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Abstract

This study contributes to the valuation of employee stock options (ESO) in two
ways: First, a new pricing model is presented, admitting a major part of calculations
to be solved in closed form. Designed with a focus on good replication of empirics,
the model fits with publicly observable exercise characteristics better than earlier
models. In particular, it is able to account for the correlation of the time of exercise
and the stock price at exercise, suspected of being crucial for the option value. The
impact of correlation is weak, however, whereas cancellations play a central role.
The second contribution of this paper is an examination to what extent the ESO
pricing method of SFAS 123 is subject to discretion of the accountant. Given my
model were true, the SFAS price would be a good proxy. Yet, outside shareholders
usually cannot observe one of the SFAS input parameters. On behalf of an example
I show that there is wide latitude left to the accountant.
JEL classification: G13; J33; M41; M52
Keywords: Employee stock options; Executive stock options; Barrier options;

Exercise Behavior; Fair value accounting

1 Introduction
Firms use employee stock options (ESOs) in order to align the interests of employees to
the long-term interests of shareholders. The question of how good stock options perform
in this discipline is a true challenge for theorists. Ignoring one side of the coin — incentives,
the more difficult side — I focus on the cost of ESOs to shareholders. When shareholders
grant ESOs or similar incentive instruments to their employees, they want to know how
much they have to pay for incentive. The costs may become substantial in practice; for
instance, a sample of 239 German IPOs shows 43 firms with a ratio of outstanding ESOs
to outstanding shares above 0.1.1

While the assumption that shareholders are unrestricted in trading stocks and treasury
notes seems reasonable, one cannot ignore that employees must neither sell nor hedge

∗I would like to thank Jennifer Carpenter and Mark Vargus for the kind provision of data and useful
hints. I am indebted to Steven Huddart for a statistical analysis and to Mark Wahrenburg, Gunter
Löffler, Jingzhi Huang, Silke Brandts and Christian Laux for useful discussions and comments.

1Private sample, unpublished.
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ESOs they hold. It may be a consequence of these restrictions that most grantees exercise
ESOs considerably earlier than standard option pricing theory predicts for unrestricted
holders. Possibly, risk-averse employees decide to forego a part of an option’s time value
in favor of secure cash obtained by early exercise.
No matter what the reason is, all valuation models have to pay regard for early exercise

either way. Literature presents two main types of models. Rational models try to explain
why an option holder might exercise options early. In contrast, heuristic models focus
on a good description of exercise behavior. Formally, heuristic models specify the joint
distribution of price process and time of exercise. When shareholders are only interested
in the cost of stock options, a heuristic model is sufficient.
Since there are no market prices for ESOs, some other observable characteristics of a

sample of option exercises must be utilized to see to what degree a model is in line with
empirics. Rational models may give a deeper insight than heuristic ones. The latter, in
contrast, can be designed easier to fit well with real exercise patterns while keeping things
simple. Setting up a heuristic pricing model basically boils down to the following: 1.
Choose some characteristics of exercise behavior (like the mean time of exercise), serving
as empirical benchmark of a model’s fit. 2. Estimate the characteristics. 3. Model the
exercise behavior. 5. Fit the model under the physical probability measure. 6. Compute
prices under a corresponding risk-neutral measure.
The first contribution of this paper is a heuristic pricing model for plain call options

with a vesting period. The simple structure allows to solve essential parts of the formula in
closed form. The model adapts to a set of empirical characteristics of exercise better than
other models known from the literature. Conform to the results of Carpenter [Car98], the
average rate of option cancellations (one of the characteristics) has by far the strongest
price impact. The second contribution is to give an example to what extent the accounting
method for ESOs in SFAS 123 is subject to discretion and potential misspecification.

1.1 Previous Research

Let me begin with explaining some terms. By termination I mean the end of the option
contract by any reason. Exercise denotes termination with a payoff greater than zero,
while cancellation is a termination with zero payoff, with no regard to the reasons. I use
forfeiture as a synonym for cancellation. Premature means “not at expiry”, no matter
what is optimal.
The value of an ESO grant obviously decreases if some options are forfeited, possibly

since the holder leaves the firm before vesting or while the option is out of the money. The
value also declines when they exercise options at stock prices different from the optimal
killing price.2 The current accounting method for ESOs, SFAS 123, reflects non-optimal
exercise as follows: The dividend-adjusted Black/Scholes option price is calculated with
a maturity equal to the expected lifetime3 of the option, given that it vests. In order to
correct for cancellations, the result is multiplied by the probability of the option being
vested.
By these adjustments, the SFAS method picks a certain exercise strategy with some

arbitrariness: Ignoring the (weak) concavity of the Black/Scholes price in time, the SFAS
price is correct if options are terminated at some independent random time — be it ex-
ercisable or not4. The accounting valuation of an ESO therefore maps all probability

2Confer Barone-Adesi and Whaley [BAW87].
3Lifetime includes the time from grant to exercise as well as to cancellation.
4Given that the unhedgeable remaining risk is not priced; cf. Sect. 2.3.

2



laws of termination time and payoff with the same expected lifetime (given vesting) and
probability of vesting to a single price that closely corresponds with independent stopping.
On the one hand, independency is rather implausible for a number of reasons, as

Rubinstein [Rub95] argues. On the other hand, the relation between price path and
exercise decision can have a large impact on the value of options. For illustration, I
compare an option holder who randomly terminates options, independently of stock price
movements, with a utility-maximizing risk-neutral option holder, to be completely free
of external shocks or any restrictions. In a representative environment5, the risk-neutral
owner would exercise a ten-year ESO — at the optimal killing price of standard theory —
after 7.5 years on average. If the other option holder “tossed coins” such that the average
lifetime were 7.5 years, too, the SFAS method would assign the same ESO value to both.
The SFAS value is close to the correct price when the holder “tossed coins”, whereas the
correct value for the risk-neutral holder’s option is 14% higher. Evidently, a world of
risk-neutral, unbiased option holders is far from reality. But at the level of information
requested by SFAS 123, such a world is no less substantiated than that of employees
tossing coins.
Several authors have modeled the rationales behind exercise decision by utility-maxi-

mizing option holders and some exogenous risk they are exposed to. For instance, Ku-
latilaka and Marcus [KM94], Huddart [Hud94], Rubinstein [Rub95], or Hall and Murphy
[HM02] assume that a representative risk-averse option holder decides between holding
the option or exercising it and investing the proceeds in the riskless asset.
Of course, rational models are indispensable when incentives to employees are ex-

amined. Yet, for the sole purpose of valuation, the less-demanding heuristic approach
is justifiable, too: The exercise behavior is not thoroughly explained, but instead some
joint probability law of termination time and payoff is supposed that accounts well for
empirical observations. The SFAS 123 method obviously follows this “reduced-form” ap-
proach. Jennergren and Näslund ([JN93] and [JN95]) incorporate early exercise by an
external, independent stopping time as a proxy for option holders resigning or getting
fired. If the option is stopped, it is liquidated at its current inner value. If not stopped,
it is treated like a European option in [JN95], whereas the American counterpart is con-
sidered in [JN93]. The European version is the prototype of the concept of independent
termination and allows for a nearly closed formula. The barrier model presented in this
paper adopts independent stopping from Jennergren and Näslund, yet the part of “free”
decisions differs from that model.
Rubinstein [Rub95] notes that it is difficult to estimate relevant input factors reliably.

He suggests a method for accounting that probably underestimates the option value but
is based on few reliable factors. Such simple estimates are easier to be compared between
firms.
Carpenter [Car98] compares the heuristic model of Jennergren and Näslund [JN93],

called extended American model, with a three-parameter6 rational model. As my study
refers to this article in several respects, I sketch the content briefly: In a first step, she
calibrates both models in order to reproduce a number of statistical values on exercise
patterns. Information on stock price paths and option exercises is obtained from a sample
of ESO grants in 40 firms. The following benchmarks are used for the goodness of fit: 1.
the mean lifetime of an option (conditional on exercise); 2. the normalized mean stock

5For the stock related parameters, see Sect. 3.1. Forfeiture before vesting is excluded in this example.
6The option holder maximizes utility with CRRA γ = 2. Her initial non-option wealth is x. The

employee is offered a fixed premium y in each period with probability q, to be paid off if she decides to
leave the firm. The triplet (x, y, q) is subject to calibration.
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price at exercise; 3. the mean cancellation rate as a mix of forfeitures before vesting, after
vesting and expirations out of the money. Several parameters form a set of conditions
under which the exercise characteristics should be reproduced by the model: the length of
vesting period, the mean stock return under the real-world probability measure, volatility,
dividend rate and the normalized mean stock price at expiry. In a second step, the best-
fitting parametrizations of the models are used to forecast the exercise characteristics on
behalf of each firm’s specific stock price parameters. In either step of investigation the
extended American model appears to perform as well as the utility-maximizing one. The
extended American model gives prices strikingly similar to that of the SFAS approach,
thus supporting the appropriateness of the SFAS statement 123.

