate the final concentrations of chlorophyll-a 

and micro zooplankton densities and composition. Chlorophyll-a and phaeopigments 

concentrations were determined fluorometrically after extraction in 100% methanol for 12 h 

(Holm-Hansen & Riemann, 1978). 

The micro zooplankton samples were fixed with 10% Lugols solution (Leakey et ai., 1994). 

For each sample, three 10 ml subsamples, representing 30% of the total sample, were counted. 

The micro zooplankton species composition and densities in each container were- then 

estimated using the Utermohl settling technique, after sedimentation in a 10 ml settling 

chamber. A Nikkon TMS inverted microscope operated at X400 magnification was used for 

this analysis. A minimum of 100 fields or 500 cells were counted for each sample. The total 

carbon in the microzooplankton fraction was then estimated by calculating the mean 

biovolume of 50 ciliates and 50 dinoflagellates for each experiment (Boltovskoy et ai., 1989). 

The carbon biomass was estimated by assuming that 1pm3 = 0.19 pg C (Sime-Ngando et ai., 

1992). Cope pods used in the experiments were preserved in buffered formalin at the end of 

the incubation period. The dry weight of each specimen was then determined by oven-drying 

at 60°C for 36h. 
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The grazing impact of macrozooplankton on microzooplankton was estimated using the 

following equations: 

a) growth coefficient (k) of the microzooplankton: . 

where Co and C1 are the prey concentrations in the control at time zero (to) and at the end 

of the- experiment (t1). 

b) grazing coefficient (g) of mesozooplankton: 

c) the mean prey concentration <C> was derived from: 

d) the clearance rate (F) was calculated using the following equation: 

F = VgIN 

where V is the volume of the incubation chamber; g is the grazmg coefficient of the 

copepods; and N the number of meso zooplankton per experimental container. 

Finally, the ingestion rate of mesozooplankton was derived from: 

1= F <C> 
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7.3 Results 

Microplankton community 

A summary of the initial experimental conditions for the copepods grazing experiments is 

presented in Table 7.1. During the incubations, mean chlorophyll-a concentrations ranged 

between 0.187 and 0.931 pg 1-1. Size fractionated studies indicated that microphytoplankton 

dominated total chlorophyll, contributing between 54 and 70% of the total. Amongst the 

microphytoplankton, chain-forming species of the genera Chaetoceros and Nitzschia 

numerically dominated the cell counts. Also well represented were large diatoms such as 

Corethron criophilum, Rhizosolenia indica and the silico-flagellate, Distephanus speculum. 

The single most abundant diatom species during the investigation was Chaetoceros dichaeta 

which comprised up to 40% of all cells counted. The concentration of the < 20 pm 

chlorophyll fraction was always < 0.08 pg r l and was dominated by unidentified 

nanoflagellates. 

Table 7.1 Summary of the experimental conditions of the copepod feeding experiments 

in the ice-edge region of the Lazarev Sea during austral summer (DecJJan.) 

1994/95. 

Species Initial chl-a Protozooplankton mean prey volume 
(J.1g 1-1) (cells r1) (x 1(y J.1m3

) _ 

Rhincalanus gigas 0.907 (± 0.103) 1375 (± 250) 3.71 

Metridia gerlachei 0.931 (± 0.080) 1750 (± 125) 3.81 

Calanoides acutus 0.187 (± 0.030) 1875 (± 375) 2.71 

Calanus propinquus 0.215 (± 0.035) 2125 (± 250) 3.97 

The microzooplankton fraction was entirely dominated by protozoans, with densities ranging 

from 1375 to 2125 cells 1-1 (Table 7.1). Among these, aloricate forms numerically dominated 

with densities ranging from 750 to 1375 cells rl. Tintinnid abundances were always < 100 

cells rl. Dinoflagellates were the second most abundant group with densities ranging between 
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625 and 750 cells rl. Protoperidinium, Amphisolenia and Gonyaulax species were identified 

as the main components of this group. Abundances of the larger protozoans such as 

acantharians and foraminiferans were always < 25 cells r l throughout the study. 

