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Abstract: 
 

This study has three major objectives: 1) to synthesize a series of structurally 

related BODIPY dyes, 2) to fabricate BODIPY embedded electrospun nanofibers, and 

3) to investigate and characterize the photophysical properties of all synthesized 

BODIPY dyes with a special focus on their ability to generate singlet oxygen. 

This thesis first explores the acid catalysed condensation reaction to produce two 

structurally analogous meso-substituted BODIPY dyes based on cuminaldehyde and 

4-dimethylaminobenzaldehdye.  In order to enhance the rate of ISC and promote 

the generation of reactive oxygen species bromine atoms were then attached to 

the BODIPY 2,6-positions.  These BODIPY dyes were then embedded in a 

polystyrene solution and electrospun into nanofibers.  The resulting nanofibers 

were found to be highly fluorescent, but were no longer able to generate singlet 

oxygen. 

Ion-sensitive BODIPYs were prepared from the dibrominated BODIPY dyes by 

employing a modified Knoevenagel condensation reaction to form a styryl bond 

with 4’-formylbenzo-15-crown-5 at the 3,5-position of the BODIPY core. 

Changes in the morphology and position of the absorption and emission spectra of 

these crown ether-styryl BODIPY dyes were observed in the presence of sodium 

ions.  These results imply that crown ether-substituted BODIPY dyes could function 

as ion sensors  
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1.1 4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) dyes  

 

1.1.1 History and Applications 

 

Difluoroboron-complexed dipyrrins were first identified by Treibs and Kreuzer in 

1968.1  These compounds were identified when the authors attempted the acylation 

of 2,4-dimethyl pyrrole with acetic anhydride using BF3 as the catalyst.  Instead of the 

desired pyrrole they noted the formation of a highly fluorescent product which 

resulted from the complexation of a boron atom following the acid catalyzed 

condensation of the two pyrrole units.  They went on to synthesize a number of 

different difluoro-complex dipyrrins and noted that these new molecules have intense 

absorbance around 500 nm and are highly fluorescent.1  After their initial paper very 

little research was reported on these dipyrrin complexes until 1989 when Monsma et 

al. demonstrated the potential of these dyes for the fluorescent imaging of cells 

(Figure 1).2 

 
Figure 1:  The 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) core including 
the IUPAC number sequence used for naming BODIPY dyes  (unsubstituted BODIPY). 
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This resulted in a sharp rise in interest in these molecules and has led to their 

development for a number of applications beyond the staining of cells.3  Monsma 

abbreviated the long name: 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene to the more 

familiar BODIPY as these dyes are now usually known.  It has been suggested that 

BODIPY dyes could replace fluoroscein for biolabelling due to their superior 

photostablity.4  The utility of BODIPY dyes for use as lasers dyes5,6,7 and solar 

collectors8,9 was also explored due to their remarkable photophysical properties.  In 

recent years there has been a strong focus on the synthesis of water soluble and near 

infrared (NIR) region BODIPY dyes for use as biolabels10,11 and in cellular imaging 

(Figure 2).12,13,14 

 
Figure 2:  Strategies to improve the water solubility of BODIPY dyes target 
virtually every position of the BODIPY core.  (See Table 1 for a summary of 
photophysical data.) 

 

While having the ability to absorb red light is an important characteristic for biological 

applications it was rather incidental in this work and was used as a diagnostic indicator 

rather than a required property.  
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Figure 3 highlights examples from the literature of BODIPY dyes that have been used 

for various applications.  Amongst the most important in this regard are their use as 

fluorescent sensors for pH15,16,17 and the detection of a number of environmentally 

significant cations, such as Hg2, Cu2, Cr3and Zn2).12,18,19,20  The detection of anions21 

and biomolecules22 are still being investigated by a number of groups due to the huge 

structural diversity afforded by the BODIPY core (Figure 4). The initial report by 

Nagano’s group, that the BODIPY core could be modified to enhance the generation of 

cytotoxic singlet oxygen has led to research exploring their potential as photodynamic 

therapy (PDT) agents.23,24,25,26,27 

 
Figure 3: Applications highlighting the versatility of substituted BODIPY dyes.  (See 
Table 1 for a summary of photophysical data.) 
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Figure 4:  Examples from the literature of BODIPY dye-based sensors.  (See Table 1 for 
a summary of photophysical data.) 

 

1.1.2 General Properties of BODIPY dyes 

 

BODIPY dyes possess a number of favourable photochemical properties.  They are 

intensely coloured with high molar extinction of coefficients between 40,000100,000 

M1 cm1 being widely reported.28  Unfunctionalized BODIPY dyes typically absorb in 

the of 490520 nm region and are usually resistant to changes in solvent polarity due 

to their rigid structure and internal zwitter ionic configuration (Figure 5).28,29  The 

absorption spectrum of a BODIPY dye tends to be dominated by a single absorption 

band that is associated almost entirely with the S0 → S1 (π → π*) transition. A shoulder 

is typically observed on the high-energy side of the main absorption band in the 

475485 nm region due to a 01 vibrational transition.30  A weak transition has also 
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been observed as a weak absorption band in the 300400 nm region and has been 

attributed to the S0 → S2 (π → π*) transition.30  The band maxima in the electronic 

absorption and emission spectra can be shifted by attaching substituents at various 

positions of the BODIPY core.  BODIPY dyes can be synthesized for biological 

applications such as photodynamic therapy, provided that their main spectral band is 

shifted enough to allow them to absorb light in the NIR region.31 

 
Figure 5: Ground state electronic absorption (yellow) and fluorescence 
emission (green) spectra of a meso-substituted BODIPY dye. 

 

The intense colours of BODPIY dyes are often clearly distinct from those of the starting 

materials which make it possible to qualitatively assess the success of synthetic 

reactions based on the colour of the solution.  Reactions involving BODIPYs are 

therefore relatively easy to monitor and purification using chromatography is 

relatively straightforward given their high solubility in a wide range of organic solvents .  

Another characteristic commonly observed with BODIPY dyes is their high 

fluorescence emission intensity (Figure 6).  The ability of BODIPY dyes to fluoresce 

has been extensively studied and has generally been considered to be the single most 
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important characteristic that the dyes possess.3,32  Typically BODIPYs have narrow 

emission bands in the 500550 nm region, but as with their absorption properties this 

band can be red shifted into the 700 nm range 3,31 after structural modification.  Solid 

state fluorescence is observed in BODIPYs that have bulky substituents at the boron or 

meso-positions.  This is attributed to steric hindrance between BODIPY dye molecules 

in solution which reduces aggregation and thus concentration based quenching of 

their fluorescent state when the solvent is removed. 33  Some BODIPY dyes are such 

potent fluorophores that it is possible to observe their fluorescence even in ambient 

light.34  Fluorescence quantum yields for BODIPY dyes can vary from near zero to 

almost 1.0 depending on the nature of the substituents on the core and the chemical 

environment.35 (see section 1.4.3).  This has enabled for the development of a number 

of “off-on” fluorescent sensors.  The characteristically small Stokes shift (ca. 300 cm1), 

the difference in wavelength between the band maxima of the absorbed and emitted 

light for the S0 → S1 transition, observed for BODIPY dyes arise as a result of their rigid 

structure which prevents non-radiative deactivation of the excited state and results in 

the S0 and S1 states having similar potential energy surfaces .35,36  The fluorescence 

lifetime of BODIPY dyes is typically in the single digit nanosecond (37 x 10-9 s) range.37  

High fluorescence quantum yields and short lifetimes make BODIPY dyes highly 

suitable for imaging and sensing applications.38  Unsubstituted BODIPY dyes do not 

phosphoresce due to a low rate of intersystem crossing (ISC).  But, Nagano et al. were 

able to demonstrate that the spin-selection rule could be relaxed by attaching a 

halogen atom to the BODIPY core and that halogenated BODIPY dyes do phosphoresce 

(see section 1.4.1).23  BODIPYs are renowned for being highly stable chemically and 
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thermally, and are unusually photostable due to their high oxidation potentials and 

their neutral charge.23,39 

 
Figure 6:  (a) Fine crystals of meso-phenyl BODIPY dye.  (b) Solid state 
orange fluorescence observed upon irradiated by UV light.  (c) A solution of 
yellow meso-phenyl BODIPY in CHCl3.  (d) The intense green fluorescence of 
meso-phenyl BODIPY under UV irradiation.  

 

Unlike porphyrins and pthalocyanines BODIPY dyes are not prone to aggregation.35  

Although BODIPYs are highly soluble in most organic solvents, they tend to be 

insoluble in aqueous solutions.  A number of water soluble BODIPYs have been 

synthesized to address this shortcoming for those applications that require water 

solubility.14,40,41,42,43 

 

1.1.3 BODIPY Structure  

 

BODIPY dyes are heterocyclic molecules with core structures that are comprised of 

two carbon atom linked pyrrole rings that are complexed by a BF2 moiety.  An 

interpyrrolic methine bridge (referred to as the meso-carbon) joins the two pyrrole 
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groups to form the dipyrromethene.44  Despite displaying properties that are typical of 

aromatic compounds, BODIPY dyes are not aromatic as they do not obey Hückel’s rule.  

Their pseudo-aromatic behaviour arises as a result of coordination with a boron atom 

which forces the dipyrromethene into a rigid planar conformation.29,30  BODIPY dyes 

are structural analogues of porphyrins (Figure 1 and Figure 7) and are numbered 

according to the IUPAC nomenclature for porphyrins .  For this reason, they have 

sometimes been referred to as “porphyrins little sister” by some researchers .3  The 

versatility of BODIPY dyes can be attributed to the ease with which structural changes 

can be made to the unsubstituted core.35 

 

Figure 7:  A structural comparison of an unsubstituted BODIPY dye to 
that of free base porphyrin.  

 

1.1.4 Synthesis of BODIPY dyes 

 

The synthesis of BODIPY dyes is often based on pyrrole condensation reactions, which 

have been extensively studied in the context of porphyrin chemistry (Scheme 1).45  

Acid catalysis of an acid anhydride (a)1, aldehyde (b)46, or acid chloride47, in the 

presence of excess pyrrole leads to the formation of dipyrromethane.  The resulting 

dipyrromethane is highly unstable, so it is important to carry out the oxidation 
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reaction and complex the dipyrromethene that is formed with BF3OEt2 as soon as 

possible to form the BODIPY dye.  Oxidation is usually carried out with 2,3-dichloro-

5,6-dicyano-1,4-benzoquinone (DDQ) or p-chloranil and since basic conditions are 

required for boron complexation, a tertiary amine is usually employed as the base.35  

Synthesis of the unsubstituted BODIPY core is complicated by the instability of the 

required dipyrromethene.36  It is far easier to start with a substituted pyrrole which 

can prevent tripyrromethane or porphyrin formation by blocking polymerization of the 

pyrrole units.  A vast number of substituted BODIPYs can be synthesized through 

careful consideration of the starting pyrrole.  Post-synthetic structural modifications 

are possible due to the stability of the BODIPY core.32  The zwitterion caused by 

electronegativity differences between the heteroatoms within the BODIPY core 

provides sites that are vulnerable to both electrophilic and nucleophilic attack29 

(Figure 1). 

 
Scheme 1:  The acid-catalysis of acid anhydride (a), or aldehyde (b) with pyrrole to 
enable the synthesis of basic BODIPY dyes. 

 

 

1.1.5 Functionalization of the BODIPY Core 
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BODIPY dyes are well known for their structural diversity which is due to the stability 

of the BODIPY core.  As a result, substituents have been attached to virtually every 

position of the BODIPY core (Figure 1).  This section seeks to explore the structural and 

photophysical properties of each of these positions. 

 

C8ormeso-position: 

The bridging carbon at the 8-position of the BODIPY core is referred to as the 

mesocarbon.48  The easiest method for substitution at the meso-position is via the 

acid catalysed condensation of pyrrole with an aromatic aldehyde followed by 

oxidation and BF3 complexation (see section 1.1.4).  A wide variety of meso-

substituted BODIPYs have been synthesised in this manner by changing the starting 

aldehyde.  Figure 8 provides some examples of these BODIPYs and highlights one of 

the novel BODIPYs that was synthesized in this work.  Substitution at this position 

often has little to no effect on the UV-visible absorption spectrum because they lie out 

of the plane of the BODIPY core resulting in poor conjugation with the π-system, but 

can greatly affect the fluorescence emission of the dye through photon-induced 

electron transfer (PET) processes.16,30  Adding a substituent at this position can lead to 

a quenching of fluorescence emission, due to the presence of low lying charge transfer 

states between the BODIPY core and the meso-substituent.32,49,50  When bulky groups 

are added at the ortho-positions intense fluorescence is observed, as the steric 

hindrance caused by the bulky groups prevents the non-radiative decay that is caused 

by free rotation.4,35  The para-position of the meso-substituent is ideal for linking the 

BODIPY dye with other macromolecules;27 water solubilising groups;14 or 
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nanomaterials as substituents at this position have little effect on the absorbance 

properties of the BODIPY dye.51  The effect of replacing the meso-carbon with a 

nitrogen atom has also been explored.  The resulting aza-BODIPY dyes have excellent 

NIR absorption properties.24,52 

 
Figure 8: A selection of meso-BODIPY dyes taken from the literature 
highlighting the novel meso-(p-isopropylphenyl) BODIPY synthesized in this 
work. (See Table 1 for a summary of photophysical data).53 

 

C1 and C7: 

These positions lie next to the carbon atoms directly adjacent to the meso-carbon and 

are of least interest when attempting to change the photochemical properties of the 

BODIPY core.54  They are, however, structurally significant positions which are most 
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commonly left unsubstituted or occupied by methyl groups.  Halogen atoms and fused 

rings have also been incorporated at these positions and utilized to expand the π-

conjugation of the BODIPY core.4,39,55  Adding methyl groups, to the 1,7-positions 

serves a two-fold purpose.  By blocking these positions the methyl groups can 

eliminate or reduce undesired polymerization of the dipyrromethene unit, to form 

tripyrrolemethene or porphyrins, leading to improved reaction yields.45  The methyl 

groups also prevent rotation of phenyl rings at the meso-carbon.  This causes a 

decrease of energy loss due to vibrational motion and an increase in fluorescence 

quantum yields (Figure 9).32,49  Varying the starting pyrrole, or post-synthesis 

halogenation of unsubstituted BODIPYs, has been shown to be an effective method for 

functionalizing these positions.56 

 
Figure 9:  Steric hindrance caused by the methyl groups at the 1,7-positions 
minimizes energy loss from the meso-substituents to vibrational motion (a) and the 
methyl groups at the 3,5-positions prevent polymerization of the dipyrrin core (b). 

 

C2 and C6: 

The carbons located at the middle of the pyrrole ring that lie furthest from each other 

are referred to as the 2,6-positions.  In molecular modelling calculations these 

positions have been shown to have the least positive carbon atoms in the BODIPY core 
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and hence are the most susceptible to electrophilic attack.23,57  The electronic 

structure of the BODIPY core reveals that the LUMO of the BODIPY π-system has a 

nodal plane at these positions, while the HOMO has a significant molecular orbital 

coefficient.30  As a result, the addition of substituents at these positions can have a 

large effect on both the absorbance and emission properties of the BODIPY dye.  

Electron withdrawing groups (EWG) stabilize the HOMO orbital increasing the 

HOMOLUMO band gap and hence cause a blue shift of the maxima of the main 

spectral bands, while electron donating groups (EDG) destabilize the HOMO orbital 

narrowing the HOMOLUMO band gap resulting in a red shift of the main spectral 

bands.30,58  Carboxylic57, amino,58, formyl,59 nitro,60 and sulphono61 groups have all 

been added to these positions to impart different functionalities to the BODIPY core 

(Figure 10).  By fusing aromatic rings to these positions it is possible to further 

extend the π-system and rigidify the BODIPY core, resulting in a significant red shift of 

the maxima of the main spectral bands.62  BODPIY units have also been linked at the 

2,6-positions to form polymeric BODIPY dyes.60,61  Of particular interest is 

halogenation at these positions.  It has been shown that adding bromine or iodine 

atoms at these positions causes a red-shift of the BODIPY spectra.23,39  Although the 

halogen atoms are EWGs they are resonance donators due to the lone pairs of 

electron pairs that they possess and this results in a net decrease in the HOMOLUMO 

band gap.  Halogenation at these positions causes a sharp decrease in the fluorescence 

quantum yields of the dyes due to heavy atom effect (see chapter 1.4.1).56 
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Figure 10: Some examples of BODIPY dyes substituted at the 2,6-positions.  (See 
Table 1 for a summary of photophysical data.) 

 

C3 and C5:  

The 3,5-position carbons lying closest to the boron atom are sometimes also referred 

to as the α-carbons.  Both the HOMO and LUMO orbitals possess significant molecular 

orbital coefficients at these positions, however the molecular orbital coefficient of the 

HOMO is larger than that of the LUMO.30  Substituents attached at these points affect 

the HOMO and LUMO orbitals to different degrees and thus have an effect on the 

photochemical properties of the dye (Figure 11).  If the BODIPY core is electron 

deficient, especially after 2,6-dihalogenation,55 then these carbons are the most acidic 

and are vulnerable to Knoevenagel condensation reactions.63  Water soluble 

substituents and substituents that extend the conjugation of the π-system are 

commonly attached at these positions.64 
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Figure 11: Some examples of BODIPY dyes substituted at the 3,5-
positions.  (See Table 1 for a summary of photophysical data.) 

 

4 and 4’: 

The fluorine atoms attached to the boron atom are denoted as the 4 and 4’ positions.  

Since the fluorine atoms are hard according to hard and soft acid and base (HSAB) 

theory, it is possible to replace them with other hard ligands.65  For example, 

ethanyl,7,8 methoxy,33 and various water solubilising groups40 have been used to 

replace the fluorine atoms (Figure 12).  These compounds tend to have greater Stokes 

shifts and are markedly less stable than the fluorine derivatives.28  Functionalization at 

these positions is often used to increase the light harvesting abilities of the BODIPY 

dye.7,8  It has also been demonstrated that solid state fluorescence can be achieved in 

this manner.33 
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Figure 12:  The replacement of the fluorine atoms at the boron centre of the 
BODIPY core have resulted in a number of highly conjugated BODIPY structures .  
(See Table 1 for a summary of photophysical data.) 

 

1.1.6 Halogenation of the BODIPY core 

 

The addition of halogen atoms (Cl,66 Br,67 I68) to the BODIPY core has been an topic of 

great interest in BODIPY research due to the wide range of further reaction 

possibilities that they make available.  Boens et al performed a number of nucleophilic 

substitution reactions, demonstrating the versatility of these halogenated BODIPYs .69  

These compounds have been employed in Pd catalysed coupling reactions6 and have 

formed the foundation for synthesising polymeric BODIPY chains.60  There are three 

commonly used strategies for introducing a halogen atom onto a BODIPY dye.  Initially 

the halogens were incorporated directly onto the pyrrole starting materials prior to 

dipyrromethane formation.70  The second method involves the incorporation of 

halogen atoms onto the dipyrrin precursors.  This, however, has only been reported 
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for the halogenation of aza-BODIPYs.  The third strategy involves the direct 

electrophilic addition of a halogen atom by taking advantage of the electron deficient 

nature of the BODIPY core.67  Attaching halogen atoms to the BODIPY core can alter 

the photophysical properties of the BODIPY dye in a number of interesting  ways.  The 

incorporation of halogen atoms can red-shift the BODIPY main absorption and 

emission bands and tend to cause a decrease in the fluorescence quantum yield of the 

BODIPY dye.  This allows for the fine tuning of the maxima of the main spectral bands, 

which can be useful for achieving the wavelengths required for biological or other 

applications.71  Halogenation of the BODIPY core also causes an intensification of the 

absorption band in the. 350400 nm region.  This makes it possible to populate the 

triplet excited state of the halogenated BODIPY dyes which allows these dyes to 

generate singlet oxygen.  Using larger halogens, or increasing the number of halogen 

atoms that are attached to the BODIPY core, increases the magnitude of these effects 

due to the heavy atom effect.72  However, Lakshmi and Ravikanth have reported that 

the relationship between the number of halogen atoms and the magnitude of their 

effects is non-linear and that adding more than four halogen atoms results in no 

further change in the photophysical properties of the BODIPY dye.39  It has been noted 

that after a certain number of halogen atoms has been exceeded, an increase in the 

fluorescence quantum yield is observed. 39,67  It has been suggested that the T1 → S1 

excited state transition competes with the S1 → T1 transition as both ISC processes are 

enhanced.73 
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Figure 13:  A series of halogenated BODIPY dyes highlighting the analogue 
chosen for this work.  (See Table 1 for a summary of photophysical data.) 

