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M. Gaździcki2

Institut für Kernphysik, Universität Frankfurt
August–Euler–Strasse 6, D - 60486 Frankfurt, Germany

J. Sollfrank3

Fakultät für Physik, Universität Bielefeld
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Abstract

The data on average hadron multiplicities in central A+A collisions measured
at CERN SPS are analysed with the ideal hadron gas model. It is shown that the
full chemical equilibrium version of the model fails to describe the experimental
results. The agreement of the data with the off–equilibrium version allowing for
partial strangeness saturation is significantly better. The freeze–out temperature of
about 180 MeV seems to be independent of the system size (from S+S to Pb+Pb)
and in agreement with that extracted in e+ + e−, p + p and p + p̄ collisions. The
strangeness suppression is discussed at both hadron and valence quark level. It is
found that the hadronic strangeness saturation factor γS increases from about 0.45
for p + p interactions to about 0.7 for central A+A collisions with no significant
change from S+S to Pb+Pb collisions. The quark strangeness suppression factor
λS is found to be about 0.2 for elementary collisions and about 0.4 for heavy ion
collisions independently of collision energy and type of colliding system.
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1 Introduction

Many years of experimental effort in the field of high energy nuclear collisions yielded a
large amount of data on particle production at different collision energies (up to 200 A
GeV/c) and for different colliding systems [1]. These results allow studying the proper-
ties of strongly interacting matter at high energy densities. Ultimately, at high enough
collision energy one expects to create in the laboratory the Quark–Gluon Plasma (QGP),
a form of matter in which effective degrees of freedom are quarks and gluons instead of
hadrons and hadronic resonances. The formation of QGP with deconfinement of quarks
and gluons should hopefully be reflected in the final hadron production, provided that
the expected modifications of the entropy and strangeness content of the system survive
hadronization and reinteractions between final state hadrons. In principle the system evo-
lution is determined by QCD. Nevertheless, the formation of hadrons is a process entirely
lying in its non–perturbative domain, hence, in order to study the final state, one has to
resort to phenomenological models such as string or statistical (thermal) models.

The statistical models, whose prototypes [2, 3, 4] date back to ’50s and ’60s, are based
on the assumption of local filling of available phase space according to statistical laws, once
collective effects have been taken into account. This ansatz allows the characterization of
hadron production by means of few parameters such as temperature, volume and chemical
potentials. Furthermore, parameters accounting for possible departures from complete
equilibrium are often introduced.

A long and rich history of thermal models is related to their surprising success in the
description of many aspects of high energy collisions [5]. It has been shown recently that
the ideal hadron gas model allowing for non–equilibrium strangeness abundance is able
to reproduce hadron multiplicities in e+ + e−, p + p and p + p̄ interactions over a large
collision energy range [6, 7, 8]. In this paper we apply the same model to analyse the
data of hadron multiplicities in central nucleus–nucleus collisions at CERN SPS collision
energies. The data on Sulphur–nucleus collisions at 200 A GeV/c were already analysed
using thermal models in many previous works (for a review see Ref. [9]). We add to
this data set the preliminary results on hadron production in central Pb+Pb collisions
at 158 A GeV/c. The use of the same formulation of the thermal model for the analysis
of data from p + p to central Pb+Pb collisions allows us to study the evolution of the
parameters of the model in the full range of the colliding systems. Our analysis is based
on hadron multiplicities integrated over the full phase space because their use minimizes
the influence of collective effects on final results allowing a formulation of the model to
be tested with a minimal number of assumptions and parameters.

The paper is organized as follows: in Sect. 2 we describe the hadron gas model which
is confronted with the experimental data in Sect. 3. Discussion and conclusions are given
in Sect. 4.

2 Hadron Gas Model

In this section the hadron gas model used in the present analysis is sketched; a more
detailed description can be found in Refs. [7, 8]. The model postulates the formation of
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an arbitrary number of hadron gas fireballs each having a definite collective momentum as
the result of an interaction between the two colliding systems. The parameters describing a
hadron gas fireball at thermal and chemical equilibrium are the temperature Ti, the volume
Vi in its rest frame, and the quantum numbers, i.e. electric charge Qi, baryon number
Bi and strangeness Si. Charm and beauty have been excluded from the calculations as
the thermal production of heavy–flavoured hadrons is negligible with respect to non–
heavy-flavoured hadrons in the expected range of temperatures, namely 100÷200 MeV.
If Q0

i = (Qi, Bi, Si) is the vector of ith fireball’s quantum numbers and N is the number
of fireballs, the following constraint:

N
∑

i=1

Q0
i = Q0 , (1)

where Q0 is the quantum vector fixed by the initial state, must be fulfilled. The average
yield of any hadron in the ith fireball can be derived from the partition function:

Zi(Q
0
i ) =

∑

states

e−Ei/TiδQi,Q0

i
, (2)

which is calculated in the canonical approach, i.e. by using only the multi–hadronic states
having the same quantum numbers of the fireball.

A non–equilibrium parameter γSi accounting for a possibly incomplete strangeness
chemical equilibration is introduced by multiplying by γs

Si the Boltzmann factors e−Ej/Ti

associated to the jth hadron in the partition function, where s is the number of its valence
strange quarks and antiquarks. Although this factor was introduced heuristically [10]
and used as a purely phenomenological parameter in the analysis of elementary collisions
[6, 7, 8], it can be shown that γS formally is the fugacity associated to the number of
strange + antistrange quarks in the hadron phase in a grand-canonical framework [11].

