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Abstract

We suggest that the fluctuations of strange hadron multiplicity could be sensitive to the

equation of state and microscopic structure of strongly interacting matter created at the early

stage of high energy nucleus–nucleus collisions. They may serve as an important tool in the

study of the deconfinement phase transition. We predict, within the statistical model of the

early stage, that the ratio of properly filtered fluctuations of strange to non-strange hadron

multiplicities should have a non–monotonic energy dependence with a minimum in the mixed

phase region.
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1 Introduction

Recently a new method was proposed [1] to study the equation of state (EoS) of the matter
created at the early stage of nucleus–nucleus (A+A) collisions. It was suggested to analyze
the collision energy dependence of the ratio of properly filtered multiplicity and energy fluc-
tuations. It was shown that the fluctuation ratio measured at the final state may be directly
dependent on the ratio of pressure to energy density at the early stage. In the present paper
we make a next step within the same framework and consider strangeness fluctuations. A new
observable connected with the fluctuations of the strange hadron yield is proposed. We derive
the quantitative predictions of the Statistical Model of the Early Stage (SMES) [2] concerning
the fluctuation of the number of strange hadrons. We find a non-monotonic dependence on the
collision energy: the ratio of the relative multiplicity fluctuations of strange hadrons to those
of negatively charged hadrons has a minimum in the domain where the onset of deconfinement
occurs.

The paper is organized as follows. The basic relevant assumptions of the SMES are presented
in Sect. 2. The role of dynamical fluctuations in the study of EoS at the early stage is stressed
in Sect. 3. The energy dependence of the dynamical strangeness fluctuations is derived within
SMES and discussed in Sect. 4. Summary and conclusions close the paper, Sect. 5.

2 Statistical Model of the Early Stage

Since we are going to discuss the collision energy dependence of the fluctuations within the
SMES [2], let us present its basic assumptions. The volume, V , where the matter in confined,
mixed or deconfined state is produced at the collision early stage, is given by the Lorentz
contracted volume occupied by wounded nucleons. For the most central collisions the number
of wounded nucleons is NW ≈ 2 · A. The net baryon number of the created matter equals to
zero. Even in the most central A+A collisions only a fraction η < 1 of the total collision energy
is used for a particle production. The rest is carried away by the baryons which contribute to
the baryon net number. The main postulates of the SMES [2] are the following:

• New particles are created at the early stage of A+A collision in a state of the global
statistical equilibrium.

• The model assumes that the created matter is described in the grand canonical ensemble
with all chemical potentials equal to zero. The EoS is chosen in the form of relativistic
ideal gas with an additional bag–term contribution in the deconfined phase.

• The basic constituents of the deconfined phase are the light u and d (anti)quarks (mu
∼=

md
∼= 0), the strange (anti)quarks (ms

∼= 175 MeV) and gluons.

• The total entropy and strangeness created at the early stage are supposed to be approx-
imately conserved during the expansion, hadronization and freeze-out.

We describe the system’s EoS in terms of the pressure as a function of temperature: p =
p(T ). For an ideal gas of particles ‘j’ with zero chemical potential one finds (mj is a particle
mass, gj is a number of internal degrees of freedom):

pj(T ) =
gj

6π2

∫

∞

0
k2dk

k2

√

k2 + m2
j



exp





√

k2 + m2
j

T



 ± 1





−1

, (1)
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where +1 is used for fermions and −1 for bosons. The total pressure p(T ) is a sum of partial
pressures pj(T ) over all particle species ‘j’. The energy density ε(T ) and entropy density s(T )
for the system with zero chemical potentials are calculated from the thermodynamical identities:
ε = Tdp/dT − p and s = dp/dT . For massless particles one obtains: p(T ) = σ/3T 4 , ε(T ) =
σT 4 , s(T ) = 4σ/3T 3 , where σ = (gb + 7gf/8) · π2/30 with gb and gf being respectively the
total number of degrees of freedom for bosons and fermions. In the quark gluon plasma (QGP)
we have gb

Q = 2 · 8 = 16 and gf
Q = 2 · 2 · 2 · 3 = 24 massless degrees of freedom which correspond

to the gluons and non-strange (anti)quarks, respectively. The pressure of strange quarks and
anti-quarks is given by Eq. (1) with the degeneracy factor gs

Q = 2 · 2 · 3 = 12 and quark mass
ms = 175 MeV. We use the bag–model EoS for the QGP [4]: pQ = pid − B, εQ = εid + B, i.e.
the constant term B > 0 is subtracted from the total ideal gas pressure and is added to the
total ideal gas energy density.

