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I N T R 0 D U C T I 0 N 

The idea of generalising ~he classical notion of the i nverse 

of a non-singular matrix arose as far back as in 192 0, but 

it was not until the late fifties that the development of 

the theory gained any impetus. Since then , as is the case 

in the development of many new concepts , work done in 

parallel in various parts of the world has resulted in a 

great deal of untidiness in the literature : confus·ion 

over terminology , and even duplication of theory. 

More recently, however , some attempts have been made to 

bring together people active in the field of gener alised 

inverses, in order to reach consensus on some aspects of 

definition and terminology , and to publish more general 

works on the subject . Towards this purpose, a symposium 

on the theory and application of generalised inverses of 

matrices was held in Lubbock , Texa'S, and its proceedings 

published in 1968 (see [25] ) . A few other works of this 

nature (see [4] , (19a] ) have appeared , but the bulk of the 

literature still comprises numerous diverse papers offering 

further ideas on the theoretical properties which these 

matrices have , and drawing attention to their application 

in areas of statistics , numerical analysis , filtering , 

modern control and estimation theory, pattern recognition 

and many others. 

This essay offers a look at generalised inverses in the 

following way: firstly a broad basis and background is 

established in the first three chapters to provide greater 

understanding of the motivation for the remaining chapters, 

where the approach then changes to become far more detailed. 

Withi n this general framework, Chapter 1 offers a brief 

gl i mpse of the history and development of work in the field. 

,, 



In Chapter 2 some of the most significant properties 

of these inverses are described, while in Chapters 3 and 
. 

4 and 5 attention is given to interesting and remarkable 

computational algorithms relating to generalised inverses 

(some well suited to machine processing). The material of 

Chapters 4 and 5 is largely due to Decell, Stallings and 

Boullion, and Tanabe, in [6], ~~ and ~7] , respectively, 

while the source of material for the first three chapters 

is the literature generally , with Penrose's two papers 

providing a rough framework for Chapters 1 and 2 (see [11]). 
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CHAPTER 1 

THE HISTORY AND DEVELOPMENT OF GENERALISED INVERSES OF 

MATRICES 

Way back in 1920, E.H. Moore first established the 

existence, uniqueness, and even form, of what he called 

the "general reciprocal 11 of an arbitrary matrix, while • 

working within the context of integral and differential 

operators (see ~4] 1920). He developed this work further 

in 1935 (see [14] 1935), while in 1936, van Neumann 

provided an algebraic basis for this work in his own work 

in regular rings (see D2J ) . No major contribution to 

this concept was made until the fifties. In 1955 Roger 

Penrose, who worked quite independently of Moore's results, 

gave in an algebraic setting a definition different but 

equivalent to Moore's for a generalised inverse of an 

arbitrary matrix (see ~~). 
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In 1956, in [17], Penrose noted the remarkable "least 

square" property of his generalised inverse when considering 

the solution of inconsistent systems of equations. A little 

earlier, in 1951, Bjerhamrnar quite unaware of Hoore's work, 

had found exactly this "least square" property of "recipro­

cal matrices .. while working with geodetic calculations (see 

[ 2 J ) . 

Since these significant works, many different definitions 

of generalised inverses have been given and the merits 

of each expounded. A great number of these, however, are 

found to be weakened variations of Penrose's basic definition, 

which was based on the following four equations: 

( l) AXA = A 

( 2) XAX = X 

( 3) (AX)* = AX 

( 4) (XA)* = XA 

(where M* denotes the conjugate transpose of r1) • 
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He proved that for an arbitrary complex matrix A, 

equations (l) to (4) have a unique solution which 

he called the "generalised inverse ", A+, of A. It 

h a s since been found, however, that different combina­

tions of these equations define matri ces which have 

some of the properties which one would hope a generalisa­

tion of the inverse of a matrix might have. This has 

resul t ed in a wide acceptance of these "weaker " definitions, 

and the use of the term "generalised inverse " to describe 

any matrix which satisfies (1), the term largely du e to Rao. 

Rohde (see [21]) gathered many of these definitions 

together, establishing a hierarchy of generalised inverses. 

Although there is still no universal acceptance of termi no ­

logy , we suin.marise two of the more widely used notation 

schemes below . The first g iven is that suggested by 

Boullion and Odell in [4] , while the second is tha t 

described by Pringle in [18] 

Defining equat i ons Name and symbol Alternative 
Name and Symbol 

( 1) general i sed i nverse g l - i nve rse x91 

Ag 

( 1) and ( 2) reflexive g. i. 
r A- g2 - inverse Xg2 

(1 ) , (2) and ( 3) right weak g. i. An g3 - inverse xg3 

(1), (2) and ( 4) l eft weak g . i . Aw 

(1), (2), (3) and ( 4) pseudo - inverse A+ the g-inverse 

Goldman and Zelen (see [22], p.l9) used the term "weak" 

generalised inverse. While Urquhart called a matrix 

s atisfying (1 ), (2) and (4) a "norma Lized" g.i., Rohde used 

the term "normal ized " for conditions (1), (2) and (3), and 

since both he and Urquhart have worked extensively i n the 

field, the need for some standardisation of terminol ogy can 

be seen. 

xg 



Other possible combinations of equations (1) to (4) 

have been used (e . g. by Chipman and Khatri; refer ~8] 

5 

but the above seem to draw most attention in the literature. 

Other formulations of definitions have also been made, some 

of which can be proved to be equivalent to those above. 

In this work , the notation and terminology of Boullion 

and Odell (i.e. that of the middle column of the table) 

will be adhered to. Thus in particular, the term "pseudo­

inverse " will be used for the Moore- Penrose inverse, A+ . 

The existence of all the inverses in this hierarchy was 

guaranteed when Penrose proved that his pseudo- inverse A+, 

existed and was unique for any matrix A. (We shall prove 

this in Chapter 2. Refer [17]). It was easy to show , 

however, that the weaker definitions yield non- unique 

inverses (e.g. see [ 22], Ch. 1). This highlighted the 

desirability of the pseudo - inverse , whil~ · at the same 

time offered families of alternatives to the latter , 

depending on the circumstances , since the weaker inverses 

preserve some of the properties of the pseudo- inverse 

and are easier to find since they satisfy less stringent 

conditions. 

Some of the variations which fall a littl e away from the 

hierarchy given here, but yield particularly interesting 

inverses, include that of a "weighted pseudoinverse". The 

definition here retains equations (1) and (2), but brings 

in a weighting effect in equations (3) and (4) . This concept 

has been worked on by Chipman and Meicler (see [4] p.4). 

Another of these variations , yielding an inverse with spectral 

properties, has been formulated by Greville (see [ 25] pp.26-46) , 

while the Drazin inverse also has spectral propert i es. Some 

work on the differentiation of this latter inverse has recently 

(1976) been published by S.L. Campbell (see [5] ) . The bulk 



of the literature , however , is devoted to studies and 

applications of generalised inverses within our hierarchy , 

with the pseudo-inverse capturing a great deal of interest 

on the strength of its uniqueness . 

Tracing the work done analogously on linear operators, 
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we find that in the fifties , Tseng extended Moore ' s results 

to generalised inverses of closed linear operators on a 

Hilbert space (see [29] ) . The term "Moore - Tseng" 

inverse is often used here for the analog of the pseudo­

i nverse, of "Moore - Penrose" inverse. In [1] in 1963, 

Ben-Israel and Charnes reviewed work done in this context 

and in that of Euclidean spaces. Robinson's paper [20] 

presents some of these analogous results for an arbitrary 

linear transformation, in a manner suitable for use as 

classroom notes . 

The most recent works show a tendency to investigate 

applications of generalised inverses in a wealth of 

different spheres and, as these uses become better known , 

to look for widely varying methods for their computation . 

Th e most dramatic results in the spectrum of applications, 

however, are still those expounded in Penrose's two papers , 

for it was here that the significance of the generalised 

inverse (in particul ar , the pseudo-inverse) was shown in 

the solution of systems of equations, both consistent and 

inconsistent. (Refer Chapter 2). 

Works like [ 4], [18] , [22] and [25] indicate some of the 

ways in which statisticians have u~ed generalised inverses 

while other fields of application include the algebra of 

networks , estimation theory, etc . Further comments on 

their computation will follow in Chapters 3, 4 and 5 . 

,, 



. .. 
. .. 

CHAPTER 2. 

FUNDAMENTAL PROPERTIES OF GENERALISED INVERSES. 

We look at some of the properties of generalised inverses, 

proving in detail those most significant in later chapters . 

We prove first Penrose's theorem, referred to earlier, 
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which establishes at once the existence of all the generalised 

inverses of our tabled hierarchy, and also yields the 

uniqueness of the pseudo-inverse . His proof is lengthy, but 

remarkably simple, calling only upon the well-known Cayley­

Hamilton theorem , and the following two lerrunas: 

Lemma 1: 

= > A = 0 

(similarly AA* = 0 => A = 0) 

Proof: 

Each diagonal element of A~A is the sum of the squares of 

the absolute values of the elements of the column of A, and 

equals zero. 

Hence the elements of columns of A are zero. 

Hence A = 0. 

Lerruna 2: 

(a) 

(b) 

Proof: 

(BAA*-

BAA*-B~ 

(BA 

(BA 

CA) 

CA) 

= 
= 

CAA*) 

cAA* => 

CA*-A = > 

(B - c)* 

CAA*-B~ BAA*-c*-

(BA) ~ (BA 

(BA - CA)* = 0 

BA = 
BA*- = 

= 0 

+ 

CA) 

So by Lemma l, BA = CA 

(b) is proved similarly. 

if BAAx = CAA*-

CAA~c*- = 0 

(CA) ~ = 0 



Theorem 2.1: The 4 equations 

(1) AXA = A 

( 2) XAX = X 

( 3) (Ax)*= AX 

( 4) (XA)*= XA 

have a u nique solution for any matr ix A. 

