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ABSTRACT

The study of river complexity and sensitivity to future human land-use activities and climate 

change is a fast growing field within the discipline of fluvial geomorphology. Associated with 

this is a need to improve river rehabilitation and catchment management approach, design 

and effectiveness. This study aimed to investigate drivers of the recent geomorphological 

sensitivity of the Baviaanskloof River-floodplain, an upland system in South Africa, by 

integrating the concepts of geomorphological connectivity and Panarchy. The understanding 

generated was used to evaluate the approach of the State agency, Working for Wetlands 

(WfWet), to river-floodplain rehabilitation in the catchment.

The concepts of geomorphological connectivity and Panarchy provide useful frameworks for 

understanding interactions between geomorphological processes and structure across 

scales of space and time. Geomorphological connectivity explains the degree to which water 

and sediment is linked in a river landscape, determined by the distribution of erosional and 

depositional landforms (Brierley et al. 2006; Fryirs et al. 2007a; Fryirs et al. 2007b). Panarchy 

attempts to explain lagged response to disturbances, non-linear interactions, and sudden 

shifts in system state, and has been applied largely to ecological systems. Panarchy theory, 

when combined with the concept of geomorphological connectivity, provides a guiding 

framework for understanding river complexity in greater depth.

The first results chapter of this study investigated river long-term and recent 

geomorphological history, towards understanding the nature and timing of river 

geomorphological cycling between erosion and deposition. Optically Stimulated 

Luminescence dating of alluvial fan and floodplain sedimentary units was conducted, for 

analysis of river-floodplain long-term history (100s to 1 000s of years). Interviews with 11 

local landowners, combined with analysis of historic aerial imagery and river-floodplain 

topographic surveys, provided a means of describing recent (last few decades) 

geomorphological dynamics. The results indicated that the Baviaanskloof is naturally a cut- 

and-fill landscape over scales of several hundred to thousands of years, characterized by the 

alternation between phases of high fluvial energy and alluvial fan expansion, and low energy 

conditions associated with floodplain accretion. Recent and widespread river-floodplain 

degradation was compressed into a short period of approximately 30 years, suggesting that
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one or more drivers have pushed the system beyond a threshold, resulting in increased 

water and sediment connectivity.

The second results chapter investigated the role of human land-use activities and flooding 

frequency and magnitude, as drivers of recent river-floodplain degradation. Human impacts 

were investigated by describing land-use activities for the preceding 80 years, and relating 

these activities to changes in river-floodplain form and behavior. Temporal trends in flood 

events of different frequency and magnitude were investigated by analyzing rainfall data, 

integrated with landowner reports of flood-inducing rainfall magnitudes. The findings 

indicated that human land-use activities have been an important driver of recent river- 

floodplain degradation, through the enhancement of water and sediment connectivity 

across spatial scales of the catchment. Episodic and high magnitude floods synergized with 

human driven increased connectivity, precipitating stream power and geomorphological 

threshold breaches, resulting in a shift in river behaviour.

The third results chapter investigated the influence of tributary-junction streams and fans 

on the geomorphological form, behavior and sensitivity of the Baviaanskloof River. Local- 

scale topographic impacts of tributary fans and streams were described using topographic 

surveys and geomorphological mapping techniques. Tributary streams form a major control 

on the behaviour of the river, by influencing the degree of coarse sediment connectivity 

with the main channel. Although tributary fans buffer the river from disturbances occurring 

in the wider catchment, they initiate topographic variations along the floodplain, influencing 

local-scale patterns of deposition and erosion along the river. The main river responds to 

water and sediment inputs from tributary junction streams by locally adjusting longitudinal 

slope, maintaining an overall constant slope of 0.0066 m/m. The response of the 

Baviaanskloof River to tributary junction fans and streams is however variable, and is 

fashioned by complex interactions between geomorphological and anthropogenic factors.

The final two chapters of the thesis evaluate the findings of the study within the context of 

river-floodplain rehabilitation approaches in South Africa, and within the theoretical, 

philosophical and methodological context of the research. The first of these two chapters 

evaluates the approach of the WfWet programme to river-floodplain rehabilitation in the 

Baviaanskloof. The chapter indicates that the present practice of WfWet is to reinstate a
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pre-degradation state, which is not suited to the Baviaanskloof River-floodplain, since the 

river-floodplain has passed a geomorphological threshold, resulting in a new set of 

interacting processes and landforms. The author presents a conceptual model illustrating 

the existence of geomorphological adaptive cycles interacting across spatial and temporal 

scales, thereby attempting to explain a river Panarchy specific to the Baviaanskloof. From 

this conceptual model, a hierarchical rehabilitation framework, targeting geomorphological 

processes and structure situated at different spatial and temporal scales of the landscape is 

suggested. The final chapter discusses the implications of integrating the concepts of 

geomorphological connectivity and river Panarchy theory in studies of river complexity and 

sensitivity to geomorphological change. The author suggests that there is scope for further 

investigation of the application of the two concepts within the discipline of fluvial 

geomorphology, particularly with regard to developing quantitative approaches to 

measuring and describing connectivity and Panarchy.
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CHAPTER 1: INTRODUCTION

"No man ever steps in the same river twice, for it is not the same river and he is not the 

same man" (Heraclitus, Greek Philosopher, 500 BCE).

1.1. From reductionism to complexity thinking in fluvial geomorphology

Geomorphology is a system science concerned with the complex interactions of 

geomorphological processes and landforms across different scales of space and time 

(Schumm 1977; de Boer 1992; Thorndycraft et al. 2008; Murray et al. 2009; Slaymaker 2009; 

Church 2010; Wohl 2014). Before the mid-20th Century fluvial landscapes were viewed as a 

number of interacting components governed by physical laws and linear relations between 

observed geomorphological processes, fluxes of water and sediment, and landform 

development (Preston et al. 2011). Rivers were predominantly studied at a single spatial and 

temporal scale limiting an understanding of the complexity of these systems (Murray et al. 

2009).

Although the reductionist approach described above is still present within the discipline, 

there has been a recent shift toward complex systems thinking and applied geomorphology 

(Church 2010; Wynn 2015). The complexity paradigm suggests that geomorphological 

behaviour and change may not always be explained by simple laws or linear relations 

between contemporary processes, disturbances and landform development and change. 

Non-linear interactions and lags in response to disturbances are common in river systems 

and may result due to the influence of an array of processes and landforms that are both old 

and modern responses to disturbance events (Orme 2013; Rhoads 2013). Preston et al. 

(2011) describe this approach as 'constructivist' such that landscapes are understood as the 

synthesis of the interaction of many components and disturbance responses across space 

and time. To understand how a landscape behaves one needs to understand the 

interactions between the components and the history of the landscape. This shift in thinking 

is largely a result of philosophical inquiry within the discipline of geomorphology, and 

methodological developments that have improved investigation of processes and landform 

interactions across space and time (Thorndycraft et al. 2008; Church 2010; Orme 2013).

As a branch of geomorphology, fluvial geomorphology has shown similar advances to that 

described above with increasing recognition of the complexity of river systems (Church
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2010). This complexity means that river behavior may often be explained by non-linear 

interactions between fluvial processes and landforms across spatial and temporal scales. 

These interactions give rise to self-organization, varying levels of resilience to perturbations 

or to threshold breaches at different scales and points in time, and sudden changes in river 

behaviour and state (Rhoads 2013). This complexity means that rivers may show variable 

response to similar frequency and magnitude disturbance events, or may exhibit threshold 

breaches in the absence of externally induced perturbations (Anderson and Calver 1977; 

Schumm 1979; Renwick 1992; Lane and Richards 1997; Preston et al. 2011). For example, 

changes in hillslope runoff and erosion may or may not translate to a proportional change in 

discharge and sediment delivery along a main stem (trunk) stream. A trunk stream may 

experience an abrupt shift in geomorphological process and form in the absence of external 

perturbations that disrupt discharge and sediment delivery to the channel network. 

However, the difficulty in measuring the multitude of interacting processes and variables at 

different spatial and temporal scales of river landscapes, and the difficulty of transferring 

findings at one particular scale to others, hampers the ability to fully investigate and 

account for the complexity of rivers as geomorphological systems (Slaymaker 2006; 

Slaymaker 2009).

Classical geomorphological theories such as river regime (equilibrium) and thresholds have 

long formed the basis for interpreting river process, form and change (Leopold and Langbein 

1962; Langbein and Leopold 1964; Schumm and Litchy 1965; Schumm 1973; Schumm 1977). 

In this regard, rivers have been interpreted as open systems attempting to balance available 

discharge and sediment load with channel morphology, such that there is just enough 

energy for sediment transport. Thresholds (stream power or slope) determine the critical 

point at which this 'equilibrium' state is disturbed, following which a river adjusts available 

energy through processes of erosion and deposition that alter channel morphology and 

concomitant flow energy (Schumm and Litchy 1965, Schumm 1999). The merits of these 

classic theories is that they are able to predict river behaviour and change at the local-scale 

(river reach), but they do not capture complex interactions and geomorphological behaviour 

across scales.

In recent years, there has been a shift towards understanding river behaviour and change 

within the framework of complexity theory (Phillips 1992; Phillips 1999; Phillips 2003;
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Murray et al. 2009; Phillips 2015; Temme et al. 2015). It is now more accepted that river 

systems are characterized by non-linear interactions between process and form across 

space and time (Phillips 2015). These interactions mean that ongoing change at relatively 

small scales (e.g. continuous deposition at the river reach scale) may initiate sudden change 

at larger scales as thresholds are crossed (e.g. channel reach-wide degradation). At the 

same time, slow yet ongoing geomorphological change at large spatial and temporal scales 

may hinder or enhance processes operating at smaller scales (Murray et al. 2009). As a 

result, rivers can behave in a predictable and organized manner or in an unpredictable and 

chaotic manner, even when no external forces stimulate change in system conditions 

(Schumm 1973; Slaymaker 2009).

The aforementioned properties of complex systems have been reasoned within the 

conceptual framing of Panarchy and adaptive cycles, applied mostly to understanding 

resilience and change in ecological and social-ecological systems (Holling 2001; Gunderson 

and Holling 2002; Walker et al. 2004; Gunderson 2008; Garmestani et al. 2009; Allen and 

Holling 2010; Allen et al. 2014). The concept of Panarchy suggests that complex systems are 

characterized by a multitude of interacting components and processes across spatial and 

temporal scales (Holling 2001; Garmestani et al. 2009; Allen et al. 2014). As explained by 

Gunderson (2008), at each spatial and temporal scale of a system exist adaptive cycles, 

which are the mechanisms by which a system is able to organize internal structure. Each 

adaptive cycle consists of a sequence of phases characterized by slow change and stability, 

punctuated by shorter phases of rapid change in structure, as a result of breaching of 

thresholds and growth of a new internal structure. If a perturbation is large enough to result 

in multiple threshold breaches at different scales of the hierarchy of adaptive cycles there 

may be a shift toward a new system state. The adaptive cycle and the interaction of these 

across scales determines the resilience of a system to perturbations of differing magnitude, 

and whether a threshold breach at one spatial scale is transferred up or down the hierarchy 

(Gunderson 2008). The adaptive cycle is a conceptual model that has the potential to aid an 

understanding of the mechanisms by which river systems are able to self-organize, yet 

indicate sudden and unpredictable geomorphological change. In fluvial geomorphology, 

there has been little investigation of the multitude of interacting variables and
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geomorphological processes at large, intermediate and small scales of space and time, using 

the concept of the adaptive cycle within the framework of Panarchy.

One of the concepts receiving increasing attention in fluvial geomorphology is 'connectivity' 

which is often interchangeably also referred to as 'coupling'. Broadly defined, connectivity 

relates to the degree to which water and available sediment are transferred through a river 

system and is determined by the nature and spatial arrangement of landforms that either 

impede or enhance water and sediment transfer (Harvey 2002a; Fryirs et al. 2007a). 

Connectivity is often described separately in either hydrological or geomorphologic terms. 

In this study the author has chosen to investigate the influence of geomorphological 

connectivity on contemporary river behavior and geomorphological sensitivity, and explore 

how connectivity may be integrated with the concept of the adaptive cycle within Panarchy 

theory, in developing this understanding. River geomorphological sensitivity has been 

defined in several ways based upon the founding definition of geomorphological sensitivity 

provided by Brunsden and Thornes (1979: 476) "...the likelihood that a given change in the 

controls of a system will produce a sensible, recognisable and persistent response". Authors 

such as Downs and Gregory (1993), Werrity and Leys (2001) and Brierley and Fryirs (2005) 

adapted this early definition to the fluvial geomorphological system. Brierley and Fryirs 

(2005) describe river geomorphological sensitivity as a measure of how sensitively a channel 

responds to disturbance events. If a channel responds readily and recurrently it is 

considered sensitive and if responses are negligible and infrequent, the river is considered 

to be resilient to geomorphological change. In this study geomorphological resilience is 

distinguished from geomorphological sensitivity as the ability of a river to recover quickly to 

a former condition, relative to the time taken to respond to a perturbation (Snyder 2012).

The degree of connectivity of water and sediment between landforms and zones of a river 

landscape determines the sensitivity of different parts of the catchment and different 

channel reaches to disturbances (Brunsden 2001; Harvey 2002a; Hooke 2003; Brierley et al. 

2006; Bracken and Croke 2007; Fryirs et al. 2007a; Harvey 2007a; Fryirs et al. 2009). A river 

system characterised by a high degree of connectivity (i.e. when nearly all available 

sediment is transported through the system) will operate close to erosional and 

depositional thresholds. As a result, the system may be more sensitive to external 

disturbances such as floods (Harvey 2002a; Hooke 2003; Harvey 2007a; Reid and Brierley
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2015). Alternatively, a system displaying low connectivity may show high levels of resilience 

where depositional landforms buffer against changes in flow and sediment delivery (Thomas 

2001; Fryirs et al. 2007a). For example, a disturbance response at the hillslope scale (i.e. 

runoff and erosion) may be buffered by low-sloping tributary streams and alluvial fans such 

that little geomorphological response occurs along a trunk stream.

Some authors distinguish between connectivity and coupling indicating that whilst 

connectivity refers to ease of sediment transfer through a system or parts of a system, 

coupling refers to the degree of linkage of different landforms and zones the river system 

(Harvey 2002a; Preston et al. 2011). The latter relates to the degree to which water and 

sediment is transmitted between these different landforms and zones. For example, a high 

degree of hillslope to channel coupling is usually determined by a high degree of 

transmittance of water and associated sediment from hillslope to stream channels.

Only a few studies have applied the concept of geomorphological connectivity to 

understanding river sensitivity in relation to planning rehabilitation and catchment 

management strategies that are appropriate to the particular context (Brierley et al. 1999; 

Brierley and Fryirs 2000; Brierley et al. 2006; Kondolf et al. 2006; Baartman et al. 2013; 

Fryirs and Gore 2013; van der Waal 2014). Furthermore, the concept has not been applied 

to understanding changes in connectivity in a fluvial system over long time scales in relation 

to changes in climate and associated geomorphological responses of erosion and 

deposition. This kind of knowledge together with an understanding of the connectivity of 

processes and fluvial landforms across scales will facilitate the prediction of sensitive areas 

and the range of stream responses to different disturbances (Murray et al. 2009).

Humans are now considered a major agent of geomorphological instability and change in 

river landscapes (Church 2010). The growing global water crisis resulting from the 

Anthropocene has stimulated renewed investigation of the interplay between human 

activities and river geomorphological process, form and change (Wohl 2014). This shift in 

focus requires renewed investigation of river restoration and catchment management 

approaches (Slaymaker 2009; Wohl 2014), with an appreciation of river complexity and 

inherent connectivity of humans with these landscapes. Understanding the most sensitive 

parts of a catchment to geomorphological change, and the mechanisms by which this 

change occurs is essential for strategic and effective river recovery (Fryirs and Brierley
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2009). Channel reconstruction can sometimes be unnecessary and inappropriate where a 

stream type has the flow and sediment regime necessary for self-recovery toward a near

pristine or human desired ecological state (Kondolf et al. 2001; Pasternack 2013). River 

restoration is often based on experience and intuition rather than a thorough understanding 

of the geomorphological processes that drive river dynamics (Downs and Kondolf 2002). 

There is also a strong tendency to adopt a form-based or structural approach to the 

restoration of degraded or incised streams (Simon et al. 2007) inferring a desirable stable 

channel form and behaviour from a past state (Rosgen 1997; Wohl et al. 2005). This 

approach discounts the fact that the degraded reach may have moved beyond this 

reference state and may be controlled by a different set of interacting processes and drivers 

of geomorphological form and dynamics (Fryirs and Brierley 2009). Simon and Thorne 

(1996) suggest that the form-based approach to restoration produces a 'snapshot in time', 

implying a static and stable endpoint in a dynamic system that may be inherently unstable 

through time.

With an increasing appreciation of the interplay of geomorphological processes across 

scales in river landscapes, it is now more effective and desirable to promote fluvial 

geomorphological processes at different scales of a catchment that aid self-recovery of 

functioning (Simon et al. 2007). Such a process-based approach requires a shift away from 

managing the local scale to managing the catchment scale, and the connectivity of 

processes and environmental variables that determine how resilient a river is to 

perturbations (Hughes et al. 2005; Fryirs and Brierley 2009; Beechie et al. 2010). Associated 

with the process-based approach is the issue of designing rehabilitation strategies that 

accommodate the variability and unpredictability of rivers (Kondolf et al. 2001; Hughes et al. 

2005). There is often uncertainty in predicting river geomorphological trajectories making it 

difficult to predict restoration outcomes and trajectories (Downs and Kondolf 2002; Hughes 

et al. 2005). Hence there is a need for experimentation, monitoring and evaluation of 

process-based approaches to river rehabilitation based on a thorough understanding of the 

geomorphological structure and history of a targeted catchment.

1.2 South African river research and conservation management

The South African landscape hosts a dense drainage network comprising rivers which flow 

within humid, semi-arid and arid regions. Rivers flow across a wide range of topographic
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settings from the interior, high-lying plateau region, to mountain belts and the coastal 

escarpment, to the low-lying coastal plains. The diversity of fluvial environments has led to 

an array of river types with contrasting geomorphological character. The majority of South 

African rivers are classed as dryland systems in which flow is non-perennial, yet many of 

these systems host wetlands, particularly within valley-bottom and floodplain settings 

(Ferrar et al. 1988; Uys and O'Keeffe 1997; Ellery et al. 2009). It has been predicted that a 

large proportion of South Africa's wetlands have been lost from the landscape due to 

human-induced impacts, and that >50% of South Africa's main rivers are in a degraded state 

resulting in diminished ecosystem services (Kotze et al. 1995; Roux et al. 2006; Nel et al. 

2007; Russell et al. 2010; Nel and Driver 2012). River and wetland degradation has been 

attributed to a number of factors, including impacts of European settlement and associated 

land-use, urbanization and increasing demand for water resources from all sectors of the 

economy.

The most common direct threat to river and wetland integrity in South Africa is erosion in 

the form of channel incision, erosional head cuts and erosional gullies (Kotze et al. 2009a). 

These features are often attributed to poor land-use management and the South African 

farmer is often branded as the culprit. Yet, the natural erosion of rivers and wetlands in 

South Africa has been demonstrated in several studies. These studies have indicated that 

erosion can occur naturally in wetlands due to the breaching of one or more natural barriers 

that previously inhibited vertical incision along a rivers course, or the breaching of 

geomorphological thresholds (Tooth et al. 2004; McCarthy et al. 2007; Tooth and McCarthy 

2007; Joubert and Ellery 2013). As a result of naturally induced erosion, wetlands may be 

lost from a particular landscape setting over time in association with the formation of a 

wetland elsewhere, at appropriate hydro-geomorphological settings (Ellery et al. 2009). 

Since the South African landscape has inherited a long-term trajectory of river erosion from 

ancient tectonic uplift events, it is not surprising that erosion is a common process in rivers 

and wetlands of the region (Ellery et al. 2009).

Much of the focus of water resource management in South Africa since the early 1970s to 

the 2000s has been aimed at conserving pristine to near-pristine ecosystems and managing 

the potential impacts of urban development. South Africa has some of the most progressive 

legislation relating to freshwater conservation management including the National Water
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Act of 1998 and the National Environmental Management: Biodiversity Act of 2004. Since 

the 1970s several freshwater conservation strategies have been developed for South Africa 

(O'Keeffe et al. 1986; Newson 1996; McLoughlin et al. 2011; Roux and Nel 2013). These 

were developed along with a rigorous freshwater research programme, and the River Health 

Programme (RHP) which serves to monitor changes in ecological integrity of a range of river 

types across South Africa. Much of the attention of river research and conservation planning 

in the past has been toward biological and physical (flow, chemical and nutrient fluxes) 

attributes of rivers. This ecological focus is evident for example in a report on 'The 

conservation of South African rivers' published in 1986 by the Council for Scientific and 

Industrial Research and edited by J. O'Keeffe. Little attention has been given to the 

underlying geomorphological processes and forms that control the ecological functioning 

and sensitivity of rivers and riverine wetlands. More recently, there has been focus on the 

geomorphological and hydrological processes occurring at different zones of a river 

catchment for understanding the underlying drivers of aquatic ecosystem functioning and 

dynamics (Rowntree and Wadeson 1998; Wadeson and Rowntree 2005; van der Waal et al. 

2015). This new focus has demonstrated a shift toward understanding the underlying 

drivers of river and wetland functioning and dynamics in South Africa with particular 

attention to geomorphological process and form relations.

1.2.1 Wetland conservation management and rehabilitation

In response to wetland erosion and ecological degradation in South Africa, the State 

developed a comprehensive wetland rehabilitation programme, "Working for Wetlands" 

(WfWet), which has as its primary focus the rehabilitation of gullies in fluvially-coupled 

wetlands. The standard aim of the programme is to halt channel erosion and attempt to 

restore a former 'pristine' condition at the local scale (i.e. river reach scale). The approach 

aims at a geomorphological (and hydrological) end-point that is based on a previous more 

pristine condition. This disregards the dynamic nature of rivers and wetlands and their 

propensity for changes in geomorphological (and hydrological) behaviour over time. Given 

the inherent natural dynamics of these systems, the WfWet rehabilitation interventions do 

not always achieve a desired outcome, nor is the sustainability of a particular intervention 

certain. In some cases, millions of South African Rand (ZAR) has been wasted within a year 

of implementation, due to failure of instream engineered structures. Since 2004, the
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programme has implemented rehabilitation at over 1 000 wetlands across the country, 

amounting to more than 820 million ZAR creating more than 20 000 jobs (DEA 2016). 

Although the level of job creation is massive benefit to the country, there needs to be a 

concerted effort to revise rehabilitation approaches such that project failures and 

associated wastage of financial resources is kept to a minimum.

In their manual on methods for wetland rehabilitation in South Africa, Russell et al. (2010: 

19) define wetland rehabilitation as follows:

"..the process of assisting in: (1) the recovery of a degraded wetland's health and ecosystem 

service-delivery by reinstating the natural ecological driving forces or (2) halting the decline 

in health of a wetland that is in the process of degrading, so as to maintain its health and 

ecosystem service-delivery."

Russell et al. (2010: 19) clearly state that rehabilitation in South Africa should not aim 

toward a static endpoint as is common to many restoration projects across the globe. This 

statement signifies a shift toward process-based rehabilitation thinking in South Africa, 

although the shift in practice in this regard has not taken place on a widespread scale. In 

most cases, the WfWet programme still employs a generic, geomorphological form-based 

approach to rehabilitation. A civil engineering approach is commonly employed through 

design of weir-like structures across an incised channel or gully. However, 'soft' 

interventions such as using vegetation to prevent erosion, or re-shaping an erosional head 

cut or gully, are less commonly adopted, but are increasingly being considered in wetland 

rehabilitation practice (Russell et al. 2010). There has been a mix of successes and failures in 

the WfWet programme, the details of which are not thoroughly documented for individual 

sites. The development of a series of integrated tools for wetland assessment and 

management in 2009, the Wetland Management Series (WMS), has substantially improved 

the scientific basis for decision making around riverine wetland rehabilitation. The series 

offers greater consideration of the biophysical processes that drive wetland functioning and 

dynamics. The Management Tools in the WMS guide several aspects of wetland assessment 

and conservation management in South Africa, including: rapid assessment of the 

interaction of biotic (vegetation), hydrological and geomorphological processes that are 

fundamental determinants of wetland ecosystem service delivery and health, guidelines for 

when rehabilitation intervention is legally required, and guidelines on how and where to
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implement process-based rehabilitation, evaluation and monitoring for different types of 

systems (Ellery et al. 2009; Russell et al. 2010; Sieben et al. 2011; Roux and Nel 2013). The 

WMS tools were produced recently and still need to be tested across a wide-range of 

systems in South Africa such that they can be refined for specific assessment of the range of 

types of rivers and wetlands the country contains.

In South Africa, most wetlands are linked to rivers and their formation and functioning is 

largely controlled by fluvial geomorphological processes which interact with local hydrology 

(Ellery et al. 2009). Yet, it is still common practice for most wetland rehabilitation projects in 

South Africa to focus at the scale of the degraded wetland and not the scale of the 

catchment where drivers of degradation often operate (Sieben et al. 2011; Riddell et al. 

2012). Although these local-scale interventions may have short-term (several years) 

impacts, they may not achieve long-term (over several decades) ecological and social 

benefits. The consideration of the fluvial geomorphological origin and evolution of wetlands 

is a critical component of any rehabilitation project (Ellery et al. 2009), including 

investigation of contemporary geomorphological processes and future change. However, 

this knowledge base is largely lacking in South Africa such that rehabilitation of rivers and 

riverine wetlands is still focused on form-based outcomes.

1.2.2 An overview of the history of fluvial geomorphological research in South Africa

The study of fluvial geomorphological process and form in South Africa has only recently 

taken shape and has focused at controls on floodplain and valley-bottom wetland formation 

and degradation (Tooth et al. 2002; Tooth et al. 2004; Grenfell et al. 2009a; Grenfell et al. 

2009b; Tooth et al. 2009; Grenfell et al. 2010; Ellery et al. 2012; Joubert and Ellery 2013). A 

handful of studies have applied the concept of connectivity to investigate present-day 

sediment pathways, and the influence of human land-use on sediment sources and fluxes. 

These include studies by, Foster et al. (2007), Boardman et al. (2010), Foster et al. (2012), 

Rowntree and Foster (2012), and van der Waal (2014). Many of the latter studies have been 

located in the semi-arid to arid Karoo interior of South Africa in relatively low-relief settings, 

investigating the development of erosional gullies over time, the influence on sediment 

pathways, and the relation between gully formation and land-use activities. Grenfell et al. 

(2014) investigated channel behaviour in two climatically-contrasting fluvial settings (semi

arid vs. humid) in South Africa indicating that climate and associated variations in flow and
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sediment regime exert a strong control on river behaviour and floodplain form. A few 

studies have investigated palaeo-fluvial environments during the Holocene in South Africa, 

including, Damm and Hagedorn (2010), Grenfell et al. (2012), and Tooth et al. (2014).

One of the earliest appearances of the concept of connectivity in South African fluvial 

literature was in the form of the 'river continuum concept' (Vannote et al. 1980) devised for 

early conservation planning. The river continuum concept highlights the importance of 

longitudinal linkages of sediments, nutrients and biota between different river zones, such 

as between uplands and lowlands, for maintenance of river functioning and biodiversity 

(Day et al. 1986; Ferrar et al. 1988). Following these early studies, geomorphology began to 

feature more in planning the conservation management of South African rivers. Newson 

(1996) discussed the role of fluvial geomorphology in river management in South Africa, 

highlighting the need to integrate knowledge of geomorphological processes for different 

types of rivers. Following the implementation of the RHP, a number of geomorphological 

tools were developed for aiding assessment of instream flow requirements, the impacts of 

impoundments and water transfer schemes on aquatic ecological condition, and for 

assessing a geomorphological reference condition to aid monitoring of the impacts of 

different land- and water-use activities. Rowntree and Wadeson (1999) developed a 

hierarchical geomorphological classification system for South African rivers which 

recognized the nested hierarchical nature of river catchments and hydrological and 

geomorphological process occurring across scales. The framework was devised to assist 

conservation management efforts that are sensitive to processes occurring at different 

spatial scales of a catchment. This framework indicates a shift away from river management 

that targets a single scale. Rowntree and Wadeson (1998) and Wadeson and Rowntree 

(2005) developed and revised the first geomorphological tool for designing instream flow 

requirements for South African rivers, as part of the ecological reserve determination 

required by the National Water Act (1998). More recently Du Preez and Rowntree (2006) 

developed a geomorphological reference condition assessment tool for guiding river 

rehabilitation, and Rowntree et al. (2013) developed a geomorphological assessment index 

that guides assessment of the geomorphological drivers of change on the ecological status 

of South African rivers.
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The aforementioned geomorphological tools have been useful in providing a template for 

understanding the physical structure and processes that define the healthy ecological 

functioning of South African rivers, for application to rehabilitation planning and catchment 

management. The concept of connectivity has also begun to feature in studies investigating 

hydrological and geomorphological dynamics across spatial and temporal scales of river 

catchments, and the implications of this knowledge for managing and rehabilitating 

degraded systems (Bobbins 2011; van der Waal 2014; Glenday 2015; Smith-Adao 2016). The 

concept has also featured in river assessment tools guiding the RHP but has yet to feature 

substantially in wetland assessment, management and rehabilitation approaches adopted 

under the WfWet programme. The application of connectivity concept could enhance the 

geomorphological assessment tools that have already been devised under the 

aforementioned programmes, promoting more effective development and implementation 

of catchment-scale, process-based rehabilitation initiatives in South Africa.

1.3 Aim and objectives

In view of the knowledge gaps outlined above, this study aims to investigate drivers of 

recent geomorphological sensitivity and associated degradation in a gravel-bed mountain 

stream in South Africa, using geomorphological connectivity as a guiding concept, drawing 

on the conceptual framework of Panarchy. The findings will be used to evaluate river- 

floodplain rehabilitation interventions that have been employed by Working for Wetlands 

(WfWet), and consider the broader-scale implications of the particular rehabilitation 

interventions.

Based on the above aim, the objectives are to:

1. Investigate the geomorphological history and pre-history of the Baviaanskloof 

River-floodplain, including medium to long-term (hundreds to thousands of 

years) geomorphological adaptive cycles of erosion and deposition, and the 

nature of recent river-floodplain geomorphological dynamics.

2. Identify the major drivers of recent geomorphological change, including 

environmental, anthropogenic and geomorphological drivers.
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3. Define present-day channel-floodplain process, form 1 and sensitivity to 

geomorphological change within the context of tributary junction stream 

(dis)connectivity.

4. Develop a conceptual model using the framework of Panarchy and adaptive 

cycles, to illustrate the interplay between different drivers of geomorphological 

change, sediment connectivity, and river sensitivity, across spatial and temporal 

scales of the study reach.

5. Using the knowledge generated above, evaluate river-floodplain rehabilitation 

interventions that have been employed by WfWet and offer recommendations 

toward better rehabilitation practice.

The above aim and objectives were encouraged by Rowntree (2012) in her book chapter 

found in Holmes and Meadows (2012): Southern African Geomorphology: Recent trends 

and new directions. In her chapter on fluvial geomorphology, Rowntree (2012) uses the 

Baviaanskloof as a case example to propose the application of the concept of 

geomorphological connectivity to planning effective, catchment-scale rehabilitation. The 

latter was one of the first appearances of the concept of geomorphological connectivity in 

South African fluvial literature, and has led to the development of a school of associated 

research, based largely at Rhodes University. This school takes a strong applied stance, 

investigating how the concept of connectivity can be used to guide process-based and 

catchment-scale river rehabilitation in South Africa. The present research relates to four 

other studies that have recently been conducted in South African river systems, each 

adopting the concept of connectivity (geomorphologic and hydrological) to explain fluvial 

dynamics. Three of these studies have been conducted in the Baviaanskloof catchment as 

described below:

■ Bobbins (2011), investigated alluvial fan geomorphologic form and process, 

describing slope thresholds for fan entrenchment and the interaction of tributary 

junction fans with the main stream. Bobbins (2011) used the findings of her study to

1
Channel and floodplain form in this study refers to the cross-sectional shape of the channel and floodplain 

and the shape and arrangement of geomorphologic features in planimetric view (Fuller et al. 2013).
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propose an alluvial fan rehabilitation framework for the upper-middle reaches of the 

Baviaanskloof, indicating that those fans that are entrenched due to human 

interference should be prioritized for rehabilitation.

■ Smith-Adao (2016), investigated the interaction of valley floor morphology and 

confinement and riparian vegetation with river-floodplain hydrogeomorphology 

along the upper-middle reaches of the Baviaanskloof floodplain. Smith-Adao (2016) 

applied her findings to provide recommendations for strategic river-floodplain 

rehabilitation efforts that consider the interaction between riparian and in-channel 

vegetation with river-floodplain hydrogeomorphology.

■ Glenday (2015) from the University of California, modeled the hydraulics and 

hydrology of the Baviaanskloof catchment using extensive data on stream flow, 

groundwater, surface runoff and soil moisture to develop a framework of 

hydrological connectivity for the Baviaanskloof that would guide the modeling 

process. Glenday (2015) used the aforementioned data set to model different future 

scenarios for the catchment including: continued degradation, hillslope vegetation 

rehabilitation, and alluvial fan and channel-floodplain rehabilitation. The results of 

the study are critical to understanding the hydrological trade-offs that exist between 

different types of rehabilitation focused at different scales of the Baviaanskloof 

catchment.

■ Van der Waal (2014), investigated sediment connectivity in the Thina catchment, a 

high lying mountain system in Eastern South Africa. Van der Waal (2014) describes 

sediment sources, transfers and sinks, providing insight into catchment areas that 

should be prioritized for future rehabilitation interventions.

The present study therefore continues within the theme of connectivity and applied fluvial 

geomorphologic research described above.

1.4 The use of critical realism to investigate river dynamics and sensitivity

Slaymaker (2009) states that a positivist epistemological approach has dominated river 

geomorphology and suggests a need to shift toward the approach of critical realism. The 

latter approach makes use of qualitative data and interpretation to provide a more holistic 

understanding of the complex set of interacting processes and landforms influencing the 

behaviour of a specific geomorphologic system. Couper (2015: 79) describes critical realism
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as "...combining empirical evidence and abstraction to reveal the structure and mechanisms 

that result in events". Critical realism views reality as a single form that cannot be fully 

known but can be studied and partially known, to gain a more in-depth understanding of 

the world and how it works. This philosophy appreciates that knowledge is influenced by 

human values and perceptions, even within the realm of positivism and the practice of 

rigorous and so called objective scientific method. Hence, there may be different 

descriptions of reality based upon the influence of personal value judgements and 

experience of individual scientists, making it difficult to accept any one version of reality as 

'the truth' (Urban 2013).

Critical realism is well-suited to fluvial geomorphology which is a relatively young discipline, 

in which standard laws and theories are still being developed, and where the complexity of 

geomorphological systems cannot be fully measured and known (Favis-Mortlock 2013). 

Thus, qualitative conceptual models that employ logical reasoning in describing process- 

form interactions and geomorphological dynamics across space and time are necessary for 

understanding rivers as complex social-ecological systems (Rhoads 2013). The critical realist 

approach is often adopted in fluvial geomorphological investigations, but is not often 

acknowledged as an overarching philosophy. The application of the connectivity concept in 

recent fluvial geomorphological, as applied by Fryirs et al. (2007a) and Fryirs et al. (2007b), 

is an example of the use of critical realism within the discipline of fluvial geomorphology. 

Although connectivity can be quantitatively measured, it is often described in qualitative 

terms and inferred from observed geomorphological processes and forms. However, Urban 

(2013) argues that the discipline of geomorphology should not lose the positivist approach, 

since it provides a basis for rational and rigorous study of geomorphological systems, and 

attempts at best to be relatively non-biased.

The present research therefore adopts a critical realist stance, understanding that 

geomorphological systems are characterized by long-term processes that are often hidden, 

and a multitude of variables interacting within and across space and time, that are difficult 

to measure in their entirety (Bracken and Wainwright 2006; Slaymaker 2009; Preston et al. 

2011; Favis-Mortlock 2013). The author also appreciates that this philosophical stance 

means that the version of 'reality' synthesized from the findings of this research has been 

influenced by the personal values and perceptive lense of the author.
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Aspects of positivism are incorporated into the present study through empirical 

investigation involving the systematic observation and measurement of geomorphological 

processes and forms. Abduction is the main form of reasoning employed to infer general 

relationships between measured and observed geomorphological forms and processes, and 

to identify the role of different environmental variables and humans in influencing 

geomorphological process, form and change. To gain a fuller understanding of the 

complexity of the Baviaanskloof River-floodplain, conceptual tools such as connectivity and 

Panarchy have been used to provide a logical theoretical framework for describing 

complexity. The role of human agency in adding to system complexity is also investigated 

(Wikgren 2005).

1.5 Methodology: a process-form and applied approach

The present study uses a process-form approach with a strong applied component. 

Quantitative measurement of contemporary river-floodplain process and form is combined 

with qualitative geomorphological tools for studying system processes and change. The 

qualitative tool applied most widely in this study is that of 'reading the landscape', as 

described by Fryirs and Brierley (2012). The technique of 'reading the landscape' includes 

geomorphological mapping of landforms indicating sediment sources, transfers and sinks, 

observation of the nature of fluvial processes (flow regime and sediment transport 

processes), measurement of morphology of different landforms and rates of erosion and 

deposition, and assessment of the role of human activities in altering fluvial process and 

form. Existing theory relating to process-form relationships is applied in efforts to 

understand the contemporary and historical structure of the system, and the mechanisms 

by which the river-floodplain has evolved through time. This knowledge is applied in 

evaluating river rehabilitation and catchment management strategies that have been 

implemented along the study reach, within a process-based conceptual framework.

1.6 Thesis structure

This thesis comprises 8 chapters that address different components of the Doctoral 

research. The first 3 chapters provide the context for the research describing the thematic 

domain within the discipline of fluvial geomorphology. The rationale and objectives of the 

research is provided in Chapter 1, the theoretical and conceptual context is provided in
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Chapter 2, and the geographic, social and pragmatic setting of the study is provided in 

Chapter 3. Chapters 4-7 form an integrative series of results and answers to the main 

objectives of the study. Each chapter contains a short literature review, description of 

methods used, the results of investigation, and a discussion of the implications of the 

findings. Chapter 7 of the results series is unique, in that it is largely a discussion chapter, 

which collates the findings of the previous results chapters, toward evaluating the approach 

of WfWet to rehabilitation in the Baviaanskloof. The final chapter of the thesis (Chapter 8) 

provides an overview of the theoretical, methodological and philosophical implications of 

the research within the discipline of fluvial geomorphology. Chapter 8 also discusses the 

practical implications of the findings of the research for improving river and wetland 

rehabilitation in South Africa.

17



CHAPTER 2: GUIDING CONCEPTS FOR INVESTIGATING FLUVIAL GEOMORPHOLOGICAL 
DYNAMICS AND SENSITIVITY WITHIN AN APPLIED CONTEXT

2.1 River equilibrium, dis-equilibrium or non-equilibrium?

Traditionally rivers have been viewed as operating close to an equilibrium condition over 

relatively short time frames (decades to centuries), whereby variables of slope and channel 

geometry are adjusted to changes in discharge and sediment load to minimize energy 

expenditure during sediment transport (Schumm 2005). There has been a wealth of debate 

and review of equilibrium theory within the discipline of geomorphology but there exists no 

widely accepted framework for defining and measuring equilibrium at different space and 

time scales (Knighton 1984; Bracken and Wainwright 2006; Hugget 2007). Since equilibria 

have been defined from catchment to the river reach scale (Table 2.1), it is critical to specify 

the temporal and spatial scale of any geomorphological investigation (Schumm and Litchy 

1965; Schumm 1977).

Table 2.1 summarizes the most common types of equilibrium defined in fluvial 

geomorphology, with reference to different spatial and temporal scales. Traditional 

equilibrium perspectives suggest that parts of a river system, such as a single landform or a 

river reach, may approximate an equilibrium state, (alternatively termed "static" and 

"steady" state), over a few days to 1 000s of years. An entire river system or components 

thereof, may attempt to maintain an average condition that gradually changes over short to 

long time periods (10 to 105 years), termed dynamic equilibrium or quasi-equilibrium. For 

example, over hundreds of thousands of years a river attempts to adjust its longitudinal 

profile such that there is no net sediment erosion or deposition along its entire length. The 

equilibrium condition, notionally characterised by the balance between available fluvial 

energy and sediment delivered to the channel network, is continually changing and is thus 

dynamic. However, this dynamic equilibrium condition is usually never reached as internal 

variability and external disturbances disrupt the equilibrium trajectory of rivers (Bracken 

and Wainwright 2006). River systems may therefore experience relatively abrupt changes in 

overall equilibrium state, termed metastable equilibrium, as shocks to the system result in a 

new physical structure and process boundary conditions, to which the system will begin to 

adjust over tens of thousands of years (Table 2.1). It is increasingly the view that rivers show 

disequilibrium or non-equilibrium characteristics over several hundred to thousands of
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years (de Boer 2001; Bracken and Wainwright 2006), due to positive feedback processes 

that reinforce adjustment responses. An example of a positive feedback process includes 

continued or increased bed erosion, due to an initial increase in channel gradient as the 

river begins to down-cut toward a concave or adjusted longitudinal slope profile (Phillips 

1999; Pratt-Sitaula et al. 2004; Molin and Corti 2015).

Table 2.1: Traditional forms of equilibrium defined in the discipline of fluvial geomorphology
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Time (in years) 
& spatial scale

Type Definition

102to 105
Sub-catchment to 
catchment

Dynamic metastable 
equilibrium

Sudden changes in equilibrium state due to breaching 
of threshold, processes maintain balance around new 
state (Schumm 1977; Renwick 1992).

10 to 105
Landforms to river 
reaches to sub
catchments

Dynamic equilibrium Processes maintain balance around a variable average 
condition or geomorphological form, or balance 
between sediment inputs and outputs; Schumm and 
Litchy (1965); Schumm (1977); Renwick (1992).

>103
Catchment to sub
catchment

Non-equilibrium Absence of equilibrium even over long time spans 
(Tooth and Nanson 2000)

102 to 103 

Reach to 
catchment-scale

Quasi-equilibrium Adjustment around a mean condition or channel form 
that defines minimum energy expenditure and uniform 
distribution in energy expenditure (Langbein and 
Leopold 1964).

10 to 102 
Landform to 
catchment scale

Disequilibrium Form and process changing continually in attempt to 
regain equilibrium (Bracken and Wainwright 2006).

10 to 102 
Landform to river 
reach

Steady state No change in average form with time, processes 
maintain balance as variables such as discharge and 
sediment load fluctuate (Schumm 1977).

0.01 to 0.1 
Landform

Static equilibrium No change in inputs or outputs, processes or forms 
(Schumm 1977).
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Few quantitative accounts of river equilibrium or stability are documented in the literature, 

such that some authors have questioned the validity of the theory (Bracken and Wainwright 

2006), and the degree to which rivers exhibit equilibrium conditions (Rhoads 2013). Despite 

uncertainties in defining equilibrium in fluvial geomorphology, the theory is still widely used 

to explain river behaviour and change over relatively short time periods (several years to 

decades). Bracken and Wainwright (2006: 176) suggest a 'fuller' definition of

geomorphological equilibrium which attempts to incorporate the complexity of these 

systems: “...a matrix of eventualities incorporating relationships which have stable process 

and stable form; stable process and unstable form; unstable process and stable form; and 

unstable process and unstable form. Whether a particular landscape falls within this matrix 

is a function of the dominant landscape-forming processes, the historical trajectory of 

environmental drivers of those processes (dominantly tectonics, climate and vegetation) and 

any specific contingencies (e.g. extreme events and increasingly human activity)’’. One may 

therefore deem it necessary to speak of relative geomorphological stability and instability 

conditions in river landscapes, specifying the spatial and temporal scale of investigation.

The concept of equilibrium and associated relative channel stability relates to the 

geomorphological sensitivity of a river to disturbing forces such as tectonic events or floods 

that promote changes in fluvial conditions of discharge, sediment supply, and base-level. 

Geomorphological sensitivity is defined as the propensity of a system for morphological 

change induced by one or more disturbances (Brunsden 2001). Sensitivity relates to the 

capacity of the system or parts of the systems to absorb changes in system inputs or 

variables (Brunsden and Thornes 1979; Brunsden 2001). The terms sensitivity and resilience 

can be used interchangeably. For instance, Reid and Brierley (2015) define resilience in 

fluvial geomorphological terms as the ability of a river channel to absorb and resist the 

energy of a disturbing force, by indicating little geomorphological change. Reid and Brierley 

(2015) suggest that river sensitivity is reflected by the ease with which geomorphological 

adjustment takes place following a disturbance of particular frequency of occurrence and 

magnitude. A system that is able to absorb shocks by indicating little overall morphological 

change following a disturbance would thus be considered resilient or of low 

geomorphological sensitivity, for the particular frequency and magnitude of disturbance 

event. The nature and rate of channel adjustment following a disturbing force defines the
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degree of sensitivity of a river channel to geomorphological change (Reid and Brierley 2015). 

Herein, proximity to thresholds is an important determinant of sensitivity since a system (or 

parts thereof) that lie far from erosional or depositional thresholds have a higher capacity to 

absorb shocks than a system that lies close to these thresholds (Brierley and Fryirs 2005). 

The rate at which erosional or depositional thresholds are approached may be influenced by 

the degree of water and sediment connectivity (Brierley et al. 2006; Faulkner 2008). Hence 

the degree of water and sediment connectivity in a river landscape is one of the underlying 

determinants of river sensitivity, as it influences the extent and pattern of propagation of 

disturbance responses in the form of sediment erosion and deposition (Harvey 2002a; Fryirs 

et al. 2007a; Fryirs et al. 2007b; Harvey 2007a).

Geomorphological sensitivity is dependent on a number of factors both internal and 

external to a fluvial geomorphological system:

■ The degree of exposure to disturbance events that induce threshold shifts and the 

magnitude-frequency of formative (change inducing) events (Brunsden 2001).

■ Proximity of a landform or an entire catchment to thresholds between erosion and 

deposition (Brunsden 2001).

■ The degree and spatial pattern of water and sediment connectivity in a river 

landscape, which determines the spatial extent or capacity for change (Brunsden and 

Thornes 1979; Brunsden 2001; Harvey 2001; Brierley and Fryirs 2005; Harvey 2007a). 

For example, degree of slope-channel coupling is an important determinant of 

sensitivity of the channel network to high intensity rainfall events and human land- 

use activities occurring on the hillslopes of a catchment (Harvey 1997; Harvey 2001; 

Chiverrell et al. 2009; Garcla-Ruiz et al. 2010).

■ Temporal and spatial characteristics of resisting and disturbing forces (Brunsden 

2001): resisting forces occur in several different forms, for example strength 

resistance is a function of the properties of individual landforms, relating for 

example to soil cohesiveness; morphological resistance may include for example 

physical barriers such as gently sloping floodplains or river channels and confined 

valley reaches that hinder coupling and have a degree of absorbing capacity 

(Brunsden and Thornes 1979; Fryirs et al. 2007a). The nature of resisting forces and
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magnitude-frequency of disturbing forces will determine potential for 

geomorphological change.

■ The prevailing flow and sediment regime, which influences the ability of a river 

channel or catchment to recover and re-establish some kind of internal equilibrium 

(Knighton 1984; Harvey 2007a). Systems that recover slowly from disturbance 

effects relative to the frequency of the formative disturbance are generally viewed 

as sensitive (Harvey 2007a).

■ The complexity of the system is a function of the variety of interacting processes, 

variables and landforms over different scales. Each landform or zone of a river 

catchment (e.g. upper-slopes vs. foothills) has differing degrees of geomorphological 

sensitivity, which cumulatively provides the framework defining the resilience of the 

system to disturbing forces. Here, the history of disturbance events may be 

important where a past extreme event has promoted long-term diffusive 

geomorphological adjustment, creating structural and process conditions that may 

compliment or counteract the forces of smaller events (Brunsden 2001).

River sensitivity is not static but changes through time with the continual internal 

adjustment and morphological evolution of a river landscape, which results in alternation of 

connectivity between landforms of parts of a catchment. For example, a decrease in 

hillslope-channel connectivity over time, as gully systems stabilize or as vegetation cover 

increases, may decrease sensitivity of the downstream channel network where hillslope 

sediment storage buffers against disturbances such as high-magnitude storm events 

(Brunsden 2001; Fryirs et al. 2007a; Fryirs et al. 2007b). River sensitivity thus reflects the 

interplay of numerous system components with environmental drivers and with time, such 

that the concept requires consideration of river landscape complexity.

2.2 A complex-adaptive systems approach

The perception of rivers as complex geomorphological systems with the inherent ability to 

self-regulate and self-organize internal structure and processes has long been presented 

within the fluvial geomorphologic literature (Schumm and Litchy 1965; Schumm 1973; 

Schumm 1981; Chorley et al. 1984; Phillips 1992; Phillips 1999; Ryan et al. 2007; Phillips and 

Jerolmack 2016). Rivers are able to regulate fluvial process and available fluvial energy in 

response to changes in environmental conditions that induce changes in water and
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sediment fluxes. This self-regulation is afforded by positive and negative feedbacks, typically 

mediated by erosion and deposition that alter channel morphology. The self-regulatory 

response of rivers to changing inputs of water and sediment means that they are able to 

enter periods of relative stability, characterised by slow geomorphological change despite 

fluctuations in climate and runoff (Leopold and Langbein 1962; Tooth and Nanson 2000). 

Self-organization is related to self-regulation, and involves the structuring of a fluvial 

landscape into interdependent landforms in the absence of externally induced 

perturbations that may induce geomorphological change (Phillips 1999; Favis-Mortlock 

2013). In fluvial geomorphology, self-organization may be exhibited by the internal 

production of landform patterns such as pool-riffle sequences, point bars, channel bends, 

and tributary stream alluvial fans, that aid establishment of a condition of relative stability 

(Phillips and Jerolmack 2016). The self-organizing capacity of a river is fashioned by the 

interaction of a range of geomorphological processes and landforms across scales of space 

and time. The ability of river systems to self-regulate and self-organize determines the 

resilience of a particular system to disturbances.

Investigation of the interaction of multiple (dis)equilibrium processes and landforms across 

scales of space and time has not been exhaustive and has only recently received renewed 

attention within the discipline of fluvial geomorphology. The emerging theory of complex 

adaptive systems, applied traditionally within the discipline of ecology, is now being applied 

to understand the self-regulatory capacity of rivers and their sometimes unpredictable 

behaviour (Phillips 1992; Phillips 1999; Favis-Mortlock 2013). Complexity theory was applied 

to geomorphological systems in the early 1980s in the form of non-linear dynamical systems 

(NDS) theory (Phillips 1992). This theory suggests that geomorphological systems typically 

exhibit complex, and often unpredictable geomorphological behaviour and landform 

patterns (Phillips 1992; Rhoads 2013). This complexity is a result of the interaction of many 

components of the system over historic and present time, and across different spatial 

scales, such that the present structure and behaviour of a geomorphological system is not 

just a function of the present-day observed processes or recent disturbances to the system 

(Favis-Mortlock 2013). The NDS theory appreciates that geomorphological systems are 

characterised by energy dissipation through self-organizing structures and processes, which
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may include for example, changes in bed form during and after a flood event that result in 

energy dissipation.