In the confined (hadron) phase we assume the effective degeneracy factor gns
H for massless

non-strange degrees of freedom and gs
H for strange degrees of freedom (the strange effective

degrees of freedom are assumed to be massive with mass mH close to the kaon mass). These
parameters of the confined phase are obtained in Ref. [2] from fitting the data on multiplicities
of strange and non-strange hadrons in Au+Au collisions at the AGS energies.

The temperature of the phase transition, Tc, is defined by the Gibbs criterion of equal
pressures: pH(Tc) = pQ(Tc). At T = Tc the system stays in the mixed phase and its energy
density equals to:

ε = (1 − ξ) · εH(Tc) + ξ · εQ(Tc) , (2)

where 0 ≤ ξ ≤ 1 is the part of the system occupied by the Q-phase.
For the total strange particle number density in the H , Q and mixed phases we have,

respectively:

ns
H(T ) =

gs
H

2π2

∫

∞

0
k2dk exp



−
√

k2 + m2
H

T



 =
gs

H

2π2
· m2

HT · K2

(

mH

T

)

, (3)

ns
Q(T ) =

gs
Q

2π2

∫

∞

0
k2dk



exp





√

k2 + m2
s

T



 + 1





−1

, (4)

ns
mix(ε) = (1 − ξ) · ns

H(Tc) + ξ · ns
Q(Tc) . (5)

3 Statistical and Dynamical Fluctuations

Various values of the energy E and volume V of the initial equilibrium state lead to different,
but uniquely determined, initial entropies S. When the collision energy is fixed, the energy,
which is used for particle production still fluctuates. These fluctuations of the inelastic energy
are caused by the fluctuations in the dynamical process which leads to the particle production.
They are called the dynamical energy fluctuations [1]. Clearly the dynamical energy fluctuations
lead to the dynamical fluctuations of any macroscopic parameter of the matter. In Ref. [1] the
dynamical entropy fluctuations were considered and related to the dynamical energy fluctuations
and EoS as:

Re ≡ (δS)2/S2

(δE)2/E2
=

(

1 +
p

ε

)

−2

, (6)

providing the volume fluctuations were absent δV = 0. The ratio p/ε reaches a minimum – the
so called ‘softest point’ [5] of the EoS – at the boundary between the mixed phase and the QGP.
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Thus, we expect a non-monotonic energy dependence of Re with a maximum at this boundary
point. The numerical results for the ratio Re (6) calculated within the SMES in Ref. [1] are
shown in Fig. 1.

The early stage energy and entropy are not directly measurable. In an experiment only
momenta and energies of final state particles in a limited acceptance are reconstructed. Thus,
the question arises whether the early stage fluctuations can be reconstructed from the experi-
mentally accessible information. In Ref. [1] we argued that this may be possible in the case of
entropy, provide that the distortions caused by final state correlations and statistical noise are
removed. The distortions can be minimized by a proper choice of the studied observables. For
instance in the case of study of dynamical entropy fluctuations it is better to extract them from
the fluctuations of negatively charged hadrons than from all charged hadrons, as the latter is
influenced by correlations due to resonance decays and global charge conservation. As a method
to extract the dynamical fluctuations from the statistical noise the so-called sub-event method
[3] can be used. In this method the fluctuations are measured in two different non-overlapping
but dynamically equivalent regions of the phase space (see Ref. [1] for further details).

The idea to study the EoS of the matter created at the early stage of collisions by an
analysis of the dynamical fluctuations, proposed originally for entropy [1], can be extended for
strangeness. This subject is discussed in the next section. We note that among different macro-
scopic parameters of the system the entropy and strangeness content are of special importance
[2]: they are created at the early stage of A+A collisions, they are sensitive to the EoS of the
matter and they are approximately conserved during the system expansion, hadronisation and
freeze-out.

4 Fluctuations of Strangeness

In this central section of the paper we study within the SMES the energy dependence of the
dynamical strangeness fluctuations caused by the dynamical energy fluctuations. We define
strangeness Ns as a total number of all strange and anti-strange particles and consider the
fluctuation ratio defined as:

Rs =
(δN s)

2/N
2
s

(δE)2/E2
. (7)

As in the case of entropy fluctuations we assume that experimental procedure allows to eliminate
the event–by–event fluctuations of the initial volume V . Since N s = ns · V , the dynamical
fluctuations of N s are defined by that of the strangeness density: δN s/δE = δns/δε and
consequently Rs = (δns/δε)2 · (ε/ns)2.

