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Abstract

Calibration of radio interferometric data is one of the most important steps 
that are required to produce high dynamic range radio maps with high fi­
delity. However, naive calibration (inaccurate knowledge of the sky and in­
struments) leads to the formation of calibration artefacts: the generation of 
spurious sources and the deformations in the structure of extended sources. 
A  particular class of calibration artefacts, called ghost sources, which results 
from calibration with incomplete sky models has been extensively studied 
by Grobler et al. (2014, 2016) and Wijnholds et al. (2016) . They devel­
oped a framework which can be used to predict the fluxes and positions of 
ghost sources. This work uses the approach initiated by these authors to 
study the calibration artefacts and ghost sources that are produced when 
variable sources are not considered in sky models during calibration. This 
work investigates both long-term and short-term variability and uses the root 
mean square (rms) and power spectrum as metrics to evaluate the “quality” 
of the residual visibilities obtained through calibration. We show that the 
overestimation and underestimation of source flux density during calibra­
tion produces similar but symmetrically opposite results. We show that 
calibration artefacts from sky model errors are not normally distributed. 
This prevents them from being removed by employing advanced techniques, 
such as stacking. The power spectrums measured from the residuals with 
a variable source was significantly higher than those from residuals with­
out a variable source. This implies advanced calibration techniques and sky 
model completeness will be required for studies such as probing the Epoch 
of Reoinization, where we seek to detect faint signals below thermal noise.
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Chapter 1

Introduction

Astronomy is one of the oldest natural sciences whose origins dates back to early civiliza­
tions such as the Babylonians, Greeks, Indians, Egyptians and Chinese. In a nutshell, 
Astronomy is the study of celestial objects, i.e. the moon, sun, planets, galaxies and 
so forth. Until the early 1930s, astronomy was done mainly using optical telescopes 
(optical astronomy). These observe the visible part of the electromagnetic spectrum. 
Radio astronomy, which is the study of celestial objects through their radio emission 
began in the 1930s following Karl Jansky’s detection of the first radio signals (Jan­
sky, 1933; Kraus, 1966) . Karl Jansky, who was a radio engineer at the Bell Telephone 
Laboratories, detected signals from the Milky Way while working on transoceanic radio 
telecommunication. Following Jansky’s discovery, research in radio astronomy increased 

dramatically, especially after the Second World War, where most of the technologies 
for radio and radar systems developed for the purpose of the war were used for radio 
astronomy studies. The radio spectrum ranges from 3 Hz to 3000 GHz and its radia­
tions are mostly of non thermal origins. Radio astronomy has a considerable advantage 
over optical astronomy in that, radio waves are not severely obstructed (reflected and 
refracted) by dust and water vapour in the atmosphere as is the case for light waves.

During its early days, radio astronomy research was done mainly using single dish tele­
scopes, but the quest for higher resolution led to the discovery of a technique called 
radio interferometry.

1.1 Radio Interferometry

Radio interferometry is the principle of operating several radio telescopes as one in order 
to produce images with high resolution. An array of radio telescopes that operates in
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such a way is called an interferometer. The resolution o f an interferometer is defined as,

9 «  1.22— ,
B ’

where 9 is the resolution o f the interferometer, A is the wavelength o f the incoming signal 

measured in meters and B  the maximum baseline i.e. the longest distance between each 

pair o f telescopes measured in meters. This implies by making B  as large as possible 

we get the same resolution as that of a single dish telescope with a diameter B . Figure

1.1 is a simple two element interferometer with the two antennas pointing at a distant 

source in a direction indicated by the unit vector s.

(Vj(t)Vj (t)>

F igure 1.1: A schematic representation of a simple two element interferometer. The 
signal reaches antenna j  before antenna i thus a delay is introduced in the signal from 

j  before both signals are correlated to get the visibilities.

An interferometer measures the coherence o f the signals from a pair o f antenna. These 

measurements are called visibilities. From Figure 1.1, the signal from the source in the 

direction s reaches antenna j  before antenna i. The delay between the two arrival times 

is called the geometric delay, Tg and is defined as,

Tg
b.s
c ’

where b is the baseline vector between the antennas, s the signal direction vector and c is 

the speed o f light. To account for time delay, the signals from antenna j  are delayed by 

Ta before correlating (multiplication and averaging) with those from antenna i to obtain 

the visibilities.
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Using (U’ V’ W) to represent the baseline vectors with w pointing in the direction of the 
source where (u, v, w) are measured in wavelengths and (l, m) which are direction cosines 
measured with respect to the u, v axes, the measured visibilities are related to the sky 
brightness by the Van Cittert-Zernike theorem (Thompson et al., 2008) :

V (u ,v ,w )=  ~  ~  A(l,m )I(l, m)e- 2ni[ul+vm+w(Vl- l2- m2- l)] — £ £  (1.1)
-ro -ro 1 — l2 — m2

where V(u,v, w) represents the measured visibilities at the baseline coordinates (u, v, w), 
I(l, m) represents the sky brightness distribution and A(l, m) represents the effective col­
lecting area of the antennas with respect to the direction of the incoming radiation.

Equation 1.1 is generally approximated to be a Fourier transform by eliminating the 

w phase term as follows

• If the observation is made with a coplanar array, then w =  0 and Equation 1.1 

becomes

/ ro r ro dldm
A (l,m )I (l,m )e-2ni(ul+vm) — = = =  (1.2)

-ro -ro  1 — l2 — m2

which is a two dimensional Fourier transform.

• If we are imaging a very small region in the sky then the term \/1 — l2 — m2 «  1 
and Equation 1.1 becomes

r o r o
A(l, m)I(l, m)e-2ni(ul+vm)dldm (1.3)

ro -ro

which is again a two dimensional Fourier transform.

The term A(l, m) is most often assumed to be 1 for simplicity and the Van Cittert- 
Zernike theorem is stated as,

r o r o
I  (l,m )e-2ni(ul+vm)dldm (1.4)

ro -ro

Thus the measured visibilities and the sky brightness are Fourier pairs and the sky 
brightness can readily be recovered from the measured visibilities by an inverse Fourier 
transform.

V (u ,v)e2ni(ul+vm)dudv
ro

I(l, m) (1.5)
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1.2 Calibration and Imaging

In practice the picture is not as simple as stated in Equation 1.1, since the signals from 
the sources are corrupted by different factors as they travel to the antennas. The visi­
bilities we measure are not a perfect representation of the sky, hence we need to correct 
these visibilities in a process called calibration, before imaging. Thus, calibration is the 
process of correcting for instrumental and ionospheric/tropospheric effects that corrupt 
the measured visibilities. Technically, calibration consists of using a sky model formed 
with our existing knowledge of the observed field to fit the measured data in a well de­
fined mathematical framework such as the radio interferometer measurement equation 
(Hamaker et al., 1996; Smirnov, 2011) . Various calibration techniques exist and they 
are generally used all together to get the best calibration possible. These include cali­
bration with calibrator sources, calibration with existing sky models and self-calibration 
or selfcal (Cornwell and Wilkinson, 1981) . All of these will be discussed in detail in the 
next chapter.

Furthermore, we do not make continuous measurements of the visibilities, we sample 
the visibilities only at certain (u, v) points in the uv space. If we define our sampling 
function by S(u, v) such that S(u, v) =  1 when ever a measurement is made and 0 
otherwise, then our reconstructed sky image is defined as,

r o r o
S(u, v) V(u, v)e2ni(ul+vm)dudv (1.6)

ro -ro

=  PSF  * Itrue(l,m) (1.7)

where Id(l,m) is the reconstructed sky image, Itrue(l,m) is the true sky image, * rep­
resents convolution, P S F  =  J-TO J-TO S(u, v)e2ni(ul+vm)dudv is called the Point Spread 
Function and represents the interferometer response to a 1 Jy point source. The recon­
structed image is called the “dirty image” because it is a convolution of the true sky 
and the point spread function. During imaging this problem is solved in a process called 
“cleaning” or deconvolution (Hogbom, 1974; Cornwell et al., 1999) .
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1.3 Variable Sources

Variable sources (Kellermann and Pauliny-Toth, 1968) are sources whose flux density 
varies with time. The time scales for this variability may range from few seconds to 
years. Various surveys have been carried on different fields, to search for different vari­
ables, transient sources and to study the variability rates in these fields. Thyagarajan 
et al. (2011) presents results from a variability and transient search conducted using 
55000 snapshot images of the FIRST survey. Thyagarajan et al. (2011) identified 1,627 
variable and transient objects down to mJy, with variability rates of «  20 %. A recent 
search is presented in Rowlinson et al. (2016) using data from the Murchison Widefield 
Array (MWA) on timescales of 28 s to 1 year. Rowlinson et al. (2016) did not identify 
any transient candidate but, obtained Fast Radio Burst(FRBs) rates (<82 FRBs per 
sky per day for dispersion measures <700 pc cm-3 ) consistent with existing literatures. 
Mooley et al. (2016) gives variability rates for different classes of variable sources using 
data from the Caltech-NRAO Stripe 82 Survey (CNSS). Stewart et al. (2016) describes 
the result of a four-month campaign searching for lower frequency variable and transient 

sources near the North Celestial pole using the Low Frequency Array (LOFAR). Stewart 
et al. (2016) found no variable candidate, but found a convincing transient candidate. 
This transient had a flux density of 15-25 Jy at 60 MHz, with a duration of few minutes.

The advent of the new generation of radio telescopes such as, the Square Kilometre Ar­
ray (SKA; Schilizzi et al., 2008) provides a massive burst to the amount of sciences, and 
explorations which will be achievable for variable and transient sources. Fender et al. 
(2015) gives an overview of the different sciences for variables and transients which 
will be possible with SKA, and how SKA can be operated to maximise their outputs. 
Furthermore Fender et al. (2015) review results from few surveys and, also provides 
expected variable and transient rates for SKA. Fender et al. (2015) gives a potential of 
«  600 variable sources deg-2 at SKA flux levels. This value is very high and emphasises 
the necessity of investigating source variability.

Variability in sources generally arise from different sorts of reasons. These include 

changes in sources observed luminosity and obstructions of the amount of radiations 
travelling from the sources to the earth for one reason or the other. Different types of 
radio sources exhibits variability. In the next section we present the blazar PKS 1510­
089 which was recently observed using the Karoo Array telescope (KAT-7; Booth et al., 
2009) . Other examples of variable sources include flare stars (Osten and Bastian, 2008) 
and binary systems such as GRS 1915+105 (Foster et al., 1996) .
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1.3.1 PKS 1510-089

PKS 1510-089 is a flat spectrum blazar at a redshift of z =  0.361 with celestial coor­
dinates a =  15h12m50.5s and 5 =  —09d06m00s (Barnacka et al., 2014) . The source 
PKS 1510-089 is well known for its long-term variability and has recently shown hints 
of having some intrinsic variability on short time scales (Kadota et al., 2012) . PKS 
1510-089 was recently monitored with KAT-7 between October 2011 and October 2014 
(Oozeer et al., 2015) . Figure 1.2 is an image of the field and a plot of its flux density 
during this period showing some significant long-term variations. It was measured to 
have a modulation of index (M I ) of «  16% and a strong amplitude variability (Vrms) 
of «  46%(Oozeer et al., 2015) . The M I  and Vrms were defined respectively as

M I

r̂ms

2a
100 X (S)
100 /E [S  - < s )]2 -  E 5Si2 
<S) N

(1.8)

(1.9)

where S is the sequence of the measured flux values, <S) is the mean of the measured 
flux values, a is the standard deviation of the measured flux values and N  is the total 
number of observations. This observation provided an important motivation for this 
thesis.