As geomorphological systems, rivers have been shown to possess some of the fundamental 

aspects of complex-adaptive landscapes as discussed by several authors and described 

below:

■ Open energy and resource gradients: Energy and resource gradients are 

thermodynamically open in that they are in constant feedback with the surrounding 

environment which determines fluctuations in water and sediment inputs (Knighton 

1984).

■ Non-linearity and chaos producing unpredictable response or system outputs, e.g. 

different sediment yields from the same sized flood (Phillips 1999; Van De Wiel and 

Coulthard 2010).

■ Self-organisation: Fluvial landscapes naturally evolve towards critical limits or 

thresholds between stability (mostly sediment transport) and instability (mostly 

sediment erosion and deposition) under prevailing conditions. This natural evolution 

results in spatial patterns of landforms that emerge locally in a system linked to non

linear interactions and feedbacks (Phillips 1999; Ryan et al. 2007). An example of a 

self-organizing structure is stone cells that form during low flows in certain gravel- 

bed streams, resulting in increased bed stability (Church et al. 1998).

■ Internal resilience: Due to the self-organizing property of geomorphological systems, 

a disturbance may occur with very little observed change in the system properties 

(Murray et al. 2009; Hooke 2015).

■ Hierarchy of scales and interactions: Interactions of processes and landforms across 

a range of spatial and temporal scales influences the structure of the system (Phillips 

1999; Ryan et al. 2007). An example is the interaction of catchment scale geology 

with hillslope and floodplain soil properties, which influence characteristics of 

hillslope runoff and resistance of the channel boundary to erosion. These broader 

scale influences translate to a characteristic set of channel processes and forms.

■ Multiple states and transitions: Abrupt transitions in system behaviour or mean state 

are underpinned by thresholds of the landscape; as a result the system shifts 

between multiple stable states over time scales of several thousand to tens of
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thousands of years, forced either by external or internal threshold disturbances 

(Favis-Mortlock 2013).

The above characteristics described for complex geomorphological systems are key features 

of complex adaptive systems, described within the conceptual framework of adaptive cycles 

and Panarchy (Holling and Gunderson 2002; Gunderson 2008). The concept of Panarchy 

attempts to explain cross-scale interactions of processes and structure in natural and social 

systems, which results in organized processes and features, yet sometimes unpredictable 

change in system behavior or state (Holling 2001; Holling and Gunderson 2002; Gunderson 

2008). Each scale range of a particular system's Panarchy contains the adaptive cycle 

(described in following paragraphs). The interaction of these adaptive cycles determines the 

capacity of a system to self-regulate and when and how a system will respond to a particular 

perturbation.

The adaptive cycle is considered in the context of two axes (Figure 2.1): the connectedness 

of internal controlling variables and processes (x-axis), and the internal potential for change 

toward an alternative future stable state (y-axis). Here, connectedness relates to the 

interaction between processes and variables that result in the ability of a system to self- 

regulate internal condition, through positive and negative feedback loops and the 

development of structures that maintain the functioning and resilience of the system 

(Holling and Gunderson 2002). These regulatory mechanisms allow the system to withstand 

changes in the external environment, to a threshold point. The concept of connectedness 

here is different to the concept of connectivity in fluvial geomorphology. An example of 

connectedness and self-regulation offered by Holling and Gunderson (2002) is a woodland 

in which vegetation forms a striped pattern on a hillslope due to the interaction of tree 

growth with water, soil nutrients and topography. As the trees intercept water moving 

downslope, the water becomes available to the plant roots causing preferential plant 

growth, whilst limiting plant growth further downslope. A 'line' of enhanced plant growth 

forms as the trees are able to grow along and upslope where water is intercepted. The 

occurrence of these feedback loops occur across different areas of the hillslope resulting in 

alternating vegetated and bare soil areas and the 'striped' pattern observed. As the 

connectedness of controlling variables and processes increases so does the rigidity of the 

system, making the system less flexible to adjust to perturbations which disrupt processes
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and structure, thus increasing vulnerability to a change in state (Gunderson 2000). Thus, 

connectedness increases the self-regulatory capacity of the system, but it also increases the 

potential for a change in state.

Germination of pioneer 
tree species following a 
hurricane that destroyed 
most of the previous 
ecosystem structure and 
species assemblage 
(a)

Rapid growth of pioneer 
species and germination 
of climax tree species 
(b)

Succession from pioneer 
to climax tree species, 
characterised by slow 
growth; increasing 
accumulation of biomass 
(c)

Widespread destruction 
of trees and release of 
biomass (carbon)
(d)

Figure 2.1: An example of an adaptive cycle indicating phase changes between rapid growth ('r'), slow change 
and accumulation of resources ('K'), collapse ('Q'), and reorganization ('a'), at the forest patch scale (adapted 
from the Resilience Alliance 2015).

Within the two axes of an adaptive cycle exist four phases as described by Gunderson 

(2008):

1) The exploitation or growth phase when the system is rapidly changing in a predictable 

way following collapse and reorganization, using and accumulating available resources and 

increasing structural complexity (r).

2) The conservation phase when structural complexity is very high and components of the 

system (variables and processes) become highly connected (K). It is during the latter phase, 

that a system is most vulnerable to change due to external perturbations or as internal 

thresholds are approached and breached (Holling 2001).

3) The destruction or release phase results from a perturbation and breaching of a 

threshold, resulting in collapse of structure and release of accumulated resources such that 

a change in system structure and state occurs (Q).
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4) The reorganization phase when the system adjusts to new conditions by reorganizing 

available resources for the next exploitation phase (a). Whether a change in state occurs 

throughout the entire system or at an individual scale range of the system during the phase 

of collapse depends on the magnitude of the disturbing force at a particular scale range, 

how well the effects of the disturbance are transferred to other scales and how sensitive the 

other scales are to change (Holling 2001).

The example in Figure 2.1 illustrates an adaptive cycle for a vegetation Panarchy at the scale 

of an entire forest patch following two perturbations: a hurricane, and a widespread fire. In 

this example, a hurricane results in widespread break-down of vegetation structure and 

climax species composition associated with the Q-phase. The example begins at 'a' in Figure

2.1, the a-phase, indicating germination of pioneer trees species and mobilization of soil 

nutrients following the destruction caused by the hurricane. This reorganization phase is 

followed by the exploitation phase involving rapid growth and utilization of resources such 

as biomass and soil nutrients by pioneer trees, such that a new vegetation structure begins 

to form ('b'- r-phase, Figure 2.1). The growth of pioneer trees and associated structuring of 

soil and nutrients creates necessary conditions for the germination of climax tree species 

resulting in a shift into the conservation phase ('c'- K-phase, Figure 2.1). The K-phase is 

characterized by slower vegetation growth as climax species begin to dominate the 

vegetation community structure. Thus phase results in increasing structural complexity, 

such as a community of densely packed trees, an understorey of shrubs and herbs, and 

interspecific interactions that vary from mutually beneficial (mutualism) to mutually harmful 

(competition). Gradually there is an increasing accumulation of biomass and self-sustaining 

interactions between different tree species, water, soil nutrients and light. At this point the 

vegetation community becomes 'over-connected' and is at highest risk to a threshold 

breach associated either with continued evolution of the structure and competitive 

interactions of the climax tree community, or an external perturbation that drives the 

community beyond a structural threshold. In this example, a severe forest fire occurs at the 

'over-connected' point in the K-phase ('FOREST FIRE', Figure 2.1), utilizing the accumulated 

biomass and resulting in widespread loss of climax trees. The structure of the forest patch 

collapses and carbon and nutrients are released. The ecosystem has thus shifted into the Q- 

phase ('d', Figure 2.1), a phase of 'creative destruction' where structure is broken down but

27



there is increased opportunity for the development of a new assemblage of species. 

Depending on surviving propagules and recruitment from neighbouring areas, a different 

forest community and state may emerge.

Adaptive cycles operate at each hierarchical scale of a system and are in constant feedback 

with processes and structures of adaptive cycles occurring at other hierarchical scales 

(Holling 2001; Figure 2.2). For example, a vegetation Panarchy may contain adaptive cycles 

occurring at the leaf, tree, patch, forest and biome level in increasing order of time and 

space (Figure 2.2a, Gunderson 2008). Similarly, an atmospheric Panarchy may contain 

adaptive cycles occurring at the wind gusts, storms, droughts/hurricanes and ENSO (El Nino 

Southern Oscillation) levels (Figure 2.2a). Relatively slow processes occurring at large scales, 

such as vegetation succession at the forest scale (Figure 2.2b), may constrain or influence 

processes occurring at smaller scales by influencing for example, the growth rate of an 

individual tree ('remember', Figure 2.2b). Alternatively, processes of change occurring at 

small scales, such as a leaf fungal infection which causes leaf death, may cause abrupt 

change at larger scales, such as death of an entire forest patch ('revolt', Figure 2.2b; 

Gunderson 2008).
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Figure 2.2: An example of spatial and temporal hierarchies of vegetation and atmospheric Panarchies (a); an 
example of the cross-scale interaction ('revolt' and 'remember') of adaptive cycles occurring at two scale 
ranges of the vegetation Panarchy (forest patch and the tree), is indicated (b) (Gunderson 2008: 2635).

Adaptive cycles described in the framework of Panarchy may be likened to the cycling 

between erosion, deposition and relative geomorphological stability or instability, at 

different spatial and temporal scales of a fluvial system. These cycles represent adjustment 

toward an internal state (either stable or unstable), defined by the approximate balance 

between available transport energy and available sediment load (Schumm 1977; Lane and 

Richards 1997). However, it is proposed here that the adaptive cycle, is quite different to 

that proposed for ecological systems. The interactions between landforms, 

geomorphological processes and water and sediment connectivity bring about a unique 

series of changes in geomorphological structure, processes and relative stability, at different 

scale ranges of the fluvial geomorphological Panarchy. Processes of erosion and deposition 

alter the geomorphological structure of a river system by modifying channel and floodplain
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morphology, patterns of erosional and depositional landforms and associated connectivity 

of water and sediment, and the geomorphological sensitivity of the fluvial landscape to 

change.

Figure 2.3 illustrates a Panarchy tailored to fit a river landscape illustrating 

geomorphological adjustment cycles that exist and interact across different spatial and 

temporal scales. These adaptive cycles may exist for example at the catchment scale, 

hillslope to tributary channel scale, and the trunk channel reach scale. Geomorphological 

adaptive cycles at the hillslope to tributary channel scale may include for example, phases of 

heightened hillslope runoff, soil erosion associated with gully formation, and tributary 

channel deposition, followed by phases of gully filling and soil development, and relative 

gully and channel stability. These cycles may operate over hundreds to thousands of years in 

association with long-term climatic variations. At the channel reach scale (defined as several 

kilometers of homogenous channel and valley geomorphological form), adaptive cycles may 

occur over several years to decades and may include for example phases of channel 

degradation followed by phases of channel aggradation. These phases of degradation and 

aggradation may be influenced by moderate or large flood events or thresholds that are 

breached at higher levels of the system hierarchy. The adaptive cycles within a fluvial 

geomorphological system are thus characterised by switches between processes of 

predominantly erosion, transport or deposition and associated changes in geomorphological 

structure at a particular scale range. These phase changes are associated with changes in 

the degree of water and sediment connectivity, changes in relative geomorphological 

stability, and changes in the complexity of interacting landforms and geomorphological 

processes, with biotic components of the system.
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Catchment scale

Catchment-scale long-term
erosional or depositional
processes (inherited)

Up-scale transfer of
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to new energy and stream scale
process conditions

Slow morphological
change
Relative stability
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scale threshold breach
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Breakdown ofFormation of new
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Figure 2.3: An example of a fluvial geomorphological Panarchy indicating adaptive cycles at nested hierarchies, 
from the catchment scale to the channel reach scale, and the nature of an adaptive cycle that is possible at the 
channel reach scale (adapted from Holling 2001). 'Revolt' and 'Remember' interactions between adaptive 
cycles at different spatial-temporal scales are described using examples, in the main text.

Figure 2.3 illustrates what a fluvial geomorphological adaptive cycle could look like at the 

channel reach scale, and how this adaptive cycle could interact with adaptive cycles 

occurring at the hillslope to sub-catchment (tributary stream) scale, to entire catchment 

scale. The example represents a channel reach in which a geomorphological threshold has 

recently been breached due to an external disturbance ('1', Figure 2.3), such as a large 

flood. The channel enters a phase of geomorphological restructuring ('a', Figure 2.3) 

associated with redistribution of sediment and adjustment of channel morphology, such 

that erosional energy that is available is used to do geomorphological work. The channel is 

unstable as structure (landforms) is being broken down, as the channel adjusts rapidly to
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the effects of the perturbation. Connectedness is low as there is a low diversity of 

geomorphological landforms, such as depositional bars or pools and riffles, interacting with 

water, sediment and adjacent geomorphological features within the channel zone. The 

channel thus has a relatively simple geomorphological form ('X', Figure 2.3). The rate of 

adjustment begins to slow during the alpha-phase, but the channel continues to adjust 

through processes of erosion and deposition to the new channel morphology, sediment 

load and fluvial energy conditions ('a ', figure 2.3). During the exploitation phase ('r', Figure 

2.3), erosional energy has been substantially reduced following channel adjustment such 

that available sediment is deposited, and depositional features begin to form within the 

channel zone. The channel begins to stabilize and geomorphological complexity increases 

indicating a shift toward the conservation phase ('K', Figure 2.3). During the K-phase 

sediment transport becomes important, although depositional landforms such as point bars, 

riffles or sediment slugs continue to gradually develop, forming buffers to geomorphological 

change within the channel zone. The river and surrounding floodplain thus becomes more 

complex in geomorphological structure (inset b, Figure 2.3), and channel stability and 

resilience to external perturbations increases. Connectedness increases as a diverse range 

of fluvial landforms interact through water and sediment movement, between different 

landforms in the channel zone, and between the channel and floodplain. However, during 

the latter part of the K-phase as gradual sediment deposition creates relief along the 

channel, slope thresholds are approached resulting in increasing sensitivity to 

geomorphological change. If a large flood event occurs a threshold will be breached and the 

channel will enter the destruction phase of the adaptive cycle (Q), leading to channel 

avulsion. During destruction, rapid structural breakdown of the channel occurs, such that a 

new phase of channel development is initiated and the complex, interconnected array of 

landforms that previously existed is lost. The channel enters a new state with different form, 

energy conditions and available water and sediment.

The cross-scale interaction of adaptive cycles in a fluvial landscape influences the 

geomorphological processes, forms and sensitivity to change at individual scale ranges. 

These cross-scale interactions may occur from larger scales to small scales ('remember', 

Figure 2.3), and from smaller scales to larger scales ('revolt', Figure 2.3). For example, long

term landscape erosion or sedimentation that is inherited from previous tectonic or eustatic
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events may influence the nature and rate of adjustment processes occurring at the tributary 

catchment and channel reach scales ('A', Figure 2.3). Similarly, threshold breaches and 

structural change at the channel reach scale may be transferred to the hillslope and 

tributary stream scales ('B', Figure 2.3). The interplay between geomorphological cycles 

occurring at different spatial and temporal scales of a catchment is not always linear or 

easily predictable since a range of factors determine the strength of interactions between 

different scales. For example, Pratt-Sitaula et al. (2004) studied the nature of long-term 

phases of erosion and alluviation driven by climate and tectonics in a Himalayan mountain 

catchment. The study indicated that the timing of maximum hillslope erosion did not 

correlate with the timing of maximum channel incision. In this study, hillslope erosion 

initiated sediment deposition on the valley floor and it was only when this sediment supply 

slowed or was exhausted, that a phase of heightened river erosion occurred. Hence, there 

may be considerable time lags between the onsets of large-scale erosional or aggradation 

phases and the onset of corresponding phases at the river reach scale.

The concept of Panarchy has not been widely used to frame cross-scale process-form 

interactions in fluvial geomorphology. Slaymaker (2006) investigates scaling relations in 

sediment budgets for rivers within the framework of Panarchy, indicating that it is difficult 

to transfer findings at one spatial scale to other scales. For example, a sediment budget 

calculated at the sub-catchment scale does not translate to the overall catchment sediment 

budget when multiplied by the sum of all subcatchments within comprising the broader 

catchment (Slaymaker 2006). Slaymaker (2009) speaks of climatically induced long-term 

cycling between erosion and deposition in river systems and refers to these cycles as 

'adaptive cycles' but does not provide further discussion on the potential for application of 

adaptive cycles in fluvial geomorphology.

The complexity of river systems means that they may indicate levels of organization and 

self-regulation but may change unpredictably (Knighton 1984; Ryan et al. 2007; 

Thorndycraft et al. 2008), such that similar landforms and fluvial systems may respond very 

differently to the same type and magnitude of disturbance (Schumm 1973). It thus becomes 

difficult to accurately predict river response to different types of disturbing forces without a 

thorough understanding of river geomorphological and disturbance history, the connectivity
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of processes and landforms across different scales, and the thresholds that exist at different 

scales (Phillips 1999; Fryirs and Brierley 2009).

2.3 Geomorphological connectivity for understanding complex interactions and river 
sensitivity

2.3.1 Geomorphological connectivity defined

'Connectivity' was first widely applied in the discipline of landscape ecology to explain links 

between ecological processes and patterns (Moilanen and Nieminen 2002; Belisle 2005; 

Kindlmann and Burel 2008). 'Landscape connectivity' refers to the degree to which the 

landscape facilitates or impedes movement of biota among resource patches (Belisle 2005). 

For example a grassland-forest patch mosaic may contain a number of fragmented forest 

patches separated by grassland. If these patches are far apart the movement of biota such 

as birds, millipedes or tree seeds between forest patches will be more unlikely than if the 

patches are close together. The author has already provided a definition of 'connectivity' 

and 'coupling' applied within the discipline of fluvial geomorphology, in Chapter 1. These 

terms broadly refer to how easily available water and sediment is transferred between 

landforms and parts of a river system (Harvey 2002a; Fryirs et al. 2007a). These linkages do 

not only imply material linkages of water and sediment, but imply linkages between 

geomorphological processes occurring at different parts of a river landscape. In the present 

study the concept of geomorphological connectivity is referred to as the degree of linkage 

of sediment through different parts of a river landscape, influencing the degree to which 

different landforms and parts of the landscape are coupled in terms of the transfer of 

geomorphological response between these components.

There is currently no consensus on the definition or measurement of connectivity in fluvial 

geomorphology. The concept is often defined and measured from a range of perspectives 

including studies of hydrological (water) connectivity (Burt and Pinay 2005; Bracken and 

Croke 2007; Lane et al. 2009; Bracken et al. 2013), studies of ecological connectivity 

(Townsend 1989; Stanford and Ward 1993; Poole 2002; Burcher et al. 2007), and studies of 

sediment (geomorphological) connectivity (Fryirs and Brierley 2001; Rommens et al. 2006; 

Godfrey et al. 2008; Boardman et al. 2010; Foster et al. 2012; Cavalli et al. 2013; Fryirs and 

Gore 2013; Heckmann and Schwanghart 2013; Bracken et al. 2015). The concept began to 

feature in the discipline of aquatic science during the late 1980s to early 1990s (Wohl 2014),
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during which time an understanding of the linkages of water and nutrients in different 

dimensions, including upstream-downstream or channel-floodplain, were essential to 

understanding the ecological dynamics of rivers (Ward 1989; Stanford and Ward 1993; 

Ward and Stanford 1995; Poole 2002). Following these early studies, the concept was used 

to investigate river sensitivity to contemporary environmental change and anthropogenic 

impacts (Harvey 1997; Brierley et al. 1999; Fryirs and Brierley 2001; Harvey 2001; Werrity 

and Leys 2001; Harvey 2002a), and more recently to understanding the timescales over 

which different parts of a river system become connected and thus increasingly sensitive to 

disturbance events (Fryirs et al. 2007b; Hoffman 2015).

Fryirs et al. (2007a) provide a framework for describing connectivity in river landscapes by 

classifying different landforms that impede the transfer of water and sediment as 'barriers', 

'buffers' and 'blankets', and landforms that enable connectivity as 'enhancers' (Table 2.2). 

Barriers may include, for example, sediment slugs that form across a channel, slowing water 

flow and trapping sediment that is being transferred from upstream channel reaches. 

Another example is a low-sloping, wide-channel reach that does not possess sufficient 

sediment transport capacity, thus preventing efficient upstream-downstream linkages of 

sediment. Buffers are those features that impede lateral inputs of water and sediment to a 

channel, including for example, alluvial fans or wide floodplains that trap sediment and 

disperse water across a wide area. Blankets impede vertical connectivity of water and 

nutrient, for example a clay layer on a floodplain surface may impede infiltration of flood 

water into the alluvial aquifer. Features that enhance water and sediment connectivity may 

include, for example, a steep channel with high stream power, or an incised channel that 

effectively channelizes storm flows, resulting in high capacity for sediment transport. These 

buffers, barriers, blankets and enhancers of connectivity have been compared to 'switches' 

that are able to 'turn off' or disconnect, and 'switch on' or connect sediment delivery to 

different parts of a catchment (Brierley et al. 2006). Brierley et al. (2006) present a useful 

illustration of these 'switches' and their effect on catchment-scale sediment 

(dis)connectivity, as illustrated in Figure 2.4. In the illustration, landforms such as alluvial 

fans and sediment slugs 'switch-off' sediment transfer between tributary catchments and 

the trunk stream, and between different trunk stream reaches, whilst an incising channel 

'switches-on' sediment connectivity between different stream reaches by enhancing
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sediment transport capacity. Enhancers of connectivity such as incising channel reaches are 

generally termed features of instability as they tend to enhance water and sediment 

delivery to downstream channel reaches. These features increase the vulnerability of the 

downstream channel reaches to geomorphological change (Brunsden 2001; Fryirs et al. 

2007a), by disrupting local equilibrium conditions and inducing channel adjustment. 

Sediment impediments decrease the potential area that can deliver sediment to a 

downstream channel component ('effective catchment area', Figure 2.4), thus explaining 

the ability of these features to 'buffer' parts of a system by reducing the exposure of the 

buffered parts of the system to disturbing forces of particular frequency and magnitude.

Table 2.2: Examples of buffers, barriers, blankets and enhancers of water and sediment connectivity in river 
landscapes (adapted from Fryirs et al. 2007a).

Type of 
impediment

Landform examples Effect on continuity of water and sediment

Barrier

Bedrock steps Promote backfilling of valleys

Sediment slugs A plug to sediment transfer along channels

Channel capacity 
(width/depth ratio)

May impede sediment movement along channel.

Valley constriction Restricts sediment transfer along a valley

Buffer

Alluvial fans Impede sediment transfer between tributary and trunk channel

Floodplain pockets Impede sediment transfer between tributary and trunk channel

Floodplain terraces and 
channel levees

Impede sediment transfer from trunk to floodplain

Blanket Clay layer within 
floodplain alluvium

Clay is impermeable to water thus impedes vertical movement of 
water in a floodplain

Enhancer

Incising or incised river 
channel

Enhances upstream-downstream and tributary and trunk 
connectivity

Canalized river channel Enhances upstream-downstream connectivity; enhances 
tributary-trunk connectivity for canalized tributary streams
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Figure 2.4: Conceptual illustration of catchment scale (dis)connectivity indicating different barriers, buffers 
and enhancers of water and sediment connectivity (re-drawn from Brierley et al. 2006: 170).

Whilst impediments to connectivity, such as alluvial fans or channel bars act as 'off- 

switches', they tend to increase the resilience and stability of parts of a river system to 

disturbing forces (Brunsden 2001; Fryirs et al. 2007b; Hoffman 2015). This relative resilience 

is dependent upon the interaction of the frequency and magnitude of a disturbing force, 

with the morphological resistance of a particular landform acting as a buffer, barrier or 

blanket. For example, if a small flood event occurs and a channel reach has enough 

structural resistance in the form of low channel slope, and a sediment slug across the 

channel which disperses the energy of the flood flows, then it is likely that the flood will 

induce little geomorphological change. However, if a moderate or large flood event were to 

occur, the sediment slug may not be able to resist the power of the flood force, resulting in 

erosion of the slug and increased sediment connectivity. Thus over time, disconnected and 

relatively resistant parts of a catchment may become connected with downstream 

components if a threshold breaching event occurs, making the downstream channel 

network more sensitive to the effects of disturbances occurring in the wider catchment area 

(Fryirs et al. 2007b; Fryirs and Brierley 2009; Reid and Brierley 2015).
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Hooke (2003) indicates the importance of coarse sediment connectivity in influencing the 

relative resistance of gravel-bed rivers to geomorphological change, and identifies varying 

degrees of coarse-sediment connectivity for these types of streams, based largely on 

observation and field mapping of (dis)connectivity landforms. The connectivity classes 

defined by Hooke (2003: 86) include:

■ Unconnected: reaches operate almost independently of each other as sediment 

budgets are localised (a single reach of a few 10s to 100s of meters); this 

condition may exist when a channel reach lacks competence to transport 

sediments downstream.

■ Disconnected: lack of transfer between different reaches due to barriers that 

have been constructed (e.g. dams, weirs), which prevent sediment throughput 

during the lifetime of the structure. Lack of propagation of channel 

morphological change into a channel reach over a 20 year period or more 

indicates a lack of connectivity.

■ Partially (or episodically) connected: sediment connected or transported 

between reaches only during extreme episodic events. In this case the event 

needs to be bankfull size or more such that gravels are transported.

■ Potentially connected: potential transfer of sediment between reaches but a lack 

of sediment supply to the channel means no connectivity.

■ Connected system: coarse sediment moves easily and frequently through the 

system, between reaches, during normal floods (0.5-5 year events).

2.3.2 Connectivity in relation to river sensitivity

In the discipline of geomorphology, connectivity was first applied to understanding the 

geomorphological sensitivity of landscapes, by relating the degree of linkage of different 

geomorphological processes and landforms, to the ease with which a disturbance response 

propagates through a given landscape (Brunsden and Thornes 1979; Brunsden 2001; 

Thomas 2001; Usher 2001). In this regard, if different components of a landscape, such as 

mountain peaks, hillslopes and valley floors, are highly connected in terms of 

geomorphological processes and sediment movement, then the landscape should be 

sensitive to geomorphological change, such that the effects of a disturbance will propagate 

easily through the landscape to the valley floor (Hoffman 2015). Degree of connectivity is
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thus one of the determinants of the sensitivity of a geomorphological system to change. In 

the last few decades, connectivity or coupling has featured in a range of fluvial 

geomorphological studies, including descriptive studies that define types and degrees of 

connectivity (Hooke 2003; Kondolf et al. 2006; Wang et al. 2008), to the study of 

connectivity of processes and landforms across different spatial and temporal scales (Harvey 

2002a), and connectivity in relation to geomorphological change and sensitivity (Thomas 

2001; Usher 2001; Hooke 2006; Harvey 2007a). Others have considered the application of 

connectivity theory to conservation management of river landscapes influenced by human 

land-use (Brierley et al. 1999; Brierley et al. 2006; Fryirs and Gore 2013). There are few 

cases where water and sediment connectivity has been understood across scales of space 

and time in a fluvial system with evaluation of the implications for river rehabilitation and 

catchment management (Gilvear 1999; Brierley and Fryirs 2000; Kondolf et al. 2006).

Connectivity can be studied and described at different hierarchical scales from the 

catchment level down to the river reach or sub-reach scale, and at different time scales of 

10 to 104-6 years (Fryirs et al. 2007a; Hoffman 2015). Thus, aspects of time and space are 

important when investigating and describing connectivity (Harvey 2002a; Brierley et al. 

2006; Bracken et al. 2015). Brierley et al. (2006) and Bracken et al. (2015) discuss sediment 

connectivity from a hierarchical perspective, suggesting that processes and material 

transfers at the catchment scale influence processes and transfers at smaller spatial scales 

and vice versa. Geomorphological connectivity may thus be related to the concept of 

Panarchy, since the degree of sediment connectivity determines the degree to which 

geomorphological processes and threshold breaches characterizing geomorphological 

adaptive cycles, interact across spatial and temporal scales of a river landscape. The concept 

of connectivity thus facilitates an understanding of system complexity and the process 

controls on channel behavior, since erosion cycles inherited from millennia ago may 

influence contemporary river process (Hoffman 2015).

2.3.3 Measures of geomorphological connectivity

Bracken and Croke (2007), suggest that a proposed connectivity framework for the whole or 

part of a catchment needs to be supported by a quantitative variable that can be measured 

and estimated in the field. This kind of quantitative investigation requires extensive
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sediment tracing exercises, which can be costly and time consuming. Thus, connectivity is 

often described qualitatively. Common qualitative approaches include:

■ Sensitivity mapping: mapping the occurrence intervals of formative events like 

floods, fires and land-use change, and mapping the location, type and propagation 

of geomorphological response to these disturbances (Brunsden 2001; Harvey 

2001; Harvey 2007b).

■ Morphological mapping: mapping the size and distribution of different landforms 

that form partial or full breaks in connectivity of sediment, or enhance transfers of 

sediment (Fryirs and Brierley 1999; Hooke 2003; Fryirs et al. 2007a; Fryirs et al. 

2007b; Jain and Tandon 2010).

■ Mapping river styles: classify river planform pattern according to the river styles 

framework devised by Brierley and Fryirs (2000) for the Bega catchment in 

Australia. The river styles framework distinguishes different channel forms 

determined largely by dominant geomorphological processes and channel and 

valley morphology, and relates this to degree of sediment connectivity with the 

wider catchment, and associated sensitivity to geomorphological change.

■ Visible evidence: observed changes in channel morphology and depositional 

landforms during flood events that indicate movement of coarse and fine 

sediment (Hooke 2003; Kasai et al. 2005; Kasai 2006).

■ Sediment source-sink tracing: use of radioactive isotopes to trace sediment source 

to sink pathways for different parts of a catchment (Grenfell et al. 2012; Rowntree 

and Foster 2012).

Quantitative approaches to measuring connectivity include:

■ Estimating the competence and capacity of a channel reach using a range of 

indicators such as stream power and critical shear stress.

■ Sediment flux and budget measurements that may include the use of pebble 

tracers for bed load fluxes (Hooke 2003), and the use of sediment models and fine 

sediment tracers (radioactive isotopes) to estimate fine sediment fluxes (Kasai et 

al. 2005; Hooke 2006; Rommens et al. 2006; Fryirs et al. 2007b; Godfrey et al. 

2008).
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■  A geomorphological connectivity index that estimates potential connectivity 

between different parts of a catchment based on local topography (Borselli et al. 

2008; Cavalli et al. 2013).

■ Numerical models that indicate spatial variations in sediment sources, pathways 

and sinks, and hence degree of sediment connectivity (Heckmann and 

Schwanghart 2013).

Many of the aforementioned quantitative approaches require substantial technological skill, 

time and financial investment into top-of-the-range technologies, thus limiting wide-range 

application (Bracken and Croke 2007). The range of definitions and methods of measuring 

connectivity have made it difficult to compare findings across different river systems. 

Furthermore, there is still much room for developing the methodology of measuring 

sediment connectivity that includes controls other than hydrology or geomorphological and 

topographic influences (Bracken et al. 2015). These controls could include for example, the 

influence of vegetation structure and cover or soil structure and type on the ease with 

which sediment is released, transferred and stored within a fluvial system. Despite these 

pitfalls, there is still much scope for investigating the application of the concept for 

understanding river process, form and change across a range of rivers types (Wohl 2014).

Although connectivity is not the only determinant of geomorphological sensitivity (Brunsden 

2001; Reid and Brierley 2015), it is a relatively easy concept to apply when attempting to 

understand the structural resilience of different parts of a river landscape, and the potential 

for future geomorphological change. The concept thus has multiple areas of application 

including:

1) Understanding the parts of a catchment that are well-connected to upstream areas, 

and thus vulnerable to the effects of perturbations that influence water and 

sediment inputs and available fluvial energy. These areas should be targeted for 

strategic catchment management since they are particularly sensitive to 

geomorphological change (Brierley et al. 2006).

2) Understanding the timescales over which a catchment or parts of a catchment are 

relatively sensitive or resilient to geomorphological change, such that the natural 

dynamics of the system can be understood (Fryirs et al. 2007b; Hoffman 2015). For 

example, if alluvial fans form natural buffers in the upper-reaches of a catchment for
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periods of several decades, then these features should be conserved if sustained 

river resilience is desired.

3) Understanding how humans or climate change may influence timescales of 

connectivity by altering water and sediment inputs and channel stability (Hoffman 

2015), and estimating the impacts of these drivers on river geomorphological 

behaviour, such that changes can be predicted and managed.

2.4 Toward process-based river rehabilitation

The above concepts of adaptive cycles, Panarchy and geomorphological connectivity are 

useful for guiding river rehabilitation and catchment management approaches, in that they 

start to appreciate the geomorphological complexity of rivers. Yet, the discipline of river 

restoration has traditionally aimed at reinstating a pre-degradation channel form 

(geometry, shape and arrangement of habitats) and ecological condition at the channel 

reach scale, focusing mainly on conservation of endangered stream biota (Kondolf 1998; 

Roni et al. 2002; Shields et al. 2003a; Caruso 2006; Beechie et al. 2010). This form-based 

approach aims at a stable physical and ecological endpoint, which is inappropriate 

considering that rivers are inherently complex and dynamic, with multiple scales of 

interacting drivers and processes that determine channel response (Simon and Thorne 

1996; Wohl et al. 2005; Fryirs and Brierley 2009; Beechie et al. 2010; Rosgen 2011).

Interventions associated with the form-based approach include, for example, attempting to 

reconnect an incised channel to a former floodplain using channel engineering approaches 

(Bravard et al. 1999), or reconnecting fish habitats that have been isolated by human 

activities (Roni et al. 2002). Weirs (gabion or cement), bank stabilization (using cement, 

rocks or gabions), artificial log jams, and creation of artificial channels are some of the 

common measures used to create a desired stable channel form and habitat endpoint (King 

et al. 2003). These approaches thus reduce heterogeneity in geomorphological and 

ecological structure that is often necessary for the healthy functioning of a river-floodplain 

(Fryirs and Brierley 2009), and may sometimes be unnecessary where a stream is capable of 

self-recovery (Kondolf et al. 2001). It is thus not surprising that form-based or structural 

approaches to river restoration often fail to achieve improved and sustainable ecological 

condition and functioning (Mika et al. 2010). Furthermore, the varied use of terminology in
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the discipline hampers ability for learning and comparison within and between different 

restoration projects (King et al. 2003; Grenfell et al. 2007; Khatami 2012).

'Restoration', which is generally defined as the return to a structural and functional pre

disturbance state, is the most widely adopted definition in the field of river ecological 

recovery (Bradshaw 1997; Khatami 2012). However, this definition is rarely achieved given 

that it is extremely difficult to reconstruct the previous set of conditions, processes and 

drivers that characterised the pre-degradation ecosystem (Fryirs and Brierley 2009).

The term 'restoration' in the field of fluvial geomorphology and ecology has been defined in 

varying ways including:

1) "The return of a degraded ecosystem to a close approximation of its remaining 

natural potential", (Shields et al. 2003a: 575).

2) "Assisting the establishment of improved hydrological, geomorphological, and 

ecological processes in a degraded watershed system and replacing lost, damaged, 

or compromised elements of the natural system", (Wohl et al. 2005: 2).

3) "A process of river repair that strives to promote recovery toward a pre-disturbance 

state (near-intact condition). Reversible geomorphological change has occurred 

following human disturbance", (Brierley and Fryirs 2008: 9).

4) "Establishment of physical, chemical and biological functions that are self-regulating 

and emulate the natural stable form within the constraints imposed by the larger 

landscape", (Rosgen 2011: 70).

Rehabilitation is distinguished from restoration as rehabilitation attempts to re-instating 

natural processes that allow a system to self-regulate internal processes and structure 

toward an improved ecological condition. However, the term 'rehabilitation' has also taken 

on a variety of definitions:

1) "Re-establishment of processes and replacement of elements rather than treating 

the symptoms", (Wohl et al. 2005: 2).

2) "...a partial return of former function", (Shields et al. 2003b: 442).

3) "An intentional activity that enhances/assists the recovery of an ecosystem that has 

been degraded, damaged, or destroyed through manipulation of its structure and 

function. Management activities aim to promote the recovery of ecosystem
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processes so as to regain normal/expected function and self-sufficiency without 

necessarily aiming to recover all indigenous biota", (Brierley and Fryirs 2008: 9).

In this study the term rehabilitation is adopted and defined within the context of water and 

sediment connectivity, including a consideration of the social aspect of river rehabilitation, 

as: "the promotion of geomorphological processes and (dis)connectivity of these processes 

across different scales, assisting the self-recovery of a degraded river floodplain towards an 

improved functional state, that is sympathetic to local ecological and social needs and 

desires".

The above definition closely aligns with a process-based approach to river rehabilitation. 

The process-based approach as an effective alternative to the form-based approach has 

been widely endorsed in the fluvial geomorphology and ecology literature in recent decades 

(Kondolf 1998; Wohl et al. 2005; Kondolf et al. 2006; Fryirs and Brierley 2009; Beechie et al. 

2010; Pasternack 2013). Process-based rehabilitation aims to foster geomorphological, 

hydrological and ecological processes that allow a system to recover toward improved 

ecological functioning (Beechie et al. 2010). This approach focusses at different hierarchical 

scales of the catchment, considering how drivers of change and processes at larger scales 

interact with processes at smaller scales of the catchment (Brierley and Fryirs 2009; Fryirs 

and Brierley 2009). By fostering natural river recovery, process-based rehabilitation is more 

sustainable in the long-term and likely to be more cost-effective, than engineered structures 

such as cement weirs that are often barriers to natural recovery processes (Kondolf et al. 

2006). Despite acknowledgement of the importance of a process-based approach to river 

rehabilitation in the literature, it is still common practice to attempt to restore a particular 

channel condition and geomorphological form in isolation of drivers of change occurring at 

broader spatial scales (Florsheim et al. 2008; Beechie et al. 2010).

Beechie et al. (2010) propose four basic principles that should guide process-based 

rehabilitation:

1) Identify and address the root causes of degradation instead of addressing the 

symptoms.

2) Interventions should align with the physical and biological potential of a particular 

river reach. This potential is linked to the physiographic and climatic setting and the 

processes that operate across different scales to determine the range of habitats and
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processes that could exist at the local scale. This requires historical analysis of former 

conditions, understanding processes and controls that determine river type and 

condition, and identification of anthropogenic factors that limit rehabilitation.

3) The scale of rehabilitation should align with the scale of the drivers of degradation. 

For example, if gravel has been removed from a channel reach by humans then focus 

rehabilitation efforts at the channel reach scale, since the driver of degradation 

occurs at this scale, as well as the resulting impacts. Alternatively, if fine sediment 

delivery from the catchment has changed due to human activities, then, where 

possible, adjust catchment land-use activities to achieve a more natural sediment 

balance.

4) The expected ecological outcomes should be clearly outlined through an attempt to 

quantitatively predict the range of expected channel conditions that could follow 

rehabilitation.

The process-based approach therefore requires an assessment of river and catchment 

history, including land-use and land cover changes, the history of natural disturbances and 

associated channel condition, behaviour and change (Gilvear 1999; Brierley and Fryirs 2005). 

This historical perspective facilitates prediction of the possible future geomorphological and 

ecological pathways of different channel reaches, such that appropriate rehabilitation 

interventions can be planned (Brierley and Fryirs 2008), and the impacts of future land-use 

and climate change can be predicted (Large and Petts 1996; Kondolf 1998; Campana et al. 

2014). A catchment scale approach to rehabilitation of a single river reach is therefore a 

fundamental consideration since it is often human disturbance responses, or the nature of 

geomorphological processes at the catchment or sub-catchment scale, that drive channel 

behaviour and change at the reach scale (Bravard et al. 1999; Wohl et al. 2005; Florsheim et 

al. 2008; Fryirs and Brierley 2009; Beechie et al. 2010).

The geomorphological process-based approach to river rehabilitation should be 

participatory, integrating social-cultural values and desires of the particular context into 

rehabilitation planning in an attempt to, as far as possible, align the social desires and needs 

with the need for river recovery (Gregory 2006; Pahl-Wostl 2006; Gregory and Brierley 

2010; Le Lay et al. 2013). Furthermore, ongoing monitoring and evaluation of the 

hydrological, geomorphological and ecological outcomes of rehabilitation efforts facilitates
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adaptive management, and is an essential component of any geomorphological process- 

based rehabilitation programme (Downs and Kondolf 2002; Beechie et al. 2010; Brierley et 

al. 2010). This kind of monitoring should investigate how changes in geomorphological 

structure and hydrological regime brought about by rehabilitation efforts, influence stream 

and riparian biota and land-use practices, adjusting the rehabilitation approach were 

possible (Brierley et al. 2010). This integrative approach to process-based river rehabilitation 

is however challenging, working at the catchment-scale is costly and takes time (Hillman and 

Brierley 2005), the stakeholder engagement process may be undermined by political 

tensions and monitoring and evaluation processes require several years of commitment to a 

single site.

2.4.1 Examples of process-based rehabilitation frameworks 

The river-styles framework (RSF)
Brierley and Fryirs (2000) first demonstrated the application of the RSF for guiding process- 

based rehabilitation and management efforts in the upper-Bega River catchment in 

Australia. Following this initial study, the RSF has been widely used in river rehabilitation 

and catchment management projects across Australia, and has also been applied in other 

landscapes such as North America, New Zealand and India (Reid et al. 2008; Brierley et al. 

2011; O'Brien and Wheaton 2014; Kasprak et al. 2016). The approach has not to the 

knowledge of the author been applied to rehabilitation projects in South Africa. According 

to the webpage created for the RSF, www.riverstyles.com. the concept involves a four-stage 

assessment of river character and behavior (Stage 1), river evolution and geomorphic 

condition (Stage 2), river recovery potential (Stage 3), and the implications of information 

gained from stages 1-3 for catchment management (Stage 4). The framework may therefore 

be used to understand the geomorphic diversity and behavior of different parts of a river 

catchment, the potential for natural river recovery, and for directing management decisions 

that are sensitive to the processes and controls on a particular fluvial system.

The RSF webpage summarizes each of the four assessment stages as follows (University of 

Auckland 2017):

Stage 1 defines river character and behaviour for different parts of a catchment based upon 

valley confinement and channel planform (e.g. confined valley with single-thread channel
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and occasional floodplain pockets vs. laterally unconfined valley with wandering river), the 

nature and arrangement of geomorphological landforms such as floodplain pockets, channel 

bars, bedrock channel reaches, pool-riffle sequences, and bed material texture size (Figure 

2.5). Figure 2.6 is an example of a river styles classification for Bega River catchment in New 

South Wales, Australia. The river styles are identified for different landscape units including 

for example, uplands and escarpment units containing the Steep headwater style, the 

rounded foothills unit containing the Confined valley with ocassional floodplain pockets 

style amongst others, and the lowland plain unit containing the Low sinuosity sand bed 

style. The river styles identified indicate adjustment to varying antecedent controls, such as 

valley width and slope, floodplain alluvium and related cohesiveness of sediments, different 

dominant geomorphological processes, and differences in geomorphological sensitivity to 

human disturbances. The approach is hierarchical, defining landscape units such as uplands 

or the base of an escarpment, within which characteristic river styles are found, including 

for example headwater styles in upland areas or cut-and-fill styles in lowland areas. The 

geomorphological units, such as point bars, flood-outs or floodplain terraces that comprise 

each river style reflect the operation of particular fluvial processes (Brierley and Fryirs 

2005). The downstream pattern of river styles in a particular sub-catchment influences the 

connectivity of sediment and water and hence the sensitivity of different parts of a 

catchment to disturbances. The river styles framework thus provides clues as to dominant 

geomorphological processes influencing river behaviour, and potential for natural river 

recovery, as well as how a channel reach may respond to different types of management 

and rehabilitation interventions (Brierley and Fryirs 2005).
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Figure 2.5: Procedural tree for classifying river styles (Brierley and Fryirs 2005: 264)

Figure 2.6: The river styles identified for Bega River Catchment in New South Wales, Australia (Fryirs and 
Brierley 2005: 74).

Stage 2 involves 1) assessing river condition by investigating how a particular river style 

adjusts within its valley setting and whether the types of adjustments are expected for that 

style, 2) the evolutionary history of a river to determine if irreversible change has occurred 

and what the reference condition is.
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Stage 3 investigates the potential geomorphological trajectory and potential for natural 

river recovery for each reach of each river style that has been identified. This assessment 

involves ergodic reason, using different river sites representing different stages of 

geomorphological adjustment to infer future change of each river reach and whether the 

reach will be able to recover along an expected evolutionary pathway with little human 

influence (Fryirs and Brierley 2005). These evolutionary pathways are described by Fryirs 

and Brierley (2005) as follows (Figure 2.7):

• Intact condition: when there has been very little to no human impact on river 

process and form;

• Restored pathway: when a reach has experienced reversible change in river style but 

the reach operates under new catchment boundary conditions and therefore may 

evolve toward a restored condition;

• Creation pathway: when impact on geomorphological condition is irreversible but 

the river reach is resilient to change and there is potential for evolution toward a 

new geomorphological condition;

• Degraded pathway: when impact on river style and catchment boundary conditions 

has been severe such that the river continues along a degradation pathway.

Figure 2.7: Conceptual diagram of potential geomorphological trajectories used to assess natural river 
recovery for the River Styles Framework (Auckland University 2017).
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Stage 4 uses information from the above three stages to prioritise river styles for 

management interventions based upon river condition and potential for geomorphological 

recovery. Rehabilitation is prioritized as follows (Auckland University 2017):

1) Those reaches that are most intact and have highest potential for natural recovery 

are prioritized for conservation efforts and enhanced recovery efforts respectively.

2) Tackle strategic reaches: highly degraded styles receive lowest prioritization and are 

only rehabilitated if they have some recovery potential.

3) Tackle more difficult areas- with lower rehabilitation potential if above priorities 

have been addressed.

Monitoring and auditing improvement in river geomorphological condition for improving 

catchment management is an important component of Stage 4.

Connectivity-based frameworks

The concept of connectivity (water, sediment and biota) is gradually being incorporated into 

rehabilitation and catchment management as a framework for understanding the structural 

mechanisms determining river sensitivity to land-use impacts (Gilvear 1999; Brierley et al. 

2006; Kondolf et al. 2006; Fryirs and Gore 2013), and as a framework to guide the recovery 

of more natural flow and sediment regimes in disturbed catchments (Jansson et al. 2007; 

Fryirs et al. 2009). Understanding connectivity of water and sediment beyond the scale of a 

targeted rehabilitation reach provides the broader-scale controls on how a river behaves, 

the potential for a degraded river to recover with little human-intervention, and how a river 

channel may morphologically evolve in the future (Fryirs and Brierley 2009). Fryirs et al. 

(2009) found that channel degradation and recovery responses following European 

settlement in the Hunter catchment in Australia was variable, and dependent on 

connectivity with the wider catchment. River reaches that were disconnected from the 

wider catchment showed a longer response time lag for the onset of channel degradation 

and recovery. Hence, these reaches were less sensitive to geomorphological change but 

were less resilient to the geomorphological effects of perturbations. River reaches that were 

well-connected to the wider catchment were relatively sensitive to geomorphological 

change but were able to recover more quickly, given sediment availability, thereby
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indicating greater geomorphological resilience following a degradation phase. Riparian 

vegetation recovery and reduced flooding magnitudes were also important determinants of 

channel recovery, highlighting the complex interplay between sediment connectivity, flood 

frequency and magnitude, and the stabilizing effect of riparian vegetation (Fryirs et al. 

2009).

Kondolf et al. (2006) present a model that illustrates how changes in three dimensional 

water and sediment connectivity (lateral, longitudinal and vertical dimensions), can 

determine river degradation and rehabilitation trajectories (Figure 2.8). The conceptual 

model describes a river naturally characterised by a high degree of longitudinal, lateral and 

vertical connectivity and high flow variability (Point 1, Figure 2.8). The system evolves from 

point 1 to point 2 following the introduction of revetments (hard structures that stabilize 

banks) by humans, resulting in reduced lateral and vertical connectivity, whilst natural flow 

variability at this point remains relatively similar to the former condition. The system then 

evolves toward point 3, as a result of impoundment in the catchment which resulted in 

decreased longitudinal connectivity and flow variability. The system thus begins to degrade 

ecologically, as natural fluvial processes are inhibited. Rehabilitation efforts, including the 

removal of channel revetments, resulted in improved lateral and vertical connectivity and 

increased flow variability at point 4, although the system did not regain the pre-degradation 

condition, since impoundments were still present in the catchment. The conceptual model 

thus illustrates the importance of considering the role of human activities in altering natural 

levels of water and sediment connectivity and associated flow variability, for planning the 

type and scale of river rehabilitation efforts.
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Figure 2.8: An example of a three-dimensional connectivity-based conceptual model of river degradation and 
rehabilitation developed for the Pike River in Sweden by Kondolf et al. (2006: 10). The size of the dots indicate 
relative variability in annual flow associated with different connectivity scenarios (large dots = high flow 
variability and smaller dots = lower flow variability).

Fryirs et al. (2007a) present a different model of connectivity to that described above. The 

model indicated in Figure 2.9, compares connectivity characteristics in two contrasting 

fluvial landscapes: 1) a high-energy mountain catchment in New Zealand (the Weraamaia), 

and 2) a lowland catchment in Australia (the Bega catchment). Fryirs et al. (2007a) suggest 

that this context-specific and catchment-scale understanding of the nature and influences 

on sediment connectivity, provides a foundation for understanding river sensitivity or 

resilience to disturbing forces necessary for effective catchment management. The authors 

suggest that high-relief catchments ('a', 'b', Figure 2.9) are characterised by ongoing 

connectivity, with frequent and often high volumes of coarse sediment delivered to the 

channel network from surrounding hillslopes during high-magnitude storm events. These 

high-relief landscapes have larger areas contributing sediment to the channel network 

('effective catchment area', Figure 2.9), due to more effective water and sediment transfers 

than in low-relief landscapes. In the low relief setting, the formation of buffers and barriers 

and associated sediment storage is more common ('c' and 'd', Figure 2.9). Thus, it would be 

expected that high-relief landscapes are more sensitive to geomorphological change, such 

that management practices that protect natural buffers and barriers at different scales of a
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catchment is important. In low-relief landscapes the presence of channel zones devoid of 

buffers and barriers may be important in maintaining flow and sediment through-put to 

lowland plains.

Figure 2.9: Conceptual model of Fryirs et al. (2007a: 61) indicating differences in connectivity and related 
effective catchment area between a high-relief uplifted landscape (a and b), and a low-relief landscape (c and 
d).

The above described conceptual frameworks of connectivity and river styles are interlinked. 

The RSF considers water and sediment connectivity as important aspects of river recovery 

but does not map catchment (dis)connectivity landforms in detail. When the RSF and 

connectivity frameworks are combined, they form a powerful tool for effective process- 

based catchment management and river rehabilitation interventions. The two concepts 

highlight the importance of applying varied rehabilitation and management interventions to 

different types of rivers with different sets of interacting processes and landforms, and 

different potential for geomorphological change and recovery following perturbations 

(Brierley and Fryirs 2005).
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2.4.2 The importance of social stewardship and adaptive management in river 
rehabilitation

Hillman et al. (2008) indicate that degree of social connection to a river landscape is a 

fundamental determinant of the success and sustainability of any rehabilitation project. 