The strangeness density depends on T in the pure confined and deconfined phases according
to Eqs. (3) and (4), respectively. One has therefore to calculate the fluctuations of ns due to
the fluctuations of temperature and then the fluctuations of T due to those of ε:

δns
(H,Q)

δε
=

dns
(H,Q)

dT
· dT

dε
. (8)

In the mixed phase region, εH(Tc) < ε < εQ(Tc), the strangeness dynamical fluctuations can
be found from Eqs. (2) and (5):

δns
mix

δε
=

ns
Q(Tc) − ns

H(Tc)

εQ(Tc) − εH(Tc)
. (9)
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We note that the fluctuation ratio (9) does not depend on the energy density ε.
Let us first find the asymptotic behavior of Rs at high and small T . When T → ∞ the

system is in the QGP phase. The strange (anti)quarks can be considered as massless and the
bag constant can be neglected. Then ε ∝ T 4 and ns ∝ T 3 and consequently dε/ε = 4 · dT/T
and dns/ns = 3 · dT/T , which result in Rs = (3/4)2 ∼= 0.56. In the confined phase, T < Tc, the
energy density is still approximately given by εH ∝ T 4 due to the dominant contributions of non-
strange hadron constituents. However, the dependence of strangeness density on T is dominated
in this case by the exponential factor, ns

H ∝ exp(−mH/T ), as T << mH . Therefore, at small
T one finds dεH/εH ∝ 4 · dT/T and dns

H/ns
H ∝ mH · dT/T 2, so that the ratio Rs

∼= mH/(4T )
decreases with increasing temperature (energy density). The strangeness density ns

H is small
and goes to zero at T → 0, but the fluctuation ratio Rs (7) is large and goes to infinity at zero
temperature limit.

The results of numerical calculations for the collision energy dependence of Rs (7) within
SMES are presented in Fig. 2. As expected the fluctuation ratio Rs is independent of energy and
equals approximately 0.56 at high collision energies when the initial state corresponds to the
hot QGP. Rs rapidly decreases at small collision energies. A pronounced minimum-structure is
observed in the dependence of Rs on the collision energy. It is located in the collision energy
region 30 ÷ 60 A·GeV, where the mixed phase is created at the early stage of A+A collision.

The ratio Rs (7) is defined above for the infinitesimal energy fluctuations. From Fig. 2 one
observes the ‘discontinuities’ of Rs at the boundaries of the pure hadron and QGP phases with
the mixed phase. It is easy to understand this result, as we have used different equations for ns

and ε in each separate phase: the function ns does not have discontinuities, but its derivative
δns/δε does. In fact, the dynamical energy fluctuations are not infinitesimal. Even more, the
dynamical fluctuations should be not too small to separate them safely from the statistical
fluctuations. The quantitative analysis presented below demonstrates that by introducing the
finite size of the energy fluctuations we avoid the artificial discontinuities in the Rs ratio.

We denote by E an average energy of the created matter at fixed collision energy. We
further assume that event-by-event values of energy E ′ vary around E according to the Gauss
distribution:

P (E ′, E) = C exp

[

− (E − E ′)2

2σ2

]

, (10)

where σ = aE with a = const, and C ∼= (2πσ2)−1/2 is defined by the normalization condition
∫

∞

0 dE ′P (E ′, E) = 1. The dynamical averaging of any observable f(E ′) can be defined now as:

〈f〉 =
∫

∞

0
dE ′ P (E ′, E) f(E ′) . (11)

The ratio Rs for the finite energy fluctuations (10) is given by

Rs ≡ 〈(δNs)
2〉/〈Ns〉2

〈(δE)2〉/〈E〉2 , (12)

where (δX)2 ≡ (X − 〈X〉)2. Providing E >> σ one gets 〈E〉 ≡ ∫

∞

0 dE ′P (E ′, E) E ′ ∼= E
and 〈(δE)2〉 = 〈E2〉 − 〈E〉2 ∼= (σ)2, and consequently 〈(δE)2〉/〈E〉2 = (σ/E)2 = a2, i.e. for
distribution (10) the relative fluctuations are independent of the collision energy.

The function Ns(E
′) needed to calculate 〈Ns〉 and 〈N2

s 〉 is defined by Eqs. (3-5) with ε ≡
E ′/V . The results of numerical calculations of Rs (12) with σ/E = a = 0.1 are shown in
Fig. 2. The qualitative features of the Rs dependence on the collision energy are not changed
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by the introduction of finite energy fluctuations (very similar plots are obtained for a = 0.05
and a = 0.2). The main difference is the disappearance of the sharp edges characteristic for
infinitesimal fluctuations.

