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We present a detailed study of chemical freeze-out in nucleus-nucleus collisions at beam ener-
gies of 11.6, 30, 40, 80 and 158A GeV. By analyzing hadronic multiplicities within the statistical
hadronization approach, we have studied the strangeness production as a function of centre of mass
energy and of the parameters of the source. We have tested and compared different versions of
the statistical model, with special emphasis on possible explanations of the observed strangeness
hadronic phase space under-saturation. We show that, in this energy range, the use of hadron
yields at midrapidity instead of in full phase space artificially enhances strangeness production and
could lead to incorrect conclusions as far as the occurrence of full chemical equilibrium is concerned.
In addition to the basic model with an extra strange quark non-equilibrium parameter, we have
tested three more schemes: a two-component model superimposing hadrons coming out of single
nucleon-nucleon interactions to those emerging from large fireballs at equilibrium, a model with
local strangeness neutrality and a model with strange and light quark non-equilibrium parameters.
The behaviour of the source parameters as a function of colliding system and collision energy is
studied. The description of strangeness production entails a non-monotonic energy dependence of
strangeness saturation parameter γS with a maximum around 30A GeV. We also present predic-
tions of the production rates of still unmeasured hadrons including the newly discovered Θ+(1540)
pentaquark baryon.

I. INTRODUCTION

The main goal of the ultra-relativistic nucleus-nucleus (A-A) collisions programme is to create in terrestrial labora-
tories a new state of matter, the Quark-Gluon Plasma (QGP). The existence of this phase, where quarks and gluons
are deconfined, i.e. can freely move over several hadronic distances, is a definite prediction of quantum chromodynam-
ics (QCD). In a search for QGP signals A-A collisions at different centre of mass energies per nucleon-nucleon (NN)
pair have been studied: from few GeV to several hundreds of GeV recently attained in Au-Au collisions at RHIC.

Recently, accurate measurements of hadron production in central Pb-Pb collisions at 40, 80 and 158A GeV of beam
energy became available [1] and also preliminary data at 30A GeV have been presented [2] following an energy scan
programme carried out by the experiment NA49 at CERN SPS. This programme is motivated by the hypothesis [3]
that the threshold for creation of QGP in the early stage of Pb-Pb collisions might be located in the low SPS energy
range, roughly between 20 and 40A GeV of beam energy.

One of the main results of the study of high energy A-A collisions is a surprising success of the statistical-thermal
models in reproducing essential features of particle production [4, 5, 6, 7, 8, 9, 10, 11]. This model succeeds also
in describing particle multiplicities in many kinds of elementary collisions [12, 13, 14], suggesting that statistical
production is a general property of the hadronization process itself [13, 15]. Furthermore, the statistical hadronization
model (SHM) supplemented with the hydrodynamical expansion of the matter, to a large extent also reproduces
transverse momentum spectra of different particle species [16].

Hence, the SHM model proves to be a useful tool for the analysis of soft hadron production and particularly to
study strangeness production, whose enhancement has since long been proposed as a signature of QGP formation.
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Furthermore, anomalies in the energy dependence of strangeness production have been predicted as a signature of
deconfinement and have been indeed observed experimentally [17], suggesting that the onset of the phase transition
could be located around 30A GeV. It is thus important to make a systematic analysis, within the framework of SHM,
of the presently available hadronic multiplicities measured in Pb-Pb collisions at 30, 40 and 80A GeV, which - to our
knowledge - is done here for the first time.

Along with these intriguing questions, our work is also motivated by issues related to the application of statistical
model itself. In fact, different versions of this model have been used in the past by different authors leading to
somewhat different results and conclusions. These mainly stem from the alternative use of midrapidity and full phase
space multiplicities, from the allowance of non-equilibrium abundances of hadrons, from the assumption of exact local
vanishing strangeness etc. Therefore, we consider the comparison of these different approaches a worthwhile step.
This has been made it possible by now by the availability of an accurate and large multiplicity sample in Pb-Pb
collisions at 158A GeV as well as the corresponding data for pp interactions.

The paper is organized as follows: a brief description of our main version of the SHM is given in Sect. 2. The
experimental data selected for the analysis are summarized in Sect. 3. In Sect. 4 the results of the analysis using the
main version and alternative schemes of the SHM are given. Finally, in Sect. 5 we present and discuss the energy
dependence of the chemical freeze-out stage. Summary and conclusions are drawn in Sect. 6.

II. THE STATISTICAL HADRONIZATION MODEL

The main idea of the SHM is that hadrons are emitted from regions at statistical equilibrium, called clusters or
fireballs. No hypothesis is made about how statistical equilibrium is achieved; this can be a direct consequence of the
hadronization process. In a single collision event, there might be several clusters with different collective momenta,
different overall charges and volumes. However, Lorentz-invariant quantities like particle multiplicities are independent
of clusters momenta, while they depend on charges and volumes. If final state interactions among formed hadrons
occur, particle multiplicities are frozen when inelastic interactions cease (chemical freeze-out). Thus, by analyzing
measured hadron abundances, a snapshot is taken of clusters at that particular stage of the evolution, which may
significantly precede the final kinetic freeze-out stage, when also elastic interactions cease. However, it should be
pointed out that chemical and kinetic freeze-out may depend on the hadron species and the assumption of a single
chemical freeze-out is certainly an approximation. Most calculations in SHM are carried out in the framework of the
ideal hadron-resonance gas, that is handling resonances as free particles: this amounts to take a considerable part of
the hadronic interactions between strongly stable hadrons into account [18].

As has been mentioned, final multiplicities depend on the distribution of initial conserved charges (baryon number,
strangeness and electric charge) among the produced clusters. This distribution is determined by the dynamics of the
collision and is thus needed as an external input to the statistical model. However, most analyses, including ours, are
carried out by assuming a single fireball. This is possible provided that one of the two conditions below is fulfilled:

1. all clusters are large enough to allow a grand-canonical description and all of them have the same values of
relevant intensive parameters, i.e. temperature and chemical potentials;

2. clusters are small and must be treated canonically (i.e. counting those states having exactly the same charges
as the cluster itself), yet they have the same temperature and the distribution governing fluctuations of charges
is the same as that obtained by splitting one large cluster - the equivalent global cluster EGC - having as volume
the sum of all clusters rest frame volumes and charges the sum of all clusters charges (see Appendix A). In this
case the overall particle multiplicities turn out to be those calculated in the canonical, perhaps grand-canonical,
ensemble of the equivalent global cluster [13]. The reduction to EGC could be achieved even for micro-canonical
clusters with additional requirement on mass fluctuations [14].

The first condition sets stronger requirements and applies in the Bjorken’s boost-invariant scenario, where all clusters
are to have the same parameters independently of their rapidity. The second condition is altogether weaker and
leaves room for the compatibility between the single fireball analysis and a variation of net baryon number density
in rapidity. This has been discussed in detail in ref. [6]. The argument can be summarized as follows: particle
multiplicities, being Lorentz invariants, are unaffected by a shift in rapidity of the clusters; therefore, clusters arising
from the splitting of the EGC can be ordered in rapidity according to their net baryon number without affecting
fully integrated particle multiplicities and, at the same time, giving rise to an effective variation of the baryon density
profile. Although the second condition is certainly more appropriate in the examined energy range, from AGS to
SPS, it must be pointed out that this should not be expected to precisely match physical reality, as well as the first
condition in its domain of applicability. In other words, discrepancies (hopefully small) between calculations based
on this model and measurement are to be expected, so that these analyses shall not provide perfect fits even though
the statistical model was the underlying true model.
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In this paper we will stick to the picture outlined in the second condition, which implicitely requires the use of full
phase space multiplicities in order to (hopefully) integrating out correlations between clusters’ momenta and charges.
Besides their general fitness, 4π multiplicities also allow to safely enforce overall strangeness neutrality. As has been
mentioned, if the second condition applies, the multiplicity of any hadron j can be calculated in the canonical ensemble
of the EGC. Hence, as the EGC has a much larger volume than single clusters’, the grand-canonical ensemble, where
charges are conserved on average, can be a good approximation (see Appendix A). This is the case for the collisions
examined in this paper [19]. In this case the mean primary multiplicity of the jth hadron with mass mj and spin Jj

reads:

〈nj〉 =
(2Jj + 1)V

(2π)3

∫

d3p
[

e
√

p2+m2
j
/T−µ·qj/T ± 1

]−1

(1)

where T is the temperature, V the EGC volume, qj = (Qj, Bj , Sj) is a vector having as components the electric
charge, baryon number and strangeness of the hadron and µ = (µQ, µB , µS) is a vector of the corresponding chemical
potentials; the upper sign applies to fermions, the lower to bosons. In order to correctly reproduce the data, it is
also necessary to introduce at least one non-equilibrium parameter suppressing hadrons containing valence strange
quarks, γS 6= 1 [20]. With this supplementary parameter, hadron multiplicity is as in Eq. (1) with the replacement:

exp[µ · qj/T ] → exp[µ · qj/T ]γns

S (2)

where ns stands for the number of valence strange quarks and anti-quarks in the hadron j.
The abundances of resonances is calculated convoluting (1) with a relativistic Breit-Wigner distribution over a mass

interval [m − δm, m + δm], where δm = min[m − mthreshold, 2Γ]. The minimum mass mthreshold is needed to open
all decay modes. Finally, the overall multiplicity to be compared with the data, is calculated as the sum of primary
multiplicity (1) and the contribution from the decay of heavier hadrons:

〈nj〉 = 〈ni〉primary +
∑

k

Br(k → j)〈nk〉, (3)

where the branching ratios are taken from the latest issue of the Review of Particle Physics [21] and the summation
runs over decays which contribute to the experimentaly measured multiplicity. Among the hadrons and resonances
contributing to the sum in Eq. (3), in this work all known states quoted in ref. [21] up to a mass of 1.8 GeV are
included (see discussion in Sect. 4).

