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Abstract

This paper provides an in-depth analysis of the properties of popular tests for the
existence and the sign of the market price of volatility risk. These tests are frequently
based on the fact that for some option pricing models under continuous hedging
the sign of the market price of volatility risk coincides with the sign of the mean
hedging error. Empirically, however, these tests suffer from both discretization error
and model mis-specification. We show that these two problems may cause the test
to be either no longer able to detect additional priced risk factors or to be unable to
identify the sign of their market prices of risk correctly. Our analysis is performed
for the model of Black and Scholes (1973) (BS) and the stochastic volatility (SV)
model of Heston (1993). In the model of BS, the expected hedging error for a
discrete hedge is positive, leading to the wrong conclusion that the stock is not the
only priced risk factor. In the model of Heston, the expected hedging error for a
hedge in discrete time is positive when the true market price of volatility risk is zero,
leading to the wrong conclusion that the market price of volatility risk is positive.

If we further introduce model mis-specification by using the BS delta in a Heston
world we find that the mean hedging error also depends on the slope of the implied
volatility curve and on the equity risk premium. Under parameter scenarios which
are similar to those reported in many empirical studies the test statistics tend to
be biased upwards. The test often does not detect negative volatility risk premia,
or it signals a positive risk premium when it is truly zero. The properties of this
test furthermore strongly depend on the location of current volatility relative to its
long-term mean, and on the degree of moneyness of the option. As a consequence
tests reported in the literature may suffer from the problem that in a time-series
framework the researcher cannot draw the hedging errors from the same distribution
repeatedly. This implies that there is no guarantee that the empirically computed
t-statistic has the assumed distribution.
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1 Introduction and Motivation

Explaining excess asset returns is at the core of a discipline financial economists call

’asset pricing’. Naturally, researchers have also become interested in the properties of

excess returns on options, see for example the paper by Coval and Shumway (2001). An

important question in this context is whether volatility is stochastic, and if so, if volatility

risk is priced in the options market. Among others this problem has been investigated by

Bakshi and Kapadia (2003) and by Buraschi and Jackwerth (2001). A more general issue

in this context is whether there are any additional risk factors besides stock price risk

which are priced in the options market. The researcher would like to perform the most

general test of this hypothesis possible, and this test should be viable for a whole class

of models. Below we will basically consider the whole class of two-dimensional diffusion

models with stochastic volatility (SV), containing as special cases the approaches proposed

by Heston (1993) or Schöbel and Zhu (1999).

The basis for the empirical analysis of Buraschi and Jackwerth (2001) is the fact

that one should be able to span the pricing kernel using only two assets if there are no

additional risk factors besides the stock. Their empirical result is that there are other

sources of risk implying that deterministic volatility models are mis-specified. Coval and

Shumway (2001) find that option returns cannot be explained by the risk-free interest rate

and stock returns so that there must be at least one additional risk factor. Finally, Bakshi

and Kapadia (2003) show for their sample that options cannot be hedged by the stock and

the money market account, again leading to the conclusion that there are other factors

besides pure stock price risk. So the general testing methodology is to try to explain the

excess option return by the excess stock return (either directly or via a hedge portfolio)

and (in case this turns out to be impossible) to conclude that there are other risk factors

at least one of which is priced.

It is important to note that it is not a priori clear what sign the market price of

volatility risk should have in equilibrium. Whereas risk-averse investors would certainly

demand a premium for bearing stock price risk, this is not so clear in the case of volatility
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risk. Investors might be averse to volatility risk, since it will in general introduce additional

variation into their consumption stream, which would lead to a positive risk premium.

On the other hand, one could imagine a situation where after a large negative shock to

aggregate wealth, investors would be willing to pay a premium for assets with a high

exposure to volatility risk, because these would offer the chance to reach higher levels of

consumption sooner than assets with lower volatility. According to this argument we would

expect a negative risk premium for volatility. As a consequence we do not have a clear

null hypothesis for the sign of the market price of volatility risk, and its determination

becomes a purely empirical matter. In the literature, there are by now standard empirical

test procedures designed to identify the sign of the volatility risk premium. Our paper is

not empirical in the strict sense of the word, since we do not perform an empirical study

of our own. Instead we analyze the validity of these standard tests.

As shown in Bakshi and Kapadia (2003) and as will be discussed below in detail the

sign of the volatility risk premium is (under certain ideal conditions) the same as the sign

of the mean hedging error. Bakshi and Kapadia (2003) build on this result and construct a

hedge portfolio for a European call option by going long the number of stocks given by the

BS delta and by borrowing the necessary remaining funds at the risk-free rate. They then

test the null hypothesis that the hedging error generated by this strategy has zero mean

and conclude in the case of rejection that there is a non-zero volatility risk premium with

a sign identical to that of the mean hedging error. The use of the BS hedging coefficient is

justified by the authors in this context as a choice which is robust against mis-specification

of an SV model. Note that, as opposed to standard risk management approaches, the goal

of this approach is not to find a minimum variance hedge for an option, but solely to

use the sign of the mean hedging error as an identification criterion for the sign of the

volatility risk premium.

In general the described test is correct, i.e. the signs of the mean hedging error and

the volatility risk premium coincide, under ideal conditions, when trading is actually

continuous and when the correct model is used to calculate the ’delta’, i.e. the partial

derivative of the option price with respect to the stock price. In empirical studies both
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assumptions are usually violated. The hedging strategy is not implemented in continuous

time, but trading is only possible at discrete points in time. This leads to a discretization

error. Furthermore the true data generating process is unknown, which in general creates

a model error, since it is no longer possible to compute the true hedge portfolio. For

example, the delta of the option might be computed under the assumptions of the Black

and Scholes (1973) model (BS herafter), whereas in reality the dynamics of the economy

are given by the Heston (1993) SV model. In addition, the expected hedging error (EHE)

is usually estimated as a time-series average in empirical studies. This procedure is based

on the implicit assumption that each hedging error is drawn out of the same distribution,

which does not hold in reality due to the dependence of the hedging error on current

volatility and on the moneyness of the option, as we will show below.

After deriving a number of theoretical results concerning the EHE for a call option in

a variety of scenarios we perform a simulation study to get a better idea of the properties

of option hedging errors under discretization error and model mis-specification. The data

generating process is given by the Heston (1993) model which is one of the most popular

approaches to SV option pricing. If the hedging test is supposed to work for a large class

of SV models it should be able to detect the sign of the volatility risk premium also in

the special case of the Heston model. So our simulation study is at the same time an

(indirect) check of the claim made by Bakshi and Kapadia (2003), namely that their test

procedure is rather robust to the (mis-)specification of the SV process.

In the case of continuous trading and when BS is the true model the use of the BS

delta creates a perfect hedge, i.e. the realized hedging error is identically equal to zero.

When we are faced with trading restrictions such that the portfolio can only be rebalanced

at discrete points in time the market becomes incomplete and a perfect hedge is no longer

possible, since there is a discretization error. The use of the hedge ratio derived in the

continuous case then results in a systematic bias. For a convex claim, the EHE can be

shown to be always positive. It can be forced to equal zero, however, when a certain

special hedge ratio different from the standard delta is applied. We will explicitly derive

this hedge ratio which we call the mean zero hedge ratio.
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For the Heston model we first derive a number of analytical results concerning the

EHE. Here we find that the sign of the EHE is equal to the sign of the volatility risk

premium only in an economy with continuous trading and if the correct delta is used.

This property does not carry over to the situation with discrete trading. Again there is

a discretization error, but in contrast to the BS model the sign of this error is no longer

unique and can only be determined for some special cases. For a zero market price of

volatility risk and discrete hedging the EHE is positive, if the partial derivative from the

Heston model is used as the hedge ratio. As in the BS model the EHE can be forced to

equal zero if the hedge ratio is adjusted appropriately. However, this is no longer true if

the market price of volatility risk is not zero. There is no longer a systematic relationship

between the sign of the EHE and the sign of the market price of volatility risk, and there

is also no closed-form adjustment to the hedge ratio as opposed to the BS case.

When there is also model error, i.e. when the BS delta is used in an SV economy, the

sign of the EHE does not necessarily equal the sign of the market price of volatility risk

anymore, even when the hedge portfolio is rebalanced continuously. The additional bias

due to model mis-specification depends on the equity risk premium and on the slope of

the implied volatility curve. Given the empirical evidence on stock and option markets

around the world the most important scenario here is certainly given by a downward

sloping smile curve and a positive equity risk premium. In this setting model error tends

to increase the EHE so that the test too often falsely concludes that the volatility risk

premium is positive when it is actually zero or negative.

The remainder of the paper is organized as follows. In section 2 the main idea of

hedging based tests is described. Section 3 provides an analytical comparison of different

hedge strategies in the BS model together with some numerical results on hedging errors.