Social connectivity is defined by Hillman et al. (2008) as the degree to which local 

communities are linked to a river landscape such that a strong sense of place-identity is 

created. A sense of place-identity engenders environmental stewardship and is thus crucial 

to the sustainability of any rehabilitation project (Piegay et al. 2006). Gregory and Brierley 

(2010) highlight the importance of community participation and capacity development in 

any river rehabilitation project, using 'vision statements' as a tool. A vision statement is a 

statement of the desired vision or future for a particular catchment, which is co-generated 

by local stakeholders. A vision statement created in this sense should thus guide 

rehabilitation interventions that align social values, needs and desires with that of 

conservation needs and the ecological potential of a particular site. This approach 

incorporates ecological knowledge and experience held by local communities, thereby 

promoting social ownership of a rehabilitation project (Spink et al. 2010). The process of 

stakeholder engagement to foster a greater sense of environmental stewardship can 

however be lengthy and requires continual engagement and diffusion of tensions between 

stakeholders. Yet, if successful, stakeholder by-in provides the cornerstone for effective 

catchment management and river rehabilitation.

Effective and sustainable river rehabilitation incorporating a process-based approach, and 

social stewardship, should be considered within the context of adaptive management (cite 

Palmer et al. 2005; 2007 and Berhhardt 2005. Adaptive management involves monitoring 

and learning from rehabilitation and management outcomes, and then innovatively 

adjusting the management and rehabilitation programme to improve outcomes for 

ecological and social facets of the system (Downs and Kondolf 2002; Wohl et al. 2005). 

Adaptive management therefore calls for flexible rehabilitation interventions that can be 

altered relatively easily with changes in the structure of the system. This approach also calls 

for practitioners who are flexible in their approach to rehabilitation rather than adopting a 

generic approach with which they are familiar. The adaptive management approach 

requires two important components: 1) assessment and incorporation of social needs and
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values into rehabilitation objectives and design; 2) post-project appraisal that involves 

physical and ecological monitoring of channel-floodplain response to rehabilitation 

intervention, and assessment of whether the desired ecological and social outcomes are 

being met (Kondolf 1998; Downs and Kondolf 2002). The latter criteria are more easily 

written than fulfilled, and require careful consideration and planning, and sufficient and 

ongoing funding.

2.5 Summary

This chapter has provided an overview of several conceptual frameworks that, when 

integrated, guide investigation of the complexity and sensitivity of rivers as 

geomorphological systems to different types and magnitudes of perturbations. This 

knowledge basis may then effectively guide a process-based approach to river 

rehabilitation, deemed to be most effective and sustainable for ensuring river recovery. 

There are no studies known by the author that have attempted to integrate the concepts of 

Panarchy and connectivity to understand river geomorphological dynamics and sensitivity, 

and to guide the development of a process-based framework of river rehabilitation. 

Panarchy provides the framework for understanding the interaction of geomorphological 

structure and processes, comprising geomorphological adaptive cycles occurring at different 

spatial and temporal hierarchies of a river landscape. These cross-scale interactions 

determine complex response, including for example, lagged and non-linear responses to 

disturbing forces at different spatial scales, and sudden chaotic geomorphological change 

due to threshold breaches at one or more scales of the landscape. Geomorphological 

(dis)connectivity is a fundamental feature of river landscapes influencing the degree to 

which processes and landforms are linked, and the degree to which a geomorphological 

response at one spatial-temporal scale is transferred to other scales of a river system. The 

author suggests that this eclectic conceptual framework provides the basis for informing 

rehabilitation that fosters the recovery of geomorphological processes important for 

enhancing the natural resilience of a river to perturbations.
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CHAPTER 3: CHARACTERISTICS OF THE STUDY AREA

3.1 Introduction

The Baviaanskloof catchment is situated in the western-most region of the Eastern Cape 

Province of South Africa, and is of a moderate size of ~ 1207 km2. The catchment lies <50 km 

north of the Indian Ocean and about 95 km north-west of the metropolitan area of Nelson 

Mandela Bay, otherwise known as Port Elizabeth (Figure 3.1). The main river valley is 

positioned between two parallel mountain ranges, the Kouga and the Baviaanskloof 

Mountains to the south and north respectively, and is approximately 75 km long (Crane 

2006). The Baviaanskloof River rises at an elevation of 700 masl in the Kouga mountains, 

flowing to an elevation of <160 masl at its confluence with the Kouga River (Ilgner et al. 

2003), which then drains into the Kouga Dam (Figure 3.1).

Northern Province

. Mpumalanga 
Gauteng

Free StateKwaZulu-Natal 
Lesotho /Northern Cape

Eastern Cape

' Western Cape ^Baviaanskloof catchment

Patensie

Humansdorp Nelson Mandela Bay Metropolitan"Kareedouw 
• •

Humansdorp (Rural)

Francis Bay
—Cape-S^. Fran ci* .

2 0 W E 28 0 0 E

Klipplaat

EASTERN CAPE

Willowmore
Steytlerville

WESTERN CAPE

Umondale

Uitenhage

Legend

Mountain peaks
Indian Ocean

Baviaans catchment
Ki ometers

___ Kouga catchment
Gamtoos Agricultural Valley

Figure 3.1: The location of the Baviaanskloof catchment, and the adjacent Kouga catchment, indicating the 
Kouga dam into which the two catchments drain.
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The Baviaanskloof is a diverse landscape, hosting a number of South Africa's Biomes within 

a topographically diverse setting. The area has a rich cultural history and was once inhabited 

by the native San-bushman of South Africa. The high floral diversity and species richness of 

the catchment and surrounds means that the area has received attention from a 

conservation perspective. In 2002 plans were made by local government and non

government agencies to expand the Baviaanskloof Conservation Area into a Mega-Reserve 

(BMR) within a size of >400 000 ha (BMR-PMU 2004). This initiative was encouraged by the 

exceptionally high biodiversity and cultural heritage value of the catchment and surrounds, 

which has been recognized on an international-scale, resulting in the declaration of the 

Baviaanskloof Mega Reserve area as a World Heritage Site in 2004 (Boshoff 2005).

The Baviaanskloof is not only important from a biodiversity and cultural perspective, but is 

also valuable from a national and regional water security perspective. On a national-scale, 

the Baviaanskloof forms a strategic water resource area. The upper-middle reaches of the 

Baviaanskloof and adjacent Kouga catchment fall within the Kougaberg Strategic Water 

Source Area defined by DWA & SANBI under the National Freshwater Ecosystem Priority 

Areas Assessment (NFEPA) of 2010/2011 (Nel et al. 2013). The 'Strategic Water Source 

Areas' are defined as those areas that supply >50% of the country's mean annual runoff (Nel 

et al. 2013). At a regional scale, the Baviaanskloof forms part of the Algoa Strategic Water 

Supply System (ASWSS) identified under the DWA, Algoa Water Reconciliation Strategy 

(DWA 2011). The Baviaanskloof falls within the western most section of the ASWSS, 

together with the Kouga and Kromme Rivers to the south, and the Loerie and Gamtoos 

Rivers to the south-east. The catchments of the ASWSS are considered extremely important 

for securing water for agricultural, urban and industrial use within the Algoa region, which 

has experienced a steady increase in urban and industrial demands for water since the 

1960s (DWA 2011). These increases have not been met with increased water supply 

infrastructure development, such that Nelson Mandela Metropolitan is often faced with 

water restrictions (van der Burg 2008; DWA 2011). The purpose of this chapter is to describe 

important biophysical, social and institutional characteristics of the Baviaanskloof River 

landscape, in order to set the context of the present study.
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3.2 Physiography of the Baviaanskloof catchment

3.2.1 Geology and topography

The Baviaanskloof catchment and Mega-Reserve fall in the eastern sector of the Cape Fold 

Mountain Belt region, comprising the Cape Supergroup rocks which extend for about 1 300 

km along the southern coastline of Africa (Figure 3.2; Booth and Shone 2002). The Cape fold 

belt is associated with a fascinating geomorphological history due to major geological 

events that occurred during the inclusion and break-away of the African continent from the 

supercontinent Gondwanaland (McCarthy and Rubidge 2005). The rocks were deformed 

during the Permian-Triassic period to form the Cape Fold Belt which extends along the 

southern and western coastal region of South Africa today (McCarthy and Rubidge 2005). 

This event resulted in the formation of an inland basin and sea ('Karoo foreland basin', 

Figure 3.2). During the breakup of Gondwana and associated rifting events, numerous 

normal faults developed within the Cape Supergroup rocks, including the fault along which 

the Baviaanskloof River flows ('Baviaanskloof', Figure 3.2).

Figure 3.2: Geological map of the southern region of South Africa showing the depositional margin of the Cape 
Supergroup rocks and the normal fault along which the Baviaanskloof River flows (re-drawn from Paton 2006: 
869).
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The Baviaanskloof catchment comprises the Table Mountain Group (TMG) of the Cape 

Supergroup rocks (Figure 3.3). The following rock formations of the TMG outcrop along the 

Baviaanskloof River valley: Nardouw quartzitic and feldspathic sandstone (430 to 410 MYA), 

Cedarberg shale (440 MYA), Penninsula quartzitic sandstone (460 MYA), and Sardinia 

quartzitic sandstone (480 MYA), from youngest to oldest respectively (Figure 3.3, Toerien 

and Hill 1991). Minor outcrops of younger Bokkeveld shale (Bokkeveld Group; 380 MYA) and 

Enon Conglomerate (Uitenhage Group; 150 MYA) rocks outcrop along the lower-foothills of 

the Kouga Mountains (Figure 3.3). The quartzitic nature of the TMG sandstones that occur 

throughout the study area evolved during intensive folding and metamorphosis of the 

original TMG sandstone. These metamorphosed rocks are more resistant to erosion than 

surrounding feldspathic sandstones, Bokkeveld shales and Enon conglomerate, except for 

the fracture and fault zones which represent relative zones of weakness that are more easily 

eroded (Rust and Illenberger 1989). The location of several block faults is indicated ('Block', 

Figure 3.3), including a relatively large fault along which the modern day Baviaanskloof river 

flows from west to east, and smaller north to south trending faults.

The TMG rocks are recognized as a major aquifer and potential water supplement system 

throughout the Cape Region (Jia 2007). It is thus not surprising that the mountains of the 

Baviaanskloof catchment host numerous springs that flow almost on a continual basis.
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Figure 3.3: Geological map of the Baviaanskloof catchment indicating geological units that outcrop along the 
river valley. The location of the study reach is indicated by the broken circle (adapted from the South African 
Geological Survey, Port Elizabeth: shapefiles of 1: 250 000 geological map sheet 3324).

As a result of the lithological diversity and the geomorphological history of the 

Baviaanskloof valley, the topography is characterized by steep mountain slopes, narrow 

gorges, and a gently sloping valley floor. The Baviaanskloof has been described as "...rugged- 

that of a rejuvenated maturely dissected mountain land", (de Villiers 1941: 152). Variations 

in rock resistance to erosion across and along the valley, has resulted in this rugged 

topography, as indicated by cross-sectional profiles of the valley in Figure 3.4. As indicated 

in Figure 3.4, the northern lying Baviaanskloof Mountains are relatively steep (a southwards 

dip of about 60°), whilst the southern lying Kouga Mountains are more gently sloping (Rust 

and Illenberger 1989; Booth et al. 2004). The study reach is a ~ 25.5 km length of river which 

drains an area of ~ 987.7 km2 situated along the middle-reaches of the Baviaanskloof 

floodplain (Figure 3.4). The upper-limit of the reach lies at an elevation of ~ 500 masl and the 

lower-limit at -340 masl. The reach has a relatively wide valley (>500 m) which is bounded 

at the upper- and lower-limits by two relatively narrow valley sections (<200 m width).
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Figure 3.4: Topographic profiles of the Baviaanskloof River valley at three sections along the study reach. The 
location of the cross-sections (1, 2 and 3) is indicated on the aerial photograph. The grey arrow in the aerial 
photograph indicates the direction of flow of the Baviaanskloof River; the black arrows in the cross sections 
indicate the location of the present-day river channel (adapted from Google Earth Professional, 2016).

3.2.2 Climate and rainfall characteristics

The BMR falls within the eastern most region of the Mediterranean climatic zone of South 

Africa, which experiences a relatively even distribution of rainfall during the year, with 

slightly higher rainfall during summer months (Teague et al. 1989). On average the climate is 

semi-arid with low annual rainfall of ~ 300 mm/annum (Jansen 2008). This is substantially 

lower than the Kouga catchment which lies immediately to the south of the Baviaanskloof
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and receives an average of approximately 500 mm rain per annum. The weather and climate 

of the Baviaanskloof is generally accepted to be highly variable in time and space (Boshoff 

2008; Powell 2009), thus diverging somewhat from a Mediterranean classification. Jansen 

(2008), who based his determination of the annual average rainfall estimates on a weighted 

average analysis of 8 rainfall stations distributed from east to west across the Baviaanskloof 

catchment, states that annual rainfall can vary between <100 mm and >700 mm over a >10 

year period.

Knight (2012) reported an annual average evaporation value of 1694 mm for the middle- 

reaches of the valley, which is more than five-fold the average annual rainfall along these 

reaches. The catchment experiences intense and sporadic rainfall events associated with 

either cyclonic or orographic rainfall (Jansen 2008). The rainfall is not only variable in time 

but in space, with reports of differences in rainfall along the valley and between the 

northern Baviaanskloof and southern Kouga mountain ranges (Jansen 2008; Smith-Adao 

2016). Jansen (2008) modeled spatial variations in annual average rainfall for the 

Baviaanskloof and Kouga catchments using Thiessen polygons to interpolate rainfall from 

available rainfall data (Figure 3.5). The results indicated higher rainfall on average for the 

Kouga catchment and Kouga mountain range than for the Baviaanskloof catchment and 

Baviaanskloof mountain range to the north.

Catchment boundaryBaviaanskloof catchment
A  Rainfall station

Interpolated annual 
average rainfall (mm)

Kouga catchment

Figure 3.5: Interpolated annual average rainfall for the Baviaanskloof and Kouga catchments (adapted from 
Jansen 2008: 43).

62



In the present study, rainfall data for two stations situated along the upper- and middle- 

reaches of the catchment were analyzed, supporting the above accounts of rainfall 

variability in time and space. The rainfall station along the upper-reaches was named 

'Matjies' in this thesis, whilst the station along the middle-reaches of the study reach was 

named 'Bavlulet' ('M'-Matjies and 'B'-Bavlulet, Figure 3.6). The analysis of data from the two 

rainfall stations indicated an annual average rainfall of ~ 400 mm/annum along the upper- 

reaches of the floodplain, where the rain station is situated closest to the southern, Kouga 

Mountains, and an annual average of ~ 295 mm for the middle-reaches of the floodplain, in 

which the study reach is located. The rainfall series for the two stations indicates a cyclic 

variation between relatively wet and relatively dry rainfall periods between 1950 and 2012 

(Figure 3.6). These wet and dry periods appear to span between 3-4 or 6-8 years in length 

producing rainfall oscillations of 6-8 years or 12-16 years.

Figure 3.6: Annual rainfall and 5-year running annual average for rainfall stations 'Matjies' (a) situated in the 
upper-reaches, and station 'Bavlulet' (b) situated in the middle-reaches of the Baviaanskloof floodplain. The 
annual average for the period of analysis is indicated by the dotted line. The rainfall data was made available 
from the Agricultural Research Council (ARC) of South Africa.
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Average temperatures are also variable with considerable daily and seasonal fluctuations. 

Average daily minimum temperatures are 5°C for winter and 16°C in summer, but have 

been recorded as low as -3°C (ECPB 2007; Hattingh 2011). Average daily maximum 

temperatures are 20°C in winter (June/July) and 32°C in summer (Jansen 2008; Hattingh 

2011), although temperatures as high as 45-48°C have been recorded during berg wind 

conditions that occur throughout the year (Jansen 2008). These winds appear to be more 

common during autumn and winter months, reducing local humidity (Jansen 2008).

3.2.3 Hydrology

The Baviaanskloof and adjacent Kouga are tertiary catchments of the primary Gamtoos 

River catchment, which is the fourth largest of all Cape river catchments (Heinecken et al. 

1981). Jansen (2008) modeled mean annual discharge for the two catchments indicating 

that on average the Baviaanskloof contributes a much smaller water yield to the Kouga dam 

(<30% of the inflow/annum) than that of the Kouga River (>70% of the inflow/annum). 

These differences are largely due to the greater average annual rainfall in the Kouga 

compared to the Baviaanskloof catchment.

The steep sloping nature of the Baviaanskloof catchment combined with the variable rainfall 

regime of the area means that the Baviaanskloof River is characterised by 'flashy' flows of 

variable magnitude. Flood events usually occur during the rainy season during relatively wet 

years, delivering coarse gravel to the channel from the surrounding mountainous catchment 

(Plate 3.1). Along relatively narrow valley reaches the river flows perennially for most of the 

time where groundwater appears at the surface due to the confining influence of valley 

side-walls. In contrast, along wide valley reaches the river is non-perennial as base-flows 

may only last for several months or weeks of the year following one or more flood events, 

but the stream may be dry for months between flood events. Where the stream is 

sufficiently deep to dissect the groundwater, water may be present for longer periods, than 

where the channel is shallow (Plates 3.2a and b). The intermittent nature of water flow in 

the Baviaanskloof River reflects the variability of rainfall in the catchment.
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Plate 3.1: Large boulders are commonly encountered along the bed of the Baviaanskloof River along most of 
the upper- to middle-reaches, including the study reach.

Plate 3.2: An example of a 'pool' which remains after flow cessation along the main channel following a flow 
event in January 2011 (a); and low flow conditions along the middle of the study reach (b)
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There is no long-term stream flow and discharge data for the Baviaanskloof catchment 

however, there have been a few studies that have modeled the hydrology and hydraulics of 

the catchment in recent years. In her study, Glenday (2015) modelled variations in stream 

flow and discharge for the catchment from groundwater, stream flow, surface runoff and 

soil data collected throughout the upper-middle reaches of the catchment over a 2 year 

period. The results of the study indicated significant seasonal and inter-annual variations, 

and spatial variations, in stream flow and discharge for the study reach. This variability in 

stream flow was explained by the spatially and temporally variable nature of rainfall 

magnitude and frequency together with the variable nature of runoff, groundwater 

recharge and groundwater flow rate for different zones of the study reach (Glenday 2015). 

For the period December 2011 to December 2013, Glenday (2015) recorded a stream flow 

range of 0.06 m3/s to 51 m3/s for the upper-reaches of the study reach, and a flow range of 

0 m3/s to 58 m3/s for the middle of the study reach. Glenday (2015) modeled an annual 

average discharge of -28-31 Mm3 for the Baviaanskloof catchment in its present (2011

2013) ecological and geomorphological state. These values are considerably lower than the 

annual average discharge modeled by Jansen (2008), who obtained a discharge value 

of -45.7 Mm3/annum for the Baviaanskloof, based on available DWA inflow and outflow 

data for the Kouga dam.

Given the climatic setting of the Baviaanskloof and the observed and measured high 

variability of flow and discharge for the river, one may class the Baviaanskloof as an 

intermittent aseasonal flowing river based upon the classification of Uys and O'Keeffe 

(1997) for South African temporary rivers. According to Uys and O'Keeffe (1997: 528) 

intermittent aseasonal rivers "exhibit intermittent, unpredictable and highly variable flow 

within and between years in a five-year period".

According to the NFEPAs assessment of 2011, the Baviaanskloof falls within a moderate 

groundwater recharge area, indicating that up three times more recharge occurs in the area 

compared to the primary Gamtoos catchment within which the Baviaanskloof falls (Nel et al. 

2011). Jansen (2008) uses DWA data to estimate that 8-13% of the annual rainfall is 

recharged to groundwater in the Baviaanskloof (Jansen 2008), some of which would 

potentially be lost to the deep mountain aquifer system of the TMG rocks. Based on overall 

water balance estimates for the Kouga Dam, Jansen (2008) predicts that annual average
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base flows for the Baviaanskloof River are around 4 Mm3, which includes a mix of shallow 

alluvial aquifer and deep mountain aquifer water reserves.

Glenday (2015) indicates that a considerable proportion of annual river flow is contributed 

by groundwater reserves of the TMG mountain aquifer and the floodplain-alluvial aquifer. 

The floodplain aquifer is able to hold relatively large amounts of water due to the coarse 

(cobbles, boulders, sand) and deep (>40 m in some places) nature of the valley fill sediments 

(Glenday 2015; Smith-Adao 2016). Glenday (2015) monitored floodplain groundwater levels 

along the study reach indicating that they fluctuate, albeit in a lagged response, to rainfall 

events occurring in the surrounding catchment. Glenday (2015) also indicated localized 

variations in groundwater levels that were attributed to differences in recharge rates and 

groundwater flow rates. The spatially and temporally variable nature of groundwater levels 

along the study reach initiate spatially and temporally variable river base-flows. During dry 

rainfall months the river may be completely dry along wide floodplain reaches.

3.2.4 Vegetation characteristics

The BMR includes several globally recognized biodiversity hot spots and as a result the area 

has exceptionally high floral species richness and endemism, and associated high levels of 

faunal diversity and endemism (Euston-Brown 2006; Boshoff 2008). The Baviaanskloof 

Mega-Reserve area contains vegetation types representative of 8 of South Africa's 9 

recognized biomes (Mucina et al. 2007), including forest, grassland, savanna, fynbos, 

thicket, succulent karoo and nama-karoo and coastal vegetation types (Euston-Brown 2006). 

The Baviaanskloof catchment incorporates the first five of the aforementioned (Figure 3.7; 

Boshoff 2005). The variety of vegetation types yielded by the BMR reflects the topographic 

ruggedness of the region, spatial variations in rainfall and hydrology, and variations in 

lithology and associated soil types. Fynbos and grassy-fynbos occurs on the higher lying 

plateaus and mountain tops where rainfall is highest and the soils are thin and sandy; 

Albany subtropical thicket occurs on the lower- to upper-hillslopes, where rainfall decreases 

and where soils become deeper and more silty; grassland is rare and is found on a few 

planed surfaces in the foothills; savanna occurs on the valley-bottom on alluvial soils where 

rainfall and low but where groundwater levels are highest; and forest is found in the narrow 

gorges of tributary streams where soils are constantly moist and fed by perennial 

groundwater springs (Euston-Brown 2006). The most dominant vegetation types occurring
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within the catchment are fynbos, subtropical thicket and savanna. The latter two are the 

most extensive throughout the study reach of this research (broken circle, Figure 3.7), and 

have been considerably transformed by agricultural activities (Powell et al. 2011).

800 masl

Legend
Baviaanskloof catchment Vegetation type

J  Private farm lands Fynbos Forest
Transitional Grasslandrv > Study reach
ThicketBaviaanskloof River
Savanna KilometersContour line

Figure 3.7: The distribution of vegetation classes for the Baviaanskloof catchment as mapped by Euston-Brown 
(2006).

3.3 Social and cultural context

3.3.1 Cultural history

The Baviaanskloof hosts a rich and diverse array of archaeological remains relating to 

occupation of the area by pre-historic humans which, besides the high biodiversity of the 

area, provided yet another reason for the declaration of the BMR as a World Heritage Site 

(Boshoff et al. 2000; Boshoff 2005). Around 100 rock art and stone-age tool sites have been 

recorded for the BMR, relating to San-hunter-gatherer occupation from -100 000 to - 2 000 

years ago (Binneman 1989; Boshoff 2005). Some of the rock art has been dated to the last 

12 000 years, and a few archaeological sites are believed to contain some of the most well- 

preserved plant remains in southern Africa (Binneman 1989). There is also evidence of 

occupation by Khoekhoen (KhoiKhoi) pastoralist people who migrated into the area from 

the northern region of southern Africa and mixed with the San from -2 000 years ago to 

around the mid-19th Century. European settlement during the mid-19th Century resulted in 

forced removals of the San and Khoi-San peoples from the Baviaanskloof and surrounding
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region (Boshoff 2005). Today the catchment contains a mix of cultural and ethnic groups 

ranging from farmers of European descent to communities of mixed Khoi-San and European 

descent.

3.3.2 Land tenure and land-use

The majority of the Baviaanskloof catchment is managed as conservation land by the 

Statutory Agency, Eastern Cape Parks and Tourism Agency (ECPTA), as the Baviaanskloof 

Nature Reserve (Boshoff 2008). The nature reserve comprises around 200 000 ha in the 

eastern most section of the Baviaanskloof and Kouga Mountains, through which the lower- 

reaches of the Baviaanskloof River flows (ECPB 2007; Stokhof de Jong 2013). Private land 

ownership forms the next largest land-use, consisting of a mix of commercial farmland, free

hold titles and three relatively small communities, collectively situated along the upper- 

middle reaches of the catchment, including the study reach of the present research (Powell 

et al. 2011; Stokhof de Jong 2013). In 2009 the ECPTA owned approximately 62% (75 871 ha) 

of the catchment, of which about 36.2% (44 304 ha) was under commercial farmer and free

hold title ownership, and approximately 1.8% (2 204 ha) fell under community ownership 

(Powell and Mander 2009). Although this portioning of land ownership has not changed 

drastically to the present, land-use is slowly shifting away from commercial farming to 

nature-based tourism activities and conservation (Crane 2006; Stokhof de Jong 2013). Over 

the last 2-3 years, several private landowners have signed stewardship agreements with 

ECPTA, increasing the proportion of land under cooperative conservation management. The 

people and associated economic activities of the western private lands rely heavily on the 

ecosystem services provided by the Baviaanskloof catchment for sustained productivity and 

livelihoods, with water and soil security and biodiversity being of most importance (de la 

Flor Tejero 2008; De Paoli 2008).

At present <1 000 people live in the western private lands of the Baviaanskloof (Stokhof de 

Jong 2013). There are 23 separate landowners including community trust holdings, engaged 

in a mix of activities including pastoral and crop farming, game farming and nature-based 

tourism activities (hiking and horse trails, 4x4 vehicle trails, and accommodation), and 

nature-based living (Stokhof de Jong 2013). Free-range Mohair and sheep farming is the 

most dominant of all commercial farming and livelihood activities (Powell et al. 2011; 

Stokhof de Jong 2013). Grazing of livestock commonly takes place along the lower- to
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middle-hillslopes of free-hold title land (Powell and Mander 2009), although overgrazing 

and associated declining veld quality has resulted in expansion of grazing toward the upper- 

hillslopes and mountain tops over the last 20 years (Stokhof de Jong 2013). Nature-based 

tourism and game farming combined is the next most important land-use activity (Powell 

and Mander 2009; Stokhof de Jong 2013). The aforementioned activities have been growing 

slowly over the last 40 years, along with declining productivity of agricultural lands and the 

relatively high costs of transporting agricultural goods out of the valley (Crane 2006; Stokhof 

de Jong 2013). The smallest commercial activity is crop farming, comprising mostly fodder, 

some vegetable seeds and some maize, tobacco and other small crops (Stokhof de Jong 

2013). As with many other catchments in the Eastern Cape (e.g. Rowntree and Dollar 2008), 

the aforementioned activities have resulted in extensive transformation of land along the 

western private lands section of the catchment (the upper-middle reaches).

3.3.3 Recent initiatives toward integrative catchment rehabilitation

The Baviaanskloof catchment has faced increasing environmental, institutional and socio

economic pressure over the last few decades (Boshoff 2005; Crane 2006). These pressures 

are briefly described by Boshoff (2005):

■ Overgrazing of large tracts of subtropical thicket on hillslopes throughout the 

western Baviaanskloof due to overstocking with goats and sheep.

■ Increasing extension of grazing lands into the mountains and associated 

development of poorly designed roads that promote soil erosion and more 

efficient water runoff.

■  Increasing demands for catchment surface and groundwater resources for 

irrigating crops.

■ Frequent burning on an annual to biannual basis to provide grazing for livestock.

■ Lack of institutional capacity of State agencies such as ECPTA and South African 

Department of Environmental Affairs to adequately manage and encourage 

synergistic relationships with local communities and landowners around 

conservation initiatives.

■ The development of private nature-based initiatives that don't always align with 

the conservation management objectives of the BMR.
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The above pressures have impacted on a number of ecosystem services including carbon 

sequestration, maintenance of biodiversity, sustained and regular supply of potable water, 

and the ability of the river-floodplain to attenuate flood flows and diminish flooding damage 

locally and downstream (De Paoli 2008; van der Burg 2008; Sommeijer 2010; van Luijk et al. 

2013). As a result, the high conservation and water security value of the Baviaanskloof has 

been compromised. The formation of the Baviaanskloof Megareserve Project and 

declaration as a World Heritage Site provided the framework for the implementation of an 

integrated catchment rehabilitation and conservation management strategy for the 

Baviaanskloof, which has been planned and implemented over the last 10 years. This 

process has involved discussion and collaboration between multiple stakeholders including 

government and non-government agencies, research institutions, and local landowners, 

resulting in a complex set of networks and interactions amongst the various stakeholders.

The Baviaanskloof formed one of the first pilot projects of the South African Government 

led Subtropical Thicket Restoration Project (STRP) between 2004 and 2008, which 

constituted one of the first 'big' ecosystem rehabilitation research and implementation 

projects in the Baviaanskloof (Powell 2009). In the Baviaanskloof it has been estimated that 

approximately 12 336 ha of the subtropical thicket has been degraded (Powell et al. 2011). 

Most of this degraded area comprises 'severely' degraded Thicket vegetation, defined as 

having <20% of the dominant, keystone species, Portulacaria afra (spekboom) remaining 

(Powell et al. 2011). Overgrazing by goats is the primary means by which subtropical thicket 

has been degraded in the Eastern Cape as well as the western Baviaanskloof (Mills et al. 

2007; Powell 2009). The Baviaanskloof thus formed a suitable pilot project for the STRP 

research trials which took place on degraded Thicket sites in the Baviaanskloof Nature 

Reserve (Powell 2009), downstream of the study reach. The aim of the project was to 

investigate the practical and financial feasibility of using the dominant plant species of the 

main thicket type found in the Baviaanskloof catchment, Portulacaria afra, as a means of 

improving the functioning and provisioning of ecosystem services of Thicket. The project 

also investigated the potential of forming a Payment for Ecosystem Services Scheme around 

carbon sequestration, given the relatively high rate ( ~2.4 tons/ha/annum) at which 

spekboom is able to sequester carbon (Mills et al. 2007; Powell et al. 2009). The project 

suggested that the use of spekboom for thicket rehabilitation is an ecologically viable option
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in the long-term (decades) due to the ability of the plant to survive harsh climatic conditions 

and create habitat for recruitment of other thicket species (Powell 2009).

Following from the STRP pilot project, an integrated catchment restoration project (ICRP) 

was initiated at the end of 2008 by the non-government organization LivingLands, in 

collaboration with several national government and research agencies. The overarching 

vision of LivingLands is to foster "collaborations on living landscapes" by facilitating open 

and transparent sharing of knowledge, beneficial partnerships, and social learning towards 

achieving more sustainable social-ecological systems (LivingLands 2014). This organization 

has been fundamental in coordinating improved land management and catchment 

rehabilitation activities in the Baviaanskloof by stimulating and coordinating research and 

knowledge sharing, developing trust amongst various stakeholders, and initiating integrated 

and collaborative processes around various ecosystem restoration projects in the 

Baviaanskloof. The ICRP has involved the interaction of a number of government and non

government agencies, research institutes and local landowners. This institutional framing 

has resulted in a wealth of scientific knowledge generation, interactions between different 

experts and knowledge bearers.

The Baviaanskloof ICRP initially involved the identification of target areas for restoration 

based on discussions between ECPTA, local farmers, restoration implementers (Working for 

Wetlands, Gamtoos Irrigation Board) and local scientists. Following from this, several 

restoration strategies have been implemented in the catchment over the last few years 

focused on improving degraded ecosystem services. LivingLands obtained funding from the 

'Water for Food and Ecosystems Project', a Dutch Government funded programme 

administered through Wageningen University (De Paoli 2008), to fund student research, 

stakeholder workshops and some of the restoration in the catchment. The range of 

restoration projects implemented by various government and non-government agencies so 

far include:

1) Thicket vegetation rehabilitation (spekboom planting) that has taken place on 

several hectares on farms along the study reach of this research, under the STRP and 

LivingLands: Elemental Equity Project.
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2) Alluvial fan rehabilitation administered by LivingLands has involved reinstatement of 

more natural, dispersive flows along a few of the tributary streams along the study 

reach that were formerly channelized by human engineering interventions.

3) Floodplain wetland rehabilitation administered by the DEA Working for Wetlands 

Programme (WfWet). This project is still ongoing and is aimed at halting erosion 

along the main river and gullied hillslopes, and reinstating a former relatively large 

area of floodplain wetland that existed a few decades ago along parts of the main 

river floodplain.

Thicket and floodplain wetland rehabilitation activities are still ongoing in the catchment 

and LivingLands has recently secured enough funding for the re-planting of vegetation on 

1 000 ha of hillslope area along the study reach (Four Returns 2016).

The present research evaluates the work of the DEA WfWet programme in the context of 

other rehabilitation activities that have been active within the catchment, and based on 

knowledge generated during this study.
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CHAPTER 4: LONG-TERM AND RECENT RIVER HISTORY: EVIDENCE FOR 
GEOMORPHOLOGICAL ADAPTIVE CYCLES

4.1 Introduction

From a process-based river rehabilitation perspective, understanding river history and pre

history provides the framework for predicting the potential geomorphological behavioural 

regime of a river, its sensitivity to geomorphological change, and the most important drivers 

of recent river dynamics, such that these can be managed appropriately (Brierley et al. 

2006; Fryirs and Brierley 2009; Stinchcomb et al. 2012). Harvey (2002a) introduces the 

concept of effective timescales of coupling in fluvial landscapes determined by disturbance 

events that drive geomorphological instability and change, operating at different spatial- 

temporal scales. Here, 'effective timescales of coupling' refers to the time period over which 

different spatial scales of a catchment become well-connected, related to the frequency and 

magnitude of disturbing forces and the geomorphological sensitivity of the system to these 

disturbances. Entire catchments may be dominated by relatively high connectivity over 

thousands of years, related to landscape incision that has been induced by base-level fall or 

by a major tectonic uplift event. At smaller scales, parts of a catchment, such as channel 

reaches and hillslopes and channels, may become well-connected every 10-15 years, 

associated with flood events that breach erosional thresholds (Harvey 2002a).

Long-term geomorphological adjustment cycles occurring over several thousand to tens of 

thousands of years are being documented in greater detail in river landscapes due to the 

development of more accurate sediment dating techniques in recent years (Macklin et al. 

2010; Macklin et al. 2015). The switching between long-term geomorphological phases of 

erosion and deposition associated with large-scale changes in environmental conditions is 

usually well-preserved in floodplain and alluvial fan sedimentary fills (Harvey 1984; Stock 

2013). These long-term geomorphological cycles are commonly driven by long-term climate 

change associated with glacial and interglacial periods, and large-scale tectonic events 

(Pratt-Sitaula et al. 2004; Meetei et al. 2007; Lespez et al. 2011; Madritsch et al. 2012; 

Fontana et al. 2014). Short-term geomorphological adjustment cycles occurring over several 

decades to hundreds of years may be induced by decadal to century scale rainfall variations, 

intensified human land-use activities that alter discharge and sediment regime, and 

breaching geomorphological thresholds, as a result of natural fluvial geomorphological
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evolution toward these thresholds (Lespez et al. 2011; Broothearts et al. 2014; Macklin et al. 

2015). Several studies have indicated that human land-use activities have exerted a strong 

control on the recent (last few hundred to thousand years) adjustment phases in river 

landscapes in the form of increased catchment erosion and associated floodplain 

sedimentation, often followed by floodplain incision (Hoffman et al. 2009; Piccarreta et al. 

2011; Stinchcomb et al. 2012; Macklin et al. 2014; Kirchner et al. 2015). Humans thus form 

an important driving agent of more rapid cycling between erosion and deposition in 

disturbed catchments.

The long-term geomorphological history of a river landscape influences contemporary river 

process and form by, for example, determining the sedimentary characteristics of alluvial 

valley fill and associated propensity for river erosion, the pattern and abundance of 

buffering features such as alluvial fans and wide floodplains, and the slope of the floodplain. 

This inherited structure provides the basis for contemporary fluvial geomorphological 

processes and geomorphological sensitivity (Murray et al. 2009). Hence, it is useful to 

understand the nature and controls of long-term geomorphological cycles in river 

landscapes and how these have influenced contemporary processes and sensitivity to 

geomorphological change, particularly within the context of managing river sensitivity, 

reinstating important river processes, and predicting future channel behaviour.

The study of Holocene river dynamics has focused at systems in the northern Hemisphere, 

indicating the close link between Holocene climate change and associated switching 

between erosional and aggradational river phases, which may be punctuated by periods of 

relative geomorphological stability (Kirchner et al. 2015). Climate change in upland 

catchments can have profound impacts on the interaction between the trunk stream and 

tributary streams and fans (Harvey 2012). These climatic changes may induce switching 

between phases dominated by tributary stream cutting or fan sedimentation and phases of 

trunk stream cutting or floodplain sedimentation (Fryirs and Gore 2014). Harvey et al. 

(2005) provide an overview of alluvial fan research indicating that fans respond more 

sensitively to climate change occurring on timescales of 102 to 104 years. Fans may enter 

adaptive geomorphological phases of either fan expansion or reduced fan activity and 

entrenchment, as tributary catchments respond to changes in sediment supply and 

discharge from the surrounding hillslopes, initiated by changes in rainfall regime and
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vegetation cover. The fans, if large enough, may then interact with a trunk stream by 

controlling longitudinal valley slope and trunk stream confinement, initiating 

geomorphological responses of incision and/or aggradation along the trunk channel 

(McCarthy et al. 2011). Alternatively, long-term sedimentation along a trunk stream may 

result in sediment accumulation along a tributary stream as it responds to a rise in local 

base-level resulting in tributary stream 'blockage' by sediment deposition (Grenfell et al. 

2008; Fryirs and Gore 2014). The interaction between fluvial processes occurring along one 

or more tributary streams and a trunk stream is thus a key determinant of the respective 

sensitivity of trunk and tributary channels to geomorphological change.

The geomorphological history of the southern African landscape means rivers are 

rejuvenated and thus on a long-term path of incision (Partridge and Maud 2000). This phase 

of incision was initiated millions of years ago during multiple uplift events of the southern 

African landscape (McCarthy and Rubidge 2005). Within this millennial scale 

geomorphological adaptive phase, are smaller scale adaptive cycles driven by climatic 

variations between relatively cool and dry, and relatively warm and wet climatic periods 

that have characterised the southern African climate over the last approximately 200 000 

years (Partridge 1997). These long-term climatic cycles are suggested to have occurred on 

scales of 102 to 104 years (Partridge 1997; Norstrom et al. 2009; Chase et al. 2012). There 

have only been a few studies that have investigated the relation between long-term climate 

cycles and fluvial geomorphologic cycles of erosion and deposition (Damm and Hagedorn 

2010; Tooth et al. 2014). Keen-Zebert et al. (2013) investigated dynamics in two floodplain 

wetland systems in the eastern interior of South Africa using geo-chronological 

investigation. This study indicated that fluctuations in fluvial energy and geomorphology 

during the Holocene was driven mostly by changes in local base-level due to erosion 

through resistant lithologies that traverse a river's course, rather than the influence of 

climate change. The study also documented that the floodplain wetland had undergone 

prolonged periods of relative stability until the resistant lithological barrier was breached, 

resulting in relatively rapid wetland incision and channel instability. Hence, South African 

rivers may be relatively resistant to the disturbing effects of climate shifts where they are 

controlled by local geological structure. These studies suggest both geological and climatic 

controls on the nature and timing of long-term fluvial geomorphological adaptive cycles
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which determine the structure and functioning of river floodplains and wetlands in the 

South African landscape.

The aim of this chapter is to identify and describe the overall nature of long-term fluvial 

geomorphological cycles evident within palaeo-sediments of the Baviaanskloof valley floor, 

and compare these to recent fluvial geomorphological adjustment along the study reach.

In line with the above aim, the objectives of this chapter are to:

1) Describe and compare the nature and timing of Holocene fluvial geomorphological 

cycles evident in palaeo-floodplain and alluvial fan sedimentary units along the study 

reach based on chronostratigraphic evidence.

2) Identify and describe the nature and timing of recent channel adjustment along the 

study reach from analysis of historical aerial imagery and information gained from 

landowner oral histories.

3) Investigate how the geomorphological evolution of the river floodplain during the 

Holocene has influenced the nature of recent channel adjustment and sensitivity to 

geomorphological change.

4.2 Methods

4.2.1 Identifying long-term geomorphological adaptive cycles

During the course of the research, a funding opportunity arose to conduct limited 

geochronological investigation of fluvial and alluvial fan sedimentary units of the 

Baviaanskloof floodplain. This exercise would provide insight into the nature and timing of 

contrasting Holocene fluvial environments for the study reach. As a result of the funding 

provided, two floodplain sedimentary units were dated using Optically Stimulated 

Luminescence (OSL) dating. Samples were collected from sedimentary deposits at two 

erosion banks along the middle of the study reach (Figure 4.1). The first site 'SKOSL' was a 

bank exposing a mix of alluvial fan and floodplain deposits and the second site 'JOSL' 

contained a mix of floodplain sands and silts alternating with dark organic horizons. Three 

samples were collected at approximately 0.2-0.4 m, 1.0-1.5 m and 1.7-1.9 m depths for each 

site. The samples were collected in the dark using a standard sediment corer, and were 

carefully stored in light impenetrable black plastic.
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Figure 4.1: Map indicating the location of OSL sample sites 'SKOSL' and 'JOSL' along sub-reach B of the study 
reach.

The OSL dating technique measures time that has passed since burial of a quartz or feldspar 

rich sedimentary grain. According to Murray and Olley (2002) luminescence dating relies on 

the build-up of electrons and associated energy within a mineral grain as a result of 

exposure to natural levels of ionising radiation from the surrounding environment (i.e. 232Th, 

238U and 235U and their daughters, and 40K and 87Rb as well as cosmic radiation). The 

radiation damage accumulates in a predictable manner and can be detected as a light or 

luminescence 'signal' when grains are exposed to white light or to temperatures of a few 

hundred degrees Celsius (Murray and Olley 2002; Wallinga 2002). On exposure to heat or 

light the 'clock is zeroed' and the amount of luminescence or heat energy released by a 

mineral grain on exposure is proportional to time of exposure to environmental radiation 

following deposition. Hence, the age of deposition can be estimated.

The OSL dating technique has been suggested as relatively accurate in comparison to other 

dating techniques such as carbon dating, with few systematic errors for ages dating back as 

far as 350 000 years (Murray and Olley 2002). The OSL dating for the present study was 

performed by the Geo-luminescence Laboratory of the School of Geosciences, University of
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Witwatersrand, South Africa. The Single Aliquot Regenerative dose (SAR) procedure was 

employed for measurement of OSL ages (Murray and Wintle 2003). The age of a particular 

mineral grain was determined as the ratio of the equivalent/environmental radiation dose 

(Gy) and the radiation dose rate (Gy.ka-1), as indicated in the equation below (Evans and 

Cunningham 2013).

. , ... EquivalentDose(Gy)A ge( y r )  =  — ------------------------------------
DoseRate(Gy.ka )

The equivalent dose method approximates the amount of radiation received by the grains in 

their natural environment. The dose rate is the annual flux of radiation delivered to grains in 

the natural environment. The error on the age of each sample combines estimates of 

systematic and experimental error associated with equivalent/environmental dose and dose 

rate measurements (Evans and Cunningham 2013).

The sediment samples from the present study were sent to iThemba laboratory in South 

Africa for estimation of the isotopic abundances of the parent radionuclides using gamma 

spectrometry (Evans and Cunningham 2013). From these isotopic abundances, the dose 

rates to quartz grains were calculated using the latest conversion factors. The cosmic 

radiation rates to the samples were determined as a function of the altitude, 

latitude/longitude, and depth each sample. From all of the above the total dose rate per 

sample was calculated and used to determine the approximate age of each sample. The OSL 

derived sedimentary deposit ages for the Baviaanskloof were reported by Evans and 

Cunningham (2013) as an age before the sample collection date, which was 2012. The dates 

were later converted to an age before present (BP), since this is standard practice for 

reporting sedimentary ages, particularly for carbon dating techniques (van der Plicht and 

Hogg 2006). This conversion of ages allowed the author to compare the results of the 

present study with the relevant South African literature on Holocene climate conditions, 

reported using radio-isotopic dating techniques.

4.2.2 Describing recent channel adjustment 

Changes in channel morphology

Recent channel morphodynamics, indicating recent river adjustment processes, was 

investigated by analyzing a sequence of aerial photography for the study reach spanning the
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last 60 years. The aerial imagery was obtained from the South African National Geospatial 

Information Service (NGI) for the years 1956, 1960, 1972, 1986, 2003 and 2009. These dates 

spanned the youngest and oldest imagery for the study reach at the time of data analysis. 

Georectification was performed for the 1960, 1972 and 1986 imagery in ArcGIS (version 

10.1) since these images had not been orthorectified and indicated the most obvious 

change in channel planform throughout the photographic series. Channel and floodplain 

form in the 1956 imagery was fairly similar to the 1960 imagery and the clarity of the 1956 

imagery was relatively poor. Hence, the 1960 was included in the analysis. At least 50 'hard' 

control points were selected for image rectification including road junctions, buildings, 

distinctive mountain features (spurs and rock outcrops) and dams. The center of emergent 

canopy species that are slow growing (>100 years old), and could easily be matched 

between years, were also used as hard control points during rectification. The 'adjust' 

method of image transformation was applied as this gives more spatial accuracy on the local 

scale (ESRI ArcGIS Help, ArcMap version 10.1). The transformed images were then rectified 

using 'Nearest neighbour (for discrete data) resample type' and using the same projection 

as the 2009 imagery (Transverse Mercator, WGS1984, with a central meridian of 23 

degrees). Scale differences between the various images were thus dealt with in this manner. 

Although there were seasonal differences between imagery of different years and 

inaccuracies brought about by local distortions during rectification, these factors did not 

present a major obstacle to the relative comparison of river geomorphology between 

different years.

Changes in channel planform over the 60 year period was quantitatively depicted by 

measuring a number of indices such as channel anabranching intensity and sinuosity of the 

thalweg channel between years in which considerable planform changes were obvious. 

Total sinuosity (length of all channel anabranches divided by reach length) has been used 

extensively in braided river research (Ashmore 2013). In this study sinuosity was measured 

along the length of the widest channel (Bridge 1993; Friend and Sinha 1993) to include 

reaches that were non-braided. A braiding index (B), which indicates the intensity of 

channel bifurcation (Howard et al. 1970; Ashmore 1991a; Thorne 1997) was measured by 

calculating the mean number of trunk channel divisions for each of the channel sub-reaches 

defined in this study. This method of calculating braiding intensity is commonly used
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(Ashmore 2013) and has been described as the most accurate for depicting channel braiding 

(Bridge 1993).

The characterization of channel pattern between different years for the study reach was 

based upon the method described by Beechie et al. (2006), who distinguished four channel 

pattern types for forested mountain river catchments in the northwest USA. Beechie et al. 

(2006) based their classification on a range of major channel types that have been 

distinguished in classical literature (Leopold and Wolman 1957; Church 2002). The four 

channel pattern types are described below:

1) Straight: primarily single-thread channel with sinuosity <1.5

2) Meandering: primarily single thread with sinuosity >1.5

3) Island braided/Wandering: multiple channels, mainly separated by vegetated 

islands

4) Braided: multiple channels mainly separated by non-vegetated gravel bars 

However this study included a 5th pattern type:

5) Anabranching: multiple channels that are separated by semi-permanent vegetated 

islands that are more than 3 times channel width at average discharge condition 

(Schumm 1985; Knighton and Nanson 1993).

Type 3 - island braided channels form a transitional channel type between meandering and 

braided channels, and are characterised by islands that are relatively permanent features, 

yet are smaller than the islands that define anabranching channels (Schumm 1985; Knighton 

and Nanson 1993).

Mapping the degree of channel degradation

The occurrence and degree of channel-floodplain degradation was described from field 

observations, including for example a lack of recent debris deposits on the floodplain; failing 

or under-cut banks; and nick points on the channel bed, and from flooding depth 

measurements during storm flow events at different channel sites. In the present study, a 

degraded channel was distinguished from an incised channel. Channel degradation is 

associated with deepening and widening of a channel by bed and bank erosion. Degradation 

may eventually lead to an incised channel, representing an eroded channel flanked by one 

or more abandoned floodplain surfaces (Schumm 1999; Schumm 2005).
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Since river channels follow an evolutionary path from degrading to incised and then to 

channel recovery (Schumm 2005), three broad classes of channel-floodplain state were 

defined in the present study; 1) 'degrading': channel reaches that are in the initial stages of 

degradation, such that the floodplain is still inundated on an annual basis, but flooding 

frequency may be insufficient to maintain temporary, seasonal or permanent floodplain 

wetland conditions into the future; 2) 'degraded': when channel deepening has resulted in a 

considerable decline in floodplain inundation frequency such that the floodplain wetland 

ecosystem has been lost. In South Africa, a flooding frequency sufficient to inundate an area 

for more than 6 weeks of the year is necessary for the existence of at least, a temporary 

floodplain wetland (DWAF 2005); 3) 'incised': when the present-day channel is confined 

within an abandoned floodplain surface inundated only by rare, extreme events. The first 

two classes of degradation were mapped in this study as an indication of the extent of 

present-day active degradation processes. To map the degrading and degraded classes, a 

total of 86 channel cross-sectional morphology surveys were conducted at approximately 

300 to 1 000 m intervals along the trunk stream (Figure 4.2). Due to time constraints an 

approximate method was used to record bankfull and degradation width and depth at just 

below 10% of the channel survey sites. The method involved stretching a rope across the 

channel and using a staff to measure channel depth. Figure 4.3 illustrates the general 

method used to distinguish bankfull width and depth from degraded channel width and 

depth. It was not uncommon to encounter channel banks of unequal height where the trunk 

channel has eroded through alluvial fan deposits on either the left or right side of the 

floodplain ('Heightened bank', Figure 4.3). Bankfull depth was therefore recorded from the 

bank with the lowest bank height to the present-day (2011-2012) channel thalweg. In such 

cases the channel reach was classified as degraded if bank height of the lowest bank was 

deep enough to prevent flooding inundation during annual or inter-annual flood events.

In some cases active channel banks were difficult to distinguish due to the complex nature 

of channel morphology. In this case the elevation of the tallest channel bar was used as a 

proxy for bankfull water levels (Copeland et al. 2000).
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Figure 4.2: The study reach indicating the extent of sub-reaches A-C and the location of surveyed channel cross 
sections. Northern and southern tributaries are labelled B1-B19 and K1-13 respectively; hillslope gullies are 
labelled as G1-9.
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Figure 4.3: Schematic diagram illustrating the method used to measure bankfull and degraded channel width 
and depth (adapted from Beechie et al. 2008: 788).

To assist identification and mapping of channel degradation levels, flooding depth was 

measured at 10 sites along a ~ 2 km stretch of the study reach during a flood event. The 

particular flood event resulted in floodplain inundation along a number of relatively shallow 

channel reaches but not along deeply eroded channel reaches and was therefore assumed 

to be a small to moderate sized flood event. Flooding depth was measured as height from
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channel thalweg at the 10 sites along a relatively degraded reach. Measurements were 

conducted for relatively wide and narrow channel sites to account for the influence of 

channel geometry on flooding depth. This exercise provided a basis upon which to classify 

channel degradation along the study reach by assuming that channel reaches with similar 

channel geometry to those at which flooding depth was measured, were of the same 

degradation class identified at the measured sites.