Proof: 

Equations (2) and (3) a re equivalent to 

xx*A*= x 

for certainly (3) substituted into (2) yields (5). 

On the othe r hand , from (5) we get 

AXX*-A* = AX 

* from which we can establish (AX) = AX , i.e . (3) 

Then (3) substituted into (5) yields (2). 

Similarly, equations ( 1) and ( 4) are equivalent to 

xAA* . = A*- ...... . ... .. ........ ... .... . .... 
So we seek, instead , to establish 

solution , X, to ( 5) and ( 6) • 

If there exists B satisfying 

BA* AA*- = A 

the existence 

then certainly Bft* = X will satisfy (6) 

Also (6) > (1), so BA* = X will satisfy 

A*x*-A* 

BA*x*-A*­

so BA* satisfies (5) 

So we must show the existence of B sat i sfying 

BA*- AA*- = A*-

of a 
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( 5) 

( 6) 

Now by the Cayley-Hamilton theorem (every matrix satisfies 

the matrix equivalent of its own charateristic equation) it 

can be concluded that there exist scalars b 1 , ... , bk' not a ll 

zero , so that 



b
1 

A*A + b 2 (A*A) 2 + ... + bk (A*A)k = 0 

Let b be the first non-zero b. 
r 

Then b (A*A)r = - (b (A*A)r+l + . .. + b (A*A)k) 
r r+l k 

Let B = 1 (br+ l + br+ 2 A*-A + ... + B (A*A)k-r - 1) 
k 

br 

Then (A*A) r = B (A*A)r+l 

Now using Lemma 2(a) and (b) repeatedly , we obtain 

A* = BA*AA* as required . 

We have thus established the existence of X satisfying 

( 1) to ( 4) . 

It remains to prove that X is unique: 

Just as it was proved that (5) and (6)are equivalent 

to (1) to (4) , it can be proved (by using pairs of 

equat i ons (2) and (4) , then (1) and (3) ) that Y 

satisfies 
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y = .... .. ......... .. ..... ............... 
and A:t = .. .. ... . ...... . .. ... . .. .. . ....... .. . . . 
if and only if ~satisfies (1) to (4) (with X replaced 

by Y) . 

Suppose X satisfies (5) and (6), and Y satisfies (7) and 

(8) . Then Y = A*y*y = XAA~Y*Y = XAY = XX*A*AY = xx*A* = X 

Hence X is unique . 

On the basis of (1) to (4), Penrose also easily established 

some significant fundamental properties of A+, including the 

following: 

(for proof of these see [17], (1955) ) . 

( 7) 

( 8) 



( 9) 
-1 A nonsingular =9 A = 

+ (justifying the conviction that A serves as 

a generalisation of"the classical inverse of a 

nonsingular matrix , if the behaviour of A+ in 

(1) to (4) does not adequately do so). 

(10) (A+)+ = A 

(11) 

(12) 

(13) 

(generalising a further property of the 

classical inverse) . 

(A A)+ -1 Jl.+ (or XA+) A=/:0 = A even 

(A~)+ = (a+)~ and (A~A)+ = A+A+!( 

if A is normal, i. e . A*-A = AA*- , then 
A+A = AA+ and (an)+ = (A+)n 

(n a positive integer) 

(14) A, A+ , A~A and A+A all have rank equal to 
+ trace A A. 
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Some of these properties, and many of similar nature have 

been generalised to Ag, Ar, Aw and An and an excellent 

summary of these is reported in [4] pp. 7 - 9. We note, 

however, that these leave gaps. Disappointingly there is 

no c l ear analogous r esult to that for nonsingular A and B, 

yielding B-l A-1 .as the inverse of AB. Rohde and Greville 

(see [22] p.28) have found conditional results, the latter 

in the case of the pseudo-inverse , but less strict condi­

tions should exist for generalised inverses lower down in 

the hierarchy. Also note that in the case of the pseudo­

inverse, Penrose himself found normality was a condition 

yielding (An)+ = (A+)n (see (13) above). Clearly it 

would be interesting to find conditions for the generalised 

inverses of An in terms of the generalised inverses of A. 

Many further algebraic properties have been studied, these 

often resulting from work in some field of application. In 

the sixties, names like Bose , Reid and Cline , hitherto 

unmentioned in this work, occured frequently in the literature. 



More recently (1974, 1975) new names like those of the 
~ v 

Russians Morovoz , Sokovnin, Zukovskii and Lipcer have 

appeared , their work showing particular interest in the 

pseudo-inverse (e . g. see (33]). Morovoz's work, and 

that of Kammerer and Nashed who took up the investigation 

of the pseudo-inverse in Hilbert spaces (publishing 

during 1968 to 1972 - see [13], [15] ) , provided the 

background for Sokovnin's work in this field. For an 

extensive bibliography here, refer to [34]. 
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We consider now, the properties of these matrices with a 

view to their application. One theorem stands possibly 

well ahead of all others . For historical reasons we state 

and prove this as Penrose did in [1~, 1955. 

Theorem 2.2: 

A necessary and sufficient condition for the equation 

AXB = C to have a solution is 

in which case the general solution is 

X = A+CB+ + Y - A+AYBB+ 

where Y is arbitrary to within dimension properties. 

Proof: 

Suppose X is a solution of AXB = C 

Then since AA+A = A and BB+B = B, 

C = AXB = AA+AXBB+B 

c = 

Conversely, if C = AA+CB+B , then clearly A+CB+ is a 

solution of AXB = C. 

We have proved that C = AA+CB+B is a necessary and 

sufficient condition for consistency, and we have 

found A+CB+ is a particular solution of AXB = C. 



We consider AXB = 0, now. 

+ + . If X = Y - A AYBB , Y arbitrary , then 

since AA+A = A, BB+B = B, we have that 

X is a sol ution of AXB = 0. 

Conversely if X is a solution of AXB = 0, 

then X = X - A+AXBB+ 

So Y - A+AYBB+ is the general solution of AXB = 0. 
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Hence A+CB+ + Y - A+AYBB+ is the general solution of AXB = C. 

We note , immediately, as did Penrose , that the only property 

of the pseudo-inverse which is required in the proof , is (1), 

so that the theorem holds, in fact, for any generalised i nverse 

(further motivation for this terminology) . 

The significance of this theorem in the solution of systems 

of linear equations need not be spelled out - hence its use­

fulness to statisticians in their work, for example, with 

l inear models . We note , too, that it is this property which 

provides the backbone of the further chapters of this essay. 

In Chapter 4 it is used to obtain an algorithm for the 

computation of the pseudo-inverse of any arbitrary matrix A, 

while in Chapter 5, it is used in an algorithm for solving a 

system of linear equations, which also yields a process for 

computing a generalised inverse. 

Contributing further to the statistical problem of finding 

"best" approximate solutions to inconsistent systems of 

linear equations, Penrose established yet another significant 

result for his pseudo-inverse in a second paper [17], 1956. 

He defined a matrix norm 11. H as follows: -

if A = ( a . . ) , 1 e t II A // 
l.J = L: 

ij 



13 

Considering the matrix equation AX = B, he defined x
0 

as the 

"best approximate" solution·if for all X, either 

( i) 

(ii) 

II AX - B II > II AX 0 - B II ' 

II AX - B II = II AXO B ~ 
or else 

and II X II .:_ rxoll 

We note that II A II I 1
2 ~ = ( E a.. ) is more common. 

ij lJ 
~·re also 

note that by his definition, X is a "least squares" solution 
0 

of AX = B, but is also one with minimum norm amongst all "least 

squares" solution·s. (Odell conce1ved the idea of solutions 

that minimize different abstract norms) . 

Penrose proved the following: 

Theorem 2.3: 

A+B is the unique best approximate solution of AX = B. 

Proof: 

We note first that II A II = trace A*A, for all A. 

Also IIA Jl > 0 unless A= 0. 

Now recall that A*AA+ = A* (equation (8) for the pseudo ­

inverse, arising in Theorem 2 .1). 

:. {AP + ( I-AA +) Q } * { AP + ( I - AA + ) Q} 

=(AP)* AP + {(I- AA+) Q} X AP + (AP)* (I- AA+) Q 

+ {(I - AA+) Q} * (I - AA+)Q. 

=(AP)x AP + 0 + 0 + 

(b d . d 1 . * + y expan 1ng an app y1ng A AA 

By considering the trace of these matrices, we find 

+ (15) 



Since P and Q are arbitrary here, to within dimension, we 

have, in particular, 

\lAX - B II = ~A (X - A+B) + 

ll AX - AA + B II + = 

(I- AA+) -B) II 

~ AA +B - B ~ 
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So - B I[ 
B II 

> II AA +B - B II and in fact 

only when 
® 

AX 
+ II AA B - B II 

AA+B 
= 
= 

Equation (15) holds similarly with A+ replacing A, so we 

l ( . A++ A) have in particu ar s1nce = 

IIA+B + (I - A +A) X II= IIA+B II + ll (I - A+ A) X II 
So if AX = AA+B, then we have 

IIA+B + (X - A+AA+B) ~ = IIA+B~ + II X - A+ AA + B II 
A+AA+ = A+ by equation (2) for 

+ 
Now A ' so 

II X II = II A+B II + II X - A+B II 
Hence if 

+ 
then AX = AA B, 

II A+ B II < l!x II 
So if IIAX- B II = jjA(A+B) - B II, then 

II A+ B II < II X II 
By @ and @, A +B is the best approximate solution 

of AX = B. 