In section 4 we perform an analogous investigation for the Heston model and assess the

impact of model error on option hedging errors. Section 5 concludes.
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2 An Overview of Tests for Volatility Risk Premia

2.1 The Relationship between Hedging Error and Risk Pre-

mium

As stated in the introduction one of the most important issues in derivative pricing is

whether volatility is stochastic and, if so, whether the market price of volatility risk is

different from zero.

The main idea of the test for the existence of a volatility risk premium is that the

expected return on an option can be decomposed into the risk-free rate of interest plus

the sum of the risk premia for stock price risk, volatility risk, and other types of risk. So

if the expected excess option return can be perfectly explained by the expected excess

stock return, two scenarios are possible. Either there are no other risk factors besides

stock price risk (as it is the case in the BS model), or there are other risk factors, but they

are not priced, i.e. investors do not require an additional compensation for bearing these

types of risk. The converse is that if expected excess option returns cannot be explained

by expected excess stock returns, there are additional risk factors, at least one of which

is priced.

This line of argument leads to two testable implications. First one can investigate

whether excess option returns can be explained by excess returns of the underlying. This

yields the test equation

Ct+τ

Ct

− erτ = βt

(
St+τ

St

− erτ

)
+ εt+τ (1)

with Ct and St representing the price of the option and the stock at time t, respectively.

εt+τ is the error term, and βt denotes some measure of risk. The test focuses on the

properties of the error term εt+τ . It is identically equal to zero if the option return can be

perfectly explained by the stock return and if the appropriate βt is chosen. It will have

realizations different from zero if there are additional risk factors like stochastic volatility

or if an inappropriate coefficient βt is chosen. It will also be different from zero if, in a

continuous time model, we consider the realized returns over discrete intervals.
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The really important issue, however, is whether the mean of εt+τ is equal to zero or

not. The mean of the error term is just the part of the expected excess option return that

is not explained by the expected excess stock return. As argued above, if this expectation

is different from zero, there are other risk factors besides stock price risk, and at least one

of these factors is priced. The test therefore amounts to using the mean error to make

inferences about the market prices of risk for additional risk factors.

As an alternative to the approach described by equation (1), one can set up a hedge

portfolio for the option containing the stock and the money market account. Using an

argument analogous to the one presented above this leads to the test if the error term

ε̂t+τ := Ctεt+τ in the equation

Ct+τ = Cte
rτ + βt

Ct

St

(St+τ − erτSt) + ε̂t+τ (2)

has zero mean. Again, we conclude that if the expected hedging error is zero only stock

price risk carries a premium, whereas in the opposite case there must be some other priced

risk factor. As one can see, equations (1) and (2) are just multiples of each other. The

researcher can thus choose which specification should be used for the test, and for the

rest of the paper we will focus on hedging errors of the type shown in equation (2).

The test procedures described above ignore at least two problems. First, by applying

in discrete time hedge ratios or risk measures which were derived in a continuous-time

context a discretization error is introduced. If this discretization error has a systematic

impact on the properties of the mean hedging error, the test may become invalid. This

problem raises the additional question whether there is at all a discrete hedge ratio that

can ensure a zero mean error. Second, since the true data generating process is unknown,

the test may also suffer from model mis-specification. The hedge ratio depends on the

option pricing model, and if the wrong model is used, the hedge ratio will in general be

no longer correct. In particular, the use of the BS delta may induce a bias when volatility

is stochastic.

As will be shown below the distribution of the hedging error depends on the moneyness

and maturity of the option as well as on the current values of the state variables. This
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creates another problem in empirical applications of the above testing principle. When

we calculate the mean hedging error from a time series the individual errors will usually

be drawn from different distributions. It is thus unclear whether the mean hedging error

from a time series can actually tell the researcher anything at all about the market prices

of risk. We will avoid these problems in our simulation study and instead focus on the

discretization error and the impact of model mis-specification.

2.2 Hedging Strategy and Hedging Error

A hedging strategy for a contingent claim consists of investments in the two traded basis

assets, the stock and the money market account. The number of shares held at time t is

denoted by Ht, and the investment in the money market account simply represents the

residual and serves to make the strategy self-financing. The value Πt of the hedge portfolio

at time t is given by the following expression:

Πt = ert

(
Π0 +

∫ t

0

e−ruHu(dSu − rSudu)

)

where Π0 is the initial value.

The hedging error is defined as the difference between the claim price and Πt, and one

obtains

Ct − Πt = ert

(
C0 − Π0 +

∫ t

0

e−ru(dCu − rCudu) −
∫ t

0

e−ruHu(dSu − rSudu)

)
,

so that the hedging error is positive when the value of the claim is greater than the value

of the hedge portfolio. In a complete market we can, for any contingent claim, choose a

hedging strategy that has a value process equal to the value process of the claim. The

resulting hedging error would then by identically equal to zero.

The quantity

D(t, t + τ) = (Ct+τ − Πt+τ ) − erτ (Ct − Πt)

= er(t+τ)

(∫ t+τ

t

e−ru(dCu − rCudu) −
∫ t+τ

t

e−ruHu(dSu − rSudu)

)
(3)
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represents the hedging error over the interval [t, t+τ ], computed at time t+τ . In principle

one could compute the total hedging error from time t = 0 to some point in time ti, where

0 = t0 < t1 < . . . < ti, according to the following equation:

Cti − Πti = (C0 − Π0)e
rti + D(t0, t1)e

r(ti−t1) + D(t1, t2)e
r(ti−t2) + . . . + D(ti−1, ti).

In the analysis below, however, we will exclusively focus on one-period hedging errors

and their statistical properties. In terms of notation, the hedging error over some finite

interval [t, t + τ ] is denoted by Dc(t, t + τ) for continuous trading and by Dd(t, t + τ) for

discrete trading. When trading is discrete, the hedge ratio has to be held constant over

every subperiod, i.e. the hedge ratio from time ti to time ti+1 is held fixed at some value

Hti . This implies in particular that the discrete hedging error is given by

Dd(ti, ti+1) = Cti+1
− Ctie

r(ti+1−ti) − Hti

(
Sti+1

− Stie
r(ti+1−ti)

)
. (4)

3 Hedging Error in the Model of Black and Scholes

In the BS model the dynamics of the two basis assets S (the stock) and B (the money

market account) are given by

dSt = µStdt + σStdWt

dBt = rBt dt, B0 ≡ 1,

where dWt represents the increments of a standard Brownian motion. The associated

dynamics under the risk-neutral measure are given by

dSt = rStdt + σStdW̃t

with dW̃t again as a standard Brownian motion. Since the dynamics of B do not contain

a stochastic term they are not affected by the change of measure.

The test described in section 2 is based on the EHE. We will now analyze the EHE

in the BS model for different hedging strategies and for both continuous and discrete
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trading. We start with the formula for the EHE for a general European claim and a

general hedge ratio H, before we focus on call options and set the hedge ratio equal to

the partial derivative of the claim price with respect to the stock price and additionally –

for discrete trading – to the so-called mean-zero hedge ratio.

The EHE for the BS model is given in the following proposition.

Proposition 1 (BS: EHE for continuous trading) The true model is the model of

Black Scholes. The price of the claim is denoted by CBS
t = cBS(t, St), where cBS(t, St)

is short for the function cBS(u, s) evaluated at u = t and s = St. Trading takes place

continuously, the hedge ratio at time t is Ht. Then, the EHE over the interval [t, t + τ ] is

given by

EP
[
Dc(t, t + τ)

∣∣ Ft

]
=

(µ − r)

∫ t+τ

t

er(t+τ−u)EP

[(
∂cBS

∂s
(u, Su) − Hu

)
Su

∣∣ Ft

]
du (5)

with EP denoting the expectation under the physical measure and Ft representing infor-

mation available at time t.

Proof: The price of the European claim cBS(t, St) has to satisfy the partial differential

equation

∂cBS

∂t
+

∂cBS

∂s
rs +

1

2

∂2cBS

∂s2
σ2s2 = rcBS. (6)

Applying Ito’s lemma to the price of a contingent claim yields the dynamics of CBS,

dCBS
t =

∂cBS

∂t
dt +

∂cBS

∂s
dSt +

1

2

∂2cBS

∂s2
σ2S2

t dt

= rCBS
t dt +

∂cBS

∂s
(dSt − rStdt) (7)

where the second equality follows from (6). Plugging equation (7) for the change in the

price of the derivative into the general formula (3) for the realized hedging error one

obtains

Dc(t, t + τ) =

∫ t+τ

t

er(t+τ−u)

(
∂cBS

∂s
(u, Su) − Hu

)
(dSu − rSudu). (8)
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After taking expectations the proposition follows. 2

Note that the previous proposition refers to an arbitrary hedge ratio Ht. Setting the

hedge ratio equal to the partial derivative, i.e. choosing

Ht ≡ ∂cBS

∂s
(t, St)

yields a hedging error which is identically equal to zero, as we can see directly from

equation (8). Of course, this result is not surprising. In the BS model there is a perfect

hedge with zero error for every claim satisfying certain regularity conditions, with an

optimal hedge ratio equal to the partial derivative of the claim price with respect to the

stock price.