Feeding experiments 

The rate estimates for all carnivory experiments conducted are shown in Table 7.2. Although 

the ingestion rates varied between treatments, t-tests showed that they were~oot significantly 

different (P > 0.05). 

The clearance rates of Rhincalanus gigas during the incubations ranged between 4.1 and 24.3 

ml ind:1 h- I
, corresponding to ingestion rates of between 54 and 170 micro zooplankton cells 

d-1 (Table 7.2). This is equivalent to a carbon-specific ingestion rate of between 3.8 and 11.9 

pg C ind.-1 d-1 (x = 8.5 ± 3.1 pg C ind.-1 d-1
) which corresponds to a daily carbon ration of 

between 0.8 and 2.8% body carbon (x = 2.0% ± 0.7) (Table 7.2). The feeding rates of 

Metridia gerlachei on microzooplankton were amongst the highest recorded during the 

investigation. Indeed, analysis of variance indicates that the daily ration of M. gerlachei was 

significantly higher that those of the three other copepod species (F = 12.4; P < 0.05). The 

clearance rates of M_ gerlachei ranged from 43 to 8.9 ml ind.-1 h-1
, equivalent to a daily 

ingestion rate of between 125 and 270 micro zooplankton cells ind.-1 (Table 7.2). The daily 

carbon specific ingestion rate ranged betwen 9.0 and 14.8 pg C. ind.-1 (X = 13.6 ± 4.4 pg C. 

ind.-1 d- 1
), corresponding to a daily ration of between 5.7 and 13_6% body carbon (x =-9.1 % 

± 3.4; Table 7.2). 

The clearance rates of Calanoides acutus varied between 4.3 and 8.8 rnl ind-1
• h-1 which 

corresponds to an ingestion rate of between 110 and 170 micro zooplankton cells ind.-1 d-1 

(Table 7.2). This is equivaleny to a carbon-specific ingestion rate of between 4.5 and 7.0 pg 

C d- 1 (x = 6.2 ± 1.4 pg Cd-I), or between 3_9 and 5.7% body carbon d-1 (x = 4.9% ± 

0.9)(Table 7.2). The clearance rates of Calanus propinquus during the incubations ranged 

from 5.6 to 10.1 ml ind.- I h- 1 which corresponds to an ingestion rate of between 131 and 156 

micro zooplankton cells ind.-1 d-1
• These ingestion rates are equivalent to a carbon specific 

ingestion rate of 9.8 to 11.7 pg C ind.-1 d-1 (x = 10.1 ± 1.3 pg C ind.-1 d-1
) which correspond 

to a daily ration of 4.2 to 6.4% body carbon (Table 7.2)_ 
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Table 7.2 

Species 

Rhinca/anus gigas 

Metridia ger/achei 

Ca/anoides aculus 

Ca/anus propiru[uus 

Summary of grazing results of micro zooplankton feeding studies of selected 

copepod species conducted at the ice-edge zone of the Lazarev Sea during 

austral summer (Dec./Jan.) 1994/95. Values are means for the 4-5 individuals 

used in each experiment. F = Cle<~ance rate; I = Ingestion rate; C = carbon 

specific ingestion rate. 