This least square character was, as noted before, also 

observed and used by Bjerhammar in his geodetic applications: 

adjusting observations which gave rise to singular or ill­

conditioned matrices. 

As an example of more recent applications of this last 

theorem, in 1972 Tewarson (see [28] ) observed that if 

Theorem 2.2 was applied to equation® of Theorem 2.3, 

the result was that the family 

+ + x = A b + (I - A A)y (y arbitrary) 

® 



comprises all the least square solutions of the system 

Ax = b. He used this result· to reformulate an algorithm, 

based on Stiefel's ascent algorithm, for the computation 

of the Chebyshev (minimax) solutions of an inconsistent 

system of linear equations. 

Pringle, in his work on linear least squares estimation 

(see [18] ) makes use of a result related to the above 

theorem and proved by Rao in [19] 

the vector x = Xb is a least squares solution of 

Ax = b if an only if X satisfies equations (l) and (3) 

for generalised inverses. 
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For the purposes of this essay, the above indication of where 

the major general applications lie must suffice, as it would 

be impossible to refer even briefly to all the numerous more 

specialised works. Boullion and Odell have singled out a few 

of these for inclusion in [4] . though they observe that the 

choice was made with a certain amount of diffidence. Appli­

cations described by Chipman, Ben-Israel and Rohde are 

presented in [25] . The great majority of such works are, 

however, not yet to be found collectively and lie scattered 

in the literature . 
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CHAPTER 3. 

COMPUTATION METHODS 

Algorithms for the computation of generalised inverses 

have received attention at every stage of the development of 

the theory. This work cannot, therefore, include the details 

of each of these. In this chapter, the literature is thus 

surveyed as a whole. Chapters 4 and 5 single out two 

algorithms for close examination. 

Earliest methods include those of Penrose, Hestenes and 

Greville for computing A+. Penrose 's Theorem 2.1, discussed 

in Chapter 2, incorporated a rather lengthy computational 

method relevant to the method singled out in Chapter 4. 

In his second paper h e described a partition method and 

a repetitive method, the latter based on Frame's method 

for computing classical inverses. It was found, similarly, 

that Hestenes' biorthogonalization method of computing inverses 

of non-singular matrices, could also be adapted for the 

computation of A+ (by adding orthogonal rows to rectangular A). 

Greville (see [8]) tlescribed an early recurs ive algorithm 

which starts with a column vector , and computes A+ by obtaini.ng 

further columns successively. 

During the sixties, a variety of methods direct and indirect 

were proposed . In 1971, a work by Shinokazi, Sibuya and 

Tanabe, [23], was published in which direct methods for 

computing A+ published up till then , were surveyed and 

compared. 

The following clas s ification emerged: 

A: methods based on matrix decomposition 

B: methods using bordered matrices 

C: others (including Greville's method referred to 

above , and Pyle's gradient projection method). 



On the basis of some test matrices (chosen to satisfy 

c l early stated conditions) they concluded that for 

machine computation , methods of type B (proposed by 

Hestenes and Gemain-Bonne) as well as those of type A 

which involve decomposition into two matrices of ful l 

rank , seemed generally preferable to the others . 
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This survey , however , had an omission: that of Decell ' s 

algorithm, subject of Chapter 4 of this essay. The omission 

of this work from the reasonably comprehensive bibliography 

of the survey may well be explained by the observation that 

Decel l 's method, though it seems to have been obtained 

independently of Penrose ' s Theorem 2.1, can be obta i ned 

exactly analogouBly to the process described in the latter , 

yielding BA* as A+. Decell merely employs a s l ight 

modification resulting in a simpler computational algorithm. 

On the other hand , the paper [31] of Vioth , Vogt and Mickle, 

published in 1972, includes a comparison with Decell ' s 

algorithm , though its main purpose is to describe another 

interesting direct method . Classical minimization theory 

is applied to finding the best approximate solution (in the 
+ + 

sense of Penrose) to AX= I (i . e. A ) . A arises out of the 

construction of two sequences of related matrices,the equations 

yielding their elements being simple in form for machine 

computation. Methods tested, using a computer, included 

Penrose's partitioning method (referred to earlier) , Decell ' s 

algorithm, and Penrose ' s related algorithm (the relationship 

between the last two was not noted). Just two small matrices, 

one real, one complex, were used, with no particular properties 

being indicated. The conclusion drawn rated the classical 

minimization algorithm and Decell's algorithm as more useful 

and efficient than the others if no information is easily 

available about A, e.g. rank. It is noted that both these 

algorithms do, however, involve many operations. In Chapter 4 

we observe one advantage of Decell ' s algorithm over the other . 



The seventies have brought further ideas on the subject . 

A paper of Hallum and Pore, [9], published in 1975 

defines a recursive partitioning method useful for 
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+ machine computation of A when A is large , s i nce it avoids 

excessive storage. A Russian paper ([33] of 1975), offers 

a recurrent algorithm. Hestenes , still working on pseudo­

inverses noted in [10] of 1 975 , that a "conjugate- gradient" 
+ algorithm may be extended to comput e A . Anot her convergent 

iterative method , for the approximate calculation of the 

pseudo - inverse of a normally solvable bounded linear 

operator, between Hilbert spaces, is described by Sokovnin 

i n his work referred to earlier. 

A certain preoccupation with the pseudo-inverse rather 

than the weaker inverses may be observed in the above 

review . The reason for this is that it i s the pseudo­

inverse which presents the greatest difficulty for 

computation , there being a great number of easy means of 

finding an Ag in the family of generalised inverses (e.g. 

Searle [22] and others - see further details in paragraph 

5 . 1 of Chapter 5 of this work) while Urquhart has 

described methods for finding Ar, An and Aw from Ag. 

A clear discussion of this lies in Chapter 1 of [4]. 

The criteria used to judge any method of computa tion must 

be affected by t he accu racy o f result r e quired for o ne 's 

purposes. For example , 

I one may wish to use Theorem 2.2 , to test, with 

complete certainty, the consistency of a large 
+ system of linear equations. Clearly A should exact. 

II one may seek the "best" solut ion of a system 

proved inconsistent, using Theorem 2 . 3 . Here a 

certain degree of inaccuracy may be tolerated. 

III - the work required to solve a consistent syste~ 

exactly may not be worthwhi l e. Here an iterative 

method, or an exact me thod prone to rounding errors , 

may be considered . 
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With a view to I above , a~y method presupposing properties 

of A, or yielding rounding errors , must be rejected . In 

Chapter 4 an exact method is described, yielding A+ for 

a given matrix A, making use of the computer in accordance 

with modern needs . 

In Chapter 5 , considering II and III , an iterative method 

is described , which solves a system of linear equations 

approximately, while also yielding a generalised inverse 

if wanted. 

The particular merits of these two algorithms singled 

out for detailed examinat i on , are given in the relevant 

Chapters, while Chapter 5 also considers in a little more 

detail, the comput ation of weaker generalised inverses . 



CHAPTER 4. 

A METHOD FOR EXACT COMPUTATION OF PSEUDO-INVERSES. 

4 .1. INTRODUCTION 

Rounding errors present a problem in almost all machine 

calculable algorithms for A+. 

In 1966/1967, pape·rs [16] , [26] and [3] published by 
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Newman, Szabo and Tanaka, Borosh and Frankel, respectively, 

proposed the use of residue arithmetic to avoid this problem. 

The idea was to work only with integers so that computations 

are performed exactly by the machine (provided overflow is 

avoided). In 1969/1970, Jo Ann Howell and Robert T. Gregory 

published more detailed computational procedures, using this 

technique to solve systems of linear equations exactly. 

(see [11] . ) 

A study of these works leads one to conclude that residue 

arithmetic can be effective in avoiding rounding errors 

under the following conditions 

suppose an algorithm for the computat ion of 

vector/matrix X from integral vector/matrix Y 

can be described, yielding 

X = f (g(Y)) 

where g involves operations with an analog in 

residue arithmetic, g(Y) is integral, and f is 

a simple function easy to perform possibly with­

out computer aid . 

Then the analogous residue arithmetic is used to compute the 

residue of g(Y) modulo some integer, m, start ing with the 

residue form of Y. It is.found that if m has been chosen 

wisely, the true integral value of g(Y) can be restored from 

its residue. Lastly, t he simple calculation of X from g(Y), 

through f, is calculated exactly if possible. 



The papers referred to above illustrate how this procedure 

works in application. But, clearly, the success of such a 

method in yielding A+ exactly , is firstly dependent on the 

existence of such an explicit form for A+, comprising a 

large integral part which need only be manipulated simply 

to yield A+. If this last stage involves a process where­

by rounding errors may occur , it should not be performed by 

the computer : hence the necessity for it to be simple, if 

the method is to be worthwhile. 

Decell's paper [6] yields exactly such a form for A+, in 

the following theorem: 

4. 2. DECELL'S ALGORITHM. 

Theorem 4.2.1. 

Let A be any n x m complex matrix and let 

f (') = (-l)n (a ,n + ,n-1 + , ) 
A 

0
A aiA + .. . an_ 1A +an . 

(with a
0 

= 1) be the characteristic polynomial of AA*. 