1.2 Adapting to Correlation

At this point I pick up the thread. Although the characteristics of exercise considered by
Carpenter [Car98] are certainly relevant, the correlation between exercise time and stock
price performance at exercise is well worth a look.
To motivate the focus on correlation, suppose again that all ESO holders behave like

unrestricted rational investors, thus exercising if the stock price hits the downward-sloping
curve of killing prices. If we had a sample of exercises by such option holders, time and
stock price of exercise would be in a strictly negative relation. The correlation coefficient is
greater than −1 only by the non-linearity of the killing price function. The representative
risk-averse employee in the rational model of Hall and Murphy [HM02] also exercises
options along downward-sloping lines in the price vs time graph. Real-world samples of
exercises, however, show a positive correlation. In the Carpenter dataset, it amounts to
0.14, while S. Huddart reports a correlation of about 0.2 for a sample of over 50,000 ESO
holders from seven companies.7 It seems that the price vs time scatter plot of exercises
has a very different shape.
From the viewpoint of an unrestricted rational option writer, this means cost reduction.

A switch from negative to positive correlation, leaving other characteristics constant,
should reduce the option value since a higher level of late payoffs (at high discounts) will
not totally offset the diminishment of early payoffs (at low discounts). Since runtimes of
ESOs are quite long, the effect might be strong.
Correlation may also play a role in the following problem: Recall that, instead of

maturity, the SFAS method enters the mean lifetime of an option (given it vests) into the
Black/Scholes formula. The time is estimated under real-world probabilities, but used to
compute a risk-neutral expectation. While the change of measure leaves an independent
stopping time unaffected, it will alter the distribution of exercise time when correlated
with stock price at exercise. Suppose that the correlation is strongly positive [negative].
The change of measure will diminish the expected performance at exercise. Given that
the correlation is about the same under both measures, the expected time of exercise
plausibly should decrease [increase] accordingly. In such settings, the SFAS model uses
an overestimated [underestimated] expected exercise time, which typically results in higher
[lower] prices.

7Private correspondence; for a description of the sample, see Huddart and Lang [HL96] or Heath et
al. [HHL99]. The correlation of stock price at exercise and time from exercise to expiration (as opposed to
time from grant to exercise) is −0.21. The time from exercise to expiration is roughly, but not precisely
a constant minus exercise time since the time to maturity is not constant.
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1.2.1 Exercise at a Barrier

I modify the model of Jennergren and Näslund [JN93] as follows. Two independent events
will trigger a termination. First, and just like in the earlier models, independent random
stopping may enforce that the option is paid off at the inner value, which is zero if the
option is unvested or out of the money. Second, an employee is supposed to exercise
her (vested) options if the stock price hits some deterministic, constant or exponentially
growing target. Formally, it is nothing but the trigger of a barrier option, giving reason
to call the whole setting a barrier model. Its exercise-related parameters are the barrier’s
height and growth rate plus the constant intensity of stopping. The simple structure of
exercise decisions allows to solve parts of the formula analytically. A double integral is
left, to be treated with standard numerical methods. Hull and White [HW03] present a
similar model with a constant barrier in a binomial set-up, using backward iteration for
valuation. Aside from the discrete setting, it is a special case of the model presented here.
Assuming a deterministic barrier to be the dominant exercise strategy may seem totally

arbitrary at first glance, yet there is some evidence that individuals might think in terms
of barriers. To construct an extreme case first of all, note that “price targets” and “price
potential” are common buzzwords in analysts’ forecasts.8 Given that a stock owner or
option holder strongly believed in such a target, completely ignoring the stock price risk,
she would sell/exercise if the price target were attained. The stock would “have no further
potential” then, provided that the investor has not updated her belief meanwhile. (But in
the perceived absence of risk, there is no need for updating.) Every deviation of the stock
price from the target would then be perceived just as mispricing. If, moreover, the holder
believed in constant proportional growth of the firm, the target would grow exponentially
as well.
Investors who do not totally ignore, but underestimate, the stock price risk might

behave similar to that extreme case. Possibly, they sell stock (exercise ESOs) if the price
is somewhat above their subjective “price target”.
Indeed, employees consider their employer’s stock safer than it is. Driscoll et al.

[DMSS95] conducted a survey of people whose employer offered a 401(k) plan with the
option to invest in products out of a whole range. They find that “participants consider
the employer’s stock safer than a domestic stock fund.”9 Benartzi [Ben01] analyzes dis-
cretionary contributions to 401(k) retirement savings plans. He finds that the decision to
invest in company stock is mainly driven by past returns, whereas the impact of volatility
and Beta is insignificant in nearly all cases, suggesting that employees do not worry much
about their employer’s stock price risk. A survey, described in the same article, reveals
that “only 16.4 percent of the respondents believe that company stock is riskier than
the overall stock market, as indicated by the likelihood of losing half its value over the
next five years.”10 Benartzi also reports on similar results of a survey conducted by John
Hancock Financial Services [Joh99]. Huberman [Hub01] concludes from the behavior of
investors in stock of Regional Bell Operating Companies: “It seems [. . . ] that people look
favorably upon stocks with which they are familiar and think of them as more likely to
deliver higher returns, at lower stock-specific risks.”11

There is also more direct evidence that barriers play a role for ESO holders. Heath

8GoogleTM responds 4,890 hits to the request CFA "price target" OR CFA "price targets". Even CFA
"three-year price target" OR CFA "3-year price target", signalling high self-confidence, yields 15 hits.

9See Huberman [Hub01], p.664.
10p. 1760
11p. 677
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et al. [HHL99] analyze the exercises of ESO grants to over 50,000 employees in 7 firms.
They regress the weekly rate of option exercises on a range of variables related to the stock
price history. It turns out that, if the current stock price is above the one-year maximum
of prices, the exercise frequency nearly doubles. Moving maxima over two years and some
shorter distances are significant, too. Although this looks like (and can be) a dynamic
exercise strategy, exercise at a fixed barrier can also explain the significance of moving
maxima, since under typical conditions (non-decreasing barrier; moving time frame starts
after vesting), a hit of the barrier can only take place if the moving maximum increases.
A period of growing moving maximum has therefore a higher chance to be the first-hitting
time.
Furthermore, Heath et al. find that the stock price return in the observation week

and those through three preceding weeks are positively related to exercise frequency. The
relation is consistent with exercise at barriers, as some of the short-term returns that
precede a first hit must be positive.12

To return to my model, it seems merely restrictive to assume a single barrier to be
representative for all option holders. Instead, one could imagine a portfolio of ESOs held
by a group of employees who define different barriers. Yet, numerical examples show that
it is negligible whether the barrier is diversified or not.13 I will therefore stick to a single
barrier.
To sum up, I do not claim that employees do behave as my model supposes. It is

rather designed to combine analytical tractability with a good adaptation to empirical
findings in such a manner that it still provides economic intuition.

1.2.2 Comparison

I check the model with Carpenter’s empirical values from [Car98]. Compared with the
extended American model, the barrier model better suits not only the three characteristics
used there, but allows to adapt for the correlation of exercise time and stock price. As the
extended American model cannot produce a positive correlation, it only makes sense to
compare prices when correlation is not adapted to. The input characteristics from [Car98]
then imply a barrier model price 9% lower than that of the extended American model.
In order to find out what characteristic should be measured with particular diligence, I

conduct comparative statics. I change each observed characteristic by a small proportion
of its standard deviation, seeing how much the newly-adapted price alters. In this sense,
the average cancellation rate is by far the most important parameter, followed by the
mean stock price at exercise, and the exercise time. The correlation has the weakest
impact, though strong enough that it should not be ignored.
The calibration results in a mean stopping rate of about 9%. It is, in contrast,

impossible to get a good fit without independent stopping. In other words, a pure strategy
of exercising at an exponential barrier is unable to explain the exercise pattern, which
conforms to Carpenter’s result that idiosyncratic stopping events play an important role.
It seems, furthermore, that only one half or less of the stopping events is caused by

12The result was supplemented by a simple simulation study. First, I generated stock price paths
according to the parameters in [HHL99]. Second, options were exercised if a given exponential barrier was
hit. This provided me with observations, consisting of the 4 most recent weekly returns, a dummy taking
the value one if the recent stock price exceeded the price maximum over the last year, and the exercise
decision. Third, I regressed the exercise dummy on returns and maximum dummy. All coefficients are
significant and in the same range as those found by Heath et al. Detailed simulation results are available
upon request.
13See Appendix, 5.5.
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staff turnover: Bravely inferring from top executives to all ESO grantees, about 3%
p.a. of option holders leave their company by reasons that should trigger an immediate
termination.14

1.3 Discretion in Implementing SFAS 123

Providing a simple yet flexible pricing model is one purpose of this study. In addition, I
use the model to investigate how prices according to the SFAS method could relate to a
true value. Encouraged by the flexibility of the barrier model, I venture to take it for the
truth, looking at “errors” of SFAS 123 prices with regard to prices of the “true” barrier
model.
The pricing method of SFAS 123 integrates, besides market-based parameters, two

exercise related inputs: the probability that an option vests (input one), and the mean
lifetime of an option under condition that it vests (input two). I choose various parameter
sets for the barrier model, compute the corresponding SFAS inputs and compare the
resulting SFAS price with the “true” one. For a wide range of barrier model parameters,
the error is rather small. The strong link relies, however, on the assumption that the
probability of vesting can be measured properly, which is doubtful. The typical outside
shareholder must rest on public filings, which do not enable to distinguish whether an
option was cancelled before vesting or after, or simply because the option expired out
of the money. Public filings report only the aggregated number of options held, so that
cancellations usually cannot be addressed to grants uniquely. Only an average of the
mean cancellation rate over the whole lifetime of an option can be estimated reliably.15

