
A Unified Data Repository for Rich
Communication Services

Submitted in fulfilment
of the requirements of the degree

Masters in Computer Science

at Rhodes University

Oluwasegun Francis Sogunle

December 2016

Abstract

Rich Communication Services (RCS) is a framework that defines a set of IP-based
services for the delivery of multimedia communications to mobile network
subscribers. The framework unifies a set of pre-existing communication services
under a single name, and permits network operators to re-use investments in
existing network infrastructure, especially the IP Multimedia Subsystem (IMS),
which is a core part of a mobile network and also acts as a docking station for RCS
services. RCS generates and utilises disparate subscriber data sets during
execution, however, it lacks a harmonised repository for the management of such
data sets, thus making it difficult to obtain a unified view of heterogeneous
subscriber data. This thesis proposes the creation of a unified data repository for
RCS which is based on the User Data Convergence (UDC) standard. The standard
was proposed by the 3rd Generation Partnership Project (3GPP), a major
telecommunications standardisation group. UDC provides an approach for
consolidating subscriber data into a single logical repository without adversely
affecting existing network infrastructure, such as the IMS. Thus, this thesis details
the design and development of a prototypical implementation of a unified
repository, named Converged Subscriber Data Repository (CSDR). It adopts a
polyglot persistence model for the underlying data store and exposes
heterogeneous data through the Open Data Protocol (OData), which is a
candidate implementation of the Ud interface defined in the UDC architecture.
With the introduction of polyglot persistence, multiple data stores can be used
within the CSDR and disparate network data sources can access heterogeneous
data sets using OData as a standard communications protocol. As the CSDR
persistence model becomes more complex due to the inclusion of more storage
technologies, polyglot persistence ensures a consistent conceptual view of these
data sets through OData. Importantly, the CSDR prototype was integrated into a
popular open-source implementation of the core part of an IMS network known as
the Open IMS Core. The successful integration of the prototype demonstrates its
ability to manage and expose a consolidated view of heterogeneous subscriber
data, which are generated and used by different RCS services deployed within IMS.

Acknowledgements

First of all, I wish to express my sincere gratitude to my supervisors Dr. Mosiuoa
Tsietsi and Prof. Alfredo Terzoli for their exemplary mentorship. Our meetings and
discussions, their patience and unconditional support made this thesis possible. I
am grateful to my friends for their support and insightful comments given on this
work. Finally, special thanks to my family for always being close to me.

Contents

1 Introduction 1

1.1 Service Oriented A rchitecture... 2

1.2 Network S erv ices ... 3

1.3 IP Multimedia Subsystem ... 4

1.3.1 Session Initiation P ro to co l.. 6

1.3.2 Diameter Protocol ... 7

1.4 G o a l ... 7

1.5 Scope of S t u d y .. 8

1.6 Thesis Outline... 8

2 Rich Communication Services 10

2.1 Globalisation E ffo r ts ... 11

2.2 Architecture... 12

2.3 Specifications... 13

2.4 Clients .. 15

2.5 Mobility ... 16

2.6 Supported Protocols ... 16

2.7 Enabling RCS Services.. 17

2.7.1 Configuration Service.. 17

2.7.2 Presence Service .. 19

2.7.3 Messaging Service.. 20

i

CONTENTS

2.7.4 File Transfer Service .. 21

2.7.5 Content Sharing Service .. 21

2.7.6 Telephony Service .. 22

2.7.7 Geolocation Exchange Service .. 22

2.7.8 Common Message Store (C M S) ... 22

2.7.9 Common File Store (C F S) .. 23

2.7.10 XML Document Management Server (X D M S)..............................23

2.8 Service Interactions .. 24

2.9 Summary .. 25

3 Understanding User Data Convergence 27

3.1 Architecture ... 28

3.1.1 Front End ... 28

3.1.2 Client Applications ... 29

3.1.3 Ud Reference Point ... 29

3.1.4 User Data Repository (UDR) .. 30

3.2 Categories of UDR Subscriber Data ... 30

3.3 Data Modelling Requirements ... 31

3.4 Ud Interface Requirements ... 33

3.4.1 Access Control .. 33

3.4.2 Protocols ... 33

3.4.3 CRUD Messages .. 34

3.4.4 Subscribe/Notify Messages.. 36

3.4.5 Transactions.. 37

3.5 Critique of the UDC Specifications ... 39

3.5.1 Integration of LDAP and S O A P ... 39

3.5.2 Data Storage Technology.. 40

ii

CONTENTS

3.6 Summary ... 41

4 An Overview of the Open Data Protocol 42

4.1 OData Architecture .. 43

4.2 Data Modelling .. 44

4.2.1 Entity Data Model ... 44

4.2.2 Common Schema Definition Language 46

4.3 Data Exchange .. 47

4.3.1 Messages.. 47

4.3.2 Data Format ... 48

4.3.3 Payload .. 49

4.4 Service Provisioning ... 49

4.4.1 Capability N egotiation... 49

4.4.2 Service and Metadata Document .. 50

4.5 Data Manipulation Capabilities .. 50

4.5.1 Create ... 51

4.5.2 Update ... 52

4.5.3 Q u e r y ... 52

4.5.4 Aggregation .. 54

4.5.5 Delete ... 55

4.5.6 Callback Mechanism .. 55

4.5.7 Action and Function Imports .. 57

4.6 Extending Producer Capabilities .. 57

4.7 Summary .. 58

5 Data Store Design Practices 59

5.1 Common Data Models .. 60

5.1.1 Hierarchical .. 60

iii

CONTENTS

5.1.2 K ey/V alue... 61

5.1.3 R elational... 61

5.1.4 Document ... 62

5.1.5 Column-Oriented .. 63

5.1.6 Graph ... 64

5.2 Data Abstraction ... 64

5.3 Schema Management ... 66

5.3.1 Schema-full Model ... 66

5.3.2 Schema-less Model ... 66

5.4 Transaction Management .. 66

5.5 Fault Tolerance Techniques ... 67

5.6 The CAP T h eorem .. 68

5.7 Persistence M od el... 68

5.7.1 Single-Store Persistence .. 69

5.7.2 Multi-Store Persistence... 69

5.8 Summary .. 70

6 Introducing the Converged Subscriber Data Repository 71

6.1 Design Considerations ... 72

6.1.1 Data Protection .. 72

6.1.2 Formalised Access Mechanism .. 72

6.1.3 Interoperability with External Systems 73

6.1.4 Coping with Schema Evolution ... 73

6.1.5 Persistence and Transactions ... 73

6.2 System Overview ... 74

6.2.1 Application FE .. 75

6.2.2 Provisioning FE .. 76

iv

CONTENTS

6.2.3 Converged Subscriber Data Repository 78

6.3 CSDR Messages ... 81

6.3.1 Create ... 81

6.3.2 Read ... 82

6.3.3 Update ... 82

6.3.4 D e le te ... 84

6.3.5 S u bscrib e ... 84

6.3.6 Notify ... 84

6.4 Summary .. 85

7 Constructing a Prototype 87

7.1 Choice of Implementation .. 88

7.1.1 Maven ... 88

7.1.2 WildflyAS .. 88

7.1.3 Apache Olingo .. 89

7.1.4 Java Persistence API (JPA) ... 89

7.1.5 JavaServer Faces (J S F)... 89

7.1.6 Data Stores .. 90

7.2 Implementing Polyglot Persistence .. 90

7.2.1 Creation of the Domain Model .. 90

7.2.2 Mapping the Domain Model across Stores 93

7.2.3 Configuring the JPA Interface.. 93

7.2.4 Exposing the Data through J P A ... 95

7.3 Providing Schema Management .. 96

7.3.1 Schema Descriptor ... 96

7.3.2 Data Producer .. 97

7.3.3 Backend Interface.. 98

v

CONTENTS

7.4 Implementing the Data Processing Component.. 99

7.4.1 Request Processor ... 99

7.4.2 Query Handler ... 99

7.5 Implementing Access Control ... 100

7.6 Discussion.. 101

7.7 Summary .. 102

8 Integration within an IMS Testbed 103

8.1 Overview... 104

8.2 HSS FE ... 105

8.2.1 D escrip tion .. 105

8.2.2 Implementation .. 106

8.2.3 Results ... 106

8.3 Telephony and Messaging FEs .. 111

8.3.1 Description .. 111

8.3.2 Implementation .. 112

8.3.3 Results ... 112

8.4 XCAP FE .. 115

8.4.1 Description .. 116

8.4.2 Implementation .. 116

8.4.3 Results ... 116

8.5 Engaging the CSDR ... 119

8.6 Summary .. 121

9 Conclusion 122

9.1 Achieved Objectives ... 123

9.1.1 Review of RCS specifications and its data management policies 123

9.1.2 Review of the UDC standard to extract relevant requirements 123

vi

CONTENTS

9.1.3 Investigation of data store design practices.................................. 123

9.1.4 Creating a Converged R epository .. 124

9.1.5 Evaluation of the d e s ig n ..124

9.2 Thesis Contributions.. 124

9.3 Future W ork .. 125

9.4 Summary .. 126

References 127

A Additional Tables 134

A.1 RCS Device Configuration.. 134

A.2 Device Configuration Parameters ... 135

A.3 EDM Data Types .. 136

A.4 Olingo Processors .. 137

A . 5 Diameter Command Codes .. 138

A.5.1 Sh Codes ... 138

A.5.2 Cx C o d e s ...139

A. 5.3 Sh Data-Reference AVP Codes ..139

B Additional Figures 141

B . 1 OMA XDM Architecture... 141

B.2 HSS FE D M ... 142

B.3 XCAP DM ... 142

B.4 Provisioning the C S D R .. 143

B. 4.1 Registering the FEs on the C S D R ...143

B.4.2 Creating Subscription P rofiles ..143

B.5 R edis.. 147

C Configuration Files 148

vii

CONTENTS

C.1 HSS F E .. 148

C.1.1 Jetty A S ...148

C.1.2 Deployment Descriptor... 148

C.2 XCAP F E ...149

C.3 Telephony F E ...150

C.4 Messaging F E ...150

C.5 CSDR ... 151

C.5.1 Deployment Descriptor... 151

C.5.2 POM File ... 152

viii

List of Figures

1.1 Overview of core SOA components. Source: [58]..................................... 3

1.2 Main components of an IMS core network. Source: [31].......................... 6

2.1 A simplified view of the RCS architecture. Source: [52] 12

2.2 Core RCS Service Enablers. Source: [52]...18

2.3 A matrix of Joyn service interactions... 24

3.1 UDC Architecture. Adapted from: [10]..28

3.2 Relationship between the UDC IMs and DMs. Source: [9].........................31

3.3 Steps involved in creating a CDM. Source: [14]... 32

3.4 LDAP and SOAP network stacks. Source: [13].. 34

3.5 Basic call flow for creating user data in the UDR..35

3.6 Basic call flow for querying user data from the UDR.................................. 35

3.7 Basic call flow for updating user data in the UDR...................................... 35

3.8 Basic call flow for deleting user data in the UDR.. 36

3.9 Procedure for subscribing to change events on user data............................37

3.10 Procedure for notifying FEs when events occur on user data......................37

3.11 LDAP and SOAP Integration. Source: [13]...39

4.1 Fundamental Components of an OData Architecture. Source: [27]. . . 43

4.2 An overview of the EDM. Source: [73]... 45

4.3 The elements of a CSDL Document. Source: [75]..47

ix

LIST OF FIGURES

4.4 Description documents exposed by an OData Producer. Source:
[100].. 50

4.5 Example call flow for creating an OData Entity...51

4.6 Example call flow for updating an OData Entity. 52

4.7 Example call flow for retrieving an OData entity. 54

4.8 Example call flow for deleting an OData entity.. 55

4.9 Using OData Callback... 56

5.1 Simple Hierarchical DM... 60

5.2 Simple key/value DM...61

5.3 Simple Relational DM.. 62

5.4 Simple Document DM.. 63

5.5 Simple Column-Oriented DM..63

5.6 Simple Graph DM...64

5.7 Data abstraction levels. Adapted from: [33]... 65

5.8 Single store persistence example. .. 69

5.9 Polyglot persistence example..70

6.1 A high level overview of the CSDR architecture.. 74

6.2 Sequence diagram depicting a generic interaction between an RCS
client, an AFE and the CSDR... 76

6.3 Sequence diagram depicting interactions between a Client, the PFE
and the CSDR...77

6.4 Components of the CSDR.. 78

6.5 CSDR Authentication and Authorisation.. 79

6.6 Defined CSDR behaviour when creating data...82

6.7 Defined CSDR behaviour when fetching data...83

6.8 Defined CSDR behaviour when updating data... 83

6.9 Defined CSDR behaviour when deleting data...84

x

LIST OF FIGURES

6.10 Defined CSDR behaviour when handling subscription................................ 85

6.11 Defined CSDR behaviour when handling notification................................. 85

7.1 Overview of the prototype.. 88

7.2 The Domain Model as an Entity Relationship Diagram......................... 92

7.3 Snapshot of the CSDR Metadata Document... 96

7.4 Snapshot of the CSDR Service Document... 97

7.5 Snapshot of the CSDR Backend Interface... 98

7.6 Class Diagram of the CSDR Request Processors...................................... 99

7.7 Class Diagram of the CSDR Query Handlers...100

8.1 Overview of the experimental setup..104

8.2 UAR from S-CSCF to HSS FE.. 107

8.3 HSS FE and CSDR interaction..107

8.4 HSS FE response sent to the I-CSCF... 108

8.5 S-CSCF MAR request sent to HSS FE... 108

8.6 S-CSCF MAR request sent to HSS FE... 108

8.7 S-CSCF sends Cx-SAR message to the HSS FE...109

8.8 HSS FE sends SAR response to the S-CSCF.. 109

8.9 HSS FE LIR response sent to the I-CSCF...110

8.10 UDR message received by HSS FE..110

8.11 HSS responds to the messaging service.. 111

8.12 Tessa accepts the voice call...112

8.13 Telephony FE adds Mike’s recent conversation to the CSDR call log. 113

8.14 Telephony FE updates Mike’s session data in the CSDR..........................113

8.15 Tessa sends an SMS to Mike.. 114

8.16 Messaging FE updates Tessa’s session data in the CSDR.........................114

8.17 SIP File Transfer Request from Tessa...115

xi

LIST OF FIGURES

8.18 Telephony FE updates Tessa’s session data with the file transfer
activity..115

8.19 Creating an XCAP document.. 117

8.20 Creating an XCAP document in CSDR... 117

8.21 Fetching an XCAP document...118

8.22 Document sent to the XCAP client...118

9.1 OData Service Convergence..126

A . 1 Sequence Diagram for first time startup of an RCS device. Source:
[52]...134

B . 1 OMA XDM Architecture. Source: [78]..141

B.2 Cx Data..142

B.3 Sh Data.. 142

B.4 XCAP Document..142

B.5 Snapshot of FE registration page.. 143

B.6 Snapshot of Add SCSCF page..144

B.7 Snapshot of Add Application Server page..144

B.8 Snapshot of Add Trigger Point page... 144

B.9 Snapshot of Add Service Profile page... 145

B.10 Snapshot of Add Visited Network page..145

B.11 Snapshot of Add Subscription Profile with IMPU page............................ 145

B.12 Snapshot of Add Subscription Profile with IMPI page..............................146

B.13 Starting up a Redis S erver... 147

B.14 Session data generated while Tessa was sharing a file............................... 147

xii

List of Tables

2.1 Chronology of RCS specifications.. 13

2.2 RCS Protocols. Adapted from: [52].. 17

4.1 Common OData message headers... 48

4.2 Common OData query options.. 53

7.1 Multi-Store JPA Data Model Mapping.. 93

7.2 JPA Handler Classes..95

7.3 JPA and EDM M a p p in g .. 95

7.4 Definition of the CDM elements.. 97

8.1 Interface operations supported by the HSS FE..105

A.1 RCS device configuration parameters. Source: [52]...................................135

A.2 EDM Primitive Data Types...136

A.3 Olingo EDM Processors.. 137

A.4 Diameter Sh Codes. Source: [12].. 138

A.5 Diameter Cx Codes. Source: [11]..139

A.6 Diameter Sh Data Reference Codes. Source: [12].. 139

xiii

Listings

7.1 A version of the polyglot persisence.xml file... 93

7.2 Maven dependencies for the data stores...94

7.3 Primefaces configuration.. 98

7.4 Pseudo-code for the AuthFilter P roced u re ...100

8.1 Diameter interfaces in config-server.xml...106

C.1 HSS FE jetty.xml configuration file.. 148

C.2 HSS FE web.xml configuration file... 149

C.3 XCAP FE web.xml configuration file... 149

C.4 Telephony FE sip.xml configuration file...150

C.5 Messaging FE sip.xml configuration file.. 150

C.6 CSDR web.xml configuration file.. 151

C.7 CSDR pom.xml configuration file... 152

xiv

Glossary of Terms

3G Third Generation
3GPP 3G Partnership Project
AA Access Agnostic
AAA Authentication, Authorisation and

Accounting
ADM Abstract DM
ADSL Asymmetric DSL
ADV Application DM View
AFE Application FE
API Application Programming Interface
APN Access Point
AS Application Server
AtomPub Atom Publishing Protocol
AVP Attribute/Value Pair
BASE Basically Available, Solid state and Eventually

consistent
BSON Binary JSON
CAP Consistency, Availability and Partition-

tolerance
CBIM Common Baseline IM
CDM Consolidated DM
CDR Call Detail Record
CFS Common File Store
CMS Common Message Store
CRUD Create, Read, Update and Delete
CS Circuit Switched
CSCF Call Session Control Function
CSDL Conceptual Schema Domain Language
CSDR Converged Subscriber Data Repository
DIB Directory Information Base
DM Data Model
DSL Digital Subscriber Line
EAB Enhanced Address Book
EDMX EDM Extensions

xv

Glossary of Terms

EM
FE
FHoSS
FTLF
GPRS
GSMA
HSPA
HSS
HTTP
I-CSCF
ICSP
IETF
iFC
IM
IMAP
IMS
IP
IPSec
IPX
IWF
JSON
LDAP
LTE
MIME
MMS
MNO
MSISDN

MSRP
NNI
OASIS

OData
OEM
OMA
OMA-DM
ONM
ORM
OS
P-CSCF
PC
PCRF
PFE
PNB

Entity Manager
Front End
Fokus Fraunhofer HSS
File Transfer Localisation Function
General Packet Radio Service
Global System for Mobile Communications
High Speed Packet Access
Home Subscriber Server
Hypertext Transfer Protocol
Interrogating CSCF
Internet Communication Service Provider
Internet Engineering Task Force
Initial Filter Criteria
Information Model
Internet Message Access Protocol
IP Multimedia Subsystem
Internet Protocol
IP Security
IP Packet eXchange
Interworking Function
JavaScript Object Notation
Lightweight Directory Access Protocol
Long Term Evolution
Multipurpose Internet Mail Extensions
Multimedia Message Service
Mobile Network Operator
Mobile Station International Subscriber
Directory Number
Message Session Relay Protocol
Network-to-Network Interface
Organisation for the Advancement of
Structured Information Standards
Open Data Protocol
Original Equipment Manufacturer
Open Mobile Alliance
OMA Device Management
Object NoSQL Mapper
Object Relational Mapper
Operating System
Proxy CSCF
Personal Computer
Policy and Charging Rules Function
Provisioning FE
Personal Network Blacklist

xvi

Glossary of Terms

PPI Polyglot Persistence Interface
PPM Polyglot Persistence Module
QoS Quality of Service
RCS Rich Communication Services
RDM Reference DM
REST Representational State Transfer
RFC Request For Comments
RTP Real-time Transport Protocol
S-CSCF Serving CSCF
SDP Session Description Protocol
SIMPLE SIP for Instant Messaging and Presence

Leveraging Extensions
SIP Session Initiation Protocol
SMS Short Message Service
SOA Service Oriented Architecture
SOAP Simple Object Access Protocol
SPI Social Profile Information
SpIM Specialized IM
SQL Structured Query Language
SUPL Secure User Plane Location
TLS Transport Layer Security
TS Technical Specification
UC Unified Communications
UDC User Data Convergence
UDDI Universal Description, Discovery and

Integration
UE User Equipment
UMTS Universal Mobile Telecommunications System
UNI User-to-Network Interface
URI Uniform Resource Identifier
URL Uniform Resource Locator
VoHSPA Voice over HSPA
VoLTE Voice over LTE
VVoIP Voice and Video over IP
WiMAX Worldwide Interoperability for Microwave

Access
WLAN Wireless Local Area Network
WSDL Web Services Description Language
XCAP XML Configuration Access Protocol
XDM XML Document Management
XDMS XDM Server
XML eXtensible Markup Language
XSD XML Schema Document

xvii

Chapter 1

Introduction

Decades ago, the term “Unified Messaging” was used to describe technology that
combines different forms of communication into a single inbox. This involved the
holistic integration of services such as fax, email, and voice calling to reduce
communication breakdown between individuals. Today, the growth of the Internet,
coupled with the proliferation of mobile devices, have driven the advancement of
communication services such as Skype, Whatsapp, Apple FaceTime, and Google
Hangouts. These technologies allow individuals to be reached across devices, which
can be mobile or fixed. This allows users to choose how to connect with each other
while leveraging the Internet to transcend geographic boundaries. Take, for
example, interactions between users, which occur through instant messaging
services, voice or video calls over the Internet. This approach to communications
ensures that users can be reached through any available device. Thus providing
the opportunity for a user to have their messages or voice mails, for instance,
delivered in an electronic form on their tablet or smartphone. This concept in
modern communication and collaboration is known as Unified Communications
(UC) [42, 43, 91].

Rich Communications Services (RCS) [47] is a communications framework that
aims to achieve UC for mobile network subscribers. It was mainly developed by a
consortium of Mobile Network Operators (MNOs) known as the Global System for
Mobile communications Association (GSMA). RCS offers a range of IP
communication services over IP including voice and video calling, content and file
sharing, location exchange and instant messaging services. These services are
discussed extensively in Chapter 2. For an MNO to effectively deliver on the
promises of RCS, an IP core network infrastructure is required — this is the IP
Multimedia Subsystem (IMS). Section 1.3 gives an overview of the IMS core
network.

However, as RCS handles different interactions between its service offerings, user
data is generated and managed by different data sources across the network. Some
of these data sources use distinct data storage and retrieval mechanisms. Simply put,
distinct data sources adopt different data structures and access protocols. This leads
to the fragmentation of user data across different storage facilities in the network.

1

CHAPTER 1. INTRODUCTION

For an MNO to gain more insight about their subscribers, deliver subscriber-tailored
RCS services, manage evolving RCS service offerings and maintain a simple network
topology, a unified view of these disparate data sets is required.

This thesis investigates the potential use of the User Data Convergence (UDC)
standard [10] to achieve data consolidation for deployed RCS services. UDC was
proposed by the 3rd Generation Partnership Project (3GPP), a telecommunications
standardisation body, as a framework for introducing a logically unique repository
into a telecommunications network such as IMS. This repository is expected to cater
for different types of subscriber data, which are used by network components. These
components support the effective and efficient delivery of the various RCS service
offerings. This chapter starts out by briefly discussing some fundamental concepts
related to the literature reviewed and contributions of the thesis. This is done
to provide a distinction between certain concepts, which are used throughout this
thesis. What follows next, is a brief discussion on the goal of this study including an
outline of the defined objectives. This is followed by the specification of the scope
of the research. Finally, a brief overview of the thesis is presented — highlighting
the contributions of each chapter.

1.1 Service Oriented Architecture

Service Oriented Architecture, or SOA, is a flexible architectural style that
integrates business processes by transforming large-scale applications into a set of
autonomous services [81]. In other words, SOA consists of a collection of services
that perform specific functions. The term Web service describes each functional
unit within a SOA environment, which facilitate different business processes. More
often than not, these processes are the operations that are carried out by distinct
services in a network environment.1 These web services encapsulate different
implementations and interact through common interfaces. Interactions may occur
through standardised communication protocols or Application Programming
Interfaces (APIs), which are platform-independent. This allows SOA
implementations to facilitate loose-coupling among web services in a distributed
environment [34, 80]. Further, SOA allows for a client-server architecture that
separates presentation, processing and data management functions into different
components. The main components of the architecture are the Service Provider,
Service Requestor, Broker and Description Document. Figure 1.1 shows the
relationship between various SOA components.

A provider is a web service component that provides a desired functionality to
the requestors. The contents of the provider are published through the service
description document. This document is stored in the service registry. A requestor
acts as a client application that consumes the resources exposed by the provider. It
seeks to use the resources shared by the provider. For the sake of this thesis, the
requestor is referred to as the consumer where relevant.

1See Section 1.2

2

CHAPTER 1. INTRODUCTION

Figure 1.1: Overview of core SOA components. Source: [58].

With the aid of the description document, a broker can initiate and manage
interactions between a consumer and a provider. For the provider to generate and
publish a description document, it uses the Web Service Description Language
(WSDL). The broker uses the Universal Description, Discovery and Integration
(UDDI) protocol to find and bind providers to requests sent from consumers. The
service registry is implemented as an Extended Markup Language (XML)
document that contains a list of registered providers on the network. The
consumer and provider interact either through the Simple Object Access Protocol
(SOAP) or a Representational State Transfer (REST) protocol.

Providers that adopt SOAP, exchange their messages in XML format [62]. A
SOAP message structure comprises two distinct parts: a header and body. The
header comprises metadata while the body contains the actual data. SOAP can be
used with another application layer protocol such as the Hypertext Transfer
Protocol (HTTP) protocol. Although REST also adopts the HTTP protocol, it is
however, an architectural principle for creating web services [82]. Providers that
use REST-based protocols are commonly referred to as RESTful web services. The
REST protocol allows consumers to use simple HTTP verbs to access and
manipulate data. Examples include POST, GET, and PUT. Chapter 4 gives a
comprehensive discussion on these verbs. Thus, consumers interact with RESTful
web services through HTTP messages. This differentiates a RESTful service from
a SOAP service, which adds an extra XML layer for messaging. This is packaged
together with the header, thus forming a SOAP message envelope. Hence,
RESTful services provide loose-coupling between HTTP and existing data
exchange formats such as plain text and XML, while SOAP does not.

1.2 Network Services

In a telecommunications network, different functions and processes are implemented
as independent, reusable components, much like web services [65]. This follows from
the SOA paradigm as services are loosely-coupled but interact through standardised
interfaces. Each service provides a specific functionality with the network. For

3

CHAPTER 1. INTRODUCTION

example, web services can allow subscribers to place phone calls, and exchange
location information, while being charged for using these services. For instance, an
example of a network service that can handle the billing of subscribers is the Policy
and Charging Rules Function (PCRF). In other words, the PCRF can determine how
a subscriber is charged for a corresponding service usage. Within a network, three
distinct set of network services can exist — application, data and control services.

An application service delivers some added value to enhance communication between
network subscribers. Examples of application services include voice mail, instant
messaging, file sharing and call barring applications. The MNO can introduce,
remove, enable or disable these services based on user-specific needs [60]. These
applications can provide additional value to communication services while being
independent of each other across the network. Application Server (AS) is a term
used to describe the system that enables these services. In essence, the server hosts
and executes these applications.

A data service is an application service that handles the management of pertinent
data. These services expose and provide access control to their data through
standardised interfaces [64]. They expose data to other services at different levels
within the network. Network components consume data services, which are
repositories for user data. A repository for subscriber data is an example of a data
service. At the lower level, data services encapsulate distinct storage systems. In
addition, an MNO can deploy different data-management functions in the network
through such services. Alternatively, these services can provide a centralised
repository for frequently used data in the network [22]. Hence, data services can be
used to address complex data integration challenges such as heterogeneity and
volume of data stored [64].

A control service handles the rules and policies, which guide the proper functioning
of the network in response to a particular request. The PCRF can be described
as a control service. Each control service can also be provisioned by an AS. The
network functions that are responsible for initiating and controlling the behaviour
of the services rendered to subscribers are themselves control services. Furthermore,
packet-based core networks such as IMS, use control services to coordinate how a
request is executed to effectively route a message to its required destination.

1.3 IP Multimedia Subsystem

IMS is an architectural framework for IP multimedia services deployed on mobile
and fixed telecommunication networks [31]. It is standardised and currently
maintained by 3GPP. IMS was introduced as part of the standardisation for
mobile phones connectivity and service delivery in 3G networks. These can be
through fixed, wireless or mobile network access interfaces. Thus, IMS enables the
convergence of fixed and mobile networks by being access-agnostic. In other words,
a subscriber can connect to IMS through different access networks. Examples
include Digital Subscriber Line (DSL) and cable modems for fixed; Wireless Local
Area Network (WLAN) and Worldwide Interoperability for Microwave Access

4

CHAPTER 1. INTRODUCTION

(WiMAX) for wireless; General Packet Radio Service (GPRS) and Universal
Mobile Telecommunications System (UMTS) for mobile networks. Consequently, a
subscriber can use the application services deployed in the network through
multiple access interfaces. This diverges from the traditional approach where a
subscriber’s device is dependent on a specific network access interface. This allows
an MNO to deliver ubiquitous communication services to network subscribers. An
access network is integrated within the mobile network through a gateway, which
acts as a protocol translator.

Further, IMS represents the portion of the network that controls the core elements
necessary for the provisioning and delivery of multimedia application services over
IP. These services can integrate the use of audio, video and image data to enhance
conversations between subscribers. Section 2.7 discusses some of these IMS
offerings which exist in RCS. Mobile network subscribers have the choice of mixing
and matching these service offerings during conversations. Hence, the offerings can
be added to or removed from a real-time conversation as the subscriber requires.2
Thus, IMS defines the underlying standards for security, Quality of Service (QoS),
resiliency, and inter-operator charging services for these service offerings [25].

More importantly, IMS provides two main functions within a network: session
control and service authentication, authorisation and accounting (AAA) [65]. It
coordinates interactions between subscribers by establishing, managing and
terminating connections with the aid of the Session Initiation Protocol (SIP), a
signalling protocol used pervasively throughout the IMS.3 To achieve session
control, IMS provides a set of network services collectively known as the Call
Session Control Function (CSCF). There are three types of CSCFs namely: Proxy
(P), Interrogating (I) and Serving (S) as shown in Figure 1.2.

• P-CSCF is a proxy service that acts as the first point of contact for a
subscriber’s User Equipment (UE). The P-CSCF inspects all SIP request and
response messages to and from the UE. Through this inspection, it ensures
that the UE behaves as expected. Although it does not modify the contents
of a SIP request, the P-CSCF can enforce the message route in specific
conditions. For instance, an emergency registration. For requests that may
not be related to registration, the P-CSCF forwards the message directly to
the S-CSCF.

• I-CSCF determines which S-CSCF should be assigned to a subscriber. It
serves as the entry point into the IMS administrative domain. This also applies
to external networks with which roaming agreements are established. That is,
between the home and visited network of the subscriber. It checks if the
subscriber is registered and the location of the subscriber’s S-CSCF. Upon
confirmation of the agreement, it assigns a S-CSCF to a visiting subscriber.
For visited networks, it can forward SIP requests to the home network.

• S-CSCF is responsible for service control and user provisioning. It acts as
both a registrar and location server. Therefore it handles user registration and

2See Section 2.8
3See Section 1.3.1

5

CHAPTER 1. INTRODUCTION

saves the location of the user. The S-CSCF is found at the subscriber’s home
network. It can initiate, manage and terminate a session between the calling
and called party. It handles requests from both the P-CSCF and I-CSCF.
The S-CSCF downloads a registered subscriber’s profile information from the
Home Subscriber Server (HSS). It uses this profile information to route request
to the appropriate AS through the SIP protocol.

Figure 1.2: Main components of an IMS core network. Source: [31].

Figure 1.2 shows the relationship between the core components of the IMS. The
UE is essentially the personal device that the subscriber uses to interact with the
network. This can be a wireless or wireline device such as a smartphone, tablet or
personal computer (PC). The HSS contains subscription information for subscribed
network users. The Gm reference point identifies the interface between the UE and
the P-CSCF. The Mw reference point identifies the interface between the P-CSCF
with both I-CSCF and S-CSCF. The Cx reference point represents the interface
between the I-CSCF and S-CSCF with HSS. Hence, the IMS core network uses two
main protocols for signalling and AAA: the SIP and Diameter protocol respectively.

1.3.1 Session Initiation Protocol

SIP is an application layer protocol that can establish, modify and terminate
multimedia sessions [93]. It is a text-based signalling protocol, which follows a
similar model to HTTP. This is evident in its response codes which range from
class 100 to 600. It was first standardised in 1999 by the Internet Engineering Task
Force (IETF) and has since been adopted as the core signalling protocol of the
IMS network [31]. The current version of SIP is version 2.0 which was released in
2002 [93]. The protocol is considered a peer-to-peer protocol but some SIP-enabled
devices and network components are capable of functioning as clients, servers or
both. SIP can run on most transport layer protocols such as Transport Control
Protocol (TCP) and User Datagram Protocol (UDP). It uses the Session
Description Protocol (SDP) to negotiate media content, which is used during
communication. In essence, the content of an SDP instance is the body of a SIP
message.

6

CHAPTER 1. INTRODUCTION

1.3.2 Diameter Protocol

Diameter is used to authenticate and authorise a subscriber to use available
application services deployed in the network. The protocol can also be used to
account for a subscriber’s service usage in the network. This information can be
used by billing servers to charge a subscriber for using the available service
offerings. Hence, the term AAA protocol. Request and response messages are
constructed as a set of attribute/value pairs (AVPs). It provides multiple reference
points for different services within IMS to query and manipulate subscriber data.
Comprehensive discussions on Diameter protocol can be found in various Technical
Specifications (TS) and Request For Comments (RFC). For example, TS 29.228
[11] and TS 29.328 [12] discuss the use of Cx and Sh reference points within an
IMS network. Extensive information on other Diameter reference points and
messages can be found in RFC 6733 [44].

1.4 Goal

This research attempts to create a unified subscriber data repository for the distinct
RCS service offerings. This is to ensure that the various RCS services and other
supporting network services have a central facility within the network to query for
pertinent subscriber data. Moreover, having a converged view of subscriber data that
can be used to support RCS service offerings can greatly reduce the fragmentation
of subscriber data across the MNO’s network. Thus, the key research question for
the thesis is stated as follows:

• How can a standard-based consolidated data repository be created for RCS?

However, the following objectives are defined and provide a guideline for what must
be accomplished in this thesis:

i. The review of RCS specifications and its data management policies.

ii. Review of the UDC standard to extract relevant requirements.

iii. Investigation of data store design practices, which the converged repository
can adopt.

iv. Designing and prototyping a converged data repository for RCS.

v. Evaluation of the design by integrating the prototype within an existing IMS
network testbed.

7

CHAPTER 1. INTRODUCTION

1.5 Scope of Study

The study focuses on the adoption of UDC to eliminate subscriber data
fragmentation, which arises within the RCS platform. Realising UDC implies that
subscriber data has to be consolidated into a single view. Thus, achieving this
consolidation requires a flexible and consistent way of defining a unique conceptual
view for heterogeneous data.

Due to the fact that a mobile network is quite a sizeable construction, and given that
the process of ensuring that the solution presented in this thesis works as expected
in such an environment would be an exorbitantly lengthy endeavour, there is much
need to reduce the scope of the investigation to fit manageable limits. As such, this
does not address the following:

• Integration of the repository with network services beyond the IMS core
network.

• Data sources existing in circuit-switched (CS) networks.

• Load testing and balancing mechanisms used by the unique repository.

• Service discovery mechanisms adopted by the repository.

1.6 Thesis Outline

This thesis spans nine (9) chapters; the remaining chapters are described as follows:

Chapter 2 discusses attempts to propose the RCS framework as a global
standard for next generation communications — as it has been around for some
time. The chapter highlights some components of the framework responsible for
the delivery of its service offerings. The discussion also presents the various
interactions between RCS service offerings, which implicitly rely on data sets
hosted on different data repositories. These repositories are presented to illustrate
the existence of silo services managing RCS subscriber data.

Chapter 3 explores the idea of creating a data consolidation solution for the
network through a standardised UDC architecture. The various requirements for a
centralised and singular repository for heterogeneous subscriber data are discussed
in this chapter. It further discusses certain issues, which were not properly addressed
by the 3GPP specifications. This leads to a discussion on design spanning the next
two chapters.

Chapter 4 presents an overview of the Open Data Protocol (OData). This thesis
proposes the use of OData as an alternative protocol to those suggested by 3GPP,
for exposing heterogeneous data. Thus, a unified data repository can be realised,
which can provide a converged view of subscriber data and expose it in a common
but standardised way.

8

CHAPTER 1. INTRODUCTION

Chapter 5 investigates common data storage design practices in order to document
different ways in which this repository may be built. To build a data storage system
that meets the basic UDC requirements, one should be accustomed to some of the
available techniques. This chapter gives a brief overview of some design approaches
for data management systems, which can be adopted when building a converged
data repository.

Chapter 6 gives a high level description of the proposed repository. It considers
the requirements stated in Chapter 3 and ties together some principles discussed in
Chapters 4 and 5.

Chapter 7 discusses the implementation of a prototypical system that implements
the design which is detailed in Chapter 6. It shows how the different components
are integrated and explains the method adopted toward the implementation.

Chapter 8 evaluates the design by integrating the unique repository and its
supporting component implementations, within an IMS network testbed. This
testbed allows interaction between the distinct components using the various
protocols supported by RCS. By so doing, this chapter demonstrates that the
design meets the requirements of UDC and is easily extensible to accommodate
new RCS service integrations and use-cases.

Chapter 9 reveals the conclusions culminating from this work and
recommendations for further work on unified RCS subscriber data management.

