
Conditions for Open Source as a Signalling Device∗

Samuel Lee Nina Moisa Marco Weiss†

This version: August, 25th 2004

Abstract

Open source projects produce goods or standards that do not allow for the appropriation of private

returns by those who contribute to their production. In this paper we analyze why programmers will

nevertheless invest their time and effort to code open source software. We argue that the particular

way in which open source projects are managed and especially how contributions are attributed to

individual agents, allows the best programmers to create a signal that more mediocre programmers

cannot achieve. Through setting themselves apart they can turn this signal into monetary rewards

that correspond to their superior capabilities. With this incentive they will forgo the immediate

rewards they could earn in software companies producing proprietary software by restricting the

access to the source code of their product. Whenever institutional arrangements are in place that

enable the acquisition of such a signal and the subsequent substitution into monetary rewards, the

contribution to open source projects and the resulting public good is a feasible outcome that can be

explained by standard economic theory.

JEL Classification: D82, L14, L86, O31

Keywords: open source software, signalling, career concerns, economics of organization

∗We are grateful for interesting discussions with our colleagues at the Department of Finance at the Goethe-University,

Frankfurt/Main and participants of the 4th GEABA Symposium on the Economic Analysis of the Firm. We especially

thank Justin Pappas Johnson, Christian Laux, Josh Lerner, Urs Schweizer and Marcel Tyrell for their review and valuable

comments.
†Address for correspondence: Wilhelm Merton-Chair for International Banking and Finance; Johann Wolfgang Goethe-

University, Frankfurt/Main; http://www.finance.uni-frankfurt.de; Phone: ++49(0)69 798-28268; M@il: weiss@finance.uni-

frankfurt.de

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hochschulschriftenserver - Universität Frankfurt am Main

https://core.ac.uk/display/14503636?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Who can afford to do professional work for nothing? What hobbyist can put three man-years

into programming, finding all bugs, documenting his product, and distribute for free?a

OSS poses a direct, short-term revenue and platform threat to Microsoft, particularly in server

space. Additionally, the intrinsic parallelism and free idea exchange in OSS has benefits that are

not replicable with our current licensing model and therefore present a long term developer

mindshare threat.b

aOpen Letter to Hobbyists by Bill Gates, Feb. 3rd 1976
bHalloween Memorandum I by Microsoft, Aug. 11th 1998

1 Introduction

All over the world, computers run a variety of programs and communicate over networks linked by

protocols that are generated in the open source domain. Ever more electronic devices like mobile phones

rely on open source products and thrive on the standards that are established by a community that not

only includes single hackers working in their leisure time but also the giants of the commercial world like

IBM and Motorola. Linux looms as its flagship among other prominent success stories such as sendmail or

Apache. Linux develops operating software for almost every electronic device and is especially successful

in the market for server software: In 2001 it had a market share of 25% compared to Microsoft Windows

with a share of 49%.1 The Linux program was originally developed by Linus Thorvalds in 1991, then

a student at Helsinki University. Its kernel was based on Unix which came in half a dozen proprietary

versions at that time. Instead of generating proprietary software, Thorvalds made his program code

accessible for other programmers and invited them to contribute on a voluntary basis.2

This leads us to the most striking characteristic of open source software: free access to the product

and to its source code. This characteristic is legally embodied in what is called the ’General Public

License’ (GPL)3 - sometimes also referred to as ’copyleft’. Ensuring that the source code of a software

program remains open, it states that everybody may run, copy, modify and distribute the program under

the terms of the original license. Though the sale of modifications is not prohibited, the public shall be

free to access and use any modified source code. Therefore the prices of open source products beat those

of their proprietary counterparts and whoever wishes to do so can download the latest version of the
1See Deutsche Bank Research (2002, p.7).
2For a more extensive description of the history of Linux, see http://www.linux.org/info.
3For the GNU General Public License see http://www.opensource.org/licenses/gpl-license.html. A good discussion can

also be found in Kaisla (2001).

1



product for free.4

Since no one can exercise ownership of the original product in the sense of excluding others from the

right to use it under the GPL, revenues from transferring or licensing this right prove elusive. In turn,

this implies that the community of involved code contributors and debuggers can not claim any monetary

compensation for their time and effort! Even more astonishing is the fact that both quantity and quality

of the contributions nevertheless have such an extent that these products seriously compete with those of

software giants like Microsoft.5 Not surprisingly the phenomenon of open source has generated a growing

interest in the academic community.

Central issue and related literature At first glance the existence and the success of open source

systems (OSS) is equally puzzling for economists and surprising for their closed source system (CSS)

competitors. They particularly marvel at the eagerness of obviously highly skilled agents to work for free

to provide a public good: Why would rational programmers grant their time and skills to a non-profit

OSS-project instead of taking up a career in a CSS-firm like Microsoft where they would get paid for

their work?

To answer this question, the public opinion often alludes to an ideological rebellion against commer-

cialism and the reign of near-monopolists such as Microsoft. In the same manner, a considerable strand of

research has taken recourse to psychological motives such as altruism and dogma. The main idea behind

these propositions is that there exists some intrinsic motivation, some sort of emotional satisfaction har-

vested from unselfish behavior.6 But there are also less idealistic theories, those which refer to external

rewards. Lakhani and von Hippel (2000) emphasize the advantages of user-to-user based feedback sys-

tems and the intangible utility user-developers extract from combining both activities. OSS programmers

profit both by learning on the production side and by obtaining a better product on the consumption

side. Johnson (2002) models this effect and shows that in certain circumstances the free-riding problem

in the provision of the public good can be overcome: Whenever the ratio of the individual benefits from

the use of such software to the individual costs of production is sufficiently high in comparison to the

likelihood that some other agent develops a solution, the agent will take part in an OSS-project.

Other contributions stress that the more people join this community, the higher are the individual
4Additional services such as manuals or related service packages are sold by different distributors who compete mainly

in the areas of service, support and training.
5See for increasing evidence Economist (2000), Economist (2001) and Economist (2002).
6See Hars and Ou (2002) for some data on motivations to work for OSS-projects.

2



benefits. Rapid feedback by the very best in each specific field or project allows for very rapid advancement

along the learning curve by individual programmers.7 Another group of ideas resorts to the value of peer

recognition among software programmers. This line of reasoning argues that programmers act in order

to be appreciated by their fellows and for this purpose like to show off their abilities. Even hobbyists,

if seriously devoted to their pastime, are habitually embedded in a community where performance is

compared and acknowledged and reputations for expertise can be earned among the like-minded.

Our approach is similar in spirit to the last one, but different insofar as it adds material compensations.

We join works such as Lerner and Tirole (2002) and Mustonen (2003) who claim that this kind of

recognition can be transferred to the outside and moreover be translated into monetary rewards. In

this view, contributions to the program are not so much unselfish donations or the pursuit of vain self-

gratification, but rather future-oriented investments which are based on career concerns. In the words

of established economic theory, ventures in the world of open-source are undertaken for the sake of a

credible job market signal as described by Spence (1973). How does this work?