 

Lakshmi and Ravikanth noted that halogens cause a decrease in the reduction 

potential of the BODIPYs.39  Since there are only minor changes in the energy of the 

main absorption band for the S0→S1 transition, the converse also applies and the 

oxidation potential increases.  This helps to stabilize BODIPY dyes from degradation 

due to 1O2.38 

Halogen atoms have been added to virtually every position on the BODIPY core (Figure 

13).  In the absence of steric crowding the 3,5-positions have been shown to be the 

favoured positions for halogenation, followed by the 2,6- then the 1,7-positions.  

However in the context of 1,3,5,7-tetramethyl substituted BODIPY the 2,6-positions 
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are the most positive and were thus favoured for halogenation in the context of this 

study.54 

 

1.1.7 Styryl BODIPY dyes 

 

A useful method of adding functionality and extending π-conjugation in BODIPY dyes is 

through styryl bond formation.  A styryl radical is comprised of an aromatic ring that is 

attached to an ethylene group and has the chemical formula C6H5CHCHR (Figure 

14).  Styryl BODIPYs incorporate one or more of these univalent styryl fragments.74  

These styryl fragments can be incorporated directly onto the starting pyrrole.75  It is 

also possible to add one or more styryl groups to 1,3,5,7-tetramethyl-BODIPY due to 

the acidity of the methyl groups.63 

 
Figure 14: The structure of a styryl radical. 

 

A styryl bond can be formed between the 3-position methyl of the BODIPY and an 

aromatic aldehyde using a modified Knoevenagel condensation reaction.34  Mono-76,77, 

di-34,58 and tetra-styryl55 BODIPYs have been synthesized in this manner (Scheme 2).  

The main drawback of the Knoevenagel reaction is that water needs to be removed in 

order to drive the reaction equilibria forward to appreciable yields.  This can be 



36 

 

achieved through the use of a Dean-Stark trap or molecular sieves.78  Microwave-

assisted synthesis has been employed in order to reduce the normally long reaction 

times as well as to improve the reaction yields when preparing styryl-BODIPY dyes.77  

The introduction of styryl groups at the 3,5-positions modifies the absorption and 

emission properties of the BODIPY, making these positions important points of 

attachment for the development of molecular sensors.21,78,79,80  The addition of styryl 

fragments to the 3,5-positions of BODIPY dyes results in large red-shifts of the main 

bands in the BODIPY spectra with shifts of ca. 60 nm per styryl group commonly 

reported in the literature.31  In contrast, the introduction of styryl groups at the 2,6-

positions results in a marked decrease in fluorescence quantum yield and smaller red 

shift effects.58  Styryl groups are able to extend the π-conjugation system of a BODIPY 

dye which can prove useful for conjugating the BODIPY core to other light harvesting 

substituents, such as porphyrins, to the BODIPY core.38,81 

 

Scheme 2:  The Knoevenagel condensation of an aldehyde and a BODIPY 
dye. 
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1.1.8 Crown ether BODIPY dyes 

 

There has been comparatively little research on the photophysical effects of attaching 

crown ether moieties onto BODIPY dyes.  Most of the research on BODIPY-crown 

complexes involves substituting a formyl crown ether unit at the 3- and/or 5-positions 

by introducing crown-ether-substituted styryl groups through Knoevenagel 

condensation-type reactions82 or at the meso-position, through direct incorporation 

onto a benzaldehyde during the dipyrromethane synthesis step.83  Chelation of a 

cation by a meso-crown ether causes almost no change in the absorption spectra of 

BODIPY dyes since the phenyl crown lies out of the BODIPY plane,84 but significant 

effects are observed in the fluorescence emission spectra.22  Crown-ether-substituted 

styryl groups introduced at the 3,5-positions can affect both the absorption and 

emission spectra of the BODIPY.85  As with other styryl groups, crown ethers generally 

cause a red-shift of the main BODIPY spectral bands.86  Crown ethers can transform 

BODIPYs into powerful molecular platforms for detecting a number of environmentally 

significant cations by taking advantage of competing PET and intermolecular charge 

transfer (ICT) processes.87  To this end a number of aza (nitrogen containing)85 and thia 

(sulfur containing)87 crown ethers have been appended to various BODIPYs  (Figure 

15).82,88 

Ozlem and Akkaya synthesized a BODIPY that consisted of 3,5-di-styryl amino groups; a 

meso position benzo-crown ether; and 2,6-substituted di-iodo groups.84  They were 

able to demonstrate that this BODIPY behaved as a molecular AND logic gate that was 

able to produce a signal only when the two specific analytes (Na+ and H+) were present 

in solution.  The authors were the first to explore control of the singlet oxygen 
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generated by BODIPY by using crown ethers.  However they did not explore the 

fluorescence properties of this multi-functional dye. 

 
Figure 15:  Some examples of crown ether-BODIPY dyes, including their 
target cations, taken from the literature.  (See Table 1 for a summary of 
photophysical data.) 
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Table 1:  Photophysical data for selected BODIPY dyes taken from 
literature.  

Dye Solvent* 
λAbs 

(nm) 
Log ε 

(M1.cm1) 
λEm 

(nm)  F 
τF 

(ns)  Δ Reference 

Unsub 

BODIPY 
DCM 503 4.70 512 0.90 7.2 ---  

1 H2O 528 --- 552 0.41 
4.71 

(17.96) 
--- 14 

2 DCM 522 5.01 534 0.50 6.9 --- 40 

3 PBS 642 
4.89 

(4.74) 
655 0.22 --- --- 41 

4 PBS 521 --- 540 0.78 --- --- 43 
5 MeOH-TFA 500 --- 514 0.35 --- --- 17 
6 THF 525 4.90 530 0.90 6.5 --- 8 
7 No data reported. 2 
8 EtOAc 406 2.9 444 1.00 4.25 --- 5 

9 
DCM 

(DCM-TFA) 
534 

(533) 
4.97 

(4.92) 
550 

(546) 
0.05 

(0.04) 
--- 0.76 23 

10 THF 490 --- 512 --- --- --- 18 

11 
MeCN 

(MeCN-CN-) 
561 

(594) 
4.92 

(4.75) 
571 

0.2 
(0.01) 

--- --- 12 

12 --- --- --- --- --- --- --- 21 

13 --- 500 --- 506 --- 5.7 --- 4 
14 --- 494 --- 519 --- 5.8 --- 4 

15 
DCM 

(THF) 

501 

(501) 

4.98 

(4.84) 

511 

(509) 

0.63 

(0.79) 
- - 4 

16 --- --- --- --- --- --- --- --- 

17 --- --- --- --- --- --- --- --- 
18 EtOH 500 4.67 513 0.71 --- --- 53 

19 
H2O 

(H2O-NO2
-) 

497 

(507) 
--- 

510 

(521) 

0.32 

(0.84) 
--- --- 32 

20 --- --- --- ---- --- --- --- --- 
21 MeOH/H2O 500 --- 512 --- --- --- 17 

22 --- --- --- --- --- --- --- --- 
23 --- 510 --- 525 0.66 --- --- 56 

24 DCM 542 4.68 562 0.60 --- --- 61 
25 --- --- --- --- --- --- --- 60 

26 
DCM 

(DCM-TFA) 

616 

(578) 
--- (619) (0.01) 2.46 --- 57 

27 DCM 505 12.3 538 0.60 --- --- 58 
28 MeCN 597 --- 731 0.13 --- --- 31 
29 CHCl 3 530 --- 557 0.38 2.49 --- 37 
30 MeOH 571 4.04 585 0.34 --- --- 63 
31 Toluene 629 --- 641 0.59 --- --- 57 
32 DCM 700 4.93 739 0.18 --- --- 65 

33 Hexane 524 4.90 538 0.56 --- --- 33 
34 No data available. 7 
35 DCM 516 4.92 525 0.83 --- --- 64 

36 
CHCl 3 

(EtOAc) 
509 

(504) 
4.75 

(4.76) 
523 

(519) 
0.19 

(0.06) 
1.21 

(0.64) 
--- 39 

37 
CHCl 3 

(EtOAc) 
521 

(515) 
4.91 

(4.87) 
532 

(528) 
0.25 

(0.14) 
1.30 

(0.73) 
--- 39 

38 
CHCl 3 

(EtOAc) 

536 

(529) 

4.81 

(4.82) 

550 

(544) 

0.33 

(0.14) 

1.83 

(1.02) 
--- 39 

39 
CHCl 3 

(EtOAc) 

553 

(545) 
--- 

568 

(562) 

0.22 

(0.14) 

2.14 

(1.19) 
--- 39 

40 
CHCl 3 

(EtOAc) 

552 

(545) 
--- 

565 

(560) 

0.03 
(<0.01

) 

--- --- 39 

41 
CHCl 3 

(EtOAc) 
551 

(545) 
--- 

565 
(559) 

0.01 
(<0.01

--- --- 39 
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) 
42 DCM 538 --- 577 0.14 --- --- 59 

43 
DCM 
(THF) 

537 
(536) 

--- 
554 

(553) 
0.04 

(0.03) 
--- --- 23 

44 Isopropanol 589 --- 608 --- --- --- 34 
45 Isopropanol 657 --- 679 0.42 --- --- 34 
46 CHCl 3 700 --- 727 0.12 --- --- 54 

47 
THF 

(THF-Hg2+) 
720 

(630) 
--- 

740 
(650) 

--- --- --- 82 

48 
MeCN 

(MeCN-Ca 2+, 
Zn2+, Hg2+) 

692 
(626) 

--- (656) --- 
0.04 

(0.27) 
--- 78 

49 
MeCN 

(MeCN-
Mg2+) 

608 
(562) 

--- 
723 

(573) 
0.08 

(0.80) 
--- --- 85 

50 
THF/H2O 

(THF/H2O-

Hg
2+

) 

606 
(564) 

--- 
668 

(578) 
0.04 

(0.33) 
--- --- 87 

51 
MeCN 

(MeCN-TFA) 

630 

(660) 
--- --- --- --- 

Rel . 
rate 

1.0 
(6.1) 

84 

52 
MeCN/H2O 
(MeCN/H2O

-Hg2+) 

498 
(500) 

--- 507 --- --- --- 83 

*Brackets indicate the use of a  second solvent system or the presence of any additional analytes 
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1.2 Macrocyclic polyethers (Crown Ethers) 

 

1.2.1 History and Applications 

 

In the 1960s, Charles Pedersen managed to isolate small white crystals during an 

attempt to synthesize a ligand capable of binding divalent cations.  These crystals 

showed the ability to complex with the potassium ion which was deemed unusual 

enough at the time to warrant further study.89  Analysis revealed that these crystals 

were cyclic oligomers of dioxane. (-CH2-CH2-O-) now known as crown ethers.  While 

similar molecules had been reported by a number of other groups prior to Pedersen’s 

work,90,91 the cation complexes of these polyethers had not been investigated. 

 
Figure 16:  A series of increasingly complex polyethers named according to the 
nomenclature outlined by Pedersen.89 

 

Pedersen abbreviated the complex standard names of polyethers, such as 2,3,11,12-

dibenzo-1,4,7,10,13,16-hexaoxacyclooctadeca-2,I-1d iene, to shorter names such as 
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dibenzo-18-crown-6.89  The names of the polyethers were split into four parts which 

followed a set of simple rules: the first part, e.g. dibenzo, refers to any hydrocarbon 

rings that are attached to the crown, the second part, e.g. 18, represents the total 

number of carbon atoms in the ring; the third part, e.g. crown, provided the class of 

crown structure; and the fourth part, e.g. 6, refers to the number of heteroatoms in 

the ring (Figure 16).   

Originally crown ethers were made using only oxygen atoms, but this was 

subsequently expanded to include nitrogen (classed as aza crown in the third part of 

the nomenclature system)92 and sulphur (classed as thia crown)83 atoms.  What made 

crown ethers particularly interesting was their ability to bind to a number of different 

alkali and alkali-earth cations despite being neutral molecules.92  Pederson outlined 

the synthesis, properties and complexes of over thirty of these macrocycles, including 

the benzo-15-crown-5 used in this study.89  The subsequent intense research focus 

that followed, resulted in a large number of papers and patents.93  Pedersen, Lehn and 

Cram shared the 1987 Nobel Peace Prize for Chemistry for their contributions to the 

fields of macrocycles and the complexation of metal ions.93 

 

1.2.2 General Properties and Applications 

 

Crown ethers are particularly important in both colorimetric and fluorescent sensor 

applications as they offer a binding platform for various analytes, primarily cations .  

The binding of a cation by a crown ether unit can result in the formation of stable 

complexes.  This is often accompanied by detectable changes in optical or redox 

properties of the molecule.  A number of fluorescent dyes that incorporate crown 
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ether moieties have been reported, (Figure 17) but the study of BODIPY crown ether 

dyes is still in its early stages.  Another major application of crown ethers is in phase 

transfer catalysis, this makes crown ether conjugated molecules useful candidates as 

heterogeneous catalysts.  Crown ethers have found use in a number of different 

applications as: ion selective electrodes; anti-microbial agents (for E. coli), on 

nanotubes, and in organic LEDs.93  Crown ethers have been used in chromatography to 

successfully separate mixtures of enantiomers, drugs, and amino acids.  A highly 

attractive property of crown ethers is their low toxicity in the human body as some 

simple crown ethers have been shown to be less toxic than aspirin.93 

 

1.2.3 Structure and synthesis 

 

Crown ether macrocycles that contain as few as nine and as many as sixty carbon 

atoms have been reported in literature.  By some estimates crown ether variants 

number well into the thousands.91  Benzo derivatives are the most versatile because 

their aromatic ring is susceptible to electrophilic aromatic substitution.  Formylbenzo 

crown ethers can be synthesized either by ring closure of substituted catechols with 

glycol derivatives, or by direct substitution onto the aromatic ring (Scheme 3).91  These 

crown ethers possess cavity sizes between 1.7 and 2.2 Å which are ideal for 

complexing the small Na+ ion.94  A significant disadvantage of the benzo crown ether is 

that the carbon bond that is formed where the benzene ring and the crown ether 

moiety are fused is unusually long (highlighted in Figure 17) which causes the binding 

constant for the crown ether to be lower than it otherwise would be.91 
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Scheme 3:  The ring closure synthesis of 4-formylbenzo-15-crown-5. 

 

 
Figure 17:  Examples of fluorescent sensors based on crown ether 
moieties. 

 

1.2.4 Crown Ethers with Heteroatoms other than Oxygen (Figure 

18) 

 

Thia crowns are crown ethers that have had one or more of their oxygen atoms 

replaced by divalent sulphur atoms.93  These crown ethers bind poorly with alkali and 

alkali earth metals, but bind mercury and silver ions more selectively.93  The sulfur 

atom, points away from the centre of the ring, which causes the crown ether to be 
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distorted.  Therefore, the ions that are complexed by a thia-crown ether tend to lie 

outside of the crown cavity.  

Phosphorous crowns have been synthesized, but are rare due to air-sensitivity and 

difficulty of synthesis.91  They are more selective towards cobalt and nickel. 

The nitrogen atom is the most commonly substituted heteroatom because it is 

trivalent.  Therefore, the nitrogen atom can be directly functionalized without 

affecting the crown ether ring.  The lone pair of electrons on the nitrogen atom can be 

used to provide an off-on switch for fluorescent dyes that are attached to the crown 

by taking advantage of PET/ICT processes.78,85  Phenyl aza-crowns have low stability 

constants when complexing with metal ions.92 

 

 
Figure 18:  Some examples of crown ethers containing heteroatoms other 
than oxygen. (a) thia-crown; (b) aza-crown; and (c) aza-thia-crown ether. 
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1.2.5 Complexation of Cations (Figure 19) 

 

The ability of crown ethers to form stable complexes with alkali earth and transition 

metal ions has been the central focus of research on these molecules since these were 

first discovered.  Solvent effects are important when dealing with crown ethers as 

stable complexes will generally only form in the solvents from which the complex is 

stable enough to crystallize.  While crown ethers are neutral molecules their 

complexes are typically positively charged as the most commonly chelated materials 

include inorganic (such as Na+ or NH4
+) and biological cations (such as glutathione or 

lysine).22  Negatively charged crown ethers complexes have also been reported after 

chelation of various anions, but these remain relatively rare.  X-ray studies have 

revealed that crown ether complexes are typically 2D structures that possess D3d 

symmetry.95  Two of the most important aspects of crown ether chemistry are their 

complexation strength and selectivity.  Oxygen based crown ether rings tend to be 

highly selective only towards alkali and alkali-earth metal cations.  The most effective 

method for changing the selectivity of crown ethers is by replacing these oxygen 

atoms with other heteroatoms, such as nitrogen or sulfur, as these atoms are able to 

impart their affinity for different types of cations onto the crown ether.  

Another method for controlling the selectivity of crown ethers is by adjusting their 

cavity size.  Due to the hole size relationship the closer in size that the cation ionic radii 

is to the cavity radii of the crown ether, the easier it is for a complex to form.  

Therefore 15-crown-5 binds Na+ ions preferentially over K+ (and other group one 

cations) ions as the ionic radii of Na+ is similar in size to the cavity radii (1.72.2 Å), 

while the larger cavity radii of 18-crown-6 preferentially binds the larger K+ ions.  
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Crown ethers possess the ability to both bind and release cations.  The ratio of the rate 

at which a crown ether binds a cation over the rate at which it releases said cation 

(ks
1) is known as the stability constant, ks.  The stability constant for crown ethers is 

determined by the stability of the crown ether, the stability of the salt in solution, and 

the stability of the resulting complex.  ks values for simple crown ethers are reported 

to lie in the range of 106 M1 and are generally higher in low polarity solvents which 

cause stronger binding between the crown ether and the cation.  Polar solvents result 

in weaker binding, which causes the release of cations to occur more rapidly.93 

 

Figure 19:  Sodium complex formation for 15-crown-5. 
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1.3 Nanofibers and Electrospinning 

 

1.3.1 Nanofibers 

 

Nanofibers are elongated threadlike objects (these can be organic or inorganic) that 

have been engineered to have diameters in the 402000 nm range.96  They are one 

dimensional (1D) nanomaterials similar to nanowires and nanorods as only their 

diameters are confined to the nanometer range while the lengths are in the micron 

range.  They are generally non-woven materials, but recent advances have facilitated 

the weaving of nanofibers.97  Nanofibers have a higher surface area-to-volume ratios, 

smaller pore sizes, and higher tensile strength when compared to microfibers.  They 

can be manufactured from a wide range of raw materials and are highly versatile.  

Nanofibers have found applications in a number of fields including air and water 

filtration and treatment, in tissue engineering for medical research, as drug delivery 

vehicles in pharmaceutics, as supports for various nanomaterials, in wound dressings, 

as various gas and chemical sensors, and in the textile industry.98  Polystyrene was 

chosen as the base for the nanofibers that were fabricated in this work as it is a low 

cost material with many attractive qualities , such as chemical inertness; transparency; 

and low cost.  While the electrospinning of various Pc Nanofibers has been extensively 

investigated99,100,101 the electrospinning of BODIPY nanofibers is still a relatively 

unexplored field. 
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1.3.2 Electrospinning of Nanofibers 

 

While nanofibers can be fabricated through a number of other techniques such as 

drawing, template synthesis, phase and self-assembly, electrospinning is by far the 

most commonly employed method.98  Electrospinning is regarded as easy to use, 

relatively easy to scale up and cost effective method when compared to the other 

techniques.  

Electrospinning involves passing a charged polymer solution through a high vol tage 

electric field in order to collect fibers with nanoscale diameters  (Figure 20).  Once the 

polymer solution reaches a certain charge a jet of polymer is ejected from the droplet 

that forms at the tip of the needle.  The polymer jet travels to the low potential 

collector were it dries and gathers as a mat of nanofibers.  

 

Figure 20:  A schematic diagram detailing the electrospinning set-up. 
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1.4 Photophysical Properties of BODIPY dyes  

 

1.4.1 Jablonski Diagram 

 

The numerous photophysical processes that a BODIPY dye can undergo can be 

visualized using a Jablonski diagram, Figure 21.  Fluorescence is particularly important 

when working with BODIPY dyes.  The triplet excited state of BODIPY dyes are 

generally inaccessible as transitions from the singlet to the triplet state are spin 

forbidden.  These ISC transitions are usually weak, but they can be enhanced by 

increasing the atomic number of the atom, due to spin-orbit coupling which links the 

spin of the electron to its orbital angular momentum.  This phenomenon is termed the 

heavy atom effect.  Halogen atoms have been shown to successfully promote ISC in 

BODIPY dyes.  One of the aims of this project is to determine whether cation 

complexation by the crown ether unit has an effect on the rate of ISC. 