What we have hitherto described is the main version of the SHM used for the data analysis, that will be henceforth
referred to as SHM(γS). As has been mentioned in the Introduction, in this work we also test other schemes and
versions of the SHM, which will be described in detail in Sect. 4.

III. EXPERIMENTAL DATA SET

The bulk of the experimental data consists of measurements made by NA49 collaboration in central Pb-Pb collisions
at beam momenta of 30, 40, 80 and 158A GeV, corresponding to

√
sNN = 7.6, 8.8, 12.3 and 17.2 GeV respectively.

The acceptance region in rapidity and transverse momentum covers a typical range from midrapidity to projectile
rapidity and from 0 to 1.5 GeV/c respectively. The overall hadron multiplicities, quoted in referenced papers, were
obtained using forward-backward symmetry in rapidity and by extrapolating the yields to full phase space. All results
were corrected for the feed-down from weak decays, e.g. π− multiplicity does not include pions produced in decays of
Λ hyperons and K0

S mesons.
Central collisions were selected by a trigger using information from a downstream calorimeter, which measured the

energy of the projectile spectator nucleons. Whilst at 30, 40 and 80A GeV all published results refer to the 7.2% most
central collision sample, at 158A GeV different centrality selections (5%, 10% and 20% most central collisions) were
used to measure various hadronic species. In this analysis we have rescaled all published multiplicities at 158A GeV
to the corresponding ones at 5% most central collisions assuming that for the considered central collisions the hadron
yield is proportional to the mean number of participant nucleona. The resulting scaling factors are 1.08 and 1.32 for
10% and 20% most central collisions respectively [1, 22].

As far as AGS data at 11.6A GeV is concerned, we have used both multiplicities measured by the experiments
and extrapolations of measured rapidity distributions made in ref. [9] at 3% top centrality. For Λ we have made a
weighted average of the multiplicities measured both at 5% top centrality by E896 [23] and E891 [24]. For the former,
the quoted experimental error was only statistical so that we have added a 10% systematic error resulting in a value of
16.7±0.5±1.7. For the latter, we have used the extrapolated value in ref. [9] of 20.34±2.74. The error on the weighted
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average has been rescaled by 1.25 (i.e.
√

χ2) according to the PDG weighting method in case of discrepancy between
different measurements [21]. The obtained average has been rescaled by a factor 1.02 to convert it from 5% to 3% top
centrality by assuming a linear dependence on the number of participants and by using the tables in ref. [25]. Since
the Λ̄ to Λ ratio has been measured only at midrapidity [26], we have obtained a Λ̄ 4π multiplicity assuming that the
double ratio (〈Λ̄〉/〈Λ〉)y=0/(〈Λ̄〉/〈Λ〉) is the same at SPS and AGS energies. The final experimental multiplicities and
ratios used in our analysis are shown in tables I, II, III, IV and V.

In order to test the effect of the cut in rapidity on the resulting statistical model parameters (discussed in detail
in Sect. 4) we have also determined the yields integrated over limited (∆y = 1 and ∆y = 2) rapidity windows around
midrapidity in Pb-Pb collisions at 158A GeV. This has been done by fitting the rapidity distributions measured by
NA49 to a Gaussian or the sum of two Gaussians, with area and width as a free parameters and central values set
to zero. The results are shown in table VI. The quality of the fits is quite good, except for pions due to a couple of
points near midrapidity; yet, this discrepancy does not affect significantly the integrated yield. In fact, it must be
stressed that the main goal of these fits is to estimate an integral and not to reproduce accurately the shape of the
distributions over the full measured range. We have also checked that the extrapolations to full phase space are in
good agreement with published measurements.

IV. ANALYSIS RESULTS

The analysis has been carried out by looking for the minima of the χ2:

χ2 =
∑

i

(nexp
i − ntheo

i )2

σ2
i

(4)

where ni is the multiplicity of the ith measured hadronic species and σi is the sum in quadrature of statistical and
systematic experimental error.

The theoretical multiplicities are calculated according to Eq. (3) with the decay chain stopped to match the
experimental definition of multiplicity to properly compare theoretical and experimental values. This occurs in Pb-Pb
collisions after electromagnetic and strong decays and before weak decays, whilst in Au-Au collisions at AGS the weak
decays of Λ, Σ, Ξ, Ω and K0

S are included.
The effect of the uncertainties on masses, widths and branching ratios of the involved hadrons on the fit parameters

has been studied by the method described in ref. [14] and found to be negligible throughout.
In order to cross-check our results and verify their robustness, we have performed the analysis with two independent

numerical programs, henceforth referred to as A and B, which mainly differ with regard to the included resonances,
their decay modes and branching ratios.

The fitted parameters within the main scheme SHM(γS) are shown in table VII, while the experimental and
fitted multiplicities, along with the predicted yields of several hadron species are shown in tables I, II, III, IV and
V and figs. 1, 2, 3 and 4. We do not show any plot for the fit in Pb-Pb collisions at 30A GeV because of the low
number of data points. The quality of the fit is good throughout, as proved by the χ2’s values and we do not see
any clear discrepancy between data and model, with the remarkable exception of the Λ(1520) in Pb-Pb collisions at
158A GeV. Due the 5σ deviation from the statistical model prediction, the measured Λ(1520) yield has been removed
from the fitted data sample as it could have biased the fit itself. We argue that this disagreement owes to its short
lifetime (Γ = 15.6 MeV) compared with all other used particles. If the kinetic freeze-out occurs after some suitable
delay from the chemical freeze-out, one can indeed justify the low measured Λ(1520) yield as the effect of the elastic
reinteractions of its decay products. The quality of the fits is further illustrated in fig. 5 where the measured and
fitted ratios 〈π−〉/〈Np〉and 〈K+〉/〈π+〉are plotted as a function of

√
sNN ; these ratios have been chosen as it has been

proposed that their energy depedence plays an important role in the search for deconfinement onset at SPS energies
[3].

The observed differences in the fit parameters between A and B are of the order of the fit errors. They may be
considered as an estimate of the systematic error due to uncertainties in the implementation of the model. The first
set of parameters in table VII have been obtained by using the full data, whilst the second set has been obtained
by using the maximal common set of particles measured in the four collisions, that is π+, K+, K−, Λ, Λ̄ and the
participant nucleons (net baryon number) B. By comparing fit results in the same analysis (A with A and B with
B), it can be seen that the obtained parameters are in good agreement and only in one case a discrepancy larger than
one standard deviation (γS in Pb-Pb at 158A GeV) is observed; this demonstrates the robustness of the results.

We have also included in tables I, II, III, IV and V the prediction for the yield of the recently discovered Θ+

pentaquark baryon (uudds̄) by using as input mass m = 1540 MeV and J = 1/2. According to the SHM(γS) model,
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in the Boltzmann limit this simply reads:

〈nΘ+〉 =
γSV

π2
m2TK2

(m

T

)

exp[µB/T + µQ/T + µS/T ] (5)

if we disregard feeding from possible excited states.
As the number of data points in Pb-Pb collisions at 30A GeV was not sufficient to determine the four free parameters

unambiguously, we have forced T to lie on the parabolic chemical freeze-out curve (19) in Sect. 5, interpolating the
other four points in the µB − T plane. This method has proved to be able to provide unambiguous solutions for the
remaining three free parameters.

The first quoted error beside the best-fit value in table VII is the error coming out from the fitting program (inferred
from the analysis of the χ2 = χ2

min + 1 level contours) whereas the second error is the fit error rescaled by a factor
√

χ2
min/dof where dof is the number of degrees of freedom. We deem that the latter is a more realistic uncertainty on

the parameters with respect to the fit error because of the ”imperfect” χ2
min/dof values, expected to be 1 on average

if the model correctly matched physical reality. The argument, which is the same used in the Particle Data Book [21]
when averaging discrepant data, is as follows: if χ2

min/dof 6= 1, then the model cannot reproduce the data at the level
of accuracy relevant to the experimental errors; on the other hand, this would be the case if experimental errors were
larger and, particularly, if they were rescaled by a common factor S so that:

χ2′

=
∑

i

(nexp
i − ntheo

i )2

(Sσi)2
=

χ2

S2
(6)

With this simple rescaling of the χ2, the best-fit parameters would be unchanged, whereas their relevant errors would
scale up by a factor S. In fact, the new covariance matrix C′ for the parameter vector X is related to the χ2′

around
the minimum through:

χ2′

(X) = χ2′

min + (X − X0)
T
C
′−1

(X − X0) (7)

Also:

χ2(X) = χ2
min + (X − X0)

T
C
−1(X − X0) (8)

and, being χ2′

= χ2/S2, one finds C
′ = S2

C. Therefore, since this covariance matrix would be the outcome of a

standard quality fit, with χ2′

min/dof = 1, the errors rescaled by S can be regarded as the sensible minimal uncertainty
on the parameters. These rescaled errors have indeed been used in all of the plots in this paper.