3.1 Discretization Error

If we now introduce the restriction that trading is only possible at discrete points in time

ti, the properties of the expected hedging error change. We obtain

Proposition 2 (BS: EHE for discrete trading) The true model is BS. Trading takes

place at the discrete dates 0 = t0, t1, t2, . . . , tn = T , the hedge ratio at time ti is Hti . Then

the EHE over the interval [ti, ti+1] is

EP
[
Dd(ti, ti+1)

∣∣ Fti

]

= (µ − r)

(
∂cBS

∂s
(ti, Sti) − Hti

) ∫ ti+1

ti

er(ti+1−t)EP [St | Fti] dt

+ (µ − r)2

∫ ti+1

ti

er(ti+1−t)EP [St | Fti] E
P S

[∫ t

ti

∂2cBS

∂s2
(u, Su)Sudu

∣∣ Fti

]
dt.

Here EP S

denotes the expectation under the measure P S defined via the Radon-Nikodym

derivative

dP S

dP

∣∣∣
Ft

=
St

EP [St]
.

Proof: See the appendix.
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As shown above applying a hedge ratio equal to the partial derivative of the claim price

with respect to the stock price generates a zero hedging error in the case of continuous

trading. This is no longer the case with discrete trading, since technically speaking the

market becomes incomplete. Using the partial derivative as the hedge ratio, i.e. setting

Hti ≡ ∂cBS

∂s
(ti, Sti)

we obtain the following corollary.

Corollary 1 (BS: Discretization error) The true model is BS. Trading takes place at

the discrete dates 0 = t0, t1, t2, . . . , tn = T , the hedge ratio is the partial derivative. Then

the EHE over the interval [ti, ti+1] is given by

EP
[
Dd(ti, ti+1)

∣∣ Fti

]

= (µ − r)2

∫ ti+1

ti

er(ti+1−t)EP [St | Fti] E
P S

[∫ t

ti

∂2cBS

∂s2
(u, Su)Sudu

∣∣ Fti

]
dt.

It is obvious that if the price of the claim is a convex function of the stock price, the

discretization error will be positive for any non-vanishing equity risk premium. As shown

by Bergman, Grundy, and Wiener (1996) the price of a claim is a convex function of the

stock price for any path-independent claim with a convex payoff function. For a European

call option, the EHE is therefore positive (see also Dudenhausen (2002)). Note that our

result differs from Boyle and Emanuel (1980) who use limiting arguments improperly to

arrive at the conclusion that the discretization error vanishes even in discrete time.

The result in Corollary 1 has important consequences for the test described in section

2. This test is based on the idea that the EHE is zero if and only if equity risk is the only

priced risk factor. The (wrong) conclusion derived from such a hedging based test in the

BS model must be that equity risk is not the only priced factor, but that there is some

other source of risk with a positive premium (given that the number of observations is

large enough to make the mean significantly positive in an empirical application).

Of course, the absolute amount of the EHE depends on the length of the time interval

between two consecutive trading dates (see also Bertsimas, Kogan, and Lo (2000)). It
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becomes smaller the shorter this period, but irrespective of the length of the trading

interval it always remains analytically strictly positive for non-zero equity risk premia.

3.2 Correcting for the Discretization Error

Given the results in the previous subsection the question now is whether there is any

hedge ratio that would generate a zero mean hedging error even with discrete trading.

The next proposition shows that we can indeed determine such a hedge ratio.

Proposition 3 (BS: Mean-zero hedge ratio) The true model is BS. Trading takes

place at the discrete dates 0 = t0, t1, t2, . . . , tn = T . The mean-zero hedge ratio is defined

as

HBS,MZ
ti

(ti+1)

=
∂cBS

∂s
(ti, Sti) +

∫ ti+1

ti
e−rtEP [St | Fti]E

P S

[∫ t

ti

∂2cBS

∂s2 (u, Su)Sudu
∣∣ Fti

]
dt

∫ ti+1

ti
e−rtEP [St | Fti] dt

(µ − r).

Proof: Setting the EHE from Proposition 2 equal to zero and rearranging the equation

yields the desired hedge ratio. 2

The new hedge ratio differs from the partial derivative by the second term. For a

convex claim, the fraction is positive so that the mean-zero hedge ratio is greater than

the partial derivative for a positive equity risk premium.

This result is intuitively clear. When the hedge ratio is given by the partial derivative,

we know that the EHE is positive. Given our definition of the hedging error the expected

terminal value of the hedge portfolio is therefore too small. To get an EHE equal to

zero, we have to correct the number of stocks such that the expected terminal value of

the hedge portfolio increases. For a positive (negative) risk premium, this amounts to

increasing (decreasing) the number of stocks. If the claim to be hedged is a European call

or put, we can also give a closed form solution for the EHE and for the mean-zero hedge

ratio which is based on a formula for the expected price of a call option (see Rubinstein

(1984)).
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The most important property of the hedge ratio given in Proposition 3 is that based

on HBS,MZ
ti

(ti+1) the standard test works properly. We would draw the correct conclusion

that there is no other priced factor besides the stock. However, this comes at the price of

the need to specify the dynamics of the underlying asset both under the risk-neutral and

the physical measure, as opposed to the partial derivative which does not depend on µ.

In particular, the hedge ratio now explicitly depends on the market price of equity risk.

4 Stochastic Volatility Model

The stochastic volatility setup is given by the Heston (1993) model, i.e. under the physical

measure the stock price and the local variance are governed by the stochastic differential

equations

dSt = µStdt +
√

VtStdW S
t (9)

dVt = κ(θ − Vt)dt + σV

√
Vt(ρdW S

t +
√

1 − ρ2dW V
t ) (10)

where dW S
t and dW V

t are the increments of two independent Brownian motions, and ρ

represents the correlation coefficient between stock returns and volatility changes. The

market price of volatility risk is assumed to equal λV

√
Vt so that we obtain the following

processes under the risk-neutral measure:

dSt = rStdt +
√

VtStdW̃ S
t (11)

dVt = (κ(θ − Vt) − σV λV Vt) dt + σV

√
Vt(ρdW̃ S

t +
√

1 − ρ2dW̃ V
t ). (12)

In what follows we will consider different hedging strategies for a European call option,

but for any strategy only the stock and the money market account can be used to form

the hedge portfolio. The strategies differ with respect to whether they are adjusted con-

tinuously or only at discrete points in time, and they also differ with respect to the hedge

ratio which is given by the partial derivative of the call price either from the Heston model

or from the (incorrectly assumed) BS model. The characteristics of the EHE will generally

depend on both these factors, i.e. both on the discretization error and on potential model

mis-specification.
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The EHE is used in the test described in section 2 to learn something about the pricing

of risk factors besides stock price risk. The test is based on the hypothesis that the EHE

equals zero if the only priced risk factor is the stock, and that it will be different from

zero otherwise. Furthermore, if there is only one additional risk factor like it is the case

in the Heston model, then the sign of the EHE for a call option is assumed to coincide

with the sign of the market price of risk. This is exactly the idea employed by Bakshi and

Kapadia (2003) who test whether volatility risk is priced and whether the volatility risk

premium is positive or negative.

Both discretization error and model error make the design of this test for volatility

risk premia seem questionable. If for some hedging strategy the relationship between the

sign of the EHE and the sign of the market prices of risk is not as assumed the test will

lead to wrong conclusions. It may either not detect a positive or negative market price of

volatility risk, or it may wrongly conclude that volatility risk is priced although it is not.

4.1 Expected Hedging Error for Continuous Trading

4.1.1 Correct model

We start our analysis for the ideal case of continuous trading. There will be a non-zero

hedging error even in this scenario, since the market is incomplete so that a perfect hedge

for contracts with non-zero sensitivity to volatility is impossible. We first derive a formula

for the EHE for a general claim and for a general hedge ratio which is then studied in

detail for the special case where the hedge ratio is equal to the partial derivative from

the Heston model. The following proposition gives an expression for the EHE when an

arbitrary hedge ratio is employed.

Proposition 4 (Heston: EHE for continuous trading) The true model is Heston.