Open Source as signalling A close inspection reveals that the OSS is organized such that every

significant contribution can be traced back to the original author. In one of the biggest OSS-projects, the

Linux kernel, there exists a public changelog file which lists all those programmers who have contributed

to the official source and their specific inputs.8 Naturally, not everyone makes it onto the list. Each

proposal to modify the code undergoes a peer review process and only those modifications sanctioned by

the referees make their creators legitimate authors. The authors’ names and contributions are recorded

in the changelog file which is an honoring and a sign of expertise among the programmers.9 This is

where the theory of peer recognition stops, but not the one on career concerns. For, if peer recognition

theory presumes that information is revealed inside the community, why not admit that the same signal

could also reduce the information deficit of people from the outside? Prerequisite for this is the existence
7The systemic features of the OSS are described in Raymond (2000a) where he likens the processes of the OSS to a

bazaar in contrast to the ’cathedrals’ that are crafted by proprietary software firms with their products.
8See e.g. Moon and Sproull (2000) and Raymond (2000b).
9In the case of Linux, the changelog file portrays a pyramid-like hierarchy among the contributors. See

http://www.kernel.org/pub/linux/kernel/v2.6/ChangeLog-2.6.1. The changelog file classifies different programmer types

just as there are different kinds of contributions ranging from documentation over debugging to more complex developing

tasks. We interpret this as evidence that any kind of programmer has the potential to signal his level of skill, but none

which is higher.

3



of some suitable and convenient mechanism to transfer the signal beyond the domain and thus educate

outsiders about the superior ability associated with it.

In general, it seems reasonable to assume that the knowledge about skills is less uneven among

programmers than between them and outsiders. A spot in the credits thus serves as a valuable signal

on a job market characterized by asymmetric information. Imagine a personnel manager faced with two

candidates A and B who claim to deserve excellent pay. Suppose both certify basic programming skills,

yet A in addition proves that he has contributed important modules to the Linux code. Who of them is

more likely to get the higher salary? If the Linux graduate is indeed rewarded a premium, it pays off for

him to have spent the effort on OSS programming.10 The ex ante expected value of the deferred pay-off

makes striving for the signal worthwhile since the unrestricted access to the Linux kernel code and its

changelog file allows for the right interpretation and honoring even by outsiders ex post.

When does the signal work? The signal can cross the borders of the OSS community, precisely

because the source code is open. To function well, however, it must be sufficiently visible and credible.

Otherwise, potential employers will either not receive the signal or will not (fully) rely on it. Consider

what a signal means to them: its quality corresponds with their willingness to pay its bearer a wage

premium. In other words, the value of the deferred pay-off depends on the properties of the emitted

signal. Visibility is achieved by a broad distribution of the product and a well-known brand. We argue

that the effect of the number of OSS programmers on this criterion is significant: First, the number of

developers raises the number of users directly. Secondly, a higher number of developers augments the

quality of the product, the acceptance of which will therefore rise among the less sophisticated users. A

possible third effect, an inter-linkage of the first two, would be conceivable, if user-developers were mainly

avantgarde-users and industry trendsetters.

The credibility of a signal grows with the superiority of the refereeing process and the total number of

proposed modifications. To understand this, recall the information that a signal carries: ”This program-

mer has met the standards set by the referees and has prevailed among many modification proposals to

earn this spot in the changelog file.” Though the level of the standards and the number of competitors are

not directly observable, they are usually implied by the quality of the product, which in turn affects the

distribution and the visibility of the product. We propose that this visibility and therefore the credibility
10Lerner and Tirole (2002) speak of a deferred pay-off.

4



of the signal rise with the number of programmers.11

In the previous example, a good signal would therefore evoke the following conclusions in our personnel

manager: ”Candidate A has drafted vital modules for the Linux program. Linux is a prominent brand.

(This is the reason why I would know of it.) Since the product is widely known and used (especially by

software experts), it must be good. Apparently, Linux has high quality requirements and a lot of good

programmers involved. (Otherwise, the product would not be so successful.) So, if this guy has made it

into the changelog file, he must be very skilled. We should offer him an adequate salary.”

On the whole, visibility and credibility, which rise with the number of programmers in the OSS,

positively affect the deferred pay-offs and thus make the signal more valuable.

Competing for the deferred payoff By the preceding account, good programmers should altogether

work and acquire a signal at the OSS. If the number of programmers had only positive effects, it would

be beneficial to have as many OSS colleagues as possible. But additional programmers can also have

negative effects on their co-workers’ acquisition of a deferred payoff: The story we have told is not yet

complete, and the point we have not discussed so far is that after acquiring the signal the programmers

have to find an employer who values the signal enough to pay a wage premium for it. But if there is

only a limited number of firms in related industries that can benefit from knowing a programmer’s type

and are thus willing to pay a premium for those who can prove their superior productivity, this creates

competition among the bearers of signals.

This raises the question, why a firm in a related industry would be willing to pay this kind of

wage premium anyway. One reason for this would be a highly complex production process in which

only outstanding programmers can actually add value whereas ordinary programmers either can not

contribute to the product at all or even have a negative effect on their co-workers productivity. Hiring

a less able programmer would thus be a waste of money. Given that the monetary returns from these

products are high enough, there is an incentive to attract those programmers, who can prove their high

level of productivity, by offering a wage premium to them. Thus, in sum, each programmer in the OSS

exerts a positive and a negative externality on his peers. His participation increases the value of the

deferred payoff, but at the same time decreases the probability of obtaining it! We will therefore model

the expected value of the deferred payoff such that it first rises and then falls in the number of OSS
11This is obvious for the quantity of proposed modifications, but not so for the quality of the referees. For intuition,

consider how the competence of scouts will probably rise with the overall popularity of basketball.

5



programmers.12

What about signals in the closed source systems? Evidently, the hitherto sketched mechanism

would only induce programmers to an OSS career, if the discounted expected deferred pay-off were

higher than the expected wage in a CSS-firm. But why would we presume that CSS-firms do not

differentiate wages after the first year of employment or so, for, if they did, little would remain of the

OSS’ attractiveness? One important reason is that, in the absence of an OSS, there is no incentive to do

so. Why should the CSS-firm concede to its employees a signal, which enables them to market themselves

to outside firms? Once they have it, they could threaten to leave the firm in order to renegotiate their

salary. Should there be a supply shortage on the labor market, the firm would have to give in, lest it

would lose its most able programmers. Thus, the CSS-firms’ best strategy would be not to grant such a

signal in the first place. In the presence of an OSS, a CSS-firm can react in two ways: On the one hand,

if the provoked drain of programmers was negligible, so might the incentive to change the wage structure.

On the other hand, if the threat was considerable, more effort might be undertaken to differentiate wages.

Nowadays, there is indicative evidence of CSS-firms’ attempts to emulate OSS-like production and reward

structures.13 It is not clear, however, where this will take them.

Aim and structure of this paper In essence, we argue that a signalling mechanism is at work for those

who contribute to an open-source product that is distributed for free. In contrast to that, the restriction

of an undisclosed source-code in a traditional software firm necessarily limits the transparency concerning

individual contributions, resulting in a more levelled wage for programmers of different productivity. As

a consequence, under certain circumstances some high potentials might prefer to invest their resources in

an OSS-project. We aim to show the conditions for such a result in a model.

The paper proceeds as follows: Section 2 sets up the basic model. An equilibrium analysis is under-

taken in section 3 before in section 4 the equilibria are further analyzed in a comparative statics way for

the effect that changes in important parameters can have. The implications of our model are discussed

in section 5.
12See Mustonen (2003) for a different model of the expected payoff function.
13Microsoft introduced a philosophy called ’Shared Source’ under which terms it grants different users some insights into

the source code of its Windows operating system. HewlettPackard introduced ’Corporate Source’ to reap some benefits of

the processes at work in the OSS.

6



2 The model

2.1 The programmers

We assume

1. a total population of n programmers consisting of nA programmers of type A and nB programmers

of type B. That is, n = nA + nB .