A major issue in the multiplicity fits is where to stop the inclusion of heavy light-flavoured resonances contributing
to measured particle yields in Eq. (3). The relevance of this cut-off is owing to the peculiar shape of the hadron mass
spectrum, which rises almost exponentially between 1 and 1.7 GeV and drops thereafter probably due to the missing
experimental information (see fig. 6). Should the number of states keep on increasing exponentially, the problem is
set of the physical meaning of the obtained parameters, which could be heavily affected by the ignorance of further
hadronic states. In fact, although the production of resonances decreases exponentially with the mass, the effect on
secondary light particles through the decay chain could be balanced and even exceeded by the increasing number of
states. We have thus checked the stability of the obtained parameters in the four collisions by varying the cut-off on
the mass spectrum in a range where we are reasonably confident on the complete experimental knowledge and the
number of states apparently rises exponentially (i.e. up to 1.7-1.8 GeV) and repeating the fit. As shown in fig. 7,
the fitted T , µB and γS in Pb-Pb at 158A GeV are indeed fairly constant from 1.3 to 1.9 GeV. Furthermore, the
outcoming primary yields of some measured particles tend to saturate at cut-off masses of about 1.8 GeV, implying
that the contribution of resonance decays to secondaries (needed to keep the final multiplicity close to the measured
value) settles down as well and the inclusion of heavier states yields a more and more negligible contribution. This is
a clear indication of the significance of the fit results. A similar pattern occurs in all other examined collisions.

A major result of these fits is that γS is significantly smaller than 1 in almost all cases (with a possible exception
at 30A GeV, see table VII), that is strangeness seems to be under-saturated with respect to a completely chemically
equilibrated hadron gas. This confirms previous findings [6, 9, 27]. There is a considerable interest and ongoing
investigations about this deviation of the data from the fully equilibrated hadron gas, particularly motivated by the
fact that strangeness production is considered as a possible QGP signature. It is therefore worth to examine and test,
with the presently available large data sample, different scenarios which have been put forward to account for the
under-saturation of strangeness.
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A. Full equilibrium and midrapidity ratios

As we have seen, fits to full phase space multiplicities within the SHM yield γS < 1 in most cases. However,
good tests of the same model without extra strangeness suppression (i.e. assuming γS = 1) have been obtained by
fitting ratios of hadronic yields within a limited rapidity range around midrapidity at top SPS energy [7]. This is an
appropriate method of estimating the parameters of the sources only if the boost-invariant Bjorken scenario holds,
at least as a good approximation, over a large rapidity interval (say ∆y ≃ 6) because, in this case, particle ratios at
midrapidity are the same as in full phase space. However, rapidity distributions of hadrons at SPS energies do not
feature boost-invariance [1, 22, 28, 29, 29, 30] and a cut at midrapidity can artificially enhance heavy particle yield
with respect to light ones (see fig. 8), as long as their kinetic freeze-out occurs at the same temperature and the
leading baryon effect can be neglected. In the statistical model of a single fireball this can be easily understood, for
the width of the rapidity distribution decreases as a function of mass according to (in the Boltzmann approximation):

dN

dy
∝

(

m2T +
2mT 2

cosh y
+

2T 3

cosh2 y

)

exp[−m coshy/T ] (9)

Yet, it is worth testing the effect of the rapidity cut on measured distributions rather than using arguments based
solely on the statistical model. Therefore, we have fitted, within the scheme A, the integrated yields over limited
rapidity windows measured in central Pb+Pb collisions at 158A GeV by NA49 (see Sect. 3 for details) and quoted
in table VIII as well as the yields measured by WA97 [31] over a ∆y = 1 window around midrapidity. We first note
that, according to table VIII, the integrated yields over ∆y = 1 measured by NA49 and WA97 are in good agreement
with each other. Since the fit to the statistical model gave γS ≃ 1 [32] for WA97 data, the same is expected for the
integrated NA49 yields over the same rapidity window. This is indeed what we find, as shown in table IX. While
temperature and baryon-chemical potential are essentially unchanged, the best-fit value of γS is closer to 1 than that
obtained in full phase space in fit A (see table (VII) and it is also compatible with 1 within the error.

We then conclude that the superfluity of γS in analysis of midrapidity particle yields, at least at top SPS energy, is
likely to owe to the artificial enhancement of strange particles with respect to lighter non-strange ones, induced by the
cut on rapidity. The fact that γS ≃ 1 for midrapidity yields is then not an indication of a fully equilibrated hadron gas
at midrapidity; even if such equilibrated fireball existed at the estimated kinetic freeze-out temperature of T ≈ 125
MeV [33], the ∆y = 1 window would be too narrow for a correct estimation of chemical freeze-out parameters (see
fig. 8) because lighter particles would be cut down significantly.

B. Strangeness correlation volume

To account for the observed under-saturation of strangeness, a picture has been put forward in which strangeness is
supposed to be exactly vanishing over distances less than those implied by the overall volume V [34]. We henceforth
refer to this version of the statistical model as SHM(SCV). Following the description of the model in Sect. 2, this
means that the produced clusters or fireballs emerge with S = 0 and they are not allowed to share non-vanishing
net strangeness. Assuming, for sake of simplicity, that all clusters have the same typical volume Vc and that the
equivalence of the set of clusters to a global fireball still applies for baryon number and electric charge (but not to
strangeness) the following expression of the primary average multiplicities can be obtained (see Appendix B):

〈nj〉 =
V

Vc

(2Jj + 1)Vc

(2π)3

∞
∑

n=1

∫

d3p (∓1)n+1 exp[−n
√

p2 + m2
j/T + nµBBj/T + nµQQj/T ]

Zc(−nSj)

Zc(0)
(10)

where

Zc =
1

2π

∫ π

−π

dφ exp
[

∑

j

(2Jj + 1)Vc

(2π)3

∫

d3p log(1 ± e−
√

p2+m2
j
/T+µBBj/T+µQQj/T−ıφSj)±1

]

(11)

is the so-called strange canonical partition function of a single cluster. As usual, in the above equations, the upper
sign is for fermions and the lower for bosons.

If Vc is sufficiently small, the multiplicities of strange hadrons turn out to be significantly suppressed with respect
to the corresponding grand-canonical ones due to the enforcement of exact strangeness conservation in a finite system,
an effect called canonical suppression. Furthermore, the suppression features hierarchy in strangeness, namely it is
stronger for Ω (S = 3) and Ξ (S = 2) than for kaons and Λ’s, so it can be argued that this can account for the actually
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observed hierarchical pattern of extra strangeness suppression which goes like γ
|S|
S for open strange particles. The

discriminating difference between this picture and our main scheme SHM(γS) described in Sect. 2 is concerned with
hidden strange particles such as φ, which do not suffer canonical suppression, so that its theoretical multiplicity in
SHM(SCV) turns out to be simply the same as in a cluster with volume V , that is given by the formula (1) without
γ2

S suppression.
We have made a test of this model by fitting the data sample of full phase space multiplicities in Pb-Pb collisions at

158A GeV fixing γS = 1 and determining the parameters T , V , µB and f = Vc/V within the scheme A. The results
are shown in tables X and V. The quality of the fit is worse with respect to the SHM(γS) model mainly because of
the underestimated pion yield and the larger of φ. The latter is expected, as has been mentioned. As far as pion
discrepancy is concerned, the deviation stems from the very fact that they are the only non-strange particles in the
fit. The minimization procedure tries to accommodate the relative ratios among strange hadrons by fixing Vc and T ,
then it tries to set the overall normalization V and at this stage a competition sets in between the set of strange and
non-strange particles. Since pions are only two entries, the fit prefers to keep them low rather than raising the whole
set of strange particles.

Our result suggests that, for the local strangeness correlation to be an effective mechanism, the cluster volume
should be of the order of 2.5% of the overall volume. Otherwise stated, strange quarks should have not propagated
beyond a distance of about 4 fm from the production point up to chemical freeze-out, if we take the overall volume
of about 3 103 fm3 as coming out from this fit where hadrons are pointlike particles.

C. Superposition of NN collisions with a fully equilibrated fireball

In this picture, henceforth referred to as SHM(TC), the observed hadron production is approximately the superpo-
sition of two components (TC): one originated from one large fireball at complete chemical equilibrium at freeze-out,
with γS = 1, and another component from single nucleon-nucleon collisions. In fact, according to simulations based
on transport models, a significant fraction of beam nucleons interacts only once with target nucleons [35]. With
the simplifying assumption of disregarding subsequent inelastic collisions of particles produced in those primary NN
collisions, the overall hadron multiplicity can be written then as:

〈nj〉 = 〈Nc〉〈nj〉NN + 〈nj〉V (12)

where 〈nj〉NN is the average multiplicity of the jth hadron in a single NN collision, 〈Nc〉 is the mean number of single
NN collisions giving rise to non-re-interacting particles and 〈nj〉V is the average multiplicity of hadrons emitted from
the equilibrated fireball, as in Eq. (1), with γS = 1. The 〈nj〉NN term can be written in turn as:

〈nj〉NN =
Z2

A2
〈nj〉pp +

(A − Z)2

A2
〈nj〉nn +

2Z(A − Z)

A2
〈nj〉np (13)

Since it is known that in NN collisions strangeness is strongly suppressed [13] the idea is to ascribe the observed
under-saturation of strangeness in heavy ion collisions to the NN component, leaving the central fireball at complete
equilibrium, i.e. with γS = 1. Of course, this is possible provided that 〈Nc〉 is sufficiently large. This production
mechanism has probably some consequences on the final rapidity and momentum distributions of the different species,
whose calculation goes certainly beyond the scope of this paper. Instead, we have confined ourselves to integrated
multiplicities and tried to fit T , V , µB of the central fireball and 〈Nc〉 by using NA49 data in Pb-Pb collisions at
158A GeV within the scheme A.