The price of the claim is denoted by CSV
t = cSV (t, St, Vt), where cSV (t, St, Vt) is short for

the function cSV (u, s, v) evaluated at u = t, s = St, and v = Vt. The hedge portfolio is

rebalanced continuously, the hedge ratio at time t is denoted by Ht. Then the EHE over
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the interval [t, t + τ ] is

EP
[
Dc(t, t + τ)

∣∣ Ft

]
= (µ − r)

∫ t+τ

t

er(t+τ−u)EP

[(
∂cSV

∂s
(u, Su, Vu) − Hu

)
Su

∣∣ Ft

]
du

+ λV

∫ t+τ

t

er(t+τ−u)EP

[
∂cSV

∂v
(u, Su, Vu) σV Vu

∣∣ Ft

]
du.

Proof: See the appendix.

Setting the hedge ratio equal to the partial derivative of the call price with respect to

the stock price, i.e. choosing

Ht ≡ ∂cSV

∂s
(t, St, Vt)

and applying Proposition 4 we obtain

Corollary 2 (Heston: EHE under ideal conditions) The true model is Heston. The

hedge portfolio is rebalanced continuously, the hedge ratio is the partial derivative. Then

the EHE over the interval [t, t + τ ] is

EP
[
Dc(t, t + τ)

∣∣ Ft

]
= λV

∫ t+τ

t

er(t+τ−u)EP

[
∂cSV

∂v
(u, Su, Vu) σV Vu

∣∣ Ft

]
du.

For a European call ∂cSV

∂v
> 0, and the sign of the EHE is equal to the sign of the market

price of volatility risk. Therefore the test described in section 2 is valid under the ideal

conditions of continuous trading and the absence of model mis-specification.

The sign of the EHE of a continuous hedge based on the correct model can in general

be used to identify the sign of λV if the vega of the claim, i.e. the partial derivative with

respect to the current level of the state variable (variance or volatility), has a unique sign,

and if the state variable itself remains non-negative with probability one. This second

condition can become critical for example in the SV model of Schöbel and Zhu (1999)

where the state variable is local volatility (as opposed to the local variance in the Heston

model), governed by an Ornstein-Uhlenbeck process.

Note further that our result in Corollary 2 is more general than the corresponding

result derived by Bakshi and Kapadia (2003) in their Proposition 2. Whereas they assume
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that the vega of the claim under consideration is proportional to the stock price and

independent of local volatility, no such restriction has to be imposed for the derivation of

the EHE above. This is a significant advantage, since we are only interested in whether

the sign of the volatility premium is the same as the sign of the EHE and not in the exact

numerical value of this premium. The properties of the signs of these two quantities,

however, can be perfectly derived from the corollary.

4.1.2 Model Error

The terms model error and model mis-specification refer to the use of an incorrect hedge

model, due to the fact that the true data generating process is unknown. In this paper all

hedges under model error are based on the BS model. This seems a natural choice, since

this model represents the simplest approach to option pricing, and it has proved to be

rather robust in empirical applications (see, e.g., Bakshi, Cao, and Chen (1997)). So the

hedge ratio applied in the test for volatility risk premia is given by

Ht ≡ ∂cBS

∂s
(t, St).

To compute this partial derivative a volatility input is needed. We use the implied BS

volatility of the option for this purpose, although other studies use historical measures.

Nevertheless, the implied volatility of an option seems preferable to us as the more natural

choice given the way practitioners usually handle liquid options.

An expression for the EHE in the Heston model is given in the following proposition.

Proposition 5 (Heston: EHE under model error) The true model is Heston. The

hedge portfolio is rebalanced continuously, the hedge ratio is the BS delta based on the

implied volatility. σBS(t, Mt) denotes the BS implied volatlity at time t for an option with

moneyness Mt, where Mt = K
St

and K is the strike price. Then the EHE over the interval
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[t, t + τ ] is

EP
[
Dc(t, t + τ)

∣∣ Ft

]

= λV

∫ t+τ

t

er(t+τ−u)EP

[
∂cSV

∂v
(u, Su, Vu) σV Vu

∣∣ Ft

]
du

− (µ − r)

∫ t+τ

t

er(t+τ−u)EP

[
∂cBS

∂σBS
(u, Su)

∂σBS

∂m
(u, Mu) Mu

∣∣ Ft

]
du. (13)

Proof: See the appendix.

The first term in equation (13) is the EHE if the correct hedge ratio is used in con-

tinuous time (see Corollary 2). The second term originates from the use of the BS delta

instead of the correct partial derivative from the Heston model. It therefore represents the

impact of model mis-specification. As can be seen from Proposition 4, the sign of this term

depends on the expected difference between the partial derivative in the Heston model

and the partial derivative in the BS model as well as on the risk premium of the stock.

Equation (22) in the appendix shows that the difference between the partial derivatives

is related to the slope of the implied volatility function via

∂cSV

∂s
(t, St, Vt) −

∂cBS

∂s
(t, St) = − ∂cBS

∂σ
(t, St) ·

∂σBS

∂m
(t, Mt) ·

Mt

St

.

Empirically, the risk premium on stocks is generally found to be positive, and the smile

for most stocks and indices decreases in the strike price of the options. These stylized facts

imply that the partial derivative in the Heston model is greater than the partial derivative

in the BS model. Both Proposition 4, which is based on the expected differences between

the partial derivatives, and equation (13), which is based on the slope of the smile, show

that under these conditions the expected hedging error increases compared to the expected

hedging error when the correct Heston delta is used.

If the market price of volatility risk is zero the EHE in the above proposition reduces

to the second term which can be attributed entirely to model error. If the market price

of stock risk is positive, and if the implied volatility is a decreasing function of the strike

price, the EHE due to model risk will be positive. A test for the sign of the volatility risk

premium based on the EHE will therefore tend to reject the null hypothesis of a zero risk

premium against the alternative of a positive λV .
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In scenarios with a non-zero volatility premium the sign of the EHE will no longer

coincide with the sign of the market price of volatility risk, at least not in general. The

test from section 2 is therefore not able to identify the sign of the market price of volatility

risk properly.

4.2 Expected Hedging Error for Discrete Trading

4.2.1 Pure Discretization Error

We now analyze the EHE when the hedge is rebalanced only at discrete points in time.

First, we derive a general formula for the EHE before we take a closer look at the hedging

error for particular choices of the hedge ratio.

Proposition 6 (Heston: EHE under discretization error for arbitrary hedge ratio)

The true model is Heston. Trading takes place at the discrete dates 0 = t0, t1, t2, . . . , tn =

T , the hedge ratio at time ti is Hti . Then the EHE over the interval [ti, ti+1] is

EP
[
Dd(ti, ti+1) | Fti

]

= λV

∫ ti+1

ti

er(ti+1−t)EP

[
∂cSV

∂v
(t, St, Vt) σV Vt

∣∣ Fti

]
dt

+ (µ − r)

(
∂cSV

∂s
(ti, Sti, Vti) − Hti

)∫ ti+1

ti

er(ti+1−t)EP [St | Fti] dt

+ (µ − r)2

∫ ti+1

ti

er(ti+1−t)EP [St | Fti] E
P S

[∫ t

ti

∂2cSV

∂s2
(u, Su, Vu) Sudu

∣∣ Fti

]
dt

+ (µ − r)λV

∫ ti+1

ti

er(ti+1−t)EP [St | Fti]E
P S

[∫ t

ti

∂2cSV

∂s∂v
(u, Su, Vu) σV Vudu

∣∣ Fti

]
dt.

Proof: See the appendix.

Setting the hedge ratio equal to the partial derivative of the claim price with respect

to the stock price computed in the Heston framework, i.e. setting

Hti ≡ ∂cSV

∂s
(ti, Sti, Vti) (14)

we obtain
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Corollary 3 (Heston: Discretization error for delta hedge) The true model is Hes-

ton. Trading takes place at the discrete dates 0 = t0, t1, t2, . . . , tn = T , the hedge ratio is

the Heston partial derivative of the claim price with respect to the stock price. Then the

EHE over the interval [ti, ti+1] is given by

EP
[
Dd(ti, ti+1) | Fti

]

= λV

∫ ti+1

ti

er(ti+1−t)EP

[
∂cSV

∂v
(t, St, Vt) σV Vt

∣∣ Fti

]
dt

+ (µ − r)2

∫ ti+1

ti

er(ti+1−t)EP [St | Fti] E
P S

[∫ t

ti

∂2cSV

∂s2
(u, Su, Vu) Sudu

∣∣ Fti

]
dt

+ λV (µ − r)

∫ ti+1

ti

er(ti+1−t)EP [St | Fti]E
P S

[∫ t

ti

∂2cSV

∂s∂v
(u, Su, Vu) σV Vudu

∣∣ Fti

]
dt.

Proof: The result follows directly from Proposition 6.

The first term in the expression for the EHE under discrete hedging coincides with the

EHE in case of continuous trading (see Corollary 2). If the price of the claim is increasing

in volatility, like it is the case for a European call option, the sign of this term equals the

sign of the market price of volatility risk.