 

1.4.2 Fluorescence and Phosphorescence 

 

When a material absorbs electromagnetic radiation the electronic state of the material 

can be elevated from the ground state to an excited state.  Following Kasha’s rule 

relaxation from the lowest energy excited state back into the ground state can be 

accompanied by the emission of a photon if the spin multiplicity is retained.  

Fluorescence refers to the emission of a photon that accompanies the relaxation from 

the singlet excited state to the singlet ground state.  One of the very first and most 
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important properties that researchers observed with BODIPY dyes was their ability to 

fluoresce intensely.  Changes of solvent polarity or pH are less likely to affect BODIPY 

emission when compared to other fluorescent dyes as they are generally less sensitive 

to the chemical environment due to the rigid zwitter ionic structure of the BODIPY 

core.29 

 
Figure 21:  A Jablonski diagram showing the electronic transitions between the BODIPY 
ground (S0) state and first excited (S1) state.  The presence of the heavy halogen atoms on 
the BODIPY core promotes intersystem crossing (ISC) from the S1 state to the excited triplet 
(T1) state.  Energy transfer (ET) between the T1 state and molecular oxygen results in the 
generation of singlet oxygen.  

 

BODIPY fluorescence properties are highly dependent on the structure of the dye.  The 

BODIPY emission spectra can be easily manipulated by changing the substituents that 

are attached to the core of the dye.  Unsubstituted BODIPYs typically have an intense 

narrow emission spectra at ca. 510 nm, but a wide range of BOIDPY emission 

wavelengths have been reported, with some as low as 450 nm, and others extending 

well into the NIR region. 



52 

 

The process of photon emission from the relaxation of the triplet excited state to the 

triplet ground state is termed phosphorescence.  With regards to BODIPY dyes, until 

recently phosphorescence has rarely been reported, since generally there is negligible 

triplet state formation.  Heavy halogen atoms relax the spin-selection rule in turn 

enhancing the rate of ISC from the singlet to triplet excited state.23  It has proven 

difficult to directly observe phosphorescence from BODIPYs as the energy is either 

transferred back to the singlet state or into the environment via non-radiative 

pathways, but BODIPY phosphorescence spectra have been recorded by attaching 

multiple halogens to the BODIPY core and using cold solvents (78 K).73  Whilst direct 

phosphorescent properties are not reported in this work, ISC can be inferred indirectly 

from the detection of singlet oxygen radicals when the photosensitizer properties of 

the dyes are investigated. 

 

1.4.3 Fluorescence Quantum Yields (F) 

 

The definition of the fluorescence quantum yield from the IUPAC gold book is shown 

in Equation 1.104  It is the number of measurable events (which can be spectral, such 

as emission; or physical, such as the formation of a product) relative to the number of 

photons absorbed by a given system. 

Equation 1:  Standard definition of fluorescence quantum yield (F). 
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When fluorescence emission is the event of interest the fluorescence quantum yield 

can also be expressed as shown in Equation 2 which gives the fluorescence quantum 

yield as the rate of the emission process divided by the sum of the rates of all other 

deactivation processes. 

Equation 2:  Alternative definition of fluorescence quantum yield (F). 

 

         

 

In Equation 2, kf is the rate of fluorescence and kd refers to the sum of the rate of all 

other processes, including fluorescence, that depopulate the excited state.  It is usually 

determined using a comparative method in which the ratio of the number of emitted 

to absorbed photons of a known fluorophore standard are compared to the number of 

absorbed and emitted photons of the new compound (Equation 3). 

Equation 3:  Fluorescence quantum yield (F) comparative method. 

 

    
      

       
 

          
 

  

 

F and Fstd are the integrals of the emission curves of the BODIPY and standard 

respectively.  A and Astd are the respective absorbance values of the BODIPY and 

standard at the excitation wavelength.   and std refer to the refractive indices of the 

solvents used for the BODIPY and standard, respectively and F
std is the fluorescence 

quantum yield of the standard.  The standards employed in this study were 

Rhodamine-6-G (F = 0.94 in ethanol)102 and Zinc Pc (F = 0.20 in DMSO)103.  The value 

obtained should lie between 0.0 and 1.0, with 0.0 being completely non-fluorescent 
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and 1.0 meaning that every photon absorbed is re-emitted.  It can therefore be used 

as a measure for the efficiency of the fluorescence process being s tudied.  

Fluorescence quantum yields for BODIPY dyes are usually relatively high (F > 0.60) 

however the presence of halogen atoms on the BODIPY core can cause a large 

decrease in the fluorescence quantum yield.  

 

1.4.4 Fluorescence Lifetime (τF)  

 

The fluorescence lifetime is a parameter describing the time evolution of the decay of 

the fluorescent radiant intensity.104  This provides a measure of the average amount of 

time between absorption and re-emission of a photon by the fluorophore based on 

the profile of the fluorescence decay curve.  A time-correlated single photon counter 

(TCSPC) can be used to plot a decay curve of the population of fluorophores in 

solution, an example of which is provided in Figure 22.  The value of the fluorescence 

lifetime for the given fluorophore can be determined by deconvolution of this decay 

curve.  The fluorescence lifetimes of BODIPYs have been reported to be less than 10 

nanoseconds.37 
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Figure 22:  A BODIPY fluorescence decay curve (blue) measured using time-
correlated single photon counting, including the internal response function 
(Red) (IRF: ludox in water) and the associated residuals. 

 

1.4.5 Singlet Oxygen Quantum Yield (Δ) 

 

The lowest energy state of molecular oxygen is the triplet ground state (3O2).  It is 

possible to transfer energy from a triplet sensitizer (in this case a halogenated BODIPY 

dye) to molecular dioxygen (Figure 21).  This energy transfer process causes the 

electrons to undergo a spin state rearrangement to form a singlet excited state.  The 

resulting singlet oxygen species (1O2) has been shown to be highly reactive and has 

been used in organic reactions to oxidize the ene functional group to an epoxide,105 kill 

cells in a process called PDT, and in the photo-degradation of pollutants,106 which is 

the aim of this work.  The production of singlet oxygen by BODIPY predominantly 

follows the type 2 pathway107 shown in Figure 23. 
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Figure 23:  Singlet oxygen generation by irradiation of a halogenated 
BODIPY dye following the type II reaction mechanism.  

 

There are two methods that can be used for detecting singlet oxygen: 

1). The physical/luminescence method108 

When singlet oxygen relaxes from the excited state back to the ground state it 

produces an infra-red decay curve at 1270 nm.  It is possible to detect this emission by 

using a sensitive germanium detector.  This data can be used to plot a time resolved 

phosphorescence decay curve of the singlet oxygen from which the singlet oxygen 

quantum yield can be obtained.  This decay curves obeys Equation 4. 

Equation 4:  Singlet oxygen quantum yield (Δ) phosphorescence method. 

 

        
  

     
                  

 



57 

 

where I(t) is the phosphorescence intensity of 1O2 at time t, τD is the lifetime of the 1O2 

phosphorescence decay, τT is the triplet state lifetime of the sample, and B is the 

coefficient related to sensitizer concentration and 1O2 quantum yield. 

The singlet oxygen quantum yield of the BODIPY can then be determined using a 

comparative method show by Equation 5. 

Equation 5:  Singlet oxygen quantum yield (Δ) comparative physical method. 

    
     

 

    
 

 

Δ
std is the singlet oxygen quantum yield of the standard, in this case it would be Rose 

Bengal (Δ = 0.86 in ethanol) or ZnPc (Δ
 = 0.67 in DMSO).  B and Bstd refer to the 

coefficient involved in sensitizer concentration and 1O2 quantum yield for the sample 

and standard respectively.  

2). The chemical/scavenger method 

The chemical method makes use of a singlet oxygen quencher, such as 1,3-

diphenylisobenzofuran (DPBF) for organic solvents or anthracene-9, 10-bis-

methylmalonate (ADMA) for aqueous solutions.109  By monitoring the absorption 

spectrum of these solutions before and after irradiation it is possible to measure the 

disappearance of the quencher as singlet oxygen is formed.  The amount of quencher 

that is degraded is proportional to the amount of singlet oxygen produced.  On this 

basis, the singlet oxygen quantum yield of the BODIPY can be determined by 

comparing the singlet oxygen generating ability of a known standard to that of the 

BODIPY sample using Equation 6.  Δ
std refers to the singlet oxygen quantum yield for 

the standard, Rose Bengal (Δ = 0.86 in ethanol)110 or ZnPc (Δ = 0.67 in DMSO)111.  W 
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and Wstd are the quencher (DPBF or ADMA) photobleaching rates in the presence of 

the BODIPY dye and standard respectively. Iabs
Std and Iabs are the respective rates of 

light absorption by the BODIPY and standard. 

Equation 6:  Singlet oxygen quantum yield (Δ) comparative chemical method. 
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1.5 Summary of Aims: 

 

BODIPY dyes are small, highly fluorescent molecules with highly favourable 

photophysical properties.  Unsubstituted BODIPY dyes are, however, not able to 

generate any radical species and are thus poor photocatalysts.  The value of a BODIPY 

dye as a photocatalyst can be realized through the addition of halogen atoms to the 

core of the BODIPY dye as heavy atoms, such as bromine, are known to enhance the 

rate of ISC and hence enable the generation of reactive singlet oxygen.  It may be 

possible to further increase the singlet oxygen generating ability of a BODIPY dye by 

introducing other groups, such as crown ethers, that can complex heavy atoms onto 

the core of the BODIPY, since this should have a significant effect on the photophysical 

properties.  Crown ether-BODIPY dye conjugates could prove useful in applications, 

such as bioimaging and sensors, as they would result in BODIPY dyes that are sensitive 

to ions in solution. 

Another disadvantage is the difficulty of recovering a homogeneous catalyst from a 

solution after a reaction has taken place.  It would be advantageous to fabricate a 

heterogeneous photocatalyst by embedding a halogenated BODIPY dye into a polymer 

support.  These BODIPY photocatalysts could then be used, easily recovered from a 

reaction mixture, and recycled.  To this end a key goal of the study was to prepare 

BODIPY-nanofiber composites.  Embedding BODIPY dye into a nanofibers material 

should result in highly fluorescent nanofibers, so there is also scope for ion sensor 

applications. 

The objectives of this project are as follows: 
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1. To complete the series of meso-methylphenyl-BODIPY dyes by synthesizing the 

novel meso-(p-isopropylphenyl) BODIPY (1) derivative (Scheme 4). 

2. A comparison of the novel BODIPY with a previously synthesized meso-(p-

dimethylaminophenyl) (4) BODIPY dye (Scheme 5). 

3. To synthesize 2,6-dibrominated derivatives of both BODIPY (1) and meso-

dimethylaminophenyl BODIPY (4) dyes in order to compare their photochemical 

properties, with special focus on their singlet oxygen generating abilities. 

4. The fabrication and characterization of BODIPY embedded fluorescent polystyrene 

nanofibers to explore their potential as sensors or photocatalysts. 

5. Attempt the photocatalytic degradation of azo-dyes (Tartrazine and Orange-G) by 

2,6-dibrominated BODIPY dyes embedded in nanofibers.  

6. To synthesize and characterize cation sensitive BODIPY dyes by introducing a 

crown ether moiety at the 3,5-positions of the dibrominated BODIPY core (3a) and 

(3b) for the cuminaldehyde based dye and (6a) and (6b) for the 

dimethylaminobenzaldehyde based dye) and to determine whether complexation 

of sodium ions has any measurable effect on the photophysical or photochemical 

properties (especially on singlet oxygen generation) of the novel crown ether-

BODIPY dyes. 

7. Analyze trends in all of the synthesized BODIPYs by carrying out theoretical 

calculations in order to obtain a better understanding of the structure-property 

relationship of these compounds. 

8. Determination of the photophysical and photochemical parameters of all 

synthesized compounds including: fluorescence quantum yields; fluorescence 

lifetimes; and singlet oxygen quantum yields. 
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Scheme 4:  A series of increasingly more complex BODIPY dyes  formed by 
first preparing BODIPY dye (1) based on cuminaldehyde.  Brackets indicate 
their assigned number.  

 

 

Scheme 5:  A series of increasingly more complex BODIPY dyes  formed by 
first preparing BODIPY dye (4) based on 4-dimethylamino benzaldehyde.  
Brackets indicate their assigned number.  
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Chapter 2: 

Experimental 

 

Equipment, Materials, Methods and 

Synthesis 
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 Experimental  

2.1 Equipment  

 UV-visible absorption spectra were recorded using either a JASCO V-650 or a Shimadzu 

UV-2550 UV-Vis spectrophotometer.  Spectra were recorded in a quartz cell of 1 cm 

path-length 

 Fluorescence emission and excitation spectra were obtained using a Varian Cary 

Eclipse spectrofluorimeter.  The emission and excitation slit widths were set at 5 nm 

while a medium PMT voltage was maintained. 

 Fluorescence lifetimes were measured using a time correlated single photon counting 

(TCSPC) setup (FluoTime 200, Picoquant GmbH).  For the brominated and mono-crown 

BODIPYs, a LDH-P-C-485 laser head driven by PDL 800-B single channel driver and a 

10MHz repetition rate was employed.  A LDH-P-670 laser head with a 20MHz 

repetition rate was used for the di-crown BODIPY dyes.  Fluorescence was detected 

under the magic angle with a Peltier cooled photomultiplier tube (PMT) (PMA-C 192-N 

M, Picoquant GmbH) and integrated electronics (PicoHarp 300E, Picoquant GmbH).  A 

monochromator with a spectral width of about 4 nm was used to select the required 

emission wavelength band.  The response function of the system, which was measured 

with a scattering Ludox solution (DuPont), had a full width at half maximum (FWHM) 

of about 300 ps.  All fluorescence decay curves were measured at the emission peak 

maxima.  The decay curves were analysed with the FluoFit program (Picoquant GmbH).  
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 Singlet oxygen experiments were conducted using an EKSPLA NT342B-20-AW – Nd:YAG 

laser (max output – 1J, pulse duration 36 ns) with parametric generation (max output 

– 50 mJ, pulse duration 35 ns, wavelength 400 – 2400 nm). 

 IR spectra were recorded on a Bruker Alpha FT-IR spectrophotometer using a Platinum 

ATR accessory. 

 1H Nuclear Magnetic Resonance (1H NMR) spectra were obtained using a Bruker AMX 

400 MHz spectrometer in chloroform-d1.  Resonances are reported at values in the 

ppm referenced to the methyl resonance of the internal standard, TMS, at 0.00 ppm. 

 Mass spectra data were collected on a Bruker AutoFLEX III Smart-beam MALDI-TOF 

mass spectrometer using an α-cyano-4-hydroxycinnamic acid matrix and positive 

mode of operation for the heavier BODIPYs. The mass spectra for the lighter BODIPY 

dyes were analyzed using an Expressions CMS Advion ESI-MS with CAMAG TLC-MS 

interface. 

 X-ray powder diffraction (XRD) patterns were recorded on a Bruker D8, Discover 

instrument equipped with a proportional counter, using Cu-Kα radiation (λ = 1.5405 A, 

nickel filter).  Data was collected in the range from 2θ = 10o to 100o, scanning at 1o 

min-1 with a filter time-constant of 2.5 s per step and a slit width of 6.0 mm.  Samples 

were placed on a zero background silicon wafer.  The X-ray diffraction data were 

treated using the freely-available Eva (evaluation curve fitting) software.112  Baseline 

correction was performed on each diffraction pattern by subtracting a spline fitted to 

the curved background. 

 Imaging of BODIPY crystals and various nanofibers were captured using a TESCAN Vega 

TS 5136LM scanning electron microscopy (SEM) (Jeol Quanta 200 F FE-SEM) at an 

https://en.wikipedia.org/wiki/Alpha-Cyano-4-hydroxycinnamic_acid
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accelerating voltage of 20 kV.  Before SEM analysis, non-conductive samples were 

coated with gold using a sputter coater (Balzers Union SKD 030).  

 The fluorescence images were taken with a Direct Metal Laser Sintering (DMLS) 

Olympus BX series fluorescence photomicroscope.  The excitation source was a high 

voltage mercury lamp.  Images were captured using bright field and wide field UV 

(WU) filters at 10 x magnification. 

 Irradiation of samples for photodegradation studies were carried out using  a halogen 

lamp (300W) at 60 V; a 500-600 nm (Schott) glass UV filter; and a water filter, to filter 

off far infrared radiation. 

 

Figure 24:  Laser set-up for singlet oxygen experiments.  
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Figure 25:  Experimental set-up used for photodegradation studies. 
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2.2 Materials  

 

2.2.1 Reagents 

 

2,4-Dimethyl pyrrole, cuminaldehyde, 4-dimethyl amino benzaldehyde, trifluoroacetic 

acid (TFA), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), p-chlorinal, BF3.Et2O, 

triethylamine (TEA), N-iodosuccinamide, rhodamine-6-G and 1,3- 

diphenylisobenzofuran (DBPF) were purchased from Sigma Aldrich.  Rose Bengal was 

obtained from Fluka.  3,4 dihydroxybenzaldehyde, diethylene glycol bis (2-chloroetyl) 

ether, piperidine, glacial acetic acid, N-bromosuccinamide, and sodium hydroxide and 

were obtained from Tokyo Chemical Industry Co. Ltd. 

 

2.2.2 Solvents 

 

DMF, THF, DCM, and ethanol were obtained from local suppliers.  Benzene, n-butanol, 

n-heptane and methanol were purchased from Tokyo Chemical Industry.  Ultrapure 

water was filtered from a Milli-Q Water System.  Solvents were dried and stored over 

4A molecular sieves as needed.  
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2.3 Methods 

 

2.3.1 Fluorescence Quantum Yield (F) 

 

Comparative determinations of fluorescence quantum yields  can be derived from 

Equation 3:113 

    
      

       
 

          
 

  

 

F
std refers to the fluorescence quantum yield of the standards.  Rhodamine-6-G (F = 

0.94 in ethanol)102 was used for the lower wavelength BODIPYs while ZnPc (zinc 

phthalocyanine) (F = 0.20 in DMSO)103 was used for dyes with spectral bands at 

longer wavelength with a maxima beyond 600 nm.   and std refer to the refractive 

indices of the solvents of the sample and standard, respectively.  F and Fstd refers to 

the integrated fluorescence emission of the sample and standard respectively, while A 

and Astd refer to the absorbance of the sample and standard at the excitation 

wavelength for the sample and standard respectively. 

 

2.3.2 Fluorescence Titration 

 

The acid dependent fluorescence emission of BODIPY (4) was investigated by titration 

with a solution of TFA (100 µL aliquots at ca. 1 x 106 M).  The fluorescence emission 

spectra were recorded until emission intensity no longer increased upon addition of 
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another aliquot of the TFA solution.  The instrument configuration and excitation 

wavelength for the sample and the standard were kept constant throughout the 

experiment. 

 

2.3.3 Fluorescence Lifetimes (τF) 

 

Fluorescence decay curves for each BODIPY were recorded at their respective emission 

maxima using a single photon counting technique (TCSPC) as outlined in section 2.1.  

Deconvolution of these decay curves using the Fluorfit114 software yields the average 

time between absorption and emission of a photon by a fluorophore.  This is termed 

the fluorescence lifetimes of a fluorophore which is typically in the 110 ns range for 

BODIPY dyes.37 

 

2.3.4 Singlet Oxygen Quantum Yields (Δ) 

 

Singlet oxygen quantum yields of BODIPY dyes were determined by a comparative 

method with a singlet oxygen scavenger (Equation 6).The rate of singlet oxygen 

generation by the sample molecule is compared to that of a known standard by 

monitoring the absorption change of a singlet oxygen quencher, such as DPBF.  Rose 

Bengal (Δ = 0.86 in ethanol)110 and ZnPc (Δ = 0.67 in DMSO)111 were used as the 

singlet oxygen standard and were irradiated, along with the samples, using an Ekspla 

NT 342B-20-AW laser (20 mJ/5 ns, 20 Hz) laser at various cross-over wavelengths for 

the absorption spectra of the sample and standard.  The degradation of DPBF due to 
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singlet oxygen generation was monitored at 385 nm by UV-visible absorption 

spectroscopy.  