If k i o is the largest integer such that akio, then 

the pseudo-inverse of A is given by 

A*- [ (AA*) k-l + a
1 

(AA*) A+ 1 = 
ak 

k-2 J + ... + ak-1 I 

If k = 0 is 

then A+ = 0 . 

the largest integer such that akiO, 

Decell proved this theorem by applying Theorem 2 . 2 proved 

* earlier, to a matrix equation for AA , obtained from the 

Cayley - Hamilton theorem. His careful use of (Penrose 's) 

Theorem 2 .2 here , indicates that he may not have been aware 
+ that Penrose's existence and uniqueness theorem for A , 

Theorem 2.1 of this treatise , incorporated a proof of this 

expression for A+ (an observation we made in Chapter 3). 
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For this reason , Decell ' s proof is not given here. We offer 

the equivalent result via Penrose's Theorem 2.1. 



The proof may be outlined ~s follows : 

Penrose proved that the equations 

(5) xx*A* = X and (6) XAA~ = A~ 

are equivalent to the system (l) to (4). 

He also proved that if B exists satisfying 

= 

then BA~ is a solution to (5) and (6) 

so BAX: = A+. 

He finally proved the existence of B by using Cayley­

Hamilton applied to A~A , showing that 

B = l (br+l I+ br+2 A*A + ... + bk (A*A)k-r-1) 
br 

(where the b. are the coefficients in the characteristic 
l * equation for A A) 

has the desired property . 

Consider the exactly analogous argument for the equations 

(equivalent to (1)· - (4) ) 

Suppose C satisfies cAA*A = A 

Then (CA)~ is easily shown to satisfy (7) and (8) 

So A+ = (CA)* 

Applying Cayley - Hamil ton to AA* this time , we get , in the 

notation of Decell 

a 
0 

( AA ~) n + a 
1 

( AA *) n -l + . . . + an _
1 

AA * + an I = 0 

(with a = l) . 
0 
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Then if ak is defined as 

(k 'I 0) 1 we f i nd that 

c = l [ (AA::t )k-1 + 
ak 

has the desired property. 

Hence A+ 

A+ 
= 
= 

A*cx 
1 

ak 

in Decell ' s 

a]_ (AA::t)k- 2 + 

Lastly: if k = 0 , then (AA*)n = 0 

A = 0 

A+ = 0 

theorem 

. .. + ak- lr J 

Decell ' s paper, however , offers a modification due to 

Faddeev , whi~h.yields the following remarkably convenient 

computing algorithm 

the matrices Ai and Bi are constructed as follows:-

Ao = 0 qo = - 1 Bo = I 

Al = AA*B 
0 ql = trace Al Bl = Al - qll. 

1 

AA*B tra ce A2 B2 = A2 - q2I 
A2 = q2 = 

1 2 

Ak-1= 
x trace Ak-1 Bk-1 AA Bk- 2 qk-1 = = Ak-1- qk-lr 

k-1 

Ak * trace Ak Bk Ak qki = AA Bk- 1 qk = = -
k 
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Using Newton ' s formulae which relate the a. 
l. 

and eigenvalues , 

Faddeev proved (see [7] ) q. = - a. for i = 1,2, . .. , k . 
l. l. 

So we have , using Theorem 4 . 2 . 1 

A+ 1 A* Bk-1 with = a = -qk . 
ak k 

(We add that k may well not be known i n advance , but that 

this algorithm , if taken to the (k+l)th step, will yield the 

first zero value for qk ' identifying k immediately). 



4.3. RESIDUE ARITHMETIC IN DECELL'S ALGORITHM. 

Stallings and Boullion (see. [ 24] ) · noticed that the above 

equation has exactly the form suited to the technique of 
!l! x residue arithmetic, if A is integral, for then, A , AA 

and hence a., i = 1,2, ... , k are also integral (though 
+ l 

A may not be). 

The residue arithmetic analog of Decell's computing 

algorithm can thus be used to find the residues of ak and 

Bk-l' modulo m (provided the latter is well chosen). 
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Proper choice of m again ensures that the true integer values 

of ak and Bk-l may be restored, and finally, A+ can be 

computed as a simple product . 

We note that if this can be done to find A+ when A is integral, 
+ then it can also be done to compute B when B has rational 

( ' A)+ '-l A+ elements, since A = A 

and B can be scaled to become AA, with A integral. We 

note too that any fixed-word-length computer can only 

store rational numbers, so that we need look for no further 

generalisations if we accept the need to use a computer. 

Stallings and Boullion also assume A is n x p with n 2 p, 

but show that this poses no problem since if B is n x p 
!l! !l!+ with n > p, then B is p x n with p < n, so that (B ) may •• 

be found 

Then = 

so = 

Proof that the claims made for residue arithmetic do indeed 

hold, necessitates a look at the fundamental definitions, 

and the well known and easily proved properties of residues, 

a tedious task to do in detail. Stallings and Boullion 

simply summarised those needed - the policy adopted here. 

A fuller presentation is given in [11] , while any 

reasonably comprehensive number theory text will yield the 

details. 
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Definition 4.3.1 . 

Given i ntegers a ,b and m # o, 

a _ b (mod m) if an only if m divides b - a . 

If a - b (mod m) and - ~ < b < ~ 

then b is called the r e sidue of a mod m, and we write 

b = I al · m 

Defini tion 4.3. 2 . 

Given a matrix A= (a .. ) and m # 0, then matrix R = (r .. ) 
lJ lJ 

is called the residue of A mod m 

if r. . = I a .. ·1 for all i and j. 
lJ lJ m 

We write R = I A I m 

Nothing is lost by a s suming m > l here . 

Theorem 4.3.3. 

(i) For any integer a, l a l m is unique . 

(ii) lab I = I Ia lm. b lm = la.l o I I = II a I .lbl I m m m m m m 

(iii) Ia± b 1m = I I a I ± b I = Ia± lb I I = II a lm ± lb !m lm m m m m 
.. 

Theorem 4.3 . 4. 

(i) I f (a, m) = 1, ther e exi s ts integer b so that 

= l 

If - m < b < m 
2 2 

then b is unique . 

We write b = a-l (m). 

(ii) If a - 1 (m) exists then lax! = lbl has a 
m 1 m 

unique solution , I xI = lb.a- (m) I m m 



Theorem 4.3.5. 

Theorem 4.3.3. remains valid if a and bare replaced by 

matrices A and B (with suitably compatible dimensions). 

Theorem 4.3.6. 

Given an integer d , if m is chosen so that 

(i) m > 2 !dl 

and d' 

(ii) 

(iii) 

then 

is formed from ldl , satisfying m 

!d 
I 

1m = I dl m and 
I 

!d I < m 
2 

d = d 

Theorem 4.3.7. 

Given A 

( i) 

and if 

(ii) 

= (a . . ) , if m i s chosen so that 
l] 

m > 2 max 

ij 

B is formed 

1131 = IAI m 

I a .. 1 lJ 

from !AI m satisfying 

m and 

(iii) max lb. ·I < m 
ij lJ 2 

then B = A 
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Examining Decell's algorithm, it is easily seen that all the 

operation~ to calculate Bk-l and qk can be performed in 

modulo m residue arithmetic provided that "division by 

r = 1 ,2, .. . ,k can be accomplished . From Theorem 4 . 3 .4. it 

can be concluded that m must satisfy 

(A) (m, r) = 1 , r = l,2, ... ,k. 



The next stage , restoration of the exact values of qk 

( = - ak) and Bk- l ' is easily accomplished via Theorems 

4 . 3 . 6 and 4.3.7 if m is chosen so that 

(B) m > 2 max { I ak I max lb .. I} 
l. J 

ij 

for then the residues of ak and Bk-l modulo m, are i n 

fact their true values . 

Lastly , A+ is obtained exactly i f the product -

is calculated exactly. 

4 . 4 . CRITERIA FOR SELECTION OF m. 

The success of this method is clearly dependent on the 

careful sel ection of m. Most papers suggesting the use of 

residue arithmetic , devote considerable space to selecti on 

criteria . That of Stallings and Boullion is no exception . 

The chances of m satisfying (A) and (B) are increased if 

m is chosen as a large prime. For a particular computer , 

however , there is an upper bound for m (twice the square 
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root of the largest integer which can be stored) , if multi­

plication of the residues of any 2 integers is to be achieved 

without overflow . In gener al , the larger the modulus , the 

slower the computation . This suggests that m should be kept 

a s low as possible , and that calculation of a lower bound 

for m would be worthwhile . 

Stallings and Boullion arrive at an alternative to (B) 

(B I ) 

(where M 

m > 2 max { Mn ; n - 1 n(n-k+l) M } 

= min { trace AA~ ; ) . 



Such an alternative is necessary if little is known about 

values of ak and Bk- l at the outset , so that (B) is 

meaningless . (B') still includes k which may also not be 

known , but setting k = 0 offers a conservative alternative 

to (B ' ) . Clear ly any additional information (like rank A, 

or eigenvalues of AA~) is extremely useful in lowering the 

bound, and should be used for this purpose . 

(B') is justified as follows 

from matr ix algebra 

some results are needed 

Lemma 4 . 4.1 . 

Suppose AAx 

Let a = 

(i) 

= 

max 
ij 

a . . 
1 1 

(a .. ) 
1J 

Ia .. 1. 
1J 

> 0 

for any n x p matrix A. 

Then 

for al l i 

(ii ) there exists an i so that a = a .. . 
11 

Proof : 

a. . = (A. , A.) 
1J 1 J 

for all i = 1 , 2, . .. ,n 

j = 1 , 2 , ... , n 

where A. is the i ' th row of A. Fix i and j . 
1 

Suppose IA.I 
J 

(where lA. I denotes the 
1 

(Euc l idean) l ength of vector Ai). 

