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INSTITUT FÜR KERNPHYSIK, UNIVERSITÄT FRANKFURT
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Abstract

A validity of a recent estimate of an upper limit of charm production in central

Pb+Pb collisions at 158 A·GeV is critically discussed. Within a simple model we

study properties of the background subtraction procedure used for an extraction

of the charm signal from the analysis of dilepton spectra. We demonstrate that

a production asymmetry between positively and negatively charged background

muons and a large multiplicity of signal pairs leads to biased results. Therefore the

applicability of this procedure for the analysis of nucleus–nucleus data should be re-

considered before final conclusions on the upper limit estimate of charm production

could be drawn.
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Measurement of the invariant mass spectra of opposite–sign lepton pairs (dileptons)
allow to extract information otherwise difficult or even impossible to obtain. Among
interesting processes which contribute to dilepton production are decays of vector mesons
(ρ, w, φ, J/ψ, ψ

′

), Drell–Yan as well as thermal creation of dileptons, and decays
of charm hadrons. Decays of pions and kaons are a dominant source of uninteresting
(background) dileptons which should be subtracted before deconvolution of contributions
from the interesting (signal) sources is performed.

Recent analysis of dimuon spectrum measured in central Pb+Pb collisions at 158
A·GeV by NA50 Collaboration [1] suggests a significant enhancement of dilepton pro-
duction in the intermidiate mass region (1.5÷2.5 GeV) over the standard sources. The
primary interpretation attributes this observation to the increased production of open
charm [1]. In the following theoretical papers other possible sources of the observed effect
are proposed which do not invoke enhancement of the open charm yield [2]. This suggests
to interpret the NA50 result as an estimate of the upper limit (about 3 times above pQCD
predictions) of open charm multiplicity in Pb+Pb collisions at SPS. The above conclusion
relies, however, on the assumption that the background subtraction procedure used to ex-
tract signal sources gives unbiased results. In this work we show that this assumption is
questionable. In particular, an asymmetry in the production of positively and negatively
charged background dileptons and a high multiplicity of signal pairs lead to the result
which differs from the one usually assumed in the data interpretation. Our analysis is
done within a simple model based on the assumptions used to justify the background
subtraction procedure [1].

In central Pb+Pb collisions at SPS, due to high multiplicity of produced hadrons,
the multiplicity of background dileptons is much higher (≈ 95 %) than the multiplicity
of signal pairs (≈ 5 %). The invariant mass spectra of the Drell–Yan, thermal, and
open charm contributions are broad and essentially structureless. Consequently their
extraction requires very precise knowledge of the shape and the absolute normalisation of
the background distribution. The necessary accuracy can not be reached by calculation of
the background based on a model. Therefore in order to decrease the systematic error of
the background estimation a method based on the measured data was developed and used
in the analysis of dilepton spectra [1, 3, 4]. In this method the background contribution

to dilepton spectra is calculated as 2
√

〈n++〉〈n−−〉, where 〈n++〉 and 〈n−−〉 are measured
multiplicities of like–sign lepton pairs.

The NA50 experiment measured the mean multiplicity of like–sign, 〈n++〉 and 〈n−−〉,
and opposite–sign, 〈n+−〉, muon pairs. One usually distinguishes two classes of muons:
the ”independent” muons coming from decays of pions and kaons (h mesons) and the
”correlated” muons originating from vector meson decays, Drell–Yan and thermal cre-
ation of dimuons, and from decays of pairs of charm hadrons. For simplicity of the initial
considerations let us assume that the correlated muons only come from the decays of
charm hadrons, which we denote here by D and D. The meaning in which the words
”independent” and ”correlated” used above is the following. Let N+, N− be the num-
bers of positively and negatively charged hadrons (kaons and/or pions) produced in a
given nucleus–nucleus (A+A) collision. The numbers N+, N− are independent when the
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probability to observe them can be factorized:

P (N+, N−) = P+(N+) × P−(N−) , (1)

where P+(N+) and P−(N−) are the probability distributions for independent observation
of N+ or N− hadrons. Due to charm conservation the numbers of D and D hadrons are
expected to be equal in each event (ND = ND); the production of D and D hadrons is
correlated. The independence or the correlation of muon sources leads to an independence
or a correlation of muons originating from these sources. The assumption of approximately
independent K+ and K− (or π+ and π−) production in A+A event is justified by large
number of different hadron species created in the collision. Then, e.g. the electric charge
and strangeness of produced K+ in a given event could be in fact compensated by many
different hadron combinations, not just only by K−.

