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Abstract

Globally, the eradication of malaria has been challenging due to the problem of 

resistance that past and currently available drugs exhibit. This is exacerbated by the 

inherent need for anti-malarial drugs to be affordable to the poverty-stricken majority 

that is primarily affected by this burden.

This research has focused on the development of potential inhibitors of 1-deoxy-D- 

xylulose-5-phosphate reductoisomerase (DXR), an essential enzyme in the mevalonate- 

independent pathway for the biosynthesis of isoprenoids in Plasmodium falciparum. DXR 

mediates the isomerisation and reduction of 1-deoxy-D-xylulose-5-phosphate into 2-C- 

methyl-D-erithrytol 4-phosphate.

This enzyme has been determined to be a target for the development of novel anti­

malarial agents and extensive molecular modelling has been undertaken to develop 

inhibitors that fit into the DXR active site. The in silico docking data have been used to 

inform the design and synthesis of various N-benzyl-substituted phosphoramidate ligands 

that were determined to have potential as novel substrate mimics of fosmidomycin, a 

known DXR inhibitor.

Synthesis of the N-benzyl-substituted phosphoramidate ligands involved a nine-step 

sequence commencing from diethyl phosphoramidate. In all, some 40 compounds 

have been prepared, some of them new, and were fully characterized using NMR. 

Attention has also been given to the mass spectrometric fragmentation patterns exhibited 

by selected intermediates. Four of the final products were evaluated for in vitro 

antimalarial activity using a PLDH assay and exhibited IC50 values < 100 |aM.
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IPP: Isopentenyl pyrophosphate

iRBC: Infected red blood cell

mdr: Multi-drug resistance gene

MECP: 2C-methyl-D-erythritol-2,4-cyclodiphosphate

MEP: Methylerythritol phosphate; 2-C-methyl-D-erythritol 4-phosphate enzyme

NADPH: Nicotinamide adenine dinucleotide phosphate

NMR: Nuclear magnetic resonance

P. falciparum: Plasmodium falciparum

P. knowlesi: Plasmodium knowlesi

P. malariae: Plasmodium malariae

P. ovale: Plasmodium ovale

P. vivax: Plasmodium vivax

pfCRT: Plasmodium falciparum chloroquine resistance transporter 

PLDH: Malaria parasite lactate dehydrogenase 

RBC: Red blood cell 

RBM: Roll back malaria

RNA: Ribonucleic acid (as well as mRNA, rRNA, tRNA; messenger RNA, ribosomal RNA and 

transfer RNA)

TB: Tuberculosis
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WHO: World health organisation

Page 5



List of Figures

Figure 1. The life-cycle of the Plasmodium parasite in the human host.58

Figure 2. The various Plasmodium parasite cellular organelles that are essential for parasite 

survival and continued invasion of host RBC,72 which represent current and potential drug 

targets and relevant drug classes.

Figure 3. The structures of various quinoline-derived antimalarial drugs: quinine, 

mefloquine, chloroquine, ASA-MQb and ASA-Q.82

Figure 4. The structure of qinghaosu or Artemisinin 1 as well as the various synthetic 

analogues that contain different R-substituents that allow for the solubility that artemisinin 

lacks.96

Figure 5. The choline analogue, G25.122

Figure 6. Approximate time-line showing the introduction of anti-malarial drugs (green) and 

the estimated time-span for the parasite to develop resistance to the particular drug or drug 

combination (in red) in the indicated continents.132

Figure 7. The eukaryotic and archaeal pathways for the synthesis of IPP and DMAPP; these 

are different in the last 4 steps and this diversity is exploited in the design of anti-malarial

drugs.149

Figure 8. The non-mevalonate biosynthesis of IPP with required enzymes that form the 

catalytic site for reaction, with products essential for the survival of organism. The 

difference in the environment i.e. plastid vs cytosol of synthesis between the pathways is 

essential between the cells.

Figure 9. The crystallised structure of fcDXR enzyme (1Q0Q) with co-factor NADPH in each 

of the homo-dimers binding cavity, contains no ligand bound in the active site, water 

molecules excluded for clarity. The protein coloured by chain; blue represents subunit A, 

green represents subunit B and NADPH structure in ball and stick, coloured by atom type.163Page 6



Figure 10. The non-mevalonate pathway in the production of IPP; fosmidomycin blocks the 

conversion of substrate DXP to product MEP, a vital reaction in this biosynthesis.171

Figure 11. The docked structure of enzyme in fcDXR (2EGH) with co-factor NADPH (green), 

known inhibitor fosmidomycin (dark-green) and Mg2+ ion (blue). The water molecules 

excluded for clarity. The dashed lines represent hydrogen bond lengths in A and the 

neighbouring amino acid residues represented by name and ID number.163

Figure 12. The structure of DXR inhibitor fosmidomycin; essential structural features for 

anti-malaria activity, the phosphonate group (orange), the methylene spacer (green) and 

the hydroxamate moiety (blue). Fosmidomycin drawing constructed using Symax draw 3.2 

tools, atom type colour. 175

Figure 13. Synthesis of phosphonate esters and phosphonic acids.

Figure 14. Synthetic routes explored in the synthesis of the dihydroxy-amido 

phosphonate esters and their corresponding acid derivatives.

Figure 15. Reported and proposed W-benzylated fosmidomycin analogues

Figure 16. The synthetic pathway of the W-benzyl derivatives.

Figure 17. Furan derivatives with varying R groups, showing the expected regioisomer (a), in 

each case.

Figure 18. The various substituents in the docked ligands where n= 2, 3 or 4, R1= a (CH3), b 

(CH2CH3) or c (CH2OH) and R2= CH2Br, SH, OH, NH2 etc.

Figure 19. Structure of ligand 2a_Br benzyl substitution CH2-Br at R group which contains 

variation of the 2 methylene spacer and terminal methyl with water molecules, Crystal 

structure of ligand 2a_Br shown in ball and stick with atom type colour.178

Figure 20. The structure of P. falciparum DXR protein subunit A with NADPH co-ordinated in 

active site, natural ligand DXP removed from active site, protein colour by secondary type 

with ligand NADPH in ball and stick with atom type colour.163

Page 7



Figure 21. Protein 1Q0L subunit A with the distribution of 63 ligands; majority of the ligands 

falling outside the binding cavity/site of the enzyme. The protein colour by secondary type 

with ligands and NADPH in ball and stick with atom type colour.

Figure 22. The ligand 2a_H interacts in the fcDXR active site (1Q0L) with the conserved 

amino acids that are observed with fosmidomycin with additional interactions with the 

auxiliary groups that the analogues contain and 2 water molecules. The crystal structure of 

fosmidomycin and 1a_H are in ball and stick with atom type colour. The hydrogen atoms are 

not shown and dashed lines represent H-bond distance in A.178

Figure 23. Docked conformation of ligand 2b_SH in the in the fcDXR active site (1Q0L). With 

expected interactions with adjacent amino acids. The crystal structure of fosmidomycin 

structure in ball and stick with atom type colour.178

Figure 24. Docked conformation of ligand 4c_SH in the in the fcDXR active site (1Q0L). With 

expected interactions with adjacent amino acids. The crystal structure of fosmidomycin 

structure in ball and stick with atom type colour.178

Figure 25. Protein 1Q0Q subunit A showing the distribution of 63 ligands; majority of the 

ligands falling outside the binding cavity/site of the enzyme. The protein colour by 

secondary type with ligands and NADPH in ball and stick with atom type colour.178

Figure 26. The ligand 2c_OH interacts in the fcDXR active site (1Q0Q). The crystal structure 

of 1c_OH and DOXP are in ball and stick with atom type colour. The hydrogen atoms are not 

shown and dashed lines represent H-bond distance in A.178

Figure 27. Proteins 3AU9 and 3AUA subunit A showing the distribution of 63 ligands; 

majority of the ligands falling outside the binding cavity/site of the enzyme for 3AU9 and 

3AUA while all are excluded in binding site for 3AU8. The protein colour by CPK with ligands 

and NADPH in ball and stick with atom type colour.178

Page 8



Figure 28. The protein 3AU9 The DXR crystal structure with ligands in active site; 2a_NH and 

fosmidomycin (yellow) are in ball and stick with atom type colour. The hydrogen atoms are 

not shown and dashed lines represent all interactions in distance in A.178

Figure 29. The protein 3AUA The DXR crystal structure with ligands in active site; 2a_NH and 

FR9000089 (yellow) are in ball and stick with atom type colour. The hydrogen atoms are not 

shown and dashed lines represent all interactions in distance in A.178

Figure 30. The average Ki values (^M) across the fcDXR and PfDXR protein

Figure 31. The average Ki values (^M) across the fcDXR and PfDXR protein for increasing 

methylene spacer

Figure 32. 600MHz 1H NMR spectrum of compound 26 in CDCl3.

Figure 33. 600MHz 1H NMR spectrum of compound 28 in CDCl3.

Figure 34. 600MHz 1H NMR spectrum of compound 40 in DMSO-ĝ .
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1. Introduction
1.1. History of malaria

The Homo sapiens species has been infected with hundreds of parasites some of which have 

been responsible for serious diseases and illnesses throughout its evolution. The origins of 

these diseases were often misunderstood or unknown as knowledge of microorganisms was 

limited. However, the symptoms described in many ancient texts can be linked to diseases 

we know today. Malaria is among one of the oldest human diseases in recorded history and 

it continues to be the cause of death for millions of people all over the world.1 The existence 

of this parasitic disease can be traced far back in history in various parts of the world, where 

documented evidence confirms the presence of malaria throughout the millennia.

Written records about malaria can be dated for thousands of years to the period of Egyptian 

medicine (3000 -  400) BC as well as in some sub-continent writings.1,2 There are literature 

references to malaria from many countries; in India, ancient scriptures as well as songs 

contain references to fever-like symptoms that are considered to have been about malaria,3 

while in China, malaria had been discovered and described in the Nei Ching as fevers.3 Even 

though knowledge about malaria was limited, it is evident that this disease has been a 

medical concern for many years. Numerous occurrences of epidemic fever-related deaths 

have been attributed to malaria; these include the hypothesis that Alexander the Great died 

from malaria on his way to India.3

Competition for research attention and funding for diseases such as acute lower respiratory 

infection, TB (tuberculosis), HIV/AIDS (human immune virus/ acquired immune deficiency)4 

has grown, but malaria continues to be prevalent and remains a challenging illness in many 

parts of the world. Recently, the WHO (world health organisation) has classified HIV/AIDS, 

TB and malaria as priority diseases in the world,5 posing the highest risk to human health. 

Resistance has emerged to currently available medicines for all these diseases and no 

vaccine has yet been developed for any of them.5 There are promising malaria vaccines such
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the RTS.S candidate but these have yet to completely eliminate the parasite.6 Major 

research efforts are clearly essential if we are to eradicate these epidemic illnesses.

In the early stages of research there was minimal knowledge about malaria and it required 

years of investigation to finally establish the cause of the infection and link the symptoms 

displayed by the host with the vector of the parasite. Malaria was explained in ancient times 

as an evil spirit and by the well-known miasma theory,7 which led to the Italian name of 

Malaria meaning "bad air". The theory was conceptualised when malaria reached epidemic 

proportions in Greece by the Greek physician, Hippocrates.8 It was believed that the illness 

arose from contaminated air. After the discovery of bacteria by Antonie van Leeuwenhoek 

in 1676,9 as well as the experimental evidence demonstrated by Louis Pasteur that diseases 

are not spontaneously generated but are caused by certain microorganisms and bacteria,9 

research in microorganisms accelerated. Human parasites such as trematodes, nematodes 

and pathogenic protozoa are responsible for many diseases10 and it is essential that we 

understand their entire function and life cycles. Increased knowledge of parasites, in 

general, has promoted further research on the malaria parasite, in particular. Initial research 

was based mainly on observations with no scientific understanding, notions such as the 

initial connection of the illness to mosquitoes by Patrick Manson9 which opened the 

opportunity to the provision of scientific evidence.

The discovery of the Plasmodium parasite in the red blood cells of infected patients by a 

French physician Charles Laveran in 18801 sparked initial interest in the malaria parasite by 

researchers. Laveran was working as a surgeon in Algeria in 187811 when he noticed a black 

pigment on dead soldiers in the mortuary. He then started examining the bodies of soldiers 

who were suffering from this unknown disease.11 In 1897, Ronald Ross then discovered the 

parasite vector to be a certain species of mosquito, a fact which he demonstrated by 

deliberately infecting birds with malaria and then isolating the parasite from the salivary 

glands of the mosquitoes which had fed on the infected birds.12,13 This information 

narrowed the species of interest which was essential for a more specific or targeted 

approach. Various researchers assisted in understanding the malaria parasite after Laveran;
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these include Camillo Golgi, a neurophysiologist who identified the merozoite stage of the 

parasite, William MacCallum who, while working as a medical student at John Hopkins, 

discovered the reproductive stages of the malaria parasite.11

Once some knowledge on the biological and cellular level of the parasite become available, 

scientists looked towards analysing the parasite's lifecycle in its entirety. In order to move 

toward a drug treatment plan, extensive research was conducted on the parasite as well as 

those affected by it. Malaria is an intracellular protozoan parasite from the genus 

Plasmodium14 that is carried by the female Anopheles gambiae mosquito as the vector; the 

mosquito then infects the human host.15,16 There are over 400 species of the Anopheles 

mosquitos and only approximately 30-40 of these can transmit malaria.15-17 Four of these 

species are commonly involved in the infection of human hosts, namely Plasmodium vivax, 

P. ovale, P. malariae and P. falciparum,16 with P. falciparum being the most deadly. In 2008, 

the WHO identified a fifth species of malaria parasite; Plasmodium knowlesi, which 

originally infected primates and which also caused malaria in humans.18 The origin of P. 

falciparum in humans can be traced back to cross-species transmission through Anopheles 

mosquitos which were able to infect apes and then transfer this strain of malaria to

humans.19

The different malaria parasite species pose health threats to humans in various and unique 

ways. These differences include the incubation period that the parasite has in both the 

vector and the host, the haemazoin structures that each species forms during haemoglobin 

intake20 (sometimes used as a mechanism to diagnose the species of infection), and the 

genetic make-up of each species,21 which opens other channels for gene therapy where 

drugs can be developed specifically for each Plasmodium species. P. vivax is the most 

common species of malaria parasite and can be found in far more parts of the world22 than 

the other species. However, this species is believed to be more benign than other 

Plasmodium parasites and is often neglected in most research laboratories even though it is 

responsible for up to 80 million infections almost every year in Africa.23 The shape and size 

of the P. vivax haemozoin crystals were found to differ slightly from those of P. falciparum,
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with the P. vivax appearing to be cubic.20 In a study conducted in 29 villages in Papua New 

Guinea evaluating the relationship between parasitic density and age dependent clinical 

tolerance, it was found that P. vivax was the second most deadly Plasmodium species and 

more prevalent in younger patients.24 The parasite target erythrocytes that each species 

prefers also differ significantly. P. vivax parasites prefer to invade immature RBCs while P. 

falciparum invades mostly mature RBCs (red blood cells).23 Both P. vivax and P. ovale species 

have the ability to remain inactive or dormant in the liver stage while P. malariae and P. 

falciparum do not;25 this allows the former species to re-appear and cause infection relapses 

months after treatment of the first infection.

The majority of research efforts are focused on the P. falciparum species but it is important 

to note that, in most of Sub-Saharan African countries, 1% to 7% of malaria cases can be 

attributed to P. ovale and P. malariae.26 The P. falciparum haemazoin is similar, in some 

respect, to all the human-infecting species but significantly different to the bird-infecting 

Plasmodium species.20 Haemazoin structures of human-infecting species are still different 

enough to be distinguishable for diagnoses. In many high risk areas in the world, co­

infection across Plasmodium species is common,27 and the treatment of one species 

significantly affects another.

According to the WHO, 99 countries in the world were confronted with ongoing malarial 

infections in 2011.28 The malaria burden covers some parts of South America and Asia, but 

the majority of malaria deaths are occurring in sub-Saharan Africa.29 Efforts to reduce these 

mortality rates have been put in place by the WHO with 55 countries approaching WHA and 

RBM targets, which aim to reduce malaria cases by 75 % by the year 2015.28 These initiatives 

have been established to monitor progress in the fight against malaria.

Malarial infections are more common amongst young children and pregnant women.30 It is 

therefore important that new drugs are highly pure and safe. The parasite is more prevalent 

in poverty-stricken areas of the world;31 this can be seen by the correlation of high malaria 

rates with developing as well as third-world countries,28 with countries with low GDP (gross 

domestic product) growth being at particularly high risk whereas high GDP growth ratesPage 16



generally experience low malaria risk.32 It is therefore very important that new drugs are 

prepared from affordable starting materials in order to allow for affordable drug treatment. 

Even with such gloomy statistics there is hope, as there has been a 25 % global decrease 

over the three years since 201033 in the number of people who have died due to malarial 

infections. This indicates a move in the right direction that will, hopefully, lead to the 

eventual eradication of the disease. Current research is focused on the development of 

novel drugs with novel modes of action to overcome limitations of current drugs.

The major challenge facing malaria research is the re-occurring issue of anti-malarial 

resistance.28 Anti-malarial drugs which were once effective in malaria treatment have been 

affected by the drug resistance phenomenon which is predominantly exhibited by the P. 

falciparum species.34,35 Consequently, there is an urgent need for novel drugs that can 

combat resistance and effectively treat human malaria.

1.1.1. Life-cycle of the malaria parasite

The first step in understanding the Plasmodium parasite is to analyse its life-cycle; this 

allows for an understanding of its functioning and mechanisms of survival. The Plasmodium 

parasite passes through different stages as well as various morphologies and cellular 

environments.36 In some ways this is advantageous as it provides numerous potential 

targets for anti-malarial drug discovery with opportunities for novel modes of anti-malarial 

action. The parasite passes through six forms during its life-cycle in the malaria vector, 

namely female or male gametocytes and the corresponding gametes, zygote, ookinete, 

oocyst and sporozoite.4 In the human host, the parasite has two stages following infection, 

the liver stage and the erythrocyte or blood stage.37 In the mosquito, the parasite undergoes 

its reproduction stage involving the formation of new parasites capable of infecting a new 

host during the process of feeding. The stages of the parasite life-cycle can be represented 

from vector to host or from host to vector. The life-cycle of all Plasmodium species is similar 

with slight differences at each stage of maturation.
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Generally, the cycle can be explained beginning from the initial bite of human host, where 

the parasite is delivered via a blood meal, the sporozites travels to the liver where it 

matures in the hepatocytes to merozoites which invade RBC and replicate asexually, 

invading further RBC. The merozoites may develop into gametocytes which are taken up by 

the a mosquito, from ingestion via a blood meal. These further develop to gametes, which 

sexually reproduce to produce zygotes, from which there is eventual production of the 

sporozoites that are transmitted to human host during the next blood meal.

The first stage in the cycle (Figure 1) begins when the female Anopheles mosquito 

penetrates the tissue of the human host and deposits sporozoites37 through saliva during a 

blood meal. Sporozoites are slender haploids which enter the blood stream through the 

mosquito's salivary glands. From the host's bloodstream the sporozoites are transported to 

the liver.38 Fewer parasites leave the bite site and enter the human host liver than those 

present during initial infection.39 This is an excellent point for targeted termination as the 

parasite numbers are reduced and might be easier to kill. However, this stage is completed 

within 48 hours and diagnosis has to be timely.40 The process by which the parasites leave 

the bite site and are transported to the liver is not fully understood. There are not many 

drugs that target this stage of the parasite life-cycle, mainly due to the short time in which 

infection develops.

Page 18



Sporozoiti

Hypno^oite

Merosome OocystMerozoite [/Ookinete
Schizont

Trophozoite
Gametocytes

Salivary gland

Figure 1. The life-cycle of the Plasmodium parasite in the human host.58 

The parasites then commence a maturation stage in the liver where they go through various 

stages from the hypnozoite form (Figure 1); this is also known as the hepatic phase38 in 

which they either remain dormant or continue maturing over several days.41 This 

distribution is significant in some species, such as P. vivax, which prefer to remain in the 

dormant stage for longer periods. The liver stage of the malaria parasite was only 

discovered in 1948;42 until then early drug discovery had been mainly targeted at the blood 

stage of the life-cycle. The newly-evaded hepatocytes then become schizonts as in Figure 1, 

which when mature continue on to the blood infection stage.43 The schizonts invade RBCs, 

preferably mature red blood cells40 although different species of Plasmodium schizonts have 

different RBC preferences. Since the schizonts are maturing in the liver, diagnosis is 

impossible as they exhibit masked immunity.40 This stage of maturation shows no symptoms 

of illness. Maturation occurs over a few days before the mature schizonts burst out of the 

liver.44 When the schizonts mature they become merozoites; this is also known as a pre­

erythrocytic or exo-erythrocytic phase.41 The mature schizonts are then released in large 

numbers into the blood and begin to interact with the host's red blood cells.43 Liver-stage 

drugs would be ideal as these would terminate the parasites prior to their maturation or 

invasion. Page 19



The final stage of maturation known as the intra-erythrocytic or ring stage45 occurs when 

the liver bursts and releases merozoites, which at this stage, undergo asexual reproduction 

and multiply.46 The production of infected RBCs also known as iRBCs47 from the initial 

merozoites is complex and numerous techniques, such as live cell imaging and electron 

microscopy, have been used to investigate what occurs at this stage of the infection.41 Once 

this asexual stage ends (typically 48 hours after infection), the first matured merozoites are 

produced and released into the bloodstream40 and go on to infect more RBCs and thus 

results in the accumulation of iRBC (infected red blood cells) in the host cells. This 

continuous invasion weakens the host's immune system. The merozoites cannot be 

detected inside the RBC and are masked to the immune system, allowing them to undergo 

numerous cycles of asexual cell division which rupture the RBCs,41 releasing more 

merozoites into the bloodstream that invade more host cells. The RBC rupturing leads to 

small waste particles being left in the blood which result in the host displaying symptoms 

such as fever, chills, headaches, diarrhoea, nausea and body aches.48 These are the clinical 

symptoms of malaria.