Then 

(i) > 0 

(ii) Ia . ·I = I (A. A.) I 
l J 

< lA . 1 
1 lA .I 

J' 
< a .. 

1J 

by Schwarz ' s inequality . 

Hence the diagonal element has the ·largest absolute value in 

the i'th row , for each i . 

Hence value a is assumed by some diagonal element . 

JJ 



The following well known results are not proved here 

Lemma 4.4.2. 

(i) For any A, AA* is symmetr ic and positiv e semi­

definite : hence the eigenvalues of AA* are real 

and non- negati ve. 

(ii) AA* symmetric implies there exists orthogonal P 

so that 

[;,.l' >.2' ••• , A'k' o, . .. , o] 

where 11 , ... , A k are the non- zero eigenvalues 

of AA * (k in number·, by definition of ak earlier.) 

Proof of (B '): 
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Let • • • I 

1 
be the eigenvalues of - ak Bk-l ' and 

let 

Then 

Now 

Now 

Hence 

and 

cr1, 

p ( - 1 
ak 

A+ = 

AA+AA* 

.. . , a 
n 

Bk- 1 

1 
ak 

= -

= 

A* 

1 
ak 

1 

ak 

be those for Bk-l" 

) p* 1 ( k-1 + = D . . . + ak- 2D+ak- 1I ak 

= diag [y 1' y2' Yn] ... , 

= G 

Bk-1 

AA* Bk- 1 AA* 

AA* Bk-l AA* (by equation (6) of Ch. 2) 

P orthogonal implies pp* = p*p = I 

DGD 

y. 
1 

y. 
l 

= 

= D 

= 

= 

1 
X. 

1 

for i = 1, 2 , . .. , k 

for i = k+l, . . . ,n 

) 



~ It is well known that the (-l)i a. are the elementary 
]. 

symmetric polynomials in A·, j=l, . .. ,k. 
1 · 

Hence ak-l is non-zero and opposite in sign to ak 

Thus Y. > 0 
l. 

A > 0 
i 

for i = 1 , 2 , ... , n since 

fori= 1,2, ... ,k. 

Now is real and symmetric and thus now also 

positive definite. So there exists non-singular Q so that 

QQX -1 B =a- k-1· 
k 

Applying lemma 4.4.1, Bk-l has non-negative diagonal 

elements, of which one yields the greatest absolute value 

of all elements of -l B 
ak k-1 ' 

let 

Note that by 

(J 
i 

So 0i 

and (J .• 
]. 

!Trace Bk-11 

Then max 
ij 

definition Y. 
1 

= -a k Y. 
1 

= -ak 
-A---: 

1 

= ak-1 

n 
=I 2: a . I 

i=l 
]. 

k 
= 1-ak l: 

i=l 

(by making use of @) 

I trace Bk-ll 

(J we have i 

i = l, ... ,n. 

i = 1 ,2, ... ,k 

i = k+l, ... ,n. 

1 
~ 

+ (n-k) ak-11 
]. 

+ (n-k) ak-11 

= I (n-k+l) ak_1 1 

Hence 
max 
ij (n-k+l) I b. ·I < l.J 
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From this we get an alternative t o B 

(B") choose m > 2 max (n-k+l) 

which is useful if rank A = k, is known , as well as the 

eigenvalues of AA*. If not , we define 

A = spectrum AA* 

then 0 <A. < A 
~-

for i = 1, ... , k. 

k 
* But trace (AA ) = L: A., 

. 1 1 
and so 

1= 

A < trace (AA*) 

It is well known that A .::_ II AA*II for 

Choose Nl = min {trace (AA*) ; II AA* J! } 

then A < M 

X any norm of AA . 

Using® again , lakl .::_ Ak < An < Mn , more useful if k 

is unknown as we have supposed. 

Similarly lak-ll ~ k Ak-l < nAn-l < n Mn-l 

Using these bounds on lakl and lak-l I in (B") we get 

(B') choose m > 2 max { Mn ; n(n-k+l) Mn-l} 

4 . 5 . MULTI-MODULUS METHODS 
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In practice, conservative bounds for m, like B', may still 

yield unfortunately large numbers, and the work required to 

tighten the bounds may be lengthy. It can be observed, though, 

that the necessity for condition B only arises after the 

modulo arithmetic is completed. Szabo and Tanaka noted this, 



and suggested that the computation be carried out with 

respect to each modulus mi in a system , m1 , m2 , ... , ms 

Restoration of the values which have a representation as 

an s-tuple of residues modulo m1 , ... ,ms , is then via 

the Chinese Remainder Theorem, favoured historically , or, 

preferably, via a conversion of the residue representation 

to a "mixed radix" representation from which an easy 

computational process yields the original value. (See [26]). 

The advantage of this multi-modulus alternative is that 

the residue computation may be performed with moduli m. 
l 

satisfying far less stringent conditions than B so that 

t h ey need not be so large . In the case of Decell's 

algorithm, though , it is found that new conditions arise 

which must be satisfied by the m. if multi-modulus methods 
l 
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are applied. These are not difficult to meet, however, and 

it is only the product M = m .. . m which must satisfy B. 
l s 

All the conditions are as follows 

(mi , r) = 1 i = l, . . . , s r=l, ... ,k 

laklm. :f 0 
·1 

i=l, ... , s 

(mi,mj) = 1 for all i =I j 

H = ml m s satisfies B . 

The details of multi-modulus residue arithmetic, and the 

theorems yielding methods of restoration , can be found in 

[26] and [11]. They are lengthy to state but easy to 

follow. The major advantage of mixed radix, over Chinese 

Rem. Th. r e storation , is that the former reduces the amount 

of multilength arithmetic (very slow, computationally) required. 

Final~y we note that comparable direct methods , like Voith's 

classical minimization one, do not yield the form necessary 

for A+ , if residue methods are to be applied. 



CHAPTER 5 

AN ITERATIVE METHOD FOR SOLVING SYSTEMS OF LINEAR 

EQUATIONS AND FOR COMPUTING GENERALISED INVERSES. 

5.1. THE PLACE OF TANABE'S PAPER [27] IN THE LITERATURE . 

In Chapter 3 it was claimed that there exist many ways of 

computing ' the weaker generalised inverses of any matrix A; 

for example, in [18] , Chapter 4, methods for each of the 

inverses Ag , Ar, An (and A+) are discussed. Similarly 

Chapter ll of [l9a] reviews a few such methods for Ag, Ar, 

(and A+). Chapters of this essay have, however , been 
+ directed mainly towards the computation of A . In the 

area of solving linear equations, though , the weaker 

generalised inverses have significance (see Theorem 2.2) 

and it is in this context that Tanabe's paper I27J proves 

remarkable. 

Firstly it describes an iterative method which converges 
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for any system of.linear equations for which the coefficient 

matrix has non- zero rows; secondly, it can be used to test 

for consistency as described in Th. 2.2, and it generates 

all solutions for a consi stent system via the general 

solution described there. Since i t is constructed, then, 

around some generalised inverse of A (if the system is Ax=b) , 

it can also be used to yield this generalised inverse if 

required. Clearly this approximate generalised inverse may 

be obtained via computation more lengthy and tedious here 

than if the other method referred to were used. But this 

method holds as well for a matrix about which little is 

known, matrix size is no stumbling block, affec ting only 

the speed of computation, and the method is well suited 

to computer calculation. 
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For the reasons just stated , this paper helped fill a 

gap in the literature , which Pringl e and Rayner refer 

to in Ch . 4 of [18] . Most papers on computat i on of 

generalised inverses are theoretical in nature , yiel d i ng 

alternative forms for the various types without considering 

the usefulness in practice of such forms. Certainly it 

would be tedious to consider all aspects in a comparison 

of existing methods , and the value of doing so may be 

questioned , since a great deal o f the usefulness of 

generalised inverses is theoretical rather than practical. 

There should exist , · however , some practical methods of 

computing them for possibly large matrices without particular 

characteristics . Tanabe ' s paper inco~porated exactly such a 

"safe '' method at the time (1969 - 197 1 ) when little else 

was offered . Recently, Hallum and Pore ( [ 9] , 1975) have 

l ooked at the computational aspects of such generalised 

matrix inversion by the computer, showi ng recognit i on of 

the need for research in this direction . 

Tanabe ' s is an iterative method , and it is important to 

note that Ben- Israe l 's iterative method [o] , a favourite 

historically, has the advantage that it yields A+, whereas 

Tanabe's yields an lnverse somewhere between Aw and A+ in the 

hierarchy. (It is easy to show , though, that A+ = AwAAn and 

one wonders whether as a result of the symmetries between 

the definitions of Aw and An , t here might be an argument 

parallel to Tanabe's , yielding An. Such a method used for 

obtaining A+ would lose some of its value by being very long) . 

Under certain circumstances, Tanabe ' s algorithm does yield 

A+ but the generality is lost and the method must then come 

in line for comparison with others with preconditions 

p l aced on A; e.g. Sokovnin , referred to earlier, describes 

such an ite rative method. It is a l so difficult , if not 

impossible, to establish criteria for comparison between 

methods which rely on widely varying properties of A. 
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No such comparison of the iterative methods has been seen 

by the writer, not even one·for methods which hold for any 

A, and there is certainly place for the latter . The paper 

[2~ (discussed in Chapter 3) , served exactly this purpose 

for direct methods published before 1971. Note that Tanabe 

was a co- author of that paper. 

In summary , Tanabe's algorithm may be comparatively long, 

computationally, and it does not yield A+ in general 

(though some modification might). It yields , for any A 

with non-zero rows , an inverse which satisfies the t hree 

conditions of Aw, as well as a weakened forth condition. 

