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Λ and Λ̄ reconstruction in central Pb+ Pb collisions using
a time projection chamber
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Abstract. The large acceptance time projection chambers of the NA49 experiment are used
to record the trajectory of charged particles from Pb+ Pb collisions at 158 GeV per nucleon.
Neutral strange hadrons have been reconstructed from their charged decay products. To obtain
distributions of3, 3̄ and K0

s in discrete bins of rapidity,y, and transverse momentum,pT,
calculations have been performed to determine the acceptance of the detector and the efficiency
of the reconstruction software as a function of both variables. The lifetime distributions obtained
give values ofcτ=7.8±0.6 cm for3 and cτ=2.5±0.3 cm for K0

s , consistent with data book
values.

1. Introduction

The NA49 experiment takes data from high-multiplicity central Pb+ Pb collisions using
a stationary target and a beam energy of 158 GeV per nucleon. The large acceptance
detector system shown in figure 1, consisting of time projection chambers (TPC), time-
of-flight arrays (TOF) and calorimeters, measures hadronic spectra [1]. The TPCs record
the trajectory of charged particles. Using detailed knowledge of the magnetic fields in
which VTPC1 and VTPC2 are situated, momenta can be calculated. The main TPC is not
in a magnetic field; it can perform particle identification using dE/dx measurements in
conjunction with information from the TOF arrays. The large acceptance of the experiment
gives the potential to select individual events showing non-statistical fluctuations for further
analysis. This subset of events may show enhanced signatures of deconfined quark matter,
such as an enhancement of (anti-)strange hadrons [2, 3].

2. Reconstruction details

Neutral strange particles are reconstructed from their charged decay products using the
following procedure. All charged particle tracks in VTPC2 that pass a track quality selection
cut are extrapolated towards the target and at 2 cm steps the distance between pairs of
oppositely charged tracks is calculated. If the distance of closest approach (DCA) in the
x and y directions is smaller than predetermined values then the pair of tracks may be
used as a decay candidate. Simple geometric cuts illustrated in figure 2 are used to remove
combinatorial background. This background consists largely of pairs of primary tracks from
the target. Close to the target many pairs of primary tracks will pass the DCA cuts and
it is this source of background that is removed by thez cut. By requiring that pairs of
tracks are separated at the target plane, background can be reduced further. Table 1 gives
the values used for the cuts for VTPC2. For each decay candidate that passes the cuts,
a geometrical nine-parameter fit is performed using the momenta of the daughter tracks
(2× 3 parameters) and the position of the decay vertex (three parameters). The invariant
mass of the parent particle can then be calculated. Particle identification is possible for
charged particles entering the main TPC, but not all tracks from VTPC2 are in the MTPC
acceptance. Therefore, the invariant mass of the parent particle is calculated for three decay
hypotheses,3 → pπ−, 3̄ → p̄π+, K0 → π+π− where the identification of the daughter
tracks are assumed (see figure 3).
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Figure 1. A schematic diagram of the NA49 detector system.

Figure 2. Cuts used to remove combinatorial background.

Table 1. Cuts used to remove combinatorial background.

Cut z Separation Target,1x Target,1y DCA,x DCA,y

Value 280.0 cm 5.0 cm 1.11 cm 0.54 cm 1.0 cm 1.0 cm

3. Acceptance and efficiency corrections

Corrections for the detector acceptance and reconstruction efficiency are calculated
separately, using Monte Carlo (MC) simulated3, 3̄ and K0 decays. The amount of
ionization produced by MC decay products at detectable points along the track is calculated
(there are a maximum of 72 detectable points on a track). Using this information it is
possible to determine if both decay tracks, and hence the parent particle, are within the
acceptance of the detector. By repeating this procedure a large number of times the fraction
of acceptable particles can be calculated in discrete bins ofy andpT.

A detector response simulator determines the raw data signal that would be produced
from the simulated ionization. In order to take account of the high-multiplicity environment,
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Figure 3. Invariant mass distributions for̄3, K0
s and3 from VTPC2.

Figure 4. Lifetime distributions for3 and K0
s from VTPC2.

the calculation of the reconstruction efficiency is performed by embedding simulated
particles into real data at the raw data level. MC decays are only embedded into those
events in which no decay candidates were found, so that the MC particle can be identified
without ambiguity. Only one MC decay is embedded per event in order to minimize the
possibility of perturbing the event.

By re-analysing the events to find the fraction of embedded particles that are
reconstructed, it is possible to calculate the reconstruction efficiency, again in discrete bins
of y andpT, giving values of∼40%. A given particle generated in oney–pT bin may be
reconstructed in another (referred to here asflow from one bin to another), due to the finite
resolution of the detector. The MC particles were generated with a flaty andpT distribution
so as not to assume the distribution of real particles. This results in different amounts of
flow in real and MC distributions. Careful account is taken of this flow effect by weighting
the flow by they–pT distribution.
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Invariant mass distributions in eachy–pT bin are background subtracted and the resultant
yield multiplied by a factor 1/(acceptance× efficiency) to obtainy andpT (or transverse
mass,mT) distributions [4]. Corrections have not been made for the feeddown3 from 4

decays. A consistency check to ensure that the correction procedure is correct is to plot
the lifetime distribution of the particles. Figure 4 shows exponential fits to the data giving
values ofcτ = 7.8± 0.6 cm for 3 and cτ = 2.5± 0.3 cm for K0

s , both of which are
consistent with data book values at the one sigma level [5].

4. Summary

Using the NA49 experiment VTPC2 detector3, 3̄ and K0
s have been reconstructed, using

the tracks of their decay products. Using detailed simulation to calculate the detector
acceptance and efficiency of reconstruction, the distribution of these particles has been
determined in discrete bins of rapidity and transverse momentum. The VTPC1 detector can
also be used for the reconstruction of neutral strange particles using the same procedure,
but with different geometrical cuts. This detector has high acceptance in a different region
to VTPC2, and hence it may be possible to extend the distributions in bothy andpT.
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