The malaria parasites use combinations of movement and membrane fusion to attach to 

and invade the RBCs41. These include use of the actin-myosin motor to bind to the surface of 

the target protein and passive diffusion to enter the host cell. 49 The cleaved merozoites 

utilise an anchor made from actin-myosin filaments in the membrane to move sporozoites 

and invade the RBCs.50 The RBC membrane comprises a lipid bilayer covering a protein 

network,45 and the parasite needs appropriate strategies for traversing the cell wall. Binding 

to the motor is highly selective and only occurs in the Apicomplexa41 where an opportunity 

for targeted termination arises. All the stages of maturation of the parasite are completely 

dependent on and facilitated by the host cell.51 This is why there have been extensive 

studies on the blood stage of the parasite.

About 1% of the merozoites produced then undergo differentiation and become 

gametocytes, a process that takes 9-12 days.51 The newly formed gametocytes develop into 

microgametocytes and macrogametocytes, which form female and male gametes,
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respectively, and which are ingested by a mosquito during a blood meal.38 This is yet 

another potential point for targeted termination of the parasite as relatively fewer 

merozoites undergo maturation into gametocytes. The remaining 99 % of the merozoites 

produced continue to invade and infect more RBCs, thus multiplying parasites and 

exacerbating symptoms in the human host,38 finally leading to death. The next essential 

stages in the life-cycle of the Plasmodium parasite take place in the vector, i.e., in the 

female Anopheles mosquito (Figure 1). After the gametocytes have been ingested by the 

mosquito through the blood meal, they escape the host RBCs and begin the sexual 

replication stage.52 In the female Anopheles mosquito, the female and male gametes 

develop in the mid-gut,53 where they develop to infect another host during another blood 

meal. There are various strategies for anti-malarial drugs that target the vector at the stage 

where sexual replication occurs. The growth or development of the parasite once it enters 

the vector depends on the temperature and type of parasite species.54

The male macrogametocytes emerge from the RBCs that are ingested by the mosquito 

during a blood meal and go through a 3-step process of maturation; they grow external 

flagella as seen in Figure 1, after which they fertilize the female microgametocytes.55 The 

process of gametocytogenesis which follows is not fully understood,56 although some 

studies show that attempts by the mosquito's immune system to fight off the parasite 

triggers the sexual development stage. The gametocytes travel further up the mid-gut of the 

mosquito and develop into zygotes which form mature ookinetes57 which can either remain 

as they are or develop into oocysts. The oocysts finally produce a large number of 

sporozoites57 which travel to the salivary glands of the mosquito and are transferred into a 

new host when the mosquito obtains its next blood meal.

Relatively little research that focuses on the gametocytes phase appears to have been 

undertaken,56 possibly due to the complexity of their maturation in the RBCs, their masked 

immunity and the fact that this would require vector-based strategies. While various stages 

of the parasites life-cycle have been targeted with anti-malarial drugs that are specific to a 

pathway or phase, challenges remain. These include the problem of resistance.
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1.2. Past and present anti-malarial drugs

Even though malaria was not fully understood, the fever-like symptoms have been treated 

using traditional medicines that formed the bases for anti-malarial drug discovery centuries 

later. Now, each of the known drugs are expected to target a specific pathway, an organelle 

of the parasite and some the mosquito itself. Since the mosquito was known to be the 

vector for malaria,57 the first anti-malaria strategy was to eradicate the mosquito larvae as 

these would be easier to locate than the mobile adults59 using insecticides such as 

Pyrethrum.60 These were used until it became apparent that the cost and the inconvenience 

of having to continuously spray61 would be problematic. Malaria was wide-spread during the 

time of the Second World War (1940-1945)62 and many soldiers died from the disease as 

fighting extended the malaria-endemic to many parts of the world. After the war, a new 

malaria insecticide was discovered; known as DDT (dichlorodiphenyltrichloroethane), it 

would come to be one of the greatest weapons against malaria.63

The initial research for insecticides included natural-occurring derivatives such as 

chrysanthemic acid which was isolated from a flower38 and DDT. While initial attention had 

been on attacking the vector, scientists began to focus on the human host and research on 

anti-malarial vaccines began during 1 9 1 2 . 64,65 However, this approach has proved 

challenging due to the complexity of the parasite's lifecycle.66 The vaccines were expected 

to target various stages of the malaria parasite's maturation in the host65 and to be cheap as 

majority of infections occur in poverty-stricken areas in the world in which storage of 

vaccines in air tight or cold containers would be difficult.66

Use of insecticides as anti-malarial prevention methods was finally introduced by the WHO 

in 1973,67 but DDT as an insecticide was discovered in 1939 by a Swiss chemist, Paul 

Muller.38 Its ability to kill mosquitoes was exploited as a means of eradicating the vector. 

DDT was originally synthesised in 1874. However it was only used as an insecticide in 1939.67 

The insolubility of DDT in water and its solubility in fat68 were expected to preclude certain 

organisms and humans from being affected by DDT. During and after World War II, DDT was 

distributed to many parts of the world. This led to DDT being a cheap and effective way toPage 22



treat and prevent malaria.69 However, there were health risks that were suspected and 

unknown. While exclusion of humans as a DDT target was based on its inability to transverse 

the skin membrane as well as its insolubility in aqueous media, DDT was detected in plants 

which humans then ingested, and small amounts of DDT were thus absorbed into the 

human body.70

The advantageous properties of DDT negated its persistence in the environment as well as 

in other living organisms. Human cells, for example, are made of many fat tissue cells. DDT, 

being soluble in such media, is able to dissolve and bind to these cells. Obvious health risks 

are associated with such occurrences and the one disease researchers were most worried 

about was cancer. Research conducted on rodents showed DDT to be retained within the 

organism with a very long lifetime, as well as to cause cancer.67 In 1972, the use of DDT in 

the majority of the world was banned.67 However, some countries continue to produce and 

use DDT even today. DDT was sprayed indoors or outdoors in areas where mosquitos and 

mosquito larvae persisted and it was discovered to act by affecting the peripheral nervous 

system sodium and potassium (Na+/K+) channels when an insect came in contact with the 

insecticide.68 This leads to muscle spasms which then leads to the paralysis of the insect 

which finally results in death.38

The idea that DDT was a serious health hazard was evoked by Rachel Carson, a marine 

biologist, when she published her book "Silent Spring".71 Even though the book was lacking 

in scientific evidence, it led many researchers to investigate her allegations. It became clear 

that the use of insecticides pose both health and environmental threats and that DDT was 

able to persist in the environment for a long time and thus move up the food chain to affect 

all living organisms.67 These developments highlighted the need for effective anti-malarial 

drugs. The synthesis of new anti-malarial drugs was initially based on natural-occurring 

compounds as well as some known inhibitors of various organelles and pathways in other 

organisms, illustrated in (Figure 2).
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Figure 2. The various Plasmodium parasite cellular organelles that are essential for parasite 
survival and continued invasion of host RBC,72 which represent current and potential drug 
targets and relevant drug classes.

The first class of compounds to be developed as anti-malarial drugs were synthetic quinoline 

analogues of the natural product quinine.73 Synthetic quinolines have a 4-oxo-1,4- 

dihydroquinoline backbone and many are utilised as effective antibiotics or anti-malaria 

drugs today.81 These compounds are considered to target the food vacuole, an organelle 

(Figure 2) with a large number of enzymes that degrades and hydrolyses molecules that an 

organism no longer needs.74 Various models have been hypothesized as to how the food 

vacuole collects and degrades the unwanted haemoglobin75 and to understand the 

mechanisms which the various quinolines exploit. Theories on the role of quinolines as anti- 

malarials include haemazoin polymerisation, their effect on lipids membranes,76 the 

generation of free radicals77 and many others. Quinolines have been used to treat malaria 

for over 300 years76 and, in spite of their limitations, they are still used today. The quinoline 

motif occurs in many naturally-occurring compounds and is known to exhibit anti-bacterial, 

anti-malarial and anti-inflammatory properties78 as well as many other biologically 

important activities. The first of these compounds to be used was the alkaloid, quinine,Page 24



obtainable from Cinchona bark.73 This compound is suggested to have been discovered by a 

Peruvian Indian when he accidentally drank from water that had come in contact with the 

Cinchona bark and found his malarial symptoms alleviated. Once the news spread, 

missionaries who visited Peru exported the knowledge to parts of the Western world during 

the 17th century.80 Since then, numerous medically active derivatives of quinine have been 

synthesised.

Quinine was initially used as a crude extract. In 1820, however, Pelletier and Caventou were 

able to extract and isolate it as a pure compound.82 Early attempts to synthesise quinine 

failed due to its structural complexity;73 this meant that it needed to be extracted from the 

Cinchona bark daily. This was time-consuming and threatened the survival of the Cinchona 

species. Another limitation with the use of quinine is its toxicity; side effects include 

cinchonism, tinnitus, impairment of hearing, headache, nausea, vertigo, vomiting, 

abdominal pain, diarrhoea, loss of vision and, sometimes with higher doses, hypotension.80 

There was also poor patient compliance due to the unpleasant taste of the orally-ingested 

quinine.83 It became clear that new and improved anti-malarial drugs had to be developed, 

a challenge which was spurred by limited access to quinine itself during World War II.

Quinine and its stereoisomer quinidine have been used as first line drugs for malaria in 

many parts of the world; in fact, it is still used in countries like the United States.83 During 

World War II, major research efforts led to the synthesis of various analogues of quinine, 

which include the 4-aminoquinolines, amodiaquine and chloroquine.73 Chloroquine, as seen 

in (Figure 3), is a derivative of quinine that has been used for many years and its 

mechanisms of action has been the topic of considerable research.84 Chloroquine was an 

ideal drug being cheap, readily available and fairly easy to synthesise.83
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Figure 3. The structures of various quinoline-derived anti-malarial drugs: quinine, 
mefloquine, chloroquine, ASA-MQb and ASA-Q.82

The discovery of the formation of the "brown pigmentation" in parasite cells by Giovanni 

Lancisi85 was the initial step in understanding the mechanism of action for chloroquine and 

other quinoline-derived anti-malarial drugs (Figure 3). The dark particles were found to 

accumulate in the food vacuole, an acidic lysosome-like organelle which is responsible for 

degrading haemoglobin and discarding toxic haeme as dark, crystalline haemazoin.86 The 

prevailing theory is that chloroquine interferes with haeme detoxification which is a strategy 

for survival utilised by the parasite.85 The parasite takes up haemoglobin from the host in 

order to provide itself with essential nutrition for cell survival.

Another targeted mechanism that occurs in the food vacuole is haemoglobin hydrolysis,77 a 

process which is interrupted by protease inhibitors and artemisinins. Proteases are 

commonly-occurring enzymes present in most living organisms, and are responsible for the 

degradation of proteins into amino acids in various catalytic and regulatory pathways.87 In 

the malaria parasite, these proteases (plasmepsin I, palsmepsin II and falcipain) are 

responsible for the degradation of haemoglobin77 and for the rupture of RBCs. Research on 

protease inhibitors has been constricted by their ubiquitous nature,88 but cysteine protease 

inhibitors have shown potential as anti-malarial drugs.88 Protease inhibitors such as 

fluoromethyl ketones and vinyl sulfones77 have been seen to exhibit anti-malarial activityPage 26



but are toxicity towards the human host.89 During the Vietnam War, quinoline derivatives 

had been used so commonly that their efficiency was rapidly eradicated and, moreover, 

resistance was rising in other parts of the world.91 Sometimes, it is essential that we look to 

the past to change the future, and this approach led to the discovery of the artemisinins. 

Artemisinin (Figure 4), also known as qinghaosu, is a natural extract from the plant 

Artemisia (or qinghao) which has been used in China to cure common fevers and pain for 

decades.90

7

9 Artelinic acid 10

Figure 4. The structure of qinghaosu or Artemisinin as well as the various synthetic 
analogues that contain different R-substituents which allow for the solubility that 
artemisinin lacks.96

In 1967, the Chinese government assembled a group of researchers, known as the 523 

research programme,92 who were instructed to extract and test various Chinese herbs and 

plants for anti-malarial activity.93 Artemisinins was then identified to be the active 

component in the extracts that were evaluated. Although artemisinin was active against 

malaria, it was discovered to be highly insoluble in both water and oil media94 and had a 

short half-life;95 these short-comings prompted the synthesis of various analogues, as seen 

in (Figure 4).

Artemisinins have proved to be effective against all Plasmodium species96 and it is vital that 

its mechanism for inhibition be fully understood. However, the mode of action of these
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compounds has been a source of controversy amongst researchers. The prevailing theory 

involves the generation of free radicals.97 Artemisinin has a 1,2,4-trioxane backbone 

containing a peroxide group93 which is essential for anti-malaria activity; removal of the 

peroxide moiety yielded an analogue without inhibition activity.98 It has been proposed that 

the peroxide binds to haeme Fe2+ to produce an oxygen radical which then becomes a 

carbon-centred radical species,97 while another proposed mechanism involves the 

production of hydroxyl radicals.95 Both of these processes damage molecules that are 

essential for the parasites' survival and reduce the concentration of haeme ions which are 

necessary for the degradation of haemoglobin. The Fe2+ is thus believed to be responsible 

for the activation of the pro-drug artemisinin95 which then produces radical species that are 

responsible for anti-malaria activity.

Oil- or water-soluble derivatives of artemisinin, such as artemether and artesunate 

respectively, are now first-line anti-malarial drugs of artemisinin90 and are used in 

artemisinin-based combination therapy (ACT), which was developed in 1978 with other 

known drugs such as piperaquine, mefloquine, amodiaquine, sulfadoxine+pyrimethamine, 

atovaquone+proguanil, pyronaridine and lumefantrine.99 These combinations allow for the 

rapid elimination of the parasite by one drug, combined with the long life-time that the 

other anti-malarial drug provides. Unfortunately ACT has faced various drawbacks which 

earlier anti-malaria drugs have also suffered, namely, dangers associated with pregnant 

patients and, most importantly, anti-malarial drug resistance.90,100 Numerous studies have 

determined that use of ACT by pregnant women may result in severe malaria, spontaneous 

abortion, still birth or premature delivery.101 The problem is compounded by the fact that 

pregnant women and children are most vulnerable to malaria infection. The issue of drug 

resistance to ACT is also an emerging problem that has been detected on the Thai- 

Cambodian and, more recently, the Thai-Myanmar border.100

The lysosome is the site of degradation for biomolecules such as proteins, nucleic acids, 

carbohydrates and lipids,74 and is targeted by anti-malarial drugs which mainly disrupt the 

parasite's haeme degradation cycle. The ability of the parasite to develop mechanisms to

Page 28



modify this step gives rise to resistance and it has become increasingly important that novel 

targets are discovered. The targeting biosynthetic pathways (Figure 2) in the cytosol, 

mitochondria, the plasma membrane and apicoplast are the next logical choices.

The cytosol, also known as the intracellular fluid or cytoplasmic matrix, in which the 

organelles are compartmentalized, is an aqueous solution containing proteins and 

polysaccharides.74 A large number of anti-malarial drugs, such as pyrimethamine, proguanil, 

sulfadoxine, dapsone, gossypol derivatives, chorproguanil and many others, target various 

proteins in the cytosol, which are involved in numerous bio-syntheses as well as the 

regulation of organelle structures.77 The main target for these drugs has been the folate 

pathway, which is essential for the synthesis of nucleic acids and methionine,102 vital 

molecules for Plasmodium parasite DNA replication.

The anti-folates take advantage of the ability of the Plasmodium parasite to produce folates 

upon invasion of a host cell through the condensation of the host's pteridines, para- 

aminobenzoic acid (PABA) and glutamate.102 The parasites' inability to utilise host 

nucleotides103 means that the biosynthesis of these nucleotides must occur in the parasite. 

The anti-folates inhibit vital enzymes used by the parasite in this biosynthetic pathway; 

dihydrofolate reductase can be inhibited by chlorguanide, and dihydropteroate synthetase 

can be inhibited by dapsone, while pyrimethamine and sulfadoxine are able to inhibit both 

enzymes104 and have been used in a combination therapy which is commercially available as 

Fansidar.105 Anti-malarial drugs, present and past, have been identified in traditional plants 

and marine organisms; one such drug is gossypol which inhibits the important glycolysis 

cycle106 in the parasite. Gossypol, a toxic extract from cotton seeds was discovered as an 

anti-malarial drug which inhibits lactate dehydrogenase,106 and derivatives showing 

inhibition of chloroquine-resistant strains are being used as anti-malarial drugs.107 These 

drugs have shown low toxicity and a reduced number of side effects,108 but because they 

compete with the natural substrate, resistance has risen and hence their use has been 

limited.106
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Recently, Hsp (heat shock protein), a group of proteins that have been of interest in cancer 

research, are now being studied as a potential anti-malaria drug targets.107,109 Cancer as well 

as Plasmodia cells utilise Hsp70 when subjected to cellular threat.109 The effect of 

Plasmodium parasite Hsp90 has also been studied. Research linking the emergence of 

resistance to P/Hsp90 (which is over expressed during treatment)110 has suggested that dual 

inhibition of these proteins by an anti-malarial drug would yield a highly effective 

combination therapy without the prospects of resistance. The mitochondria are the main 

source of producing energy for eukaryotic organisms,74 and are responsible for the electron 

transfer chain.111 The mitochondria are a valid target for anti-malarial agents such as the 

anti-malaria drug atovaquone (2-[trans-4-(4'-chlorophenyl)cyclohexyl]-3-hydroxy-1,4-

hydroxy naphthoquinone). Atovaquone is an analogue of ubiquinone, the natural substrate. 

It induces competitive inhibition and binds the enzyme dihydroorotate dehydrogenase.115 

The drug is used in combination with proguanil, another anti-malaria drug, to reduce the 

development of resistance.114 The x-ray crystal structure of the cytochrome bc1 complex co­

ordinated to atovaquone has not been determined. Research using computational 

techniques has indicated potential interactions that the inhibitor may have with the 

complex.116 This combination therapy of atovaquone+proguanil has proved to be an 

effective chemoprophylactic for people travelling to high-risk malarial areas.117

Another approach in anti-malarial therapy involves the disruption of the plasma membrane/ 

cell wall. The plasma membrane is essential for the cellular compartmentalization in 

eukaryotic and prokaryotic cells.74 The membrane is the layer composed of phospholipids 

and protein that protects the interior of cells as well as performing functions such as acting 

as a receptor to stimuli and facilitating transportation of molecules in and out of the cell.118 

The importance of membrane synthesis119 is evidenced by the increase of 500% of the 

population of phospholipids in RBC after infection by the parasite.120 It was discovered that 

quaternary ammonium choline analogues inhibited this membrane biogenesis; these 

analogues were designed and evaluated for potency against malaria.121 An analogue with 

outstanding inhibition was G25, in (Figure 5), which was able to completely clear malaria 

when tested using very low doses; its IC50 value of 0.9 |aM compared very favourably withPage 30



that of the known inhibitor chloroquine (0.8 |aM). Moreover, G25 is active against strains

that show resistance to currently used anti-malaria drugs.122
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Figure 5. The choline analogue, G25.122

These anti-malaria drugs are choline analogues; choline is a nutrient that is necessary in the 

synthesis of membrane phospholipids.123 This bio-synthesis is vital for the Plasmodium 

parasite's survival during its stage of producing merozoites where large numbers of 

membrane biogenesis allows for the parasite to continue the infection of RBCs. However, 

these analogues' bioavailability as oral drugs is low and a solution to the problem has not be 

obtained.124 These compounds show potential not only as anti-malaria drugs but as drugs 

that will address the resistance that some drugs that are commercially available are facing.

Current research in our group focuses on the inhibition of an enzyme in the unique 

organelle apicoplast.125 The apicoplast was only discovered in 1996126 and is a non­

photosynthetic plastid from the Phylum Apicomplexa occurring exclusively in protozoan 

parasites127 which cause diseases such as toxoplasmosis, babesiosis, coccidiosis and, most 

importantly, malaria.128 As a uniquely protozoan organelle the apicoplast provides desirable 

pathways that will exclude the human host. The apicoplast is located close to the 

mitochondrion and, for a long time, it was believed to be a storage site for mitochondria 

due to their close proximity and their small size.127,129 Live cell imaging of the asexual stages 

of the malaria parasite revealed the apicoplast as a separate organelle that goes through 

various morphological changes in each step of maturation.128 The P. /alciparum apicoplast is 

essential for the survival of the parasite and therefore a potential target for anti-malaria 

drugs. Further research on the function, properties, metabolic pathways and genetic make­

up has followed. Page 31



1.2.1. Drug resistance

The emergence of anti-malaria drug resistance can be traced back to 1986 when resistance 

to chloroquine and some of its derivatives was reported.132 Resistance spread from the Thai- 

Cambodia region to the rest of the world.133 Resistance to many more drugs began to 

become apparent and the problem of multi-drug resistance emerged.

The time-span for drugs in clinical use seems to be reducing significantly over the years as 

illustrated in (Figure 6). This is evidenced by the fact that resistance to quinine only became 

evident 278 years after its introduction, whereas recent drugs such as proguanil have been 

faced with resistance only a year after commercial introduction.134 It is therefore evident 

that the Plasmodium parasite has developed mechanisms to develop resistance faster than 

it was able to in the past. There are many factors that determine the emergence of 

resistance including the mode of drug action, natural mutation of the Plasmodium genome, 

the transmission level, patient compliance, host immunity and the drug factors such as half­

life, dosing, pharmacokinetics and cross resistance.134 One such mechanism involves the 

resistance to anti-folates. Anti-folates prevent DNA (deoxyribonucleic acid) replication, 

resulting in reduced synthesis of methionine and conversion of glycine to serine, therefore, 

once the parasite no longer has supplies of methionine and serine cell death occurs.136 The 

dh/r (dihydrofolate reductase) and dhps (dihydropeteroate synthase) are the enzymes that 

anti-folates inhibit but mutations in the genes of resistant strains of these enzymes 132 

prevent the recognition and bonding by the anti-folates.136

Chloroquine has been a widely used anti-malaria drug for more than 50 years.138 Its anti­

malarial properties were deemed to be perfect, and the emergence of resistance to it led to 

panic. There are many theories to explain the chloroquine resistance but the three 

prevailing possibilities are: i) reduction in the parasite's up-take of the drug; ii) the expulsion 

of the drug from the food vacuole135,136 and iii) mutation of p/CRT (Plasmodium /alciparum 

chloroquine resistance transporter), a transporter in the lysosome,139,140 which is important 

since the action of chloroquine is attributed to its ability to accumulate in the lysosome. The 

first theory is based on the fact that chloroquine is a weak base and when pH levels of thePage 32



lysosome are elevated, the neutral and mono-protonated forms of the drugs are able to 

permeate the membrane and, hence, do not accumulate in the lysosome.141 The second 

relies on an expulsion mechanism, mediated by an ATP-dependent transporter; P- 

glycoprotein, which encodes for the mdr (multi-drug resistance gene), in this case pfmdr, 

which reduces the concentration of chloroquine in the lysosome.136 Finally mutation of 

pfCRT, which facilitates transportation of chloroquine into lysosome, leads to the drug being 

transferred back into the cytoplasm.72

Figure 6. Approximate time-line showing the introduction of anti-malarial drugs (green) and 
the estimated time-span for the parasite to develop resistance to the particular drug or drug 
combination (in red) in the indicated continents.132

Atovaquone, which acts on the electron transfer chain, experienced resistance rapidly when 

it was used as a monotherapy, and is now therefore used in combination with proguanil.114 

Resistance is attributed to: i) mutation in the cytochrome b gene which results in changes in 

the amino acid sequence of the parasite rendering atovaquone ineffective; and ii) the slow 

uptake and high lipophilicity which produces low concentrations of the drug.137

The current first-line treatment for P. falciparum in endemic areas is ACT.142 Resistance to 

the artemisinin-mefloquine combination was recently detected in the Thai-Cambodian 

region in early 2000,143 the same region where resistance to chloroquine was first detected.
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This is of great concern as there are no drugs in reserve which could be used if this 

resistance were to spread, reinforcing the need for the discovery of novel drugs.