Dry wt. e d.wt. F e Ration 

(pg) (pg) (ml ind:1 h-I) (cells ind.-I d-I) (pg ind.-I d-I) % bodye 

1097 480 24.3 149 10.5 2.2 

847 371 14.0 116 8.2 2.2 

975 427 10.6 170 11.9 2.8 

901 395 8.0 117 8.2 2.1 

1112 487 4.1 54 3.8 0.8 

347 157 8.5 125 9.0 5.7 

316 143 4.3 270 19.5 13.6 

345 156 8.9 205 14.9 9.5 

338 153 5.1 157 11.4 7.4 

295 136 6.8 156 8.1 5.9 

259 113 7.8 143 4.5 3.9 

272 126 8.8 170 5.8 4.6 

281 130 4.3 110 5.7 4.4 

265 122 6.9 135 7.0 5.7- -

447 195 8.1 131 9.8 5.0 

390 170 7.3 140 10.5 6.2 

429 187 6.9 137 10.3 5.5 

422 184 10.1 156 11.7 6.4 

451 197 5.6 110 8.2 4.2 

154 



--
The ingestion rates of the copepods feeding on microzooplankton, expressed as daily ration 

plotted against mean body dry mass (see Atkinson, 1994), were highest for the smaller 

copepods, C. propinquus, C. acutus and M. gerlachei which were represented by the IV-V 

copepodite stages during the period of the investigation (Figure 7.2). 

7.4 Discussion 

Microzooplankton are recognised as major consumers of phytoplankton production in the 

Southern Ocean (Garrison et al., 1993; Froneman & Perissinotto, in press). During this study, 

all four species of copepods consumed large amounts of microzooplankton in the presence 

of substantial chlorophyll concentrations (Table 7.2). These results are consistent with those 

obtained in similar studies conducted in different regions of the Southern Ocean (Conover & 

Huntley, 1991; Atkinson, 1994; 1995) and provide further support to the growing consensus 

that micro zooplankton represent an important trophic intermediate between bacterioplankton, 

small phytoplankton cells and metazoan grazers. Predation by copepods, as a consequence, 

reduces the high grazing impact that rnicrozooplankton generally exert on the phytoplankton 

stock. 

During this investigation, the average daily ration of carbon derived from the consumption 

of micro zooplankton was highest for Metridia gerlachei (z 9% body C) and Calanus 

propinquus (z 6% body C.) (Table 7.2). Indeed, during this study, the mass specific inge_stion 

rates of copepods feeding on micro zooplankton were highest for these two species (Figure 

7.2). These results are consistent with those obtained in similar studies of copepod grazing 

in the Southern Ocean (see review of Conover & Huntley, 1991). According to Atkinson 

(1995), both M. gerlachei and C. propinquus show a strong preference for motile taxa, 

suggesting that they may feed selectively on microzooplankton. Recent studies have also 

shown that maximum clearance rates of M. gerlachei and C. propinquus appear to be on 

particles < 200 pm in length (Atkinson, 1994). This is below the average size of the large 

chain-forming diatom species (Chaetoceros dichaeta) recorded during our investigation. By 

selectively consuming microzooplankton, copepods may gain two major advantages. 
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Figure 7.2 Ingestion rates (expressed as daily ration) in relation to body mass. Each data 

point is a mean value for one experiment involving 4-5 copepods. • = 

Metridia ger/achei; 6. = Rhinca/anus gigas; 0 = Ca/anus prapinquus; 0 = 

Ca/anaides acutus. 
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Firstly, protozoans represent a more nutritious food source than diatoms (Stoecker & Capuzzo, 

1990) and by feeding on smaller prey, copepods may substantially reduce their competition 

with larger zooplankton species. The implication is that copepods may be the most important 

grazers of protozoans in the Southern Ocean. 

The daily rations of Rhincalanus gigas were the lowest recorded during this investigation 

(Table 7.2). Indeed, analysis of variance indicated that daily rations for this~ species were 

significantly different from the other three copepods (F = 12.83; P < 0.001). There is some 

evidence in the literature showing that R. gigas exhibits low feeding and respiration rates and 

has low growth efficiencies when incubated in vitro (Conover & Huntley, 1991; Atkinson 

et al., 1992; Drits & Pasternak, 1995). The low daily rations obtained during this study 

probably reflects the low in vitro feeding rates of R.gigas reported in the literature (Conover 

& Huntley, 1991; Atkinson et al., 1992; Drits & Pasternak, 1993). 