Let us denote by αh and αD the probabilities that a decay of a single h or D leads to
a muon inside the NA50 spectrometer. In an event with multiplicities N+, N− and ND

the probabilities to observe n muons of a given sort are binominaly distributed:

Pi(n
i
+) =

N+!

ni
+! (N+ − ni

+)!
(αh)

ni

+ (1 − αh)
N+ − ni

+ , (2)

Pi(n
i
−
) =

N−!

ni
−
! (N− − ni

−
)!

(αh)
ni

− (1 − αh)
N− − ni

− . (3)

Pc(n
c
+) =

ND!

nc
+! (ND − nc

+)!
(αD)nc

+ (1 − αD)ND − nc

+ , (4)

Pc(n
c
−
) =

ND!

nc
−
! (ND − nc

−
)!

(αD)nc

− (1 − αD)ND − nc

− . (5)

where ni
+, ni

−
, nc

+ and nc
−

are numbers of positively and negatively charged muons from
”independent” and ”correlated” sources. From Eqs. (2-5) one finds

ni
+ = αh N+ , ni

−
= αh N− , nc

+ = nc
−

= αD ND , (6)

(ni
+)2 = αh (1 − αh) N+ + α2

h N
2

+ , (7)

(ni
−
)2 = αh (1 − αh) N− + α2

h N
2

−
, (8)

(nc
+)2 = (nc

−
)2 = αD (1 − αD) ND + α2

D N2

D . (9)

We introduce now the probabilities, Ah, AD, and AhD that muon pairs from, respectively,
hh, DD and hD decays are detected within the dimuon acceptance. These probabilities
depend on cuts on the dimuon properties and, for given experimental cuts, on momentum
spectra of dimuon sources. Assuming that the probabilities A are multiplicity indepen-
dent, we arrive at the following expressions for the numbers of like–sign and opposite–sign
muon pairs, for fixed values of N+, N− and ND

n++ = Ah

∑

ni

+

ni
+(ni

+ − 1)

2
Pi(n

i
+) + AD

∑

nc

+

nc
+(nc

+ − 1)

2
Pc(n

c
+) (10)
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+ AhD

∑

ni

+
,nc

+

ni
+ nc

+ Pi(n
i
+) Pc(n

c
+)

=
Ah

2

(

(ni
+)2 − ni

+

)

+
AD

2

(

(nc
+)2 − nc

+

)

+ AhD ni
+ nc

+

=
Ah

2
α2

h

(

N2

+ −N+

)

+
AD

2
α2

D

(

N2

D −ND

)

+ AhD αhαD N+ ND ,

n−− =
Ah

2
α2

h

(

N2

−
−N−

)

+
AD

2
α2

D

(

N2

D −ND

)

+ AhD αhαD N− ND , (11)

n+− = Ah

∑

ni

+
,ni

−

ni
+n

i
−
Pi(n

i
+) Pi(n

i
−
) + AD

∑

nc

+
,nc

−

nc
+n

c
−
Pc(n

c
+) Pc(n

c
−
) (12)

+ AhD

∑

ni

+
,nc

−

ni
+ nc

−
Pi(n

i
+) Pc(n

c
−
) + AhD

∑

ni

−
,nc

+

ni
−
nc

+ Pi(n
i
−
) Pc(n

c
+)

= Ah α
2

h N+ N− + AD α2

D N2

D + AhD αhαD ND (N+ +N−) .