1.3. Non-mevalonate pathway

Developing research is now focusing on the apicoplast target, specifically the biosynthesis of 

IPP (isopentenyl pryrophosphate) and DMAPP (dimethylallyl pyrophosphate) through the 

mevalonate pathways or non-mevalonate pathways.144 For a long time, it was believed that 

all living organisms synthesised IPP and DMAPP through the mevalonate pathway.145 It was 

only in 1996 that the non-mevalonate pathway was discovered to produce these 

biosynthetic precursors.145

In high eukaryotes, plants and some bacteria, the mevalonate pathway is responsible for the 

production of: i) farnesyl diphosphate and geranylgeranyl diphosphate which are lipids that 

can be added to proteins for functionality; ii) isopentenyl adenosine which is essential for 

tRNA (transfer RNA) modification; iii) coenzyme Q, an antioxidant that is involved in the 

electron transport chain in mitochondria; iv) dolichol and dolichol-phosphate which are 

necessary in protein glycosylation; and v) the production of an important molecule for bile 

acids and steroid hormones such as cholesterol.146,147 The alternative non-mevalonate 

pathway has been discovered in the chloroplasts of algae, cyanobacteria, eubacteria, both 

gram positive and negative bacteria, and apicomplexan.148 It is the differences in eukaryotic 

and archaeal non-mevalonate pathway (Figure 7) that can be exploited for the selective 

anti-malarial drugs in the inhibition of the P. falciparum.

The malaria parasite, which falls in the apicomplexa category, utilises this alternative 

pathway in the biosynthesis of IPP and DMAPP precursors which produce molecules that 

participate in processes such as protein prenylation, anchoring and degradation, electron 

transfer, regulation of hormones and W-glycosylation,148,149 processes which are essential 

for the survival of the parasite in the human host and vector. The apicoplast, as mentioned 

before, is the plastid in which apicomplexa formation is attributed to cyanobacterial 

endosymbiosis.127,129 The non-mevalonate pathway is of medicinal interest because of its
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conservation in apicomplexa and absence in the human host. Thus inhibition of the DXOP/ 

MEP (1-deoxy-D-xylulose-5-phosphate) pathway would lead to the development of 

treatments for species such as E.coli, M. tuberculosis and most importantly and specifically 

for this research, P. falciparum. The focus of the current research is specifically on the IPP 

precursor synthesis and, in particular, the enzymes that are involved throughout the 

biosynthetic steps.

1.3.1. Isoprenoid biosynthesis

Isoprenoids are derived from IPP and are a diverse class of natural products.150 They are 

collectively known as terpenes or terpenoids151 and also include steroids and carotenoids.152 

These terpenes make up biologically-important molecules such as vitamins, hormones and 

cytosolic agents.153 There are a large number of enzymes that take part in the synthesis of 

various chemical products and therefore inhibition of these key enzymes will result in 

termination of these processes and finally lead to cell death. The initial research on the 

non-mevalonate pathway was conducted by Rohmer and co-workers in 1999.154 Using 

isotopic-labelled glucose, they traced the formation of hopanoids using NMR (nuclear 

magnetic resonance) data.151,155 The difference between the eukaryotic and archaeal MVA 

pathways led to the target enzymes such as DXR being discovered.

The synthetic pathway begins with the catalysed decarboxylation and condensation of 

pyruvate and D-glyceraldehyde 3-phosphate by, first, the enzyme DXS (1-deoxy-D-xylulose-5- 

phosphate synthase), which requires thiamine diphosphate and Mg2+ or Mn2+ ions152 for 

enzymatic activity, yielding DOXP/ DXP as a product.156 The DXS enzyme is involved in the 

synthesis of vitamins B1 and B6 with an inhibitor being reported for Mycobacterium 

tuberculosis with IC50 value of 10.6 |aM.156
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Figure 7. The eukaryotic and archaeal pathways for the synthesis of IPP and DMAPP; these 
are different in the last 4 steps and this diversity is exploited in the design of anti-malarial
drugs.149

1.3.2. DXR-catalysed mechanism

The second step in the synthesis is the conversion of DXP to MEP (Figure 8) by enzyme DXR 

or IspC which require a co-factor NADPH and a divalent cation such as Mg2+, Mn2 or Co2+ 

ions.156,157 The enzyme DXR uses NADPH as hydride source for intramolecular isomerisation 

and reduction of DXP to MEP.156 This is the target enzyme in the current research as 

crystallographic data is readily available and an opportunity exists for development of
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inhibitors because currently known inhibitors of this pathway are faced with challenges. The 

produced MEP is converted into CDP-ME (4-diphosphocytidyl-2-C-methyl-D-erythritol) by 

the enzyme CTP (cytidine triphosphate) by transfer of the diphosphocytidal group.158 The 

enzyme requires Mg2+ for activity. CTP has been fully characterised as a homo-dimer which 

is potentially druggable by suitable ligands.156 The next step in the synthesis is the 

phosphorylation of CDP-ME to CDP-ME2P by CDP-ME kinase enzyme.154 The enzyme 

transfers the v-phosphoryl group from ATP in the presence of Mg2+ with promising lead 

compounds determined by in silico HTS for this kinase,156 as illustrated in (Figure 8).

The final 2 steps involve the conversion of CDP-ME2P to MECP, a cyclic diphosphate, in the 

presence of Mn2+ and Zn2+ ions156 by monomeric enzyme MECP synthase.148 The final 

reaction, catalysed by MECDP synthase, is the least understood where the cyclised 

diphosphate undergoes reduction followed by elimination which yields IPP148 and, from 

some of the IPP, DMAPP is made.151

Nonmevalonate pathway Mevalonate pathway

pyruvate + G3P
^  DXS/CLA1

DXP  
|  D XR

MEP
^  CMS/ISP1 

CDP-M E

4
ip p *<............

plastids

Acetyl-CoA
^  A C C T

Acetoacetyl-CoA 
^  HMGS

HMG-CoA 

^  HMGR

MVA

I
— >  IPP

Cytosol

Figure 8. The non-mevalonate biosynthesis of IPP with required enzymes that form the 
catalytic site for reaction, with products essential for the survival of organism. The 
difference in the environment i.e. plastid vs cytosol of synthesis between the pathways is 
essential between the cells.158
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This complex synthesis and cascade of enzymes reveals a large number of potential anti­

malaria drug targets. The majority of known inhibitors are analogues of natural substrates 

therefore a start would be optimisation of properties of these analogues with the optimisim 

that a potent inhibitor can be discovered.

1.4. Target enzyme: DXR

1.4.1. Crystal structure

The target enzyme DXR's crystallographic structure has been determined and illustrated in 

(Figure 9), and this allows computational studies to be conducted readily on the structure as 

well as to deduce data about the active site. The target DXR is the second enzyme in the 

catalytic synthesis of IPP, and it is a critical enzyme for the production of vital molecules that 

the Plasmodium parasite requires. It is therefore important that the DXR structure is fully 

characterised and analysed.

The DXR enzyme is a homo-dimer of 42-45 kD that requires the presence of a divalent 

cation such as Mg2+ and a co-factor NADPH (nicotinamide adenine dinucleotide phosphate) 

for activity.158 The first published crystal structure of the DXR enzyme was the apoenzyme158 

and, since then, many crystal structures have been published and with each further 

understanding of the enzyme has been achieved. The DXR is made up of 3 domains: the 

largest N-terminal domain bind co-factor NADPH comprises of 150 residues160 while the 

small C-terminal domain of 1-150 residues binds natural substrate DOXP.161 These 2 

domains are joined by a linker domain that is 312-398 residues long160 forming a V-shaped 

structure that is flexible to allow the opening and closing of the active site (Figure 9).160,162
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N-terminal

C-terminal

Figure 9. The crystallised structure of FcDXR enzyme (1Q0Q) with co-factor NADPH in each 
of the homo-dimer's binding cavity; contains no ligand bound in the active site; water 
molecules are excluded for clarity. The protein coloured by chain: blue represents subunit A, 
green represents subunit B and the NADPH structure is in ball and stick representation, 
coloured by atom type.163

1.4.2. Binding mechanism

The mechanism of pfDXR begins with the deprotonation of the C-4 hydroxyl group of natural 

ligand DXP which results in bond C3 and C4 to be cleaved producing the enolate of 

hydroxyacetone the presence of Mg2+ stabilises this co-ordination along with glycolaldehyde 

phosphate.164 Then via an aldol reaction a C-C bond is formed between C2 and C4 which 

leads to the production of intermediate 2-methyl-D-erythrose 4-phosphate which is further 

reduced by NADPH yielding the product MEP.165 The (Figure 10) shows the enzymes as well 

as inhibitors that interact in the pathway.

The natural substrate DXP enters the active site and binds to conserved amino acid residues 

Ser199, Ser235, Asn240, Lys241 and Glu244.166 The FcDXR has similar residues. The crystal 

structure of FcDXR, mtDXR and pfDXR with natural substrate DOXP, a known inhibitor 

fosmidomycin and its acetyl derivative FR900098, have been determined. These ligands'Page 39



crystal structures that are readily available bind DOXP analogues which aim to inhibit 

malaria parasite through competitive inhibition with natural substrate. Upon entering the 

binding site, the phosphonate group induces the flexible loop to open, the hydroxamate co­

ordinates to the Mg2+ ion, and groups along the ligand interact with surrounding residues 

through hydrogen bonds, ionic bonds, n-n interactions and various other bonds.167

1.4.3. Known DXR inhibitors

The search for novel drugs with novel modes of action is the focus of many research studies. 

This has been the communication that the WHO has been conveying to all scientists as 

resistance hinders all efforts to eradicate malaria. The discovery of fosmidomycin and its 

acetyl derivative,168 natural antibiotics produced by Streptomyces lavendulae, in the 1970's 

as inhibitors of the DXR enzyme169. They provided the basis for the search of new ligand 

structures with novel modes of action. These antibiotics were evaluated for anti-bacterial 

infections but were abandoned due to limitations.170 These bind to the DXR enzyme 

mimicking the natural substrate, blocking the conversion of DOXP to MEP (Figure 1 0 ).168-169

Figure 10. The non-mevalonate pathway in the production of IPP; fosmidomycin blocks the 
conversion of substrate DXP to product MEP, a vital reaction in this biosynthesis.171

The binding of fosmidomycin in the active site of pfDXR has been extensively studied and 

more analogues have been developed that attempt to enhance activity. Fosmidomycin and 

its acetylated derivative FR900098 were evaluated as potential drugs. However, they had 

limitations such as absorption, recrudescence and half-life.172 Fosmidomycin has also been 

used in combination with Clindamycin, another apicoplast-targeting inhibitor, and these
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show promising results as anti-malarial drugs.169 The potential exists that this combination 

may be a new class of anti-malaria drugs.

Figure 11. The docked structure of enzyme in FcDXR (2EGH) with co-factor NADPH (green), 
known inhibitor fosmidomycin (dark-green) and Mg2+ ion (blue). The water molecules 
excluded for clarity. The dashed lines represent hydrogen bond lengths in A and the 
neighbouring amino acid residues represented by name and ID number.178

The binding mechanism of fosmidomycin (Figure 11) is similar to the DXP substrate. 

Therefore analogues have to contain structural features that are conserved in both DXP and 

inhibitors for activity to be observed. The essential SAR (structure activity relationship) 

contains the particular necessary structural features in the inhibitor for activity to be 

observed.173 The analysis has been conducted by many research studies is illustrated in 

Figure 12 finding that the substitution of the phosphonate head group, which is responsible 

for forming tight hydrogen bonds with various residues as well as the water molecules in the 

DXR binding cavity,174 resulted in no activity. Therefore the phosphonate group is essential 

for binding DXR by increasing the methylene spacer or hydrophobic patch. Reduction in 

activity was observed and thus the two methylene spacer is necessary to permit the 

simultaneous binding of hydroxamate and phosphonate groups. The presence of an electron 

withdrawing group near the phosphonate decreases its pKa which enhances phosphonate- 

DXR interaction. Finally, the use of a pro-drug approach yields good inhibition.174 Page 41



Figure 12. The structure of DXR inhibitor fosmidomycin; essential structural features for 
anti-malaria activity include the phosphonate group (orange), the methylene spacer (green) 
and the hydroxamate moiety (blue). Fosmidomycin drawing constructed using Symyx Draw 
3.2 tools with atom type colour. 175

The indicated SAR, in Figure 12, has been determined to be crucial for activity and therefore 

analogues that will have potential as anti-malaria drugs will require maintaining this SAR, or 

alternatively involve the incorporation of yet-to-be-determined groups that have the ability 

to enhance these properties. For the current research the conserved structures were 

preserved and structural changes that will hopefully enhance activity were introduced.
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1.5. Aims of current studies

1.5.1 Past research

The previous research focused primarily on the exploration of the DXR binding cavity and 

the synthesis of a potential DXR inhibitor.176,177 The series of DXR inhibitors was based on 

fosmidomycin and DOXP analogues which Conibear synthesised, viz., phosphonate esters 

and their phosphonic acid salts, by using heterocyclic amino derivatives which were reacted 

with chloroacetyl chloride or 3-chloropropionyl chloride to produce chloroamides. These 

had minimal inhibitory activities. Furthermore, Mutorwa also synthesised 3-substituted 

anilines using the same route while using different acid chlorides (chloroacetyl chloride, 3- 

chloropropionyl chloride, 4-chlorobutanoyl chloride and 5-chloropentanoyl chloride). These 

compounds provided access to analogues containing 1, 2, 3, and 4 methylene groups in the 

hydrophobic patch (Figure 13).
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Figure 13. Synthesis of phosphonate esters and phosphonic acids.

Another compound series was the synthesis of dihydroxy-amido esters (Figure 14) which are 

mimicking the alkyl backbone of DOXP to retain enzyme-ligand binding specificity and 

modifying the phosphonate and hydroxamate moieties to obtain analogues with improved 

inhibitory activity. The saturation transfer difference NMR (STD) experimental data showed 

that some of the dihydroxy-amido phosphonic acid derivatives bind to FcDXR, whilst others 

did not; however, these compounds were not tested using FcDXR or PfDXR bioassays.Page 43
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Figure 14. Synthetic routes explored in the synthesis of the dihydroxy-amido 
phosphonate esters and their corresponding acid derivatives.

1.5.2 Current research
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Figure 15. Reported and proposed W-benzylated fosmidomycin analogues.

Further quantities of the W-benzyl-substituted phosphoramidic acids 34a-f (Figure 15), 

obtained via this 9-step pathway outlined in Figure 16, these were required for bioassay

purposes. Moreover, since Haemers et al.194 observed that the introduction of a 3,4- 

dichlorobenzyl moiety, in the DXR inhibitors which they were researching, increased 

inhibition activity significantly, we decided that it would be useful to prepare the 3,4- 

dichlorobenzyl analogue of our series of potential DXR inhibitors 34a-f. We also considered 

that introduction of the strongly electronegative 3-nitrobenzyl moiety might prove to be
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worthwhile. Here the introduction of the dichlorobenzyl derivative showed increased 

inhibition. The nitrobenzyl derivative is deactivating and therefore it is interesting to 

observe the effects of its presence in the effect on inhibition.

t'

|vi

R 1 R 2

a H H

b C H 2-O H H

c N H 2 H

d S H H

e N O 2 H

f C l C l

Figure 16. The synthetic pathway of the W-benzyl derivatives.

Access to the furan derivatives (Figure 17), as conformationally constrained fosmidomycin 

analogues has already been developed in our group, but the conformation of the 

regioselectivity of the second step (acylation of the O-tritylated intermediate 36) was 

required. Regiosiomers are obtained in these reactions and the structures drawn in Figure 

16 represent what we expect the favoured products to be (37a, 37b, 37c).
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Figure 17. Furan derivatives with varying R groups, showing the expected regioisomer (a-c), 
in each case.

The aims of this research project have thus included the following.

potential ligands in the PfDXR active site.

2. The preparation of further quantities of the W-benzylated phosphoramidic acids 34a- 

d, for bioassay purposes, via the established 9-step pathway.

3. An extension of this method to access the novel 3,4-dichloro- and 3-nitrobenzyl 

analogues 34e and 34f.

4. A repetition of the acylation of the O-tritylated intermediate 36 to establish the 

regioselectivity of the acylation in each case (for R = H, CH3, t-butyl).

1. A detailed and extensive computer-modelling analysis of the docking of a range of
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2. Discussion

2.1. Molecular modelling

Docking simulations were performed in order to explore the DXR enzyme binding site in 

order to predict the binding affinity of the generated ligands and to identify and evaluate 

hydrophobic binding regions. The enzyme receptor pocket may be exploited by the 

introduction of large hydrophobic groups for increased binding and inhibition. This 

investigation was conducted as an extension of previous work on examining the P/-DXR 

binding cavity.176 The research aimed to assess the limitations and properties that 

determine effective binding of the ligands in the active site.

Docking studies were conducted using a series of 63 structures modelled on fosmidomycin
173

analogues. The 63 ligands were constructed using Discovery Studio Visualizer 4.0, while 

the enzyme structures were obtained from the protein data bank. Six protein x-ray crystal 

structures were found to contain the natural ligand DXP with fosmidomycin or FR900098
163

in their binding cavity. To validate the reliability of the docking study, the natural ligand 

DXP and the known inhibitors, fosmidomycin and FR900098, were removed from the 

binding site and re-docked along with the constructed putative ligands shown in (Figure 

18).

Figure 18. The variation of substituents in the modelled ligands, where n= 2, 3 or 4, R1= [a]: 
CH3, [b]: CH2CH3 or [c]: CH2OH and R2= H, CH2Br, SH, OH, NH2, amongst others.
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Table 1. Summary of the ligands constructed in silico; n is the number of methylene 
groups in the spacer chain, while the variations in the terminal carbonyl group and 
the benzyl substituents are indicated by R1 and R2, respectively.

Ligand n R1 R2 n R1 R2 n R1 R2

2a_H 2 CH 3 H 3a_SH 3 CH3 SH 4a_OH 4 CH 3 CH 2OH

2a_SH 2 CH 3 SH 3a_OH 3 CH3 CH 2 OH 4a_Cl 4 CH 3 Cl

2a_OH 2 CH 3 CH 2OH 3a_Cl 3 CH3 Cl 4a_Br 4 CH 3 CH 2 Br

2a_Cl 2 CH 3 Cl 3a_Br 3 CH3 CH 2 Br 4a_CH3 4 CH 3 CH 2CH 3

2a_Br 2 CH 3 CH 2 Br 3a_CH3 3 CH3 CH 2 CH3 4a_N H 2 4 CH 3 NH2

2a_CH3 2 CH 3 CH 2CH 3 3a_N H 2 3 CH3 NH2 4b_H 4 CH 2 CH 3 H

2a_N H 2 2 CH 3 NH2 3b_H 3 CH 2 CH 3 H 4b_SH 4 CH 2 CH 3 SH

2b_H 2 CH 2 CH 3 H 3b_SH 3 CH 2 CH 3 SH 4b_OH 4 CH 2 CH 3 CH 2OH

2b_SH 2 CH 2 CH 3 SH 3b_OH 3 CH 2 CH 3 CH 2 OH 4b_Cl 4 CH 2 CH 3 Cl

2b_OH 2 CH 2 CH 3 CH 2OH 3b_Cl 3 CH 2 CH 3 Cl 4b_Br 4 CH 2 CH 3 CH 2 Br

2b_Cl 2 CH 2 CH 3 Cl 3b_Br 3 CH 2 CH 3 CH 2 Br 4b_CH3 4 CH 2 CH 3 CH 2CH 3

2b_Br 2 CH 2 CH 3 CH 2 Br 3b_CH3 3 CH 2 CH 3 CH 2 CH3 4b_N H 2 4 CH 2 CH 3 NH2

2b_CH3 2 CH 2 CH 3 CH 2CH 3 3b_N H 2 3 CH 2 CH 3 NH2 4c_H 4 CH 2 OH H

2b_N H 2 2 CH 2 CH 3 NH2 3c_H 3 CH 2 OH H 4c_SH 4 CH 2 OH SH

2c_H 2 CH 2 OH H 3c_SH 3 CH 2 OH SH 4c_OH 4 CH 2 OH CH 2OH

2c_SH 2 CH 2 OH SH 3c_OH 3 CH 2 OH CH 2 OH 4c_Cl 4 CH 2 OH Cl

2c_OH 2 CH 2 OH CH 2OH 3c_Cl 3 CH 2 OH Cl 4c_Br 4 CH 2 OH CH 2 Br

2c_Cl 2 CH 2 OH Cl 3c_Br 3 CH 2 OH CH 2 Br 4c_CH3 4 CH 2 OH CH 2CH 3

2c_Br 2 CH 2 OH CH 2 Br 3c_CH3 3 CH 2 OH CH 2 CH3 4c_NH 2 4 CH 2 OH NH2

2c_CH3 2 CH 2 OH CH 2CH 3 3c_NH 2 3 CH 2 OH NH2

2c_NH 2 2 CH 2 OH NH2 4a_H 4 CH3 H

3a_H 3 CH 3 H 4a_SH 4 CH3 SH

The 63 ligands, summarised in Table 1 and illustrated in Figure 18 differ in: i) the number of 

methylene groups (CH2)present [ (CH2)n: n= 1, 2, or 3]; ii) the nature of the terminal metal­

chelating group [Rx= a (CH3); b (CH2CH3) or c (CH2OH) and iii) the nature of the benzyl 

substituent (R2= CH2Br, NH2, OH, SH etc.). Thus for ligand 2a_Br (Figure 19), n = 2, Rx= CH3 

and R2= Br. Page 48



The constructed ligands retain the polar phosphonate moiety, which is present in both 

fosmidomycin and FR900098 and which is important for hydrogen bonding to nearby amino 

acid residues, and the polar hydroxamate group which is essential for coordinating to the 

metal cation.