We apply now our procedure of averaging over finite energy fluctuations to the ratio Rs (6).
The calculations are done according to Eq. (11) with S(E ′) = V (ε + p)/T :

〈Sn〉 =
∫

∞

0
dE ′ P (E ′, E) Sn(E ′) , n = 1, 2; 〈(δS)2〉 = 〈S2〉 − 〈S〉2 . (13)

The dependence of Re on the collision energy for distribution (10) with σ/E = a = 0.1 is shown
in Fig. 1 by dashed line. Again, as in the case of Rs, the averaging procedure does not change
the basic features of the dependence.

Both the entropy and strangeness fluctuation measures, Re and Rs, show ’anomalous’ be-
havior in the transition region: the maximum is observed for Re and the minimum for Rs.
Consequently, even stronger anomaly is observed in the ratio:

Rs/e ≡ Rs

Re
=

〈(δNs)
2〉/〈Ns〉2

〈(δS)2〉/〈S〉2
∼= 〈(δNs)

2〉/〈Ns〉2
〈(δN−)2〉/〈N−〉2

. (14)

Its dependence on the collision energy is shown in Fig. 3 for infinitely small energy fluctuations
and for σ/E = a = 0.1. Experimental measurements of Rs/e may be easier than the measure-
ments of Re or Rs because the ratio Rs/e requires measurements of particle multiplicities only,
whereas both Re and Rs involve also measurements of particle energies. Finally we note that
the relative dynamical fluctuations of strangeness and entropy are approximatelly equal (see [1])
to the corresponding fluctuations of K+ meson and negatively charged hadron multiplicities,
respectively. Thus the Rs/e fluctuation ratio can be expressed by the measurable quantities as:

Rs/e
∼= 〈(δNK+)2〉/〈NK+〉2

〈(δN−)2〉/〈N−〉2
. (15)

5 Conclusions

We have considered strangeness fluctuations as a potential probe of the equation of state and
microscopic content of the strongly interacting matter created at the early stage of high energy
nucleus–nucleus collisions. In order to quantify the fluctuations we have introduced a new mea-
sure Rs/e (14) constructed from fluctuations of strange and non–strange hadron multiplicities.
We have predicted, within statistical model of the early stage [2], the energy dependence of the
Rs/e measure and we have shown that it is strongly sensitive to the form of matter created at
the early stage of nucleus–nucleus collisions. In particular, a “tooth” structure (see Fig. 3) is
expected in the collision energy domain 30÷60 A·GeV in which deconfinement phase transition
is located.
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Figure 1: The dependence of the entropy to energy fluctuations, Re, calculated within SMES
[2] on Fermi’s collision energy measure F (F ≡ (

√
sNN − 2mN )3/4/

√
sNN

1/4, where
√

sNN is
the c.m.s. energy per nucleon–nucleon pair and mN the rest mass of the nucleon). The non–
monotonic behavior, the “shark fin” structure, is caused by the modification of fluctuations
expected in the vicinity of the mixed phase region. The solid and dashed lines indicate results
for infinitely small and finite (σ/E = 0.1) energy fluctuations, respectively.
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Figure 2: The dependence of the strangeness to energy fluctuations, Rs, calculated within SMES
[2] on Fermi’s collision energy measure F (F ≡ (

√
sNN − 2mN )3/4/

√
sNN

1/4, where
√

sNN is
the c.m.s. energy per nucleon–nucleon pair and mN the rest mass of the nucleon). The non–
monotonic behavior is caused by the modification of fluctuations expected in the vicinity of the
mixed phase region. The solid and dashed lines indicate results for infinitely small and finite
(σ/E = 0.1) energy fluctuations, respectively.
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Figure 3: The dependence of the strangeness to entropy fluctuations, Rs/e, calculated within

SMES [2] on Fermi’s collision energy measure F (F ≡ (
√

sNN −2mN )3/4/
√

sNN
1/4, where

√
sNN

is the c.m.s. energy per nucleon–nucleon pair and mN the rest mass of the nucleon). The
non–monotonic behavior, the “tooth” structure, is caused by the modification of fluctuations
expected in the vicinity of the mixed phase region. The solid and dashed lines indicate results
for infinitely small and finite (σ/E = 0.1) energy fluctuations, respectively.
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