2. that type A generates an output of qA, type B produces qB , while effort levels are constant and

costs of effort are equal for both types, which implies that there is no moral hazard. By assumption,

qA > qB .

3. the information regarding his type is private knowledge for each agent. Thus, the labor market is

subject to asymmetric information.

4. the programmers are risk-neutral and completely patient, i.e. they have a discount factor of one.

2.2 The institutions

In our model we distinguish two types of institutional arrangements that software production can take

and between whom all programmers have to make a career choice: an open-source system (OSS) and

a closed-source system (CSS).14 Both possible systems are stylized as having an identical production

function and a different remuneration method.

2.2.1 The production function

We assume

1. the two institutional arrangements possess identical production functions which are specified as

the sum of the individual productivities of all programmers working for a representative firm or

project in the respective system. This additive production technology employs human capital as

the sole production factor and is a function which is homogenous of degree one. Therefore, the

marginal return of one additional programmer always equates his individual productivity qi (qA or

14Surely, a mutually exclusive choice between either CSS or OSS is not very realistic. However, it adds clarity to the

central propositions. Without harm to the main results, one could instead view working for the CSS as any activity in

which the effort (otherwise spent on OSS programming) is invested and which yields some kind of immediate benefit.

7



qB). Formally, this production function can be stated as follows

Qj =
nj∑

i=1

qi = nj
AqA + nj

BqB for j = OSS, CSS (2.1)

where nj
A and nj

B represent the number of type A and B programmers in the respective system. If

we denote the fraction of nA working for the CSS with α (where 0 ≤ α ≤ 1) and the fraction of nB

working for the CSS with β (where 0 ≤ β ≤ 1), then the production functions for the respective

system can be rewritten as

QCSS = αnAqA + βnBqB

QOSS = (1− α)nAqA + (1− β)nBqB .

2. Qj denotes the aggregate output in a representative firm in the CSS or a particular project in the

OSS. It can be interpreted as the quality of the software product and its thereof derived degree of

distribution among users. In the case of the CSS, we equate QCSS to the revenues earned by the

sale of its products. In the case of the OSS, where no proceeds are reaped, QOSS is a proxy for its

visibility and credibility.

2.2.2 The wage function (CSS)

While having the same production function, the two institutions are substantially different in terms of

remuneration. The CSS uses the proceeds to pay wages to the programmers, whereas the OSS lacks

those proceeds. At the OSS, programmers work for free and receive - if anything at all - a signal which

is rewarded in monetary terms only in later periods.15

We assume

1. a CSS-firm cannot (or does not want to) distinguish between the two types of programmers as it

has no access to a sufficiently effective or inexpensive screening technology.

2. outstanding performance during a CSS career does not lead to higher wages. The closed-source

technology implies certain limits to the transparency on different programmers’ contributions so

that the individual output is not verifiable. Though a type A programmer can demonstrate his

programming skills within a particular company, the CSS-firm initially has no incentive to grant
15Empirically, this extreme case rarely exists. Many programmers contributing to the OSS are employed by commercial

firms and are either implicitly allowed or even explicitly expected to take part in the community of a specific OSS-project.

8



him a signal which could be used to seek a better paid job somewhere else. With no such signal at

hand, any outside company would at best offer him some pooling wage, leaving him no better off.

Therefore he is not in the position to threaten termination of his contract. Knowing this, the firm

has no incentive to increase his wage.

3. the CSS chooses the wage level as to realize zero profits.

Our assumptions imply that the earnings equal to QCSS are shared evenly among all CSS programmers.

Everyone gets the same wage

w(α, β) =
QCSS

nCSS
=

αnAqA + βnBqB

αnA + βnB
(2.2)

with nCSS denoting the total number of programmers working for the representative CSS-firm. The sum

of the wages always equals the total output QCSS for any given level of α or β. The following figure

illustrates the relationship between the fraction of type A and type B which join the CSS and the wage

they consequently receive.

Figure 1: The wage function

2.2.3 The deferred pay-off function (OSS)

Programmers at the OSS are not paid wages, but can generate signals which indicate their productivity.16

The value of such a signal is the discounted value of the resulting deferred pay-off. Since it cannot be
16Remember that this is a strong statement that need not to hold empirically. Any wage that is paid by a commercial firm

earning money from open source software, e.g. a distributor, only strengthens the incentives to take part in OSS-projects

for individuals. To concentrate on the signalling effect that we want to analyze with our model, such additional rewards

are neglected. See also fn. 15.

9



earned with certainty, programmers must calculate their benefits on the basis of expected values: namely

the value of the associated deferred pay-off weighted with the probability of obtaining it.17 We assume

that

1. the value of the deferred pay-off associated with a signal is positively related to the signal’s visibility

and credibility, which QOSS is a proxy for. According to equation 2.1, QOSS rises with nOSS . The

logic is as follows: The more programmers cooperate, the better will the joint product be. The

better the product is, the larger will its distribution be. And the more prominent the product is,

the more visible and credible will the signal be.

2. the probability of obtaining a deferred payoff is negatively correlated with the degree of competition

among programmers. We assume competition to be a function of nOSS as well. As more program-

mers join while the number of outside firms offering a wage premium for the discovery of type A is

fixed, it gets increasingly difficult to realize the deferred payoff. The likelihood that a programmer

will actually earn a wage premium for his signal thus decreases.

3. combining the two effects described in (1) and (2) results in the following shape of the deferred

pay-off function: its value first rises and then falls over nOSS . Gradually, the competition effect

offsets and later outgrows the visibility effect. At sufficiently high levels of nOSS , the value will

approach zero. When approximating the function, we will assume a level k of nOSS at which the

value actually is zero. k can then be understood as a proxy for the demand for highly skilled

programmers in the related industries.18

4. the value of the deferred pay-off is also dependant on exogenous mechanisms that allow for the
17Note that the assumption of risk-neutrality and complete patience on the part of our agents allows us to treat discounted

expected deferred pay-off as if it were neither uncertain nor deferred. For reasons of brevity, we will often omit the attributes

’expected’ and ’discounted’, while keeping the ’deferred’ to indicate that programmers work for free during their time at an

OSS-project. Dropping the assumption of risk-neutrality would alter our results to the extent that ceteris paribus only the

less risk-averse type A programmers would ponder and possibly embark upon an OSS career. Leaving aside the assumption

of complete patience would decrease the present value of the expected signal, thus making the OSS career less attractive.
18The logic behind this is as follows: The higher the demand for very skilled programmers in the related industry, the

higher the number of firms that is willing to pay a wage premium to programmers who can guarantee a high level of

productivity. For example this would be true for IT consulting firms, who cannot afford to send programmers of low

productivity to their clients or for the development of very complex software products where the contributions of low

productivity programmers would have to be monitored by more skilled colleagues to protect the overall quality of the

product. Notice that the dimension of k is equal to that of the absolute number of programmers n.

10



transfer of information and the willingness of outside commercial firms to pay a premium for the

guarantee to hire a highly productive programmer. Risk-averse principals faced with asymmetric

information on the labor market are prepared to pay a premium for the revelation of the type.19

Furthermore, we assume that such a premium will potentially only be paid for type A whose

productivity is higher and that the maximum pay-off obtainable for type B is thus bounded by his

productivity. We subsume these elements into the non-negative parameter vi, whereby vB ≤ qB .