Figure 19. Structure of ligand 2a_Br in which n = 2, R ^ C H  and R2=Br with water molecules, 
the crystal structure of ligand 2a_Br is shown stick representation with atom-type colour.178

The six Pf- or E.Coli- DXR protein structures which were used are; 1Q0L, 1Q0Q, 2EGH, 3AU8, 

3AU9 and 3AUA which are from Pf and E.coli species. The DXR protein 1Q0L (Figure 20) is a 

EcDXR protein with the known inhibitor fosmidomycin bound in the active site; 1Q0Q is a 

selenomethionine-labelled protein from E.coli which contains the natural substrate DXP 

bound in the active site; 2EGH from E.coli has no ligand; 3AU8 is another PfDXR protein with 

a bound fosmidomycin ligand; 3AU9 is PfDXR protein with bound fosmidomycin in the active 

site and 3AUA is a Pf DXR protein and has FR900098 bound in the active site. All of these 

structures contain the NADPH co-factor and the divalent metal cation Mg2+, and were 

completely desolvated (2 water molecules on the polar phosphonate moiety of ligands was 

included in the docking process) prior to docking/modelling studies.

Each sub-unit of the DXR 86-kDa homodimer consists of a large N-terminal NADPH-binding 

domain (77 -  230 amino acid residues) adjacent to a large catalytic domain (231 -  269 

amino acid residues) which provides the groups necessary for catalysis (metal + substrate 

binding). This catalytic domain is connected to a small C-terminal domain (396 -  486 amino 

acid residues) with a linker region (370 -  395 amino acid residues) which constitutes a
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flexible 'lid' that closes the active site once a substrate is bound. For the purpose of the 

current docking simulations, the sub-unit A binding site was used as the docking site with 

both NADPH molecules in the same orientation. The 63 ligand variations along with the 6 

protein structures (Figure 20) and 3 known ligands (DOXP, fosmidomycin and FR9000098) 

made up the collection for molecular modelling in this docking study.

Figure 20. The structure of Pf DXR protein subunit A from 1Q0L with NADPH co-ordinated in 
the active site. The protein is coloured by secondary structure type with ligand NADPH in 
ball and stick with atom-type colours.163

The docking of the phosphoramidate derivatives began with the removal of the solvating 

water molecules that are present in the crystal structures of the proteins as well as the 

removal of the bound substrate i.e. fosmidomycin, FR9000000 or DOXP. The NADPH as well 

as the divalent Mn2+ cation were left in at their original positions. The +2 charge was 

manually assigned to the manganese and the two water molecules that are normally 

coordinated to the bound phosphonate group in fosmidomycin were added near the 

phosphonate groups of each of the ligands, thus facilitating evaluation of the correct 

alignment or orientation of the docked ligand in the active site. To validate the reliability of 

the docking study, the natural ligand DXOP and the known inhibitors fosmidomycin and 

FR900098 were removed from the binding site, their dihydrated structures were optimised 

and they were successfully re-docked. The structures of the 63 dihydrated model ligands
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were similarly optimised and docked into the various enzymes. The best docking 

conformation, in each case, was then analysed and selected, based on the binding affinity, 

calculated from the binding free energy of each atom in the ligand -  an indication of the fit 

of the ligand in the active site. The docked ligands were then overlaid with other docked 

ligands to allow for meaningful comparison of ligand and receptor cavity.

For each of the protein models, certain residues within the active site were assigned as 

flexible. This permits dynamic movement within the active site to reproduce the flexibility 

that the protein might exhibit in vivo. The same residues, although numbered differently 

(there are variations in the residue number due to the protein sequence and numbering 

system differences) in the X-ray structures were chosen to be flexible in docking to the six 

crystal structures. These residues correspond in all six proteins and are in direct proximity to 

the active site. For the 2EGH protein, Ser 221, Ser 185, Asn 226, Lys 227 and Glu 230 were 

the flexible residues, for 1Q0Q and 1Q0L, these were Ser 222, Ser 151, Asn 227, Lys 228 and 

Glu 231, while for proteins 3AU8, 3AU9 and 3AUA the same residues, Ser 270, Ser 306, Asn 

361, Lys 312 and Glu 315 were selected as flexible. These flexible residues within the active 

site were chosen since they correspond in all 6 proteins with slight differences in the residue 

number in the various DXR crystal structures.

Using Windows Secure Copy (WinSCP),179 the constructed ligands and the unbound, 

desolvated protein were transferred to a linux cluster. WinSCP, free software available 

programme readily from the internet created by Martin Prikryl in 2000,179 is used to transfer 

data from a personal computer to a remote computer -  commonly a supercomputer that 

will process the data. A terminal (putty) was used to control and access the submission 

scripts on the cluster while Autodock Vina,180 an open-source program was used for the 

docking simulations of the constructed ligands and modified proteins. The ligands and 

protein were prepared using Autodock tools; Autodock Vina has proved to be significantly 

more accurate in the prediction of binding affinity as well as exhibiting other features, such 

as ease of use, speed and assignment of flexible side chains.180 The anhydrous and 

dihydrated ligands were used in docking studies conducted.
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Docking in the active site was first evaluated for EcDXR enzyme, using the 1Q0L168 enzyme 

structure which contains fosmidomycin, NADPH and the Mg2+ cation (Figure 21). Each of the 

63 ligands were evaluated for:- i) their ability to bind to the active site; ii) the accuracy of 

their alignment with fosmidomycin and, finally iii) their binding orientation relative to 

fosmidomycin. These aspects were considered to be important in identifying the inhibition 

potential of the various ligands. Ligands with active site interactions similar to that of 

fosmidomycin are expected to have similar binding abilities, possibly with enhanced 

penetration of the active site and increased inhibition. The orientation of the designed 

ligands in comparison to fosmidomycin is essential as the critical ligand moieties need to 

align with the appropriate amino acid residues to accommodate binding in the active site. 

This does not preclude other binding interactions from being involved but ensures the 

conservation of established interactions.

The two connected binding pockets in the protein active site should be occupied by the co­

factor NADPH, the Mg2+ cation and the docked ligand. Fosmidomycin and 25 of the 63 

ligands appear to occupy the same binding pocket (Figure 21). However, only 17 of these 

ligands were both correctly docked and well orientated and, of these, only those ligands 

whose binding energy was also favourable will be evaluated further in detail. A general 

trend with 1Q0L was an increase in the length of the methylene spacer (n=3-4) led to 

ligands being extended beyond the active site although some exceptions were encountered 

when R2 groups were small (e.g H, SH and NH2) but when R2 = CHsBr or CH3, the ligand was 

actually excluded from the binding site. The presence of the terminal ethyl group such as 

n=2 and R2 = SH resulted in SH (and in some cases NH2) being retained in the active site. 

When the terminal group was the hydroxymethyl moiety, the ligand remained in the active 

site when R2 was SH, NH2 and H.
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Figure 21. FcDXR Protein 1Q0L subunit A showing the distribution of 63 modelled ligands; 
majority of the ligands cluster outside the binding cavity of the enzyme, some near NAPDH 
while the rest excluded from the active site cavity. The cartoon of the protein is coloured 
using a rainbow type format with ligands and NADPH in ball and stick format with atom type 
colour.178

The docked ligand 2a_H (Figure 22) interacts mainly with the DXR active site, the 

phosphonate group interacts with Lys228 and is bound to water molecule hydrating the 

active site, the dihydrogen groups interact with Asn227, Ser186, Ser222 and the water 

molecules, the hydroxide interacts with Met214, the terminal carboxylic groups interacts 

with Ser151 with methyl binding to Trp212. The additional interactions are the aromatic ring 

electrons interacting with Trp212, Glu152 and Lys228. The known inhibitor fosmidomycin 

(yellow) is included as a comparison for conformation and orientation in the active site. The 

added groups give rise to the new interactions observed with fosmidomycin. The same 

interactions as the 2a_H are observed for 2a_Cl with the additional chlorine interaction with 

His251 and Ser254. This was seen for 2a_NH2 and 2a_SH as well (where this interaction is 

now with the NH2 or the SH). This was promising as the addition of the phenyl R groups did 

not exclude the ligands from binding to the active site but further enhanced the interaction 

of the ligand with the conserved amino acids as well as introducing new interactions.
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Figure 22. The ligand 2a_H interacts in the FcDXR active site (1Q0L) with the conserved 
amino acids that are observed with fosmidomycin with additional interactions with the 
auxiliary groups that the analogues contain and 2 water molecules. The crystal structure of 
fosmidomycin and 1a_H are in ball and stick with atom-type colour. The hydrogen atoms are 
not shown and dashed lines represent H-bond distance in A.178

The next aspect explored was the substitution of the terminal methyl on the ligand with an 

ethyl group to evaluate the change of geometry of docking as a result of increasing the size 

of the terminal group while keeping the methylene spacer the same. The addition of this 

ethyl terminal group resulted in all ligands excluding 2b_H and 2b_SH preferring to bind 

outside the active site as well as resulted in 2b_H "reverse" binding relative to 

fosmidomycin. In the best docking conformation, the terminal ethyl group interacted with 

amino acids that originally were proximal to the phosphonate group in fosmidomycin and 

vice versa. The ligands exhibiting "normal" binding were analysed as these interactions 

proved favourable for fosmidomycin and therefore potential analogues should aim to 

secure binding similar to that of a known inhibitor.
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The ligand 2b_SH (Figure 23), has all the interactions which are observed in the methyl 

analogue but with further interaction between the terminal ethyl group and Trp212. The R 

group SH has further interactions with IIe256 and Thr184. Fosmidomycin (yellow) compares 

favourably with ligand 2b_SH in both interactions and orientation.

Figure 23. Docked conformation of ligand 2b_SH in the FcDXR active site (1Q0L) showing 
interacting residues. The crystal structure of fosmidomycin structure in ball and stick format 
in yellow, while 2b_SH has atom-type colour.178

This large terminal group was further investigated by the addition of a terminal 

hydroxymethyl (c), while keeping the methylene spacer length constant. For this series of 

terminal hydroxymethyl models, only 2c_SH was retained in the active site during docking; 

all other ligands docked external to the active site. The presence of the terminal 

hydroxymethyl group (c) resulted in unique orientation and interaction of the 2c_SH ligand 

with Trp212 and the co-factor NADPH. These interactions have not been observed with any 

of the ligands, and their presence is interesting for how far the ligand is able to interact 

directly with NADPH and potential for synthesis of a ligand bound to NADPH analogues that
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might enhance binding in both binding domains and activity. In this binding there is an 

apparent reversal of the roles of the aromatic and hydroxylamine portions of the ligands, 

with the aromatic side orienting toward the NADPH while the hydroxylamine portion (with 

the terminal hydroxymethyl group) occupying the lower pocket.

Figure 24. Docked conformation of ligand 4c_SH in the in the FcDXR active site (1Q0L), with 
expected interactions with proximate residues. The crystal structure of fosmidomycin 
structure in broader stick representation with atom-type colour.178

Finally, increasing the methylene spacer from 2 to 3 methylene groups resulted in exclusion 

of R2 (such as OH, CH3 and Br) in the binding site as well as the presence of the larger 

terminal ethyl (b) and hydroxymethyl (c). However, this increase in the methylene spacer 

length did not affect NH2 and SH interaction in the active site for the appropriate 

compounds. The ligands 2a_CH3, 2a_Cl and 2a_H bound directly on top of NADPH while 

ligands 2b_SH, 2c_SH, 2a_NH, 2b_NH, 2c_NH and 2a_Cl were the only models that docked 

in the correct conformation and orientation as fosmidomycin. When the methylene spacer 

was increased yet again to 4 methylene groups while keeping orientation and substitution 

constant, this resulted in the majority of the ligands not binding in the DXR active site with
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the exception of 4a_NH, 4b_H, 4c_H and 4c_SH. These ligands, when in the binding site, 

align the phenyl group along with fosmidomycin (yellow) and the long methylene chain 

occupies a different pocket in the active site (Figure 24). This explores different binding 

during docking, and these interactions with additional pockets could potentially provide 

novel leads.

The FcDXR enzyme 1Q0Q is a selenomethionine-labelled DXR protein from E.coli with 

natural substrate DOXP bound in the active site. The protein crystal structure is a 

homodimer and thus subunit A was used for docking studies. This protein is the same 

protein as 1Q0L but with a different template ligand in the active site and therefore the 

interaction of the ligands should be similar to that of 1Q0L but the binding interactions are 

compared to DOXP and exceptions will be reported.

Figure 25. Protein 1Q0Q subunit A showing the distribution of 63 ligands; the majority of 
the ligands fall outside the binding cavity/site of the enzyme. The protein colour by 
secondary type with ligands and NADPH in ball and stick with atom-type colour.178

The DOXP and 17 of the 63 ligands appear to be in the same binding pocket (Figure 25). The 

ligands that were both correctly docked and well orientated, i.e. where the phosphonate 

group orientated similarly to DOXP, were only 9. The ligands bind in two conformations, 

2a_OH, 2b_NH, 2b_OH, 2c_Cl, 2c_NH and 2a_NH had the phenyl group aligned with DOXP 

while the orientation of 2a_H, 2a_NH, 2a_SH, 2b_H, 2b_SH, 2c_OH, 2c_SH, 4a_H and 4c_NHPage 57



was identical to that of DOXP. Evidently the large R2 group as well as the majority of the 

increased methylene spacer (2-3) and large terminal groups (b-c) contributed to exclusion 

from the active site.

Lys227

Figure 26. The ligand 2c_OH interacts in the FcDXR active site (1Q0Q). The crystal structure 
of 2c_OH and DOXP are in ball and stick with atom type colour with Mg2+ ion (blue). The 
hydrogen atoms are not shown and dashed lines represent H-bond distance in A.178

In Figure 26, ligand 2c_OH shows interactions in the DXR active site via the phosphonate 

group interacting with Ser221 and is also bound to a water molecule hydrating the active 

site. The hydroxyl group on the phosphate moiety interacts with Asn226, Lys227 and the 

water molecules. The hydroxide interacts with Trp211 and Met218, and the phenyl hydroxyl 

group interacts with residue Arg207. The additional interactions are the aromatic ring 

electrons interacting with Ser185, Ser221 and Met218.

Docking in the active site was then evaluated for the PfDXR enzyme; the remaining proteins, 

3AU8, 3AU9 and 3AUA are all DXR crystal structures from P. falciparum. 3AU8 has no
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inhibitor such as fosmidomycin and FR9000089 in the active site. All the structures contain a 

divalent cation and NADPH, and docking to this enzyme was mainly to study the interactions 

of the potential ligands in this PfDXR. The reproducibility of binding for the 3AU8 under the 

docking method used could not be ascertained for validation due to this absence of a ligand 

in the crystal structure. However, the docking proceeded under the conditions described 

earlier which were validated. In Figure 27, the distribution of the ligands are compared 

between the proteins 3AU9 and 3AUA. It is therefore essential for docking studies to 

include a known ligand template. From 3AU9 it was observed that only 5 ligands appear in 

the active site in the correct orientation as the crystal structure fosmidomycin while for 

3AUA there are 12 ligands that align with FR9000089.

Figure 27. Proteins 3AU9 and 3AUA subunit A showing the distribution of 63 ligands; the 
majority of the ligands fall outside the binding cavity/site of the enzyme for 3AU9 and 
3AUA. The protein colour is by rainbow format and the structure with ligands and NADPH in 
stick representation with atom-type colour.178

Figures 28 and 29 details the results of docking one ligand; the interaction of 2a_NH is 

analysed as docked in both proteins (3AU9 and 3AUA) against fosmidomycin and FR900089 

respectively. As illustrated, the ligand (2a_NH) interacts with the same residues in both 

proteins and is oriented along with the template ligands (yellow). The ligand 2a_NH exhibitsPage 59



a "reverse" binding relative to fosmidomycin. The terminal carboxylic group is interacting 

with amino acids that interacted with phosphonate group in fosmidomycin. The compound 

has some inhibition of 82.11 nM, as per Ki value, which indicated that, although they bind 

differently to fosmidomycin, they have the potential to be inhibitors, which can be further 

researched. The ligands exhibiting "normal" binding were further analysed as these 

interactions are by the original design for specificity of this series of ligands. Since these 

interactions match those observed for a ligand with good binding and specificity, viz 

fosmidomycin, the potential analogues should aim to secure binding in a similar manner.

Figure 28. The protein 3AU9 DXR crystal structure with ligands in the active site; 2a_NH and 
fosmidomycin (yellow) are in ball and stick with atom-type colour. The hydrogen atoms are 
not shown and dashed lines represent all interactions in distance in A.178

Several other ligands also interact in docking with the active site residues in much the same 

way. The main difference is however that certain groups such as the terminal 

hydroxymethyl (b) or OH R group introduce further interactions with residues. The terminal
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hydroxymethyl (b) was retained in the active site for smaller R groups regardless of 

methylene spacer length. Both Figures 28 and 29 reiterate how essential the template 

ligand is for the evaluation of potential ligands as the orientation and conformation is vital 

for the formation of known interactions.

Figure 29. The protein 3AUA DXR crystal structure with ligands in the active site; 2a_NH and 
FR9000089 (yellow) are in ball and stick with atom type colour. The hydrogen atoms are not 
shown and dashed lines represent all interactions in distance in A.178

A comparison of the calculated Ki values reveals some interesting information (Table 2). The 

inhibition constant (Ki) is the concentration of the inhibitor necessary for reducing the rate 

of the enzyme activity by half. This analysis was conducted to determine the various 

changes in the theoretical Ki that are observed for each of the proteins when the ligands 

were varied. The results which can be inferred from this data is that certain changes in R 

groups (R1 or R2) affect Ki and hence potentially exhibit inhibition.

Determining the Ki experimentally, although more accurate, can be time-consuming and 

tedious and thus, more frequently, theoretical calculations of inhibition constants are 

conducted. The calculations involve the plotting of fractional enzyme activity in thePage 61



presence of an inhibitor as a function of a constant enzyme and inhibitor concentration.186 

These values compare well with experimental values (on test cases that were used to 

calibrate the software) and therefore can be a good indicator of potentially potent 

inhibitors. In Figure 30 are the average Ki values (pM) for each protein is represented in a 

graph. The experimentally (computationally) acquired Ki values for fosmidomycin and 

FR900098 are 0.251 pM and 0.101 pM respectively, 187 therefore values closer or less than 

these show potential as lead compounds.

Table 2. The average Ki values and standard deviations for docked ligands for each of the six 
proteins.

Protein Mean Ki (pM) Ki St Dev (pM)

1Q0Lp 34,78 85,68

1Q0Qp 10,75 20,44

2EGHp 0,1539 0,6649

3AU9p 29,23 125,40

3AUAp 23,29 120,70

Mean Ki value per protein
3AUAp 

2EGHp
+■* o
£  1Q0Lp

0 10 20 30 40

Average Ki valu e  per protein (pM )

Figure 30. The average Ki values (pM) across the FcDXR and PfDXR protein.

The protein with the lowest average Ki is 2EGH at 0.15 pM, while proteins 3AUA, 3AU9, 

1Q0Q and 1Q0L have average Ki of 23.29, 29.23, 10.75 and 34.24 pM, respectively. Another 

analysis was of the average Ki value as the methylene spacer increases (Table 3 and Figure 

31) for each of the ligands. The expectation is that the longer the methylene spacer (2-4),
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the higher the average Ki. However, due to the effect of phenyl group interactions aligning 

with the template ligand and allowing the rest of the chain to occupy a different pocket as 

well as the terminal hydroxymethyl (c) forming additional interactions in the protein cavity, 

the Ki values vary for each protein.

Table 3. The average Ki value for each of the proteins by length of methylene spacer i.e. 2-4 
methylene groups in chain.

Ki mean per chain length (pM) 1Q0Lp 1Q0Qp 2EGHp 3AU9p 3AUAp

2 59,7581215 14,85521 0,132197 0,039902 34,13813

3 24,1891424 11,87607 0,049761 65,15088 34,60815

4 20,9232165 5,241746 0,285917 22,1587 0,030747

C
CD(D
E

Mean Ki value of chain length per protein
80

60

40

20

0 H i h .
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l l  I I
3AU9p 3AUAp

2 B 3 B 4

Figure 31. The average Ki values (pM) across the FcDXR and PfDXR protein as the length of 
the methylene spacer increases.

The studies conducted were to evaluate the binding site of FcDXR and PfDXR by using 

known inhibitors, fosmidomycin and analogues, to analyse and assess the active site by 

varying the chain length of the methylene spacer, changing the terminal group and 

introducing various W-benzyl derivatives. The results indicated that although exceptions 

occur in all cases, i) the two methylene spacer group proved vital for accurate orientation 

and conformational interactions to occur in the binding cavity, ii) the change of methyl
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terminal group to ethyl led to the majority of ligands being excluded from the binding site 

while the hydroxymethyl resulted, unexpectedly to mostly "reversed" binding as well as 

formation of further interactions with its hydroxyl group, and iii) The majority of the smaller 

R groups allowed ligands to bind in the active site, in some instances, irrespective of chain 

length and terminal group while the larger R group hindered the ligand entrance into active 

site.

The analysis of the theoretical Ki values calculated confirms the molecular modelling data. 