(/)
C 2.1 
CL)

■ Q
X 2.6 3

• * . PKS 1510-089

56200 56300 56400 56500 56600 56700 56800 56900 57000

MJD
(b)

F igure 1.2: Left: An image of the PKS 1510-089 field observed at 1.8 GHZ by Nadeem 
Oozeer with KAT-7, PKS 1510-089 is the point source in the red ellipse. Right: Light 
curve of PKS 1510-089 between November 2012 and October 2014. The dates are in 
modified julian dates. This source was measured to have a mean of 2.8 Jy, standard

deviation of 0.25 Jy.
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1.4 Thesis Motivation

MeerKAT and the future Square Kilometer Array (SKA) are expected to reach unprece­

dented sensitivity levels and data rates. Calibration of these new instruments will be 
very important if these instruments are to achieve their science goals. It is well known 
that calibration errors lead to calibration artefacts which reduce the fidelity and science 

output of radio maps.

A particular class of calibration artefacts called ghost-sources have been shown to result 
from calibration with incomplete sky models (Grobler et al., 2014; Wijnholds et al., 
2016; Grobler et al., 2016) . These sources are usually very faint, but with the intended 
sensitivity and noise level of MeerKAT and SKA, these artefacts may become appar­
ent. Future deep surveys such as MeerKAT International GHz Tiered Extragalactic 
Exploration (MIGHTEE), and the Evolutionary Map of the Universe (EMU), with the 
Australian Square Kilometer Array Pathfinder (ASKAP), which are aiming to detect 
very faint sources, will need to completely eliminate such artefacts during calibration.

Variable sources are not yet routinely considered in calibration pipelines and therefore 

will be a source of spurious artefacts. Variability of sources implies we will never get 
our sky models correct. The flux density of variable sources will always either be un­
derestimated or overestimated. In this work we study how ignoring variability affects 
calibration. We do this by looking at the rms and the power spectrum of residual visi­
bilities. The study demonstrates how inaccurate modelling of a single source introduces 
very bright artefacts in our residual visibilities.

The work presented here is more focused on long-term variability than short-term vari­
ability. For the sake of completeness we briefly touch on short-term variability. KAT-7 
which is an engineering prototype for MeerKAT, is exclusively used for all the simula­

tions. This is also to be consistent with Wijnholds et al. (2016) and KAT-7 monitoring 
of the variable blazar PKS 1510-089 which was one of our first motivations for this study.
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1.5 Thesis Outline

The rest of the thesis consist of five chapters, whose content is summarised as follows:

• Chapter 2: This chapter presents a brief description of radio interferometry calibra­
tion. Here we demonstrate how calibration can be formulated as an optimization 
problem using the radio interferometry measurement equation. We present two 
calibration algorithms and recent developments in the field of calibration. We 
end this chapter by introducing calibration artefacts and reviewing Grobler et al. 
(2014) and Wijnholds et al. (2016) .

• Chapter 3: In this chapter we investigate the effects of long-term variable sources 
on the rms of residual visibilities. The simulations here are done using the MeqTrees 

software package (Noordam and Smirnov, 2010) .

• Chapter 4: This chapter provides an extension to the analysis of the results from 

Chapter 3. Here we develop a power spectrum estimator and apply it to the 
residuals obtained in Chapter 3.

• Chapter 5: This chapter extends the work from Chapter 3 by investigating the 
effects of short-term variability on the rms of residual visibilities. •

• Chapter 6: This chapter presents the general conclusions from this work and 
suggests future research avenues.



Chapter 2

Calibration

In the field of radio astronomy, calibration is the process of solving and correcting for 
the systematic errors in interferometric data (Section 1.1) . Examples of such corrup­
tions are antenna gains, beam errors, antenna pointing errors and atmospheric effects. 
These aforementioned effects can be further classified into Direction Independent Effects 
(DIEs) and Direction Dependent Effects (DDEs). DIEs are propagation effects which 
are constant across the sky and thus are the same for all the sources and antennas. A 
common example of DIEs are the antenna gains. DDEs are propagation effects which 
are position dependent and thus vary for each source in the sky. Such errors include 
primary beam effects and ionospheric effects and they are in principle more complicated 
to solve for. Calibration is preceded by a process called flagging (Offringa et al., 2012) 
during which severely corrupted data are removed. These include data corrupted by 
radio frequency interference (RFI), data from bad baselines and antenna failures during 
certain parts of the observation. We begin this chapter by presenting the radio inter­
ferometry measurement equation (RIME) which is a mathematical formalism used to 
model the propagation errors introduced into the visibilities during calibration, next we 
discuss two calibration algorithms and we conclude with calibration artefacts which are 
systematics produced during calibration.

2.1 Measurement Equation

Methodologically, calibration consists of finding gains which minimises the difference 
between the measured visibilities and predicted visibilities. The predicted visibility 
models all the propagation effects using an equation called the Radio Interferometry 
Measurement Equation (RIME) or simply the measurement equation (Hamaker et al., 
1996; Smirnov, 2011) . In this section we present a simple mathematical derivation of

9
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the RIME.

Suppose we have a sky consisting of a single point source emitting a quasi-monochromatic 
signal, in an xyz coordinate system with the z-axis along the direction of propagation. 
The signal may be represented by

e = i  : >

When this signal reaches the antenna it is converted into complex voltages by the antenna 
feeds. Antennas usually have two feeds which are orthogonal to each other (for example 
two linear dipoles or left/right circular feeds). Similarly to the input signal, the output 
voltage may be represented by a complex vector, v defined as

v — Je (2.1)

where J is a 2 x 2 matrix called the Jones matrix. The Jones matrix represents the 
cumulative product of all the propagation effects along the signal path.
A two-element interferometer as introduced in Section 1.1 measures the correlations of 
the output voltages from two antennas known as visibilities. For any two antennas p 
and q with respective output voltages vp and vq

vp — J pe

vq =  J  qe

the visibility matrix is defined as

Vpq 2(vpvf  >

2

2

vpx

vpy
v* v*qx qy

vpxv*x vpxvqy

vpyv*x vpyv*y

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

where (.> represents the expectation value, (.)H represents the conjugate transpose and 
(.)* represents the complex conjugate. Using the definition of v from Equation 2.1, we 
can rewrite the visibility matrix, Vpq as

Vpq 2 Jpex exJ  
Jpey exJ

H
q
H
q

JpexeyJ  
J  peyeyJ

H
q
H
q

(2.7)
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Assuming that Jp and Jq are constant over the averaging interval they can be factorised 
as follows

V pq Jp
2(exex> 2(exey>

2(eyex> 2(eyey>
H
q (2.8)

The bracket terms in Equation 2.8 are related to the Stokes parameters (I, Q, U, V ), and 
the sky brightness B, as follows (Born and W olf, 1964; Hamaker et al., 1996; Thompson 
et al., 2008)

(  2(exex> 2(exey> \ =  /  I  +  Q U +  iV  \ =  B 
2(eyex> 2(eyey> U -  iV  I  -  Q .

Hence the RIME for a single point source may be written as

V pq JpBJ qH (2.10)

The Jones matrix may be expanded to include all the propagation effects and the RIME 
for a single point source becomes

V pq =  Jpm(...( J p2( J plB Jql) J q2) ...) J qn (2.11)

Equation 2.11 is sometimes called the onion form of the RIME and note that m may be 
different from n, thus the number of propagation effects may not always be the same in 
each direction or antenna. Since matrix multiplication is not in general commutative, 
we need to preserve the order of the matrices which represents the order of occurrence 
of the different propagation effects. The equation may be restated for N sources as the 
following summation

V pq =  J spBs J sq (2.12)
s

where Jsp represents the propagation effects encountered by the signal from the source 
s on its path to the antenna p. The phase term introduced in Section 1.1 is denoted by 
K p and is defined as K p =  e-2ni(Upl+Vpm+Wp(n-1')\ The antenna direction independent 
gains are denoted by Gp and the direction dependent primary beam is denoted by E p. 
Hence the RIME can explicitly be written as

Vpq =  Gp Y,(EspKspBsKHqEHq) Gf  (2.13)
s

Note that the gains, G  can be removed out of the summation since they are DIE.
In reality the sky does not consist only of discrete point sources. Instead the sky has a 
continuous brightness distribution, B(^ ) and in order to get the total visibility measured
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by an interferometer we change the summation in Equation 2.13 to an integral over all 
the possible directions (i.e. over a unit sphere). This leads to the following equation

V pq =  Gp( 1  E pBEH e-2ni(upql+Vpq m+wpq (n-1))dldm)GH (2.14)
l m n

The presence of the term Wpq =  ne-2m(Wpq(n-1)) prevents us from treating Equation 

2.14 as a 2D Fourier transform. Since wpq =  wp — wq, we can decompose Wpq into 
Wpq =  WpWq where Wp =  e-2ni(Wp(n-1)). Using this decomposition we define a new 
Jones term E p =  E pWp. Using these new terms Equation 2.14 can be rewritten as

Vpq =  Gp( EpBE  H e-2ni(upq l+Vpq m)dldm)GH (2.15)
l m

Furthermore we can define a new term for the brightness distribution, B as Bpq =  
H

EpBE q . Bpq represents the sky brightness distribution as seen by the interferometer 
baseline pq. Using this latter definition Equation 2.14 effectively becomes a Fourier 
transform.

Vpq =  Gp( Bpq e-2ni(upq l+vpq m)dldm)GH (2.16)
l m

Equation 2.16 is generally known as the full-sky RIME and it is simply the Van Cittert- 
Zernike theorem (Thompson et al., 2008) stated in Section 1.1 the only difference being 
that it now includes the propagation effects.

Hence in practice, calibration is an optimization problem, where we use the measured 
visibilities and the model, or, predicted visibilities obtained from the RIME to compute 
the propagation effects. In practice the measured visibilities contain instrumental noise, 
so we write our final form of the RIME as

Vpq =  Gp( Bpq e-2ni(upq l+vpq m)dldm)GH +  N pq (2.17)
l m

where N pq is a 2 x 2 matrix representing the noise contribution. The noise matrix has 
complex Gaussian entries with mean zero and equal variance in the real and imaginary 
parts.

2.2 Calibration Algorithms

In Section 2.1 we derived the measurement equation and showed that calibration is in 
fact just an optimization problem. Various optimization algorithms exist and can be 

used for calibration. In the next two sections we focus on two calibration algorithms, 
the Levenberg-Marquardt (LM) (Levenberg, 1944; Marquardt, 1963) and the Stastiscal
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efficient and Fast Calibration (StEFCal) (Mitchell et al., 2008; Salvini and Wijnholds,
2014) algorithm. These two algorithms use two different approaches. LM splits the 
complex visibilities and gains into real and imaginary parts before solving for the gains 

whereas StEFCal solves for the gains directly as complex numbers (Smirnov and Tasse,
2015)  . Other calibration algorithms include: alternating least squares (ALS) (Boonstra 
and Van Der Veen, 2001) where we alternate between solving for the noise and solving 
for the gains, calibration using the expectation maximization algorithm (Kazemi et al., 
2011) , robust calibration by Kazemi and Yatawatta (2013) where the noise is modelled 
with a t-distribution in order to account for the unmodelled sources and non linear 
optimization on a Riemannian Manifold (Yatawatta, 2013) .