To calculate 〈nj〉NN we have used the statistical model and fitted pp full phase space multiplicities measured at√
s = 17.2 GeV (i.e. the same beam energy) by the same NA49 experiment. For np and nn collisions, the parameters

of the statistical model determined in pp are retained and the initial quantum numbers are changed accordingly.
Theoretical multiplicities have been calculated in the canonical ensemble, which is described in detail in ref. [14].
Instead of the usual γS parametrization, the new parametrization described in ref. [14] has been used in which one
assumes that some number of ßpairs, poissonianly distributed, hadronizes; the extra strangeness suppression parameter
γS is thus replaced by the mean number of these ßpairs, 〈ss̄〉.
The results of the fit are shown in table XI along with fitted and predicted hadron multiplicities, including the Θ(1540)
pentaquark baryon, and in fig. 9. The temperature value is significantly higher than in pp and pp̄ collisions at higher
energy, an effect already observed for center-of-mass energies below 20 GeV [13, 14]. We conjecture that this is a
possible indication of a beginning inadequacy of the canonical ensemble at low energy, where exact conservation of
energy and momentum should start to play a significant role. Perhaps this is the point where the microcanonical
hadronization of each cluster is a more appropriate approach.

The results of the fit to Pb-Pb collisions are shown in table X. The fit quality, as well as the obtained values of T ,
µB, are comparable to the main fit within the SHM(γS) model. The predicted number of ”single” NN collisions is
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about 50 with a 16% uncertainty. Thus, only 260 nucleons out of 360 contribute to the formation of large equilibrated
fireballs. The percentage of primary hadrons stemming from NN collisions varies from 14% for pions to 27% of ρ’s and
protons and to 0.5% of Ω’s. It should be pointed out that the fitted parameters are affected by a further systematic
error owing to the uncertainty on the parameters of the statistical model in NN collisions, which are used as an input
in the Pb-Pb fit. However, because of exceeding computing time needs, it has not been possible to assess these errors.

In a simple geometrical picture, the single-interacting nucleons are located in the outer corona of the portion of
colliding nuclei corresponding to the observed number of participants. As the projected (on the collision’s transverse
plane) radial nucleon density is:

dN

dr
= 4πr

√

R2 − r2n0 (14)

where n0 = 0.16 fm−3 is the nucleon density and R ≃ 6.45 fm is the radius of the portion of colliding nucleus
corresponding to a participant number of 180, the 50 single-interacting nucleons should lie between 4.84 and 6.45
fm. This simple estimate is in approximate agreement with the calculations performed with the Glauber model [35].
Since the number of single-interacting nucleons is expected to be weakly dependent on center-of-mass energy, the fits
to this two-component model should yield consistent values of 〈Nc〉 at 30, 40 and 80A GeV collisions. However, no
measurement of hadron production in NN collisions at those energies is available and this question cannot be tackled
for the present.

D. Non-equilibrium of hadrons with light quarks

An extension of the statistical model has been proposed where QGP hadronization is essentially a statistical
coalescence of quarks occurring at an energy density value which does not correspond to a hadron gas at equilibrium
[36]. In this model two non-equilibrium parameters are introduced for the different types of quarks, γq for u, d quarks
and γs for strange quarks (the difference between γs and γS is explained below). The multiplicity of each hadron thus
reads:

〈nj〉 =
(2Jj + 1)V

(2π)3

∞
∑

n=1

γnns
s γnnq

q

∫

d3p exp[−n
√

p2 + m2
j/T + nµ · qj/T ] (15)

where ns is the number of valence s quarks and nq the number of valence u, d quarks; µ and qj are as in Eq. (1). By
defining:

γS =
γs

γq
Ṽ = V γ2

q (16)

the Boltzmann limit of average multiplicity reads:

〈nj〉 =
(2Jj + 1)Ṽ

(2π)3
γns

S γ|Bj |
q

∫

d3p exp[−
√

p2 + m2
j/T + µ · qj/T ] (17)

where Bj is the baryon number, as long as mesons have two and baryons have three valence quarks. By comparing this
formula with the Boltzmann limit of Eq. (1) it can be realized that the introduction of a light-quark non-equilibrium
parameter amounts to introduce in the statistical model an overall enhancement (or suppression) of baryons with
respect to mesons, unlike in the model SHM(γS). We henceforth refer to this model as SHM(γSγq).

The parameter γq has a definite physical bound for bosons which can be obtained by requiring the convergence of

the series
∑∞

N=0(γ
nqN
q ) exp(−Nǫ/T + Nµ · qj/T ) for any value of the energy. If the number of u, d quarks to be

hadronized is so large that γq is to attain its bounding value, a Bose condensation of particles in the lowest momentum
state sets in. For low strangeness and electrical chemical potentials, such as those found in the present analysis, the
bounding value is γq = exp(m/2T ) where m is the neutral pion mass, e.g. γq ≃ 1.5 for T ≃ 160 MeV.

With the introduction of γq as an additional free parameter, there are 5 parameters to be determined in the model.
This makes the minimization procedure rather unstable because it becomes easier to be trapped in local minima. To
avoid this, we have performed 4 parameter fits with fixed values of γq varying from 0.6 to 1.7 in steps of 0.1. This
method allows a clearcut determination of the absolute minimum.

The results of these fits are shown in fig. 10 in terms of the minimum χ2 obtained for fixed γq. The round dots
show the minimum χ2’s achieved by using the main sample of multiplicities in Pb-Pb collisions at 158A GeV. We find
a steady decreasing trend in the value of best-fit temperatures varying from ≃ 187 MeV at γq = 0.6 to ≃ 140 MeV at
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γq = 1.6. The fitted temperature at γq = 0.5 reaches the upper limit of 200 MeV, which is the maximum allowed in
the model to prevent from being critically dependent on the hadron mass spectrum cut-off. On the other hand, the
best-fit values of µB/T and γS are rather stable and about the same found in the main fit with γq = 1. The number
of terms in the series (15) has been truncated to 5 for all particles; the contribution of further terms has been found
to be negligible throughout.

It is seen that the absolute χ2 minimum falls in the region of pion condensation, marked by a vertical line at
γq ≃ 1.62, with χ2 ≃ 13 and T ≃ 140 MeV. This finding is in agreement with what is found in ref. [36]. However,
there is also a local minimum at the lower edge γq = 0.6, with a temperature of 187 MeV, which is only one unit of
χ2 higher than the absolute minimum. This indicates that the absolute minimum could be rather unstable against
variations of the input data and this is in fact what we find by varying down the pion multiplicities by only 1 σ. For
this case, the minimum χ2s are shown in fig. 10 as triangular dots and the absolute minimum now lies at γq = 0.6
instead of at the pion condensation point.

In view of the instability of the fit, and of the small relative χ2 improvement in comparison with the main fit,
we conclude that there is so far no evidence for the need of this further non-equilibrium parameter. However, it is
interesting to note that this model predicts an enhanced (if γq > 1) or suppressed (if γq < 1) production of the Θ+

pentaquark baryon with respect to the other versions of the statistical model, even though they agree in reproducing
the multiplicities of all other hadrons. This is owing to an additional γ2

q factor for this special hadron having five
valence quarks. From Eqs. (15,16) one gets, in the Boltzmann limit:

〈nΘ+〉 =
γ3

qγSṼ

π2
m2TK2

(m

T

)

exp[µB/T + µQ/T + µS/T ] (18)

In fact, as can be seen in table V the predicted yield of Θ+ at the global minimum γq ≃ 1.62 is more than a factor 2
higher than for SHM(γS).

As a final remark, we stress that minimum χ2 fits are very useful tools to get information on the state of the source
at chemical freeze-out, but, as already emphasized in Sect. 3, the simple multiplicity analysis with global parameters
resides on an idealization of the collision (e.g. the assumed existence of an EGC) which cannot exactly fit physical
reality and discrepancies are to be expected anyway. Thus, a new mechanism or of a modification of the basic scheme
proves to be relevant only if it leads to a major improvement of the agreement with the data. Slight improvements of
the χ2, whenever their significance is beyond its expected statistical fluctuations, cannot be seriously taken as a proof
of the validity of a particular scheme.

V. ENERGY DEPENDENCE

The statistical model does not make any prediction on the energy dependence of hadron production; its relevant
parameters have to be determined separately for each energy and reaction type. Nevertheless, the analysis of the data
within this model may help in the study of energy dependence of hadron production because it effectively reduces the
full experimental information on numerous hadron yields to only few parameters. Clearly this reduction should be
taken with care, were not for the approximate validity of some relevant assumptions, such as the reducibility to EGC
(see Sect. 2). Furthermore, the reduction procedure may remove or dilute essential physical information. With these
caveats in mind, in this section we discuss the energy dependence of the chemical freeze-out parameters extracted
from the data (by using the full data sets) within our main SHM(γS) approach.

The chemical freeze-out points in the µB − T plane are shown in fig. 11. The RHIC point at
√

sNN = 130 GeV,
obtained fitting particle yield ratios at midrapidity, has been taken from ref. [11]. The four points at beam energies
of 11.6, 40, 80 and 158A GeV have been fitted with a parabola:

T = 0.167 − 0.153µ2
B, (19)

where T and µB are in GeV. The Pb-Pb point at 30A GeV has been forced to lie on the above curve, as has been
mentioned in the previous section. The RHIC point calculated in ref. [11] is in good agreement with the extrapolation
of the curve (19).