Here we have made a simplified assumption that the shape of momentum spectra of h+

and h− (as well as D and D) are similar and, therefore, A++

h = A−−

h = A+−

h ≡ Ah,
A++

hD = A−−

hD = A+−

hD ≡ AhD and A++

D = A−−

D = A+−

D ≡ AD (the last equation means
that possible momentum correlations between D and D are also neglected). Note that
if there are no cuts on the dimuon properties the above probabilities become equal to
unity, Ah = AhD = AD = 1, i.e. assuming all A-probabilities equal to one in Eqs. (10-
12) we count all possible dimuon pairs. However, as soon as one fixes some dimuon
properties (e.g. an invariant mass of the dimuon pair) all A-probabilities are evidently
smaller than unity and their actual numerical values become dependent on the shape of h
and D momentum spectra and their decay kinematics. Note also that in Eqs. (10-12) an
independence of muon numbers ni

+ and ni
−

is due to assumed in Eq. (1) independence of
N+ and N− which entered into Pi(n

i
+) (2) and Pi(n

i
−
) (3). A correlation of muon numbers

nc
+ and nc

−
is due to the correlation of ND and ND (ND = ND) which entered into Pc(n

c
+)

(4) and Pc(n
c
−
) (5) probability distributions. The correlation of nc

+ and nc
−

is of course
weaker than that for ND and ND, so that nc

+ are not necessarily equal to nc
−

in each event.
In order to find the final mean multiplicities of the dimuons one should average the

obtained numbers over all possible values of N+, N−, ND. To simplify the following cal-
culations we assume that the relevant multiplicity distributions are Poisson distributions

P (N) =
N

N

N !
exp(−N) . (13)

In this case one gets:

〈n++〉 =
∑

N+,N−,ND

n++ P (N+) P (N−) P (ND) =
1

2
Ah α

2

h

(

N+

)2

(14)

+
1

2
AD α2

D

(

ND

)2

+ AhD αh αD N+ ND .
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〈n−−〉 =
∑

N+,N−,ND

n−− P (N+) P (N−) P (ND) =
1

2
Ah α

2

h

(

N−

)2

(15)

+
1

2
AD α2

D

(

ND

)2

+ AhD αhαD N− ND .

〈n+−〉 =
∑

N+,N−,ND

n+− P (N+) P (N−) P (ND) = Ah α
2

h N+ N− (16)

+ AD α2

D

[

(

ND

)2

+ ND

]

+ AhD αh αD ND

(

N+ + N−

)

.

Note again that ND = ND is assumed in each event and, therefore, there is no independent
summation over ND in the above equations. Eqs. (14-16) can be rewritten as

〈n++〉 =
1

2
ah h

2

+ +
1

2
ad D

2 + am h+ D , (17)

〈n−−〉 =
1

2
ah h

2

−
+

1

2
ad D

2 + am h− D , (18)

〈n+−〉 = ah h+ h− + ad D
2 + ad D + am D (h+ + h−) , (19)

by introducing the following notations:

ah ≡ Ah α
2

h , ad ≡ AD α2

D , am ≡ AhD αh αD , (20)

N+ ≡ h+ , N− ≡ h− , ND ≡ D . (21)

Parameters ah, ad and am are therefore the probabilities to observe two muons from the
corresponding hadron sources (these probabilities are α2

h, α
2
D and αhαD) within experi-

mental cuts on muon pair properties (these cuts lead to additional factors Ah, AD and
AhD).

In the experimental procedure the background contribution to the dimuon spectrum
is calculated as:

〈nBgr
+−

〉 ≡ 2
√

〈n++〉 〈n−−〉 . (22)

The number of signal (µ+, µ−)–pairs is assumed to be:

〈nSgl
+−

〉 ≡ 〈n+−〉 − 〈nBgr
+−

〉 . (23)

It is expected that the subtraction procedure (23) cancels out all false (µ+, µ−)–pairs i.e.
the pairs from hh and hD decays, and that 〈nSgl

+−
〉 is proportional to the multiplicity of D

hadrons:

〈nSgl
+−

〉 = ad D . (24)

Let us consider some properties of the subtraction procedure (23) by discussing two
simple examples within the model.
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Example 1: We assume that there is no contribution from D-decays. In our model
this assumption can be introduced by setting αD = 0. Consequently ad = am = 0 and
Eqs. (17-19) result in:

〈n++〉 =
1

2
ah h

2

+ , 〈n+−〉 =
1

2
ah h

2

−
, 〈n+−〉 = ah h+ h− . (25)

Using Eq. (23) one obtains that 〈nSgl
+−

〉 = 0, i.e. the measured signal multiplicity is equal
to zero as expected in the case of absence of dimuons from the correlated source. This
result is valid for any value of h+ and h−.