5. the deferred pay-off functions are separate ones for type A and type B, because the changelog file

effectively classifies the programmers’ productivity. The quality and quantity of work becomes

publicly observable and the information asymmetry vanishes in the OSS. That is, the peer review

process of the OSS prevents type B from imitating type A. Therefore, for a given programmer,

competition is dependent only on the number of rival programmers from the same type.20

Assumptions (1)-(4) imply that there exists a unique maximum at which the value of the deferred

pay-off equals vi. On the basis of (5) we specify separate, independent functions for type A and B. We

approximate them by using quadratic functions of the following form:21

rA(α) = −4n2
AvA

k2
A

[α− (1− kA

2nA
)]2 + vA (2.3)

rB(β) = −4n2
BvB

k2
B

[β − (1− kB

2nB
)]2 + vB (2.4)

In equations 2.3 and 2.4, α and β are the independent variables. The parameter ki denotes the absolute

number of type i programmers at the OSS for which the relevant functions assume the value of zero

due to excessive competition. E.g. the expected deferred pay-off value for type A equals zero if nOSS
A =

nA(1 − α) = kA (equivalent to α = 1 − kA

nA
). Obviously, for α = 1 function 2.3 is also zero. The same

analysis applies to kB and β.

The parameter vi is related to the individual productivity qi of the programmers and furthermore

captures the existence and quality of the surrounding markets and the willingness of commercial firms

to honor the acquired signal. vi determines the maximum value of the achievable deferred pay-off for
19The booming headhunting business shows that this is not an unrealistic assumption.
20Although the competition effects for the two types are independent (and therefore imply separate functions), the

visibility effect is not. Thus, the deferred pay-off functions would be separate, but not wholly independent. We will,

however, model independent functions for reasons of simplicity.
21See Appendix A.1 for the derivation of the function.

11



the two types, whereas (1 − ki

2ni
) are the α and β values for which the functions reach this maximum.

Figure 2 illustrates the functions described by equations 2.3 and 2.4.

6

-

ri

rA

rB

10
α, β

1− kB
nB

1− kA
nA

Figure 2: The deferred pay-off function

So far we have outlined the basic framework of our model. Its elements are the two types of program-

mers and the two institutional settings with identical production but different remuneration functions,

one paying wage and the other yielding an expected deferred pay-off. Together, these elements sketch the

decision problem which lies at the heart of our model. In the following section, we will formally analyze

this decision problem for each type.

3 Equilibrium analysis

3.1 Conditions for the existence and stability of equilibria

We assume that α and β are known with certainty and proceed from the assumption that the effects of

individual programmers on the given α or β are infinitesimal. A single agent therefore presumes that

his decision will not affect the overall outcome and thus acts as a price-taker with regard to w or r.22

Another assumption that would lead to the same effect are myopic agents who have no information about

either of the global population parameters nA, nB , α or β. They would neither know the complete shape

of the remuneration functions nor their position on it, but observe only the locally given w and r. Both

sets of assumptions sensibly rule out strategic considerations and result in a static optimization problem

where agents act solely upon the observed values of w and r. We define a static equilibrium as follows:

Definition 1 A static equilibrium is a situation that is characterized by no inherent tendency for change.

Whenever small deviations in the variables occur, equilibrium is restored.
22Cf. the assumption in Grossman and Hart (1980, p.43).

12



Equilibrium is the aggregate outcome of individual decisions of type A and type B agents. To analyze

the decision of the individual programmers we use the following difference functions:

∆A(α) = w(α, β)− rA(α) (3.1)

∆B(β) = w(α, β)− rB(β)

They represent the rationale of a single programmer of the respective type choosing between an OSS and

a CSS career taking the values of α and β as given. A programmer will opt for the CSS, if the value

of the difference function is positive, thus, whenever w > r. Conversely, the OSS will be preferred, if

the value of the difference function is negative, i.e. if w < r. Programmers are indifferent between the

two career paths whenever the value of the difference function is zero. Figure 3 illustrates the difference

function for type A.

Figure 3: The difference function

Even though the influence of a single agent is just minuscule, the overall distribution de facto results

from the sum of all individual choices. For further analysis, we define a gravitation field as follows:

Definition 2 A positive (negative) ∆A establishes a positive (negative) gravitation field and α will tend

to increase (decrease). The same holds true for β and ∆B.

Interior solutions For any α within 0 < α < 1 or β within 0 < β < 1 to be an equilibrium two

conditions must be fulfilled: First, the necessary condition is the existence of an interior solution. For

this, the programmers must be indifferent between the two career paths for a certain value of α∗ and β∗.

This implies that the difference function must have a value of zero, i.e. that the following conditions are

met:

w(α, β) = rA(α) (3.2)

w(α, β) = rB(β)

13



In addition to that, there must be a tendency to restore α∗ or β∗ in case of small deviations, which

requires the following, sufficient condition, to be met: There must be a positive gravitation field to the

left and a negative gravitation field to the right of α∗ or β∗. In this case equation 3.2 satisfies our

definition of an equilibrium.

Corner solutions In addition to the interior solutions, the right-hand corner solutions α = 1 and

β = 1 as well as the left-hand corner solutions α = 0 and β = 0 represent potential equilibria. The

necessary and sufficient condition for the right-hand corner solutions to be equilibria is that there is a

positive gravitation field to its left. Accordingly, the necessary and sufficient condition for the left-hand

corner solutions to be equilibria is that there is a negative gravitation field to its right.

3.2 The decision of type B

Lemma 1 All type B programmers join the CSS.

Proof: We insert equations 2.2 and 2.4 into 3.1 and get

∆B =
αnA(qA − vB) + βnB(qB − vB)

αnA + βnB
+

4n2
BvB

k2
B

[β − (1− kB

2nB
)]2 ≥ 0 (3.3)

Since the productivity of type B programmers is the upper bound which the market is willing

to attribute to them, the difference function can never be negative for type B programmers.23

Although there is a special case in which the parameters have values that result in ∆B = 0

and the agents are indifferent between an OSS and a CSS career, this interior solution strictly

features a positive gravitation field to its right and thereby violates our stability criterium.

It is therefore not an equilibrium. The only viable equilibrium, which fulfils our stability

conditions, is the right-hand corner solution. Consequently, type B programmers will always

opt for a career in the CSS. 2

Whenever the possibility of an employment by the closed source system exists, type B programmers

will join this system. This result could be disputed on empirical grounds: There seem to be less skilled

programmers involved e.g. at Linux. We suggest three possible responses. First, we believe that they

are differently motivated than our career-concerned investors and that their presence does by no means

have a negative effect on our investors. If anything, they are highly welcome since they provide valuable
23This statement holds true, even if we allow for non-independent deferred pay-off functions as explained under fn. 20.

14



debugging. Franck and Jungwirth (2002), in fact, argue that in OSS both groups co-exist in symbiosis

without crowding out each other.

Secondly, in reality many low-end tasks with regard to open source products (e.g. documentation,

maintenance, servicing) are performed in commercial firms which accompany the OSS-project like satel-

lites. It is very much as if the OSS were outsourcing unspectacular tasks, a phenomenon which could

easily be explained by our result. The third reason why less skilled programmers might be involved

in OSS-projects is that when agents do not know their respective type with certainty, the open source

community allows them to discover their ability.

Lemma 1 allows us to restrict ourselves in the following analysis to the case where β = 1. Equation 2.2

can then be rewritten as

w(α) = qB +
nA(qA − qB)
nB + αnA

· α for β = 1 (3.4)

The wage function for type A given that all type B programmers join the CSS can then be illustrated

graphically as in Figure 4.