 

2.3.5 Molecular Modelling 

 

Geometry optimization and TD-DFT calculations were carried out using the method 

B3LYP of the Gaussian09 software packages with SDD basis sets.115  The B3LYP 

optimized models were then used for TD-DFT calculations using the CAM-B3LYP 

functional, which has a long range correction that provides more accurate predictions 

for the relative energies of transitions with significant charge transfer character.30  The 

Gaussian09 default basis set, SDD, was chosen for its ability to calculate reasonable 

trends when heavy atoms, such as bromine or iodine, are included in the BODIPY 

structure. 
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2.4 Synthesis 

 

The synthesis of the meso-substituted BODIPY dyes followed a 1-pot reaction 

procedure adapted from literature.116  Despite the apparent step-wise nature of these 

reactions only the final products were isolated and characterized. 

 

2.4.1  4,4’-Difluoro-8-(4-isopropylphenyl)-1,3,5,7-tetramethyl-4-

bora-3a,4a-diaza-s-indacene (1)  

 

Cuminaldehyde (0.5 g, 1.0 mole eq.) and 2,4-dimethylpyrrole (2.0 mole eq., ρ = 0.924 

g.cm-) was added to a DCM (48 mL) under Ar/N2 with stirring.  TFA (23 drops) was 

slowly added to the solution.  The reaction was carried out at room temperature for 3 

h under Ar/N2 with vigorous stirring.  Thin layer chromatography (TLC) confirmed the 

absence of the aldehyde and the formation of the appropriate dipyrromethane.  

The mixture was cooled to 0C after which a solution of p-chlorinal (1.2 mole eq.) 

dissolved in DCM (10 mL) was added dropwise.  The solution was allowed to warm up 

to room temperature and the reaction was left to proceed for 30 min under Ar/N2 with 

stirring.  A deep purple colour was observed and TLC confirmed the synthesis of the 

dipyrromethene. 

The mixture was again cooled to 0C. TEA (7 mole eq.) and BF3Et2O (11 mole eq.) were 

cooled to 0C and added dropwise into the dipyrromethene solution.  The mixture was 

left to stir under Ar/N2 at room temperature for 12 h.  The resulting mixture was 

filtered through a silica plug using DCM (30 mL) and then extracted with 0.1 M HCl.  
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The organic phase was dried over Na2SO4 and separated via flash column 

chromatography with ethyl acetate and hexane (1:14) as the eluent. 

 
Scheme 6:  Acid catalysed synthesis of 4,4’-difluoro-8-(4-isopropylphenyl)-1,3,5,7-
tetramethyl-4-bora-3a,4a-diaza-s-indacene (BODIPY (1)) via the classic “1-pot” method. 

 

(1):  Eluent: chloroform/hexane (1:3).  Obtained: Orange crystalline powder.  Yield: 

(102 mg, 8.2%).  FT-IR (cm1): 2957 (C-H stretch), 2922 (C-H stretch), 2861 (C-H 

stretch), 1541 (C-C in ring stretch), 1301 (C-N stretch), 1154 (C-N stretch), 1058 (C-N 

stretch), 970 (=C-H bend) 809, 711, 581, 475.  1H-NMR: (Chloroform-d1): δ, ppm 

7.327.34 (2H, m, Ar-H), 7.167.18 (2H, m, Ar-H), 5.97(2H, s, py-H), 2.963.00 (1H, m, 

C-H), 2.55(6H, s, C-H3), 1.36 (6H, s, -C-H3), 1.281.30 (6H, d, C-H3).  Calc. for 

C22H25BF2N2: Expected: C, 72.15, H, 6.88, N, 7.65; Found: C, 72.23, H, 7.67, N, 6.94.  ESI-

MS m/z calc: 366.26 amu; Found: 366.2 amu.  
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2.4.2 4,4’-Difluoro-8-(4-isopropylphenyl)-1,3,5,7-tetramethyl-

2,6-dibromo-4-bora-3a,4a-diaza-s-indacene (2) 

 

(1) (50 mg) and N-bromosuccinimide (2.2 mole eq.) were dissolved in DMC (10 mL).  

The mixture was left to stir under Ar/N2 at room temperature for 4 h.  The reaction 

was quenched with sodium thiocyanate and the organic phase was dried over Na2SO4 

and separated via flash column chromatography with chloroform and hexane (1:14) as 

the eluent. 

 
Scheme 7:  The synthesis of 4,4’-difluoro-8-(4-isopropylphenyl)-1,3,5,7 
tetramethyl-2,6-dibromo-4-bora-3a,4a-diaza-s-indacene via nucleophilic 

addition of bromine to BODIPY (1). 
 

(2): Obtained: deep red crystalline powder.  Yield: (60 mg, 83.3%).  FT-IR (cm1): 2959 

(C-H stretch), 2920 (C-H stretch), 2851 (C-H stretch), 1529 (C-C in ring stretch), 1462 

(C-H bend), 1309 (C-N stretch), 1174 (C-N stretch), 1085 (C-N stretch), 995 (=C-H 

bend), 711, 591, 530 (C-Br stretch).  1H-NMR: (Chloroform-d1): δ, ppm 7.36-740 (2H, m, 

Ar-H), 7.13-7.17 (2H, m, Ar-H), 2.99-3.04 (1H, m, C-H), 2.60-2.66 (6H, s,-C-H3), 1.37 (6H, 

s, -C-H3), 1.30-1.31 (6H, d, -C-H3).  MALDI TOF-MS m/z calc for C22H23BF2Br2N2: 

Expected: 524.05 amu; Found: 525.7 amu (+1H). 
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2.4.3 4,4’-Difluoro-8-(4-isopropylphenyl)-1,7-dimethyl-2,6-

dibromo -3,5-di-styryl-(4'-benzo-15-crown-5)-4-bora-3a,4a-diaza-

s-indacene (3) 

 

(2) (0.1 mmol, 1 mole eq.), 4-formylbenzo-15-crown-5 (0.13 mmol, 1.4 mole eq.) and 

glacial acetic acid (0.4 mL) were dissolved in dry benzene (20 mL) under Ar with 

stirring.  Piperidine was added slowly and the solution was heated to reflux for 48 

hours under Ar.  A Dean-Stark trap was deployed for the azeotropic removal of water 

formed during the condensation reaction.  The reaction was quenched with water and 

the organic phase was dried over MgSO4.  The desired products were obtained by 

column and flash chromatography. The blue fraction was separated with chloroform 

and hexane (2:3) as the eluent and the green fraction was separated with ethyl acetate 

and chloroform (1:1). 

 

(3a): Eluent: chloroform/hexane (2:3).  Obtained: deep blue ink colour powder.  Yield: 

(8 mg, 10.5%).  FT-IR (cm1): 3446 (N-H stretch), 2934 (C-H stretch), 2855 (C-H stretch), 

1719 (C-H bend), 1709, 1619 (aromatic stretch), 1592 (C-C in ring stretch), 1441 (C-H 

bend), 1256 (C-O stretch), 1034 (C-N stretch), 987 (=C-H), 854, 717, 591, 541 (C-Br 

stretch).  1H-NMR: (Chloroform-d1): δ, ppm 7.947.98 (1H, m, Ar-H), 7.297.31 (4H, m, 

Ar-H), 7.077.11 (2H, m, Ar-H), 4.104.18 (2H, m, CH), 3.463.49 (4H, m, CH2 crown 

ring), 3.313.33 (4H, m, CH2 crown ring), 2.57 (1H, s, C-H), 2.002.02 (8H, d, CH2 

crown), 1.441.60 (12H, m, CH3), 1.191.35 (3H, m, CH3).  MALDI TOF-MS m/z calc. for 

C37H41BF2Br2N2O5: 802.35 amu; Found: 825.3 amu (+ 1Na+). 



75 

 

 

(3b):  Eluent: ethyl acetate/chloroform (1:1).  Obtained: dark green powder.  Yield: (12 

mg, 11.2%).  FT-IR (cm1): 3569 (N-H stretch), 2920 (C-H stretch), 2859 (C-H stretch), 

1707 (C-H bend), 1592 (N-H bend), 1509, 1445 (C-H bend), 1260 (C-O stretch), 1109 (C-

N stretch), 717 (=C-H), 597 (C-Br stretch).  1H-NMR: (Chloroform-d1): δ, ppm. 7.947.99 

(2H, m, Ar-H), 7.487.60 (2H, m, Ar-H), 7.307.32 (4H, m, Ar-H), 7.077.13 (2H, m, Ar-

H), 4.124.16 (4H, m, CH) 3.863.87 (8H, broad m, CH2 crown ring), 3.573.71 (24H, 

broad m, CH2 crown ring), 1.981.99 (1H, s, CH), 1.35 (3H, s, CH3), 1.191.26 (9H, 

broad m, -CH3).  ESI-MS m/z calc. for C52H59BF2Br2N2O10: 1080.65; Found: 1083.24 amu 

(+ 3H+). 

 
Scheme 8:  Knoevenagel condensation of 4-formylbenzo-15-crown-5 and (2) resulting 
in the synthesis of mono-(3a) and di-(3b) styryl crown ether BODIPY dyes. 

 

2.4.4 4,4’-Difluoro-8-(4-dimethylaminophenyl)-1,3,5,7-

tetramethyl-4-bora-3a,4a-diaza-s-indacene (4)  
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(4) was synthesized using the same method as for (1).  The only difference is that 4-

dimethylaminobenzaldehyde replaces cuminaldehyde as the aldehyde for the 

condensation reaction.  

(4): Eluent: chloroform/hexane (1:3). Obtained: Orange/gold crystals.  Yield: (177 mg, 

14.2%).  FT-IR (cm1): 3459 (N-H stretch) 2957 (C-H stretch), 2853 (C-H stretch), 2798 

(C-H stretch), 1605 (N-H bend), 1460 (C-H bend), 1303, 1186 (C-N stretch), 1150 (C-N 

stretch), 1048 (C-N stretch), 966, 805, 760, 701, 475.  1H-NMR: (Chloroform-d1): δ, ppm 

6.976.99 (2H, m, Ar-H), 6.696.72 (2H, m, Ar-H), 5.89(2H, s, py-H), 2.94 (6H, s, -CH3), 

2.47 (6H, s, py-CH3), 1.41 (6H, s, -CH3).  Calc. for C21H24BF2N3: Expected: C, 68.5, H, 6.8, 

N, 11.4; Found: C, 68.5, H, 7.5, N, 10.5.  ESI-MS m/z calc: 367.24 amu; Found: 348.1 

amu (- 1F). 

 
Scheme 9:  Acid catalysed synthesis of 4,4’-difluoro-8-(4-dimethylaminophenyl)-
1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene via the classic “1-pot” method.  
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2.4.5 4,4’-Difluoro-8-(4-dimethylaminophenyl)-1,3,5,7-

tetramethyl-2,6-dibromo-4-bora-3a,4a-diaza-s-indacene (5) 

 

BODIPY (5) was synthesized following the same method as (2) with (4) as the BODIPY 

core. 

(5): Eluent: chloroform/hexane (1:3) Obtained: deep red powder.  Yield: (70 mg, 

97.9%).  FT-IR (cm1): 2959 (C-H stretch), 2920 (C-H stretch), 2851 (C-H stretch), 1600 

(N-H bend), 1527, 1309 (C-N aromatic stretch), 1172, 1085 (C-N stretch), 993 (=C-H 

bend), 793, 758, 715, 585, 530 (C-Br stretch).  1H-NMR: (Chloroform-d1): δ, ppm 

7.237.38 (2H, m, Ar-H), 7.067.09 (2H, m, Ar-H), 2.83(6H, s, CH3), 2.53 (6H, s, CH3), 

1.40 (6H, s, -CH3).  ESI-MS m/z calc for C21H23BF2Br2N3: 525.05 amu; Found: 525.6 amu. 

 
Scheme 10:  Synthesis of BODIPY (5) via nucleophilic addition of bromine to 
BODIPY (4). 
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2.4.6 4,4’-Difluoro-8-(4-dimethylamino)-1,7-tetramethyl-2,6-

dibromo-3,5-di-styryl-(4-benzo-15-crown-5)-4-bora-3a,4a-diaza-s-

indacene (6) 

 

The synthesis of the crown ether BODIPYs (6a) and (6b) was achieved by the same 

method as for (3).  As before both the mono-(6a) and di-(6b) crown substituted 

fractions were isolated. 

(6a): Eluent: chloroform/hexane (1:3). Obtained: deep blue ink coloured powder.  

Yield: (10 mg, 13.1%).  FT-IR (cm1): 3391 (N-H stretch), 2912 (C-H stretch), 2861 (C-H 

stretch), 1727 (C-H stretch), 1619 (aromatic stretch), 1596 (C-C in ring stretch), 1441, 

1352, 1266 (C-O stretch), 1178 (C-N stretch), 1117 (C-N stretch), 983, 852, 764, 589 (C-

Br stretch).  1H-NMR: (Chloroform-d1): δ, ppm 7.957.99 (1H, m, Ar-H), 7.417.46 (2H, 

m, Ar-H), 7.077.15 (4H, broad m, Ar-H), 4.114.17 (2H, m, CH), 4.464.49 (4H, m, CH2 

crown ring), 3.303.33 (4H, m, CH2 crown ring), 2.01 (8H, m, CH2 crown ring), 1.36 (3H, 

s, CH3), 1.18 (12H, s, CH3).  ESI-MS m/z calc for C36H40BF2Br2N3O5: 803.34 amu; Found: 

804.9 amu (+1H). 

 

(6b): Eluent: chloroform/ethyl acetate (1:1). Obtained: dark green powder.  Yield: (21 

mg, 19.6%).  FT-IR (cm1): 3434 (N-H stretch), 2920 (C-H stretch), 2857 (C-H stretch), 

1733 (C-H stretch), 1594 (N-H bend), 1511, 1266 (C-O stretch), 1172 (C-N stretch), 

1097 (C-N stretch), 1015, 934, 660, 524 (C-Br stretch).  1H-NMR: (Chloroform-d1): δ, 

ppm 7.958.00 (2H, d, Ar-H), 7.437.51 (2H, m, Ar-H), 7.077.10 (4H, m, Ar-H), 

6.816.83 (2H, m, Ar-H) 4.124.15 (4H, m, CH), 3.853.87 (8H, m, CH2 crown ring), 
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3.70 (18H, broad m, CH2 crown ring), 2.84 (6H, m, CH2 crown ring), 1.44 (6H, s, CH3), 

1.36 (6H, s, CH3)  ESI-MS m/z calc for C51H58BF2Br2N3O10: 1081.64 amu; Found: 1083.4 

amu (+ 2H). 

 
Scheme 11:  Knoevenagel condensation of 4-formylbenzo-15-crown-5 and (5) 
resulting in the synthesis of mono-(6a) and di-(6b) styryl crown ether BODIPY dyes. 

 

2.5 2,3-(4’-Formylbenzo)-1,4,7,10,13-pentaoxacyclopentadeca-2-

ene (4-formylbenzo-15-crown-5) (7) 

 

4-Formylbenzo-15-crown-5 was synthesized and isolated according to literature 

procedures.117 

3,4 dihydroxybenzaldehyde (13 mmol, 1 mole eq.) was dissolved in Ar purged n-

butanol (35 mL) with the subsequent addition of NaOH (28 mmol, 2.2 mole eq) in 

water (2.5 mL).  The solution was stirred under an Ar environment (5 min) after which 

diethylene glycol bis(2-chloroethyl) ether (13 mmol, 1 mole eq.) was added dropwise 

using a cannula technique.  After the solution was refluxed for 36 h under Ar the 
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cooled reaction mixture was quenched with HCl (0.16 mL).  The crude mixture was 

filtered and washed repeatedly with MeOH before being evaporated to dryness.  The 

dark residue was continuously extracted by reflux with n-heptane for 3 h and 

recrystallized in n-heptane to yield white crystals of 4-formylbenzo-15-crown-5.  

4-Formylbenzo-15-crown-5: Eluent: n-heptane. Obtained: white crystals.  Yield: (255 

mg, 6.62%).  FT-IR (cm1): 2928 (O=C-H), 2867 (O=C-H), 1687 (C=O).  1H-NMR: 

(Chloroform-d1): δ, ppm 9.83 (1H, s, O=C-H), 7.397.45 (2H, m, Ar-H), 6.936.95(1H, 

m, Ar-H), 4.20 (4H, m, crown), 3.93 (4H, m, crown).3.763.77 (8H, m, crown).  Calc. for 

C15H20O6: Expected: C, 60.80, H, 6.8, N, 0.0; Found: C, 60.2, H, 6.77, N, 0.02.  ESI-MS 

m/z calc: 296.32; Found: 296.3 amu. 

 
Scheme 12:  The ring closure synthesis of 4-formylbenzo-15-crown-5 (7). 

 

2.6 Electrospinning of BODIPY embedded polystyrene nanofibers 

 

Dissolve PS (2.5 g) and the BODIPY dye (2 mg) in 10 ml of DMF: THF (8:2 (v/v)) with 

vigorous stirring overnight.  The solution was drawn up into a large syringe and the 
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electrospinning settings were adjusted to: voltage: 20 kV, sample distance: 13.5 cm, 

flow rate: 0.1 mL/h, temperature: 17.7 C, humidity: 42%. 

 

BODIPY nanofibers: The resulting fibers were collected and observed to be highly 

fluorescent under UV illumination.  Only BODIPYs (1), (2), (4) and (5) were electrospun 

into nanofibers. 

 
Scheme 13:  Electrospinning setup used to produce BODIPY polystyrene 
nanofibers. 
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Chapter 3:  

 

Synthesis and Spectroscopic 

Characterisation of BODIPY Dyes 
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Introduction: 

 

This chapter seeks to explore the synthesis of two BODIPY dyes and their 2,6-

dibrominated analogues. 

BODIPY (1) has a para-isopropyl substituent on the meso-phenyl group of the BODIPY 

core and has not been reported to date.  BODIPY (2) has a para-dimethylamino 

substituent on the meso-phenyl group of the BODIPY core.  BODIPY (2) has been 

reported previously in the literature.17  Both BODIPY dyes were synthesized by using 

the classic “one-pot three-step” acid catalysed condensation reaction.  These BODIPY 

dyes were synthesized to be the core molecules for BODIPY dyes  with increasingly 

complex structures.  The photophysical properties of these dyes will be investigated in 

a number of different solvents.  BODIPY (1) is expected to be highly fluorescent, while 

BODIPY (2) has been reported to be fluorescent only under acid conditions.17  The next 

step of this project was to brominate the 2,6-positions of both of these BODIPY dyes.  

The photophysical properties of these 2,6-dibrominated BODIPY dyes were 

investigated with a special focus on their ability to generate singlet oxygen. 
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3.1 1,3,5,7-tetramethyl 8-(4-isopropylphenyl) 4,4-Difluoro-4-bora-

3a,4a-diaza-s-indacene dye (1) 

 

3.1.1 Synthesis of BODIPY (1) 

 

BODIPY (1) (Figure 8) was synthesized for the purpose of filling a gap in the existing 

literature of BODIPY dyes, as well as to provide a pH insensitive structural analogue 

with which the photochemical properties of BODIPY (2) could be compared.  Synthesis 

of BODIPY (1) was achieved via the “classic one-pot 3-step method” as is commonly 

described in literature.44  Scheme 14 highlights the synthetic method employed for the 

synthesis of BODIPY (1). 

 
Scheme 14:  The acid catalyzed “one-pot 3-step” synthesis of BODIPY (1). 

 

The acid catalysed condensation of 2,4-dimethylpyrrole with cuminaldehyde was 

carried out using trifluoroacetic acid in DCM.  The methyl groups on the pyrrole served 

to sterically block the 2,4-position carbons on the pyrrole in an attempt to reduce 

unwanted polymerization of the pyrrole unit, thus improving the overall yield of the 

reaction.  Due to the sensitivity of the resulting dipyrromethane, and subsequent 

dipyrromethene, to both air and light, this entire reaction was carried out under argon 
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in the dark.  The deep red solution containing the dipyrromethane was cooled in an 

acetone-water slurry and oxidized using p-chloranil. Cooling the reaction mixture 

served a two-fold purpose.  Firstly, oxidation by p-chloranil is highly exothermic thus 

cooling of the mixture is required in order to reduce the thermal degradation of the 

resulting dipyrromethene.  Secondly, cooling helped to stabilize the dipyrromethene 

unit which tends to be rather unstable.  Reaction conditions proved to be too harsh 

when DDQ was used as yields were observed to be lowered significantly.  The 

dipyrromethene was complexed through the addition of BF3OEt2 under basic 

conditions.  The desired product was easy to identify and isolate using silica 

chromatography due to its intense yellow colour and intense green fluorescence.  This 

particular BODIPY derivative has not been reported to date.  