Rates of channel adjustment

Channel erosion monitoring was conducted over a 2.5-yr period between January 2011 and 

August 2013 along the trunk stream to investigate whether channel degradation is still a 

dominant process, and whether the channel is beginning to recover. Erosion monitoring was 

conducted at two river sub-reaches separated by several kilometers, along the middle of the 

study reach. Each monitoring sub-reach ranged between 800 and 1000 m in length. The first 

sub-reach coded 'DEM' was positioned in the middle of the study reach where trunk 

channel degradation levels were relatively low and where the river was not influenced by 

major tributaries connecting directly to the trunk channel. The second sub-reach coded 

'JEM' was situated several kilometers downstream of DEM and was selected based on 

relatively high levels of channel degradation. Sub-reach JEM was directly influenced by two 

major tributary streams and a large furrow that connect to the trunk channel from opposite 

sides of the floodplain. The latter sub-reach was also selected for river-floodplain 

rehabilitation by the WfWet programme.

Between six and seven fixed channel cross-section sites were surveyed intermittently during 

the 2.5-year period at sub-reaches DEM and JEM. The first survey was conducted in January 

2011 with three more surveys conducted in November 2011, August 2012 and August 2013. 

Each cross section was surveyed at 1 m intervals between two fixed points (metal stakes) on 

the left bank and right bank of the active channel using a dumpy level and staff. Distance 

across the channel was indicated by stretching a piece of rope marked at 1 m intervals 

across the channel. Channel cross-section profiles were plotted for each of the three time 

intervals such that visual comparisons could be made and changes in channel width and bed 

elevation could be calculated. For the latter calculations, each time interval survey was 

made relative to the same fixed point, for example the left bank metal stake, such that 

deviations in mean bed elevation from the first channel survey could be calculated. The net
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change in channel bed elevation for each cross section over the entire monitoring period 

was also calculated, using the first survey as the reference. The channel morphological 

changes were analyzed for three sub-periods of the entire monitoring period, each period 

defined by different frequency and magnitude flood events. The results thus indicated 

whether on average the trunk channel bed had degraded or aggraded over the monitoring 

period. These changes could then be assessed with regards to the frequency and magnitude 

of floods that occurred during each sub-period analyzed.

The above visual analysis of channel morphodynamics was supplemented by oral accounts 

of the historical character of the river-floodplain from interviews with local landowners. In 

these interviews the respondents were asked a range of questions relating to the history of 

the river floodplain in terms of channel (main stream and tributaries) and floodplain 

morphological and hydrological characteristics, to indicate the nature of recent 

geomorphological adjustment.

4.3 Results

4.3.1 Evidence for pre-historic cut-and-fill cycles

Two floodplain terrace surfaces occurring tens to hundreds of meters away from the 

present-day active channel zone were clearly identified throughout the study reach (T1 and 

T2, Figure 4.4), indicating past phases of floodplain filling and cutting. Numerous abandoned 

channels were also encountered on the floodplain indicating that the trunk stream has 

historically been laterally dynamic. This dynamism has been somewhat controlled by the 

extension of alluvial fans across the floodplain which create topography and hence limit the 

extent to which the trunk can shift across the valley floor (e.g. JXA, GXA, ZXA, Figure 4.4).

The OSL age estimates determined for sediment samples collected from contemporary river 

erosion banks SKOSL and JOSL are indicated in Figure 4.5a and b. The ages are given in years 

before present (BP). Site SKOSL was directly adjacent to an alluvial fan that extends across 

the floodplain toward the trunk channel. The erosion bank at this site contained sandy-silty 

deposits with angular pebbles indicating the distal reach deposits of the alluvial fans. These 

alluvial fan units alternated with floodplain units, allowing age estimates of the differing 

fluvial environments (Figure 4.5a). Site JOSL was situated downstream of SKOSL and 

contained relatively high-energy palaeo-floodplain units indicated by sandy deposits
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alternating with relatively low-energy palaeo-floodplain wetland units, characterised by silty 

deposits rich in organic matter ranging from decomposed to relatively intact plant matter 

(Figure 4.5b).

Figure 4.4: Floodplain cross-sectional morphology for several sites along the middle- to lower-reaches of the 
study reach indicating various human and geomorphological features.

The palaeo-floodplain sedimentary deposits at a depth of 0.4 m at site SKOSL (SKOSL3, 

Figure 4.5a) delivered an approximate age of 268 BP ± 70 years. This unit is underlain by 

palaeo-alluvial fan sedimentary deposits that delivered an approximate age of 2 288 BP ± 

210 years (SKOSL2, Figure 4.5a). Both of these sedimentary units contained low-moderate
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abundance of iron mottling suggesting that at time of deposition the sediments were 

seasonally saturated. The sample taken at a depth of 1.75 m at site SKOSL contained organic 

matter and delivered an age of approximately 5 188 BP ± 370 years (SKOSL1, Figure 4.5a). 

The organic content of this unit suggests that conditions were wet enough to support the 

growth of hydrophytic vegetation. At site JOSL floodplain deposits at a depth of 0.17 m 

(JOSL3, Figure 4.5b) yielded an OSL date of approximately 178 BP ± 100 years. This date is 

similar to the sample taken near the top of the bank at site SKOSL. The palaeo-floodplain 

wetland deposits situated at a depth of 1.35 m at site JOSL delivered an approximate age of 

1 658 BP ± 130 years. This unit was very dark in colour and contained undecomposed 

fragments of plant matter, suggesting high organic content and permanently saturated 

anaerobic floodplain conditions. The sample taken at 1.8 m depth at site JOSL represented a 

palaeo-floodplain wetland unit and unexpectedly delivered a younger age than overlying 

sediment deposits, dating approximately 648 BP ± 50 years (JOSL1, Figure 4.5b).

The anomaly of a young age for the sample taken at 1.8 m depth at site JOSL could be 

associated with several factors including, sampling error or environmental factors that cause 

mixing of young and old sediments, or partial bleaching of sediments which erases some of 

the luminescence signal. Partial bleaching of mineral grains associated with the 

underground peat fire that occurred in the floodplain during the 1960s is suggested to have 

been unlikely (M Evans, pers. comm., 2013). The photo in Figure 4.5b shows long root 

systems that have been exposed by bank erosion. It is possible that relatively young 

sedimentary material situated near the top of the erosion bank moved downwards along an 

abandoned root channel, mixing with older sedimentary material near the bottom of the 

erosion bank, where sample JOSL1 was removed (K Rowntree, pers. comm., July 2016). It is 

unlikely that material would move upwards along a root channel such that the older date in 

the middle of the profile (JOSL2, Figure 4.5b) should be accurate (K Rowntree, pers. comm., 

July 2016).
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Figure 4.5: Optically Stimulated Luminescence (OSL) age estimates at erosion bank site 'SKOSL' (a) and 'JOSL' (b).

88



Using the OSL age estimates presented above, average sedimentation rates for the time 

periods represented between OSL dates at each site were calculated (Table 4.1). 

Sedimentation rates for the most recently deposited materials ('youngest', Table 4.1) at 

each site were calculated using OSL age estimates for the shallow-most OSL sediment 

sample, and estimated time of cessation of floodplain inundation due to channel incision at 

the sites. The timing of cessation of frequent floodplain inundation was estimated to be at 

the year 1990, thus this date was used to calculate the depositional period of the youngest 

sediment deposits at sites SKOSL and JOSL. Overall, calculated average sedimentation rates 

for the two sites indicated a gradual decline in sedimentation rate with age of sedimentary 

deposits. The youngest sediment deposits at site SKOSL yielded the highest average 

sedimentation rate of ~1.3 mm.yr-1 ('SKOSL3 to top of bank', Table 4.1), with average 

sedimentation rates declining to -0.31 mm.yr-1 for middle-aged sediment deposits at this 

site ('SKOSL2 to SKOSL3', Table 4.1). Site JOSL yielded very similar average sedimentation 

rates for the youngest and middle-aged sediment deposits, calculated at -0.78 mm.yr-1 

('JOSL3 to top of bank', Table 4.1) and 0.8 mm.yr-1 ('JOSL2 to JOSL3', Table 4.1) respectively. 

The oldest sedimentary deposits at site SKOSL yielded the lowest average sedimentation 

rate of - 0.25 mm.yr-1. The average sedimentation rate for the oldest deposits at site JOSL 

was not calculated due to the anomalous young age delivered for the bottom-most sample 

JOSL1.

Table 4.1: Average sedimentation rates for deposits occurring at different depths of channel erosion bank sites 
SKOSL and JOSL, based on OSL age estimates.

Sample code Age (relative) Thickness of 
unit (mm)

Depositional 
period of unit 
(years)

Average 
sedimentation 
rate (mm.yr-1)

SKOSL3 to top of bank Youngest 400 308 1.3

SKOSL2 to SKOSL3 Middle 620 2 028 0.31

JOSL3 to top of bank Youngest 170 218 0.78

JOSL2 to JOSL3 Middle 1180 1 480 0.80

SKOSL1 to SKOSL2 Oldest 730 2 900 0.25
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The wetland units identified at sites SKOSL and JOSL were not restricted to these sites.

Hydromorphic (wetland) soil horizons were encountered at different depths within channel 

erosion banks along the study reach (Plate 4.1). The varying abundance of mottling of the 

palaeo-wetland soils suggests temporal variations in degree of wetness of the floodplain 

historically. The presence of light grey to gleyed soils (Chromas <1) indicated the existence 

of permanent wetland areas (Plate 4.1a), and the presence of soils with abundant red- 

orange mottling within a matrix of low chromas of <2 suggested previous seasonal wetland 

areas (Plate 4.1b). These different hydromorphic soils were encountered at varying 

locations throughout the study reach at varying depths. For example, along the middle of 

the study reach relatively thin (<0.5 m deep) organic rich to peaty layers alternate with 

highly mottled sandy-silty layers, suggesting temporal variations between permanent and 

seasonal floodplain wetland conditions. Local landowners state that in the past (a few 

decades ago) the floodplain was inundated more frequently than at present due to the 

shallow nature of the trunk channel. Lateral (channel-floodplain) connectivity was thus 

much higher than at present such that flooding frequency and duration of soil saturation (>3 

months of the year) was sufficient to sustain floodplain wetlands. At present, the existence 

of permanent floodplain wetlands is limited to a relatively small area on the southern side 

of the floodplain along the middle of the study reach. Several ash layers were encountered 

in erosion banks indicating organic rich palaeo-wetland sedimentary horizons. The ash 

layers were reported to be the remains of a subsurface peat fire that burned along these 

floodplain reaches during a drought period in the 1960s (P Kruger, pers. comm., n.d.).
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Plate 4.1: Examples of hydromorphic soils encountered along the study reach; a channel erosion bank with 
gleyed soils of chroma <1 toward the middle of the profile, and grey-brown soils of chroma <2 toward the top 
of the profile (a); low chroma soils (<2) with abundant mottling in the upper 1 m of a channel erosion bank (b).

4.3.2 Recent river history

Oral histories of river-floodplain form

Interviews with local landowners provided an interesting account of the historical 

hydrological and geomorphological character of the river, floodplain, and surrounding 

tributary catchments as well as a description of general vegetation structure along the study 

reach (Table 4.2). One of the respondents had lived in the valley from birth such that the 

individual could re-count river-floodplain conditions during the 1950s, when they were in 

their early 20 years of age. This respondent therefore provided a more than 40 year account 

of changes in the general structure and hydrological characteristics of the Baviaanskloof 

River and floodplain. The information gained from the aforementioned account and several 

other oral histories, suggests that in the 1950s there was more water available in the valley, 

riparian and hillslope vegetation cover was higher, and the trunk channel flowed regularly 

and for longer periods of time than in recent years (Table 4.2). The channel was reported to 

be much narrower (±15 m wide) than at present-day (on average >40 m wide), and there 

were more channel divisions, particularly along the middle of the study reach (sub-reach B). 

Lateral connectivity between the trunk channel and floodplain was reported to be much 

higher in the past. These hydrological and geomorphological conditions were conducive to
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the existence of permanent to seasonal floodplain wetlands, which reportedly contained 

numerous permanent springs and the reed, Phragmites australis commonly occurs in 

seasonal to permanent wetland environments in South Africa. The aforementioned 

conditions are at present largely absent from the study reach since floodplain inundation is 

less frequent.

Table 4.2: A summary of the local-landowner narrative on present-day (2013) versus pre-degradation (1950s 
and 1960s) characteristics of the Baviaanskloof river and floodplain.

River-floodplain
character

Historical (1950s -  1960s) Present-day (2013)

Flow regime River flowed almost all year round Flows once or twice a year

Channel morphology Multiple, narrow (on average ±15 m 
wide) channels dividing flow

Mostly wide (on average >40 m), 'single' 
channel (braided channel)

Floodplain character Fine sediment accumulation; seasonal to 
permanent floodplain wetlands and 
floodplain springs

Limited (<1 ha) seasonal-permanent 
wetland exists; no springs; isolated 
pockets of sediment accretion

Impacts of floods Channel avulsions in places; extensive 
floodplain inundation; large floods would 
remove stands of trees or reeds

Channel widening, deepening; limited 
inundation; undermining of bank 
vegetation

Catchment and 
riparian vegetation

Denser hillslope and riparian vegetation 
and greener in appearance

Vegetation less dense and not as green

Flood events in the 1970s and 1980s were reported to have driven channel widening and 

deepening, along with reduction of a once multi-thread channel to a single-thread channel 

along many reaches. Channel adjustment was particularly noticeable along the middle of 

the study reach where permanent-seasonal wetlands once occurred. A local farmer noted 

that despite the regular occurrence of small to moderate flood events, a particularly large 

flood in 1984 initiated deepening of the trunk channel by about 2 m in a single event. The 

drop in local water table resulting from channel deepening resulted in uncharacteristic 

drying of human made drains in the floodplain. According to the local farmer channel 

degradation and drying of the floodplain continued at a relatively rapid rate between 1984 

and 1996. Large floods reported to have occurred in the 1960s, 1980s and 1990s were noted
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to be powerful enough to remove large stands of riparian vegetation, including reeds 

(Phragmites australis), trees (dominated by tree Vachellia karroo, formerly Acacia karoo) 

and various shrubs. A few respondents noted that riparian woody species density is slowly 

recovering (during 2012/2013) to a similar density that existed prior to the damaging flood 

events of the 1980s and 1990s.

Visual evidence for recent channel adjustment

It is clear from historical aerial imagery that the trunk channel and several major tributary 

streams were morphologically dynamic between 1960 and 2009 (approximately 50-year 

period), including changes in channel pattern and width and avulsions (Figure 4.6a-c). These 

changes were accompanied in some cases by changes in tributary-trunk stream 

connectivity. Trunk channel and tributary stream avulsions occurred for all sub-reaches of 

the study reach between 1960 and 2009. The degree of connectivity of several tributaries 

also changed over the same period. For example, B2 and B3 indicated a decrease in 

connectivity over the period (Figure 4.6a), whilst tributaries K2 and B9 (Figure 4.6a) B10, 

B11, B12, K7, K8 (Figure 4.6b), K10 and K13 (Figure 4.6c) increased in connectivity with the 

trunk stream over the period. Tributary-trunk connectivity therefore increased in general 

between 1960 and 2009. Overall the trunk channel morphed from a mixed single-thread to 

anabranching style, to a mixed braided to anabranching-braided style. In some areas the 

channel clearly morphed from a multi-thread to a single-thread stream, for example in the 

vicinity of K5 (Figure 4.6a), and in the vicinity of K8 and B12 (Figure 4.6b and c). The aerial 

photographic analysis also indicated the development of an extensive gully network 

between 1960 and 2009 on the southern foothills of the study reach. Many of these system 

became partially or well-connected to the trunk stream over the period.

Considerable channel widening also occurred between 1960 and 2009. In 1960 average 

trunk channel width was 29 m increasing to 45 m in 2009 (Figure 4.7). The highest 

proportion of channel widening occurred between 1960 and 1986. By 1986 the trunk had 

widened by more than 200% for sub-reaches A and B ('A' and 'B', Figure 4.7) and by 141% 

for sub-reach C ('C', Figure 4.7). However, by 2009 the trunk channel had contracted by 

more than 40% for all sub-reaches.
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Figure 4.6: Changes in channel planform and tributary-trunk connectivity for the Baviaanskloof River and tributary stream for the upper (a), middle (b), and lower (c) parts 
of the study reach between 1960 and 2009. Trunk channel flow is from north-west to south-east.
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Figure 4.7: Changes in channel width for sub-reaches A-C between 1960 and 1986 and between 1986 and 
2009.

Despite considerable channel widening and lateral dynamism of the trunk channel between 

1960 and 2009, the channel kept a remarkably uniform sinuosity of between 1.1 and 1.2 for 

all sub-reaches (Table 4.3). The braiding intensity (average number anabranches) also 

remained relatively uniform over the ~50 year period (Table 4.3). Anabranching intensity 

was lowest for the 1986 channel, increasing again in 2009.

Table 4.3: Planform characteristics of the trunk channel for 1960, 1986 and 2009.

Sinuosity Braiding intensity
Average channel 
width (m)

Sub-reach

Year Channel pattern A B C A B C A B C

1960
single-thread - 
anabranching 1.2 1.2 1.1 1.3 1.5 2 27 28 32

1986
mostly braided with 
some anabranching 1.2 1.2 1.2 1.2 1.4 1.3 91 87 77

2009
mostly braided with 
some anabranching 1.2 1.2 1.2 1.5 1.6 1.6 39 51 44
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4.3.3 Patterns and extent of trunk and tributary stream degradation

The results of measured flooding depths during a flood event in 2012 indicate that on 

average, wide channels experience a lower flooding depth than narrow channel reaches 

(Table 4.4; Figure 4.8). The flood event was defined as a moderate sized event, since local 

landowners suggested that the event was larger than annual to biannual flood events but 

not large enough to cause floodplain wide inundation characteristic of large floods. The 

flooding depth for relatively wide channels measuring between 40-63 m in depth was ~1.7 

m and for relatively narrow channels measuring between 12-36 m in width was ~2.1 m. The 

channel sites EM-J9 and EM-J7 appear to have an unusually large flooding depth given that 

these two sites have a larger channel width than upstream channel sites EM- J1 & EM-J2 

(Table 4.4). This may be due to additional inflows of flood water from a large tributary which 

connects to the trunk stream just a few hundred meters upstream of EM- J9 and EM-J7. In 

most cases the flooding level associated with the moderate flood event was below the 

elevation of identified incised floodplain surfaces for each of the 10 channel sites. Using this 

flooding data, criteria for identifying channel degradation was defined as any channel bank 

above a height of 1.7 m and 2.1 m for relatively wide and narrow channel reaches 

respectively.
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Table 4.4: Flood levels recorded for the 10 channel sites along the middle of the study reach during a 
moderate flood event in 2012.

Channel 
site code

Channel 
bed feature

Bankfull 
width (m)

Height of 
floodplain 
surface (m)

Flooding 
depth (m)

EM-J1 Pool 12 2.3 2.0

EM-J2 Pool 12 2.0 2.0

EM-J9 Riffle 25 3.0 2.3

EM-J7 pool 36 2.2 2.2

Average 21 2.4 2.1

EM-J10 Riffle 40 2.3 1.8

XS57 ? 44 2.4 1.8

XS65 ? 51 1.8 1.8

EM-J8 Riffle 56 2.2 1.8

XS61 Pool? 60 2.1 1.8

XS62 Pool? 63 2.1 1.4

Average 52 2.2 1.7
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Figure 4.8: Examples of flooding levels for different channel morphologies along the middle of the study reach 
(circled) recorded for a moderate flood event. The profiles are plotted between active channel banks and the 
small arrows indicate the position of the channel thalweg. Flow direction of the Baviaanskloof River is 
indicated by the arrow.

Using the above results and channel cross-sectional surveys the pattern of trunk channel 

degradation was mapped along the study reach as illustrated in Figure 4.9. Trunk channel 

degradation is common throughout the study reach. Sub-reaches B and C were measured to 

have the highest levels of degradation with 87% and 83% respectively of total channel 

length. Sub-reach A has a lower proportion of degraded channel length as 68% of the trunk 

channel along this reach is degrading-degraded. Degradation of the floodplain by trunk 

channel erosion appears to have progressed over a relatively short time span of ~30 years, 

according to oral histories presented in section 4.3.2. Many degraded and degrading 

channel reaches had failing channel banks (Plate 4.2a and b) indicating that channel 

deepening has been accompanied by active channel widening. Along several reaches the 

channel had degraded to a paleao-gravel layer which appears to provide armouring against 

further channel deepening and widening (Plate 4.3a and b).
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Figure 4.9: The distribution of hydromorphic soils in channel erosion banks along the study reach (a), showing 
degrading and degraded channel reaches (b).
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Plate 4.2: Examples of bank failure (a) and undercutting (b) commonly observed throughout the study reach.

Plate 4.3: A thin lens of palaeo-channel gravel in an erosion bank through which the Baviaanksloof River has 
been able to erode (a); a relatively thick layer of palaeo-channel deposits in a channel erosion bank which is at 
present-day not degraded (b).

102



Most of the tributary alluvial fans along the study reach have been dissected by their 

respective tributary streams. Table 4.5 indicates the zone of fan dissection for some of the 

tributary streams investigated during the present study. Those tributaries that were 

connected to the trunk channel (K7, K8 and K12, Table 4.5) ranged from dissection across 

the entire fan surface to dissection along the lower-reaches of the fan surface (middle-distal 

reaches). The disconnected tributaries, representing those that at present do not deliver 

sediment or surface flows to the trunk channel were dissected along either the distal 

reaches or proximal-middle reaches (B12 and B15, Table 4.5). The larger fans that abut on 

the active channel zone were observed to have been recently toe-trimmed by the trunk 

channel. In some cases this has produced deeply incised erosion banks flanking the present- 

day channel (Plate 4.4).

Table 4.5: Characteristics of tributary fan dissection for different tributary-trunk connectivity scenarios.

Tributary/ 
fan code

Zone of fan dissection Tributary-trunk
connectivity

K7 Proximal, middle, distal Connected

K8 Middle-distal Connected

K12 Middle-distal Connected

B12 Distal Disconnected

B15 Proximal-middle Disconnected
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Plate 4.4: A deeply eroded toe of an alluvial fan that impinges on the left bank of the trunk channel producing 
an incised bank of approximately 6 m deep.

4.3.4 Rates of trunk channel degradation

Figure 4.10a and b indicate net changes in elevation of the trunk channel bed at channel 

erosion monitoring sites DEM and JEM for the 2.5-yr monitoring period. Both sites indicated 

net channel bed aggradation or degradation (lowering) of no greater than 40 cm, with site 

JEM indicating slightly higher levels of bed degradation (average of 18 cm) over the 

monitoring period than site DEM (average of 14 cm degradation). Sub-reach DEM indicated 

a mostly degrading to stabilizing channel, as degradation occurred at four of the six channel 

sites, whilst only 2 sites, indicated aggrdation. Monitoring sub-reach JEM indicated higher 

levels of channel bed lowering in correspondence with the influence of a connecting furrow 

and large tributary that join the main channel just upstream of sites JEM4 to JEM8. The 

monitoring sites upstream of the connecting furrow and tributary stream indicated net 

channel bed aggradation over the monitoring period (Figure 4.10b, JEM1 to JEM3).
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Figure 4.10: Net change in bed elevation for channel cross sections at site DEM (a) and JEM (b), between 
January 2011 and August 2013. The cross sections are arranged from upstream to downstream starting from 
sites DEM1 and JEM1.

Figure 4.11a and b indicate the average deviation of the trunk channel bed over three time 

periods recorded during the 2.5 year monitoring period to distinguish the influence of 

different magnitude-frequency flood events. During time period 1 (February 2011 to 

November 2011), four near bankfull events occurred, whilst during time period 2 (December 

2011 to August 2012) a moderate flood and three small floods (over-bank flow) occurred. 

During time period 3 (September 2012 to August 2013), one near bankfull and one small 

flood event occurred. At sub-reach DEM (Figure 4.11a), the highest levels of change in 

channel bed elevation were experienced during time periods 2 and 3 consistent with the 

occurrence of several small floods and a moderate flood event. Relatively low levels of 

deviation occurred during time period 1 when a few near bankfull events occurred. In 

contrast, at sub-reach JEM (Figure 4.11b), the highest levels of bed degradation were not 

consistent with time period 2 when the largest sized flood event occurred. At both 

monitoring sub-reaches DEM and JEM, some channel sites switched between dominantly
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bed degradation to dominantly bed aggradation over the monitoring period (e.g. DEM2 and 

6, Figure 4.11a; JEM2 and 7, Figure 4.11b).
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Figure 4.11: Average deviations of trunk channel bed elevation over time, from the first channel surveys 
conducted in January 2011. Deviations from the January 2011 survey were calculated for three time periods at 
monitoring sites DEM (a) and JEM (b). Time period 1 = February 2011 to November 2011; Time period 2 = 
December 2011 to August 2012; Time period 3 = September 2012 to August 2013.
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4.4 Discussion

4.4.1 Evidence for Holocene fluvial adaptive cycles

The sedimentary units at two erosion banks along the middle of the study reach (SKOSL and 

JOSL) clearly indicated long-term (over thousands to hundreds of years) oscillation between 

relatively high-energy and low-energy fluvial environments evidenced by alternating 

relatively coarse and fine sediment deposits. These long-term oscillations represent long

term geomorphological adaptive cycles controlled by oscillations in regional climate (Dollar 

1998; Norstrom et al. 2009). At erosion site SKOSL, alternating floodplain and alluvial fan 

sediment deposits match alternating relatively moist and dry climates identified for the 

Cape region of South Africa during the mid-late Holocene (Scott 1993; Meadows et al. 1996; 

Tyson et al. 2000; Meadows and Baxter 2001; Chase et al. 2012; Truc et al. 2013; Weldeab 

et al. 2013). The ages delivered from alluvial fan deposits at site SKOSL dated approximately 

5 188 and 2 288 BP correspond with relatively moist climatic periods identified for the Cape 

region of South Africa (Chase et al. 2012). The upper-most palaeo-floodplain sedimentary 

units at sites SKOSL and JOSL dating approximately 270 BP and 178 BP respectively, 

correspond with the timing of the later-part of the Little Ice Age (LIA) identified for southern 

Africa, between 650-150 BP (Tyson and Lindsay 1992; Tyson et al. 2000). Conditions during 

the LIA are suggested to have been relatively cool, with relatively moist or dry conditions 

depending on location along the east-west rainfall seasonality gradient (Meadows et al. 

1996; Tyson et al. 2000). The Baviaanskloof is located within the transitional zone between 

the eastern summer rainfall zone and the western Mediterranean climatic zone of South 

Africa, making it difficult to surmise the climatic conditions during the LIA for the area. The 

preference of a fine-grained floodplain environment rather than alluvial fan expansion and 

coarse sediment deposition during the latter climatic period, suggests that conditions were 

relatively moist with low-magnitude, high-frequency rainfall events promoting fine 

sediment delivery and floodplain accretion (Lane et al. 2008).

The organic rich to peaty sediment layers found within the floodplain sedimentary unit at 

JOSL indicate a high groundwater table and anaerobic conditions (Kirchner et al. 2015) 

during the late Holocene suggesting that the floodplain was permanently flooded in 

association with a relatively wet climate. The age of this palaeo-wetland deposit of ~1 700 

BP closely fits a relatively warm climatic period identified by Tyson and Lindsay (1992) for
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South Africa. This period would have been characterised by low-magnitude flood events 

allowing for the growth of hydrophytic vegetation, fine sediment accretion and peat 

formation. It is therefore suggested that during warm and moist climatic periods fluvial 

energy is diminished and floodplain accretion and wetland conditions dominate along the 

middle-reaches of the Baviaanskloof. Alternatively, during cool and dry climatic periods, 

fluvial energy in general increases along with catchment erosion and coarse sediment 

delivery to the floodplain. These conditions are most likely initiated by a switch to high- 

magnitude, low-frequency storm and associated flood events. During these periods, coarse 

sediment delivery to the valley floor and alluvial fan progradation would be relatively high, 

followed by channel switching and channel degradation associated with heightened storm 

discharges and breaching of stream power thresholds of erosion.

The present-day system indicates similar traits to that described above, such that delivery of 

coarse sediment to the valley floor evidenced by fan channel switching in recent years has 

been followed by breaching of erosional thresholds and channel degradation. It is 

questionable however, whether the incisional nature of present-day tributaries and the 

trunk stream channel has been solely driven by a switch in climate regime given the short

time period over which these changes occurred.

The average sedimentation rates calculated for mid-late Holocene sedimentary deposits at 

the two erosion banks were relatively low ranging between 0.25-1.3 mm.yr-1. The average 

sedimentation rates calculated for contemporary deposits dated for the last 200 to 300 

years at the alluvial fan site were four times higher than calculated for underlying mid-late 

Holocene deposits at the same site. This contemporary sedimentation rate was also two 

times higher than the sedimentation rate calculated for corresponding contemporary 

deposits at floodplain site JOSL. These results suggest that in recent years, alluvial fan 

sedimentation rates have been heightened relative to pre-historic periods. Heightened 

sedimentation may be linked to human land-use activities in the catchment over the 

last ~ 200 years, which have increased sediment delivery to the channel network. This 

finding is not uncommon for river catchments that have been influenced by European 

settlement around the world (Brierley et al. 1999; Kasai et al. 2005; Fryirs and Gore 2013; 

Kirchner et al. 2015). However, the increased sedimentation rate experienced on the alluvial 

fan at site SKOSL does not appear to have translated to heightened floodplain
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sedimentation rates in the last 200-300 years for the study reach, most probably because of 

the buffering role providing by multiple alluvial fans along this reach. It is difficult to 

determine the extent to which alluvial fans have buffered the river and floodplain against 

the influence of human land-use activities over the last few centuaries in the catchment, 

given the limited geo-chronological exercise (only two sites dated) that was undertaken in 

this study.

It is apparent however from the sedimentary evidence and OSL dating results of this study, 

that the Baviaanskloof River and surrounding tributaries have undergone multiple phases of 

cutting (degradation) and channel-floodplain filling (aggradation), indicating that the 

landscape naturally experiences cut-and-fill geomorphological adaptive cycles. The 

switching between these phases is largely determined by degree of connectivity between 

hillslopes and channels, which in turn reflects climatic regime and vegetation cover on 

hillslopes (Chiverrell et al. 2009). The nature of sedimentary fill inherited from the above 

discussed pre-historic fluvial adjustment cycles of erosion and deposition during the mid- to 

late-Holocene has influenced the degree to which the trunk stream has degraded along 

different reaches. In this regard, palaeogravel layers have increased the resistance of some 

channel reaches to morphological change. The inherited sedimentary structure of the 

floodplain has contributed to the complexity of channel response along the study reach 

(Brunsden 2001; Fryirs and Brierley 2009).

4.4.2 Natural or anthropogenically inducecd river degradation?

It is clear that in recent decades the study reach has indicated abrupt changes in hydrology, 

channel morphology and fluvial geomorphological process. It is suggested that widespread 

channel degradation along the study reach over the last ~30 years is unexpected given 

contemporary climatic regime and recent fluvial history. The contemporary climate is 

relatively warm on a global and regional scale due to a recent (last several years) shift 

toward strong El Nino and anthropogenic climate change (IPCC 2013). Thus it should be 

expected that floodplain accretion and decreased alluvial fan activity should be the overall 

dominant condition for the Baviaanskloof River at present and into the future, controlled by 

a long-term warm and wet climatic phase. However, a long-term fluvial adaptive cycle may 

be interjected by short-term erosional or depositional cycles that are driven by short-term 

climate variations, human land-use or a sudden tectonic event. The recent (  30 years ago)
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existence of seasonal to permanent floodplain wetlands along the study reach prior to 

channel degradation confirms the existence of a floodplain accretion phase. However, the 

overall degradation state of the Baviaanskloof River and tributary streams along the study 

reach suggests a recent breach in one or more thresholds of erosion (Piegay and Schumm 

2003; Simon and Rinaldi 2006), resulting in a change in floodplain conditions. Channel 

degradation under natural conditions would have proceeded over a longer time span than 

the ~30 year period accounted in oral histories for the Baviaanskloof, suggesting that high- 

magnitude disturbing force/s have driven and compressed recent degradation (Simon and 

Rinaldi 2006). Increased floodplain sedimentation rate over the last ~ 200 years corresponds 

with the timing of European settlement and modern agricultural practices in the 

Baviaanskloof valley (Boshoff 2005). It is therefore suggested that human land-use activities 

over the last few decades has been an important factor driving recent channel degradation 

along the study reach. The reports by local landowners of rapid and deep channel 

degradation during flood events in the early 1980s to 1990s suggests that flood events have 

also been an important control on recent degradation. Channel monitoring surveys and 

observations suggest that levels of channel adjustment have slowed over the last few years 

and that the channel is beginning to recover.

The observed patterns of trenching of alluvial fans by tributary streams fit the findings of 

Bobbins (2011) in her study of alluvial fan morphology in the Baviaanskloof. Bobbins (2011) 

found that nearly all tributary fans along the study reach are entrenched in the distal-middle 

or proximal reaches. The widespread nature of fan trenching is suggested to be a result of 

two controls: a) historical toe trimming of fans by the trunk which would have shortened 

and steepened the fan profile, initiating stream degradation; b) trunk channel degradation 

which causes a lowering of the base-level of tributary streams (Harvey 2012) and hence 

channel degradation. The aforementioned controls on fan trenching are common in dryland 

settings (Harvey 2002b). Fan trenching along the proximal to medial reaches of presently 

disconnected tributaries may be a result of the breaching of geomorphological (slope) or 

stream power thresholds of erosion (Schumm 1979; Harvey 2012).
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4.5 Conclusion

Geo-chronological investigation of floodplain and alluvial fan sedimentary units along the 

middle-reaches of the Baviaanskloof floodplain indicate that the river and surrounding 

tributary fans have undergone natural cut-and-fill geomorphological adaptive cycles 

spanning several hundred to thousands of years, driven by natural climate variations during 

the Holocene. These cut-and-fill phases were characterised by fluctuation between 

relatively high-energy and low-energy fluvial conditions. It is suggested that the high-energy 

phases would have been dominated by river incision and high levels of coarse sediment 

delivery to the floodplain resulting in alluvial fan expansion, during relatively cool and dry 

climatic periods (glacial periods). These fluvial incisional phases alternated with quieter 

conditions characterised by lower magnitude flow events, fine sediment deposition and the 

formation of floodplain wetland environments, during relatively warm and wet periods 

(interglacial periods). The trunk stream and surrounding tributary catchments recently 

entered a short-term (a few decades long) cutting phase which was approached as a 

widespread erosional threshold was breached. As a result, the river and surrounding 

tributary fans entered a phase of channel instability and morphological change analogous to 

the creative destruction phase of an adaptive geomorphological cycle depicted within the 

concept of Panarchy. However, channel response has not been uniform throughout the 

study reach reflecting the complex response of the river to perturbation. This chapter has 

indicated that the presence of palaeo-gravel layers exposed on the channel bed and banks 

of various degrading channel reaches provide relative armouring of the channel to erosion, 

increasing resistance to the effects of small to moderate flood events. The heightened rate 

of floodplain sedimentation over the last -200-300 years suggests that human land-use 

activities have influenced the onset of recent channel adjustment through changes in water 

and sediment delivery to the channel network.
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APPENDIX 4A: CHANNEL CROSS-SECTION DATA FOR THE STUDY REACH

Table 4.6: Bankfull width and depth measurements for classifying levels of channel degradation for 
the study reach

code

bankfull 
depth (m)
used lowest 
bank height

bankfull 
width (m)

incision 
depth (m)
from lowest 
bank where 
two incision 
banks 
present

incision 
width (m)

bankfull
w/d

incision
w/d I = incised

incision
side

XS3 1.45 27 2.155 40 18.6 18.6 I both
XS5 1.01 40 2.19 50 39.6 22.8 I both
XS7 1.02 14.5 ? ? 14.2 ? incising incising
XS8 1.05 42 2.2 ? 40.0 ? I left
XS9 0.845 20 ? ? 23.6686 ?

XS10 1.71 42 1.8 ? 24.6 ? I right
XS13/C8 1.3 15.8 2.15 17.6 I
XS14 1.585 80 2 90 50.5 45.0 I both
XS15/C9 0.96 12 2 31.5 No
XS17 1.555 35 2.23 50 22.5 22.4 I both
XS18/C10 1.06 22.8 1.8 34 No
XS20 1.66 50 2.32 54.5 30.1 23.5 I both
C21 0.7 14.75 2.3 47.4 I
XS21/C11 0.88 10.8 2.28 25.2 I
XS22 1.22 41 1.765 ? 33.6 ? I left
XS26 ? ? 2.2 16 ? ? I right
XS27 ? ? 2.5 12 ? ? I right
XS28/C13 0.59 21.8 1.79 25.9 No
XS35/C17 0.6 62 1.8 89.62 I

XS38 1.42 55 ? ? 38.7 ?
INCISING-
CUTBANK both

XS39/C19 0.4 27.5 1.47 51.13 No
XS40 0.88 112 2.135 116 127.3 54.3 I both
XS41/C20 1.2 39.2 1.95 81 No
XS42 1.12 22 2.395 62 I both
XS43 1.425 96 ? ? 67.4 ? incising? both?
XS45/C22 0.5 24 1.25 95 No

XS46 1.5 78 2.255 ? 52.0 ? I
right/both
?

XS47 1.575 52 2.63 ? 33.0 ? I right
XS48 1.255 10 2.465 44.5 8.0 18.1 I both
XS49 1.675 30 5 ? 17.9 ? I left
XS50/C23 0.7 17.3 6.1 26.5
XS51 0.85 46 ? ? 54.1 ? ?
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code

bankfull 
depth (m)
used lowest 
bank height

bankfull 
width (m)

incision 
depth (m)
from lowest 
bank where 
two incision 
banks 
present

incision 
width (m)

bankfull
w/d

incision
w/d I = incised

incision
side

XS52 I right
XS52A/C2
5 1.55 55 4.81 95 I
XS53 2.23 49 3.64 110 I
XS56 1.495 15 2.29 59 10.0 25.8 I both

XS57 1.45 45.5 2.38 ? 31.4 I
right/both
?

XS58 1.555 48 1.85 51 30.9 27.6 I both

XS59 1.075 19 2.19 ? 17.7 ? I
right/both
?

XS61 1.7 60 2.08 100 35.3 48.1 I both
XS65 1.38 51 1.8 ? 37.0 ? I left/both?
XS66 1.235 57 ? ? 46.2 ? no?
XS68 1.525 58 ? ? 38.0 ? incising left
XS69/C30 0.93 21.2 1.85 55.5 No
XS70 1 24.5 2.345 35 24.5 14.9 I both
XS71 1.2 31 2.3 ? 25.8 I
XS72 1.645 33 3.015 ? 20.1 ? I left
XS73/C31 0.73 25 2.5 55.8 I
XS74 1.72 48 2.19 49 27.9 22.4 I both

XS76 1.73 47 2.3 ? 27.2 ? I
rigth/both
?

XS77 1.98 11 3.565 ? 5.6 ? I left/both?
XS78 1.545 33 ? ? 21.4 ? ?

XS82 1.73 42 2.035 ? 24.3 ? I
rigth/both
?

XS84 1.1 87 ? ? 79.1 ? no?
XS85 ? ? 2.035 59 ? 29.0 I both
XS86 1.395 47 1.91 ? 33.7 ? I left/both?
XS88 1.49 85 1.865 ? 57.0 ? I left/both?
XS89 1.295 62 1.4 87 47.9 62.1 I both
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CHAPTER 5: DRIVERS OF RECENT CHANNEL DYNAMICS AND GEOMORPHOLOGICAL 
SENSITIVITY

5.1 Introduction

For catchment management purposes it is often difficult to pin-down the cause of a 

particular river geomorphological response since: 1) a river response may persist long after 

an initial disturbance and may therefore be confused with recent channel response 

(Brunsden 2001; James and Lecce 2013); 2) rivers may experience sudden geomorphological 

change in the absence of extreme external events that force change, due to long-term (>102 

years) adjustment and internal thresholds that are breached as the system evolves 

(Schumm 1973, Schumm 1979; Church 2002; Van De Wiel and Coulthard 2010); 3) the effect 

of disturbances at the local scale are influenced by landscape or catchment-scale long-term 

adjustment phases that either synergies or counteract processes at the local-scale (Phillips 

1999; Ryan et al. 2007; Downs et al. 2013). For gravel-bed rivers, the return interval 

between phases of degradation and aggradation may be determined by degree of coarse 

sediment connectivity (Harvey 1997; Bravard 2010), which may be influenced by the 

interplay of floods and human land-use activities with internal geomorphological structure 

and thresholds.

The impact of European settlement on fluvial process and form has been widely studied 

across a range of river environments with a wealth of evidence for human induced channel 

degradation, planform change and hillslope gullying. Much of the research focus has been at 

the impacts of human land-use on channel-floodplain form in Mediterranean, British, North 

American and Australian River systems (Simon and Hupp 1987; Brooks and Brierley 1997; 

Simon and Rinaldi 2000; Surian and Rinaldi 2003; Simon and Rinaldi 2006; Hoyle et al. 2008). 

Channel incision and widening or narrowing along a trunk stream is a common response 

observed in these systems. Common land-use activities that induce the aforementioned 

channel morphodynamics include gravel-mining, stream flow channelization and dams 

(Simon 1992; Landon et al. 1998; Simon and Rinaldi 2000; Surian and Rinaldi 2003; Wishart 

et al. 2008; Zawiejska and Wyzga 2010; Comiti et al. 2011; Draut et al. 2011; Ziliani and 

Surian 2012), and removal of vegetation or afforestation within the surrounding catchment 

(Prosser and Slade 1994; Beguerfa et al. 2006; Hooke 2006; Garcla-Ruiz et al. 2010).
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Not many fluvial studies have investigated human and/or flooding impacts on channel 

behaviour within the context of sediment connectivity and river sensitivity. However there 

is growing interest in the investigation of the role of sediment connectivity in determining 

river sensitivity to human and climatic disturbances (Brierley et al. 1999; Harvey 2002a; 

Hooke 2003; Hooke 2006; Vanacker et al. 2005; Fryirs et al. 2007b; Callow and Smettem 

2009; Chiverrell et al. 2009; Fryirs et al. 2009; Downs et al. 2013). Many of these studies 

have demonstrated how human land-use activities modify water and sediment connectivity 

and channel geometry (slope, width and depth), thereby altering fluvial energy by disturbing 

sediment supply relative to transport capacity. This disturbance often results in channel 

adjustment and instability. In most cases, human land-use activities increase water and 

sediment connectivity, making rivers increasingly sensitive to geomorphological change 

induced by flood events (Hoyle et al. 2008; Bravard 2010). However, in some cases human 

activities may not be the primary control on the initiation and pattern of degradation in 

catchments that have been occupied since European settlement (Rowntree et al. 2004).

The timing and nature of channel response to perturbations can be highly variable (Fryirs et 

al. 2009), depending on the internal sensitivity of different river reaches to change and the 

nature and magnitude of perturbations (Schumm 2005; Harvey 2007b; Hoyle et al. 2008; 

Fryirs et al. 2009; Downs et al. 2013). Several studies have indicated the resilience of rivers 

to human impacts such as little net channel morphological change (Brooks et al. 2003; 

Wishart et al. 2008) and long-time lags (several decades) between the onset of human 

activities and channel response (Fryirs et al. 2009; Kemp et al. 2015). This internal resilience 

is a result of the low degree of water and sediment connectivity (Brunsden and Thornes 

1979; Brunsden 2001; Thomas 2001; Harvey 2007b), and a relatively low geomorphological 

propensity of different channel reaches to degradation- which is determined by the 

interplay between valley width, channel geometry (width and depth), closeness to slope 

thresholds and degree of channel boundary resistance (Brooks et al. 2003; Simon and 

Rinaldi 2006; Beechie et al. 2008; Fryirs et al. 2009; Zawiejska and Wyzga 2010). Fryirs et al. 

(2009) discuss controls on the variability of river sensitivity for the Hunter catchment in 

Australia, indicating that antecedent controls such as valley confinement and the nature of 

floodplain alluvium combined with patterns of water and sediment connectivity were strong
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controls on the relative sensitivity of different parts of the stream channel to morphological 

change.

Several studies in South Africa have investigated the impacts of human land-use and rainfall 

regime on sediment connectivity and river-floodplain process and form. In the semi-arid 

interior of South Africa changes in fine sediment sources and increased catchment sediment 

yields over the last few decades have been linked to the impacts of European settlement 

and increasing frequency of one-day rain events (Keay-Bright and Boardman 2007; Keay- 

Bright and Boardman 2009; Boardman et al. 2010; Foster et al. 2012; Mighall et al. 2012). In 

these studies the development of hillslope gullies or 'badlands' has been a key determinant 

of increased sediment connectivity and sediment yield for the dryland catchments 

investigated. Grenfell et al. (2012) indicated that episodic gully formation has been common 

throughout the Holocene in the semi-arid interior of South Africa, indicating that these 

fluvial features form naturally in dryland catchments and are not always linked to poor land- 

use management. Tooth et al. (2009) linked catchment and riparian vegetation removal and 

floodplain drainage to increased avulsion rates and fluvial erosion for a large floodplain 

wetland in the humid east of South Africa.

A number of studies have indicated the control of sediment buffers and barriers such as 

flood outs, alluvial fans and resistant lithology across the course of a river, on valley-bottom 

and floodplain wetland formation (Tooth et al. 2002; Grenfell et al. 2008; Grenfell et al. 

2009a; McCarthy et al. 2011). The aforementioned studies have been important in 

highlighting the interplay between the long-term trajectory of incision in South Africa's 

rivers with local geological controls, such that wide and low-sloping valleys form along a 

river's course, reducing water and sediment connectivity, and promoting the formation of 

floodplain or valley-bottom wetlands. In South Africa there is still much room for 

investigation of the interplay between river-floodplain process, form and sensitivity to 

geomorphological change within the context of different controls on water and sediment 

connectivity. This kind of research is particularly important in dryland gravel-bed streams, 

which have not received much attention to date in South Africa and which are particularly 

sensitive to the impacts of high-magnitude flood events and human land-use activities that 

alter coarse sediment connectivity.
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Recent degradation of the Baviaanskloof River along the upper-middle reaches of the 

floodplain has altered hydrological and sedimentological connectivity, thereby impacting on 

floodplain structure and functioning. At first glance river degradation appears to be linked 

to human-related land use activities such as floodplain agriculture and river engineering. 

However, critical hydrological and geomorphological controls involving slope and stream 

power thresholds associated with feedbacks between processes of erosion and deposition 

also could have formed an important control on recent river sensitivity (Schumm 1979; 

Church 2002).

This chapter aims to investigate the influence of human land-use activities and flooding 

regime on coarse sediment connectivity and associated geomorphological sensitivity of the 

Baviaanskloof River and immediate surrounding catchment over the last ~60 years.

To address the above aim the objectives are to:

1) Describe trends and patterns of flood-inducing rainfall events over the last 60-80 

years for the study reach, using local daily rainfall data supported by landowner oral 

accounts of the relationship between rainfall magnitude-duration and the 

occurrence of floods of different sizes;

2) Describe the timing, nature and pattern of land-use and land-cover changes, as well 

as channel-floodplain engineering, for the study reach over the last 80-100 years 

using historic aerial photography and oral histories provided by local landowners.

The influence human land-use activities and flood-inducing rainfall events will be discussed 

using the information developed from the above two objectives, in relation to coarse 

sediment connectivity and geomorphological sensitivity.

5.2 Methods

5.2.1 Flood events and coarse sediment connectivity

The hydrological regime strongly controls sediment connectivity and thus the aim was to 

identify the pattern and timing of flow events that initiate bed load sediment transfer 

(connectivity). Given that there is no long term gauged flow data for the Baviaanskloof, a 

variety of information sources were used to broadly describe hydrological regime for the 

study reach, including:
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1) Various published and unpublished conservation management and research reports 

relating to the hydrology and climate of the Baviaanskoof and the downstream 

Gamtoos River Valley.

2) Oral accounts of short (seasonal to inter-annual) and long-term (several years to 

decades) rainfall and oral histories of flooding characteristics provided by 10 

landowners who had lived in the catchment for more than 10 years, and a former 

ecological manager of the area.

3) Personal observations of flow regime and characteristics of flood events during the 

4-year period of field visits.

The main questions relating to hydrological regime, posed to the respondents (n=11) 

interviewed in the study were:

1) "Can you remember big floods or drought years?"

2) "How much rain needs to fall and for how long, in order to result in a flood event or 

high (near-bankfull) flows?"

3) "How much rainfall is required for tributary streams to flow and reach the river?"

4) "How long does it take the river to rise after a flood-inducing rainfall event and for 

how long does the river flow?"

5) "How long does it take the river flow to drop to below bankfull following a flood 

flow"?

6) "Does water always flow in the tributary streams and along the main river?"

Patterns and trends in small to moderate and large flood events over the last approximately 

60 years were inferred from information obtained through oral histories and other 

secondary data sources. Small to moderate floods were grouped into one category as it was 

difficult to distinguish between the two types of events based on oral histories, given the 

highly variable nature of the local climate and the timing of flood-inducing rain events. It 

was assumed, however, that small to moderate floods occur more frequently than 1 in 10 

years, since it was reported in a study by van der Burg (2008), that floods occur every few 

years with larger events every approximately 10 years. Large floods were classed as those 

events that cause widespread flooding of the valley floor and damage to infrastructure (e.g. 

roads, furrows, buildings), but recede relatively quickly (within a few weeks). Extreme floods
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were defined as those events that occur approximately every 50 to 100 years and result in 

flooding of the entire valley floor.

The data obtained from oral histories and other secondary sources was used to devise 

categories of flood-inducing rainfall for relatively dry versus wet antecedent climatic 

conditions. Dry antecedent conditions were defined as a preceding year or several years 

that were below the calculated average annual rainfall. Alternatively, wet antecedent 

conditions were defined as preceding years with above average annual rainfall. The 

information was used to plot and analyze trends in flood-inducing rainfall events over the 

last 60 years using two rainfall stations: 'Matjies' situated along the upper-reaches of the 

catchment about 8 km upstream of the study reach; and rainfall station 'Bavlulet' situated 

along the middle of the study reach. Rainfall station 'Matjies' was analyzed for the period 

1950-2000 (when the data terminated) and rainfall station 'Bavlulet' was analyzed for the 

period 1950-2012.

Although the interviews with local people provided sufficient information to analyze rainfall 

data for the timing of flood events, the analysis only provided an approximation of flooding 

patterns and trends. There are several reasons for this:

1) It was difficult to capture the effects of rainfall intensity on flooding initiation. For 

example if rain is soft then a relatively long rainfall duration is required to induce a 

flood event and the amount required to induce flooding will vary according to 

antecedent conditions. Alternatively, if rainfall is hard much less rain falling over a 

short period would potentially induce a flood if antecedent conditions had been 

relatively wet. The rainfall data only provided daily event resolution making it 

difficult to determine the influence of rainfall magnitude-duration on flood event 

occurrence.

2) The influence of spatial variations in rainfall on the occurrence of floods could also 

not be captured from the rain data. The rainfall stations analysed were situated on 

the valley floor and thus did not account for flood-inducing snow and rain events 

that occur on mountain peaks surrounding the floodplain.

The rainfall dataset of Lynch (2004) was used for the above analyses. Lynch (2004) 

developed a raster database of daily, monthly and annual rainfall for the whole of southern 

Africa for the period 1900-2001. In the study by Lynch (2004), all available climatic data
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from appropriate government organizations such as the Agricultural Research Council of 

South Africa (ARC), the South African Weather Services (SWS), and landowners' daily rainfall 

records, were combined. The data was cleaned for observed faulty values (e.g. values that 

looked unnaturally high) and missing values were filled-in using several algorithms and 

regression techniques (e.g. Geographically Weighted Regression Technique). These methods 

made use of data from closest weather stations to interpolate the missing value/s in any 

one dataset (Lynch 2004). Daily rainfall data for the study reach was also obtained from the 

ARC and SWS, however the Lynch (2004) dataset was preferred for the period 1950-2001 

since it had been carefully 'cleaned' for dubious values and therefore presented a fuller and 

more reliable dataset. Recent rainfall data obtained from the ARC for the period 2002-2012 

was added to the Lynch (2004) dataset to provide a full record of rainfall for the study reach. 