The second and third term arise because the hedge portfolio is not rebalanced continu-

ously so that they represent the discretization error. The second term, which is analogous

to the discretization error in the BS model, is positive if the claim price is a convex func-

tion of the stock price. The sign of the third term not only depends on the market price

of volatility risk and on the equity risk premium, but also on the expected value of the

mixed partial derivative of the claim price with respect to volatility and the stock price.

This partial derivative is positive for high strike prices and negative for low strike prices.

If the equity risk premium is positive, the sign of the third term and the sign of the market

price of volatility risk are therefore equal for high exercise prices and opposite for lower

ones.

If the market price of volatility risk equals zero, the EHE is

EP
[
Dd(ti, ti+1) | Fti

]

= (µ − r)2

∫ ti+1

ti

er(ti+1−t)EP [St | Fti]E
P S

[∫ t

ti

∂2cSV

∂s2
(u, Su, Vu) Sudu | Fti

]
dt. (15)
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For a convex claim like the call, the EHE is strictly positive. Again, this causes a problem

for the test described in section 2, since it will signal a positive risk premium even in the

case when λV is equal to zero. In general, Corollary 3 shows that the sign of the EHE does

not necessarily coincide with the sign of the market price of volatility risk. It is therefore

not possible to base inferences about the sign of the market price of volatility risk on the

EHE.

As one may expect the absolute value of the difference between the EHEs for con-

tinuous and discrete trading depends on the length of the time interval between two

consecutive trading dates. The discretization error gets the smaller the smaller this time

length, i.e. the more often the portfolio is rebalanced.

The expressions for the EHE in the preceding propositions and corollaries are only

’semi-closed’, i.e. we cannot simply plug in the parameters of the problem and obtain a

numerical output. We therefore calculate the EHE for this and the following scenarios

using a Monte Carlo simulation with 10,000 runs over a hedging horizon of one day for

every run. The stochastic differential equations for the dynamics of the stock price and

the local variance are discretized using a standard Euler scheme. To avoid problems with

possibly negative values for the variance and to come closer to a continuous representation

of the stochastic differential equations of the state variables we divide the day into 100

steps of length ∆t = 1/36, 525 each. As described in section 2 the hedge portfolio is

composed at time ti (which may be taken to be t = 0 without any loss of generality) by

selling the option short, buying the number of stocks indicated by the delta (BS or Heston)

and by borrowing the additional necessary funds at the risk-free rate. The hedging error

at time ti+1, i.e. after one day, is then given by the expression in equation (4).

To increase the accuracy of our estimates we use the expected value of V at the end

of the hedging interval as a control variate. We apply a two-sided t-test with significance

level α = 0.05 to test the null hypothesis that the mean hedging error is zero, whereas in

the cases when the null states a positive or a negative premium we apply a one-sided test.

Note that this does not mean that we consider the t-test appropriate. It is merely this

test that has been used in papers trying to identify the sign of λV using expected option
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hedging errors, like Bakshi and Kapadia (2003).

The results for the simulation analysis of the discretization error in the Heston model

are shown in table 1 which presents the average hedging error for different maturity

classes, strike prices, current values of V and risk premia of the stock. The market price

of volatility risk is set to zero. For this exercise the hedging interval is chosen to be one

week which coincides with the hedging interval used by Coval and Shumway (2001) in

their empirical study of option returns. This period length is chosen to allow an analysis

of discretization errors under a ’magnifying glass’, since we expect the hedging error to be

increasing with the duration of the hedge whereas the qualitative properties of the EHE

should remain unchanged compared to shorter hedging intervals.

As one can see from the table the EHE is either not significantly different from zero or

significantly positive. This phenomenon is similar to the case of discrete hedging in a BS

economy where we can conclude from the closed form representation for the discretization

error that the EHE is positive for convex claims. In a Heston economy, there is one

additional term in the discretization error compared to BS, so that we cannot draw a

similar conclusion a priori. As the simulation results for the Heston model show we would

also deduce from a simple discrete hedging test that the volatility risk premium is positive

when it is truly zero. This mis-interpretation of the test result occurs mostly for a low

current volatility of
√

V0 = 0.1 and a high equity risk premium of µ − r = 0.2.

For the shorter hedging interval of one day and the scenarios considered above the

mean hedging error is not statistically different from zero any more for the case of a zero

volatility risk premium. For a positive or a negative market price of volatility risk there

are some scenarios when a test based on the mean hedging error produces a misleading

result, but compared to a hedging interval of one week the number of wrong results reduces

significantly. However, this should not lead to the general conclusion that the test is valid

for daily hedging intervals, since theoretically the signs of the mean hedging error and

the volatility premium could still be different, but the variance of the hedging error is so

large that the t-statistic becomes insignificant.
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4.2.2 Discretization Error and Model Mis-Specification

Like in the case of continuous trading, we now consider the hedging error when the hedge

ratio is set equal to the Black-Scholes delta, so that

Hti ≡ ∂cBS

∂s
(ti, Sti).

The volatility used to compute the partial derivative is the implied volatility for which

the BS option price is equal to the price under the correct model. We obtain

Proposition 7 (Heston: EHE with model error and discretization error) The true

model is Heston and trading takes is discrete. The hedge ratio Hti at time ti is the BS

delta based on the implied volatility of the claim. Then the EHE over the interval [ti, ti+1]

is given by

EP
[
Dd(ti, ti+1) | Fti

]

= λV

∫ ti+1

ti

er(ti+1−t)EP

[
∂cSV

∂v
(t, St, Vt) σV Vt

∣∣ Fti

]
dt

+ (µ − r)2

∫ ti+1

ti

er(ti+1−t)EP [St | Fti]E
P S

[∫ t

ti

∂2cSV

∂s2
(u, Su, Vu) Sudu | Fti

]
dt

+ (µ − r)λV

∫ ti+1

ti

er(ti+1−t)EP [St | Fti] E
P S

[∫ t

ti

∂2cSV

∂s∂v
(u, Su, Vu) σV Vudu | Fti

]
dt

− (µ − r)
∂cBS

∂σBS
(ti, Sti)

∂σBS

∂m
(ti, Mti)

Mti

Sti

∫ ti+1

ti

er(ti+1−t)EP [St | Fti] dt. (16)

Proof: Equation (16) follows directly from the proof of Proposition 6 and from equation

(22) in the appendix for the relation between the BS delta and the Heston delta.

The first three terms in equation (16) represent the EHE for discrete trading if the

hedge ratio is the correct partial derivative from the Heston model (see Corollary 3).

The fourth term is an additional component due to the use of an incorrect hedge model.

Following the arguments for the case of continuous hedging this term is positive if the

market price of risk for the stock is positive and if implied volatility is a decreasing function

of the strike price.
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The most important result that we can derive from this proposition is that the sign

of the EHE is again in general not equal to the sign of the market price of volatility risk

so that we cannot rely on the standard test based on expected option hedging errors.

Tables 2, 3, and 4 present the average hedging errors for different maturity classes,

strike prices, current values of V and risk premia for the stock generated by the simulation

procedure described above. The market price of volatility risk λV is chosen to be −2, 0,

and 2, and the hedging interval is one day. As discussed above for this period length the

discretization error can be neglected more or less so that basically all the error of the test

procedure is due to the choice of the wrong hedge coefficient.

If the market price of volatility is zero, the mean hedging error is biased upwards as

we can see from the entries in table 2. In almost all of the cases when the hedging error is

statistically different from zero, it is significantly positive. This is perfectly in line with our

theoretical arguments which say that for a positive market equity risk premium and for

a downward sloping smile curve the choice of the BS delta instead of the Heston partial

derivative tends to increase the EHE. Therefore the test from section 2 is not valid in

general and the user often tends to wrongly conclude that the market price of volatility

risk is positive. This effect is the more pronounced the lower the current value of the local

variance. Note, however, that not all the wrong conclusions drawn from the test go in the

same direction. We observe a few cases when the test actually signals a negative λV . This

occurs for 3-month options with a strike price of 110, positive equity risk premia, and a

low volatility.

The most critical scenario in terms of the validity of the standard test procedure is

of course the situation when the true volatility risk premium is negative. Since average

hedging errors under the assumed scenario of a downward sloping smile and a positive

equity risk premium tend to be positive the test is likely to indicate a positive or a

zero volatility premium whereas it is indeed negative. As becomes clear from table 3 the

problem is again especially pronounced for low current volatility and medium or high

equity risk premia. Here it might happen frequently that the sign of the market price of

volatility risk is not indicated properly by the hedging test.