Carbon derived from the consumption of micro zooplankton by the four copepod species 

ranged between 0.8 and 19.5 pg C ind: l d· l (Table 7.2). The minimum carbon uptake (MCV) 

of the copepods can be estimated from the daily respiration rates available in the literature 

(Schnack 1985), assuming that 1 ml O2 = 4.86 Cal and 10 Cal = 1 mg C (Vinogradov & 

Shushkina, 1987). The MCV values for the four species are shown in Table 7.3. From these 

data, it is evident that carbon derived from the consumption of micro zooplankton contributes 

> 120% of the MCV for all species. These results indicate that all four species can meet. their 

basic metabolic requirements by feeding on microzooplankton alone. 

Table 7.3 Daily carbon ingestion rates, expressed as % minimum carbon uptake (MCV), 

of selected copepods used in feeding experiments conducted within the ice

edge zone of the Lazarev Sea during austral summer (Dec./Jan.) 1994/95. 

Species MCV (% body C dry wt. d· l
) % MCV d· l 

Rhincalanus gigas 1.65 122 

Metridia gerlachei 1.14 721 

Calanoides acutus 3.95 155 

Calanus propinquus 2.96 185 
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The contribution of micro zooplankton to the total carbon ration of the four copepod species 

used in this investigation was estimated from the average daily rations reported in Conover 

& Huntley (1991). The daily carbon rations obtained from the consumption of 

microzooplankton for Calanoides acutus and Rhincalanus gigas were ::::: 17%, while for 

Calanus propinquus and Metridia gerlachei the rations were 19 and 24%, respectively. From 

these results, it is clear that the low daily rations of R. gigas reflect the normally low 

metabolic characteristics of this species (Conover & Huntley, 1991). It is worth noting that 
~- ~ 

our estimates of daily rations calculated by employing the average daily rations of Conover 

& Huntley (1991) compare well with results obtained in a recent study conducted by Atkinson 

(1994). In his study protozoans contributed on average 43% of the total daily carbon intake. 

It is obvious that during the summer 1994/'95 microzooplankton represented an important 

source of carbon for all four species of copepods studied (Table 7.2). It should be noted, 

however, that the estimates do not provide accurate data on the contribution of heterotrophic 

carbon to total daily intake since some of the taxa represented in the protozoan assemblages 

were autotrophic. Daily rations derived from the consumption of protozoans have been 

probably severly underestimated since the contribution of the < 20 pm (nanoplarikton) 

component was not considered during this investigation. Furthermore, the estimates of carbon 

ingestion were derived from the biovolume of micro zooplankton cells fixed with Lugols 

solution. Recent studies have shown that cell shrinkage in samples fixed with Lugol' s solution 

may be as high as 44% (Leakey et ai., 1994). Thus, the estimates of daily rations of cop~pods 

feeding on microzooplankton can be considered as conservative values. 

Seasonal grazing rates of copepods feeding on microzooplankton are poorly documented (see 

review of Conover & Huntley, 1991). The results of this study show that rnicrozooplankton 

represent an important carbon source for copepods. Recent studies conducted during winter 

in the Weddell Sea have shown that energy derived from the consumption of phytoplankton 

alone cannot meet the daily metabolic requirements of copepods (Bathmann et ai., 1993; Drits 

et ai., 1994). Alternative sources of food have been suggested to meet copepods energetic 

demands, including detritus and protozoans (Bathmann et at., 1993). A carnivorous feeding 

mode in copepods has been suggested as a possible mechanism allowing them to remain 

active during winter when chlorophyll concentrations are low (Atkinson, 1994). Indeed, 
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another recent study conducted in the vicinity of the Antarctic Peninsula has shown that 

carnivory by zooplankton represents the dominant trophic mode during winter (Huntley & 

