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Abstract

The statistical production of antibaryons is considered within the canonical ensemble
formulation. We demonstrate that the antibaryon suppression in small systems
due to the exact baryon number conservation is rather different in the baryon–free
(B = 0) and baryon–rich (B ≥ 2) systems. At constant values of temperature and
baryon density in the baryon–rich systems the density of the produced antibaryons
is only weakly dependent on the size of the system. For realistic hadronization
conditions this dependence appears to be close to B/(B + 1) which is in agreement
with the preliminary data of the NA49 Collaboration for the p̄/π ratio in nucleus–
nucleus collisions at the CERN SPS energies. However, a consistent picture of
antibaryon production within the statistical hadronization model has not yet been
achieved. This is because the condition of constant hadronization temperature in
the baryon–free systems leads to a contradiction with the data on the p̄/π ratio in
e++e− interactions.
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1. Introduction

Among the first models of multiparticle production in high energy interactions were
statistical models [1, 2, 3]. In the last decade a significant development of these models
and the extension of the area of their applicability took place. The main reason for
this is a surprising success of the statistical approach in reproducing new experimental
data on hadron multiplicities in nuclear (A+A) [4] and elementary (e++e−, p+p, p+p̄)
collisions [5, 6]. One of the important results of the analysis of hadron yield systematics
at high energies (SPS and higher) done within the statistical models is the approximate
independence of the temperature parameter T = 160 ÷ 190 MeV from the system size
and collision energy [7]. This result can be attributed to the statistical character of the
hadronization process.

The statistical models are based on the key assumption that all microscopic states of
the system allowed by the conservation laws are equally probable. Calculations within
these models are straightforward when the mean number of particles of interest is large and
consequently it is enough to fulfill the conservation laws in the average sense, i.e., for the
macroscopic state. This is achieved by the introduction of parameters: the temperature T
and chemical potentials µi, which control correspondingly the average values of the system
energy density and its material content (e.g., baryon number, strangeness and electric
charge). In this case (grand canonical ensemble, g.c.e.) the mean particle multiplicities
are just proportional to the volume V of the system. The particle density and the ratio
of the multiplicities of two different particles often used for the comparison with the data
are volume independent.

This simple volume dependence is however not valid any more for a small system in
which the mean particle multiplicity is low. In this case (canonical ensemble, c.e.) the
material conservation laws should be imposed on each microscopic state of the system.
This condition introduces a significant correlation between particles which carry conserved
charges. The correlation reduces the effective number of degrees of freedom and conse-
quently leads to the c.e. suppression of the ’charged’ particle multiplicity when compared
with the result of the calculations done within g.c.e. A ’neutral’ particle (a particle which
does not carry conserved charges) does not feel the c.e. suppression in the small system, its
mean multiplicity remains proportional to the volume. Therefore, a different dependence
on the system volume is expected within statistical models for ’charged’ and ’neutral’ par-
ticles. The magnitude of the c.e. suppression of the ’charged’-’anticharged’ pair creation
increases with the mass of the lightest hadron needed to compensate the particle charges.
Therefore, a strong c.e. suppression may be expected for antibaryon production as the
mass of the lightest baryon is m ∼= 938 MeV which is much larger than the value of the
temperature parameter found in the hadronization models. The c.e. suppression is still
rather essential for strange particle production (see, e.g., [8]).

The above expectation seems to be violated by the preliminary data on antiproton
production presented recently by the NA49 Collaboration [9]. The p̄/π ratio is found
to be approximately the same for p+p interactions and central Pb+Pb collisions at 158
A·GeV (antiproton scaling). Thus the hadronization volume increases but the effect of
the c.e. suppression is not observed. The c.e. suppression can be expected in p+p inter-
actions because of the key difference between antiproton and pion: the antiproton carries
baryon number in addition to the electric charge carried by both particles. In order to
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compensate the electric charge of a produced particle it is enough to create an additional
charged pion. As the pion mass is much smaller than the nucleon mass, a significantly
stronger c.e. suppression is expected for antiproton production than for the pion pro-
duction, consequently it should lead to a strong violation of the experimentally observed
scaling. Thus the crucial question is whether the antiproton scaling can be understood
within the statistical model of hadron production in which the condition of exact baryon
number conservation is imposed. We note that the antiproton multiplicities in high energy
collisions were shown to approximately agree with the predictions of statistical models
[4, 5, 6]. However different versions of the models with different parameters were used to
fit various sets of data. Thus the question whether consistent description of the antiproton
data in the statistical model is possible is still opened.