9

Chapter 2

Rich Communication Services

Internet communication services have completely transformed the way in which
end users communicate, collaborate and share their daily experiences. They define
and offer services, which are available on a myriad of devices including
smartphones, tablets, and PCs. Examples of these services include instant
messaging, video calling, and social network applications, among others. Some of
these services are offered by Internet Communication Service Providers (ICSPs)
such as Google, Facebook and Microsoft, which may have no formal contracts with
the MNOs. As these Internet services continuously gain popularity, MNOs are
seeking new ways to maintain their relevance as core communications providers.
RCS, which was previously known as Rich Communication Suite, is one of the
technologies that was developed to achieve this goal.

This chapter provides a brief description of the RCS framework, and how its
services are constituted. It also highlights the attempts made by MNOs to drive
the framework toward global adoption. For a comprehensive discussion on RCS,
the reader may refer to specifications found at [49] or relevant literature such as
[63, 103]. Therefore, a thorough description of RCS specifications is not presented
in this chapter. However, the chapter commences with a discussion that highlights
the efforts made by GSMA to encourage the utilisation of RCS on a global scale.
This is followed by a description of the components of RCS as a UC service
delivery platform. Next, is an account of contributions made to the RCS
specifications. The subsequent sections outline the various clients, supported
protocols, and mobility mechanisms allowed for RCS implementations. Thereafter,
the following section presents the services offered by RCS and their respective
enablers. The next part highlights the opportunities for enhancing RCS by
leveraging the different service interactions, which occur over the network. The
chapter concludes with a summary of the literature discussed.

10

CHAPTER 2. RICH COMMUNICATION SERVICES

2.1 Globalisation Efforts

GSMA introduced RCS in 2007 and defined it as a “platform that enables the
delivery of communication experiences, beyond voice and Short Message Service
(SMS), which provides consumers with instant messaging, live video and file
sharing across devices on any network” [50]. RCS realises a platform that can
create opportunities for better service offerings that give an enriched experience to
subscribers through standards-based features. This results from a collaborative
effort from leading telecommunications industry players within GSMA, in order to
advance the deployment of IMS-based services [57]. Consequently, RCS can work
with UEs registered on both fixed and mobile networks.

Further, GSMA is currently working with Original Equipment Manufacturers
(OEMs) to enable more devices to support RCS. These collaborations ensure that
future smartphones are embedded with RCS clients.1 This is just as messaging and
voice call services have been embedded on mobile phones over the years [36], thus
creating a “just there, just works” experience when trying to interact with other
subscribers [47]. This also provides a competitive advantage against ICSPs who
may not have the benefit of having their applications pre-loaded on mobile phones.
The deep integration of the framework with the UE implicitly makes RCS the
default mode of communication on the device. Consequently, the range of devices
that support RCS services will influence its global outreach — as there are
numerous device manufacturers across the globe. However, RCS has enjoyed a
rather low level of adoption since its inception compared to the voice and
messaging applications of the ICSPs. This has occurred despite the fact that
major telecommunication industry players such as Deutsche Telekom and Orange,
have been intensively involved with the specification, definition and deployment of
RCS services [30].

A study was conducted in South Korea by GSMA in 2011, which involved three
companies namely: Korea Telecom, LG Telecom and SK Telecom [48]. They
offered a subset of interoperable RCS services to users for free, and this increased
the traffic dramatically across the networks. Once charges were introduced for the
usage of services such as instant messaging, the number of users and traffic
dropped dramatically. The study showed two main factors that can influence the
adoption of RCS. First, despite an attractive service suite and appealing user
experience, the price is an important factor that determines usage. This means
that irrespective of how well structured and effective the service offerings are, most
users will still prefer to utilise free services offered by the ICSPs such as Skype,
Whatsapp, and Viber. Consequently, effective and efficient business models that
can reduce the cost of using RCS services are required, if it is to become pervasive
among subscribers. Second, the necessity to have interoperability between different
network operators, which is also as important as attractive service offerings. This
is the reason for the global outreach of the SMS and voice call applications. Thus,
interoperability among operators can have a positive impact when done correctly.

To achieve global interoperability, more MNOs have to commit to the deployment

1See Section 2.4

11

CHAPTER 2. RICH COMMUNICATION SERVICES

of RCS services. For example, a network subscriber can send a message through an
RCS messaging application to another subscriber registered on another network.
This makes RCS offerings interoperable across mobile telecommunication
networks. The GSMA has taken steps to ensure this scale of RCS interoperability
by developing a standard specification for MNOs. The document defines the way
MNOs inter-work across geographical regions. Thus, GSMA defines the
standards-based interactions between MNOs in different regions and countries [50].
Furthermore, since RCS is offered as an interoperable service suite by MNOs, a
subscriber can interact with other RCS subscribers with or without using the
Open Internet [63], which can occur through any supported service such as
messaging. This gives the RCS services a competitive advantage when compared
to ICSP offerings, which are heavily dependent on the Open Internet for effective
service delivery.

2.2 Architecture

RCS provides a service delivery architecture, which leverages the IMS for core
network signalling among its distinct services. Thus, IMS coordinates various
service interactions and orchestrations for RCS with the aid of the SIP signalling
protocol [103]. In essence, IMS performs session control, request routing, and AAA
for RCS services. Consequently, IMS brings convergence to the different service
offerings, which makes RCS a suitable candidate for delivering next generation UC
experience. This is the merit of service deployment over IMS — as it converges
different multimedia services. ‘Hence, the architecture allows RCS to provide a
common framework for services that are interoperable among MNOs and devices.

Figure 2.1: A simplified view of the RCS architecture. Source: [52]

Figure 2.1 shows that RCS provides different communication services, adopts

12

CHAPTER 2. RICH COMMUNICATION SERVICES

multiple protocols, data sources and supports interoperability among MNO
network infrastructures. The clients interact with the IMS using either SIP or
HTTP for service interaction and device configuration respectively. The
User-to-Network Interface (UNI) represents the demarcation point between the
clients and the core network. The Network-to-Network Interface (NNI) allows
collaboration between multiple MNOs offering RCS services. This interworking
between operators is facilitated by the standard using the IP Packet eXchange
(IPX) interface. Additionally, RCS adopts multiple communication protocols for
interactions among its service offerings. Each service offering is enabled by an AS
deployed in the network. For example, the Telephony AS handles voice call
services and Messaging AS handles messaging conversations between subscribers.2
This also applies to instant messaging and presence services, among others, as
depicted in the architecture.

2.3 Specifications

The GSMA has chosen an approach that does not define new services, but by
efficient packaging and profiling existing services, realises a balanced service
offering [52]. Hence, RCS profiles the Open Mobile Alliance (OMA) and 3GPP
specifications to provide a suite of multimedia services. These standardisation
bodies help facilitate interoperability between different MNOs. Furthermore,
GSMA has since defined specifications which are currently in their fifth series. The
specifications detail standards and agreements that different MNOs use for
deploying RCS under the authority of the GSMA. Hence, by creating these
documents it has helped develop common understanding and facilitate
interoperability between MNOs [47].

Table 2.1 shows the chronology of RCS specifications including the main features of
each document. Each document either enhances or deprecates features from earlier
versions. Some of these features are discussed in Section 2.7.

Table 2.1: Chronology of RCS specifications.

Document Release Date Main Features

Release 1.0 December 2008 Driven by the concept of an Enhanced
Address Book (EAB) on mobile devices.
Features include Capability exchange;
enhanced messaging; sharing of social
presence information; content sharing;
video and image share; and file transfer.

2See Section 2.7

13

CHAPTER 2. RICH COMMUNICATION SERVICES

Release 2.0 June 2009 Services were extended toward broadband
access for network subscribers. These set
of subscribers may decide to use devices
such as personal computers to interact
with other mobile subscribers. Features
include Multi-device environment and the
network address book.

Release 3.0 December 2009 Ability to switch to broadband devices if
mobile devices are not available. Features
include: Further enhancements in social
presence information, messaging, content
sharing and broadband access.

Release 4.0 February 2011 Included support for Long Term Evolution
(LTE). Features include: Messaging
evolution; improvements in network
address synchronisation, content sharing
and broadband network access.

Release 1.2
(RCS-enhanced)

November 2011 A subset of Release 2.0 with a goal
of having a lightweight interoperable
service extension to voice and message.
Features include: An optional activation
of social profile Information; No network
address book; capability discovery;
interoperability; chat; file transfer;
content sharing: image and video.

Release 5.0 April 2012 Achieving global interoperability through
IPX; Other features include; Capability
exchange based on Presence or SIP
OPTIONS; Backward compatibility with
previous releases.

Release 5.1 November 2013 Focuses on the UNI aspect of the
platform. Features include: Deployment
options for networks; Enhancements for
device configuration group chat and
geolocation exchange; personal network
blacklist; removal of capability privacy.

Release 5.2 May 2014 Features include: Enhancements on
device configurations, one-to-one chat,
and file transfer; support for standalone
and audio messaging; provisioning of RCS
service extensions.

14

CHAPTER 2. RICH COMMUNICATION SERVICES

Release 5.3 February 2015 Features include: Enhancements on
device configuration enhancements,
capability exchange, file transfer and
group chat; Ability to separately control
transport protocols when using both home
and roaming networks; documentation
on device registrations and access points
(APN); Introduction of the common
message store (CMS).

2.4 Clients

RCS supports devices ranging from PCs to smartphones and tablets. However,
RCS is a platform and not a service in itself, and thus, there are a variety of RCS
clients. The first commercialised RCS client is Joyn. It serves as the reference
implementation for RCS offerings. Furthermore, MNOs have deployed RCS services
over several networks in Europe, North and South America, and Asia [50]. These
services may be branded under different names depending on the operator, but the
services are branded globally as Joyn.

There have only been two Joyn product releases: Joyn Hot Fixes and Joyn Blackbird
Drop [51] which are based on versions 1.2 and 5.1 of other specifications respectively.3
The clients may be embedded on a mobile device or downloaded from an application
store (app store) to the device. Therefore, subscribers may not need to download
clients and go through an explicit registration process before the RCS services can
be used. The services are automatically provisioned, just as native SMS and voice
call applications are readily available once the mobile phone is switched on.

• The downloadable clients utilise two phone books — the one embedded on
the host device and the native client address book. These clients can also be
downloaded from available application stores onto the device. In this scenario,
the RCS contact list may differ from the actual phone book list. This option
is made available for the time being in order to allow subscribers to experience
the various service offerings.

• Having a pre-installed client on the device depends on the agreements defined
between device manufacturers (OEMs) and MNOs. An embedded client can
readily interact with native applications such as file explorer and picture gallery
that are found on a subscriber’s UE. Future smartphones are expected to come
with this technology readily installed. This can position RCS as a platform
for next generation communication and collaboration.

3Highlighted in Section 2.3

15

CHAPTER 2. RICH COMMUNICATION SERVICES

2.5 Mobility

To leverage the convergence of fixed and mobile networks on a single platform
provided by IMS, RCS supports a number of access network technologies in a
range of device modes. These technologies allow RCS clients to interact with the
network regardless of the access technology. They can be categorised into two:
cellular and non-cellular networks. RCS supports both LTE and High Speed
Packet Access (HSPA) cellular networks. The non-cellular networks include fixed
broadband access networks such as Asymmetric DSL (ADSL), cable modem
access, and WLAN, among others. In addition, the device modes determine how
devices access the network. These modes dictate which technology is used to
transport voice traffic over the network. There are four supported modes for
RCS-compliant UEs. They include Voice over LTE (VoLTE), Voice over
HSPA(VoHSPA), Access-Agnostic (AA) and CS modes.

• RCS-VoLTE : A UE is in this mode when it uses VoLTE technology for
placing voice calls. This works on devices that support LTE technology.
However, IP-based RCS voice and video calls are not allowed for devices in
RCS-VoLTE mode. IP-based voice and video calls are commonly referred to
as Voice and Video over IP (VVoIP) calls.

• RCS-VoHSPA : A UE is in this mode if it supports the HSPA technology
for voice traffic. Similar to the RCS-VoLTE mode, it also does not support
VVoIP calls.

• R C S-A A : A UE is in an AA mode if can use the various types of network
access technologies. This mode allows the transmission of VVoIP calls, but not
CS-based calls. That is, this mode does not allow calls which are not placed
over IP.

• RCS-CS : This mode allows an RCS device to carry voice traffic using legacy
networks such as GPRS. VVoIP calls are permitted if they are supported by
the MNO.

2.6 Supported Protocols

From Table 2.2, it is clear that RCS supports different communication protocols.
This section presents an overview of these protocols. RCS clients support both TCP
and UDP at the transport layer of the IP stack. Thus, clients use SIP for signalling
over either TCP or UDP or both for data (real-time multimedia) transmission.
Simply put, RCS clients support both SIP/UDP and SIP/TCP modes. The choice
of selection depends on individual MNO implementation strategies.

RCS clients transmit messages during a session, over the network through the
Message Session Relay Protocol (MSRP). Thus, with the exception of voice and
video, this protocol acts as the medium of information exchange within RCS. The

16

CHAPTER 2. RICH COMMUNICATION SERVICES

Internet Mail Access Protocol (IMAP) provides access to message logs and related
data sets.4 RCS clients use the Real-time Transport Protocol (RTP) to transfer
voice and video media. Location information is exchanged over the network
through the Secure User Plane Location (SUPL) protocol. However, security in
real-time communication is achieved through the secured versions of RTP and
HTTP. Signalling security is achieved through the Transport Later Security (TLS)
and IP Security (IPSec). In other words, SIP messages can be secured through
either TLS or IPSec protocols.

Table 2.2: RCS Protocols. Adapted from: [52].

Protocol name Description Transport
layer

Secure
transport
layer/protocol

SIP A RCS Client-to-IMS
Core Signalling protocol

UDP or TCP. SIP over TLS or
IPSec

MSRP Used for Chat message,
media, and file exchange

TCP/IP. MSRP over TLS

RTP For exchanging real-time
media - voice and video

UDP/IP. Secure RTP

IMAP Used to access messaging
store

TCP/IP IMAP over TLS.

HTTP For RCS Client
configuration.

TCP/IP HTTPS

SUPL Geolocation positioning. UDP TLS

2.7 Enabling RCS Services

RCS provides a consolidation of distinct IP communication services into a single
platform that leverages the QoS support provided by the MNOs. However, operators
deploy different services across the network in order to render the various offerings to
RCS subscribers effectively. These services, which can be grouped into application
and data services are depicted in Figure 2.2. The IMS session control functions
(CSCFs) represent the control services in this case. This section discusses these
distinct network services and shows how they facilitate the delivery of RCS offerings.

2.7.1 Configuration Service

The first step toward using RCS offerings is for the subscriber to have a configured
client on their UE. RCS clients on mobile devices are automatically configured and
provisioned to a subscriber through their Mobile Station International Subscriber
Directory Number (MSISDN) [55]. The MSISDN is essentially the subscriber’s

4Discussed in Section 2.7.8

17

CHAPTER 2. RICH COMMUNICATION SERVICES

Figure 2.2: Core RCS Service Enablers. Source: [52].

internationally recognised mobile phone number. This procedure is facilitated
through an AS within the network and thus, a subscriber’s configuration-related
information are managed by this service.

However, it is a transparent process and as such, a subscriber may not be able
to interfere with the procedure. A similar technique is adopted for legacy SMS
and voice call services, where subscribers can instantly place voice calls and receive
messages once the MSISDN is registered with an MNO. Conversely, ICSP offerings
such as Skype and Whatsapp tend to configure and provision their services using a
mix of different methods such as phone numbers, email addresses, usernames and
passwords. This may not always be a transparent process, as the user may have to
initiate and provide details for a subscription.

Thus, the common feature for RCS implementations is this unique service
provisioning method [52]. Hence, when an RCS-compliant UE is booted for the
first time, the initial configuration is automated through network synchronisation.5
This provides an “out of the box” experience to the subscribers while reducing net
operational impact for the operator [36]. A subscriber can use the available service
offerings through the client, once the following steps have been completed:

• The device is correctly configured.

• The network creates the IMS Unique Resource Identifier (URI); this is a unique
network identity given to the subscriber, which can either be a telephone or
SIP URI.

• The network grants the user access to the RCS services via the IMS URI.

5Presented in Appendix A.1

18

CHAPTER 2. RICH COMMUNICATION SERVICES

These configuration procedures can be triggered either by the client or the
network. Client-initiated configuration occurs when the client automatically
detects the network. There are two main techniques provided for an RCS
automatic device configuration. They include: OMA Device Management
(OMA-DM) and HTTP-based configuration.

O M A -D M is a procedure used for managing RCS devices registered on the
network. It uses management object configuration parameters to set-up an RCS
client. An MNO that supports this mechanism creates OMA-DM accounts for the
subscribers through the enabling AS. In order to configure the RCS client, a
factory bootstrap process is initiated. This involves pre-loading the OMA-DM
server address into the RCS device configuration from the factory. On the
contrary, the HTTP-based configuration technique allows an RCS client to
communicate with the network-based configuration server through HTTP. In
addition to providing transparency to a subscriber, this method tries to simplify
auto-detection mechanism in the network infrastructure. Thus, an RCS device
sends an HTTP request to a designated configuration server in order to retrieve
the configuration data. Moreover, both OMA-DM and HTTP-based configurations
share the same set of parameters.6 These configurations are stored on the mobile
device and cannot be read by the user. Hence, the chosen configuration mechanism
determines the communication protocol and parameter encoding between the
network and the client.

2.7.2 Presence Service

Presence is a capability that indicates the willingness of a user to interact through
a particular medium at a given time [20]. It simply relays the interest of a user to
interact with a contact. Hence, a calling party can access the presence information
of a called party before establishing a dialogue. This influences how and when
a prospective caller decides to communicate with a callee. Moreover, it acts as
a primary enabler for RCS — since the usage of most services depends on the
willingness of the subscriber to communicate.

RCS enables the EAB feature through the presence service capability. The EAB
acts as the central point for initiating conversations between subscribers. In other
words, the various RCS offerings can be utilised through the EAB. Thus,
eliminating the need to search for the featured services on the mobile phone. The
EAB allows subscribers to detect communication capabilities of their client and
contacts by synchronising with the default address book on the mobile device [57].
This capability discovery mechanism ensures that subscribers are presented with
services that will work on their respective devices. Consequently, this guarantees
that services shown on the client are supported by the host device.

Further, subscribers can expose personal information such as current activity,
mood, and availability, among others to depict their presence status. RCS defines
this as Social Profile Information (SPI). Thus, having established a social presence

6These parameters can be found in Appendix A.2.

19

CHAPTER 2. RICH COMMUNICATION SERVICES

relationship with a certain contact, the SPI shall be visible from the EAB. This
allows a subscriber to connect with another subscriber by using any of the
available messaging and telephony-related services depicted in the SPI.

2.7.3 Messaging Service

RCS messaging services are categorised into two: Standalone messaging and Chat.
Standalone messaging allows RCS clients to provide features similar to SMS, while
Chat renders instant messaging services to a subscriber. Both categories are enabled
through a dedicated messaging AS within the network are discussed below:

Standalone Messaging

Standalone Messaging denotes an RCS service that supports the delivery of text and
multimedia messages through IMS. This service uses a converged message repository
based on the OMA Converged IP Messaging (CPM) standard. By using OMA
CPM standalone messaging standard, RCS replaces the legacy short and multimedia
messaging service (SMS/MMS) standards. OMA CPM removes legacy messaging
limitations such as the maximum number of characters allowed per text, usually
160. Further, the standard provides synchronised support for users with multiple
devices through its standardised message store.7

For interaction with non-RCS compliant devices, OMA CPM facilitates interaction
with legacy SMS and MMS services via an Interworking Function (IWF). Thus,
enhancing backwards compatibility with earlier messaging standards. To achieve
this interworking, RCS defines two modes for standalone messaging: Pager and
Large message modes which are used implicitly by the client. When a message is
sent in pager mode, the client uses the SIP MESSAGE method, which restricts the
message size to a certain maximum. Conversely, large message mode uses a dedicated
MSRP channel with SIP to deliver messages without size limitations. The specified
maximum for pager mode is 1300 bytes and messages exceeding this size are handled
by the client in large message mode.

Chat

The chat service enables subscribers to exchange messages in real-time. RCS adopts
two OMA standards to handle chat conversations. They are the SIP for Instant
Messaging and Presence Leveraging Extensions (SIMPLE) and CPM. Chat can be
divided into two categories: one-to-one and group chat.

The one-to-one chat service facilitates peer-to-peer dialogue between two
subscribers, while a group chat enables interaction between more than two parties.
It enhances the messaging experience beyond the basic features found in legacy

7The CMS, which is discussed in Section 2.7.8

20

CHAPTER 2. RICH COMMUNICATION SERVICES

SMS/MMS such as: the delivery and read notifications for sent messages; real-time
typing indications; fall-back functionality, which facilitates interworking with
legacy messaging services.

Moreover, group chat inherits the basic features of one-to-one chat but provides an
enhancement by allowing more than two subscribers to participate in a dialogue.
The provisioning of group chat services is optional and therefore, depends on the
MNO’s implementation of RCS. However, chat services interact with other RCS
offerings. For instance, the one-to-one chat service creates a new session within its
current session to transfer files between concerned parties.8

2.7.4 File Transfer Service

A dedicated AS can be provisioned by an MNO to facilitate file transfer activities
between subscribers within or without session-based dialogue. The service works
often with the RCS messaging services. Therefore, different types of files can be
exchanged over a dedicated MSRP channel. In order to send a file through to a
recipient, both the relevant file and intended recipient must be selected on the
client. If the recipient is found to be unavailable, unreachable or has not
registered, the AS provides a store and forward functionality. Thus, the file will be
stored and forwarded to the recipient when available. In a case where the user has
multiple registered devices and automatic acceptance settings are disabled, the
transfer request is sent to all the UE’s that belong to the recipient. If a file
transfer is interrupted under any circumstances, the recipient — through the client
— may request the AS to progress from where it stopped. This information is
managed within the context of the AS and a Common File Store (CFS) if deployed
by the MNO.

2.7.5 Content Sharing Service

Content sharing provides subscribers with the ability to exchange pictures and videos
in near real-time conditions. Thus, RCS allows a subscriber to share such content
during VVoIP conversations. Image sharing is only available during a voice call
while video sharing can be done with or without an existing call. Additionally,
a subscriber can also share some stored content — retrieved over the network or
residing on the UE. Content stored in the network can be accessed through this
service and shared during dialogue. The designated AS retrieves the stored content
from the appropriate network data store, which may be embedded within the AS
itself. The type of content that may be shared depends on the capability of the
device. For instance, if the device has a front and rear facing cameras, a subscriber
can share content through either of them. However, data are generated while using
this service and may not be stored except for store and forward situations.

8Illustrated in Section 2.8

21

CHAPTER 2. RICH COMMUNICATION SERVICES

2.7.6 Telephony Service

Telephony services refer to RCS VVoIP services. These services allow an RCS user to
place phone calls in audio-only or audio+video modes. They are delivered through a
dedicated Telephony AS, which handles a Personal Network Blacklist (PNB) defined
by a subscriber. The PNB allows a subscriber to instruct the network to block a
list of contacts from reaching them. For example, a PNB containing a list of phone
numbers used to regulate prospective voice calls is used by a telephony AS when
handling phone calls. The telephony AS can generate other types of data, which
may be used by other network services. An example is the CDR, which accounts
for the details of conversations held by a subscriber at a given period.

Furthermore, the IP video call shares the same SIP session as the IP voice call.
Thus, VVoIP sharing capabilities are mutually exclusive within a client. That is,
if both the sender and receiver support IP video call, then it is used to exchange
content. Otherwise, RCS invokes the content sharing service. It is noteworthy that
IP voice call maintains a separate session when interacting with other services like
Standalone Messaging, File Transfer, Content Sharing and Geolocation exchange.

2.7.7 Geolocation Exchange Service

This service is used to share an RCS subscriber’s geolocation with others in the
EAB. This location information might be current location or a proposed meeting
spot. Obtaining a subscriber’s location data is achieved through the use of the
IP-based SUPL protocol [79]. The enabling AS can use the SUPL to keep track
of locations in which a subscriber frequently visits. Additionally, map-based tools
can leverage this service to determine the current location at a given time. This
information is stored and managed within the context of the AS.

However, there are two ways to exchange location information within RCS:
Geolocation PUSH and PULL respectively. Geolocation PUSH allows a subscriber
to publish their location to their contacts. This information can be embedded in
the SPI of the subscriber. Contrarily, Geolocation PULL allows a subscriber to
retrieve the location information of another RCS subscriber. RCS enables the
PUSH mode by invoking the file transfer service while PULL is enabled through a
REST-based API. Hence, a subscriber can send their location and retrieve their
contacts through this service.

2.7.8 Common Message Store (CMS)

While the services that have been discussed so far are application services, the CMS
is one of the data services defined by RCS. As discussed in Section 2.7.3, RCS
stores chat and standalone messages in this data store. It acts as a unifying storage
for messaging data across all subscriber’s devices, which are synchronised over the
network. The CMS can also keep the log information of messages sent from and

22

CHAPTER 2. RICH COMMUNICATION SERVICES

to a subscriber. This store allows RCS to synchronise messages between multiple
clients installed on different UEs, which belong to the same subscriber. Its data is
organised in a hierarchical manner and accessed through the IMAP protocol. Hence,
a CMS is essentially an IMAP server. RCS specifications [53, 54] explain how the
CMS can handle the various types of RCS messages.

2.7.9 Common File Store (CFS)

The CFS is also a data service which contains files that may be used in conjunction
with the CMS. It can provide both the thumbnail and actual version of a file during
a chat session. The CFS relies on the existence of the CMS for effective service
delivery. Therefore, to deploy a CFS for RCS, a CMS must have been deployed in the
network. In addition, the interaction between the CFS and CMS is enabled through
a File Transfer Localisation Function (FTLF) [52]. This localisation function will
be invoked by an RCS client when a subscriber wants to download a file stored in
the network. Thus, the file transfer AS coordinates the execution of the FTLF.
Since the files are transferred across the network through MSRP, a messaging AS
may be tasked with managing file transfer services. This, however, is dependent on
MNO-specific implementations.

To download or upload a file, the messaging server provides an HTTP URL for
the file and another HTTP URL for the FTLF, which are stored in the CFS. The
FTFS keeps track of every file transfer request — HTTP URLs — issued by a
subscriber. Depending on operator implementation, this can also be managed by
the CFS. Although the CFS manages the files being stored, more often than not,
the actual data will be kept in a local data store.

2.7.10 XML Document Management Server (XDMS)

The XDMS is yet another data service, which can be accessed through the XML
Configuration Access Protocol (XCAP) [78]. XCAP is an HTTP-based protocol,
which uses the XML Path Language (XPath) to navigate the contents of the XML
documents within the XDMS [59]. RCS adopts the OMA standard for this service
and thus, is based on the OMA XDM architecture. This can be found at
Appendix B.1. Services for configuration, messaging and presence query this data
service for their XML documents. Hence, this serves a centralised document
management service for RCS. Therefore, RCS services utilise some information
used stored in this repository to initiate interaction with other services in the
network.

23

CHAPTER 2. RICH COMMUNICATION SERVICES

2.8 Service Interactions

GSMA specifications have defined ways to enable seamless interaction among RCS
service offerings. This is required to deliver an enriched UC experience to
subscribers, as illustrated in the matrix in Figure 2.3. For instance, it shows that it
is possible to exchange a file (File Share) during a chat (One-to-One Chat/Group
Chat) or share recorded videos (Content Sharing) during an IP voice call. Hence,
RCS has provided a platform for integrating these distinct services in a seamless
manner.

Although, the MNOs can achieve UC with RCS, the actual subscriber data generated
and utilised across the network are autonomously managed by different services.
Examples include: the messaging service, which stores and queries subscriber data
from the CMS; the telephony service, which handles the relevant subscriber data
used to deliver VVoIP services; the file transfer service, which uses the CFS to
manage stored content; and the HSS, which contains the subscription data — the
list goes on.

Standalone
Messaging

One-to-One
Chat

Group
Chat

File
Share

Content
Sharing

SPI IP Voice
Call

IP Video
Call

Geolocation

Standalone
Messaging V

One-to-One
Chat V V V

Group
Chat V V V

File Share V V V
Content
Sharing V V V V

SPI
V

IP Voice
Call V V V V V

IP Video
Call V V

Geolocation V V V V

Figure 2.3: A matrix of Joyn service interactions.

Considering that Joyn clients are developed from RCS specifications, other
implementations may feature more or less complex service interactions.
Nevertheless, services presented in the matrix utilise and generate chunks of
subscriber data across the network. For instance, say, two users want to
communicate through an RCS IP voice call and both users are registered on the
same network. For the network to initiate the call, specific data sets belonging to
both users are required. This can include their respective PNB configurations and
IMS URIs. The network contacts the telephony AS to check for PNB
configurations, which are stored in the XDMS. The HSS is also contacted by the
network, in order to validate the IMS URIs supplied by the RCS client. Once the

24

CHAPTER 2. RICH COMMUNICATION SERVICES

URIs are validated and PNB conditions are met, the network establishes a
dialogue between the users.

Such conversations generate data, which include the CDR, current status and
location of the subscribers. However, these data sets are managed by different data
services; thus, leading to the fragmentation of subscriber data across the network.
These data services adopt different communication protocols for accessing their
data sets. For instance, XML documents are retrieved from the XDMS through
XCAP; and subscription data from the HSS through Diameter. It is noteworthy
that HSS and XDMS, among others, organise their data differently. Hence,
different protocols are used to access the heterogeneous data. Additionally,
interacting with data silos can increase network traffic, leading to a complex
network topology for RCS services. Consequently, it can be a complicated task
when trying to consolidate a subscriber's data in the network.

As discussions are ongoing within standardisation communities, regarding the next
step to take with RCS, having a common way of managing different types of
subscriber data can be beneficial to MNOs. Insights can be gathered from a
consolidated view of subscriber data, which are currently managed in silos.
Subscriber behaviour and preferences, resulting from service usage, can be mined
from a consolidated data repository. This can help operators discover new ways to
define and offer attractive service models to subscribers. Defining attractive service
models for subscribers can complement the efforts made on the global outreach of
RCS.

Moreover, a converged repository can also simplify the network topology and thus,
allow RCS services to evolve in the network. Take, for example, the introduction of
a service into the RCS platform; instead of providing another local storage facility
for the service, subscriber data can be managed by this shared repository.
Therefore, MNOs may not have to provide new infrastructure to handle a new set
of subscriber data each time a service is introduced. To this end, RCS can leverage
an architectural framework, which provides a consolidated data repository for its
services, and reduces the signalling impact on a network when trying to obtain an
overall view of subscriber data.

2.9 Summary

This chapter has discussed the RCS framework, which aims to deliver UC-infused
experiences to mobile and fixed network subscribers. Developed by the GSMA,
RCS offers a range of IP-based communication services and adopts different
communication protocols to deliver these services. In their current form, according
to the specifications, the distinct services seamlessly co-interact, use and generate
data, which are managed in silos across the network. Hence, obtaining a
consolidated view of all these heterogeneous data sets becomes a complex process.
The following chapter discusses a standardised approach for creating a converged
repository for subscriber data in standard IMS use cases. This discussion serves as
the basis for outlining the requirements and specifying the components that will

25

CHAPTER 2. RICH COMMUNICATION SERVICES

likely be necessary to implement a converged repository for RCS subscriber data.

26

Chapter 3

Understanding User Data
Convergence

The existing services within RCS maintain portions of subscriber data, which are
used by other network services to perform their specific roles. The data services
expose pertinent data to network services to help in the effective delivery of service
offerings. However, as RCS services continue to evolve and new services are
introduced into the network, a consolidated approach to managing subscriber data
is required. This ensures that there is a consistent way of organising different types
of subscriber data within the network. It will also provide MNOs with the
necessary insight into subscriber usage patterns and preferences. Moreover, having
this approach in place can ensure that services share common data while
eliminating fragmentation and duplication of subscriber data across the network.

Since mobile network operators embrace specifications from standardisation bodies,
adopting a data consolidation standard is a strong requirement for RCS, so not
as to not introduce changes in the way networks behave. UDC is a term coined
by 3GPP as a way to define a simple and standard architecture necessary for the
consolidation of disparate subscriber data, which are available to numerous data
services [8]. This chapter focuses on the 3GPP requirements for introducing a unique
and consolidated data repository into an IMS network. The chapter starts out by
presenting an overview of the UDC architecture. This is followed by the categories of
subscriber data considered within the UDC specifications. The next section explains
the data modelling requirements for the unique data repository introduced through
UDC. The chapter further discusses the UDC data access requirements. An analysis
of UDC and its requirements is given toward the end of the chapter. Finally, the
chapter concludes with a brief summary of the main points that have been raised.

27

CHAPTER 3. UNDERSTANDING USER DATA CONVERGENCE

3.1 Architecture

UDC proposes a layered architecture where user data is separated from application
logic [10]. This data is stored in a logically centralised repository that is accessible
to network services. Therefore, it provides a logical store for heterogeneous data
sources, which organise data differently. This allows the unique repository to share
and provision subscriber-related data to heterogeneous services deployed over the
network. In addition, UDC supports the existing network infrastructures by
ensuring that existing data sources are not eliminated, but rather are transformed
into stateless applications. This consequently leads to the creation of data-less
network services that depend on a logically unique repository for pertinent data
[10]. Its architecture consists of distinct data-less entities known as Front Ends
(FEs), a converged logical repository, a single reference point, and external
interfaces to other UEs and network services. This is depicted in Figure 3.1.

Figure 3.1: UDC Architecture. Adapted from: [10].

3.1.1 Front End

This is a data-less entity that essentially executes application logic and stores its
data in the UDR. In other words, network services are transformed to stateless
applications which do not permanently store subscriber data. That responsibility
is outsourced to the centralised repository. However, FEs can temporarily manage
subscriber data but usually discard the data upon completion of the request. For

28

CHAPTER 3. UNDERSTANDING USER DATA CONVERGENCE

instance, when a client interacts with an FE that supports SIP, to fulfil the SIP
request, the FE may dynamically generate some session-related data, such as request
identifier and metadata. The FE can discard this data upon completion of the
request. Each FE is an application service, which interacts with multiple clients
through different communication protocols. FEs can be grouped into two types:

• Application FE (AFE) is an FE that performs the functions of a network
service, but in a stateless manner. Examples include: the HSS, Messaging and
File Transfer AS. Thus, the type of application handled by the FE determines
the behaviour of the AFE. Additionally, the UDC architecture does not impact
the existing interfaces between such applications and other network services.

• Provisioning FE (PFE) is a specialised FE that is responsible for performing
create, read, update, and delete (CRUD) operations on subscriber data that
resides in the UDR. With the aid of the PFEs, different user provisioning
systems such as self-care systems, which are used by subscribers to interact
with the PFE based on different usage scenarios such as self-provisioning . For
instance, a user can subscribe to a particular service or activate the service via
a provisioning FE deployed by the MNO through a configuration portal. The
portal is a self-care system in this case.

3.1.2 Client Applications

These are applications, which generate requests toward relevant FEs over the
network. They can include RCS clients, SIP ASes, web browsers, and other IMS
network services. A typical scenario is when an RCS client contacts the UDR via a
relevant FE in order to extract the necessary user data to complete its service
execution task. Examples of communication protocols adopted by these
applications are Diameter and SIP as shown in Figure 3.1.

3.1.3 Ud Reference Point

The Ud Reference Point acts as a unique reference point for all FEs, that interact
with the logical repository. Hence, the interface acts as an access mechanism to the
repository in the network, which can be used to manipulate heterogeneous data. It
provides access to each FE on the basis of a set of access control requirements.1 In
other words, each FE will be permitted to only manipulate data pertinent to its
operation. Furthermore, only authorised FEs are allowed to use this interface to
perform CRUD operations on subscriber data in the UDR.

1Discussed in Section 3.4

29

CHAPTER 3. UNDERSTANDING USER DATA CONVERGENCE

3.1.4 User Data Repository (UDR)

UDR is a data service which provides a single logical storage solution for disparate
subscriber data sets. This network entity is situated at the core of the UDC
architecture and is, therefore, unique to each FE. It is expected to store different
types of data, which were traditionally managed in silos within the network. For
example, the silos shown in Figure 2.2 follow this trend. Hence, a UDR should
have the capacity to store both transient and permanent subscriber data, which
are generated and utilised by different FEs. However, FEs can only to manipulate
subscriber data in the UDR through the Ud reference point.

3.2 Categories of UDR Subscriber Data

The core idea of the UDC is to create a single logical repository that can encompass
different types of data which are stored in silos across the network. For instance,
a device’s last known IP address, the configuration settings of a registered UE,
information pertaining to a real-time voice or video call, among others. As discussed
in the 3GPP Technical Report — TR 22.985 [9], the following are the main categories
of user data that the UDR can manage.

Subscription Data For a user to be provisioned with a service, it is required that
the subscriber’s UE generates a subscription activation request toward the network.
Once the request is granted, the user’s data that is related to the subscription is
created in the UDR. A user identifier such as the SIP URI and the service profile
are both examples of subscription-related data. Data that are stored by FEs for
processing their respective business logic are also part of the user subscription data.
The duration of this type of data is not specified but limited to whether or not the
user is allowed to make use of the service. In essence, subscription data sets can be
used for provisioning a service to a user.

Content Data This simply refers to the type of data that is created when users
make use of an application on their UE. For instance, pictures, videos and audio
recordings. Content data may vary significantly in size; video clips usually larger
than pictures. The specification recommends that the metadata of such data be
converged but the actual content resides outside the UDR.