Example 2: In this example we assume that there are correlated dimuons ad D > 0 but
the number of positively and negatively charged background hadrons is equal (h+ = h− ≡
h). Under these conditions Eqs. (17-19) can be rewritten as

〈n++〉 = 〈n−−〉 =
1

2
ah h

2 +
1

2
ad D

2 + am h D , (26)

〈n+−〉 = ah h
2 + ad D

2 + ad D + 2 am h D . (27)

Eq. (23) gives 〈nSgl
+−

〉 = ad D which agrees exactly with the expectation (24).

Finally we consider the general case, i.e. ad D > 0 and h+ 6= h−. This last condi-
tion corresponds to the relation between pion and kaon average multiplicities measured
in heavy ion collisions: 〈π−〉 > 〈π+〉 and 〈K+〉 > 〈K−〉. From Eqs. (17-23) by straight-
forward calculations one finds

〈nSgl
+−

〉 = 〈n+−〉 −
√

(〈n+−〉 − ad D)2 + γ D2 , (28)

where
γ ≡

(

ah ad − a2

m

)

(h+ − h−)2 .

It is easy to see that for αD = 0 and/or h+ = h− = h one gets γ = 0, and the results
obtained in Examples 1 and 2 are reproduced. We repeat that in the absence of cuts on
the dimuon properties one has Ah = AhD = AD = 1. Therefore, ah ad − a2

m = 0 (i.e.
γ = 0) and consequently we have again unbiased estimate of the mean multiplicity of D
mesons. In general, however, the result differs from the expected one (24). The presence
of experimental cuts on dimuons (e.g. one fixes the dimuon invariant mass in the region
M = 1.5÷2.5 GeV) causes that the probabilities Ah, AhD and AD are smaller than unity,
destroys the equality AhAD = A2

hD and, therefore, leads to non-zero value of γ. With cuts
on dimuon properties the experimental number of signal pairs 〈nSgl

+−
〉 is not equal to adD.

By fitting adD
∗ to 〈nSgl

+−
〉 one finds the spurious number of D hadrons which we denoted

by D∗. There are two distinct cases.

Case 1: ah ad − a2
m < 0 , (γ < 0) .

The experimentally measured signal, 〈nSgl
+−

〉 (28), is larger than the expected value adD
and therefore the extracted spurious number of D hadrons is larger than the true one
(D < D∗).

Case 2: ah ad − a2
m > 0 , (γ > 0) .

The experimentally measured signal, 〈nSgl
+−

〉 (28), is smaller than the expected value adD
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and therefore the extracted spurious number of D hadrons is smaller than the true one
(D > D∗).

In the NA50 analysis of the dimuon spectra in terms of the open charm enhancement
the used background subtraction procedure was checked for two different cases. First of
all, it was shown to work correctly for simulated central Pb+Pb collisions at 158 A·GeV.
However in this simulation correlated (signal) muon sources were not included. Thus this
check is equivalent to our Example 1, for which the procedure works exactly. Secondly
the open charm yield was extracted for p+A interactions and it was shown to agree with
the yield from direct measurements. Eq. (28) and Example 1 show that the deviation
from the expected result decreases with decreasing multiplicity of D hadrons. Thus the
success of the procedure applied to p+A interactions does not proof its applicability to
Pb+Pb collisions in which multiplicity of D hadrons may be higher even by a factor of
about 104 [5, 6].

Note that our results are obtained in a highly simplified model. The assumptions
concerning independent production of background muons (Eq. (1)), the Poissonian mul-
tiplicity distributions of hadrons (Eq. (13)) and the absence of D meson momentum
correlations (A++

D = A−−

D = A+−

D ≡ AD) seem to be questionable or even incorrect. Dis-
cussion of the possible additional biases introduced by these effects is beyond the scope
of this paper. We also do not attempt here to calculate numerical values of Ah, AhD, AD

for the specific NA50 experimental acceptance of dimuon pairs.
We close the paper by concluding that the applicability of the background subtraction

procedure widely used in the analysis of dilepton spectra in nucleus–nucleus collisions
should be reconsidered. In particular final statement on the upper limit of the open
charm multiplicity in central Pb+Pb collisions at 158 A·GeV resulting from the analysis
of the dimuon spectrum requiers further studies in order to quantify a magnitude of the
bias. They should include numerical simulations of the specific experimental set–up and
consider various particle production models.
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