The overall average multiplicity of each hadron species is the sum of all average yields
in each fireball. In principle any configuration {Q0

1, . . . ,Q
0
N} of fireballs in the event may

occur, so that average hadron abundances depend on the probability w(Q0
1, . . . ,Q

0
N) of

occurrence of a given configuration besides the whole set of fireball thermal parameters
Ti, Vi and γSi. However, it can be shown that if such configuration weights w(Q0

1, . . . ,Q
0
N )

are chosen in a statistical fashion [7, 8]:

w(Q0
1, . . . ,Q

0
N ) =

δΣiQ
0

i
,Q0

∏N
i=1 Zi(Q

0
i )

∑

Q0

1
,...,Q0

N
δΣiQ

0

i
,Q0

∏N
i=1 Zi(Q0

i )
(3)

and the fireball freeze–out temperatures and γSi suppression factors are the same, namely
Ti ≡ T and γSi ≡ γS, then the average hadron abundances nj at freeze–out depend only
on the global volume V ≡ ∑N

i=1 Vi and Q0 through the following equation:

nj = (2Jj + 1)
V T

2π2

∞
∑

l=1

(∓1)l+1 Z(Q0 − lqj)

Z(Q0)
γ

lsj

S

m2
j

l
K2(

lmj

T
) , (4)

where the upper sign is for fermions and the lower for bosons; the function Z is the global
partition function [7, 8] and qj is the quantum number vector of the jth hadron species.
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The special choice of weights w(Q0
1, . . . ,Q

0
N) in Refs. [7, 8] leads to the same expres-

sion of average multiplicities relevant to a system in global equilibrium even if the fireballs
are not in mechanical equilibrium. It might be argued that the difference between the
rapidity spectra of baryons and antibaryons – existing even in central A+A collisions [12]
– question the validity of this choice. Nevertheless this choice has a remarkable property,
namely it removes the dependence of hadron average multiplicities on both the number
of fireballs and their ordering either in size or in space (reabsorbed in the global volume).
As a consequence, much freedom is left to possibly reproduce the rapidity distributions
within the model keeping the same quantitative expressions for hadron abundances (see
Appendix A). However, even if the choice of the weights w(Q0

1, . . . ,Q
0
N) was not cor-

rect, the corrections to eq. (4) are expected to be small because the relative abundances
are predominantly determined by the intensive thermal parameters and not by fireball
quantum configuration weighting.

The chemical factors Z(Q0 − lqj)/Z(Q0) in eq. (4) implement the dependence of the
yields upon the chemistry of the system and replace the chemical potentials in the proper
canonical formalism. For very large volumes, as expected in heavy ion collisions, it can
be proved [8] by means of a saddle–point approximation, that eq. (4) reduces to:

nj = (2Jj + 1)
V T

2π2

∞
∑

l=1

(∓1)l+1 γ
lsj

S

m2
j

l
K2(

lmj

T
) elQ0A−1qj/2 e−l2qjA

−1qj/4 , (5)

where A is a 3 × 3 matrix whose elements are proportional to V :

Ak,l =
1

2

∑

j

V (2Jj + 1)

(2π)3

∫

d3p
γ

sj

S e−
√

p2+m2

j
/T

(1 ± γ
sj

S e−
√

p2+m2

j
/T )2

qj,lqj,k , (6)

where the sum runs over all hadron species. In eq. (5) the chemical factors are transformed
into a product of two factors: the first one can be written as exp[lµ · qj/T ] where µ is
a traditional set of chemical potentials, whereas the factor exp[−l2qjA

−1qj/4] has no
grand-canonical corresponding quantity. Its presence entails a suppression of hadrons
having non–vanishing quantum numbers with respect to neutral ones, owing to the finite
size of the system. Indeed this factor takes its origin from the requirement of exact
conservation of initial quantum numbers. In the infinite volume limit A

−1 goes to zero
and the grand-canonical formalism is fully recovered.

An important problem to face in modelling heavy ion collisions is the fact that particle
multiplicities are measured by averaging over events with a varying number of participant
nucleons. For central collisions of identical nuclei (S+S and Pb+Pb in this paper) the
fluctuations in the number of spectator nucleons, NSPEC, can be considered to follow a
Poisson distribution [13], well approximated by a Gaussian distribution if 〈NSPEC〉 ≫ 1.
Hence fluctuations in the number of participant nucleons, NPART = 2 ·A−NSPEC, can be
described by a Gaussian distribution with mean value 〈NPART〉 and variance 〈NSPEC〉. For
the considered collisions (S+S and Pb+Pb4) it is 〈NSPEC〉 ≪ 〈NPART〉, implying that the
mean of participant nucleons distribution is large in comparison with its width. Assuming

4Validity of the above consideration for central S+Ag collisions is questionable as fluctuations are
probably dominated by a geometrical effect.
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that T and γS do not depend on the number of participant nucleons, the average number
of directly produced hadrons of species j is:

〈nj〉=(2Jj + 1)
∑

Q0

∫

dV F (Q0, V )
V T

2π2

∞
∑

l=1

(∓1)l+1 γ
lsj

S

m2
j

l
K2(

lmj

T
) elµ ·qj/T e−l2qjA

−1qj/4,

(7)
where F (Q0, V ) is the joint probability of observing an event with global volume V
and quantum vector Q0 (determined by the number of protons and neutrons involved in
the collision). The removal of the integral from eq. (6) by introducing mean chemical
potentials µ and mean volume V must be undertaken with great care since such mean
values in general would depend on the hadron species and would not be the same for all of
them. This is clearly understood because µand A, depending on Q0 and V , multiply qj

in a non–factorisable form. However, if a reasonable ansatz of a narrow Gaussian shape
for the distribution function F (Q0, V ) is assumed, according to previous discussion, it
can be shown (see Appendix B) that the simple averaging procedure introducing mean
chemical potentials and volume can be used provided that A−1 ≪ 1. In other words, for
the following simple averaging formula to hold:

〈nj〉 ≈ (2Jj + 1)
V T

2π2

∞
∑

l=1

(∓1)l+1 γ
lsj

S

m2
j

l
K2(

lmj

T
) elµ ·qj/T e−l2qjA

−1
qj/4 , (8)

a nearly grand-canonical regime and reasonably small fluctuations of V and Q0 are needed.
How small such fluctuations must be, will be checked a posteriori in the actually examined
collisions. The hadron average multiplicities are calculated with eq. (8) in which V , T ,
γS and µB are free parameters to be fitted to the data, while µS and µQ, the strangeness
and the electrical chemical potentials respectively, have been determined by means of
two additional constraints: the strangeness neutrality and the conservation of the ratio
(Z1 +Z2)/(A1 +A2) formed with the atomic and mass numbers of the two colliding nuclei:

∑

j

Sj〈nj〉 = 0

∑

j

Qj〈nj〉 =
Z1 + Z2

A1 + A2

∑

j

Bj〈nj〉 . (9)

It should be noted that the first of the two constraints in eq. (9) is valid on an event by
event basis whereas the second, only averaged over a large number of collisions.