SFAS input two, the option’s mean lifetime, given vesting, is typically unobservable for
the same reason, as cancellations are one kind an option’s “life” is terminated.
What I mean by discretion is to what extent an accountant who prices an ESO under

SFAS 123 is able to manipulate the published ESO value, while keeping it in line with
some publicly available data. To get a picture of that extent, a certain parametrization of
the barrier model plays the role of truth again. The accountant has the freedom to choose
some other parametrization of the barrier model in the role of her (claimed) perception of
truth, yet she feels bound to choose one that implies the correct mean cancellation rate
and/or mean exercise time. So, these characteristics are the criteria of the accountant’s
fidelity. I select right them because the mean cancellation rate is conceptually closest
to the probability of vesting (SFAS input one), and mean exercise time is close to mean
lifetime (SFAS input two).
The “truth” and “the accountant’s belief” do not need to coincide, resulting in price

discrepancies between −22% and +10%.
Although I think that the barrier model provides a more precise picture of the truth,

the advantage of simplicity of the SFAS method is not to be neglected. Under the barrier
model, the SFAS 123 method could be regarded as a reliable proxy if the inputs were
defined with more precision. The lack of specification how the probability of vesting
should be estimated is a loophole, which can be closed at low effort. The simplest way
would be to specify how the probability of vesting should be obtained from publicly
available figures.

14Evidence on management turnover is collected in Appendix 5.6.
15For details, see Carpenter [Car98, Section 5].
.
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2 The Barrier Model

2.1 Assumptions

Suppose the stock price S follows the stochastic differential equation

dSt = Stµdt+ Stσ dWt (1)

with a standard Brownian motion on a complete probability space [Ω,F ,P] . Let µ and σ
be constant. The stock pays dividends at a constant rate of δ. These values are assumed
not to be under control of the option holder. The money market account pays interest at a
constant rate r. Shareholders, who authorize ESO grants, are assumed to be unrestricted
both in holding stock and investing in the money market account. Moreover, they can
trade continuously.
The employee holds a plain, non-dividend-protected16 call on S with strike price K,

starting at time 0 and expiring in T. It is not exercisable until V , 0 ≤ V ≤ T , and fully
vested afterwards. Other exercise constraints like period around earnings announcements
are neglected. Equation (1) excludes that any dilution of the stock price takes place
through the lifetime of the option. I presume that the price has been adjusted before
grant date.
Independent stopping is excluded for the moment and considered in Section 2.3. I

specify the exercise behavior as follows: Every option holder is supposed to have chosen
some target of stock price performance in advance. If the target is hit, she exercises all
options at once. The target, or barrier, is a function of type

b (t) = B exp {α (t− V )} , V ≤ t ≤ T, (2)

with constants B > K, α ≥ 0. The option holder immediately exercises all options in t if
St ≥ b (t). I will refer to b as the barrier. Because the holder has to wait until vesting, the
option is exercised in V if SV ≥ b (V ). Given the price has never hit the barrier between
V and T , the option matures like a European call.
In the sequel, I will consider one single barrier function. Such a single line is flawed as

the joint distribution of exercise time and stock price is degenerate onto a zigzag line in
[0, T ]× [0,∞), which seems unrealistic (see Figure 1). In Appendix 5.5, I will replace the
unique barrier by a bundle of barriers. The generalization is skipped, however, because
implications are negligible.

2.2 Pricing without Independent Stopping

It is convenient to cut the option payoff into three options, each paying out only along
one part of the zigzag line in Figure 1. Let be

τ∗ := inf {s ≥ V : Ss ≥ b (s)} or τ∗ :=∞ if never hit. (3)

Consider the following events:

V : = {SV ≥ b (V )} (exercise at vesting)

B : = {SV < b (V ) , τ ∗ ≤ T} (barrier is hit)

E : = {SV < b (V ) , τ ∗ > T} (termination at expiry).

16Protection against dividends is desirable from a perspective on agency conflicts but rarely observed.
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hitting the
barrier

Figure 1: Support of the joint distribution of exercise time and the price at exercise; the vertical
line on the left consists of exercises immediately after vesting; the flat line growing from B at
time V until T represents hits of the barrier, leading to an option exercise; the vertical line on
the right are exercises in the money at expiry.

Then the random option lifetime τ can be written as

τ =

 V : ω ∈ V
τ∗ : ω ∈ B
T : ω ∈ E

Like τ∗, the random value τ is a stopping time of the augmented filtration FS :=
¡FS

t

¢
t≥0

generated by S.17 It meets the prerequisites for the definition of American contingent
claims in the sense of Musiela and Rutkowski [MR98, Ch. 8.1]. In the absence of arbitrage,
the price of such contingent claims is the expectation of the discounted payoff under
the unique equivalent martingale measure Q. In the present setting, Q is the measure
under which lnS is an arithmetic Brownian motion with volatility σ and constant drift
r − δ − σ2/2.
Given the call option is terminated at τ , the payoff equals π (τ ) := [Sτ −K]+. Its

value in t = 0 is denoted by P and fulfils

P = EQe
−rτπ (τ) = EQe−rτ [Sτ −K]+

The option is now written as a portfolio of contingent claims paying only in V , B and E,
respectively:

π (τ) = π1 (τ ) + π2 (τ) + π3 (τ ) with (4)

π1 (τ) : = [Sτ −K]+ IV = [SV −K]+ IV (exercise at vesting) (5)

π2 (τ) : = [Sτ −K]+ IB = [b (τ ∗)−K]+ IB (barrier is hit)

π3 (τ) : = [Sτ −K]+ IE = [ST −K]+ IE (exercise at expiry) (6)

Accordingly, if Pi denotes the price of πi (τ ) at t = 0, the total price is obtained with
P = P1 + P2 + P3. Part π1 (τ) is nothing but a European call option maturing at V ,

17See Karatzas and Shreve [KS88, Ch. 1.2.]
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with an additional hurdle at the height of B = b (V ). Its price has a well-known closed
solution. Part π2 (τ ) is similar to a barrier option, but vesting must be taken into account.
It is possible to solve a part of the integral by conditioning on FS

V , leaving a one-dimen-
sional integral to be solved numerically. Part π3 (τ ) looks, at first glance, like a capped
European call, however the probability law of ST under E is not that of the geometric
Brownian motion since all paths having hit the barrier are filtered out. A one-dimensional
numerical integral is left for P3, too. A detailed analysis and pricing formulae are found
in Appendix 5.1—5.3.

2.3 Independent Stopping

This step expands the model by independent events terminating the option contract.
They are intended to subsume things like liquidity shocks, dismissal, or sudden disability.
Following Jennergren and Näslund [JN93], I assume that such events are idiosyncratic to
the option holder. Formally, there is a random time ϕ ≥ 0, to be independent of FS

T , and
exponentially distributed with constant intensity λ, called stopping rate. If ϕ ≤ τ , the
option is immediately paid off if exercisable, or forfeited otherwise. I set

πstop (t) :=

½
0 : t < V
[St −K]+ : else

, t ≤ T ,

and define πstop (τ ∧ ϕ) to be the option’s payoff with independent stopping. Note that,
by independence, a change of measure on FS

T has no influence on the distribution of ϕ.
As a preparation for the next, consider πstop (τ ∧ ϕ) under the measure P (· |ϕ). The law
of S and τ is not affected by this condition, which means that Q (· |ϕ) is the equivalent
martingale measure of P (· |ϕ). The payoff πstop (τ ∧ ϕ) for a fixed ϕ is the same as the
non-stopped π (τ ) from Section 2.2 if T is replaced by T ∧ ϕ. In order to give emphasis
to the impact of T on the payoff π (τ ) , I henceforth write π (τ , T ) and P (T ) accordingly.
It follows that under the condition {ϕ = t}

priceϕ=t (πstop (τ ∧ ϕ)) = EQe−r(τ∧t)π (τ , T ∧ t) = P (T ∧ t) . (7)

Returning to the unconditional measure, the contingent claim πstop (τ ∧ ϕ) cannot be
perfectly hedged by investing in stock and the riskless asset, as τ ∧ ϕ is obviously not a
stopping time of FS, which destroys the integral representability of πstop (τ ∧ ϕ). Clearly,
a sole arbitrage argument is unable to derive a unique price. I assume, as the preceding
authors, that there is no premium for the additional risk arising from independent stop-
ping. Appendix 5.4 gives a formal justification based on a diversification argument. The
contingent claim πstop (τ ∧ ϕ) is therefore priced at its expected present value, just like a
perfectly hedgeable option. This immediately leads to the price formula. Let λeλt be the
density of ϕ. With Q (ϕ ≥ T ) = e−λT , I get from (7)

Pstop = EQpriceϕ (πstop (τ ∧ ϕ))
= EQe

−r(τ∧ϕ)π (τ , T ∧ ϕ)
= EQe

−rτπ (τ , T ) I{ϕ≥T} +EQe−r(τ∧ϕ)π (τ , ϕ) I{ϕ<T}

= e−λTP (T ) +
Z T

V

P (t)λeλt dt (8)

The integral must be computed numerically since P (t) is determined by numeric integra-
tion either. The calculations altogether lead to a two-dimensional integral, which needs
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(potentially) much time to be computed. However, smooth integrands make the algorithm
converge fast18.