Nordhausen, 1995). Alternatively, copepods may utilise their lipid and protein supplies to 

overwinter (Hagen et al., 1993). Microzooplankt9~ appear to represent an important carbon 

source for copepods in both summer and winter. The ability of copepods to consume both 

autotrophic and heterotrophic prey is mirrored by that of eupausiids (chapter 6) and may be 

a necessary adaption to the Antarctic seasonality and patchiness of food distribution 

(Atkinson, 1994). During winter, in the absence of microphytoplankton (Garrison et aI., 1993), 

the predation impact of copepods on microzooplankton can be expected to increase. During 

this time, copepod consumption of micro zooplankton may promote trophic cascading down 

to bacteria. For example, the removal of microzooplankton may allow abundances of small 

phytoplankton cells and bacteria to increase, thus promoting a shift in the size spectrum of 

the plankton community. These shifts may have important consequences for the biological 

pump. Copepods can therefore be regarded as the most important consumers of the microbial 

community and as such may reduce dramatically the high impact of micro zooplankton grazing 

during winter (Garrison et al., 1993; Froneman & Perissinotto, in press). 
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CHAPTER 8 

FINAL DISCUSSION 

Models of the Antarctic food web have traditionally considered large zooplankton species such 

as krill and copepods to be the most important grazers of phytoplankton in the Southern Ocean 

(Clarke, 1985; Hempel, 1985). Recently it has been realised that the microbial loop, characterised 

by micro zooplankton and bacterioplankton, represents an important component of pelagic systems 

in general (Goldman, 1988; Laurion et ai., 1995). The importance of the microbial loop in carbon 

cycling in the Southern Ocean is, however, not clear (Garrison, 1991; Marchant & Murphy, 

1994). The results of this study show that microzooplankton represent a key component of the 

pelagic system in the Southern Ocean, both as grazers of phytoplankton and as trophic 

intermediates between bacterioplankton, small phytoplankton cells and larger zooplankton. 

The Southern Ocean is not as ecologically uniform as implied by the general term (Deacon, 1982; 

Froneman et ai., 1995a; 1995b). South of the Antarctic Polar Front (APF), three oceanic zones 

are generally identified (Hempel, 1985; Moloney & Ryan, 1995). These are the permanently open 

ocean zone, the seasonal ice zone and the coastal shelf zone. During spring, the phytoplankton 

assemblages of the latter two zones are dominated by larger microphytoplankton cells (Rempel, 

1985; Moloney & Ryan, 1995). The high contribution of microphytoplankton to total chlorophyll 

in these regions is coupled to the seasonal ice melt and the subsequent release of epontic cells 

into the water column (Horner, 1985). In the permanently open ocean zone and the region north 

of the APF, small nano- and picophytoplankton cells dominate total chlorophyll most of the time 

(Weber & EI-Sayed, 1988; Jacques, 1989; Laubscher et al., 1993; Froneman et ai., 1995a; 

1995b). The results of the microzooplankton grazing studies reported here suggest that 

microzooplankton represent the most important grazers in regions where the < 20 pm chlorophyll 

fraction dominate (Chapters 4 and 5). Indeed, during this investigation the grazing impact of 
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microzooplankton was significantly correlated to the contribution of the < 20 pm fraction to total 

chlorophyll. In areas dominated by microphytoplankton, microzooplankton grazing appears to 

control the concentrations of nano- and picophytoplankton (Chapter 5). These results point to a 

spatial variation in the grazing impact of micr~z?'oplankton mediated by changes in the size 

composition of phytoplankton. Evidence of this is provided by the results of the first summer 

investigation, when the mean grazing impact of microzooplankton in the permanently open waters 

was higher than the grazing impact observed in the MIZ (Chapter 2). _It .should be noted, 

however, that nanophytoplankton blooms may be associated with the retreating sea ice (Lancelot 

et al., 1993). In these areas, micro zooplankton can be reagrded as the most important grazers of 

phytoplankton (Lancelot et al., 1993). 