All previous equations are concerned with primary hadrons, namely particles and
resonances directly emitted from the hadronic source and not coming from secondary
decays. On the other hand, since actual measurements include feeding from heavier
hadrons and resonances, the hadron production rates to be compared with the data have
been calculated by letting all primary hadrons decay according to known branching ratios
until particles considered stable by the experiments are reached. Among primary hadrons
we included all particles and resonances up to a mass of 1.7 GeV; the masses of resonances
have been distributed according to a relativistic Breit–Wigner. The needed values of
hadron masses, widths and branching ratios have been taken from the most recent Particle
Data Book [14].
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3 Comparison with the Data

3.1 Full Equilibrium Model

The hadron gas model described in the previous section has been used to fit the data
on hadron abundances in central S+S, S+Ag at 200 A GeV/c and central Pb+Pb colli-
sions at 158 A GeV/c measured by NA35 and NA49 Collaborations at CERN SPS. We
used average hadron multiplicities measured in (or extrapolated to) full phase space. The
compiled data and the references to the original papers, where the experimental details
(acceptances, extrapolation procedures) can be found, are given in Table 1. Since pre-
liminary data on central Pb+Pb collisions are still poor, we decided in this case to use in
addition two particle ratios measured in the central rapidity region, namely K+/K− and
Λ/Λ. The measured rapidity distributions of these particles in the acceptance region are
similar to those of the corresponding antiparticles [21], thus justifying our decision to use
those ratios as estimates of the full phase space ones.

The analysis of particle multiplicities in e+ + e−, p + p and p + p̄ collisions within a
hadron gas model indicates that the strangeness production in such elementary collisions
is not high enough to ensure the complete local chemical equilibrium at hadron level. It
may be expected that in the case of central A+A collisions, due to a much larger volume
of the interaction region and an increased role of hadron rescattering, a full local chemical
equilibration at hadronic level can be attained.

In order to test this hypothesis we started the comparison of the experimental data
with the hadron gas model by using first its fully equilibrated version, i.e. by setting
γS = 1. We performed a graphical test similar to that made in Ref. [22] by plotting in the
T -µB/T plane the bands determined by the central values of some of the most relevant
ratios of hadron yields and by their 1σ variations. As the overall multiplicities are very
large, we set A−1 = 0 in eq. (8); in this grand-canonical limit the multiplicity ratios
depend only on the intensive free parameters T and µB/T as the mean volume V cancels
out. This approximation turns out to be satisfactory for all the examined collisions as it
is demonstrated below. In Fig. 1 a–c such bands are shown for S+S, S+Ag and Pb+Pb
data, respectively. There is no evident common crossing region for all bands, indicating
absence of complete equilibrium even in central collisions of nuclei as heavy as Lead. It
should be noted that a crossing region does exist for Pb+Pb collisions with T ≃ 120
MeV and µB/T ≃ 2.7, as long as only full phase space multiplicities are considered, i.e.
excluding the Λ/Λ band. However, these latter values imply an antibaryon/baryon ratio
of less than 10−2 at primary level, which is unrealistically small with respect to the same
ratio in S+S and S+Ag collisions. In fact the measured Λ̄/Λ band is quite far from the
crossing point.

In order to confirm the previous finding we performed a least–squared fit to the data
with T , V and µB/T as free parameters, using the canonical corrections and keeping
γS = 1 fixed. The details of the fitting procedure are described in Appendix C. The
results are shown in the first part of Table 2 and the fourth column of Table 1. The
χ2/NDF ’s are about 6÷8 with large discrepancies between fitted and measured values.
Therefore we conclude that a full equilibrium version of the ideal hadron gas model fails
to reproduce full phase space hadron multiplicities in central A+A collisions at CERN
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SPS energies.
Our conclusion is in contradiction with the findings in Ref. [23]. This discrepancy can

be explained by the fact that the analysis in Ref. [23] was performed by using particle ratios
in various regions of rapidity and transverse momentum which, unlike in our analysis,
requires additional dynamical input beyond a simple statistical ansatz. Secondly, a proper
statistical comparison between model predictions and data has not been performed in
Ref. [23].

3.2 Off–Equilibrium Model

We tested the off–equilibrium version of the ideal hadron gas model repeating the fits
with γS as a free parameter. The results of these new fits are shown in Table 1 and in
the lower half of Table 2 while the comparison between fitted and measured multiplicities
(or ratios) is shown in Table 1. There is a good agreement for all particles with some
exceptions such as antiprotons in both S+S and S+Ag collisions. The χ2/NDF for S+S
and S+Ag collisions is about 3.5, thus significantly lower than for the full–equilibrium fit.
The χ2/NDF for central Pb+Pb collisions is close to 1.

The obtained temperatures and baryon chemical potentials are quite compatible with
a common value and so are the γS values which turn out to be definitely less than 1 in all
the three examined collisions. Also quoted in Table 2 are the obtained chemical potentials
µS and µQ and the range of variation of the matrix A−1 elements; their smallness bears
out the saddle–point approximation used in this analysis and the previously described
graphical test by confirming the proximity to the grand-canonical regime.

3.3 Discussion of the Analysis

The dependence of the fitted parameters on the hadron mass spectrum cut–off has been
checked by repeating the fit with lower cut–off values and found to be negligible.