The importance of the exact treatment of the material conservation laws within sta-
tistical models of strong interactions was first pointed out by Hagedorn [10] (see also
Refs. [11, 12]). Subsequently a complete treatment has been developed (see, e.g., [13] and
references therein) and applied to analyze the hadron yields in elementary collisions [5, 6].
In this letter we derive explicit analytical formulae to study the role of the exact material
conservation laws within the statistical model of hadronization and we use them to discuss
the antiproton scaling observed experimentally in Pb+Pb collisions at 158 A·GeV [9]. We
also discuss the data on the p̄/π ratio in e++e− interactions [14, 15] within the statistical
hadronization model.

2. Model formulation

Let us consider the system of baryons ’b’ and antibaryons ’a’ with total baryon number
B as the Boltzmann ideal gas in the volume V , at temperature T . The c.e. partition
function is

Z(T, V, B) =
∞
∑

N
(1)
b

,N
(1)
a

...
∞
∑

N
(j)
b

,N
(j)
a =0

... δK



B −
∑

j

(N
(j)
b −N (j)

a )



 (1)

×
∏

j

(λ
(j)
b zj)

N
(j)
b

N
(j)
b !

(λ(j)
a zj)

N
(j)
a

N
(j)
a !

,

where the index j runs over all (non-strange) baryon states N,∆, N∗, ..., and the single
baryon (antibaryon) partition function reads

zj = zj(T, V ) =
gjV

(2π)3

∫

d3k exp[−(k2 +m2
j )

1/2/T ] = (2)

=
gjV

2π2
T m2

j K2(mj/T ) ≡ V fj(T ) .

The baryon mass and the baryon degeneracy factor are denoted here by mj and gj,

respectively. Auxiliary parameters λ
(j)
b and λ(j)

a are introduced in order to calculate the
mean number of baryons and antibaryons and they are set to unity in the final formulae.
By expressing δK as

δK(n) =
1

2π

∫ 2π

0
dφ e−inφ ,
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Eq. (1) becomes

Z(T, V, B) =
1

2π

∫ 2π

0
dφ e−iBφ

∏

j

∞
∑

N
(j)
b

=0

∞
∑

N
(j)
a =0

(λ
(j)
b zj e

iφ)N
(j)
b

N
(j)
b !

(λ(j)
a zj e

−iφ)N
(j)
a

N
(j)
a !

=

=
1

2π

∫ 2π

0
dφ e−iBφ exp





∑

j

zj(λ
(j)
b eiφ + λ(j)

a e−iφ)



 . (3)

This form of the c.e. partition function allows one to derive the mean numbers of baryons
and antibaryons

〈N (j)
b 〉 =

(

∂ logZ

∂λ
(j)
b

)

λb=λa=1

= zj
Z(T, V, B − 1)

Z(T, V, B)
, (4)

〈N (j)
a 〉 =

(

∂ logZ

∂λ
(j)
a

)

λp=λa=1

= zj
Z(T, V, B + 1)

Z(T, V, B)
. (5)

For λb = λa = 1 the partition function (3) can be presented as the modified Bessel function

Z(T, V, B) =
1

2π

∫ 2π

0
dφ e−iBφ exp(2z cosφ) = IB(2z) , (6)

where z ≡ ∑

j zj . This yields final expressions for the mean number of baryons and
antibaryons

〈N (j)
b 〉 = zj

IB−1(2z)