The enzyme-ligand relationship in these docking studies is not straight forward. The 

presence of certain groups enables better binding and interaction even when factors that 

are supposed to exclude these exist. It is therefore important that further analysis of this 

data is conducted so that trends based on all factors are determined which could lead to 

novel "reverse" fosmidomycin-based lead compound and the inclusion of more terminal 

groups that contain interacting groups such as the hydroxymethyl.

Analysis of the docking studies resulted in 2a_H, 2a_OH, 2a_SH, 2a_NH2, 2a_Cl and an 

additional 2a_NO2 to be taken further into synthesis. The synthesis kept the R1 group 

constant as well as the methylene spacer while varying R2. The 3-nitrobenzyl in the a-aryl- 

substituent was introduced in order to evaluate the effect of a strongly electron 

withdrawing group effect on electron density. The dichloride substituted analogues were 

found to be high in inhibition193 and thus 2a_Cl was synthesised as a dichlorobenzyl 

compound. 2a_H had a calculated average Ki of 1.16 |iM across all 5 proteins, 2a_OH had 

0.42 |iM, 2a_SH had 0.18 |iM, 2a_NH2 had 3.65 |iM and 2a_Cl had 8.97 |iM.
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2.2. Synthesis of W-benzyl substituted phosphoramidates

2.2.1. W-Benzyl substituted phosphoramidate derivatives

The FcDXR and PfDXR crystal structure docking studies with the known inhibitor 

fosmidomycin and DXP revealed critical amino acid residues in the active site of DXR that 

are essential for effective binding as well as inhibition in the case of fosmidomycin. Docking 

studies have illustrated the presence of three additional binding pockets,176 which we 

exploit in the synthesis of novel lead compounds. The previous research groups introduced 

the a-aryl-substituent which according to docking studies occupies the newly identified 

pockets thus strengthening the binding and providing bases for increased inhibition.

The structure-activity studies of fosmidomycin and FR9000089 revealed the importance of 

the tri-methylene spacer, the phosphonate group and a metal binding moiety such as 

nitrogen or oxygen groups in the potential ligands. This was also observed during the 

molecular modelling of the W-benzyl substituted phosphoramidate derivatives, where the 

increase in the length of the hydrophobic patch reduced entry into binding site and oxygen 

and nitrogen groups were seen co-ordinating to the divalent metal cation in the DXR active 

site. The W-benzyl substituted phosphoramidate derivatives 34a-f are fosmidomycin 

analogues which conserve the essential phosphonate and hydroxamate functional groups in 

fosmidomycin but include the substituted benzyl group designed to occupy an additional 

binding pocket.

In this section, attention is focused on the multi-step synthesis of such compounds (34a-f; 

Scheme 1). Some of the compounds have been prepared previously176,177 but additional 

material was required for bioassay purposes; others (34e-f) are new. These latter 

compounds contain the 3-nitrobenzyl group as the a-aryl-substituent to permit evaluation 

of the effect of a strongly electron-withdrawing group on the electron density and binding 

of the phosphonate, since 3,4-dichlorobenzyl analogues scaffolds have been shown to 

increase inhibition of PfDXR.193
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Scheme 1. Synthesis of W-benzyl substituted phosphoramidic derivatives.

Reagents and conditions; i) Hexamethyldisilizane, benzene, 800C ii) NaH, benzene, rt, 
bromoacetaldehyde diethyl acetal, TBAB, 800C, 4 h iii) EtOH, 800C, 1h iv) NaH, THF, benzyl 
halide, rt, 24 h v) 2M HCl, rt, 24 h vi) O-benzylhydroxylamine, MeOH, 400C, 3 h then 
NaBHsCN, MeOH, conc. HCl, 1 h, NaBH3CN, 1 h vii) acetyl chloride, triethylamine, DCM, 00C, 
N2, 24 h viii) Pd/c, dry MeOH, H2, 18 h then ix) TMSBr, DCM, 00C, DCM, H2O, 24 h.

The first three steps in the synthesis of W-benzyl substituted phosphoramidic derivatives 25­

28 are illustrated in scheme 2. Using a method reported by Zwierzak et al.,193 diethyl 

phosphoramidate 25 was converted into the silylated derivative 26 in 98 % yield. The 

silylated amine was then deprotonated using sodium hydride and reacted with 

bromoacetaldehyde diethyl acetal; removal of the TMS group was effected in the presence 

of the catalyst (TBAB) in ethanol to afford the intermediate 28 in 92 % yield.
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Scheme 2. The protection of diethyl phosphoramidate during the preparation of the diethyl 
acetal.
Reagents and conditions: i) Hexamethyldisilizane, benzene, 800C ii) NaH, benzene, rt, 
bromoacetaldehyde diethyl acetal, TBAB, 800C, 4 h iii) EtOH, 800C, 1h.

Figure 32 illustrates the *H NMR spectrum of the silylated derivative 26 with the silyl methyl 

groups resonating as a 9 proton singlet at 0.10 ppm, the methyl and methylene protons of 

diethyl acetal moiety resonating at 1.20 ppm and 3.91 ppm, respectively and the amine 

proton at 2.72 ppm. This product was found to be highly hygroscopic, and therefore needed 

to be taken immediately to the next step or stored in an air-tight container.

3 x Si-CH3 2

2 x CH3

Figure 32. 600 MHz *H NMR spectrum of compound 26 in CDCl3.
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In the 13C NMR spectrum of compound 28 (Figure 33), the phosphonate and acetal methyl 

carbons resonate at ca. 15 ppm, the amide methylene carbon at 31 ppm, the diethyl ether 

methylene carbons at 65.25 ppm and the phosphonate ester methylene carbons at 102 

ppm.

T n
r yNH2 NH2

40 41

Br

41a
SH

OH

42

Scheme 3. Preparation of amino and mercapto benzyl halides.

Reagents and conditions: i) PBr3, DCM, 00C, 1 h then rt 25 h ii) H2O, HCl, NaNO2, Na2S2, 00, 1 h 
iii) NaBH4, 00 then rt, 1h.

In the next step in Scheme 1, (step iv), the synthesis involves the introduction of the various 

benzyl substituents to afford the tertiary phosphoramides 29a-f. The benzyl halides of 29c-d 

were not commercially available and were therefore synthesised according to Scheme 3. 

The synthesis of 3-aminobenzyl bromide 41 involved the reaction of 3-aminobenzyl alcohol 

with phosphorous tribromide; subsequent treatment of the white product with 1 equivalent 

of potassium hydroxide afforded compound 41 in 77 % yield. Compound 41 was in turn used 

in the synthesis of 42; thus 3-aminobenzyl bromide 41 was reacted with sodium nitrite 

resulting in a diazonium salt which was treated with sodium disulphide to produce a 

disulphide intermediate 41a which was then reduced using sodium borohydride in THF to 

yield the 3-mercaptobenzyl bromide in 65% yield. The percent yields obtained from Scheme 

1 are shown in Table 4.
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Table 4. Percentage yields obtained for the synthesis of W-benzyl phosphoramidate 
derivatives 25-29 (a-f) in the synthetic route Scheme 1.

Ar-R Percentage yie ld  (%)

2 98

4 92

5a 57

5b 35

5c 50

5d 65

5e 20

5f 31

Figures 34 and 35 illustrate the *H NMR spectra of compounds 41 and 42, respectively. In 

Figure 34, the amine protons are observed to resonate at ca. 5 ppm, the methylene protons 

at 4.35 ppm and the four aromatic protons between 6 and 7 ppm. Figure 35 illustrates the 

mercapto proton signal at 3.65 ppm, the methylene signal at 4.61 ppm and the four 

aromatic proton signals resonate in the range 6.60 -  7.22 pp

T TT t  1
7 2  7 J i a S U U a 2 U U i « 1 4 U U 4 J 4 J 4 i 4 U U U U S . 4 U U l l l f U U Un(*wi)

Figure 34. 600 MHz *H NMR spectrum of compound 41 in DMSO-d6.
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Figure 35. 600 MHz *H NMR spectrum of compound 42 in CDCl3.

In the next step (step iv) of the synthesis the various benzyl halides were attached to thye 

nitrogen of the phosphoramidate moiety. The introduction of an W-benzyl group, rather 

than a W-benzyl group, was done to avoid generating a chiral centre and consequent 

problems with asymmetry. The NH group in compound 28 was deprotonated with sodium 

hydride then reacted with the corresponding benzyl halides 29a-f with yields of 20-65 %. 

The yields were low but time didn't permit for optimisation.

Due to the hygroscopic nature and ready decomposition of the silyl derivative 26, it was 

essential that benzylation be conducted immediately. Various techniques were attempted 

to combat the decomposition of compound 26, and its synthesis had to be repeated several 

times; this step should ideally be a one-pot reaction yielding the intermediate 28 to 

minimise decomposition.

Figure 36 illustrates the 13C NMR spectrum of the W-benzylated compound 29d with the 

aromatic carbons resonating downfield at ca. 128 ppm. The benzylic carbon resonates at 

47.15 ppm and the methylene and acetal carbons at ca. 63 ppm and 103 ppm, respectively, 

while the signals corresponding to the methyl groups appear at ca. 16 ppm. Page 70



Figure 36. 400MHz 13C NMR spectrum of compound 29d in CDCU.

Figure 37 illustrates the XH NMR spectrum of compound 29a with the aromatic protons of 

the benzyl group resonating between 7.33 ppm and 7.48 ppm, while the signal 

corresponding to the benzylic protons appears at ca. 4.5 ppm. The phosphonate methylene 

protons resonate as pair of multiplets at ca. 3.6 ppm and the methyl protons below 1.5 

ppm.

Figure 37. 600 MHz XH NMR spectrum of compound 29a in CDCl3.
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The benzyl substituent introduces a bulky hydrophobic group to take advantage of the third 

binding pocket available in the DXR binding cavity and permits substitution without 

introducing the problem of chirality. The acetal protecting group was removed by acid- 

catalysed hydrolysis to afford each of the aldehydes 30a-f.

The NMR spectra of all compounds confirms the presence of an aldehyde which can be seen 

in the 1H NMR spectrum of compound of 30e (Figure 38) from which the diethyl acetal 

signals are absent and the aldehyde proton signal present at 9.55 ppm. The methylene 

protons adjacent to the aldehyde group resonate at 3.82 ppm, while the signal at 4.25 ppm 

corresponds to the benzylic methylene protons. The phosphonate ethyl ester signals 

resonate, characteristically, at 1.26 ppm and 4.13 ppm. The signals in the aromatic region 

integrate, as expected, for the four aromatic protons.

Figure 39 illustrates the HRMS data for the aldehyde 30f with a pseudo-molecular ion (MH+) 

peak at m/z 354.042 corresponding to the elemental composition C13H19NO4PCl2.
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Figure 39. HRMS data for compound 30f.

The next step involved reductive amination of the aldehydes 30a-f using O- 

benzylhydroxylamine and sodium cyanoborohydride were used to furnish, via an oxime 

intermediate, the O-benzyl-protected amines 31a-f (Scheme 4). Acetylation of compounds 

31a-f was achieved by using acetyl chloride in the presence of triethylamine, to obtain the 

O-benzyl-protected acetyl derivatives 32a-f. The O-benzyl-protection allows for the selective 

acetylation of the second nitrogen which through reduction will yield the hydroxamate 

moiety which is essential for co-ordination to the divalent metal ion.

Figure 40 illustrates the HRMS data of the benzyloxyamino derivativeprotected 32e, with a 

pseudo-molecular ion (MH+) peak at m/z 438.1792 corresponding to the elemental 

composition C20H29N3O6P, while Figure 41 illustrates the 1H NMR spectrum of compound 

32c.
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Scheme 4: Synthesis of W-benzyl-substituted phosphoramidic acid derivatives.
Reagents and conditions: vi) O-benzylhydroxylamine in MeOH, 400C, 3 h and then NaCNBH3, 
MeOH, HCl, r.t., 1 h vii) acetyl chloride, DCM, Et3N, r.t., 24 h, N2 viii) H2, Pd/C, MeOH ix) 
TMSBr, DCM, 00C, 1 h and then H2O, r.t., overnight.

Figure 40. HRMS data for compound 31e.
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Figure 41. 400MHz NMR of compound 32c in CDCU.

The final two steps in the overall synthesis of the target compounds 34 involved removal of 

the O-benzyl protecting group and hydrolysis of the diethyl phosphoramidate ester groups 

(Scheme 5). The O-benzyl protecting group was removed from the intermediates 32 by 

catalytic hydrogenolysis using 10% Pd/C in methanol to yield the corresponding 

hydroxamate derivatives 33. Treatment of these derivatives with TMSBr, followed by 

hydrolysis, yielded the corresponding phosphoramidic acids 34. (It is, of course, possible 

that the diethyl ester intermediates 33a-f could, themselves, serve as ester pro-drugs, 

affording the corresponding phosphoramidic acids 34a-f, through in vivo hydrolysis by 

esterases.) Unfortunately, the yields obtained for the intermediates 32e and 32f were too 

low to continue to compounds 33e and 33f and 34e and 34f, and time did not permit 

repetition of the preceding seven steps to generate more of the intermediate compounds. 

Consequently, the final two steps were completed using compounds 32a-d. Small but 

sufficient quantities of compounds 33a-d and 34a-d were isolated to permit their 

characterization.
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Scheme 5. (Steps viii-ix in overall synthetic sequence)
Reagents and conditions: i) H2, Pd-C, MeOH; ii) TMSBr, DCM; then H2O.

Figure 42 illustrates the 1H NMR spectrum of compound 34d in D2O, while Figure 43 

illustrates the DEPT135 spectrum of compound 34a.

-1 ------- ■------- 1------- 1-------1------- 1------- 1------- ■------- 1------- 1------- 1------- 1------- 1------- ■------- 1------- 1------- 1------- 1------- 1------- 1------- 1------- 1-------1------- 1------- 1------- 1------- 1------- 1------- 1------- 1------- 1------- 1------- 1—
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Figure 42. 1H NMR of compound 34d in D2O.
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Figure 43. DEPT135 NMR of compound 34a in D2 0 .

Compounds 34e and f were not fully characterised at this stage as the yield in the previous 

synthetic step was very low. The yields for compounds 10a-d were also low but some 2-D 

NMR experiments and bioassays could be conducted. Optimisation of the reaction 

conditions for all compounds would lead to higher yields. The molecular modelling data 

revealed that the DXR binding cavity is flexible and, consequently, structurally diverse 

compounds can fit into the binding site. Further analysis of the data will reveal the types of 

ligands that can bind as well as functional groups available in the ligands that can enhance 

attachment to the binding cavity.
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2.3. Enzyme inhibition studies

The target enzyme DXR is involved in the pathway whereby DOXP is converted to MEP 

through intramolecular conversion with co-factor NADPH which performs the subsequent 

reduction.157,158 The bioassays involved the spectroscopic measurement of the conversion of 

NADPH to NADP of enzyme (PfDXR) with known inhibitor compared to where there is one of 

the synthesised ligands bound at the active site of the enzyme. Cytotoxicity studies were 

also conducted for each of the ligands compared to a known inhibitor that has a high 

toxicity towards PfDXR enzyme. Cytotoxicity is a measure of drug-induced cell death, where 

the concentration is gradually increased and the cell viability is measured until at higher 

concentrations cell death usually occurs.188 Cytotoxicity (using Hela cells) and PLDH assays 

were conducted using 20mM solutions in DMSO of the synthesised compounds in 

triplicate.190,191

Cell toxicity A ssa y  IC50

34a
34b
34c
34d
Emetine

Log[uM]

Figure 44. The cytotoxicity IC50 values of known inhibitor, emetine and synthesised ligands 
illustrating percentage viability at increased concentrations of inhibitor.

Page 78



The cytotoxicity screening of the ligands; 34a, 34b, 34c and 34d was conducted using 

emetine, a natural alkaloid with an anti-protozoal properties,192 as a standard. The results 

illustrated in Figure 44 reveal that none of the ligands are cytotoxic < 100 compared 

with emetine which exhibits high toxicity at much lower concentrations.

For each of the assays the IC50 value was determined to establish the ligand concentration at 

which 50% inhibition is observed.189 As shown in Figure 45, chloroquine has an IC50 value of 

< 0.1 ^M while the synthesised ligands; 34a, 34b, 34c and 34d have values > 100 ^M.

Figure 45. The IC50 values for inhibition assay of PfDXR enzyme by ligands; 34a, 34b, 34c and 
34d compared to known inhibitor chloroquine, illustrating percentage viability of cell and 
increasing concentrations of ligand.
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2.4. Conclusions

The aims indicated in this research was to evaluate the DXR enzyme active site by 

introducing variation in the structure of fosmidomycin analogues which would allow for the 

determination of the binding site flexibility, affinity as well as structural limitations that the 

site dictates for activity to occur. Our research project consisted of 3 phases; phase 1 was 

the computational study of analogues on DXR enzyme, phase 2 was the synthesis of certain 

analogues that conserved groups essential for activity and finally, phase 3 entailed the use 

of bioassay to observe inhibition exhibited by these analogues.

The in silico studies conducted with both fcDXR and PfDRX on the W-benzyl 

phosphoramidate derivatives reveal high selection for the 2 methylene spacer and methyl 

terminal group, although exceptions occur. This is an observable trend throughout all 

proteins. A series of novel W-benzyl phosphoramidate derivatives were successfully 

synthesised. The W-benzyl derivatives were then used in bioassay against chloroquine and 

showed low inhibition and toxicity. The additional derivatives, the 3-nitro and 3,4-dichloro 

analogue were obtained in low yield and there was not sufficient time to adjust synthetic 

techniques for these compounds.

While it was unfortunate that the analogues' inhibitory activity was significantly lower than 

that of the known inhibitor fosmidomycin and chloroquine, these new compounds provide 

greater insight and depth to our studies in this area.

Future research in this area is being focused on the following:

i) Completion of the synthesis of the 3-nitro- and 3,4-dichlorobenzyl ligands 

(34e and 34f respectively)

ii) Preparation of larger quantities of all the ligands 34a-f for bioassay purposes- 

particularly for PfDXR inhibition assays; and

iii) Optimization of the synthesis and evaluation of a range of furan derivatives 

as conformationally constrained DOXP analogues.
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3. Experimental

3.1. Synthetic Methodology 

General

Synthesis and purification

Starting materials were obtained from Sigma-Aldrich and used without purification. THF and 

benzene distilled from sodium wire and benzophenone under nitrogen. DCM and DMF were 

dried in calcium hydride and distilled under nitrogen. Normal phase thin layer chromato­

graphy plates were used for purification and viewed under UV light (254 nm). Flash 

chromatography was conducted using silica gel 60 (70-230 mesh) for normal phase.

Analysis and Characterisation

NMR spectra was performed on Bruker 400 and 600 MHz spectrometers (T =298 K) and was 

calibrated on the residual protonated solvent signals (for CDCU: 5h = 7.26 ppm; 5c = 77.00 

ppm). High resolution mass spectroscopy was performed on a waters API Q-TOF Ultima 

spectrometer,193 using ionisation mode.

3.1.1. The Synthesis of M-benzyl substituted phosphoramidate derivatives.

Diethyl M-(trimethylsilyl)phosphoramidate 26

A solution of diethyl phosphoramidate (5.0 g, 33 mmol) 25 in benzene (10 ml) was made up 

under Ar gas. Through a septum, hexamethyldisilizane (4.1 ml, 20 mmol) was added while 

stirring. The resulting mixture was heated under reflux in an oil bath at 80 0C for 3 hours. 

The excess solvent was then removed under reduced pressure at 600C for an hour to yield 

diethyl W-(trimethylsilyl) phosphoramidate 26, a brown oil which formed highly hygroscopic 

cream-coloured crystals when cool (4.4524 g, 98% ). 5H/ppm (600 MHz; CDCl3) 0.10 (9H, s, 3 

x CH3SO, 1.20 (6H, t, J = 7.2 Hz, 2 x CH3), 2.79 (1H, s, NH) and 3.85 -  4.00 (4H, m, 2 x O-CH2); 

5c/ppm (600 MHz; CDCU) 0.6 (d, JP-C = 2.4 Hz, 3 x CH3SO, 16.2 (d, JP-C = 7.3 Hz, 2 x CH3) and 

61.9 (d, JP-C = 5.3 Hz, 2 x O-CH2). Page 81



Diethyl M-(2,2-diethoxyethyl) phosphoramidate 28

11

16

15
To a stirred solution of sodium hydride (60 % dispersed in mineral oil; 1.07 g, 26.8 mmol) in 

dry benzene (10 ml) was added through an addition funnel, a solution of diethyl W- 

(trimethylsilyl)phosphoramidate (5.0 g, 22 mmol) 26 in dry benzene (30 ml) slowly over 30 

min under N2 gas. Bromoacetaldehydediethyl acetal (3.3 ml, 22 mmol) and 

tetrabutylammonium bromide (0.71 g, 22 mmol) were then added to the stirred solution 

and the resulting mixture was refluxed at 800C for 4 hours. EtOH (18 ml) was then added 

drop-wise and the mixture was further refluxed for another 1 hour. After cooling, EtOAc 

(100 ml) was added and the organic solution was washed with water (2 x 20 ml). The 

aqueous layers were combined and extracted with EtOAc (3 x 10 ml), the organic layers 

were then combined and dried with anhydr. MgSO4 and the solvent evaporated in vacuo 

300C-400C, yielding diethyl W-(2,2-diethoxyethyl) phosphoramidate 28, a dark brown oil 

(5.6798 g, 92 %). 5H/ppm (600 MHz; CDCU) 1.16 (6H, t, J = 7.2 Hz, 2 x OCH2CH3), 1.25 (6H, t, J 

= 7.2 Hz, 2 x POCH2CH3), 3.94 (1H, s, NH), 3.29 (2H, d, J = 5.2 Hz, CH2N), 3.51 and 3.62 (4H, 

m, 2 x O-CH2), 4.00 (4H, m, 2 x PO-CH2) and 4.59 (1H, t, J = 5.4 Hz, CH); 5c/ppm (600 MHz; 

CDCl3) 15.0 (2 x OCH2CH3)), 15.5 (d, JP-C = 6.5 Hz, 2 x POCH2CH3)), 31.9 (CH2N), 61.8 (d, JP-C 

= 5.8 Hz, 2 x O-CH2), 62.5 (2 x PO-CH2) and 101.1 (C-H).