In the search for deconfinement phase transition, strangeness production is generally believed to be a major item,
especially if an anomalous abrupt change was found as a function of centre-of-mass energy or other related quantities.
A possible indication of it in Pb-Pb collisions at the low SPS energies was reported on the basis of the observed
energy dependence of several observables [17]. Particularly, the 〈K+〉/〈π+〉ratio shows a peaked maximum at about
30A GeV. One may expect that this anomaly should be reflected in the energy dependence of γS parameter fitted
within SHM(γS) scheme. This dependence is plotted in fig. 12 and in fact a maximum shows up at 30A GeV. Although
the error bars are large enough so as to make γS seemingly consistent with a constant as a function of centre-of-mass
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energy, it is important to note that the dominant systematic errors on experimental data at SPS energies are essentially
common. Therefore, the errors on the model parameters at different SPS energies turn out to be strongly correlated,
hence fitted γS ’s are expected to move up or down together.

In order to further study strangeness production features, we have also compared the the measured 〈K+〉/〈π+〉ratio
(including the preliminary RHIC result at

√
sNN = 200 GeV [37]) with the theoretical values in a hadron gas along

the freeze-out curve (19) as a function of the fitted baryon-chemical potential for different values of γS (see fig. 13).
The calculated dependence of 〈K+〉/〈π+〉on µB is non-monotonic with a broad maximum at µB ≃ 400 MeV (i.e.
Ebeam ≃ 30A GeV) [38]. Taking into account that systematic errors at different energies in Pb-Pb collisions are fully
correlated, we can conclude that the data points seem not to follow the constant γS lines.

In fact, the anomalous increase of relative strangeness production at 30A GeV can be seen also in the Wroblewski
variable λS = 2〈ss̄〉/(〈uū〉 + 〈dd̄〉), the estimated ratio of newly produced strange quarks to u, d quarks at primary
hadron level, shown in fig. 14 and table VII. The calculation of newly produced quark pairs is performed by using
the statistical model best fit values of the various hadron multiplicities, so the obtained λS values are somehow
model-dependent. Nevertheless, this variable features a very similar behaviour as the ratio 〈K+〉/〈π+〉and attains a
maximum value of 0.61 at 30A GeV, very close to that predicted for γS = 1.

These deviations from a smooth behaviour of strangeness production are certainly intriguing, yet the analysis within
the SHM will be more conclusive in this regard with a larger data sample at 30A GeV and at the forthcoming 20A
GeV data.

VI. SUMMARY AND CONCLUSIONS

We presented a detailed study of chemical freeze-out conditions in ultra-relativistic heavy ion collisions at projectile
momenta of 11.6 (Au-Au at AGS), 30, 40, 80 and 158A (Pb-Pb at SPS) GeV, corresponding to nucleon-nucleon centre
of mass energies of 4.8, 7.6, 8.8, 12.3, 17.2 GeV respectively. By analyzing hadronic multiplicities measured in full
phase space within the statistical hadronization model, we have tested and compared different versions of this model,
with special emphasis on possible explanations of the observed strangeness under-saturation at the hadron level.

It is found that version of the model referred to as SHM(γS), where a non-equilibrium population of hadron carrying
strange valence quarks is allowed, fits all the data analyzed in this paper. We have also shown that the seeming full
chemical equilibrium found for central Pb+Pb collisions at 158A GeV by using particle yields integrated over a limited
region around mid-rapidity is most likely an artefact of the kinematical cut.

We have tested a model (SHM(TC)) in which hadron production is pictured as stemming from two independent
components: a fireball (or a set of fireballs) at full chemical equilibrium and single nucleon-nucleon interactions. This
model can fit the data at 158A GeV if the number of collisions is around 50 with a sizeable uncertainty. So far, it
cannot be confirmed at other energies due to the lack of the precise data on NN interactions.

A model in which strangeness is assumed to vanish locally [34] yields a worse fit to the data with respect to SHM(γS)
and SHM(TC).

Finally, we have also tested a model in which it is allowed a non-equilibrium population of hadrons carrying both
strange and light valence quarks. We have found the present set of available data does not allow to establish whether
a further non-equilibrium parameter is indeed needed to account for the observed hadron production pattern. A
discriminating prediction of this model with respect to the SHM(γS) is an enhanced production of the recently
discovered Θ+ pentaquark baryon due to the additional factor γ2

q .
Energy dependence of chemical freeze-out parameters has been discussed based on the results obtained with our

main version of the model SHM(γS). The evolution of the freeze-out temperature and baryon-chemical potential
is found to be smooth in the AGS-SPS-RHIC energy range. The strangeness-suppression parameter γS is found to
smaller than one (γS ≃ 0.8) for most of the studied collisions which confirms previous findings [6, 9, 27], with an
indication of a maximum at 30A GeV, where γS is found to be close to one. The significance of this maximum is related
to the correlation between errors on hadron yield measurements at different energies. The interpolated dependence
of relative strangeness production on energy and baryon-chemical potential, as measured by the 〈K+〉/〈π+〉ratio
and the Wroblewski factor λS , features a broad maximum at about 30A of beam energy. However, the experimental
measurement of 〈K+〉/〈π+〉and the estimated λS value in Pb-Pb collisions at this energy seemingly exceed the expected
values for a fixed γS .
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APPENDIX A - FROM CANONICAL TO GRAND-CANONICAL ENSEMBLE

The canonical partition function of the ith cluster can be written as a multiple integral over the interval [−π, π]
[13]:

Zi(Qi) =
1

(2π)3

∫

d3φ eıQi·φ exp[F (φ)] (20)

where Qi = (Qi, Bi, Si) is a vector having as components the electric charge, baryon number and strangeness of the
cluster, φ = (φQ, φB , φS) and F (φ) reads:

F (φ) =
∑

j

(2Jj + 1)Vi

(2π)3

∫

d3p log(1 ± e−
√

p2+m2
j
/T−ıφ·qj)±1 (21)

Vi is the volume and T the temperature of the cluster; the sum runs over all hadronic species j and qj the charge
vector of the jth hadron; the upper sign applies to fermions, the lower to bosons. The probability distribution required
for the reduction to EGC to apply reads [6, 13]:

w(Q1, . . . ,QN ) =

∏

i Zi(Qi)δ∑

i
Qi,Q

∑

Q1,...,QN

∏

i Zi(Qi)δ∑

i
Qi,Q

(22)

In this case, the overall multiplicity of the jth hadron is given by [13]:

〈nj〉 =
∂

∂λj
log Z(Q)

∣

∣

∣

λj=1
(23)

where Z(Q) is the canonical partition function of the equivalent global cluster:

Z(Q) =
∑

Q1,...,QN

∏

i

Zi(Qi)δ∑

i Qi,Q (24)

and λj is a fictitious fugacity parameter. Formally, this turns out to be the same function as in Eq. (20) with V =
∑

i Vi

replacing Vi and Q =
∑

i Qi replacing Qi. If V is large, the canonical partition function can be approximated by the
leading term of an asymptotic saddle point expansion. Setting exp(−ıφk) = zk, the canonical partition function can
be written as:

Z(Q) =
1

(2πı)3

[

3
∏

k=1

∮

dzk

zk

]

exp[Fc(z)]
3

∏

k=1

z−Qk

k (25)

where:

Fc(z) =
∑

j

(2Jj + 1)Vi

(2π)3

∫

d3p log(1 ± e−
√

p2+m2
j
/T

3
∏

k=1

z
qjk

k )±1 (26)

The saddle-point expansion is carried out by requiring the logarithmic derivative of the integrand to vanish:

−Qk

zk
+

∂Fc

∂zk
= 0 k = 1, 2, 3 (27)

The solutions of this equation are indeed the grand-canonical fugacities λk ≡ exp(µk/T ). The function Fc(λ) coincides
with the logarithm of the grand-canonical partition function log Zgc, therefore the equation (27) expresses the equality
between the average charge in the grand-canonical ensemble λk∂ log Zgc/∂λk and the initial value Qk. The canonical
partition function now becomes, at the second order of the expansion:

Z(Q) ≃ exp[Fc(λ)]
[

3
∏

k=1

λ−Qk

k

] 1

(2πı)3

[

3
∏

k=1

∮

dzk

zk

]

exp[−(z − λ)T
H (z − λ)/2] (28)

where H is the Hessian matrix in zk = λk. The first exponential factor is just the grand-canonical partition function
Zgc calculated for the fugacities λk. The average multiplicity of the jth hadron species can now be calculated by using
Eq. (23) taking the approximated expression (28) of the canonical partition function. Retaining only the dominant
contribution, one just obtains the grand-canonical expression of the average multiplicity as expressed in Eq. (1).
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APPENDIX B - PROOF OF EQUATION (10)

The argument closely follows the previous one. The main difference is the request of vanishing strangeness for each
cluster. Thus, the configurational probabilities (22) w turn to:

w(Q1, . . . ,QN) =

∏

i Zi(Qi)δ∑

i Qi,Q δSi,0
∑

Q1,...,QN

∏

i Zi(Qi)δ∑

i Qi,Q δSi,0
(29)

and the average multiplicity of the jth hadron species now reads:

〈nj〉 =
∂

∂λj
log

∑

Q1,...,QN

∏

i

Z(Qi) δQ,ΣiQi
δSi,0

∣

∣

∣

λj=1
(30)

where λj is a fictitious fugacity. Let us now work out the expression:

ζ =
∑

Q1,...,QN

N
∏

i=1

Zi(Qi) δQ,ΣiQi
δSi,0 (31)

by assuming that all the clusters have the same volume Vc and temperature T . This can be done rewriting the canonical
partition functions Zi like in Eq. (20), using the integral representation of the Kronecker’s delta and eliminating the
redundant strangeness conservation constraints. Thus, expanding the vector Q in its components, the Eq. (31)
becomes:

ζ =
∑

B1,Q1,...,BN ,QN

∫ π

−π

dφB

2π

∫ π

−π

dφQ

2π
eıBφB+ıQφQ e−ı

∑

i
BiφB−ı

∑

i
QiφQ

×
N
∏

i=1

∫ π

−π

dφiB

2π

∫ π

−π

dφiQ

2π

∫ π

−π

dφiS

2π
eıBiφiB+ıQiφiQ exp[F (φiB , φiQ, φiS)] (32)

where F is the function in Eq. (21) with Vc replacing Vi. Note that this function is the same for all clusters, being T
and Vc constant. We can now carry out the sum over all the integers Bi, Qi in Eq. (32) and get:

∑

B1,Q1,...,BN ,QN

e−ı
∑

i Bi(φB−φiB)−ı
∑

i Qi(φQ−φiQ) =

N
∏

i=1

(2π)3 δ(φB − φiB) δ(φQ − φiQ) (33)

so that the integration over φiB and φiQ in Eq. (32) can be easily done and one is left with:

ζ =

∫ π

−π

dφB

2π

∫ π

−π

dφQ

2π
eıBφB+ıQφQ

N
∏

i=1

∫ π

−π

dφiS

2π
exp[F (φB , φQ, φiS)] (34)

As the function F is the same for all clusters, this can be written also as:

ζ =

∫ π

−π

dφB

2π

∫ π

−π

dφQ

2π
eıBφB+ıQφQ

{
∫ π

−π

dφS

2π
exp[F (φB , φQ, φS)]

}V/Vc

(35)

being V =
∑

i Vi = NVc. For large volumes, we can approximate ζ by means of the saddle-point expansion of the
integrals over φB and φQ like in Appendix A. Thus, similarly to Eq. (28):

ζ ∝ λ−B
B λ−Q

Q







∫ π

−π

dφS

2π
exp

[

∑

j

(2Jj + 1)Vc

(2π)3

∫

d3p log(1 ± λ
Bj

B λ
Qj

Q e−
√

p2+m2
j
/T−iφSSj )±1

]







V/Vc

(36)

The function:

Zc ≡
∫ π

−π

dφS

2π
exp

[

∑

j

(2Jj + 1)Vc

(2π)3

∫

d3p log(1 ± λ
Bj

B λ
Qj

Q e−
√

p2+m2
j
/T−iφSSj )±1

]

(37)

is defined as the strange canonical partition function. The multiplicity of the hadron j can now be calculated by
means of Eq. (30) by using Eqs. (31),(35) and the definition (37). What is obtained is just Eq. (10)
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TABLE I: Comparison between measured and fitted particle multiplicities, in the framework of SHM(γS) model in central
Au-Au collisions (3%) at a beam energy of 11.6A GeV. Also shown the predicted multiplicities of the main hadron species.

Reference Measurement Fit A Fit B

NP [39] 363 ± 10 361.7 360.6

p/π+ [9, 25] 1.23 ± 0.13 1.277 1.224

π+ [9, 40] 133.7 ± 9.93 134.9 140.0

π− 176.9 182.2

π0 163.5 163.2

K+ [39] 23.7 ± 2.86 18.80 18.81

K− [39] 3.76 ± 0.47 3.890 3.539

K0
S 11.68 11.68

η 8.073 6.340

ω 4.870 3.659

φ 0.3287 0.3489

η
′

0.2997 0.2437

ρ+ 7.707 10.39

ρ− 9.164 12.55

ρ0 8.517 11.59

K∗+ 3.555 3.512

K∗− 0.6179 0.5145

K∗0 3.766 3.801

K̄∗0 0.5555 0.4628

p 172.2 171.4

p̄ 0.02851 0.02465

∆++ 25.39 24.51

∆̄−− 0.003071 0.00222

Λ [23, 24] see text 18.1 ± 1.9 19.82 20.71

Λ̄ 0.017 ± 0.005 0.01601 0.01645

Σ+ 4.840 4.784

Σ− 5.457 5.453

Σ0 5.163 5.106

Σ̄− 0.003445 0.00321

Σ̄+ 0.002793 0.00259

Σ̄0 0.003115 0.00288

Ξ− 0.56067 0.5564

Ξ0 0.54670 0.5387

Ξ̄+ 0.002133 0.00248

Ξ̄0 0.002392 0.00280

Ω 0.01352 0.01459

Ω̄ 0.0003569 0.00056

Λ(1520) 0.7720 0.6601

Θ+(1540) 1.86 2.20

Θ̄−(1540) 2.710−5 1.8710−5
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TABLE II: Comparison between measured and fitted particle multiplicities, in the framework of SHM(γS) model, in central
Pb-Pb collisions (7.2%) at a beam energy of 30A GeV. Also shown the predicted multiplicities of the main hadron species.

Reference Measurement Fit A Fit B

NP [2] 349 ± 1 ± 5 350.5 350.5

π+ [2] 239 ± 0.7 ± 17 228.4 228.5

π− [2] 275 ± 0.7 ± 20 256.5 256.8

π0 265.8 251.9

K+ [2] 55.3 ± 1.6 ± 2.8 49.83 48.83

K− [2] 16.1 ± 0.2 ± 0.8 17.11 20.72

K0
S 33.57 34.85

η 23.74 21.60

ω 15.45 12.99

φ 2.571 2.848

η
′

1.411 1.341

ρ+ 20.24 22.68

ρ− 23.09 26.05

ρ0 22.14 25.11

K∗+ 13.65 13.45

K∗− 4.006 3.668

K∗0 14.21 14.20

K̄∗0 3.710 3.386

p 138.0 137.0

p̄ 0.3650 0.3803

∆++ 26.90 25.23

∆̄−− 0.07781 0.07438

Λ 38.02 40.25

Λ̄ 0.3393 0.3901

Σ+ 9.995 9.935

Σ− 10.91 10.89

Σ0 10.48 10.40

Σ̄− 0.1005 0.1106

Σ̄+ 0.08620 0.09491

Σ̄0 0.09334 0.1023

Ξ− 2.422 2.422

Ξ0 2.378 2.369

Ξ̄+ 0.07920 0.09332

Ξ̄0 0.08446 0.09967

Ω 0.1587 0.1799

Ω̄ 0.02067 0.02959

Λ(1520) 2.167 1.751

Θ+(1540) 2.84 3.02

Θ̄−(1540) 0.0018 0.0019
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TABLE III: Comparison between measured and fitted particle multiplicities, in the framework of SHM(γS) model, in central
Pb-Pb collisions (7.2%) at a beam energy of 40A GeV. Also shown the predicted multiplicities of the main hadron species.

Reference Measurement Fit A Fit B

NP [1] 349 ± 1 ± 5 352.1 351.6

π+ [1] 293 ± 3 ± 15 285.5 288.3

π− [1] 322 ± 3 ± 16 314.7 317.9

π0 330.4 314.9

K+ [1] 59.1 ± 1.9 ± 3 51.22 50.61

K− [1] 19.2 ± 0.5 ± 1.0 20.52 20.33

K0
S 35.79 36.24

η 30.48 26.59

ω 23.00 19.57

φ [22] 2.57 ± 0.10 2.641 2.644

η
′

1.858 1.621

ρ+ 28.84 31.11

ρ− 32.36 35.01

ρ0 31.27 33.97

K∗+ 15.55 14.34

K∗− 5.393 4.860

K∗0 16.06 14.98

K̄∗0 5.045 4.535

p 141.7 141.9

p̄ 0.9824 0.9784

∆++ 29.05 27.03

∆̄−− 0.2181 0.1969

Λ [28] 45.6 ± 3.4 36.60 37.36

Λ̄ [28] 0.74 ± 0.06 0.7223 0.7297

Σ+ 9.655 9.221

Σ− 10.40 9.938

Σ0 10.05 9.567

Σ̄− 0.2116 0.2033

Σ̄+ 0.1853 0.1783

Σ̄0 0.1985 0.1901

Ξ− 2.118 1.948

Ξ0 2.089 1.917

Ξ̄+ 0.1285 0.1207

Ξ̄0 0.1358 0.1277

Ω 0.1364 0.1344

Ω̄ 0.02719 0.02788

Λ(1520) 2.273 1.688

Θ+(1540) 2.61 2.32

Θ̄−(1540) 0.0052 0.0045
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TABLE IV: Comparison between measured and fitted particle multiplicities, in the framework of SHM(γS) model, in central
Pb-Pb collisions (7.2%) at a beam energy of 80A GeV. Also shown the predicted multiplicities of the main hadron species.

Reference Measurement Fit A Fit B

NP [1] 349 ± 1 ± 5 352.0 351.5

π+ [1] 446 ± 5 ± 22 420.3 422.7

π− [1] 474 ± 5 ± 23 450.9 453.7

π0 485.2 457.6

K+ [1] 76.9 ± 2 ± 4 70.72 69.87

K− [1] 32.4 ± 0.6 ± 1.6 35.96 35.96

K0
S 52.80 53.77

η 49.37 43.47

ω 39.51 34.43

φ [22] 4.37 ± 0.14 4.354 4.353

η
′

3.196 2.786

ρ+ 47.42 48.92

ρ− 51.74 53.54

ρ0 50.79 52.83

K∗+ 22.81 21.10

K∗− 10.43 9.600

K∗0 23.28 21.73

K̄∗0 9.892 9.089

p 141.5 142.5

p̄ 3.379 3.649

∆++ 30.07 28.05

∆̄−− 0.7623 0.7439

Λ [28] 47.4 ± 3.7 42.12 42.85

Λ̄ [28] 2.26 ± 0.35 2.171 2.328

Σ+ 11.23 10.67

Σ− 11.82 11.23

Σ0 11.56 10.93

Σ̄− 0.6265 0.6348

Σ̄+ 0.5643 0.5729

Σ̄0 0.5961 0.6024

Ξ− 2.774 2.505

Ξ0 2.758 2.485

Ξ̄+ 0.3279 0.3154

Ξ̄0 0.3428 0.3299

Ω 0.2154 0.2090

Ω̄ 0.06132 0.06332

Λ(1520) 2.769 2.028

Θ+(1540) 2.35 2.04

Θ̄−(1540) 0.022 0.021
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TABLE V: Comparison between measured and fitted particle multiplicities, in the framework of various versions of the SHM,
in central Pb-Pb collisions (5%) at a beam energy of 158A GeV. Also shown the predicted multiplicities of the main hadron
species. The Λ(1520) multiplicity was not used in the fits (see text). For the SHM(γS, γq) model, the multiplicities are those
calculated in the γq = 1.6 fit.