2 .2 .1  L e v e n b e r g -M a r q u a r d t  (L M )

We saw in Section 2.1 that we could represent the visibilities from two antenna pairs p 
and q as

K
V pq npi Bpqij  % +  n pq (2.18)

i=1

where K is the number of celestial sources, Vpq is a 2x 2 matrix of complex numbers 
representing the measured visibilities, Bpqi is a 2x 2 complex matrix representing the 
brightness of the source i and J  is the Jones matrix (2x2 complex matrix representing 
the propagation effects). For an interferometer with N antennas, we have N(N2-1) in­
dependent pairs of antennas with visibilities defined as in Equation 2.18. Observations 
are generally averaged within short time intervals t , during which the components of 
Equation 2.18 are assumed to be constant. We formulate our optimization problem by 
rewriting Equation 2.18 in vector form as described in Yatawatta et al. (2012)

K
v e c (V  pq) =  ^  vec( J  pi B p J  H) +  v e c (N  pq)

i=1 
K

v e c (V pq) =  ^  J*qi O Jpivec(Bpqi) +  v e c (N pq)
i=1 
K

Upq — )  ' spqi +  npq
i=1

where Spqi =  J*qi O Jpivec(Bpqi), Upq =  vec(Vpq) npq =  vec(N pq), O denotes the
Kronecker product, vec(.) is the vectorization operation used to transform a matrix 
to a column vector, (.)T represents the matrix transpose, (.)H represents the conju­
gate transpose. Equation 2.19 is transformed to Equation 2.20 using the following vec­
torization property: for three matrices A, B , C  of appropriate sizes, v ec(A B C )  =

(2.19)

(2.20) 

(2.21)

(C T O A )v e c (B ).
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Since our optimization parameters, J , are complex numbers we split them into real and 
imaginary parts

0  =  [Re( J 11), Im( J 11),...] (2.22)

Similarly we split our visibilities matrices into real and imaginary parts as follows

si(0 ) =  [Re(sT2i) , Im(sT2i) , R e(sî i) , ...]T (2.23)

y  =  [ R e ^ ) ,  I m ^ ) ,  R e ^ ) ,  ...]T (2.24)

Given N antennas, K sources and sampling interval, t we have N x K x 4 x 2 = N x K x 8  
optimization parameters and N(N2- 1) x8xt equations. Hence we have more equations 
than unknowns and the problem can effectively be solved. LM (Levenberg, 1944; Mar- 
quardt, 1963) algorithm is a damped modification of the Gauss-Newton (GN) algorithm. 
We define our cost function, F (0 ) as follows

k
F  (0 )  =  ||y — si( 0 )||2 (2.25)

=  llf(0 )ll2 (2.26)

where f  (0 )  =  y  — ^ k si (0 ). The LM algorithm computes the size of the update, h 
at each step by modifying the GN algorithm to include a damping factor as follows 
(Madsen et al., 2004)

G N ; ( J TJ ) h =  —J Tf  (0 )  (2.27)

L M ; ( J T J  +  y H  )h =  —J T f  (0 )  (2.28)

where J ij =  ^§1^  is the Jacobain matrix, y  is the damping factor and H  is the diagonal 
matrix of J T J . Hence for LM the update h is given by

h =  —( J T J  +  y H  ) - 1J T f  (0 )  (2.29)

Thus, starting from some initial value, 0o, the estimate 0 k+1 at the (k +  1)th iteration 
is defined as

0 k+ 1 =  0 k — a( J T J  +  y H  )- 1  J T f  (0 )  (2.30)

where a is the rate parameter used to control the size of each update value.
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2 .2 .2  C a lib r a t io n  as a C o m p le x  O p t im iz a t io n  P r o b le m  a n d  S tE F C a l

The traditional approach to optimizing a function of n complex variables f  (z), z =  
x  +  iy, z £ Cn is to treat the real and imaginary parts independently, turning f  into 
a function of 2n real variables as we did in the discussion of the LM algorithm in 
Section 2.2.1. The LM algorithm relies on the inversion of the matrix ( J TJ  +  y,H) 
whose dimensions correspond to the number of free parameters. This matrix may be 

very large and the cost of its inversion may be huge. In this section we present an 
alternative approach proposed by Amin et al. (2011) and Sorber et al. (2012) based on 
Wirtinger calculus. Following this approach we optimize f  (z, z) instead of f  (x, y ) using 

the Wirtinger derivatives where z is the conjugate of z:

d 1 3 . 3
dz 2 d x  i d y
d 1 (  d . 3

dz 2 d x  +  i d y

(2.31)

(2.32)

Using Equation 2.31 and 2.32 we modify the cost function Equation 2.26 from Section
2.2.1 to solve for complex gain as follows

k
F  (u  z ) =  lly -  si(z, z ) ll2 (2.33)

=  Ilf (z , z) ||2 (2.34)

Let us treat z and z as independent variables, we define a parameter vector containing 
both as

z
z
zz

Then we define

J
d f  (z, z) 

d z
j =  d f  dz z) and f (z ,  z) 

d z
f (z )
f (z )

where J  and J  are the partial and partial conjugate Jacobian. The full complex Jaco­
bian J is then written in block matrix form as

J J
J  * J *

where (.)* represents element by element conjugation.

Similarly as in Section 2.2.1 the size of the update at each step for the Gauss-Newton
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(GN) and Levenberg-Marquardt (LM) algorithms are defined respectively as follows

G N ; dz
dz
dz

(JHJ)- l .JHf  (z, z) (2.35)

L M ; dz
dz

dz
(JHJ +  pH)  1J Hf  (z, z) (2.36)

Smirnov and Tasse (2015) showed that for radio interferometry calibration the matrix 
J H J is very sparse. The sparsity of this matrix allows us to use various approximations 
for it. Smirnov and Tasse (2015) showed that the matrix J H J was diagonally dominant 
and could readily be approximated using a diagonal matrix. This reduces its cost of 
inversion from O(N3) to O(N ). Using this approach on the GN method for direction 
independent calibration, Smirnov and Tasse (2015) rederived StEFCal (Mitchell et al., 
2008; Salvini and Wijnholds, 2014) .

StEFCal is an alternating direction implicit method for solving direction independent 
gains. Here the optimization problem is formulated as follows for non polarised sources

g =  argmin||R  -  G M G H ||2 (2.37)
g

where R  is an N  x N  matrix representing the observed or measured visibilities, M  is an 
N  x N  matrix representing the model or predicted visibilities, G  is the N  x N  matrix 

of antenna gains, g is the diagonal of G  and ||.|| denotes the Frobenius norm.

Using StEFCal we solve for G H holding G  constant, then for G  holding G H. Since 

A  =  ||R -  G M G h || is hermitian, the two steps are identical and each iteration consists 
of only one step. Thus

G [i] =  argmin||R -  G [i-1]M G H||2 (2.38)
G

if we let Z [i] =  G [i]M

then A  =  ||R -  Z G H|| =  |̂| £ f= i  R ,p  -  Z :,pg*||

where A :,p denotes the pth column of the matrix A.
Using the normal equation method the gains at the ith iteration are readily given by

g [i]P
(Z :[i- 1])H R  p * 

(Z  :i—1]) H .Z  :[ip-1]
(2.39)

where * represents element wise conjugation.

The StEFCal algorithm provides a considerable computational advantage over most
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calibration algorithms such as the Levenberg-Marquardt and Gauss-Newton algorithms 
which scale as P 3 where P  is the number of free parameters.

2.3 Calibration Development

Over the years various calibration techniques have been developed to overcome various 
challenges that emerged due to the complexities in the design of new radio instruments. 
These techniques may broadly be classified into three categories namely First, Second 
and Third generation calibration (Noordam and Smirnov, 2010) . In the following sub­

sections we briefly discuss these categories and the reasons for their development.

2.3.1 First Generation Calibration (1GC)

This is generally the first step in any data reduction process, and was the main calibration 
procedure before 1980 (Noordam and Smirnov, 2010) . The following are the calibration 
errors addressed during 1GC:

• Absolute flux density calibration during which the fluxes of the sources are scaled 
by a certain factor to their true fluxes.

• Bandpass calibration used to correct for the gain variations along frequency.

• Delay calibration used to correct for the phase delay errors.

• Gain calibration used to solve for the complex antenna gains.

Here we use sources with known fluxes and positions called calibrator sources to compute 
the gains. The gains are then applied to the target field. This is achieved by performing 
intermittent observations of the target and calibrator fields. In practice one or several 

calibrator sources may be used to address the various 1GC calibration errors. These 
calibrator sources are generally required to have the following properties (Thompson 
et al., 2008) : •

• The absolute flux density calibrator should be bright so that a good signal to 
noise ratio is obtained in a short time. This minimizes the amount of time spent 
observing the calibrator source and maximises the time spent observing the target 

source.

• The calibrator source should preferably be unresolved so the precise details of its 
structure is not required.
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• The calibrator source should be close enough to the target source for both of them 
to have the same atmospheric distortions.

• The bandpass calibrator should be a bright source with a flat spectrum.

2.3.2 Second Generation Calibration (2GC)

The era of second generation calibration (2GC) began in the eighties after the invention 
of self-calibration (selfcal) (Cornwell and Wilkinson, 1981) . Self-calibration refers to an 

iterative calibration framework where the observed field is used to calibrate itself. Selfcal 
can be briefly described using the flowchart in Figure 2.1.

Initial
Skymodel

Skymodel F
Model

Visibilities

Deconvolved
Image r <

C - C a lib ra tio n
S - S ou rce  F in d in g  
D - D e c o n v o lu t io n

D F - F o u r ie r  T r a n s fo rm  
F -- In v erse  F o u r ie r  T r a n s fo rm

Dirty Corrected
Image Visibilities

Observed
Visibilities

Image Domain Visibility Domain

F igure 2.1: Selfcal flowchart

Selfcal can be performed using the following procedure:

1. Create an initial skymodel from the 1GC calibrated data.

2. Set your model to the initial skymodel and use it to calibrate the observed visibil­
ities.

3. Image the corrected visibilities.

4. Run a source finder and make a new skymodel.

5. Return to Step 2 with your new skymodel or terminate if your are satisfied with 
your dynamic range.
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Selfcal is generally used to compute direction independent complex antenna gains. Nowa­
days, this computation is mostly done using any of the optimization algorithms listed 
in Section 2.2. When self-calibration was first invented, it relied on closure relations 
(Smith, 1952; Jennison, 1958) , instead of least squares and was called “hybrid-mapping” . 
Readhead and Wilkinson (1978) were one of the first authors to coin the term “self­
calibration” . Ekers (1984) describes the different methods from adaptive optics through 
closure relations which led to the discovery of self-calibration. Self-calibration has proven 
to be very successful over the years and has made high dynamic range images possible.

2.3.3 Third Generation Calibration (3GC)

First and Second generation calibration discussed above focused mainly on solving DIEs 
thereby neglecting DDEs. With the wide field of views of current and future genera­
tion of radio telescopes such as the Low Frequency Array (LOFAR; Van Haarlem et al.,
2013)  , SKA and the Expanded Very Large Array (EVLA; Perley et al., 2011) , DDEs 
can no longer be ignored. This poses new challenges in calibration and calibration is 
currently moving into the 3GC era. 3GC techniques are calibration techniques used to 
solve for DDEs. 3GC techniques can be loosely classified into Physics based approaches 
and Heuristic-only approaches.