The validity of the approximated averaged formula in eq. (8) in the presence of par-
ticipant fluctuations has been checked by calculating its first order corrections according
to the formulae quoted in Appendix B with the assumption of moderate Gaussian fluctu-
ations of baryon number B, electric charge Q and volume V . The corrections have been
estimated repeatedly by random variations of the correlations, assumed to be positive,
between B, Q and V in order to find out a maximum value. Particles undergoing the
most significant variations with respect to the average yield are baryons whose production
increases mainly owing to terms proportional to (δV/V ) where δV is the volume disper-
sion. Such variations turn out to be almost constant for the three kinds of collisions as a
function of the relative dispersions of B, Q and V . They are within 5% with no volume
fluctuation even for δB/B and δQ/Q of 30% but can raise to more than 30% if also a
volume dispersion δV/V = 30% is included.

As follows from the previous discussion (see Sect. 2) and the data presented in Table 1,
the relative width of baryon number distribution is expected to be around 6% and 2%
for central S+S and Pb+Pb collisions, respectively. For these participant fluctuations
the corrections to baryon yields range from about 2.5% (1%) for δV/V = 10% up to
17% (13%) for δV/V = 30% in S+S (Pb+Pb) collisions. It is worth remarking that the
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B, Q and V fluctuations would mainly influence the determination of the baryochemical
potential in the fit as antibaryons and other particles production are much less affected
by them compared with baryons.

Whilst S+S and Pb+Pb collisions involve two identical nuclei, S+Ag is an asym-
metric nuclear collision and the use of the eq. (9) to determine strange and electrical
chemical potentials may be not appropriate. According to eq. (9) the average ratio Q/B
of participant nucleons in S+Ag collisions is about 0.45 whereas it is actually likely to
be somewhat higher owing to the fact that Sulphur (Z/A=0.5) is the smaller nucleus. In
order to prove that our results are independent of the previous assumption, we repeated
the fit by varying the charge/baryon number ratio and taking the extreme case Q/B=0.5.
We found T = 177.5± 7.9 MeV, V T 3 exp(−0.7GeV/T ) = 6.37± 0.47, γS = 0.707± 0.063,
µB/T = 1.325±0.081 with a χ2/NDF = 7.0/2, a fit result not significantly different from
that quoted in Table 2.

A further technical problem in the χ2 fit is concerned with data redundancy. Whenever
two or more data points are in a relationship that is not dependent on any free param-
eter, then the χ2 significance might be questionable as the effective number of degrees
of freedom is overestimated. This is the case for S+S collisions where the (approximate)
relation 〈K0

s〉 = (〈K+〉 + 〈K−〉)/2, owing to isospin symmetry and independent of model
parameters, links three data points. However, it can be shown (see Appendix D), that
such redundancy does not affect the extraction of thermal parameters nor their errors; its
main effect is a lowering of the χ2/NDF .

Our analysis is done in the ideal pointlike hadron gas framework. Since the extracted
temperatures are very high, corrections due to particle repulsion in principle should be
considered. However, most corrections proposed in literature leave particle ratios un-
changed [9] so that the parameters T , γS and chemical potentials are unaffected. On the
other hand, our volume parameter V is the pointlike particle volume and should not be
confused with the actual volume. In a recent analysis [24] different particle ratios were
compared with the full–equilibrium hadron gas predictions by introducing different hard–
core radii for pions and other hadrons leading to an effective pion chemical potential. Such
a procedure restores the agreement of the pion abundance which is always underestimated
using thermal parameters extracted from the remaining hadrons [25] in a full–equilibrium
model. However, the price to be payed is the introduction of additional, particle-species
dependent, parameters.

Our numerical results are quite different from a previous analysis of S+S collisions [25]
which found T = 205 ± 39 MeV, γS = 0.95 ± 0.20 and µB/T = 1.30 ± 0.17 by excluding
negatively charged hadrons from the analysed data set. The fact that χ2/NDF > 3 in
S+S collisions is expected to produce fluctuations larger than 1σ in the fitted parameters
if some data points are excluded in turn from the fit. In fact, by excluding negatives we
found T = 200±10 MeV, γS = 0.99±0.11 and µB/T = 1.35±0.09, quite in agreement with
Ref. [25]. The remaining difference can be explained by the use of an updated data sample
and particularly by the inclusion, in our analysis, of resonance widths; this especially
enhances the ρ meson production and, consequently, the pion production improving the
agreement with the measured negatively charged hadron multiplicity.

Another recent analysis [26] of hadron abundances in Pb+Pb collisions found γS =
0.9± 0.09 but with the use of only strange baryons ratios in a limited phase space region
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and omitting the φ multiplicity.

4 Discussion and Conclusions

The data on hadron multiplicities in central A+A collisions at SPS energies can not
be reproduced by an ideal hadron gas assuming complete chemical equilibrium. This
statement is also true for the central collisions of the heaviest nuclei, Pb+Pb. The hadron
gas model supplemented with partial strangeness saturation agrees significantly better
with the data as the χ2/NDF reduces from about 7 to about 3 for S+S and S+Ag
collisions and about 1 for Pb+Pb collisions.
The behaviour of the intensive parameters obtained within the off–equilibrium model is
shown as a function of the system size in Fig. 2 where the result for the p + p data at
similar collision energy [8] is also included.

The lack of complete strangeness equilibrium at hadron level for central A+A collisions
can not be interpreted as an effect of the choice of weights w(Q0

1, . . . ,Q
0
N) described in

Sect. 2 which is crucial to reduce the number of free parameters. Since γS turns out to
be < 1, it might be argued indeed that if the hadron gas fireballs were small enough and
all with zero strangeness (so that the weights w(Q0

1, . . . ,Q
0
N) would be no longer those

chosen in Sect. 2), a suitable canonical suppression [6, 8] could be generated without the
need of γS and a hadron gas in full chemical equilibrium would be recovered. Nevertheless
this mechanism would have no effect on the yield of φ meson which is completely neutral,
thus not suppressed by quantum number conservation at hadron level and having no
known feeding from heavier light–flavoured resonances. Therefore, the measurement of
φ production in Pb+Pb collisions establishes the necessity of a significant strangeness
suppression at hadronic level independently of the validity of the assumed fireball quantum
configurations occurrence probabilities.