 

3.1.2 Structural Analysis of BODIPY (1) 

 

All twenty five protons could be readily identified in the 1H NMR spectroscopy (Figure 

26).  The two multiplets between 7.317.34 and 7.167.18 ppm each integrate as two 

protons and can hence be attributed to the four phenyl protons.  The six proton singlet 

signals at 2.55 and 1.38 ppm, respectively, can be assigned to the twelve methyl 

protons on the pyrrole core.  The doublet signal at 1.281.30 ppm integrates to six 

protons and can be assigned to the six methyl protons on the isopropyl group.  Of 

particular interest are the signals at 5.97 and 2.98 ppm.  The broad singlet peak at 5.97 

ppm was attributed to the protons at the 2,6-positions of the BODIPY core.  This signal 

should only be present if the 2,6-positions are unsubstituted.  The multiplet at 2.98 
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ppm integrates as a single proton and can be attributed to the isopropyl group 

providing further evidence for the success of this synthesis. 

 
Figure 26:  1H NMR spectrum for BODIPY (1) in CDCl3.  The stars indicate 
the solvent and TMS peaks, respectively. 

 

CHNS elemental analysis for this compound was also in good agreement with expected 

values.  Due to the low molecular mass of BODIPY (1) (366.26 g.mol1) ESI-MS had to 

be used in order to obtain the mass spectrum for this compound with the primary 

peak expected to appear at ca. 366.26 amu.  Despite intense fragmentation the parent 

peak was observed at 366.2 amu. 

FT-IR analysis of BODIPY (1) showed peaks that are in good agreement with the 

vibrations of the BODIPY skeleton that have been reported in literature.17  The bands 

observed in the 28003000 cm1 region are attributed to the CH stretch of the 

terminal methyl groups attached to the BODIPY core.  A number of NC stretch bands, 

which correspond with the pyrrolic nitrogen atoms, lies in the 10001300 cm1 region. 
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Figure 27:  The neat FT-IR spectrum for BODIPY (1) highlighting the BODIPY 
vibrational skeleton.  

 

Small orange crystals of BODIPY (1) were obtained after washing and recrystallization 

from chloroform and cold hexane (1:3 (v/v)).  After the initial washing steps cold 

hexane was used to precipitate out any of the remaining TEA.  They appeared to have 

a golden sheen in ambient light with an intense orange fluorescence under UV 

irradiation (Figure 28).  BODIPY (1) is a brilliant yellow colour in solution and displays 

such intense fluorescence that it can be observed under ambient light conditions 

(Figure 28). 

 
Figure 28:  BODIPY (1) (in CHCl3) exhibits a striking green emission 
under UV irradiation.  Under close inspection fluorescence can also be 

observed for the sample under ambient light. 
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SEM was used to visualize the crystalline structure of the BODIPY dye which had 

formed into long, rod-shaped crystals (Figure 29). 

 

Figure 29:  SEM micrograph showing rod-like crystals of BODIPY 
(1). 

 

3.1.3 Spectroscopic Properties of BODIPY (1) 

 

The electronic absorption spectrum for BODIPY (1) is typical of that of a meso-

substituted BODIPY with an absorbance maximum at 503 nm in chloroform (Figure 

30).  BODIPY (1) is soluble in a wide range of solvents, and only a slight blue-shift (ca. 4 

nm) is observed when the polarity of the solvent is increased.  It has been suggested 

that this blue-shift arises from the polarizability of the solvent as a similar effect has 

been reported in cyanine-based dyes.118 

Table 2:  Photophysical data for meso (p-isopropylphenyl) substituted BODIPY (1). 

Solvent 
Absorption 

(nm) 
Emission (nm) 

Excitation 

(nm) 

Log ε 

(M1 cm1) 
 F 

τF 

(ns) 

Stokes Shift 

(cm1) 

Chloroform 503 512 501 5.03 0.91 3.5 350 

DMSO 502 512 500 5.04 --- --- 389 

Ethanol 500 508 498 5.00 --- --- 315 
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Table 2 summarizes the absorption, excitation and emission band maxima values of 

BODIPY (1) in three different solvents.  No signs of aggregation could be observed in 

any of the solvents as would be expected, given the high solubility of BODIPYs.  

BODIPY (1) is highly fluorescent (the band maxima lies at ca. 510 nm) and has an 

emission spectrum that is typical for a tetra-methyl BODIPY (Figure 30).4  Intense 

fluorescence emission was observed in all of the solvents studied and in a similar 

manner to the trend observed in the absorption spectra; there is a slight blue-shift of 

the emission maxima with increasing solvent polarity.  Small Stokes shifts of 

approximately 300 cm1 are consistently observed. 

 

Figure 30:  Normalized bands for absorption at 503 nm (blue), 
emission at 512 nm (green) and excitation at 503 nm (black) in the 
spectra for BODIPY (1) in CHCl3. 

 

Singlet oxygen quantum yields were determined using the comparative method by 

comparing the rate at which the absorbance of the singlet oxygen trap, DPBF, is 

decreased in the presence of the BODIPY to that of a known standard.  As expected, 

BODIPY (1) did not cause any measurable decrease in DPBF absorption as it is unable 

to generate singlet oxygen when irradiated.  BODIPY (1) displays high photostability as 
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there is no measurable decrease in absorption intensity of a solution containing this 

BODIPY after repeated prolonged exposure to the beam from the optical parametric 

oscillator (OPO) of the Ekspla NT 342 B-20-AW laser. 

 

3.2 2,6-dibromo 1,3,5,7-tetramethyl 8-(4-isopropylphenyl) 4,4-

Difluoro-4-bora-3a,4a-diaza-s-indacene dye (2) 

 

3.2.1 Synthesis of BODIPY (2) 

 

One of the simplest methods for fine-tuning the spectroscopic properties of the 

BODIPY core is by halogenation.  It has long been known that the 2,6-position of a 

tetramethyl BODIPY dye are the most vulnerable to nucleophilic attack.67  To this end 

BODIPY (1) was brominated using N-bromosuccinaminde (NBS) to yield the novel 

compound (2) (Scheme 15). 

 

Scheme 15:  Synthesis of 2,6-dibrominated BODIPY (2) by nucleophilic 
addition of bromine to BODIPY (1). 
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The synthesis of (2) is straightforward.  BODIPY (1) and NBS are stirred together in 

DCM.  The reaction should be kept under argon and kept in the dark in order to obtain 

the best yields.  The concentration of BODIPY (1) to NBS should be maintained at a 

1:1.4 ratio in order to minimize bromination of the meso phenyl group.   Duration of 

the reaction must be relatively short as the NBS reagent is highly reactive and rapidly 

brominates the 2,6-positions.  This can be minimized by carefully monitoring the 

reaction by TLC.  Once the completion of the reaction was confirmed, the mixture was 

quenched using a solution of sodium thiosulphate in water.  The red-pink solution was 

then separated by silica gel chromatography in 83% yield using ethyl acetate: 

petroleum ether (1:4 (v/v)) as the eluent. 

 

3.2.2 Structural Analysis of BODIPY (2) 

 

All twenty three protons can be identified in the 1H NMR spectrum.  The multiplets 

that lie between 7.367.40 and 7.137.17 ppm integrate to two protons each and can 

be readily assigned to the four phenyl protons.  The six proton singlet signals at 2.60 

and 1.38 ppm, respectively, can be assigned to the twelve methyl protons on the 

pyrrole core.  The doublet signal seen at 1.301.31 ppm integrates to six protons and 

can be assigned to the six methyl groups on the isopropyl group.  The multiplet at 2.98 

ppm integrates as one proton and can be attributed to the proton on the isopropyl 

group.  The absence of the two proton signal at 5.97 ppm is particularly noteworthy 

(Figure 31), since it demonstrates that the synthesis was successful as the hydrogen 

atoms at the 2,6-positions have been replaced by the bromine atoms. 
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The predicted atomic mass of 524.05 for BODIPY (2) was confirmed by MALDI-TOF 

mass spectrometry as the primary peak appeared at 525.7 amu (+ 1H). 

 

Figure 31:  1H NMR spectra of BODIPY (1) top and BODIPY (2) bottom highlighting 
the disappearance of the 2,6-position protons signals at 5.97 ppm. 

 

The FT-IR spectrum for BODIPY (2) contains a peak at 530 cm1 which can be attributed 

to the CBr stretch associated with the bromination of the 2,6-postions of the BODIPY 

core.  Broadly similar vibrations to that of BODIPY (1) are noted as the BODIPY core 

remains intact after bromination.  

A red crystalline powder was obtained after recrystalization of (2) in chloroform and 

hexane (1:3 (v/v)).  

BODIPY (2) is an orange colour in solution due to a red-shift in its absorption spectrum 

and possesses a yellow fluorescence that is far weaker than the unbrominated BODIPY 

(1) (Figure 32). 

SEM images reveal that BODIPY (2) has distinctly crystalline clefts (Figure 33).  Slowly 

evaporating solvent molecules dissolved some of the dye during crystallization which 

resulted in the tooth-like structures at the top of a). in Figure 33. 
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Figure 32:  BODIPY (2) (in CHCl3) exhibits a much weaker, yellow 
fluorescence emission under UV irradiation when compared to BODIPY 
(1). 

 

 

Figure 33:  SEM micrograph of BODIPY (2) crystals. 
 

3.2.3 Spectroscopic Properties of BODIPY (2) 

 

The electronic absorption and emission spectra for (2) are typical for a BODIPY dye 

(the main bands lie at ca. 530 nm and 540 nm in CHCl3, respectively) with the 

exception that the absorption maxima is red shifted by ca. 30 nm when compared to 

that of the parent BODIPY dye (1) (Figure 34).  This corresponds to a red shift of 

approximately 15 nm per bromine atom.  Attachment of bromine atoms at the 2,6-

positions cause a destabilization of the HOMO orbital relative to the LUMO orbital and 

which decreases the HOMOLUMO band gap and results in the observed red shift.  
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Table 3 summarises differences observed in the absorption spectrum data of BODIPY 

(2) in a number of different solvents.  The most noteworthy effect of the bromine 

atoms is the relaxation of the spin-selection rule due to the heavy atom effect, which 

cause a sharp decrease in the fluorescence quantum yield and an increase in singlet 

oxygen production.  This allows for the synthesis of BODIPYs that could be used for 

photocatalysis applications or in PDT.  Relatively small Stokes shifts of ca. 400 cm1 are 

observed.  BODIPY (2) was highly soluble in all of the solvents used and no signs of 

aggregation were observed.  There is a slight blue shift of the main spectral band as 

the solvent polarity is increased. 

 

Figure 34:  Normalized bands for absorption at 530 nm (purple), 
emission at 540 nm (yellow) and excitation at 528 nm (black) in the spectra 
for BODIPY (2) in CHCl3. 

 

Table 3:  Photophysical data for 2,6-dibrominated BODIPY (2). 

Solvent  
Abs 

(nm) 
Em 

(nm) 
Ex (nm) 

Log ε 
(M1

 cm1
) 

F τF (ns) 
Stokes 

Shift 
(cm1

) 
Δ 

Chloroform 530 540 528 4.98 0.21 2.0* 349 --- 
DMSO  527 540 526 5.07 --- --- 457 --- 

Ethanol 525 538 524 5.06 --- --- 460 0.80 

*Main component of the biexponential fit 
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Figure 35:  Photocatalytic degradation of DPBF (λmax at 410 nm) in ethanol by 
BODIPY (2) (λmax at 525 nm) at 30 s intervals is indicative of singlet oxygen generation 

(Left).  The ΦΔ value for (2) is determined using the comparative method with Rose 
Bengal (ΦΔ = 0.86) as a standard (right). 

 

3.3 1,3,5,7-tetramethyl 8-(4-dimethylamino phenyl) 4,4-Difluoro-4-

bora-3a,4a-diaza-s-indacene (4) 

 

3.3.1 Synthesis of BODIPY (4) 

 

BODIPY (4) was synthesised following the same method that was described for BODIPY 

(1) with the exception that cuminaldehyde was replaced with 4-

dimethylaminobenzaldehyde.  The only structural differences between the two 

BODIPYs are that a nitrogen atom replaces the carbon atom on the para-substituent of 

the meso-phenyl ring and a lone pair of electrons takes the place of the hydrogen 

atom that was attached to the carbon at this position.  This subtle change imparts a 

fluorescence response that is dependent on the pH of the solution.  BODIPY (4) has an 

intense yellow colour, similar to that of BODIPY (1), but has considerably lower 

fluorescence emission intensity. 
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Scheme 16:  The acid catalyzed “one-pot 3-step” synthesis of BODIPY (4). 
 

3.3.2 Structural Analysis of BODIPY (4) 

 

The signals for all twenty four protons can be identified in the 1H NMR spectrum.  The 

multiplets that lie between 6.976.99 and 6.696.72 ppm each integrate to two 

protons can be assigned to the 4 phenyl protons.  The six proton signals that lie at 1.41 

and 2.47 ppm can be attributed to the twelve methyl protons on the pyrrole core.  The 

singlet signal at 2.94 ppm integrates as six protons and can be assigned to the six 

methyl protons on the dimethylamino group.  Of particular interest is the signal at 5.89 

ppm which is attributed to the protons at the 2,6-positions of the BODIPY core.  This 

signal is only present if the 2,6-positions are unsubstituted.  The CHNS elemental 

analysis for this compound showed slightly lower values than expected due to the 

presence of a water molecule. 

As before, the low molecular mass of BODIPY (4) (367.24 g.mol1) warranted the use of 

ESI-MS to obtain the mass spectrum for this compound.  The primary mass fragment is 

expected to appear at ca. 367.24 amu; however BODIPY (4) showed intense 

fragmentation with the major peak appearing at 348.1 amu.  This is consistent with 

the loss of a fluorine and hydrogen atom from the BODIPY core. 
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The FT-IR spectrum of BODIPY (4) resembles that of BODIPY (1), with the exception of 

an N-H stretch that lies at 1605 cm1. 

Fine deep orange BODIPY (4) crystals were obtained after washing and recrystallization 

with chloroform and cold hexane (1:3).  In a similar manner to what was observed with 

BODIPY (1), they appeared to have a golden sheen in ambient light with an intense 

orange fluorescence under UV irradiation (Figure 36). 

 

Figure 36:  Orange crystals of BODIPY (4) in ambient light (A) and 
exhibiting orange solid state fluorescence under UV irradiation (B). 

 

SEM revealed that the crystals of (4) appeared to have numerous deep indentations 

and that there were randomly distributed holes in the BODIPYs crystals (Figure 37).  

The spherical nature of the holes as well as their variable arrangement could be 

explained by the evaporation of solvent molecules from the crystal surface.  The 

melting point of this BODIPY was determined to be ca 250C.  Fragmentation of the 

crystals was observed from ca. 217C. 
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Figure 37:  Numerous indentations in the crystal structure can be seen in 
the SEM micrograph of BODIPY (4). 

 

3.3.3 Spectroscopic properties of BODIPY (4) 

 

The electronic absorption spectrum for BODIPY (4) is similar to that reported 

previously.17  The main spectral band lies at ca. 503 nm in chloroform (Figure 39).  

BODIPY (4) is soluble in a wide range of solvents and there is a slight blue-shift (ca. 4 

nm) of this band when the solvent polarity is increased. 

 

 

Figure 38:  BODIPY (4) (in CHCl3) exhibits very weak fluorescence 
emission under UV irradiation due to quenching by the lone pair of 
electrons on the nitrogen atom of the amino group.  Fluorescence is 

restored with protonation of the nitrogen atom upon addition of 
TFA. 
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The fluorescence emission spectrum of BODIPY (4) differs greatly from that of BODIPY 

(1).  The most likely explanation is that the lone pair of electrons from the amino 

nitrogen quenches fluorescence emission through photon-induced electron transfer 

(PET) leaving (4) with very low emission in solution.  It is possible to protonate the 

dimethylamino-nitrogen atom of BODIPY (4) with trifluoroacetic acid and this 

eliminated the PET process and results in a restoration of green fluorescence at ca. 

515 nm. (Figure 40). 

 

Figure 39:  Normalized bands for absorption at 503 nm (blue), emission 
at 515 nm (green) and excitation at 505nm (black) in the spectra for 
BODIPY (4) in CHCl3. 

 

Table 4 summarizes the absorption, excitation and emission values of BODIPY (4) in 

three different solvents in the presence and absence of TFA.  While the effect of the 

nitrogen atom on absorption spectrum is relatively small, the emission spectra for (4) 

is slightly red shifted compared to that of (1) with a slightly higher Stokes shift (ca. 500 

cm1).  Upon protonation the BODIPY (4) absorption and emission spectra in 

chloroform exhibit red shifts of 4 nm and 6 nm, respectively.  
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Figure 40:  (Top): A demonstration of the “turning-on” of emission 
intensity of ca. 5 x 106 M BODIPY (4) in CHCl3 after protonation by of 
100 µL of TFA.  (Bottom): Fluorescence titration of BODIPY (4) by 
addition 10 µL aliquots of TFA. 

 

Table 4:  Photophysical data for BODIPY (4) in the absence and 
presence of TFA.  

Solvent  
Abs 

(nm) 

Em 

(nm) 

Ex 

(nm) 

Log ε 
(M1

 cm1
) 

F 
τF 

(ns) 

Stokes Shift 
(cm1

) 

Chloroform 503 515 505 4.92 0.02 n.d 463 
Chloroform 

+ TFA 
509 521 506 4.85 0.74 --- 453 

DMSO  501 514 503 4.94 --- --- 505 
DMSO + TFA 502 516 504 4.80 --- --- 541 

Ethanol 499 511 501 4.70 --- --- 471 

Ethanol + 
TFA 

499 514 502 4.76 --- --- 585 

n.d – not determined 

 



101 

 

BODIPY (4) was also found not to generate any singlet oxygen, even in the presence of 

TFA, due to low triplet state formation that is inherent with non-halogenated BODIPY 

dyes. 

 

3.4 2,6-Dibromo 1,3,5,7-tetramethyl 8-(4-dimethylamino) 4,4-

difluoro-4-bora-3a,4a-diaza-s-indacene dye (5) 

 

3.4.1 Synthesis of BODIPY (5) 

 

(4) was brominated following the same method as for (2) to yield BODIPY (5) (Scheme 

17).  The electron donating ability of the dimethylamino group assists in making the 

meso phenyl carbons less positive.  This aids in directing the bromine atoms to the 2,6 

positions resulting in a faster reaction time and a higher yield of ca 98%. 

 
Scheme 17:  Synthesis of (5) by nucleophilic addition of bromine to BODIPY (4). 
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3.4.2 Structural Analysis of BODIPY (5) 

 
The 1H NMR revealed two multiplets between 7.067.09 and 7.237.38 ppm which 

integrated to two each and were attributed to the 4 phenyl protons.  The six proton 

singlet signals at 1.41 and 2.53 ppm, respectfully, were assigned to the twelve methyl 

protons on the pyrrole core.  The singlet signal observed at 2.83 ppm integrated to six 

protons corresponds with the six methyl protons on the dimethylamino group.  As 

with (2) there is an obvious absence of a proton signal at 5.97 ppm which indicates a 

successful synthesis as the hydrogen atoms at the 2,6-positions have been replaced by 

the bromine atoms. 

The MADLI-ToF mass spectra confirmed the mass of (5) as the primary peak is found at 

525.6 amu (+ 1H+) 

The FT-IR spectrum of (5) closely resembled that of BODIPY (4) with the addition of a 

CBr stretch that is observed at 530 cm1. 

A red semi crystalline powder was obtained after recrystalization of (5) in chloroform 

and hexane (1:3 (v/v)).  SEM images reveal that (5) has both crystalline and amorphous 

character (Figure 41)  

 

Figure 41:  SEM micrograph of BODIPY (5) crystals. 
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3.4.3 Spectroscopic Properties of BODIPY (5) 

 

A red shift of ca. 33 nm can be observed for the band maxima in the absorption and 

emission spectra of BODIPY (5) when compared to that of the BODIPY (4) core.  (5) has 

an absorption maximum at 533 nm in chloroform (Figure 43). 

 

Figure 42:   BODIPY (5) under ambient (left) and UV 
(right) light. 