Behaviour Data Such data sets depict the various activities of a particular
subscriber over the network. This category of data can be acquired in real-time
and therefore will require a rapid and significant amount of processing over the
network. An example is CDR which is generated as soon as a call is initiated
between subscribers. However, these datasets can be used by an MNO for charging
and profiling subscribers based on their behaviours. Thus, the UDR may be
designed to cater for these data sets as it assists the MNOs in monitoring
subscriber usage patterns of the applications on their UEs.

Status Data These are constantly changing data sets that are frequently generated

30

CHAPTER 3. UNDERSTANDING USER DATA CONVERGENCE

by FEs when a subscriber makes a status update. These data sets are rarely shared
with other services due to their transient nature. Examples of such data include the
subscriber’s SPI and location information, which changes as the user makes updates
or moves from one location to another respectively. Therefore, status data can also
help a caller determine which callee’s UE is currently available on the network -
presence information.

3.3 Data Modelling Requirements

TS 32.181 [14] presents a framework for the management of UDR subscriber data.
It explains the roles of both an information and a data model. An information
model (IM) yields a high-level representation of real-world objects as entities with
properties, relationships, permitted operations, and rules and constraints [8]. In
contrast, an implementation of the IM is the data model (DM).2 Figure 3.2 illustrates
the relationship between both models. This section highlights the UDC IMs and
DMs presented in the report.

Application DM viewConsolidated DM
Application DM view

Application DM view

User Data Repository Applications

Figure 3.2: Relationship between the UDC IMs and DMs. Source: [9].

Common Baseline Information Model (CBIM) To model user data within
UDC, a generic IM is created to handle data from distinct FEs. The CBIM provides
a flexible data structure and content that is extensible and supports multi-vendor
interoperability [15]. The models associated with each application are not specified
by the CBIM. Since the CBIM is expected to be “future-proof”, it helps the UDR
create an IM that cuts across multiple network services. That is, the model should be
able to accommodate both existing and new services as introduced into the network.

2Data modelling concepts are further discussed in Chapter 5.

31

CHAPTER 3. UNDERSTANDING USER DATA CONVERGENCE

This allows an MNO to flexibly create subscriber data for newly deployed services
in the UDR. Therefore, the UDR can have a user with multiple service profiles, a
subscriber with multiple user accounts, and a subscriber as a member of a group,
among others [8].

Application Information Model (AIM) This is an application-specific IM.
Thus, it is a distinct IM that is adopted by each FE. An AIM contains two types of
data objects for an FE: its service profile and corresponding identifiers.

Specialised Information Model (SpIM) The CBIM can be further extended
by MNOs to cater for new FEs as required. This extended version is referred to as
a SpIM, as it considers the specific applications, functional requirements and the
relevant data sets. Thus, a SpIM is MNO-specific and is not standardised by 3GPP.
A new SpIM is created when it is combined with an AIM.

Application Data Model (AD M) This is a unique data model that belongs
to an FE. It is created from the FE's AIM. The UDR exposes relevant view of
subscriber data to an FE through the ADM. Moreover, the ADM is a subset of the
UDR’s Consolidated Data Model (CDM). If the MNO has developed the FE, the
AIM is converted into ADM. Otherwise, the CBIM and the AIM are combined to
create a new ADM for the Application. This is illustrated in Figure 3.3.

Consolidated Data Model (CDM) This is the DM utilised by the UDR, which
is created from the aggregation of the SpIM and AIMs. That is, the CDM comprises
a set of AIMs and a SpIM. The CDM is the logical data model managed by the UDR.
The contents of this model are also not standardised by 3GPP and thus is dependent
on MNO implementation preferences.

Figure 3.3: Steps involved in creating a CDM. Source: [14].

Reference Data Model (R D M) This is a specific DM that enables information
exchange over the Ud reference point as discussed in TR 29.935 [7]. It was developed
by 3GPP in order to achieve multi-vendor interoperability. It recommends the use
of a directory service for managing subscriber data. Hence, hierarchical DMs were

32

CHAPTER 3. UNDERSTANDING USER DATA CONVERGENCE

used to represent data objects in the report.

3.4 Ud Interface Requirements

This section discusses 3GPP requirements for the Ud reference point presented in
TS 29.335 [13]. The report suggests that the UDR provides support for CRUD,
and subscription operations. The UDR is also expected to provide access control
and ensure integrity in its transactions with the FEs. Additionally, the interface
is independent of the DM adopted by the UDR. Hence, there is no tight-coupling
with the UDR models. This section is organised as follows: First, the protocols
recommended by 3GPP are presented. This is followed by a description of the
supported CRUD subscribe/notify messages. After that, there is a brief discussion
on access control methods between the FEs and UDR. Finally, an analysis of the
interface transaction requirements is given.

3.4.1 Access Control

Interactions between the FE and the UDR are managed through the following
mechanisms:

Authentication and Authorisation The UDC operational workflow is
structured such that an FE can effectively interact with the UDR once it has been
authenticated and authorised. However, the specifications do not define how this
mechanism should be implemented, but flexibility is expected for different
implementations. To authenticate and authorise the FEs to interact with the
UDR, the following credentials are required — FE Type, FE Identifier, User
Identifier, and Request Type.

Application Data View (AD V) To further ensure consistency in the CDM, the
UDR provides distinct ADVs to each FE. The relationship between the CDM and
ADV is illustrated in Figure 3.2. An ADV allows an FE to manipulate allowed
portions of the subscriber data within the UDR that they are authorised to. This
allows the ADV to create another abstraction over the UDR’s CDM and hence, FEs
can not directly manipulate the UDR. For example, FEa and FEb will have access to
common data sets as well as distinct data sets within the CDM. However, FEa will
not be able to manipulate data sets, which primarily belong to FEb unless authorised
by the MNO. Notably, the specification [14] does not highlight precisely how this
can be achieved using a specific technology.

3.4.2 Protocols

As shown in the UDC architecture, network services can only access the UDR
through FEs. The specification [13] proposes the use of two protocols for the Ud

33

CHAPTER 3. UNDERSTANDING USER DATA CONVERGENCE

interface. They are Lightweight Directory Access Protocol (LDAP) and SOAP. It
suggests that the UDR uses LDAP for intensive real-time data processing and
SOAP for non-intensive non-real-time processing. For instance, having an FE
perform a heavy read on the UDR through LDAP, while non-real-time operations
such as batch processing, can be achieved with SOAP. Figure 3.4 shows the
network stacks for both protocols.

Figure 3.4: LDAP and SOAP network stacks. Source: [13].

3.4.3 CRUD Messages

FEs can execute CRUD operations on the UDR either through SOAP or LDAP.

3.4.3.1 Create

To create data, the process is similar to the query operation. An FE sends a create
request to the UDR and access control is invoked. Then the new data is stored in
the UDR. If there are subscriptions, the UDR notifications to the concerned FEs.
The UDR concludes the procedure by sending a status message to the FE.

3.4.3.2 Query

An FE initiates a read request in order to process application logic or provide user
data to its client. The UDR checks each request and validates it. At this stage,
access control is exercised. If the FE lacks required permissions for the request, a
denied notification is sent from the UDR toward the FE. Otherwise, if the subscriber
data exists, it is retrieved and converted to a format that is compatible with the FE
— this depends on the protocol used. Finally, the data is sent to the FE.

34

CHAPTER 3. UNDERSTANDING USER DATA CONVERGENCE

Figure 3.5: Basic call flow for creating user data in the UDR.

Figure 3.6: Basic call flow for querying user data from the UDR.

3.4.3.3 Update

An FE updates data by supplying the identity of the subscriber who owns the data.
The UDR invokes access control and uses this identifier to fetch the obsolete data.
If the user data is found, it is replaced with the new data and subscribed FEs are
notified of the change. Otherwise, a status message is sent to the requesting FE.

Figure 3.7: Basic call flow for updating user data in the UDR.

35

CHAPTER 3. UNDERSTANDING USER DATA CONVERGENCE

3.4.3.4 Delete

The procedure here is similar to the previous update operation. Once the UDR
finds and deletes the subscriber data, it notifies the subscribed FEs. Thereafter, the
process is finalised as illustrated below.

Figure 3.8: Basic call flow for deleting user data in the UDR.

3.4.4 Subscribe/Notify Messages

An FE monitors specific data sets by creating a subscription in the UDR. 3GPP
recommends the use of SOAP to realise this behaviour. The message sent to the
UDR to achieve this is the subscribe request while the notification generated when
data changes is the notify message. Furthermore, subscribe messages are sent using
the HTTP POST method. The HTTP POST request will contain a SOAP message
envelope. Similarly, Notify is an HTTP message that encapsulates a SOAP envelope.

3.4.4.1 Subscribe

For an FE to subscribe to notifications, the following needs to occur: First, send
a subscription request message to the UDR. Then the UDR receives this request
and stores the subscription information. An acknowledgement message is then sent
back to the FE. This is illustrated in Figure 3.9. The subscription request message
contains the following information:

• The FE identifier

• The user identity

• Subscription Type; this is to indicate if the request is to subscribe or revoke
the subscription.

• Notification Type; this states whether the notification should be sent to all
FEs in the same category or to only the requesting FE.

36

CHAPTER 3. UNDERSTANDING USER DATA CONVERGENCE

• User data specific information; this includes the user identity, the notification
conditions, and the expiry time.

Figure 3.9: Procedure for subscribing to change events on user data.

3.4.4.2 Notify

For an FE to receive a notify message from the UDR, the following occurs: First,
an FE or the UDR has successfully modified a specific subscriber data. Second, the
UDR checks for FEs (if any) which have been subscribed to that particular data. If
the notification condition(s) are met, the UDR selects the appropriate FE(s). Third,
the UDR constructs and forwards a notification message to the selected FE(s). This
is shown in Figure 3.10:

Figure 3.10: Procedure for notifying FEs when events occur on user data.

3.4.5 Transactions

A transaction “is a sequence of operations, which the UDR performs as a single
logical unit of work” [10]. An example of a transaction is the registration of a

37

CHAPTER 3. UNDERSTANDING USER DATA CONVERGENCE

subscriber in the network which can be stored in a relational data store.3 Depending
on the implementation, the provisioning network service retrieves, stores and makes
the subscriber’s data accessible to other network services. Therefore, this series of
operations can be collectively described as a subscriber registration transaction. In
order to ensure data consistency and integrity, transactions are characterised by four
properties [77]:

• Atomicity: This means that a transaction can only be successful when all the
required operations are completed. For example, if the transaction executes all
the tasks required to register a subscriber, then the transaction is successful.
Otherwise, the transaction fails. There are two terms used to describe what
the UDR does when a transaction succeeds or fails: Commit and Rollback.
The UDR commits a successful transaction and rolls back an unsuccessful
transaction. Simply put, all operations must be successful and are committed
or none will.

• Consistency: Simply means that changes made to data sets should not
have an unpredictable outcome or leave the UDR in an illegal state. Thus, a
consistent transaction is one which guarantees the same behaviour when
executed each time. Using the registration example, a consistent transaction
that a set of rules defined by the storage system is followed when handling a
transaction in order to successfully or unsuccessfully register a subscriber.
Therefore, a subscriber can be successfully registered once the set conditions
are met. This ensures that transactions performed on the UDR should
always keep data in a valid or uncorrupted state.

• Isolation: When UDR is handling more than one transaction at a given
time, then it is said to have concurrent transactions. This property ensures
that the UDR manages a transaction as an independent unit of work which
is not impacted by other concurrent transactions. For example, two network
services trying to manipulate a portion of a subscriber’s data, the UDR gives
the distinct services an illusion that only their respective transactions are being
handled at a given time. Consequently, the effect of those transactions is only
committed when the UDR decides to store the results of the transaction.

• Durability: In the event of system failure, it should be possible to restore
the UDR to the last known consistent state. In other words, once data is
committed to the store, it should remain so. This ensures that UDR commits
the results of transactions before sending an acknowledgement to the initiator
of the transaction — A network service, for instance. In consequence, data
loss is less likely when failures coming from system errors, power outages and
crashes occur.

3Relational data stores are further discussed in Chapter 5

38

CHAPTER 3. UNDERSTANDING USER DATA CONVERGENCE

3.5 Critique of the UDC Specifications

This section discusses some concerns that the 3GPP specifications have not
addressed. These shortcomings were highly influential in informing the design
motivated by this thesis of a suitable construction of a logically unique repository
for heterogeneous subscriber data. First is the integration of the Ud reference
point protocols. Second, is the defined data storage technology.

3.5.1 Integration of LDAP and SOAP

Section 3.4.2, highlighted the use of LDAP and SOAP for processing real-time and
non real-time requests. LDAP clients interact with a directory service [99] for
pertinent data. These directory services can be used to store information such as
employee contact details for an organisation, or manage subscriber identities
within a network. Further, SOAP allows web services to exchange information
through HTTP. The integration of both protocols as depicted in Figure 3.11
suggests the need for a protocol converter for non-high real-time requirements.
The converter will semantically map CRUD messages between both protocols.

Figure 3.11: LDAP and SOAP Integration. Source: [13].

However, the conversion between SOAP and LDAP can introduce some complexity
in request processing through the Ud interface. Take, for example, the work done
in [35], which tried to address the protocol conversion issues for application layer
protocols. In their case, they used the SIP and SOAP protocol. Notably, SIP and
SOAP were designed for different use-cases — network signalling and CRUD

39

CHAPTER 3. UNDERSTANDING USER DATA CONVERGENCE

operations respectively. Conversely, LDAP and SOAP integration is quite
different, since both support CRUD operations. Nevertheless, the study reported
that a protocol converter has to analyse the contents of a request in order to create
adequate responses. This analysis can be achieved through a defined set of rules,
which can complicate a simple CRUD request. The request can be executed in
either of the real-time conditions, depending on the FE’s usage. Additionally, even
if RCS services generate data in real-time, batch processing of subscriber
provisioning requests will be executed against the UDR at specific periods.
Therefore, it would be advantageous to the UDR, if the UDR adopted a single
communication protocol that could handle both categories of real-time
requirements. Leveraging a single protocol, the use of a converter would be
eliminated.

Further, the range of CRUD operations which can be performed in the UDR is
determined by the adopted Ud interface protocol. A consolidated view of data
exposed by the UDR should provide flexible techniques for querying subscriber data.
An LDAP directory presents a set of query capabilities to its clients. These query
capabilities [99] are defined, such that there is an expected format to which the
directory service responds. In other words, innovative ways for searching data may
not be allowed. In addition, LDAP is object-oriented, and thus, uses complex search
criterion to retrieve objects, their attributes, and the tree of objects within the
Directory Information Base (DIB) [106]. The DIB is a collection of the data sets in
a directory service. The detailed explanation of the LDAP query construction can
be found in Section 4.5.1 of [99]. Alternatively, SOAP adopts an approach where
data objects are represented in an XML format. While this provides more flexibility,
there is no specific way to present data that has been gathered from heterogeneous
sources. Thus, both protocols may not be sufficient for executing advanced query
capabilities such as data aggregation. Aggregated data can be effectively mined
by MNOs to gain insights into subscriber data. Hence, an alternative protocol is
required if the UDR is required to provide such capability.

The Ud interface specification [13] also suggested the use of SOAP for
subscribe/notify with CRUD operations. Since SOAP messages are wrapped into
an XML envelope, the messages are bulkier when compared to their RESTful
counterparts, which use plain HTTP messages with flexible data format payloads
[68]. Moreover, using both LDAP and SOAP on the Ud interface implies that the
LDAP server will also be a web service, which responds to HTTP requests. Hence,
a simplified alternative is to adopt a web service framework that performs both
CRUD and subscribe/notify operations with fewer limitations. Such a unifying
framework can drive the evolution of UDC as described in TR 23.845 [6], which
considers the different scenarios for FE-to-FE interactions through the Ud
interface, among others.

3.5.2 Data Storage Technology

While the role of the UDR as a logically unique repository for heterogeneous
subscriber data has been widely discussed, the actual data store has not been the

40

CHAPTER 3. UNDERSTANDING USER DATA CONVERGENCE

subject of much discussion within the UDC specifications. Discussions in the
specifications have implicitly suggested the use of a directory service, since using
LDAP requires a directory service to handle CRUD requests. In other words, using
LDAP implies that the actual data store for the UDR is the directory service. This
contradicts the UDC requirement, which expects the reference point to be
independent of the storage technology DM; as discussed in Section 3.3.

Moreover, managing data in this manner ensures that the access protocol is
coupled with the storage technology. Consequently, changing the directory service
can impact the Ud interface. For example, if the UDR evolves and needs to cater
for more use-cases and the directory can not adequately meet the new
requirements; the MNO can decide to change the storage technology for the UDR
and migrate its content to another technology which is not a directory service;
inconsistencies can occur while migrating such data sets. Therefore, the storage
technology such as the directory service should not be tightly-coupled with Ud
interface protocol

Furthermore, LDAP directory services are optimised for frequent reads and fewer
writes [105]. RCS services have complex interactions and thus, they read and write
data as frequently as the interactions occur. Hence, handling high real-time write
operations for heterogeneous RCS subscriber may render a directory service
inadequate. This makes it a necessity to find alternative data storage technologies
which can handle these use-cases. That is, all use-cases for RCS services. Hence,
there is a need to understand the common design practices adopted when using
these technologies. This insight can be leveraged when deciding the actual store
that a consolidated data repository can utilise.

3.6 Summary

This chapter has presented the architectural framework provided by the 3GPP
UDC standard. This framework separates subscriber data from data services and
outsources the management responsibility to a unique repository defined as the
UDR. UDC provides a single interface for accessing heterogeneous subscriber data,
known as the Ud reference point. The specifications suggest a tight-coupling of the
protocol and the UDR storage technology. That is, using LDAP with a directory
service for managing heterogeneous subscriber data. SOAP and LDAP were
recommended for this reference point. Furthermore, an overall view of subscriber
data can be obtained through the Ud interface. The integration of LDAP and
SOAP raises some concerns, which were highlighted by the author in a critique
[100]. However, in seeking alternative data access mechanisms (technologies) for
the unique repository, a protocol known as the Open Data Protocol (OData) was
considered. An overview of OData is presented in the next chapter.

41

Chapter 4

An Overview of the Open Data
Protocol

OData is an application layer protocol that is used by RESTful data services. The
protocol was introduced by Microsoft Corporation [27]. It is now maintained by the
Organization for the Advancement of Structured Information Standards (OASIS)
Technical Committee [69]. OData aims to simplify the querying and sharing of data
across disparate data services. The OData ecosystem is gradually expanding and
some of the systems currently using the protocol can be found at [76]. Furthermore,
the most recent specifications discuss the requirements for the fourth version of the
protocol, indicating that much work has gone into developing OData into a robust
protocol over time, making it mature and reliable. The previous chapter closed
on the author’s analysis that the LDAP/SOAP protocol proposed by the 3GPP is
not well suited to the UDC requirements. This necessitated the search for a more
accommodating solution. This search lead to the discovery of OData.

This chapter provides an overview of OData by highlighting some of its important
features and components. The chapter starts out by discussing the main
components of OData architecture, in order to explain precisely how OData can
work in practice. The chapter further discusses the OData modelling approach,
which is then followed by a section that discusses OData exchanges data over the
network. The following section highlights the various service provisioning
mechanisms used by OData services. The next section exposes some of the
relevant data manipulation operations, which can be performed through the
protocol. Thereafter, is a section that presents the aspects of the protocol, which
can be extended to provide desired functionalities. This chapter concludes with a
summary of the concepts discussed.

42

CHAPTER 4. AN OVERVIEW OF THE OPEN DATA PROTOCOL

4.1 OData Architecture

OData, as a communications protocol, adopts a client-server architecture where the
client is a service consumer and the server is an OData service. The architecture
is divided into three main components: The Data Consumer, Interface and Data
Producer. This is illustrated in Figure 4.1 where the Client is the Consumer, the
Interface is the protocol, and the Data Source is the Producer.

Data Source

OData
Service

ODora
Data Model

ODataC ient
P ro to c o l

OData
Client Library

Figure 4.1: Fundamental Components of an OData Architecture. Source: [27].

Data Consumer This is a client application that performs CRUD operations on
a data producer. It implements a specific OData client library or uses a simple Web
browser to interact with the producer. Currently, OData consumers are supported
by the following platforms: Java, C ++ , Objective-C, JavaScript, Microsoft .Net
framework and Python [76]. In addition, an OData consumer deployed on different
environments such as mobile, desktop and cloud can leverage the common interface
exposed by an OData producer for business intelligence and data analytics.

Interface This is the medium that an OData consumer uses to interact with an
OData producer. For both the consumer and producer to interact, their versions
must be compatible.1 Since the protocol is based on HTTP and the REST
architectural design, each unit of data is considered a resource, which is identified
by a unique URI. Thus, the following HTTP verbs can be used to manipulate data:

• POST ; is used to create a new resource.

• G E T ; is used to fetch one or more resources.

• P U T ; is used to replace an existing resource in its entirety.

• PATCH ; is used to replace specific properties of an existing resource.

• DELETE ; is used to remove a resource.

1Discussed in Section 4.4

43

CHAPTER 4. AN OVERVIEW OF THE OPEN DATA PROTOCOL

Producer This is a data service that exposes data to Consumers in a unified
and standardised manner. The data producer handles the underlying data store
implementation. In other words, the actual data store technology is managed by the
data producer. Adopting OData as a medium of communication between different
data services can help achieve a network of systems exposing heterogeneous data in
a uniform manner. This can facilitate interoperability between data silos existing
within a network. Figure 4.1 shows that an OData producer can be packaged as a
single data source, which can use different data storage technologies. This follows
the SOA principle where services are deployed in a loosely-coupled way. This is
what makes an OData data store agnostic as distinct data stores can be used as
the underlying storage platform. Hence, the exchange of data between a producer
and consumer is not impacted by the heterogeneous data models adopted by the
underlying data stores. Consequently, an OData producer can be easily extended
and scaled as required.

4.2 Data Modelling

An OData producer uses an abstract model known as the Entity Data Model
(EDM) [73] for the logical organisation of data. In essence, the OData DM is an
abstract model that the producer exposes to its consumers. This OData model can
also be referred to as a schema.2 The OData EDM provides a flexible way for
modelling heterogeneous data objects. This allows a producer to model data from
heterogeneous sources since each distinct data object can be mapped to a
corresponding EDM element. Furthermore, an EDM is defined using the
Conceptual Schema Definition Language (CSDL), which is discussed in
Section 4.2.2. Hence, there are other components of the EDM that support the
defined entity types, which are presented in Section 4.2.1.

4.2.1 Entity Data Model

This model describes the structure of data regardless of how it stored at the lower
level. Since OData is an HTTP-based protocol, producer resources can be described
using the EDM elements. The relationship between these elements is illustrated in
Figure 4.2. The main EDM elements are highlighted as follows:

Primitive Type These are the basic data types upon which other types are created.
A primitive type denotes an individual attribute of a corresponding data object.
Examples of this type include Integer, String and Boolean.3

Entity Type This represents a distinct data object within the EDM. It contains all
of the attributes defined for the modelled object. For instance, user subscriptions and
CDRs are distinct data objects and they will, therefore, be represented as individual

2Schemas are further discussed in Section 5.3
3Appendix A.3 provides a list of all EDM primitive types

44

CHAPTER 4. AN OVERVIEW OF THE OPEN DATA PROTOCOL

EDM entity types. In addition, the EDM shows existing relationships with other
entity types.

Complex Type This consists of multiple primitive types. It is used to model data
types, which cannot be represented as primitive types but are re-used in entity types.
For example, a subscriber’s profile information may have an address attribute. This
attribute consists of several attributes such as country, state, and street address.
Thus, the subscriber’s address can be adequately represented using a complex type.

Enumeration Type This is synonymous with enumerated data types used in some
programming languages. It essentially provides a fixed list of attributes with the
same primitive types. This is different from a complex type, which allows different
types of primitive types.

Collections This represents a distinctive grouping of the data types, which have
been highlighted — primitive, entity, complex, and enumeration types. A
collection of entity types that share similar properties is called an Entity Set. Thus
a homogeneous set of EDM data types. The EDM further allows the producer to
expose a group of the other types by using a simple Collections notation.

Figure 4.2: An overview of the EDM. Source: [73].

45

CHAPTER 4. AN OVERVIEW OF THE OPEN DATA PROTOCOL

Structural Property This is used by the EDM to denote the relationship between
attributes of an entity type, which can be declared or dynamic. A declared property
is created with an entity type definition. A dynamic property is a nullable property
added to instances of an entity type. Thus, a declared property is clearly represented
in the EDM and the dynamic property is not represented.

Navigational Property Relationships between an entity type and entity sets are
represented by this property. They denote specific associative properties of a specific
entity type.

Actions Actions are operations exposed by an OData producer that may result
in side effects in the actual data when invoked by the producer. An action may
be bound to a particular resource within the EDM. The first parameter of a bound
operation is known as the binding parameter. The value of a binding parameter is
that of the resource identified by the URL prior to appending the function name.
An action bound to a particular resource as described in Section 11.5.4 of [73] can
be invoked by sending an HTTP POST request to an action URL.

Functions are operations that do not cause side effects when invoked by the
producer. A function can also be bound to a resource within the EDM. As
described in Section 11.5.3 of [73], a function can be invoked by using an HTTP
GET request to the function’s URL.

4.2.2 Common Schema Definition Language

The CSDL represents OData’s EDM in an hierarchical structure stored in an XML
document under specific namespaces. A namespace is a value, which an OData
producer uses to prefix the identifiers of its EDM elements. According to OASIS
CSDL specification [75], the components of the EDM can be described within the
scope of any of two namespaces. The first namespace being EDM Extensions
(EDMX) while the other is simply EDM.

Namespace EDMX qualifies the CSDL wrapper and its associated elements and
attributes. The CSDL document contains the edmx:Edmx root element. The
namespace prefix edmx can be used to represent the EDM for service packaging.
Furthermore, the Namespace EDM qualifies the components of the EDM exposed
by an OData producer.

A producer comprises a single EDM that can be distributed over numerous schema
definitions. This is shown in Figure 4.3. The schemas, in turn, may also be dispersed
over several physical locations while maintaining a single access point to the elements
of the EDM. OData producers are characterised by a single CSDL document, which
can be accessed by sending an HTTP GET request to the producer in the following
format:

<service-root>/$metadata

46

CHAPTER 4. AN OVERVIEW OF THE OPEN DATA PROTOCOL

The service-root is simply the URL to the deployed OData producer. For example:

Figure 4.3: The elements of a CSDL Document. Source: [75].

4.3 Data Exchange

This section discusses the mechanisms adopted by OData producers to facilitate
effective interactions with its consumers over a network. This includes the message
types supported, various data formats used over-the-wire, and procedures for
determining the size of the transmitted information.

4.3.1 Messages

OData messages are grouped into request and responses respectively. Each request
comprises header fields and payloads specifying the metadata and body of the

47

CHAPTER 4. AN OVERVIEW OF THE OPEN DATA PROTOCOL

message respectively. Table 4.1 presents the common request message headers
found within the OData protocol as specified in RFC 7230 [45] and RFC 7231 [88],
which are HTTP technical documents. Further, OData response messages are
presented with any of the valid HTTP status codes.

Table 4.1: Common OData message headers.

Header Function

Content-Type Specifies the format for an individual request or
response. OData specifies value: application/json.

Content-Encoding Indicates the additional content coding that have been
applied to an OData entity.

Content-Language Indicates the natural language format of the sent
OData message.

Content-Length Specifies the message’s length.
OData-Version Specifies the version of the protocol in use.
Accept Determines the type of control information used

between the Consumer and Producer.
Prefer It is used on data modification or action requests.

The header is included in the request to indicate
the Consumer’s preferred behaviour for the producer,
essentially to hint the Producer.

4.3.2 Data Format

OData version 4 supports JavaScript Object Notation (JSON) as the primary format
for exchanging data. JSON allows the presentation of data in collections of AVPs.
OData’s JSON format extends the standardized JSON format [72]. This extension
allows the removal of predictable parts of the wire format from the actual payload.
The aim is to optimise the data transfer process. Thus, an OData entity — a
consumer or producer — recreates the data with the aid of defined expressions.

The other defined format which OData supports is the Atom Syndication Format
which is used by the Atom Publishing Protocol (AtomPub) [70]. This is an XML-
based format which describes its feeds as a set of entries. The decision to make
JSON the primary data exchange is evident in the prioritisation of both formats in
the fourth release of the OData specifications. Furthermore, JSON is described an
OASIS standard for OData while Atom remained a committee specification [69].

However, there are two ways to change from JSON to Atom if required:

• Setting the Sformat parameter in an OData request to Atom

• Setting format value in the Accept header of the OData request.

48

CHAPTER 4. AN OVERVIEW OF THE OPEN DATA PROTOCOL

4.3.3 Payload

OData provides a mechanism for controlling the size of information embedded in
messages sent between a consumer and a producer. This is done by providing a
control value in the Accept header of an OData request. Thus a consumer can
provide any of the following values:

• odata.metadata=minimal; is used when the consumer prefers a very small
wire size. That is, the client is capable of processing data using metadata
expressions.

• odata.metadata=full; is used when the consumer is incapable of re-creating
control information. It is adequate for situations when the computation is
more important than wire size.

• odata.metadata=none; is used when a consumer does not control the
information.

4.4 Service Provisioning

This section describes how an OData producer presents consistent behaviour toward
its consumer with regard to interactions discussed in the previous section. This
includes the definition and validation of the protocol version used by consumers
and producers alike, and the service metadata documents exposed which a producer
exposes to the consumers.

4.4.1 Capability Negotiation

There are different versions of the OData protocol, and thus messages state the
version number with the aid of the OData-Version header highlighted in Table 4.1.
This means that there are scenarios where the OData producer and consumer are
using different versions of the protocol. Such situations trigger an OData capability
negotiation mechanism. The consumer specifies the maximum version number it
can handle. If the consumer does not specify this value, the producer assumes
that the consumer is compliant with a protocol version that is not greater than the
one it supports. If the producer cannot validate the specified version number, an
error response is sent to the consumer. To guarantee the possibility of successful
negotiation, the consumer specifies the lowest OData version that the producer can
use to process the request. This allows the consumers and producers to evolve as
required. However, enhancements made to the EDM which affects interoperability
with existing consumers require a new producer version. Thus, a different service-
root URL from the old version of the producer is created to achieve interoperability.

49

CHAPTER 4. AN OVERVIEW OF THE OPEN DATA PROTOCOL

4.4.2 Service and Metadata Document

An OData producer presents two well-defined resources to its consumers as
illustrated in Figure 4.4. These resources describe the DM of the producer -
essentially the content of the producer. They are known as the service and
metadata documents. A service document outlines the entity sets, functions and
singletons that can be retrieved from the producer. It is used by consumers to
navigate the service model in a hypermedia-driven style. The service document is
presented once the service-root is visited by a consumer. Moreover, a metadata
document defines the service contract between a producer and its consumers. In
other words, the consumer of an OData service is presented with pertinent
information on how requests can be executed, the expected result structure and in
general, how the service can be navigated. Furthermore, using the Smetadata URL
tells the OData producer to fetch and render the metadata document to a
consumer. However, both documents are fixed service resources as they are
statically defined. Dynamic resources are often retrieved and manipulated via
provided URLs, which are generated from the information stated in the metadata
document.

Figure 4.4: Description documents exposed by an OData Producer. Source: [100].

4.5 Data Manipulation Capabilities

As a candidate for the Ud reference point, this section discusses the capabilities of
the OData protocol. It explains how basic CRUD operations are carried out and
further highlights some advanced functionalities that it provides. Although there
are other EDM elements, this discussion illustrates the CRUD operations with the
aid of an OData entity. An entity is a resource which is defined by an entity type.
Thus, an entity belongs to a specific entity set.

50

CHAPTER 4. AN OVERVIEW OF THE OPEN DATA PROTOCOL

Furthermore, there is a special type of entity known as the media entity. It is
an entity that represents an out-of-band stream. In other words, it can be used
to represent multimedia such as videos and pictures. The media entity may also
provide a means to write the media stream to a location. Hence, the media entity is
a derivation of the standard entity as it keeps both a media stream and the typical
entity properties. The following sections discuss various operations which can be
performed on an OData entity.

4.5.1 Create

In order to create an OData entity, a consumer sends an HTTP POST request
toward the producer. The body of the POST request message carries the actual
entity payload data to be stored. For example, adding a new user to a collection of
existing users, the POST request carries the new user’s information that passes as
a valid entity. Upon the completion of this operation, an HTTP 201 Created or 204
No Content response is sent to the consumer, if successful. If the entity to be created
is a media entity, a source URL that will be used to read the media stream must be
stated. The POST request for a media entity set contains a media type value which
is specified in the header of the request. However, upon successful completion of
the request, the response message contains both the location header4 and the 201
created or 204 No content success codes.

Figure 4.5: Example call flow for creating an OData Entity.

To create a new entity that is linked to an existing entity or multiple entities within
a single HTTP request, the entity id(s) of the related entities are specified in the
body of the request. This is done via the navigation properties of the entity to be
created. Furthermore, to create an entity with relationships to other entities that
have not yet been created, a list of definitions within the actual entity definition is
composed in the request. This is referred to as a deep insert. However, due to the
fact that media entities possess a binary nature, they cannot be represented in this
form. Hence, this is not applicable to media entities.

4 The header specifies the edit URL for the stream.

51

CHAPTER 4. AN OVERVIEW OF THE OPEN DATA PROTOCOL

4.5.2 Update

The HTTP PATCH request as specified allows an OData consumer to send update
requests to the OData producer. The PATCH request simply collects updated
values of properties listed in the request payload, and processes the update, leaving
all unspecified properties unchanged. Another alternative is the HTTP PUT
request, but this has a significant impact on how data is to be updated. It does
not provide the consumer with the option of changing relevant properties, it
changes the properties specified and sets the value of any unspecified property to
their default values. Further, if an update request is sent to a valid URL that
identifies a single entity that is not extant, the OData service handles this as a
create request. This phenomenon is referred to as an upsert — derived from a
combination of commands update and insert. Upserts are also not allowed for
media entities or entities whose key values are generated by the OData producer.
A media entity, on the other hand, relies on the PUT request to modify its edit
URL which changes its stream.

Figure 4.6: Example call flow for updating an OData Entity.

In order to modify or update relationships between entities, their navigation
properties are edited. By sending a POST request to an entity’s navigation
properties collection, a new relationship is established with an existing entity.
However, an HTTP DELETE request facilitates the removal of a relationship with
another entity. Furthermore, a PUT request to an entity’s navigation property
containing a single value will, in turn, change the entity linked to it.

4.5.3 Query

The HTTP GET request method is used to query an OData producer for a
required resource specified with a URL. Requested resources with expired URLs
after subsequent advertisements trigger a 410 Gone response message toward the
client. Figure 4.7 shows a basic OData query operation. Additional query
operations that can be executed against a resource are specified through the
system query options. OData provides support for various query options which can

52

CHAPTER 4. AN OVERVIEW OF THE OPEN DATA PROTOCOL

be embedded in CRUD requests. Thus, a producer exposes some of these natively
defined query options to its consumer. These options are presented in Table 4.2.

Table 4.2: Common OData query options.

Command Function

$search It confines the result to a set of entities matching the
specified search expression.

$filter It is used to restrict the data set from a queried dataset.
$count It is used to calculate the number of items present in

a collection returned by an OData Producer.
$orderby Specifies the order in which items are returned from

the OData Producer.
$skip It defines a non-negative integer X which excludes the

first X items from an entity set. Hence, the first entity
in the retrieved set begins from position X+1.

$top It allows the producer to return an available set of
items less than or equal to the value of a specified
number.

$expand Indicates related entities that must be displayed
alongside a principal entity. It is expressed as a
navigation property set.

$select It is a list of properties, qualified action and function
names separated by commas used to fetch data from
an OData Producer.

$format Specifies the media type of the an OData response
message.

Requesting an entity property is done with the HTTP GET request sent to the
property URL. This URL is essentially the property name appended to the entity
read URL with a forward slash. A property with a null value triggers a 204 No
Content response while an unavailable property triggers a 404 Not Found response.
Further, to retrieve the raw value of a property, $value option is used [74]. The
producer determines the content type of the response message with the aid of the
Accept header field and the $format query option. The default content type format
for single primitive property types is text/plain. Binary and Geo types are the only
exceptions.5 A 204 No Content response is received by the consumer if the raw value
is null. Also, a 404 Not Found is given for an unavailable property.

Entities that are associated with a particular entity can be retrieved by issuing
a GET request to the entity’s request URL. The consumer prepends the URL to
the navigation property name while being separated with a forward slash. If the
navigation property does not exist, a 404 Not Found response is sent by the producer.
If there are no related entities to the principal entity, a 204 No Content response
is sent to the consumer. Furthermore, a consumer can fetch actual links to other
entities rather than the related entities through a GET request with $ref appended

5Appendix A.3 presents an overview of all EDM primitive types.

53

CHAPTER 4. AN OVERVIEW OF THE OPEN DATA PROTOCOL

Figure 4.7: Example call flow for retrieving an OData entity.

to the request URL. If the specified URL does not point to an entity or collection of
entities, a 404 Not Found message is sent by the producer. However, in situations
where the consumer receives the entity id instead of the actual entity, it can resolve
the id by sending a GET request to the $entity resource within the producer. The
$entity resource can be found in the URL relative to the service root. In other words,
$entity is appended to the service root separated by a forward slash. A 404 Not
Found is received if the identified entity is not of the specified type or a derivation
of the specified type.

4.5.4 Aggregation

Aggregating data with OData simply means that the querying capability of the
protocol can be further extended to avoid the possible disarray of a producer as
the number of modelled entities grows dramatically. The aggregation feature [71]
provides consumers with the ability to do the following without compromising the
basic principles of OData:

• A consumer to query aggregated data on top of a conceptual EDM.