An important conclusion can be drawn from the resulting chemical freeze–out temper-
ature, which seems to be independent of the system size and it is, within errors, much the
same as that in e+ + e−, p + p and p + p̄ collisions [7, 8, 27]. This seems to indicate that
the chemical freeze–out occurs close to the hadronization point and that the same mech-
anism of statistical hadronic phase space filling at critical parameters of the prehadronic
matter invoked as a natural explanation of elementary collisions results [8, 27] also holds
for heavy ion collisions. Moreover, the similar µB/T values for all studied A+A collisions
suggest a common hadronization nuclear density.

As the fit is not perfect in S+S and S+Ag collisions even in the off–equilibrium model,
one may speculate that the small deviations from model predictions are due to secondary
inelastic interactions between hadrons following the hadronization stage. While thought
to be absent in p + p collisions, they may likely occur in A+A collisions where they
can destroy the statistical character of the hadronization process. In fact, as inelastic
cross sections for different processes are significantly different, hadron rescatterings may
lead to decoupling of different particle species at different temperatures, thus affecting the
single temperature fit. This mechanism is particularly well–suited to explain the observed
deviation of antiprotons which may quickly annihilate in the baryon–dense medium formed
in an A+A collision. On the other hand it should be mentioned that the observed small

9



deviations from the off–equilibrium version of the hadron gas model could simply stem
from errors in the extrapolation procedures, from participant and volume fluctuations (as
described in Sect. 3) and from the choice of weights w(Q0

1, . . . ,Q
0
N) (see Sect. 2).

Whilst the temperature is constant, the strangeness suppression factor increases from
about 0.45 for p + p interactions to about 0.7 for central S+S collisions at comparable
nucleon–nucleon centre of mass energies. No further increase of the strangeness suppres-
sion factor is observed for central Pb+Pb collisions. This observation has two important
consequences: firstly, a heavy ion collision is not the result of an incoherent sum of nucleon
collisions as far as strangeness production is concerned. In fact, due to isospin symmetry,
γS must be the same in p + p and n + n collisions at the same

√
s; strangeness production

in p + n interactions was measured to be the same as in p + p interactions [28], thus the
neutron content of colliding nuclei cannot account for the increase of γS with respect to
p + p and p + p̄ collisions. Secondly, as canonical strangeness suppression was taken into
account in extracting γS in Ref. [8] and in the present analysis, the strangeness enhance-
ment in heavy ion collisions cannot be fully attributed to the increased system size at
hadron level.

The relative production of strangeness has been intensively studied in elementary [29]
and nuclear collisions [30, 31]. It is usually expressed in terms of a strangeness suppression
factor λS defined as:

λS =
〈ss̄〉

0.5(〈uū〉 + 〈dd̄〉) , (10)

where 〈ss̄〉, 〈uū〉 and 〈dd̄〉 are the mean multiplicities of newly produced valence quark–
antiquark pairs at primary hadron level, before resonance decays. Thus the initial colliding
valence quarks are excluded in calculating λS. A major problem in the experimental
determination of λS is to account for unmeasured hadron abundances. The statistical
model used in this analysis is a useful tool for this purpose because it reproduces well all
measured hadron abundances both in elementary and nuclear collisions, thus providing
a reliable quark counting method. In Fig. 3 λS obtained by using model predictions for
primary hadron multiplicities in e+ + e−, p + p , p + p̄ collisions with the parameters
quoted in Ref. [27] and for A+A collisions is shown. It should be mentioned that in
e+ + e−collisions the leading strange quarks in e+e− → ss̄ events have been subtracted
from the numerator of eq. (10) so that λS contains only valence quarks created during
the hadronization process. The λS values for elementary collisions are consistent with
a constant value of about 0.2, even for very high energy p + p̄ collisions. The difference
between γS in e+ +e−(≃ 0.7) compared to p + p , p + p̄ collisions (0.46÷0.56) as resulting
from the off–equilibrium hadron gas model fit [7, 8] is mainly due to two effects. As far
as p + p collisions are concerned, the presence of six initial u, d quarks to be hadronized
along with those newly produced brings about a γS decrease. In fact, for constant T , V
and γS, a hadron gas with increasing baryon number and electric charge, i.e. increasing
number of initial protons, has an increasing λS (see Fig. 4). The physical reason is the
lower energy threshold for strange pair production in a baryon rich environment where the
dominant process is via N +π → Λ + K while in the baryon free case it proceeds via kaon
pair production. Secondly, T and γS are anticorrelated in e+ +e−collisions. As the central
fitted T value is lower in e+ + e−collisions in comparison with p + p and p + p̄ collisions
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[27], the central γS value is expected to be higher in e+ + e−collisions to reproduce the
measured strange hadron multiplicities. In fact, by repeating the same fit as in Ref. [7]
for e+ +e−collisions at

√
s = 29 and 91.2 GeV, and keeping fixed T = 170 MeV instead of

160.3 MeV and 163.4 MeV respectively, γS turns out to be 0.69 and 0.62 instead of 0.72
and 0.67 respectively with a slightly worse χ2.

Our extracted value λS is in agreement with a previous estimate based on quark
counting method quoted in Ref. [32] only for energies

√
s < 100 GeV. On the other hand,

the rise of λS in p + p̄ collisions claimed in Refs. [32, 33] is not observed. The reason of
this discrepancy is the fact that λS was estimated in Ref. [33] by using only K/π ratio
as experimental input and two parametrizations of hadron multiplicities [34, 35] which,
unlike our parametrization [7, 8], do not satisfactorily reproduce all available measured
multiplicities in p + p̄ collisions 5.