6

-

qA

qB

nAqA+nBqB
nA+nB

w

10
α

Figure 4: The wage function for type A at β = 1

3.3 The decision of type A

In the following we will analyze the decision of type A, starting with their choice in the absence of any

type B programmers before establishing the results for the case that both types are present.

Lemma 2 If nB were zero, all type A programmers would join the CSS.

Proof: If there were no type B programmers, the CSS wage would be qA at all times. For

nB = 0, equation 2.2 yields w = qA and the difference function for type A reads

∆A = (qA − vA +
4n2

AvA

k2
A

[α− (1− kA

2nA
)]2 ≥ 0. (3.5)

15



In this special case with only one type of agent, firms are not at risk of employing a ’lemon’.

No value is obtained by signalling and no rationally acting firm in related industries would

be ready to attribute a premium beyond the productivity of type A. In this special case vA

is bounded by qA and ∆A is always non-negative. From the non-negativity of the ∆-function

it follows that α = 1 is the only stable solution. 2

Lemma 3 For nB > 0, the necessary condition for a type A programmer to join the OSS is that the

premium attributed to type A, vA, is higher than the productivity of type B, qB, which is also the CSS

minimum wage.

Proof: After substituting equations 2.2 and 2.3 into 3.1 for type A, we obtain ∆A =

αnA(qA−vA)+βnB(qB−vA)
αnA+βnB

+ 4n2
AvA

k2
A

[α− (1− kA

2nA
)]2.

Since Lemma 1 established the fact that β = 1 the above equation can be rewritten to

∆A = qB − vA +
αnA(qA − qB)

αnA + nB
+

4n2
AvA

k2
A

[α− (1− kA

2nA
)]2. (3.6)

The last two addends are always non-negative and only the first can have a negative value

within our definition space. ∆A can only assume a negative sign if vA exceeds qB to a sufficient

degree. qB is the lower bound of the wage function and vA represents the maximum value

the deferred pay-off function can ever assume, qB < vA is thus a minimum condition for the

signalling mechanism to work. 2

Lemma 4 For nB > 0 and vA > qB, there are parameter constellations which allow for a non-positive

value of the difference function, which is the sufficient condition for a type A programmer to join the

OSS.

Proof: To prove Lemma 4, we choose the following parameter constellation: kA = 2nA and

vA = qA. Equation 3.6 simplifies to

∆A = qB − vA +
αnA(qA − qB)

αnA + nB
+ qAα2

α = 0 results in ∆(0) = qB − vA which is less than zero, if the necessary condition identified

by Lemma 3 holds. 2

16



3.4 Aggregate outcome

Lemmata 1 to 4 imply

Proposition 1 The CSS exists in any case. The co-existence of an OSS is possible only under certain

parameter constellations.

The parameter-dependent structure and stability of the equilibria determine at what ratio the type

A population can split up between the CSS and the OSS.

Corollary 1 Some parameter settings establish a separating equilibrium as feasible.

Proof: This follows directly from Lemma 4. 2

A separating equilibrium is instated, when some type A agents rationally choose to forgo a wage

in search for a signal that sets them apart from type B. Some settings even constitute a separating

equilibrium, in which all type A programmers join the OSS. The last case is shown by the fact that

∆(0) ≤ 0 can be obtained as a result for certain parameter constellations. Note that the existence

of multiple equilibria is possible. However, the exact coordination process by which an equilibrium is

reached is not modelled here.

Corollary 2 Even if a separating equilibrium is feasible, it is not necessarily established. A pooling

equilibrium is always a rival option.

Proof: For all parameter constellations ∆(1) > 0 by definition. Recall that r(1) = 0 and

w(1) > 0. That is, the right-hand corner solution is always a possible equilibrium outcome.

2

In a pooling equilibrium, all programmers regardless of their type work for the CSS.

4 Comparative statics

So far, we have shown that the number of equilibria depends on the parameter constellation. We pursue

this line of thought in a comparative static analysis highlighting the effect of the parameters nA

kA
and

vA in particular. Furthermore, we will look at what happens if the zero-profit condition for the CSS is

dropped allowing it to set its wage arbitrarily.

17



4.1 Analysis with respect to the population parameters

In the following we will analyze how the outcome is affected if changes in the population parameters k

and n occur. We assume that type A is rewarded with a premium by the market that exactly equals his

productivity, i.e. in this section vA = qA holds. As shown by Lemma 1, β = 1 . Although the dimension

of k indeed renders it a population parameter, we will refer to it as the proxy for the demand for highly

skilled programmers in the related industry.24

4.1.1 Equilibria

Lemma 5 The number of equilibria depends on the relation between the number of type A programmers

and the absolute number of programmers for which the deferred pay-off function assumes a value of zero,

i.e. on nA

kA
.

Proof: See Appendix A.2. 2

We can distinguish three cases:

• CASE (a) If

nA

kA
<

1
2
(1−

√
1− qB

qA
),

only the right-hand corner solution is an equilibrium. Given a certain demand for highly skilled

programmers in the related industries, the number of type A programmers is yet insufficient to

sustain an OSS project as its overall quality would not provide their signal with enough visibility

and credibility. The CSS exists alone.

• CASE (b) If

1
2
(1−

√
1− qB

qA
) ≤ nA

kA
<

1
2
(1 +

√
1− qB

qA
),

both corner solutions represent possible equilibria. The number of type A programmers relative to

the demand for highly productive programmers in related industries is so large that the expected

deferred pay-off would exceed the pooling wage, if enough type A programmers created an OSS.

At the same time, the population is yet too small for an excessive competition effect to press the

expected value of the deferred pay-off back below the wage level. An OSS is a feasible outcome.
24Compare fn. 18.

18



• CASE (c) If

1
2
(1 +

√
1− qB

qA
) ≤ nA

kA
,

the difference function has two roots of which the left hand one is an equilibrium. It joins the

right-hand corner solution as a possible outcome. The type A population is now so large relative to

the demand for highly productive programmers in related industries that with decreasing α, from a

certain threshold on, the expected value of the deferred pay-off again slips beneath the wage offered

at the CSS. Due to this competition effect, the two remuneration functions now intersect twice.

Figure 5 illustrates the three cases graphically.

- - -

6

6

6 6

α α α

w, r w, r w, r

w w w

r r r

(a) (b) (c)

Figure 5: Changes in the population parameters

Note that the lower boundary condition of case (b) is the necessary condition for a forking of projects.

It denotes a critical mass in the population of type A needed for an OSS-project to possibly subsist.

Lemma 5 implies

Proposition 2 Given a well-developed information transfer mechanism (vA = qA), an OSS can only

emerge, if the type A population is sufficiently large relative to the demand for highly skilled programmers

in related industries.

Note that the above proposition only denotes a necessary condition for the possibility and the sus-

tainability of an OSS . Whether and when an OSS will actually come into existence remains unanswered

by this analysis.

4.1.2 OSS threshold and trigger

Even though the unique intersection between wage and deferred pay-off in case (b) and the right inter-

section in case (c) yield a value of zero for the ∆-function, these points are no sustainable equilibria.

Nevertheless, they play a significant role, since they represent a critical threshold. Once α falls below this

threshold, the industry is drawn away from the monopoly situation where all work for the CSS. Instead

19



a duopoly structure of the industry is established where type A programmers can distinguish themselves

from the type B programmers and thereby signal their superior productivity. Any event or action that

pushes α across this threshold, triggers off the establishment of a sustainable OSS. Any analysis of such

trigger events aims at answering the above questions of whether and when an OSS emerges.25 We propose

that the closer the threshold is to α = 1, the more likely is a trigger event.