Diethyl M-benzyl-M- (2,2-diethoxyethyl) phosphoramidate 29a

Page 82



To a stirred solution of diethyl W-(2,2-diethoxyethyl) phosphoramidate (1 g, 37 mmol) 28 in 

dry THF (20 ml) under N2 gas, NaH (60 % dispersion in mineral oil; 0.20 g, 74 mmol) was 

added in small portions to permit controlled evolution of hydrogen gas. A solution of benzyl 

bromide (0.44 ml, 3.7 mmol) in dry THF (5 ml) was added and the resulting solution was 

stirred at room temperature (~250C) for ca. 24 hours. The solvent was evaporated in vacuo 

and the residue extracted with EtOAc (2 x 25 ml). The organic layer was sequentially washed 

with saturated aq. NaHCO3 (2 x 50 ml), water (2 x 50 ml) and brine (2 x 50 ml). The aqueous 

washings were then extracted with EtOAc (2 x 25 ml) and the combined organic layers were 

dried using anhydr. MgSO4. The solvent was evaporated in vacuo and the crude product 

chromatographed on silica gel [elution hexane: EtOAc (4:1)] to yield Diethyl W-benzyl-W- 

(2,2-diethoxyethyl) phosphoramidate 29a, a yellow oil (0.735 g, 56.98 %). SH/ppm (600 MHz; 

CDCl3) 1.18 (6H, t, J = 6.8 Hz, 2 x OCH2CH3), 1.27 (6H, t, J = 7.2 Hz, 2 x POCH2CH3), 3.32 (2H, d, 

J = 5.6 Hz, CH2N), 3.51 and 3.64 (4H, m, 2 x O-CH2), 3.85 (2H, s, Ph-CH2), 4.03 (4H, m, 2 x PO- 

CH2), 4.61 (1H, t, J = 5.2 Hz, CH) and 7.29 -  7.37 (5H, m, Ar-H); Sc/ppm (600 MHz; CDCU) 15.1 

(2 x O CH2CH3), 16.1 (d, J p-c = 7.2 Hz, 2 x POCH2CH3), 31.8 (CH2N), 52.7 (3 -CH2), 62.4 (d, Jp-c =

5.5 Hz, 2 x OCH2CH3), 62.7 (2 x POCH2CH3), 101.4 (C-7), 127.3 (C-22), 128.3 (C-20 and C-24), 

128.6 (C-21 and C-23) and 137.4 (C-19).

Diethyl M-(2,2-diethoxyethyl)-M-[4-(hydroxymethyl) benzyl] phosphoramidate 29b

The procedure for the synthesis of Diethyl W-benzyl-W-(2,2-diethoxyethyl) phosphoramidate 

29a was employed using NaH (60 % dispersion in mineral oil; 0.20 g, 7.4 mmol), diethyl W- 

(2,2-diethoxyethyl) phosphoramidate (1.00 g, 3.7 mmol) 28 in dry THF (20 mL) and 4- 

(chloromethyl)benzyl alcohol (0.58 g, 3.7 mmol) in dry THF (5 mL). The solvent was 

evaporated in vacuo and the crude chromatographed on silica gel [elution hexane: EtOAc 

(4:1)] yielding diethyl W-(2,2-diethoxyethyl)-W-[4-(hydroxymethyl)]benzyl) phosphoramidate 

29b, a yellow oil (0.4727 g, 35.01 %). SH/ppm (600 MHz; CDCU) 1.16 (6H, t, J = 7.2 Hz, 2 x 

OCH2CH3), 1.28 (6H, t, J = 6.8 Hz, 2 x POCH2CH3), 2.13 (1H, s, OH), 3.27 (2H, d, J = 5.2 Hz, 

CH2N), 3.48 and 3.61 (4H, m, 2 x OCH2), 3.82 (2H, s, PhCH2), 4.05 (4H, m, 2 x POCH2), 4.47Page 83



(1H, t, J = 5.2 Hz, CH), 4.82 (2H, s, CH2OH) and 7.02 -  7.10 (4H, m, Ar-H); Sc/ppm (600 MHz; 

CDCl3) 15.2 (2 x OCH2CH3), 16.2 (d, J p-c = 7.2 Hz, 2 x POCH2CH3), 33.6 (CH2N), 53.5 (Ph-CH2), 

62.1 (d, J p-c = 6.6 Hz, 2 x O-CH2), 62.5 (2 x PO-CH2), 64.2 (CH2OH), 101.5 (C-7), 127.4 (C-20 

and C-24, 128.7 (C-21 and C-23), 136.1 (C-19) and 139.7 (C-22).

Diethyl M-(3-aminobenzyl)-M-(2,2-diethoxyethyl) phosphoramidate 29c

i) 3-Aminobenzyl bromide 41

Phosphorous tribromide (0.62 ml, 6.5 mmol) was added drop-wise to a stirred solution of 3- 

aminobenzyl alcohol (0.80 g, 6.5 mmol) in dry DCM (10 ml) under N2 at 00C and the resulting 

mixture was stirred for an hour. The mixture was allowed to warm to room temperature 

and stirred for a further 24 hours. After the addition of sat. aq. NaHCO3 (30 ml) and DCM (30 

ml) the organic layer was separated and the aqueous layer was extracted with diethyl ether 

(3 x 20 ml). Organic layers were combined, dried over MgSO4 and filtered. The solvent was 

evaporated in vacuo and crude weighed. A 1:1 solution of KOH was prepared, the crude was 

dissolved in water (10 ml) and the KOH solution added drop-wise at 00 C for an hour. The 

organic layer was extracted with EtOAc (2 x 10 ml) and dried over MgSO4. Yielding 3- 

aminobenzyl bromide 41, a yellow oil (1.5629g, 77%). SH/ppm (400 MHz; DMSO) 4.95 (2H, s, 

NH2), 4.35 (2H, s, CH2Br) and 6.35 - 7.00 (4H, m, Ar- H); Sc/ppm (400 MHz; DMSO) 36.6 

(CH2Br), 115.5 (C-2), 116.4 (C-4), 119.9 (C-6), 129.0 (C-5), 138.0 (C-1) and 147.5 (C-3).
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ii) Diethyl M-(3-aminobenzyl)-M-(2,2-diethoxyethyl)phosphoramidate 29c

14

The procedure for the synthesis of diethyl N-benzyl-N-(2,2-diethoxyethyl)phosphoramidate 

29a was employed using NaH (60 % dispersion in mineral oil; 0.20 g, 7.4 mmol), diethyl N- 

(2,2-diethoxyethyl) phosphoramidate (1.00 g, 3.7 mmol) 28 in dry THF (20 mL) and 3- 

aminobenzyl bromide (0.69 g, 3.7 mmol) in dry THF (5 mL). The solvent was evaporated in 

vacuo and the crude product chromatographed on silica gel [elution hexane: EtOAc (4:1)], 

yielding diethyl N-(3-aminobenzyl)-N-(2,2-diethoxyethyl)phosphoramidate 29c, a yellow oil 

(0.69 g, 49.8%). SH/ppm (600 MHz; CDCU) 1.18 (6H, t, J = 7.2 Hz, OCH2CH3), 1.30 (6H, t, J = 

6.8 Hz, 2 x POCH2CH3), 2.87 (2H, d, J = 5.6 Hz, CH2N), 3.47 and 3.62 (4H, m, 2 x OCH2), 3.83 

(2H, s, Ph-CH2), 3.91 (2H, s, NH2), 4.07 (4H, m, 2 x POCH2), 4.48 (1H, t, J = 5.2 Hz, CH) and 

6.31 -  6.87 (4H, m, Ar-H); Sc/ppm (600 MHz; CDCU) 14.9 (2 x OCH2CH3), 15.9 (d, J p-c = 7.0 Hz, 

2 x POCH2CH3), 31.6 (CH2N), 53.3 (Ph-CH2), 62.1 (d, J p-c = 5.4 Hz, 2 x POCH2), 62.2 (2 x OCH2), 

101.4 (C-7), 127.4 (C-20 and C-24), 128.7 (C-21 and C-23), 136.1 (C-19) and 139.7 (C-22).

Diethyl M-(2,2-diethoxyethyl)-M-(3-mercaptobenzyl)phosphoramidate 29d 

i) 3-Merceptobenzyl bromide 42

A solution of sodium nitrite (0.32 g, 4.6 mmol) in water (2 ml) was slowly added to a mixture 

of 3-aminobenzyl bromide (0.50 g, 2.7 mmol) in water (4 ml) and conc. HCl (1 ml) at -5 -  0 

0C. The mixture was stirred for 1 hour with the temperature kept below 0 0C.

Page 85



A solution of sodium sulfide (1.20 g, 4.97 mmol) and sulfur (0.16 g, 5.0 mmol) in water (15 

ml) was then added drop-wise during 1 hour to the cold solution of the diazonium salt and 

the resulting mixture was stirred at 0 0C for 1 hour. After completion, the mixture was 

acidified (pH 2.5) and extracted with EtOAc (3 x 15 ml). The organic extracts were washed 

with 20% Na2CO3 (2 x 20 ml), water (2 x 20ml) and brine (2 x 20ml) and dried with MgSO4 . 

The solvent was removed in vacuo and used in the following step without further 

purification.

In another flask, sodium borohydride (0.12 g, 32 mmol) in THF (3 ml) was added to the 

disulphide solution (0.25 g, 0.8 mmol) in THF (3 ml) under N2 at 0 0C. After the addition, the 

mixture was allowed to warm to room temperature and stirred for an hour. The reaction 

was then quenched with water (6 ml), acidified (pH 2.5) with 2M HCl and extracted with 

EtOAc (3 x 10 ml).

The organic extracts were combined, washed sequentially with 20% Na2CO3 (3 x 10 ml), 

water (3 x 10 ml) and brine (3 x 10 ml) and dried with MgSO4. The solvent was removed in 

vacuo and the residue purified by chromatography on silica [elution with hexane: EtOAc 

(4:1)] to yield 3-mercaptobenzyl bromide 42 as yellow crystals (0.78g, 65%). SH/ppm (400 

MHz; CDCl3) 3.65 (1H, s, SH), 4.65 (2H, s, CH2Br), and 6.60 - 7.46 (4H, m, Ar-H); Sc/ppm (400 

MHz; CDCl3) 36.4 (CH2Br), 125.8 (C-2), 126.4 C-6), 128.3 (C-5), 130.0 (C-4), 130.2 (C-3) and 

137.6 (C-1).

ii) Diethyl M-(2,2-diethoxyethyl)-M-(3-mercaptobenzyl)phosphoramidate 29d

9 O  3
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The procedure for the synthesis of diethyl W-benzyl-W (2,2-diethoxyethyl) phosphoramidate 

29a was employed using NaH (60 % dispersion in mineral oil; 0.20 g, 7.4 mmol), diethyl N- 

(2,2-diethoxyethyl)phosphoramidate (1.00 g, 3.7 mmol) 28 in dry THF (20 mL) and 3- 

sulfanylbenzyl bromide (0.75 g, 3.7 mmol) in dry THF (5 mL). The solvent was evaporated in 

vacuo and the crude chromatographed on silica gel [elution hexane: EtOAc (3:2)] to yield 

diethyl N-(2,2-diethoxyethyl)-N-(3-mercaptobenzyl)phosphoramidate 29d, a yellow oil 

(0.57g, 65%). SH/ppm (600 MHz; CDCU) 1.20 (6H, t, J = 7.2 Hz, 2 x OCH2CH3), 1.29 (6H, t, J = 

6.8 Hz, 2 x POCH2CH3), 2.96 (1H, s, SH), 3.34 (2H, d, J = 5.2 Hz, CH2N), 3.53 and 3.66 (4H, m, 2 

x OCH2), 3.84 (2H, s, Ph-CH2), 4.05 (4H, m, 2 x POCH2), 4.63 (1H, t, J = 5.6 Hz, CH) and 6.89 -  

7.01 (4H, m, Ar-H); Sc/ppm (600 MHz; CDCU) 15.5 (2 x OCH2CH3), 16.5 (d, J p-c = 7.1 Hz, 2 x 

POCH2CH3), 32.2 (CH2N), 49.7 (d, Jp-c = 7.0 Hz, 2 x POCH2), 62.8 (2 x OCH2), 101.0 (CH), 126.8 

(C-7), 124.7 (C-20), 125.5 (C-24), 127.4 (C-22), 129.0 (C-21), 130.0 (C-23), 137.1 (C-19).

Diethyl W-(2,2-diethoxyethyl)-W-(3-nitrobenzyl) phosphoramidate 29e

9 O  3

14

21

25

The procedure for the synthesis of diethyl W-benzyl-W-(2,2-diethoxyethyl)phosphoramidate 

29a was employed using NaH (60 % dispersion in mineral oil; 0.20 g, 7.4 mmol), diethyl W- 

(2,2-diethoxyethyl) phosphoramidate (1.00 g, 3.7 mmol) 28 in dry THF (20 mL) and 3- 

nitrobenzyl bromide (0.814 g, 3.7 mmol) in dry THF (5 mL). The solvent was evaporated in 

vacuo and the crude chromatographed on silica gel [elution hexane: EtOAc (4:1)] to yield 

diethyl W-(2,2-diethoxyethyl)-W-(3-nitrobenzyl)phosphoramidate 29e, a dark green oil (0.302 

g, 20.2%). SH/ppm (600 MHz; CDCU) 1.11 (6H, t, J = 6.8 Hz, 2 x OCH2CH3), 1.12 (6H, t, J = 7.2 

Hz, 2 x P OCH2CH3), 2.85 (2H, d, J = 5.6 Hz, CH2N), 3.41 (4H, m, 2 x OCH2), 3.81 (2H, s, Ph-Page 87



CH2), 4.07 (4H, m, 2 x POCH2), 4.43 (1H, t, J = 5.2 Hz, CH) and 7.32 -  8.07 (4H, m, Ar-H); 

Sc/ppm (600 MHz; CDCfe) 15.5 (2 x OCH2CH3), 14.5 (d, J p-c = 7.2 Hz, 2 x POCH2CH3), 44.5 

(CH2N), 69.5 (Ph-CH2), 61.4 (d, Jp-c = 5.5 Hz, 2 x POCH2), 60.7 (2 x OCH2), 100.2 (CH), 120.4 (C- 

7), 124.8 (C-20), 126.7 (C-21), 128.0 (C-22), 129.1 (C-24), 130.0 (C-19), 137.7 (C-23).

Diethyl N-(3,4 dichlorobenzyl)-N-(2,2-diethoxyethyl)phosphoramidate 29f

2

9 O  3

The procedure for the synthesis of diethyl W-benzyl-W- (2,2-diethoxyethyl) phosphoramidate 

29a was employed using NaH (60 % dispersion in mineral oil; 0.20 g, 7.4 mmol), diethyl W- 

(2,2-diethoxyethyl)phosphoramidate (1.00 g, 3.7 mmol) 28 in dry THF (20 mL) and 3, 4 

dichlorobenzyl chloride (0.51 ml, 37 mmol) in dry THF (5 ml). The solvent was evaporated in 

vacuo and the crude chromatographed on silica gel [elution hexane: EtOAc (4:1)] to yield 

diethyl W-(3,4 dichlorobenzyl)-W-(2,2-diethoxyethyl)phosphoramidate 29f, a yellow oil 

(0.488g, 30.7%). SH/ppm (600 MHz; CDCU) 1.25 (6H, t, J = 6.8 Hz, 2 x OCH2CH3), 1.31 (6H, t, J 

= 7.2 Hz, 2 x POCH2CH3), 3.31 (2H, d, J = 5.6 Hz, CH2N), 3.61 (4H, m, 2 x OCH2), 4.01 (2H, s, 

Ph-CH2), 4.17 (4H, m, 2 x POCH2), 4.58 (1H, t, J = 5.2 Hz, CH) and 7.02 -  7.55 (3H, m, Ar-H); 

Sc/ppm (600 MHz; CDCU) 15.5 (2 x OCH2CH3), 14.5 (d, Jp-c = 7.2 Hz, 2 x POCH2CH3), 44.6 

(CH2N), 69.0 (Ph-CH2), 61.4 (d, J p-c = 5.5 Hz, 2 x POCH2), 60.1 (2 x OCH2), 100.2 (CH), 127.0 (C- 

7), (C-19), (C-20), (C-21), (C24), (C-22), 136.4 (C-23).
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Diethyl W-benzyl-W-(2-oxoethyl)phosphoramidate 30a

2

9 O  3

H

Diethyl W-benzyl-W-(2,2diethoxyethyl) phosphoramidate (0.5 g, 1.4 mmol) 29a and 2M HCl 

(4 ml) were stirred at room temperature for approximately 24 hours. After completion the 

reaction mixture was added to CHCl3 (20 ml) and the organic phase was washed with water 

(3 x 20 ml). The aqueous washings were combined and extracted with CHCU (30 ml). The 

combined organic extracts were sequentially washed with saturated aq. NaHCO3 (3 x 20 ml) 

and brine (3 x 20 ml) and then dried with anhydr. MgSO4 . The solvent was evaporated in 

vacuo and the residue chromatographed on silica gel (4:1) to yield diethyl W-benzyl-W-(2- 

oxoethyl)phosphoramidate 30a, a yellow oil (0.35g, 70%). SH/ppm (600 MHz; CDCl3) 1.33 

(6H, t, J = 6.8 Hz, 2 x POCH2CH3), 3.74 (2H, d, J = 6.0 Hz, CH2CO), 3.83 (2H, s, Ph-CH2), 4.12 

(4H, m, 2 x OCH2), 7.31 -  7.37 (5H, m, Ar-H) and 9.82 (1H, s, CHO); Sc/ppm (600 MHz; CDCb)

16.2 (d, J p-c = 5.9 Hz, 2 x POCH2CH3), 51.9 (d, Jp-c = 6.0 Hz, CH2CO), 62.4 (d, J p-c = 6.5 Hz, 2 x 

OCH2), 67.6 (Ph-CH2), 127.6 (C-18), 128.0 (C-16 and C-20), 128.1 (C-17 and C-19), 137.7 (C- 

15) and 175.2 (C=O).

Diethyl W-[4-(hydroxymethyl)benzyl]-W-(2-oxoethyl)phosphoramidate 30b

21

2

1

OH
22
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The procedure described for the synthesis of diethyl N-benzyl-N-(2-oxoethyl)- 

phosphoramidate 30a was employed using diethyl N-(2,2-diethoxyethyl)-N-[4- 

(hydroxymethyl)benzyl]phosphoramidate (0.5 g, 1.3 mmol) 29b and 2M HCl (4 ml). After 

work up, the solvent was removed in vacuo and the residue chromatographed on silica gel 

(4:1) to yield diethyl N-[4-(hydroxymethyl)benzyl]-N-(2-oxoethyl)phosphoramidate 30b, a 

yellow oil (0.36g, 72%). SH/ppm (600 MHz; CDCU) 1.36 (6H, t, J = 7.2 Hz, 2 x CH3), 2.03 (1H, s, 

OH), 3.72 (2H, d, J = 5.2 Hz, CH2CO), 3.82 (2H, s, PhO-h), 4.18 (4H, m, 2 x OCH2), 4.82 (2H, s, 

CH2OH), 7.09 -  7.17 (4H, m, Ar-H) and 9.81 (1H, s, CHO); Sc/ppm (600 MHz; CDCU) 16.3 (d, 

JP-C = 5.8 Hz, 2 x CH3), 48.9 (d, J p-c = 5.9 Hz, CH2CO), 63.0 (d, J p-c = 6.3 Hz, 2 x OCH2), 64.9 

(CH2OH), 67.2 (Ph-CH2), 127.1 (C-20 and C-16), 128.2 (C-17 and C-19), 135.8 (C-15), 139.8 (C- 

18) and 172.8 (C=O).

Diethyl W-(3-aminobenzyl)-W-(2-oxoethyl) phosphoramidate 30c

9 O  3

13H

21

The procedure described for the synthesis of diethyl N-benzyl-N-(2-oxoethyl)- 

phosphoramidate 30a was employed using diethyl N-(3-aminobenzyl)-N-(2,2diethoxyethyl)- 

phosphoramidate (0.5 g, 1.3 mmol) 29c and 2M HCl (4 ml). After work up, the solvent was 

removed in vacuo and the residue chromatographed on silica gel (4:1) to yield diethyl N-(3- 

aminobenzyl)-N-(2-oxoethyl)phosphoramidate 30c, a yellow oil (0.37g, 74%). SH/ppm (600 

MHz; CDCl3) 1.35 (6H, t, J = 6.8 Hz, 2 x CH3), 3.24 (2H, s, NH2), 3.71 (2H, d, J = 5.2 Hz, CH2CO), 

3.83 (2H, s, Ph-CH2), 4.17 (4H, m, 2 x OCH2), 7.00 -  7.47 (4H, m, Ar-H) and 9.81 (1H, s, CHO); 

So/ppm (600 MHz; CDCU) 16.3 (d, J p-c = 6.0 Hz, 2 x CH3), 52.8 (d, J p-c = 4.9 Hz, CH2CO), 61.7
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(d, J p-c = 6.4 Hz, 2 x OCH2), 68.3 (Ph-CH2), 114.0 (C-18), 114.9 (C-20), 118.3 (C- 18), 129.8 (C- 

17), 137.7 (C-15), 147.8 (C-19) and 174.8 (C=O).

Diethyl M-(3-mercaptobenzyl)-M-(2-oxoethyl)phosphoramidate 30d

1

SH
The procedure described for the synthesis of diethyl N-benzyl-N-(2-oxoethyl)- 

phosphoramidate 30a was employed using diethyl N-(3-mercaptobenzyl)-N-

(2,2diethoxyethyl)phosphoramidate (0.5 g, 1.3 mmol) 29d and 2M HCl (4 ml). After work up, 

the solvent was removed in vacuo and the residue chromatographed on silica gel (4:1) to 

yield diethyl N-(3-mercaptobenzyl)-N-(2-oxoethyl)phosphoramidate 30d, a yellow oil (0.37g, 

74%). SH/ppm (600 MHz; CDCU) 1.36 (6H, t, J = 7.2 Hz, 2 x CH3), 2.77 (1H, s, SH), 3.53 (2H, d, J 

= 6.0 Hz, CH2CO), 3.79 (2H, s, Ph-O-h), 4.12 (4H, m, 2 x O-CH2), 6.86 -  7.40 (4H, m, Ar-H) and 

9.87 (1H, s, CHO); So/ppm (600 MHz; CDCfe) 16.4 (d, J p-c = 6.0 Hz, 2 x CH3), 52.7 (d, J p-c = 4.7 

Hz, CH2CO), 61.4 (d, J p-c = 6.4 Hz, 2 x OCH2), 68.6 (Ph-CH2), 124.6 (C-16), 126.2 (C-20), 127.8 

(C-18), 128.3 (C-17), 130.4 (C-19), 137.7 (C-15) and 173.2 (C=O).