Missing values in the ARC rainfall records were patched and obtained with permission from 

Glenday (2015). Glenday (2015) patched the data by working out a rainfall difference ratio 

between the two spatially closest stations during periods when both stations had data, and 

using the ratio to calculate an estimation of rainfall for a station that had missing data (J 

Glenday, pers. comm., November 2014).

A minor pebble tracing experiment was conducted to investigate coarse sediment 

movement during a small flood event that occurred in the field work period. Thirty pebble

sized stones were painted with yellow road paint and deployed at a riffle section at the 

middle of the study reach, during the peak of the small flood event. Only six pebbles were 

retrieved, one of which was lost between transport and storage at Rhodes University. The 

distance of transport of each of the pebbles was measured along the thalweg of the river 

channel, from the deployment site to the point of retrieval of the particular pebble. The bed 

feature on which a pebble was retrieved was noted. The size (length and breadth) of each 

pebble was measured following field work, in the laboratory.

5.2.2 Describing the nature and timing of human land-use impacts

The nature, pattern and timing of human land-use activities over the last 80-100 years for 

the study reach were described using information from interviews with 10 local landowners 

and a former catchment manager; from available documentation (e.g. conservation plans, 

research reports); and from visual analysis of digitized versions of 1: 50 000 topographic 

maps of the study area. This exercise included describing changes in types and intensities of
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agricultural activities, veld management (burning regimes) and river-floodplain engineering 

activities. River-floodplain engineering interventions were mapped in the field by recording 

the location of earthen berms, floodplain drains, and any other human-made features that 

were encountered during surveys and walks through the floodplain. This exercise was not 

systematic or intensive, mainly due to time constraints, and because digitized features were 

available from CD-NGI GIS shapefiles. There were, however, no shape files available for 

earthen berms and it was difficult to visibly distinguish these features on the aerial 

photography as they are a similar visual tone to that of the surrounding floodplain. Mapping 

changes in relative abundances of berms through time was therefore not possible. The 

results therefore underestimated the actual abundance of earthen berms throughout the 

floodplain but provided an idea of their relative influence on flood flows.

The above human land-use activities were related to the nature and timing of changes in 

channel planform and sediment connectivity, including tributary-trunk and hillslope-channel 

connectivity, in recent years. Rectified aerial imagery for the study reach was analyzed to 

identify the nature and timing of channel morphological changes, and changes in degree of 

connectivity of tributaries with the trunk stream. In the latter regard, tributaries were 

defined either as connected, if the tributary stream visually joined the trunk channel, or 

disconnected if the tributary stream did not reach the trunk channel.

The results of the above two activities were integrated and evaluated within the present 

literature on fluvial geomorphology and connectivity in relation to river sensitivity and 

dynamics. A conceptual model indicating the role of flood magnitude-frequency and human 

land-use activities in influencing coarse sediment connectivity and relative channel stability 

along the study reach was developed.

5.3 Results

5.3.1 Human influences on catchment and river-floodplain structure and sediment 
connectivity

Land management and land-cover changes
Table 5.1 summarizes the nature and timing of important land-use and land management 

changes that have influenced the vegetation structure and cover along the upper-middle 

reaches of the Baviaanskloof catchment since early European settlement. Major changes in
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land-use have included cultivation of the floodplain, a major shift towards pastoral farming 

and associated overstocking of goats and sheep along the valley, and changes in burning 

frequencies on mountain tops. All of the aforementioned activities have visibly and 

reportedly influenced the structure and cover of hillslope, mountain top and floodplain 

vegetation.

Vegetation cover on hillslopes diminished from a natural canopy cover of -70% (Mills et al. 

2005) prior to overstocking with goats and sheep, to an average canopy cover of <30% 

throughout the study reach, with most severe reductions in canopy cover on the foothills of 

the southern side of the valley (Draaijer 2010). Although stocking densities were not 

obtained by the author during literature search, overstocking was reported to have 

occurred in the catchment between the 1940s and 1990s, by various local landowners. 

Towards the early 1990s stocking densities were reportedly reduced and many agricultural 

fields were abandoned due to a decreased demand for wool, mohair and cash crops (ECPB 

2007). Reduced agriculture over the last couple of decades (Knight 2012) together with 

small-scale ecological rehabilitation interventions from the early 2000s onwards has 

resulted in observed and reported minor improvements in vegetation cover in localized 

areas of hillslopes and the floodplain.

The timing of land cover changes described above often coincided with the formation of 

several hillslope gully systems on the southern side of the valley. Analysis of aerial imagery 

suggests that the gullies were shallow, discontinuous hillslope channels during the 1960s, 

when stocking and browsing of hillslope vegetation was already high. By 1986 these minor 

hillslope channels had expanded into relatively wide and deep gully networks, coinciding 

with the timing of intensive stocking of the valley with Angora goats due to the boom in the 

Mohair market. Between 1986 and 2009 the morphology of the gullies appears to have 

remained relatively stable. The gullies today exist as deeply entrenched features of the 

landscape, but appear to be relatively stable as indicated by vegetation growth on the gully 

be and on gently sloping banks (Plate 5.1).
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Table 5.1: Land-use and land management changes reported to have considerably altered the structure of the 
river and floodplain along the upper-middle reaches (J Buckle, pers. comm., August 2013).

Timing Description Reported or observed impacts

1920s Major production of vegetable seed on the 
floodplain.

Decreased woody vegetation cover in riparian zone.

1933-44 Removal of vast stands of the alien plant, 
Opuntia ('Prickly pear') along upper-middle 
reaches of catchment.

Decreased hillslope vegetation cover.

1960s Occurrence of an underground peat fire. Destruction of organic sediment and conversion to 
ash.

1966 - 
1988

Boom in the Angora goat-Mohair wool industry. Major decrease in woody vegetation cover on 
hillslopes, particularly on the southern side of the 
river valley.

1982
1986

Intensive stream flow channelization and 
introduction of center pivot irrigation.

Channelization of trunk and tributary stream flow; 
increased water use from floodplain aquifer and 
tributary springs.

1987
1990

Removal of small stands of the alien plant 
Oleander from the floodplain.

Slight decrease in presence of woody trees within the 
riparian zone.

1988 Change in mountain veld burning policy by the 
local statutory agency- return to natural 
burning regime.

Improved grass and shrub land vegetation cover on 
mountain tops and upper-slopes.

1991 Localized removal of channelizing berms along 
tributary and trunk channel;
Reduction in stocking densities;
Some abandonment of cultivated areas.

Slight improvement in floodplain and 
alluvial fan infiltration;
Reduced water abstraction;
Gradual improvement in woody and herbaceous 
vegetation cover on hillslopes.
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Plate 5.1: An example of a deeply entrenched, relatively stable hillslope gully located on the southern foothills 
of the study reach.

Channel and floodplain engineering

Human engineering of stream flows and floodplain hydrology has been extensive 

throughout the study reach. Activities have included channelization, diversion of stream 

flows and construction of an artificial drainage network throughout the floodplain (Figure 

5.1a and b). The method used by local landowners to channelize stream flows has largely 

been through the construction of earthen berms, which take the form of high boulder- 

cobble levees on either side of the trunk or a tributary stream (Plate 5.2). These earthen 

berms are usually built using gravel extracted from the adjacent trunk or tributary stream 

bed, thereby deepening the bed. The berms are commonly built within 50 m of the active 

channel bank so as to confine overbank flows to the channel, increasing the power of flood 

flows. Stream flow diversions have also been effected by the erection of earthen berms 

across the course of a tributary to divert flow either away or toward the trunk stream. The 

extensive drainage network throughout the floodplain was built to transfer water to 

cultivated areas for irrigation purposes, and to drain wetland areas that were too wet for 

agriculture. Analysis of aerial imagery indicated that this drainage system kept much the 

same pattern and network density between 1960 and 2009.
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The arrows in Figures 5.1a and b indicate the inferred influence of drains and stream flow 

channelization (earthen berms and diversions) on the degree of tributary-trunk and 

upstream-downstream water and sediment connectivity. It is assumed that where an 

increase in upstream-downstream connectivity has occurred due to the presence of 

channelizing features, an associated decrease in lateral connectivity has occurred. For 

example, where earthen berms flank the trunk channel an increase in upstream- 

downstream connectivity would be effected, at the same time decreasing connectivity 

between the trunk and surrounding floodplain. It is clear from Figure 5.1a and b that human 

interventions, particularly channelizing features, have substantially increased tributary- 

trunk and upstream-downstream connectivity for all sub-reaches of the study reach. 

Channelization of the distal reaches of tributary streams has been common throughout the 

study reach ('modified tributary channel', Figure 5.1a), effecting an overall increase in 

tributary-trunk connectivity and an associated decrease in connectivity between a tributary 

stream and alluvial fan. These effects are indicated for example for tributaries K1, K5, K7 

(Figure 5.1a) and tributaries K8, K12, B12, B19 (Figure 5.1b). In some cases localized 

infiltration into an alluvial fan surface has been diminished through channelizing features 

that divert tributary stream flow into a drain, which then transfers the water down-valley 

(B5, B11, Figure 5.1a; B15, B17, B18, Figure 5.1b).
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Figure 5.1: Human river-floodplain interventions and associated influence on tributary-trunk and upstream-downstream connectivity for the upper-middle reaches of the 
study reach (a), and the middle-lower reaches of the study reach (b). The arrows indicate an increase in water and sediment connectivity in the upstream-downstream and 
tributary-trunk dimensions.

127



Plate 5.2: Examples of earthen berms, indicated by the arrows, that are common throughout the study reach.

Interviews with local landowners indicated that stream channel and floodplain engineering 

interventions were most intensively employed during the early 1980s when the South 

African government subsidized local farmers to increase agricultural productivity (P Kruger, 

pers. comm., 2012). This was also the period in which greatest channel widening and 

deepening occurred along the study reach as indicated by historical aerial imagery, and as 

reported by local farmers. It was reported that the rapid nature of morphological change 

during this period was encouraged by the occurrence of a flood event in 1984, during which 

several earthen berms were washed away. This event caused the channel to widen 

considerably during the early to mid-1980s. The berms destroyed by the flood were 

subsequently re-built.

Severe degradation noted along the middle of the study reach may be incidental with 

relatively high levels of channelization that occurred along this reach from the early 1970s 

onwards. Enhanced storm discharges along this reach would have been compounded by the 

effect of two major tributaries that became connected to the trunk from opposite sides of 

the valley in the early 1970s (Chapter 4, Figure 4.6), in the region where deep channel 

erosion and substantial widening has taken place. These findings demonstrate the
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importance of increased tributary connectivity and stream flow channelization in enhancing 

the erosional power of the trunk channel and hence the sensitivity of the river-floodplain to 

erosion during flood events.

The presence of an extensive artificial drainage system throughout the floodplain together 

with degradation of the trunk channel and tributary streams, as indicated in Chapter 4, has 

reduced flooding attenuation and river base flows. Desiccation and eventual loss of 

floodplain wetland was reported in the early 1980s when the trunk channel began to rapidly 

deepen. These observations suggest that degradation along the trunk formed a major drain 

directing local groundwater and flood flows away from the floodplain, which would have 

been enhanced by human drainage of the floodplain. The entrenchment of many of the 

alluvial fans which followed trunk channel degradation would have reduced water retention 

within alluvial fan aquifers, further reducing groundwater levels. These impacts translated 

to reduced river base flows since flood flows were no longer effectively attenuated by the 

floodplain and alluvial fans.

There are relatively few human-made features that have decreased water and sediment 

connectivity along the study reach. Numerous small farm dams have been built, mostly in 

gullies on the southern side of the valley ('Dam or reservoir', Figure 5.2). An erosion wall 

was also built across the lower-reaches of several gully catchments on foothills of the 

southern side of the valley, presumably to control erosion and sedimentation of agricultural 

fields on the valley floor. Most of the dams visible in the 2009 imagery were also visible in 

the 1960 aerial imagery with only minor increases in the abundance of small dams over the 

period. The erosion control wall shown in Figure 5.2 first appeared in the 1986 aerial 

imagery. These dis-connectivity features would have locally reduced hillslope-channel 

sediment and water connectivity, but would have had no major effect on decreasing 

hillslope erosion and coarse sediment connectivity along the study reach.
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.......... Erosion control wall

Figure 5.2: The distribution of artificial impoundments and an erosion wall that have decreased hillslope- 
tributary (and gully) and hillslope-valley floor connectivity.

Figure 5.3 indicates some of the major changes in trunk channel planform and tributary- 

trunk connectivity in relation to human engineering along the middle of the study reach 

where most severe channel-floodplain degradation was observed during field surveys. In 

1960 the trunk channel and the two large tributary channels indicated at '2' and '4' in Figure

5.3 were narrow and poorly defined. By 1972 the trunk channel, indicated at '1', '3', and '5', 

as well as tributary streams indicated at '2' and '4', had widened considerably and the two 

tributaries became well-connected to the trunk. At the same time the trunk channel 

downstream of '3' and '5' evolved from a multi-thread to single-thread channel. Both of 

these reductions in channel bifurcation and the observed increase in tributary-trunk 

connectivity were a result of human interventions. For example, at location '3' the channel 

anabranch was infilled with coarse rubble and sand to allow for cultivation on the 

floodplain, as indicated from interviews with a local farmer. Thus flow was concentrated 

within the northern channel anabranch. Both tributaries were channelized using earthen
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berms to reduce flooding damage to the surrounding cultivated land, thereby increasing the 

connectivity of these streams to the trunk channel. In 1986 the trunk and the two large 

tributaries had visibly widened more than previous years, but by 2009 the trunk channel 

along with the two tributaries had visibly contracted.

The increases in tributary-trunk connectivity indicated above were not isolated to the 

middle of the study reach, but were common throughout the study reach. Analysis of aerial 

imagery indicated that tributary-trunk connectivity increased between 1960 and 2009. Out 

of 33 tributaries in the study reach, 14 were visibly connected in 1960, 21 were connected in 

1986 and 17 were connected in 2009.

It is notable that at point '5' on Figure 5.3 in the 1960 image, the trunk channel abruptly 

switches from a relatively confined braided channel where it flows between two confining 

tributary fans entering the floodplain from either side of the valley at location '4', to several 

narrow channel anabranches that are dispersed across the floodplain as the trunk exits the 

confining zone. These anabranches flood-out shortly downstream of '5'. This zone of flow 

dispersion and flood-out is the area in which the peaty and organic rich wetland sediments 

were encountered in erosion banks along the study reach and the area described by local 

landowners as being the 'wettest' part of the valley floor in the recent history of the 

floodplain, previously containing permanent floodplain wetlands and springs. The flood-out 

zone was therefore an important control on the existence of these permanent wetlands and 

floodplain springs.
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Figure 5.3: Sequential changes in channel planform and connectivity along the most notably degraded reach of the study reach. The photos are arranged in chronological 
order from 1960 to 2009. Specific locations of channel form change are indicated by the arrows and numbers for comparison between different years. Trunk channel flow 
direction is from north-west to south-east.
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5.3.2 Flooding regime and coarse sediment connectivity

Climate and rainfall characteristics associated with small to moderate floods
Interviews with local farmers indicated that there are considerable differences in rainfall 

amount and intensity between upper- and lower-reaches of the catchment and between 

the mountain ranges on the northern and southern side of the river valley. Local landowners 

situated in the upper-reaches of the catchment reported to receive between 10 and 20 mm 

more rainfall during a single storm event than landowners situated approximately 20 km 

down-valley, along the lower-reaches of the study reach. Local farmers also reported that in 

general, the mountains on the southern side of the river valley (Kouga Mountains) receive 

higher single-event rainfall occurrences than the mountains on the northern side of the 

valley (Baviaanskloof Mountains).

Local landowner accounts of rainfall characteristics associated with small to moderate flood 

events along the study reach are presented in Table 5.2. Antecedent weather conditions are 

an important control on whether a flood event is initiated both upstream of and along the 

study reach. Local landowners noted that bankfull events usually occur when a relatively 

large rainfall or snow event is preceded by several months or weeks of relatively high 

rainfall, and that antecedent periods of high rainfall result in larger floods and longer 

sustained river flow for a given rainfall event size (P Kruger, pers. comm., November 2014). 

Similar rainfall and antecedent weather conditions are required to induce a small to 

moderate flood upstream of the study reach (Table 5.2, 'Upper-reaches') and along the 

study reach (Table 5.2, 'Middle-reaches'). However, the study reach requires a higher depth 

of rain on a single day for a small to moderate flood to occur, than the upper reaches. If 

antecedent conditions have been relatively wet then between 20 and 50 mm of hard rain 

falling over a few minutes or hours is necessary to induce a small to moderate flood. For 

antecedent dry conditions, greater than 50 or 60 mm of rain falling over several days to a 

couple of weeks is necessary for flooding along the upper- and middle-reaches respectively. 

The above flood-inducing rainfall and antecedent weather characteristics were confirmed 

during field observation of a moderate flood event that occurred in 2012. During the latter 

event approximately 61 mm of a total of 68 mm of rain fell over a few hours. Antecedent 

conditions for this event were wet and flooding along non-degraded reaches occurred 

within a few tens of meters from the trunk channel.
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Table 5.2: Characteristics of rainfall required to initiate small to moderate and large flood events for different 
antecedent weather conditions and rain duration.

Rainfall
(mm)

Antecedent
conditions

Duration of rainfall event River-floodplain reach

±20-50 Relatively wet ± 30 minutes - several hours Upper-reaches

±50-100 Relatively wet - dry a few days - couple of weeks Upper-reaches

±30 -50 Relatively wet a few hours Middle-reaches (study reach)

±60-125 Relatively dry a few hours to weeks Middle-reaches (study reach)

Using the information presented in Table 5.2, various flood-inducing rainfall parameters 

were devised for antecedent wet and dry conditions for both the upper- and middle-reaches 

of the floodplain. It is suggested that rainfall events greater than 30 mm on a single day 

would induce a small to moderate flood for periods with antecedent wet conditions, and 

that single events of greater than 50 mm, for the upper-reaches, or 60 mm for the middle- 

reaches of the floodplain, would induce a flood during periods with antecedent dry 

conditions. For several day rainfall events, greater than 100 mm and 120 mm of rainfall is 

required for flooding along the upper- and middle-reaches of the floodplain respectively. In 

addition, a small to moderate flood was suggested to occur during antecedent dry periods if 

a relatively large rainfall event (>70 or 80 mm) was preceded by several events of greater 

than 50 mm rainfall depth.

Rainfall characteristics necessary for inducing large flood events were inferred by analyzing 

rainfall data for years in which exceptional flood events were reported by local landowners. 

A large flood event was defined by landowners as inducing extensive flooding (more than 50 

m on either side of the trunk channel along non-degraded reaches) and damage to 

floodplain infrastructure and cultivated lands. Large events were recounted for the 

Baviaanskloof in 1971, 1972, 1976, 1981, 1996, 2006, 2007, and 2009. However, some of 

these 'large flood' years did not match years in which one or more exceptionally high rainfall 

events (>120 mm) occurred. The discrepancy between large flood years reported by local 

landowners and the rainfall data may be a result of poor memory or the subjective nature of 

personal accounts of floods.

134



Despite this mismatch there were several large flood years with exceptionally high- 

magnitude rainfall events within the rainfall record. These events were characterised as 

follows:

1) For years with antecedent wet conditions: two or more moderate sized rainfall 

events (>50 mm) followed by a large event of >130 mm, or a large event of >130 mm 

followed by two or more events of >50 mm.;

2) For years with antecedent dry conditions: two or more events of >70 mm followed 

by a large event of >130 mm;

3) Or, a very large event of >200 mm of rain falling over approximately 1 month for a 

year preceeded by wet weather conditions.

The above conditions provided the criteria for documenting the timing of large flood events 

between 1950 and 2000/2012 for rainfall stations 'Matjies' and 'Bavlulet', occurring 

upstream of the study reach, and in the middle of the study reach respectively.

Flood-inducing rainfall frequencies

Using the rainfall criteria presented above, the frequency of small to moderate flood- 

inducing rainfall events was plotted for the upper- and middle-reaches of the Baviaanskloof 

floodplain (Figure 5.4). The analysis indicated that small to moderate flood-inducing rainfall 

events occur at most every year to two years and at least once in every 10 years. The annual 

to biannual events are defined in this study as small floods, whereas events occurring every 

approximately five to ten years are reportedly larger than annual events and are thus 

defined as a moderate flood. According to Figure 5.4, the frequency of small to moderate 

flood-inducing rainfall events varied between the upper- and middle-reaches of the 

floodplain over the period of analysis. There is no indication of an increasing or decreasing 

trend in the frequency of small to moderate floods rather, but flood frequencies vary in a 

cyclic manner. These flood cycles are characterized by alternating phases of relatively high 

flood frequency and phases of relatively low flood frequency. Rainfall station 'Matjies' in the 

upper-reaches experienced 54 small to moderate flood-inducing rainfall events between 

1950 and 2000 whereas the study reach ('Bavlulet') only experienced 31 events of this 

magnitude over the same period of time. The timing (month and year) and magnitude of 

most of the flood-inducing rainfall events were similar between the two rainfall stations. 

However, 14% of years between 1950 and 2000 produced flood-inducing rainfall events that
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were isolated to one of either of the rainfall stations, reflecting the spatially variable nature 

of rainfall along the river valley. The data in Figure 5.4 thus underestimates the number of 

floods experienced along the study reach since a flood initiated along the upper-reaches of 

the floodplain is often transmitted down-valley to the study reach.

Figure 5.4: Frequencies of small to moderate flood-inducing rainfall events plotted at 5-year intervals for 
rainfall stations 'Matjies' and 'Bavlulet', situated in the upper- and middle-reaches of the Baviaanskloof 
floodplain respectively.

Approximately a third of local landowners interviewed reported a general increase in the 

frequency of what they considered 'high intensity' rain events over the last decade or more 

(from about 2004 to 2013). Rainfall station 'Bavlulet' indicated an increasing frequency of 

one-day rainfall events >20 mm in magnitude from 1990 to 2009, when the data was 

plotted at 10-year intervals ('Middle-reaches', Figure 5.5). Rainfall station 'Matjies' along the 

upper-reaches of the floodplain did not indicate an increase in frequency of one-day rainfall 

events >20 mm in magnitude, between 1990 and 1999, although this may be due to the fact 

that the rainfall record ceases at the station after 1999 ('no data', Figure 5.5).
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Figure 5.5: Frequency of >20 mm one-day rainfall events recorded for rainfall stations situated along the upper 
('Matjies) and middle ('Bavlulet') reaches of the Baviaanskloof floodplain.

Overall, the results indicate that the upper-reaches of the floodplain experienced a higher 

number of one-day flood-inducing rainfall events than the study reach (middle-reaches), 

whereas the study reach experienced a higher frequency of one-day events >20 mm, over 

the period of analysis.

Using the rain duration and climate criteria for defining a large flood, a total of seven large- 

flood-inducing rainfall events were recorded for the two rainfall stations combined between 

1950 and 2000/2012 (Table 5.3). Rainfall station 'Matjies' indicated five of the total of seven 

large flood-inducing rain events. The timing and duration of the rainfall events was variable 

as some events were relatively short and intense with between 140 and 160 mm of rain 

falling over one to one-and-half weeks. Other events were characterised by a high amount 

of rain falling almost continuously over several weeks. The occurrence of large floods 

appears highly variable with events occurring as frequently as once in every 3-5 years or 

once in 19-20 years. Both stations indicate a large flood-inducing rainfall event in 1974, 

indicating widespread rain and flooding throughout the river valley. The timing of this large 

flood corresponds with reports of major floods throughout the Eastern Cape in 1974 (eWISA 

2016).
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Table 5.3: The timing and magnitude of large-flood inducing rainfall events recorded for rainfall stations 
'Matjies and 'Bavlulet' between 1950 and 2000/2012.

Year Rainfall (mm) Duration (days)

Upper-reaches ('Matjies')

1955 143 20

1974 160 7

1977 137 6

1986 148 9

1996 207 28

Middle-reaches ('Bavlulet')

1954 186 19

1974 140 15

Implications for coarse sediment movement

Moderate and large flood events are powerful enough to induce transport of considerable 

amounts of coarse sediment along the bed of tributary streams and the trunk channel. Bed 

load transport during flood events in the Baviaanskloof, is accompanied by a loud 'rumbling' 

sound as cobbles and boulders collide with one another. During the waning phase of floods, 

bed load sediments are deposited and temporarily stored in various landforms including, 

tributary junction fans, channel flood-outs or debris cones; lateral, medial and point bars, 

and riffle zones. Debris cones, cobble bars and riffle zones, are commonly encountered at 

the junction or shortly downstream of the junction of a tributary with the trunk stream, 

indicating coarse sediment connectivity between tributaries that join the trunk channel. The 

morphology of channel bed depositional features is readily altered during moderate (1 in 3

5 year frequency) or large flood events (1 in 10 year frequency or less), such that these 

depositional features form temporary sediment stores.

138



The degraded nature of tributaries and the trunk channel means that coarse sediment is 

transferred as 'waves' through the study reach during flood events. The episodic nature of 

coarse sediment connectivity means that trunk channel adjustment is episodic and occurs 

during flood events when water and sediment connectivity is high, but is reduced to a 

minimum during base-flow periods. Coarse sediment connectivity is thus temporally and 

spatially variable inducing a variable array of erosional and depositional landforms, trunk 

channel morphology, and process. These include for example pool-riffle sequences every 

few 10s of meters along the channel, medial and lateral channel bars every few 100 m, and 

sedimentation and erosion zones identified from the longitudinal profile of the river every 

few 1000 m. The results of the minor pebble tracing experiment indicated that cobble-sized 

bedload particles can move as much as 415 m along the channel during a small flood event 

(Table 5.4). The pebbles were of variable size, with the smallest pebbles being transported 

furtherest ('P5' and 'P6', Table 5.4). The pebbles were retrieved on the channel bed at a 

downstream riffle section and a lateral channel bar.

Table 5.4: Transport distances of pebbles of varying size class (according to the Udden-Wentworth system) 
during a small flood event in the Baviaanskloof.

Pebble
code

Distance 
transported (m)

Length and 
breadth
measurement (cm)

P3 113 8.5 x 7.4

P2 114 10.17 x 10

P1 126 11.6 x 6.2

P5 233 7 x 5.7

P6 415 6.5 x 4.5

Based on the above observations, it is suggested that coarse sediment is temporarily 

connected during flood wave sediment transport, and then stored over varying temporal 

and spatial scales along the trunk channel.
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5.4 Discussion

The results of the present analysis have indicated that episodic floods, anthropic river- 

floodplain engineering, and catchment land-cover changes, seem to have been important 

factors driving recent changes in water and sediment connectivity and relative channel 

stability of the Baviaanskloof River. Increasing hillslope-channel, tributary-trunk, and 

upstream-downstream water and sediment connectivity along the study reach since the 

1960s has increased the sensitivity of the trunk stream to flood events. As indicated in 

Chapter 4, the observed and documented channel dynamics between 1960 and 2009, 

included channel widening and deepening. The present analysis has indicated that the 

channel shifted from a relatively stable, anabranching planform to a relatively unstable, 

wide, and braided form. At the same time, the floodplain evolved from a relatively low- 

energy system with extensive wetlands to a relatively high-energy system in which wetlands 

are largely absent.

5.4.1 Interpreting drivers of recent channel dynamics and sensitivity

It is difficult to infer the relative role and synergistic interaction between human influences 

and flood events, in driving recent changes in geomorphological behavior of the 

Baviaanskloof River-floodplain. Figure 5.6 is a timeline indicating some of the major human 

influences and flood events within the catchment, together with the timing of changes in 

character and form of the river-floodplain, between 1926 and 2016. The author suggests 

that there was a succession of events and interventions that led to enhanced sensitivity and 

geomorphological change of the Baviaanskloof River and floodplain. The first event was a 

large flood which occurred in 1966 (Figure 5.6). This event appears to have coincided with 

observed widening of the trunk channel. Leading up to this large flood, were several 

decades of continued overgrazing in the catchment and engineering of the river and 

floodplain (channelization and drainage), in association with pastoral farming and 

cultivation of vegetable seeds. These human influences would have enhanced water and 

sediment connectivity and prepared a more sensitive river to the effects of the large flood. 

Following the large flood in 1966, were several other large floods occurring at roughly 10 

year intervals. These events occurred during the period of intensive hillslope overgrazing 

and river-floodplain engineering reported for the 1970s to about the early 1990s (Figure 

5.6). During this period of heightened large flood occurrence and human influences, the
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trunk channel continued to widen and become unstable. However, the river only began to 

deepen rapidly in the early 1980s, during intensive channelization of river flows. It therefore 

appears that human river-floodplain engineering and decreased hillslope vegetation cover 

prepared a more sensitive river to the effects of large floods, with each flood inducing 

further instability and channel change. Channel widening and switch to braiding was the 

first response of the trunk to the synergistic effects of large floods and human influences, 

followed by rapid channel deepening in response to enhanced storm flows resulting from 

human-induced stream flow channelization.

A more detailed discussion of the effect of each of the drivers on river-floodplain process 

and form, including large floods, decreased hillslope vegetation cover, and river-floodplain 

engineering, is discussed below.
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Figure 5.6: Timeline of documented land-use and flood events, and changes in river-floodplain geomorphological form.
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Vegetation degradation

Degradation of hillslope subtropical thicket vegetation along the study reach is suggested to 

have had a considerable impact on hillslope runoff and erosion. If hillslope-channel and 

tributary-trunk connectivity are high, then changes in runoff and erosion on hillslopes 

should translate to changes in discharge and sediment flux to the trunk channel (Fryirs et al. 

2007b; Bracken et al. 2013). There is much evidence for the initiation of channel instability 

following catchment and riparian vegetation removal that alters flow and sediment regime 

(Brooks and Brierley 1997; Simon and Rinaldi 2000, Kasai et al. 2005; Simon and Rinaldi 

2006; Vanacker et al. 2005; Hooke 2006; Hoyle et al. 2008; Garcla-Ruiz et al. 2010). The 

general consensus is that vegetation removal increases landscape sensitivity to the effects 

of high-intensity rain events, resulting in heightened storm discharges and sediment fluxes, 

and associated channel instability (Overeem et al. 2013). Studies conducted in high-energy 

mountain catchments like the Baviaanskloof have indicated that a trunk stream responds to 

vegetation removal in the wider catchment through channel incision, widening and a switch 

to channel braiding (Brooks and Brierley 1997; Hooke 2006). These impacts are clearly 

evident in the Baviaanskloof along the study reach, suggesting that human-induced removal 

and modification of catchment and riparian vegetation has had indirect impacts on river 

sensitivity to storm events.

The vegetation on the hillslopes of the study reach usually forms a dense, canopy layer 

where it is in pristine to near-pristine condition (Mills et al. 2007). The once-thick canopy 

cover has been transformed to scattered trees and shrubs on hillslopes such that most of 

the hillslope vegetation along the study reach has been classed as moderately to severely 

degraded (Euston-Brown 2006; Vlok 2010; Plate 5.3). Vegetation degradation has been 

attributed to overgrazing, largely in the form of browsing by goats and sheep. Overgrazing 

has been preferential to the southern side of the valley (north-facing slopes), partially 

because the hills are lower sloping and easily accessible by goats and sheep, and historically 

these slopes contained the highest density of the palatable thicket species, Portulacaria afra 

or 'spekboom' (Powell et al. 2011). It is suggested that most of the hillslope vegetation 

degradation in the Baviaanskloof occurred between 1960 and 1988 when stocking densities 

were highest due to a peak in the market for mohair (Angora goat) and sheep wool (J 

Buckle, pers. comm., August 2013). The vegetation cover on the left of the dotted line in
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Plate 5.3 more closely resembles vegetation cover that would have existed along the study 

reach prior to intensive overgrazing during the 1970s and 1980s.

Plate 5.3: Degraded subtropical thicket vegetation on the southern side of the valley. Different grazing 
pressures are visible on either side of the fence line indicated by the yellow dotted line (Photos by B Robb 
2012).

The loss of canopy cover on hillslopes surrounding the study reach has had a considerable 

impact on hillslope runoff and erosion (van Luijk et al. 2013). In their study, van Luijk et al. 

(2013) investigated the effect of vegetation degradation on rain splash intensity, soil 

erosion, infiltration and runoff, at two hillslope sites along the study reach, reflecting 

different levels of vegetation degradation. Van Luijk et al. (2013) measured each of the 

aforementioned variables for 23 rainfall events at a hillslope fence line separating severely 

degraded (>50% canopy cover lost) and semi-intact thicket vegetation. The results of the 

study indicated that rain splash intensity, runoff, and soil erosion were higher, while 

infiltration was lower, for the degraded vegetation site compared to the semi-intact site. 

These changes were largely due to reduced rainfall interception by a dense woody 

vegetation cover, increasing the impact intensity of rain drops at ground level. The study 

indicated that rainfall interception below the common canopy species 'spekboom' on the 

relatively intact thicket site was 115-650 times higher than on the degraded site where 

'spekboom' was absent. These findings suggest that following severe losses in canopy cover
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along the study reach, hillslope runoff and erosion would have considerably increased. The 

degree to which these effects propagate to the trunk channel as increased discharge and 

sediment delivery is dependent upon the degree of hillslope-channel and tributary-trunk 

connectivity (Harvey 2002a; Brierley et al. 2006; Fryirs et al. 2007a; Chiverrell et al. 2009). In 

the Baviaanskloof, there is evidence that high hillslope runoff and sediment erosion is easily 

transferred to the trunk channel as indicated by dark brown colour of river water during the 

initial stages of a flood event (Plate 5.4). Interviews with local landowners confirmed that 

most flood events, whether small or large, are accompanied by sediment laden water that is 

brown or black in colour (Plate 5.5). Viscous black flood waters are rare but usually 

associated with an intense storm that follows burning of fynbos vegetation on the mountain 

slopes of either the Baviaanskloof or Kouga mountains. All of the aforementioned 

observations indicate high levels of hillslope-channel and tributary-trunk sediment 

connectivity along the study reach.

Plate 5.4: Sediment laden flood waters during a small flood event in 2012 for a site situated in the middle of 
the study reach (photos by Hestelle Van Rensburg).

Plate 5.5: Charcoal and ash laden river water at the same site as Plate 5.4 during a flood event in 2009. The 
flood event occurred soon after a mountain fire (photos by Hestelle Van Rensburg).
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The development of numerous hillslope gullies and increasing tributary-trunk connectivity 

from the early 1970s onwards would have enhanced the delivery of runoff and sediment 

eroded from hillslopes to the trunk channel during storm events. Observations during flood 

events confirm that during moderate to large floods substantial amounts of coarse 

sediment is delivered to the trunk channel via connecting tributaries. The minor hillslope 

channels apparent in 1960 aerial imagery developed relatively rapidly into deep gully 

systems over subsequent years, most likely driven by intensive grazing pressure and 

relatively rapid vegetation degradation. These findings are not uncommon for semi-arid 

catchments in South Africa impacted by human land-use activities, particularly livestock 

grazing (Boardman et al. 2003; Boardman et al. 2010; Foster et al. 2012).

The influence of controlled burning of mountain fynbos vegetation on runoff and erosion is 

uncertain. Between 1923 and 1988 the Department of Forestry employed controlled block 

burns on mountain peaks surrounding the study reach every 1-2 years (J Buckle, pers. 

comm., August 2013). Fynbos vegetation is highly dependent upon natural burning cycles 

for its development, regeneration and species composition, and generally requires about 4

6 years between burns to regenerate and accumulate sufficient fuel for another burn 

(Teague et al. 1989). Natural burning cycles can take place at return intervals anywhere 

between 6 and 40 years (Teague et al. 1989). A study by Vlok and Yeaton (2000) indicates 

that frequent burning of mountain fynbos can result in an increase in understorey species 

that sprout rapidly following a burn. These sprouting species grow quickly and establish a 

relatively dense cover below taller, mature species (Vlok and Yeaton 2000). The increase in 

understorey species following frequent burns may increase rainfall interception and thereby 

reduce runoff, but these effects have not been studied for fynbos in the Baviaanskloof. It is 

therefore difficult to draw conclusions as to the overall effect of controlled burning on 

runoff and sediment fluxes for the study reach.

River-floodplain engineering

Channelizing features such as earthen berms, channel diversions and straightening are 

effective in increasing stream power relative to a former condition (Simon 1992; Simon 

1994; Landon et al. 1998; Simon and Rinaldi 2000). As indicated from the present analysis, 

most of the trunk channel and lower-reaches of tributary streams have been channelized. 

River-floodplain engineering would have occurred from the onset of European agricultural
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activities in the valley (early 1920s), however it was during the early 1980s that flow 

channelization and floodplain drainage was most intense. The results of this analysis 

indicated increases in tributary-trunk connectivity between 1970 and the early 1980s which 

may partially be attributed to flow channelization and diversions along the lower-reaches of 

tributary streams. Stream flow channelization along most of the study reach would have 

considerably increased stream power during storm flows (Simon 1994; Simon and Rinaldi 

2000; Surian and Rinaldi 2003), enhancing the effects of reduced vegetation cover on 

hillslopes. The correlation between the timing of intensive stream flow channelization and 

the onset of channel degradation during floods events occurring in the early 1980s supports 

the suggestion that a threshold of erosion was exceeded along the study reach resulting in 

widespread trunk channel degradation. The relatively rapid onset of degradation along 

tributary streams, in response to degradation and lowering of the trunk channel bed, would 

have further increased connectivity and power of storm flows delivered to the trunk 

channel. The trunk channel was able to dissipate the excess energy through widening, which 

increases hydraulic roughness, and deepening, which over time reduces slope along the bed 

and thus flow velocity (Simon 1992, Simon 1994; Schumm 2005). This response indicates an 

attempt to alter the relationship between discharge, available sediment load and channel 

slope, so there is enough energy to transport the available sediment.

Floods and rainfall patterns and trends

It is well known that rainfall over southern Africa is highly variable both spatially and 

temporally. Inter-annual to decadal scale oscillations between relatively wet and dry 

climatic conditions has been attributed to variations in sunspot activity and the effect of El 

Nino Southern Oscillation events (Mason and Jury 1997; Kane 2009). The temporal 

variability of rainfall over the Baviaanskloof means that the hydrology of the catchment is 

highly variable, inducing temporal variations in sediment connectivity. The frequency of 

small to moderate and large floods inferred from rainfall analyses indicates that sediment 

connectivity is intermittent and may only be induced once every two to three years during a 

small to moderate flood event (Bertoldi et al. 2010). It is also clear from this analysis that 

moderate and large flood events have been important drivers of recent channel dynamics, 

since the timing of major channel planform changes followed the timing of large floods and 

periods of relatively high flood event frequency.

147



Smith-Adao (2016) analyzed rainfall data using a modeling approach to infer flooding 

magnitude-frequency for the Baviaanskloof, during her PhD research. Smith-Adao (2016) 

suggested that moderate floods occur once in every 3 years and large events occur once 

every 10 years. These findings closely following the findings of the present research, which 

is interesting since the present research applied a qualitative approach to infer flooding 

magnitude-frequency, in contrast to Smith-Adao's (2016) quantitative approach.

Although there were no clear trends in the frequency of flood-inducing rain events for the 

upper-middle-reaches of the Baviaanskloof floodplain between 1950 and 2012, the results 

of this analysis indicated an increasing frequency of >20 mm one-day rain events from the 

1990s onwards for the study reach. During the project period, La Nina conditions were 

experienced over southern Africa, persisting until 2014 following which strong El Nino 

conditions have been experienced on a global and regional scale (Cole and Gray 2015). El 

Nino events usually result in warm and dry conditions over South Africa, and La Nina events 

are generally associated with cool and moist conditions and above average rainfall (SAWS 

2016). The climatic effects of El Nino and La Nina however may vary locally. Localized 

impacts of above average rainfall associated with La Nina during the study period, may 

explain the increase in one-day rain events >20 mm in magnitude observed for the study 

reach.

There is similar evidence for changing frequency of one-day rain events elsewhere in South 

Africa. Boardman et al. (2010) indicated an increasing frequency of >25 mm one-day events 

for a semi-arid catchment several hundred kilometers inland of the Baviaanskloof. 

Boardman et al. (2010) used radioactive isotopes to date sedimentary deposits in small farm 

dams in the Karoo and to trace the source of the sediment deposits. The results of the study 

indicated that the timing of increased fine sediment flux within the catchment during the 

previous 100 years matched the timing of increased frequency of one-day rain events and 

land cultivation. Since the Baviaanskloof is also a semi-arid catchment with degraded 

vegetation it is likely that the increasing frequency of one-day rain events has been 

important in driving increases in water and fine sediment connectivity for the study reach 

over the last few decades, thereby increasing the likelihood of enhanced river sensitivity to 

geomorphological change.
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A change in flooding regime has implications for coarse sediment movement and relative 

channel stability. In the Baviaanskloof, an increase in flooding regime would be expected to 

result in an increase in coarse sediment connectivity and a decrease in relative channel 

stability. The spacing of pools and riffles, channel bars and sedimentation and erosion zones 

along the trunk channel roughly indicate the path length of coarse sediments during flood 

events of varying magnitude and frequency (Pyrce and Ashmore 2003; Lane et al. 2007). 

However, path length may vary according to a number of factors including magnitude of 

flow events that are able to entrain bed particles, local channel morphology and associated 

transport capacity and competence, and particle mobility related to degree of bed 

armouring or imbrication (Hooke 2003). Particle path length for small gravel-bed systems 

has been recorded at a range of 100-1 000 m for small to moderate sized flood events 

(Schneider et al. 2014). The Baviaanskloof is a medium-sized system, such that one would 

expect particle lengths to be greater than 1 000 m for small to moderate flood events. 

However, particle path length is dependent on a number of factors including channel 

morphology (with, slope, depth, planform and bed morphology) and stream power 

(Schneider et al. 2014). The largest transport distance of a pebble-sized particle during a 

small flood event in this study was 415 m from a riffle to a lateral bar. It is therefore 

suggested that during small floods coarse sediment is connected at the local scale between 

pools and riffles and between riffles and channel bars. During moderate floods, coarse 

sediment may be connected between multiple pool-riffle sequences and channel bars. It is 

suggested that during large floods, coarse sediment may be connected over a few hundred 

to thousand meters, resulting in the large-scale sedimentation and erosion zones identified 

in the longitudinal profile of the Baviaanskloof River. Sediment may be stored in these 

features over varying time periods, depending on the magnitude and frequency of flood 

events that induce transport over different distances.

5.4.2 The interplay between coarse sediment connectivity and recent channel instability

The interaction of multiple drivers of river change, including hillslope and riparian 

vegetation removal, river engineering, flood events and relative geomorphological 

sensitivity to erosion of different channel reaches, has determined recent channel dynamics 

along the middle-reaches of the Baviaanskloof floodplain. The findings of this analysis 

suggest that human land-use activities and high-magnitude flood events have been key
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drivers of recent channel-floodplain sensitivity and associated geomorphological 

degradation along the study reach. Increased water and sediment connectivity has been the 

primary means by which the aforementioned drivers have effected channel-floodplain 

erosion. These shifts in channel-floodplain form appear to have occurred relatively abruptly 

over a ~ 20 year period between the early 1970s and 1980s, mirroring the abrupt changes 

that are often observed in complex systems as critical thresholds are reached (Schumm 

1973, Schumm 1979; Thomas 2001; Ryan et al. 2007). By the late 1990s to early 2000s the 

channel had begun to contract, indicating the onset of a phase of recovery. There was a 

time-lag between the onset of European settlement, and associated land-use activities, and 

the onset of relative channel instability. Although human modifications to river-floodplain 

structure would have occurred soon after the onset of agricultural activities along the river 

valley, it was only some 50 years or so later, by the early 1970s, that considerable changes 

in channel morphology and stability were noted. This time-lag in the onset of noticeable 

channel morphological change coincides with the onset of heightened livestock densities 

and intensive river floodplain engineering during the 1970s, continuing into the 1980s. 

During this period episodic flood events became more effective in driving channel change, 

as storm runoff was efficiently channelized by human made features. In the Hunter 

catchment in New South Wales, Australia, Fryirs et al. (2009) indicated a 70 year time lag 

between catchment land-use disturbance and channel morphological change. The authors 

suggested that the river took several years to move towards geomorphological thresholds of 

change, which were breached during successive flood events. The lag in channel response in 

the Baviaanskloof reflects the internal resistance of the system to geomorphological change 

prior to the 1970s, which is suggested to have been determined largely by a low degree of 

coarse sediment connectivity.

There has thus been a clear link between coarse sediment connectivity and relative trunk 

channel stability for the Baviaanskloof River along the study reach. Figure 5.7 is a conceptual 

model indicating the interaction between degree of coarse sediment connectivity and 

relative channel stability in the context of external drivers of geomorphological change 

identified in this study. Between the 1920s and early 1960s the channel-floodplain system 

would have been a relatively low-energy environment, dominated by overbank 

accumulation of relatively fine sediments and slow, dispersive flows. During this period
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hillslope-channel, tributary-trunk and upstream-downstream connectivity was lower than 

subsequently, allowing for greater channel stability and resistance to flood disturbances. 

Although episodic flood events would have occurred between the 1920s and 1960s the 

channel-floodplain maintained a relatively constant state. However, the influence of human 

induced modifications to catchment and channel-floodplain form during this period would 

have predisposed the channel to the effects of flood events in subsequent years. These 

modifications included:

■ Human streamflow and floodplain engineering activities that served to increase 

stream power during storm flows (Simon 1992; Simon 1994; Landon et al. 1998; 

Simon and Rinaldi 2000; Surian and Rinaldi 2003).

■ Removal of relatively dense woody riparian vegetation to make space for floodplain 

cultivation would have reduced the resistance of channel banks and the immediate 

floodplain to geomorphologically effective floods supporting channel degradation 

and the shift toward channel braiding (Rowntree and Dollar 1996; Brooks and 

Brierley 1997; Fryirs and Brierley 1999; Simon and Rinaldi 2000; Brooks et al. 2003; 

Burge 2006; Tal and Paola 2007; Ashmore 2013; Yu et al. 2014).

■ Changes in floodplain sediment cohesiveness: ash layers created by underground 

peat fires during the 1960s may have decreased the resistance of channel banks 

along sub-reach B explaining why the trunk is most degraded (up to 6 m deep) along 

this reach.
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Figure 5.7: Conceptual model illustrating changes in the relationship between coarse sediment connectivity 
and relative channel stability in response to multiple disturbing forces between the 1920s and early 2000s.

The non-uniform nature of trunk channel degradation reflects the complexity of the sub

system represented by the study reach (Simon 1994). This complexity may be explained by 

downstream variations in the sensitivity of the trunk to erosion. This sensitivity is controlled 

by a number of factors including:

■ Antecedent controls (Hoyle et al. 2008) in the form of relative resistance of bank 

materials inherited from past fluvial processes and catchment lithology.

■ Potential for geomorphological change of a channel reach determined by closeness 

to geomorphological thresholds.

■ The relative degree of human influence on stream power (flow channelization) at 

different sites.

■ The superimposition of hillslope and tributary stream processes and forms upon 

trunk channel processes.

Recent channel degradation along the study reach has limited the buffering role that alluvial 

fan and the floodplain used to offer. The aforementioned factors together with the higher- 

energy nature of the river-floodplain at present mean that the study reach is unlikely to 

favour the formation of floodplain wetlands.
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The Baviaanskloof has indicated some similarity in the nature of channel response to that 

reported in several other studies of the impacts of European settlement and episodic flood 

events (Brooks and Brierley 1997; Cohen and Brierley 2000; Fryirs and Brierley 2001; Harvey 

2001; Brooks et al. 2003; Simon and Rinaldi 2006; Godfrey et al. 2008; Hoyle et al. 2008; 

Garcla-Ruiz et al. 2010). In these studies, channel widening, deepening and a shift to 

channel braiding has commonly been observed, in response to human land-use impacts 

and/or large flood events that drive a river beyond one or more thresholds. Degree of 

coarse sediment connectivity was suggested to be an important determinant of the 

increased sensitivity of a particular river to geomorphological change, aligning with the 

results of the present analysis.

5.5 Conclusion

In his overview of geomorphological instability and change, Harvey (2007b), indicated that 

semi-arid fluvial systems operate close to thresholds of erosion and deposition and are 

therefore intrinsically unstable. Although the Baviaanskloof River-floodplain along the study 

reach has indicated this characteristic, the system does appear to enter phases of relative 

geomorphological stability characterised by floodplain accretion, wetland formation, and 

stable channel form over a range of time-scales. This stability is promoted by low levels of 

coarse sediment connectivity together with the buffering role provided by dense woody 

vegetation cover, non-entrenched alluvial fans and a wide accretionary floodplain, hosting a 

shallow single-thread to anabranching channel. These factors were essential determinants 

of the resilience of the study reach to flood events prior to the onset of widespread channel 

degradation. Intensive human land-use activities over the last approximately 60-70 years 

reduced the geomorphological complexity and buffering capacity of the study reach, 

thereby increasing the sensitivity of the trunk channel to high-magnitude flood events. 