23



The dependence on the equity risk premium and on the current level of volatility can

be explained intuitively. Equation (16) shows that the EHE is the sum of the ideal EHE

(no discretization error, no model mis-specification), of the discretization error and the

model error. The smaller the ideal EHE and the greater the other error terms, the more

often the total EHE may have a sign different from the sign of the ideal EHE and therefore

different from the sign of the market price of volatility risk. Now the absolute ideal EHE

tends to increase in the current volatility, while the error terms increase in the equity risk

premium. Putting these arguments together we can see that for a negative market price

of volatility risk, the lower the current volatility and the greater the equity risk premium,

the more often the test would produce the wrong signal.

As one may expect for a positive volatility premium the EHE is also almost always

significantly positive (see table 4). Of course, this is not due to an improved quality of

the test per se, but it is an immediate consequence of the fact that average hedging

errors tend to be positive here so that the test more often detects a positive volatility risk

premium. In two cases, for short-term options away from the money and a zero equity

risk premium the average hedging errors are not significantly different from zero so that

we would conclude that volatility risk is not priced.

4.2.3 Can We Correct for Discretization Error?

We now try to find a hedge ratio Hti for the Heston model for which the sign of the EHE

equals the sign of the market price of volatility risk even under discrete trading. For this

hedge ratio it must at least be true that the EHE is zero if the market price of volatility

risk is zero. This condition can be used to define the mean-zero hedge ratio.

Proposition 8 (Heston: Mean-zero hedge ratio) The true model is Heston and trad-

ing is discrete. The mean-zero hedge ratio is

HSV,MZ
ti

(ti+1) =
∂cSV

∂s
(ti, Sti , Vti)

+

∫ ti+1

ti
e−rtEP [St | Fti] E

P S

[∫ t

ti

∂2cSV

∂s2 (u, Su, Vu)Sudu | Fti

]
dt

∫ ti+1

ti
e−rtEP [St | Fti] dt

(µ − r).
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The EHE over the interval [ti, ti+1] generated by this hedge ratio is given by

EP
[
Dd(ti, ti+1) | Fti

]

= λV

∫ ti+1

ti

er(ti+1−t)EP

[
∂cSV

∂v
(t, St, Vt)σV Vt

∣∣ Fti

]
dt

+ (µ − r)λV

∫ ti+1

ti

er(ti+1−t)EP [St | Fti]E
P S

[∫ t

ti

∂2cSV

∂s∂v
(u, Su, Vu)σV Vudu | Fti

]
dt.

Proof: If the market price of volatility risk is zero, Proposition 6 gives

EP
[
Dd(ti, ti+1) | Fti

]

= (µ − r)

(
∂cSV

∂s
(ti, Sti, Vti) − Hti

) ∫ ti+1

ti

er(ti+1−t)EP [St | Fti] dt

+ (µ − r)2

∫ ti+1

ti

er(ti+1−t)EP [St | Fti] E
P S

[∫ t

ti

∂2cSV

∂s2
(u, Su, Vu)Sudu | Fti

]
dt.

Setting this expression equal to zero and solving for the hedge ratio gives the mean-zero

hedge ratio. The EHE then follows from Proposition 6. 2

As one can see from the expression for the EHE it is indeed equal to zero for a zero

market price of volatility risk. Analogous to the case of the BS model the mean-zero hedge

ratio is greater than the partial derivative if the equity risk premium is positive and the

claim is convex in the value of the underlying.

However, if the market price of volatility risk is not zero, then the EHE generated by

the mean-zero hedge ratio will in general be different from zero, and its sign will not in

general coincide with the sign of the market price of volatility risk. Again the test will

fail. Taken together the results show that it is impossible to construct a test based on the

EHE of a SV option pricing model which is able to identify the sign of the market price

of volatility risk consistently.

5 Conclusion

In this paper we have investigated whether tests based on expected option hedging errors

are able to tell the researcher the sign of the volatility risk premium in an economy with
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stochastic volatility. Recent papers use simple BS hedges and the associated hedging errors

to draw conclusions about the sign of this risk premium.

In general, the characteristics of the EHE in an option pricing model depend on the

non-hedgeable risks. In case of continuous trading the market prices of non-traded risk fac-

tors will affect the EHE, whereas for discrete trading and in case of model mis-specification

also the market price of equity risk becomes relevant.

The main results of our paper can be summarized as follows. The error introduced by

discretization may destroy the properties of tests based on the EHE in that its sign and

the sign of market price of volatility risk do not necessarily coincide both in the BS model

and under stochastic volatility. An important difference from a theoretical point of view

is that for the BS model there is a remedy to this problem if we base the test on what

we call the mean-zero hedge ratio instead of the classical delta. However, for the Heston

model there is in general no such adjustment so that any test based on discrete hedging

will suffer from the problem described above, except in the case of a zero volatility risk

premium. Using an incorrect model (like BS in the case of stochastic volatility) to set up

the hedge also leads to a test with unreliable properties, even in the case of continuous

trading. Especially when the true data generating process exhibits low volatility relative

to the long-term mean the test quite frequently gives a wrong indication for the sign of

the volatility risk premium.

The analyzes performed in this paper constitute a first step towards a more detailed

investigation of the characteristics of option hedging errors. A first step in this direction

might be to search for more robust tests, which are less sensitive to discretization error

and model mis-specification. For example, one might consider hedge portfolios consisting

of two (or more) options instead of options and the stock to perform the hedging test.

Furthermore a researcher might also be confronted with a model identification problem.

Are hedge results actually generated by volatility risk premia? Is it possible that other

risk factors are present, like jump risk and the risk associated with uncertain jump sizes?

Especially the inclusion of these types of risk seems a natural next step towards a better

understanding of the relationship between hedging errors and risk premia.
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A Appendix

A.1 Proof of Proposition 2

In case of discrete trading, the hedging error over the interval [ti, ti+1] is

Dd(ti, ti+1) =

∫ ti+1

ti

er(ti+1−t)

(
∂cBS

∂s
(t, St) − Hti

)
(dSt − rStdt)

where we have used expression (7) for the change in the price of the claim.

Taking expectations yields

EP
[
Dd(ti, ti+1)

∣∣ Fti

]

= EP

[∫ ti+1

ti

er(ti+1−t)

(
∂cBS

∂s
(t, St) − Hti

)
(µ − r)Stdt

∣∣ Fti

]

= (µ − r)

∫ ti+1

ti

er(ti+1−t)EP [St | Fti] E
P S(t)

[
∂cBS

∂s
(t, St) − Hti

∣∣ Fti

]
dt. (17)

The probability measure P S is defined by the Radon-Nikodym derivative

dP S

dP
=

ST

EP [ST ]
.

The expected hedging error depends on the difference between the partial derivatives in

the interval from ti to ti+1 and the fixed hedge ratio Hti . We further decompose these

terms into the difference between the partial derivative at time ti and the hedge ratio

used, and into the change of the partial derivative in the interval from ti to ti+1. Applying

Ito to the hedge ratio gives

∂cBS

∂s
(t, St) =

∂cBS

∂s
(ti, Sti)

+

∫ t

ti

(
∂2cBS

∂t∂s
(u, Su) du +

∂2cBS

∂s2
(u, Su) dSu +

1

2

∂3cBS

∂s3
(u, Su) σ2S2

udu

)
.

Differentiating the fundamental partial differential equation once with respect to the stock

price gives

∂2cBS

∂t∂s
(u, Su) +

∂2cBS

∂s2
(u, Su) rSu +

∂cBS

∂s
(u, Su) r

+
1

2

∂3cBS

∂s3
(u, Su) σ2S2

u +
∂2cBS

∂s2
(u, Su) σ2Su − r

∂cBS

∂s
(u, Su) = 0
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so that the difference between the hedge ratios at time t and at time ti is

∂cBS

∂s
(t, St) −

∂cBS

∂s
(ti, Sti) =

∫ t

ti

∂2cBS

∂s2
(u, Su)

(
dSu − (r + σ2)Sudu

)
. (18)

The expected hedging error from equation (17) can therefore be written as

EP
[
D(ti, ti+1)

∣∣ Fti

]

= (µ − r)

∫ ti+1

ti

er(ti+1−t)EP [St | Fti]

EP S(t)

[
∂cBS

∂s
(ti, Sti)

+

∫ t

ti

∂2cBS

∂s2
(u, Su)

(
dSu − (r + σ2)Sudu

)
− Hti

∣∣ Fti

]
dt

= (µ − r)

(
∂cBS

∂s
(ti, Sti) − Hti

) ∫ ti+1

ti

er(ti+1−t)EP [St | Fti] dt

+ (µ − r)

∫ ti+1

ti

er(ti+1−t)EP [St | Fti]

EP S

[∫ t

ti

∂2cBS

∂s2
(u, Su)

(
dSu − (r + σ2)Sudu

) ∣∣ Fti

]
dt.

Noting that under P S the drift of the stock is equal to µ + σ2 we obtain the proposition.