• A producer can annotate the type of data which can be accumulated and the
aggregation technique that is supported. This allows a consumer to avoid
sending invalid aggregation requests.

An aggregation action is triggered with a system query $apply. The action then
applies a set of transformations on the data sets being consolidated. A
transformation is a function that maps a data set to itself. For a series of set
transformations to be consecutively applied, they must be separated with forward
slashes. For example, the output of a set transformation can be used as an input
to the next transformation. It is enforced with the use of bindable and composable
functions in path segments specified by the OData producer. Aggregated instances
of the entities rely on the individual data structure from which they have been

54

CHAPTER 4. AN OVERVIEW OF THE OPEN DATA PROTOCOL

generated. Hence, the structure of the result is consistent with the EDM of the
OData producer. They are logical instances of the specified type of the collection
described in the resource path of the request. A collection of entities specified
within a request also constitute entities which are its aggregated instances. Thus,
these entities are either transient or persistent.

In addition, the navigation paths defined in the EDM assists consumers in
understanding and navigating entity relationships. However, there may arise a
situation where requests need to extend over entity sets with no predefined
relationships. A request such as this needs to be executed over a special resource
$crossjoin instead of a specific entity set. The cross join of a series of entity sets is
the Cartesian product of the listed entity sets.

4.5.5 Delete

Deleting data requires the use of the HTTP DELETE request against an entity’s edit
URL. A delete request does not have a payload. Also, a singleton entity cannot be
deleted. When a delete request is issued against an entity, all existing relationships
are implicitly removed together with the entity. An OData service will delete or
modify a related entity as specified in a Referential Constraint defined in the service
metadata document. A media entity and the actual media attached to the entity
are also deleted using the entity’s edit URL or that of its media resource.

Figure 4.8: Example call flow for deleting an OData entity.

4.5.6 Callback Mechanism

An OData producer is capable of providing notifications to consumers on updates
made on stored data. As with the subscribe/notify model discussed in Chapter 3, a
producer can send updates to subscribed consumers when the triggering conditions
for notifications are met. OData producers can publish updates asynchronously,
when consumers specify callback parameters through the Prefer header. These
parameters include: odata.callback, respond-async and odata.track changes.

55

CHAPTER 4. AN OVERVIEW OF THE OPEN DATA PROTOCOL

• Using odata.callback: A consumer requesting updates invokes an HTTP GET
request. The request is accompanied by odata.callback parameter as shown
below:

Prefer: odata.callback;
url="<service-root>/<notification-id>"

• Using odata.track-changes: This parameter allows consumers to track changes
through delta links. Delta links are “opaque, service-generated links that are
utilised by the consumer to fetch the subsequent changes that had been applied
to a result” [73]. When a producer returns an entity set, delta links can be
used to track changes which have occurred in the set.

• Using respond-async: This parameter can be used in conjunction with the
Wait preference header parameter. Thus, a producer can notify a consumer
based on the wait-time specified, as shown below:

Prefer: respond-async, wait=10

Furthermore, query options are embedded within the request in order to retrieve
updates only on the entity types that have changed. If the producer grants the
request, it stores the callback URL and sends a 202 Accepted response to the
consumer. However, the producer includes a Preference-Applied header into the
response to signify that the previous entity set has changed. Once notified, the
consumer uses the status monitor resource from the Location header of the
previously returned 202 response to retrieve the results. Figure 4.9 depicts a
callback scenario triggered by an update made by Consumer#. The producer
notifies ConsumerA, which initially made the callback request.

Figure 4.9: Using OData Callback.

56

CHAPTER 4. AN OVERVIEW OF THE OPEN DATA PROTOCOL

4.5.7 Action and Function Imports

An import allows a consumer to invoke the functions and actions defined in the
EDM. It is important to note that functions and actions provide logical views for
defined subsets of the EDM. However, since functions and actions can be bound
to EDM resources, an import will interact with the related EDM elements. An
import also allows unbound actions and functions to be called directly from the
<service-root>.

To invoke a function, a consumer sends a GET request to the function URL.
However, to invoke a function through an import, the consumer sends a GET
request to a URL that identifies the particular function. An example is shown
below, where subscribers is the entity set name and ID=1 points to a specific
entity.

GET <service-root>/Subscribers(ID=1)

To invoke an action through an import, a consumer sends a POST request to an
action URL. Since actions, can change the state of data within the producer, the
consumer can embed parameter values within the request. For example, a consumer
tries to add SIP URIs for two RCS clients belonging to a subscriber; it creates a
JSON document which is embedded with the POST request, as presented below:

POST <service-root>/Subscribers(ID=2765434434)/AddSIPUri
{

"devices": [
{ "client": 2, "SIP_URI": "sip:ronnie@domain.com" },
{ "client": 3, "SIP_URI": "sip:ronnieXYZ@domain.com" }

]
}

4.6 Extending Producer Capabilities

OData can be improved through the release of a new version or customised by the
producer to meet service requirements. That is, the protocol can be extended to
incorporate new specifications or emerging use-cases. This can be achieved through
the use of appropriate conventions, version definitions and explicit extension points.
Different aspects of a producer that can be extended include query, action, function,
header field, payload, vocabulary and data format.

Query OData URL requests are limited by the query options available to the
consumer. These determine how the request itself is processed by the OData
producer. The prefixes “$” and “@” are reserved by the OData producer. So, an
OData service can distinguish between a query option that is part of the
specification [74] by the prefix attached to the option. Customised query option

57

mailto:ronnie@domain.com
mailto:ronnieXYZ@domain.com

CHAPTER 4. AN OVERVIEW OF THE OPEN DATA PROTOCOL

can be implemented on the OData service if it does not use the reserved system
prefixes.

Action and Function The range of operations that can be performed on a service
or resource are extended by Actions and Functions. As discussed in Section 4.2.1,
actions can be used to manipulate stored data while functions simply are used for
retrieval purposes. Thus, both can be extended as required.

Header Field OData provides facilities that support the creation of custom header
fields. It defines a set of well-formed rules that can be applied against specific HTTP
requests and response headers. However, custom headers must not begin with the
“OData” reserved word.

Payload OData provides support for payload extensions to a precise format. The
OData-Version header is used to determine how a payload is interpreted regardless
of the Content-Type. Hence, consumers and producers must provide effective
mechanisms to handle or safely ignore contents that are not defined in the payload
version specified by the OData-Version header.

Vocabulary Shared vocabularies provide greater extensibility to OData services.
Since a vocabulary comprises a set of annotations, the vocabulary can be extended
by using the annotations to improve the capabilities or increase the features of a
schema element.

Format OData producers can support both Atom and JSON data formats.
Although OData version 4 primarily supports JSON and Atom [69], other formats
can be introduced to meet specific use-cases. This can be in the form of extensions
to within both HTTP request and response payloads.

4.7 Summary

This chapter has presented a brief overview of the OData protocol. The protocol
adopts a SOA model of communication over a RESTful interface. OData provides
a native support for two data exchange formats, which are JSON and Atom, but
can be extended to support others. It allows a data service to expose its content
through an Entity Data Model, which can be accessed through the service and
metadata description documents. Thus, it allows the unique repository to provide
a logical view of heterogeneous data. In its attempt to provide OData as a
potential candidate for the Ud reference point, this chapter has highlighted
OData’s data manipulation and extension capabilities. OData supports both
CRUD and subscribe/notify operations over HTTP, which are the main data
manipulation requirements for the Ud reference point. The subscribe/notify
feature can be realised through the callback mechanisms discussed in this chapter.
However, OData provides a data-store-agnostic technique for managing data, and
thus, does not define the actual model used by an underlying data store used by
the logically unique repository. Therefore, the aim of the next chapter is to
investigate different design practices that may be adopted by the unique repository.

58

Chapter 5

Data Store Design Practices

More often than not, data stores are found at the core of an organisation’s
infrastructure. They assist in the proper management of data which are created
and utilised daily. Choosing the most suitable among the extensive range of data
stores for managing an organisation’s data can be a challenging task. This is
because different trade-offs have to be made as most storage technologies are
created for specific use-cases. A typical data store technology organises data in a
certain way, exposes these data through specified access mechanisms and enforces
some constraints on how its data can be manipulated. Thus, creating a systematic
way for executing CRUD operations and in essence, manage data. Moreover, the
effective management of data can provide insights, which can be used in making
intelligent business decisions. Hence, it is important to understand the concepts
used by data storage systems to decide how these technologies can be leveraged.

However, since the converged repository provides a logical model of consolidated
subscriber data, this chapter explores strategies and data stores for managing
subscriber data. The discussion builds on Chapters 3 and 4, which highlighted the
design requirements for introducing a converged repository for RCS services and
presented a candidate protocol for accessing this repository respectively. Thus, the
chapter starts out by providing an overview of common data modelling techniques
adopted by storage technologies. The next section discusses the concept of data
abstraction as a way to provide access restrictions to stored data. This is followed
by a brief explanation of schema management. The chapter further discusses the
concept of data store transactions, fault tolerance techniques and their trade-offs.
Thereafter, the chapter discusses the different approaches that can be used for
storing data. The chapter concludes with a summary of concepts discussed.

59

CHAPTER 5. DATA STORE DESIGN PRACTICES

5.1 Common Data Models

A DM as explained in Section 3.3, is derived from a specific IM. Distinct data store
technologies adopt different approaches to how stored data is organised and viewed.
The author regards the following as the common DM categorisations: Hierarchical,
Relational, Key/Value, Document, Column-Oriented, and Graph models. They can
be used to model information which is specific to required use cases. In the case of
this thesis, it seemed appropriate to investigate these models in order to determine
which would be the most appropriate one to handle the different categories of RCS
subscriber data. This section briefly summarises this investigation.

5.1.1 Hierarchical

A hierarchical data model organises stored data in an inverted tree-like structure,
with the root being the topmost part of the model. It adopts a parent-child
relationship between its data sets which are represented as segments [33, Ch. 2, p.
35]. In other words, a parent can have multiple children while a child can only
have one parent. Each segment (with the exception of the root) has a parent which
determines its position within the hierarchy. Examples of hierarchical data store
implementations include 389 Directory Server1 and OpenLDAP.1 2

Furthermore, this model is effective for one-to-one and one-to-many data
relationships [33, Ch. 2, p. 35]. In situations where many-to-many relationships
occur, this model will be inadequate. For example, a network subscriber uses a set
of MNO services which are also used by many subscribers. Thus, a one-to-many
relationship from the subscriber perspective and a one-to-many relationship from
MNO services perspective — leading to a many-to-many relationship.
Consequently, a hierarchical data store requires more resources to create these
relations and may introduce complexities in its management.

Figure 5.1 shows a basic relationship between the model segments. A is the root
segment while A| is a parent segment to A|| and A 1 2 . With the aid of the diagram,
if a linear search was conducted on the data store for A2 2 , it has to start from A to
A2 then A22 which will be quite slower than a search for A2.

Figure 5.1: Simple Hierarchical DM.

1http://directory.fedoraproject.org/
2http://www.openldap.org/

60

http://directory.fedoraproject.org/
http://www.openldap.org/

CHAPTER 5. DATA STORE DESIGN PRACTICES

5.1.2 Key/Value

This DM provides a simple organisation of data by binding keys to values. Hence,
the data store can fetch specific data sets using their respective keys. This approach
to data modelling is similar to techniques such as Maps and Dictionaries, which
are data structures used in programming languages [102]. Key/value data stores
allow for different data structures such as collections of data. Basic units of data
can range from structured data such as integers and strings to unstructured data
such as images and videos. Thus, a key/value data store may be used to store both
structured and unstructured types of data. Figure 5.2 depicts a simple key/value
DM. The simplistic nature of this DM restricts the set of possible operations since
a data store provides access to data through specified keys. Simply put, complex
logical relationships among data may not be easily achieved as data sets are isolated
and accessed only through their keys. Examples of key/value data stores include
[4]: BerkelyDB, Voldermort, Aerospike, LevelDB, and Redis.

Figure 5.2: Simple key/value DM.

5.1.3 Relational

This model has a background in mathematical set theory and relational algebra
[29]. It is based on the following concepts [17, Ch. 8, p. 404]: Set, Tuple, Arity and
Relations.

• A Set consist of a number of elements at a given time. For example A =
{a,b, c, d}. Set A comprises elements a,b,c, and d.

• A tuple can be defined a set of values for a defined data object. For example,
a vehicle object has attributes such as the make, type, and year of production.
Therefore a tuple X = {Tesla, car, 2 0 1 6 } .

• The arity of a tuple is the number of the element it comprises. Therefore,
tuple X above has an arity of three (3).

• A relation is a group of tuples with the same arity.

61

CHAPTER 5. DATA STORE DESIGN PRACTICES

Data stores that adopt this model represent data in rows and columns within a table
[97]. The columns define the attributes of a data object while the rows, which can
also be referred to as tuples, comprise the actual values given for each column. Thus,
a table presents a template for the structural arrangement of the values specified for
a data object. Examples of relational data stores include MySQL,3 and Postgresql.4

Figure 5.3 shows a basic relational modelling approach where different tables are
logically connected. This allows them to share common data sets using multiple
keys — the primary and foreign keys. Data duplication can be eliminated since a
data store can extract related datasets using the primary and foreign key notations.
From the diagram, Table A contains attributes from Tables B and C while Table D
contains attributes for Tables A and C.

Figure 5.3: Simple Relational DM.

5.1.4 Document

The document DM is a derivative of the key/value and hierarchical data models.
This DM represents a unit of data as a document, which can either be structured
or unstructured. A key is used to identify a specific document, which can also
consist of multiple nested documents [26]. The nested documents are organised in
a hierarchical manner and consequently provides the ability to embed more
documents within a parent document. Within a document model, a primary key is
used to access a parent document while multiple secondary keys are used to access
embedded documents. This is depicted in Figure 5.4. Further, the documents are
similar to tuples in a relational model as they are organised into equivalent
representations of tables known as collections. Thus, a document can be added or

3https://www.mysql.com/
4https://www.postgresql.org/

62

https://www.mysql.com/
https://www.postgresql.org/

CHAPTER 5. DATA STORE DESIGN PRACTICES

detached easily within a collection. Examples of document data stores include [4]:
MongoDB, CouchDB, SimpleDB and RavenDB.

Figure 5.4: Simple Document DM.

5.1.5 Column-Oriented

A column-oriented model adopts a relational DM by also representing data in rows
and columns [56]. The difference between both models is the flexibility of the tuples.
The relational model can be termed a row-oriented model as tuples are generated
against fixed set of columns within the data store. Conversely, column-oriented DM
ensures that columns are only generated as required by the tuple. Therefore, a
relational model uses a fixed arity value while a column-oriented model possesses
variable arity value. Additionally, the columns in this DM contains a set of key/value
paired data as depicted in Figure 5.5. Examples of column data stores include:
HBase5 and Apache Cassandra.6

Row s C o lu m n s

R o w i

C o lu m n

N a m e i

C o lu m n

N a m e 2

V a lu e V a lu e

ROW2

C o lu m n

N a m e i

C o lu m n

N a m e 3

C o lu m n

N a m e 2

V a lu e V a lu e V a lu e

Row 3

C o lu m n

N a m e 2

C o lu m n

N a m e 4

C o lu m n

N a m e 3

C o lu m n

N a m e i

V a lu e V a lu e V a lu e V a lu e

Ro w 4

C o lu m n

N a m e i

V a lu e

Figure 5.5: Simple Column-Oriented DM.

5https://hbase.apache.org/
6http://cassandra.apache.org/

63

https://hbase.apache.org/
http://cassandra.apache.org/

CHAPTER 5. DATA STORE DESIGN PRACTICES

5.1.6 Graph

In this DM, the basic unit of data is called a node and the relationships between
nodes are represented with arrows known as arcs (otherwise known as edges) [17,
Ch. 9, p. 451]. The core of this model is in established relationships between nodes.
Relationships comprise a type, start node, end node and property. Properties give
more description to the relationship. Graph models can be directed or undirected.
An example of directed graph model is a hierarchical model, which can be traversed
in a certain direction from a start point (the root segment) to the end point (specified
destination). Undirected graph models may not provide a specific way in which
the model can be traversed. Examples of graph data stores include: Neo4j7 and
FlockDB.8 Figure 5.6 shows a simple directed graph DM. It shows that the node
for User A has a known relationship with User B. Then the Users A and B are
subscribed to Service|. Further, the diagram suggests that Service| uses a specific
data store within a network that manages two data categories — Datai and Data2 .
This simple illustration explains how the graph DM can help find manage and define
relationships between stored data.

Figure 5.6: Simple Graph DM.

5.2 Data Abstraction

The term data abstraction is synonymous with relationships between primitive data
types and objects in object-oriented programming languages such as Java. That
is, an object can comprise different primitive types, which may not be exposed to
other objects. In data management scenario, the type of data that can be retrieved
is dependent on the level of abstraction provided by the data objects. Hence, when
designing a data store, different data structures have varying representations at
different levels — each hiding some information present at the lower level. These
data structures and their relationships constitute data models at each level. There

7https://neo4j.com/
8 https://github.com/twitter/flockdb

64

https://neo4j.com/
https://github.com/twitter/flockdb

CHAPTER 5. DATA STORE DESIGN PRACTICES

are four categories of such models: External, Conceptual, Internal and Physical [33,
Ch. 2, p. 47].

• External M odel Constitutes the different DM views presented to the clients
applications that interact with a data store. This provides the highest level
of abstraction within a data store. In an SOA environment, this is the model
that is exposed to data service consumers.9

• C onceptual M odel Provides a flexible data structure that represents a
logical organisation of the contents of a data store or an SOA's data
service.10 This DM provides a higher level of abstraction over the internal
model (described below). The conceptual model is logically independent of
the internal model implementation as changes made with the internal model
does not impact the conceptual view of data.

• Internal M odel Describes how data is organised within a data storage
technology. This view of data describes how the data store organises its data.
An example is the LDAP directory service which internally organises its data
in a hierarchical manner. Changes made on this model does not impact the
physical model. Hence, it is independent of the physical model as shown in
Figure 5.7.

• Physical M odel Shows the actual organisation of data at the file system
level of the host Operating System (OS), which uses storage media such as
hard disks. It provides the lowest level of abstraction.

Figure 5.7: Data abstraction levels. Adapted from: [33].

9An example of the external model is the UDC’s ADM discussed in Section 3.4.
10The conceptual model is synonymous to the CDM discussed in Section 3.3.

65

CHAPTER 5. DATA STORE DESIGN PRACTICES

5.3 Schema Management

Schemas are derived from the data abstraction models discussed in Section 5.2. A
schema presents a logical representation of stored data [96]. Data store technologies
adopt two main principles for managing their schemas. They employ either schema-
full or schema-less models [67], which are discussed in the following subsections.

5.3.1 Schema-full Model

A schema-full model enforces constraints on how data is stored, accessed and
manipulated. In other words, there is limited flexibility allowed in data
management when a strict policy is adopted. Relational data stores often adopt
this policy as a way to ensure consistency on how data is managed. Data models
on such systems may be re-designed to accommodate new behaviour. For instance,
introducing additional relationships between tables in a relational data store can
lead to unanticipated complexities. This may consequently result in the re-design
of the initial DM. Examples of such storage systems include: MySQL and
Mnesia.11

5.3.2 Schema-less Model

A schema-less model has native policies but allows a data service to access and
manipulate data with fewer structural constraints and greater flexibility when
compared to systems with strict schema policies [96]. Data services that use such
storage systems determine how data is stored and accessed. Thus a mixed schema
data store allows a data service to mount a conceptual model over its internal
model. Consequently, the data service is burdened with the responsibility of
determining the way data is accessed and utilised. In addition, this allows data
services to create and manage their own DM without being impacted by the
modelling constraints (if any) of an underlying data store. Examples of such
storage systems include MongoDB, Cassandra, and HBase. These systems are
regarded as non-relational data stores as they do not enforce a rigid relational
schema [102].

5.4 Transaction Management

Section 3.4.5 discussed the ACID properties that guarantee successful transactions.
More often than not, relational data stores are transaction-oriented as they try
to ensure consistency and enforce data integrity when handling data manipulation
requests. However, there is a paradigm adopted by non-relational data stores known
as BASE [86]. BASE is an acronym for a system that is basically available, soft

11http://erlang.org/doc/man/mnesia.html

66

http://erlang.org/doc/man/mnesia.html

CHAPTER 5. DATA STORE DESIGN PRACTICES

state and eventually consistent. This concept follows a distributed data storage
architecture, which is discussed in Section 5.5. The terms are explained as follows:

• Basically Available: This simply describes how data is perceived among
server nodes after it is updated. The probability that data can be accessed
and served within acceptable response times can be expressed as a ratio.

• Soft state and Eventually consistent: This implies that nodes may
contain different versions of the same data in a short period. There is a
partial consideration for data consistency as changes made on data are
propagated across server nodes. A BASE-compliant data store is always in a
soft state when compared to an ACID-compliant system, which attempts to
guarantee consistency at a given period [86]. Thus, the state of a data store
may continuously change at a given time, even if there are no data
manipulation activities being handled. Consequently, this might result in
delays over the network, making it almost impossible for two server nodes to
be in the same state at a given period. However, the data store is expected
to produce consistent data when it is queried.

5.5 Fault Tolerance Techniques

Systems that adopt ACID or BASE concepts, utilise distributed architectures to
handle data store performance and availability, with respect to, increasing data
volumes [104]. Hence, a storage technology can also be described by how it
manages its data across multiple server nodes. The techniques used to manage
these distributed data sets are known as Sharding and Replication respectively
[104]. It is important to note that some data stores can leverage both concepts
when managing data.

Sharding allows a data storage technology to store unique copies across different
server nodes [19]. Each node is referred to as a Shard. A Shard is created based
on the use-cases for the data store — the functional requirements. Thus, a shard
can be created to handle data subsets for different domains. For example, having
a shard to handle subscription profiles, and another to keep CDRs. Hence, each
server node contains a unique set of data, which is consistent for the data services
that access it. As a result, a data service can interact directly with a specific node
for pertinent data. This ensures that similar data sets are grouped and stored on
the same node. Hence, a data store can effectively manage transactions on data sets
across each server node as data continues to grow. However, if a node fails, the data
store may lose data if there are no backup mechanisms in place or if its current state
is not yet backed-up.

Replication, however, allows a data store to produce multiple copies of its data sets
across server nodes [16] . Thus, if a node goes down, the data can be retrieved from
any other available node. The strength of this approach depends on the concurrency
mechanisms created for the data store. This is because changes made to the state of

67

CHAPTER 5. DATA STORE DESIGN PRACTICES

the data store have to be replicated across all server nodes. The relationship between
nodes can either be peer-to-peer or master-slave. In the master-slave relationship,
the master is the authoritative node that propagates changes to slave nodes. In the
peer-to-peer relationship, writes are allowed on each node and a node synchronises
its copy with other replicas. Therefore, multiple server nodes are expected to contain
the same set of data at a given time. However, isolating a unit of data at a given
period becomes unrealistic for replicated nodes as they are all in synchronisation.

5.6 The CAP Theorem

The CAP theorem by Eric Brewer [23] considers three related system properties
namely: Consistency, Availability and Partition Tolerance (C A P). It asserts that
any distributed data store can only possess two of the three expected properties at
a given time.

• Consistency: This is not synonymous with the ACID form of consistency.
This is used to describe the state of distributed storage systems. Hence, it
implies that all server nodes must contain the same data sets at all times.

• Availability: It has a similar meaning to the one described as a BASE
property.

• Partition Tolerance: In the event where communication among servers is
unreliable (for instance, the network stops, delays or drops messages sent
between the servers), the system is expected to continue with its tasks. This
is the inherent nature of the Internet and its related services. Hence, the
system has to tolerate this kind of situation.

However, according to Brewer, it is only possible to have a data store that can
reliably provide two of the three properties. Thus, trade-offs are made between these
properties when deciding on the appropriate data store to adopt. More often than
not, consistency and availability are favoured since partition tolerance is essentially a
fault-tolerance mechanism, whereas consistency and availability ensure the reliability
of stored data. This is because data services expect these technologies to be reliable
and capable of handling their specific use cases [16].

5.7 Persistence Model

Persistence simply means that “data survives after the process with which it was
created has ended” [83]. This section discusses the different methods adopted by data
services, which provide a conceptual model of data when managing the persistence
of heterogeneous data sets. They are thus classified into single and multi-store
persistence models respectively.

68

CHAPTER 5. DATA STORE DESIGN PRACTICES

5.7.1 Single-Store Persistence

A single storage approach to persistence guarantees a uniform DM. A distributed
store can shard or replicate data across multiple server nodes, but they all adopt
a single DM. Thus, simplifying the data managing process. This is illustrated in
Figure 5.8. However, when considering data heterogeneity, the data stores can
be made to fit in disparate data sets into a uniform DM. As discussed thus far,
different data storage technologies are built for specific use cases and different DMs.
For instance, relational and non-relational data stores are designed to solve specific
problems like scaling, transaction and schema management, among others. Hence,
trying to fit heterogeneous data into a single data storage technology may eventually
lead to a non-performant system [95]. Consequently, an alternative to handle data
heterogeneity is persisting data across multiple stores.

Figure 5.8: Single store persistence example.

5.7.2 Multi-Store Persistence

As illustrated in Section 5.1, there are different types of data storage technologies
suitable for specific models of data. Persisting data across multiple stores allows a
combination of heterogeneous data sets within a single data service. The term used
to describe this is Polyglot Persistence [95]. It follows the paradigm that data stores
are designed to solve different problems. The idea stems from the concept of polyglot
programming where multiple programming languages can be integrated into a data
service to tackle specific problems [104]. This approach allows an application to
leverage the strengths of different languages. An example is the Scala programming
language, which operates on the Java Virtual Machine (JVM). Hence, both Scala
and Java can interwork on a single platform.

Polyglot persistence provides an architecture that allows data services to store
data from heterogeneous sources based on data access requirements. For instance,
persisting session-related data in a relational store when a simple key/value store
would be sufficient. Or managing relational data with a document-oriented store.
Polyglot persistence provides an architectural answer to such scenarios. Thus, data
sets with similar use cases can be persisted in distinct data stores. Additionally,
the concepts discussed in Section 5.4 can be leveraged when choosing appropriate
data stores for a data service.

With polyglot persistence, a data service can persist a data object and its attributes,

69

CHAPTER 5. DATA STORE DESIGN PRACTICES

across multiple data stores. For example, instead of keeping a subscriber’s profile
information within a single data store; they can be separated into multiple data
stores to manage different use cases such as frequent reads and occasional writes.
This is illustrated in Figure 5.9, where a data service that manages data objects A
and B, persists their attributes across multiple stores.

Figure 5.9: Polyglot persistence example.

5.8 Summary

This chapter has described common approaches which can be used to design a
data management system. The different ways in which data is often represented in
data stores have been shown. Additionally, the different data abstraction, schema
and transaction management techniques have been discussed. More importantly,
the CAP theorem, which can be used to make trade-offs between different storage
technologies have also been presented. The persistence models, which explain the
use of single and multiple storage technologies were discussed toward the end of the
chapter. With this insight, the chapter has set the stage for the design of the unified
data repository for RCS, which is presented in the next chapter.

70

Chapter 6

Introducing the Converged
Subscriber Data Repository

Up until this point, this thesis has discussed at length the requirements for
creating a converged data repository for RCS services. This involves both the data
access and modelling requirements. Since this repository needs to conform to the
UDC standard, the thesis has also explored alternative mechanisms to address the
issues raised with 3GPP specifications. These mechanisms were explained in
Chapters 4 and 5. However, this chapter presents an architectural design for the
unique repository, which the author has coined the Converged Subscriber Data
Repository (CSDR). Thus, the chapter starts out by presenting an analysis of the
design decisions that were made for the CSDR. Then follows, an overview of the
CSDR and FE components while outlining their various functions. The section
further defines the core components of the converged repository. This is followed
by a description of how the CSDR handles CRUD and subscribe/notify messages.
The chapter concludes with a summary of the ideas discussed.

71

CHAPTER 6. INTRODUCING THE CONVERGED SUBSCRIBER DATA
REPOSITORY

6.1 Design Considerations

This section discusses the factors, which informed the design of the CSDR.

6.1.1 Data Protection

Protecting the contents of the CSDR from services that are not primarily supported
by RCS is important. Such services include unauthorised FEs and third party
applications. Although OASIS has not defined a standardised security mechanism
for protecting the contents of the OData EDM, TS 22.985 [9] discussed the impact
of security for a converged repository. The specification encourages the use of,
but not limited to, the Advanced Encryption Standard (AES) to protect sensitive
data such as authentication keys or passwords. Adopting the UDC standard, the
CSDR preserves existing authentication and authorisation procedures within an IMS
network [100]. Thus, these data sets can be encrypted over OData, since AES is
protocol-independent. Moreover, since OData is a REST protocol, HTTP security
mechanisms discussed in RFC 2616 [21] and RFC 5789 [40] can be adopted. Hence,
advanced security techniques can be built over HTTP, which is used by OData.

6.1.2 Formalised Access Mechanism

As discussed in Section 6.3, the CSDR supports both CRUD and subscribe/notify
operations over OData. UDC specifications suggested the use of LDAP and SOAP
to achieve the same objective. Hence, providing access to heterogeneous data sets
with a single unifying protocol simplifies the processing activities of the CSDR.
Consequently, the RCS core and network service enablers can interact with the
CSDR using OData as the common interface. However, there are other RESTful
alternatives to OData, such as the OPEN-Paas-Database API (ODBAPI) [98] and
Backend-as-a-Service REST API [46]. OData is different from both APIs on two
levels. First, OData is currently standardised and maintained by OASIS while the
other two APIs are not currently standardised. The second difference is evident in
the advanced querying and aggregation techniques provided by OData1 which are
not present in the other APIs. Thus, the CSDR leverages OData to expose data in
a consistent, flexible and reliable manner to the relevant FEs.

Furthermore, OData provides a much more flexible way of querying its data as
discussed in Section 4.5.3. OData leverages the flexibility of the EDM to navigate
entity relationships and query entities with their attributes. This is also achieved
without the knowledge of the underlying data store implementation and actual
models used by the store. Thus, the CSDR offers querying capabilities such as data
aggregation to FEs, through the OData query options. This offers an improvement
over the use of LDAP, which navigates the contents of a directory service through
the filtering entries and attributes in the Directory Information Tree (DIT) [106].

1These sechniques are discussed in sections 4.5.3 and 4.5.4 respectively.

72

CHAPTER 6. INTRODUCING THE CONVERGED SUBSCRIBER DATA
REPOSITORY

6.1.3 Interoperability with External Systems

The CSDR should be able to exchange its data with external systems within the
network. Such systems may include data mining systems or others, which may
query the CSDR for pertinent data. Considering the heterogeneity of the protocols
used across a mobile network, external services may have to interact with the
CSDR using LDAP, SOAP or both. However, using OData allows these external
systems to interact with the CSDR using a simple REST interface, which is
gradually being adopted by MNOs. If the external systems expose their data
through OData, the CSDR can also interrogate their content when trying to
aggregate data. In addition, these systems can study the contents of the CSDR
through the metadata document. Existing systems that currently incorporate
OData, which will be able to access the CSDR include [76]: Microsoft Sharepoint,
SAP NetWeaver Gateway, IBM Websphere eXtreme Scale, and JBoss Data
Virtualization, among others. Thus, subscriber data within the CSDR is made
available for access by operator-owned network services, and authorised
third-party systems.

6.1.4 Coping with Schema Evolution

One of the functions of a schema is to enforce certain rules regarding stored
entities in order to ensure data integrity. This determines how the CSDR reads
and writes subscriber data. However, this can lead to complex data structures as
data access requirements to the repository continue to change [94]. A possible way
to the deal with this complication is to re-engineer the DM of the CSDR at each
point. Alternatively, adopting OData allows the schema defined by the CSDR to
accommodate changes in models as RCS services evolve. In other words, the EDM
can allow MNOs to create wrappers around the underlying data store(s) and in
consequence, the CSDR can evolve as required.

6.1.5 Persistence and Transactions

The data sets utilised and generated by RCS services are of different structures
represented as distinct DMs. Simply put, the data sets are heterogeneous in
nature. The CSDR manages this heterogeneity by adopting a polyglot persistence
architecture. Hence, the CSDR manages distinct models by utilising suitable
storage technologies. However, combining different underling DMs requires the
CSDR to provide complex data processing techniques for the distinct data sources,
since it provides an abstraction over the stores. OData reduces this complexity by
providing a consistent way to manage and expose data at the conceptual level.
Therefore, schema-full and schema-free data stores can be integrated with the
CSDR in a “plug and play” fashion.

Furthermore, not all types of data require transactional integrity. For example,
data generated within a session is largely transient in nature. Hence, adopting

73

CHAPTER 6. INTRODUCING THE CONVERGED SUBSCRIBER DATA
REPOSITORY

polyglot persistence allows transaction and non-transaction-oriented stores to
manage pertinent data. Consequently, ACID-BASE the dichotomy is resolved as
the CSDR leaves transaction management to each underlying data store. It
forwards the outcome of these transactions to the FEs as OData result codes, thus,
eliminating the need to enforce transactional properties on CRUD operations.

6.2 System Overview

The design for the CSDR architecture is inspired by both UDC and OData
architectures described in Sections 3.1 and 4.1 respectively. The CSDR is both
modular and multi-layered by design. The modular aspect of the system ensures
that each task is handled by a designated unit — resulting in clearly defined roles.
The layered architecture provides levels of abstraction for data access and
manipulation. These layers are created for the following access requirements:
multi-interface, unified, and low-level data access. Figure 6.1 illustrates this
layered design and its core components.

External Systems
RCS

Clients
XCAP RCS Configuration

Servers Self Care
Systems

SIP, Diameter, HTTP, IMAP, SUPL / lit-td

Third Party
ApplicationsApplication

Front Ends
Provisioning
Front Ends

OData

Converged Subscriber Data Repository

Polyglot Persistence Interface

Data Stores

Figure 6.1: A high level overview of the CSDR architecture.

The multi-interface layer — labelled ‘M ’ — acts as the topmost data access layer
where different communication protocols and APIs are used between the clients and
network services. The network services that respond to requests at this layer are
the application and provisioning FEs. The clients that can operate at this level
range from smartphones, third-party applications, and operational support network
services, to applications that allow subscribers to manage portions of their data
through an external user interface (that is, self-care systems). Hence, different
application layer protocols can be implemented and adopted between clients and
services that operate at this level. Consequently, most services within IMS can
query the CSDR for subscriber data at this level.

74

CHAPTER 6. INTRODUCING THE CONVERGED SUBSCRIBER DATA
REPOSITORY

The unified layer — labelled ‘U’ — is the mid-level data access layer. It comprises
the logically unique data repository, which supports a single protocol. The protocol
adopted is the OData Protocol. This access interface is synonymous with the Ud
reference point specified in the UDC architecture. By using OData, the CSDR
can provide a conceptual view of heterogeneous subscriber data to FEs. OData
enables FE-to-FE and FE-to-CSDR interactions. Thus, it is the core component for
converged data access within this architecture.

The low-level layer — labelled ‘L’ — is the data access layer consisting of the
underlying data stores within the architecture. At this level, the CSDR can store
subscriber data into actual data stores. This layer ensures that there is loose­
coupling between the CSDR and actual data stores through the introduction of
the Polyglot Persistence Interface (PPI). The role of the PPI is further discussed
in Section 6.2.3.4. Therefore, underlying data stores can be migrated, swapped,
upgraded and removed as required.

6.2.1 Application FE

An AFE, as previously discussed in Section 3.1.1 is a stateless service which
responds to client requests. It is stateless because it does not possess any
subscriber data. Clients perceive an AFE as either an application or data service.
AFE-type interactions within this architecture are twofold: firstly, interactions
occur between FEs and their clients; secondly, they also occur between FEs and
the CSDR.

AFE Interactions

An AFE receives requests from clients and serves back response messages. It
achieves this client-server interaction through its defined interface(s) as depicted in
Figure 6.1. In other words, each AFE can either support a single or multiple data
access interfaces. Thus, if the AFE supports multiple interfaces, client requests are
handled by designated interface modules. Chapter 8 gives different illustrations for
AFE interfaces. However, the generic interaction between an AFE and the CSDR,
which is triggered by a client is described as follows:

• The client issues a request toward the AFE. This request can be a message
composed using any of the following protocols — SIP, SUPL, Diameter,
IMAP, and HTTP. The AFE handles messages for protocols that it has been
provisioned to support.

• The AFE authorises the client initiating the request.

• If the client requires subscriber data, the AFE contacts the CSDR to fetch the
relevant data. In other words, the AFE interacts with the CSDR when there
is a need to execute a CRUD-type request.

75

CHAPTER 6. INTRODUCING THE CONVERGED SUBSCRIBER DATA
REPOSITORY

• Otherwise, it constructs and sends a response to the client through the same
interface.

Figure 6.2: Sequence diagram depicting a generic interaction between an RCS client,
an AFE and the CSDR.

Figure 6.2 illustrates a basic interaction between an RCS Client, an AFE and the
CSDR. The task performed could be a subscriber registration or de-registration,
among others. Such operations may require interaction with subscriber data before
they can be completed. This is when the AFE decides to interact with the CSDR
to fetch the relevant subscriber data to complete the given task. However, it is
important to note that an AFE can generate multiple CRUD requests in order to
complete a specific task.