However, there was a ~ 70 year time lag between European settlement, and the start of 

agricultural activities along the valley, and the onset of channel degradation, reflecting the 

inherent internal resistance of the Baviaanskloof to disturbances. The breaching of 

geomorphological and stream power thresholds of erosion resulted in sudden and relatively 

short-lived channel degradation between the early 1970s and the early 1990s. Following this 

period the channel began to stabilize.
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APPENDIX 5A: RAINFALL DATA ANALYSIS FOR STATIONS BAVLULET AND MATJIES 
IN THE BAVIAANSKLOOF CATCHMENT

Table 5.5: Rainfall data for station Bavlulet

year

1 day  
event 
(m m )

sev e ra l day event 
(m m ) date

A ntecedent
w et/dry flood size notes

1951 90 11-12 Jan wet S-M

1951 73 24-26 July wet S-M

1952 98 16-3 Feb-Mar wet S-M

1953 90 16-22 Oct wet S-M

1954 186 13 Mar - 2 Apr wet L 2 days break w ithout rain

1955 115 17-23 Feb wet S-M

1955 76 28-5NOv/Dec wet S-M 2 day break w ithout rain

1963 104.8 27 March - 13 April dry S-M 2 days no rain in the series

1964 63 12-13 August wet S-M 2 days no rain in the series

1971 103 14 Mar - 7 April dry S-M 2 days w ithout rain

117.9 17-25 August dry S-M

1973 104 17 Mar - 8 Apr dry S-M 2 DAYS NO RAIN

1974 140 15-29 Jan wet L
2 days no rain twice in the 
series

66 24-2 march-april wet S-M

116 22-24 Aug wet S-M

60 22-3 dec-jan wet S-M

1977 65 28-13 jan-feb wet S-M 2 DAYS NO RAIN

70 17-20 Feb wet S-M

31 wet S-M

1979 71 18-23 July wet S-M

60 11-12 June S-M

1981 116 22-26 March dry S-M

84 26-30 May S-M

73 21-31 Aug S-M

77 14-17 Oct S-M

1982 61 26-30 April wet S-M

94 1-7 December dry S-M

120.5 21-24 September dry S-M

1996 85.5 18-23 October wet S-M

79 16-21 Nov S-M

75 27-29 Dec S-M

1998 62 14-15 December wet S-M

1999 69 20-30 july wet S-M

2000 99.6 27 February - 2 March wet S-M

37 wet S-M

2001 34 wet S-M

2002 61.5 14-18 August wet S-M
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2005 90 12-15 November wet S-M

86 16-22 feb wet S-M

year

1 day  
event 
(m m )

sev e ra l day event 
(m m ) date

A ntecedent
w et/dry flood size notes

2011 32 wet S-M

65 7-9 June wet S-M

69 23-25 July wet S-M

99 15-22 October wet S-M

2012

Table 5.6: Rainfall data for station Matjies

Year date
rain
(mm) notes

antecedent
conditions

flood
events

1950 4-7 July 109 dry S-M
1950 8-10 Oct 43 dry

1950 4-11 Nov 125
2 days no 
rain dry S-M

1951 11-12 Jan 74 wet S-M
1951 24-25 July 107 wet S-M
1952 17-22 Feb 66 wet S-M

1952 5-13 Aug 63
2 days no 
rain wet S-M

1952 21-24 Aug 40 wet
1952 10-18 Sep 82 wet S-M
1952 13-19 Dec 44 wet

1953 21-1 Jun-July 44
2 days no 
rain wet

1953 15-23 Oct 104 wet S-M
1954 11-15 March 42 wet

1954
29-02 Apr- 
May 88 wet S-M

1954 16-27 July 58.2 wet S-M
1954 25-29 Aug 115 wet S-M
1955 17-9 Feb-Mar 143 wet L
1955 28-5 Nov-Dec 74.6 wet S-M
1956 23-25 May 51 wet S-M
1956 15-23 Sep 81 wet S-M
1956 16-21 Dec 44 wet
1958 26-31 May 61 dry
1959 11-13 Jan 54 dry
1959 28-3 Apr-May 44 dry
1959 10-18 Jul 50 dry
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Year date
rain
(mm) notes

antecedent
conditions

flood
events

1959 29-31 Aug 47 dry
1960 3-5 Jan 49 wet
1960 16-Jan 24 wet
1961 9-30 Mar 136 dry S-M
1961 29-9 July-Aug 42 dry
1962 20-22 Aug 96 dry
1962 15-23 Nov 44 dry
1963 1-22 mar 52 dry

27-13 mar- 
apr 113 dry S-M
7-15 dec 56 dry

1964 11-13 Aug 83 wet S-M
14-21 76 wet S-M
5-7 Nov 46 wet

1965 29-2 Sep-Oct 43 wet
30-13 Oct- 
Nov 60 wet S-M
16-17 Dec 40 wet

1966 21-Jan 22 wet
1967 8-28 Apr 140 dry S-M

25-1 May 72 dry S-M
1968 26-4 June 51 wet S-M

8-20 June 107 wet S-M
30-3 Aug-Sep 81 wet S-M

1969 15-19 June 40 wet
17-1 oct-nov 56 wet S-M

1970 4-8 dec 61 dry
1971 1-10 Apr 70 dry

29-31 July 59 dry
18-25 Aug 118 dry S-M

1972 2-6 Feb 78 wet S-M
1973 17-22 Mar 43 dry

06-Nov 24.3 dry
1974 15-29 Jan 115 dry S-M

21-5 feb-mar 57 dry
13-26 mar 62 dry
3-8 may 59 dry
18-24 aug 160 dry L

1975 15-Mar 21 wet
06-Jun 21 wet

1975-76
27-11 Dec- 
Jan 55 dry

156



Year date
rain
(mm) notes

antecedent
conditions

flood
events

1976 18-22 Mar 47 dry
1977 28-2Jan-Feb 114 wet S-M

9-16 may 70 wet S-M
1978 1-2 nov 42 dry
1979 02-May 20 dry

6-10 may 58 dry
22-4 may- 
june 48 dry
9-12 june 103 dry S-M
18-24 july 79 dry S-M
16-22 aug 70 dry

1981 23-5 jan-feb 69 dry
20-22 mar 131 dry S-M
24-1 apr-may 56 dry
25-30 may 137 dry L
12-1 aug-sept 132 dry S-M
14-17 oct 96 dry S-M

1982 15-19 apr 42 wet
26-30 apr 106 wet S-M

1983 9-17 july 69 dry
21-27 july 140 dry S-M

1985 5-12feb 45 dry
12-15 oct 45 dry
28-9 nov 47 dry
20-10 nov- 
dec 74 dry S-M
18-24 dec 63 dry

1986 1-15 oct 63 wet S-M
1987 14-22 apr 51 dry

19-2 sep-oct 83 dry S-M
1988 1-7 apr 50 dry

15-29 dec 58 dry
1989 9-23 apr 51 dry

1-9 oct 53 dry
14-18 nov 85 dry S-M

1991 28-30 oct 47 dry
1992 27-2 feb-mar 51 dry

22-24 july 55 dry
7-10 aug 59 dry
6-20 oct 76 dry S-M
8-16 nov 47 dry

1993 11-13 june 57 wet
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Year date
rain
(mm) notes

antecedent
conditions

flood
events

21-29 sept 148 wet L
2-9 dec 44 wet

1994 28-7 mar 45 wet
19-23 apr 77 wet S-M
23-27 dec 57 wet S-M

1995 17-30 mar 43 wet
20-22 aug 42 wet
13-26 dec 64 wet S-M

1996 18-23 oct 98 wet S-M
5-2 nov-dec 207 wet L
26-31 dec 92 wet S-M

1997 14-19 mar 54 wet S-M
29-9 mar-apr 87 wet S-M
23-27 may 55 wet S-M

1998 20-Feb 22 wet
24-1 mar-apr 48 wet
5-14 may 46 wet
21-24 aug 50 wet
13-21 dec 53 wet S-M

1999 27-6 feb 42 wet
26-1 july-aug 52 wet S-M
26-3 sep-oct 40 wet

1999
2000 21-7 dec-jan 77 dry
2000 23-28jan 40 dry

10-19 feb 52 dry
1-17 mar 43 dry
23-4 apr 46 dry

158



CHAPTER 6: TRIBUTARY-TRUNK STREAM RELATIONS: IMPLICATIONS FOR RIVER 
SENSITIVITY

6.1 Introduction

One of the distinguishing features of the Baviaanskloof River-floodplain is the numerous 

alluvial fans that have formed where tributaries exit the surrounding steep mountain 

catchment onto the gently sloping valley floor. Nearly all tributaries along the study reach 

have formed fans of variable size. Tributary fans are effective buffers of sediment 

connectivity between mountain hillslopes (uplands), the valley floor and a trunk stream, 

where they form temporary stores of sediment received from discontinuous tributary 

streams (Harvey 2002a; Fryirs et al. 2007a; Fryirs et al. 2007b; Harvey 2012). However, the 

buffering role of tributary fans may be altered by fan entrenchment or truncation, which is 

often linked to processes occurring along a trunk stream (Harvey 2012). Increasing tributary- 

trunk connectivity and associated delivery of coarse sediment and water to the trunk 

channel can result in considerable changes in trunk channel process and form, commonly 

through channel deepening, widening and/or braiding (Chew and Ashmore 2001; Fryirs et 

al. 2007a; Fryirs et al. 2007b; Bravard 2010; Farraj and Harvey 2010). The aforementioned 

channel adjustments reflect the enhanced geomorphological sensitivity of the receiving 

trunk channel reach, due to increased coarse sediment delivery from the wider catchment. 

The nature and rate of channel adjustment to coarse sediment delivery can be variable for 

different rivers, reflecting the influence of local channel controls such as riparian vegetation 

structure and cover, bed or bank armouring, and proximity to local geomorphological 

thresholds (Hooke 2003; Anders et al. 2005; Beechie et al. 2006; Harvey 2007b; Lane et al. 

2007; Bravard 2010). Few studies have investigated the influence of coarse sediment 

connectivity on river sensitivity in upland river catchments dominated by bed load. In her 

conceptual paper, Hooke (2003), indicates that coarse sediment connectivity is a 

fundamental driver of channel morphology and sensitivity to geomorphological change. The 

concept of coarse sediment connectivity thus provides a useful framework for 

understanding river sensitivity and dynamics in upland gravel-bed streams.

The impacts of tributary junctions and tributary junction fans on trunk stream process and 

morphology has been demonstrated for several upland fluvial systems in the northern 

hemisphere, but not across a wide range of fluvial environments. Some of the commonly
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documented morphological impacts of tributary junction streams and fans on a trunk 

stream include:

■ Increased trunk channel slope downstream of a tributary confluence due to 

sediment accumulation across the trunk and associated channel bed aggradation 

(Ashmore 1991a; Bravard 2010).

■ Marked increases in trunk channel width associated with increased discharge within 

the vicinity of a tributary junction (Harvey 2007b; Farraj and Harvey 2010).

■ Introduction of a series of localised sedimentation zones downstream of tributary 

junctions and associated discontinuous braiding and channel instability (Ashmore 

1991b; Harvey 2007b; Bravard 2010; Farraj and Harvey 2010).

■ A local rise in base level where a tributary fan extends across the entire valley floor 

and blocks the trunk channel, in which case the trunk channel may attempt to cut 

through the fan deposit where it has sufficient capacity (Lane et al. 2008).

The caliber and volume of sediment delivery to a trunk channel from a connecting tributary, 

relative to the transport capacity of the receiving channel reach, determines the influence of 

a connecting tributary on trunk channel morphology (Rice 1998; Church 2006). If more 

sediment is delivered than the capacity of the trunk to transport the sediment, then bed 

deposition on the trunk will occur upstream of the impinging tributary fan. If transport 

capacity is higher than the volume and caliber of sediment supplied, then the trunk may 

adjust through channel widening and deepening and the available sediment will be 

transferred to downstream reaches. However, the latter is not the only determinant of 

trunk channel response. A receiving stream may exhibit a delayed response to increased 

water and coarse sediment inputs, where riparian and instream vegetation stabilizes the 

channel or where bed and bank sediments are resistant to erosion (Fryirs and Brierley 2001; 

Harvey 2002a; Farraj and Harvey 2010). Similarly, if the receiving reach is competent 

enough to transport most of the sediment supplied from a tributary junction to downstream 

reaches, then there may be little morphological adjustment within the vicinity of the 

receiving reach.

The interaction between tributary stream junctions and a trunk stream may be reciprocal, 

as tributary streams generally respond to erosional or depositional processes along a trunk 

stream (Harvey 2002b; Grenfell et al. 2008). Degradation along a trunk stream may initiate
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degradation along a tributary, as the tributary adjusts to a lowered base-level (Harvey 

2002b; Harvey 2012). This situation may result in tributary fan entrenchment and enhanced 

tributary-trunk connectivity. Alternatively, aggradation along a trunk channel that occurs at 

a higher rate than aggradation along a tributary stream junction, may result in blockage of 

the tributary by the trunk, inducing flood-out formation along the tributary (Grenfell et al. 

2009a). The response of tributaries to trunk processes in dryland catchments may be 

relatively rapid (years) or there may be a considerable lag time in response (hundreds to a 

thousand years).

The nature of interactions between tributary and trunk streams is thus diverse and 

complicated by local controls on sensitivity to geomorphological change, and the relative 

nature of hydrological and geomorphological processes occurring along tributary streams 

compared to the trunk stream.

The Baviaanskloof River-floodplain receives considerable amounts of coarse sediment via 

tributary streams and tributary fans that impinge on the floodplain every few hundred to 

thousand meters. The channel bed of these tributary streams is characterised by coarse 

angular grains of mostly pebbles and cobbles, with some boulders indicating high 

competence and capacity to transfer the coarse sediment from the surrounding mountains 

during flood events (Plate 6.1). Historically this coarse sediment would have been stored on 

alluvial fans that formed where streams exit the mountains and enter the valley floor. 

However, recent fan entrenchment and enhanced tributary-trunk connectivity has 

diminished the buffering role these fans used to offer along the study reach. Limited 

understanding of the impacts of tributary-trunk (dis)connectivity on river process, form and 

sensitivity to change in dryland, gravel-bed streams such as the Baviaanskloof, poses a 

problem for effectively predicting and managing the impacts of human land-use activities 

and climate change on these types of systems.
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Plate 6.1: The coarse nature of sediment on tributary stream beds.

This chapter aims to investigate the influence of coarse sediment (dis)connectivity on 

channel-floodplain process, form and sensitivity to erosion, focusing on the influence of 

tributary-junction fans and streams on the trunk stream at the reach (several thousand 

meters) to sub-reach scale (several hundred meters). Three main objectives that underpin 

the overall aim will be addressed:

1) Describe the influence of tributary catchment size and slope, and flooding regime, on 

patterns of tributary-trunk (dis)connectivity and coarse sediment supply to the trunk 

channel.

2) Investigate downstream variations in present-day geomorphological form and 

process of the trunk channel and relate this to pattern and regime of coarse 

sediment supplied by connecting tributary streams.

3) Determine if there is a relationship between tributary stream (dis)connectivity and 

sensitivity of the trunk channel to geomorphological change.

The knowledge produced from the above investigation forms an essential component of 

understanding controls on river sensitivity and geomorphological dynamics for developing a 

process-based rehabilitation plan for the Baviaanskloof.
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6.2 Methods

6.2.1 Patterns and degree of tributary-trunk connectivity

The method used to identify and describe the degree of coarse sediment connectivity was 

largely qualitative and relied on previous studies including Hooke's (2003) coarse sediment 

connectivity model for two European gravel-bed systems, as well as the classification 

system for different (dis)connectivity landforms provided by Fryirs et al. (2007a). Both 

Hooke (2003) and Fryirs et al. (2007a) infer sediment connectivity based upon the pattern 

and type of geomorphological features within a catchment that are known to either 

enhance or impede water and sediment fluxes. Both studies focus at different spatial and 

temporal scales and at different types of rivers: Hooke (2003) infers coarse sediment 

connectivity at the channel-reach scale for a gravel-bed stream based upon channel 

morphology and the presence or absence of bed features such as channel bars that indicate 

competence for temporary transfer of coarse sediment during floods. Fryirs et al. (2007a) 

infer sediment connectivity for a mixed-load stream based upon the pattern of 

geomorphological features in a catchment that act as barriers, buffers, blankets or 

enhancers of water and sediment connectivity. Hooke (2003: 85) defines three levels of 

coarse sediment connectivity:

1) Unconnected: Local sources and stores/sinks separated by incompetent reaches;

2) Partially connected: Transfer only occurs during extreme flood events;

3) Connected: Coarse sediment is transferred during 'normal' flood events;

4) Potentially connected: Channel reach has competence to transport coarse sediment 

but there is a lack of supply;

5) Disconnected: Formerly connected but transfer along reach is now obstructed (e.g. 

by dams).

Fryirs et al. (2007a) infer two degrees of connectivity:

1) Connected: When a landform or part of a catchment receives available water and 

sediment from the upstream catchment area;

2) Dis-connected: When buffers, barriers or blankets limit sediment and water 

conveyance to a particular landform or part of catchment.

The time period for which different landforms or parts of a catchment are either connected 

or disconnected is dependent on the magnitude-frequency of disturbance events that are
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able to maintain sediment conveyance or breach impediments to sediment conveyance 

(Fryirs et al. 2007a).

The present study focusses at coarse sediment connectivity but adopts the approach of 

Fryirs et al. (2007a), to infer patterns and degree of coarse sediment connectivity for the 

study reach, drawing from the approach of Hooke (2003). Coarse sediment connectivity in 

the present study was described in terms of tributary-trunk connectivity and general 

patterns of upstream-downstream connectivity along the trunk channel, since these are the 

main conduits of coarse sediment. The 2009 digital orthorectified aerial imagery with 

topographic references 3323DB Studtis and 3324CA Zandvlakte, were used to map 

geomorphological features such as alluvial fans, channel bars and stream channels, in order 

to identify the degree of tributary-trunk and upstream-downstream connectivity.

Three classes of tributary-trunk connectivity were defined in the present study (Figure 6.1), 

as follows:

1) Disconnected: when a channel reach does not receive coarse sediment from a 

source. For example, a disconnected tributary-trunk situation would occur when a 

tributary stream does not reach the trunk channel due to loss of confinement on a 

fan or floodplain surface that traps sediment. A trunk channel reach may also be 

disconnected from bed load sediment supplied from upstream eroding reaches due 

to the presence of a human-made weir or dam.

2) Partially connected: when a channel reach only receives a limited portion of bed load 

sediment being supplied from upstream or from lateral inputs due to the presence 

of one or more geomorphological or human-made features that partially impede 

water and sediment movement. This situation may include, barriers such as small 

dams that occur in part of a tributary catchment, and thus partially impede water 

and sediment transfers; a tributary stream that loses considerable competence 

through diminished channel width and depth before reaching the trunk stream 

resulting in only partial transfer of coarse sediment to the trunk stream during 

floods.

3) Well-connected: when a channel reach receives most of the bed load sediment being 

supplied from upstream or lateral inputs during flood events. For example, a well- 

connected tributary channel is one that has dissected an alluvial fan such that bed
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load and fine sediment is readily supplied to the trunk channel. Effective transfers of 

sediment to the trunk channel are usually indicated by debris cones or cobble bars 

that form at the junction of or shortly downstream of the tributary junction. 

Alternatively, actively degrading trunk channel reaches usually have excess transport 

energy and will thus effectively transmit coarse sediment supplied from upstream to 

downstream channel reaches during floods.

Figure 6.1: Examples of the degrees of tributary-trunk connectivity defined in the present study. Flow direction 
is indicated by the arrow.

The catchment area and average channel slope of each tributary stream was measured 

using the orthorectified 2009 aerial imagery and spatially referenced 20 m contours in 

ArcGIS (version 10.1). The catchment of each tributary stream was digitized using ArcGIS 

and the catchment area of each tributary was measured using the measuring tool for 

polygon features. Average channel gradient of each tributary stream was calculated by 

digitizing the main stem stream and measuring the distance along the digitized feature.
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Change in elevation along each tributary stream was calculated using the spatially 

referenced 20 m contours in order to calculate average slope

The above variables were plotted on a scatter graph to determine the relationship between 

tributary catchment size and channel slope, and degree of tributary-trunk connectivity. An 

independent T-test was performed to determine whether there was a significant difference 

(significant at p<0.05) in catchment size and average tributary channel slope between 

tributaries on the southern vs. northern side of the river valley.

6.2.2 Tributary junction impacts on trunk stream process, form and sensitivity

Downstream variations in the geomorphological form of the trunk channel, indicated by 

variations in channel width, sinuosity and braiding intensity, thalweg slope, and river style 

was described in relation to the pattern of connecting tributary streams and other controls 

including valley width and slope. Channel width, sinuosity and braiding intensity was 

measured using the same approach described in Chapter 4. The slope along the trunk 

channel thalweg and left and right bank surfaces were surveyed every 300 to 500 m along 

the length of the study reach using dumpy level and staff surveying techniques (accuracy in 

the elevation plane of -0.05 m per km).. The location of connecting tributary streams was 

superimposed onto the longitudinal profile by measuring the distance of each connecting 

tributary along the length of the trunk stream in ArcGIS, from the 2009 orthorectified aerial 

imagery. Downstream breaks in trunk channel thalweg and floodplain slope, indicating 

changes in geomorphological process and form, were visually identified as distinct points of 

deviation from the uniformity of the plotted longitudinal profiles. Changes in trunk channel 

sinuosity, width and bankfull depth were measured for 400 m reaches upstream and 

downstream of tributaries that were classed as well-connected, to identify impacts of 

tributary junctions on trunk channel geometry and behaviour. Trunk channel width was 

measured at approximately 80 m intervals along these 400 m zones upstream and 

downstream of the point of a tributary junction, in ArcGIS, using the orthorectified 2009 

aerial imagery. The edge of the channel was delineated where the riparian tree line began. 

Changes in bankfull depth within the 400 m zone were calculated from channel cross

sectional surveys conducted for the entire study reach.
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Slope thresholds of erosion at the reach (over several kilometers) and sub-reach (over 

several 100 m) scales of the trunk channel were identified by relating the slope of the left 

and right floodplain surface to levels of degradation along the trunk channel. If the trunk 

channel was degraded (using criteria identified in Chapter 4), then the threshold slope of 

degradation was inferred from the slope of the left and right bank surface adjacent to the 

degraded or degrading channel reach.

Downstream changes planform morphology and geomorphological behavior of the river- 

floodplain were described by adapting the approach of the River Styles Framework 

described by Brierley and Fryirs (2005). Major changes in river style were related to changes 

in valley width, slope and frequency of tributary stream junctions (number of streams 

connecting per km of channel length), and observed behavior of the trunk stream during 

small to moderate flood events.

6.3 Results

6.3.1 Characteristics of tributary-trunk connectivity

There are differences in the size, slope and degree of connectivity of tributary streams (n = 

32) originating on the north compared to the south side of the trunk river valley. The 

southern tributary catchments are significantly larger and lower sloping than the northern 

tributary catchments (P=0.0023 and <0.0001 respectively; Table 6.1). The larger southern 

tributaries have produced relatively large fans, with significantly greater fan length than the 

northern fans (P=0.023, Table 6.1). Many of these southern fans extend across the 

floodplain impinging upon the trunk stream. In contrast, most of the smaller northern fans 

are small and do not reach the trunk stream.
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Table 6.1: Mean catchment area, channel slope, and fan length for tributaries on the northern and southern 
sides of the Baviaanskloof River valley, for the study reach. Standard deviations and significance values for a T- 
test comparing catchment size and channel slope between the northern and southern tributary streams are 
indicated.

Tributaries Mean catchment
area (km2)

Mean channel 
slope (m/m)

Mean fan 
length (m)

Northern (n=19) 4.5 (SD = 3.4) 0.18 (SD = 0.04) 406

Southern (n=13) 24.6 (SD = 26.3) 0.08 (SD = 0.04) 1382

P-value from a T-test 0.0023 <0.0001 0.023

Tributary streams originating on the southern side of the river valley have an overall higher 

degree of connectivity with the trunk stream than tributaries originating on the northern 

side of the river valley (Figure 6.2a). In general there is a negative relationship between 

tributary catchment size and channel bed slope, and this relationship influences the degree 

of connectivity of tributaries with the trunk stream (Figure 6.2b). In general, small 

catchments, equating to relatively low discharge and high channel slope, are disconnected 

and the well-connected tributaries have large catchment areas, equating to higher 

discharges and gently sloping channels. However, there are several tributaries that deviate 

from the aforementioned general trend, including tributaries with relatively small 

catchment areas that are well-connected. The two tributaries reported as outliers in Figure 

6.2b, are well-connected to the trunk channel because the channel has truncated the toe of 

these small alluvial fans, lowering the base-level. Several of the larger tributaries that are 

presently well-connected to the trunk channel have been artificially channelized, to 

promote flow from the tributary into the trunk stream, thereby protecting infrastructure on 

the fan ('connectivity artificially enhanced', Figure 6.2b). Hence, factors other than 

catchment size and associated discharge, such as human land-use, or position of the trunk 

stream in relation to a tributary stream on the valley floor, influence degree of 

tributary-trunk connectivity.

168



Figure 6.2: The frequency of disconnected (D-C), partially connected (P-C), and well-connected (W-C) tributary- 
trunk confluences for the northern versus southern tributaries (a); and the relationship between catchment 
area (discharge), average channel slope, and degree of tributary-trunk connectivity (b).

6.3.2 Downstream variations in channel-floodplain form and process in relation to 
tributary connectivity

Channel planform characteristics
Over most of the study reach the trunk channel maintains a braided channel pattern with 

channel bifurcations occurring at channel bars consisting of coarse bed load material. The 

most distinct deviation from this pattern exists along sub-reach B, where the channel 

divides around a relatively large and stable sediment island (Figure 6.3), and thereby 

displays a braided-anastomosing channel pattern (Bridge 2003). Common channel bed 

features include pool-riffle sequences which span several tens of meters along the channel 

bed, channel bars of varying size, and erosional head cuts. Head cuts form either at the
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distal end of a relatively steep riffle section, or at a channel bar where flow converges. 

Channel bars are unstable features that are morphologically altered during small to 

moderate or large flood events.

Figure 6.3: The braided-anastomosing channel planform (circled) of the Baviaanskloof River. Flow direction is 
indicated by the arrow.

Distinct downstream variations in valley and trunk channel morphology occur at the sub

reach scale, from sub-reach A at the upper-part of the study reach to sub-reach C at the 

lower-end of the study reach (Table 6.2). Channel thalweg slope decreases progressively 

downstream from sub-reach A, with a slope of 0.0072 m/m, to sub-reach B, with a slope of 

0.0069 m/m, to sub-reach C, with a thalweg slope of 0.0060 m/m. Thalweg slopes along 

sub-reach B and C are lower than the average floodplain slopes for these sub-reaches 

respectively. Along sub-reach A, the channel has the same slope as the surrounding 

floodplain. Thalweg channel sinuosity increases consistently downstream ranging between

1.2 and 1.3, indicating an overall 6% increase in thalweg sinuosity between sub-reach A and 

sub-reach C (Table 6.2). Sub-reach B, which is the most unconfined valley reach, has the
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highest average floodplain slope (0.0078 m/m) and braiding intensity (6; ~1.8) of all the sub

reaches. This sub-reach, together with sub-reach A, have a higher frequency of connecting 

(partially and well-connected) tributary streams than sub-reach C.

Table 6.2: Valley and trunk channel morphological characteristics for sub-reaches A to C.

Valley sub
reach

Average 
valley floor 
width (m)

Average
floodplain
slope
(m/m)

Thalweg 
channel 
slope (m/m)

Thalweg
channel
sinuosity
(SI)

Braiding 
Index (B)

Connecting
tributaries
(frequency/km
channel)

Average 
catchment 
area of 
connecting 
tributaries

A 580 0.0072 0.0072 1.2 1.7 0.8

B 1 263 0.0078 0.0069 1.25 1.8 0.8

C 745 0.0064 0.006 1.27 1.6 0.5

Adapting the approach of Brierley and Fryirs (2000) to defining river styles, three distinct 

river styles were defined for the study reach. The spatial extent and pattern of the river 

styles identified conform to the three valley morphological sub-reaches characterized in 

Table 6.2 above. The identified river styles are described below with photographic 

examples.

1) Transfer style (valley sub-reach  A ):

This style occurs mainly along sub-reach A at the upper-end of the study reach and is 

dominated by a single thread, narrow and straight channel that is relatively stable, flowing 

through a narrow valley reach (Figure 6.4). The channel is relatively steeply sloping (average 

of 0.0072 m/m) and is largely a conduit of sediment to downstream channel reaches during 

floods, downstream of which sediment is stored in channel bars and on the floodplain. The 

transfer style has fewest human-made features that influence water and sediment 

connectivity and space for river adjustment, and represents one of the most stable sub

reaches along the study reach.
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Figure 6.4: Example of a transfer river style along the upper-end of the study reach. The arrow indicates 
direction of flow for the trunk stream.

2) Cut-and-fill style (valley sub-reach B):

The cut-and-fill style consists of a wide and relatively deep channel, inset within a wider 

incised channel boundary with a continuous floodplain (Figure 6.5). The trunk stream has 

recently cut into intact floodplain swamps, adjusting from a once relatively stable and 

narrow single-thread to anabranching pattern, with a vertically accreting floodplain, to a 

wide, braided channel dominated by lateral sediment accretion and relative channel 

instability. Numerous tributaries join the trunk stream from the north and south side of the 

river valley, increasing the sensitivity of this style to morphological change. The trunks 

stream is more gently sloping than the transfer river style, with an average slope of 0.0069 

m/m. The terraces indicated in floodplain cross-sectional profiles presented in Chapter 5 

suggest historic phases of river-floodplain cutting and filling. These cut-and-fill phases are 

supported with evidence of relatively coarse (high energy) and fine-grained (low energy) 

sedimentary units in exposed erosion vertical sections. Although the channel appears to be 

situated in an unconfined floodplain, the existence of human made earthen levees on either 

side of the channel, as indicated in Chapter 5 (see Figure 5.2), partially limits the ease with 

which lateral adjustments may occur. During small to moderate floods stream flows are thus 

confined to the active channel zone. Floodplain accretion for this river style is limited by 

both a deepened channel and channelizing levees. Coarse sediment is stored mostly along
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the active channel zone in lateral and mid-channel bars and on the channel bed in riffles and 

sediment zones, while fine sediments appear to be transmitted downstream. This river style 

is the most unstable and sensitive of the three styles identified for the study reach, and has 

a relatively high frequency of connecting tributary streams of large catchment size.

Figure 6.5: Example of a cut-and-fill river style along the middle of the study reach. The arrows indicate 
direction of flow of the trunk stream and a connecting major tributary.

3) Floodplain accumulation style (valley sub-reach C) :

In this style the channel is braided and laterally dynamic and lies within a largely unconfined 

floodplain setting (Figure 6.6). Earthen levees have limited the lateral connectivity of the 

channel in some places. However, the presence of lateral channel bars, levees and 

abandoned channels on the floodplain indicate that the channel is dynamic, storing 

sediments largely through lateral accretion processes as the channel migrates and avulses 

across the valley floor. The floodplain is more frequently flooded than the cut-and-fill style 

due to lower levels of channel degradation and less intensive human channelization. The 

trunk stream has the lowest average slope, of 0.006 m/m. This style has a lower frequency 

of connecting tributary streams than the upstream cut-and-fill and transfer river styles. The 

floodplain accumulation river is an important river zone for receiving and storing some of 

the sediments that have eroded from the upstream cut-and-fill style.
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Figure 6.6: An example of a floodplain accumulation style along the lower-end of the study reach. Flow 
direction is indicated by the arrow.

Variations in longitudinal slope, channel width and sinuosity

The Baviaanskloof River thalweg over the entire study reach averages 0.0066 m/m (Figure 

6.7). This average channel slope falls within the moderately steep, upper-foothills zone of 

the geomorphological zonation system described by Rowntree et al. (2000). Both the left 

and right floodplain surfaces, approximating the pre-degradation channel slope, have an 

average longitudinal slope of 0.0067 m/m which can be considered to be the same as the 

average longitudinal slope of the present trunk channel thalweg.

174



Figure 6.7: Longitudinal profile of the Baviaanskloof River thalweg and the floodplain surface ('Left floodplain' 
and 'Right floodplain'), indicating average slope along the study reach.

The longitudinal profile of the trunk channel thalweg and surrounding floodplain surface 

indicate a downstream pattern of slope changes characterised by alternation between 

relatively gentle and steep sloping channel reaches (Figure 6.8). The trunk channel thalweg 

and left and right floodplain surface all indicate contrasting patterns of change in 

longitudinal slope. In most cases a break in trunk channel thalweg slope occurs where one 

or more tributaries, of varying catchment size, connect to the trunk channel ((K2 and B3), 

B9, B8 & K8; Figure 6.8). However there are several tributaries, also of variable catchment 

size, that do not appear to be associated with a downstream break in thalweg slope (K1, K3 

and K12). Tributaries that are associated with a break in thalweg slope either initiate a 

downstream decrease in slope ((K2 & B3), K6, K8 and K10; Figure 6.8), or a downstream 

increase in slope (K5, B9, (G7 and K7), K10; Figure 6.8), independent of tributary catchment 

size.The circled areas in Figure 6.8 represent areas of higher relief than is expected if the 

floodplain has a uniform longitudinal slope, and illustrate the influence of tributary fans on 

local floodplain topography, where they initiate a local downstream steepening of slope 

along the floodplain.
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Figure 6.8: The longitudinal profile of the Baviaanskloof River thalweg, indicating slope break reaches (TS1-TS12), and left and right floodplain surface slope break reaches 
(RF1-RF4; LF1-LF7). The latter profiles are plotted above the thalweg without reference to elevation. The arrows indicate the location of well- and partially-connected 
tributary streams along the trunk channel profile, with left-bank tributaries indicated by the prefix B and right-bank tributaries by K. The prefix G refers to a gully entering 
the trunk stream. The oval symbols on the left and right floodplain indicate zones elevated above the floodplain if it is plotted as having a linear slope.
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Figure 6.9 shows local-scale variations in trunk channel and floodplain slope. The reach 

indicated in the figure has incised up to 6 m, in the zones where it is imposed upon two 

alluvial fans entering the valley from opposite sides (K8 and B12; Figure 6.9). Both alluvial 

fans are dissected by their respective tributaries such that they are well-connected to the 

trunk channel. It is clear that both tributary fans initiate an upstream reduction of floodplain 

slope and a downstream steepening of floodplain slope in areas where they impinge upon 

the trunk channel. The tributary junction streams also initiate a downstream steepening of 

channel thalweg slope where they join the trunk channel. The channel bed slope is 0.0053 

m/m (JS2, Figure 6.9), upstream of and in the vicinity of where the two streams join the 

trunk channel. However, thalweg slope increases to 0.0067 m/m shortly downstream of the 

tributary junctions (Slope reach JS3; Figure 6.9).

Left floodplain
Right floodplain
Relatively steep sloping reach
Relatively gently sloping reach
Left bank tributary - partially connected
Right bank tributary - well-connected

Zone of deep degradation

2000 2500 3000
Cumulative distance (m)

Slope
reach

Thalweg
slope
(m/m)

JS1 0.0074
JS2 0.0053
JS3 0.0067
JS4 0.0058
JS5 0.0090
JS6 0.0073
JS7 0.0022

Figure 6.9: The longitudinal profile of the Baviaanskloof River thalweg and left and right floodplain surfaces at 
the local scale along a selected reach where pronounced river degradation has occurred.

Figure 6.10 compares local scale variations in trunk channel sinuosity over 400 m reaches 

upstream and downstream of connecting tributary streams. In 9 out of the 12 cases there is 

a slight decrease in channel sinuosity along the 400 m reach downstream of a connecting 

tributary stream, regardless of the relative catchment size of the connecting tributary 

stream (B11, B9, K7, K3, B19, K12, K6, K1, K8; Figure 6.10). The influence of tributary 

junction streams on trunk channel width is not clear. Several trends in variation in trunk 

channel width upstream and downstream of tributary junctions are indicated in Figure 

6.11a-d. In some cases there is a decrease in channel width toward a tributary junction 

('Upstream', Figure 6.11a and d), followed by a downstream increase or decrease in channel 

width away from a tributary junction ('Downstream', Figure 6.11a and d). In other cases
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there is an increase in channel width toward a tributary junction ('Upstream', Figure 6.11b 

and d), followed by a downstream decrease or increase in channel width away from a 

tributary junction ('Downstream', Figure 6.11b and c). There are a few cases where there is 

no apparent trend in channel width either toward or away from a tributary junction (e.g. 

B11, Figure 6.11a; K3, B2, Figure 6.11c). In most cases, the trends indicated above occur 

regardless of tributary catchment size.

Figure 6.10: Trunk channel sinuosity calculated for channel reaches 400 m upstream and downstream of 
tributary stream junctions. The tributaries are arranged in order of increasing catchment size (indicated above 
the bars in km2), such that B11 has the smallest catchment area and K8 and B12 collectively have the largest 
catchment area.
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Figure 6.11: Trends in variation of trunk channel width, 400 m upstream ('Upstream') and downstream 
('Downstream') of connecting tributary streams of different catchment size. The figures are grouped according 
to similarity in trends (a)-(d).

The variation in trunk channel width upstream of and downstream of a tributary junction at 

the scale of a 400 m reach, may be explained in some cases by other controlling variables, 

such as changes in valley width and relative channel and floodplain confinement, the effect 

of impingement of alluvial fans on the trunk from opposite sides of the valley and possibly 

by variation in artificial stream channelization. In the case of tributary K2 and B3 (Figure 

6.11c), the valley narrows considerably downstream of where the tributary joins the trunk 

stream, which may explain the decrease in channel width downstream of the tributary 

junction. For tributary K6 (Figure 6.11a), the channel divides into two major anabranching
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channels directly downstream of where K6 joins the trunk channel, resulting in an increase 

in active channel width, also explaining the increase in channel width downstream of the 

tributary junction. In the case of K8 and B12 it is evident that the trunk channel is confined 

where the alluvial fans of the two tributaries impinge upon the trunk stream, but the 

channel loses confinement shortly downstream resulting in channel widening. Thus the 

trunk channel is relatively narrow in the vicinity of the impinging fans, but increases in width 

from 150 to 400 m downstream of the tributary junction

6.4 Discussion

6.4.1 Controls on the pattern and degree of tributary-trunk connectivity 

Valley morphology and tributary catchment size and slope
The average longitudinal slope of the Baviaanskloof River thalweg along the study reach falls 

within the moderately sloping 'Upper Foothills' class of the geomorphological (longitudinal) 

zonation system developed for South African rivers by Rowntree and Wadeson (2000). This 

class of river means that runoff and erosion is relatively high due to the steep nature of the 

catchment. In the Baviaanskloof, the floodplain and river channel are much lower sloping 

than the surrounding tributary catchments. The effects of valley floor faulting may be one 

explanation for the relatively low slope of the valley floor. The steep nature of the 

catchment surrounding the study reach means that water and sediment are delivered with 

high energy to the valley floor, following which deposition occurs on alluvial fans and the 

river bed, as transport capacity and competence decrease. Valley morphology has thus been 

a key feature determining the presence of buffers and barriers to water and sediment 

transport for the study reach. These features would have been important in increasing the 

resilience of the trunk stream to storm events occurring in the surrounding mountain 

catchment, prior to widespread channel incision.

The significant difference in the slope, size and connectivity of tributary streams on the 

north versus south side of the river valley is largely owing to the morphology of the river 

valley, which is indirectly controlled by the variable resistance to erosion of different 

lithological units that outcrop along the valley. The northern Baviaanskloof Mountains are 

considerably shorter and steeper than the southern Kouga Mountains due to relatively 

resistant quartzitic sandstone that characterizes the northern side of the river valley. As a
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result, northern tributaries are significantly steeper and their catchments smaller than the 

southern tributaries. The southern tributaries flow through longer and lower sloping 

mountains which have formed on more easily weathered lithologies than the quartzitic 

sandstone on the northern side of the valley. As a result, the southern tributaries are larger 

on average in catchment area, resulting in larger tributary fans than on the northern side of 

the river valley. The southern fans thus extend further across the valley floor, such that the 

trunk channel is more frequently influenced by these fans as they impinge on or become 

impinged upon by the trunk channel as it shifts from north to south across the floodplain.

The different morphological characteristics of the northern versus southern tributary 

streams and fans, has resulted in different fan slopes (Bobbins 2011). Bobbins (2011) 

conducted a study of alluvial fan morphology in the Baviaanskloof for fans along the upper 

and middle reaches of the catchment, including the study reach. Bobbins (2011) concluded 

that the northern fans are generally steeper and smaller than fans on the southern side of 

the valley, similar to the findings presented in this research for the study reach. There is 

thus a clear relationship between tributary catchment size, tributary stream slope and 

tributary fan size and slope. The catchment size of tributary streams determines whether a 

tributary is able to connect to the trunk stream following truncation by the trunk stream, 

and associated base-level lowering of the tributary (Harvey 2012). The larger size of the 

southern tributary catchments and fans has been a key factor in determining the higher 

degree of connectivity of these tributaries to the trunk channel, since these tributaries will 

have a higher discharge during storm events than the northern tributaries.

The results of this chapter have also indicated that the position of the trunk channel on the 

floodplain is an important control on the pattern and degree of tributary-trunk connectivity 

and impingement of the trunk channel on tributary fans. This is supported by the findings of 

Bobbins (2011) who suggested that the lateral migration of the trunk stream across the 

floodplain explains why nearly all alluvial fans are toe-trimmed along the study reach. 

Episodic fan toe-trimming has thus been an important factor influencing the timing and 

degree to which a tributary becomes connected to the trunk channel. The process of 

tributary-trunk connected may be considered in three phases:

1) Tributary streams enter the valley floor and flood-out depositing coarse debris in a 

cone shape across the floodplain. Over time, tributary fans intermittently prograde
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across the floodplain during large flood events toward the active channel zone, 

within which the trunk stream laterally migrates.

2) Lateral migration of the trunk channel during flood events results in impingement of 

the trunk stream upon one or more tributary stream fans. The trunk stream, 

influenced by the localized topography created by prograding fans, begins to erode 

through fan sediments during successive flood events.

3) During channel widening in the 1970s, the river would have further truncated the 

fans, lowering the local base-level of fan streams. The southern fans with larger 

tributary streams would have been powerful enough to connect to the river channel, 

as they attempted to establish an appropriate gradient in response to the 

establishment of a new base-level, largely defined by the newly truncated fan toe.

The above process explains why most of the southern tributaries are connected to the

Baviaanskloof River at present and have been toe-trimmed.

Human influences

The results of Chapter 5 indicated that many of the larger tributaries on the southern side of 

the valley have been artificially channelized toward the trunk stream such that they are 

well-connected. This bias is due to the preferential selection of the southern alluvial fans for 

cultivation since these fans are large and gently sloping, and generally comprise finer- 

grained sediments than the more steeply sloping northern fans. In an attempt to protect 

cultivated lands farmers have built berms on either side of many of the southern tributary 

streams, thus channelizing flood flows

toward the trunk stream and enhancing fan entrenchment. These human influences have 

enhanced the role of the southern fans as sources of coarse sediment and water to the 

trunk stream during flood events.

Rainfall patterns and flooding magnitude and frequency
The flow regime of the Baviaanskloof along the upper-middle reaches of the floodplain 

closely follows that of an intermittent stream, as indicated in Chapter 5. At present the river 

along the upper-middle reaches flows for part of the year following large rainfall events, 

although the river may flow for a year or more during wet periods when groundwater levels 

are high (P Kruger, pers. comm., 2013; Glenday 2015). The braided pattern of the
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Baviaanskloof River reflects the flashy nature of river flows (Bridge 2003; Bertoldi et al. 

2010). During the peak of flood flows, coarse sediment connectivity is increased and 

channel morphological change is relatively common, as would be expected for a 'flashy' bed 

load system (Bertoldi et al. 2010). During the waning phase of floods coarse sediment is 

stored in varying landforms such as alluvial fans and flood-outs on the floodplain, and in 

bars, riffle sequences and sedimentation zones along the channel. These varying sediment 

stores form buffers and barriers to coarse sediment transfer over several years to decades 

between the occurrence of moderate and large floods that previously induced coarse 

sediment transport and morphological change (Fryirs et al. 2007a).

The spatial and temporal variability of rainfall in the Baviaanskloof produces variable spatial 

and temporal patterns of flow and coarse sediment connectivity. Several authors describe 

coarse sediment connectivity in high-energy systems such as the Baviaanskloof, as pulses or 

waves of bed load movement during efficient, near-bankfull to flood events (Hooke 2003; 

Fryirs et al. 2007a; Fryirs et al. 2007b; Fryirs and Gore 2013). The high degree of hillslope- 

channel and tributary-trunk connectivity means that floods are highly effective in switching 

on sediment delivery to the channel network and inducing channel morphological change 

along the trunk stream, as observed and reported by landowners during the course of this 

study. This effectiveness has been considerably enhanced by human channelizing features 

that serve to increase the power of storm flows, together with connectivity enhancers such 

as entrenched alluvial fans and a deepened trunk channel, which has further enhanced 

storm flow power and coarse sediment connectivity.

Chapter 3 indicated that rainfall varies along a west-east and south-north gradient for the 

upper-middle reaches of the Baviaanskloof catchment. The study reach is thus subject to 

spatially variable water and sediment connectivity. For example, the south-north rainfall 

gradient means that tributaries on the southern side of the river valley are more important 

sources of discharge and coarse sediment delivery to the trunk channel during storm events, 

than northern tributaries, since mountains to the south receive higher average rainfall than 

the northern mountains. The greater contribution of water and sediment from the southern 

mountains would be enhanced by the larger catchment area and higher degree of 

connectivity of the southern tributaries compared to the northern tributaries.
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Given the degraded nature of hillslope vegetation along the study reach, it is unlikely that 

woody vegetation will respond to annual or decadal-scale variation in rainfall (Draaijer 

2010), as might be expected under near-pristine to pristine conditions. Thus, during 

relatively wet climatic phases lasting for several years, hillslope-channel connectivity would 

be expected to be relatively high compared to dry periods when runoff and erosion are 

expected to decrease. During these wet periods hillslope runoff and sediment yields would 

easily transfer to the trunk channel through gully networks and connecting tributary 

streams, resulting in heightened stream instability. Contributions of runoff and sediment 

delivery during these wet periods is assumed to be highest for the hillslopes on the southern 

side of the river valley, since these are the most degraded in terms of vegetation cover 

removal.

6.4.2 Localised impacts of tributary connectivity on trunk channel process, form and 
sensitivity

The spatial pattern of tributary-trunk and associated coarse sediment connectivity along the 

study reach described above means that the southern tributaries are a more important 

control on trunk channel process, form and sensitivity to either erosion or aggradation. 

These southern tributaries effectively supply more water and coarse sediment to the trunk 

stream, and most of the tributary fans of these streams are currently impinged upon by the 

trunk channel. In general, the study reach is characterised by a high degree of water and 

sediment connectivity, which has resulted in widespread channel degradation in recent 

years. However, the tributary streams that connect to the trunk channel also exert reach to 

sub-reach scale control on channel process, form and sensitivity, by influencing channel 

slope, sinuosity and patterns of channel width upstream of and downstream of a tributary 

junction.

The reach to sub-reach scale impacts of connecting tributary streams was variable along the 

study reach. Some tributary streams that connect to the trunk stream promote a 

downstream steepening of bed slope and widening of the trunk channel, whilst others 

promote a downstream decrease in channel bed slope, indicating the importance of 

tributary stream junctions in determining the sensitivity of the trunk channel to 

morphological change. This form of control was particularly noticeable at the sub-reach 

scale where pronounced channel incision has occurred downstream of two laterally
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impinging tributary streams and fans. The changes in planform downstream of tributary 

stream junctions indicates that the trunk stream attempts to accommodate either increased 

discharge or sediment delivered from connecting tributaries, or a local base-level created by 

laterally impinging alluvial fans, by adjusting sinuosity, channel width and depth (slope).

The above findings are similar to that of other upland catchments, in which tributary-trunk 

connectivity has been an important control on recent trunk channel morphodynamics. 

Farraj and Harvey (2010) found that in the Bowderdale Beck, an upland catchment in NW 

England, local widening and braiding of the channel occurred downstream of major 

sediment supply points attributed to connecting tributary streams. Similarly, Harvey (2007b) 

described the response of two upland catchment channels in NW England to a 100-year 

flood event that resulted in large inputs of coarse sediment to trunk channels from 

upstream and tributaries. The trunk channel responded by widening and switching from a 

single to a braided channel form. Bravard (2010) demonstrated that braiding in the River 

Rhone occurs downstream of tributaries supplying coarse sediment to the trunk channel, 

and that connecting tributaries are an important control on the river longitudinal slope, by 

influencing bed load flux.

The response of the Baviaanskloof River to tributary stream junctions is variable in 

magnitude for different channel reaches. In most cases, trunk channel sinuosity decreases 

albeit only slightly, downstream of a tributary junction. This indicates the adjustment of the 

trunk to excessive inputs of coarse sediment from tributaries, resulting in widening and 

associated channel straightening downstream of tributary sediment supply points (Brierley 

and Fryirs 1999; Farraj and Harvey 2010). At the sub-reach scale, trunk channel width may 

either increase or decrease upstream of and toward a tributary junction or downstream of 

and away from a tributary junction, and in some cases there is no apparent influence of a 

tributary junction on trunk channel width. It is expected that trunk channel width would 

decrease toward the junction of a tributary fan and stream, as the trunk stream deposits 

sediment in response to the local base-level formed by the tributary fan (Joubert and Ellery 

2013). It is also expected that trunk channel width would initially increase and then 

decrease downstream of and away from a tributary junction, as the channel expands in the 

immediate vicinity of the tributary to accommodate increased discharge and coarse 

sediment (Farraj and Harvey 2010). However, the aforementioned trends were only
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indicated for approximately half of the tributary junctions along the study reach, whilst the 

others indicated contrasting trends in channel width upstream and downstream of 

connecting tributaries. The variable influence of tributary junctions on trunk channel 

sinuosity, slope, and width, makes it difficult to predict the influence of different sized 

tributary stream junctions on trunk channel process, form and change. However, it is clear 

that tributary streams, particularly the larger ones, influence trunk channel process and 

form, the nature of which is dependent upon the interplay with local geomorphological and 

artificial variables.

Tributary junction fans influence the behaviour of the Baviaanskloof River by influencing 

channel confinement where they enter from either side of the valley, and local floodplain 

and channel slope, where they impinge upon the trunk stream. The trunk channel has toe- 

trimmed most of the tributaries along the study reach (Bobbins 2011), indicating that 

tributary fan junctions are important localized controls on trunk channel sensitivity to 

erosion where they impinge on the trunk. The fans initiate a localized (over several hundred 

meters) downstream steepening of floodplain slope, to which the trunk channel has 

adjusted by deep incision. Tributary fans have thus been important in initiating local slope 

thresholds of erosion, where the trunk channel became impinged on one or more fans.

The frequency of tributary stream junctions, along with variations in valley confinement and 

floodplain slope, influence river style and associated geomorphological behaviour at larger 

scales (over several thousand meters). Three major river styles were defined for the trunk 

stream along the study reach, adapting the approach of Brierley and Fryirs (2000, 2005). The 

most unstable of these styles occurs along the middle of the study reach, where valley width 

is widest and where the frequency of connecting tributary streams is highest. The transfer 

and floodplain accumulation styles identified at the head and lower-reaches of the study 

reach are less sensitive to geomorphological change where they are characterised by a more 

confined floodplain and lower frequency of connecting tributary streams. These findings 

have implications for understanding river sensitivity and for prioritizing river-floodplain 

interventions for the study reach.

The complex nature of trunk channel adjustment to connecting tributary streams in the 

Baviaanskloof is not uncommon for ephemeral or intermittent flowing gravel-bed streams 

(Hooke 2015), and may be explained by a complex set of interacting factors including:
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■  The available stream power and related capacity and competence of the receiving 

trunk channel reach to transport the sediment being supplied. This relates to the size 

of a tributary and associated magnitude of water and sediment inputs relative to 

discharge and channel slope of the receiving trunk channel reach. For example, if a 

receiving trunk channel reach has a low capacity/competence relative to tributary 

sediment inputs, then localised deposition will occur, leading to down-valley slope 

steepening.

■ The relative amounts of water and sediment supplied by one or more tributaries and 

upstream river reaches. For example, if water inputs to a particular reach are high 

relative to coarse sediment load, then local channel widening or deepening may 

occur together with transport of sediment through the receiving reach, resulting in 

slope reduction downstream. Sediment deposition will occur further downstream 

where stream competence decreases (e.g. along a relatively wide, gently sloping 

channel reach).

■ The resistance of bed and bank materials to erosion is an important factor 

determining the propensity for channel adjustment (Hawley et al. 2012) at tributary 

confluences. Along the study reach, the superimposition of the trunk upon palaeo- 

channel gravels has limited the degree of trunk channel degradation (vertical and 

lateral erosion). In contrast, reaches with less resistant bank and bed sediments, 

comprising silts and sands, have been able to adjust relatively rapidly through deep 

(up to 6 m deep) degradation of the floodplain.

■ Local variations in valley width and relative floodplain width and the confining 

influence of tributary fans that impinge on the trunk channel from opposite sides of 

the river valley.

■ Possibly, varying intensity of human channel engineering along the study reach 

which influences trunk channel behaviour and associated width, slope and sinuosity.