Temporal variations in the role of microzooplankton in carbon cycling in the Southern Ocean 

may be regulated by seasonal shifts in the size composition of phytoplankton, which are well 

documented (Garrison et al., 1993; Lutjeharms et al., 1994; Froneman & Perissinotto, in press 

b). Large microphytoplankton cells dominate the phytoplankton assemblages at oceanic fronts 

(Laubscher et al., 1993; Froneman et ai., 1995a; 1995b) and in the waters south of the Antarctic 

Polar Front (APF) in early spring (Froneman et aI., 1995a; 1995b; Savidge et al., 1995). During 

late austral summer and winter, however, small nano- and picophytoplankton cells dominate the 

total phytoplankton (Weber & El-Sayed, 1987; Hewes et al., 1985; Garrison et al., 1993; Kivi 

& Kuosa, 1994; Leakey et al., 1994). The results of this investigation (Chapter 3) and that of 

Garrison et al. (1993) suggest that in regions where the < 20 pm chlorophyll fractions dominate, 

micro zooplankton represent the most important grazers. These data suggest that, with the 

exception of the spring diatom blooms associated with the retreating ice, and blooms found at 

oceanic fronts, the microbial loop represents the major sink for phytoplankton production. These 

results are in agreement with the proposal of Azam et al. (1991) that the microbial loop in 

Antarctic waters is especially important during winter. 

In chapters 6 and 7 it was shown that all the mam components of the macro- and 

mesozooplankton assemblages in the Southern Ocean consume microzooplankton. In particular, 
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copepods, which can dominate zooplankton biomass in regions where krill are scarce (Voronina 

et al., 1995), were observed to feed selectively on microzooplankton. Copepods may, therefore, 

reduce the high grazing impact of microzooplankton on phytoplankton. Although the results of 

this investigation show that copepods are importaI]t .grazers of microzooplankton, they contribute 

little to vertical carbon flux since many produce small buoyant faecal strings and often consume 

their own faecal pellets (Fortier et al., 1994). Larger zooplankton, e.g. euphausiids and salps, 

feeding on micro zooplankton are more efficient in the transfer of carbon from the microbial loop 

to depth and thus represent an important leak in the microbial loop (Fortier et aI., 1994). It 
-

should be noted, however, that long food chains are less efficient in the transfer of carbon to 

depth than short food chains (pomeroy & Wiebe, 1988; Moloney & Ryan, 1995). Consequently, 

the transfer of organic carbon from the surface waters to depth via the microbial loop, is 

considered inefficient. A further possible effect of copepod grazing on rnicrozooplankton may be 

trophic cascading (Wickham, 1995). Microzooplankton are the dominant bacterivores in the 

pelagic system. By selectively grazing microzooplankton, copepods may promote shifts in the 

size composition of the plankton communities. This may have important implications for the 

subsequent energy transfer and the biological pump. 

The seasonal shift in the size composition of the phytoplankton assemblages may promote 

increased camivory by zooplankton on rnicrozooplankton. Recent studies have shown that 

metazoan grazers may switch from herbivory to camivory during winter when 

microphytoplankton cells become scarce (Huntley & Nordhausen, 1995). Since copepods and 

euphausiids are unable to feed efficiently on cells of < 5 pm (Conover & Huntley, 1991; Fortier 

et al., 1994), micro zooplankton appear to represent the most important food for zooplankton 

during winter when small cells dominate (Kivi & Kuosa, 1994; Bathmann et al., 1993). Indeed, 

recent studies conducted in the vicinity of the Antarctic Peninsula concluded that carnivory by 

zooplankton represents the dominant trophic mode throughout the austral autumn and winter 