Particle Reference Measurement SHM(γS) fit A SHM(γS) fit B SHM(SCV) SHM(TC) SHM(γS, γq)

NP [1] 362 ± 1 ± 5 363.6 363.7 362.0 364.2 362.6

π+ [1] 619 ± 17 ± 31 551.5 533.2 502.7 563.4 578.7

π− [1] 639 ± 17 ± 31 583.5 565.6 534.1 595.3 612.5

π0 638.2 576.2 585.4 661.9 661.6

K+ [1] 103 ± 5 ± 5 103.5 103.9 106.7 99.98 102.3

K− [1] 51.9 ± 1.9 ± 3 59.57 59.35 59.54 59.23 57.77

K0
S [28] 81 ± 4 80.31 81.13 81.65 78.19 78.61

η 70.69 62.90 67.73 76.94 62.22

ω 54.93 45.34 48.75 58.75 43.01

φ [29] 7.6 ± 1.1 8.136 8.676 10.07 9.088 7.084

η
′

4.940 4.461 5.021 5.471 3.923

ρ+ 64.56 61.67 57.26 67.18 54.12

ρ− 69.43 66.82 61.93 72.29 57.04

ρ0 68.86 66.84 61.44 73.14 57.00

K∗+ 34.43 32.05 35.51 32.63 27.90

K∗− 18.10 16.47 17.79 17.61 14.79

K∗0 34.93 32.81 36.12 33.07 27.99

K̄∗0 17.29 15.69 16.96 16.84 14.17

p 143.71 142.9 138.51 147.7 144.4

p̄ 7.053 6.877 5.756 7.721 7.046

∆++ 31.01 28.32 29.70 30.70 29.27

∆̄−− 1.595 1.393 1.295 1.716 1.472

Λ [28] 53.0 ± 5.0 53.88 56.22 57.06 49.53 53.38

Λ̄ [28] 4.64 ± 0.32 4.976 5.077 4.698 4.899 4.878

Σ+ 14.45 14.11 15.28 13.21 14.57

Σ− 15.04 14.71 15.98 13.73 14.80

Σ0 14.78 14.39 15.67 13.57 14.73

Σ̄− 1.424 1.375 1.348 1.392 1.396

Σ̄+ 1.301 1.256 1.224 1.277 1.288

Σ̄0 1.364 1.313 1.288 1.344 1.345

Ξ− [30] 4.45 ± 0.22 4.4581 4.335 4.757 4.446 4.650

Ξ0 4.446 4.315 4.736 4.440 4.681

Ξ̄+ [30] 0.83 ± 0.04 0.8159 0.7931 0.8234 0.8186 0.8263

Ξ̄0 0.8485 0.8264 0.8578 0.8508 0.8593

Ω [22] 0.62 ± 0.09 0.4499 0.4906 0.4414 0.5165 0.4299

Ω̄ [22] 0.20 ± 0.03 0.1702 0.1884 0.1690 0.1859 0.1535

Λ(1520) [41] 1.57 ± 0.44 3.669 2.724 3.889 3.382 3.079

Θ+(1540) 2.68 2.41 5.71

Θ̄−(1540) 0.061 0.053 0.13



19

TABLE VI: Integrated multiplicities over limited rapidity windows around midrapidity obtained by fitting the measured
distributions with single (G) or double (G+G) gaussians The yields at 10% and 20% centrality have been then multiplied
by 1.08 and 1.32 respectively to convert them at 5% centrality trigger condition..

Particle Centrality Reference Fitting function ∆y = 2 ∆y = 1 χ2/dof

π− 5% [1] G+G 333.16 176.82 9.37

K+ 5% [1] G+G 57.16 29.81 3.33

K− 5% [1] G+G 32.24 16.90 1.27

φ 5% [29] G 4.327 2.35 0.04

Λ 10% [28] G 22.56 11.52 0.49

Λ̄ 10% [28] G 3.039 1.723 0.58

Ξ− 10% [30] G 2.75 1.484 1.2

Ξ+ 10% [30] G 0.571 0.3314 0.71

Ω 20% [22] G 0.3095 0.173 0.73

Ω̄ 20% [22] G 0.126 0.0789 2.70
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TABLE VII: Summary of fitted parameters in various heavy ion collisions at AGS and SPS in the framework of the SHM(γS)
model. The ’common set’ parameters have been obtained by fitting to the measured multiplicities of π+, K+, K−, Λ, Λ̄ and
the participant nucleons in each collision. Also quoted minimum χ2’s, the estimated radius of the EGC and the λS parameter
(see Sect. 4). The re-scaled errors (see text) are quoted within brackets. For Pb-Pb at 30 A GeV of beam energy, we have
constrained T and µB to lie on the fitted chemical freeze-out curve, as described in Sect. 4.

Parameters Main analysis A Main analysis B Common set A Common set B

Au-Au 11.6A GeV

T (MeV) 118.1±3.5 (4.1) 119.1±4.0 (5.4) 119.2±2.1 (2.9) 119.1±4.0 (6.6)

µB (MeV) 555±12 (13) 578±15 (21) 556±12 (17) 576.9±17.2 (29)

γS 0.652±0.069 (0.079) 0.763±0.086 (0.12) 0.645±0.042 (0.058) 0.761±0.090 (0.15)

V T 3 exp[−0.7 GeV/T ] 1.94±0.21 (0.24) 1.487±0.18 (0.25) 1.97±0.12 (0.17) 1.494±0.21 (0.35)

χ2/dof 4.0/3 5.5/3 3.86/2 5.5/2

R (fm) 9.31±0.69 (0.80) 8.32±0.72 (0.97)

λS 0.381±0.053 (0.061) 0.490±0.084 (0.11) 0.401±0.053 (0.074) 0.487±0.089 (0.15)

Pb-Pb 30A GeV

T (MeV) 139.5 140.3

µB (MeV) 428.6 428.7

γS 0.938±0.078 (0.13) 1.051±0.103 (0.16)

V T 3 exp[−0.7 GeV/T ] 6.03±0.50 (0.85) 5.273±0.526 (0.80)

χ2/dof 5.75/2 4.6/2

λS 0.611±0.037 (0.062) 0.683±0.086 (0.13)

Pb-Pb 40A GeV

T (MeV) 147.6±2.1 (4.0) 145.5±1.9 (3.5) 148.6±2.1 (4.7) 146.1±2.0 (4.0)

µB (MeV) 380.3±6.5 (13) 375.4±6.4 (12) 393±10 (22) 390±10 (21)

γS 0.757±0.024 (0.046) 0.807±0.025 (0.047) 0.874±0.064 (0.14) 0.961±0.079 (0.16)

V T 3 exp[−0.7 GeV/T ] 8.99±0.37 (0.71) 8.02±0.34 (0.63) 8.09±0.55 (1.24) 7.08±0.53 (1.1)

χ2/dof 14.7/4 13.6/4 10.1/2 8.1/2

R (fm) 8.37±0.32 (0.61) 8.37±0.31 (0.58)

λS 0.507±0.025 (0.049) 0.505±0.026 (0.048) 0.621±0.064 (0.14) 0.626±0.071 (0.14)

Pb-Pb 80A GeV

T (MeV) 153.7±2.8 (4.7) 151.9±3.4 (5.4) 154.6±3.3 (7.2) 152.2±3.5 (7.5)

µB (MeV) 297.7±5.9 (9.8) 288.9±6.8 (11) 300.7±9.4 (21) 292.8±9.0 (19)

γS 0.730±0.021 (0.035) 0.766±0.026 (0.042) 0.741±0.057 (0.13) 0.782±0.061 (0.13)

V T 3 exp[−0.7 GeV/T ] 15.38±0.61 (1.0) 14.12±0.65 (1.1) 15.0±1.0 (2.3) 13.7±0.95 (2.0)

χ2/dof 11.0/4 10.4/4 9.6/2 9.3/2

R (fm) 9.03±0.41 (0.68) 9.05±0.44 (0.71)

λS 0.455±0.020 (0.034) 0.461±0.020 (0.032) 0.482±0.053 (0.12) 0.4568±0.044 (0.095)

Pb-Pb 158A GeV

T (MeV) 157.8±1.4 (1.9) 154.8±1.4 (2.1) 156.6±2.3 (3.3) 152.7±2.1 (3.2)

µB (MeV) 247.3±5.2 (7.2) 244.5±5.0 (7.8) 238.6±7.1 (10) 232.4±7.7 (12)

γS 0.843±0.024 (0.033) 0.938±0.027 (0.042) 0.722±0.053 (0.077) 0.764±0.065 (0.097)

V T 3 exp[−0.7 GeV/T ] 21.13±0.80 (1.1) 18.46±0.69 (1.1) 23.2±1.4 (2.0) 21.1±1.4 (2.2)

χ2/dof 16.9/9 21.6/9 4.2/2 4.5/2

R (fm) 9.41±0.26 (0.35) 9.44±0.25 (0.39)

λS 0.506±0.018 (0.024) 0.514±0.018 (0.028) 0.426±0.037 (0.054) 0.401±0.039 (0.058)
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TABLE VIII: Fit results in Pb-Pb at 158A GeV with particle yields in limited rapidity window.