6.2.2 Provisioning FE

As discussed in Section 3.1.1, a PFE is a specific type of AFE. It is designed
specifically for provisioning tasks such as management of subscriber profiles. Thus,
a PFE receives CRUD requests from external systems such as the RCS
configuration servers, self-provisioning interfaces for subscribers, and data
reporting tools, among others. A PFE supports the use of HTTP or other
application layer protocols that use HTTP, such as XCAP. Furthermore, it
provides the ability to create all the data sets required by the AFEs interacting
with the CSDR. In other words, the PFE can be used to generate both shared and
AFE-specific data sets. Shared data sets imply that multiple AFEs use the data
from the same pool, while specific sets are utilised by distinct AFEs. For example,
a PFE can create common and distinct data sets for the RCS messaging and
location services. In contrast, an AFE is primarily concerned with its own data
set. Hence, a PFE has greater access to subscriber data when it is compared to an
AFE.

76

CHAPTER 6. INTRODUCING THE CONVERGED SUBSCRIBER DATA
REPOSITORY

PFE Interactions

A typical scenario is when the PFE is used to create subscriber data that allows
multiple RCS services to be provisioned. In other words, when a user is being
provisioned, the PFE creates all pertinent data for RCS service activation, usage,
and account provisioning. This is possible because the PFE is aware of these data
sources by leveraging the consolidated view from the CSDR. The generic interaction
between a PFE and the CSDR is depicted in Figure 6.3.

interaction P F E with C S D R and Provisioning C lients

Client PFE CSDR

I I I

1 : H T T P request _

^] 2 : Authorise C lient

^ | 3 : Create O D a ta request

4 : O D a ta C R U D request ^

<.. -
5 : O D a ta C R U D response

< ..
6 : H T T P response

Figure 6.3: Sequence diagram depicting interactions between a Client, the PFE and
the CSDR.

The interaction is described as follows:

• The client constructs a CRUD message containing the type of request. The
request type ranges from the creation of a subscription profiles and user
account to specific data sets which are known to the PFE.

• The client issues the request toward the PFE through a protocol. Thus, the
protocol must be supported by the PFE.

• The PFE authorises the client initiating the request.

• The PFE constructs an OData equivalent of the CRUD request and forwards
it to the CSDR.

• The CSDR performs the CRUD request and sends the result of the operation
to the PFE.

77

CHAPTER 6. INTRODUCING THE CONVERGED SUBSCRIBER DATA
REPOSITORY

• The PFE converts this OData response to the corresponding HTTP response
and forwards it to the client.

The client could either be a SIP application service or a web browser, which the MNO
has securely provisioned to interact with the PFE. Additionally, CRUD requests that
the CSDR supports are discussed in Section 6.3. Moreover, the PFE sends a response
to the client using HTTP response codes. In consequence, the PFE supports a single
protocol in contrast to an AFE.

6.2.3 Converged Subscriber Data Repository

The CSDR is the facility that handles all data storage, management and querying
of subscriber data sets used by RCS services and their supporting network services.
It provides the overall view of RCS subscriber data to the network services,
administrators and management alike. There are four main parts that handle the
different behaviours of the CSDR. These components are shown in Figure 6.4.
They are divided according to their respective roles within the CSDR, which are:
access control, data processing, schema management and persistence.

6.2.3.1 Access C ontrol C om ponent

Both AFE and PFE can successfully execute CRUD operations if the CSDR has their
unique identifiers. These identifiers are generated through the backend interface
provided by the CSDR. The interface provides the list of registered FEs containing

78

CHAPTER 6. INTRODUCING THE CONVERGED SUBSCRIBER DATA
REPOSITORY

their network addresses and corresponding identifiers. This backend interface is
further discussed in Section 6.2.3.3. However, this data access control component
performs two main functions: authentication and authorisation of FEs.

A uthentication: This process is described as follows: First, the CSDR checks for
the FE’s network address and uses it to find the corresponding unique identifier. If
an identifier is found, the CSDR grants it access to the FE. Otherwise, the FE is
denied access.2

A uthorisation: For the FEs to now manipulate data through CRUD operations,
they must be authorised by the CSDR. This technique ensures that an FE which
has not been granted privileges on a data set can not manipulate that specific group
of data. This also helps the CSDR separate data access into distinct views for each
registered FE. In other words, the CSDR will present each FE with a unique view of
pertinent subscriber data, thus leaving out other data sets available in the CSDR.
Hence, an FE has a restricted view of subscriber data. This has been factored in to
the realisation of the ADV concept described in Section 3.4

interaction: C S D R Authentication and Authorisation

FE CSDR Data Store

1 : OData request _

^ 2 : Obtain F E IP address

3 : Check Address-Identifier Mapping^

■ 5..
4 : Return data

5 : Check for data access privilege _

^ ..
6 : Return privileges

...
7 : OData response

Figure 6.5: CSDR Authentication and Authorisation.

6.2.3.2 D ata Processing C om ponent

This component handles the execution of business logic within the CSDR. It
performs two functions, namely: request and query processing. Both functions are

2This is illustrated in Figure 6.5.

79

CHAPTER 6. INTRODUCING THE CONVERGED SUBSCRIBER DATA
REPOSITORY

handled by two distinct modules: The Request Processor and Query Handler.

R equest Processor: This module handles the execution of basic OData requests.
It decides which component within the CSDR to invoke in order to complete a given
task. The basic function of a request processor is to handle the CRUD operations
that are executed against each component of the CSDR’s DM. As a result, different
CSDR elements are handled by different processors. There are numerous OData
request processor types and they are presented in Appendix A.4.

Query Handler: The CSDR provides a flexible querying mechanism through
OData, which is similar to the way SQL is used with relational data stores. Queries
are sent toward the CSDR as HTTP requests but with some additional commands
that alters the result of the request. These commands were discussed in Section 4.5.3.
For example, an OData Sselect command fetches the corresponding attributes from
the CSDR. The Sselect command allows a developer to specify certain attributes to
be returned. This is similar to the SQL select operation. Additionally, this module
allows a PFE to obtain an aggregated view of subscriber data in the CSDR. Given
this capability, external systems can discover new service usage patterns between
subscriber data sets.

6.2.3.3 Schema M anagem ent C om ponent

The actual data managed by the CSDR is persisted into underlying data store
technologies. However, to provide consistent data access to different FEs, the
CSDR exposes its data through the OData EDM. The EDM provides a flexible
but consistent way to model data which is exposed to the FEs using its
standardised interface, the OData protocol. Hence, an EDM design represents a
logical realisation of the CDM, which was discussed in Section 3.3.3 This
component contains three sub-components: A schema descriptor, backend user
interface and data provider.

Schema D escriptor: Describes the various components of the CSDR’s EDM. It
uses the service and metadata documents described in Section 4.4.2 for this
purpose. The documents are the CSDR’s description documents which are
published to FEs. Hence, the schema descriptor showcases to the registered FEs
when invoked, the different EDM elements, their attributes and relationships.
Moreover, this component performs the job of a description document in an SOA
environment.

Backend Interface: Acts as the management interface for the CSDR. It allows
an administrator to manage the contents of the CSDR. This is an important CSDR
module, as it allows quick administrative access to the CSDR when needed. This
can be used to perform CRUD operations on subscriber data sets, FE data sets, and
some CSDR configurations.

D ata Provider: Is the module within the CSDR, which provides a structured view

3The steps through which a CDM can be created is shown in Figure 3.3.

80

CHAPTER 6. INTRODUCING THE CONVERGED SUBSCRIBER DATA
REPOSITORY

of the contents of the CSDR. Upon the reception of CRUD requests from the request
processors, it interacts with the persistence layer through the PPI to complete the
set task. It forwards the data which it has received from the persistence component
to the appropriate processor. Hence, it coordinates the data sets within the CSDR
that are exposed through the EDM. Therefore, it interacts with both the persistence
component and the schema descriptor. With the aid of the schema descriptor, it
can choose the entity types that are queried from underlying data stores, based on
the contents of the request. This is because the request processors only operate on
data, they are not aware of the structure or form of the given data. Hence, the EDM
is transparent to the request processors but is known to a data provider.

6.2.3.4 Persistence C om ponent

This component supports the data abstraction that the CSDR has introduced. It
provides an interface between the data provider and the persistence layer. This
interface is described as the PPI. The PPI helps achieve persistence by integrating
the lower-level DM with the EDM. For example, when an OData CRUD request
is received from the Request processor, this component converts from EDM to PPI
DM. This is achieved by mapping EDM Entity Types to a corresponding model in the
PPI’s DM — this is how the CSDR’s low-level data access is achieved. Thereafter,
an appropriate data store is selected with the aid of the Polyglot Persistence
M odule (PPM). In addition, the PPM handles the transactions between the CSDR
and its underlying data store. Thus, providing a configurable interface that allows a
single-store or multi-store persistence approach. Once this component is configured,
the CSDR can persist the subscriber data across multiple data stores.

6.3 CSDR Messages

6.3.1 Create

When an HTTP POST request to create subscriber data is received by the CSDR,
the request is validated as described in the authentication and authorisation section.
This is the first activity before further processing is executed. The behaviour of the
CSDR when handling a create request is illustrated in Figure 6.6. The received
data will be represented as an entity within the body of the HTTP message. The
CSDR will extract this entity and check if its definition is valid. Then the request is
forwarded to the appropriate request processor for further analysis, once it has been
selected by the schema management component. This component further converts
the POST request to the corresponding PPI request format. Thereafter, the CSDR
will select a store to persist the subscriber data. However, in situations where the
CSDR does not persist the data, it sends out the appropriate HTTP response.

81

CHAPTER 6. INTRODUCING THE CONVERGED SUBSCRIBER DATA
REPOSITORY

HTTP P O ST
Retrieve Entity from URL Payload

Create data Request Processing

Foiward Entity to PPI

Invalid

Malformed Entity

Forward result

Forward result
Persistence

Listen for requests

Request Validation

□ Data to PPI Conversion

Data Store Selection

Failure

Request Completion

Success

Figure 6.6: Defined CSDR behaviour when creating data.

6.3.2 Read

When an HTTP GET request to fetch subscriber data is received by the CSDR,
the request will also be validated. The CSDR will extract the subscriber data
identifier, which must be of the same data type in the EDM. Once a valid identifier
has been obtained, the CSDR converts the GET request to its corresponding PPI
message. Thereafter, it chooses the appropriate store to query the data based on
the information provided by the PPM. Upon the retrieval of the pertinent data set,
the CSDR can filter the result through the usage of query options. These options
are specified with the GET request and therefore, are part of the HTTP URL. The
CSDR applies these options and then generates the result of the operation. This
is then sent out as a response to the initial request. The process is described in
Figure 6.7.

6.3.3 Update

Upon the receipt of either an HTTP PATCH or PUT, the CSDR will validate
the request. Thereafter, it extracts the identifier of the data to be obsoleted and
the payload of the new data. Then it creates the PPI message equivalent of either
HTTP PUT or PATCH. The CSDR will select the concerned data store and attempt
to modify the existing data using the specified update method. When the CSDR
finalises this update, it will send out an appropriate HTTP response code. This is
depicted in Figure 6.8.

82

CHAPTER 6. INTRODUCING THE CONVERGED SUBSCRIBER DATA
REPOSITORY

Retrieve Entity ID from U R L Payload

Forward ID to PPI
Invalid

Malformed Payload

Send result

Send result

Generate output

Persistence

Apply query options
Retrieve data

Listen for requests

Request Validation Request Processing

OData to PP Conversion

Result returned

Failure
Data Store Selection

Result generated
Response Processing

Figure 6.7: Defined CSDR behaviour when fetching data.

Figure 6.8: Defined CSDR behaviour when updating data.

83

CHAPTER 6. INTRODUCING THE CONVERGED SUBSCRIBER DATA
REPOSITORY

6.3.4 Delete

The CSDR validates the HTTP DELETE message upon reception. It extracts the
identifier for the specific subscriber data from the URL. Further, the CSDR will
create a PPI message that allows it to search and delete the specified subscriber
data. Thereafter, it sends out the result of this operation as illustrated in Figure 6.9.

Figure 6.9: Defined CSDR behaviour when deleting data.

6.3.5 Subscribe

When the CSDR receives a GET subscription request, it extracts the identifier of
the subscriber, data set and callback URL of the requesting FE. The callback URL is
stored as the known address of the FE. It creates a PPI equivalent of a POST request
in order to store the subscription. This request is then executed after the CSDR
has selected the appropriate data store. This is followed by an acknowledgement
of the request being granted or denied. The subscription process is presented in
Figure 6.10.

6.3.6 Notify

To publish updates made on data to relevant FEs, the CSDR constructs an HTTP
GET message. This message is sent toward the address specified in the OData
callback URL. Figure 6.11 depicts the notification process of the CSDR. If the
CSDR fails to deliver the notification, the cause of the failure is stored in a log file.
The information in the file can further be used to determine the type of error that
has occurred.

84

CHAPTER 6. INTRODUCING THE CONVERGED SUBSCRIBER DATA
REPOSITORY

Figure 6.10: Defined CSDR behaviour when handling subscription.

Figure 6.11: Defined CSDR behaviour when handling notification.

6.4 Summary

This chapter has presented a modular and multi-layered architectural design of the
CSDR. The architecture provides access to data at three abstraction levels,
namely: multi-interface, unified and low-level data access layers. Furthermore, the
way in which the CSDR is accessed provides flexible and consistent schema
management and query handling through OData. Other features such as access
restrictions and polyglot persistence are also part of the CSDR design. The
chapter has also highlighted the factors that have informed the CSDR design. The
defined behaviour of the CSDR in response to CRUD and subscribe/notify
requests was discussed toward the end of the chapter. The following chapter

85

CHAPTER 6. INTRODUCING THE CONVERGED SUBSCRIBER DATA
REPOSITORY

presents a discussion on the implementation of a CSDR prototype that follows the
specified design.

86

Chapter 7

Constructing a Prototype

The design of the CSDR has been presented in Chapter 6. This chapter discusses a
proof-of-concept implementation of the components described in the previous
chapter. The chapter starts out by presenting an overview of the tools and
frameworks used in the implementation. This is followed by the discussion of
polyglot persistence implementation. Next, is the implementation of the schema
management and data processing components. The chapter further discusses the
implementation of the access control component within the prototype. An analysis
of the prototype is given toward the end of the chapter. This chapter concludes
with a summary of the concepts that have been discussed.

87

CHAPTER 7. CONSTRUCTING A PROTOTYPE

7.1 Choice of Implementation

This section highlights the tools used in the development of the prototype. The
CSDR is implemented as a data service that manages heterogeneous data that is
used and generated by the distinct RCS services. Figure 7.1 presents an overview of
the implementation. However, with the exception of the underlying data stores, the
prototype was developed in a Linux Ubuntu (14.04 LTS) OS environment, using the
Java programming language. Hence, the adopted tools are Java-based technologies.

Figure 7.1: Overview of the prototype.

7.1.1 Maven

Maven is a tool for managing the development of a Java project from a common
XML configuration file. This file is known as the Product Object Model (POM)
document [3]. The core idea is to be able to manage the dependencies and build
process of a Java project, in this case, a data service in a centralised manner. This
simplifies the management of the CSDR codebase and eliminates the need to package
dependencies with the prototype as a simple configuration file keeps track of them.
The POM file used by the CSDR is presented in Appendix C.5.2.

7.1.2 Wildfly AS

This is an open source AS developed by Redhat.1 It facilitates the deployment of
Java-based application services. Wildfly version 10 [61], was adopted for managing
the deployment of the CSDR prototype. The CSDR was deployed using the
Wildfly deployment scanner, which is enabled by default. However, Wildfly allows
the deployment of services in one of two modes: as a standalone server or a

1 http://www.wildfly.org/

88

http://www.wildfly.org/

CHAPTER 7. CONSTRUCTING A PROTOTYPE

managed domain. The domain version is built for cluster-awareness, whereas the
standalone version is not. The CSDR was deployed in a standalone mode. Thus,
the CSDR web application archive file was placed in the
JBOSS_HOME/standalone/deployments folder.

7.1.3 Apache Olingo

This Java Library can be used to create OData consumers and producers [18]. It
provides support for the second and fourth versions of the OData protocol. Olingo
is an open-source project that is released under the Apache license v2.0. Since
OData is platform independent, Olingo is one of its numerous language-based library
implementations. This makes it possible for REST clients to interact seamlessly with
an OData producer.

7.1.4 Java Persistence API (JPA)

This is a Java specification that allows Java-based services to interact with data
stores through an object-oriented DM. Real-world objects are represented as entities
comprising a set of attributes, similar to the way OData represents objects as entity
types.

There are two categories of JPA frameworks [24, 101]:

• O b ject Relational M apper (O R M) works precisely for relational data
stores.

• O b ject N oSQ L — N ot Only SQL — M apper (O N M) works for a family
of non-relational data stores. These group of data storage technologies can be
also referred to as NoSQL stores.

A JPA framework provides loose-coupling between a data service and underlying
storage technologies, thus avoiding vendor lock-in. The Kundera2 framework was
integrated with the CSDR to realise JPA functionality. The list of data stores that
Kundera supports can be found at [2].

7.1.5 JavaServer Faces (JSF)

This is a framework which can be used to build web interfaces for Java-based
applications [1]. It is part of the Java Enterprise Edition (EE) specifications and
thus, can work directly with JPA models. JSF3 separates the presentation of data
from a business logic. The Primefaces JSF framework [85] was adopted by the
CSDR.

2Kundera is an ONM framework that supports polyglot persistence.
3JSF pages are written in Extensible Hypertext Markup Languages (XHTML).

89

CHAPTER 7. CONSTRUCTING A PROTOTYPE

7.1.6 Data Stores

The prototype adopts three underlying data storage technologies to handle the
different categories of data set used for the CDM.4 These stores include: MongoDB
(v3.2.9), Redis (v3.2.1) and MySQL (v5.6).

• M ongoD B manages its data sets in a Binary JSON (BSON) format [28].
MongoDB documents are identified with keys which are of string primitive
types. It provides a shell (named mongo), which allows an administrator
to view and manage stored data. In addition to the command interface, it
provides different REST APIs to clients, which can be integrated with external
applications and services [66]. It adopts the replication technique for scaling,
which enables the distribution of common data sets across different server
nodes. However, it follows the BASE paradigm and hence, does not guarantee
ACID properties when data is being manipulated.

• Redis is a key/value data store which also belongs to the non-relational family
due to its simplistic nature. Similar to MongoDB, clients can access the Redis
server through different APIs which are available based for different chosen
programming languages [87]. Redis provides data structures such as lists, sets,
bitmaps, and hashes for storing its values, which are accessed using distinct
keys.

• M ySQ L is a relational storage technology that was adopted to cater for the
CSDR’s transaction-oriented operations. In other words, it guarantees ACID
properties when data is being manipulated. It allows a client to view and
manipulate stored data through the SQL query language. This makes it
different from MongoDB and Redis, which expose multiple APIs to clients.

7.2 Implementing Polyglot Persistence

The CSDR uses Kundera to access all three data stores through a common JPA
interface. This interface performs the role of the PPI described in the design chapter.
Hence, eliminating the need for the CSDR to access Redis, MongoDB and MySQL
through different APIs. This section discusses the various steps taken to set-up this
interface for heterogeneous subscriber data sets within the CSDR.

7.2.1 Creation of the Domain Model

The prototype considers the four categories of heterogeneous RCS subscriber data.
They include: subscription profiles, XCAP configuration documents, call and
message logs, and session-related data.

4The contents of the CSDR that are discussed in Section 7.2.1

90

CHAPTER 7. CONSTRUCTING A PROTOTYPE

7.2.1.1 Subscription Profile

Subscription profiles are used over an IMS network to authenticate and authorise
RCS subscribers before using the service offerings. IMS also needs an orchestration
logic for executing those services. This logic is defined within the subscription
profile using the initial filter criteria (iFC) element described in [11]. The CSDR
stores this profile in MongoDB as a subscription document. Furthermore, the
subscription profile changes occasionally. For example, the primary identity of the
subscriber5 may not change at all, and service orchestration rules do not change
frequently. Thus, storing this data in MongoDB allows frequent reads and lower
rates of write operations, which are eventually consistent. Other elements of the
subscription profile considered are: an RCS AS, dedicated S-CSCF, visited
networks, trigger points,6 authentication and authorisation data sets. They are
presented in Figure 7.2. However, Visited Network information is stored in
MySQL. More importantly, these profile data sets being stored in the CSDR were
autonomously managed by an HSS service within IMS.

7.2.1.2 X C A P D ocum ent

RCS adopts XDMS as a repository for managing XML documents, which are
exposed through the XCAP protocol. XDMS supports different documents such as
presence list and PNBs, which are structured through different Application Usage
(AppUsage) definitions. An AppUsage defines the XML schema for the data used
by the corresponding service along with other key pieces of information [92].
Therefore, creating a sample data set for XCAP documents with the CDM adds
heterogeneity to the type of data managed by the prototype. The following
metadata were considered for XCAP documents that are stored in the CSDR:

• Application Unique ID (AUID); an identifier that describes the document’s
AppUsage.

• XCAP User Identifier (XUI); a string, valid as a path element in an HTTP
URI, that is associated with each subscriber served by the XDMS.

• Entity tag; allows a number of conditional operations to be performed against
an XCAP document.

• Document name; identifies a specific XCAP resource.

• Scope; which makes a document available to all subscribers or a specific
subscriber.

However, RFC 4825 [92] presents an extensive list of metadata associated with
XCAP documents. In addition, the CSDR stores these XML documents and its

5This can include the IMS Private Identity (IMPI), and IMS Public Identity (IMPU).
6Set of conditions used by the iFC to define how RCS service enablers can be invoked.

91

CHAPTER 7. CONSTRUCTING A PROTOTYPE

metadata in MongoDB. Each XML document is converted into a primitive string
data type, which can be validated by the defined AppUsages when required. This
data is represented as XcapDocument in Figure 7.2.

7.2.1.3 Call and M essage Logs

The CSDR also manages logs generated from RCS voice and messaging services.
These logs can be used to charge the subscriber for service usage. Further, having
an overview of such information is also important to the CSDR. This data is
represented through the CallDetailRecord component in Figure 7.2. Moreover, logs
are transactional in nature, as consistent data is required for accountability at any
given period. In other words, ACID compliance is required for the management of
these data set. Therefore, this makes MySQL a suitable candidate for managing
such data. Consequently, changes made to this log can be committed by the CSDR
when successful and rolled back otherwise.

7.2.1.4 Session-related Data

During dialogues, RCS clients generate transient data in the form of session-related
information, which are discarded when the session is terminated. This information
can be used for error tracking and reporting. For example, when a phone call
terminates without either party pressing the end button. Data gathered while the
session was active can provide insights into why the network cancelled the call. This
is useful when other means of troubleshooting have been explored. Considering the
ACID properties required of the CSDR, session-related data sets are modified or
updated as the subscriber engages in more dialogues. Thus, using Redis helps the
CSDR manage this portion of subscriber data with little emphasis on transactional
integrity. This data is represented in the ClientSessionData component in Figure 7.2.

CallDetailRecord

SubscriptionProfile

Registeredldentity
AuthenticationScheme

VisitedNetwork

AuthenticationData

C lentSessionData

berviceProfi e

XcapDocument

TriggerPoint AppServer

Figure 7.2: The Domain Model as an Entity Relationship Diagram.

92

CHAPTER 7. CONSTRUCTING A PROTOTYPE

7.2.2 Mapping the Domain Model across Stores

JPA represents the different data objects mentioned in Section 7.2.1, as distinct
entities. Each entity together with its relationships collectively defines the domain
model of the CSDR. Since ONMs and ORMs convert object-oriented data to a
specific DM, multiple data stores can be accessed through the same domain model.
Hence, eliminating the need to re-write code to execute CRUD operations on each
underlying data store. Therefore, to represent each data store entity with JPA,
the mapping technique described in Table 7.1 was used. This shows how Kundera
supports polyglot persistence by mapping JPA entities to corresponding models
in the MySQL, MongoDB, and Redis data stores. Consequently, this provides a
uniform way to access multiple storage technologies.

Table 7.1: Multi-Store JPA Data Model Mapping.

D ata Store Entity Definition Entity P roperty Instance

MySQL Table Column Row
MongoDB Collection Field Document
Redis Application Type Key Value

Once the data objects have been successfully mapped to corresponding entities,
the CSDR can reliably execute CRUD requests over the JPA interface. Thus, all
subscriber-related data are retrieved as objects with individual properties. This is
done irrespective of how the objects are represented in the underlying data stores.
Section 7.2.4 further discusses how the properties of these entities are mapped within
the CSDR.

7.2.3 Configuring the JPA Interface

To execute CRUD requests against the defined domain models, Kundera needs to be
configured to support the underlying data stores. This configuration occurs in two
steps: Firstly, a persistence.xml file is created containing the connection information
for the data stores. Secondly, Kundera dependency information is added to the
Maven configuration file.

To configure the persistence.xml file, distinct persistence units are defined for each
data store. A persistence unit presents a description of the connected data stores,
a pertinent domain model, and specific properties as represented in Listing 7.1. It
groups pertinent JPA entities for each underlying data store. This simplifies the
multi-store persistence as each data source only manages relevant entities. Kundera
provides this grouping information to its Entity Manager (EM) at runtime. The
EM is aware of the different persistence units that Kundera provides to the CSDR
and therefore, manages the direct execution of data manipulation operations over
the stores. Hence, the EM performs the role of the PPM as it serves as the core
module for integrating polyglot persistence within the CSDR.

93

CHAPTER 7. CONSTRUCTING A PROTOTYPE

Listing 7.1: A version of the polyglot persisence.xml file.

<persistence >

<persistence-unit name="csdr-mysql">
<provider>com.impetus.kundera.KunderaPersistence </

provider >
<properties> <!-- Connection Properties-->
</properties >

</persistence-unit>

<persistence-unit name="csdr-mongo">
<provider>com.impetus.kundera.KunderaPersistence </

provider >
<properties> </properties>

</persistence-unit>

<persistence-unit name="csdr-redis">
<provider>com.impetus.kundera.KunderaPersistence </

provider >
<properties> </properties>

</persistence-unit>

</persistence >

Furthermore, adding dependency information to Kundera is also a trivial task.
However, Kundera provides different client libraries for accessing the data stores.
Hence, for the CSDR to interact with MongoDB, Redis and MySQL, the following
is added to the POM file:

Listing 7.2: Maven dependencies for the data stores.

<dependency >
<groupId >com.impetus.kundera.client </groupId >
<artifactId >kundera-mongo </artifactId>
<version >${kundera.version}</version>

</dependency >

<dependency >
<groupId >com.impetus.kundera.client </groupId >
<artifactId >kundera-redis </artifactId>
<version >${kundera.version}</version>

</dependency >

<dependency >
<groupId >com.impetus.kundera.client </groupId >
<artifactId >kundera-rdbms </artifactId>
<version >${kundera.version}</version>

</dependency >

94

CHAPTER 7. CONSTRUCTING A PROTOTYPE

• groupId specifies that the library is a Kundera client.

• artifactId denotes the client-type for MongoDB, Redis and MySQL
respectively.

• version states the version of the client, which is 3.4.

7.2.4 Exposing the Data through JPA

Once the domain model was created and the configuration settings were completed,
the following step was providing access to these data sets through JPA. This is
where the PPI becomes relevant. Each of the JPA entities previously highlighted
are assigned specific handler classes. These classes handle the CRUD operations for
the respective entity through the EM. The following table below presents the list of
handler classes provided within the CSDR.

Table 7.2: JPA Handler Classes.

Handler Classes D escription

AppServerProvider Works with the AppServer entity
CallDetailRecordProvider Works with the CallDetailRecord entity
ClientSessionDataProvider Works with ClientSessionData entity
IfcProvider Works with the Ifc entity
ImpuProvider Works with the Impu entity
ImpiProvider Works with the Impi entity
RegisteredIdentityProvider Works with the RegisteredIdentity entity
ScscfProvider Works with the Scscf entity
ServiceProfileProvider Works with the ServiceProfile entity
SubscriptionProfiileProvider Works with the SubscriptionProfile entity
XcapDocumentProvider Works with the XcapDocument entity
VisitedNetworkProvider Works with the VisitedNetwork entity

Additionally, the classes convert JPA models to corresponding EDM entities which
are used by the CSDR. The table below shows how the JPA entities were mapped
to EDM entities:

Table 7.3: JPA and EDM Mapping

O D ata E D M element JPA Representation (with
A nnotation)

Entity Type @Entity
Complex Type @Embeddable
Enum Type @Enumerated
Entity Container @PersistenceContext
Property @Column
Property Reference @Id

95

CHAPTER 7. CONSTRUCTING A PROTOTYPE

Navigation Property toOne and toMany Relationships;
@OnetoOne, @OnetoMany,
@ManytoOne, @ManytoMany.

7.3 Providing Schema Management

Once the domain model had been created and the JPA interface configured, the
CSDR required a CDM that could present the conceptual view of the heterogeneous
data set. The CDM here is essentially an OData EDM for the CSDR, which was
created with the Olingo library. This section discusses the implementation of the
modules that enable the management of the CSDR’s CDM. Firstly, the section
explains how the Schema Descriptor was implemented. Secondly, it describes how
the CDM is managed by the data producer, which works closely with the EM.
Finally, it describes the implementation of the backend interface.

7.3.1 Schema Descriptor

The Schema Descriptor describes the content of the CDM through service and
metadata documents. The CDM was created using the model depicted in
Figure 7.2. The service documents show the list of entity sets available within the
CSDR as depicted below. Snapshots of both documents are shown in Figure 7.3
and Figure 7.4. However, the CDM was defined through the implementation of the
CsdrEDMProvider, which extends the CsdlAbstractEdmProvider class. This class
implemented the methods presented in Table 7.4.

▼<EntityType Name="Ifc">
▼ <Key>

cPropertyRef Name="ID''/>
</Key>
cProperty Name="ID'’ Type="Edm.Int32"/>
cProperty Name="Sid” Type="Edm.String"/>
<Property Name=’'Name" Type="Edm.String"/>
<Property Name="Priority" Type="Edm.String"/*
<Property Name="ProfilePartIndicator" Type="com.inted.csdr.ProfilePartIndicator"/>
cNavigationProperty Name^'AppticationServer" Type="com. inted .csdr.ApplicationServer" Nullable="false"/>
cNavigationProperty Name="TriggerPoint" Type="coin. inted. csdr .TriggerPoint" Nullable=''false"/>

c/EntityType>
▼ cEntityType Name=,,IinsPrivateIdentity ”>

▼ <Key>
<PropertyRef Name="ID"/>

</Key>
<Property Nanie="ID1’ Type="Edm.Int32”/>
<Property Name="Sid" Type="Edm.String"/>
<Property Naine="Uri" Type="Edm. St ring11/>
cProperty Name=’'AuthenticationData" Type="com.inted.csdr.AuthenticationData“/>
cProperty Name=’,AuthenticationScheine" Type="com.inted.csdr.AuthenticationScheme’V >

</EntityType>
▼ cEntityType Name="IinsPublicIdentity”>

▼ <Key>
<PropertyRef Name=”ID"/>

</Key>
cProperty Naine="ID1' Type="Edm.Int32"/>
cProperty Name=,,Sid” Type="Edm.String"/>
cProperty Name=,,SipUri" Type="Edm.String“/>
cProperty Name="IdentityType" Type="com.inted.csdr.PublicIdentityType'V>
cProperty Name=’'ImsUserState" Type= "com.inted.csdr.ImsUserState'V>
cProperty Name="BarringIndication" Type="Edin.Boolean,V >
cProperty Name="CanRegister" Type="Edm.Boolean"/>
cProperty Name="DisplayNaine" Type="Edm.String"/>
cProperty Name="PsiActiyation" Type="com.inted.csdr.PsiActivation"/>
cNavigationProperty Name="SessionData" Type="Collection(com.inted.csdr.ClientSessionData)"/>

c/EntityType>

Figure 7.3: Snapshot of the CSDR Metadata Document.

96

CHAPTER 7. CONSTRUCTING A PROTOTYPE

▼ <app:collection href="ClientSessionDataSet" metadata:name="ClientSessionDataSet">
<atom: titles-clientSessionDataSet</atom: titles-

</app:collections-
▼<app:collection href="FeApplicationDataSet" metadata:name="FeApplicationDataSet">

<atom:title>FeApplicationDataSet</atom:title>
</app:collections-

▼<app:collection href="IfcSet" metadata:name="IfcSet">
<atom:title>IfcSet</atom:title>

</app:collections-
▼ <app:collection href="ImsPrivateIdentities" metadata:name="Iin5PrivateIdentities">

<atom:title>ImsPrivateIdentities</atom:title>
</app:collections-

▼ <app:collection href="IinsPyblicIdentities" metadata:name="ImsPublicIdentities">
<atom:title>ImsPublicIdentities</atom:title>

</app:collections-
▼ <app:collection href="Me rgedDataSet" metadata:name="Me rgedDataSet">

<atom:title>KergedDataSet</atom:title>
</app:collections-

▼<app:collection href="ScscfSet" metadata:name=”ScscfSet">
<atom:title>Scscf5et</atom:title>

</app:collection>
▼<app:collection href="PrefScscfSets" metadata:name="PrefScscfSets">

<atom:title>PrefScscfSets</atom:title>
</app:collection>

▼ <app:collection href="Registered Identities" metadata:name="Registeredldentities">
<atom:title>RegisteredIdentities</atom:title>

</app: collections-
▼ <app:collection href=,,ServiceProfiles" metadata:name="ServiceProfiles“>

<atom:title>ServiceProfiles</atom:title>
</app:collection>

▼<app:collection href="SubscriptionProfiles" metadata:name="SubscriptionProfiles">
<atom:title>SubscriptionProfiles</atom:title>

</app:collection>
▼<app:collection href="TriggerPoints" metadata:name=“TriggerPointsfl>

<atom:title>T rigge rPoints</atom:title>
</app: collections-

▼ <app:collection href="VisitedNetworks" metadata:name=l,VisitedNetworks">
<atom:title>VisitedNetworks</atom:title>

</app: collection
▼<app:collection href="XcapDocuments” metadata:name="XcapDocumentsfl>

<atom:title>XcapDocuments</atomititle>
</app: collections-

</app:workspace>
</app: services-

Figure 7.4: Snapshot of the CSDR Service Document.

Table 7.4: Definition of the CDM elements.

M ethod D escription

getEnumType() Defines the the enumerated types.
getEntityType() Defines the entity types.
getComplexType() Defines the complex types.
getEntitySet() Defines the entity sets. Additionally, the

relationships between the entity types are
specified in this method.

getSchemas() Defines the schemas, but only one in this
case.

getEntityContainer() Defines the container, which hosts the
entity sets.

getEntityContainterInfo() Gives some metadata about the entity
container, which is displayed in the service
document.

7.3.2 Data Producer

This module manages both the JPA and the CDM models. It is aware of the
defined entity types within the CDM, and the respective handler classes exposed
through JPA. It receives CRUD request from a processor and determines the
appropriate technique to handle the request. This bridging functionality allows it
to navigate different CDM properties and leverage the JPA to fetch relevant data
sets. A DataProducer class was created to handle the activities summarised in the
following steps: 97

CHAPTER 7. CONSTRUCTING A PROTOTYPE

7.3.3 Backend Interface

This is a provisioning interface that can be used to manipulate the contents of the
CSDR. This was implemented with the aid of the JSF Primefaces framework to
expose data management capabilities to a user. A set of pages can be accessed
through a web browser, thus serving as the administrative interface to the CSDR.
Primefaces was configured within the CSDR through the web.xml servlet
configuration file. The configuration parameters are shown in Listing 7.3 and a
snapshot of the interface is presented in Figure 7.5.

Listing 7.3: Primefaces configuration

<context-param>
<param-name >javax.faces.PROJECT_STAGE</param-name >
<param-value >Development </param-value>

</context-param>

<context-param>
<param-name >primefaces.THEME </param-name>
<param-value>omega</param-value>

</context-param>

• context-param specifies a context parameter that can be accessed within the
CSDR.

• param -nam e specifies the name of the parameter. Two were defined in this
case: Project stage and Primefaces theme respectively.

• param -value specifies a value for the parameter. The first value indicates the
project is in a development stage while the second indicates that the CSDR
adopts an omega theme for its user interface.

CSDR
► Subscription Profile

► Service Profile

► Trigger Point

► Scscf

► Application Server

► Visited Network

► Client Session Data

► Saved XCAP Documents

Registered Subscriber
Identities

► Front Ends

Attached IMS Public Identities

IdenyityType SIP URI Can Register Is Barr

No records found.

Attach IMS Public Identity

SIP URI

Add Subscription Profile

Name

DSAI Value

Service Profile

Scscf

Private Identity

URI *

Secret Key (Password)

Figure 7.5: Snapshot of the CSDR Backend Interface.

98

CHAPTER 7. CONSTRUCTING A PROTOTYPE

7.4 Implementing the Data Processing Component

This section discusses the implementation of the request processors and query
handlers within the CSDR. The CSDR uses both categories of processors to
respond to CRUD requests that are received from the registered FEs. Thus, the
section starts with a description of the implementation of the request processors,
which is followed by that of the query handlers.

7.4.1 Request Processor

Requests received by the CSDR are coordinated by an ODataHttpHandler, which
invokes the appropriate processor. The request processors7 that were implemented
are shown in Figure 7.6. The processors extract the contents of an OData request
through the Olingo UriInfo class. UriInfo breaks down the contents of the requests
into segments, which are further used to identify the requested type. For a request
to be processed, the payload-type8 must be supported by the CSDR. Once the
payload-type is validated, the requests are processed in the following steps: First, the
CRUD request is sent to the Data Producer. The processor waits for the producer’s
response. If the request is a read request, the CSDR forwards the response to
the defined set of query handlers. Once the query handlers have been applied,
the processor converts the resulting object into an InputStream object through an
ODataSerializer. This is then sent to the requesting consumer (or FE), over the
network in a JSON format.