4.1.3 Discussion and practical relevance: the market for excellence

In our model, the effect of nA and kA should always be analyzed in combination. Consider e.g. the

following extreme cases:

1. With kA approaching zero in the limit, the deferred pay-off curve approximates the function α = 1.

This also makes sense intuitively: If there was no firm willing to pay a wage premium to those who

earned a signal in the OSS, who would be willing to invest time and effort in the acquisition of a

signal? No matter how large the population of workers in that industry were, an OSS would not

emerge. For this reason, the maturing or converging of related industries can help to establish an

open source business model.

2. Conversely, consider kA very high, but nA verging on zero. Despite a high demand for highly

productive programmers, there could be too few good programmers in the industry to create a

prestigious open source project. In this case there would be no incentive for these relatively few

people to invest in the OSS product, as it would not create a visible signal of their ability.

Different constellations of the population parameter nA

kA
can signify various evolutionary stages within

one industry or characteristics of different industries. In principle, the emergence of an OSS is driven

by the desire of the better-skilled programmers to emit a signal to set themselves apart from the less

productive programmers. However, our analysis shows that such a development is contingent on the

demand for highly productive programmers in related industries as well as on the number of people who

can tap and exploit this potential.

Which structure will the industry settle on in the long-run? Our guess is that, even though a CSS

mono-existence is always feasible, as long as credible and transferable job market signals can be gained
25E.g. Franck and Jungwirth (2002) consider ideologically motivated donators as those who trigger off the emergence of

OSS.

20



by innovation, i.e. demand for excellence is high, the industry will most likely oscillate around equilibria

with multiple systems - open and closed.

4.2 The importance of information transfer mechanisms

4.2.1 Equilibria

In the preceding paragraph the maximum deferred payoff obtainable for the type A programmers was

assumed to equal their productivity qA. Now we return to the analysis of the general case where the

maximum deferred pay-off is not preset to the individual productivity. To concentrate on the effect of a

change in vA, we assume in this section that the absolute number of programmers for which the deferred

pay-off function has a value of zero - kA - equals the population of type A programmers, i.e. kA = nA.

The reputation function for type A then simplifies to

rA(α) = −4vA[α− 1
2
]2 + vA.

With this function, deferred payoff will be zero for an α of either zero or one and the maximum

remuneration value that can be gained by working for the OSS will be reached if the population of good

programmers exactly splits up between the CSS and the OSS.

Depending on the value of vA there exists either just one equilibrium for α = 1 or a situation with

two possible equilibria: the CSS-only outcome and a mixed outcome with both CSS and OSS in place.

Starting with a low vA any increase in vA will first establish intersections between the wage curve and the

deferred pay-off function and then shift the intersections to the extremes. The right-hand intersection of

the wage and deferred pay-off function is an instable saddle point and represents the threshold separating

the gravitation fields of the other two equilibria (the right-hand corner solution with solely CSS to the

right and the mixed outcome to the left). Figure 6 illustrates three cases with an increasing vA graphically.

- - -

6

6

6 6

α α α

w, r w, r w, r
qA qA qAw w w

r r r

(a) (b) (c)

Figure 6: Changes in the institutional parameters

Our analysis leads us to

21



Proposition 3 The co-existence of OSS and CSS is only a viable equilibrium if the institutional environs

(or market surroundings) allow OSS programmers to credibly transfer a signal to the market. The higher

the valuation of the market for outstanding performance in the OSS, the more likely is a shift from

mono-existence of CSS to a mixed equilibrium.

4.2.2 Discussion and practical relevance: the rise of information transfer mechanisms

A low value for vA indicates a non-existent or insufficiently developed market mechanism to remunerate

signals gained in the OSS. The markets in which the OSS is embedded need good information flows to

substitute future rewards for such signals. The emergence of the internet is a first driver for an OSS

since it provides more transparency and better means for the transmission of information. A second

driver is the legal institution of the General Public Licence. With the GPL, it becomes legally difficult

to appropriate any ensuing economic rents generated by contributions towards the OSS and makes sure

that contributions remain open and visible in the changelog. These effects are captured by an increase

in vA.

Graphically, this means that the parable shifts upwards and, at some point in time, intersects with the

wage graph. The stable, left-hand equilibrium and the instable, right-hand intersection are established.

Any further increase in the quality and accuracy with which the market takes the information about the

work of type A programmers into account shifts the intersections to the extremes - lowering the threshold

for leaving the CSS and facilitating the emergence of OSS.

Not only these benign effects of markets caused by the technological advances in information processing

lead to a lower threshold, but also any mis-pricing that might occur in times of a bubble economy: Akin

to the dot.com bubble up to the year 2000 in the sector of Technology, Media and Telecommunications

(TMT) and the subsequent over-investment in resources in these areas, the over-shooting of the market

also led to an over-investment in open-source projects and possibly over-pricing of high-potential IT

specialists. In our model, an overshooting of the valuation for OSS programmers represented by a

value of vA > qA can have two reasons: On the one hand, firms offering career opportunities for OSS

programmers might have a specific production function which employs the signals of their employees as

one production factor, resulting in additional profits generated by the mere fact that programmers of

high reputation are associated with the company. An example for this is Linus Thorvalds who now works

for Transmeta, an internet startup developing low-power microprocessors in an OSS-like development

22



process.26 On the other hand it may well be possible, that potential employers of OSS programmers form

overshooting beliefs about the productivity of these agents. Such uncertainty or overshooting has the

effect of triggering new OSS projects more easily as individual programmers try to exploit the trade-off

between the visibility and the competition effect. As the hype and overshooting ebbed away, many of

these promising projects were quietly cancelled.27

4.3 Strategic wage setting

We initially assumed that a representative firm in the CSS sets its wage level such that it makes no

profits. In this section we drop this assumption to see what happens if the CSS can change the level

of payment to its employees. We still stick with the assumption that there is a uniform wage for all

programmers employed by the CSS. The pooling wage w may now be freely set and varied. We also

assume a parameter constellation that allows for two intersections of the wage curve and the deferred

pay-off function. To simplify, we assume kA = nA in our formal analysis.

The former wage curve serves as a benchmark. With this wage function given by equation 2.2, profits

for the CSS are always zero. We denote this case by w0. In contrast to that, we define arbitrary wage as

the actual wage that the CSS pays all of its employees and denote it by w̄.

The minimum arbitrary wage that a CSS-firm can pay its employees equals the minimum value of

the zero-profit wage: w̄min = w0
min = qB . Figure 7 shows us four different arbitrary wage levels (w̄min to

w̄3). For each wage level, we get different points of intersection between w̄j and rA. The lower the wage

level is, the farther apart are the intersections other things being equal. w̄3 clearly shows that once w̄j

surpasses the maximal reputation vA, there is only the CSS-only equilibrium for α = 1. Increasing the

wage level reduces the profit zone, i.e. the range between α = 1 and the intersection between w̄ and w0.

The sequence of events is as follows: (1) The CSS arbitrarily chooses a wage w̄. (2) This wage level

determines the equilibria, (3) which in turn imply the respective level of profit for the CSS-firm. We

follow this thread in our analysis.

4.3.1 Equilibria

Imagine the CSS sets an arbitrary wage w̄. Programmers make their decision on the basis of this wage.

The difference function therefore incorporates w̄ instead of w0. The same holds true for the condition for
26See http://www.transmeta.com for more details.
27See http://www.sourceforge.net for a listing of inactive projects.