 

 
Figure 43:  Normalized bands for absorption at 533 nm (purple), 
emission at 552 nm (yellow) and excitation at 533 nm (black) in the 

spectra for BODIPY (5) in CHCl3. 
 

Table 5 lists the absorbance values of (5) in various solvents. 
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Table 5:  Photophysical data for 2,6-dibrominated BODIPY (5). 

Solvent  
Abs 

(nm) 

Em 

(nm) 

Ex 

(nm) 

Log ε 
(M1

 cm1
) 

F 
τF 

(ns) 

Stokes 
Shift 

(cm1
) 

Δ 

Chloroform 533 552 533 4.70 0.09 n.d 646 --- 
Ethanol 527 543 --- --- --- --- 559 0.82 

Ethanol + 

TFA 
528 546 --- --- --- --- 624 --- 

n.d – Not determined. 

 

Concluding remarks: 

 

Two BODIPY dyes, (1) and (4) were synthesized using the classic “one-pot three-step” 

acid catalysed condensation reaction and fully characterized using various techniques.  

The only structural difference between these two BODIPY dyes is that the (1) has a p-

isopropyl substituent on the meso-phenyl group, while (4) has a dimethylamino 

substituent at this position.  BODIPY (1) possessed many favourable photophysical 

properties and proved to be highly photostable, but does not generate singlet oxygen 

upon electronic excitation.  BODIPY (4) had similar absorption properties to BODIPY 

(1), but has vastly different fluorescence properties.  BODIPY (4) was only fluorescent 

under acidic conditions due to the lone pair of electrons on the dimethylamino 

nitrogen.  This effect was reversible with the addition of a base and allowed BODIPY 

(4) to behave as an “off-on” fluorescence switch.  Changing the solvent had very little 

effect on the photophysical properties of these BODIPY dyes. 

Both (1) and (4) were brominated at the 2,6-positions and fully characterized.  This 

caused a red-shift of the main absorption and emission spectra for each dye.  After 

bromination both BODIPYs (2) and (5) displayed large singlet oxygen quantum yields 

and were able to degrade a sample of DPBF in solution.  BODIPY (2) has a singlet 

oxygen quantum yield that is similar to that the Rose Bengal and proved to be more 
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photostable than the standard, suggesting that it may be suitable for use as a standard 

for Δ measurements. 
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Chapter 4:  

 

Synthesis and Imaging of BODIPY-

Nanofibers 
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4.1 BODIPY-Polystyrene (BODIPY-PS) Nanofibers: 

 

Two of the major limitations in developing practical applications for BODIPY dyes  the 

application of BODIPY are their poor solubility in water, and the difficulty in recovering 

the dyes from solution.  In order to address these limitations it is advantageous to 

embed the BODIPY dye within a polymer support, as has been successfully achieved 

previously with phthalocyanine dyes.101  BODIPY embedded nanofibers could find use 

as ion sensor, for example BODIPY (4) may be suitable since it is pH sensitive, or in the 

case of brominated dyes as recyclable singlet oxygen generating photocatalysts. 

Polystyrene was selected as the polymer support for various BODIPY dyes as it is 

cheap, relatively safe, chemically inert, and is relatively easy to process into 

nanofibers.  As polystyrene is an aromatic hydrocarbon it may be possible for a π-π 

interaction to occur between the π-electrons of the benzene groups present on the 

polymer and those of the BODIPY dye (Figure 44). This could result in a stronger dye-

polymer interaction and reduce the risk of the dye leeching. 

 
Figure 44:  Polystyrene monomer unit. 
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4.1.1 Synthesis and characterization of PS nanofibers: 

 

Nanofiber morphology is shown to be highly dependent on the viscosity of the 

polymer solution.  A high molecular weight grade of polystyrene, B32, was chosen to 

reduce the risk of forming of defects, such as beading or branching, that are associated 

with low viscosity solutions.  To further minimize the risk of this it is important that a 

homogenous polymer mixture is obtained prior to the electrospinning.  The polymer 

solution is prepared by dissolving polystyrene B32 pellets in a mixture of DMF: THF 

(8:2 (v/v)).  The polymer solution is then drawn up into a 20 mL syringe with care, to 

ensure that no trapped air bubbles are present as these would introduce defects in the 

resulting nanofibers.  The flow rate, and distance between the collector and needle tip 

were maintained at a constant 0.1 ml/h and 13.5 cm, respectively.  The polymer 

solution was subjected to a series of voltages (10, 15, and 20 kV) in order to determine 

the optimal set-up conditions (Scheme 13).  At low voltage beading was observed and 

the resulting nanofibers have the largest diameters.  The smallest nanofiber diameters 

are obtained when a potential of 20 kV was employed, making this the ideal voltage 

for this work.  These white PS nanofibers exhibit no fluorescence emission when 

irradiated with UV light (Figure 45). 

 

4.1.2 Synthesis and characterization of BODIPY-PS nanofibers: 

 

Nanofibers containing BODIPY (1) and (4) are fabricated by adding 2 mg of BODIPY into 

respective polymer solutions using the method discussed above.  The resulting yellow 

fibers possess an intense and uniform green fluorescence, which indicates that the 
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BODIPY dyes are incorporated within the PS nanofibers (Figure 46).  There are no 

observable defects in the BODIPY (1)-PS nanofibers; however BODIPY (4)-PS nanofibers 

show intense beading (Figure 47).  This could be due to a charge interaction with the 

dimethylamino nitrogen as the polymer solution passes through the high voltage 

electric field.  Unfortunately, the PS polymer appears to stabilize (4) as the BODIPY (4)-

PS nanofibers are intensely fluorescent. This renders the BODIPY (4)-PS nanofibers 

unusable as a pH sensor material. 

 

 
Figure 45:  Unfunctionalized PS nanofibers. A) A SEM micrograph showing PS 
nanofibers. B) PS nanofibers under bright field illumination. C) PS nanofibers 
under UV irradiation show no fluorescence emission (480550 nm, wide filter). 

 

 

Figure 46:  (1) (left) and (2) (right) BODIPY-PS nanofibers in ambient light 
and under UV irradiation.  
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Figure 47:  Imaging of BODIPY (1)-PS nanofibers (top) and BODIPY (4)-PS nanofibers 
(bottom).  a) SEM micrograph of (1) embedded nanofibers.  b) Bright field illumination 
of (1) embedded nanofibers.  c) (1) Embedded nanofibers under UV irradiation.  d) SEM 

micrograph of (4) embedded nanofibers.  e) Bright field illumination of (4) embedded 
nanofibers.  f) (4) Embedded nanofibers under UV irradiation (480550 nm, wide filter). 

 

4.1.3 Synthesis and characterization of 2,6-dibrominated 

BODIPY-PS nanofibers: 

 

Nanofibers containing BODIPY (2) and (5) are fabricated by adding 2 mg of brominated 

BODIPY into the respective polymer solutions using the method discussed above.  The 

dibrominated BODIPY-PS nanofibers that were collected are pink and exhibit weak 

yellow fluorescence when irradiated with UV light (Figure 46).  The fluorescence of the 

(2) and (5)-PS nanofibers is not as intense as that of their un-brominated forms.  

Unlike the BODIPY (4) nanofibers, (5) shows no indications of beading (Figure 48). 
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Figure 48:  Imaging of BODIPY (2)-PS nanofibers (top) and BODIPY (5)-PS 
nanofibers (bottom).  a) SEM micrograph of (2) embedded nanofibers.  b) Bright 
field illumination of (2) embedded nanofibers.  c) (2) embedded nanofibers under 
UV irradiation.  d) SEM micrograph of (5) embedded nanofibers.  e) Bright field 
illumination of (5) embedded nanofibers.  f) (5) Embedded nanofibers under UV 

irradiation (480550 nm, wide filter).  
 

Concluding Remarks: 

 

By electrospinning a polymer solution that contained BODIPY dyes it was possible to 

fabricate highly fluorescent BODIPY embedded polystyrene nanofibers.  Polystyrene 

was chosen due to its many attractive properties and has been successfully used for 

similar applications involving Pc dyes.  The nanofibers that were embedded with 

BODIPY (1) and (4) have intense green fluorescence; while the (2) and (5) embedded 

nanofibers have weaker yellow fluorescence.  To investigate their potential as 

heterogeneous photocatalysts, 2,6-dibrominated BODIPY embedded nanofibers were 

irradiated in a solution containing an azo-dye (Tartrazine or Orange-G).  It was 
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expected that the singlet oxygen generated from the brominated BODIPY within the 

nanofibers should breakdown the azo-dyes in the solution.  However, no decease in 

the concentration of the azo-dyes was observed.  This implies that the BODIPY dyes 

within the nanofibers were unable to generate singlet oxygen, or that the molecular 

oxygen in the solution could not get close enough to the BODIPY dyes for energy 

transfer to take place.  The singlet oxygen generating capabilities of BODIPY embedded 

nanofibers clearly requires further in depth research. 
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Chapter 5:  

 

Synthesis and Spectroscopic 

Characterisation of Crown Ether-Styryl 

Substituted BODIPY Dyes 
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Introduction: 

 

Unsubstituted BODIPYs lack affinity for cations in solution and require ion chelating 

substituents in order for them to be effective as sensors or molecular switches.  Crown 

ethers have long been known to be effective at chelating various metal cations.89  To this 

end 4’-formyl-15-crown-5 was selected for attachment onto the 3,5-positions of the BODIPY 

core.  Several “off-on” fluorescent switches have been developed by appending a crown 

ether moiety onto a BODIPY dye.  However, there are few reports on the effect that these 

cation complexes have on the photophysical properties of the crown ether-BODIPY dyes, 

especially with regard to their singlet oxygen generating ability.  Four novel crown ether-

BODIPY dyes were synthesized from the 2,6-dibrominated analogues of BODIPYs (1) and (4) 

using a modified version of the Knoevenagel condensation reaction.  The ability of these 

crown ether-substituted BODIPY dyes to chelate sodium ions, as well as the effects that 

chelation has on the photophysical properties of these dyes was investigated. 

 

5.1 17-formyl-2,5,8,11,14-pentaoxabicyclo [13.4.0] nonadeca-

15,17,19-triene) (4’-formylbenzo-15-crown-5) (7) 

 

5.1.1 Synthesis of 4’-formylbenzo-15-crown-5 (7) 

 

(7) was synthesized according to the method outlined by Castro et al and serves two 

primary functions (Scheme 18).117  Firstly, (7) is known to preferentially bind to Na+ 

ions which allows for the design of a crown ether-substituted styryl-BODIPY as a 

sensor molecule.  Secondly, since the benzo group on (7) is aromatic attaching this 
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molecule to the BODIPY core should extend the aromatic π-conjugation of the BODIPY 

system resulting in a marked red shift of the main spectral bands . 

 
Scheme 18:  The ring closure synthesis of 4-formylbenzo-15-crown-5 
(7). 

 

A solution of sodium hydroxide was added to a solution of 3,4 dihydroxybenzaldehyde 

in n-butanol.  The benzaldehyde functional group is required to attach the crown ether 

moiety to BODIPY (1).  Both the n-butanol and the reaction vessel were purged with 

argon to prevent the aldehyde from being oxidized to a carboxylic acid.  Diethylene 

glycol bis (2-chloroethyl) ether is highly reactive, so it was added very slowly using the 

cannula technique.  The reaction vessel was evacuated and filled with argon before 

refluxing the solution for 36 h.  The reaction was quenched with HCl, washed 

repeatedly with methanol, and vacuum dried until no n-butanol remained.  The black 

residue was then refluxed and recrystallized in n-heptane for 3 h to extract the desired 

4’-formylbenzo-15-crown-5 as fine white crystals.  A spatula tip of charcoal was added 

prior to recrystallization to absorb residual n-butanol. 
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5.1.2 Structural Analysis of 4’-formylbenzo-15-crown-5 (7) 

 

The 1H NMR spectrum of (7) contains a single proton singlet at 9.83 ppm which 

corresponds to the proton of the aldehyde functional group.  The two and one proton 

doublet signals at 7.437.45 ppm and 6.936.95 ppm, respectively, can be attributed 

to the protons on the benzene ring.  The broad multiplet signal at 4.184.22 ppm 

corresponds to the first four protons on the crown ether ring.  The second four 

protons can be seen as a broad multiplet peak at 3.903.95 ppm.  The multiplet signal 

at 3.763.77 ppm integrates to eight and can be assigned to the protons  on the far 

end of the crown ether ring.  The 4’-formylbenzo-15-crown-5 1H NMR spectrum 

matches the spectrum reported in the literature.117 

The FT-IR spectrum of the 4’-formylbenzo-15-crown-5 almost exactly matches the FT-

IR spectrum from Sigma Aldrich.119  The split peak seen at 28702929 cm1 belongs to 

CH stretches on the benzene ring and the small peak at 2823 cm1 is attributed to the 

CH stretch on the aldehyde.  The C=O peak is observed at 1687 cm1. 

White crystals of 4’-formylbenzo-15-crown-5 were obtained after recrystalization in n-

heptane.  The XRD diffraction pattern shows a low angle (< 50) and highly crystalline 

peaks that matches the expected monoclinic crystal structure.  SEM imaging confirms 

the crystalline nature of the crown ether (Figure 49).120 
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Figure 49:  SEM micrograph of 4-formylbenzo-15-crown-5 crystals. 
 

5.1.3 Spectroscopic Properties of 4’-formylbenzo-15-crown-5 

 

4’-Formylbenzo-15-crown-5 has two distinct absorbance peaks at 275 (λmax) and 310 

nm (Figure 50).  These values are typically of aromatic crown ethers.89 

 
Figure 50:  Ground state electronic absorption spectrum of 4-formylbenzo-
15-crown-5 in CHCl3. 
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5.2 4,4’-Difluoro-8-(4-isopropylphenyl)-1,7-dimethyl-2,6-dibromo -

3,5-di-styryl-(4-benzo-15-crown-5)-4-bora-3a,4a-diaza-s-indacene 

(3)  

 

(3) is synthesised using a modified Knoevenagel condensation reaction in order to 

identify any potential effects that these cation complexes may have on the 

photophysical properties of the crown ether-BODIPY dyes (Scheme 1).  The reaction 

yielded two distinct fractions, the blue mono-styryl crown ether-BODIPY (3a) and the 

green di-styryl crown ether-BODIPY (3b). 

 
Scheme 19:  Knoevenagel condensation of 4’-formylbenzo-15-crown-5 and (2) 
resulting in the synthesis of BODIPY (3a) and (3b) crown ether-styryl BODIPY dyes. 
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5.2.1 Synthesis of BODIPY (3) 

 

(2) is dissolved with (7) in dry benzene and added with acetic acid to the reaction 

vessel, which is subsequently evacuated and filled with argon.  Water is a by-product 

of the Knoevenagel condensation reaction and needs to be removed during the 

reaction so that appreciable yields can be obtained.  In order to maximize the removal 

of water a Dean-Stark trap was used and 4 Å molecular sieves were added into the 

reaction vessel.  Piperidine is added to initiate the condensation reaction and the 

mixture is refluxed under argon for 48 h.  The solution changes colour from orange to 

deep ink-blue, indicating the formation of mono-styryl-BODIPY.  If left for too long the 

solution begins to turn dark green as more di-styryl-BODIBPY is formed.  Therefore, 

kinetic control of this reaction is essential for maximising its yield of (3a).  The reaction 

is quenched with water and separated by column chromatography to yield (3a) 

(CHCl3:hexane 1:3 (v/v)) and (3b) (CHCl3:ethyl acetate 1:1 (v/v)). 

  
Figure 51:  BODIPY (3a) displays intense pink emission even under ambient 
light (left) and BODIPY (3b) (right) under ambient and UV light. 
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5.2.2 Structural Analysis of BODIPY (3a) and (3b) 

 

Mono-styryl crown ether-BODIPY (3a) 

 

All forty one protons can be identified in the 1H NMR spectrum.  Multiplets that lie 

between 7.077.11, 7.297.31 and 7.947.98 ppm, which integrate to two, four, and 

one protons respectively can be assigned to the seven phenyl protons (four on the 

meso phenyl group and the last three on the benzo group of the crown ether).  The 

two proton signal at 4.104.18 ppm is assigned to the protons on the styryl bridge 

between the crown ether and the BODIPY core.  The two four proton signals at 

3.313.33 and 3.463.49 ppm, as well as the eight proton double signal at 2.002.02 

ppm are assigned to the protons on the crown ether ring.  The twelve and three 

proton multiplets at 1.441.60 and 1.191.35 ppm, respectively, can be assigned to 

the fifteen methyl protons.  The singlet at 2.57 ppm integrates as one proton and can 

be attributed to the proton on the isopropyl group.  

The atomic mass of (3a) was determined to be 825.3 amu by MALDI ToF-MS.  This 

differs from the expected value of 802.3 amu by the 23 mass units.  This is equivalent 

to the mass of a single sodium ion, which may have become complexed with the 

crown ether moiety during synthesis. 

FT-IR analysis of (3a) shows that the BODIPY skeletal structure remains largely intact as 

many of the same vibrations from the BODIPY (1) core are still observed (see chapter 

2).  Of particular interest is the appearance of the C-O ester stretch that appears at 

1254 cm1 and a large aromatic stretch at 1619 cm1, which give evidence of a 

successful bonding between the crown ether moiety and the BODIPY core. 
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(3a) was purified by column chromatography using a 1:3 (v/v) mixture of CHCl3 and 

hexane as the eluent to afford a dark blue powder.  A solution of (3a) is blue in colour 

and possesses intense pink fluorescence emission (Figure 51). 

 

Di-styryl crown ether-BODIPY (3b) 

 

The multiplets that lie between 7.077.13, 7.307.32, 7.487.60 and 7.947.99 ppm, 

which integrate to two, four, two and two protons respectively, can be assigned to the 

ten phenyl protons (four on the meso phenyl group and three on each of the crown 

ether benzo groups).  The four proton signal at 4.124.16 ppm is assigned to the 

protons on the styryl bridge between the crown ethers and the BODIPY core.  The 

eight proton multiplet at 3.863.87 ppm is assigned to two of the -CH2 groups on each 

crown ether.  The remaining twenty four crown ethe r protons can be accounted for by 

the broad signal between 3.573.71 ppm.  The methyl protons on the BODIPY are 

identified as the twelve protons signals between 1.191.35 ppm.  The singlet at 

1.981.99 ppm integrates as one proton and can be attributed to the proton on the 

mesoisopropyl group.  All fifty nine protons can therefore be identified in the 1H NMR 

spectrum of (3b). 

Analysis of the mass spectra gave the atomic mass of (3b) as 1083 amu (+ 3H+). 

As with (3a), FT-IR analysis of (3b) shows the presence of the CO ether stretch that 

appears at 1260 cm1 which provides evidence of a successful bonding between the 

crown ether moiety and the BODIPY core. 

Column chromatography of (3b) was carried out using a 1:1 (v/v) mixture of CHCl3 and 

ethyl acetate to afford a dark green powder.  Use of ethyl acetate indicates that the di-
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crown ether BODIPY is more polar than the mono-crown ether derivative.  This is 

expected since crowns ethers are known for their ability to enhance amphiphilic 

character.93  BODIPY (3b) is dark green in solution and has very weak orange 

fluorescence emission (Figure 51). 

 

5.2.3 Spectroscopic Properties of BODIPY (3a) and (3b) 

 

Mono-styryl crown ether-BODIPY (3a) 

The electronic absorption spectrum for (3a) is typical of a BODIPY dye spectrum, with 

the main band maxima at 597 nm in CHCl3 (Figure 52).  Appending (7) to the 3-position 

of (2) caused the main spectral BODIPY band to shift to the red by approximately 70 

nm as is typically observed with when styryl EDGs are added at this position.  This red-

shift is caused by a destabilization of the HOMO relative to that of the LUMO in such a 

way as to narrow the HOMOLUMO band gap.  A similar red-shift was also noted for 

fluorescence emission maxima at 617 nm.  A Stokes  shift of 543 cm1 is observed for 

(3a).  Absorption by the aromatic crown ether moiety is evident in the weak 

absorption bands in the 300400 nm region (Figure 52).  BODIPY (3a) possesses a high 

molar extinction coefficient (Table 6).  As is evident from Figure 51 (3a) has a high 

quantum yield of 0.57 despite the presence of heavy bromine atoms on the BODIPYs 

core.  The singlet oxygen quantum yield of (3a) is determined to be 0.35 in ethanol, 

which is lower than that of (2).  Both of these effects could result from vibrational 

deactivation of the S1 → T1 state by the crown ether moiety, which would favour 

higher fluorescence and lower singlet oxygen quantum yields, respectively.  Table 6 
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summarizes the photophysical data for (3a).  When BODIPY (3a) is dissolved in an 

ethanolic solution containing sodium perchlorate several interesting observations can 

be made.  Firstly, there is a blue-shift (5 nm) and a slight increase in the intensity of 

the absorption spectrum of the (3a) at 588 nm (Figure 53).  A blue-shift of 14 nm to 

608 nm as well as an increase in the emission intensity is also noted for the emission 

spectra of (3a) (Figure 54).  These effects can be attributed to a stabilization of the 

BODIPY HOMO orbital and the more rigid structure of the dye structure after chelation 

with a Na+ ion. 