3 Comparison of the Models

3.1 Calibration

For lack of market prices, the question how an ESO pricing model should be calibrated is
somewhat delicate. Following the approach of Carpenter [Car98] and previous authors, I
try to reconcile certain characteristics (or moments) of the modeled distribution of S, τ
and ϕ with their empirical counterparts. In order to account for, say, an atypical market
environment, it may be useful not to apply the physical measure but a conditional measure
M (to be discussed later). The following model characteristics are selected because they
are publicly observable:

• the mean lifetime of an option, conditional on exercise , with κ := τ ∧ ϕ defined as

bκ := EM [κ | exercise ] ;
• the mean stock price at the time of exercise, normalized by the strike price — likewise
under condition of exercise:

cSκ := EM [Sκ | exercise ] ;
• the average cancellation rate, i.e., the average over [0, T ] of the expected cancellation
rate, given the option was not terminated before. So it is defined as an average
hazard rate19. Note that holders can forfeit their options by stopping before vesting,
by stopping of an underwater option or by expiration out of the money. The formal
continuous-time definition is

bc := Z T

0

M (κ ∈ dt , cancellation at t)
M (κ ≥ t)

;

• the correlation of exercise time and stock price at exercise, conditional on exercise:

bρ := corrM(· | exercise) (Sκ, κ) .

Carpenter [Car98] uses bκ, cSκ, and bc to calibrate the models. For reasons explained
in Section 1.2, I add bρ, which requires no additional data. Carpenter [Car98] analyses
a sample of ESO exercises from 40 firms, indicated here by i. All contracts have been
running over 10 years. The above exercise/forfeiture characteristics plus firm-specific
parameters like volatility σi, dividend rate δi, mean length of the vesting period Vi and the
mean stock price return S10/S0 from grant to expiration of the ESO have been calculated
as averages over grants for each firm separately. The firm-specific averages of κ, Sκ, and
c form the final sample. I will refer to this sample, parts of which are at my disposal by
courtesy of J. Carpenter. For comprehensive descriptive statistics, see Carpenter [Car98,
Table 1]. An excerpt is found in Table 3.1. I will refer to these values as a benchmark,
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characteristic average standard
(firm-specific) deviation

mean time of exercise eκ = 5.83 2.25

mean normalized stock price at exercise fSκ = 275 142
mean cancellation rate ec = 7.3% 7.1%
correlation of κ and Sκ eρ = 0.14 0.1420

volatility σi σ = 31% 10%
dividend rate δi ρ = 3% 2%
vesting period Vi V = 1.96 1.03

mean normalized stock price at expiry S10,i S10 = 327 225

Table 1: Summary statistics of ESO exercises, cancellations and stock price movement from
the sample in Carpenter [Car98].

trying to adapt the model to the overall averages of κ, Sκ, c and to correlation. These
are denoted by eκ,fSκ,ec, and eρ.
The rest of input parameters is taken from the same source: a mean annual stock

return µ = 15.5 %, a riskless return rate r = 7% and a time to expiration T = 10. I
assume S0 = K = 100, as most options are granted at the money.
Since, on the one hand, every sample is biased by random and, on the other hand,

several of the observed values are correlated, it may be a good idea to account for anomalies
by an appropriate choice of M instead of P. The most sophisticated way would be to
condition every exercise decision on the stock price path the option holder really witnessed.
In this case, M should be close to the discrete measure that assigns probability N−1 to
each of N observed stock price paths and zero to the rest.21 This approach exploits
a maximum of information (at high computational effort) and must be based on more
detailed data. The simplest way would be not to account for anomalies withM = P.
Carpenter takes a way “in between”: Her approach accounts for atypical stock returns

by conditioning the physical measure on the assumption that every stock price path ends
in the sample mean value. Formally, she sets M = P ( · |S10 = 327), turning the log of
stock price path into a Brownian bridge.22 As the option always expires in the money
under this measure, all probability of cancellation must go back to premature terminations
of underwater or unvested options — in contrast to the sample, where 15 % of the firms
have a negative mean return.23 The impact of underwater expiration is considerable. For
example, I apply the extended American Model from Carpenter [Car98, Section 3.3] to
the setting of Table 3.1. Carpenter reports that — given the Brownian bridge — an annual
stopping rate λ = 11% produces a cancellation rate bc = 7%. WhenM = P, in contrast,
the same cancellation rate is achieved with λ = 5.6%. The different stopping rates

18Routines are written in C++. An option valuation takes 2 seconds on a 400 MHz personal computer.
19Hazard rates (intensities) are frequently used in mortality models such as in reliability theory, credit

risk or life insurance. Confer Barlow and Proschan [BP75], for example.
20Obtained from a bootstrap algorithm.
21In a continuous-time model, M must be absolutely continuous with regard to P in order to enable

inference from the model onto the model characteristics. As discrete measures are not integrable under
the Wiener measure, an absolutely continuous proxy of the counting measure must be used.
22See Karatzas and Shreve [KS88].
23Note that 15% here is the proportion of firms with paths expiring underwater on average. I expect

the proportion to be even higher in the disaggregated sample of option grants.
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correspond to “extended American” prices of 26.6424 (λ = 11%) and 32.14 (λ = 5.6%),
which is a difference of 21%.
Notation The vector

³bκ,cSκ,bc,bρ´ is denoted by bθ, and its empirical counterpart by eθ.
Subscripts like 1101 correspond to sub-vectors, with elements eliminated that correspond
to zero.
For lack of grant-specific exercise data, I will setM = P, which means that empirical

characteristics are compared to model characteristics under the physical measure. In
order to obtain a good fit of statistical and model characteristics, I seek to minimize a
quadratic distance. The least value of

dist1111 : = C1 (eκ− bκ)2 + C2
³fSκ −cSκ´2 + C3 ( ec− bc)2 + C4 (eρ− bρ)2 , (9)

dist1110 : = C1 (eκ− bκ)2 + C2
³fSκ −cSκ´2 + C3 ( ec− bc)2 ,

dist1101 : = C1 (eκ− bκ)2 + C2
³fSκ −cSκ´2 + C4 (eρ− bρ)2 ,

is searched by variation of B, α and λ. The coefficients C1 to C4 are set equal to one
over the empirical variance of the underlying characteristic. In doing so, I assign equal
“importance” to each of them.

3.2 Results

I compare the prices of the extended American model and the barrier model under different
specifications. One aspect concerns the characteristics to be relevant for a good fit, which
is controlled by the type of distance: either the full term (dist1111), without correlation
(dist1110), or without cancellation (dist1101). Another aspect refers to the freedom of
choice for the model parameters B, α and λ. The parameters B and α are always free to
be optimized. The cancellation rate is either fixed at zero (attempt 1), at 3% (attempt
2), or free for optimization like B and α (attempt 3). On behalf of attempt 1, I check
whether independent stopping is essential for a good fit. Attempt 2 was motivated by a
practitioner’s rule-of-thumb, claiming that high-level employees fluctuate at a mean rate
of 3%.25 The stopping rate in the extended American model, as the only parameter, is
always optimized.
A comparison of model prices with those under SFAS 123 is not possible in the same

way, as the exercise related SFAS inputs are only loosely connected with bθ, as described
in Section 1.3. A unique SFAS price therefore cannot be derived from a given eθ. Instead,
I compute SFAS prices as if the model was true: Given values for B, α and λ, the
SFAS inputs are derived from the barrier model. The same procedure is repeated for the
extended American model.
Following Carpenter, I interpret the “expected option life” as the expected time until

termination (including cancellation) given that the option vests, i.e. EP [κ |κ ≥ V ]. It
is computed under the barrier model and inserted into the Black/Scholes formula as
maturity. The Black/Scholes price is multiplied then by the probability of survival over
the vesting period, which equals e−λV in the barrier model.
Table 3.2 presents prices for different types of distance and different specifications of

λ. Every block of rows summarizes models that are fitted for a common type of distance

24Despite thorough tests, I cannot resolve a contradiction between a price of 26.6 from my own com-
putations and that of 29 reported by Carpenter [Car98].
25See Appendix 5.6 for empirical evidence on management turnover.
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but with different specifications of λ. P denotes the model price, whereas PSFAS is the
corresponding price under SFAS 123, given the model is true. Figure 2 gives a summary
of prices.
First, I look how well the model can be fitted. The extended American model seems to

produce only negative correlations26. When dist1111 or dist1101 are applied, both including
correlation, the positive target value eρ = 0.14 forces the extended American model to
make unrealistic “compromises” in other characteristics, which results in extreme prices.
Correlation should therefore not be a criterion for fit of the extended American model.
Under dist1110, the optimal stopping rate λ = 8.1% is significantly lower than that of
11% reported by Carpenter. I attribute the difference to the choice of M, depending on
whether P is conditioned on the stock price at expiration or not (confer Section 3.1).
Next, I check whether the concept of a barrier option alone is flexible enough to achieve

a good fit, or, in other words, whether independent stopping is negligible. When λ is fixed
at 0, the distance is worst among all specifications. The fit of correlation is good, whereas
a cancellation rate of bc ≈ 4% (now caused by underwater expirations only) is much too
low. The prices under condition λ = 0 are the highest of all, coming close to the standard
optimal American call price27, which amounts to 39.2.
Next, the barrier model is “freely” adapted, i.e. B, α and λ are subject to optimization.