In summary, the results of this chapter have indicated that tributary stream junctions have 

three main impacts on trunk channel process, form and sensitivity:

1) A connecting tributary may induce a downstream steepening of channel bed slope, 

where the transport capacity and competence of the receiving channel reach is 

insufficient to transport the coarse sediment being supplied by the connecting
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tributary. This scenario increases the sensitivity of the trunk channel to erosion over 

time as deposition increases slope slope along the channel bed in a downstream 

direction.

2) Channel widening occurs over a short distance downstream of a junction as the 

trunk stream attempts to accommodate increased discharge and coarse sediment 

load from a connecting tributary stream. Over time, downstream coarse sediment 

deposition may result in channel bed steepening and increased capacity to transport 

coarse sediment downstream.

3) Channel bed deepening and bed slope lowering occurs if the transport capacity of 

the receiving trunk channel reach is higher than is necessary to transport the coarse 

sediment being supplied by the connecting tributary stream.

All of the above scenarios were observed along the trunk channel to varying degrees, 

indicating that the Baviaanskloof River has been sensitive to the impacts of connecting 

tributary streams and associated coarse sediment connectivity in recent years.

6.4.3 Slope thresholds of river sensitivity

In the Baviaanskloof, coarse sediment connectivity driven largely by episodic high- 

magnitude flood events and the engineering of stream channels by humans, have been 

important in initiating threshold breaches and a switch to channel braiding and degradation 

in recent years (Godfrey et al. 2008). Channel widening, bed lowering and braiding in the 

Baviaanskloof thus represent the response of the trunk stream to increased inputs of water 

and coarse sediment from connecting tributary streams (Ashmore 2013). River channels 

adjust morphology (cross-section dimensions, gradient, and planform) in order to obtain 

just enough energy to transport the caliber and amount of sediment being supplied to the 

channel. This state of approximate balance between variables of discharge, sediment load 

and channel geometry has been termed 'quasi-equilibrium' (Langbein and Leopold 1964; 

Van De Wiel and Coulthard 2010). The distinct pattern of longitudinal slope of the 

Baviaanskloof River and floodplain and changes in channel planform, reflects the attempt of 

the river to approximate an overall quasi-equilibrium state such that coarse sediment is 

continually pulsed through the channel network, albeit in a 'stop-start' fashion during 

episodic flood events. Harvey (2007b) noted that for the two upland catchments, coarse 

sediment was transported downstream in a wave-like form as a result of localized erosional
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and sedimentation zones. In the Baviaanskloof it appears that coarse sediment moves in a 

similar wave-like fashion to that described by Harvey (2007b), and is locally eroded and 

deposited in features of varying size including channel bars and riffles (tens of meters in 

length) to sedimentation zones several kilometers long. The result is a downstream pattern 

of gentle and steep sloping channel reaches and alternating narrow or wide channels. This 

quasi-equilibrium state manifests as a relatively uniform overall longitudinal profile with a 

particular gradient (0.0067 m/m) which has been maintained for both the pre-degradation 

and post-degradation state. However, local-scale slope thresholds were identified during 

this study, which have been important in defining local-scale response of the trunk to 

connecting tributary streams. The maximum slope of the trunk channel thalweg identified at 

the sub-reach scale and local scale was approximately 0.0075 m/m. It is thus suggested that 

a thalweg slope of 0.0075 m/m is the threshold for channel erosion over reaches several 

kilometers to several hundreds of meters long. Alternatively, the minimum thalweg slope 

observed at the sub-reach to local scale of 0.0052 m/m, indicates that this is the minimum 

slope towards which a degrading channel reach will proceed before switching to channel 

bed aggradation (Van De Wiel and Coulthard 2010).

The present-day enhanced levels of sediment and water connectivity means that the river 

and surrounding catchment may be relatively sensitive to natural and anthropogenic 

disturbances that enhance flow magnitude and coarse sediment delivery to the channel 

network. Disturbance responses initiated along the trunk channel may propagate easily 

through surrounding tributary streams and gully catchments that connect to the trunk 

stream (Fryirs et al. 2007b).

6.5 Conclusion

In the Baviaanskloof, coarse sediment connectivity is a critical determinant of the sensitivity 

of the river-floodplain to morphological change at the reach, sub-reach and local scales. The 

river has adjusted to increased discharge and coarse sediment inputs from tributary streams 

and gullies at multiple nested spatial scales. These scales include the entire study reach 

comprising a stretch of 25 km of river channel, to the channel sub-reach scale, comprising 

several thousands of meters of channel length, to the channel local scale, comprising several 

hundreds of meters of channel length.
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The spatial and temporal variability of coarse sediment connectivity results in variable river 

channel morphology, river style, and geomorphological sensitivity in space and time. From a 

spatial perspective, the southern tributaries show a higher degree of connectivity with the 

trunk channel, controlled by tributary catchment size, higher incidence of rainfall events, 

and numerous hillslope gully networks, on the southern side of the river valley. These 

factors have resulted in increased runoff and sediment supply to the southern tributaries. 

Furthermore, human engineering of the southern tributaries and fans has increased the 

degree of tributary-trunk stream connectivity. Downstream variations in the frequency of 

connecting tributary streams has influenced downstream patterns of river style and 

associated sensitivity to geomorphological change. Within a temporal context, connectivity 

is determined by the episodic nature of rainfall events such that coarse sediment pulses 

through the system during flood events of differing magnitude and frequency, where 

sediment is stored on the trunk channel bed over periods of several months to years in 

between high-magnitude events. The trunk channel self-regulates internal coarse sediment 

transport capacity through local morphological adjustments that result in an overall quasi

equilibrium channel and floodplain slope of 0.0066 m/m.

Drawing from the results of Chapters 4, 5 and 6 of this thesis, it is suggested that the 

sensitivity and nature of channel morphological adjustment of the Baviaanskloof River along 

the study reach is controlled largely by:

1) The relative magnitude of water and coarse sediment inputs to the trunk channel 

from one or more connecting tributary streams, which determines whether the 

receiving channel reach has excess or insufficient capacity to transport coarse 

sediment to downstream reaches. A sediment deficit relative to available discharge 

will result in morphological adjustment in the form of widening and slope lowering, 

and a sediment excess relative to available discharge results in sediment deposition 

on the channel bed and associated downstream steepening of channel bed slope.

2) The physical structure of the receiving channel reach is related to bed slope, channel 

width and depth, and the degree of armouring of the channel bed and banks to 

erosion, all of which influence coarse sediment transport capacity and competence, 

and the resilience of the channel boundary to erosive forces that result in channel 

morphological change.
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3) The degree of human stream flow channelization which increases sediment 

transport capacity relative to sediment supply making the channel more sensitive to 

morphological adjustment.
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CHAPTER 7: A PROCESS-BASED EVALUATION OF RIVER REHABILITATION IN THE 
BAVIAANSKLOOF AND RECOMMENDATIONS FOR IMPROVED PRACTICE

7.1 The context for process-based river rehabilitation

In their book entitled "River Futures: An Integrative Scientific Approach to River Repair", 

Brierley and Fryirs (2008) identify a recent shift in approach to river management from 

largely command and control of river form and condition, to working with ecosystem 

processes that promote natural river recovery and increased resilience to disturbances. This 

shift in thinking within the discipline has resulted from the experience that 'command and 

control', or form-based measures, often fail to achieve a set rehabilitation goal and 

sometimes enhance the problem at hand (Wohl et al. 2005). The process-based approach to 

river rehabilitation is now considered fundamental for sustainable and effective recovery of 

ecological condition in degraded streams (Brierley and Fryirs 2005; Wohl et al. 2005; 

Beechie et al. 2010; Mika et al. 2010). Along with this shift in thinking, has been increasing 

recognition of the role of geomorphological processes as an underlying determinant of the 

ecological functioning of rivers, by determining for example habitat diversity and fluxes of 

sediment and nutrients that influence biotic communities (Gilvear 1999; Brierley and Fryirs 

2000; Florsheim et al. 2008). There is thus an emerging school of river science focused at 

concepts and tools for planning and implementing geomorphological process-based 

rehabilitation, targeting processes occurring across a range of spatial and temporal scales of 

a catchment (Brierley and Fryirs 2000; Newson 2002; Brierley and Fryirs 2008; Fryirs and 

Brierley 2009; Rosgen 2011; Fryirs et al. 2012; Fryirs and Gore 2013). Within this school of 

thought, several authors have stressed the importance of understanding the 

geomorphological history of a targeted river, the geomorphological mechanisms by which 

channel adjustment occurs, and the potential future geomorphological trajectory of the 

targeted river (Fryirs and Brierley 2009; Fryirs et al. 2012; Campana et al. 2014).

In mountainous catchments such as the Baviaanskloof, high-energy and variable stream 

flows promote episodic coarse sediment fluxes and channel instability at annual to inter

annual time scales (Hooke 2003; Fryirs et al. 2007a; Wohl 2010). Hence, the use of structural 

interventions such as weirs and bank revetments to halt erosion and reinstate a particular 

channel-floodplain condition is discouraged as such interventions are costly due to the need 

for continual maintenance work (Wohl et al. 2005; Galia et al. 2016). Moreover, many
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rehabilitation projects in human disturbed catchments attempt to regain a pre-disturbance 

condition, without considering how the controls on channel behaviour (e.g. runoff and 

sediment regime) may have changed over time, thus altering the behavioura l regime of the 

contemporary river (Brierley and Fryirs 2005; Hughes et al. 2005). The unpredictability of 

these types of systems makes it difficult to set restoration goals where a river channel may 

shift towards one of several potential stable states (Kondolf et al. 2001; Hughes et al. 2005).

Some common structural interventions employed in high-energy fluvial environments for 

rehabilitation purposes include the creation of secondary channels that disperse flows 

across a floodplain, removing bank protections and re-injecting gravel to raise the channel 

bed and promote channel-floodplain reconnection ('1', Table 7.1). Bed and bank 

stabilization is often promoted by reconstructing a sinuous, meandering channel, planting 

log stands, or installing concrete groins on eroding channel banks ('2', Table 7.1). A common 

approach to channel bed stabilization in high- to medium-energy gravel-bed streams is the 

construction of artificial pool-step or pool-riffle features. These features naturally form in 

gravel-bed streams as a result of self-organization as a stream attempts to stabilize the 

channel bed ('2', Table 7.1; Plate 7.1). The aforementioned bed features exist naturally in 

streams characterised by a flashy flow regime, coarse bedload, and channel reach slopes of 

3-7% for step-pool features (Maxwell and Papanicolaou 2001; Chin et al. 2009; Yu et al. 

2010), and <3% for pool-riffle features (Montgomery and Buffington 1997; A Riley, pers. 

comm., February 2016). The aforementioned bed features may promote relative channel 

stability along degrading channel reaches by controlling flow energy, but only when they are 

artificially constructed to be adjustable and mobile (Chin et al. 2009; Yu et al. 2010). Many 

of the above interventions may induce channel recovery over localized reaches and over 

relatively short time periods, but, they often lack recognition of upstream, downstream and 

hillslope processes that may promote or undermine recovery at the channel reach-scale.

195



Table 7.1: Examples of common types of rehabilitation interventions employed in degraded, high-energy 
catchments, as identified in the literature.

Approach Target area/process Description of intervention

Fo
rm

-b
as

ed

1. Channel-
floodplain
connectivity

■  Creation of multiple or secondary channels or re-connection of 
side-arms or oxbows that promote floodplain re-wetting 
(Bravard et al. 1999; Luderitz et al. 2011);

■  Channel widening and raising stream bed by re-injecting gravel 
(Campana et al. 2014);

■  Levee setbacks or removal combined with creation of an 
intermediate terrace to encourage floodplain re-wetting in 
incised channels (Haltiner and Beeman 2003; Luderitz et al. 
2011; Guida et al. 2014).

2. Channel bed and 
bank stability

■  Reconstruction of a sinuous, meandering channel (Kondolf et al. 
2001);

■  Removal of bank protections and channel widening (Rohde et al. 
2006); groins to stabilize banks (cement or boulders) or planting 
log stands on eroding banks (Mikus et al. in press); introducing 
log jams to decrease flow velocity (Bennett et al. 2015);

■  Building artificial step-pool, riffle-pool or log step features (Lenzi 
2002; Chin et al. 2009; Yu et al. 2010);

■  Cement or gabion weirs or drop structures (Haltiner and Beeman 
2003).

Pr
oc

es
s-

ba
se

d

3. River reach 
processes

■  Dynamic process conservation areas and riparian buffers: allow 
floodplain connectivity, and natural channel processes- widening 
and avulsions (Florsheim et al. 2008);

■  Flow deflectors made of reed stands/woody debris/groins that 
promote flow variation and channel sinuosity (Bravard et al. 
1999; Radspinner et al. 2010).

4. Catchment-level 
processes

■  Efforts to decrease soil erosion and run-off on degraded
hillslopes through: re-forestation, stone and soil bunds, terraces 
and (Asfaha et al. 2016).

Process-based or 'soft' approaches to rehabilitation are often effective in achieving river 

recovery since they consider the fluvial system as a nested hierarchy of geomorphological 

process zones that should be considered when attempting to reinstate or enhance 

geomorphological and hydrological processes across different zones (Brierley and Fryirs 

2008). This approach requires longer periods of investigation of the key geomorphologic 

processes and structure at different hierarchies determining channel dynamics and 

sensitivity at the reach scale. The process-based approach may also require a broader suite 

of rehabilitation interventions in attempting to aid the system toward a resilient state. 

Process-based approaches that include instating dynamic process zones and wide riparian
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buffers, that give a river opportunity for natural adjustment, and targeting hillslope runoff 

and erosion processes ('3', '4'; Table 7.1), are less commonly found for high-energy 

mountain streams. Such approaches may or may not be cheaper than structural 

interventions, depending on the scale at which rehabilitation is required, but the process- 

based approach is more effective and sustainable in achieving ecological recovery and 

resilience.

ba

c

|/V*r • \

ru.

Plate 7.1: Rehabilitation of an incised channel reach (a), along East Alamo Creek in California. The re-shaped 
channel and floodplain and creation of artificial step-pool features are indicated (b), and the rehabilitated, 
relatively stable channel (c); (Photos by Jeff Haltiner).

Chapter 2 introduced two useful conceptual tools for guiding process-based river 

rehabilitation: 1) the river styles framework (RSF) of Brierley and Fryirs (2000, 2005), and 2) 

the concept of water and sediment connectivity (Brierley et al. 2006; Kondolf et al. 2006; 

Fryirs et al. 2007a; Fryirs et al. 2007b; Fryirs and Gore 2013). The concepts have been 

applied within a few river catchments in Australia, the UK and the USA, but have not been
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applied across a range of different types of rivers with regards to river-floodplain 

rehabilitation.

In 2009 the Baviaanskloof River-floodplain along the study reach was targeted for floodplain 

wetland rehabilitation by the statutory agency, Working for Wetlands (WfWet), following 

which gabion weir interventions were implemented between 2012 and 2016. The aim of 

this chapter is to evaluate the WfWet approach to river-floodplain rehabilitation drawing on 

knowledge that has been generated during the present study and the principles of process- 

based rehabilitation exemplified by the river styles and connectivity frameworks.

To fulfil the above aim, the objectives are to:

1) Develop a conceptual model illustrating the interaction of adaptive 

geomorphological cycles across different scales of the study reach, highlighting the 

role of connectivity and human and climatic drivers of threshold breaches and phase 

changes in these adaptive cycles. From the conceptual model and results of this 

study, future geomorphological behaviour of the river-floodplain will be predicted 

based on an understanding of historical and present-day river styles, for the trunk 

and distal reaches of tributaries, and the connectivity of water and sediment.

2) Evaluate the WfWet approach to river-floodplain rehabilitation planning and 

implementation within the process-based rehabilitation framework (hereafter 

referred to as PRF) using information generated under objective 1.

3) Develop a conceptual model of PRF for the Baviaanskloof along the study reach, 

drawing on principles of the RSF and geomorphological connectivity, and make 

recommendations for strategic rehabilitation areas that could be targeted in the 

future for increasing the geomorphological resilience of the study reach.

7.2 Approaches to river and wetland rehabilitation and conservation in South Africa

As indicated in Chapter 1, South Africa has two main programmes focused at river and 

wetland rehabilitation and conservation management, the RHP and the WfWet Programme. 

Each of these programmes has historically focused on biotic and hydrological aspects of 

rehabilitation with very limited attention to geomorphological processes that are important 

for driving ecosystem functioning and dynamics. Several research initiatives adopted in
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recent years have resulted in increasing knowledge and tools for geomorphological 

assessment and management of rivers and wetlands in South Africa.

The RHP assesses several components of the river environment including: invertebrate and 

fish diversity, riparian vegetation structure, habitat integrity, water quality, hydrology and 

geomorphology. From a geomorphological perspective, the RHP incorporates several 

geomorphological tools which assist with defining the ecological condition of a river and 

monitoring changes in condition over time, and for defining instream flow requirements 

(IFRs) for maintaining ecosystem health, as legislated under the National Water Act of 1998. 

The nature and purpose of each of the geomorphological tools that guide monitoring under 

the RHP is outlined below.

Geomorphological assessment tools under the River Health Programme

1) Geomorphological framework for determining instream flow requirements;
(Rowntree and Wadeson 1998; Wadeson and Rowntree 2005):

Rowntree and Wadeson (1998) developed a tool to assist the determination of the

magnitude-frequency of low flows, including introduction of short-lived flow increases or

floods that move sediments, which are important for maintaining geomorphological form

and diversity of a river, and hence habitat conditions for healthy ecosystem functioning.

Four metrics are assessed within the geomorphological framework:

1) Catchment conditions (land-use, vegetation cover etc.) that determine the potential 

for morphological change of a river in the near future;

2) The geomorphological characteristics of the river network such that representative 

reaches can be selected for defining for defining IFRs;

3) The frequency and magnitude of flow discharges that maintain channel form and 

morphological diversity using hydraulic models for each IFR site;

4) Potential impacts on instream flow regime and channel morphology of water-use 

interventions such as inter-basin transfers and dams.

The tool was further refined by Wadeson and Rowntree (2005) for determining IFRs for the 

Ecological Reserve, legislated under the NWA of 1998.
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2) Geomorphological classification of South African rivers (Rowntree and Wadeson 
1999; Rowntree et al. 2000):

Under the above classification system, two generic models are presented to aid 

geomorphological zonation and classification of rivers in South Africa. The first model 

classifies whole river systems within a nested hierarchical framework according to 

topographic position along the longitudinal profile of an entire river basin (i.e. source zone 

or lowland zone). The second model hierarchically divides a single catchment to indicate 

interlinked process zones at different spatial scales: catchment -  zone -  segment - reach - 

morphological unit - hydraulic biotopes. The first model provides a generic classification 

system that can be used to group similar river catchments for comparison during monitoring 

and rehabilitation works under the RHP. The second model recognizes process linkages 

within a catchment that influence channel reach scale geomorphological processes and 

behaviour. The model was developed to guide holistic catchment management and for 

determination of IFRs under the RHP.

3) An index of stream geomorphological condition (Rowntree and Ziervogel 1999;
Rowntree and Wadeson 2000)

This index of stream geomorphological condition provides a measure of the degree to which 

a channel reach has been altered from the natural condition and monitors changes in 

geomorphological condition over time due to natural processes or human disturbances. The 

index includes several metrics: a channel classification metric (e.g. bedrock channel vs. 

alluvial channels) based on the Rowntree et al. (2000) hierarchical classification of rivers; a 

channel stability index that defines the potential for morphological change at a particular 

channel site due to natural processes or human impacts; and an index of channel condition 

(based on bed and bank conditions and diversity of hydraulic habitats) which is monitored at 

regular intervals. The index of geomorphological condition was further improved to 

contribute to assessment and monitoring of changes in the ecological state of rivers 

monitored under the RHP (Kleynhans and Louw 2007).
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4) G eom orphologica l reference condition/driver assessm ent index  (du Preez and 
Rowntree 2006; Rowntree et al. 2013):

The Geomorphological Driver Assessment Index (GAI) is a modified version of Rowntree and 

Wadeson's (2005) geomorphological condition index described above. It was developed for 

the RHP for comparing present ecological state with regards to geomorphologic condition 

(processes and forms), to a derived reference condition representing minimal human impact 

and the natural array of processes and biota that should be expected for a particular river 

type (du Preez and Rowntree 2006). The GAI takes a systems approach to assessing river 

history (channel form and flooding), and human impacts on various metrics. These metrics 

include examining drivers of river geomorphological condition and connectivity (catchment, 

upstream-downstream, hillslope-channel and channel-floodplain), sediment balance 

(degree of hillslope and/or channel erosion or sedimentation) and channel stability 

(conditioned by resistance of bed and bank materials, vegetation). Channel morphology is 

also assessed as a separate indicator of present ecological state in terms of altered channel 

geometry and instream and riparian vegetation. Each of the above metrics is rated in terms 

of deviation from a pre-defined reference condition. The reference condition for each of 

these attributes is derived from the Rowntree et al. (2000) zonal classification of rivers, 

which outlines the natural channel processes and geometry which should be expected for 

different types of channels.

The above GAI tool provides a useful approach to river ecological assessment and 

monitoring since catchment-scale drivers of geomorphological condition and dynamics, 

which are framed within the concept of connectivity, are included in defining the present 

ecological state and deviation from the natural condition. This knowledge may then guide 

the types of interventions required within different catchment hierarchical zones for 

effective river-wetland rehabilitation and conservation management. However, the tool has 

not been widely applied as yet from the perspective of process-based river or wetland 

rehabilitation in South Africa. In addition, the use of a reference condition to determine the 

degree to which a given river has been impacted by humans is problematic, since the 

reference condition is difficult to define and identify accurately without in-depth historic 

knowledge of the range of behaviours of a river prior to human disturbance (K Rowntree, 

pers. comm., August 2016).
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Wetlands assessment and rehabilitation tools under the Working for Wetlands (WfWet) 
Programme

The Wetland Management Series (WMS) developed in 2009 is the most comprehensive 

guiding framework for wetland rehabilitation and conservation management in South 

Africa, and has resulted in substantial advancement toward a process-based approach. 

There are 10 tools under the WMS which form an integrative framework for process-based 

rehabilitation planning, implementation, and monitoring and evaluation of South Africa's 

palustrine wetlands. Each of the tools tackles a different component of rehabilitation and 

conservation management. For example, WET-Legal guides environmental practitioners as 

to when a wetland impact assessment and rehabilitation is required under legislation that 

protects South African water resources (Armstrong 2009); WET-Prioritise guides the 

prioritization of wetland systems for conservation management efforts at the national, 

regional and local scales (Rountree et al. 2009); WET-Health and WET-EcoServices were 

developed to guide rapid (days) assessment of ecosystem services delivery (Kotze et al. 

2009b) and present-day or future health related to impacts of human activities (Macfarlane 

et al. 2009). The tools are most commonly used during wetland rehabilitation planning in 

South Africa, usually by an experienced scientist (>5 years experience). Geomorphological 

process and form is incorporated into site assessments in minor ways, including defining 

different hydro-geomorphic units in the wetland. A hydro-geomorphic unit is defined by 

landscape setting, the absence or presence of a river channel, the nature of channel- 

floodplain processes and the dominant source of water and sediment inputs to the wetland 

(see Figure 7.1 for examples). The Wet-Health assessment includes analysis of the impacts 

and threats of human land-use activities to three primary ecosystem components: 

hydrological, geomorphological and vegetation processes and conditions. The health 

assessment is qualitative, using a scoring system to document the level of impact of 

different land-uses on the three ecosystem components. These assessments include 

estimating the extent and intensity of impacts of dams in the catchment or floodplain drains 

on wetland hydrology (hydrological module), estimating the impacts of stream 

channelization or channel infilling on geomorphological and hydrological processes, and 

documenting the extent of degradation due to the presence of an incising river channel 

(geomorphological module), and estimating the extent and impacts of alien plant invasion 

or riparian vegetation removal in the wetland (vegetation component).
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Hydrogeomorphic types Description

Source of water 
maintaining the 
wetland1

Surface Sub
surface

Floodplain Valley-bottom areas with a well defined stream channel, gently 
sloped and characterized by floodplain features such as oxbow 
depressions and natural levees and the alluvial (by water) transport 
and deposition of sediment, usually leading to a net accumulation 
of sediment. Water inputs from main channel (when channel banks 
overspill) and from adjacent slopes.

* * * *

Valley-bottom. Valley-bottom areas with a well defined stream channel but 
lacking characteristic floodplain features. May be gently sloped 
and characterized by the net accumulation of alluvial deposits or 
may have steeper slopes and be characterized by the net loss of 
sediment. Water inputs from main channel (when channel banks 
overspill) and from adjacent slopes.

* * * * j  * * *

Valiev-bottom, unchannelled Valley-bottom areas with no clearly defined stream channel, usually 
gently sloped and characterized by alluvial sediment deposition, 
generally leading to a net accumulation of sediment. Water inputs 
mainly from channel entering the wetland and also from adjacent 
slopes.

* * * * j  * * *

Figure 7.1: Examples of three commonly found hydro-geomorphic wetland types in South Africa, defined 
according to dominant source of water and geomorphic processes and form (adapted from Kotze et al. 2009b: 
17).

WET-EcoServices evaluates the degree to which a suite of ecosystem goods and services are 

delivered by a particular hydro-geomorphic wetland unit (Kotze et al. 2009b). The 

evaluation is rapid, involving desktop and field based assessments of hydro-geomorphic 

wetland type and related hydrological characteristics. These factors determine the relative 

importance of the delivery of cultural/social, regulating, supporting and provisioning 

services provided by the wetland (Kotze et al. 2009b).

WET-Origins guides the assessment of the geological and geomorphological processes that 

have led to the formation of a wetland and forms the basis of understanding the 

geomorphological processes driving both contemporary and long-term wetland dynamics. 

The tool also guides an understanding of the hydro-geomorphic aspects of ecosystem 

functioning necessary for process-based rehabilitation and catchment management (Ellery 

et al. 2009).

The remaining tools provide an overview of the principles for guiding effective and 

sustainable wetland rehabilitation and post-rehabilitation monitoring including:
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■  Planning of wetland rehabilitation from national level to local (wetland) level (Kotze 

et al. 2009c).

■ Description of different types of rehabilitation interventions for different types of 

wetlands, with different drivers of degradation (Russell et al. 2010).

■ Monitoring and evaluation of rehabilitation outcomes/impacts (Cowden and Kotze 

2009)

■ Reviewing the impacts of national level natural resource management and 

ecosystem rehabilitation programmes in South Africa that impact on wetland 

systems (Kotze et al. 2009a).

All of the above tools developed under the RHP and WfWet programmes indicate 

substantial advancement toward a process-based approach to rehabilitation and 

conservation management of South Africa's rivers and wetlands, including 

geomorphological aspects. However, there are several constraints that limit in-depth or 

comprehensive application of the tools. Firstly, the monitoring data and use of the various 

assessment tools within the two programmes are kept separate, when in fact they should 

be integrated since rivers and wetland are commonly linked in South Africa. Both riverine 

and wetland assessment tools under the two programmes should be employed when 

assessing a targeted riverine wetland. For instance, geomorphological condition assessment 

tools under the RHP may be beneficial to the planning process of rehabilitation for riverine 

wetlands under the WfWet programme. Similarly, some of the principles of Wet-RehabPlan 

could be adapted to guide a process-based approach to rehabilitation and management of 

degraded rivers monitored under the RHP. The in-depth monitoring procedures under the 

RHP should be applied to wetlands targeted by the WfWet programme since ecological 

monitoring under the latter programme is not as rigorous.

Secondly, there are usually time and political constraints that hinder in-depth application of 

the various tools that have been developed under each of the programmes. For example, to 

apply the principles of the 10 tools of the WMS is very time consuming and costly. 

Comprehensive stakeholder engagement at the catchment level may take several months. 

This time is usually not available for individual projects since wetland practitioners are often 

under strict budgetary and time constraints. These constraints include national government 

budget spending requirements and the need to achieve annual performance indicators
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which may include the number of wetlands rehabilitated or the number of gabion weirs 

built. These performance indicators are linked to the overall mandate of the WfWet 

programme of job creation and poverty alleviation set out by national government (Kotze et 

al. 2009a; DEA 2016). These political processes are difficult to alter and a hindrance to the 

advancement of process-based rehabilitation and monitoring and evaluation practice in 

South Africa. Hence, many of the WMS tools have been formulated for rapid assessment of 

wetland condition and processes, resulting in superficial knowledge of the underlying 

processes driving change and determining the functioning of the system.

7.3 Adopting a process-based rehabilitation framework in the Baviaanskloof

7.3.1 Understanding adaptive geomorphological cycles and future river behaviour

Drawing from principles of process-based rehabilitation and the concept of 

geomorphological connectivity, several key questions are posed to guide development of a 

conceptual model of process-based river rehabilitation for the Baviaanskloof, as follows:

1) Has the Baviaanskloof River and associated floodplain entered a new
geomorphological state characterised by a new set of process-form interactions and 
behavioural regime?

It is suggested that the channel has entered a new state and behavioural regime due to 

several factors. Severe to moderate degradation of more than 50% of hillslope vegetation 

along the study reach was reported by Vlok (2010). Vegetation degradation has had a direct 

impact on hillslope runoff and soil erosion processes, increasing storm discharges (van Luijk 

et al. 2013) and sediment delivery to the trunk channel. Glenday (2015) modeled the effects 

of increased hillslope vegetation cover on the hydrology of the Baviaanskloof catchment. 

The modeling results indicated decreased storm flow peaks and reduced annual discharge 

from the catchment associated with increased water retention due to increased vegetation 

cover. The subtropical thicket vegetation that occurs in the Baviaanskloof catchment is an 

ancient vegetation type (Cowling et al. 2005) which is unlikely to recover through rapid 

succession of species (Powell 2009). Thicket rehabilitation in South Africa has been 

dominated thus far by planting the hardy species P. Afra, which is often able to survive 

harsh conditions. However, most of the rehabilitation projects, including those in the 

Baviaanskloof have shown no more than 60% survivorship of P. Afra (Powell 2009). This 

relatively low survivorship together with a time lag of between 30-50 years following
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planting for P. Afra to begin to mature (Powell 2009), means that it is unlikely that hillslope 

re-vegetation will result in significant changes in catchment hydrology in the near future. 

Although it may be possible to reverse artificial increases in tributary-trunk connectivity for 

major tributaries of the study reach, it is almost impossible to reverse altered hillslope 

runoff and soil erosion linked to vegetation degradation, in the near future. There is thus 

little chance for full river-floodplain recovery to the former condition, even with human 

intervention such that the present-day behavioural regime characterized by channel 

braiding and relative channel instability may persist for several decades to come.

2) What has been the role of cross-scale interactions of geomorphological adaptive 
cycles in determining recent changes in the behavioral regime of the river?

Altered connectivity has been the means by which various geomorphological adjustment

processes and related adaptive phases of Panarchy became connected across spatial scales

of the study reach, from sub-catchment hillslopes and tributary streams to the river reach

and sub-reach scale. Figure 7.2 is a conceptual illustration of the nature of adaptive

geomorphological cycles and their interactions across different spatial and temporal scales

for the study reach.

At the hillslope scale vegetation degradation initiated a phase of increased hillslope runoff 

and erosion, resulting in the onset of gully formation from the 1960s onwards ('1', Figure 

7.2). Hillslope vegetation degradation and associated enhanced runoff would have resulted 

in breaching of discharge thresholds and tributary channel widening ('2', Figure 7.2). At the 

same time tributaries would have become better connected to the trunk stream such that 

increased storm discharges would have been experienced along the trunk channel, initiating 

a threshold breach along the trunk stream. This would have initially resulted in channel 

widening ('3', Figure 7.2), followed by a phase of channel deepening ('4', Figure 7.2) as the 

river attempted to lower its bed in response to increased stream energy. The recent 

crossing of stream power and geomorphological thresholds of change means that the river- 

floodplain has entered a creative destruction phase (Q) of an adaptive geomorphological 

cycle characterised by breakdown (destruction) of geomorphological structure, but 

opportunity for a new geomorphological state and behavioural regime (creative) during the 

reorganization phase (a ). The creative destruction phase in this case occurred as critical 

thresholds of erosion were surpassed such that an overall shift in river process and style and
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associated channel-floodplain condition occurred along the study reach. Destruction 

occurred in the form of widespread channel erosion and associated channel widening and 

deepening, decreased floodplain inundation and loss of floodplain wetland along the trunk 

channel, and alluvial fan entrenchment along tributary streams. The creative part of this 

phase has manifested as a switch to a braided channel form, with higher energy storm 

flows, higher channel instability and lower retention of water within the alluvial aquifer. 

Hence a new geomorphological state and behavioural regime now exists. The degradation 

would have been most obvious within a several hundred meter zone downstream of 

connecting tributary streams, but may have been initiated elsewhere along the trunk where 

local slope thresholds were breached. Localized head cuts that form along the trunk channel 

bed, such as at the toe of a channel bar or an over-steepened riffle, were observed to be the 

means by which degradation is transferred upstream along the trunk and tributaries, given 

that no localized bed and bank armouring is present along upstream reaches. Local-scale 

degradation would have propagated to upstream channel reaches through headward 

erosion during flood events (Simon 1994), thereby connecting local-scale channel processes.

Figure 7.2: A conceptual representation of cross-scale interactions of adaptive cycles (Panarchy) at the 
hillslope, tributary stream and fan, and trunk channel reach scale, for the Baviaanskloof. Disturbing forces 
influencing degree of water and sediment connectivity within and between the different scales are indicated 
(adapted from Holling 2001).
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Degradation processes occurring along the trunk were easily transferred to tributary fans 

that were impinged on the trunk channel as a result of trunk stream bed-level lowering and 

a drop in tributary local base-level (Fryirs and Brierley 1999; Cohen and Brierley 2000; 

Anders et al. 2005; Harvey 2012). Lowering of local base-level for tributary fan streams 

would have resulted in rejuvenation and channel incision along tributary streams ('5', Figure 

7.2), explaining why distal fan entrenchment is common along the study reach for 

connecting tributary streams (Bobbins 2011). Thus the direction of cross-scale interaction of 

geomorphological processes was reversed such that processes at the trunk channel reach 

scale were transferred to the surrounding sub-catchment scale ('revolt') creating a positive 

feedback characterised by enhanced stream power due to channel degradation and 

associated channelization of stream flows.

As a result of this positive feedback between channel degradation, channelization of stream 

flows, and enhanced stream power, many of the large tributaries on the southern side of 

the valley and some of the smaller tributaries on the northern side of the valley became 

well-connected to the trunk. This increased tributary-trunk connectivity further enhanced 

connectivity of the hillslope erosional adaptive phase with trunk stream processes, creating 

a positive feedback situation of enhanced discharge and sediment flux to tributaries and the 

trunk stream. Tributary stream erosion may then have been transferred to the hillslope 

scale through incision along gully networks already connected to tributary streams and the 

formation of knickpoints in channel banks, resulting in the formation of new gullies ('6', 

Figure 7.2).

Thus creative destruction was experienced across multiple scales resulting in reorganization 

of the geomorphological form of the study reach and a shift to a new channel behavioural 

regime. The apparent stabilization of the trunk channel in recent years suggests that the 

river is entering the reorganization phase of an adaptive cycle characterised by slower rates 

of change such that the channel may begin to accumulate sediment as gravel, sand and silt 

is episodically supplied from connecting tributaries (Simon and Rinaldi 2000; Fryirs and 

Brierley 2001; Harvey 2007a), indicating a shift toward a new growth phase in the adaptive 

cycle. Such a phase is characterised by a new geomorphological behavioural regime and 

state. This stabilization is partially attributed to a decrease in water and coarse sediment 

connectivity following decreased agricultural activities and some recovery of natural levels
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of tributary-trunk connectivity and vegetation cover from the 1990s onwards. This 

decreased connectivity has led to the contraction of the trunk channel and several major 

tributaries. The new geomorphological trajectory of the Baviaanskloof River along the study 

reach has implications for the impacts and effectiveness of channel-floodplain rehabilitation 

interventions that have already been employed by WfWet.

3) What is the potential future geomorphological behavioural regime of the river- 

floodplain along the study reach?

It is impossible to pin-down the future geomorphological style toward which any river is 

progressing given that river systems are characterised by complex interactions and 

unpredictable change, and environmental drivers of change are also only partially 

understood and unpredictable. It is however possible to predict the behavioural range of a 

river-floodplain into the future based on knowledge of river geomorphological history, 

controls on sensitivity and change (Fryirs et al. 2009). The uncertainty of future climate 

change for the study region and the interplay of climate with vegetation, soils and local 

topography make it difficult to predict future hydrological trends for the study reach. Long

term rainfall analyses in this study indicated that the study area has recently entered a 

relatively wet climate phase within the 10-12 year cycle that may last for several years to 

come. The future climate may thus be characterised by above average annual rainfall and 

more frequent, short duration rain events and small to moderate floods. The persistence of 

a relatively wet climate over the next several years will enhance coarse sediment 

connectivity and the potential for partial recovery of the trunk channel (Brierley and Fryirs 

2000; Fryirs et al. 2009).

Aggradational processes may become dominant in the near future since substantial channel 

adjustment has already occurred (Simon 1992; Simon and Rinaldi 2006). Channel monitoring 

surveys indicated that aggrading channels may experience bed elevation increases of up to 

34 cm over several months in which small floods and below bankfull flow events occur. 

These levels of aggradation mean that various floodplain reaches may become more 

frequently inundated during storm flows in years to come, increasing the potential for the 

formation of floodplain wetland depressions. The potential for natural river-floodplain 

recovery is thus a highly possible scenario for the study reach. Reconnection of the trunk 

stream to the floodplain will increase the potential for channel avulsions such that the river
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may switch to a mixed braided to anabranching river style characterised by channel 

contraction. The channel will still remain laterally unstable but may enter a period of 

relative stability compared to levels of instability that have occurred over the last few 

decades. This scenario will encourage the formation of floodplain wetlands, promoting 

greater water retention and potentially enhancing base-flows. The buffering role of the 

floodplain will thus be reinstated, reducing the effects of floods for valley reaches 

downstream of the study reach. The re-creation of these connected floodplain depressions 

and wetland areas, however, is dependent upon the availability of floodplain that is devoid 

of human cultivation and infrastructure such that natural geomorphological adjustment and 

overbank flooding may occur. At present, floodplain areas devoid of human development is 

restricted to isolated areas along the upper- and lower-end of the study reach, where 

floodplain cultivation has been abandoned. The reinstatement of floodplain wetland areas 

at the aforementioned locations would be contingent on approval by local landowners.

4) What are the present and future social desires and socio-economic trajectories for 
the catchment and how does this relate to the future geomorphological trajectory of 
the river-floodplain along the study reach?

Several documents were used to inform present and future socio-economic and 

rehabilitation desires for the study reach. These included a study on future rehabilitation 

and land-use visions of landowners in the Baviaanskloof by Stokhof de Jong (2013) and 

information provided on future socio-economic trajectories for the study reach by the NGO, 

LivingLands, through their work over several years engaging with stakeholders in the 

catchment with regards to integrated catchment management.

In recent years there has been a shift in land-use from predominantly agricultural activities 

that have high impact on river-floodplain processes, toward conservation (stewardship) and 

nature-based tourism activities. The future vision for the upper- to middle-reaches of the 

catchment within which the study reach is located is a 'Living with nature' scenario, which 

will include mountain areas under conservation and related nature-based tourism activities, 

rehabilitation of vegetation and river-floodplain areas, and zones in which high-value crops 

are grown (Stokhof de Jong 2013; Four Returns 2016). The trajectory towards this scenario 

has been clear in recent years and has been facilitated by the work of LivingLands through 

ongoing engagement with local stakeholders, creation of a shared vision and funding that 

has been raised for various rehabilitation activities. This new socio-ecological trajectory has
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promoted a decrease in stocking numbers and on some farms a removal of goats from the 

landscape. The recent investment of large businesses into catchment rehabilitation 

initiatives in the Baviaanskloof, including hillslope vegetation and stream rehabilitation, has 

further enhanced the potential for improved river-floodplain health in degraded parts of the 

catchment. Although areas of the floodplain and alluvial fans will remain under cultivation in 

years to come, there is now more floodplain space for the natural dynamism of the river 

and tributaries to occur.

7.3.2 Evaluation of the WfWet rehabilitation planning process

The floodplain wetland rehabilitation planning process of the WfWet team involved desktop 

and field-based assessments of ecosystem services and the impacts and threats to 

ecosystem health for a selected degraded floodplain are along the middle of the study 

reach. The assessment tools, WET-EcoServices and WET-Health were applied. Two channel 

sites were initially targeted in 2009 for rehabilitation using a gabion weir structure built 

across the channel zone. The two sites were proposed for the middle of the study reach 

where the channel has eroded up to 2 m into the surrounding floodplain that once hosted 

seasonal-permanent wetlands. The aim was to build gabion weir structures across the width 

of the active channel, to trap coarse sediment for a short distance upstream of the weir 

structure, raise the level of the river bed, and thereby initiate more frequent inundation of 

the floodplain during small and moderate flood events.

Based on information gained during the present research, the WfWet rehabilitation 

planning process and choice of intervention for the Baviaanskloof was evaluated. The 

results of the wetland assessment are presented below along with a critique on 1) 

classification of the hydro-geomorphic type (HGM type); 2) identified threats, rehabilitation 

goals and type of intervention; 3) management recommendations; 4) monitoring and 

evaluation of rehabilitation impacts.

1. Classification of HGM type

The targeted rehabilitation site was classified as a floodplain wetland HGM unit, 

characterized by a well-defined channel and a floodplain marked with oxbows, meander 

scars and natural levees. This HGM type is dominated by the accumulation of sediment and 

surface water inputs to the floodplain (see Figure 7.1). Although most of the study reach
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could be classified as an active floodplain, it could be argued that the degraded and intact 

wetland units in the area selected for rehabilitation by WfWet resemble more closely the 

characteristics of channeled and unchanneled valley bottom HGM types respectively. Aerial 

photography from 1960 indicates that the degraded wetland area indicated in Figure 7.3 

was characterised by narrow anabranching channels that dispersed flows across the 

floodplain ending in a flood-out (white circled area, Figure 7.3a). The latter conditions 

characterize an unchanneled valley-bottom HGM wetland type where sub-surface flows are 

relatively important in sustaining permanent to semi-permanent wetland (see Figure 7.1). 

The presence of reed stands and denser tree canopy cover along the reach circled in Figure 

7.3a, prior to channel-floodplain degradation, would have contributed to the dispersed flow 

environment. Figure 7.3b indicates the same floodplain area circled in white in Figure 7.3a, 

illustrating how the river has switched to a single-channel flowing through an infrequently 

inundated floodplain. Water inputs to the floodplain occur via fractures in the bedrock, non

entrenched tributary fans and the upstream alluvial aquifer, with limited overbank inputs 

from the trunk stream at present-day (Glenday 2015). Transmission losses from the channel 

bed are important inputs of sub-surface water input to the floodplain (Glenday 2015). All of 

the latter conditions more closely fit a channeled valley-bottom HGM type rather than a 

floodplain HGM type. The reach may have briefly existed as a floodplain HGM type prior to 

the present-day condition, as there is evidence of an old channel cutoff (circled in yellow, 

Figure 7.3b). At present the floodplain is only inundated once every few years and sediment 

erosion is the dominant process along the reach. The new channeled valley-bottom HGM 

type that exists along the proposed rehabilitation reach is characterized by higher energy 

stream flows than the previous unchanneled valley-bottom HGM type. The downstream 

intact wetland site still resembles unchanneled valley-bottom HGM characteristics such that 

permanent wetland still exists in this region.
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Figure 7.3: Aerial photo view of the proposed rehabilitation reach (circled in white) for 1960 (a) and 2016 (b). 
The yellow circle indicates a historical channel cut-off.

Different HGM types have different driving processes and flow and sediment regimes, which 

have implications for the types of ecosystem services the different wetlands offer, their 

potential sensitivity to disturbances of a particular magnitude, and the type and location of 

rehabilitation interventions that are suitable for reinstating driving processes and healthy 

functioning. For example, maintaining upstream-downstream water and sediment 

connectivity is important in a channeled valley-bottom setting; maintenance of dispersed 

low-flow conditions in an unchanneled valley-bottom HGM type is essential; and for a 

floodplain HGM type, a sinuous channel that is able to adjust both vertically and laterally to 

flood events should be encouraged. In South Africa most rehabilitation projects tackle 

similar drivers of degradation in different HGM wetland types in a generic way, discounting 

that these different systems may have different responses to similar types of interventions. 

The failure to classify the HGM type accurately in the case of the Baviaanskloof would have 

influenced the results obtained for assessment of present-day ecosystem services and 

health and the assessment of the potential impact of the proposed rehabilitation 

intervention on the delivery of ecosystem services.

2. Identified threats, rehabilitation goals and type of intervention
The identified threats to wetland health and functioning for the proposed rehabilitation 

reach included:
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■  Head cut erosion and channel degradation;

■ Enhanced erosional capacity of flood flows due to channelizing berms upstream 

of the target reach;

■ Small dams in the surrounding catchment and surrounding land-use practices.

Some of the above supposed threats to the targeted reach are minor. For example, dams in 

the catchment are very small and are only present along gully networks or high-order 

streams feeding into lower-order tributaries on the southern side of the valley. Many of the 

gully networks along which the dams have been built do not connect to the trunk stream. It 

is therefore unlikely that the dams are a major barrier to flow and sediment inputs to the 

trunk stream, and may rather act as local-scale sediment buffers along tributaries supplied 

with sediment from surrounding denuded hillslopes and gullies. Land-use activities at 

present in the surrounding catchment include minor grazing of livestock on hillslopes. An 

area where floodplain agriculture has been largely abandoned is indicating slow recovery of 

woody vegetation.

In contrast to the above identified threats, the present study has indicated that loss of 

vegetation cover on hillslopes, channelization of stream flows and associated enhancement 

of water and sediment connectivity, have been the most important drivers of recent 

channel-floodplain degradation, particularly during high-magnitude flood events. Although 

groundwater abstraction may have impacted base flows, deepening of the trunk stream 

appears to have been a more important threat to groundwater levels in the surrounding 

floodplain aquifer and hence to the functioning and existence of the floodplain wetlands 

that existed.

Based on the threats identified during the WfWet assessment, several rehabilitation goals 

were set for the targeted reach including:

■ Re-hydration of the floodplain sediments;

■ Increased frequency of overbank flooding;

■ Stabilization of the trunk stream and an adjacent furrow which shows signs of 

degradation;

■ Rehabilitation of floodplain vegetation.
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The wetland assessors assumed that the presence of several peat layers in erosion banks 

along the targeted reach indicate that a permanently inundated floodplain wetland existed 

in the recent past (a few decades ago), and that this condition could be easily re-instated. 

The type of intervention planned in accordance with the above goals was a gabion weir 140 

m wide (the same width as the active channel), with a height calculated to induce overbank 

flooding during a moderate or large flood event. This kind of intervention and the proposed 

rehabilitation goals are problematic for the following reasons:

1) The OSL dating of sedimentary units conducted during the present study indicated 

that the peat layers, which were interpreted to represent recent permanent wetland 

conditions, were deposited thousands of years ago. The most recent floodplain 

deposits of the last few decades indicate that the more recent floodplain wetland 

was drier, due to the absence of gleying and the presence of iron mottling, indicating 

seasonally to temporarily inundated wetlands (Kotze et al. 2009b).

2) The trunk and tributaries have entered a new geomorphological state and associated 

behavioural regime. Thus, attempts to return the present system to a previous state 

characterised by a completely different set of flow and sediment dynamics and sub

surface-surface water interactions, would be extremely difficult and costly. The 

achievement of desired outcomes requires catchment-scale interventions. The 

proposed gabion weir structures may have localised impacts on water and sediment 

dynamics (some aggradation and flow spreading), but are unlikely to be successful in 

achieving the goal set out. Furthermore, under the present state, coarse sediment 

connectivity is an important system attribute allowing for channel adjustment 

(lateral and vertical) and recovery. Features that hinder coarse sediment movement 

along the trunk stream hinder these processes. The structures may also be 

abandoned since the trunk stream frequently shifts across the floodplain (Rowntree 

and Joubert 2013).

3) The deep nature (>2 m deep in some places) of the trunk stream upstream of the 

proposed rehabilitation site means that multiple structural interventions would be 

required to induce the frequency of flooding required to re-instate floodplain 

wetland across the proposed area. The deep nature of the main channel along this 

reach is partly a consequence of the response of the main river to two impinging
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alluvial fans, through which the river has attempted to erode toward a desired stable 

channel gradient. Restoring river-floodplain connectivity by raising the level of the 

river bed thus counteracts the natural evolution of the channel, in response to 

impinging alluvial fans. It would have been more beneficial to focus conservation 

and/or rehabilitation activities at relatively intact floodplain wetland depressions 

that occur at a few places downstream of the rehabilitation site. Here, strategic 

interventions could be employed to limit threats to these wetland depressions, and 

possibly aid expansion of the existing wetland area such that flood attenuation and 

base-flow services that are already being delivered are enhanced.

The proposal of the two gabion interventions was contested by a small group of 

geomorphological and hydrological researchers employed in the catchment at the time, 

including the author of this thesis. The latter team felt that this type of intervention was 

unsuited to the geomorphological and hydrological dynamics of the river-floodplain and the 

scale of drivers initiating channel degradation. As a result, the research group and the 

WfWet project manager at the time discussed the impacts of the two proposed 

interventions. The group agreed on possible adjustments to the location and number of 

rehabilitation interventions for the proposed reach that would be more suited to the 

present state and geomorphological dynamics of the river-floodplain. However, there was 

little chance to approach the rehabilitation in a completely different way, as building gabion 

weir structures in degrading wetlands is part of the mandate of the WfWet programme. This 

mandate included at the time, targets for the number of hard structures built across eroding 

river channels and wetlands, employing presently unemployed people for several months to 

build the hard structures, and spending a particular budget allocated to an identified 

rehabilitation site within an allocated period of time. The best alternative for the 

Baviaanskloof therefore, was to move the planned weir structures to channel sites that 

would possibly result in more effective hydrological and geomorphological outcomes along 

the proposed rehabilitation reach. The discussed alternatives are described in an 

unpublished report by Rowntree and Joubert (2013), who formed part of the 

geomorphological assessment team, from Rhodes University. As indicated in Figure 7.4 

below, three weir sites were proposed by Rowntree and Joubert (2013), to be located at 

relatively gently sloping channel sites, with shallow erosion banks, such that re-wetting of
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the surrounding floodplain would be most likely. The sites were located upstream of the 

intact wetland area that exists along the reach (Figure 7.5), to enhance the area of wetland 

should re-wetting of the floodplain occur. However, Rowntree and Joubert (2013) indicated 

in their report that the laterally dynamic nature of the river at present means that the 

proposed type and scale of intervention in not suitable, as the channel could avulse around 

the weir structures. Avulsion would leave the structure abandoned and ineffective in 

achieving the stated rehabilitation goals.

Figure 7.4: A longitudinal profile of the Baviaanskloof River thalweg for the proposed river-floodplain 
rehabilitation reach indicating the location of three proposed gabion weir structures (adapted from Rowntree 
and Joubert 2013: 3).
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Figure 7.5: An aerial view of the location of the proposed gabion weir structures in relation to degraded and 
intact floodplain wetland for the proposed rehabilitation reach. Structure 1 which was built between 2014 and 
2016 is visible in the google earth image, dated 2016.

3. Management recommendations

The recommended management activities in the rehabilitation plan were:

■ A buffer of 20-30 m on either side of the channel;

■ Biodiversity assessments pre- and post-rehabilitation;

■ Removal of alien vegetation from the wetland;

■ Control access to wetland by using existing dirt roads;

■ No harvesting of threatened or protected plants or animals.