2

A.2 Proof of Proposition 4

Under the usual mild technical conditions, the dynamics of any derivative contract in our

SV model are given by

dCSV
t =

∂cSV

∂t
(t, St, Vt)dt +

∂cSV

∂s
(t, St, Vt)dSt +

∂cSV

∂v
(t, St, Vt)dVt

+
1

2

∂2cSV

∂s2
(t, St, Vt)VtS

2
t dt +

1

2

∂2cSV

∂v2
(t, St, Vt)σ

2
V Vtdt

+
1

2

∂2cSV

∂s∂v
(t, St, Vt)VtStσV ρdt

= rCSV
t dt +

∂cSV

∂s
(t, St, Vt)(dSt − rStdt) (19)

+
∂cSV

∂v
(t, St, Vt) (dVt − κ(θ − Vt)dt + λV σV Vtdt)
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where the second equality follows from the well-known fundamental partial differential

equation that the pricing function for every path-independent claim has to satisfy.

Plugging equation (19) for the change in the price of the derivative into the general

formula (3) for the hedging error gives

Dc(t, t + τ) =

∫ t+τ

t

er(t+τ−u)

(
∂cSV

∂s
(u, Su, Vu) − Hu

)
(dSu − rSudu)

+

∫ t+τ

t

er(t+τ−u) ∂cSV

∂v
(u, Su, Vu) (dVu − κ(θ − Vu)du + λV σV Vudu) . (20)

Taking expectations gives the proposition. 2

A.3 Proof of Proposition 5

From Proposition 4 we get

EP
[
Dc(t, t + τ)

∣∣ Ft

]

= λV

∫ t+τ

t

er(t+τ−u)EP

[
∂cSV

∂v
(u, Su, Vu)σV Vu

∣∣ Ft

]
du

+ (µ − r)

∫ t+τ

t

er(t+τ−u)EP

[(
∂cSV

∂s
(u, Su, Vu) −

∂cBS

∂s
(u, Su)

)
Su

∣∣ Ft

]
du.(21)

The first term is the EHE when the hedge ratio is the partial derivative. It is given in

Corollary 2, and its sign equals the sign of the market price of volatility risk.

To analyze the difference between the partial derivatives from the BS and the Heston

model we start from the definition of the implied volatility:

cBS
(
t, s; σBS

)
= cSV (t, s, v) .

where we introduce volatility as an additional argument in the BS price. Differentiating

both sides once with respect to the stock price gives

∂cBS

∂s
(t, s) +

∂cBS

∂σ
(t, s) · ∂σBS

∂s
(t, s) =

∂cSV

∂s
(t, s, v)

so that the difference between the two hedge ratios is

∂cSV

∂s
(t, s, v) − ∂cBS

∂s
(t, s) =

∂cBS

∂σ
(t, s) · ∂σBS

∂s
(t, s).
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The first factor of the product on the right-hand side is always positive, the sign of the

second factor depends on the slope of the volatility smile. It can be simplified by noting

that in the BS model the call price is a positive homogeneous function of the stock price

and the strike so that

σBS(t, s, K) = σBS(t, 1, m)

where the moneyness m is defined as m = K
s
. In the following, we therefore write σBS as

a function of time t and moneyness m. This implies

∂σBS

∂s
(t, s) = −∂σBS

∂m
(t, m) · m

s
.

This gives

∂cSV

∂s
(t, s, v) − ∂cBS

∂s
(t, s) = −∂cBS

∂σ
(t, s) · ∂σBS

∂m
(t, m)

m

s
(22)

which together with (21) yields the proposition. 2

A.4 Proof of Proposition 6

In case of discrete trading, the hedging error (4) over the interval [ti, ti+1] is given by

Dd(ti, ti+1) =

(∫ ti+1

ti

er(ti+1−u)(dCu − rCudu) −
∫ ti+1

ti

e−ruHti(dSu − rSudu)

)

=

∫ ti+1

ti

er(ti+1−u)

(
∂cSV

∂s
(t, St, Vt) − Hti

)
(dSt − rStdt)

+

∫ ti+1

ti

er(ti+1−u)∂cSV

∂v
(t, St, Vt) (dVt − (κ(θ − Vt) − λV σV Vt)dt)
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where we have used expression (19) for the change in the price of the claim to obtain the

second equality. The expected hedging error is now equal to

EP
[
Dd(ti, ti+1) | Fti

]

= EP

[∫ ti+1

ti

er(ti+1−t)

(
∂cSV

∂s
(t, St, Vt) − Hti

)
(µ − r)St | Fti

]

+ EP

[∫ ti+1

ti

er(ti+1−t) ∂cSV

∂s
(t, St, Vt)λV σV Vt dt

∣∣ Fti

]

= λV EP

[∫ ti+1

ti

er(ti+1−t) ∂cSV

∂v
(t, St, Vt)σV Vt dt

∣∣ Fti

]

+ (µ − r)

∫ ti+1

ti

er(ti+1−t)EP [St | Fti]E
P S(t)

[
∂cSV

∂s
(t, St, Vt) − Hti | Fti

]
dt. (23)

We now take a closer look at the partial derivative at time t. Applying Ito gives

∂cSV

∂s
(t, St, Vt) =

∂cSV

∂s
(ti, Sti, Vti)

+

∫ t

ti

(
∂2cSV

∂t∂s
(u, Su, Vu)du +

∂2cSV

∂s2
(u, Su, Vu)dSu

+
∂2cSV

∂s∂v
(u, Su, Vu)dVu +

1

2

∂3cSV

∂s3
(u, Su, Vu)VuS

2
udu

+
1

2

∂3cSV

∂s∂v2
(u, Su, Vu)σ

2
V Vudu +

∂3cSV

∂s2∂v
(u, Su, Vu)σV ρSuVudu

)
.

Differentiating the fundamental partial differential equation once with respect to the stock

price gives

∂2cSV

∂t∂s
(u, Su, Vu) +

∂2cSV

∂s2
(u, Su, Vu)rSu +

∂cSV

∂s
(u, Su, Vu)r

+
∂2cSV

∂s∂v
(u, Su, Vu) (κ(θ − Vu) − λV σV Vu) +

1

2

∂3cSV

∂s3
(u, Su, Vu)VuS

2
u

+
∂2cSV

∂s2
(u, Su, Vu)VuSu +

1

2

∂3cSV

∂s∂v2
(u, Su, Vu)σ

2
V Vu

+
∂3cSV

∂s2∂v
(u, Su, Vu)σV ρSuVu +

∂2cSV

∂s∂v
(u, Su, Vu)σV ρVu − r

∂cSV

∂s
(u, Su, Vu) = 0

so that the difference between the hedge ratio at time t and time ti is

∂cSV

∂s
(t, St, Vt) −

∂cSV

∂s
(ti, Sti, Vti)

=

∫ t

ti

∂2c

∂s2
(u, Su, Vu) (dSu − (r + Vu)Sudu)

+

∫ t

ti

∂2cSV

∂s∂v
(u, Su, Vu) (dVu − κ(θ − Vu)du + λV σV Vudu − σV ρVudu) .
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Plugging this expression into the equation for the expected hedging error (23) gives

EP
[
Dd(ti, ti+1) | Fti

]

= λV EP

[∫ ti+1

ti

er(ti+1−t) ∂cSV

∂v
(t, St, Vt)σV Vt dt

∣∣ Fti

]

+ (µ − r)

(
∂cSV

∂s
(ti, Sti , Vti) − Hti

) ∫ ti+1

ti

er(ti+1−t)EP [St | Fti] dt

+ (µ − r)

∫ ti+1

ti

er(ti+1−t)EP [St | Fti]

EP S

[∫ t

ti

∂2cSV

∂s2
(u, Su, Vu) (dSu − (r + Vu)Sudu) | Fti

]
dt

+ (µ − r)

∫ ti+1

ti

er(ti+1−t)EP [St | Fti]

EP S

[∫ t

ti

∂2cSV

∂s∂v
(u, Su, Vu)

(dVu − κ(θ − Vu)du + λV σV Vudu − σV ρVudu) | Fti

]
dt.

Under P S, the drift of the stock price is equal to µ + V and the drift of V is equal to

κ(θ − V ) + σV ρV . This yields the proposition. 2
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Table 1: Impact of discretization error in the Heston model (λV = 0)

Mean hedging error (multiplied by 1,000) for a European call option as a function of the strike K, the equity

risk premium µ − r, and time to maturity TTM in months. The hedge ratio is given by the Heston delta,

the hedging interval is one week (τ − t = 1/52). The parameters of the risk-neutral process are given by

S0 = 100, r = 0.05, κq = 1.15, θq = 0.04, σv = 0.4, ρ = −0.65.

’+’ behind a mean hedging error entry indicates that it is significantly positive. Based on a two sided t-test

one would thus wrongly reject the null hypothesis of a zero market price of volatility risk.