It is no surprise that the highest number of free parameters gives the best fit under all
distances, but the improvement is substantial. Remarkably, under dist1110, which ignores
correlation, the barrier model produces a positive correlation of 30.2%. With due care, I
judge the fact that the barrier model “spontaneously” takes the correct sign of correlation
as a signal that it captures some aspects of real-world exercise patterns well.
The parametrization with fixed λ = 3% gives a fit in between. It provides no further

insight, except that it probably would be a doubtful practice to estimate the stopping
rate by turnover rates of employees. The calibrated stopping rates of the barrier model,
λ = 9.8% (dist1111) or λ = 9.6% (dist1110), are similar to that of the extended American
model. Its high value — compared with typical rates of staff fluctuation28 — confirms the
conjecture from the bad fit of the setting with λ = 0: Externally driven terminations
seem to play an important part in exercise patterns.
The prices of the barrier model (see also Figure 2) suggest robustness regarding the

choice of distance as long as the cancellation rate is involved. The range of prices coming
from different distances is below 3.8% for λ = 0 and λ = 3%, and equals 2.5% for free
λ (without dist1101). The exceptional low price under dist1101 signals a lack of stability
when ec is ignored. Therefore, I will drop dist1101 in the further.
Under each distance, the barrier model yields a considerable decrease in prices through

an increase in λ (see also Section 3.2.2). The overall price level of the barrier model for
free λ is below that of the extended American model under dist1110, which amounts to
29.76. The prices deviate by −6.6% (dist1111) and −8.9% (dist1110). I attribute the loss of
value to the “inefficiency” coupled with positive correlation, as mentioned in Section 1.2.
Let me illustrate the impact by a reference model with negative correlation: The last row
of Table 3.2 shows a fit of the barrier model with the original empirical benchmarks for bκ,cSκ, and bc, but with eρ = −29.8%, which is the outcome of bρ for the extended American
model under dist1110. The barrier model then yields a price of 30.84, now even higher
than that of the extended American model.29 Hence, the lower correlation significantly

26Checked for λ ∈ [0, 20%], keeping everything else constant.
27The price reflects the vesting period, however the impact is weak.
28See appendix, Sect. 5.6.
29At first glance, an ”inefficient” exercise strategy, like that of the barrier model, cannot give a higher
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model + type of fitted parameters prices characteristics distance
parametrization distance

B α λ P PSFAS bκ cSκ bc bρ distiiii
barrier mod., λ = 0 1111 1.77 16.1% 36.87 33.38 5.91 237 3.9% 13.8% .305
barrier mod., λ = 0.03 1111 1.87 16.8% 33.79 31.14 5.94 242 5.2% 13.9% .148
barrier mod., λ free 1111 2.29 16.6% 9.8% 27.48 26.54 6.05 252 7.5% 14.1% .037
extended Am. model 1111 19.9% 19.60 19.20 4.92 224 13.7% −4.9% .928
barrier mod., λ = 0 1110 3.67 −12.2% 38.28 33.62 6.10 235 6.8% −98.2% .100
barrier mod., λ = 0.03 1110 3.53 −8.5% 34.91 31.37 6.11 241 7.3% −73.0% .074
barrier mod., λ free 1110 1.63 66.1% 9.6% 26.82 26.47 5.92 264 7.3% 30.2% .008
extended Am. model 1110 8.1% 29.44 27.84 6.23 253 8.2% −29.8% .072
barrier mod., λ = 0 1101 1.79 17.2% 37.05 33.64 6.10 243 3.8% 14.1% .065
barrier mod., λ = 0.03 1101 1.90 17.4% 33.88 31.31 6.08 246 5.1% 14.1% .053
barrier mod., λ free 1101 4.89 0.0% 16.7% 21.68 22.02 5.93 259 10.3% 14.1% .015
extended Am. model 1101 20.0% 19.52 19.12 4.91 224 13.8% −4.8% 2.102
empirical target of optimization 5.83 275 7.3% 14%
modified target for comparison with extended American model (dist1110) 5.83 275 7.3% -29.8%
barrier mod., λ free 1111 290 0.9% 6.7% .3084 .2865 6.08 245 7.5% -29.7% .058

Table 2: The extended American Model and three parametrizations of the barrier model. Either model is calibrated in order to fit best with
given observable characteristics of exercise: bκ, the mean time of exercise, given vesting; cSκ, the mean stock price performance at exercise,
given vesting; bc, the mean cancellation rate; bρ, the correlation between exercise time and performance at exercise. The empirical target
characteristics are found in row 3 from below. The corresponding characteristics achieved by the models are listed above.
Each block of rows summarizes models fitted under one type of distance between empirics and model. “1111” includes the fit of bκ, cSκ, bc,
and bρ. “1110” ignores bρ, and “1101” ignores bc. In the barrier model under “λ = 0” and “λ = 0.03”, only the starting level of the barrier
B = b(V ) and its growth rate α are subject to optimization, under “free λ” the stopping rate is optimized as well. The price P is computed
under the model with fitted parameters, PSFAS is the price according to SFAS 123, given the model is true: the European Black/Scholes
price with a maturity equal to the expected lifetime of the option, given it vests (computed under the model), adjusted for the probability
of cancellations before vesting (1− exp{−λV }). The last column contains the remaining distance to the target characteristics after fitting.
Under “1101”, a numerical restriction λ ≤ 20% has become binding for the extended American model. The last row shows the outcome of
a fit with the characteristics above, except correlation, now equal to the model outcome of the extended American model under dist1110.
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Figure 2: Prices of the extended American model and three parametrizations of the barrier
model. Each model is calibrated in order to fit best with given observable characteristics of
exercise. Different notions of distance between modeled and empirical characteristics form the
x-axis. Here, “1111” includes the mean values of exercise time, stock price performance at
exercise, cancellation rate, and correlation; “1110” excludes correlation; “1101” excludes the
cancellation rate. Under “λ = 0%” and “λ = 3%”, only level and growth rate of the barrier are
subject to a minimization of distance, whereas under “free λ” the stopping rate is also adapted.

increases the price.

3.2.1 SFAS Prices and Discretion

Figure 3 compares the model prices with their corresponding SFAS prices. The input
characteristics of exercise for SFAS 123 (the probability of vesting pvest, and the mean
lifetime given vesting eκvest) are hard to be observed. Like Carpenter [Car98], I obtain the
inputs from the fitted models, implicitly assuming the models were true. All SFAS prices
are below their model counterparts (with one exception in case “free λ under dist1110”,
a non-robust case). While the discount is around 10% for λ = 0, it reduces to 3% for
the free λ, and to 5.6% for the extended American model. Above I suspected the real-
world mean exercise time of being too high to be a realistic (risk-neutral) maturity for the
Black/Scholes formula. An overstated time could lead to higher prices. Since I observe
lower SFAS prices in most cases, my conjecture is not confirmed.
A more elaborate check compares barrier model prices and SFAS prices for parameters

on a grid G over the ranges B ∈ [1.1, 5.0], α ∈ [0.0, 0.4], and λ ∈ [0.0, 0.2]. It turns out
that the proportional “error” lies between −10% and +3%.