Physics based approaches are used when the underlying physical phenomenon caus­
ing the DDEs is known. The identified phenomenon is then modelled, parametrized 
and included in the RIME during calibration. Mitra et al. (2015) modelled the antenna 
primary beam and incorporated it in the calibration of the Jansky Very Large Array 

(JVLA) observations of the 3C417 field and obtained an unprecedented dynamic range 
of 5, 000,000 : 1 (the differential gain method was also applied in the data reduction). 
The image is shown in Figure 2.2. Other physics based approaches for direction depen­
dent calibration include Pointing-Selfcal (Bhatnagar et al., 2004) , Kalman filters (Tasse,
2014) and AW projection (Bhatnagar et al., 2008) . The latter is actually an imaging 

based approach to correct for DDEs.

Heuristic based approaches are used when no phyiscal model exists for the specific DDE. 
Here the sources suffering the most from this DDE are identified and an extra Jones 
term is added to include the effects which are solved for during calibration. One such 
approach is Peeling proposed by Noordam (2004) . Peeling solves for DDEs by correct­
ing the effects towards each source separately in decreasing order of brightness. Each 
time the DDEs are solved towards a source, the source is subtracted and the process is 
repeated. The peeling algorithm is computationally expensive and the gain solutions are
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sometimes contaminated (Smirnov, 2011) . Smirnov (2011) proposed an approach called 
differential gains which prevents gain contamination by solving for the DIEs and DDEs 
simultaneously. For the differential gain method the RIME is rewritten explicitly as

Vpq Gp ^ T A E spBspq A E Hq G H (2.40)

where A E sp and A E H are the differential gains associated with source s and the an­
tennas p and q respectively. Using differential gains Smirnov (2011) obtained a dynamic 
range record of about 1.6 million on the JVLA observations of the 3C147 field. Figure
2.2 shows the differences in a portion of an image before and after the use of differential 
gains.

F igure 2.2: Differential gains and primary beam correction applied to the 3C147 field.
(courtesy of O.M. Smirnov)
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2.4 Calibration Artefacts

Calibration artefacts are systematics which result from “poor” calibration and cause im­

perfections in the final images. These include generation of spurious source components, 
deformations in the structures of extended sources, elimination and/or suppression of 
real source components (Linfield, 1986; Wilkinson et al., 1988; Martl-Vidal and Mar- 
caide, 2008) . Calibration artefacts generally occur due to two factors:

• Incorrect modelling of the various propagation effects such as the modelling of the 
antenna primary beam or the modelling of ionospheric and tropospheric effects.

• Sky model errors i.e. missing or incorrect flux in our calibration sky model.

In the past few years Grobler et al. (2014) ; Wijnholds et al. (2016) ; Grobler et al. (2016) ; 
Patil et al. (2016) and Barry et al. (2016) have done extensive work on explaining the 
formation of a particular class of artefacts called ghost sources which result from sky 
model errors. Grobler et al. (2014) developed a theoretical framework to predict the 
ghost pattern for a simple two sources scenario (a field with a 1 Jy source at the phase 
center, a 0.2 Jy source at an offset position and only the 1 Jy source was included in the 
calibration sky model) using the Westerbork Synthesis Radio Telescope (WSRT) config­
uration. The theoretical framework was developed using the Alternating Least Square 
(ALS) algorithm (Boonstra and Van Der Veen, 2001) and simulations were performed 
using both the ALS algorithm and a Least Squares (LS) optimization algorithm (to be 
precise the LM algorithm) and the results were compared. Below are a few results from 
Grobler et al. (2014) which will be useful for the rest of this thesis: •

• For both the ALS and the LS cases the bright ghost sources appeared at the same 
positions. This result was in agreement with their theoretical prediction.

• The ghost pattern from the ALS and the LS were qualitatively similar, but showed 
different amplitudes. This was suspected to be due to the slight differences in the 
optimization problems solved by both algorithms.

• For both cases most of the ghost sources had negative fluxes, very few had positive 
fluxes and their fluxes were very weak. This explains the fact that calibration 
artefacts are generally very faint and buried in the residual noise.

• The 0.2 Jy source which was not included in the calibration sky model experienced 
a flux suppression of «  13%. This value is consistent with the expected rates from 
WSRT when calibrated with an LS algorithm. Further investigations by Nunhokee 
(2015) showed that the suppression rate for direction dependent calibration could 
sufficiently be reduced by using longer solution intervals.
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Grobler et al. (2014) mainly used WSRT which is a very redundant array. The array 
geometry was judged to play an important part in the generated ghost pattern. Wi- 
jnholds et al. (2016) extended this work to more general array layouts. Grobler et al. 
(2014) postulated that the flux of the ghost sources were independent from the flux of 
the modelled source and were linearly related to that of the unmodelled source but was 
unable to get an expression for the flux of the ghost sources. Wijnholds et al. (2016) 
used KAT-7’s configuration for their theoretical predictions and derived closed form ex­
pressions for the fluxes and positions of the brightest ghosts.

Patil et al. (2016) , Barry et al. (2016) and Ewall-Wice et al. (2016) used a different 
approach from Grobler et al. (2014) ; Wijnholds et al. (2016) and Grobler et al. (2016) 
and studied the effects of unmodelled sources on power spectrum measurement and the 
effects on foreground subtractions for Epoch of Reionization (EoR) purposes. Patil et al. 
(2016) performed simulations with the Low Frequency Array (LOFAR) where they did 
not model extended emission and obtained an increase in noise due to the unmodelled 
extended emission. Patil et al. (2016) also showed that short baselines were the most 
affected and that the effects could considerably be reduced by only keeping long base­
lines. Barry et al. (2016) performed simulations with unmodelled point sources and 
presented the minimum requirements for sky model completeness for EoR detections. 
Ewall-Wice et al. (2016) studied the effects of sky model errors on the 21 cm power 
spectrum measurements and proposed a method to reduce these effects.

2.5 Summary

In this chapter we described calibration, which is the process of solving for all the prop­
agation factors that corrupt measured visibilities. We showed that calibration is an 
optimization problem and discussed the RIME which is a mathematical formalism used 
to model propagation effects during calibration. We followed up by describing two cal­
ibration algorithms, namely, the LM and the StEFCal algorithms, which illustrate two 
different approaches which can be used during radio interferometric calibration. Fur­
thermore we discussed some developments in calibration strategies which we described 
in three calibration generations. Lastly we introduced calibration artefacts which are 
systematics produced during calibration. In the next chapter we study the effects of 
ignoring long-term variable sources during calibration.
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Calibration Artefacts from 
long-term Variable Sources

Despite the evidence of existing variable sources (Heeschen et al., 1987; Ulrich et al., 
1997; Kadota et al., 2012) , apart from variability search surveys such as Stewart et al. 
(2016) and Rowlinson et al. (2016) , current calibration approaches do not yet routinely 
incorporate source variability. Calibration using static source models for variable sources 
will introduce systematic errors in visibility data resulting in calibration artefacts in the 

images. This chapter, which is the core of this thesis, investigates how long-term variable 
sources affect calibration results by studying the rms or noise of residual visibilities.

long-term variable sources here are defined to be sources which vary over long time scales 
such as days and weeks. Here, we do not use any advanced calibration technique such as 
self calibration. The goal of this chapter is to show that future reduction pipelines can 
not rely on static source models unless the target field contains no variable source, but 
instead would require some sort of automatic self calibration. Self calibration would be 
required to reduce the amount of artefacts in images resulting from sky models errors, 
such as missing sources and errors in the fluxes of variable sources. We extend the 
framework proposed in Grobler et al. (2014) and Wijnholds et al. (2016) . An important 
aspect we consider is what happens when we model sources with higher flux densities 
than their true flux densities. We obtain a similar but symmetrically opposite scenario to 
when the flux is underestimated during calibration. Furthermore we investigate how the 
generated artefacts combine together when various such residuals are stacked together. 
We performed the following two sets of experiments. •

• Normal simulations: In this section we perform simulations of a field containing a 
single variable source whose light curve (i.e. its flux density variation over time) is

23
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either normally distributed or skew distributed. We study how the skewness of the 
light curve affects the rms images particularly those of stacked images.

• Realistic simulations: Here we extended the simulations above to real life scenarios 
where the variable source has a realistic light curve and the calibration model for 
the variable source were progressively updated during each simulation. This was 
also extended to fields containing multiple variable sources. Note that we used light 
curves generated from optical astronomy observations here and this should not affect 
our results as we expect light curves from radio astronomy observations to have similar 
statistical properties.

We begin this chapter by describing the various parts of the pipeline we used to perform 
the experiments in section 3.1. In Section 3.2 we present the normal simulations and its 
results. We follow up with the realistic simulations and its analysis. Finally we discuss 
the conclusions from both experiments in Section 3.4 and provide the overall summary 
of the chapter in Section 3.5.

3.1 Simulation Pipeline

For both sets of experiments we used a python-based pipeline and its main functionalities 
are demonstrated in Figure 3.1. The pipeline takes two inputs namely; an observation 
sky model corresponding to the true sky model of the field being observed and a cali­
bration sky model corresponding to the sky model used during calibration.

F igure 3.1: Flowchart depicting the main functionalities of the simulation pipeline.
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3.1.1 Visibility Simulations

For each simulation, we simulate visibilities of a 12 hour observation of the input sky 
model using MeqTrees (Noordam and Smirnov, 2010) . We used KAT-7 antenna config­
uration for these simulations. The input noise was computed from the system equivalent 
flux density (SEFD)  of KAT-7 via the following equations,

SEFD

&rms

2ks Tf_sys
nA

SEFD
\J2N(N  -  1)AvAt

(3.1)

(3.2)

where kB is the Boltzmann’s constant, 1.38 x 10-32 m2 kg s-2 K -1 , Tsys is the system 
temperature of a KAT-7 antenna «  35K, n =  0.66 is the efficiency of KAT-7 antenna, 
A =  113.10 m2 is the area of a KAT-7 antenna, N  =  7 is the number of KAT-7 an­
tennas, Av =  237 MHz is the bandwidth we used for the simulations and At =  60 s is 
the integration time we used for the simulations. These computations gave us an input 
noise with mean 0 Jy and standard deviation, arms «  0.00845 Jy.

Since we were only interested in studying the effect of the “poorly” modelled variable 
source, we didn’t include any other form of error such as antenna gains or primary beam 
errors in the simulated visibilities.

3.1.2 Calibration and Residuals

Each of the simulated observations are calibrated with its corresponding calibration sky 
model as explained in Chapter 2. Because the simulated observations are error free we 
only solve for the direction independent antenna gains, G as follows

argmin||R -  G M G H||2 (3.3)
G

where R represents the observed visibilities, M  represents the modelled visibilities, 
the superscript (-)H denotes the Hermitian or conjugate transpose and ||-|| denotes the 
Frobenius norm.

The StEFCal algorithm (Salvini and Wijnholds, 2014) which was discussed in Section
2.2.2 was used to compute the antenna gains.
To study the noise in the final images, we compute three residual visibilities, the corrected 
residuals, the distilled residuals and the ghost-subtracted residuals. •

• Corrected residuals: These provide a measure of how well the calibration was 
performed. They are computed by taking the difference between the corrected
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visibilities and the model visibilities.

V cZ r =  G - 1R G -H  -  M (3.4)

where V ^ 7 " represents the corrected residuals.