Figure 7.6: Class Diagram of the CSDR Request Processors.

7.4.2 Query Handler

The CSDR implements the query handlers9 depicted in Figure 7.7. These handlers
are applied on the entity collections forwarded by the request processors. The
handlers use the UriInfo class to check if their corresponding options are specified

7Appendix A.4 gives a description of these processors.
8Discussed in Section 4.3.3
9The handlers cater for the query options described in Table 4.2.

99

CHAPTER 7. CONSTRUCTING A PROTOTYPE

in the OData request. If true, the query option is executed against the entity
collection and returned back to the request processor.

(interface)

SearchExpressionHandler
rilterQueryHandler

SearchQueryHandlerLsdrrilterExpression visitor bkipQuerynandler

ExpressionVisitor

ExpandQueryHandler OrderByQueryHandler

LouniQuerynandler

TopQueryHandler

Figure 7.7: Class Diagram of the CSDR Query Handlers.

7.5 Implementing Access Control

The prototype achieves authorisation through the use of servlet filters. The servlet
filter sits between traffic originating from an FE or backend interface and the
CSDR. This was implemented with an AuthFilter servlet, which implements the
javax.servlet.Filter interface. AuthFilter was also configured in the web.xml file by
adding the <filter> and <filter-mapping> parameters. The procedure for the
authentication filter is represented in Listing 7.4. The servlet extracts the IP
address of the FE which has sent the request and checks if a binding exists within
the CSDR. If that happens the CSDR has the ability to deny requests if the
binding is not found. The CSDR uses the MySQL data store to keep track of all
FE-to-IP bindings.

Listing 7.4: Pseudo-code for the AuthFilter Procedure

doFilter(request)
Extract IP address from request
Find IP Address mapping

if(matchFound)
Forward request to the ODataHttpHandler

else
Block request

100

CHAPTER 7. CONSTRUCTING A PROTOTYPE

7.6 Discussion

Choosing three storage technologies and four categories of data emphasises the
capability of the CSDR in managing heterogeneous, transient, permanent,
transactional and non-transactional data sets. Polyglot persistence was achieved
through a JPA framework. This allows the CSDR to simplify heterogeneous data
access at the PPI level. This section discusses the implications of using this
approach to managing multi-store persistence.

To begin, implementing multiple APIs within the CSDR can become unmanageable
as more storage technologies are integrated. This can generate a significant amount
of boilerplate code. Furthermore, each OData entity would require an abstract
class that allows the CSDR to perform CRUD operations. One may also have to
manually create code that allows you to write and execute queries for each data
store. Hence, using JPA eliminates this complication while providing the freedom
to switch between data stores without having to re-write the queries at lower, data
access layer.

Managing consistency across multiple stores can be a complex process — especially
when the stores do not provide adequate transaction mechanisms. In other words,
the stores do not provide a reliable way to ensure ACID properties when handling
requests. Although the CSDR leaves transaction management to the data stores,
some consistency is required for the logical repository itself. To enforce such
properties, the CSDR has to be explicitly programmed with those constraints.
When done that way, the CSDR is prone to management inconsistencies. Using
the JPA technology eliminates this problem as data manipulation occurs through a
standardised API which satisfies consistency in data management.

Furthermore, JPA allows the CSDR to switch between similar and different storage
technologies with minimal changes to the initially defined domain model. For
example, the CSDR can switch from a MySQL to PostgreSQL data store, which
both adopt relational models or from MongoDB to Neo4j, which adopt document
and graph models respectively. However, the introduction of data storage systems
at this layer forces a trade-off between flexibility and complexity. That is, the
CSDR should support an additional storage technology if there is certainty that
the existing stores can not handle the data access and modelling requirements.

Moreover, the CSDR exposes its data set to the FEs through the EDM. Therefore,
when the CSDR is creating, updating or deleting data, it simply extracts the EDM
entity, converts it to an equivalent JPA entity before forwarding the entity to the EM.
Nevertheless, EDM schema changes can render some data stores obsolete. In other
words, changing or updating a data model can result in the CSDR not utilising
some portion of its data. JPA defines a Cascade Type mechanism that handles
dependencies between entities. The mechanism provides a group of five conditions
namely DETACH, MERGE, PERSIST, REMOVE, and REFRESH. This implies
that changes made to the parent entity will affect the child entity. Therefore, a delete
or update request sent through OData may trigger JPA Cascade Type conditions
where defined.

101

CHAPTER 7. CONSTRUCTING A PROTOTYPE

However, using JPA also provides some limitations to our implementation. First,
JPA is a framework for Java applications. Implementing polyglot persistence with
a CSDR developed using a different language may require other persistence
mechanisms. The CSDR adopts a JPA technology as a proof-of-concept that
OData can assist in managing and exposing data gathered from heterogeneous
sources. Second, implementing JPA requires technical competence in handling
issues such as entity inheritance and relationship complexities. An adequate
understanding of JPA is required to handle growing data sets with polyglot
persistence integration effectively.

7.7 Summary

This chapter has presented the development of the CSDR prototype. The
implementation was managed with Maven and it persists data across MySQL,
Redis and MongoDB stores through the Kundera JPA framework. The techniques
used for mapping between JPA models and EDM were also discussed. The
prototype also implements request processors and query handlers, which are used
to manage requests received from FEs. A simple access control mechanism was
implemented for the prototype using the Java Servlet Filter interface.
Furthermore, the data producer, schema manager and backend interface
implementations were also presented. Finally, the implications of using JPA for
polyglot persistence and exposing CSDR data with EDM were discussed. The next
chapter presents the experiments that were carried out over a network with the aid
of this unified data repository.

102

Chapter 8

Integration within an IMS Testbed

The previous chapter discussed the development of a CSDR prototype. Since RCS
services can only interact with the CSDR through defined FE applications, it was
deemed necessary to model some of these applications in order to evaluate this
work. Further, it is also necessary to ensure that the CSDR and the FEs that have
been developed can interwork in an IMS environment since RCS relies on IMS.
Therefore, this chapter focuses on the deployment of the CSDR and its defined
FEs within an IMS network testbed. The chapter starts out by presenting an
overview of the testbed and its components. The next section presents the
description, implementation and integration testing of an HSS FE. This is followed
by that of the Telephony and Messaging FEs, which handle SIP-based RCS
functionalities. Thereafter, the integration of the XCAP FE, which essentially
handles XML data used by RCS services is discussed. The contents of the CSDR
are interrogated toward the end of the chapter, to further emphasise the
convergence of RCS subscriber data. The chapter concludes with a summary of
the activities discussed.

103

CHAPTER 8. INTEGRATION WITHIN AN IMS TESTBED

8.1 Overview

To realise an experimental environment, an open source IMS implementation was
utilised — the OpenIMSCore [32]. OpenIMSCore is currently distributed by Core
Network Dynamics GmbH.1 The software provides a software version of the P-
CSCF, I-CSCF, S-CSCF, and HSS components of the Core IMS subsystem. The
OpenIMSCore HSS is termed Fokus Fraunhofer HSS (FHoSS). In addition to the
OpenIMSCore, clients were also used to interact with the FEs. These are discussed
in subsequent sections.

Figure 8.1 illustrates the testbed environment which was set up on a Linux
Ubuntu OS. The Restcomm SIP servlets technology [90] was also integrated with
the testbed to realise SIP AS features. In essence, SIP servlets were used to build
services, which respond to SIP requests over IMS. This will be discussed further in
Section 8.3. Additionally, Restcomm jdiameter [89] was used to facilitate
Diameter-based interactions in the network. Doubango1 2 Boghe IMS [37] and
IMSDroid [38] clients were used to simulate SIP user agents. The former works on
a Windows desktop OS while the latter works on either an Android smartphone or
tablet. This is to validate interoperability between RCS clients installed on
different platforms.

The Postman REST client [84] was used to mimic the behaviour of an XCAP
client toward the lightweight XCAP FE discussed in Section 8.4. Postman was also
used to send HTTP requests during the execution of activities described in
Section 8.5. Finally, the interactions between the testbed components were
analysed using Wireshark (v2.2.0) [5], which is a network protocol analyser.

IMS Network

CSDR

Diam eter C lient
XCAP C lent

SIP Client

REST C lent

Telephony FE XCAP FE Provisioning FEHSS FE Messaging FE

Figure 8.1: Overview of the experimental setup.

1 http://www.corenetdynamics.com/
2An open source 3GPP IMS/LTE framework for embedded systems [39]

104

http://www.corenetdynamics.com/

CHAPTER 8. INTEGRATION WITHIN AN IMS TESTBED

8.2 HSS FE

The HSS keeps subscription related information for RCS services as shown in
Figure 2.2. Transforming this repository into a stateless application that interacts
with the CSDR was a non-trivial task. The FE implementation was derived from
the FHoSS component of the OpenIMSCore. In other words, code from the FHoSS
was re-used and re-engineered to achieve the HSS functionalities that were used to
test the CSDR.

8.2.1 Description

The HSS FE supports two Diameter interfaces: Sh and Cx. The Cx interface is
used by the I-CSCF and the S-CSCF in the network. The Sh interface allows an
AS to query the HSS for subscriber data. Data exchanged over both interfaces use
predefined XSDs and operations specified in [11] and [12] respectively. The Cx and
Sh operations supported by the HSS FE are presented in Table 8.1

Table 8.1: Interface operations supported by the HSS
FE.

Interface O peration D escription

Cx User-Authorization-
Request (Cx-UAR)

This is used by the I-CSCF to
check whether a specific IMS
URI is allowed to roam.

Cx Location-Info-Request
(Cx-LIR)

This is also used by the I-
CSCF to fetch the identity
of a designated S-CSCF when
a SIP call request has been
received by the network.

Cx Multimedia-Auth-
Request (Cx-MAR)

The S-CSCF uses this
message to authenticate a
subscriber.

Cx Server-Assignment-
Request (Cx-SAR)

The S-CSCF uses this
message to download the
subscription profile from the
HSS.

Sh User-Data-Request (Sh-
UDR)

A network service fetches
subscriber data from the HSS
through this message.

105

CHAPTER 8. INTEGRATION WITHIN AN IMS TESTBED

8.2.2 Implementation

Both interfaces were implemented with the aid of the Restcomm jdiameter stack
version 1.7.0.79. Restcomm provides a multiplexer which coordinates the
deployment of multiple Diameter-based applications. The multiplexer exposes the
Diameter stack which can be shared among multiple applications. This allows the
HSS FE to support both Cx and Sh interfaces. The FE was deployed using an
embedded Jetty AS (v9.3.9) [41]. Restcomm jdiameter was configured through a
config-server.xml file. Furthermore, the clients that interact with the HSS FE are
considered diameter peers. Once the HSS FE has started, the S-CSCF and I-CSCF
attempt to synchronise with the HSS FE by sending a Capabilities Exchange
Request (CER). This is done to ensure that both the HSS and CSCFs support a
common Diameter application identifier, which is depicted in Listing 8.1 as an
<ApplicationID>. The listing also presents the interfaces that are defined in the
config-server.xml. It is important to note that for each request sent to the HSS
FE, a corresponding data query request is sent to the CSDR to fetch the pertinent
data. Thus, allowing the HSS FE to perform its functions while its data resides in
the CSDR.

Listing 8.1: Diameter interfaces in config-server.xml

< C o n f i g u r a t i o n >

< L o c a l P e e r >
< U R I v a l u e = " a a a : / / 1 9 2 . 1 6 8 . 2 3 . 4 : 3 8 6 8 ” / >
< I P A d d r e s s e s >
< I P A d d r e s s v a l u e = " 1 9 2 . 1 6 8 . 2 3 . 4 " / >

< / I P A d d r e s s e s >
< / L o c a l P e e r >

< N e t w o r k >
< P e e r s >
< P e e r n a m e = " a a a : / / 1 2 7 . 0 . 0 . 1 : 1 8 1 2 " / > < ! - - Sh - - >
< P e e r n a m e = " i c s c f . o p e n - i m s . t e s t : 3 8 6 9 " / > < ! - - I - C S C F - - >
< P e e r n a m e = " s c s c f . o p e n - i m s . t e s t : 3 8 7 0 " / > < ! - - S - C S C F - - >

< / P e e r s >

< ! - - C S C F s - - >
< R e a l m n a m e = " o p e n - i m s . t e s t " p e e r s = " i c s c f .o p e n - i m s . t e s t , s c s c f . o p e n - i m s .t e s t " l o c a l _ a c t i o n = " L O C A L "
d y n a m i c = " f a l s e " e x p _ t i m e = " 1 " >
< A p p l i c a t i o n I D >
< V e n d o r I d v a l u e = " 1 0 4 1 5 " / >
< A u t h A p p l I d v a l u e = " 1 6 7 7 7 2 1 6 " / >
< A c c t A p p l I d v a l u e = " 0 " / >
< / A p p l i c a t i o n I D >

< / R e a l m >

< ! - - Sh A p p - - >
< R e a l m n a m e = " o p e n - i m s .t e s t " p e e r s = " 1 2 7 . 0 . 0 . 1 " l o c a l _ a c t i o n = " L O C A L "
d y n a m i c = " f a l s e " e x p _ t i m e = " 1 " >
< A p p l i c a t i o n I D >
< V e n d o r I d v a l u e = " 1 0 4 1 5 " / >
< A u t h A p p l I d v a l u e = " 1 6 7 7 7 2 1 7 " / >
< A c c t A p p l I d v a l u e = " 0 " / >
< / A p p l i c a t i o n I D >

< / R e a l m >
< / N e t w o r k >

< / C o n f i g u r a t i o n >

8.2.3 Results

8.2.3.1 Scenario 1 — RCS Client Registration

In this scenario, a subscriber tries to register with the network through an RCS
Client (which is modelled as a pure SIP client). The subscriber enters their IMPI,

106

CHAPTER 8. INTEGRATION WITHIN AN IMS TESTBED

IMPU, password and realm into the client. The client sends the request to the P-
CSCF and once the PCSCF validates the request, it forwards the message to the
I-CSCF for further processing. There are four Diameter requests executed during
this registration process: UAR, MAR, SAR and LIR respectively.

C x -U A R

(Step|) The P-CSCF forwards the message to the I-CSCF.

(Step2) The I-CSCF contacts the HSS FE.

▼ Diameter Protocol
Version: 0xOl
Length: 276

► Flags: 0xcQ, Request, Proxyable
Command Code: 300 User-Authorization
Applications: 3GPP Cx (16777216)
Hop-by-Hop Identifier: 0x4a53984i
End-to-End Identifier: 0x8a2e3159
[Answer In: 669]

t AVP: Session-Id(263) 1=41 f=-M- val=icscf.open-ims.test;2552567970;21
► AVP: 0rigin-Host(264) 1=27 f=-M- val=icscf.open-ims.test
► AVP: Origin-Realm(296) 1=21 f=-M- val=open-ims.test
► AVP: Destination-Realm(283) 1=21 f=-M- val=open-ims.test
► AVP: Vendor-Specific-Application-Id(260) 1=32 f=-M-
► AVP: Auth-Session-State(277) 1=12 f=-M- val=N0_STATE_MAINTAINED (1)
► AVP: User-Name(l) 1=26 f=-M- val=mike@open-ims.test
► AVP: Public-Identity(601) 1=34 f=VM- vnd=TGPP val=sip:mike@open-ims.test
► AVP: Visited-Network-Identifier(690) 1=25 f=VM- vnd=TGPP val=6f70656e2d696d732e74657374

Figure 8.2: UAR from S-CSCF to HSS FE.

(Steps) The HSS FE sends a GET request to the CSDR for subscriber data using the
specified IMPU. This is done to generate an answer to the UAR request.

(Step4) The CSDR responds with a JSON-formatted RegisteredIdentity OData entity
that contains the required data.

▼ JavaScript Object Notation: application/json
▼ Object

▼ Member Key: godata.context
String value: $metadata#RegisteredIdentities
Key: @odata,context

▼ Member Key: value
▼ Array

▼ Object
▼ Member Key: ID

Number value: 8
Key: ID

▼ Member Key: Impi
String value: mike$open-ims.test
Key: Impi

▼ Member Key: Impu
String value: sip:mike@open-ims.test
Key: Impu

▼ Member Key: AuthKey
String value: mike
Key: AuthKey

▼ Member Key: AuthOp
String value: 00000000000000000000000000000000
Key: AuthOp

▼ Member Key: AuthAmf
String value: 0000
Key: AuthAmf

▼ Member Key: AuthSqn
String value: 000000000000
Key: AuthSqn

▼ Member Key: AuthScheme
String value: Auth_Scheme_MD5
Key: AuthScheme

▼ Member Key: AuthLineld
Null value
Key: AuthLineld

▼ Member Key: AuthlpAddress
Null value
Key: AuthlpAddress

Figure 8.3: HSS FE and CSDR interaction.

107

CHAPTER 8. INTEGRATION WITHIN AN IMS TESTBED

(Steps) The HSS FE then sends a Diameter success response to the I-CSCF.

▼ Diameter Protocol
Version: 0x01
Length: 144

► Flags: 0x49, Proxyable
Command Code: 3Q0 User-Authorization
ApplicationId: 3GPP Cx (16777216)
Hop-by-Hop Identifier: 0x4a53983e
End-to-End Identifier: 0x8a2e3156
[Request In: 256]
[Response Time: 7,046161452 seconds]

► AVP: Session-Id(263) 1=41 f=-M- val=icscf.open-ims.test;2552567979;18
► AVP: Vendor-Specific-Application-Id(260) 1=32 f=-M-
► AVP: Result-Code(268) 1=12 f=-M- val=DIAMETER_SUCCESS (2001)
V AVP: Server-Name(602) 1=35 f=VN- vnd=TGPP val=sip:scscf.open-ims.test

Figure 8.4: HSS FE response sent to the I-CSCF.

C x -M A R

(Stepi) The I-CSCF forwards the SIP registration message to the S-CSCF.

(Step2) The S-CSCF sends a Cx-MAR message to the HSS FE.

▼ Diameter Protocol
Version: QxOl
Length: 336

^ Flags: 0xc9, Request, Proxyable
Command Code: 303 Multimedia-Auth
Applicationld: 3GPP Cx (16777216)
Hop-by-Hop Identifier: 0x66373596
End-to-End Identifier: 0x8a45ald0
[Answer In: 27702]

► AVP: Session-Id(263) 1=40 f=-M- val=scscf.open-ims.test;896604324;16
» AVP: Origin-Host(264) 1=27 f=-N- val=scscf.open-ims.test
► AVP: Origin-Realm(296) 1=21 f=-M- val=open-ims.test
► AVP: Destination-Realm(283) 1=21 f=-M- val=open-ims.test
► AVP: Vendor-Specific-Application-Id(260) 1=32 f=-M-
► AVP: Auth-Session-State(277) 1=12 f=-M- val=NO_STATE_MAINTAINED (1)
V AVP: Public-Identity(601) 1=34 f=VM- vnd=TGPP val=sip:mike@open-ims.test
► AVP: User-Name(l) 1=26 f=-M- val=mike@open-ims.test
► AVP: 3GPP-SIP-Number-Auth-Items(607) 1=16 f=VM- vnd=TGPP val=l
► AVP: 3GPP-SIP-Auth-Data-Item(612) 1=36 f=VM- vnd=TGPP
▼ AVP: Server-Name(602) 1=40 f=VN- vnd=TGPP val=sip:scscf.open-ims.test:6060

AVP Code: 602 Server-Name
► AVP Flags: Oxc0

AVP Length: 40
AVP Vendor Id: 3GPP (10415)
Server-Name: sip:scscf.open-ims.test:6960

Figure 8.5: S-CSCF MAR request sent to HSS FE.

(Steps) The HSS FE queries the CSDR for subscriber data and gets a response.

(Step4) The HSS FE sends a MAR response message to the S-CSCF

▼ Diameter Protocol
Version: 0x01
Length: 284

^ Flags: 9x40, Proxyable
Command Code: 303 Multimedia-Auth
Applicationld: 3GPP Cx (16777216)
Hop-by-Hop Identifier: 0x66373596
End-to-End Identifier: 0x8a45ald0
[Request In: 27602]
[Response Time: 0.068612955 seconds]

* AVP: Session-Id(263) 1=40 f=-M- val=scscf.open-ims.test;896604324;16
► AVP: Vendor-Specific-Application-Id(260) 1=32 f=-M-
► AVP: Result-Code(268) 1=12 f=-M- val=DIAMETER_SUCCESS (2001)
► AVP: 3GPP-IMSI(1) 1=39 f=VM- vnd=TGPP val=mike&open-ims.test
► AVP: Public-Identity(6Gl) 1=34 f=VM- vnd=TGPP val=sip:inike§open-ims.test
► AVP: 3GPP-SIP-Auth-Data-Item(612) 1=96 f=VN- vnd=TGPP
► AVP: 3GPP-SIP-Number-Auth-Items(697) 1=16 f=VM- vnd=TGPP val=l

Figure 8.6: S-CSCF MAR request sent to HSS FE.

108

CHAPTER 8. INTEGRATION WITHIN AN IMS TESTBED

C x-S A R

(Stepi) The S-CSCF sends a Cx-SAR message to the HSS FE.

▼ Diameter Protocol
Version: 0xOl
Length: 316

► Flags: 0xc€, Request, Proxyable
Command Code: 301 Server-Assignment
Applicationld: 3GPP Cx (16777216)
Hop-by-Hop Identifier: 0x66373597
End-to-End Identifier: 0x8a45aldl
[Answer In: 28338]

► AVP: Session-Id(263) 1=40 f=-M- val=scscf.open-ims.test;896604324;17
► AVP: Origin-Host(264) 1=27 f=-M- val=scscf.open-ims.test
► AVP: Origin-Realm(296) 1=21 f=-M- val=open-ims.test
► AVP: Destination-Realm(283) 1=21 f=-M- val=open-ims.test
► AVP: Vendor-Specific-Application-Id(268) 1=32 f=-M-
¥ AVP: Auth-Session-State(277) 1=12 f=-M- val=NQ_STATE_MAINTAINED (1)
► AVP: Public-Identity(601) 1=34 f=VM- vnd=TGPP val=sip:mike@open-ims.test
► AVP: Server-Name(602) 1=40 f=VM- vnd=TGPP val=sip:scscf.open-ims.test:6060
► AVP: User-Name(l) 1=26 f=-M- val=mike@open-ims.test
▼ AVP: Server-Assignment-Type(614) 1=16 f=VM- vnd=TGPP val=RE_REGISTRATION (2)

AVP Code: 614 Server-Assignment-Type
 ̂ AVP Flags: 0xc0
AVP Length: 16
AVP Vendor Id: 3GPP (10415)
Server-Assignment-Type: RE_REGISTRATI0N (2)

▼ AVP: User-Data-Already-Available(624) 1=16 f=VM- vnd=TGPP val=USER_DATA_ALREADY_AVAILABLE (1)
AVP Code: 624 User-Data-Already-Available

► AVP Flags: 0xc0
AVP Length: 16
AVP Vendor Id: 3GPP (10415)
User-Data-Already-Available: USER_DATA_ALREADY_AVAILABLE (1)

Figure 8.7: S-CSCF sends Cx-SAR message to the HSS FE.

(Step2) The HSS FE queries the CSDR for subscription profile and the CSDR
responds.

(Steps) The HSS FE sends a SAR response to the S-CSCF.

▼ Diameter Protocol
Version: 0xOl
Length: 1932

► Flags: 0x4G, Proxyable
Command Code: 30i Server-Assignment
Applicationld: 3GPP Cx (16777216)
Hop-by-Hop Identifier: 0x66373597
End-to-End Identifier: 0x8a45aldi
[Request In: 27978]
[Response Time: D.61900919O seconds]

► AVP: Session-Id(263) 1=40 f=-M- val=scscf.open-ims.test;896604324;17
► AVP: Vendor-Specific-Application-Id(260) 1=32 f=-M-
► AVP: Result-Code(268) 1=12 f=-M- val=DIAMETER_SUCCESS (2001)
► AVP: 3GPP-IMSI(1) 1=30 r=VM- vnd=TGPP val=mike(to pen-ims.test
▼ AVP: Cx-User-Data(606) 1=1795 f=VM- vnd=TGPP Val=3c3f786d6c2076657273696f6e3d223i2e302220656e636f

AVP Code: 6D6 Cx-User-Data
► AVP Flags: Oxc0

AVP Length: 1795
AVP Vendor Id: 3GPP (10415)
Cx-User-Data: 3c3f786d6c2076657273696f6e3d22312e3O2220656e636f...

▼ extensible Markup Language
► <?xml
▼ <IMSSubscription>

▼ <PrivateID>
mike@open-ims.test
</PrivateID>

▼ <ServiceProfile>
▼ <PublicIdentity>

▼ cBarringIndication>
false
</BarringIndication>

▼ <Identity>
sip:mike@open-ims.test
</Identity>

</PublicIdentity>
▼ <PublicIdentity>

▼ cBarringIndication>
false
</BarringIndication>

▼ <Identity>
sip:mike2@open-ims.test
</Identity>

</PublicIdentity>
▼ <InitialFilterCriteria>

▼ cPriority>
0

Figure 8.8: HSS FE sends SAR response to the S-CSCF.

109

CHAPTER 8. INTEGRATION WITHIN AN IMS TESTBED

(Step4) The RCS client is notified.

C x-L IR

(Stepi) The I-CSCF sends a Cx-LIR message to the HSS FE.

(Step2) The HSS FE fetches the S-CSCF data for registered subscriber from the CSDR
and sends it to the I-CSCF.

▼ Diameter Protocol
Version: 0x01
Length: 144

^ Flags: 0x4G, Proxyable
Command Code: 302 Location-Info
Applicationld: 3GPP Cx (16777216)
Hop-by-Hop Identifier: 0x4a539844
End-to-End Identifier: 0x8a2e315c
[Request In: 1846]
[Response Time: 0.168176543 seconds]

V AVP: Session-Id(263) 1=41 f=-M- val=icscf.open-ims.test;2552567979;24
► AVP: Vendor-Specific-Application-Id(260) 1=32 f=-M-
► AVP: Result-Code(268) 1=12 f=-M- val=DIAMETER_SUCCESS (2001)
▼ AVP: Server-Name(602) 1=35 f=VM- vnd=TGPP val=sip:scscf.open-ims.test

AVP Code: 602 Server-Name
t AVP Flags: 0xc0

AVP Length: 35
AVP Vendor Id: 3GPP (10415)
Server-Name: sipiscscf,open-ims.test
Padding: 00

Figure 8.9: HSS FE LIR response sent to the I-CSCF.

Scenario 2 — Querying the S-CSCF A ssociation o f an R CS Client

A messaging service wants to know about the status and S-CSCF name designated
to a subscriber identity in the HSS. It composes a UDR message with Diameter Sh
codes for S-CSCFName and IMSUserStatus data. Diameter Sh codes can be found
in Appendix A.5.1.

(Stepi) The service sends an Sh-UDR message to the HSS FE.
▼ Diameter Protocol

Version: 9x01
Length: 384

► Flags: 0x80, Request
Command Code: 306 User-Data
Applicationld: 3GPP Sh (16777217)
Hop-by-Hop Identifier: 0x76e2c285
End-to-End Identifier; 0x06300002
[Answer In: 1301]

► AVP: Session-3d(263) 1=55 f=-M- val=BadCustomSessionId;YesWeCanPassId;1475168360O15
► AVP: Vendor-Specific-Application-Id(260) 1=32 f=-M-
► AVP: Destination-Realm(283) 1=21 f=-M- val=open-ims.test
t AVP: Destination-Host(293) 1=20 f=-M- val=192.168.23.4
► AVP: Origin-Host(264) 1=17 f=-M- val=127.0.0 .1
► AVP: Origin-Realm(296) 1=21 f=-M- val=open-ims.test
► AVP: Data-Referencef703) 1=16 f=VM- vnd=TGPP val=RepositoryData (0)
► AVP: Origin-Host(264) 1=23 f=-M- val=aaa://127.Q.0.1
► AVP: Server-Name(602) 1=44 f=VM- vnd=TGPP val=sip:messaging@open-ims.test:5080
► AVP: Data-Reference(703) 1=16 f=VM- vnd=TGPP val=IMSUserState (11)
► AVP: Data-Referencef703) 1=16 f=VM- vnd=TGPP val=S-CSCFName (12)
► AVP: Public-Identity(601) 1=34 f=VM- vnd=TGPP val=sip:mike@open-ims.test
► AVP: Auth-Session-State(277) 1=12 f=-M- val=Unknown (2)
► AVP: Origin-Realm(296) 1=21 f=-M- val=open-ims.test

Figure 8.10: UDR message received by HSS FE.

(Step2) HSS FE queries the CSDR.

(Steps) CSDR responds with the pertinent data.

(Step4) HSS FE sends a response to the messaging service

110

CHAPTER 8. INTEGRATION WITHIN AN IMS TESTBED

▼ Diameter Protocol
Version: 0x01
Length: 340

► Flags: 0x00
Command Code: 306 User-Data
Applicationld: 3GPP Sh (16777217)
Hop-by-Hop Identifier: 0x76e2c285
End-to-End Identifier: 0x06300002
[Request In: 1289]
[Response Time: 0.217818981 seconds]

► AVP: Session-Id(263) 1=55 f=-M- val=BadCustomSessionId;YesWeCanPassId;1475168360015
► AVP: Vendor-Specific-Application-Id(260) 1=32 f=-M-
► AVP: Result-Code(268) 1=12 f=-M- val=DIAMETER_SUCCESS (2001)
▼ AVP: Sh-User-Data(702) 1=220 f=VM- vnd=TGPP Val=3c3f786d6c2076657273696f6e3d22312e302220656e636f

AVP Code: 702 Sh-User-Data
► AVP Flags: 0xc0

AVP Length: 220
AVP Vendor Id: 3GPP (10415)
Sh-User-Data: 3c3f786d6c2076657273696f6e3d22312e302220656e636f...

▼ extensible Markup Language
► <?xml
▼ <Sh-Data>

▼ <Sh-IMS-Data>
▼ <SCSCFName>

sip:scscf©open-ims.test
</SCSCFName>

▼ <IMSUserState>
1
</IMSUserState>

</Sh-IMS-Data>
</Sh-Data>

Figure 8.11: HSS responds to the messaging service.

8.3 Telephony and Messaging FEs

As discussed in Section 2.7, the messaging and telephony services can handle chat,
SMS and VVoIP conversations within RCS. In addition, the file transfer service
works closely with messaging service. According to the RCS specification [52], a
messaging AS can provide both services and outsource the management of files to
another repository. This is possible because both services use MSRP for information
exchange over the network and can be required when a CFS is not deployed by
an MNO. Thus, the telephony and messaging FEs were created to coordinate and
generate data from RCS messaging, file transfer and VVoIP calls placed over IMS.

8.3.1 Description

IMSDroid and Boghe IMS client were used to generate conversations between
subscribers. Both FEs (Telephony and Messaging) generate similar sets of data:
call and message log, and session-related data. These data sets are represented as
CallDetailRecord and ClientSessionData entities within the domain model
presented in Figure 7.2. The CSDR stores these data sets in MySQL and Redis
respectively. The services were deployed on a bundling of Restcomm SIP servlets
4.0.95 API and Wildfly 10 AS technology. The platform allows for the deployment
of portable and distributable SIP and Java-based services [90]. Multiple SIP
servlets can be deployed on this platform. Thus, Restcomm uses a Default
Application Router (DAR) to dispatch incoming SIP requests to the appropriate
SIP servlet deployed on the AS. The DAR uses configurations for both FEs, which
are stored different mobicents-dar.properties file.

111

CHAPTER 8. INTEGRATION WITHIN AN IMS TESTBED

8.3.2 Implementation

For simplicity, the telephony service was configured to explicitly handle SIP
INVITE messages which can be used for chat, file transfer, and VVoIP. Contrarily,
the messaging FE was configured to explicitly handle SIP MESSAGE requests to
mimic the behaviour of a Standalone Message Service. Using this approach, SIP
INVITE requests were used to generate data for real-time communications while
SIP MESSAGE requests were used to generate RCS standalone message log and
session data. Furthermore, both FEs were provisioned on the IMS as enablers for
SIP services that are used by registered RCS subscribers. Therefore, the address of
these FEs can be found in the iFC portion of subscription profiles that the
S-CSCF downloads from the HSS FE.

The Telephony FE mobicents-dar.properties file contains the following:

INVITE: ("com.inted.as.telephony.Main ", "DAR:From", "
TERMINATING", "", "NO_ROUTE", "0")

The Messaging FE mobicents-dar.properties file contains the following:

MESSAGE: ("com.inted.as.messaging.Main ", "DAR:From", "
TERMINATING", "", "NO_ROUTE", "0")

8.3.3 Results

Scenario 1

Subscriber Mike places a voice call to Tessa, who is also registered on the network.

(Stepi) Mike’s client sends a SIP INVITE request toward the network.

(Step2) The network routes the request to Tessa.

(Steps) Tessa accepts the call.

▼ Session Initiation Protocol (200)
► Status-Line: SIP/2.0 200 OK
▼ Message Header

k Via: SIP/2.0/UDP 192.168.23.4:4O6O;branch=z9hG4bK59ea.069c6dl6.G
▼ Via: SIP/2.0/UDP 192.168.23.2:54220;branch=z9hG4bK824G85621;rport=54220

Transport: UDP
Sent-by Address: 192.168.23.2
Sent-by port: 54220
Branch: z9hG4bK824085621
RPort: 54220

► From: <sip:mike@open-ims.test>;tag=626677066
► To: <sip:tessa@open-ins.test>;tag=475777425
► Contact: <sip:tessa@I92.168.23.1:53539;transport=udp>

Call-ID: ddbf0562-4513-bebb-6426-8db845cfcd25
▼ CSeq: 320161050 PRACK

Sequence Number: 320161050
Method: PRACK

Content-Length: 0

Figure 8.12: Tessa accepts the voice call.

112

CHAPTER 8. INTEGRATION WITHIN AN IMS TESTBED

(Step 4) The Telephony FE updates call log in the CSDR with Mike’s most recent
conversation.

► Hypertext Transfer Protocol
▼ JavaScript Object Notation: application/json

▼ Object
► Member Key: Qodata.type
► Member Key: SipMethod@odata.type
▼ Member Key: SipMethod

String value: INVITE
Key: SipMethod

► Member Key: Duration@odata.type
▼ Member Key: Duration

String value: 642
Key: Duration

► Member Key: From@odata.type
▼ Member Key: From

String value: <sip:mike@open-ims.test>;tag=1562454151
Key: From

► Member Key: To@odata.type
▼ Member Key: To

String value: <sip:tessa@open-ims.test>
Key: To

► Member Key: CallId@odata.type
▼ Member Key: Callld

String value: 357adeda-c004-4e66-5217-05433b00f306
Key: Callld

t Member Key: CSeq@odata.type
▼ Member Key: CSeq

String value: 1345254524 INVITE
Key: CSeq

► Member Key: UserAgent@odata.type
► Member Key: UserAgent
► Member Key: Contact@odata.type
▼ Member Key: Contact

String value: <sip:mike@open-ims.test>;tag=1562454151;transport=udp
Key: Contact

► Member Key: ContainsSdp@odata.type
▼ Member Key: ContainsSdp

True value
Key: ContainsSdp

► Member Key: SessionExpires@odata.type
▼ Member Key: SessionExpires

Number value: -1
Key: SessionExpires

Figure 8.13: Telephony FE adds Mike’s recent conversation to the CSDR call log.

(Steps) The Telephony FE updates Mike’s session data in the CSDR.

t Hypertext Transfer Protocol
▼ JavaScript Object Notation: application/json

▼ Object
► Member Key: @odata.type
► Member Key: SubscriberUri@odata.type
▼ Member Key: SubscriberUri

String value: sip:mike@open-ims.test
Key: SubscriberUri

t Member Key: LastKnownSessionId@odata.type
▼ Member Key: LastKnownSessionld

String value: (1562454151;357adeda-cG04-4e66-5217-05433b00f306;1904fa9a;com.inted.as.telephony.Main)
Key: LastKnownSessionld

► Member Key: LastKnownState@odata.type
▼ Member Key: LastKnownState

String value: CONFIRMED
Key: LastKnownState

► Member Key: UserAgent@odata.type
► Member Key: UserAgent
► Member Key: MediaType@odata.type
▼ Member Key: MediaType

String value: video
Key: MediaType

► Member Key: MediaPort@odata.type
▼ Member Key: MediaPort

String value: 6050
Key: MediaPort

t Member Key: MediaProtocol@odata.type
▼ Member Key: MediaProtocol

String value: RTP/AVPF
Key: MediaProtocol

Figure 8.14: Telephony FE updates Mike’s session data in the CSDR.

113

CHAPTER 8. INTEGRATION WITHIN AN IMS TESTBED

Scenario 2

Tessa sends an SMS to Mike.

(Step\) Tessa’s client forwards the message to the network.