The method arises as part of his more general algorithm 

for solving a system of linear equations Ax = b , by an 

iterative method which is unusual and significant in that 

it converges for any A with non- zero rows, even when the 

system is si~gular and inconsistent . 

The following discussion of this algorithm is thus given 

in full awareness of its limitations , but recognising 

where its merits lie in respect of recent literature on 

generalised inverses and solution of linear equations. 

5 .2 . BACKGROUND OPERATOR THEORY . 

The following are well-known results to be found in many 

elementary linear algebra , or functional analysis, texts : 

Definition 5.2 . 1: n If U and V are subspaces of e (the 

space of n- dimensional vectors with complex e l ements) 

with U + V = en and U A V = 0 then we write en = U ® V 

and say en is the direct sum of U and V. 

Prope r ty 5.2.2: If en= U@ V, then for every vector 

win en, there exists unique x in U, yin V so that 

W = X + y. 



Property 5.2.3: n If U is any closed subspace of e , 
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n .J.. 
then e = U@ U 

.l.. 
(where U is the orthogonal complement of U). 

Definition 5.2.4: If en = U (£} V , then the linear 

operator P defined as follows, ~s called the projection 

on U along V: 

for any win en, suppose w = x+y, x inn, y in v, 
then define Pw = x. 

P is called the orthogonal projection on U, if V is the 

th 1 1 t Of U ;n en. or ogona comp eme n ~ 

Property 5 .2 .5: A linear operator is a projection on 

some subspace if and only if it is idempotent. It is 

an orthogonal projection if and only if it is both 

hermitian and idempotent. 

Notation: 

Im A will denote the range of the mapping defined 

by A 

Ker A 

(x,y) 

llx ll n 

II A~ 

will denote the nullspace of A. 

will denote the restr i ction of map A to 
n 

subspac~ T of e . 

represents the orthogonal projection onto 
n linear subspace T of C . 

denotes the usual inner product on en. 

i.e . (x , y) = y*x (the matrix product of x 

and the conjugate transpose of y , where X 

and y are n-dimensional column vectors in 

= {(x ,x )n} ~ (where X is in en) 

= sup 
en 

llAx~m ' ( II X II #0, and A an 
X in llxlln 

complex matrix) 

en). 

mx n 

Property 5 . 2.6 : If Pis an orthogonal projection, ~P~ = 1. 

Property 5 . 2.7: A linear operator P is a projection if and 

only if I - P is a projection. Moreover , if P is a projection 

on U along V, then I - P is a projection on V along U. 



5.3 . THE PROJECTION METHOD FOR SOLVI NG A SYSTEM OF 

LINEAR EQUATIONS . 

We first note that this is basically the well known method 

dev ised by Kaczmarz (see [12] ) for the solution of a 

system of linearly independent equations , but that it 

is shown to hold as well for singu lar systems . 

Suppose A i s an m x n complex matrix, wi t h non- zero rows , 

and b is an m- dimensional column vec tor with complex 

elements . We wish to solve the system Ax = b . 

let a. be the i - th column vector of A* . Then Ax = b 
~ 

can be expres sed as the system of equations 

X 
a. x = b. , 
~ ~ 

i = 1 , . .. ,m. 

since a.* is the i - th row of A. 
~ 

Equi valently , 

i = 1 , ... ,m. 

* Now A has non- zero rows , so a. ~ 0 . 
~ 

Thus a. ~ 0 , 
~ 

i = l , . • . ,m. 

and i = l , . . . ,m. 

and have d . positive for all 
~ 

- 1 
Let fi(x) = x- di ( (x , ai) - bi) a. , so that 

~ 

f. maps en into en. 
~ 

Let F(b,x) = f 1 b F 2 o . .. o fm (x) s o that 

m+n . n 
F maps C ~nto C . 

Now suppose x o is arbitrary . 

Let x 1 = F(b 1 X o) 

let xi+l= F(b 1 xi) 

and in fact 

for i = 0 1 1 1 2 I •• • 

so generating a sequence of vectors xo , x 1 1 x 2 1 . .. 

which defines the iterative method . 
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(i) 

(ii) 

Then f. (x) 
l 

= X d. -
l 

-1 (x 1 a.) a. 
' l l 

d. -1 ~ = X - a. a . X 
l l l 

-1 = P. X + d. b.a. 
l l 

I d. -1 = - a. 
l l 

where Pi 

= (pki) 

6kt d . -1 = -
l 

It is easy to check that Ptk 

hermitian (self-adjoint). 

Also P.P. = 
l l 

which yields after expansion 

= I - d.-l 
l 

So P. is idempotent. 
l 

* a . a. 
l l 

l 

a. 
· l 

aik 

= 

= 

l 

~ 

ai~ 

P. 
l 

+ d. -1 b. a. 
l l l 

+ d. -1 b. a . 
l l l 

i = 1 1 ••• 1 m 

so that P. is 
l 

From (i) and (ii) 1 P. is an orthogonal projection. 
l 

Define = I 

= i = l, ... 1 m 

and R as the n X m matrix with i- th column 

vector d. -1 
Q. l i l, . .. 1 m. a . I = 

l l- l 

Then Rb m d. -l b. Q . 1 = .L: a. 
l= 1 

l l l- l 

and F(b 1 x) = f1 0 f2 0 ... 0 fm(x) 

p1 p X + p 1 • •• p d -l 
= 

m m-l m 

-l -1 + .. .. + Pld2 b2a2 + d1 b1al 

Qx + m d. -l Q. b.a. = I 
i= 1 l l l l 
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Comparing with Rb given above, we conclude 

F(b,x) = Qx + Rb 

this being the defining equation of the iterative method 

(where Q and R are dependent only on A) . 

Theorem 5.3.1. 

Q + RA = I 

Proof: 

i-th row of A is 
!t (by definition) a. 

~ 

i-th column of is -l (by definition) R d. Q. 1 a. 
~ ~- ~ 

RA -l !t + -l !t 
= di 0o al al d2 Ql a2 a2 + ... 

But I P. d. - l ::1:: - = a. a. 
~ ~ ~ ~ 

But Q. = P
1 

••• P. 
~ -~ 

= Q . l P. 
~- ~ 

RA = I Ql 

RA=I-Q 

+ Ql- 0 2 + •.• + Q l- Q m-

+ d -l 
m 0m-l 

So F(b,x) = Qx + Rb is a linear stationary iterative 

method of first degree (it is also consistent with system 

Ax= b -see texts on Num. Anal.). 

It is not difficult to show Ker A is a closed subspace 
n of C , so by property 5.2.3 

= Ker A ~ 
~ (Ker A) 
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Claim A: 

Cn = Ker A (£1 Im A* 

Proof: 

This will follow if Im A* 

Suppose x is in Im A* 

= 
.L 

(I<er A) . 

then there exists y so that A*y = x. 

Let z be any element of Ker A, then Az = 0 

( Z 1 X) * = (z 1 A y) = (Az,y) = (O,y) = 0 

.1. 
Hence x is in (Ker A) 

* ..I.. So Im A £ (Ker A) 

We must prove (Ker A)L ~ Im A* 

(We prove instead Ker A~ (Im A*)~ , then 
.L l. 

use the facts that (G· )· = G and 

G = H ==:} G .L ::::> HJ. 

to conclude Im A* 2 (Ker A) l.·.) 

Suppose x is in (Im A*)~ 

then (x 1 y) = 0 for any y in Im A* . 

But a. 
l 

is in Im A* 
I since if e. 

l 
is the 

one-vector (column) with all elements 

. . . 

except the i-th 

Ax = 0 

x is in Ker A 

which is a l I A* e. 
l 

fori= l 1 ••• 1 m . 

So ( Im A*) .!. S Ker A 

= 

0 I 

a .. 
l 

So (Ker A).l. s Im A* and the claim follows, by Prop. 5.2.3 

since Ker A is a closed subgroup of en . 
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Claim B: 

Ker A 

Proof : 

rn 
= (\ 

i=l 

Suppose X is in Ker A, 

rn 
So Ker A c: (\ { X 

i=l 

Now suppose P .x 
l 

-1 :* 
X - d. a.a. X 

l l l 

* a.a. X 
l l 

(x, a .) a . 
l l 

(X ' ai) 

·n in C 

so Ax 

(x,ai) 

P. (x) 
l 

P. (x) 
l 

= 
= 

= 

= 

= 

= 

in en P.x 
l 

= X 

= X 

= 0 

= 0 

= 0 

since is not the null-vector 

Ax = 0 

so x is in Ker A 

rn 
So ~ { X in en 

i = 1 

The Claim follows . 

P .X = X } 
l 
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0 

0' i = 1, ... , rn 

( I d. 
- 1 * - a. a . )x 

l l l 

d. 
-1 

(x,a.) X - a. 
l l l 

d. 
-1 

0 X - a. 
l l 

X for i = l, . •.. ,rn 

= X } 

for i = l , ... ,rn 

for i = l , ... , rn 

for i = 1 , ... ,rn 

for i = l , . .. ,rn 

for i = l , ... , rn 

(giv e n ) 

Ker A 



Claim e: 

Im Ax 

Proof: 

= P.x 
l 

= 0 } 

Suppose P . = 0 for some io in {1,2 , . . . , m} lo 

then (I d. -1 *) 0 - a . a. X = lo lo l o 

d. lo 
- 1 a. lo a. * X = X l o 

d. -1 
(x , a. ) a. = X 

lo · lo lo 

Let y be any element of Ker A 

then (y , ai) = 0 for i = 1, ... ,m 

(y' X) (y, d. 
-1 

(x,a. ) ) so = a. lo l 0 lo 

= 0 since (y , aio ) = 

so X is in (Ker A) 
.l. 