• Distilled residuals: These are not computed during calibration, but are evaluated 
when attempting to isolate calibration artefacts. Grobler et al. (2014) ; Wijnholds 

et al. (2016) ; Grobler et al. (2016) have used these residuals to study and predict 
the fluxes of the different ghost sources resulting from calibration with incomplete 

sky models. They are computed as follows

Vdest =  G -1R G -H  -  Rfree (3.5)

where Vdef represents the distilled residuals and R free are the noise free observed 
visibilities, i.e. during each observation simulation, we perform a parallel simula­

tion in which no noise is included.

• Ghost-subtracted residuals: They are computed as follows

Vghs0st =  G -1R G -H  -  Rfree -  V ghosf (3.6)

where V 9rh<0st represents the ghost-subtracted residuals and V ghost are the approx­
imated visibilities of the secondary suppressor. The secondary suppressor (Wijn­
holds et al., 2016) is the ghost source which forms at the position of an unmodelled 
source and causes a reduction in the flux of the latter. The secondary suppres­
sor is the brightest ghost and contributes most of the power from the artefacts. 
Subtracting this enables us to have a measure of the amount of power from all 
the other fainter artefacts. From Wijnholds et al. (2016) the flux of the secondary 
suppressor is defined as

I sup unm
2

N
1

N 2 (3.7)

where f sup is the flux of the secondary suppressor, f unm is the flux of the un­
modelled source and N  is the number of antennas in the array. Here we assumed 
the flux of the secondary suppressor to be the peak flux at the position of the 
unmodelled source in the distilled residuals. We computed V ghost by simulat­
ing the visibilities of a sky model containing only the secondary suppressor using 
MeqTrees.
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3 .1 .3  S k y  M o d e ls

The goal of these experiments was to simulate multiple observations of fields containing 
variable sources and to study the effects of the variable sources when they were modelled 
as non-variable sources. Thus for these experiments we needed sky models containing 
variable sources. Our approach was to first generate an initial sky model, from this 
model we selected 10 sources as variable and generated light curves for these variable 
sources. The light curves for the variable sources were generated depending on the 
specific experiment we were performing. In each case the initial sky model was generated 
as follows. A random sky distribution of 30 sources covering a 1° field of view was 
chosen. The sources’ positions were uniformly distributed across the field and the flux 
values followed the same translated pareto distribution in Nunhokee (2015) defined as

Ap(x) =  ( X + l ja r r , <3-8>

where Ap(x) is the probability density function of the pareto distribution, x is the 
random variable representing the flux of the variable source, l  is the shape parameter.

3.2 Normal and Skew Simulations

In this experiment the flux of the variable source was either normally or skew distributed 
relative to the model flux value. All variable sources had a variability index of 30% 
defined as follows

V I  =  a  x 100 (3.9)
V
V I

(3.10)
a =  100 x V

where a is the standard deviation of the light curve, v is the mean and VI is the 
variability index. Starting with the initial sky model generated as described in Section 
3.1.3, we generated the various true sky models containing the variable source and their 
corresponding calibration sky models as follows. The true sky models here correspond 
to the exact sky model from which the observed visibilities are simulated. Given that 
we were studying long-term variable sources, the fluxes of the variable sources were held 
constant in each sky model but allowed to vary across the sky models. 1

1. The mean flux density of the variable source was chosen to be its flux density in 
the initial sky model. Its standard deviation was computed from its mean flux 
density via Equation 3.10.
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2. We generate 100 random numbers following a normal distribution having the mean 
and standard deviation computed in Step 1.

3. We generate 100 sky models from the initial sky model in which the flux density 
of the variable source is changed in each case to correspond to each of the values 
of the random sequences from Step 2 .

4. We compute a histogram of the random sequences using 20 bins and generate 20 
calibration sky models from the initial sky model in which the flux density of the 
variable source is changed to correspond to each of the 20 bin centers.

The plot in Figure 3.2 shows the probability density function (pdf) of the variable 
source light curve and the different model flux values (the flux of the variable source in 
the calibration sky model).

Q

Flux [Jy]

F igure 3.2: Probability density function of the variable source light curve. The red 
dotted line is the probability density function of the variable source light curve and 
the black dotted lines are the different flux values used to model it in the different

calibrations.

Using the pipeline described in Section 3.1 the following experiment was performed:

• Simulate observations of the observation sky models as described in Section 3.1 
(i.e. 100 observations for our 100 observation sky models). •

• Calibrate all of the simulated observations using each of the 20 calibration sky 
models. We used the StEFCal algorithm for the calibration.
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• Compute and image the corrected, distilled and ghost-subtracted residuals for all 
the simulations.

3 .2 .1  G h o s t  S ou rce s  a n d  S u p p ress ion  A n a ly s is

As briefly introduced in Section 2.4, Grobler et al. (2014) and Wijnholds et al. (2016) 
have performed extensive studies on ghost sources which result from calibration with 
incomplete sky models. One of the main results from Grobler et al. (2014) was that the 
brightest ghost source in the distilled residuals always forms at the same position (i.e. the 
position of the unmodelled source). This ghost is the secondary suppressor, which defines 
the amount of flux lost by the unmodelled source. Nunhokee (2015) showed that the 
flux of this brightest ghost source was related and approximately equal to the amount 
of flux suppressed from the unmodelled flux. Nunhokee (2015) further demonstrated 
that the suppression rate is «  0.14 for Westerbork Synthesis Radio Telescope (WSRT) 
configuration. Wijnholds et al. (2016) derived it to be «  N2 (for any array layout) where 
N  is the number of antennas.

Our first investigation was to check if the suppression result held for our variable source 
scenario. In this case the calibration sky model is incomplete due to the variable source 
which is not properly modelled. The variable source can be viewed as two sources at 
the same position with one modelled and the other unmodelled. We essentially checked 
if the secondary suppressor from the amount of unmodelled flux of the variable source 
agrees with Wijnholds et al. (2016) .

The plots in Figure 3.3 are images of the corrected and distilled residuals obtained from 
the experiment which confirms that the brightest ghost source always forms at the same 

position. From these plots we can see the distinct ghost close to the center of all the 
images. in images 3.3a and 3.3b where the flux of the variable source is underestimated, 
the distilled image 3.3a has a bright negative ghost at its center. This is the suppression 
ghost and the magnitude of its flux corresponds to the amount of flux suppressed from 
the variable source. The corrected residuals (3.3b) are dominated by positive pixels. 
This indicates some flux was not accounted for in the calibration. The magnitude of 
the bright spot at the center corresponds to the amount of unmodelled flux which may 
be recovered if further calibration such as self calibration is performed (of course baring 

the amount of flux which was suppressed).

On the other hand the images 3.3c and 3.3d correspond to a simulation where the flux 
of the variable source is overestimated. This is rarely studied and is one of the novel 
contributions of this thesis, as most often research is focused on studying the effects of 
missing flux rather than the case of having more flux in the calibration sky model than
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in the actual sky. The distilled image 3.3c has a bright positive ghost at the position of 
the unmodelled source. This is analogue to the secondary suppressor and we call it the 
secondary amplification ghost. It corresponds to the amount by which the flux of the 
variable source will be increased. The corrected residuals in this case are dominated by 
negative pixels. This indicates more flux is being considered in the calibration model 
than the data actually contains.

(a) Distilled, underestimated flux.

(c) Distilled, overestimated flux.

I [degrees]

(b) Corrected, underestimated flux.

I [degrees]

(d) Corrected, overestimated flux.

Figure 3.3: Distilled and corrected residual images for two simulations. The top plots 
corresponds to a case where the flux of the variable source is underestimated. The 
bottom plots correspond to a case where the flux of the variable source is overestimated. 

The amplification and suppression ghosts are shown in the black ellipses.

The next step was to investigate if the suppression rates were constant and consistent 
with Wijnholds et al. ( 2016)  theoretical rate. Figure 3.4 is a plot of the measured 
suppression rates and the theoretical or expected suppression rate. For KAT-7, the 
suppression rate is expected to be | ^  0.285. Figure 3.4 shows the suppression rate is 
approximately constant as we expected. We measured suppression rates slightly above 
the expected rate 0 .285. This result agrees with Wijnholds et al. ( 2016)  predictions, even 
for partially modelled sources, as is the case of variable sources. The slight differences in 
suppression rates probably result from the uncertainties in measuring the fluxes of the
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suppression ghosts. Moreover the ghost flux for simplicity was assumed to be the peak 
flux at its position, not the integrated which should be slightly higher, thus reducing the 
slightly higher measured suppression rates.

F igure 3.4: Measured suppression rate in blue and expected suppression rate in red 
showing almost constant suppression rates. We can see that the measured suppression 

rate here agrees with Wijnholds et al. (2016) predicted rate.

Thus we can draw the following two conclusions from the ghost sources analysis:

• As pointed out previously by Grobler et al. (2014) and Wijnholds et al. (2016) 
when a source is underestimated (i.e. it is modelled with a flux density lower than 
its actual flux density), calibration attempts to recover the unmodelled flux but 
can only recover a certain percentage. The unrecovered flux forms a ghost source 
whose flux is proportional to the amount of unrecovered flux at the position of the 
source.

• When a source is overestimated (i.e. it is modelled with a flux density higher 
than its actual flux), calibration attempts to compensate for the extra flux. This 
leads to the generation of an amplification ghost whose flux is proportional to 
the amount of extra flux included in the calibration model at the position of the 
source. This study shows that this is a similar but symmetrically opposite scenario 
to the underestimated flux scenario. Thus analogously to a source whose flux is 
underestimated, a source whose flux is overestimated will have its flux increased 

by «  N2% of the overestimated flux.
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3 .2 .2  S ta ck in g  an d  N o ise  A n a ly s is .

Stacking is a technique used in radio surveys to reduce the rms of images and pro­
duce high dynamic range images (Lindroos et al., 2015) . This technique works under 
the assumption that the noise follows a normal distribution. The rms of normally dis­

tributed noise averages as a a  where a is the rms and M  is the number of images 
stacked together when several normally distributed images are stacked together. We 
stacked (averaged) residual images from the same set of simulations. Before studying 
the noise we first examine the final stacked images visually. Given that we are only 
interested in the noise, we focus on the corrected and ghost-subtracted residuals. Since 
the secondary suppressor and amplification ghost always forms at the position of the 
unmodelled source, the stacked image also contains a bright ghost at the position of the 
unmodelled source. The flux of this ghost source is equal to the average flux of all the 
secondary and amplification ghosts from the different images stacked together. Figure
3.5 shows the stacked corrected residuals for two different scenarios and the probabil­
ity density function of the variable source light curve with the amount of flux used to 
model it during calibration. Figure 3.5a is the stacked corrected residuals image. The 
black dotted line in Figure 3.5b marks the flux used to model the variable source in this 
experiment and the red curve is the probability density function of the light curve. Here 
we can say that the variable source light curve is right skew distributed with respect to 
this calibration model flux value. Thus overall the final stacked image is similar to that 
of a single simulation in which the flux of the variable source is underestimated. Figure 
3.5c is a final stacked corrected residuals for an experiment in which the variable source 
light curve is left skew distributed with respect to the calibration flux density value as 
shown in Figure 3.5d. Thus overall the final stacked image is similar to that of a single 
simulation in which the flux of the variable source is overestimated.
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(a) Positive residuals.
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(c) Negative residuals.

Figure 3.5: Plots of final stacked residual images on the left and the probability 
density function with the corresponding flux density value used to model the variable 

source in the experiment on the right.