V0 = 0.01 V0 = 0.04 V0 = 0.09

TTM µ − r K = 90 K = 100 K = 110 K = 90 K = 100 K = 110 K = 90 K = 100 K = 110

1 0 -0.069 -2.181 -0.001 -1.257 -3.485 -0.255 -3.368 -4.757 -1.598

3 0 -0.260 -1.337 -0.040 -1.145 -2.311 -1.267 -2.245 -3.114 -2.523

6 0 -0.281 -0.850 -0.386 -0.928 -1.740 -1.624 -1.705 -2.403 -2.471

12 0 -0.228 -0.483 -0.617 -0.707 -1.204 -1.476 -1.290 -1.829 -2.139

1 0.1 -0.027 -0.081 0.005 -1.040 -2.436 0.033 -3.067 -4.135 -1.212

3 0.1 -0.117 -0.275 0.248 -0.910 -1.698 -0.664 -2.012 -2.728 -2.126

6 0.1 -0.123 -0.209 0.480 -0.736 -1.318 -1.032 -1.526 -2.123 -2.133

12 0.1 -0.086 -0.116 0.103 -0.563 -0.926 -1.041 -1.160 -1.628 -1.874

1 0.2 0.087 6.350 + 0.020 + -0.442 1.098 1.092 -2.142 -1.811 0.351

3 0.2 0.306 2.934 + 1.192 + -0.176 0.303 1.464 -1.223 -1.352 -0.629

6 0.2 0.355 1.733 + 3.258 + -0.123 0.046 0.987 -0.912 -1.138 -0.896

12 0.2 0.354 1.007 + 2.339 + -0.094 -0.022 0.400 -0.706 -0.926 -0.927
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Table 2: Impact of discretization error and model mis-specification in the Heston model (λV = 0)

Mean hedging error (multiplied by 1,000) for a European call option as a function of the strike K, of the equity

risk premium µ−r, and of the time to maturity TTM in months. The hedge ratio is given by the Heston delta,

the hedging interval is one day (τ − t = 1/365), and the hedge is not rebalanced in between.. The parameters

of the risk-neutral process are given by S0 = 100, r = 0.05, κq = 1.15, θq = 0.04, σv = 0.4, ρ = −0.65.

’+’(’–’) behind the mean hedging error entry indicates that it is significantly positive (negative). Based on

a two-sided t-test one would thus wrongly reject the null hypothesis of a zero market price of volatility risk.

V0 = 0.01 V0 = 0.04 V0 = 0.09

TTM µ − r K = 90 K = 100 K = 110 K = 90 K = 100 K = 110 K = 90 K = 100 K = 110

1 0 -0.023 -0.277 0.000 -0.177 -0.590 -0.093 -0.454 -0.892 -0.456

3 0 -0.073 -0.169 -0.013 -0.236 -0.370 -0.190 -0.424 -0.558 -0.448

6 0 -0.077 -0.131 -0.041 -0.214 -0.290 -0.217 -0.360 -0.440 -0.406

12 0 -0.071 -0.105 -0.091 -0.182 -0.235 -0.227 -0.304 -0.366 -0.373

1 0.1 0.029 1.644 + 0.004 + 0.040 0.445 0.046 -0.148 -0.195 -0.090

3 0.1 0.514 + 2.380 + -0.080 – 0.579 1.315 + 0.635 + 0.361 0.615 0.546

6 0.1 1.067 + 2.534 + 0.515 + 1.084 + 1.835 + 1.373 + 0.816 1.149 1.123

12 0.1 1.483 + 2.449 + 2.127 + 1.480 + 2.096 + 2.038 + 1.241 1.591 1.644

1 0.2 0.083 + 3.658 + 0.010 + 0.267 1.531 + 0.200 0.172 0.536 0.300

3 0.2 1.107 + 4.974 + -0.134 – 1.404 + 3.030 + 1.492 + 1.158 + 1.809 + 1.563 +

6 0.2 2.218 + 5.228 + 1.108 + 2.390 + 3.980 + 2.992 + 2.002 + 2.752 + 2.671 +

12 0.2 3.043 + 5.020 + 4.377 + 3.149 + 4.440 + 4.325 + 2.792 + 3.558 + 3.676 +
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Table 3: Impact of discretization error and model mis-specification in the Heston model (λV = −2)

Mean hedging error (multiplied by 1,000) for a European call option as a function of the strike K, of the equity

risk premium µ−r, and of the time to maturity TTM in month. The hedge ratio is given by the Heston delta,

the hedging interval is one day 8τ −t = 1/365), and the hedge is not rebalanced in between.. The parameters

of the risk-neutral process are given by S0 = 100, r = 0.05, κq = 1.15, θq = 0.04, σv = 0.4, ρ = −0.65.

’+’ (’0’) behind the mean hedging error indicates that it is significantly positive (not significantly different

from zero). Based on a one-sided t-test one would thus wrongly reject the null hypothesis of a negative

market price of volatility risk.

V0 = 0.01 V0 = 0.04 V0 = 0.09

TTM µ − r K = 90 K = 100 K = 110 K = 90 K = 100 K = 110 K = 90 K = 100 K = 110

1 0 -0.063 -1.386 -0.002 0 -0.679 -2.947 -0.567 -1.997 -4.467 -2.511

3 0 -0.482 -1.707 -0.241 -2.053 -4.097 -2.799 -4.237 -6.349 -5.798

6 0 -0.843 -1.747 -1.031 -2.978 -4.798 -4.533 -5.700 -7.745 -8.026

12 0 -1.007 -1.562 -1.643 -3.489 -4.901 -5.366 -6.649 -8.549 -9.409

1 0.1 -0.010 0 0.538 0 0.003 + -0.458 -1.911 -0.433 -1.685 -3.769 -2.154

3 0.1 0.107 0 0.844 + -0.310 -1.234 -2.409 -1.984 -3.447 -5.174 -4.811

6 0.1 0.302 0 0.920 + -0.481 -1.677 -2.671 -2.950 -4.519 -6.155 -6.502

12 0.1 0.548 + 0.993 + 0.573 0 -1.824 -2.568 -3.103 -5.101 -6.590 -7.394

1 0.2 0.044 + 2.554 + 0.008 + -0.229 0 -0.823 0 -0.285 -1.361 -3.037 -1.773

3 0.2 0.701 + 3.441 + -0.367 -0.405 0 -0.693 0 -1.138 -2.645 -3.979 -3.802

6 0.2 1.455 + 3.615 + 0.106 0 -0.367 0 -0.524 0 -1.339 -3.330 -4.550 -4.959

12 0.2 2.110 + 3.564 + 2.821 + -0.153 0 -0.221 0 -0.819 0 -3.546 -4.621 -5.365
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Table 4: Impact of discretization error and model mis-specification in the Heston model (λV = 2)

Mean hedging error (multiplied by 1,000) for a European call option as a function of the strike K, the equity

risk premium µ−r, and the time to maturity TTM in months. The hedge ratio is given by the Heston delta,

the hedging interval is one day (τ − t = 1/365), and the hedge is not rebalanced in between. The parameters

of the risk-neutral process are given by S0 = 100, r = 0.05, κq = 1.15, θq = 0.04, σv = 0.4, ρ = −0.65.

’0’ behind the mean hedging error entry indicates that it is not significantly different from zero. Based on

a one-sided t-test one would thus wrongly reject the hypothesis of a positive market price of volatility risk.

V0 = 0.01 V0 = 0.04 V0 = 0.09

TTM µ − r K = 90 K = 100 K = 110 K = 90 K = 100 K = 110 K = 90 K = 100 K = 110

1 0 0.017 0 0.833 0.001 0 0.326 1.770 0.383 1.093 2.687 1.604

3 0 0.337 1.372 0.215 1.586 3.362 2.426 3.396 5.239 4.910

6 0 0.691 1.488 0.953 2.556 4.224 4.106 4.988 6.875 7.225

12 0 0.867 1.355 1.465 3.132 4.437 4.920 6.051 7.828 8.676

1 0.1 0.068 2.752 0.006 0.541 2.803 0.527 1.394 3.382 1.979

3 0.1 0.922 3.918 0.151 2.396 5.045 3.262 4.176 6.411 5.912

6 0.1 1.834 4.152 1.514 3.850 6.347 5.703 6.160 8.461 8.758

12 0.1 2.420 3.908 3.685 4.790 6.767 7.188 7.592 9.783 10.695

1 0.2 0.122 4.763 0.011 0.764 3.888 0.687 1.708 4.113 2.377

3 0.2 1.513 6.510 0.100 3.217 6.757 4.128 4.968 7.604 6.936

6 0.2 2.983 6.844 2.112 5.153 8.489 7.330 7.342 10.063 10.311

12 0.2 3.979 6.478 5.936 6.456 9.109 9.477 9.141 11.748 12.729
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