IB(2z)
, 〈N (j)

a 〉 = zj
IB+1(2z)

IB(2z)
. (7)

As the exact baryon number conservation is imposed on each microscopic state it is
evidently fulfilled also by the average values (7):

〈Nb〉 − 〈Na〉 ≡
∑

j

〈N (j)
b 〉 −

∑

j

〈N (j)
a 〉 = B , (8)

as indeed can be easily seen from the identity In−1(x)−In+1(x) = 2nIn(x)/x [16]. Eq. (7)
is valid for all combinations of B and z values. For a specific case of B = 0 in the nucleon–
antinucleon gas (i.e., no resonances included) our results (7) are reduced to the result of
Rafelski and Danos [12].

The c.e. expressions for the mean number of baryons and antibaryons can be further
simplified for the two limiting cases: z ≪ 1 (small systems) and z ≫ 1 (large systems).
Using the representation of In as the infinite series [16]

In(2z) =
∞
∑

k=0

zn+2k

k!(n+ k)!
,

one obtains for small systems

〈N (j)
b 〉 ∼= B

zj

z
+

zj · z
B + 1

+ o(zj · z3) , 〈N (j)
a 〉 ∼= zj · z

B + 1
+ o(zj · z3) . (9)
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The dependence 〈Na〉 ∝ V 2/(B+1) is therefore observed from Eq. (9) for the antibaryon
yield in small systems. Such a dependence can be intuitively understood from the ki-
netic picture of the baryon–antibaryon pair creation and annihilation. Let’s consider the
time dependence Na(t) (the time averaging of Na(t) should reproduce our statistical av-
erage 〈Na〉). At each time moment the value of Na(t) equals 0 or 1 (configurations with
Na(t) ≥ 2 can be safely neglected as 〈Na〉 ≪ 1). The kinetics of the evolution of Na(t) is
defined by the frequency ω of the baryon–antibaryon pair creation and the life–time ∆t
of the produced baryon–antibaryon pair: 〈Na(t)〉 = ω∆t. As a baryon–antibaryon pair is
locally produced in any point of the system we have ω ∝ V . Being produced as baryon–
antibaryon pair the antibaryon can be then locally annihilated by any baryon existing in
the system. Therefore, ∆t ∝ 1/nB (nB is the density of baryons). nB = 1/V for B = 0
(as only one baryon exists in the volume V ), and nB = (B+1)/V if B baryons are present
in the system before the baryon–antibaryon pair creation. These lead to the dependence
of the antibaryon number on V and B as given by Eq. (9).

For large systems (z ≫ 1) the c.e. becomes equivalent to the g.c.e. where the partition
function and the average number of baryons and antibaryons are calculated as

Z(V, T, µB) =
∑

b

exp

(

µB b

T

)

Z(T, V, b) = exp
(

zeµB/T + ze−µB/T
)

, (10)

〈N (j)
b 〉 = zj exp(µB/T ) , 〈N (j)

a 〉 = zj exp(−µB/T ) . (11)

Here µB is a baryon chemical potential which using Eq. (8) is defined for B = 〈b〉 ≥ 0 as:

exp(µB/T ) =
B

2z
+

√

1 +
(

B

2z

)2

. (12)

Note that the function fj = fj(T ) introduced in Eq. (2) has the physical meaning of the
density of the j-th baryon and antibaryon in the g.c.e. formulation for µB = 0. Using the
uniform asymptotic expansion of the modified Bessel functions at n→ ∞ [16]

In(nx) ∼= 1√
2πn

exp(nη)

(1 + x2)1/4

[

1 + o
(

1

n

)]

; η ≡
√

1 + x2 + ln
x

1 +
√

1 + x2
, (13)

results (11) and (12) for the g.c.e. are also easy to obtain from the c.e. (7) in the ther-
modynamical limit V → ∞, B → ∞ with B/V ≡ ρB = const(V ).