To summarize, the common characteristics of elementary interactions seems to be the
independence of λS on the collision energy, in the range examined in Refs. [7, 8] and
type of colliding particles. This universal behaviour is broken in central A+A collisions.
The value of λS turns out to be about a factor two larger than the corresponding value
for elementary interactions. Our value for A+A collisions is consistent with previous
estimates based on quark counting method [30]. Note that in Ref. [30] λS was also
estimated for p+A collisions and found to be consistent with that of p + p collisions
and independent of the size of the target nucleus. This leads to the conclusion that no
strangeness enhancement is observed in p+A collisions.

The saturation of γS and λS factors as a function of the colliding system size for cen-
tral A+A collisions suggests that the strangeness enhancement with respect to elementary
collisions may already occur in the prehadronic phase and that secondary hadron scatter-
ings, expected to be much more abundant in Pb+Pb collisions, are of minor importance
for strangeness production. The strangeness enhancement effect observed in central A+A
collisions and its independence of the colliding system size has been interpreted as due to
Quark–Gluon Plasma formation in the early stage of the collision [31, 36] already in S+S
collisions and not only in central Pb+Pb collisions according to the interpretation of J/ψ
suppression [37, 38].
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Appendix

A Rapidity Distributions and Statistical Weights

In order to show that forward–backward peaked rapidity distributions for baryons and
centrally peaked for antibaryons are not inconsistent with the assumption of statistical
weights of eq. (3) we consider a simple example of p + p collisions. Since the derived
expression of average multiplicities in eqs. (4,5) does not depend either on the number
of fireballs or their particular volumes V1, . . . , VN , we consider a toy model with three
fireballs with equal volume Vf and sorted by boost velocities β1 > β2 > β3. According to
the statistical choice of weights w(Q0

1, . . . ,Q
0
N), owing to the equality of all parameters Vi,

Ti and γSi of the fireballs, the probability of occurrence of baryon number configurations
{1, 0, 1}, {0, 1, 1} and {1, 1, 0} is equal; the same holds for more complex and less probable
sets of configurations such as {2, 0, 0}, {0, 0, 2} and {0, 2, 0}. Therefore, as far as average
hadron multiplicities are concerned, nothing changes if one replaces {0, 1, 1} and {1, 1, 0}
with {1, 0, 1} and {0, 2, 0} with {2, 0, 0} in a half event sample and with {0, 0, 2} in the
remaining half. The hadron abundances do not vary and a strongly forward–backward
peaked rapidity distribution for baryons can be obtained as the fireballs having a non–
vanishing baryon number, are always those in the forward or backward directions.
In general this argument can be repeated for N fireballs having an equal rest frame volume
and an arbitrary set of ordered boost velocities β1 > . . . > βN . In this case the weights
in eq. (3) are symmetric:

w(Q0
σ(1), . . . ,Q

0
σ(N)) = w(Q0

1, . . . ,Q
0
N) (11)

for any permutation σ of the integers 1, . . . , N . Therefore, if p(Q0
1, . . . ,Q

0
N ) are the actual

weights, for eq. (5) to be valid, the condition to be fulfilled is:

w[Q0
1, . . . ,Q

0
N ] =

1

N !

∑

σ

p(Q0
σ(1), . . . ,Q

0
σ(N)) , (12)

where the square brackets mean that the set [Q0
1, . . . ,Q

0
N ] is a not–ordered one. This

condition is weaker than a strict equality between w(Q0
1, . . . ,Q

0
N ) and p(Q0

1, . . . ,Q
0
N).

To summarize, the compatibility between the expression for hadron multiplicities
(eqs. (4,5)) and rapidity distributions can be achieved by choosing a model in which
all fireballs have the same volume. Their boost velocities and their total number are
allowed to vary event by event and can be determined by using actual hadron spectra.

B Participant Nucleons and Volume Fluctuations

In this section we point out the conditions to be fulfilled for the replacement of eq. (7)
with its averaged version eq. (8) in the presence of fluctuations of participant nucleons.
In general, the variation of the number of participants imply fluctuations of total baryon
number B, electric charge Q and also global volume V of the colliding system. We
assume that the associated distribution function F (Q,B, V ) is a Gaussian and that the
mean values Q and B are large, which is the case in the examined collisions. If the latter
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condition is met, the sum over quantum vectors Q0 in eq. (7) can be turned into an
integration:

〈nj〉 = (2Jj + 1)
T

2π2

∞
∑

l=1

(∓1)l+1γ
lsj

S

m2
j

l
K2(

lmj

T
)

×
∫

dQdBdV F (Q,B, V ) V elµ ·qj/T e−l2qjA
−1qj/4 . (13)

No more factor can be drawn out of the integral as the chemical potentials µdepend on the
integration variables because of the quantum number conservation constraint

∑

j qj〈nj〉 =
Q0 and the matrix A is proportional to the volume (see eq. (6)). Nevertheless, they can be
expanded off the mean values Q, B and V up to first order, provided that the dispersions
are not too large:

µ ≃ µ (X) + Jµ (X− X)

A
−1 ≃ A−1 +

∂A−1

∂V
(V − V ) = A−1

(

1 − V − V

V

)

. (14)

where X = (Q,B, V ) and J is the Jacobian matrix. Using the above expansions in eq. (13)
one obtains:

〈nj〉 =
∞
∑

l=1

〈nj〉l
∫

dQdBdV

(

1 +
V − V

V

)

F (Q,B, V )

× exp

[

lqj · Jµ (X −X)/T + l2qjA
−1

(V − V )

V
qj/4

]

, (15)

where 〈nj〉l is just the lth term of the series in eq. (8). The second term in the exponential
is negligible if we are close to the grand-canonical regime and if the temperature is low
enough to quickly suppress the terms of the series with high l: this condition is met for
all hadrons if T < 200 MeV. Therefore:

〈nj〉 ≃
∞
∑

l=1

〈nj〉l
∫

dQdBdV

(

1 +
V − V

V

)

F (Q,B, V ) exp[lqj · Jµ (X −X)/T ] . (16)

If F is a multivariate Gaussian:

F (X) =
1

√

(2π)3 det C

exp[−(X − X) · C−1(X −X)/2] , (17)

then the integral in eq. (16) can be solved analytically if the integration is extended to
infinity. This is a satisfactory approximation if the dispersions are small compared to the
mean values, which is one of the basic requirements mentioned above.