23



6

-α

w̄, w0, rA

10

r

w0

w̄min

w̄1

w̄2

w̄3

Figure 7: Strategic wage setting

an interior solution which turns into w̄ = rA.

Lemma 6 Decreasing the wage by the CSS increases its profits. Any decrease in the wage level, however,

moves the threshold closer to the CSS-only equilibrium, thereby increasing the chance for an OSS to be

triggered.

Proof: In the symmetric case of kA = nA, substituting 2.3 into the above equation yields

w̄ = −4vA[α− 1
2 ]2 + vA.

Solving this equation for α gives us the following interior solutions for the redefined difference

function:

α∗1 =
1
2
−

√
vA − w̄

4vA

α∗2 =
1
2

+
√

vA − w̄

4vA

Clearly, there is no solution for w̄ > vA. For qB ≤ w̄ ≤ vA, the effect which w̄ has on the

positions of the equilibria can be summarized by ∂α∗1
∂w̄ > 0 and ∂α∗2

∂w̄ < 0.

For increasing w̄ the right-hand intersection travels to the left, while the left-hand intersection

(and equilibrium) moves to the right. They meet comprising a tangency point for w̄ = vA .

After that, no intersection exists. Conversely, decreasing w̄ augments the distance between

α∗1 and α∗2. 2

The CSS is able to influence the position of the equilibrium outcome where both a CSS and an OSS

exist. This allows a determination of the size of the gravitation fields of the two equilibria. E.g. decreasing

the wage level enlarges the negative gravitation field between the two intersection points at the expense

of the outer fields.

24



4.3.2 Equilibrium profit

Only the interior solution α∗1 is a possible equilibrium besides the CSS-only outcome for the corner

solution of α = 1. We therefore have two potential settings for any arbitrary wage level below vA and can

calculate the CSS profit per programmer for the two cases by π1(w̄) = w0(1)−w̄ and π2(w̄) = w0(α∗1)−w̄.

Total profit is then calculated by

Π1(w̄) = [w0(1)− w̄] · (nA + nB)

Π2(w̄) = [w0(α∗1)− w̄] · (α∗1nA + nB)

Since α∗1 is itself a function of w̄, the profit functions are solely dependent on w̄.

4.3.3 Discussion and practical relevance: Playing fields and strategies

We have two possible outcomes. If we presume that CSS will sensibly avoid to create any long-term

equilibria where it induces a loss, the possible outcomes will range somewhere either to the left of the

left-hand interior solution or to the right of the right-hand interior solution in Figure 7. We call them

the playing fields because these settings require different strategic considerations by the CSS-firm.

• Playing field 1 - Monopoly:

Playing field 1 is relevant if the CSS exists alone, i.e. while the industry rests in the right-hand

corner solution. On playing field 1, the CSS will want to maximize its profit Π1(w̄) by setting w̄

to its minimum qB . This will increase the chances of OSS triggering.28 This danger will more or

less hinder the CSS from fully exploiting the type A programmers. The CSS needs to trade off the

profit maximization against safe-guarding its monopoly.

• Playing field 2 - Duopoly:

Playing field 2 is relevant when the CSS and the OSS co-exist, i.e. while the industry rests in the

left-hand equilibrium. On playing field 2, the CSS can pursue two strategies. It can try to reach

playing field 1 again by setting a wage higher than rA, thereby eliminating the negative gravitation

field and thus tempting type A programmers away from the OSS. It would have to put up with

losses with this foreclosure strategy until the feat is done. This only makes sense if the CSS expects
28In fact, in some situations the CSS may itself create the possibility of an OSS. Consider case (a) in Figure 6. By setting

its wage lower than vA, it actually grants an OSS room to maneuver where there had been none before.

25



to be compensated for these by future monopolistic rents. Otherwise, it could accept the duopoly

situation, settle for the left-hand equilibrium and maximize its profit function Π2(w̄).

This implies

Proposition 4 Given the other parameters render the existence of an OSS viable in the zero-profit case,

the CSS - by uniformly varying the wage parameter - is not able to influence the number of possible

equilibria without incurring losses. In such a monopoly situation the CSS can reduce the chance of a

trigger event by raising its wage, but the market is always contestable by the OSS.

Note that even if we relaxed the parameter assumptions at the start of this section, we would find

that, for all constellations, the zero-profit case minimizes the number of equilibria. Thus, the CSS can

never create a permanent situation with less equilibria, if its wage policy remains non-discriminatory.

5 Discussion of the model

5.1 The role of intellectual property

What motivates highly skilled people to commit valuable effort to an open-source product? Indeed, they

devote time and resources without being able to recoup their personal investment by retrieving the ensuing

rents. Put briefly, their labor creates a public good. Any economist would allege that private provision of

a public good should therefore generally suffer from under-investment. Surely, beyond altruism, incentives

to invest ought to be weakened by open access to a good. This is why private ownership plays such a

prominent role in our societies. In fact, it is a de rigueur premise to any market-based economy.

We see institutions actually fulfil the function of helping investors claim their righteous rents when

investments create a good which is subject to free-riding, plagiarism or imitation. In the case of literary,

dramatic, musical or artistic works, sound records, films, television programs and inventions, the rights

of the author or the inventor are protected by intellectual property rights, i.e. legal institutions such

as copyrights or patents. The protection of intellectual property rights is not only a matter of law but

increasingly a matter of practicability as it has become visible in the way that the Internet has allowed

its users to breach copyrights for sound recordings of the entertainment industries on a hitherto unknown

scale.

26



Generally, one would conclude that the more one is able to restrict ownership over a good, the more

rents can be reaped by its use or sale. The software industry often establishes effective property rights

by technically restricting the access to the source code or any modules of their products. The right to

make alterations to the product is reserved for designated programmers who usually only have insight

into parts of the code. For these firms, unrestricted access to their source code would mean abandoning

their property rights and would amount to economic suicide. But that is exactly what the open source

domain implies.

In the line of the above arguments, we should not observe the OSS to survive in economic reality.

Conversely, it is a true surprise that we actually do. Our model tries to unravel this mystery. In our

model, the mediocre programmers at the CSS, who earn more than their productivity, appropriate some

of the better programmers’ output. They actually free-ride.29 I.e. while the CSS as a whole establishes

ownership over its product, the better programmers within the CSS can only incompletely gain monetary

reward from their personal contributions. On the other hand, in an OSS, the institution as a whole exerts

no property right over its product, but fosters the establishment of individual intellectual property for

its contributors. This is what our analysis puts forth as a possible explanation for the existence of open

source systems. The driving element is that the systems differ in terms of remuneration: The CSS pays a

non-discriminatory, pooling wage, whereas the OSS by way of a separating deferred pay-off function offers

better programmers the possibility to set themselves apart from the less skilled and reap the equivalent

of their own marginal product. Given this basic mechanism, we have shown the conditions required for

an OSS to be sustainable in this paper.

5.2 Analogy with academia

To back our arguments, we would like to draw a rather imperfect but nonetheless telling analogy. Why

would a successful university graduate forego years of wage and even spend money to earn a Ph.D. de-

gree? Little of what he produces can be appropriated by him alone. His research is openly published

and particularly accessible to other scientists. He works in what strongly resembles an open source en-

vironment.30 We argue that he seeks a signal to stand out from the common mass of college graduates.
29See Rajan and Zingales (2000) for an excellent model of a stylized firm with unequal endowments in resources between

different stake-holders and their predictions about the allocation of property rights in such a setting.
30Interestingly, there is a bi-monthly magazine for university researchers in Germany entitled opensource - the network

magazine for research assistants. For more information, visit www.opensource-online.de.