= I m A* 

m 
So v { in en P.x 0 } c:::; 

X = i=l l 

We must Im A* c. m {x en prove u E 

i=l 

We prove instead 

Ker A ~ ( tJ { X e: en 
i=l 

Suppose x is in this last set 

then if y is such that P. y = 0 
J 

j in {1,2, ... ,rn} then 

(x,y) = 0 

0 

by Claim A 

Im A* 

P.x = O} 
l 

for some 
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d. 
- 1 ~ 

Now P.a. = ai - a.a. a. 
1. 1. 1. 1. 1. 1. 

d. 
- 1 

(ai , ai) a. = a . -
1. 1. 1. 

a·. - 1 
= - d. d.a. 

1. 1. 1. 1. 

= 0 

(x , ai) = 0 by the previous observat i on . 

So (x , a. ) = 0 
1. 

for a l l i = 1 , .. . ,m 

Ax = 0 

X i s in Ker A 

Im Ax (Ker A) ..L c::: m { in en P.x = .u X 

1.= 1 
1. 

and Claim c follows . 

Lemma 5.3 . 2 

II Qxll = llxJI if and only if x is in Ker A. 

Proof: 

(necessity) Suppose x is not in Ker A . 

Then by Claim B , P.x ~ x for some i < m. 
1. 

Let io be the l argest such i 

then n p. p. +1 . . . p 1 p X II = II 1. o 1. -o m- m 

By definition 

II p io X II 

II p i-o X fl 

!lxl/ 

= 0 } 

since /I Pi o II = 1 . 
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Suppose II Pi o x II =II X II 

then ( P. X 1 P. X) = (X 1 X) lo lo 

(P. x, x) lo = (x,x) since P. is an orthogonal lo 

similarly 

adding: 

or 

or 

Hence 

(x,P. x) lo = 

(P. x, x) + (x ' lo 

(P. x, P. x) -lo lo 

(P. X - x, P . lo lo 

projection . 

(P . x, P. x) lo lo 

P. x) = (x , x) + (P. X, P. X) lo lo lo 

(x' P. x) - (P. x, x) - (x , x) lo lo 

X - x) = 0 

P. x = x . Contradiction. l o 

< ~X II 

Also II Q i Jj < II P 1 II II P 2 IJ · · · /1 Pi II == 1 ' i = 1 ' .. · ' m 

So II Q i ~ < 1 for a 11 i == 1 , . . . , m 

p. 1' p. • p. +1 . .. p X li lo- lo lo m u 

= II Q i o -1 Pi o · Pi o + 1 · · · P rn x II 

-~ II Qi o-1 II II p i o X II 

II Qm x II ~ II x II 

So x not in Ker A implies .. jl Q x II 'I II x II 

(suff iciency) : suppose x is in Ker A. 

By Claim B, P . X = X for i = 1, ... , m 
l 

Qx = pl p2 p X = X m 

X in Ker A impliesiiQ X II = llx II 

= 0 



Corollary 5.3.3 . 

If rank A < n, then ~Q I= 1. 

Proof: 

II o II = llomll.:: 1 by * of the lemma above . 

Suppose rank A < n . 

Then there exists non-zero Xo so that 

AXo = 0 

So x o is in Ker A, and so II Q x o II = Jl x o I\ 
above . 

So IIQx o II 1 = 
llxo II 

II o II > 1 by definition ~ Q II 
But II o II < 1 

II o II = 1 when rank A < n. 

Corollary 5.3.4. 

Qx = x if and only if x i s in Ker A. 

Pr oof: 

Suppose Qx = x , then 1/ Qx II 

by the lemma 

so xis in Ker A (Lemma 5 . 3 . 2.) 

Suppose x is in Ker A, then Ax = 0 

RAx = 0 

(I-RA)= X 

Q X = X (Theorem 5.3 . 1) 
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( i) 

( ii) 

Theorem 5.3 . 5 . 

(a) Ker A and !t: Irn A are invariant subspaces under Q 

(b) 0/Ker = I (the identity map on Ker A) A Ker A 

(c) ED 
,.., 

PKer A ' Q = Q.PKer hence Q = p Q and Ker A 

where Q = Q P im A!t: 

(Note: In subscripts, will abbreviate Ker A to K, 
ImA!t: to I!t:) . 

.II o II = sup ll ox II < 1 

X in Irn A!t: 

II X II = 1 

Proof: 

(i) Ker A is invariant under Q, since Lemma 5 . 3 . 2 proved 

x in Ker A implies Qx = x. 

So also Q/ Ker A = IKer A , s o (b) is proved . 

If y is in Im A*, and xis any e l ement of Ker A , 

then (x , Qy) = (Q!t: x,y) 

= (P !1:: 
m 

= (P m 

= (x , y) 

P !1:: p !t: ) 
2 1 X 1 y 

since x in Ker A implies P.x = x for all i = 1 , ... ,m 
1 

by Claim B. 

A* 
l. 

Now Im = (Ker p_) so (x,y) = 0 I 

(x , Qy) = 0 for any x i n Ker A 

Qy is i n (Ker A) 
.1. 

for any y in Im A* 

Qy is in Im A* for any y in Im A* 

So Im A* is an invariant subspace under Q. 

So (a) is proved. 

46 

= 0 A 



(ii) 

Recall en = Ker A ® Im Ax 

so we may express Q as follows, using (a) and (b) 

just proved 

Q = 

and 

where = Pix PK = 0 

(this notation simply indicates that if z = x + y where 

x is in Ker A, y is in Im A~, uniquely, then 

Qz = Qx + Qy x + Qiy by (a) and (b) 

= 

= 

So (c) is proved. 

11°11 = sup lloxll > sup llo x II ( Jlxll t- 0) en -
x in 

llx II A* /lxll x in Im 

If X is in Ker A, Pix X = 0 (by definition Pix) 

also if x is in Im A* 
I Pix X = X (by definition Pix) 

So for z in en, if z =X+ y, X in Ker A, y in Im Ax 

Qz = + 

II Qzll jjQyjj ~ 1/Qy/1 (since yin ImAx = (Ker 
l. . = A) 

-- -- II Y II ~ II z II ) II z II II z II II Y II y ields 

Hence sup llozll < sup 
Im A~ 

IIQyll 
z in en II z II - y in IIYII 

Hence ll Q II = sup II Qy II 
y in ImA x II Y II 

= sup · II Qy Jj 
y in Im A* 

II Y II = l 
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Note that ~ Q II= II Q Pr* II 2. II Q IIIIPr*/1 < 1 

Suppose II o II= 1 : 

Then since ~Qx~ is a continuous function on the 

compact set { ·x in Im . A~: II x II = 1 } , 

II Qx II must attain its supremum for some x o in this set. 

So there exists xo in Im A* with ijxo~ = 1 

so that 11 ox o 11 = 1 

: · II Qx o II = II x o II 

By Lemma 5.3.2, then Xo is in Ker A 

Xo is in Im A*f\Ker A, so Xo = 0, 

contradicting II x o II = 1. 

So IIQ"II < 1 and (ii) follows. 

If rank A = n, then Ker A = {0} and Q = Q 

But l\o\1< 1, so IIQII< 1 in this case. 

Corollary 5.3.6. 

l irrt Qi = PK 
i+oo 

Proof: 

II Qi - PK I! II (PK + Q) i PK 
i II = 

II PK 
i -"'i p j_ 

II = + Q K 

(since all other in - i contain terms (P + ·Q) 
K 

= lloill 

,..., 
PKQ 

< II C2 IIi which approaches 0 as i 

approaches infinity, 

Jim Qi 
i+oo 

= 

since II <2'11 2 1 . 

= 0) 
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Theorem 5.3.7. 

(i) 
i 

J. ,.,... -1 
Lim 1: (Q R) exists and equals (I - Q) R 
i-+oo j=O 

(ii) then x rn matrix G = (I - Q)-1R is a generalised 

inverse of A satisfying 

AGA = A, GAG = G, AG = P 

where P is the projection onto Im A alona Ker R. 

(Note that PI~ is an orthogonal projection, so that 

the third condition here incorporates Penrose•s condition 

( 4) ) • 

Proof: 

The i-th column vector of R is 

Now x in Ker A yields (a. ,x) = 0 
l 

So (Q. 
1
a.,x) =(a., Q~ 

1
x) 

1- l 1 1-

= (a. , x) 
1 

= 0 

So Q. 1 a. is in (Ker A) .L 
1- 1 

So d. 
-1 

Q. 1 
l 1-

a . 
1 

is in Im A*-

But Im A*- is invariant under Q. 

So the column vectors of QH are 

QjR = QjR 

i 
QjR 

i 
QjR and L. = 1: 

j=O j=O 

CX> 

-1 
d .• Q. 

1
.A .• 

l l_- l 

for i = 1, 

(by Claim A) 

for i = 1 , .. . 

for i = 1 ' ... 

for i = 1 ' . .. 

also in Im .A * 
for j = D,1,2, 

Now !loll < 1 yields 1: -j 
0 convers:rent 

CX> 

QjR 1: 
j = O 

j=O 

exists , since 

= 
i 
1: Qj) R 

j=O 
which has a limit as i 
approached oo 

, m. 