(Huntley & Nordhausen, 1995). 
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The results of this investigation suggest a strong temporal/seasonal shift in the components and 

dynamics of the Antarctic ecosystem. This shift appears to reflect changes in the size composition 

in phytoplankton which facilitates the subsequent partitioning of phytogenic carbon between the 

various size classes of zooplankton. Sea ice appe¥~ to be of particular importance in structuring 

the Antarctic food web and enhancing ecological variability (Eicken, 1992). A short food web 

dominated by larger zooplankton appears to exist only during the seasonal retreat of the pack ice, 

in the waters surrounding oceanic islands and in the vicinity of the oceanif_ fronts where large 

microphytoplankton dominate total chlorophyll (El-Sayed, 1988; Jacques, 1989). The key role of 

the Antarctic krill, Euphausia superba, in the grazing dynamics and carbon flux of the Southern 

Ocean appears to be restricted to early summer, in the region south of the APF and in areas 

generally dominated by elevated microphytoplankton concentrations such as the waters 

surrounding oceanic islands and at the major oceanic fronts (EI-Sayed, 1988; Jacques, 1989; 

Laubscher et at., 1993; Froneman et at., 1995a; 1995b). 

In the permanently open waters, during early austral summer and winter, the microbial loop 

represents the main sink for phytoplankton production (Garrison et at., 1993; Froneman & 

Perissinotto, in press a; b). Predation by larger zooplankton on micro zooplankton appears to 

represent an important trophic pathway in these areas. This is probably related to the inability 

of large zooplankton to feed efficiently on small phytoplankton cells (Fortier et aI., 1994). 

Indeed, predation on protozoa is expected to be particularly important in marine environments 

dominated by cells < 5 pm in size (Stoecker & Capuzzo, 1990). Grazing by krill andcopepods 

on ice algae during winter may result in carbon being transported to depth. However, recent 

studies conducted under pack ice have shown that POC flux in winter (::::: 10 mg C m-2
• d-1

) is 

more than an order of magnitude lower than during summer (Matsuda et at., 1987). These data 

suggest that grazing by larger zooplankton feeding on ice-bound algae during winter contributes 

little to the transfer of carbon to depth. Thus, in permanently open waters and during winter, long 

food chains predominate. Under these conditions, the biological pump will be relatively 

inefficient in the transfer of carbon to depth. 
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A potentially important source of carbon flux in regions dominated by small phytoplankton cells 

may be represented by the tunicate Salpa thompsoni (Perissinotto & Pakhomov, submitted). Salps 

are able to retain all particles > 2 pm with 100% efficiency and can therefore be regarded as 

important consumers of nanophytoplankton (Foqi~r et al., 1994). During the last decade, salps 

have shown a consistent increase in biomass in the Prydz Bay region of the Southern Ocean, 

becoming at times the major contributor to the pelagic stock (Perissinotto & Pakhomov, 

submitted). Salps are efficient agents in the transfer of carbon to depth (Fortier et al., 1994). In 

regions where the microbial loop dominates, salps may represent a mechanism capable of 

enhancing the local efficiency of the biological pump. 

An indication of the spatio-temporal variability of the Antarctic food web can be derived from 

the ratio between new and regenerated production, termed the f-ratio (Goldman, 1988). The 

biological processes of regenerated and new production are distinctly different. The new 

production system is characterised by nitrate-based production dominated by large diatoms and 

large herbivorous zooplankton and high flux rates (Goldman, 1988; Goeyens et aI., 1991). In 

contrast, in regeneration-based systems, flux rates are dramatically reduced as the microbial loop 

represents the sink for phytoplankton production (Goldman, 1988). A study conducted in the 

Scotia-Weddell Confluence during summer (Nov.- Dec.) showed that the pelagic system evolved 

from new production system to regenerated production (Goeyens et ai., 1991). More recently, 

high f-ratios were found in the Atlantic sector of the Southern Ocean during summer, associated 

with the marginal ice zone and oceanic fronts suggesting that these areas are characterised by 

high flux rates (Mantel et al., 1995). These areas can therefore be regarded as regions of export, 

characterised by an efficient biological pump (Longhurst & Harrison 1989; Longhurst, 1991). In 

contrast, low f-ratios were recorded in the permanent open waters, suggesting that much of the 