value than that of the optimal policy, to be applied in the extended American model. Note that, however,
λ is much lower in the barrier model’s parametrization since the barrier already shortens the average
option lifetime considerably. An equal λ in both models clearly leads to lower prices for the barrier
model.
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It may be reasonable to tolerate an error of 10% (a hypothetical one, given the model
is true) in favor of keeping things simple. However, it is doubtful whether the SFAS
method could be fed with correct inputs — even if holders did behave in accordance with
the barrier model. People who must rely on public data cannot estimate the probability of
vesting pvest directly because they will not be able to separate cancellations before vesting
from those after. Some model or assumption is needed to infer pvest and eκvest from other
characteristics. As there is no rule how the SFAS inputs should be obtained, there is
room for arbitrariness. To what extent could an accountant influence the SFAS price?
Computing the SFAS price under the assumption that the barrier model is true means
that (by fitting the barrier model) four characteristics of exercise are processed in order
to get pvest and eκvest. To my knowledge, such precision is not common.
The next paragraphs develop a scenario of a “somewhat dishonest” accountant who

is interested in manipulating the reported SFAS option price in whatever direction and a
mistrustful outside shareholder who is able to check the accountant’s statement to some
degree. Both the accountant and the shareholder refer to one sample of option exercises,
of which the shareholder can observe the cancellation rate ec and the mean time of exerciseeκ only. The accountant might or might not be able to observe the SFAS inputs — she
seeks to report a low pvest and eκvest to derive a low SFAS price, or high values for high
prices. Although these values cannot be checked by the shareholder, it is clear that not
every value of pvest can plausibly be paired with every ec and not every eκvest with everyeκ. What of relations between these four characteristics is plausible to the shareholder is
modeled with parametrizations (B,α, λ) of the barrier model. Each of them establishes
a quadruple (pvest,ec, eκvest, eκ). Since the shareholder observes ec and eκ, she accepts the
accountant’s statement about pvest and eκvest only if there is a barrier model (B,α, λ) that
produces both (ec, eκ) and (pvest, eκvest).
In particular, I suppose that option holders behave in accordance with a certain but

unknown parametrization of the barrier model, leading to an observation of ec = 0.073 andeκ = 5.83.30 The accountant now reveals her “estimates” of pvest and eκvest in accordance
with ec and eκ, which means that there is an “explaining” barrier model with (B,α, λ) ∈ G.
The accountant forms, based on the observation of ec, a “belief” about the true exercise
behavior in the shape of some (possibly different) parametrization of the barrier model.
She picks a barrier model that produces a correct ec = 0.073 ± 0.001, and obtains from
it the implicit pvest = exp {−λV }. Yet, the belief does not need to reproduce eκ likewise.
This way, I demand informativeness at a level of widely accepted ad-hoc statements like
“The probability of cancellation is assumed to spread evenly over the option’s runtime”
(leading to pvest := (T − V ) /T P (cancellation)) or “. . . to be distributed with a constant
hazard rate” (leading to pvest := exp {−V ec}).
With pvest and eκvest, the accountant is ready to calculate the SFAS price. Let both,

truth and the accountant’s belief, be points in the grid G introduced above. Since truth
and belief do not necessarily coincide, any possible true parametrization yielding ec ≈
0.073 and eκ ≈ 5.83 may face some arbitrary belief yielding the correct ec as well. Givenec, eκ, and the grid, the true model prices range from 27.5 to 32.6, whereas the SFAS
prices corresponding to the accountant’s belief take values in [25.3, 30.1]. Assuming every
combination of truth and belief to be admissible yields proportional discrepancies between
−22% and +10%. Since it is not clear whether all points in G are sufficiently realistic,
a more restrictive scenario pairs the beliefs with the (only) truth of the parametrization
B = 2.29, α = 16.6%, and λ = 9.8%, which is the model’s free fit under dist1111. Then,

30Selected from Table 3.1.
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mispricing lies between −8% and 9.5%. Note that the example is restricted to a universe
of barrier models, suggesting that the accountant is given a wider latitude in reality.
The degree of discretion seems to be serious, leading me to assert that some precision

should be added to the accounting standard. When pvest, the rate of options being vested,
is intransparent (a common situation, as I see it), a rule should specify how to estimate
pvest from the average cancellation rate ec — from a value that outsiders can verify. One
obvious way of implementation is a rule-of-thumb like setting

pvest := exp {−ecV } . (10)

Even if such a rule is systematically biased, at least the comparative power of SFAS
option values should improve. Under the barrier model, for instance, where λ > bc, the
rule was even not so bad since it increases the SFAS price relative to the “precise” SFAS
price, which uses exp {−λV }. This way, rule-of-thumb (10) would rebalance parts of the
undervaluation of the SFAS method.
Alternatively, the procedure chosen to link between ec and pvest could remain at dis-

cretion of the accountant, but in this case evidence should be requested whether the
procedure conforms with characteristics beyond ec as well. In terms of the above example,
the accountant would be ordered to verify if her belief on the barrier model produces the
correct eκ. Yet, the valuation process became more complicated, giving away the main
advantage of the SFAS method — simplicity.
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Figure 3: Model prices vs prices according to SFAS 123 under the assumption that the models
were true: The implicit probability of vesting and the mean stopping time, given that the option
vests, are taken from the models and used to compute the SFAS price.

3.2.2 Value Drivers

The sensitivity of the price to model parameters is investigated graphically, looking at
the price as a function of B, λ, or α, each with some representative values for remaining
parameters.
The price depends nonlinearly on the starting level B of the barrier at time V (Figure

4). While the curves show strong and monotonous growth roughly up to B = 200, the
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price may even decrease beyond this value — presumably, since an exponential barrier
crudely substitutes the optimal killing price.
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Figure 4: Prices of the barrier model as a function of B, the barrier level immediately after
vesting, for selected pairs (α, λ) ∈ [0, 0.4] × [0, 0.1], where α is the growth rate of the barrier
and λ the continuous stopping rate. The abscissa is logarithmic.

The sensitivity of the price to changing λ, the continuous stopping rate (Figure 5),
is strong, decreasing and weakly concave.31 Furthermore, the steepness of the function
roughly corresponds to a linear function of the absolute level of prices at some fixed λ.
Compared to the other parameters, α is a weak value driver. The sensitivity is still

strongest for low B (Figure 6).
To sum up, the price is a smooth function of the parameters (B,α, λ). The stopping

rate and the barrier level are more relevant for the price than α.
Since four characteristics of exercise are taken into account under dist1111, whereas

only three parameters can be calibrated, I clearly cannot control a single characteristic,
leaving the other ones unchanged. It is therefore not obvious how a fitted model, seen as a
map

³eκ,fSκ,ec,eρ´ = eθ 7→ (B,α, λ), responds to changes in eθ. The question should ideally
be treated with the help of a representative sample of characteristics. For lack of such
data, I will present comparative statics. Taking the optimal parametrization from “free λ
with dist1111” as a reference point, the price change is measured when each component ofeθ alters. Price changes are expressed in units of each characteristic’s standard deviation
σj from Table 3.1, in order to see which factors most drive the option value “in practice”.
I move each characteristic j in steps of size 0.2σj from − 0.6σj to +0.6 σj. The range is
narrow, first, to avoid problems with nonlinearity, second, because the characteristics of eθ
will be correlated32, whereas isolated variations of characteristics could lead to unrealistic
31The relation admits quadratic interpolation. A parabola, pinned at prices for λ ∈ {0; 5%; 10%},

yields proportional errors less than 10−3 within λ ∈ [0, 10%]. The error is around 10−2 with linear
approximation.
32See Carpenter [Car98, Table 1].
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Figure 5: Prices of the barrier model as a function of the stopping rate λ for selected pairs
(B,α) ∈ [110, 500]× [0, 0.4]. B is the height of the barrier at time V , the growth rate of the
barrier is denoted by α.

combinations if outer quantiles of marginal distributions are taken on.
The following table presents the sensitivity of price to an increase of each eθj by one

standard deviation. For a detailed summary, see Table 5.6 in the appendix.

characteristic eθj ∆ eθj (one stand. deviation) ∆P/P
mean time of exercise eκ 2.25 − 6.6%

mean stock price perf. at exercise fSκ 1.42 − 14.6%
mean cancellation rate ec 7.1% − 50.4%
correlation eρ of κ and Sκ 0.14 − 3.2%

Cancellations have by far the strongest impact, followed by the stock price performance
at exercise and exercise time. Note that the price decreases when the time of exercise
rises — as opposed to the Black/Scholes model used in SFAS 123. Deferring the average
time of exercise does not mean realizing a larger part of time value in general. Here,
the postponement of exercise is achieved by raising the barrier, accompanied by more
intensive independent stopping to keep fSκ down. A portion of profitable payoffs from
stopping at the barrier is therefore replaced by payoffs at independent stops, leading a
considerable amount of options to be cancelled out of the money.
The influence of correlation is weak, yet it should be noticed that it is one objective of

this paper to clarify whether correlation is an important issue at all. The answer is that
a model of similar flexibility as the barrier model should not ignore correlation, whereas
a crude estimate of eρ seems sufficient. Moreover, it is remarkable that fSκ — not relevant
in SFAS 123 — has a price impact two times stronger than eκ, which is close to the second
SFAS input eκvest, the mean lifetime given vesting. The significance of fSκ, however, might
be weaker when the characteristics are computed under a measureM that accounts for a
bullish/bearish market (cf. Sect. 3.1).
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Figure 6: Prices of the barrier model as a function of the barrier’s growth rate α for selected
pairs (B, λ) ∈ [110, 500]× [0, 0.1]. B is the height of the barrier at time V , λ is the continuous
stopping rate. The lower B, the steeper the curves are.