Particle WA97 measured WA97 fitted NA49 measured NA49 fitted

h− 178±22 157.2

π− 176.8±9.8 151.8

K+ 29.81±2.05 30.63

K− 16.90±1.16 18.24

K0
S 21.9±2.4 22.97

φ 2.35±0.34 2.900

Λ 13.7±0.9 13.75 12.44±1.17 15.35

Λ̄ 1.8±0.2 1.837 1.86±0.13 1.905

Ξ− 1.5±0.1 1.525 1.603±0.079 1.502

Ξ̄+ 0.37±0.06 0.3782 0.358±0.017 0.3585

Ω 0.228±0.033 0.1858

Ω̄ 0.104±0.016 0.08894

Ω+Ω̄ 0.41±0.08 0.3136

TABLE IX: Fit results in Pb-Pb at 158A GeV with particle yields in limited rapidity window.

Parameters ∆y = 1 ∆y = 2 WA97 central

T (MeV) 162.7±2.7 (5.1) 161.0±2.6 (4.2) 161.3±5.4

µB (MeV) 229±12 (23) 223±13 (21) 218±19

γS 0.971±0.044 (0.083) 0.950±0.043 (0.070) 1.085±0.079

V T 3 exp[−0.7 GeV/T ] 5.55±0.31 (0.58) 10.71±0.59 (0.96) 4.73±0.52

χ2/dof 21.1/6 16.0/6 2.7/3

TABLE X: Fit results in Pb-Pb at 158A GeV with different models, as described in the text: SHM(SCV) (Strangeness Correla-
tion Volume), SHM(TC) (Two Component model), SHM(γS, γq) (light quark non-equilibrium model). Free fit parameters are
quoted along with resulting minimum χ2’s. The re-scaled errors (see text) are quoted withing brackets. For the SHM(γS, γq),
the fit has been done by fixing γq = 1.6 near the absolute χ2 minimum (see Section 3.2).

Parameters SHM(SCV) SHM(TC) SHM(γS, γq)

T (MeV) 157.9±1.6 (3.3) 154.8±1.5 (1.9) 140.4±1.1 (1.3)

µB (MeV) 261.5±2.4 (4.9) 237.1±7.0 (8.6) 218.1±4.3 (5.2)

γS 1.0 (fixed) 1.0 (fixed) 0.929±0.027 (0.033)

V T 3 exp[−0.7 GeV/T ] 18.62±0.52 (1.1) 15.50±0.54 (0.67) 16.82±0.59 (0.72)

f 0.0253± 0.0067 (0.014)

γq 1.6 (fixed)

〈Nc〉 52.0±7.8 (9.6)

χ2/dof 37.2/9 13.7/9 13.4/9
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TABLE XI: Fitted parameters and multiplicities in pp collisions at a beam energy of 158 GeV, corresponding to
√

s = 17.2
GeV. The re-scaled errors (see text) are quoted withing brackets.

Parameter Value

T (MeV) 187.2±6.1 (9.3)

V T 3 5.79±0.85 (1.3)

〈ss̄〉 0.381±0.021 (0.032)

χ2/dof 16.1/7

λS 0.224±0.019 (0.024)

Particle Reference Measurement Fit

π+ [42] 3.15±0.16 3.257

π− [42] 2.45±0.12 2.441

π0 3.317

K+ [42] 0.21±0.02 0.1901

K− [42] 0.13±0.013 0.09981

K0
S [42] 0.18±0.04 0.1382

η 0.3918

ω 0.3514

φ [29] 0.012±0.0015 0.01593

η
′

0.02576

ρ+ 0.4736

ρ− 0.3118

ρ0 0.4254

K∗+ 0.07360

K∗− 0.02976

K∗0 0.06192

K̄∗0 0.03383

p 1.126

p̄ [42] 0.040±0.007 0.04364

∆++ 0.2937

∆̄−− 0.007650

Λ [43] 0.115±0.012 0.1123

Λ̄ [43] 0.0148±0.0019 0.01453

Σ+ 0.03480

Σ− 0.02310

Σ0 0.03004

Σ̄− 0.003317

Σ̄+ 0.004384

Σ̄0 0.003989

Ξ− 0.001874

Ξ0 0.002119

Ξ̄+ 0.0006902

Ξ̄0 0.0006376

Ω 0.00003783

Ω̄ 0.00002908

Λ(1520) [44] 0.012±0.003 0.009155

Θ+ 0.005224

Θ̄− 0.0001515
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FIG. 1: Above: measured versus fitted multiplicities in the statistical model supplemented with γS parameter (SHM(γS)) in
Au-Au collisions at a beam energy of 11.6A GeV in the fit A; also quoted the best-fit parameters. Below: residual distribution.
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FIG. 2: Above: measured versus fitted multiplicities in the statistical model supplemented with γS parameter in Pb-Pb collisions
at a beam energy of 40A GeV in the fit A; also quoted the best-fit parameters. Below: residual distribution.
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FIG. 3: Above: measured versus fitted multiplicities in the statistical model supplemented with γS parameter in Pb-Pb collisions
at a beam energy of 80A GeV in the fit A; also quoted the best-fit parameters. Below: residual distribution.

1

10

10 2

10 3

1 10 10
2

10
3

Multiplicity (model)

M
ul

tip
lic

ity
 (

da
ta

)

SpS Pb+Pb collisions 80A GeV

T=153.7±4.7 MeV

µB=297.7±16.6 MeV

γs=0.730±0.035

χ2=11.0/4 dof

π
B

K+

Λ

K-

Λ
–

φ

π- π+ K+ K- B Λ Λ
–

φ

R
es

id
ua

ls

-4
-2

0
2

4



26

FIG. 4: Above: measured versus fitted multiplicities in the statistical model supplemented with γS parameter in Pb-Pb collisions
at a beam energy of 158A GeV in the fit A; also quoted the best-fit parameters. Below: residual distribution. Note that the
Λ(1520) was not used in the fit (see text).
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FIG. 5: Comparison between measured and calculated (in fits A and B) 〈K+〉/〈π+〉and 〈π−〉/〈Np〉ratios as a function of the
centre-of-mass energy in the examined collisions. For the SPS energy points the statistical errors are indicated with solid lines,
while the contribution of the common systematic error is shown as a dotted line The lines connect the fitted values.
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FIG. 6: Spectrum of known light-flavoured hadronic species up to a mass of 1.8 GeV.
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FIG. 7: Left: primary yields of various particles as a function of the cut-off on the hadronic mass spectrum. Right: fitted γS,
baryon-chemical potential and temperature as a function of the cut-off on the hadronic mass spectrum.
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FIG. 8: Rapidity distributions of π±, K±, φ and Ω emitted from a single fireball at rest at a kinetic freeze-out temperature of
T = 125 MeV.
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FIG. 9: Above: measured versus fitted multiplicities in the statistical model supplemented with strangeness suppression in pp
collisions at a beam energy of 158 GeV corresponding to

√
s = 17.2 GeV; also quoted the best-fit parameters. Below: residual

distribution.
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FIG. 10: Minimum χ2 of multiplicity fits in Pb-Pb collisions at a beam energy of 158A GeV as a function of a fixed light quark
non equilibrium parameter γq. The round dots are the χ2’s obtained with the main data sample, whilst triangular dots are
those obtained with pion multiplicities lowered by one standard deviation and all others unchanged. The vertical dashed line
indicates the condensation point.

γq

χ2 m
in

9

10

11

12

13

14

15

16

17

18

0.4 0.6 0.8 1 1.2 1.4 1.6



33

FIG. 11: Chemical freeze-out points in the µB − T plane in various heavy ion collisions. The full round dots refer to Au-Au
at 11.6 and Pb-Pb collisions at 40, 80, 158A GeV obtained in the analysis A, whilst the hollow square dot has been obtained
in ref. [11] by using particle ratios measured at midrapidity in Au-Au collisions at

√
sNN = 130 GeV. The hollow round dot

without error bars refers to Pb-Pb collisions at 30A GeV and has been obtained by forcing T and µB to lie on the parabola
fitted to the full round dots.
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FIG. 12: Strangeness non-equilibrium parameter γS as a function of the nucleon-nucleon centre-of-mass energy. Full dots refer
to fit A, hollow dots to fit B.
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FIG. 13: Measured 〈K+〉/〈π+〉ratio as a function of the fitted baryon-chemical potential. The full square dot is a preliminary
full phase space measurement in Au-Au collisions at

√
sNN = 200 GeV [37] and the error is only statistical; the arrow on the

left signifies that its associated baryon chemical potential is lower than that estimated at
√

sNN = 130 GeV [11] used here.
For the SPS energy points the statistical errors are indicated with solid lines, while the contribution of the common systematic
error is shown as a dotted line. Also shown the theoretical values for a hadron gas along the fitted chemical freeze-out curve
shown in fig. 11, for different values of γS.
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FIG. 14: λS estimated from the fits A (full dots) and B (hollow dots) as a function of the fitted baryon-chemical potential. Also
shown the theoretical values for a hadron gas along the fitted chemical freeze-out curve shown in fig. 11, for different values of
γS.
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