 
Figure 52:  Normalized bands for absorption at 597 nm (blue), emission 
at 617 nm (red) and excitation at 597 nm (black) in the spectra for BODIPY 
(3a) in CHCl3. 

 

No changes are observed in either spectrum when BODIPY (2) is dissolved in the same 

sodium perchlorate solution.  This implies that the effects observed for (3a) are indeed 

caused by the crown-BODIPY interacting with the Na+ ions in the solution.  There is an 

increase in the singlet oxygen quantum yield from 0.35 to 0.42 for (3a) when Na+ ions 

are present in the solution (Figure 55).  In proof of principle terms, this implies that 
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(3a), and perhaps more complex crown ether-BODIPY dyes, could be useful as an ion 

sensors. 

Table 6:  Photophysical data for mono-styryl crown ether-BODIPY (3a). 

Solvent 
Absorbance 

(nm) 
Emission 

(nm) 
Excitation 

(nm) 

Log ε 

(M1 cm1)  F τF (ns) 

Stokes Shift 

(cm1)  Δ 

Chloroform 597 617 597 4.41 0.57 4.2* 543 --- 

Ethanol 593 622 --- --- --- --- 786 0.35 
Ethanol 

(with Na +) 
588 608 --- --- --- --- 559 0.42 

*Main component of the biexponential fit. 

 

  

Figure 53:  Ground state absorption of BODIPY (3a) (right) in the absence and 
presence of Na+ in ethanol.  BODIPY (2) (left) was used as the negative control.  
Sodium perchlorate was used as the source of Na+ ions. 

  

Figure 54:  Fluorescence emission spectra for BODIPY (3a) (right) in the presence of 
Na+ in ethanol.  BODIPY (2) (left) was used as the negative control.  Sodium 
perchlorate was used as the source of Na+ ions. 
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Figure 55:  Photocatalytic degradation of DPBF in ethanol by 1O2 generated 

from Rose Bengal std (red), BODIPY (3a) (blue), and (3a) in the presence of 
Na+ (green).  Irradiation at 568 nm in intervals of 30 s. 

 

Di-styryl crown ether-BODIPY (3b) 

 

The electronic absorption spectrum for BODIPY (3b) has a number of noteworthy 

features.  The main electronic absorption band lies appears at 670 nm in chloroform 

(Figure 56).  Appending the second crown ether to the 5-position of the BODIPY dye 

causes the main spectral band to red-shift by a further ca. 70 nm when compared to 

that of (3a) for a total red-shift of 140 nm compared to (2).  There is an enhancement 

of the aromatic crown-ether absorption band in the 300400 nm region.  Unlike the 

previous BODIPY dyes, the high energy shoulder of (3b) at 614 nm is significantly more 

intense.  Another small absorption band appears at around 535 nm and while this is 

not observed in the spectrum of (3a) it may be masked by the main spectral band.  The 

excitation and emission spectra at 672 nm and 696 nm, respectively, for (3b) are 

mirror images.  A single emission peak (at 696 nm) was observed even when the 
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excitation wavelength was adjusted to that of the secondary peaks  as would be 

anticipated based on Kasha’s rule.  The F value for (3b) is lowered to 0.36 which is to 

be expected as the styryl bond is flexible and promotes non-radiative fluorescence 

decay pathways to that seen of (3a).  The photophysical data for BODIPY (3b) is 

summarized in Table 7. 

 

Figure 56:  Normalized bands for absorption at 670 nm (green), emission at 
696 nm (red) and excitation at 672 nm (black) spectra of BODIPY (3b) in CHCl3. 

 

Table 7:  Photophysical data for di-styryl crown ether-BODIPY (3b). 

Solvent 
Absorbance 

(nm) 
Emission 

(nm) 
Excitation 

(nm) 
Log ε 

(M1
 cm1

) 
 F τF (ns) 

Stokes Shift 

(cm1
) 

 Δ 

Chloroform 
670 

(614) 
(535) 

696 672 
4.53 

(4.26) 
(3.85) 

0.36 4.2* 558 --- 

Ethanol 667 699 --- --- --- --- 686 0.28 

Ethanol 
(with Na +) 

656 679 --- --- --- --- 516 0.41 

*Main component of a biexponential fit. 

 

The singlet oxygen quantum yield of (3b) is 0.28 in ethanol and undergoes a 13% 

increase; to nearly double that of (3a) (implying a ca. 7% increase per complexed ion 

with the addition of Na+ ions to the solution), to 0.41.  As before, both the absorption 
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and emission bands for (3b) undergo a blue-shift (11 and 20nm, respectively) and their 

intensities increase after complexation of sodium.  In this case, there is a doubling of 

the emission intensity.  It is interesting to note that the blue-shift in absorption band 

maximum that is induced by complexation of (3b) with two sodium ions (11 nm) is 

approximately double that of (3a) (5 nm) which implies that there is a 5 nm blue-shift 

per complexed cation.  This strategy could prove useful for improving singlet oxygen 

generation in high sodium environments, such as in polluted river water or even 

cancerous tissue. 

 
Figure 57:  Absorption spectra of BODIPY (3b) in the absence 
(blue) and in the presence of Na+ (orange) in ethanol.  Sodium 

perchlorate was used as the source of Na+ ions. 

 

Figure 58:  Fluorescence emission spectra for BODIPY (3b) in 
the presence and absence of Na+ ions in ethanol.  Sodium 
perchlorate was used as the source of Na+ ions. 
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Figure 59:  Photocatalytic degradation of DPBF in DMSO by 1O2 
generated from ZnPc std (red), BODIPY (3b) (blue), and (3b) in the 
presence of Na+ (green).  Irradiation at 667 nm in intervals of 1 min. 

 

5.3 4,4’-Difluoro-8-(4-dimehtylamino)-1,7-dimethyl-2,6-dibromo -

3,5-di-styryl-(4-benzo-15-crown-5)-4-bora-3a,4a-diaza-s-indacene 

(6) 

5.3.1 Synthesis of BODIPY (6) 

 

(6a) and (6b) were synthesized using the same Knoevenagel condensation reaction 

method that was used for the synthesis of (3), the only difference being the use of (5) 

as the BODIPY core (Scheme 20).  A microwave assisted synthesis method was tested 

for the preparation of (6) in order to improve the reaction time and yield, but this 

proved unsuccessful.  Both the blue mono-substituted crown ether-BODIPY (6a) and 

the green di-substituted crown ether-BODIPY (6b) were isolated from the same 

reaction as two distinct fractions using the same solvent system as for (3) (Figure 60). 
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Scheme 20:  Knoevenagel condensation of 4-formylbenzo-15-crown-5 and 
(2) resulting in the synthesis of (6a) and (6b) crown ether-styryl BODIPY dyes. 

 

  
Figure 60:  BODIPY (6a) is blue in colour and exhibits with bright pink emission even 
under ambient light (left) and (6b) (right) under ambient and UV light. 

 

5.3.2 Structural Analysis of BODIPY (6a) and (6b) 

 

Mono-styryl crown ether-BODIPY (6a) 

 

All forty of protons from the structure of BODIPY (6a) can be identified in the 1H NMR 

spectrum.  As before, the seven phenyl protons can be assigned to the multiplet 

signals seen between 7.077.15, 7.417.46 and 7.957.99 ppm, which integrate to 

four, two, and one protons respectively.  The two proton signal at 4.114.17 ppm is 
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assigned to the protons on styryl bridge between the crown ether and the BODIPY 

core.  The two four proton signals at 3.303.33 and 4.464.49 ppm, as well as the 

eight proton signal at 2.01 ppm are assigned to the protons on the crown ethe r ring.  

The three and twelve proton signals at 1.36 and 1.18 ppm, respectively, can be 

assigned to the fifteen methyl protons. 

The FT-IR spectrum of BODIPY (6a) is very similar to that of (3a), and includes the 1266 

cm1 C-O ether stretch and the 1619 cm1 aromatic stretch. 

The atomic mass of (6a) is found using MADLI ToF mass spectrometry to be 804.9 amu 

which is in close agreement ( 1H+) with the expected value of 803.34 amu. 

 

Di-styryl crown ether-BODIPY (6b) 

 

The multiplets that lie between 6.816.83, 7.077.10, 7.437.51, and 7.958.00 ppm, 

which integrate to two, four, two and two protons respectively, can be assigned to the 

ten phenyl protons (four on the meso phenyl group and three on the benzo group of 

each crown ether unit).  The four proton signal at 4.124.15 ppm is assigned to the 

protons on styryl bridge between the crown ethers and the BODIPY core.  The eight 

proton multiplet at 3.853.87 ppm and the broad twenty four proton signal at 3.70 

ppm are assigned to the protons on the crown ether units.  Two six proton signals at 

1.36 and 1.44 ppm are assigned to the remaining twelve methyl protons, and thus all 

fifty eight protons are therefore identified in the 1H NMR spectrum of (6b). 

The FT-IR spectrum for (6b) shows the typical bands of an intact BODIPY core as well 

as the bands expected from the crown ether moiety.  
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The atomic mass of the primary (6b) fragment is found to be 1083.4 amu, within two 

amu ( 2H+) of the expected value of 1081.64 amu. 

 

5.3.3 Spectroscopic Properties of BODIPY (6a) and (6b) 

 

Mono-styryl crown ether-BODIPY (6a) 

 

The ground state electronic absorption spectrum for (6a) shared the same spectral 

features as (3a).  The absorption maxima for (6a) at 602 nm (in CHCl3) is red-shifted by 

ca. 70 nm when compared to BODIPY (5) and slightly red-shifted (by 5 nm) than its (3a) 

counterpart.  This gives further evidence that this spectrum is typical of mono-styryl 

crown ether substituted BODIPY dyes.  A Stokes shift of 662 cm1 gives rise to a 

fluorescence emission maximum at 627 nm for (6a).  With a F value of 0.27, (6a) is 

30% less fluorescent than (3a).  This is due to competition between the PET process of 

the amino nitrogen, and the flexibility of the crown-ether moiety, which both serve to 

deactivate the fluorescent state.  Addition of TFA to the solution of (6a) assists in 

reducing the PET effects by protonating the amino nitrogen that is at the para-position 

of the meso-phenyl substituent of the BODIPY dye.  Table 8 summarizes the 

photophysical data for (6a). 



132 

 

 
Figure 61:  Normalized bands for absorption at 602 nm (blue), 

emission at 627 nm(red) and excitation at 603 nm (black) in the 
spectra for BODIPY (6a) in CHCl3. 

 

Table 8:  Photophysical data for mono-styryl crown ether-BODIPY (6a). 

Solvent 
Abs 

(nm) 
Em (nm) Ex (nm) 

Log ε 

(M1 cm1) 
 F τF (ns) 

Stokes 

Shift 
(cm1) 

 Δ 

Chloroform 602 627 603 4.41 0.27 3.7* 662 --- 
Ethanol 597 630 --- --- --- --- 877 0.45 

Ethanol (with 
TFA) 

597 630 --- --- --- --- 877 --- 

Ethanol 
(with Na

+
) 

590 615 --- --- --- --- 689 0.52 

Ethanol (with 
Na+ and TFA) 

592 618 --- --- --- --- 711 0.58 

*Main component of the biexponential fit. 

 

Addition of Na+ to the solution causes the absorption and the emission spectrum 

maxima of (6a) to undergo a blue-shift of 7 nm and 15 nm, respectively.  This is 

coupled by an increase in the absorption intensity of the dye.  The increase in 

absorption and emission intensity is also noted with the addition of TFA; however, TFA 

alone does not cause a shift in the wavelength maxima as the amino nitrogen is 

disconnected from the π-system of the BODIPY core.  There is a larger blue-shift of the 

band maximum and an increase in intensity when both sodium and TFA are added to 
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the solution.  (5) was used as the control for studying the effects that sodium has on 

(6a). 

  
Figure 62:  The absorption spectra of BODIPY (6a) (right) in the absence and 
presence of Na+ and TFA in ethanol.  BODIPY (5) (left) was used as the negative 

control.  Sodium perchlorate was used as the source of Na+ ions. 
 

  
Figure 63:  Fluorescence emission spectra for BODIPY (6a) (right) in the presence 
of Na+ and TFA in ethanol.  BODIPY (5) (left) was used as the negative control.  Sodium 
perchlorate was used as the source of Na+ ions. 

 

Adding TFA to BODIPY (5) causes an increase in intensity of the absorption and 

emission intensity, but has no effect on the wavelengths of the band maxima.  Any 

change of wavelength is therefore due to the interaction between Na+ ions and the 
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crown-ether moiety.  Interestingly Na+ has a similar effect on the photophysical 

properties of BODIPY (5), although to a lesser extent.  One possibility is that the Na+ 

ions are reducing the PET effect by interacting with the lone pair of electrons on the 

amino nitrogen.  (6a) has a Δ value of 0.45 in ethanol, which increases by 7% to 0.52 

with the addition of sodium ions to the solution.  A further 6% (Δ value of 0.58) 

increase is observed once TFA is added to the solution.  

 
Figure 64:  Photocatalytic degradation of DPBF in ethanol by 1O2 generated 
from Rose Bengal (red), BODIPY (6a) (blue), (6a) in the presence of Na+ (green) 
and (6a) in the presence of Na+ and TFA (orange).  Irradiation at 570 nm in 

intervals of 1 min. 
 

Di-styryl crown ether-BODIPY (6b) 

 

The absorption maxima for BODIPY (6b) lies at 676 nm in CHCl3 with a shoulder of 

intensity on the high energy side of the band at 622 nm (Table 9).  The red-shifts seen 

for the main spectral bands of (6b) are consistent with those observed for (3b).  One 
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major difference between the spectra of (6b) and (3b) is the absence of the small peak 

at 535 nm.  Absorption bands associated with the crown ether ring can be seen in the 

300400 nm region.  The main spectral band in the emission spectrum for (6b) at 706 

nm has a Stokes shift of 629 cm1 compared to the absorption spectra.  The F value 

for (6b) is 0.19 due to the combined quenching effects of the two crown ether-styryl 

groups and PET effects. 

 

Figure 65:  Normalized bands for absorption at 676 nm (green), 
emission at 706 nm (orange) and excitation at 678 nm (black) in the 
spectra for BODIPY (6b) in CHCl3. 

 

Table 9:  Photophysical data for di-styryl crown ether-BODIPY BODIPY 
(6b). 

Solvent 
Abs  

(nm) 
Em  

(nm) 
Ex  

(nm) 
Log ε 

(M1 cm1) 
 F τF (ns) 

Stokes 
Shift  

(cm1
) 

 Δ 

Chloroform 676 706 678 4.86 0.19 4.3* 629 --- 
Ethanol 673 708 --- --- --- --- 735 0.39 

Ethanol 
(with TFA) 

676 706 --- --- --- --- 629 --- 

Ethanol 
(with Na +) 

658 688 --- --- --- --- 663 0.29 

Ethanol 

(with Na + 
and TFA) 

660 693 --- --- --- --- 722 --- 

*Main component of a  biexponential fi t. 
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The addition of TFA causes the maximum absorption band to red-shift by 3 nm, but 

does not alter the wavelength maximum of the emission spectrum.  The addition of 

sodium ions, however, causes the main spectral bands in the absorption and emission 

spectra of (6b) to blue-shift by 18 nm to 658 and 688 nm, respectively.  In this case, 

there is a slight decrease in the intensity of both bands after complexation with 

sodium.  As before, blue-shifts of the main spectral bands are only observed after the 

addition of Na+ ions to the solution. 

 

Figure 66:  The absorption spectra of BODIPY (6b) in the absence 
and presence of Na+ and TFA in ethanol.  Sodium perchlorate was 
used as the source of Na+ ions. 

 

The Δ value of 0.29 for (6b) in the presence of sodium is 10% less than that of (6b) 

when no sodium was present.  
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Figure 67:  Fluorescence emission spectra for BODIPY (6b) in 
the presence of Na+ and TFA in ethanol.  Sodium perchlorate was 

used as the source of Na+ ions. 
 

 
Figure 68:  Photocatalytic degradation of DPBF in DMSO by 1O2 
generated from ZnPc (red), BODIPY (6b) (blue), and (6b) in the 
presence of Na+ (green).  Irradiation at 663 nm in intervals of 1 min. 
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Concluding remarks: 

 

4’-Formylbenzo-15-crown-5 was successfully synthesized and fully characterized. 

Four novel crown ether-BODIPY dyes (mono- and di-styryl analogues of both BODIPY 

(2) and (5)) were synthesized from 4’-formylbenzo-15-crown-5 using a modified 

version of the Knoevenagel condensation reaction.  The crown ether moieties were 

attached via styryl bonds at the 3 or 5-position of the BODIPY core and this has several 

significant effects on the photophysical properties of the BODIPY dyes.  The main band 

maxima in the crown ether-BODIPY absorption and emission spectra undergo a red-

shift of approximately 70 nm for each styryl group that is attached to the BODIPY core.  

Sodium ions have no effect on the electronic spectra of BODIPYs that lack a crown 

ether moiety, but can cause the absorption and emission spectra for crown ether-

BODIPY dyes to blue-shift and become slightly more intense.  The addition of the 

flexible crown ether groups to the BOIDPY core causes a decrease in fluorescence 

quantum yield as well as a decrease in singlet oxygen quantum yield.  The singlet 

oxygen quantum yields are lower for the crown ether-BOIDPYs than for the 

dibrominated BODIPYs, but can be improved slightly when the crown ether moieties 

complex sodium ions.  These effects are approximately doubled when a di -styryl crown 

ether-BODIPY complexes with a second sodium ion. 
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Chapter 6:  

 

Molecular Modelling of BODIPY Dyes 
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6.1 Geometry Optimizations and TD-DFT calculations 

 

The density functional theory (DFT) method was used to carry out geometry 

optimizations with the Becke, three-parameter, Lee-Yang-Parr (B3LYP) functional of 

the Gaussian09 program package, and SDD basis sets  The SDD basis set is the 

Gaussian09 default basis set.  While it is not particularly well suited to handling a 

specific range of atoms it offers reasonable approximations for all atoms, including the 

heavy bromine and iodine atoms that were used in this study.  The calculations were 

performed at the Centre for High Performance Computing (CHPC).115  While the B3LYP 

functional has been used extensively for structural analysis it has a tendency to greatly 

underestimate long-range charge transfer excitation, which are frequently 

encountered with BODIPY dyes.57,119  TD-DFT calculations were carried out on the 

B3LYP optimized geometries using the Coulomb-attenuated B3LYP (CAM-B3LYP) 

functional in order to determine the electronic absorption properties of selected 

BODIPY dyes.  The CAM-B3LYP functional is better suited to handling transitions with 

charge transfer character as it combines elements of the hybrid B3LYP functional with 

increasing fractions of Hartree-Fock (HF) exchange parameters, resulting in a 

functional with improved long-range capabilities.121  This proved to be sufficiently 

accurate for the determination of the main spectral trends and structural property 

relationships of a series of structurally related BODIPY dyes. 
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6.1.1 Molecular Modelling for BODIPY dyes: (1), (2), (4), (5) 

 

The TD-DFT calculations predict that the lowest lying S0 → S1 transition is almost 

entirely associated with the HOMO → LUMO one-electron transition (Table 10).  