▼ Session Initiation Protocol (MESSAGE)
► Request-Line: MESSAGE sip:mikegopen-ims.test SIP/2.0
▼ Message Header

► Route; <sip:messaging§open-iirs.test:5080;lr>, <sip:iscmark@scscf.open-ims.test:6060;lr;s=2;h=-l;d=l;a=7369703a6d696b65406f70656e2d696d732e74657374>
► Via: SIP/2.0/UDP 192,168.23.4:6860;branch=z9hG4bKad6f,7063df22.O
► Via: SIP/2.0/UDP 192.168.23.4:6060;branch=z9hG4bKad6f,6063df22.1
► Via: SIP/2.0/UDP 192.168.23.4:4060;branch=z9hG4bKad6f.4f9a24f2 .0
► Via: SIP/2.0/UDP 192.168.23.1:53539;branch=z9UG4bK-476887359;rport=53539
► From: <sip:tessa@open-ims.test>;tag=4768777il
► To: <sip:mike@open-ims.test>

Call-ID: eba9bebb-llc3-1342 -alb5-40O06724eba8
▼ CSeq: 4837 MESSAGE

Sequence Number: 4837
Method; MESSAGE

Content-Length: 10
Max-Forwards: 14
Accept-Contact: *;+g.oma.sip-im
Accept - Contact: *;language="en,fr"
Content-Type: text/plain
Allow: INVITE, ACK, CANCEL, BYE, MESSAGE, OPTIONS, NOTIFY, PRACK, UPDATE, REFER
Privacy: none

► P-Access-Network-Info; ADSL;utran-cell-id-3gpp=000000O0
User-Agent: IM-client/OMAl.0 Boghe-Win32/v2.0.186.1813

► P-Asserted-Identity: <sip:tessa@open-ims.test>
P-Charging-Vector: icid-value=nP-CSCFabcd0000000057ee098a00000046";icid-generated-at=192.168.23.4;orig-ioi=11 open-ims.test"

▼ Message Body
▼ Line-based text data: text/plain

Hi Michael

Figure 8.15: Tessa sends an SMS to Mike.

(Step2) The network routes the message to Mike.

(Steps) The Messaging FE updates Tessa’s session data. *

t Hypertext Transfer Protocol
▼ JavaScript Object Notation: application/json

▼ Object
► Member Key: godata.type
► Member Key: SubscriberUrigodata.type
▼ Member Key: SubscriberUri

String value: sip:tessagopen-ims.test
Key: SubscriberUri

► Member Key: LastKnownSessionldgodata.type
► Member Key: LastKnownSessionld
► Member Key: LastKnownState@odata.type
► Member Key: LastKnownState
t Member Key: UserAgent@odata.type
► Member Key: UserAgent
► Member Key: MediaType@odata.type
▼ Member Key: MediaType

String value: message
Key: MediaType

t Member Key: MediaPort@odata.type
▼ Member Key: MediaPort

String value: 53727
Key: MediaPort

► Member Key: MediaProtocol@odata.type
▼ Member Key: MediaProtocol

String value: TCP/MSRP
Key: MediaProtocol

Figure 8.16: Messaging FE updates Tessa’s session data in the CSDR.

Scenario 3

Tessa sends a file to Mike.

(Stepi) Tessa’s client forwards the file transfer request as a SIP INVITE to the
network.

114

CHAPTER 8. INTEGRATION WITHIN AN IMS TESTBED

▼ Session Initiation Protocol (INVITE)
> Request-Line: INVITE sip:mike@open-ims.test SIP/2.0
> Message Header
▼ Message Body

▼ Session Description Protocol
Session Description Protocol Version (v): 0

► Owner/Creator, Session Id (o): doubango 1983 6789G1 IN IP4 192.168.23.1
Session Name (s): -

► Connection Information (c): IN IP4 192.168.23.1
► Time Description, active time (t): 0 0
► Media Description, name and address (m): message 34478 TCP/MSRP *
► Connection Information (c): IN IP4 192.168.23.1
► Media Attribute (a): path:msrp://192.168.23.1:34478/476944138;tcp
► Media Attribute (a): connection:new
► Media Attribute (a): setup:actpass
► Media Attribute (a): accept-types:message/CPIM application/octet-stream
► Media Attribute (a): accept-wrapped-types:application/octet-stream image/jpeg image/gif image/bmp image/png

Media Attribute (a): sendonly
► Media Attribute (a): file-selector:name:"20140823_092951.jpg" type:application/octet-stream size:1168250
► Media Attribute (a): file-transfer-id:476968686
► Media Attribute (a): file-disposition:attachment
► Media Attribute (a): file-icon:cid:testOdoubango.org

Figure 8.17: SIP File Transfer Request from Tessa.

(Step2) Mike accepts the request.

(Steps) The file is sent to Mike over the network.

(Step4) Telephony FE updates Tessa’s session data in the CSDR.

► Hypertext Transfer Protocol
▼ JavaScript Object Notation: application/json

▼ Object
► Member Key: @odata.type
► Member Key: SubscriberUrigodata.type
▼ Member Key: SubscriberUri

String value: sip:tessagopen-ims.test
Key: SubscriberUri

► Member Key: LastKnownSessionldgodata.type
▼ Member Key: LastKnownSessionld

String value: (476966147;bee87f25-cc4f-el45-bbbc-dc7c75bbf9a0;349ad82f;com.inted.as.telephony.Main)
Key: LastKnownSessionld

► Member Key: LastKnownState@odata.type
► Member Key: LastKnownState
► Member Key: UserAgent@odata.type
► Member Key: UserAgent
t Member Key: MediaType@odata.type
► Member Key: MediaType
► Member Key: MediaPort@odata.type
▼ Member Key: MediaPort

String value: 53727
Key: MediaPort

t Member Key: MediaProtocolgodata.type
▼ Member Key: MediaProtocol

String value: TCP/MSRP
Key: MediaProtocol

Figure 8.18: Telephony FE updates Tessa’s session data with the file transfer
activity.

8.4 XCAP FE

XCAP, as previously discussed, is an HTTP-based protocol. As such, simple HTTP
verbs can be used to execute CRUD operations on XCAP document. Operations
supported by XCAP are similar to those defined in Section 4.5. However, the use
of the XPath language allows the XDMS to navigate the contents of each XML
document [92]. In other words, XPath allows clients to execute CRUD operations
on entire documents or individual elements of it.

115

CHAPTER 8. INTEGRATION WITHIN AN IMS TESTBED

8.4.1 Description

The XCAP FE is designed to mimic a simplistic behaviour of an XDMS and it
uses the basic XPath URI construction rule for handling an XML document. This
follows the work done in [59]. Choosing this approach eliminates the possibility of
executing CRUD operations on the contents of the XCAP document since the FE
is used for testing the CSDR. Therefore, it supports two basic HTTP operations:
creating and fetching XML documents that are stored in the CSDR. To create an
XML document in the XCAP FE, the HTTP URI is constructed by the client as
follows:

PUT <XCAP-Root>/auid/sub-tree/xuid/document-name

To fetch an XCAP document, the HTTP URI is as follows:

GET <XCAP-Root>/auid/sub-tree/xuid/document-name

• < X C A P -R o o t> denotes the address of the XCAP FE.

• auid denotes the identity of the AppUsage bound to the XML document.

• sub-tree denotes the scope of the document which can be either “global” or
“users”.

• xuid denotes the identity of the owner of the document. That is, a subscriber’s
IMS URI.

• docum ent-nam e is used to identify the document being managed.

8.4.2 Implementation

The FE also embeds the Jetty AS as a standalone application. Postman was used
as an XCAP client for this experiment. The XCAP FE supports a ‘presence-lists’
AppUsage. This list allows a subscriber to manage SPI subscriptions of their
contacts through a single XML document. The presence-lists AppUsage defines
the following Multipurpose Internet Mail Extensions (MIME) type:
‘application/rls-services+xml’. This value is specified by the XCAP client when
sending a request to the FE. More importantly, the XCAP FE demonstrates how
XML documents can be stored and retrieved from the CSDR.

8.4.3 Results

Scenario 1

An XCAP client creates a buddy list in the XCAP FE.

116

CHAPTER 8. INTEGRATION WITHIN AN IMS TESTBED

(Step\) The client sends a PUT request to the XCAP FE.

[Full request URI: http://localhost:8282/xcap-server-fe/resource-lists/users/sip:mike@open-ims.test/buddy-list.xml]
[HTTP request 1/2]
[Response in frame: 80395]
[Next request in frame: 89246]
File Data: 984 bytes

v extensible Markup Language
► s?xml
t <resource-lists

xmlns="urn:ietfiparams:xml:ns:resource-lists”
xmlns:xsi="http://www,w3.org/2001/XMLSchema-instance">

▼ <list
name="friends">

► <entry
► <entry-ref
▼ slist

name="close-friendsM>
► <display-name>
v <entry

uri="sip:tessa@open-ims.test">
► <display-name>

</entry>
v <entry

uri="sip :mary@open-ims. test’'>
► <display-name>

</entry>
v <entry

uri="sip:alice@open-ims.test">
► <display-name>

</entry>
v <entry

uri="sip: bobQopen-ims. test ,r>
► <display-name>

</entry>
</list>

</list>
</re sou rce-list s>

Figure 8.19: Creating an XCAP document.

(Step2) The XCAP FE parses the URL and extracts the components.

(Steps) The XCAP FE sends a POST request to the CSDR.

Hypertext Transfer Protocol
-w POST /csdr/svc/XcapDocuments HTTP/l.l\r\n

► [Expert Info (Chat/Sequence): POST /csdr/svc/XcapDocuments HTTP/l.l\r\n]
Request Method: POST
Request URI: /csdr/svc/XcapDocuments
Request Version: HTTP/i.l

Accept: application/json;odata.metadata=minimal\r\n
Content-Type: application/json;odata,metadata=full\r\n
OData-MaxVersion: 4.0\r\n
OData-Version: 4,0\r\n
Transfer-Encoding: chunked\r\n
Host: localhost:8980\r\n
Connection: Keep-Alive\r\n
User-Agent: Apache-Qlingo/4.0.0-beta-O2\r\n
\r\n
[Full request URI: http://localhost:8O80/csdr/svc/XcapDocuments]
[HTTP request 1/i]
[Response in frame: 80295]

► HTTP chunked response
File Data: 1341 bytes

JavaScript Object Notation: application/json
▼ Object

▼ Member Key: @odata.type
String value: #com.inted.csdr.XcapDocument
Key: @odata.type

Member Key
Member Key
Member Key
Member Key
Member Key
Member Key
Member Key
Member Key
Member Key
Member Key

Auid@odata.type
Auid
XuiQodata,type
Xui
Document Namegodata.type
Document Name
Data@odata.type
Data
isUpdatedgodata.type
isllpdated

Figure 8.20: Creating an XCAP document in CSDR.

(Step4) The CSDR creates the document and forwards a 201 Created response.

(Steps) The XCAP FE forwards the response to the client.

117

http://localhost:8282/xcap-server-fe/resource-lists/users/sip:mike@open-ims.test/buddy-list.xml
http://www,w3.org/2001/XMLSchema-instance
http://localhost:8O80/csdr/svc/XcapDocuments

CHAPTER 8. INTEGRATION WITHIN AN IMS TESTBED

Scenario 2

An XCAP client fetches an XML document from the XCAP FE.

(Stepi) The client sends a GET request to the XCAP FE.

▼ [Hypertext Transfer Protocol
▼ GET /xcap-server-fe/resource-lists/users/sip:mike@open-ims.test/buddy-list,xml HTTP/l.i\r\n

k [Expert Info (Chat/Sequence): GET /xcap-server-fe/resource-lists/users/sip:mike@open-ims.test/buddy-list.xml HTTP/l.l\r\n]
Request Method: GET
Request URI: /xcap-server-fe/resource-lists/users/sip :mike@>open-ims. test/buddy-list .xml
Request Version: HTTP/1.1

Host: localhost:8282\r\n
Connection: keep -alive\r\n
Postman-Token: 33a3de99-85ae-9362-a3e6-f798b8cb5f28\r\n
Cache-Control: no-cache\r\n
User-Agent: Mozilla/5.0 (Xll; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/53.9.2785.116 Safari/537.36\r\n
Content-Type: application/rIs-services+xml\r\n
Accept: V*Yr\n
Accept - Encoding: gzip, deflate, sdch\r\n
Accept-Language: en-US,en;q=0.8\r\n
\r\n
[Full request URI; http://localhost:8282/xcap-server-fe/resource-Iists/users/sip:mike@open-ims.test/buddy-list.xml]
[HTTP request 2/2]
[Prev request in frame: 77058]
[Response in frame: 89280]

Figure 8.21: Fetching an XCAP document.

(Step2) The XCAP FE parses the request and queries the CSDR for the XML
document.

(Steps) The CSDR fetches the XCAP document and forwards it to the XCAP FE.

(Step4) The XCAP FE sends the document to the client.

▼ Hypertext Transfer Protocol
▼ HTTP/1.1 200 0K\r\n

► [Expert Info (Chat/Sequence): HTTP/1.1 200 0K\r\n]
Request Version: HTTP/1.1
Status Code: 200
Response Phrase: OK

Date: Sat, 01 Oct 2016 07:00:24 GMTNrXn
Content-Type: application/rls-services+xml;charset=iso-8859-l\r\n

► Content-Length: 984\r\n
Server: Jetty(9.3.9.M0)\r\n
\r\n
[HTTP response 2/2]
[Time since request: 2.118280865 seconds]
[Prev request In frame; 77058]
[Prev response in frame: 8O305]
[Request in frame: 89246]
File Data: 984 bytes

▼ extensible Markup Language
► <?xml
▼ <resource-lists

xmlns="urn:ietf:params:xml:ns:resource -lists”
xmlns: xsl=''http: //www. w 3 . org/2001/XMLSchema- instance"?

▼ <list
name="friends"?

► <entry
▼ sentry-ref

ref="resource-lists/users/sip:mike@open-ims.test/"/?
▼ clist

name="close-friends">
► <display-name>
► <entry
► <entry
k <entry
► <entry

</list>
</list>

</reso u rce-list s>

Figure 8.22: Document sent to the XCAP client.

118

http://localhost:8282/xcap-server-fe/resource-Iists/users/sip:mike@open-ims.test/buddy-list.xml

CHAPTER 8. INTEGRATION WITHIN AN IMS TESTBED

8.5 Engaging the CSDR

The consolidated data set can be interrogated through both a PFE and backend
interface. Postman was used to interact directly with the CSDR in order to
demonstrate the behaviour of a PFE toward the CSDR. This section presents
three scenarios where the PFE interacts with the CSDR.

Scenario 1

A PFE fetches the entity set for subscription profiles stored in the CSDR and
specifies the attributes to be displayed using the Sselect query option.

(.M essage|) Request

G E T / c s d r / s v c / S u b s c r i p t i o n P r o f i l e s ? $ s e l e c t = I D , N a m e , I m p i , S c s c f N a m e H T T P / 1 .1
H o s t : l o c a l h o s t : 8 0 8 0
C a c h e - C o n t r o l : n o - c a c h e
P o s t m a n - T o k e n : a 4 9 0 e 0 2 7 - d f l e - 1 a e e - 0 8 6 1 - 3 a a 3 6 7 a 6 c 7 0 9

(M essage2) Response

{
" @ o d a t a . c o n t e x t ” : " $ m e t a d a t a # S u b s c r i p t i o n P r o f i l e s (I D , N a m e , I m p i . S c s c f N a m e) " ,
" v a l u e ": [

{
" I D " : 1,
" N a m e " : " M i k e " ,
" I m p i " : " m i k e @ o p e n - i m s .t e s t " ,
" S c s c f N a m e " : " s i p : s c s c f @ o p e n - i m s . t e s t "

} ,
{

" I D " : 2,
" N a m e " : " T e s s a " ,
" I m p i " : " t e s s a @ o p e n - i m s . t e s t " ,
" S c s c f N a m e " : " s i p : s c s c f @ o p e n - i m s . t e s t "

} ,
{

" I D " : 3,
" N a m e " : " A l i c e " ,
" I m p i " : " a l i c e @ o p e n - i m s . t e s t " ,
" S c s c f N a m e " : " s i p : s c s c f @ o p e n - i m s . t e s t "

} ,
{

" I D " : 4,
" N a m e " : "M a r y " ,
" I m p i " : " m a r y @ o p e n - i m s .t e s t " ,
" S c s c f N a m e " : " s i p : s c s c f @ o p e n - i m s . t e s t "

} ,
{

" I D " : 5,
" N a m e " : " B o b " ,
" I m p i " : " b o b @ o p e n - i m s .t e s t " ,
" S c s c f N a m e " : " s i p : s c s c f @ o p e n - i m s . t e s t "

}
]

}

119

CHAPTER 8. INTEGRATION WITHIN AN IMS TESTBED

Scenario 2

A PFE fetches the IMPUs, which belong to Tessa using the Sexpand query option.

(Message |) Request

G E T / c s d r / s v c / S u b s c r i p t i o n P r o f i l e s (2) ? $ e x p a n d = I m p u s H T T P / 1 . 1
H o s t : l o c a l h o s t : 8 0 8 0
C a c h e - C o n t r o l : n o - c a c h e
P o s t m a n - T o k e n : 8 6 6 3 5 f 5 0 - e a 4 9 - 7 3 3 b - c 4 4 b - 5 d 1 8 7 8 b 5 e 9 8 9

(M essage2) Response

{
" @ o d a t a . c o n t e x t " : " $ m e t a d a t a # S u b s c r i p t i o n P r o f i l e s / $ e n t i t y " ,
" I D " : 2,
" S i d " : " 5 7 e c 7 a 7 4 e 4 b 0 6 d 0 7 3 b 0 7 4 a 7 8 " ,
" N a m e ": " T e s s a " ,
" I m p i ": " t e s s a @ o p e n - i m s . t e s t " ,
" S c s c f N a m e " : " s i p : s c s c f @ o p e n - i m s .t e s t " ,
" C h a r g i n g I n f o " : {

" P r i m a r y C c f " : n u l l ,
" S e c o n d a r y C c f " : n u l l ,
" P r i m a r y E c f " : n u l l ,
" S e c o n d a r y E c f " : n u l l

} ,
" D s a i " : " I n a c t i v e " ,
" I m p u s ": [

{
" I D " : 1,
" S i d " : " 5 7 e c 7 a 7 4 e 4 b 0 6 d 0 7 3 b 0 7 4 a 7 9 " ,
" S i p U r i ": " s i p : t e s s a @ o p e n - i m s . t e s t " ,
" I d e n t i t y T y p e " : " P u b l i c U s e r I d e n t i t y " ,
" I m s U s e r S t a t e " : " A u t h e n t i c a t i o n P e n d i n g " ,
" B a r r i n g I n d i c a t i o n " : f a l s e ,
" C a n R e g i s t e r " : t r u e ,
" D i s p l a y N a m e " : " T E S S A 1",
" P s i A c t i v a t i o n " : " I n a c t i v e "

} ,
{

" I D " : 2,
" S i d " : " 5 7 e c 7 a 7 4 e 4 b 0 6 d 0 7 3 b 0 7 4 a 7 a " ,
" S i p U r i ": " s i p : t e s s a 2 @ o p e n - i m s . t e s t " ,
" I d e n t i t y T y p e " : " P u b l i c U s e r I d e n t i t y " ,
" I m s U s e r S t a t e " : " A u t h e n t i c a t i o n P e n d i n g " ,
" B a r r i n g I n d i c a t i o n " : f a l s e ,
" C a n R e g i s t e r " : t r u e ,
" D i s p l a y N a m e " : " T E S S A 2" ,
" P s i A c t i v a t i o n " : " I n a c t i v e "

}
]

}

Scenario 3

A PFE checks the CDR for all calls that have been placed by Tessa using the Sselect,
Sfilter and Scontains query options.

(Message |) Request

G E T / c s d r / s v c / C a l l D e t a i l R e c o r d s ? $ s e l e c t = I D , C S e q , F r o m , T o , C o n t a c t , D u r a t i o n & $ f i l t e r = c o n t a i n s (F r o m , 't e s s a ')
H T T P / 1 .1

H o s t : l o c a l h o s t : 8 0 8 0
C a c h e - C o n t r o l : n o - c a c h e
P o s t m a n - T o k e n : d 6 5 9 2 9 0 1 - 6 8 2 7 - 2 7 b 0 - d a 6 a - f 0 a a f 1 f 2 5 6 8 e

(M essage2) Response

120

CHAPTER 8. INTEGRATION WITHIN AN IMS TESTBED

{
" @ o d a t a . c o n t e x t " : " $ m e t a d a t a # C a l l D e t a i l R e c o r d s (I D , C S e q , T o , F r o m , D u r a t i o n , C o n t a c t) " ,
" v a l u e ": [

{
" I D " : 1,
" C S e q " : " 3 3 9 7 4 0 1 7 1 I N V I T E " ,
" T o " : " < s i p : m i k e @ o p e n - i m s . t e s t > ; t a g = 1 5 1 0 7 1 4 5 9 5 " ,
" F r o m " : " < s i p : t e s s a @ o p e n - i m s .t e s t > " ,
" D u r a t i o n " : " 6 2 1 " ,
" C o n t a c t " : " < s i p :t e s s a @ 1 9 2 . 1 6 8 . 2 3 . 1 : 6 0 7 0 4 ; t r a n s p o r t = u d p >"

} ,
{

" I D " : 4,
" C S e q " : " 2 3 5 1 0 I N V I T E " ,
" T o " : " < s i p : m i k e @ o p e n - i m s . t e s t > " ,
" F r o m " : " < s i p : t e s s a @ o p e n - i m s . t e s t > ; t a g = 3 8 5 2 1 6 1 5 1 " ,
" D u r a t i o n " : " 1 3 2 " ,
" C o n t a c t " : " < s i p : t e s s a @ o p e n - i m s . t e s t > ; t a g = 3 8 5 2 1 6 1 5 1 ; t r a n s p o r t = u d p "

} ,
{

" I D " : 9,
" C S e q " : " 3 2 4 0 9 I N V I T E " ,
" T o " : " < s i p : m i k e @ o p e n - i m s . t e s t > " ,
" F r o m " : " < s i p : t e s s a @ o p e n - i m s . t e s t > ; t a g = 4 7 5 2 7 3 2 2 4 " ,
" D u r a t i o n " : " 3 0 " ,
" C o n t a c t " : " < s i p : t e s s a @ o p e n - i m s . t e s t > ; t a g = 4 7 5 2 7 3 2 2 4 ; t r a n s p o r t = u d p "

} ,
{

" I D " : 12,
" C S e q " : " 1 8 8 8 2 I N V I T E " ,
" T o " : " < s i p : m i k e @ o p e n - i m s . t e s t > " ,
" F r o m " : " < s i p : t e s s a @ o p e n - i m s . t e s t > ; t a g = 4 7 6 9 6 6 1 4 7 " ,
" D u r a t i o n " : " 6 9 " ,
" C o n t a c t " : " < s i p : t e s s a @ o p e n - i m s . t e s t > ; t a g = 4 7 6 9 6 6 1 4 7 ; t r a n s p o r t = u d p "

}
]

}

8.6 Summary

This chapter has shown the experiments that were carried out in a prototypical
IMS testbed while using the CSDR as a unique repository within the network.
The testbed and its components were created using purely open source tools. The
experiments demonstrated the interactions between FE implementations for the
HSS, XCAP, Telephony, and Messaging Services and the CSDR. Wireshark was
used to analyse the traffic between the testbed components while the Doubango and
IMSDroid clients and Postman REST client were used to generate SIP and HTTP
traffic respectively. The CSDR exposed heterogeneous data sets through OData
while persisting to MySQL, Redis and MongoDB at the underlying data access
level. Thus, the chapter shows that different types of subscriber data can feature
in the CSDR. Additionally, these activities have shown that the CSDR can support
multiple FEs and also provide a converged view of data through a PFE. The next
chapter concludes this thesis.

121

Chapter 9

Conclusion

This thesis has investigated the creation of a converged data repository for RCS
services. It has summarised and analysed arguments from literature that have been
produced by organisations such as GSMA, OMA, and 3GPP. A repository called
CSDR was designed and integrated within a software-based, prototypical IMS
network to manage heterogeneous RCS subscriber data sets. This chapter outlines
the objectives that have been met, presents a summary of the main contributions
and suggests several ideas for possible improvements on this work. The chapter
starts out by discussing the realised objectives, which is then followed by the thesis
contributions and suggestions for improvements in few areas of this work.

122

CHAPTER 9. CONCLUSION

9.1 Achieved Objectives

The discussion in this section analyses the degree to which the research objectives
stated in Section 1.4 have been met by the thesis.

9.1.1 Review of RCS specifications and its data management
policies

The thesis has reviewed the GSMA and OMA specifications that RCS adopts. The
literature revealed the efforts made by GSMA to drive RCS toward global adoption,
which is impacted by two main factors: attractive service models and operator
interoperability. Although ways in which MNOs can achieve interoperability have
been defined for the RCS specifications, offering attractive services to subscribers
can be enhanced by gaining insight into subscriber data. This was difficult to obtain
with the way application and data services have been defined in the specifications
while leveraging IMS. These specifications also showed how each component of the
framework interoperates while being enabled by the distinct application and data
services.

9.1.2 Review of the UDC standard to extract relevant
requirements

The second objective was to investigate the main requirements of the UDC
standard which are: a standardised architecture for a consolidated data repository
and data manipulation requirements ranging from CRUD to subscribe/notify
operations. Furthermore, 3GPP proposed the usage of LDAP and SOAP protocols
as candidates for a unified data access interface toward the repository. The
integration of both protocols raised concerns which lead to the contribution toward
the Ud reference point as discussed in Section 9.2.

9.1.3 Investigation of data store design practices

The third objective was to investigate and document the different data service design
and modelling techniques, which revealed some viable options which were considered
when building the converged repository. The discussion highlighted a number of
data models, schema and transaction management approaches, common persistence
and fault tolerance techniques used by existing storage technologies. Additionally,
using the CAP theorem when deciding among some of these factors. This lead to
the adoption of a polyglot persistence model for managing heterogeneous data by
leveraging the strengths of the integrated data stores as opposed to using a single
data store.

123

CHAPTER 9. CONCLUSION

9.1.4 Creating a Converged Repository

The fourth objective was to design and implement a prototype of the unified
repository, which the author has named the Converged Subscriber Data
Repository (CSDR). AFE and PFE interactions with the CSDR and the
behaviours of the CSDR when managing CRUD and subscribe/notify requests
were also defined. The repository adopts a polyglot persistence architecture for
heterogeneous subscriber data sets. These datasets can be accessed through the
OData protocol. Thus, the CSDR provides flexible schema management across
underlying data stores through OData.

9.1.5 Evaluation of the design

The last objective of the thesis was to prove that the repository design could cater
for heterogeneous data by integrating the prototype within an existing IMS
network testbed. Multiple FE applications were developed to interact with the
unified repository. Thus, allowing distinct FEs to query the repository for
heterogeneous data within the network. Furthermore, different types of FEs and
protocols were used to interact with FE implementations thus demonstrating that
the existing network service interfaces can still be maintained with their
corresponding protocols when a storage facility such as the CSDR is introduced.

9.2 Thesis Contributions

RCS provides a platform that enables inter-operator support, unifies client
applications, centrally manages subscriber messaging data and exposes a
subscriber’s presence information through a unified phone book. This unification
in communication lacked a central repository to manage data sets for services
beyond messaging, thus, making it difficult to obtain a unified view of subscriber
data in the network. The CSDR has been designed and implemented as a
“centralised store” for RCS subscriber data within an IMS network. The use of this
repository can enhance RCS services being offered by MNOs, as new service
models can be derived from insights gained from the consolidation of subscriber
data within the network. For instance, network services and functional entities can
query the repository for relevant user data. Hence, the CSDR provides a
structured and standardised approach to the management for heterogeneous RCS
data in the network.

The Ud reference point provides access to the converged repository as defined by
the UDC standard. 3GPP recommended the combination of LDAP and SOAP
protocols for this reference point. LDAP was primarily designated for CRUD
operations and SOAP for subscribe/notify operations. Adopting OData as the
single protocol for the reference point allows a converged data repository to
leverage the CRUD and callback mechanisms offered by the protocol. Seeing that

124

CHAPTER 9. CONCLUSION

OData provides callback capability, it can provide the functionalities required of
SOAP. Hence, OData supports both categories of operations, and this makes it a
strong alternative to its counterparts. In consequence, the need to use multiple
protocols over the Ud reference point is eliminated as OData provides a
single-protocol alternative. Furthermore, as MNOs are embracing RESTful APIs,
OData provides a way to expose data from different sources across the network
using a standardised RESTful interface. In essence, disparate network data sources
can expose their data using OData as a common communications protocol. Thus,
the work related in this thesis provides a viable alternative to the LDAP and
SOAP protocols for the realisation of the Ud interface.

Polyglot persistence provides a data storage architecture where distinct data sets are
persisted in suitable storage technologies. Hence, data services can adopt multiple
underlying stores for persistence. However, the complexity of managing these data
sets arises when the services try to define a generic schema for encapsulating data
retrieved from underlying stores. OData provides the EDM, which acts as a wrapper
over existing data storage technologies. Since the OData is data-store-agnostic, it
can expose data sets used by an underlying data store through the flexible and
consistent EDM. Furthermore, as models used by the underlying stores change, a
data service may need to redefine its schema. This becomes complex to manage
data stored in each store within the service as schemas evolve. Nevertheless, with
the CSDR exposing polyglot-persisted data through OData, this thesis has shown
that a service schema built with EDM can provide a consistent view of data residing
in underlying storage technologies. Thus, schema evolution of complex data services
that support polyglot persistence can be managed by providing a conceptual view
of these data sets through OData.

9.3 Future Work

Further work on the data management approach presented in this thesis could
involve achieving polyglot persistence through data service convergence. In other
words, defining a data service that comprises other data services. Currently, the
PPI specified in the design expects connections to different data stores as
demonstrated with the prototype’s adoption of JPA. For CSDR implementations
that do not adopt JPA, PPI algorithms and interfaces have to be devised to
facilitate polyglot persistence. However, the introduction of an OData service
convergence framework can enable the CSDR to integrate with underlying data
stores as OData producers. This is illustrated in Figure 9.1. This will eliminate
the need for PPI interface frameworks such as JPA, which are technology-based.
Consequently, the CSDR can consist of a number of individual data services
unified through a single EDM. This can have implications for complex data
management decisions with existing and future network infrastructures.

As use-cases for the CSDR continue to evolve based on RCS services, more
sophisticated techniques may be required to effectively manage data through the
OData protocol. This may be achieved by introducing extensions in the form of

125

CHAPTER 9. CONCLUSION

Figure 9.1: OData Service Convergence.

query and aggregation extensions to the protocol. In essence, proposing
frameworks that give the CSDR the ability to query and aggregate data from
external systems before providing a converged view. Say an RCS client was
integrated with an ICSP application. Some data generated while using the services
can be aggregated and stored by the CSDR as required. This can increase the
depth of insight gained through the CSDR.

Furthermore, Kundera provides a JPA ONM framework for Java-based services.
The PPI implementation with JPA guarantees that relationship between parent-
child data sets can be managed in a consistent manner. However, systems that
do not adopt JPA as the PPI for the CSDR, require synchronisation techniques to
ensure data consistency across multiple stores. For example, a portion of subscriber
data which was persisted across multiple stores should be reliably deleted across
those stores when required. Thus, synchronisation mechanisms are required if the
CSDR implementation supports polyglot persistence without an ONM framework.

9.4 Summary

This thesis has presented the design of a candidate repository that can be used to
unify RCS subscriber data. It has shown that MNOs need not interrogate multiple
repositories for subscriber data since a single one can provide shared access to
heterogeneous data over the network. Therefore, the thesis proposes the use of this
repository, which exposes its data sets using a standardised protocol while
providing flexible querying capabilities to its clients.

126

References

[1] JavaServerFaces.org. Available at: http://www.javaserverfaces.org/.
[Accessed: 27 May, 2016].

[2] Kundera: A JPA 2.1 compliant polyglot object-datastore mapping
library for NoSQL datastores. Available at: https://github.com/
impetus-opensource/Kundera. [Accessed: 20 June, 2016].

[3] Maven - Welcome to Apache Maven. Available at: https://maven.apache.
org/. [Accessed: 26 January, 2016].

[4] nosql-databases.org. Available at: http://www.nosql-databases.org/.
[Accessed: 11 January, 2016].

[5] Wireshark • go deep. Available at: https://www.wireshark.org/. [Accessed:
15 August, 2016].

[6] 3GPP. TR 23.845: Study on User Data Convergence (UDC) evolution,
December 2015. Release 13.

[7] 3GPP. TR 29.935: Study on the User Data Convergence (UDC) Data Model,
December 2015. Release 13.

[8] 3GPP. TS 22.101: Service Principles, September 2015. Release 14.

[9] 3GPP. TS 22.985: Service Requirements for User Data Convergence (UDC),
December 2015. Release 13.

[10] 3GPP. TS 23.335: Service Requirements for User Data Convergence (UDC);
Technical realization and information flows, December 2015. Release 13.

[11] 3GPP. TS 29.228: IP Multimedia (IM) Subsystem Cx and Dx Interfaces;
Signalling flows and message contents, December 2015. Release 13.

[12] 3GPP. TS 29.328: IP Multimedia (IM) Subsystem Sh Interface; Signalling
flows and message contents, December 2015. Release 13.

[13] 3GPP. TS 29.335: User Data Convergence (UDC); User Data Repository
Access Protocol over the Ud interface; Stage 3, December 2015. Release 13.

[14] 3GPP. TS 32.181: User Data Convergence (UDC); Framework for model
handling and management, January 2016. Release 13.

127

http://www.javaserverfaces.org/
https://github.com/impetus-opensource/Kundera
https://github.com/impetus-opensource/Kundera
https://maven.apache.org/
https://maven.apache.org/
http://www.nosql-databases.org/
https://www.wireshark.org/

REFERENCES

[15] 3GPP. TS 32.182: User Data Convergence (UDC); Common Baseline
Information Model (CBIM), January 2016. Release 13.

[16] A ba di, D. J. Consistency tradeoffs in modern distributed database system
design. Computer-IEEE Computer Magazine 45, 2 (2012), 37.

[17] A h o , A. V., and Ullm an , J. D. Foundations of computer science: C
edition. 1995.

[18] A pache Softw are Foundation . Apache Olingo Library. Available at:
h ttp s ://o lin g o .a p a ch e .o rg . [Accessed: 6 January, 2016].

[19] Bar -S inai, M. Big data technology literature review. Communications of
the ACM 13, 7 (2015), 422-426.

[20] Bellavista, P., C o r r a d i, A., and Foschini, L. IMS-based presence
service with enhanced scalability and guaranteed QoS for interdomain
enterprise mobility. IEEE Wireless Communications 16,3 (2009), 16-23.

[21] Berners-L ee , T., Fielding , R., Fr y sty k , H., G e t t y s , J., Leach , P.,
M asinter , L., and M ogul , J. RFC 2616: Hypertext Transfer Protocol-
HTTP/1.1.

[22] Be t z , H., G ropengiesser, F., Hose , K., and Sa ttle r , K.-U. Learning
from the history of distributed query processing: a heretic view on linked
data management. In Proceedings of the Third International Conference on
Consuming Linked Data-Volume 905 (2012), CEUR-WS.org, pp. 15-26.

[23] Br e w e r , E. CAP twelve years later: How the "rules" have changed.
Computer 45, 2 (2 0 1 2), 23-29.

[24] Cabibbo , L. ONDM: an object-nosql datastore mapper. Faculty of
Engineering, Roma Tre University. Retrieved April 21st (2013).

[25] Cam arillo , G., Kauppinen , T., K uparinen, M., and Ivars, I. M.
Towards an innovation oriented IP Multimedia Subsystem . IEEE
Communications Magazine 45, 3 (2007), 130-136.

[26] Cattell , R. Scalable SQL and NoSQL data stores. Acm Sigmod Record 39,
4 (2011), 12-27.

[27] C happell, D. Introducing OData: Data access for the web, the cloud, mobile
devices, and more. Microsoft Whitepaper, May (2011).

[28] C h odorow , K. MongoDB: the definitive guide. O ’Reilly Media, Inc., 2013.

[29] C o d d , E. F. A relational model of data for large shared data banks.
Communications of the ACM 13, 6 (1970), 377-387.

[30] C omverse . Making RCS Happen. Available at: http ://w w w .slideshare.
net/com verseinc/rcs-vision -w hitepaper18forw eb. [Accessed: 13
December, 2015].

128

https://olingo.apache.org
http://www.slideshare.net/comverseinc/rcs-vision-whitepaper18forweb
http://www.slideshare.net/comverseinc/rcs-vision-whitepaper18forweb

REFERENCES

[31] C opeland , R. Converging NGN wireline and mobile 3G networks with IMS:
converging NGN and 3G mobile, vol. 7. CRC Press, 2008.

[32] C ore Netw ork Dynamics G mbH. OpenIMS - The Open Source IMS
Core Project. Available at: http://www.openimscore.org. [Accessed: 12
May, 2016].

[33] C oronel, C., and M orris , S. Database systems: design, implementation,
6 management. Cengage Learning, 2016.

[34] Da X u , L. Enterprise systems: state-of-the-art and future trends. IEEE
Transactions on Industrial Informatics 7, 4 (2011), 630-640.

[35] D elac , G., B udiselic, I., Z u zak , I., Skuliber , I., and Stefanec , T. A
methodology for SIP and SOAP integration using application-specific protocol
conversion. ACM Transactions on the Web (TWEB) 6 , 4 (2012), 15.

[36] D elaney , J. Rcs and joyn: Keeping operators at the center of
communications. Technical Report HW62U, December 2012.

[37] D oubango . DoubangoTelecom/boghe: IMS/RCS client for W P8 , Surface
and Desktop with support for CUDA, Intel Quick Sync, DXVA2. Available
at: https://github.com/DoubangoTelecom/boghe. [Accessed: 7 February,
2016].

[38] D oubango . DoubangoTelecom/imsdroid: High Quality Video SIP/IMS
client for Google Android. Available at: https://github.com/
DoubangoTelecom/imsdroid. [Accessed: 7 February, 2016].

[39] D oubango T elecom . Doubango - open source 3GPP IMS/LTE framework
for embedded systems. Available at: https://www.doubango.org/. [Accessed:
7 February, 2016].