This result is further illustrated with the plot in Figure 3.6. This is a plot of the abso­
lute average flux of the bright ghost (secondary suppressor or secondary amplification) 
against the skewness of the variable source light curve with respect to the calibration 
flux value. Here the skewness is computed as follows:
For a sequence, Si, its skewness, 7  with respect to a value, t is defined as

Y
1
n
1

n 1

E n  (Si - 1 )3
3

E n  (Si - 1 )2 2

(3.11)

where n is the length of the sequence, Si.
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F igure 3.6: The absolute average flux of the bright ghost against the skewness of the 
variable light with respect to the calibration flux density value.

From Figure 3.6 we observe that if the skewness is close to zero, i.e if the light curve has a 
normal distribution with respect to the calibration flux value the brightest ghost sources 
from the various images will completely cancel out. This is because the summed flux of 
the brightest positive ghost sources will be approximately equal to that of the brightest 
negative ghost sources. On the other hand if the light curve has a skew distribution both 
left or right the average flux of the brightest ghost source will be much greater than zero.

Noise in images is defined as the random variation in the brightness information of 
objects. In radio astronomy this is the variation from all non radio sources of emissions 
present in the image. Thus in computing the corrected residuals we subtracted all radio 
emission from the image. However, since the variable source was not correctly modelled, 
this led to the formation of a bright ghost source in the residual image; in order to get 
a better noise estimate, we have to look at the ghost-subtracted residuals.
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(c) Noise when the variable source is underesti­
mated.

Figure 3.7: Noise images on the left and histogram plots on the right showing the 
effects on the residuals distribution when the variable source is underestimated.

Noise in radio images is generally quantified using the root mean square (rms) defined as,

a
N

E ( x -
i=1

m)2, (3.12)
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where a is the rms, x is the flux density of each pixel in the image, N  is the number of 
pixels and m the mean of x.

I [degrees]
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(a) Noise when the variable source is overesti­
mated.
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(c) Noise after subtraction of ghost source for 
overestimated flux. (d) Histogram plot.

Figure 3.8: Noise images on the left and histogram plots on the right showing the 
effects on the residuals distribution when the variable source is overestimated.

Ideally we want the noise to be normally distributed, but when calibration is done 
with incomplete sky models, calibration artefacts are introduced in the form of ghost 
sources in the noise. These artefacts cause the noise not to be normally distributed. 
The histogram plots of corrected residual images in Figure 3.7 illustrate this. When 
calibration is done with a complete sky model the noise is almost normally distributed as 
shown in Figures 3.7a and 3.7b. When the sky model is incomplete as in our experiment 
with the variable source flux either being underestimated or overestimated, the residuals 
are skew distributed. When the variable source is underestimated during calibration, the 
tail of the skew residuals is to the right as shown with Figures 3.7c and 3.7d. Analogously 
when the variable source is overestimated during calibration, the tail of the skew residuals 
is to the left as shown with Figures 3.8a and 3.8b. Even the subtraction of the brightest
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ghost sources from the residuals as illustrated in Figures 3.7e, 3.7f, 3.8c and 3.8d does not 
render the residuals completely normally distributed. This is because of the secondary 
artefacts which have not been removed. The tails in Figures 3.7f and 3.8d may also 
result from the imperfect subtraction due to the slight inaccuracies of the theoretical 
estimate.

Furthermore stacking the images does not significantly reduce the rms. As discussed 
earlier stacking the images does not necessarily imply the ghost sources introduced by 
the artefacts will cancel out. They only cancel out if the skewness of the variable source 
light curve relative to the calibration flux density value is close to zero. Figure 3.9 are 
plots of the rms against the number of images stacked together in logarithmic scales 
illustrating this point.
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log number of hours

log number of obsevations

(a) skewness =  0.115
log number of hours

log number of obsevations

(c) skewness =  -0.011
log number of hours

(e) skewness =  -0.150

log number of hours

(b) skewness =  0.05 
log number of hours

(d) skewness =  -0.068 
log number of hours

(f) skewness =  0.153

F igure 3.9: Plots of log rms of the stacked images against the log of number images 
stacked together for eight experiments. The blue curve corresponds to the noise from 
simulations in which the correct sky model is used for calibration. The red curve 
corresponds to the noise from the corrected residuals when an incomplete sky model 
is used during calibration. The green curve corresponds to the noise from the ghost- 

subtracted residuals when the incomplete sky model is used during calibration.
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3.3 Realistic Experiment

In the previous experiment, the light curves of the variable sources followed a normal 
distribution. In this section we simulate more realistic light curves. In contrast to the 
previous simulations the same calibration model is not used across all the observations. 
In real life, calibration of a variable source will be done using our existing knowledge of 
the source. As in the previous experiment we start, by generating the initial sky model 
as described in Section 3.1.3.

3.3.1 Generating Realistic Light Curves

For each variable source we generate its corresponding light curve using Connolly’s 
python light curve generation package (Connolly, 2016). This tool allows the simulation 
of light curves with known statistical properties i.e. the power spectral density (PSD), 
probability density function (PDF), mean and standard deviation. It uses the algorithm 
described by Emmanoulopoulos et al. (2013). Throughout this experiment all variable 
source light curve PSD and PDF follow a Bending power law and a Gamma, distribution 
with identical parameters respectively. These two functions are defined in Appendix A.

The initial flux densities of the variable sources were used as their mean values and their 
standard deviations were computed using Equation 3.10. The plots in Figure 3.10 show 
two such generated light, curves.

Lightcurve

0 200 400 600 800 1000
Time [days]

Lightcurve

(a.) (b)

F igure 3.10: Generated light curves for two variable source. Left the source has a. 
mean of 0.3 Jy and a. standard deviation of 0.09. Right the source has a. mean of 0.2

Jy and a. standard deviation of 0.06
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3 .3 .2  R a n d o m  S a m p lin g

The light curves shown in Figure 3.10a and 3.10b were generated for a period of 1000 days. 
For this experiment we selected 80 random days and performed simulations correspond­
ing to these days by forming the observation and calibration sky models as follows;

• For each observation day the true flux of the variable source was obtained from its 
light curve.

• For the first observation the flux of the variable source was modelled with the first 
flux value of its light curve.

• For the subsequent observations, the flux of the variable source was modelled with 
the mean of all the previous observed flux values including the one used for the 
first calibration.

F igure 3.11: Plots of the actual flux density, red and the model flux density, blue for
two sources.

With this approach we use our previous knowledge of the variable source to model it in 
its subsequent observations by taking the average of the previous measured flux values 
for this source. Figure 3.11 are plots of the true flux densities and model flux densities 
for two sources used in the experiment.

3 .3 .3  S im u la tion s

The simulations were done similarly as in Section 3.2 with the following few exceptions

• Each simulated observation was calibrated with a different calibration sky model.
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• Here we only focus on the noise, therefore only the corrected and ghost-subtracted 

residuals were computed and used for further analysis.

3 .3 .4  R e su lts

3.3.4.1 F ields w ith  a Single V ariable Source

The corrected residuals are similar to those in the previous sections. They are skew 

distributed depending on the difference between the true flux density value o f the source 

and the calibration flux density value. This is illustrated with the plots in the Figure 

3.12.

I [degrees]

(a) Noise, underestimated.

I [degrees]

(c) Noise, overestimated.

Figure 3.12: Corrected residuals on the left and their histogram plots on the right 
showing the effects on the residuals’ distribution. Top plots corresponds to simulations 
where the flux of the variable source is underestimated whereas in the bottom plots the 

flux of the variable source is overestimated.
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- 0.5 0.0 0.5
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(a) Noise map when the variable source is cor­
rectly modelled.

(b) Histogram plot of noise case when variable 
source is correctly modelled being almost per­

fectly symmetric.

Figure 3.13: Image of the corrected residuals when the variable source is properly 
modelled and its corresponding histogram. We can see from the histogram that when 
the all sources are modelled correctly, the residuals follow a perfect normal distribution.

Similarly as in the previous simulations we computed the ghost-subtracted residuals to 
minimize the effects of the secondary suppressor or secondary amplification ghost. The 
images are shown in Figure 3.14
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(a) Underestimated case.
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(b) Histogram plot.
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(c) Overestimated flux.

Figure 3.14: Ghost-subtracted residuals on the left and histogram plots on the right 
showing the effects of the artefacts on the residuals’ distribution.

Figure 3.15 shows plots in logarithm scales of rms of the residual images as they are 
stacked together.
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F igure 3.15: Left: Plots of log rms of the stacked images against the log of number 
images stacked together for eight experiments. The blue curve corresponds to the noise 
from simulations in which the correct sky model is used for calibration. The red curve 
corresponds to the noise from the corrected residuals when an incomplete sky model 
is used during calibration. The green curve corresponds to the noise from the ghost- 

subtracted residuals when the incomplete sky model is used during calibration. 
Right: Plot of the variable source light curve used for the simulation and the various 

flux values used to model the variable source during each calibration.

From the plots above we observe that the rms of the residual images do not average 
out as expected while the rms of the noise from the cases where the actual flux are
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used during calibration do average out as expected. This is mainly because in the 
incorrectly modelled cases (both underestimated and overestimated), the artefacts have 
a large impact on the rms. Also, since the secondary suppressor always forms at the 
same position the averaged rms largely depends on the average value of the secondary 
suppressor ghost sources. Thus in cases where the sum total flux of the secondary 
suppressor ghost sources is approximately equal to that of the secondary amplification 
ghost sources, the final rms is very low. This is well illustrated with Figure 3.15e where 
we ended up with almost the same rms as the case where we used the actual flux during 
calibration. Also, as in the previous simulations, subtraction of the secondary suppressor 
ghost does not considerably reduce the rms level. The high rms again is attributed to all 
the other remaining artefacts which are not removed from the image and the residual flux 
from the secondary suppressor. This implies, in order to reduce these artefacts during 
calibration, we will need to perform several rounds of selfcal and carefully examine our 

residuals to have more information about what is missing in our sky models. We can 
not expect to always have variable sources, with normally distributed light curves which 
are modelled with their mean flux.

3.3.4.2 F ields w ith  M u ltip le  Variable Sources

The analysis for a field containing a single variable source presented in Section 3.3.4.1 
can easily be extended to fields containing multiple variable sources. The contribution 
of each poorly modelled variable source is as explained in Section 3.2.1 and thus results 
in the presence of a very bright artefact in the noise map. This is illustrated in Figure 
3.16.
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(a) 4 variable sources.
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F igure 3.16: Noise and histogram plots for fields with 4 and 8 variable sources showing 
the presence of multiples bright artefacts in the noise map and non-normally distributed

histograms.

The outputs for multiple variable sources are similar to that of a single variable source 
with the difference that the final image contains more bright artefacts as a result of the 
presence of multiple variable sources. Stacking in this case does not guarantee significant 
reductions in rms since the output residuals is not normally distributed.
NB. The presence of multiple bright artefacts makes it difficult to compute the ghost- 
subtracted residuals.
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log number of hours log number of hours

(a) 4 variable sources. (b) 8 variable sources

F igure 3.17: Stacked log rms vs log number of observations for fields with multiple 
variable sources illustrating that the rms does not go down as expected.

3.4 Conclusions

From this study we highlight the following conclusions:

• The presence of variable sources leads to sky model errors whereby the flux of the 
variable sources are either overestimated or underestimated.

• We showed that both the underestimated and overestimated cases follow the same 
theory. The underestimated scenario resulted in the presence of a suppression ghost 
in the residual while the overestimated case led to the presence of an amplification 
ghost in the residuals. Both the suppression and amplification ghost were measured 
to be approximately N % of the unmodelled flux where N is the number of antennas 
in the interferometer.