In order to remove a ’trivial’ linear dependence of the particle multiplicities on the
system volume it is convenient to make a comparison between the particle ratios from the
model and the experimental data. In the statistical model the multiplicity of any ’neutral’
meson state M is just proportional to the volume (〈NM〉 = zM = V fM(T )) for both small
(c.e.) and large (g.c.e.) systems. Therefore, the system volume dependence of the ratio
〈Na〉/〈NM〉 at fixed temperature is the same as for the antibaryon density. From Eqs. (7)
and (11) the antibaryon densities for the c.e. and g.c.e. are equal to

〈N (j)
a 〉
V

|ce ≡ n(j)
a |ce= fj

IB+1(2z)

IB(2z)
= fj

IB+1(xB)

IB(xB)
∼= fj

x

2

B

B + 1
, (14)

〈N (j)
a 〉
V

|gce ≡ n(j)
a |gce= fj exp(−µB/T ) = fj

x

1 +
√

1 + x2
, (15)
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where f ≡ ∑

j fj, x ≡ 2z/B = 2f/ρB, and the last approximation in Eq. (14) is valid for
small systems only. Note that introducing the variable x we have transformed the finite
size V -dependence of the c.e. density (14) into its dependence on the baryon number
B. Eqs. (14,15) give us the primary thermal density for all individual antibaryon states
j. Each non-strange resonance (anti)baryon state decays finally into (anti)nucleon plus
meson(s). Therefore, the total (primary plus resonance decay) antinucleon density equals
to the total thermal antibaryon density, na =

∑

j n
(j)
a and is given by Eqs. (14,15) with

the substitution of fj by a sum f =
∑

j fj .
For the purpose of the following discussion we define a canonical suppression factor

Fcs ≡ (na)ce

(na)gce

. (16)

It quantifies the antinucleon suppression due to the exact baryon number conservation.
We note also that the suppression factor Fcs (16) is the same for any individual antibaryon
state.

3. Discussion

The results derived in the previous section are used here to discuss antibaryon pro-
duction in high energy collisions.

In the B = 0 case the baryon and antibaryon densities are equal and Eqs. (14) and
(15) yield

n(j)
a |ce= n

(j)
b |ce= fj

I1(2z)

I0(2z)
∼= fj z, n(j)

a |gce= n
(j)
b |gce= fj , (17)

where the approximation for the c.e. density is valid for small system only. The canonical
suppression factor (16) for B = 0 is equal to

F 0
cs =

I1(2z)

I0(2z)
∼= f V . (18)

The approximation in Eq. (18) is valid for small system only (z ≡ fV ≪ 1).
The behavior of the canonical suppression factor F 0

cs (18) is shown by the solid lines
in Fig. 1 for T = 160 MeV, 170 MeV and 180 MeV, assuming that f is the sum of fj over
all non-strange baryons. The lines start from V = 5 fm3, which is approximately equal
to the estimate of the hadronization volume for e+ + e− interactions at

√
s = 29 GeV

[5]. One observes (see Fig. 1) a strong c.e. suppression of the (anti)baryon density. For
T = 160 MeV the (anti)baryon density increases by a factor of 10 from its value at
V = 5 fm3 to its V → ∞ g.c.e. limit. For the small systems the (anti)baryon density
increases approximately linearly with V , i.e., the (anti)baryon multiplicity for the small
systems is proportional to V 2. The c.e. suppression becomes less pronounced and the
volume region with linear increase of the (anti)baryon density is reduced for increasing
temperature.

Let us now turn to the antibaryon production in baryon rich system. In the analysis of
data on particle multiplicities in p+p, p+A and A+A collisions one usually assumes that
all participating nucleons in the collisions (wounded nucleons) take part in the statistical
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hadronization of the system. It means that in the analysis of the NA49 results on antipro-
tons from p+p interactions to central Pb+Pb collisions at 158 A·GeV we should study
statistical systems with 2 ≤ B ≤ 400. It was found that the mean multiplicity of pions
per wounded nucleon increases (at the SPS collision energies) only by about 20% when
going from p+p interactions to central Pb+Pb collisions [17]. The pion to baryon ratio
in the statistical model is determined by two parameters: the temperature and baryon
density. Thus as the temperature is found to be constant (T = 175 ± 15 MeV) we con-
clude that the baryon density at hadronization in nuclear collisions at 158 A·GeV is also
approximately constant.