[40] D usseault, L., and Snell, J. RFC 5789: PATCH method for HTTP.

[41] Eclipse Foundation . Jetty - Servlet Engine and HTTP Server. Available
at: http://www.eclipse.org/jetty/. [Accessed: 27 July, 2016].

[42] Elliot , B., B lo od , S., and K raus, D. Magic quadrant for unified
communications. Gartner RAS Core Research Note G 1604 07 (2011).

[43] Evans, D. An introduction to Unified Communications: challenges and
opportunities. In Aslib Proceedings (2004), Emerald Group Publishing
Limited, pp. 308-314.

[44] Fa ja r d o , V., A r k k o , J., Loughney , J., and Zo rn , G. RFC 6733:
Diameter Base Protocol.

[45] Fielding , R., and R eschke, J. RFC 7230: Hypertext Transfer Protocol
(HTTP/1.1); Message Syntax and Routing.

[46] G essert, F., Friedrich , S., W ingerath , W ., Schaarschm idt , M.,
and R it t e r , N. Towards a scalable and unified REST API for cloud data
stores. In GI-Jahrestagung (2014), pp. 723-734.

129

http://www.openimscore.org
https://github.com/DoubangoTelecom/boghe
https://github.com/DoubangoTelecom/imsdroid
https://github.com/DoubangoTelecom/imsdroid
https://www.doubango.org/
http://www.eclipse.org/jetty/

REFERENCES

[47] GSMA. Act now to implement RCS. Available at: http:
//www.gsma.com/network2020/wp-content/uploads/2014/12/
Evaluate-RCS-Today-Dec-2014.pdf. [Accessed: 7 December, 2014].

[48] GSMA. IMS-based interoperability in South Korea. Available
at: http://www.gsma.com/network2020/wp-content/uploads/2012/10/
RCSCaseStudy-SouthKorea.pdf. [Accessed: 17 April, 2015].

[49] GSMA. Rich Communication Services. Available at: http://www.gsma.com/
network2020/technology/rcs/. [Accessed: 25 March, 2015].

[50] GSMA. Rich Communication Services. Available at: http://www.gsma.com/
network2020/technology/enriched-calling-with-rcs/, 2 0 1 2 . [Accessed:
25, March 2015].

[51] GSMA. Joyn Blackbird Product Definition Document, January 2014. Version
3.0.

[52] GSMA. Rich Communication Suite 5.3 Advanced Communications Services
and Client Specification, February 2015. Version 6.0.

[53] GSMA. Rich Communication Suite 5.3 Endorsement of OMA CPM 2.0
Message Storage, February 2015. Version 5.0.

[54] GSMA. Rich Communication Suite 5.3 Endorsement of OMA SIP SIMPLE
IM 2.0, February 2015. Version 4.0.

[55] GSMA. Service Provider Device Configuration, February 2015. Version 2.0.

[56] Ha n , J., Haihong , E., Le , G., and D u , J. Survey on NoSQL database.
In Pervasive computing and applications (ICPCA), 2011 6th international
conference on (2011), IEEE, pp. 363-366.

[57] Henry, K., Liu , Q., and Pasquereau , S. Rich Communication
Suite. In Intelligence in Next Generation Networks, 2009. ICIN 2009. 13th
International Conference on (2009), IEEE, pp. 1-6.

[58] Huhns, M. N., and Singh , M. P. Service-Oriented Computing: Key
concepts and principles. IEEE Internet computing 9, 1 (2005), 75-81.

[59] Hyu n , W ., Pa r k , S., Lee , I., and Ka n g , S. A study on design and
implement of xcap server. In 2006 8 th International Conference Advanced
Communication Technology (2006), vol. 1, IEEE, pp. 4-pp.

[60] Islam , S., and G regoire , J.-C. User-centric service provisioning for IMS.
In Proceedings of the 6th International Conference on Mobile Technology,
Application & Systems (2009), ACM, p. 5.

[61] JBoss. Wildfly Homepage. Available at: http://wildfly.org/. [Accessed:
28 July, 2016].

[62] La sk e y , K. B., and La sk e y , K. Service Oriented Architecture. Wiley
Interdisciplinary Reviews: Computational Statistics 1, 1 (2009), 101-105.

130

http://www.gsma.com/network2020/wp-content/uploads/2014/12/Evaluate-RCS-Today-Dec-2014.pdf
http://www.gsma.com/network2020/wp-content/uploads/2014/12/Evaluate-RCS-Today-Dec-2014.pdf
http://www.gsma.com/network2020/wp-content/uploads/2014/12/Evaluate-RCS-Today-Dec-2014.pdf
http://www.gsma.com/network2020/wp-content/uploads/2012/10/RCSCaseStudy-SouthKorea.pdf
http://www.gsma.com/network2020/wp-content/uploads/2012/10/RCSCaseStudy-SouthKorea.pdf
http://www.gsma.com/network2020/technology/rcs/
http://www.gsma.com/network2020/technology/rcs/
http://www.gsma.com/network2020/technology/enriched-calling-with-rcs/
http://www.gsma.com/network2020/technology/enriched-calling-with-rcs/
http://wildfly.org/

REFERENCES

[63] L i n , M., a n d A r i a s , J. A. Rich Communication Suite: The challenge and
opportunity for MNOs. In Intelligence in Next Generation Networks (ICIN),
2011 15th International Conference on (2011), IEEE, pp. 187-190.

[64] L i n t h i c u m , D. S. Defining, Designing, and Implementing SOA-Based Data
Services. White paper, David S. Linthicum LLC, 2009.

[65] M a g e d a n z , T., B l u m , N., a n d D u t k o w s k i , S. Evolution of SOA concepts
in telecommunications. Computer 40, 11 (2007), 46-50.

[66] M o n g o D B . MongoDB for GIANT ideas. Available at: https://www.
mongodb.com/. [Accessed: 23 July, 2016].

[67] N a y a k , A., P o r i y a , A., a n d P o o j a r y , D. Type of NOSQL databases and
its comparison with relational databases. International Journal of Applied
Information Systems 5, 4 (2013), 16-19.

[68] N u r s e i t o v , N., P a u l s o n , M., R e y n o l d s , R., a n d Iz u r i e t a , C.
Comparison of JSON and XML data interchange formats: A case study. Caine
2009 (2009), 157-162.

[69] OASIS. Open Data Protocol (OData) Technical Committee. Available
at: https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=
odata. [Accessed: 14 March, 2016].

[70] OASIS. [OData-Atom-Format-v4.0]: OData Atom Format Version 4.0,
November 2013.

[71] OASIS. [OData-Data-Agg-v4.0]: OData Extension for Data Aggregation
Version 4.0, November 2015.

[72] OASIS. [OData-JSON-Format-v4.0]: OData JSON Format Version 4.0 Plus
Errata 03, June 2016.

[73] OASIS. [OData-Part1]: OData Version 4.0. Part 1: Protocol Plus Errata 03,
March 2016.

[74] OASIS. [OData-Part2]: OData Version 4.0. Part 2: URL Conventions Plus
Errata 03, March 2016.

[75] OASIS. [OData-Part3]: OData Version 4.0. Part 3: Common Schema
Definition Language (CSDL) Plus Errata 03, March 2016.

[76] O D a t a .ORG. OData Ecosystem. Available at: http://www.odata.org/
ecosystem. [Accessed: 6 January, 2016].

[77] O l s o n , M. A., B o s t i c , K., a n d S e l t z e r , M. I. Berkeley DB. In USENIX
Annual Technical Conference, FREENIX Track (1999), pp. 183-191.

[78] OMA. XML Document Management Architecture, April 2012. Version 2.1.

[79] OMA. User Plane Location Protocol, September 2014. Version 2.1.

131

https://www.mongodb.com/
https://www.mongodb.com/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=odata
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=odata
http://www.odata.org/ecosystem
http://www.odata.org/ecosystem

REFERENCES

[80] Papazoglou , M. P., T raverso , P., D u stdar , S., and Leym ann , F.
Service-Oriented Computing: A research roadmap. International Journal of
Cooperative Information Systems 17, 02 (2008), 223-255.

[81] Papazoglou , M. P., and Van Den Heuvel, W .-J. Service Oriented
Architectures: approaches, technologies and research issues. The VLDB
journal 16, 3 (2007), 389-415.

[82] Pautasso , C., and W ilde , E. RESTful web services: Principles, patterns,
emerging technologies. In Proceedings of the 19th International Conference on
World Wide Web (2010), W W W ’10, ACM, pp. 1359-1360.

[83] P feil, M. What is persistence and why does it
matter. Available at: h ttp ://w w w .datastax.com /dev/b log/
w hat-persistence-and-w hy-does-it-m atter. [Accessed: 19 August,
2016].

[84] P ostm an . Postman | Supercharge your API workflow. Available at: https:
//www.getpostman.com/. [Accessed: 11 July, 2016].

[85] P rimeT ek . PrimeFaces. Available at: h ttp ://w w w .prim efaces.org/.
[Accessed: 20 July, 2016].

[86] P ritc h e tt , D. BASE: An ACID alternative. Queue 6, 3 (2008), 48-55.

[87] R edis.IO. Redis. Available at: h ttp ://w w w .red is .io . [Accessed: 06 May,
2016].

[88] R eschke, j ., and F ielding , R. RFC 7231: Hypertext Transfer Protocol
(HTTP/1.1); Semantics and Content.

[89] R estcom m . RestComm/jdiameter: RestComm Diameter Stack and Services.
Available at: https://github.com /RestCom m /jdiam eter. [Accessed: 23
August, 2016].

[90] R estcom m . RestComm/sip-servlets: Leading SIP - IMS - WebRTC
Application Server. Available at: https://github.com /RestCom m /
s ip -s e r v le t s . [Accessed: 23 August, 2016].

[91] R iem er , K., and Tain g , S. Unified Communications. Business &
Information Systems Engineering 1, 4 (2009), 326-330.

[92] Rosenberg , J. RFC 4825: The Extensible Markup Language Configuration
Access Protocol.

[93] Rosenberg , j ., Schulzrinne, H., Cam arillo , G., Johnston , a .,
P eterson , J., Sparks, R., Han d ley , M., and Schooler , E. RFC 3261:
SIP - Session Initiation Protocol.

[94] Ro th , M., and Ta n , W .-C . Data Integration and Data Exchange: It’s
Really About Time. In 6th Biennial Conference on Innovative Data Systems
Research (CIDR) (2013), Citeseer.

132

http://www.datastax.com/dev/blog/what-persistence-and-why-does-it-matter
http://www.datastax.com/dev/blog/what-persistence-and-why-does-it-matter
https://www.getpostman.com/
https://www.getpostman.com/
http://www.primefaces.org/
http://www.redis.io
https://github.com/RestComm/jdiameter
https://github.com/RestComm/sip-servlets
https://github.com/RestComm/sip-servlets

REFERENCES

[95] Sa d a l a g e , P. J., a n d F o w l e r , M. NoSQL distilled: a brief guide to the
emerging world of polyglot persistence. Pearson Education, 2012.

[96] Sc h e r z i n g e r , S., K l e t t k e , M., a n d St o r l , U. Managing schema
evolution in NoSQL data stores. arXiv preprint arXiv:1308.0514 (2013).

[97] Sc h r a m , A., a n d A n d e r s o n , K. M. MySQL to NoSQL: data modeling
challenges in supporting scalability. In Proceedings of the 3rd annual conference
on Systems, programming, and applications: software for humanity (2 0 1 2),
ACM, pp. 191-202.

[98] Se l l a m i , R., B h i r i , S., a n d D e f u d e , B. ODBAPI: a unified REST API
for relational and NoSQL data stores. In 2014 IEEE International Congress
on Big Data (2014), IEEE, pp. 653-660.

[99] Se r m e r s h e i m , J. RFC 4511: Lightweight Directory Access Protocol (LDAP);
The Protocol.

[100] So g u n l e , O., T s i e t s i , M., a n d T e r z o l i , A. Adopting the OData protocol
as a Ud reference point for user data convergence. In Southern Africa
Telecommunication Networks and Applications Conference (2016), SATNAC,
pp. 402-407.

[101] St o r l , U., H a u f , T., K l e t t k e , M., Sc h e r z i n g e r , S., a n d
R e g e n s b u r g , O. Schemaless NoSQL Data Stores-Object-NoSQL Mappers
to the Rescue? In BTW (2015), pp. 579-599.

[102] St r a u c h , C., Si t e s , U.-L. S., a n d K r i h a , W . NoSQL databases. Lecture
Notes, Stuttgart Media University (2011).

[103] T r i v e d i , N., a n d J a i n , A. Implementation Challenges in Rich
Communication Suite-enhanced (RCS-e). In Networks, 2013. ICN 2013.
Twelfth International Conference on (2013), IARA, pp. 132-136.

[104] V a r g a s - S o l a r , G. Polyglot persistence and multi-cloud data management
solutions. In Tutorial Talk in EDBT Summer School on Data all around Big,
Linked, Open (2013).

[105] W a n g , X., S c h u l z r i n n e , H., K a n d l u r , D., a n d V e r m a , D.
Measurement and analysis of LDAP performance. IEEE/ACM Transactions
on Networking (TON) 16, 1 (2008), 232-243.

[106] Z e i l e n g a , K. RFC 4512: Lightweight Directory Access Protocol (LDAP);
Directory Information Models.

133

Appendix A

Additional Tables

A.1 RCS Device Configuration

When an RCS subscriber wants to register for the first time, the subscription profile
containing valid subscriber identity are stored in the network. Thereafter, the RCS
client is configured with the correct settings. Upon completion of this process, the
registration procedure is invoked in the network. First time registration comprises
two main activities:

• Register.

• Establish; The service finds a subset among the subscriber’s existing contacts
who also use RCS.

Figure A.1: Sequence Diagram for first time startup of an RCS device. Source: [52].

134

APPENDIX A. ADDITIONAL TABLES

A.2 Device Configuration Parameters

Table A .1 : RCS device configuration parameters. Source:
[52].

Param eter D escription M andatory Format

rcs_sta te It contains one of the following values:
{ - 4 , - 3 , — 2 , — 1 , 0 ,positiveintegers....}

• A positve value denotes the most
recent version of the configuration
document.

• 0 denotes that the configuration is
obsolete and may require an update.

• -1 indicates thay the MNO has
disabled RCS services on the UE or
Client.

• -2 indicates that RCS is disabled
on the UE but configuration can be
manually triggered by a subscriber.

• -3 indicates that RCS has not been
configured on the UE.

• -4 indicates that the subscriber has
explicitly disabled the RCS services
on the UE.

Yes Integer

rcs_version Identifies the version of RCS, which is
supported by the Client

Yes Case-
Sensitive
String

rcs _ p ro file Identigies the set of RCS services
supported by the Client

No Case-
Sensitive
String

c lie n t_
vendor

Identifies the vendor providing the Client Yes Case-
Sensitive
String

c lie n t_
version

Identifies the version of the Client itself Yes Case-
Sensitive
String

135

APPENDIX A. ADDITIONAL TABLES

default_sms_ It contains one of the following values: Conditional Integer
app { 0 ,1 ,2 } - Yes, for

Clients
• 0 indicates that the native operating supporting

system does not allow the subscriber
to select an SMS application on the
Client or the application can not be
found.

SMS,

• 1 indicates the RCS messaging client
is selected as the default SMS
application.

• 2 indicates that another messaging
client is the default SMS
application.

A.3 EDM Data Types

This section provides an overall view of primitive data types present within the
OData’s EDM.

Table A.2: EDM Primitive Data Types.

T y p e D escription

Edm.Binary Binary data
Edm.Boolean Binary-valued logic
Edm.Byte Date without a time-zone offset
Edm.DateTimeOffset Date and time with a time-zone offset, no leap seconds
Edm.Decimal Numeric values with fixed precision and scale
Edm.Double Floating-point number (15-17 decimal digits)
Edm.Duration Signed duration in days, hours, minutes, and

(sub)seconds
Edm.Guid 16-byte (128-bit) unique identifier
Edm.Int16 Signed 16-bit integer
Edm.Int32 Signed 32-bit integer
Edm.Int64 Signed 64-bit integer
Edm.SByte Signed 8-bit integer
Edm.Single floating-point number (6-9 decimal digits)
Edm.Stream Binary data stream
Edm.String Sequence of UTF-8 characters
Edm.TimeOfDay Clock time 00:00-23:59:59.999999999999
Edm.Geography Abstract base type for all Geography types
Edm.GeographyPoint A point in a round-earth coordinate system

136

APPENDIX A. ADDITIONAL TABLES

Edm.GeographyLineString Line string in a round-earth coordinate system
Edm.GeographyPolygon Polygon in a round-earth coordinate system
Edm.GeographyMultiPoint Collection of points in a round-earth coordinate system
Edm.GeographyMultiLineString Collection of line strings in a round-earth coordinate

system
Edm.GeographyMultiPolygon Collection of polygons in a round-earth coordinate

system
Edm.GeographyCollection Collection of arbitrary Geography values
Edm.Geometry Abstract base type for all Geometry types
Edm.GeometryPoint Point in a flat-earth coordinate system
Edm.GeometryLineString Line string in a flat-earth coordinate system
Edm.GeometryPolygon Polygon in a flat-earth coordinate system
Edm.GeometryMultiPoint Collection of points in a flat-earth coordinate system
Edm.GeometryMultiLineString Collection of line strings in a flat-earth coordinate

system
Edm.GeometryMultiPolygon Collection of polygons in a flat-earth coordinate system
Edm.GeometryCollection Collection of arbitrary Geometry values

A.4 Olingo Processors

This section presents the Olingo’s list of the currently supported EDM processors
for OData version 4. It is important to note that these processors are implemented
as Java Interfaces within the Library.

Table A.3: Olingo EDM Processors.

Processor D escription

ActionComplexCollection
Processor

It handles an action request and returns a Collection
of Complex Types.

ActionComplex Processor It handles an action request and returns a Complex
Type.

ActionEntityCollection
Processor

It handles an action request and returns an Entity
Collection.

ActionEntity Processor It handles an action request and returns an Entity
Type

ActionPrimitiveCollection
Processor

It handles an action request and returns a Collection
of Primitive Types.

ActionPrimitive Processor It handles an action request and returns a Primitive
Type.

ActionVoid Processor It handles an action request and returns no Data Type.
Batch Processor It handles a single instance of an Entity Type.
ComplexCollection Processor It handles Complex Type instances.
Complex Processor It handles an instance of a Complex Type

137

APPENDIX A. ADDITIONAL TABLES

CountComplexCollection
Processor

Can be used to count a collection of complex propertie.
For example, counting the number of Complex Types
within the EDM.

CountEntityCollection
Processor

Can be used to count a collection of Entities. For
example, number of Entities in an Entity Set.

CountPrimitiveCollection
Processor

Can be used to count a collection of primitive types.
For example, counting number of elements in a set of
type Edm.String.

Delta Processor It handles a single instance of a Delta response.
EntityCollection Processor It handles Entity Collections.
Entity Processor It handles an instance of an Entity Type.
Error Processor It handles the any error that occurs by any of the

processors within the Library.
MediaEntity Processor It handles Media Entity Types
Metadata Processor It handles the Metadata Document
PrimitiveCollection
Processor

It handles a collection of Primitive Types (Strings,
Integers, and Boolean, among others).

Primitive Processor It handles an instance of a Primitive Type.
PrimitiveValue Processor It handles the raw value of a Primitive Type.
Processor Is the generic processor from which others are derived.

Thus, it the the base-interface for all processors.
ReferenceCollection
Processor

It handles a collection of Entity references.

Reference Processor It handles a single instance of an Entity reference.
ServiceDocument Processor It handles the Service Document.

A.5 Diameter Command Codes

This section presents the command codes defined for Diameter Sh and Cx interfaces.
It also presents the AVP codes for defined for the Sh-UDR Data reference command.

A.5.1 Sh Codes

The table below shows the different command codes for requests and response
messages sent through Sh interface.

Table A.4: Diameter Sh Codes. Source: [12].

C om m and Nam e C ode

User-Data-Request (UDR) 306
User-Data-Answer (UDA) 306
Profile-Update-Request (PUR) 307

138

APPENDIX A. ADDITIONAL TABLES

Profile-Update-Answer (PUA) 307
Subscribe-Notifications-Request (SNR) 308
Subscribe-Notifications-Answer (SNA) 308
Push-Notification-Request (PNR) 309
Push-Notification-Answer (PNA) 309

A.5.2 Cx Codes

The table below shows the different command codes for requests and response
messages sent through Cx interface.

Table A.5: Diameter Cx Codes. Source: [11].

C om m and Nam e C ode

User-Authorization-Request (UAR) 300
User-Authorization-Answer (UAA) 300
Server-Assignment-Request (SAR) 301
Server-Assignment-Answer (SAA) 301
Location-Info-Request (LIR) 302
Location-Info-Answer (UAR) 302
Multimedia-Auth-Request (MAR) 303
Multimedia-Auth-Answer (MAA) 303
Registration-Termination-Request (RTR) 304
Registration-Termination-Answer (RTA) 304
Push-Profile-Request (PPR) 305
Push-Profile-Answer (PPA) 305

A.5.3 Sh Data-Reference AVP Codes

The Data-Reference AVP is used when making a request for specific user data
through the Sh interface. The table below shows the possible values of the
Data-Reference AVP, which is of an Enumerated data type.

Table A.6 : Diameter Sh Data Reference Codes. Source:
[1 2].

D ata Value C ode

RepositoryData 0

IMSPublicIdentity 10

IMSUserState 1 1

S-CSCFName 12

InitialFilterCriteria 13
LocationInformation 14

139

APPENDIX A. ADDITIONAL TABLES

UserState 15
ChargingInformation 16
MSISDN 17
PSIActivation 18
DSAI 19
ServiceLevelTraceInfo 2 1

IPAddressSecureBindingInformation 22

ServicePriorityLevel 23
SMSRegistrationInfo 24
UEReachabilityForIP 25
TADSinformation 26
STN-SR 27
UE-SRV CC-Capability 28
ExtendedPriority 29
CSRN 30
ReferenceLocationInformation 31
IMSI 32
IMSPrivateUserIdentity 33

140

Appendix B

Additional Figures

B.1 OMA XD M Architecture

Figure B.1: OMA XDM Architecture. Source: [78].

141

APPENDIX B. ADDITIONAL FIGURES

B.2 HSS FE DM

Figure B.2: Cx Data.

Figure B.3: Sh Data.

B.3 XCAP DM

Figure B.4: XCAP Document.

142

APPENDIX B. ADDITIONAL FIGURES

B.4 Provisioning the CSDR

The data sets managed by the CSDR can be categorised into two: Statically-created
and Dynamic-generated data sets. The subscription profile and XCAP documents
are in the former category while the latter consists of the log and session-related
data. This section discusses how profiles and documents can be created in the
CSDR. Thus, it is organised as follows: First, a brief discussion on how FEs are
registered. This is followed by the creation of subscription profiles. Thereafter, the
creation of XCAP documents. Finally, the section discusses the use of the various
query handlers which have been supported by the CSDR.

B.4.1 Registering the FEs on the CSDR

To register the aforementioned FEs in the CSDR, the backend registration
interface is used. This is because it is easier to use when compared to passing the
parameters as JSON documents on a REST client interface. The following
information is required for the registration:

• FE Name.

• FE IP Address.

• Assigned OData Namespace.

CSDR

I

Subscription Profile

Service Profile

Trigger Point

Scscf

Application Server

Visited Network

Client Session Data

Saved XCAP Documents

Registered Subscriber
Identities

Front Ends

Add

Add FE

Name HSS FE

IP Address 192.168.23.4

Namespace com.inted.csdr

Figure B.5: Snapshot of FE registration page.

B.4.2 Creating Subscription Profiles

To configure the subscription profiles in the CSDR, the Service Profile which consists
of the iFCs, among others was created.

143

APPENDIX B. ADDITIONAL FIGURES

Add Scscf

Name SCSCF1

SIPURI sip:scscf@open-ims.test

Diameter URI

Figure B.6 : Snapshot of Add SCSCF page.

Figure B.7: Snapshot of Add Application Server page.

Figure B.8 Snapshot of Add Trigger Point page.

144

APPENDIX B. ADDITIONAL FIGURES

Figure B.9: Snapshot of Add Service Profile page.

Figure B.10 Snapshot of Add Visited Network page.

Figure B.11: Snapshot of Add Subscription Profile with IMPU page.

145

APPENDIX B. ADDITIONAL FIGURES

Name Mike

DSAI Value INACTIVE "

Service Profile sp 1

Scscf SCSCF 1 '

Private Identity

URI * mike@open-ims.test

Secret Key (Password) mike

Attached IMS Public Identities

IdenyityType SIPURI CanRegister Is Barred

No records found.

Figure B.12: Snapshot of Add Subscription Profile with IMPI page.

146

APPENDIX B. ADDITIONAL FIGURES

B.5 Redis

Snapshots of the contents and startup display are presented as follows.
:■ ^ T o :■ e j c : ; - . 1 . 5 _ / -r '.v-si 1 . i o ■- <:■ : 1 •. y . , e : ~ ■_ . 1 . t •_ . j 1 . c m e <J5 = j . . C v e g . I T T e Co : e ■_ . 1

5254:M 16 Sep 06:54:43.518 # You requested naxclients of 10000 requiring at least 10032 max file descriptors
5254:M 16 Sep 06:54:43.518 # Server can't set maximum open files to 10032 because of OS error: Operation not
5254:M 16 Sep 06:54:43.518 # Current maximum open files is 4096. naxclients has been reduced to 4064 to comp

Redis 3.2.1 (00000000/0) 64 bit

) Running in standalone mode
| Port: 6379

PID: 5254

http://redis.io

5254:M 16 Sep 06:54:43.520 # WARNING: The TCP backlog setting of 511 cannot be enforced because /proc/sys/ne
5254:M 16 Sep 06:54:43.520 # Server started, Redis version 3.2.1
5254:M 16 Sep 06:54:43.520 # WARNING overcommit_memory is set to 0! Background save may fail under low memor
n the command 'sysctl vm.overcommit_memory=l' for this to take effect.
5254:M 16 Sep 06:54:43.520 # WARNING you have Transparent Huge Pages (THP) support enabled in your kernel. T
er > /sys/kernel/mm/transparent_hugepage/enabled' as root, and add it to your /etc/rc.local in order to reta
5254:M 16 Sep 06:54:43.529 * DB loaded from disk: O.009 seconds
5254:M 16 Sep 06:54:43.529 * The server is now ready to accept connections on port 6379

/-•/

Figure B.13: Starting up a Redis Server

,27.0.0.1:6379> hgetall ClientSessionData:sip:tessa@open-ims.test
1) "mediaType"
2) "message"
3) "lastKnownSessionld"
4) "(475273224;cldbf239-bcb9-746c-1547-8dfb8581ac9b;dbf56clf;com.inted.as.telephony.Main)"
5) "mediaPort"
6) "54275"
7) "lastKnownState"
8) "CONFIRMED"
9) "Id"
.0) "sip:tessa@open-ims.test"
.1) "mediaProtocol"
.2) "TCP/MSRP"
.3) "userAgent"
.4) "null"

Figure B.14: Session data generated while Tessa was sharing a file.

147

http://redis.io

Appendix C

Configuration Files

C.1 HSS FE

C.1.1 Jetty AS

The default configuration file for Jetty is jetty.xml, which is placed at the same
directory as the Maven POM document.

Listing C.1: HSS FE jetty.xml configuration file.

<?xml version="1.0" encoding="UTF-8"?>
<Configure id=" Server" class = "org.eclipse.jetty.server.Server"

>
<New id="httpConfig" class="org.eclipse.jetty.server.

HttpConfiguration">
<Set name = "secureScheme">https </Set >
<Set name="securePort">

<Property name="jetty.secure.port" default="
8443" />

</Set >
<Set name = "outputBufferSize">32768</Set>
<Set name="requestHeaderSize">8192</Set>
<Set name="responseHeaderSize">8192</Set>
<Set name = "sendServerVersion">true </Set >
<Set name="sendDateHeader">false</Set>
<Set name="headerCacheSize">512</Set>

</New >
</Conf igure >

C.1.2 Deployment Descriptor

The HSS FE uses the web.xml file to describe how it is to be deployed by Jetty AS.

148

APPENDIX C. CONFIGURATION FILES

Listing C.2: HSS FE web.xml configuration file.

<web-app >
<display-name>Archetype Created Web Application</

display-name >
<servlet >

<servlet-name>HSS</servlet-name >
<display-name>HSS</display-name >
<description></description>
<servlet-class>com.inted.as.hss.fe.HSS</

servlet-class >
<load-on- startup >0</load-on-startup>

</servlet >
<listener >

<listener-class>com.inted.as.hss.fe.AppDaemon
</listener-class>

</listener >
<servlet-mapping>

<servlet -name>HSS</servlet-name >
<url-pattern>/HSS</url-pattern>

</servlet-mapping>
</web - app >

C.2 XCAP FE

The XCAP FE also uses the web.xml service desriptor.

Listing C.3: XCAP FE web.xml configuration file.

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns:web="http://xmlns.jcp.org/xml/ns/javaee">

<display-name>Archetype Created Web Application</display-
name >

<servlet >
<description></description>
<display-name>XcapServer</display-name >
<servlet-name>XcapServer</servlet-name >
<servlet-class >com.inted.xcap.server.fe.XcapServer </

servlet-class >
</servlet >
<servlet-mapping>

<servlet-name>XcapServer</servlet-name >
<url-pattern>/*</url-pattern>

</servlet-mapping>
</web - app >

149

http://xmlns.jcp.org/xml/ns/javaee

APPENDIX C. CONFIGURATION FILES

C.3 Telephony FE

This FE uses the sip.xml file instead of the web.xml since it is a SIP application.
The web.xml are used by services that respond to HTTP requests.

Listing C.4: Telephony FE sip.xml configuration file.

<?xml version="1.0" encoding="UTF-8"?>
<sip-app >

<!-- Archetype Created SIP Application -->
<app-name>com.inted.as.telephony.Main </app-name >

<servlet-selection>
<main- servlet >

MainServlet
</main-servlet>

</servlet - selection>

<servlet >
<servlet-name>MainServlet </servlet-name>
<display-name>MainServlet</display-name>
<description>Telco Telephony Front End Service

</description >
<servlet-class >

com.inted.as.telephony.Main
</servlet-class>
<load-on- startup >1</load-on-startup>

</servlet >
</sip-app>

C.4 Messaging FE

Listing C.5: Messaging FE sip.xml configuration file.

<?xml version = " 1.0 " encoding = "UTF-8 "?>
<sip-app >

<!-- Archetype Created SIP Application -->
<app-name>com.inted.as.messaging.Main</app-name >

<servlet-selection>
<main- servlet >

MainServlet
</main-servlet>

</servlet - selection>

<servlet >
<servlet-name>MainServlet </servlet-name>
<display-name>MainServlet</display-name>

150

APPENDIX C. CONFIGURATION FILES

<description>Telco Messaging Front End Service
</description >

<servlet-class >
com.inted.as.messaging.Main

</servlet-class>
<load-on- startup >1</load-on-startup>

</servlet >
</sip-app>

C.5 CSDR

C.5.1 Deployment Descriptor

Listing C.6: CSDR web.xml configuration file.

<?xml version = "1.0" encoding = "UTF-8 "?>
<web-app xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance”

xmlns=”http://java.sun.com/xml/ns/javaee” xsi:
schemaLocation="http://java.sun.com/xml/ns/javaee http://
java.sun. com/xml/ns/javaee/web-app_3_0.xsd" version =

GO O V

<display-name>The CSDR - Consolidated Subscriber Data
Repository</display-name >

<context-param>
<param-name >javax.faces.PROJECT_STAGE</param-

name >
<param-value>Development</param-value>

</context-param>
<context-param>

<param-name >primefaces.THEME </param-name >
<param-value>omega</param-value>

</context-param>
<welcome-file-list>

<welcome-file>index.xhtml</welcome-file>
</welcome-file-list>
<servlet >

<servlet-name >CsdrApp </servlet-name>
<servlet-class>com.inted.csdr.web.CsdrApp </

servlet-class >
<load-on- startup >1</load-on-startup>

</servlet >
<servlet-mapping>

<servlet - name >CsdrApp </servlet - name>
<url-pattern>/svc/*</url-pattern>

</servlet-mapping>
<servlet >

<servlet-name >Faces Servlet </servlet-name >

151

http://www.w3.org/2001/XMLSchema-instance%e2%80%9d
http://java.sun.com/xml/ns/javaee%e2%80%9d
http://java.sun.com/xml/ns/javaee

APPENDIX C. CONFIGURATION FILES

<servlet - class>javax.faces.webapp.FacesServlet
</servlet-class>

<load-on- startup >1</load-on-startup>
</servlet >
<servlet-mapping>

<servlet-name >Faces Servlet </servlet-name >
<url-pattern >*.xhtml</url-pattern >

</servlet-mapping>

<filter >
<filter-name >AuthF ilter</filter-name >
<filter-class>com.inted.csdr.auth.AuthF ilter </

filter - class >
</filter >

<filter-mapping >
<filter-name >AuthF ilter</filter-name >
<url-pattern>/*</url-pattern>

</filter-mapping >
</web - app >

C.5.2 POM File

Listing C.7: CSDR pom.xml configuration file.

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="
http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">

<modelVersion>4.0.0</modelVersion>
<groupId >com.inted </groupId >
<artifactId>csdr</artifactId>
<packaging>war</packaging>
<version>1.0</version>
<name>csdr</name>
<url>http://maven.apache.org</url>

<properties >

<!--java version -->
<java-version>1.8</java-version>

<!-- JUnit -->
<junit-version>4.12</junit-version>

<!-- HTTP Servlet -->
<javax.version>2.5</javax.version>

<!-- ODATA -->

152

http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd
http://maven.apache.org%3c/url

APPENDIX C. CONFIGURATION FILES

<odata.version>4.2.0</odata.version>

<!-- SLF4J LOGGER -->
<slf4j .version>1.7.13</slf4j .version>

<!-- Kundera -->
<kundera.version>3.4</kundera.version >

<!-- MySQL -->
<mysql.version>5.1.20 </mysql.version>

<!-- Maven compiler plugin -->
<compiler-plugin-version >3.3 </compiler-plugin -

version >

<vaadin.version>7.6.2</vaadin.version>
<vaadin.plugin.version>${vaadin.version}</

vaadin.plugin.version>

</properties >

<dependencies >
<dependency >

<groupId >junit </groupId >
<artifactId>junit</artifactId>
<version>${junit-version}</version>
<scope>provided</scope>

</dependency >

<dependency >
<groupId >javax.servlet </ groupId >
<artifactId>servlet-api</artifactId>
<version>${javax.version}</version>
<scope>provided</scope>

</dependency >

<!-- Olingo OData -->
<dependency >

<groupId >org.apache.olingo</groupId >
<artifactId>odata-server-api</

artif actId >
<version>${odata.version}</version>

</dependency >

<dependency >
<groupId >org.apache.olingo</groupId >
<artifactId>odata-server-core</

artif actId >
<version>${odata.version}</version>

</dependency >

153

APPENDIX C. CONFIGURATION FILES

<dependency >
<groupId >org.apache.olingo</groupId >
<artifactId>odata-commons-core </

artif actId >
<version>${odata.version}</version>

</dependency >

<dependency >
<groupId >org.apache.olingo</groupId >
<artifactId>odata-commons-api </

artif actId >
<version>${odata.version}</version>

</dependency >

<!-- Slf4j logger -->
<dependency >

<groupId >org.slf4j </groupId>
<artifactId>slf4j-api</artifactId>
<version>${slf4j .version}</version >

</dependency >

<dependency >
<groupId >org.slf4j </groupId>
<artifactId>slf4j-simple</artif actId >
<version>${slf4j .version}</version>

</dependency >

<!-- Kundera for MongoDB -->
<dependency >

<groupId >com.impetus.kundera.client </
groupId >

<artifactId >kundera-mongo < / artifactId>
<version >${kundera.version}</version>

</dependency >

<!-- Kundera for Redis -->
<dependency >

<groupId >com.impetus.kundera.client </
groupId >

<artifactId >kundera-redis < / artifactId>
<version >${kundera.version}</version>

</dependency >

<!-- Kundera for RDBMS -->
<dependency >

<groupId >com.impetus.kundera.client </
groupId >

<artifactId >kundera-rdbms < / artifactId>
<version >${kundera.version}</version>

</dependency >

154

APPENDIX C. CONFIGURATION FILES

<dependency >
<groupId >mysql</ groupId >
<artifactId>mysql-connector-java</

artif actId >
<version>${mysql.version}</version >

</dependency >

<dependency >
<groupId >com.impetus.kundera.core </

groupId >
<artifactId>fallback-impl< / artifactId>
<version >${kundera.version}</version>

</dependency >
<dependency >

<groupId >org.primefaces</groupId>
<artifactId>primefaces </artifactId>
<version>6.0</version>

</dependency >
<dependency >

<groupId >com.sun.faces< / groupId >
<artifactId>jsf-api</artif actId >
<version>2.2.13</version>

</dependency >
<dependency >

<groupId >org.primefaces.extensions </
groupId >

<artifactId>all-themes </artifactId>
<version>1.0.8</version>
<type>pom</type>

</dependency >
</dependencies>

<build >
<finalName>csdr</finalName>
<plugins >

<plugin >
<groupId>org.apache.maven.

plugins </groupId >
<artifactId>maven-compiler -

plugin</artifactId>
<version>${compiler-plugin-

version}</version>
<conf iguration >

< s ource >${java-version
}</source >

<target>${java-version
}</target >

</configuration >
</plugin >

</plugins >

155

APPENDIX C. CONFIGURATION FILES

</build >
</proj ect >

156