13



〈nj〉 ≃
∞
∑

l=1

〈nj〉l
[

1 +
l

TV
(CJ

T
µ
qj)3

]

exp
[

l2qj · Jµ CJ
T
µ
qj/(2T

2)
]

. (18)

Thus, for the approximation (8) to be valid, it is necessary that CJT
µ
/(TV ) ≪ 1 and

Jµ CJT
µ
/T 2 ≪ 1. The Jacobian matrix Jµ can be calculated by taking the derivative of

the quantum numbers conservation constraint:

∂

∂Q0
i

∑

j

qjnj =
∑

j

qj

∞
∑

l=1

njl
l

T

∑

k

qk
j

∂µk

∂Q0
i

= ei , (19)

where ei is the ith unitary vector. If we define the matrix B:

B
k
i =

∑

j

∞
∑

l=1

l njlq
k
j q

i
j , (20)

then the righthand equality in eq. (19) can be inverted so to obtain the derivatives of the
chemical potentials:

∂µk

∂Q0
i

= T
(

B
−1
)k

i
. (21)

It should be noted that the matrix B would be equal to 2A if µ/T = 0. Since µ/T is
generally O(1) it turns out that B−1 = O(A−1), hence it is expected to be much smaller
than 1. To complete the Jacobian matrix Jµ , we take the derivative of the quantum
numbers conservation constraint with respect to V for V = V , yielding:

B

T

∂µ

∂V
+

Q0

V
− 1

4V

∑

j

∞
∑

l=1

l2qjA
−1qjnjl = 0 . (22)

We use the Boltzmann limit for all hadrons in the last term, namely we keep only the
first term of the series. By using this approximation, which is satisfactory if T ≃ 170
MeV, we conclude that the last term is ≃ (1/4)B−1Q0/V which is much less than Q0/V .
Therefore:

∂µ

∂V
≃ −TB

−1Q
0

V
. (23)

Finally, the Jacobian matrix Jµ turns out to be:

Jµ ≃ T (O(A−1),O(A−1),O(A−1Q0/V )) , (24)

where each term is meant to be a column vector. This result can be used in conjunction
with the eq. (18) to establish the validity of the approximation (8). If A−1 ≪ 1 moderate
fluctuations of B, Q, V in comparison with the mean values are needed in order that
CJT

µ
/TV ≪ 1 and Jµ CJT

µ
/T 2 ≪ 1.
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C Fitting Procedure

We adopted a two–step fit procedure to also take into account the uncertainties on input
parameters such as hadron masses, widths and branching ratios, which in principle can
play a significant role in the test of the model. Firstly a χ2 with only experimental errors
has been minimized and preliminary best–fit model parameters T0, V 0, µB0 have been
determined:

χ2 =

∑M
i=1(y

exp
i − ytheo

i )2

σ2
i

, (25)

where the index i runs over the M data points. Keeping the preliminary model parameters
fixed, the variations ∆yltheo

i of the multiplicities (or ratios) corresponding to the variations
of the lth input parameter by one standard deviation have been calculated. Such variations
have been considered as additional systematic uncertainties on the multiplicities and the
following covariance matrix has been formed:

Csys
ij =

∑

l

∆yl
i∆y

l
j (26)

to be added to the experimental covariance matrix Cexp. Finally a new χ2 has been
minimized:

χ2 =
M
∑

i,j=1

(yexp
i − ytheo

i )[(Cexp + Csys)−1]ij(y
exp
j − ytheo

j ) (27)

from which the best–fit estimates of the model parameters and their errors have been
obtained. Actually more than 130 among the most significant or worst known input
parameters have been considered and the corresponding 1σ variations performed. This fit
technique upgrades the one used by one of the authors in the analysis of thermal hadron
production in e+ +e−, p + p and p + p̄ collisions [6, 7, 8] in that the off–diagonal elements
of Csys are also included.

D χ2 and Data Redundancy

We prove that the parameters fitted with a χ2 minimization and their errors are not
affected by the presence of redundant data. Let y1 . . . yN be a set of experimental mea-
surements among which yk . . . yN are measurements of the same variable. Let y = f(x, a)
be the functional dependence to be tested where a is a set of parameters to be determined
by means of a χ2 minimization:

χ2 =
N
∑

i=1

(yi − f(xi, a))2

σ2
i

. (28)

The eq. (28) can be written also:

χ2 =
k−1
∑

i=1

(yi − f(xi, a))2

σ2
i

+
N
∑

i=k

(yi − ȳ + ȳ − f(xk, a))2

σ2
i

, (29)
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where ȳ is the weighted average of yk . . . yN ; all these values correspond to the same
abscissa xk. Hence:

χ2 =
k−1
∑

i=1

(yi − f(xi, a))2

σ2
i

+
N
∑

i=k

(yi − ȳ)2

σ2
i

+
N
∑

i=k

(ȳ − f(xk, a))2

σ2
i

+2
N
∑

i=k

(yi − ȳ)(ȳ − f(xk, a))

σ2
i

.