Therefore, for the comparison with the NA49 results we study the evolution of the
antibaryon density with increasing net baryon number B at T = const and ρB = const.
The c.e. suppression factor (16) is found at these conditions from Eqs. (14,15)

FB
cs =

1 +
√

1 + x2

x

IB+1(xB)

IB(xB)
; x ≡ 2f

ρB

. (19)

Its B-dependence is plotted in Fig. 2 for several different values of the parameter x. Note
that our assumption T = const and ρB = const for statistical hadronization at different
values of B can be substituted by a weaker one, x = const. From Fig. 2 one observes that
the c.e. suppression of antibaryon density becomes stronger at high baryon density (i.e.,
small x). For x < 1 the c.e. suppression FB

cs (19) becomes close to its x→ 0 limit:

FB
cs =

B

B + 1
. (20)

Eq. (20) shows that the strongest c.e. suppression of the antibaryon density is for the
B = 2 (nucleon–nucleon interactions) case and it leads to the suppression factor of 2/3.
This moderate effect of c.e. suppression is in strong contrast with the large c.e. suppression
(i.e., F 0

cs ≪ 1) in the baryon–free system. A mathematical reason of this very different
behavior for B = 0 and B ≥ 2 (with ρB = const(V )) is due to the fact that in the latter
case both the order of the modified Bessel functions and their arguments are dependent
on B (i.e., on V ) whereas in the B = 0 case only the argument increases with V .

The presence of non-zero baryon number B > 0 has a twofold effect on antibaryon
production. First, it suppresses the production of antibaryons: the additional factors
exp(−µB/T ) = x/(1 +

√
1 + x2) < 1 and 1/(B + 1) < 1 appear respectively in the ’large’

and ’small’ systems for the antibaryon density in comparison with the B = 0 case. On
the other hand, the c.e. suppression effect due to the exact baryon number conservation
becomes smaller: at fixed T and V the following inequality is always valid, FB

cs > F 0
cs. For

fixed B > 0 the c.e. suppression of antibaryons becomes smaller when ρB decreases and
it disappears completely (i.e., FB

cs → 1) in the limit ρB → 0 (and respectively V → ∞ in
order to keep the B value fixed). This is because the total number of baryon–antibaryon
pairs becomes large due to large V . Note that in this case the last approximation in
Eq. (14) is no more valid. Instead one should use the large argument asymptotic of the
modified Bessel functions.

Thus for B ≥ 2 systems at constant x = 2f/ρB the c.e. suppression factor FB
cs (19)

ranges between 2/3 and 1 for x≪ 1 and between (1 − 1/4x) and 1 for x≫ 1.
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Previous analyses of hadron production at the CERN SPS indicate large baryon den-
sities at hadronization. The typical values of T ∼= 170 MeV and µB

∼= 250 MeV found for
Pb+Pb collisions [4] lead to the estimate x = 2f/ρB = sh−1(µB/T ) ≈ 0.5. As seen from
Fig. 2 the c.e. suppression factor FB

cs (19) for this ’small’ value of x is close to its limiting
pattern B/(B+1) (20). In Fig. 3 the NA49 results [9] on the p̄/π ratio in p+p and Pb+Pb
collisions at 158 A·GeV are compared with this limiting pattern. From this comparison
we conclude that the model of statistical production of antiprotons at hadronization in
baryon–rich system correctly reproduces the observed antiproton scaling.