Diethyl W-(3-nitrobenzyl)-W-(2-oxoethyl) phosphoramidate 30e

9

1
2<O  3 13
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The procedure described for the synthesis of diethyl N-benzyl-N-(2-oxoethyl)- 

phosphoramidate 30a was employed using Diethyl N-(3-nitrobenzyl)-N-(2,2-diethoxyethyl)- 

phosphoramidate (0.3 g, 0.91 mmol) 29e and 2M HCl (2.5 ml). After work up, the solvent 

was removed in vacuo and the residue chromatographed on silica gel (4:1) to yield diethyl 

N-(3-nitrobenzyl)-N-(2-oxoethyl) phosphoramidate 30e, a green oil (0.25g, 83%). SH/ppm 

(600 MHz; CDCfe) 1.11 (6H, t, J = 6.8 Hz, 2 x CH3),3.65 (2H, d, J = 6.0 Hz, CH2CO), 3.81 (2H, s, 

Ph-CH2),4.07 (4H, m, 2 x OCH2), 7.30-8.07 (4H, m, Ar-H) and 9.72 (1H, s, CHO); So/ppm (600 

MHz; CDCl3) 14.4 (d, J p-c = 5.9 Hz, 2 x CH3), 52.0 (d, J p-c = 6.0 Hz, CH2CO), 60.02(d, J p-c = 6.5 

Hz, 2 x OCH2), 68.5 (Ph-CH2), 142.6-146.5 (Ar-C), 200.0 (C=O).

Diethyl N-(3,4 dichlorobenzyl)-N-(2-oxoethyl)phosphoramidate 30f

The procedure described for the synthesis of diethyl N-benzyl-N-(2-oxoethyl)- 

phosphoramidate 30a was employed using diethyl N-(3,4-dichlorobenzyl)-N-

(2,2diethoxyethyl)phosphoramidate (0.4 g, 1.13 mmol) 29f and 2M HCl (3.2 ml). After work 

up, the solvent was removed in vacuo and the residue chromatographed on silica gel (4:1) to 

yield diethyl N-(3,4 dichlorobenzyl)-N-(2-oxoethyl) phosphoramidate 30f, a yellow oil (0.30g, 

75%). SH/ppm (600 MHz; CDCfe) 1.11 (6H, t, J = 6.8 Hz, 2 x CH3), 3.55 (2H, d, J = 6.0 Hz, 

CH2CO), 3.82 (2H, s, Ph-CH2), 4.07 (4H, m, 2 x O-CH2), 6.80-7.09 (3H, m, Ar-H) and 9.72 (1H, 

s, CHO); So/ppm (600 MHz; CDCfe) 14.4 (d, J p-c = 5.9 Hz, 2 x CH3), 52.1 (d, J p-c = 6.0 Hz, 

CH2CO), 60.0 (d, J p-c = 6.5 Hz, 2 x O-CH2), 68.3 (Ph-O-h), 127.6-133.2 (Ar-C), 199.5 (C=O).
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Diethyl N-benzyl-N-[2-(benzyloxyamino)ethyl]phosphoramidate 31a

9 O  30  410 4P  6
'  N
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To a stirred solution of diethyl N-benzyl-N-(2-oxoethyl)phosphoramidate (0.30 g, 1.05 mmol) 

30a in MeOH (5 mL) was added a solution of O-benzylhydroxylamine (0.15 g, 1.29 mmol) in 

MeOH (8 mL). The reaction mixture was heated at 400C for 3 hours, cooled to room 

temperature and diluted with MeOH (50 mL). After the addition of sodium 

cyanoborohydride (0.20 g, 3.1 mmol), conc. HCl (1.2 mL) was added dropwise over a period 

of 30 min and the mixture was stirred for 1 hour. Sodium cyanoborohydride (0.075 g, 1.05 

mmol) was again added and the mixture was stirred for 1 hour. The solvent was removed 

under reduced pressure, the residue dissolved in MeOH (30 mL) and then treated with ice- 

water (50 mL). The pH of the resulting mixture was adjusted to pH 10 with an aq. KOH 

solution and extracted with DCM (3 x 20 mL). The combined organic layers were washed 

with 10 % NaHCO3 (50 mL) and brine (50 mL) and then dried (anhydr. MgSO4). The solvent 

was evaporated in vacuo and the residual oil was purified by flash chromatography on silica 

gel [elution with hexane-EtOAc (3:1)] to yield diethyl N-benzyl-N-[2-(benzyloxyamino)ethyl]- 

phosphoramidate 31a, a yellow oil (0.20 g 50 %). SH/ppm (600 MHz; CDCU) 1.32 (6H, t, J =

7.2 Hz, 2 x CH3), 2.89 (4H, m, NCH2), 3.82 (2H, s, Ph-CH2), 4.10 (4H, m, 2 x OCH2), 4.74 (2H, s, 

OCH2Ph), 5.23 (1H, s, NH) and 7.29 -  7.37 (10H, m, Ar-H); So/ppm (600 MHz; CDCU) 16.5 (d, 

J p-c = 6.0 Hz, 2 x CH3), 36.7 (d, J p-c = 4.5 Hz, NCH2), 52.1 (d, J p-c = 16.7 Hz, NCH2), 61.5 (d, J p-c 

= 6.4 Hz, 2 x POCH2), 67.3 (Ph-O-h), 68.3 (OO-hPh), 113.9 (C-17), 114.9 (C-19), 118.3 (C15), 

126.9 (C-23 and C-27), 127.8 (C-25), 128.3 (C-24 and C-26), 129.3 (C-16), 136.7 (C-14), 137.7 

(C-22) and 148.3 (C-18).
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Diethyl M-[2-(benzyloxyamino)ethyl]-M-(hydroxymethyl)benzyl]phosphoramidate 31b

1
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The procedure described for the synthesis of diethyl N-benzyl-N-[2-(benzyloxyamino)ethyl]- 

phosphoramidate 31a was employed, using diethyl N-[4-(hydroxymethyl)benzyl]-N- 

(2oxoethyl phosphoramidate (0.32 g, 1.0 mmol) 30b, O-benzylhydroxylamine (0.16 g, 1.28 

mmol) in MeOH (10 mL), sodium cyanoborohydride (0.18 g, 2.90 mmol), conc. HCl (1.2 mL) 

and a further portion of sodium cyanoborohydride (0.061 g, 0.92 mmol). After work-up, the 

solvent was evaporated in vacuo and the remaining oil was purified by flash 

chromatography on silica gel [elution with hexane-EtOAc (3:1)] to yield diethyl N-[2- 

(benzyloxyamino)ethyl]-N-[4(hydroxymethyl)benzyl]phosphoramidate 31b, a yellow oil 

(0.22 g, 53 %). SH/ppm (600 MHz; CDCls) 1.29 (6H, t, J = 7.2 Hz, 2 x CHs), 2.87 (4H, m, NCH2), 

3.80 (2H, s, Ph-CH2), 4.07 (4H, m, 2 x POCH2), 4.77 (2H, s, OCH2Ph ), 4.86 (2H, s, CH2OH), 7.33 

-  7.42 (9H, m, Ar-H), 7.97 (1H, s, OH) and 8.11 (1H, s, NH); Sc/ppm (600 MHz; CDCl3) 16.3 (d, 

J p-c = 6.0 Hz, 2 x CH3), 36.4 (d, Jp-c = 4.8 Hz, N-CH2), 52.0 (d, Jp-c = 16.4 Hz, N-CH2), 61.3 (d, Jp-c 

= 6.5 Hz, 2 x POCH2), 64.7 (CH2OH), 67.2 (OCH2Ph), 69.2 (Ph-CH2), 127.7 (C-19 and C-15), 

127.8 (c-23 and c-27), 128.2 (c-25), 128.3 (c-18 and c-16), 128.3 (c-24 and c-26), 137.4 (c- 

14), 137.8 (C-22) and 138.3 (C-17).
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Diethyl W-(3-ammobenzyl)-W-[2-(benzyloxyammo)ethyl]phosphoramidate 31c

1
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The procedure described for the synthesis of diethyl N-benzyl-N-[2-

(benzyloxyamino)ethyl]=phosphoramidate 31a was employed, using diethyl N-(3- 

aminobenzyl)-N-(2oxoethyl)phosphoramidate (0.34 g, 1.16 mmol) 30c, O-benzyl-

hydroxylamine (0.17 g, 1.39 mmol) in MeOH (10 mL), sodium cyanoborohydride (0.22 g, 

3.46 mmol), conc. HCl (1.2 mL) and a further portion of sodium cyanoborohydride (0.070 g, 

1.01 mmol). After work-up, the solvent was evaporated in vacuo and the remaining oil was 

purified by flash chromatography on silica gel [elution with hexane-EtOAc (3:1)] to yield 

diethyl N-(3-aminobenzyl)-N-[2(benzyloxyamino)ethyl]phosphoramidate 31c, a yellow oil 

(0.25 g, 57 %). SH/ppm (600 MHz; CDCU) 1.22 (6H, t, J = 6.0 Hz, 2 x CH3), 2.95 (4H, m, N-CH2), 

3.59 (2H, s, OCH2Ph), 4.03 (4H, m, 2 x POCH2), 4.62 (2H, s, Ph-CH2), 5.55 (2H, s, NH2), 6.59 -

6.87 (4H, m, Ar-H), 7.28-7.37 (5H, m, Ar-H) and 8.40 (1H, s, NH); So/ppm (600 MHz; CDCU)

16.4 (d, JP-C = 6.0 Hz, 2 x CH3), 36.5 (d, J p-c = 4.8 Hz, N-CH2), 52.0 (d, J p-c = 16.7 Hz, N-CH2),

61.5 (d, Jp-c = 6.5 Hz, 2 x POCH2), 67.4 (Ph-Q-h), 69.9 (OCH2Ph), 113.9 (C-17), 114.9 (C-19),

118.3 (C-15), 126.9 (C-23 and C-27), 127.8 (C-25), 128.3 (C-24 and C-26), 129.3 (C-16), 136.7 

(C-14), 137.7 (C-22) and 148.3 (C-18).
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Diethyl M-[2-(benzyloxyamino)ethyl]-M-(3-mercaptobenzyl)phosphoramidate 31d
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The procedure described for the synthesis of diethyl N-benzyl-N-[2-(benzyloxyamino)ethyl]- 

phosphoramidate 31a was employed, using diethyl N-(3-mercaptobenzyl)-N-(2oxoethyl) 

phosphoramidate (0.34 g, 1.08 mmol) 30d, O-benzylhydroxylamine (0.108 g, 0.85 mmol) in 

MeOH (10 mL), sodium cyanoborohydride (0.21 g, 3.3 mmol), conc. HCl (1.2 mL) and a 

further portion of sodium cyanoborohydride (0.070 g, 1.005 mmol). After work-up, the 

solvent was evaporated in vacuo and the remaining oil was purified by flash 

chromatography on silica gel [elution with hexane-EtOAc (3:1)] to yield diethyl N-[2- 

(benzyloxyamino)ethyl]-N-(3-mercaptobenzyl)phosphoramidate 31d, a yellow oil (0.24 g, 55 

%). SH/ppm (600 MHz; CDCU) 1.28 (6H, t, J = 7.2 Hz, 2 x CH3), 2.61 (4H, m, N-CH2), 3.38 (1H, 

s, SH), 3.61 (2H, s, Ph-CH2), 4.04 (4H, m, 2 x POCH2), 4.81 (2H, s, OCH2Ph), 6.75 - 7.18 (4H, m, 

Ar-H), 7.31 - 7.35 (5H, m, Ar-H) and 8.18 (1H, s, NH); Sc/ppm (600 MHz; CDCU) 16.4 (d, Jp-c = 

6.0 Hz, 2 x CH3), 36.8 (d, Jp-c = 4.8 Hz, N-CH2), 52.1 (d, Jp-c = 16.7 Hz, N-CH2), 61.5 (d, J p-c = 6.5 

Hz, 2 x POcH2), 66.7 (OcH2Ph), 71.2 (Ph-O-h), 124.6 (c-15), 125.9 (c-19), 127.6 (c-17), 127.9 

(c-23 and c-27), 128.0 (c-25), 128.3 (c-16), 128.4 (c-24 and c-26), 130.6 (c-18) and 137.8 (c- 

14) and 138.0 (c-22).
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Diethyl M-[2-(benzyloxyamino)ethyl]-M-(3-nitrobenzyl)phosphoramidate 31e
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The procedure described for the synthesis of diethyl N-benzyl-N-[2-(benzyloxyamino)ethyl]- 

phosphoramidate 31a was employed, using diethyl N-(3-nitrobenzyl)-N-(2-oxoethyl) 

phosphoramidate (0.25 g, 0.57 mmol) 30e, O-benzylhydroxylamine in MeOH (10 mL), 

sodium cyanoborohydride, conc. Hcl (mL) and a further portion of sodium 

cyanoborohydride. After work-up, the solvent was evaporated in vacuo and the remaining 

oil was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (3:1)] to 

yield diethyl N-[2-(benzyloxyamino)ethyl]-N-(3-nitrobenzyl)phosphoramidate, a light green 

oil (0.14 g, 56 %) 31e. SH/ppm (600 MHz; cDcU) 1.11 (6H, t, J = 7.2 Hz, 2 x cH3), 2.03 (1H, s, 

NH), 2.77-2.81 (4H, m, N-Q-h), 3.82 (2H, s, Ph-cH2), 4.10 (4H, m, 2 x POQ-h), 4.74 (2H, s, 

OcH2Ph) and 7.91 -  8.01 (10H, m, Ar-H); Sc/ppm (600 MHz; cDcU) 14.5 (d, J p-c = 6.0 Hz, 2 x 

cH3), 37.7 (d, J p-c = 4.5 Hz, N-cH2), 51.2 (d, Jp-c = 16.7 Hz, N-G-h), 60.0 (d, Jp-c = 6.4 Hz, 2 x 

POcH2), 68.9 (Ph-cH2), 77.3 (OcH2Ph), 120.9-156.4 (11 x Ar-c).

Diethyl M-[2-(benzyloxyamino)ethyl-M-(3,4-dichlorobenzyl)phosphoramidate 31f

9 O  3 21 27
23 2524
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The procedure described for the synthesis of diethyl N-benzyl-N-[2-(benzyloxyamino)ethyl]- 

phosphoramidate 31a was employed, using diethyl N-(3,4-dichlorobenzyl)-N-(2oxoethyl)- 

phosphoramidate (0.30 g, 0.65 mmol) 30f, O-benzylhydroxylamine in MeOH (10 mL), 

sodium cyanoborohydride, conc. Hcl (1.2 mL) and a further portion of sodium 

cyanoborohydride. After work-up, the solvent was evaporated in vacuo and the remaining 

oil was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (3:1)] to 

yield diethyl N-[2-(benzyloxyamino)ethyl]-N-(3,4-dichlorobenzyl)phosphoramidate, a yellow 

oil (0.20 g, 67 %) 31f. SH/ppm (600 MHz; cDcU) 1.12 (6H, t, J = 7.2 Hz, 2 x a-b), 2.0 (1H, s, 

NH), 2.77-2.81 (4H, m, N-cH2), 3.81 (2H, s, Ph-cH2), 4.07 (4H, m, 2 x POc-h), 4.79 (2H, s, 

OcH2Ph) and 6.88 -  7.19 (8H, m, Ar-H); Sc/ppm (600 MHz; cDcl3) 14.5 (d, J p-c = 6.0 Hz, 2 x 

cH3), 37.7 (d, J p-c = 4.5 Hz, N-cH2), 51.2 (d, Jp-c = 16.7 Hz, N-cH2), 60.0 (d, Jp-c = 6.4 Hz, 2 x 

POcH2), 68.4 (Ph-cH2), 77.0 (OcH2Ph), 127.2-141.4 (11 x Ar-c).

Diethyl M-benzyl-2-[M-(benzyloxy)acetamido]ethylphosphoramidate 32a

26

25

Acetyl chloride (0.12 mL, 1.3 mmol) was added dropwise to a stirred solution of diethyl N 

benzyl-N-[2-(benzyloxyamino)ethyl]phosphoramidate (0.25 g, 0.64 mmol) 31a and 

triethylamine (0.13 mL, 0.96 mmol) in DcM (10 mL) under N2 at 0 oc. The mixture was 

stirred at 0 0c for 1 hour, allowed to warm to room temperature and then stirred for ca. 24 

hours. The solvent was removed under reduced pressure and the residual oil dissolved in 

diethyl ether (20 mL). The ethereal solution was washed sequentially with aq. K2cO3 

solution, 0.5M-Hcl and water. The organic solution was dried over anhydr. MgSO4, the 

solvent removed in vacuo and the residue purified by flash chromatography [on silica gel;
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elution with hexane-EtOAc (7:3)] to yield diethyl N-benzyl-2-[N-benzyloxy)acetamido]ethyl- 

phosphoramidate 32a, a yellow oil (0.17 g, 80 %). SH/ppm (600 MHz; cDcl3) 1.29 (6H, t, J =

7.2 Hz, 2 x cH3), 2.00 (3H, s, cH3cO), 2.71 (2H, m, N-cH2), 3.01 (2H, t, J = 6.4 Hz, N-cH2), 3.67 

(2H, s, Ph-cH2), 4.08 (4H, m, 2 x POcH2), 4.77 (2H, s, OcH2Ph) and 7.27 - 7.39 (9H, m, Ar-H); 

Sc/ppm (600 MHz; cDcU) 16.4 (d, J p-c = 5.9 Hz, 2 x PO-cH3), 23.7 (cH3cO), 35.4 (d, J p-c = 5.4 

Hz, NcH2), 52.6 (d, J p-c = 16.8 Hz, NcH2), 62.5 (d, J p-c = 6.7 Hz, 2 x POc-h), 66.8 (Ph-cH2), 68.7 

(OcH2ph), 124.8 (c-17), 124.9 (c-25), 127.5 (c-19 and c-15), 127.8 (c-23 and c-27), 128.5 (c- 

18 and c-16), 128.7 (c-24 and c-26), 138.3 (c-14), 138.4 (c-22) and 171.6 (c=O).

Diethyl-2-[W-(benzyloxy)acetamido]-W-[4(hydroxymethyl)benzyl]ethylphosphoramidate

32b
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The procedure described for the synthesis of diethyl N-benzyl-2-[N-

benzyloxy)acetamido]ethylphosphoramidate 32a was employed, using diethyl N-[2- 

(benzyloxyamino)ethyl]-N-[4(hydroxymethyl)benzyl]phosphoramidate 31b (0.25 g, 0.59 

mmol), acetyl chloride (0.12 mL, 1.3 mmol) and triethylamine (0.12 mL, 0.89 mmol) in DcM 

(10 mL). The solvent was evaporated in vacuo and the residue was purified by flash 

chromatography on silica gel; elution with hexane-EtOAc (7:3) to yield diethyl 2-[(N- 

benzyloxy)acetamido]-N-[4(hydroxymethyl)benzyl]ethyl phosphoramidate, a yellow oil (0.12 

g, 60 %) 32b. SH/ppm (600 MHz; cDcU) 1.32 (6H, t, J = 7.2 Hz, 2 x cH3), 2.04 (3H, s, cH3cO), 

2.32 (2H, m, N-cH2), 2.76 (2H, t, J = 6.0 Hz, N-cH2), 3.71 (2H, s, Ph-c-h), 4.11 (4H, m, 2 x PO- 

cH2), 4.79 (2H, s, Ph-cH2), 4.84 (2H, s, cH2OH), 7.22 - 7.43 (9H, m, Ar-H) and 8.22 (1H, s, OH); 

Sc/ppm (600 MHz; cDcfe) 16.4 (d, Jp-c = 5.9 Hz, 2 x cH3), 23.0 (c^cO ), 36.8 (d, Jp-c = 4.1 Hz, 

N-cH2), 52.8 (d, Jp-c = 16.6 Hz, N-cH2), 62.3 (d, Jp-c = 6.6 Hz, 2 x POcH2), 65.9 (cH2OH), 66.6
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(Ph-cH2), 68.7 (OcH2Ph), 126.3 (c-19 and c-15), 126.4 (c-23 and c-27), 126.8 (c-25), 127.0 

(c-18 and c-16), 127.7 (c-24 and c-26), 137.2 (c-14), 137.4 (c-22), 140.2 (c-17) and 171.1 

(c=O).

Diethyl M-(3-aminobenzyl)-2-[(M-benzyloxy)acetamido]ethylphosphoramidate 32c

i
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The procedure described for the synthesis of diethyl N-benzyl-2-[N-

benzyloxy)acetamido]ethylphosphoramidate 32a was employed, using diethyl N-[2- 

(benzyloxyamino)ethyl]-N-(3mercaptobenzyl)phosphoramidate 31c (0.28 g, 0.68 mmol), 

acetyl chloride (0.13 mL, 1.4 mmol) and triethylamine (0.14 mL, 1.0 mmol) in DcM (10 mL). 