• The presence of the variable source leads to residuals with very high rms. Further­
more we showed that even after the subtraction of the amplification or suppression 
ghost from the distilled residuals i.e. computing the ghost-subtracted residuals 
with Equation 3.6 did not significantly reduce the rms of the residuals.

• We also demonstrated that stacking the images together do not guarantee signif­
icant reduction in the rms of the residuals for a field containing variable sources. 
We showed that this was totally dependent on the skewness of the variable source’s 
light curve with respect to the flux value used to modelled it. Future automatic 
calibration pipelines will have to implement an automatic selfcal. The automatic 
selfcal will enable to refine the sky models and correct for all sky model errors
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such as incorrect fluxes for variable sources. This will be very important for fu­
ture instruments such as MeerKAT and SKA which aim at unveiling the faintest 
emissions possible.

3.5 Summary

In this chapter, we studied the effects of long-term variable sources on the noise level 
in radio images. In the next chapter we extend the analysis by looking at the power 
spectrum of the residual visibilities.



Chapter 4

Power Spectrum Analysis

Epoch of Reionization (EoR) is the era in which matter in the intergalactic medium was 

ionised. Probing this era is one of the key science projects for SKA and most of the 
modern low frequency arrays such as LOFAR and PAPER. The EoR signal is very faint 
and detecting it requires subtraction or avoidance of foreground sources. However accu­
rate foreground subtraction or avoidance will require almost perfect calibration of these 
new instruments. Recently a lot of work has been done to investigate how calibration 

artefacts will limit the detection of the EoR signal. This is done by studying the power 
spectrum of residuals obtained after inaccurate calibrations (Datta et al., 2009, 2010; 
Barry et al., 2016; Patil et al., 2016; Ewall-Wice et al., 2016) .

Hence for completeness in this chapter we also estimate and compare the power spectrum 
from the true residuals and ghost-subtracted residuals obtained from our simulations in 
Chapter 3. We find that the power spectrum of both residuals is noise-like except that 
for the ghost-subtracted residuals is significantly higher. The rest of the chapter is di­
vided as follows.

In Section 4.1 we describe our 1D power spectrum estimator using the simple example of 
a 1 Jy source located at the phase center. Next in Section 4.2 we compute and analyse 
the power spectrums from the true and ghost-subtracted residuals. Finally in Section 
4.3 we draw conclusions from this analysis followed by a summary of the chapter in 
Section 4.4.

4.1 Power Spectrum Estimator

In Chapter 3, we only simulated single channel observations, thus we only construct a 
1D power spectrum for the analysis. In basic terms, the power spectrum is defined as
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the power, i.e. the absolute value square of the visibilities, per uv-distance (measured in 
units of wavelengths). Various methods such as the Fourier transform and the Maximum 
likelihood (Palanque-Delabrouille et al., 2013) exist for computing 1D power spectrums. 
Here we implement a simple power spectrum estimator which computes the power spec­
trum directly from the visibilities by binning them radially and then averaging per bin.

Our estimator can be described using Equation 4.1 (Datta et al., 2010) .

P  (k)
E|fc|=fc w  (k)\v (k)|2

E|fc|=fc W  (k)
(4.1)

where P (k) is the power spectrum per radial uv-distance, k, V (k) is our visibilities, 
W (k) represents the number of visibilities in the bin corresponding to k and k =  (u, v) 
represents the (u, v) coordinates in vector form.

4 .1 .1  G r id d in g

The first step in estimating the power spectrum is to grid the visibilities on a uv-plane. 
Here the approach we employed is similar to natural weighting during imaging where 

each uv point’s contribution is the sum of all the values that fall at that point. For 
KAT-7 the uv-points are roughly between -180 m to 180 m . We gridded our visibilities 
by redistributing the uv points on a 2D grid of cells with size 10 m using a nearest 
neighbour gridding kernel. For all the visibilities which fall in the same cell, their 
squared-sum is computed and then averaged. Figure 4.1 shows our uv coverage before 
and after gridding. We set all visibilities to 1 Jy. This corresponds to the visibilities 
of a 1 Jy source located at the phase center. Thus every point in the gridded plane 
with a measurement is red and all the points without any measurement are blue which 

corresponds to zero.

4 .1 .2  B in n in g  a n d  A v e r a g in g

The next step after gridding was to radially bin and average the visibilities. We used 
bins of radius equal to 3 cell sizes. Figure 4.2a shows the circular bins which were used. 
Figure 4.2b shows the resulting power spectrum obtained from the gridded and binned 
visibilities.

As expected it is a constant straight line whose value is 1 at all points. The y -axis 
values have been left in units of Jansky. We did not convert to millikelvins because 
our main goal was to measure the difference level between the power in the true and 

ghost-subtracted residuals. The x-axis values are in units of per degrees computed by



Chapter 4. Power Spectrum Analysis 51

200 

150 

100 

50

1  °
- 5 0  

-1 0 0  

-1 5 0

~ -2 0 0  -1 5 0  -1 0 0  - 5 0  0 50 100 150 200

u\m 1
(a) UV coverage.

200, 
150 

100 

501 

0
-501 

-1 0 0  

-1 5 0

0.5 >

(b) Gridded UV coverage.
u

F igure 4.1: Left: KAT-7 uv coverage at declination a =  15h12m50.5s and right 
ascension 5 =  —09d06m00s for 12 hours observation. Right: Gridded uv coverage
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F igure 4.2: Binned uv coverage and power spectrum obtained for a 1 Jy source located 
at the center of the field. The power spectrum is constant and equal to 1 as expected.

first scaling the uv-distances to per radians by dividing them with the corresponding 
wavelength (0.16 m) of the simulation and then converting from per radians to per 
degrees. All the pixels with no measurements (zero values) were removed from the bins 
before averaging.

This power spectrum estimator does not incorporate the w-term. This may influence 
the output given that KAT-7 is not an East-West array. However we do not expect this 
to significantly affect our results since we are dealing with a small field of view.

4.2 Results

We applied the power spectrum estimator to the residual obtained from the simulations 
in Chapter 3. Figure 4.3 shows the images of the residuals visibilities we used (Chapter 3 
Figure 3.7a and 3.8c) . In this simulation the flux of the variable source was overestimated
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during calibration. The actual flux was 0.14 Jy and the model flux was 0.2 Jy, thus an 

excess flux of 0.06 Jy.

/
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F igure 4.3: Images of the residual visibilities from which we computed the power 
spectrum. These images are duplicates of those shown in Chapter 3. They corre­
spond to images of the true residuals and the ghost-subtracted residuals for one of the

simulations.
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(a) True residuals (b) Ghost-subtracted residuals.

(c) Power spectrum for the ghost-subtracted and true residuals plot on the same figure. Here 
we can see the large difference in the power between the true residuals and the ghost-subtracted

residuals.

F igure 4.4: Power Spectrum plots

Figure 4.4c shows the power spectrum we measured from the residuals. The individual 
power spectrum shown in Figure 4.4a and Figure 4.4b are both relatively constant. This 
is what we expect from the power spectrum of pure noise. Thus even the power spectrum 
from the ghost-subtracted residuals is noise-like. However our limited uv-coverage makes 
it difficult for us to identify if the ghost-subtracted residuals power spectrum has more 
power at specific scales. In Figure 4.4c both spectrum are plotted in the same figure. We 
can see the large difference in power between the ghost-subtracted residuals and the true 
residuals. This is as expected as we measured higher rms values for the ghost-subtracted 
residuals compared to the true residuals from our results in Chapter 3.
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4.3 Conclusions

The following are the main conclusions we can draw from the above study.

• Both the true residuals and the ghost-subtracted residuals have almost flat power 
spectrums which is expected from noise-like residuals. The limited uv-coverage and 
the fact that we do not incorporate the w-term makes it difficult to determine if 
they have more power at specific scales from the ghost-subtracted residuals power 
spectrum.

• The ghost-subtracted residuals power spectrum is significantly higher than that of 
the true residuals. This shows that inaccurate modelling of a single source during 
calibration injects a significant amount of errors in the residuals. Thus future 
calibration pipelines will need to implement advanced techniques such as selfcal to 
be able to detect faint signals such as the EoR.

4.4 Summary

In this chapter, we extended the analysis of our results from Chapter 3 by looking at 
the power spectrum of our residual visibilities. The future EoR studies to be performed 
by SKA and new instruments will require almost perfect calibration. Using a simple 
and naive power spectrum estimator, we showed the large difference in power between 
residuals with artefacts and residuals without artefacts. In the next chapter we turn our 
attention to short-term variable sources.



Chapter 5

Calibration Artefacts from 
short-term Variable Sources

In the previous two chapter, we studied the effects of long-term variable sources on 
the root mean square (rms) of images after calibration. In this chapter we focus on 
short-term variable sources i.e. sources which vary on short time scales such as seconds, 
minutes and hours. Thus, such sources will vary within the time frame of an observation.

Variable sources are generally classified into two categories namely, intrinsic and extrinsic 
variable sources depending on the causes of the variability. Intrinsic variable sources are 
sources whose variability results from physical processes occurring within the radiating 
region of the source. Whereas extrinsic variable sources are sources whose observed 
luminosity changes due to processes such as absorption and reflection by the propagating 
medium or any propagation effect which induces an apparent variability in the source.

In this chapter we use the example of the apparent variability induced in sources by the 
primary beam when it rotates during observations. We show that in addition to the 
ghost sources observed in Chapter 3, short-term variations in sources’ fluxes introduces 
other artefacts in the residuals during calibration. These additional artefacts cause an 
increase in the rms of the residual visibilities and sets the rms limit which can be achieved 
if selfcal is performed and the bright ghost sources are removed.

In Section 5.1 we describe how we obtained the light curve we used to represent short­
term variability. Next, in Section 5.2 we present the simulation of field containing a 
short-term variable source which is modeled with the mean flux of its light curve during 
calibration. In Section 5.3, we perform simulations of a field containing a short-term 
variable source which is modelled with flux values other than its mean flux during 
calibration. Finally the main conclusions and summary of the chapter are provided in 
Sections 5.4 and 5.5 respectively.
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5.1 The Variability Model

We used a variability model obtained by studying the effects of the primary beam on 
sources located far from the phase center. The primary beam, also known as the antenna 
radiation pattern, refers to the antenna response to radiation from different directions. 
Figure 5.1 shows an image of JVLA’s (Jansky Very Large Array) primary beam at a 
frequency of 1.45 GHz.

F igure 5.1: JVLA primary beam at 1.4 GHz.

Sources in the main lobe have the maximum gains while sources in the side lobes have the 
minimum gains and thus their fluxes are the most attenuated. Primary beam correction 
refers to applying the inverse beam gains in order to recover the true fluxes of the sources 
before attenuation by the primary beam. However during the course of an observation, 
the Earth rotates and sources occupy different positions in the sky. They are therefore 
attenuated by different beam gains and this results in the sources being extrinsically 
variable. Figure 5.2 shows an example of sources occupying different positions because 
of the Earth’s rotation.

F igure 5.2: Sources occupying different positions and thus suffering different beam
gains as result of Earth’s rotation.
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For this experiment, we interpolated the gains that a source located at a distance of 
50 arcminutes from the phase center will be subject to over a 12 hour observation. We 
used the JVLA beam. Thus the variability model here is actually that of JVLA and not 
KAT-7, but this does not change the point we want to demonstrate with this experiment. 
Figure 5.3 shows the resulting light curve. Note that a lot of work such as Mitra et al. 
(2015) has been done on how to solve for the primary beam effects during calibration. We 
only use the primary beam induced variability as a representative example of short-term 
variability.