The above recommendations are all site specific and do not consider off-site drivers or 

impacts on recent wetland loss. In addition the number of people living in the river valley 

who harvest local fauna and flora for cultural purposes is low and there is no evidence that 

harvesting levels are impacting on local biodiversity. The alien plant found along the 

targeted reach is a species with low levels of infestation. The tree in fact helps to stabilize 

the floodplain and channel banks in localized areas and if removed would need to be 

replaced by other mature indigenous tree species to maintain some form of stability. A 

buffer of 20-30 m is insufficient to accommodate the extent to which the trunk channel may
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avulse during a moderate or large flood event. The buffer should be increased to at least 

100 m either side of the present-day channel.

1. Monitoring and Evaluation procedures

■  Use of fixed-point photography to assess channel and floodplain condition pre- 

and post-rehabilitation;

■ WET-Health and WET-EcoServices assessment pre- and post-rehabilitation to 

assess changes in health and ecosystem services delivery of the wetland 

(assuming it can be re-instated).

The above procedures are insufficient for monitoring the impacts and success of the 

rehabilitation interventions. Geomorphological and hydrological surveys prior to and 

following the rehabilitation intervention should be conducted to indicate changes to 

channel-floodplain process and form and associated impacts on ecological integrity of the 

floodplain.

Based on the evaluation above it is clear that a form-based approach to rehabilitation 

planning and implementation was initially adopted by WfWet for the Baviaanskloof. This 

kind of approach is unsuitable for most stream degradation scenarios (Wohl et al. 2005), 

and particularly unsuitable for a high-energy mountain stream transporting large amounts 

of coarse bed load. There has however been a concerted effort on the part of the WfWet 

team during the four year rehabilitation process, to trial soft interventions on the southern 

hillslopes of the study reach where vegetation denudation and gully erosion is most severe. 

These interventions have included, creating hollows in the ground which trap hillslope 

runoff during storm events, as well as re-shaping the head-region of gullies following which 

several silt-traps are erected across the re-shaped gully area. These rehabilitation efforts 

have occurred on a small scale within the wider catchment, and indicate a shift in thinking 

toward tackling the problem causing degradation, rather than focusing on the degrading 

channel reach.

In the Baviaanskloof, widespread catchment-scale initiatives are required to address the 

problem of increased hillslope runoff and erosion, and to diffuse flow along tributaries 

which have been channelized and are well-connected to the trunk stream. This catchment- 

scale approach has been adopted by the NGO, LivingLands, in their integrated catchment 

rehabilitation programme over the last several years. The programme has involved
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reinstatement of diffusive flows at a few selected entrenched alluvial fans along the study 

reach and removal of a few earthen berms alongside the main river channel. LivingLands has 

also partnered with government to rehabilitate thicket vegetation cover on several farms. 

However, the timing and location of these different interventions has been haphazard and 

limited to small areas due to funding and capacity constraints. LivingLands has recently 

secured a large amount of funding from a large corporate in South Africa for land and river 

rehabilitation of more than 1 000 ha. The author presents a suggested process-based and 

catchment-scale rehabilitation framework below, feeding into what has already been 

planned by LivingLands, and drawing from the lessons learned from various interventions 

implemented by WfWet. Thus, the recommendations are meant to compliment and possibly 

improve the process-based river-floodplain and hillslope rehabilitation approaches that are 

already being considered within the Baviaanskloof.

7.3.3 A conceptual model of process-based rehabilitation for the Baviaanskloof

Based on knowledge generated in the present study and the above evaluation of WfWet 

rehabilitation, a conceptual model of process-based rehabilitation and associated land 

management was formulated for the study reach. The model attempts to align with the 

plans of LivingLands Integrated Catchment Rehabilitation. Although catchment-scale land 

management and rehabilitation should be the ultimate goal of any river rehabilitation 

project, working at broad spatial scales is not always financially viable, and requires lots of 

time, and buy-in from local landowners and land managers. According to Piegay et al. (2006) 

catchment-scale rehabilitation should be strategic and target catchment areas that are 

sensitive to future geomorphological change, since this approach is more effective than 

random system-wide rehabilitation. In the case of the Baviaanskloof, it is not ecologically, 

financially or socially feasible to attempt rehabilitation of all degraded areas within the 

catchment over the next few years. Catchment-wide rehabilitation would comprise an area 

of more than 10 000 ha, incorporating the valley reach upstream of the study reach, as well 

as the study reach itself. This scale of rehabilitation may become a possibility through 

ongoing engagement with WfWet and large corporates with vested interest in catchment 

rehabilitation and sustainable development. The conceptual model has thus been 

formulated for the study reach since there is in-depth knowledge of river history and
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contemporary fluvial process and form, drivers of change, the spatial arrangement of 

sensitive river reaches, and the socio-economic trajectory of the study reach.

Since the factors influencing recent shifts in river behavior and future trajectories operate at 

varying spatial and temporal scales, a hierarchical strategic approach to river-floodplain 

rehabilitation is suggested for the Baviaanskloof. A conceptual model of this hierarchical 

framework is indicated in Figures 7.6 and 7.7. The model draws on the principles of process- 

based river rehabilitation, and from the hierarchical approaches to classifying and managing 

river catchments presented by Rowntree and Wadeson (1999) and Brierley and Fryirs (2000, 

2005). Four process zones occurring at different spatial hierarchies of the study reach are 

defined (Zones 1-4, Figure 7.6 and 7.7). Zone 1 comprises the mountain peaks and upper- 

mountain slopes where high-energy runoff is generated and where hillslope-channel 

connectivity is high; Zone 2 comprises an extensive region of rolling, relatively gently sloping 

foothills that exist on the southern side of the valley where moderate to severe degradation 

of thicket vegetation has occurred, along with extensive hillslope gullying. These factors 

have impacted considerably on hillslope processes (van Luijk et al. 2013), hillslope-channel 

connectivity, and concomitant sensitivity of the trunk and connecting tributary streams; 

Zone 3 comprises tributary fans and associated streams on either side of the valley floor 

that form either buffers or enhancers of water and sediment supply to the trunk stream 

(Fryirs et al. 2007a), thereby influencing trunk channel geomorphological process and form. 

Zone 3 is directly impacted by hillslope processes occurring in Zone 2; Zone 4 comprises the 

trunk stream characterised by downstream variations in river style and associated 

behaviour (Brierley and Fryirs 2000, Brierley and Fryirs 2005), influenced by processes 

occurring in Zones 1-3, particularly tributary-trunk connectivity relations characterizing Zone 

3. Within each process zone, strategic rehabilitation and land-use management activities are 

proposed (boxes A-C, Figure 7.7). The high-energy nature of stream flows in the catchment 

area surrounding the trunk stream means that rehabilitation measures need to target 

hillslope runoff and erosion processes, as well as tributary fan dynamics, in order to have 

any impact on stream power and associated morphodynamics and relative trunk stream 

stability. The hierarchical approach to rehabilitation planning for the Baviaanskloof is hence 

considered useful.
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The proposed rehabilitation interventions involve 'soft' measures that influence inputs of 

water (energy) and sediment from surrounding hillslopes and tributaries to the trunk 

channel, to aid self-recovery of the trunk stream (Pasternack 2013). This passive approach 

however, is considered within the confines of what is socially feasible since agricultural 

practices are still a necessary function of the landscape, requiring floodplain area for 

cultivation and grazing practices, and to some extent, control of flooding impacts.
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□  Zone 1 (Conservation)
n  Zones 2 & 3 (Hillslope & tributary fan rehabilitation)

33° 31'57.47 "S Zone 4 (Trunk stream buffering)
Tributary stream

u —> Baviaanskloof River (Trunk stream)

33° 33'52.66 ”S;
23° 56'41.55 33°35'40.55"S

24°12'44.62"E

33° 36'48.40 "S;
24° 12'00.22

Figure 7.6: An aerial image of the study reach indicating the four process zones defined within the rehabilitation framework indicated in Figure 7.7.
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Zone 1: Mountain peaks and upper- 
middle footslopes
Impact: Hillslope processes and 
hillslope-channel connectivity

▼
Zone 2: Lower-foothills
Impact: Hillslope processes and 
hillslope-channel connectivity

Zone 4: Trunk stream
Impact: River-floodplain and 
upstream-downstream connectivity

A
Conservation: Land-use impacts should be limited; natural 
biotic, geomorphic and hydrologic processes and dynamics 
should be maintained.

B
Low-impact sites: Limited land-use impacts enhance present 
condition; minor interventions required to prevent artificially 
induced erosion.
Strategic sites: Generally low-cost interventions required; 
potentially high impact on connectivity and recovery of 
processes; 50 m corridor on either side of tributary stream for 
natural channel adjustment.
Potential sites: High- or low-cost intervention required; high- 
impact potential, low present-day feasibility.

C
River freedom corridors: A 100 m corridor on either side of 
trunk stream for natural channel adjustments; remove human 
features that limit natural adjustment processes;
Work with nature corridors: minimize impacts on channel 
processes; allow as much space as possible for natural 
channel adjustment.

Figure 7.7: A conceptual model to guide process-based rehabilitation for the middle-reaches of the 
Baviaanskloof floodplain, indicating four process zones at different spatial hierarchies of the study reach 
(Zones 1-4), and strategic rehabilitation and land management approaches for each zone (Boxes A-C).
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Zone 1 has been selected for conservation and a largely 'hands-off' approach since this area 

is relatively intact and should be preserved in the current state; Zones 2 and 3 have been 

accorded a range of rehabilitation and land management approaches including 'low impact 

sites', where land-use impacts should be restricted and where little rehabilitation 

intervention is required (Box B, Figure 7.7); 'rehabilitation sites', where low-cost 

interventions could be employed in areas where impact on local water and sediment 

processes is potentially high; and 'potential sites', as areas that should receive 

rehabilitation, but where present-day land-use practices limit the feasibility of 

rehabilitation. Zone 4, comprises the trunk stream, with two main rehabilitation 

approaches: 'river freedom corridors', where a corridor alongside the channel should be 

maintained for natural channel adjustment (O'Hanley 2011; Biron et al. 2014) and, 'work 

with nature corridors', where land-use impacts on stream processes and local scale 

sediment connectivity should be minimized as far as possible (Box C, Figure 7.7).

7.3.4 Specific recommendations for strategic rehabilitation in the Baviaanskloof

Specific rehabilitation sites are proposed by the author for zones 2-4 (foothills, tributary 

fans and trunk channel) of the study reach. It is hoped that the recommendations will 

contribute into the LivingLands integrated catchment rehabilitation plan, in conjuction with 

work that will be implemented by WfWet in the catchment in the future. Figure 7.8 and 

Table 7.2 in Appendix 7A indicate the location and type of interventions and management 

approaches proposed for the study reach. Many of the proposed sites have already been 

proposed for rehabilitation by LivingLands, thus the recommendations made here, serve as 

a means by which LivingLands can compare and possibly adjust the integrated rehabilitation 

plan for the Baviaanskloof. The recommendations are made according to several categories 

of strategic rehabilitation, with detail and GPS coordinates of the sites indicated in Table

7.2. The various categories or rehabilitation and management approach include:

1) Strategic hillslope rehabilitation;

2) Low impact alluvial fan strategy;

3) Strategic alluvial fan rehabilitation;

4) Potential alluvial fan rehabilitation;

5) Trunk channel rehabilitation.

225



These categories are detailed below, for each hierarchical zone of the study reach. 

Rehabilitation approach for upper hillslopes (Zone 1)

This zone requires relatively little intervention since land-use impacts have been relatively 

low and current management of the zone falls under the government agency, Eastern Cape 

Parks and Tourism. This agency adopts a largely hands-off approach to management such 

that fires occur at natural time intervals of on average, once or twice every 10 years for 

most of the vegetation types that exist along the study reach (Reeves and Eloff 2012), and 

browsing pressure is limited to small populations of indigenous antelope species. This zone 

has also recently been declared as a formal conservancy area through the partnership of 

local landowners, LivingLands and the Eastern Cape Parks and Tourism Agency. The zone 

will thus be preserved in a largely natural state into the future.

Rehabilitation of middle-lower hillslopes (Zone 2)

Zone 2 comprises the rolling foothills on the southern side of the valley (Figure 7.6), and 

contains around 6 000 ha of degraded hillslope thicket vegetation and gullied area. 

Ultimately this entire area should receive rehabilitation, particularly through erosion control 

measures and revegetation. Comprehensive hydrological modeling of the catchment by 

Glenday (2015) indicated that re-vegetation of thicket on hillslopes could decrease flood 

peaks to the main channel (i.e. decrease flow power), but could result in decreased annual 

average water yields from the catchment due to decreased storm peaks and base-flows 

(Glenday 2015). The results of Glenday's (2015) modeling exercise also indicated that re

instatement of diffusive flows at presently entrenched alluvial fans would increase river 

base-flow compared to a scenario where the river continues to deepen. Mander et al. 

(2010) used the ACRU hydrological model and available vegetation cover and water balance 

information (precipitation, evapotranspiration) for the Baviaanskloof to estimate the 

impacts of various vegetation restoration scenarios for the catchment on water (including 

baseflows) and sediment yield. The study suggested that revegetation of denuded areas 

may substantially decrease stream flow, but result in more consistent flows, an increase in 

annual base flows, and improve water quality by decreasing sediment yield from the 

catchment area. Sommeijer (2010) modelled the effects of re-vegetation of hillslope thicket 

on runoff using the curve-number, which indicates the degree to which rainfall is converted 

into direct runoff utilizing an understanding of local soil type and properties, vegetation land
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cover and slope. Although the model is relatively simplistic and may only provide an 

estimation of runoff generation under different conditions, the results of the study 

indicated that re-vegetation on hillslopes may considerably decreases runoff. These findings 

concur with findings from the van Luijk et al. (2013) study, which demonstrated greater 

water infiltration and reduced runoff and soil erosion in a plot with higher thicket canopy 

cover than an adjacent degraded plot with relatively low canopy cover. Re-vegetation of 

hillslopes on the southern side of the valley where degradation is highest may thus reduce 

storm discharges and sediment delivery from hillslopes to the channel network, with 

implications for increasing the resilience of stream channels to storm events.

The substantial decrease in stocking densities along the study reach from the early 1990s 

onwards together with efforts to re-forest degraded hillslopes by various Government and 

non-government rehabilitation programmes may promote gradual recovery of vegetation 

cover on hillslopes. However, the dense subtropical thicket that once existed was old- 

growth (Powell 2009). The potential for recovery of the vegetation to a semi-pristine 

condition following a major disturbance such as overgrazing is reported to be almost 

impossible to very slow (Powell 2009; van Luijk et al. 2013). The loss of topsoil due to high 

runoff and erosion on degraded hillslopes has left little chance for seeding of pioneer trees 

and shrubs. It may be that a few grass species are gradually able to propagate areas where 

some topsoil remains, forming a savannah-like vegetation cover. The vegetation community 

on the hillslopes of the study reach has entered a new state defined by low canopy cover, 

with relatively high runoff and soil erosion. Without intensive rehabilitation interventions 

that improve soil conditions for seeding of thicket species, hillslope vegetation may remain 

in a severely degraded state for several decades to come. Hillslope runoff and erosion may 

thus remain relatively high over the next few decades for the study reach.

To recover hillslope vegetation cover across the 6 000 ha of degraded land will be extremely 

costly and may not be within the budget of government rehabilitation programmes within 

the next few years. Thus 'Strategic hillslope rehabilitation sites' have been identified for this 

zone (Figure 7.8). These sites are where hillslope degradation is moderate to severe but 

where relatively low-cost, 'soft' interventions could be employed to limit further 

degradation and aid recovery of damaged hillslope processes. These interventions could 

include creating small circular depression to trap water and sediment on hillslopes
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('Ponding', Table 7.2), stone or earthen bunds (Plate 7.2 and 7.3), and packing ponded areas 

with thorn tree branches. The ponding interventions have already been trialed by WfWet in 

the Baviaanskloof and have proven to be successful in trapping water and sediment and 

increasing the survivorship of planted P. Afro stems.

The above 'soft' interventions do not require sophisticated machinery and could be 

executed largely by a local labour force, aligning with the job creation mandate of WfWet 

and other government rehabilitation programmes. Re-vegetation of these targeted areas 

should make use of initial erosion control measures to further improve water infiltration 

and slow erosion (van Luijk et al. 2013). The species Portulocorio ofro ('spekboom') has been 

widely used for thicket rehabilitation in the Baviaanskloof and in other degraded thicket 

areas across South Africa. However, the species is highly palatable and would require 

control of natural and domestic livestock browsers and grazers for the rehabilitation to be 

successful (Powell 2009). Although local farmers are gradually beginning to remove livestock 

from the land there are still areas that are grazed- particularly the lower-foothills where the 

above-mentioned strategic rehabilitation sites are located. The grazing would hamper 

efforts for rehabilitation using spekboom. The planting is also costly and not always 

successful (Powell 2009). The feasibility of planting non-palatable species should be 

investigated as well as the possibility of keeping livestock such as goats and sheep in camps 

with pastures on the valley floor.

Plate 7.2: Stone bunds used to reduce runoff and erosion on hillslopes in agricultural landscapes. The arrow 
indicates direction of hillslope runoff (Farming First 2012).
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Plate 7.3: Earthen terraces used to reduce runoff and erosion in the upper-Mississippi catchment in the 1930s 
(Wikipedia 2016).

Rehabilitation of tributary fans (Zone 3)

'Low impact alluvial fan' sites (Figure 7.8) have been identified as those tributary fans that 

are least degraded, such as those with relatively intact vegetation, no erosional gullies and 

limited fan entrenchment. These fans perform an important buffering role against the 

effects of high-energy storm flows generated in the surrounding catchment, and in general 

form important areas of recharge of the alluvial aquifer (Glenday 2015). The fans should be 

protected from land-use activities that are potentially harmful to vegetative cover and 

natural erosional and depositional processes (Table 7.2). The enhancement of the buffering 

role of these fans would improve the resilience of the study reach to storm generated runoff 

and enhance groundwater recharge. Minor interventions may be required to aid flow 

dispersion across the fan surface or prevent degradation associated with roads or cultivated 

fields, where these occur.

'Strategic rehabilitation alluvial fan' sites (Figure 7.8) are identified as those fans that have 

been degraded due to loss of vegetation cover, erosional gullies and/or a channelized 

tributary stream which has entrenched the fan surface. These factors have limited the 

buffering role these fans have historically offered to the trunk stream as well as the 

potential for groundwater recharge. Interventions that encourage water flow dispersion 

across the proximal- to middle-fan surface in areas devoid of land-use should be encouraged 

on these rehabilitation fans (Table 7.2). The latter may require the inclusion of features such
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as earthen bunds that aid flow energy dissipation to prevent renewed erosion of the fan 

surface. In addition, the newly flooded areas should be re-vegetated with small shrubs and 

grasses commonly found on fans, in order to further enhance flow dispersion and water 

infiltration. Where possible, features such as earthen levees that channelize stream flow 

should be removed. These interventions would improve water infiltration into the fan 

surface during storm events thereby potentially increasing localized base-flow duration and 

reinstating the buffering role provided by the fans. However, some degree of connectivity 

between the entrenched tributaries and the trunk should be maintained since coarse 

sediment connectivity is essential for self-recovery processes in mountain streams (Wohl 

2006).

'Potential alluvial fan rehabilitation' sites (Figure 7.8) are those fans that should receive 

rehabilitation but where rehabilitation is limited by present-day land-use activities or 

infrastructure. In similarity to the 'rehabilitation sites' described above, these potential sites 

require flow dispersion and vegetation rehabilitation efforts (Table 7.2).

Trunk stream rehabilitation (Zone 4)

Zone 4 comprises the trunk channel and forms the final level in the hierarchy of the 

rehabilitation framework for the study reach. Although 3 major river styles were mapped 

for the study reach, most of the trunk stream constitutes the cut-and-fill river style. Each 

zone requires varying rehabilitation intervention based on differences in dominant channel- 

floodplain processes, stream behaviour (river style), and connectivity with the surrounding 

catchment that determines river sensitivity and potential for self-recovery (Brierley and 

Fryirs 2000; Brierley and Fryirs 2005; Fryirs and Brierley 2009).

The cut-and fill style connected to upstream and lateral inputs of coarse sediment from the 

surrounding catchment, should be managed such that channel bed aggradation is 

encouraged as a future trajectory, especially along reaches that have widened and lost 

transport capacity. Human made features that disrupt sediment movement along the 

channel and between tributaries and the trunk stream may be detrimental to this natural 

recovery process. The suggestion is therefore to create river freedom corridors where 

floodplain cultivation is absent or has been abandoned. In these areas the river should be 

left to continue along an adjustment trajectory to recent changes in coarse sediment 

connectivity from the surrounding catchment until relative stability is reached. This kind of
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approach is suggested to enhance the resilience of a river to perturbations such as 

moderate and large flood events (Biron et al. 2014). Aggradation of the channel bed will be 

a final evolutionary character along this trajectory and will encourage channel avulsions and 

more frequent reconnection of the channel with the floodplain. Thus, earthen berms that 

occur in these corridors and that restrict lateral connectivity should be removed. Once the 

channel bed aggrades naturally the floodplain will be more frequently flooded such that 

services such as flooding attenuation and groundwater recharge would be enhanced.

The employment of 'work with nature corridors' (Figure 7.8) may require extensive dialogue 

with local land users, such that viable options for reducing the impacts of land-use on 

channel processes are discussed. For example, the shift to higher-value cash crops (lavender 

and nut trees) that is occurring at present in the valley may mean that less land is required 

for cultivation on the floodplain than has been necessary for lower-value crops such as 

maize and vegetable seeds. Hence, floodplain cultivation could be set-back several tens of 

meters from the present channel along with removal of earthen berms, such that the 

channel has more space for adjustment.

7.3.5 Recommendations for monitoring and evaluation

It is essential that the conceptual model of river rehabilitation and catchment management 

presented in Figure 7.7 and detailed in Figure 7.8 and Table 7.2, is accompanied by a 

strategic monitoring programme. This programme should assess changes in 

geomorphological process and form, stream and floodplain hydrology, and ecological 

condition of rehabilitated areas (Downs and Kondolf 2002; Kristensen et al. 2014; Morandi 

et al. 2014). Several channel erosion monitoring sites were set-up during the present study 

that could be used to monitor changes in channel morphology and geomorphological 

process (i.e. degradation vs. aggradation), stream hydrology and ecological condition. 

Furthermore, Glenday (2015) set up stream flow and groundwater monitoring sites along 

the study reach during her PhD research. These sites are being monitored on an ongoing 

basis and could inform hydrological impacts of different rehabilitation and land 

management interventions employed in the future, as well as the impacts of the gabion 

weirs implemented by WfWet.
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7.4 Summary

This chapter has demonstrated the importance of a thorough understanding of 

geomorphological process and dynamics that is context-specific for rehabilitation practice in 

a high-energy upland catchment in South Africa. The concept of geomorphological 

connectivity and appreciation of adaptive cycles of geomorphological change across 

different scales have provided useful guiding frameworks for identifying strategic 

rehabilitation sites in areas that will aid recovery of hydro-geomorphological processes, 

thereby increasing the geomorphological and social resilience of the system to flood events 

in the future. Evaluation of the approach of the statutory agency, WfWet, to river-floodplain 

rehabilitation in the Baviaanskoof suggests that the programme adopts a largely 'form- 

based' approach, applying interventions that may often work against the natural recovery 

processes, disregarding the history and potential future dynamics of the targeted river and 

wetland. In the case of the Baviaanskloof, placing a gabion weir across the river channel to 

halt degradation does not consider that the channel may have entered a new behavioural 

regime and that maintaining coarse sediment connectivity, conditioned by wider catchment 

vegetation and hydro-geomorphic processes, is a key attribute of this new condition. The 

superficial nature of monitoring of the impacts of the WfWet rehabilitation in the 

Baviaanskloof does not allow for accurate evaluation of the hydrological, geomorphological 

and ecological impacts of rehabilitation, so that lessons can be learned and applied to 

rehabilitation practice in other high-energy mountain streams in South Africa. There are 

several important factors not commonly considered in river-wetland rehabilitation practice 

in South Africa including:

1) Historical analyses of channel-floodplain condition, processes and behaviour;

2) Consideration of controls of channel-floodplain reach behaviour that are operating 

at the catchment scale;

3) Ecological and social values and needs specific to the rehabilitation site;

4) Future geomorphological, ecological and land-use trajectories that determine the 

sustainability and success of individual rehabilitation interventions.

A hierarchical conceptual model of process-based rehabilitation for the study reach has 

been suggested as a more appropriate means of aiding the self-recovery and improved 

geomorphological resilience of the study reach. The model considers strategic rehabilitation

232



within different geomorphological process zones of the study reach, from headwater areas, 

to rolling hillslopes, to tributary fans and the trunk stream. The consideration of sediment 

connectivity and potentially sensitive areas to future degradation, the impacts of 

rehabilitation on natural river recovery, and local social needs and desires, were the major 

factors considered in identification of strategic rehabilitation sites. It is hoped that the 

findings of this chapter can encourage more thorough geomorphological and social 

investigation prior to and during rehabilitation planning and implementation, such that 

more sensitive and effective rehabilitation strategies can be employed in South Africa. The 

findings have also highlighted the essential role of NGOs and large corporations in driving 

and funding integrated catchment management and rehabilitation processes that are often 

beyond the financial and time capacity of government agencies or landowners.
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APPENDIX 7A: DETAILS OF RECOMMENDATIONS FOR STRATEGIC REHABILITATION, INCLUDING AN AERIAL VIEW OF THE LOCATION OF 
STRATEGIC REHABILITATION SITES (FIGURE 7.8), AND A DESCRIPTION OF THE REHABILITATION APPROACH FOR EACH SITE (TABLE 7.2)

(a)
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Area of strategic rehabilitation 
<-— Tributary stream

Low impact alluvial fan
Strategic rehabilitation 
alluvial fan
Potential alluvial fan 
rehabilitation site
Strategic hillslope 
rehabilitation site

AFR1

HS10

900 m

Figure 7.8: Maps indicating the distribution of strategic hillslope and tributary stream alluvial fan rehabilitation sites indicated in Table 7.2 below, for the upper-half (a) and 
lower-half (b) of the study reach.
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Table 7.2: Strategic hillslope rehabilitation sites identified within zone 2 and 3 of the process-based rehabilitation framework for the study reach, indicating geographic 
coordinates and recommendations of types of rehabilitation intervention and land management. Each of the coded hillslope sites is indicated in Figure 7.9a and b.

Type of intervention and/or 
management

Site code Latitude (South) Longitude (East) Description

HS1 33 33' 22.98" 23 57' 51.08" Create small ( ~1.5 m x 1.5 m wide and ~20-30 cm deep) depressions at 20-40 
m intervals on hillslope. Pack the surface of the depression with Vachellia 
karoo or other woody tree branches that are locally available, and plant 
Portulacaria afra (spekboom) in ponds. Also seed non-palatable pioneer grass 
species in and around each depression.

HS2 33 33' 38.26" 23 59' 49.65" Same as above

HS3 33 33' 51.19" 24 01' 09.92" Same as above

Strategic hillslope rehabilitation HS4 33 34' 18.18" 24 01' 09.62" Same as above

HS5 33 34' 10.28" 24 01' 58.26" Same as above

HS6 33 34' 10.15" 24 02' 41.96" Same as above

HS7 33 34' 24.82" 24 03' 28.63" Same as above

HS8 33 34' 48.14" 24 05' 21.28" Same as above

HS9 33 34' 52.68" 24 05' 49.45" Same as above

HS10 33 35' 40.10" 24 07' 01.78" Same as above
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Type of intervention 
and/or management

Site code Latitude (South) Longitude (East) Description

AFL1 33 33' 23.23" 23 58' 55.68" Entire alluvial fan area conserved, only allow low-impact activities: no clearing 
of natural vegetation for cultivation, and no- to low-impact browsing and 
grazing. Avoid building dams on tributary streams and channelizing stream 
flows. Remove channelizing earthen berms where possible and stabilize any 
head cuts that have formed on the alluvial fan surface.

AFL2 33 33' 01.65" 24 00' 09.57" same as above

AFL3 33 33' 45.97" 24 00' 25.67" same as above

AFL4 33 33' 03.55" 24 01' 25.19" same as above

AFL5 33 33' 58.02" 24 01' 35.03" same as above

AFL6 33 34' 04.94" 24 02' 35.25" same as above

Alluvial fan low impact AFL7 33 33' 17.78" 24 02' 59.06" same as above
and conservation sites AFL8 33 33' 33.09" 24 04' 03.81" same as above

AFL9 33 34' 37.47" 24 04' 04.00" same as above

AFL10 33 33' 45.39" 24 04' 47.97" same as above

AFL11 33 34' 00.30" 24 05' 35.78" same as above

AFL12 33 34' 24.55" 24 07' 20.79" same as above

AFL13 33 34' 25.70" 24 07' 44.35" same as above

AFL14 33 34' 36.41" 24 08' 07.98" same as above

AFL15 33 35' 02.97" 24 08' 21.00" same as above

AFL16 33 34' 42.94" 24 08' 43.47" same as above

AFL17 33 36' 02.43" 24 11' 26.46" same as above
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Type of intervention/ 

management

Site code Latitude (South) Longitude (East) Description of nature of intervention and/or land management

Alluvial fan strategic- 
rehabilitation site

AFR1

AFR2

AFR3

33 35' 11.58"

33 35' 43.33" 

33 36' 21.65"

24 06' 49.08"

24 09' 56.54" 

24 11' 50.77"

Remove channelizing earthen berms and divert some of the stream flow out 
of the main stem channel. Revegetate the alluvial fan surface with natural 
grass, forbes and woody species found on alluvial fans where possible.

same as above

same as above

Alluvial fan potential- 
rehabilitation site

AFP 33 35' 11.64" 24 09' 44.07" Alluvial fan should receive similar rehabilitation to above strategic 
rehabilitation sites however present land-use activities inhibit this.

Trunk channel 
rehabilitation

Entire channel reach; focus 
on cut-and-fill style first, 
then the floodplain 
accretion style, finally the 
upper transfer style

Where possible, remove channelizing earthen berms from alongside trunk 
channel to prevent further channel erosion. Over time, aggradation of the 
channel bed may result in floodplain re-wetting.

238



CHAPTER 8: IMPLICATIONS OF THE APPROACH AND FINDINGS OF THIS RESEARCH

8.1 Summary of the findings of this research

The aim of this thesis was to identify drivers of recent river sensitivity in the Baviaanskloof 

catchment within the framework of geomorphological connectivity and geomorphological 

adaptive cycles, and evaluate river-floodplain rehabilitation strategies that have been 

employed.

Fryirs (2013) describes the hierarchical nature of sediment cascades, referring to the 

movement of sediment from relatively broad scales of an entire catchment to sub

catchment, river reach and sub-reach scale. The nature and degree of connectivity within 

the sediment cascade influences the way in which different parts of a river system respond 

to disturbances that alter water and sediment fluxes. Coarse sediment connectivity across 

spatial scales in the Baviaanskloof, defines the geomorphological structure and sensitivity of 

the river and surrounding tributary streams to disturbances. In this regard, connectivity 

influences the degree to which a geomorphological response at the hillslope scale is 

transmitted to tributary and trunk channel reach scales. Connectivity in this study has 

therefore been described in both structural and functional terms, the two of which are 

inherently linked to determine the degree to which a river system or parts thereof, respond 

to perturbations (Heckman and Schwanghart 2013). Structural and functional connectivity in 

the context of the study are defined below:

Structural connectivity in the context of the Baviaanskloof refers to the coarse sediment 

cascade which is characterised by pulsed 'waves' of coarse sediment movement from 

hillslopes to the channel network and along the channel network, with temporary (over 

several years) storage in varying landforms. The degree of structural connectivity 

determines the degree to which geomorphological processes occurring within different 

landforms situated at different spatial and temporal hierarchies interact with one another. 

This process connectivity may be described as functional in nature, determining the degree 

to which landforms and their processes are coupled across space and time (Heckman and 

Schwanghart 2013; Bracken et al. 2015). In the Baviaanskloof, erosional processes that have 

been induced at the hillslope scale for the next several hundred years, are coupled to 

erosional and depositional processes occurring over several decades at the tributary-fan and 

trunk stream scale. Hence there has been a cross-scale interaction of geomorphological
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adaptive cycles. A high degree of structural connectivity was the mechanism by which 

threshold breaches at the hillslope geomorphological adaptive cycle scale were transferred 

to geomorphological adaptive cycles at the tributary-fan and trunk channel scales. In turn, 

geomorphological response at the trunk stream scale was transferred up the hierarchy of 

adaptive cycles to the tributary fan and hillslope scales. This upscale transfer was indicated 

by fan entrenchment and expansion of hillslope gullies following years in which trunk and 

tributary channel responses took place.

In the Baviaanskloof structural connectivity determines the degree of functional (process) 

connectivity, which in turn determines the nature and rate of adjustment to environmental 

and human-induced disturbances across scales. In dryland mountain catchments with steep 

hillslopes and high-magnitude storm events, such as the Baviaanskloof, connectivity is 

relatively high (Harvey 2002a; Fryirs et al. 2007a) compared to lowland systems. This means 

that geomorphological adaptive cycles, in dryland mountain catchments such as the 

Baviaanskloof, should be well-coupled across different spatial scales, increasing the 

sensitivity of these types of systems to perturbations relative to lowland systems. However, 

prior to human land-use impacts in the Baviaanskloof, the river-floodplain and surrounding 

catchment was characterised by a relatively high structural resilience to geomorphological 

change, due to dense woody vegetation growth on hillslopes and the floodplain, and the 

buffering role of alluvial fans within a wide accretionary floodplain. This structural resilience 

was owing to the geomorphological history and associated morphology of the river valley, 

associated with tectonic uplift events and faulting of the Baviaanskloof valley floor. These 

events promoted the formation of a gently sloping valley floor surrounded by steep 

mountains, such that alluvial fans and an accretionary floodplain formed on the valley floor. 

Following human induced increases in coarse sediment connectivity from the 1960s, in the 

hillslope, tributary-trunk and upstream-downstream dimensions, the structural resilience of 

the study reach was reduced as incising stream channels became enhancers of water and 

sediment connectivity. This increased connectivity reduced the effective role of 

geomorphological buffers along the study reach. The rapid changes in river-floodplain 

geomorphological and hydrological form observed and reported for the Baviaanskloof River 

and tributary fans during the mid-late 20th century, mirror the abrupt and episodic changes 

that occur in complex adaptive systems as thresholds are breached, and the system enters a
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creative destruction phase of an adaptive cycle. In the Baviaanskloof, this creative 

destruction phase occurred through the predominance of erosional processes, inducing 

hillslope soil erosion and gullying, and channel morphological change. Although, 

sedimentological and geochronological evidence suggests that the Baviaanskloof River- 

floodplain and surrounding catchment is naturally a cut-and-fill landscape, the recent river 

cutting phase was rapidly approached and was relatively short-lived, lasting a few decades 

due to human engineering of the system. This kind of adaptive erosional phase may have 

lasted several hundred years under natural geomorphological process conditions.

The present-day condition of the river-floodplain is suggested to be analogous to the re

organization phase of the adaptive cycle whereby the trunk, tributaries and floodplain are 

adjusting channel morphology to new conditions of discharge and sediment amount and 

caliber. The new river state has been artificially induced through human design and the 

crossing of multiple thresholds resulting in a transformed ecosystem that is self-sustaining, 

but in which humans are a key role player in defining the structure and dynamics of the 

system (Morse et al. 2014). Humans should therefore be considered as inherent and 

important role players in river-floodplain process, form and sensitivity to geomorphological 

change into the future, for the Baviaanskloof. The view is that these transformed 

ecosystems should be managed according to the new set of properties and processes, 

strongly influenced by human intervention, instead of trying to restore natural structure and 

processes that existed prior to human induced change (Morse et al. 2014). In the 

Baviaanskloof, the role of humans in engineering form and process, however, may be 

episodically altered, during large and extreme floods within the catchment, as these types 

of events have historically be powerful enough to destroy human engineered features , such 

as earthen berms, furrows and cultivated areas.

The role of future climate change in either synergizing or counteracting present-day and 

future geomorphological processes should be considered in future management activities. 

There are mixed predictions of changes in annual rainfall amount, frequency and intensity of 

rainfall events, and droughts, associated with climate change in South Africa. Lumsden et al. 

(2009) attempted to predict future climate scenarios for South Africa using several global 

climate scenario models developed at a daily time-step and empirically downscaled to the 

region. The model predicted more rainfall and more intense events for the east of southern
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Africa and less rainfall and a slight increase in inter-annual variability for the west and 

adjacent interior. These climatic changes are predicted to result in increased and decreased 

runoff respectively and higher flow variability. It is difficult to predict the future scenario for 

the Baviaanskloof as it falls on the boundary of the western and eastern parts of the country 

(Lumsden et al. 2009). The study by Lumsden et al. (2009) predicted an increase in the 

number of days with >5mm rainfall for the area in which the Baviaanskloof falls, with a 

mixed signal for changes in the frequency of days with >10mm and >20mm rainfall events. 

The results of the present study did not suggest an increasing frequency of small to 

moderate flood events over the last few decades, but it was noted that there was an 

increase in the frequency of >20 mm one-day rain events from the early 2000s. The La Nina 

(wet) climatic phase that existed during the period of this study may explain this increase in 

frequency of one-day rainfall events of this kind. Under reduced hillslope vegetation cover, 

this relatively wet local climate would have initiated an increase in hillslope runoff and 

sediment yield for the study reach. The enhanced tributary-trunk and upstream- 

downstream connectivity of the study reach, means that coarse and fine sediment 

connectivity is potentially high throughout the study reach. However, enhanced connectivity 

is dependent on the prevailing climatic regime and associated rainfall event magnitude and 

frequency. The recent shift in the climate of South Africa to a La Nina phase, means that 

conditions are dry and rainfall will most-likely remain below average over the next few 

years. Connectivity will thus be relatively low, as sediments are locally trapped in 

depositional features, slowing the rate of recovery of the trunk stream along degraded 

reaches.

Catchment management and river rehabilitation in the Baviaanskloof should be defined 

within the parameters of the transformed ecosystem, recognizing the role of humans in 

defining the structure and dynamics of the river-floodplain and boundary conditions of 

runoff, sediment fluxes, and storm discharges. Considerations of structural and functional 

connectivity should form the basis upon which a strategic, hierarchical rehabilitation plan is 

built, such that the framework guides the extent, location and type of rehabilitation 

activities within different process domains of each hierarchy (Okin et al. 2015).
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8.2 An eclectic approach to understanding river complexity

The present study has contributed to understanding the distribution of barriers, buffers and 

enhancers of water and sediment connectivity, the types and arrangement of river styles, 

and the most important physical drivers of the recent channel dynamics of the 

Baviaanskloof. The use of connectivity integrated within the framework of Panarchy and 

adaptive geomorphological cycles, was useful for understanding the interaction of 

geomorphological processes, structure and threshold breaches at different scales of the 

study reach. This knowledge then provided the basis for informing the functional 

connectivity of the study reach and for devising a hierarchical process-based approach to 

river rehabilitation.

The present study has not been able to determine rates of geomorphological processes and 

change, or the degree to which geomorphological processes occurring at different scale 

ranges are either synergistic or counteractive. Furthermore, there were a number of 

assumptions made, such as the existence of a deepened and widened tributary stream that 

directly joins the trunk stream, is indicative of a high degree of water and sediment 

connectivity. In many cases connectivity was visually evidenced by sediment deposits at the 

junction of an eroding tributary with the trunk channel (indicating tributary-trunk 

connectivity). However, stream channels undergo erosion until a point of relative stability 

and in doing so, deposit sediment in a complex way. It may therefore be the case that a 

well-adjusted tributary channel may be depositing sediment along the channel bed, 

upstream of where it joins the trunk channel. This process would result in only partial 

connectivity of sediment- of mostly the finer sediment component.

Qualitative approaches to describing the nature and degree of sediment connectivity 

therefore require thorough assessment of channel morphology and the nature and 

arrangement of erosional and depositional features that indicate the degree of water and 

sediment connectivity, during normal to high flows. This kind of approach to investigating 

connectivity and complex response is most common at present in the fluvial geomorphology 

domain, and Heckman and Schwanghart (2013) stress the importance of developing more 

quantitative approaches to measuring connectivity. Quantitative approaches, such as 

measuring sediment budgets for different parts of a catchment, and determining the
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relationship between stream power and sediment entrainment of different particle sizes, 

may substantially improve the confidence attributed to qualitative descriptions of the 

nature and degree of connectivity Despite its lack of quantitatively measuring connectivity, 

the approach in this study has allowed an assessment of the interaction between several 

variables, including human land-use activities and climate regime, with geomorphological 

processes. The important contribution has been towards developing a new way of thinking 

about river process, form and change within a complex adaptive systems framework 

(Church 2010; Wainwright et al. 2011). The study has demonstrated that Panarchy occurs in 

the Baviaanskloof system, evidenced by sudden, chaotic change, yet self-organization of 

processes and forms, which happen between periods of relative geomorphological 

resilience to external perturbations. The framework of Panarchy and geomorphological 

adaptive cycles should thus be investigated as a conceptual tool for understanding 

sensitivity and change across space and time in geomorphological systems. The two 

concepts have not to the author's knowledge been interlinked within the discipline of fluvial 

geomorphology, and the concept of Panarchy has not yet been applied to investigate 

sensitivity and change in fluvial geomorphological systems. This study has therefore 

provided a starting basis to encourage further investigation of the application of the two 

concepts in studies of fluvial geomorphological complexity, and for studies that have an 

applied rehabilitation and catchment management component. The application of the two 

concepts however, requires a critical realist philosophical stance in approaching fluvial 

geomorphological investigation.

8.3 Approaching dryland, mountain stream rehabilitation in a new way

Understanding fluvial systems within a complex, adaptive systems framework has 

implications for how applied scientists approach investigation and management of river 

catchments (Okin et al. 2015). Yet, adoption of a process-based approach to river 

rehabilitation, understanding complexity and drivers of change and future needs and desires 

of local communities, conservation managers and government, is not always possible and 

not encouraged in modern river rehabilitation practice. It is difficult to integrate scientific 

knowledge and the desires of ecologists and conservationists, such that a rehabilitation 

project is effective and sustained into the future (Richardson and Lefroy 2016). It may be, 

that the only way to shift toward widespread adoption of a process-based, and integrative
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approach to river rehabilitation, is to encourage a shift in thinking and practice within 

funding agencies, and rehabilitation practitioners linked to these agencies. In this regard, 

the criteria defining the success of a project should not driven by quantitative results of 

simple metrics that are politically aligned, such as the number of rehabilitated rivers, or 

structures built, or people employed. It is better practice to define the success of a project 

by the degree to which key hydrological and geomorphological processes and structural 

components (including vegetation and landforms) have been reinstated, such that the 

system has greater physical resilience to perturbations. Measuring and evaluating the 

aforementioned is difficult, and requires a thorough historical investigation of river behavior 

and drivers of geomorphological change, present-day key geomorphological processes and 

their interactions across scales, and the derived resilient condition toward which a 

rehabilitation project aims. Indeed there will always be ecological and/or social tradeoffs 

made during any river rehabilitation project that should be weighed against the long-term 

impacts of following through with the specific trade-offs.

Based on the need for a new way of thinking and practice in rehabilitation of dryland 

streams, it is suggested that several critical areas should be considered:

1) It would be useful to investigate the concepts of connectivity and geomorphological 

adaptive cycles, as supportive frameworks for developing a hierarchical, process- 

based framework of rehabilitation, that is specific to the geomorphological 

characteristics of the target catchment. Strategic rehabilitation of key processes and 

their relative degree of (dis)connectivity should be targeted before intervention at a 

degraded channel or wetland reach scale.

2) Implementation of an extended (>10 years) geomorphological, hydrological and 

ecological monitoring of the upstream, local and downstream impacts of different 

rehabilitation interventions. There is a general absence of systematic monitoring of 

rehabilitation impacts in South African rivers and wetlands. Under the WfWet 

programme, the success of a particular rehabilitation intervention is commonly 

evaluated based upon visual and photo comparisons of stream channel form before 

and after rehabilitation. A successful outcome is deemed as a stream in which 

erosion has been largely halted, and where the delivery of one or more ecosystem 

services has been improved. More detailed monitoring is an essential component of
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adaptive management such that continual learning and improvement may take 

place.

3) Adoption of adaptive river and wetland rehabilitation practice such that 

improvements are continually made to rehabilitation approach and design as 

rehabilitation outcomes of monitored (Downs and Kondolf 2002; Kingsford et al. 

2011). This requirement is dependent on the presence of long-term monitoring of 

rehabilitation impacts in projects that have already been implemented.

4) Recognition of the needs and desires of people living in and (to a lesser degree) 

downstream of a catchment, into rehabilitation planning objectives, such that 

interventions attempt to balance the desires of conservation managers with local 

community needs and desires. So far, the stakeholder engagement process is hardly 

applied in river and wetland rehabilitation in South Africa. Furthermore, community 

based river rehabilitation and catchment management is a useful tool for creating a 

sense of environmental stewardship, and for effecting more sustained management 

into the future (Rowntree et al. 2010).

5) In South Africa there is need for greater knowledge and development of existing 

geomorphological and ecological assessment tools for rivers and wetlands, in 

relation to understanding geomorphological processes and change across scales. 

Geomorphological connectivity (structural and functional) may provide a useful tool 

for understanding the drivers and sensitivity of different rivers and wetlands, and for 

planning and locating rehabilitation interventions.

Although important for improved rehabilitation practice, the abovementioned issues are 

contingent upon buy-in and adoption by State river management agencies, and local 

communities. A collective shift in thinking, practice and knowledge around approaching 

river-wetland rehabilitation practice and catchment management is complicated, and often 

never fully achieved.

8.4 Considering the impacts of a critical realist approach in this study

The grounding of critical realism is based on the fact that it is invalid to make truth claims 

upon a limited representation of reality (data) in science (Easton 2010). The traditional 

positivist approach to scientific investigation expects systems (social and natural) to behave 

in a linear manner, abiding by general laws, and understood by simple cause-and-effect
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relations (Easton 2010). Complex systems do not always abide by these simple laws, since 

unique sets of interacting processes and structure, nested at different spatial and temporal 

scales, determine unique and often non-linear interactions between variables. Hence, the 

assumptions of the positivist approach do not suite investigation of geomorphological 

processes and dynamics across multiple scales within the discipline of fluvial 

geomorphology. For example, although it is expected, in general, that sediment transport 

capacity of a river should increase with increasing discharge and channel slope, the 

relationship may not be proportional and this theory may not always hold true. Factors such 

as the erosivity of sediment within the channel boundary, and the presence of biotic and 

geomorphological features that act as enhancers or buffers to sediment transfer, influence 

sediment transport capacity.

The present study has subscribed to the main principles of the critical realist ontology, as 

summarized by Easton (2010):

■ There is a reality separate to our own understanding that cannot be fully known.

■ Our understanding of reality is socially constructed; the way in which we make 

observations during scientific investigation, and our interpretations thereof, are 

influenced by the personal history and values of the investigator.

■ Critical realism makes allowances for prejudices during scientific investigation, as 

long as these prejudices and their influence on the interpretations and 

evaluations we make as scientists are well understood and clearly stated. These 

prejudices influence our account of reality and the associated way in which we 

manage social-ecological systems.

The methodological approach chosen by the author in this study, the interpretation and 

evaluation of the findings of the research, and the rehabilitation recommendations made, 

were biased in several ways. The main biases included:

Methodological approach: An inductive approach was adopted, using qualitative and 

quantitative observations and measurements to investigate and describe patterns and 

trends in geomorphological behaviour, and the characteristics of the driving forces of recent 

changes in river behavior. This approach contrasts to deductive reasoning which involves 

the rigorous testing of hypotheses through statistical analysis of representative data of the 

particular system being investigated. The inductive approach in the present study allowed
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the author to approach a multi-scaled (spatial and temporal) investigation with greater 

ease, and realistically from a time and funding constraints perspective. In system-based 

studies, obtaining representative data of processes and structure across scales of space and 

time is very difficult and often requires that inductive reasoning is applied. However, the 

present study could have benefitted from more rigorous sampling and testing of 

hypotheses, such that greater insight into the fluvial geomorphological nature and dynamics 

of the Baviaanskloof system could be obtained. The inductive approach although flawed 

with many more assumptions than a deductive approach, provided a suitable means to 

address the objectives of this study.

Rehabilitation and management recommendations: The evaluation of the approach of 

WfWet to rehabilitation of the Baviaanskloof River-floodplain was conditioned by the 

personal value system of the author, and the limited experience the author had gained with 

other WfWet rehabilitation projects in South Africa. The author feels strongly about the use 

of structural engineering approaches to river-wetland rehabilitation, since it is felt that this 

approach limits the natural ability of a system to adjust to disturbances and approach a new 

ecological and geomorphological condition. This value-based bias meant that the author 

responded with a negative stance to the structural approach of WfWet to rehabilitation in 

the Baviaanskloof, and biased recommendations toward 'soft' interventions. However, the 

author did attempt to appreciate the ideological and financial constraints that shape the 

approach of WfWet to river-wetland rehabilitation in South Africa. The author has also had 

experience in wetland health and ecosystem services assessments for a limited number of 

WfWet rehabilitation projects in South Africa. Experience during these projects led the 

author to conclude that, in general, the assessments of health and ecosystem services were 

rapid, and involved insufficient depth of investigation of the driving forces of the dynamics 

of a particular system. This personal experience then biased the author in her evaluation of 

the WfWet approach to rehabilitation in the Baviaanskloof.

8.5 Conclusion

Geomorphological connectivity is an emerging conceptual framework for investigating and 

understanding more clearly the complexity of fluvial geomorphological systems. It is argued 

here, that geomorphological connectivity described in both structural and functional terms, 

can be linked to the concept of Panarchy, traditionally used to describe unpredictable
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change, self-organization, and cross-scale interactions of processes and structure in socio

ecological systems. The present study has attempted to describe the influence of coarse 

sediment connectivity on the nature and interaction of geomorphological adaptive cycles of 

a river Panarchy, for the Baviaanskloof catchment in South Africa. In dryland, mountain 

catchments such as the Baviaanskloof, threshold breaches and switching between phases of 

predominantly transport and sediment accretion, and predominantly sediment erosion and 

channel morphological change, is determined by the degree of coarse sediment 

connectivity. Recent changes in coarse sediment connectivity in the upper-middle reaches 

of the catchment influenced the sensitivity of the river to moderate and large flood events, 

and determined the switch from a phase of relative channel stability and high 

geomorphological resilience to a phase of channel erosion and instability. These adaptive 

responses at the river reach scale were transferred to larger scales initiating 

geomorphological responses at tributary streams and the surrounding hillslopes. 

Understanding coarse sediment connectivity and the interaction of geomorphological 

processes at different scale ranges of the Baviaanskloof enabled the development of a 

process-based framework to guide better rehabilitation practice.

The findings of this research define a single and restricted version of multiple possible 

realities that could be measured and interpreted to explain the geomorphological 

behaviour, dynamics and sensitivity of the Baviaanskloof River-floodplain. The author has, 

however, been able to provide insight into the main environmental and human variables, 

and geomorphological structure and processes that influence the resilience of the 

Baviaanskloof River-floodplain to different types of disturbances. It is suggested that an 

understanding of the interaction of coarse sediment connectivity and river process and 

form, in dryland mountain catchments such as the Baviaanskloof, should form a basis for 

planning process-based river rehabilitation.
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