(30)
The second term in the above equation is simply the χ2 of the weighted average while the
third term can be written (ȳ − f(xk, a))2/σ2

ȳ , σȳ being the error on the weighted average
ȳ; the fourth term vanishes by definition of weighted average. Therefore:

χ2 = χ2
WA + χ2

fit , (31)

where χ2
WA is the χ2 of the weighted average and:

χ2
fit =

k−1
∑

i=1

(yi − f(xi, a))2

σ2
i

+
(ȳ − f(xk, a))2

σ2
ȳ

(32)

is just the correct χ2 to minimize, for the N − k+ 1 redundant points have been replaced
with their weighted average. Since χ2

WA does not depend on a, the minimization of either
χ2 or χ2

fit, the latter being the correct one, leads to the same results. On the other hand,
if n = dim(a) is the number of fitted parameters, the normalized χ2

fit is:

χ2
fit =

χ2 − χ2
WA

k − n
(33)

instead of χ2/(N − n).
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[31] M. Gaździcki and D. Röhrich, Z. Phys. C 71 (1996) 55
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Table 1: Comparison between fitted and measured hadron abundances and ratios. All
quoted multiplicities do not include feeding from weak decays unless otherwise stated.
Note: the χ2’s calculated by using values quoted below differ from those of Table 2 as the
latter include contribution from uncertainties on input hadron parameters.

Fitted
Hadron Measured Fitted with γS=1 Reference

S+S collisions
h− (a) 98±3 92.63 82.04 [15]

K+ 12.5±0.4 12.68 13.75 [16]
K− 6.9±0.4 7.611 7.785 [16]
K0

s 10.5±1.7 9.939 10.49 [12]
Λ (b) 9.4±1.0 7.692 10.13 [12]
Λ̄ (b) 2.2±0.4 1.474 2.825 [12]

p-p̄ (c) 21.2±1.3 21.49 19.79 [15]
p̄ (d) 1.15±0.4 2.092 2.314 [17]

S+Ag collisions
h− (a) 186±11 171.3 147.2 [15]

K0
s 15.5±1.5 17.43 19.44 [12]

Λ (b) 15.2±1.2 13.99 17.44 [12]
Λ̄ (b) 2.6±0.3 2.223 2.612 [12]

p-p̄ (c) 43±3 43.44 39.18 [15]
p̄ (d) 2.0±0.8 3.381 2.401 [17]

Pb+Pb collisions
Net baryon 372±10 375.7 372.6 [18]

h− (a) 680±50 650.2 638.5 [19]
K0

s 68±10 58.27 73.44 [19]
φ 5.4±0.7 5.759 5.648 [20]

p-p̄ (c) 155±20 155.3 147.8 [19]
K+/K− 1.8±0.1 1.652 1.700 [21]

Λ̄/Λ 0.2±0.04 0.188 0.016 [21]

a - Defined as π− + K− + p̄
b - Includes feeding from Ξ
c - Measured with the ’+ - –’ method, in this case limited
rapidity acceptance (0.2-5.8) to exclude spectators
d - Measured in a restricted rapidity interval and extrapolated
by assuming that p̄ has the same rapidity distribution as the Λ̄
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Table 2: Hadron gas model fitted parameters. The first set of parameters has been ob-
tained with a three–parameter fit by setting γS = 1. The second set is the four–parameter
fit result when only experimental errors are used (first step of the fitting procedure) while
the last set is the final result including uncertainties on masses, widths and branching
ratios. Also quoted are the obtained chemical potentials, the matrix A−1 elements and
the χ2. The χ2 for S+S collisions within brackets is its corrected estimate accounting for
kaons data redundancy (see text).

Parameter S+S S+Ag Pb+Pb

T (MeV) 208.3±10.4 179.9±7.8 125.4±4.6
V T 3 exp[−0.7GeV/T ] 2.782±0.091 4.91±0.30 13.1±1.1

γS (fixed) 1 1 1
µB/T 1.145±0.066 1.470±0.080 2.404±0.14
χ2/dof 34.0/5 22.3/3 22.5/4

T0 (MeV) 182.4±9.2 181.8±6.9 192.6±8.1
V 0T

3
0 exp[−0.7GeV/T0] 3.51±0.15 6.20±0.45 24.3±1.6

γS0 0.732±0.038 0.727±0.057 0.616±0.043
µB0/T0 1.248±0.074 1.365±0.072 1.207±0.071
χ2

0/dof 17.1/4 7.74/2 3.99/3
T (MeV) 180.5±10.9 178.9±8.1 192.6±19.3

V T 3 exp[−0.7GeV/T ] 3.48±0.16 6.29 ±0.47 24.3±2.2
γS 0.747±0.048 0.711±0.063 0.620±0.049

µB/T 1.22±0.10 1.350±0.081 1.21±0.12
χ2/dof 12.4/4 (11.9/3) 6.44/2 3.16/3
µS/T -0.320 -0.363 -0.372
µQ/T -0.00217 -0.0316 -0.0655
A−1 (−2.00 ÷ 6.25)10−2 (−1.10 ÷ 3.54)10−2 (−0.30 ÷ 0.87)10−2
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Figure 1: Particle ratios in the grand-canonical approximation for γS = 1. The bands
correspond to ±1σ deviations of the experimental ratios summarized in Table 1. The
symbol K stands for 〈K〉 = 〈K+〉 + 〈K−〉 + 2〈K0

s〉.
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Figure 2: Intensive thermal fit parameters as a function of system size. Also plotted T
and γS fitted in p + p collisions at

√
s = 19.5 GeV [8].
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Figure 3: The strangeness suppression factor λS = 2〈ss̄〉/(〈uū〉 + 〈dd̄〉) in high energy
collisions as a function of centre of mass energy (nucleon–nucleon centre of mass energy for
heavy ion collisions) calculated within the off–equilibrium hadron gas model. For e+ +e−,
p + p and p + p̄ collisions the ratios have been calculated by using model parameters
quoted in Ref. [27]. For p + p̄ in order to estimate the possible influence of the annihilation
process, we plotted in addition the λS value calculated by including initial valence quarks
and antiquarks (lower points). For e+ + e−collisions the leading s quarks in e+e− → ss̄
have been subtracted to calculate λS.
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Figure 4: The strangeness suppression factor λS = 2〈ss̄〉/(〈uū〉+ 〈dd̄〉) in a hadron gas at
fixed T , V and γS as a function of the number of initial protons (baryon number equal to
electric charge).
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