F igure 5.3: Light curve of a source with an intrinsic flux of 15 Jy, located 50 arcmin­
utes from the phase center as result of attenuation by the JVLA primary beam at 1.45

GHz.

5.2 Variable Source Modelled with its Mean Flux

In this experiment, we performed a simulation of a field containing a variable source with 
the light curve in Figure 5.3. We used the pipeline and the same observation parameters 
described in Section 3.1 for the long-term simulations with the following modification.

• We manually compute the simulated visibilities as follows.

V  sim =  ^  /s (t)e - 2ni[u1+vm+w(Vl-l2- m2-1)1 (5.1)
s

where V sim are the simulated visibilities, Is(t) represents the light curve of the source 
s, (u,v,w)  are the antenna baseline coordinates or uv-coverage and (l,m) represents 
the sources’ positions in the sky. For the non variable sources Is(t) is constant and
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is equal to the source’s flux density. For the variable source Is(t) is the light curve 
shown in Figure 5.3. The source was assume to vary over each observation timeslot 
or integration time of 60 s.

During calibration, all the non variable sources are modelled correctly with their respec­
tive flux densities and the variable source is modelled with its mean flux. The gains are 
computed per timeslots (60 s each) using the StEFCal algorithm. We also performed 
a parallel simulation without the variable source for comparison. After calibration we 
computed and imaged the corrected residuals as in Chapter 3.

V Z 7  =  G -1R G -H -  M  (5.2)

where V r e p r e s e n t s  the corrected residuals, R  the true visibilities, M  the modelled 
visibilities and G  the antenna gains. The plots in Figure 5.4 show the corrected residuals 
for the simulation of the field containing the variable source and that without the variable 
source.
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(a) Variable source present (b) No variable source present

Figure 5.4: Left: Corrected residuals for the field with the variable source. Right: 
Corrected residuals for the field without the variable source.

We observe from Figure 5.4 that, unlike the residuals from the simulations without the 
variable sources, those with the variable source have a lot of artefacts at a certain region 
in the image. This is the region surrounding the variable source. These result from the 
presence of the variable source which is approximated to its mean flux during imaging 
but the effects of the short variations in its flux are not removed. We verified this by 
simulating and imaging the visibilities of a source following the same light curve but 
having a mean of zero. As we can see from Figure 5.5 we obtained similar residuals 
as those in Figure 5.4a. Hence the presence of short-term variable sources causes the 
presence of certain artefacts which can not be removed by modelling the variable source 
flux with its mean flux during calibration.
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F igure 5.5: Imaged visibilities of variable source with light curve as shown in Figure 
5.3 which has been normalised to mean zero.

5.3 Normal and Skew Simulations

In this section we repeat the simulations of Section 3.2 where the variable source light 
curve is either normal or skew distributed with respect to the flux value used to model 
it during calibration. Figure 5.6 is a plot of the probability density function of the 
variable source light curve in Figure 5.3. Here we performed several simulations where 
the variable source was modelled by each of the flux values indicated by the dotted 
lines in Figure 5.6. Thus the skewness of the variable with respect to its model flux 
changes with the simulations as the model flux changes. We define skewness similarly 
as in Section 3.2 using Equation 3.11.
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F igure 5.6: Probability density function of the variable source light curve. The red 
dotted line is the approximate probability density function of the variable source light 
curve and the black dotted lines are the different flux values used to modelled it in the

different calibrations.

The plots in Figure 5.7 show two of the residual images obtained from the simulations. 
These results are similar to those from Section 3.2.1 with the underestimated and overes­
timated cases. The main difference is that in addition to the amplification or suppression 
ghost which arises from the flux of the variable source being underestimated or over­
estimated, we also have the artefacts described in Section 5.2, which result from the 
short-term variations from the mean flux of the variable source’s flux.
NB. Overestimated and underestimated flux in this scenario means the model flux is 
greater than or less than the mean flux of the variable source respectively. Otherwise we 
can not define flux underestimation and overestimation here since the source is a short­
term variable source and does not have a fixed flux during the simulated observation.

The plot in Figure 5.8 is a similar plot to that of the average ghost flux against the 
skewness of the variable source’s light curve relative to the flux values used to model it 
during the different calibrations in Section 3.2.1. As in Chapter 3, we observed that for 
the ghost of the variable source to be totally eliminated we need to use a flux value close 
enough to the true mean flux of the variable source in order to have a skewness close to
zero.
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Figure 5.7: Corrected residuals for simulations of a field containing a short-term 
variable source. On the left the variable source flux density is underestimated and on 

the right its flux density is overestimated.
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Figure 5.8: Brightest ghost flux against the skewness of the variable source’s light 
curve relative to the flux values used during the different calibrations.

Figure 5.9 shows a plot of the rms computed using Equation 3.12 against the skew­
ness for the various simulations before and after the subtraction of the amplification or 
suppression ghost. We observe that even after the subtraction of the amplification or 
suppression ghost the rms is still very high compared to that of a simulation with no vari­
able source. This is because of the artefacts from the short-term variability, explained 
in Section 5.2 which can not be removed. Thus, in contrast to long-term variability
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simulations of Section 3.2, even if a short-term variable source is modelled with its mean 
flux (zero skewness), no ghost artefact will be created but the residual rms will still be 
higher compared to thermal noise because of the short-term variability.

o

Skewness

F igure 5.9: Rms of the residuals images against the skewness of the variable source 
light curve relative to the flux values used during the different calibrations.

From Figure 5.9 we also observe that the rms before the subtraction of the ghost depends 
on the skewness in the same way as the amplification or suppression ghost flux in Figure 
5.8. This is because the ghost artefacts are much brighter than the short-term variability 
artefacts and thus have a higher contribution to the residual rms. After the subtraction 
of the ghost the rms should be constant and equal to that when the variable source is 
modelled with its mean flux. This rms is the limit which can be achieved, since the 
short-term artefacts can not be removed. This is not the case because the estimation 
and subtraction of the ghost flux is not perfect.

5.4 Conclusions

We draw the following two conclusions from these simulations:

• The presence of short-term variable sources leads to the introduction of new arte­
facts in the residuals. These artefacts can not be removed even when the variable 
source is modelled with its mean flux.
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• When the short-term variable source is modeled with a flux lower than or greater 
than its mean flux, a suppressor or amplification ghost forms in addition to those 
from the short-term variability artefacts. The artefacts from the suppressor and 
amplification ghost are much brighter than those from the short-term variability, 
thus when present contributes the most to the residuals’ rms.

5.5 Summary

In this chapter we extended the work of Chapter 3 to short-term variable sources. We 
briefly discussed the primary beam, which is the antenna radiation pattern and explained 
how it induces variability in sources as a result of the Earth’s rotation. Using a variability 
model obtained from the primary beam we performed simulations of a field containing 
a short-term variable source and studied its effects on the residuals and the noise level. 
In the next chapter we present general conclusions from this thesis and future research 
works.



Chapter 6

Conclusion and Future Works

Conclusions

This thesis provides us with an understanding of the effects of ignoring variable sources 
during calibration. This thesis consists mainly of two sets of simulations. In the first set 
of simulations, we focussed on long-term variable sources and studied how they affect the 
rms of residual visibilities. These simulations are an extension to Grobler et al. (2014) 
and Wijnholds et al. (2016) , with the difference that here we included thermal noise in 
our simulations, considered a field with more sources (30 instead of 2) and situations 
where the fluxes of sources are overestimated.

The results from the long term variable sources simulations showed that when a source 
flux is not modelled correctly, this introduces a bright ghost source at the position of the 
source in the residual visibilities. We observed that the overestimation and underestima­
tion of a source’s flux leads to similar results but the ghost sources fluxes have different 
signs. We defined an analogue to the secondary suppressor ghost from Wijnholds et al. 
(2016) which we called the secondary amplification ghost. The measured suppression 
rates agreed with Wijnholds et al. (2016) predictions.

The second step in the analysis of the long-term simulations was to compare the rms of 

residuals with the variable source to those with no variable source. We measured higher 
rms from the residuals with the variable source. Even the subtraction of the secondary 
suppressor and/or amplification ghost from the residuals did not considerably reduce 
its rms. Stacking of the residuals showed that the residuals from the simulations with 
the variable source were not normally distributed and their rms did not reduce as is 
expected when images are stacked together. We showed that for ghost sources to cancel 
out completely, the light curve of the variable sources had to have a skewness of 0 rela­
tive to the flux value used to model it during calibration.
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The final step in the analysis of the residuals from the long-term simulations was to 
compute and compare the power spectrum of the residuals with the variable source to 
those with no variable source. As expected from the rms results, we measured a higher 
power in the residuals with the variable source compared to those without any variable 
source. The limited uv-coverage made it difficult to detect if there was more power at 
specific scales (high power at a certain scale implies the presence of a source at this 
scale) from the residuals with the variable source.

We also performed a second set of simulations to investigate the effects of short-term 
variable sources on residual visibilities. The output from these simulations showed that 
short-term variable sources introduces different kinds of artefacts into the residual vis­
ibilities. We showed that these artefacts were directly linked to the short variations 
in the flux of the short-term variable source. Similarly, as with the long-term variable 

source, these artefacts lead to an increase in the rms of the residual visibilities.

Future Works

• The first possible extension to this work will be to further investigate the effects of 
the short-term variable sources. This may be by calibrating and imaging the visi­
bility data on a single time slot basis, then progressively combining the visibilities 
from different time slots and observing how the artefacts combine.

• A second extension will be to improve the power spectrum analysis of the long­
term residuals by constructing a better power spectrum estimator which accounts 
for the w-term. This analysis can also be performed on the residuals from the 
short-term variability simulations. •

• In order to get better knowledge of how variable sources will affect large arrays 
like MeerKAT, we will need to do extensive simulations with such arrays. These 
will have to be done using accurate beam models for these arrays, and considering 
larger fields with a more realistic population of sources.



Appendix A

Appendix A: Bending Power Law 
and Gamma Distribution Python 
Functions

def BendingPL (v,A, v_bend ,a_low ,a_high ,c) :

Bending power law function - returns power at each value of v, 
where v is an array (e.g. of frequencies)

input s :
v ( array)
A ( float) 
v_bend ( float) 
a_low (( float) 
a_high float) 
c ( float) 

output:
out ( array)

- input values
- normalisation
- bending frequency
- l o w f r e que nc y i nde x
- high frequency index
- intercept /offset

- output powers

numer = v**-a_low
denom = 1 + (v/v_bend)**(a_high-a_low) 
out = A * (numer/denom) + c 
return out

def R a n d A n y D i s t ( f , a r g s , a , b , s i z e = 1 ) :

Generate random numbers from any distribution. Slow. 

input s :
f (function f(x,**args)) - The distribution from which numbers are drawn 
args (tuple) - The arguments of f (excluding the x input array) 
a,b (float) - The range of values for x
size (int, optional) - The size of the resultant array of random values,

returns a single value as default
outputs:
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out (array) - List of random values drawn from the input distribution 

out = []
while len(out) < size:

x = rnd.rand()*(b-a) + a # random value in x range
v = f(x, * args) 
p = r n d .r a n d () 
if p <= v:

# equivalent probability 
# random number

o u t .append(x) 
if size == 1:

return out [0] 
else:

return out

# add to value sample if random number < probability
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