BODIPYs possess C2v symmetry as a result of the rigid plane conformation adopted by 

the dipyrromethane ligand after complexation with a boron atom (Figure 69).  This 

results in HOMO and LUMO MOs that are well separated from other MOs as seen in 

Figure 70.  Changing the para-substituent at the meso-phenyl of the BODIPY appears 

to cause no change in the HOMOLUMO band gap of the BODIPY MOs which is 

consistent with experimental observations.  This can be rationalized as the meso-

phenyl substituent is forced out of plane by the methyl groups at the 1,7-positions, 

which results in a poor conjugation with the BODIPYs π-system.  The nodal patterns of 

HOMO1 for BODIPYs (4) and (5) are similar to those of the HOMO of the other 

BODIPY dyes.  The calculations for BODIPY (4) predict that the HOMO and HOMO1 

MOs are near degenerate, and that the main transition occurs between the HOMO1 

and LUMO orbitals (Figure 70).  This suggests that an intermolecular charge transfer 

(ICT) process can occur between the electron donating amino nitrogen atom and the 

BODIPY core, which would quench the fluorescence.  This explains the low 

fluorescence quantum yield observed for BODIPY (4).  There is a marked lifting of 

degeneracy of the HOMO MOs upon protonation of the para-substituent of BODIPY (4) 

and a restoration of the HOMOLUMO main transition.  In this case, the lone pair of 

electrons on the amino nitrogen atom are no longer able to undergo ICT and cannot 

quench the BODIPYs fluorescence.  This also explains the “off-on” effect observed in 
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the fluorescence with the protonation of BODIPY (4) (Figure 40).  The same effect is 

also observed in the calculations for BODPY (5). 

A red-shift of the main band maxima in the electronic absorption and emission spectra 

of BODIPY dyes is observed when a structural alterations change the energies of the 

two frontier orbitals in such a way that there is a narrowing of the HOMOLUMO band 

gap.  When bromine atoms are added at the 2,6-positions they cause a destabilization 

of the HOMO orbital relative to the LUMO orbital.  This causes a narrowing of the 

HOMOLUMO gap and results in the ca 30 nm red-shift observed in the electronic 

absorption and emission spectra for the brominated BODIPY dyes.  This occurs as the 

LUMO possesses a nodal plane at the 2,6-position, while there is MO coefficient at 

these positions in the HOMO. 

The calculations for the 2,6-dibrominated BODIPYs indicate the presence of a second 

less intense absorption band that is blue-shifted compared to the main absorption 

band.  This HOMO2 → LUMO one-electron transition can be observed in the 

experimental spectra of the dibrominated BODIPY in the 320420 nm region (Figure 

73). 
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Figure 69:  Nodal patterns and MO energies of the four frontier π-MO for 
meso-substituted BODIPYs (1) and (4) and their 2,6-dibrominated analogues 

(2) and (5).  MO energies of selected BODIPY dyes at an isosurface value of 

0.04 a.u.  HOMO-LUMO gap energies are highlighted for the main electronic 
transition (a2u → b2u).  The positions and relative magnitudes of MO 

coefficients can provide insight into the effects of structural changes on the 
photophysical properties of studied BODIPY dyes. 

 



144 

 

 

Figure 70:  The frontier MO energies and HOMO-LUMO gaps for of meso-
substituted BODIPYs (1) and (4) and their 2,6-dibrominated analogues (2) and (5) 
using the CAM-B3LYP functional with SDD basis sets.  Dashes represent the HOMO 

and LUMO MO; diamonds represent the HOMO1 to HOMO4 and LUMO1 to 

LUMO4 π-MOs; circles represent the HOMOLUMO band gap energy for 
selected BODIPY analogues. 

 

Table 10:  TD-DFT calculation of electronic excitation energy, oscilator strengths 
and wave functions for meso-substituted BODIPY dyes (1) and (4) BODIPY dyes and 
their 2,6-dibrominated (2) and (5) analogues calculated by using the CAM-B3LYP 

functional with SDD basis set. 
BODIPIY #a E (eV)b λc fd Wavefunctione  

Unsubstituted BODIPY S1 2.99 414 0.59 H → L (97%), H1 → L (3%), …  

  S2 3.85 322 0.084 H1 → L (96%), H → L (3%), …  

  S3 4.11 301 0.066 H2 → L (98%), …  

  S4 5.52 225 0.15 H3 → L (95%), H → L1 (2%), …  

Dibrominated BODIPY S1 2.89 429 0.72 H → L (96%), …  

  S2 3.72 333 0.21 H2 → L (93%), H → L (2%), …  

  S3 3.83 324 0.06 H1 → L (90%), H5 → L (8%), …  

  S4 4.61 269 0.00 H → L1 (56%), H1 → L2 (26%), H2 → L1 (13%), …  

Meso-phenyl BODIPY  S1 3.02 410 0.55 H → L (96%), H1 → L (3%), …  

  S2 3.84 323 0.075 H1 → L (96%), H → L (3%), …  

  S3 4.13 300 0.056 H2 → L (98%), …  

  S4 4.54 273 0.000 H3 → L (96%), …  

Dibrominated meso- 

phenyl BODIPY 

S1 2.89 430 0.68 H → L (97%) , …  

  S2 3.68 337 0.15 H2 → L (94%), …  

  S3 3.83 324 0.072 H1 → L (90%), …  
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  S4 4.34 286 0.001 H3 → L (63%), H5 → L (34%), …  

BODIPY (1) S1 3.02 410 0.54 H → L (96%), H1 → L (2%), …  

  S2 3.84 323 0.072 H1 → L (96%), H → L (3%), …  

  S3 4.13 300 0.057 H3 → L (98%), …  

  S4 4.30 289 0.000 H2 → L (96%), …  

BODIPY (2) S1 2.89 429 0.67 H → L (97%), …  

  S2 3.69 336 0.14 H2 → L (78%), H1 → L (16%), …  

  S3 3.84 323 0.082 H1 → L (75%), H2 → L (16%), …  

  S4 4.08 304 0.011 H3 → L (95%), …  

BODIPY (4) S1 3.03 410 0.54 H → L (97%), H2 → L (2%), …  

  S2 3.27 380 0.001 H1 → L (95%), H5 → L (4%), …  

  S3 3.85 322 0.072 H2 → L (96%), H → L (3%), …  

  S4 4.15 299 0.055 H3 → L (98%), …  

BODIPY (5) S1 2.90 427 0.67 H → L (97%), …  

  S2 3.05 406 0.093 H1 → L (95%), …  

  S3 3.70 335 0.14 H2 → L (94%), …  

  S4 3.87 321 0.070 H3 → L (90%), …  

BODIPY (4) + TFA S1 2.96 420 0.55 H → L (97%), H1 → L (2%), …  

  S2 3.42 362 0.001 H → L1 (97%) , …  

  S3 3.67 338 0.017 H → L2 (98%) , …  

  S4 3.77 329 0.069 H1 → L (97%), H → L (3%), …  

BODIPY (5) + TFA S1 2.76 449 0.67 H → L (97%), …  

  S2 3.53 351 0.021 H → L1 (61%), H2 → L (33%), …  

  S3 3.58 346 0.15 H2 → L (61%), H → L1 (32%), H2 →L+1 (3%), …  

  S4 3.64 340 0.068 H1 → L (90%), H5 → L (8%), …  
 

a - Excited state number assinged in increasing energy in the TD-DFT calculations.  b – 
Calculated band energies in eV.  c – Calculated wavelengths in nm.  d – Calculated 
oscilator strengths  e – Wavefunctions of MOs involved in transition, and their 
respective contributions, based on eigenvectors predicted by TD-DFT. H and L refer to 
the HOMO and LUMO, respectively. 

 

6.1.2 Molecular Modelling for Crown ether-BODIPY dyes (3) and 

(6) 

 

Although there are no nodal planes at the 3,5-postions in ether the HOMO or LUMO, 

the MO coefficients at the HOMO and LUMO are unevenly distributed.58  A larger MO 

coefficient on the HOMO suggests that any structural alterations at this position 

should result in a greater effect on the HOMO than on the LUMO and can thus result 
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in a change in magnitude of the HOMOLUMO band gap.  The addition of styryl crown 

ether moieties at the 3 and/or 5-positions can extend the π-system of the BODIPY core 

and destabilize the HOMO to a greater extent than the LUMO, and this results in a ca. 

70 nm red-shift of the main absorption and emission spectral bands.  This red-shift is 

enhanced by a further 70 nm with the addition of a second styryl crown ether moiety.  

The HOMOLUMO one-electron transitions remain the dominate transition for the 

crown ether styryl BODIPY dyes where the most intense predicted band is concerned.  

Another effect of having a larger MO coefficient on the HOMO than in the LUMO for 

these BODIPYs is that any structural modification of the styryl groups is likely to cause 

a shift in the wavelength of the main bands in the absorption and emission spectra, 

which is what was observed upon complexation of the crown ether moieties with a 

sodium ion. 

Minor one-electron transitions are also calculated for HOMO1 → LUMO; HOMO2 → 

LUMO; and HOMO3 → LUMO transitions (Table 11).  These transitions are primarily 

associated with the styryl substituents and result in the weak absorption bands 

observed over the 300450 nm region in both mono and di-styryl crown ether 

BODIPYs.58 
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Figure 71:  Nodal patterns and MO energies of the four frontier π-MO for crown 
ether-BODIPY dyes (3a), (3b), (6a) and (6b).  MO energies of selected BODIPY dyes at 

an isosurface value of 0.04 a.u.  HOMOLUMO gap energies are highlighted for the 
main electronic transition (a2u → b2u).  The positions and relative magnitudes of MO 

coefficients can provide insight into the potential effects of structural changes on the 
photophysical properties of studied BODIPY dyes. 
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Figure 72:  The frontier MO energies and HOMOLUMO gaps for a select range of 
Crown ether-BODIPY dyes (3a), (3b), (6a) and (6b) using the CAM-B3LYP functional 
with the SDD basis set.  Dashes represent the HOMO and LUMO MO; diamonds 

represent the HOMO1 to HOMO4 and LUMO1 to LUMO4 π-MOs; circles 

represent the HOMOLUMO band gap energy for selected BODIPY analogues . 
 

Table 11:  TD-DFT calculation of electronic excitation energy, oscilator strengths 
and wave functions crown ether-BODIPY dyes (3a) and (3b) and their 2,6-
dibrominated analogues (6a), (6b) calculated by using the CAM-B3LYP functional with 

SDD basis set. 
BODIPIY #a E (eV)b λc fd Wavefunctione  

Unbrominated BODIPY (3a) S1 2.53 491 0.93 H → L (96%), … 

  S2 3.73 332 0.14 H1 → L (84%), H4 → L (9%), … 

  S3 3.92 317 0.30 H1 → L (73%), H4 → L (11%), H2 → L (3%), …  

  S4 4.08 304 0.16 H7 → L (90%), H1 → L (7%), … 

BODIPY (3a) S1 2.41 515 1.0 H → L (94%), H1 → L (4%), … 

  S2 3.45 360 0.27 H1 → L (53%), H2 → L (24%), H4 → L (10%), 
H → L (2%), … 

  S3 3.73 332 0.16 H2 → L (34%), H1 → L (30%), H3 → L (22%), … 

  S4 3.81 325 0.14 H4 → L (80%), H1 → L (5%), H2 → L (4%), 
H3 → L (3%), … 

Unbrominated BODIPY (3b) S1 2.14 579 0.58 H → L (96%), … 

  S2 3.35 360 0.97 H1 → L (92%), … 

  S3 3.72 334 0.025 H6 → L (90%), H2 → L (3%), … 

  S4 4.02 308 0.11 H → L1 (13%), … 

BODIPY (3b) S1 2.05 605 0.60 H → L (96%), … 

  S2 3.17 392 0.98 H1 → L (93%), … 

  S3 3.48 357 0.004 H4 → L (41%), H2 → L (31%), H6 → L (11%), 
H5 → L (7%), H3 → L (2%), … 
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  S4 3.77 329 0.049 H5 → L (42%), H6 → L (36%), H3 → L (6%), … 

Unbrominated BODIPY (6a) S1 2.54 489 0.93 H → L (96%), … 

  S2 3.16 393 0.002 H1 → L (93%), … 

  S3 3.74 331 0.14 H4 → L (56%), H3 → L (30%), H2 → L (6%), … 

  S4 3.94 315 0.33 H2 → L (74%), H3 → L (9%), H7 → L (7%), … 

BODIPY (6a) S1 2.42 511 1.0 H → L (94%), H2 → L (3%), … 

  S2 22.99 414 0.098 H1 → L (94%), … 

  S3 3.49 356 0.23 H2 → L (48%), H3 → L (29%), H5 → L (10%), 
H4 → L (4%), H → L (2%), … 

  S4 3.76 330 0.16 H3 → L (36%), H2 → L (33%), H4 → L (19%), … 

Unbrominated BODIPY (6a) 
 + TFA 

S1 2.29 542 1.1 H → L (94%), H1 → L (4%), … 

  S2 3.00 420 0.001 H → L1 (83%), H1 → L1 (14%), … 

  S3 3.19 389 0.029 H → L2 (84%), H1 → L2 (13%), … 

  S4 3.36 369 0.28 H1 → L (84%), H → L (4%), … 

BODIPY (6a) 
 + TFA 

S1 2.16 574 1.1 H → L (93%), H1 → L (5%), … 

  S2 3.06 406 0.039 H → L1 (82%), H1 → L1 (12%), … 

  S3 3.13 397 0.26 H1 → L (78%), H → L (4%), H4 → L (4%), … 

  S4 3.28 378 0.027 H → L2 (85%), H1 → L2 (12%), … 

Unbrominated BODIPY (6b) S1 2.13 582 0.54 H → L (96%), … 

  S2 3.11 399 0.24 H1 → L (65%), H2 → L (29%), … 

  S3 3.35 370 0.78 H2 → L (64%), H1 → L (28%), … 

  S4 3.72 334 0.020 H6 → L (88%), H3 → L (5%), … 

BODIPY (6b) S1 2.07 599 0.59 H → L (96%), … 

  S2 2.93 424 0.49 H1 → L (75%), H2 → L (19%), … 

  S3 3.26 381 0.60 H2 → L (74%), H1 → L (19%), … 

  S4 3.50 355 0.005 H5 → L (46%), H3 → L (28%), H7 → L (9%), 
H4 → L (6%), … 

Unbrominated BODIPY (6b)  

+ TFA 

S1 1.87 662 0.54 H → L (95%), … 

  S2 2.73 454 0.008 H → L1 (89%), H2 → L1 (6%), … 

  S3 2.85 422 0.82 H1 → L (93%), … 

  S4 2.94 367 0.15 H → L2 (90%), H2 → L2 (5%), … 

BODIPY (6b) 
 + TFA 

S1 1.79 693 0.59 H → L (95%), … 

  S2 2.75 451 0.90 H1 → L (94%), … 

  S3 2.85 436 0.024 H → L1 (88%), H2 → L1 (5%), … 

  S4 3.04 408 0.12 H → L2 (90%), H2 → L2 (5%), … 
 

a - Excited state number assinged in increasing energy in the TD-DFT calculations.  b – 
Calculated band energies in eV.  c  – Calculated wavelengths in nm.  d – Calculated 

oscilator strengths  d – Wavefunction of MOs involved in transition, and their 
respective contributions, based on eigenvectors predicted by TD-DFT.  H and L refer 

to the HOMO and LUMO, respectively. 
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6.1.3 Comparison between predicted model and real spectra for 

BODIPYs (1), (2), (3a) and (3b) 

  

  
Figure 73:  TD-DFT calculated oscillator strengths of the first forty excited states 
overlaid with the experimental electronic absorption spectra on the secondary axis 
for selected BODIPY dye analogues.  BODIPY absorption spectra are recorded in 
CHCl3.  (Top left) BODIPY (1).  (Top right) BODIPY (2).  (Bottom left) BODIPY (3a). 
(Bottom right) BODIPY (3b). 

 

6.1.4 Concluding remarks 

 

TD-DFT calculations are a useful tool for establishing trends in the energy of BODIPY 

molecular orbitals.  Studying these trends can provide insight into the photophysical 

properties of BODIPY dyes that allows for the rationalization of spectral shifts; the 

morphology of absorption bands; as well as offering possible explanations for 

observed fluorescence behaviour of BODIPY dyes that are caused by structural 
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modifications of the BODIPY core.  Careful use of molecular modelling could assist in 

the rational design of BODIPY dye molecules for sensor applications.  The modelling 

data show that complexation between a metal ion and a styryl crown ether moiety at 

the BODIPYs 3,5-position could result in a small, but measurable change in the 

absorption spectrum of the complex.  There is a satisfactory match between the 

trends in the BODIPY calculations and the experimental electronic absorption spectra 

(Figure 73). 
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Chapter 7:  

 

Conclusions, Limitations and Future Work 
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7.1 Conclusions 

 

Two BODIPY dyes (including the novel meso-(p-isopropylphenyl) substituted BODIPY 

(1)) with different para-substituents on the meso-phenyl functional group were 

synthesized using the acid catalysed condensation reaction and were fully 

characterized.  (1) displays highly favourable photophysical properties.  Interestingly, 

(2) demonstrated “off-on” fluorescence emission when protonated by TFA.  This effect 

was no longer observed when (2) was electrospun into PS nanofibers as its 

fluorescence properties remained “on” even in the absence of TFA.  Subsequently, 

BODIPY dyes (1) and (2) were synthesised to serve as the core for increasingly complex 

BODIPY dyes. 

In order to enhance the rate of ISC, and thus enable the BODIPY dyes to generate 

singlet oxygen, bromine atoms were attached at the 2,6-positions to form BODIPYs (2) 

and (5).  Due to the heavy atom effect a marked decrease in fluorescence quantum 

yield which was accompanied by an increase in singlet oxygen quantum generation.  

The brominated BODIPY dyes are highly photostable during experiments with intense 

ns pulsed laser beams and this makes them good candidates for singlet oxygen 

applications.  These BODIPYs were electrospun into PS nanofibers where they were to 

be used for the photodegradation of azo-dyes such as tartrazine and Orange-G.  Once 

the BODIPYs were embedded in the nanofibers, however, no singlet oxygen 

generation could be detected. 

Four novel crown ether styryl-BODIPY dyes were synthesized from the two brominated 

BODIPY dyes.  These compounds exhibit moderately high fluorescence and singlet 

oxygen quantum yields.  When the crown ether moieties complex sodium ions in 
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solution they are accompanied by a slight blue-shift of the band maxima in the 

absorption and emission spectra.  An increase in the singlet oxygen quantum yield was 

also observed for (3a) and (3b). 

 

7.2 Limitations 

 

 Most of the environmental contaminants of interest (such as azo-dyes) are found 

in aqueous media.  Using BODIPYs dyes to degrade such pollutants could be 

problematic as none of the BODIPY dyes synthesized in this study are soluble in 

water.  The use of a solid nanofibers support was explored in this work as it offers 

the potential to recycle the BODIPY photocatalyst.  It may also be possible to solve 

this problem by adding water solubilising groups to the BODIPY dyes. 

 Despite the favourable properties of polystyrene for fabricating nanofibers such as 

chemical inertness; transparency; and low cost, it is unfortunately hydrophobic.  

This means that the distance between the solution and the BODIPY inside the fiber 

is too great to allow transfer of the singlet excited state energy.  Polymers other 

than polystryrene should therefore be explored for the fabrication of BODIPY 

embedded nanofibers. 

 4’-formylbenzo-15-crown-5 is not particularly selective as it is able to bind both 

Na and K ions.  While it is sufficient for proof of principle, an aza- or thiaaza-

crown ether moiety would be better suited for studying the effects that 

complexation of ions with greater environmental impact have on the 

photophysical properties of a crown ether BODIPY dye. 
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 Sodium is a light metal which means that the ability for sodium to improve the 

singlet oxygen quantum yield by the heavy atom effect is severely limited.  The 

ability to chelate heavier atoms, such as Hg2 or Ag, could prove more efficient at 

enhancing the singlet oxygen quantum yield.  

 

7.3 Future Work 

 

TD-DFT calculations should include complexes of crown ether BODIPY dyes in order to 

gain further insight into the effect that chelation of a metal ion has on the 

photophysical properties of these BODIPY dyes. 

Replacing the 2,6-position bromine atoms with iodine atoms could further improve the 

singlet oxygen quantum yields of BODIPY dyes. 

Hydrophilic polymers, such as chitosan, should be explored as alternative materials for 

the fabrication of BODIPY embedded nanofibers. 

Further studies on the photodegradation of azo-dyes could prove useful for comparing 

the photocatalytic ability of BODIPY dyes in solution and those embedded in 

nanofibers. 

It would be of great interest to compare the photophysical properties of crown ether 

BODIPY dye complexes that contain heavier ions, such as Ag+ and Hg2+.  This would 

enable BODIPY dyes to act as ion sensor molecules for environmentally significant ions 

as well as offering a potentially viable method for improving the singlet oxygen 

quantum yield of such molecules due to the heavy atom effect.  
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