4 Conclusion
This paper deals with the valuation of employee stock options from an external perspective
such as that of shareholders or analysts. Unlike shareholders, who are assumed to be able
to freely take any position in shares or debt, option holders are not allowed to hedge
ESOs. This leads to option exercise patterns that substantially deviate from that of
standard theory. To account for this fact, I follow the approach of Carpenter [Car98]
in general. Observing certain characteristics of an exercise pattern, I specify a model’s
parameters such that it best reproduces the observations. The model incorporates vesting
periods as well as forced termination of the option. A grantee is supposed to exercise her
option if the stock price passes a deterministic threshold, which may grow exponentially.
Another source of forced terminations of the option life is some independent, exponentially
distributed random time. Parts of the calculation are solved in closed form, leaving a
smooth function to be integrated in two dimensions.
The model is specified by the intensity of independent stopping and level plus drift

of the barrier that triggers exercise. It adapts better to a representative set of empirical
characteristics than the extended American model from Carpenter [Car98]. Although
higher flexibility puts the model’s robustness at risk, the model is robust provided that
the annual cancellation rate of options is part of the characteristics fitted to. Hence, the
barrier model is applicable both to internal purposes and external reporting, as it is based
on publicly observable characteristics.
Besides practical application, a more theoretical contribution of this paper is the in-

vestigation of the influence of the correlation between exercise time and stock price at
exercise. Correlation is interesting because it largely deviates from theoretical values in
practice. As the model is able to incorporate a given correlation, it provides an opportu-
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nity to study the impact of correlation, given the model was true. The effect of correlation
exists, but it is weak. In general, the model prices are slightly lower than those of the
extended American model. Comparative statics show that the annual cancellation rate is
the most important value driver, followed by the stock price performance at exercise.
Since cancellations are such important for the option value, I use my model to investi-

gate how precisely the standard valuation approach accounts for options being canceled.
Supposed that the barrier model were true and all inputs of the SFAS method were mea-
sured reliably, SFAS prices would be rather stable and slightly lower than barrier model
prices. There is no evidence for suspecting SFAS 123 to be an unreliable proxy — at such
a favorable level of data provision.
The SFAS approach uses the probability of forfeiture before vesting as an input,

whereas an aggregated cancellation rate over different grants is often the only publicly
available information about cancellations. Using the barrier model in a double role as the
“truth” and “the accountant’s belief”, I observe a wide latitude of discretion left to the
accountant.

5 Appendix
In order to value the option when independent stopping is excluded (λ = 0), the payoff
π (τ ) is decomposed into π1 (τ) := [Sτ −K]+ IV (exercise at vesting), π2 (τ) := [Sτ −K]+ IB
(barrier is hit), and π3 (τ) := [Sτ −K]+ IE (option expires). Each payoff is valued sepa-
rately.

5.1 Part I: Exercise Immediately After Vesting

π1 (τ) is a European call with maturity V , strike K, and an additional exercise hurdle of
height B. The hurdle option can be decomposed into a European call with strike B and a
digital option paying out B−K iff SV ≥ B. Both are well-known, and the price of π1 (τ )
amounts to

P1 = e−rVEQπ1 (τ) = e−δV S0Φ (d1)− e−rVKΦ (d2)

where Φ (·) denotes the standard normal distribution function and

d1,2 :=
ln (S0/B) +

¡
r − δ ± 1

2
σ2
¢
V

σ
√
V

5.2 Part II: Exercise at the Barrier

In a first step, I condition the expected value on FS
V :

P2 = EQe
−rτπ2 (τ) = EQ

£
EQ

£
e−rτ

∗
(b (τ ∗)−K) IB

¯̄FS
V

¤¤
The random time τ∗, restricted to B, is σ (St, V ≤ t ≤ T )-measurable. On B, it is therefore
a stopping time of the augmentation of the filtration (σ (Ss, V ≤ s ≤ t))V≤t≤T . Since the
stock price path has the strong Markov property, I can replace FS

V by σ (SV ):

P2 = EQ
£
EQ

£
e−rτ

∗
(b (τ ∗)−K) IB

¯̄
SV
¤¤

(11)

Consider now the inner conditional expectation at some fixed SV . The structure is similar
to a barrier option33. The distribution of τ∗ under Q ( ·|SV ) is essential for computation.
33Rich [Ric94] calls such an option an up-and-out call with a rebate equal to the barrier minus strike.
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Given Q ( ·|SV ), the process Yt := ln (St/B), t ≥ V , is a Brownian motion with a constant
drift r− δ− σ2/ 2 and a starting point − ln (B/SV ). The hitting condition St ≥ b (t) from
(3) can be rewritten with C := ln (B/SV ) and the Brownian motion Zt := Yt−α (t− V )+
C to

Zt ≥ C (12)

Hence, τ ∗ is the hitting time of Z for a constant barrier C, where Z starts at time V
in 0, and runs at a constant drift β := r − δ − α − σ2/2. The distribution of τ∗ has a
well-known density h∗, which amounts to34

h∗ (t, C) dt := Q (τ ∗ ∈ dt|C) = C

σ
√
2π (t− V )

3
2

exp

(
−(C − β (t− V ))2

2σ2 (t− V )

)
dt

I return now to the unconditional measure Q. Taking into account that

C ∼ N
³
ln (B/S0)− βV, σ

√
V
´
,

the density h of τ∗ underQ is determined by integration over C: Set q := ln (B/S0)−αV .
Then

h (t) =
1

σ
√
2πV

Z ∞

0

exp

(
−(x− q)2

2σ2V

)
h∗ (t, x) dx .

After substitutions, the density can be rewritten to

h (t) = (a (t) + d (t)) exp {g (t)} (13)

with

ψ (t) : =
q

σ

r
t− V

tV
, g (t) := − (q − βt)2

2tσ2

a (t) : = Φ (ψ (t))
q

σ
√
2πt3

, d (t) :=

√
V

2πt
√
t− V

exp

½
− ψ2 (t)

2

¾
For further computation, I introduce

H (γ) :=

Z T

V

exp {−γt}h (t) dt , γ ∈ R , (14)

which is applied when returning to the price of π2 (τ):

P2 = EQe
−rτ∗ (b (τ ∗)−K) IB =

Z T

V

e−rt
¡
Beα(t−V ) −K

¢
h (t) dt

= Be−αVH (r − α)−KH (r) .

Computation The function H must be evaluated numerically. All parts of the inte-
grand are bounded, except d at t ↓ V . The peak is eliminated by a further substitution:
h is split up by resolving the brace in (13) into a (t) exp {g (t)} and d (t) exp {g (t)}. The
34See Rich [Ric94].
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first part is evaluated as before; for the second part I replace t by s := (t− V )1/2, arriving
at

I (γ) : =

Z T

V

exp {g (t)− γt} b (t) dt

=

Z √
T−V

0

2s exp
©
g
¡
s2 + V

¢− γ
¡
s2 + V

¢ª
b
¡
s2 + V

¢
ds

...

=

Z √
T−V

0

√
V

π (s2 + V )
exp

(
− q2s2 + (q − (s2 + V ))

2

2σ2 (s2 + V )
− γ

¡
s2 + V

¢)
ds

which has a bounded and equicontinuous integrand that enables numerical integration.
Finally,

H (γ) = I (γ) +

Z T

V

exp {g (t)− γt} a (t) dt

which is used in (14) as before.

5.3 Part III: Exercise at expiration

The remaining part π3 (τ ) collects cases in which the barrier was not hit before T . It is
similar to a European call capped at b (T ), but not equivalent since some of the paths
of S that would mature within [K, b (T )] do not do so because they hit b before. The
distribution is biased downwards. It is more convenient to turn now over from Z to
Xt := ln (St/S0) − αt, t ∈ [0, T ], which has the same drift β but starts at zero. Define
M := supV≤t≤T Xt. Recalling q = ln (b (0) /S0), the condition of not hitting the barrier
turns into

Xt < q, V ≤ t ≤ T, or, equivalently, M < q.

For the integral, the distribution of ST IE or that of XT IE is needed. I condition the
probability on XV , which is equivalent to SV with regard to the generated σ-algebras:

Q (M < q,XT ≤ z) = EQQ [M < q,XT ≤ z|XV ] . (15)

Note that E ⊂ {SV < B}, or, equivalently, E ⊂ {XV < q}. An application of the reflection
principle and Girsanov’s theorem35 yields

Q [M < q,XT ≤ z|XV = x] , x < q

= Q [M − x < q − x,XT − x ≤ z − x|XV = x] , x < q

= Φ

µ
z − x− β (T − V )

σ
√
T − V

¶
− exp

½
2β (q − x)

σ2

¾
Φ

µ
z + x− 2q − β (T − V )

σ
√
T − V

¶
According to (15), this has to be integrated over XV ∼ N

³
βV, σ

√
V
´
:

Q (M < q,XT ≤ z)

=
1

σ
√
2πV

Z q

−∞
Q [M < q,XT ≤ z|XV = x] exp

(
− (x− βV )2

2σ2V

)
dx . (16)

35Confer Musiela and Rutkowski [MR98, Sect. B3].
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For integration over the payoff π3 (τ), the density l (z) of XT is needed. I obtain it by
differentiation of (16)

l (z) dz = Q (M < q,XT ∈ dz) = dz
d

dz
Q (M < q,XT ≤ z)

=
dz

σ
√
2πV

Z q

−∞
exp

(
− (x− βV )2

2σ2V

)
dx

σ
p
2π (T − V )

×

×
"
exp

(
− (x+ β (T − V )− z)2

2σ2 (T − V )

)
−

− exp
½
2β (q − x)

σ2

¾
exp

(
− (z + x− 2q − β (T − V ))2

2σ2 (T − V )

)#
...