production in these regions is being recycled. During winter, the f- ratios were < 0.1 at all 

stations, suggesting a system dominated by the microbial loop (Mantel et aI., 1995). Also, another 

recent study conducted in the Pacific sector of the Southern Ocean has shown that the region 

south of 55°S (i.e. the marginal ice zone) represents a small sink for CO2 while the open waters 
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north of this region represent a weak source of atmospheric CO2 (Tilbrook et al., 1995). These 

data indicate strong spatio-temporal variations in the Antarctic food web and support the model 

for the Antarctic marine food web proposed in this discussion. 

This investigation represents the fust long term study of the role of micro zooplankton in carbon 

cycling in the Southern Ocean and has highlighted three aspects of microzooplankton ecology 

which require further investigation. 

1. While it is generally well documented that metazoans contribute significantly to carbon 

flux (Fortier et al., 1994), little is known about the fate of protozoan faecal pellets. 

Possible fates for faecal pellets include sedimentation (Nothig & von Bodungen, 1989), 

ingestion by coprophagy and disintegration in surface waters. Sediment trap studies 

conducted in high Antarctic waters have shown that dinoflagellate faecal pellets may form 

a significant proportion of sediment particles (Nothig & von Bodungen, 1989; Buck et aI., 

1990; Gonzalez, 1992). For example, a study conducted at the ice edge found that 36% 

of all faecal material collected in the traps had originated from protozoans (Nothig & von 

Bodungen, 1989). Protozoan faecal pellets may thus be important because of the role they 

play in the redistribution, recycling and remineralization of organic carbon. Their 

contribution to total carbon flux, particularly during winter when microzooplankton 

represent the dominant grazers, requires urgent attention. 

2. A preliminary investigation carried out during the winter 1993 cruise (Chapter 3) showed 

that mixotrophs contributed "" 5% of total chlorophyll concentrations at all grazing 

stations occupied. However, recent studies have shown that up to 80% of all ciliates, the 

dominant component of the micro zooplankton assemblages during this investigation, 

contained functional plastids (Stoecker et al., 1988). Since mixotrophs have a higher 

production to ingestion ratio than heterotrophic micro zooplankton, they are more efficient 

in producing animal biomass (Stoecker, 1991). Consequently, rnixotrophs can play an 

important role in nutrient recycling and energy dynamics of plankton assemblages on the 
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Southern Ocean. Also, carbon fixed by mixotrophic ciliates may be more directly utilised 

by larger zooplankton, particularly in areas where small picophytoplankton dominate. 

3. During this investigation, the grazing imr,act of microzooplankton was shown largely to 

be restricted to the < 20pm chlorophyll fraction. While nanoheterotrophic flagellates 

generally feed on small phytoplankton cells, a most recent study has shown that some 

nanoheterotrophic flagellates are able to enter and feed on large microphytoplankton cells 

(S. Kuhn pers. comm.). This parasitoid behaviour of the nanoflagellates may occur in up 

to 90% of all phytoplankton cells (S. Kuhn pers. comm.). As these organisms do not 

preserve well, they are often overlooked unless living material is examined. Consequently, 

this behaviour has not been documented in the Southern Ocean as yet. While this 

parasitoidism may result in heavy losses of phytoplankton biomass, the ability of 

nanoflagellates to feed on other components of the microplankton assemblages such as 

dinoflagellates has not been investigated. Parasitold nanoflagellates may therefore, form 

an important part of the heterotrophic protozoan community and may represent an 

important link between small protozoans and larger microphytoplankton cells in the 

marine pelagic food web of the Southern Oeean. 

Future models of the Antarctic food web should focus on spatial and temporal components. In 

particular, summer/winter differences in the dominant components of the food webs should be 

given more attention as these may dramatically affect the estimates of carbon flux to depth. This 

may have important implications for our understanding of the efficiency of the biological pump 

in the Southern Ocean. 
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