' m 

' m 

' m 

. .. ' i 
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(ii) 

00 
00 

QjR QjR. So ~ also exists and equals [ 

j==O j=o 

--1 
i 

It is easy to check that (I - Q) = lim ~ 
i-+OO j=o 

where I- Q is invertible since llo II < 1. 

co 

Hence 2: 
j=O 

= (I - 'Q)1 R 

.... :;j 
Q 

00 

(Note that it may well not follow that 2: 
j=o 

Qj exists 

so that R may not be removed as a factor from this 

series, in general). 

'1:. . x 
The column vectors of A are in Im A (they are the 

images of the usual one- vectors in Cn) . 

So (I - Q) A!t = A!t QA!t 

= Ax (PK + cD Ax 

= A* QA* 

= (I -" Q) A '1:. 

But I - 0 = RA by Theorem 5.3.1 

So ~.* = (T - Q) A*-

So (I - CD -lRAA!t = A*-

So GAA* = A*-
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This is simply equation (6) of Theorem 2.1 in Chapter 2 

where it was shown to be equivalent to Penro se's equations 

( 1) and ( 4) 

Hence AGA = A and (GA)*- = GA 

Also (GA)2 = G(AGA) = GA 

so GA is hermitian and idemootent, hence. is 

an orthogonal projection (See Property 5.2.5) 
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Also RA (I - -1 (I Q) (I Q)-1 - Q) = - -

- (I '(J- PK) (I 'Q -1 - ) 

(I - Q) (I ""' -1 
PK(I 

....., -1 = - Q) - Q) 

= I - PK (I - Q) -1 

(but PK(I-Q) = p - PKQ = PK K 

so PK = PK(I - Q) -1 

(I .-..; -1 
(I PK) RA - Q) R = - R 

= R - PKR 

= R 

= 

or GAG = G 

Also (AG) 2 = AGAG = AG 

So AG is idempotent, so is a projection (Property 5.2.5) 

We have still, however, to establish the subspace onto 

which these proj~ctions map. 

Since AGA = A, Irn AG ::::> Irn A (a) 

Also Ker AG Ker (A (I 
..., -1 

R) = - Q) 

so Ker AG :::> Ker R (b) 

Now Irn AG ® Ker AG = ern 

since AG is square, and Irn AG (\ Ker AG = { 0} . 

So Irn AG f\ Ker AG = { 0} 

Irn A (\ Ker R = { 0} by (a) and (b) 
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The i-th column vector of R is 

Q. 1 a. 
l- l 

= -1 
d . (P

1 
... P. 2 ) (P. l a . ) 

l l- l- l 

-1 -1 ~ 
d. (P1 ... Pl. 2 ) (I - d. 1 (a. 1a . 1 )a. = 

l - l - l- l - l 

= -1 -1 
d. (P1 •.. P. 2 ) (a. -d. 

1 
(a . ,a. 

1
)a . 

1 l l- l l- l l- l- . 

and by continuing the expansion 

-1 = d. 
l 

i-1 
(ai - . ~ 

J=l 
c . a.) 

J J 

i.e. the columns of R are linear combinations of the 

1 Of A* co urnns a . 
l 

So Irn 'R s:; Irn A* 

Similarly Irn A* 
~ Irn R 

So Irn Ax = Irn R 

dim (Irn A*) = dim ( Irn R) 
. dim ( Irn A) = dim ( Irn R*) 

(but X ern Irn A (tJ Ker A = 

and X em Im R Ej7 Ker R = I as in Claim A) 

dim 
X 

dim (Ker R) (Ker A ) = 

dim (Im· A · x dim (Cm) But {F) Ker A ) = 

Hence dim ( Im A + Ker E) = dim (Crn) 

but we proved I m A {\ Ker R = { 0} 

Hence Im A (B Ker R 

So by (a) and (b), AG is the projection onto Im A along 

Ker R. 

Also , since GA = A*G*, Im(GA) c. Irn A* 

also (AGA)* = A* 

GA Ax = A* so Irn (GA) :::::> Im A* r 

Hence Im(GA) = Im A*· i.e. GA = Pix I 



Corollary 5.3.8: 

For any m x n matrix A with non-zero rows, and any 

m-dimensional column vector b, the algorithm 

= F(b; x.) 
J_ 

i = 0,1,2, ... 

generates a convergent sequence of vectors such that 

lim 
i-HO 

x. 
J_ 

= + Gb 

where X o is an arbitrary initial vector in en. 

Proof: 

F(b, x) = Qx + Rb 

= Q Xo + Rb 

= Q (Q Xo + Rb) + Rb 

= Q2 Xo + QRb + Rb 

= Q (Q2 Xo + QRb + Rb) + Rb 

= . Q3 Xo + Q2Rb + QRb + Rb 

continuing this process , we find 

x. 
J_ 

= Qi Xo + i-1 Qj Rb .E 
J=O 

Qi i-1 Qj R) b = Xo + ( . r. 
J=O 

Now lim i 
PK (by Cor 5 . 3.6) Q Xo = Xo 

i -HX> 

i -1 
QjR and lim E exists (by Th. 5. 3 . 7) 

i-+oo j=o 

So the sequence of x. (i = 0,1,2, ... ) converges to 
J_ 

PK Xo + Gb 
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CONCLUSION : (to solve the system Ax = b) 

By Th . 2 . 2 our s ystem has· a solution if and only if 

AGb = b; and if this condition is satisfied , then 

Gb + Xo - GAxo is a solution , for arbitrary Xo . 

Now Gb + (I - GA) Xo = Gb + PK Xo (by 5.2.7) 
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(also , by Th. 2.3 , Gb is that solution with minimum norm) . 

So to solve the system : 

(i) calcul ate Gb by apply i ng the iterative method to 

Xo the null vector , 0. 

( i i) test whether A(Gb) = b 

(iii ) if the system is consistent , calculate PK by using 

the method with b = 0 , and using the (column) 

one- vectors e. as starting vectors , i = 1,2 , ... , n. 
l 

The i-th application of the method will yield the 

i - th column of PK . 

(iv) PK Xo + Gb is then the general solution (xo arbitrary). 

5 . 4. THE METHOD APPLIED TO FINDING THE GENEP~LISED 

INVERSE G of A. 

Using Xo = 0 , the null vector, apply the method m times , 

to solving Ax= ei (i = 1,2, .. . , m) 

one- vectors) . The i-th application 

of vectors converging to PK . O + Gei 

column of G. 

(e. the (column) 
l 

will yield a sequence 

i.e. the i - th 

Remark : clearly , if the last condition for Gin Th. 5 . 3 . 7 , 

(namely, AG is the projection P onto Im A along Ker R) can 

be strengthened to become 

AG is the orthogonal projection onto Im A 

then (AG)~ = AG, by 5.2.5, and so G =A+. 



Considering 5.2.4, we conclude that if, for a given 
J. 

matrix A, Ker R = (Im A) , then Tanabe's algorithm 

will yield A+ and not just Aw. 

5.5. CONCLUDING REMARKS 

Tanabe quotes results of six well-chosen examples, 

used to test this algorithm, and notes that these 

illustrate an expected phenomenon : convergence of the 

method is fast if the rows of A are mutually "nearly" 

orthogonal. That this should be so follows from a 

consideration of the geometry of the method: 

if the equations (x,a.) =b. are viewed as 
l l 

defining hyperplanes H. , i = 1,2, ... ,m, then the 
l 

maps f. simply project vectors on which they operate 
l 

onto the corresponding hyperplanes H .. 
l 

Hence xi+l = F(b,xi) = f 1 o f 2 o o fm (xi) 

is the vector arising from the projection of xi onto 

the Hi in the order i = m, m-1, •.. , 1. 

We illustrate this in the case where m = 2 
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Clearly convergence is fast if H1 and H2 a re nearly 

orthogonal. Also notice more generally, that the 

iterative sequence x . , i = 1,2, ... lies in the hyperplane 
l 



When convergence is slow (e.g. A is " nearly'' singular , 

or II Q II close to 1) an acc.e l eration technique is 

desirable . Tanabe claims that Ai tken ' s 6 2
- method has 

t he disadvant age that if it is appl ied to a singular 

system, it disturbs the dependenc e (in general) of the 

limit point on the initial vector (see Cor . 5 . 3 . 8). 

L . Duane Pyle describes on pp . 218 - 235 of [25] , a 

generalised "epsilon - a l gorithm", which he applies 

to accelerating the convergence of the " symmetric" 

Kaczmarz method . The l atter is a variat i on whi ch 
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includes in one stage of the iteration , projection onto 

each of the hyperplanes H1 , .. . , Hn in that order , 

followed by projection back onto Hn-l '" . . , H1 ( i n that 

order) . The £4 - algorithm appl i ed to this example , y i elds 

a semi- iterative method (see Varga [30] ) which is then 

useful as an accelerating process . 

In comparison to the Gauss - Seidel and Jacobi methods 

for iteration when A is non- singu lar , the method of 

this chapter may be slow (e . g . when A is large and spars e) 

but has the advantage that it does always converge. A 

non- singular , but ill- conditioned , 84 - dimensional test 

matrix , was used. as A in the system Ax = b solved by 

Ga ussian elimination without iterative or pivoting 

improvement. The poor results obtained are compared 

in Tanabe ' s paper with those at various iterations using 

the projection method , where the error proves negligible 

by comparison . 

To conclude, it is noted that observation that AA+ and 
+ A A may be viewed as orthogonal projections has been 

used in the search for algorithms which yield A+, as 

far back in the literature as 1964. At that time 

Pyle published one using a "gradient projection" method 

which Rosen had used frequently in non- linear programming 

in 1960/1961 . (See bibliograph of [19a] . ) 
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