27



Should he be successful, he creates a signal via the academic degree which also functions on the basis of

peer review and which he hopes will create monetary rewards in some way afterwards.31 Imagine he has

the choice between a certain university U and the firm F. In F he will receive a fixed wage. In U he must

pay a tuition for an opportunity to earn his Ph.D. degree.

According to our model, his decision will depend on the following two considerations - given that

F’s wage is fixed: Firstly, the university will have to offer a promising research environment in general,

i.e. other talented scientists and Ph.D. students in particular. They represent the reputation of U which

in turn contributes to the value of a degree earned from that university. If their number is too low,

the Ph.D. degree might prove wanting in value and later not yield a deferred pay-off as high as desired.

Secondly, if there are too many Ph.D. candidates relative to the number of jobs offering tenure, the level

of competition (or required quality) is high and the challenge might appear too tough for the aspirant.

In any case, only those who think they are talented enough will tread this path. Otherwise, they will

choose F. In time, institutions such as U may develop a reputation for screening quality, as a consequence

of which vital information transfer mechanisms (e.g. job fairs, student workshops, etc.) may evolve and

establish themselves around them. Conceivable are models of competition and differentiation between

such institutions and their environments. Our basic model suggests that there should be an equilibrium

number of Ph.D. students for any such institution and the labor markets in which they are embedded.

6 Conclusion

From our analysis, we can conclude that first of all an open-source system will never exist alone, though

a closed-source system can. The reasoning is quite simple: If high-end programmers feel a need for

differentiation, there will be low-end programmers for whom it certainly is not advisable to choose an

OSS career. If no such need is felt, everyone works at the CSS anyway. Second, the OSS needs a

critical number of high-end programmers relative to the demand for highly skilled programmers in related

industries in order to reach a level of quality and visibility which makes their signals credible. Therefore,

OSS becomes feasible only if the population of high-end programmers is relatively large. Third, a well-

developed mechanism to transfer the signals to the surrounding environs is a prerequisite for OSS. The

job markets must acknowledge the information discovery service of the OSS. As such, it may be that
31See also Franck and Jungwirth (2002, fn.18).

28



the OSS must establish a reputation for being a reliable signalling device. Fourth, provided the two

conditions mentioned above hold, there is always a positive probability that an OSS may come into

existence. Although the CSS may reduce this probability by strategically setting its wage, the possible

emergence of an OSS can never be totally ruled out: An equilibrium is viable in which both, CSS and

OSS, co-exist.

A Appendix

A.1 Derivation of the deferred pay-off function

To approximate the deferred pay-off function for type A, we use a quadratic function of the form rA(α) =

−c · (α − αmax)2 + rmax where c, αmax and rmax are the unknown parameters. From our assumptions,

the following three conditions can be postulated: (1) rmax = vA, (2) rA(1) = 0 and (3) rA(1− k
nA

) = 0.

This system is determined as we have three independent equations for three unknown parameters. From

this we get rA(α) = − 4n2
AvA

k2
A

[α− (1− kA

2nA
)]2 + vA. The procedure for type B is analogous.

A.2 Proof of lemma 5

The intercept of the wage function is always qB which at the same time is its minimum value. The

intercept of the deferred pay-off function varies dependent on nA

kA
. We will look at the difference function

of type A with vA = qA. For α = 0, we get ∆A(0) = (qB − qA) + 4n2
AqA

k2
A

· (1 − ka

2nA
)2. Rearranging this

leads to

∆A(0) =
4n2

AqA

k2
A

− 4nAqA

kA
+ qB . (A.1)

In the limits ∆A(0) behaves as follows

∆A(0) = qB > 0 as
nA

ka
→ 0

∆A(0) = ∞ > 0 as
nA

ka
→∞

∆A(0) = qB − qA < 0 as
nA

ka
→ 1

2

Since this is positive for the corner values of nA

kA
and negative for a value inside this range, being

monotonous the difference function must have two roots for α = 0 dependent on nA

kA
. Figure 8 shows us

its behavior for a steadily increasing nA

kA
. The sequence is to be viewed from left to right and top down.

Note that the sign of ∆(0) changes in (b) and (d).

29



- - -

6 6 6

- -

6 6

α α α

α α

w, r w, r w, r

w, r w, r

w w w

w w

r r

r r r

(a) (b)

(c) (d) (e)

Figure 8: The effect of a changing nA

kA

It should also be noted that in

• (a) there is no intersection

• (c) there is one intersection

• (e) there are two intersections

between the wage and the deferred pay-off function. Thus (b) and (d) with ∆A(0) = 0 mark not only

the change of the sign of ∆A(0), but also the changes in the number of intersections between the two

underlying functions.

Next, we calculate the exact level of nA

kA
. For this, we set ∆A(0) to zero in equation A.1 which after

some rearranging gives us z2 − 2z + qB

qA
= 0 with z = 2nA

k .

Solving this quadratic equation for z yields the following solutions for nA

kA

nA

kA
=

1
2
· [1±

√
1− qB

qA
].

Since the term under the root is between zero and one, we get two positive and therefore viable solutions.

30



References

Deutsche Bank Research (2002): “Free software, big business?,” http://www.dbresearch.com, (32).

Economist (2000): “Open sesame,” The Economist, Apr. 13th.

(2001): “The penguin gets serious,” The Economist, Jan. 25th.

(2002): “Going hybrid,” The Economist, Jul. 27th.

Franck, E., and C. Jungwirth (2002): “Reconciling investors and donators - The governance structure

of open source,” Universität Zürich, Working Paper No. 8.

Grossman, S., and O. Hart (1980): “Takeover bids, the free-rider problem, and the theory of the

corporation,” The Bell Journal of Economics, 11(1), 42–64.

Hars, A., and S. Ou (2002): “Working for Free? Motivations for Participating in Open-Source

Projects,” International Journal of Electronic Commerce, 6(3), 25–39.

Johnson, J. P. (2002): “Open Source Software: Private Provision of a Public Good,” Journal of

Economics & Management Strategy, 11(4), 637–662.

Kaisla, J. (2001): “Constitutional Dynamics of the Open Source Software Development,” .

Lakhani, K., and E. von Hippel (2000): “How Open Source software works: ’Free’ user-to-user

assistance,” MIT Sloan School of Management Working Paper, (4117).

Lerner, J., and J. Tirole (2002): “Some Simple Economics of Open Source,” Journal of Industrial

Economics, 52, 197–234.

Moon, J. Y., and L. Sproull (2000): “Essence of Distributed Work: The Case of the Linux Kernel,”

Firstmonday, http://www.firstmonday.dk/issues/issue5 11/moon/, 5(11).

Mustonen, M. (2003): “Copyleft - the economics of Linux and other open source software,” Forthcoming

in: Information Economics and Policy.

Rajan, R., and L. Zingales (2000): “The tyranny of inequality,” Journal of Public Economics, 76(3),

521–558.

31



Raymond, E. S. (2000a): “The Cathedral and the Bazaar,”

http://www.tuxedo.org/˜esr/writings/cathedral-bazaar.

(2000b): “Homesteading the Noosphere,” http://www.tuxedo.org/˜esr/writings/cathedral-

bazaar/homesteading/.

Spence, M. (1973): “Job market signaling,” Quarterly Journal of Economics, 87(3), 355–374.

32