Let us return again to the case of the baryon–free system. The statistical model cal-
culations for e++e− [5] and p+p̄ [6] interactions include large c.e. suppression effects. As
discussed in the introduction we assume that the hadronization temperature reflects a
universal property of the hadronization process and therefore should be collision energy
independent. In the case of e++e− [5] interactions the hadronization volume is small and
therefore one expects approximate proportionality to V 2 of the multiplicity of nucleon–
antinucleon pairs but only a linear increase with V of the pion multiplicity. Therefore,
the p̄/π ratio ratio calculated within the model increases linearly with increasing pion
multiplicity. However experimental data [14, 15] contradict this expectation of the statis-
tical model. The p̄/π ratio which is plotted in Fig. 4 as a function of pion multiplicity for
e++e− interactions at different energies,

√
s = 14 ÷ 91 GeV, is approximately constant.

Within the discussed statistical hadronization model one can try to solve the problem
by assuming an increase of the temperature T with decreasing volume V . The function
f(T ) strongly increases with T which allows to compensate the c.e. suppression effect (to
keep the (anti)nucleon density, na

∼= f 2(T )V , constant) for moderate (of about 10 MeV)
changes of T . This indeed is observed in the fit results of the statistical model for the
e++e− and p+p̄ data: the increase of the volume is always accompanied with the decrease
of the temperature parameter [5, 6]. Thus one may argue that the hadronization condition
T = const has to be substituted by a different criterion which should explain the decrease
of the temperature with increasing size of the system in e++e− and p+p̄ interactions. The
constant energy per particle was recently discussed as a chemical freeze–out condition [18].
The detailed study of this question is, however, outside of the scope of the present paper.
We note only that the statistical production of heavy particles (e.g., J/ψ mesons [19])
is very sensitive to the temperature parameter. Their yields, therefore, can be used to
clarify the problem.

4. Summary

The role of baryon number conservation in the calculations of antibaryon multiplicity
within statistical model of hadronization was investigated. We derived explicit analyt-
ical formulae for the antibaryon multiplicity in baryon–free and baryon–rich small and
large systems. This formalism was further used to discuss antiproton scaling observed
experimentally in A+A collisions. The statistical model with constant hadronization
temperature correctly reproduces the weak dependence of the p̄/π ratio on the system
size in p+p and nuclear collisions at the CERN SPS energy. A description of the ratio of
J/ψ mesons to pions within the statistical hadronization model requires also a constant
temperature parameter in p+p and A+A collisions at the CERN SPS. However, the same
model with T = const does not give a natural explanation of the approximate indepen-
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dence of the p̄/π ratio of collision energy in e++e− interactions. Therefore, a consistent
description of hadron production within the statistical hadronization model has not yet
been achieved.
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Figure 1: The solid lines show the c.e. suppression factor F 0
cs (16) for T = 160 MeV,

170 MeV and 180 MeV (from bottom to top) for B = 0.
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Figure 2: The finite size B-dependence of the antibaryon production in baryon rich
(B ≥ 2) systems at different values of the variable x (x ≡ 2z/B = 2f/ρB). The solid
lines show the c.e. suppression factor FB

cs (19) for x=1 and x=5 (from below to above).
The lower dotted line corresponds to the limiting B/(B + 1) behavior (20).
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Figure 3: The NA49 data [9] on the antiproton to pion ratio (〈Nπ〉 ≡ (〈Nπ+〉+〈Nπ−〉)/2)
in p+p (square) and centrality selected Pb+Pb (dots) collisions at 158 A·GeV are plotted
as a function of the mean number of wounded nucleons, 〈NP 〉. The dependence of the
ratio on 〈NP 〉 expected within the statistical model, 〈NP 〉/(〈NP 〉+1), is shown by dotted
line, the function is normalized to the experimental data.
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Figure 4: The antiproton [14] to πo [15] ratio in e+e− annihilation at
√
s = 14, 22, 29

35 and 91 GeV is plotted as a function of mean multiplicity of πo mesons, 〈Nπo〉. In
order to increase the significance of the data the antiproton multiplicity was calculated as
average of proton and antiproton multiplicities. The dotted line indicates the proportional
dependence of the ratio on 〈Nπo〉 expected within statistical model for small systems. The
horizontal dashed line is shown for the reference.
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