The solvent was evaporated in vacuo and the residue was purified by flash chromatography 

[on silica gel; elution with hexane-EtOAc (7:3)] to yield diethyl N-(3-aminobenzyl)-2-[(N- 

benzyloxy)acetamido]ethylphosphoramidate, a yellow oil 32c (0.11 g, 55 %). SH/ppm (600 

MHz; cDcl3) 1.30 (6H, t, J = 7.2 Hz, 2 x cH3), 2.02 (3H, s, cH3cO), 2.81 (2H, m, N-c-h), 3.23 

(2H, t, J = 4.4 Hz, N-cH2), 3.79 (2H, s, Ph-cH2), 4.08 (4H, m, 2 x POcH2), 4.52 (2H, s, NH2), 4.81 

(2H, s, Ph-cH2), 6.63 - 6.78 (4H, m, Ar-H) and 7.16 - 7.19 (5H, m Ar-H); Sc/ppm (600 MHz; 

cDcl3) 16.4 (d, Jp-c = 6.6 Hz, 2 x c-U), 23.8 (c^cO ), 36.7 (d, Jp-c = 4.7 Hz, NcH2), 52.1 (d, Jp-c = 

16.7 Hz, N-cH2), 61.4 (d, J p-c = 6.5 Hz, 2 x POcH2), 68.4 (Ph-c-h), 69.8 (OcH2Ph), 114.1 (c-17), 

114.8 (c-19), 118.6 (c-15), 126.5 (c-23 and c-27), 127.8 (c-25), 128.3 (c-24 and c-26), 129.8 

(c-16), 137.3 (c-14), 137.7 (c-22), 147.9 (c-18) and 170.8 (c=O).
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Diethyl 2-[(M-benzyloxy)acetamido]-M-(3-mercaptobenzyl)ethylphosphoramidate 32d
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The procedure described for the synthesis of diethyl N-benzyl-2-[N-

benzyloxy)acetamido]ethylphosphoramidate 32a was employed, using diethyl N-[2- 

(benzyloxyamino)ethyl]-N-(3mercaptobenzyl)phosphoramidate 31d (0.27 g, 0.64 mmol), 

acetyl chloride (0.12 mL, 1.3 mmol) and triethylamine (0.12 mL, 0.88 mmol) in DcM (10 mL). 

The solvent was evaporated in vacuo and the residue was purified by flash chromatography 

[on silica gel; elution with hexane-EtOAc (7:3)] to yield diethyl 2-[(N-benzyloxy)acetamido]- 

N-(3-mercaptobenzyl)ethylphosphoramidate 32d, a yellow oil (0.1 g, 50 %). S-/ppm (600 

MHz; cDcl3) 1.36 (6H, t, J = 7.2 Hz, 2 x cH3), 2.20 (3H, s, cH3cO), 2.79 (2H, m, N-cH2), 3.25 

(2H, t, J = 5.6 Hz, N-cH2), 3.83 (2H, s, Ph-c-h), 4.19 (4H, m, 2 x PO-c-h), 4.71 (2H, s, Ph-c-h), 

6.21 (1H, s, SH), 6.63 - 7.29 (4H, m, Ar-H) and 7.42 - 7.50 (5H, m, Ar-H); Sc/ppm (600 MHz; 

cDcl3) 16.4 (d, Jp-c = 5.9 Hz, 2 x c-^), 24.2 (c^cO ), 36.7 (d, Jp-c = 4.8 Hz, Nc-h), 52.9 (d, Jp-c 

= 16.8 Hz, N-cH2), 61.6 (d, J p-c = 6.5 Hz, 2 x POc-h), 68.1 (Ph-cH2), 70.8 (OcH2Ph), 124.7 (c- 

15), 126.0 (c-19), 126.2 (c-17), 126.8 (c-23 and c-27), 128.7 (c-25), 129.1 (c-16), 129.4 (c-24 

and c-26), 130.3 (c-18), 138.5 (c-14), 138.8 (c-16) and 167.3 (c=O).
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Diethyl M-benzyl-2-[M-(3-nitrobenzyl)acetamido]ethylphosphoramidate 32e
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The procedure described for the synthesis of diethyl N-benzyl-2-[N-

benzyloxy)acetamido]ethylphosphoramidate 32a was employed, using diethyl N-[2- 

(benzyloxyamino)ethyl]-N-(3-nitrobenzyl)phosphoramidate (0.27 g, 0.64 mmol) 31e, acetyl 

chloride (0.12 mL, 1.3 mmol) and triethylamine (0.12 mL, 0.88 mmol) in DcM (10 mL). The 

solvent was evaporated in vacuo and the residue was purified by flash chromatography [on 

silica gel; elution with hexane-EtOAc (7:3)] to yield diethyl N-benzyl-2-[N-(3- 

nitrobenzyl)acetamido]ethylphosphoramidate 32e, a light green oil (5.3 mg, 3.8 %). SH/ppm 

(600 MHz; cDcU) 1.10 (6H, t, J = 7.2 Hz, 2 x cH3), 2.02 (3H, s, cH3cO), 2.81 (2H, m, N-cH2), 

3.32 (2H, t, J = 6.4 Hz, N-cH2), 3.81 (2H, s, ph-cH2), 4.07 (4H, m, 2 x pOcH2), 4.79 (2H, s, 

OcH2Ph) and 7.19 -  8.07 (9H, m, Ar-H); Sc/ppm (600 MHz; cDcfe) 14.4 (d, Jp-c = 5.9 Hz, 2 x 

cH3), 17.4 (cH3cO), 35.0 (d, Jp-c = 5.4 Hz, NcH2), 68.6 (d, Jp-c = 16.8 Hz, N-cH2), 60.0 (d, J p-c = 

6.7 Hz, 2 x POcH2), 66.8 (Ph-cH2), 74.3 (OcH2Ph), 120.8-146.9 (2 x Ar-c), 164.6 (c=O).
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Diethyl W-benzyloxy-2-[W-(3,4- dichlorobenzyl)acetamido]ethylphosphoramidate 32f

acetamido]ethylphosphoramidate 32a was employed, using diethyl N-[2-(benzyloxyamino)- 

ethyl]-N-(3,4 dichlorobenzyl)phosphoramidate 31f (0.27 g, 0.64 mmol), acetyl chloride (0.12 

mL, 1.3 mmol) and triethylamine (0.12 mL, 0.88 mmol) in DcM (10 mL). The solvent was 

evaporated in vacuo and the residue was purified by flash chromatography [on silica gel; 

elution with hexane-EtOAc (7:3)] to yield Diethyl N-benzyloxy-2-[N-(3,4-dichlorobenzyl)- 

acetamido]ethylphosphoramidate 32f, a yellow oil (5.8 mg, 2.9 %). SH/ppm (600 MHz; 

cDcl3) 1.11 (6H, t, J = 7.2 Hz, 2 x c-U), 2.02 (3H, s, cH3cO), 2.81 (2H, m, N-cH2), 3.32 (2H, t, J 

= 6.4 Hz, N-cH2), 3.81 (2H, s, Ph-cH2), 4.07 (4H, m, 2 x POc-h), 4.79 (2H, s, Oc^Ph) and 6.88 

- 7.19 (8H, m, Ar-H); Sc/ppm (600 MHz; cDcU) 14.5 (d, Jp-c = 5.9 Hz, 2 x cH3), 17.7 (cH3cO), 

35.0 (d, Jp-c = 5.4 Hz, NcH2), 49.2 (d, Jp-c = 16.8 Hz, NcH2), 60.5 (d, Jp-c = 6.7 Hz, 2 x POcH2), 

68.4 (Ph-cH2), 74.3 (OcH2Ph), 127.2-141.9 (2 x Ar-c), 164.2 (c=O).

Diethyl M-benzyl-2-(M-hydroxyacetamido)ethylphosphoramidate 33a

Cl
32

The procedure described for the synthesis of diethyl N-benzyl-2-[N-benzyloxy)-

18
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A solution of diethyl N-benzyl-2-[N-benzyloxy)acetamido]ethylphosphoramidate 32a (0.20 g, 

0.46 mmol) in dry MeOH (2 mL) was added to a solution of Pd/c (10 %, 0.35 g) in dry MeOH 

(10 mL) under an H2-atmosphere and the mixture was stirred at room temperature for 18 

hours. The reaction mixture was then filtered through a celite pad, the filtrate was 

evaporated in vacuo and the residue purified by flash chromatography [on silica gel; elution 

with hexane-EtOAc (3:1)] to yield diethyl N-benzyl-2-(N-hydroxyacetamido)ethyl- 

phosphoramidate 33a, a clear oil (80 mg, 80 %). S-/ppm (600 MHz; cDcU) 1.28 (6H, t, J = 7.2 

Hz, 2 x cH3), 1.83 (1H, s, N-OH), 2.08 (3H, s, cH3cO), 2.89 (2H, m, N-cH2), 3.21 (2H, t, J = 6.0 

Hz, N-cH2), 3.79 (2H, s, Ph-cH2), 4.17 (4H, m, 2 x POc-h) and 7.32 - 7.45 (5H, m, Ar-H); 

Sc/ppm (600 MHz; cDcU) 16.1 (d, J p-c = 7.2 Hz, 2 x c-b), 20.8 (cH3cO), 35.8 (d, J p-c = 5.0 Hz, 

N-cH2), 53.6 (d, J p-c = 16.5 Hz, N-cH2), 62.3 (d, Jp-c = 5.6 Hz, 2 x POcH2), 67.5 (Ph-cH2), 127.3 

(c-17), 128.3 (c-19 and c-15), 128.6 (c-18 and c-16), 137.4 (c-14 and 167.5 (c=O).

Diethyl-2-(W-hydroxyacetamido)-W-[4-(hydroxymethyl)benzyl]ethylphosphoramidate 33b

22
OH

N J 2 X H 3 21

O
23

9 O 3

The procedure described for the synthesis of diethyl N-benzyl-2-(N-hydroxyacetamido)ethyl- 

phosphoramidate 33a was employed, using diethyl-2-[(N-benzyloxy)acetamido]-N- 

[4(hydroxymethyl)benzyl]ethylphosphoramidate 32b (0.20 g, 0.43 mmol) in MeOH (2 mL) 

and pd/c (10 %, 0.33 g) in MeOH (10 mL). The solvent was evaporated in vacuo and the 

residue was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (3:1)] 

to yield diethyl 2-(N-hydroxyacetamido)-N-[4-(hydroxymethyl)benzyl]ethylphosphoramidate 

33b (82 mg, 82 %). S-/ppm (600 MHz; cDcU) 1.32 (6H, t, J = 7.2 Hz, 2 x c-b), 1.91 (1H, s, N- 

OH), 2.12 (3H, s, cH3cO), 2.80 (2H, m, N-cH2), 3.38 (2H, t, J = 6.4 Hz, N-cH2), 3.85 (2H, s, Ph-Page 104



cH2), 4.12 (4H, m, 2 x POcH2), 5.10 (2H, s, cH2OH), 7.25 - 7.30 (4H, m, Ar-H) and 8.02 (1H, s, 

cH2OH); Sc/ppm (600 MHz; cDcfe) 16.3 (d, Jp-c = 6.1 Hz, 2 x cH3), 23.4 (cH3cO), 37.4 (d, Jp-c =

5.2 91 Hz, N-cH2), 52.5 (d, Jp-c = 16.5 Hz, N-c-h), 63.6 (d, J p-c = 5.8 Hz, 2 x POcH2), 66.4 

(cH2OH), 68.8 (Ph-cH2), 123.4 (c-19 and c-15), 123.7 (c- 1 8  and c-1 6 ), 136.6 (c-14), 138.3 (c- 

17) and 170.1 (c=O).

Diethyl W-(3-aminobenzyl)-2-(W-hydroxyacetamido]ethylphosphoramidate 33c

N H 2

24

22OH9 O  3

21

16

17

The procedure described for the synthesis of diethyl N-benzyl-2-(N-hydroxyacetamido)ethyl- 

phosphoramidate 33a was employed, using diethyl N-(3-aminobenzyl)-2-[(N-

benzyloxy)acetamido]ethylphosphoramidate 32c (0.20 g, 0.44 mmol) in MeOH (2 mL) and 

Pd/c (10 %, 0.33 g) in MeOH (10 mL). The solvent was evaporated in vacuo and the residue 

was purified by flash chromatography [on silica gel; elution with hexane-EtOAc (3:1)] to yield 

diethyl N-(3-aminobenzyl)-2-(N-hydroxyacetamido]ethylphosphoramidate 33c (70 mg, 70 

%). SH/ppm (600 MHz; cDcfe) 1.29 (6H, t, J = 6.8 Hz, 2 x cH3), 2.14 (3H, s, cH3cO), 2.69 (2H, 

m, N-cH2), 3.26 (2H, t, J = 6.8 Hz, N-cH2), 3.81 (2H, s, Ph-c-h), 4.09 (4H, m, 2 x POcH2), 4.78 

(2H, s, NH2), 5.68 (1H, s, OH) and 6.59 - 7.16 (4H, m, Ar-H); Sc/ppm (600 MHz; cDcl3) 16.3 

(d, J p-c = 6.2 Hz, 2 x cH3), 21.5 (c^cO ), 36.4 (d, Jp-c = 4.7 Hz, N-c-h), 53.2 (d, Jp-c = 16.4 Hz, 

N-cH2), 62.2 (d, J p-c = 6.5 Hz, 2 x POcH2), 68.3 (Ph-cH2), 114.0 (c-17), 114.7 (c-19), 118.6 (c- 

15), 129.6 (c-16), 136.7 (c-14), 148.2 (c-18) and 166.6 (c=O).
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Diethyl 2-(M-hydroxyacetamido)-M-(3-mercaptobenzyl)ethylphosphoramidate 33d

1

10

16

2<9 O  3

S H24

■ CHs 21

The procedure described for the synthesis of diethyl N-benzyl-2-(N-hydroxyacetamido)ethyl- 

phosphoramidate 33a was employed, using diethyl 2-[(N-benzyloxy)acetamido]-N-(3- 

mercaptobenzyl)ethylphosphoramidate 32d (0.20 g, 0.43 mmol) in MeOH (2 mL) and Pd/c 

(10 %, 0.33 g) in MeOH (10 mL). The solvent was evaporated in vacuo and the residue was 

purified by flash chromatography [on silica gel; elution with hexane-EtOAc (3:1)] to yield 

diethyl 2-(N-hydroxyacetamido)-N-(3-mercaptobenzyl)ethylphosphoramidate 33d (71 mg, 

71 %). S-/ppm (600 MHz; cDcfe) 1.30 (6H, t, J = 6.8 Hz, 2 x cH3), 1.87 (1H, s, OH), 2.12 (3H, s, 

cH3cO), 2.71 (2H, m, N-cH2), 3.08 (1H, s, SH), 3.29 (2H, t, J = 6.8 Hz, N-cH2), 3.83 (2H, s, Ph- 

cH2), 4.09 (4H, m, 2 x POcH2) and 6.61 - 7.18 (4H, m, Ar-H); Sc/ppm (600 MHz; cDcU) 16.4 

(d, J p-c = 6.0 Hz, 2 x cH3), 22.4 (cH3cO), 36.4 (d, J p-c = 4.8 Hz, N-cH2), 48.7 (d, J p-c = 16.5 Hz, 

N-cH2), 61.5 (d, J p-c = 6.5 Hz, 2 x POc-h), 66.6 (Ph-cH2), 124.2 (c-15), 125.0 (c-19), 127.8 (c- 

17), 128.3 (c-16), 129.6 (c-18), 137.2 (c-14) and 163.0 (c=O).

W-Benzyl-2-(W-hydroxyacetamido)ethylphosphoramidic acid 34a

1
O H

18
O H

7ho ■ /

- N -

N ®  C H 3 17

O
19

3  1

4

5

9
12

10

14
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Trimethylsilyl bromide (0.15 mL, 1.0 mmol) was added drop-wise to diethyl N-benzyl-2-(N- 

hydroxyacetamido)ethylphosphoramidate 33a (0.12 g, 0.34 mmol) in DcM (5 mL) under N2 

at 0 0c and the mixture was stirred for 1 hour. The mixture was allowed to warm to room 

temperature, water was added (1 mL) and the resulting mixture was stirred overnight. After 

completion, the solvent was removed in vacuo and the residue chromatographed 

[preparative layer chromatography on silca; elution with hexane-EtOAc-MeOH (1:1:1)] to 

yield N-benzyl-2-(N-hydroxyacetamido)ethylphosphoramidic acid 34a (50 mg, 63 %). 

SH/ppm (600 MHz; D2O) 2.09 (3H, s, c-bcO), 2.79 (2H, m, N-c-h), 3.34 (2H, t, J = 6.4 Hz, N- 

cH2), 3.83 (2H, s, Ph-cH2), 5.25 (1H, s, N-OH), 7.29 - 7.37 (5H, m, Ar-H) and 8.15 (2H, s, 2 x 

OH); Sc/ppm (600 MHz; D2O) 20.7 (cH3), 42.6 (d, J p-c = 4.7 Hz, N-cH2), 52.3 (d, J p-c = 16.9 Hz, 

N-cH2), 67.2 (Ph-cH2), 126.4 (c-14), 128.6 (c-11 and c-15), 129.4 (c-13 and c-15), 139.4 (c- 

10) and 171.5 (c=O).

2-(W-Hydroxyacetamido)-W-[4-(hydroxymethyl)benzyl]ethylphosphoramidic acid 34b

7 HO 2

OH 

\ 8 •CH3 17
4

9

The procedure described for the synthesis of N-benzyl-2-(N-hydroxyacetamido)ethyl- 

phosphoramidic acid 34a was employed, using diethyl 2-(N-hydroxyacetamido)-N-[4- 

(hydroxymethyl)benzyl]ethylphosphoramidate 33b (0.12 g, 0.31 mmol) and TMSBr (0.12 mL,

0.93 mmol) in DcM (5 mL). The solvent was removed in vacuo and the residue 

chromatographed [preparative layer chromatography on silca; elution with hexane-EtOAc- 

MeOH (1:1:0.5)] to yield 2-(N-hydroxyacetamido)-N-[4-(hydroxymethyl)benzyl]ethyl- 

phosphoramidic acid 34b (53 mg, 65 %). S-/ppm (600 MHz; D2O) 1.76 (1H, s, cH2OH), 2.07 

(3H, s, cH3cO), 2.75 (2H, m, N-cH2), 3.27 (2H, t, J = 6.0 Hz, N-cH2), 3.82 (2H, s, Ph-cH2), 4.78
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(2H, s, cH2OH), 6.67 (1H, s, N-OH), 7.09 - 7.24 (4H, m, Ar-H) and 8.92 (2H, s, 2 x OH); Sc/ppm 

(600 MHz; D2O) 20.3 (cH3), 37.5 (d, JP -c  = 5.1 Hz, N-cH2), 51.8 (d, JP -c  = 16.6 Hz, N-cH2), 

65.7 (cH2OH), 68.4 (Ph-cH2), 126.2 (c-14 and c-12), 128.3 (c-15 and c-11), 136.5 (c-10),

139.2 (c-13) and 166.3 (c=O).

W-(3-Aminobenzyl)-2-(W-hydroxyacetamido)ethylphosphoramidic acid 34c

NH2
20

C H 3 17

The procedure described for the synthesis of diethyl N-benzyl-2-(N-hydroxyacetamido)ethyl- 

phosphoramidic acid 34a was employed, using diethyl N-(3-aminobenzyl)-2-(N-hydroxy- 

acetamido)ethylphosphoramidate 33c (0.10 g, 0.27 mmol) and TMSBr (0.10 mL, 0.81 mmol) 

in DcM (5 mL). The solvent was removed in vacuo and the residue chromatographed 

[preparative layer chromatography on silca; elution with hexane-EtOAc-MeOH (1:1:0.5)] to 

yield N-(3-aminobenzyl)-2-(N-hydroxyacetamido)ethylphosphoramidic acid 34c (40 mg, 57 

%). S-/ppm (600 MHz; D2O) 2.08 (3H, s, c^ cO ), 2.81 (2H, m, N-cH2), 3.28 (2H, t, J = 6.0 Hz, 

N-cH2), 3.60 (2H, s, Ph-cH2), 4.66 (1H, s, N-OH), 5.48 (2H, s, NH2), 7.00 (2H, s, 2 x OH) and 

7.10 - 7.29 (4H, m, Ar-H); Sc/ppm (600 MHz; D2O) 19.8 (cH3), 36.7 (d, Jp-c = 4.9 Hz, N-c-h), 

53.0 (d, J p-c = 16.5 Hz, N-cH2), 68.1 (Ph-cH2), 113.9 (c-13), 114.7 (c-15), 117.8 (c-11), 128.4 

(c-12), 138.3 (c-10), 146.5 (c-14) and 166.8 (c=0).
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2-(W-Hydroxyacetamido)-W-(3-mercaptobenzyl)ethylphosphoramidic acid 34d

12

13 15

S H
20

17

The procedure described for the synthesis of diethyl N-benzyl-2-(N-hydroxyacetamido)ethyl- 

phosphoramidic acid 34a was employed, using diethyl 2-(N-hydroxyacetamido)-N-(3- 

mercaptobenzyl)ethylphosphoramidate 33d (0.12 g, 0.31 mmol) and TMSBr (0.13 mL, 92 

mmol) in DCM (5 mL). The solvent was removed in vacuo and the residue chromatographed 

[preparative layer chromatography; elution with hexane-EtOAc-MeOH (1:1:1)] to yield 2-(N- 

hydroxyacetamido)-N-(3-mercaptobenzyl)ethylphosphoramidic acid 34d (48 mg, 68 %). 

SH/ppm (600 MHz; D2O) 2.09 (3H, s, CH3CO), 2.68 (2H, m, N-CH2), 2.80 (1H, s, SH), 3.33 (2H, 

t, J = 6.0 Hz, N-CH2), 3.84 (2H, s, Ph-CH2) and 6.85 -  7.37 (4H, m, Ar-H); SC/ppm (600 MHz; 

D2O) 22.4 (CH3), 40.6 (d, J p-c = 4.8 Hz, N-CH2), 52.7 (d, J p-c = 16.5 Hz, N-CH2), 68.2 (Ph-O-h),

119.2 (C-11), 123.1 (C-15), 126.6 (C-13), 129.4 (C-12), 130.2 (C-14), 138.5 (C-10) and 162.1 

(C=0).
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3.2. Docking Studies

The ligand structures (2-4, a-c and R-group) were constructed using Discovery Studio 

Visualiser,178 each with two water molecules near the phosphonate group. An in vacuo 

global energy was located for each of the ligands using conformational lowest Energy_dlgfn 

in autodock tools.179 The lowest energy conformers were then subjected to geometry 

optimisation in Gaussian. The crystal structure of the proteins (1Q0L, 1Q0Q, 2EGH, 3AU8, 

3AU9 and 3AUA) were obtained from a Protein Data Bank.163 The protein structures were 

dehydrated, while the divalent cation (Mg2+) and co-factor NADPH were retained and the 

template ligand removed then re-docked along with the constructed ligands.

The geometry optimised and energy minimised ligands were imported into AutoDock 4.2 

experiments using putty. All possible conformations of the ligands were allowed with 

flexible residues assigned to the protein active site (Ser270, Ser306, Asn311, Lys312 and 

Glu315) to allow uniform binding of ligands.
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