=

·
f (z)Φ

µ
q − µ1
σ1

¶
− g (z)Φ

µ
q − µ2
σ1

¶¸
dz

where

µ1 :=
V

T
z , µ2 :=

V

T
(2q − z) ,

U := T − V , σ1 := σ

r
V

T
U ,

f (z) :=
1

σ
√
2πT

exp

½
1

2σ2U

µ
V

T
z2 − (βU − z)2 − V β2U

¶¾
,

g (z) :=
1

σ
√
2πT

exp

½
1

2σ2U

µ
V

T
(z − 2q)2 − β2V U + 4βqU − (z − 2q − βU)2

¶¾
.

Using ST = S0 exp {αT +XT}, the price P3 of the part “exercise in T” finally amounts
to

P3 = EQe
−rT [ST −K]+ IE

= e−rTS0

Z q

ln(K/S0)−αT

µ
eαTez − K

S0

¶
l (z) dz ,

which can be solved numerically in a straightforward manner.

5.4 The Unhedgeable Risk of Independent Stopping

In this section I present a sufficient condition, under which the assumption of Section 2.3
not to price the unhedgeable risk of independent stopping can be justified. Suppose the
ESO is not granted to a single person but to a large group ofN employees, holding theNth
part each. By assumption, the risk of stopping is idiosyncratic to each of them. Formally,
there is a whole number of i.i.d. random times ϕi, the entirety of which is independent of
FS
T . This implies the identity of P and Q on σ (ϕi, i ∈ N). By independence, holding the
portfolio of claims

Cportf :=

½
1

N
πstop (τ ∧ ϕi) , due in τ ∧ ϕi

¯̄̄̄
i = 1, . . . ,N

¾

25



exercise time

T

K

share price 
at exercise

Bhigh

at vesting

at expiry

V0

range of barriers:
variable height, 
fixed drift

Blow

Figure 7: Support of the joint distribution of exercise time and stock price at exercise, given
dispersed barriers; the vertical line on the left consists of exercises immediately after vesting;
the line on the right of exercises in the money at expiry; the grey area arises from exercises at
various barriers, growing at the same proportional rate and starting from a level between Bhigh
and Blow, to be equally distributed.

is nearly the same for large N as holding a continuum of claims

Ccont := {P (ϕ ∈ dt) πstop (τ ∧ t) , due in τ ∧ t | t ∈ [V, T ]}
Provided additive prices and infinitely divisible ESOs, the similarity of Cportf and Ccont
is easily proved by the Strong Law of Large Numbers. The price of Cportf then nearly
equals that of Ccont. With (7) and independence of ϕ and FX

T , a generalization of (8) is
obtained:

lim
N→∞

price (Cportf) =
Z ∞

0

price (πstop (τ ∧ t)) P (ϕ ∈ dt) = Ee−r(τ∧ϕ)π (τ , T ∧ ϕ) , (17)

The same result can be justified by CAPM-like arguments as well.

5.5 Dispersion of the Barrier

Figure 1 shows that the joint distribution of τ and Sτ is degenerate to a zigzag line of
Lebesgue measure zero. While it quite frequently happens that holders exercise options
immediately after vesting or at expiry, thus causing jumps in the distribution of κ at V
and T , a single barrier at the time in between is less plausible. Instead, I follow the idea of
a group of option holders, each choosing some individual barrier. For simplicity, only the
level B is subject to variation, while the growth rate α remains constant (confer Figure 7).
I consider a special setting: B shall be equally diversified on some interval [Blow, Bhigh] such
that Blow > K. Let be ∆ := Bhigh − Blow and Bcenter := 1/2 (Bhigh +Blow). The option
portfolio is then correctly priced as the average of prices for different barrier functions.
Given that PB,α (T ) denotes the price for an individual barrier, one obtains

Pdispersed = ∆−1
Z Bhigh

Blow

PB ,α (T ) dx .

Keeping Bcenter fixed, I check how much Pdispersed is affected by an increase of ∆. The
impact is weak. For illustration, consider the option price as a function of ∆ and Bcenter
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Figure 8: Option prices as a function of dispersion and general level of the barrier. Areas of
equal lightness are areas of roughly the same price. Dispersion is measured by the width ∆ of
the barrier’s range

£
Blow, Bhigh

¤
. “Barrier at vesting” denotes the midpoint of the interval. The

area ”artefacts” is irrelevant, as the condition Blow> K is hurt there. Other parameters are
fixed at α = 20%, λ = 3%.

for fixed α = 20%, λ = 3%. It is drawn in contour lines in Figure 8. The flat lines on the
left half of the field show that the impact of ∆ is negligible at a range from 0 to about
50. Note that the range refers to the starting level of b at V . At expiry, this means a
range from 0 to 248 when α = 20%. Other characteristics show a low sensibility, too.
An analysis for α = 0% or α = 40% provides similar results. To sum up, a model with
a dispersed barrier looks more aesthetic but gives neither new insight nor essential price
differences.

5.6 Some Evidence on Management Turnover

Hadlock and Lumer [HL97] report an annual turnover rate of 3.8% for CEOs from a
sample of 259 U.S. firms. Kaplan [Kap94] compares the CEO turnover in large U.S.
and Japanese firms, coming up with rates of 2.2% (Japan) and 2.9% (U.S.) if CEOs
entering the supervisory board are left out. I assume that they may continue to hold
their options. Kang and Shivdasani [KS95] find 3.1% p.a. for Japanese firms when the
turnover is corrected for executives who remain on the board. The U.S. sample of Denis
et al. [DDS97] yields a weighted mean rate of 7.5%, yet it is not corrected in the above
sense. The same holds for the rate of 9.2% from Mikkelson and Partch [MP97], where
CEO turnover in unacquired U.S. firms is measured over ten years. Dahya, McConnell
and Travlos [DMT02] report forced CEO turnover at rates between 2.7% and 5% from a
dataset of 470 industrial firms in the U.K.
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modified fitted prices achieved dis-
target parameters characteristics tance

B α λ P PSFAS bκ cSκ bc bρ dist1111
4.48 175 .144 .072 28.91 26.82 4.95 214 .076 .142 .231
4.93 189 .155 .081 28.51 26.74 5.33 226 .076 .142 .151eκ 5.83 229 .167 .098 27.48 26.55 6.05 252 .075 .141 .037
6.28 259 .162 .103 27.04 26.55 6.38 265 .074 .141 .007
6.73 310 0.143 .106 26.72 26.66 6.69 278 .073 .140 .001
7.18 396 .105 .105 26.72 27.01 6.98 290 .070 .139 .022
190 190 .156 .071 29.58 27.66 5.49 230 .070 .138 .105
218 199 .162 .078 29.03 27.38 5.66 237 .072 .139 .023
247 211 .167 .088 28.30 26.99 5.85 244 .073 .140 .000fSκ 275 229 .167 .098 27.48 26.55 6.05 252 .075 .141 .037
303 259 .157 .110 26.47 26.01 6.26 261 .077 .142 .128
332 374 .094 .127 24.92 25.14 6.49 273 .081 .143 .269
360 662 −.014 .128 24.76 25.27 6.68 283 .080 .142 .451
.030 174 .176 −.007 37.70 34.16 6.13 241 .033 .141 .076
.045 185 .180 .025 34.33 31.68 6.10 245 .047 .141 .061
.059 201 .179 .060 3.93 29.15 6.08 248 .061 .141 .048ec .073 229 .167 .098 27.48 26.55 6.05 252 .075 .141 .037
.087 303 .116 .140 23.95 23.87 6.03 256 .089 .141 .026
.101 501 .000 .166 21.81 22.17 5.93 257 .100 .140 .018
.116 1816 −.263 .176 21.09 21.50 5.81 256 .111 .137 .021
.056 244 .120 .093 28.02 26.85 6.06 249 .075 .057 .044
.084 240 0.134 .096 27.80 26.72 6.07 251 .075 .085 .042
.112 235 .149 .097 27.64 26.64 6.06 251 .075 .113 .039eρ .140 229 .167 .098 27.48 26.55 6.05 252 .075 .141 .037
.168 222 .187 .099 27.36 26.50 6.05 253 .075 .169 .034
.196 216 .212 .100 27.15 26.38 6.04 255 .075 .197 .030
.224 208 .246 .101 26.97 26.30 6.03 256 .075 .225 .026

Table 3: Comparative statics for the barrier model. The model’s optimal fit for free λ
under dist1111 with empirical target characteristics from Table 3.2 serves as a reference
point (emphasized). Either characteristic changes ceteris paribus in steps of 1/5 of its
standard deviation from three steps below the reference point up to three above. Given
a modified target set of characteristics, the model parameters are now fitted again. Col-
umn“achieved characteristic” summarizes the corresponding model characteristics after
calibration. P denotes the model price, PSFAS is the price according to SFAS 123, given
the model is true. Notation of characteristics: bκ, the mean time of exercise; cSκ, the mean
stock price performance at exercise; bc, the mean cancellation rate; bρ, the correlation of κ
and Sκ. Notation of model parameters: B, the value of the barrier at vesting time V ; α,
the barrier’s growth rate; λ, the intensity of independent stopping.
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