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SUMMARY 

In this thesis two novel single-end methods are applied to measure and characterize 

polarization mode dispersion in single mode optical fibres. Polarization mode dispersion 

(PMD) is an important factor negatively affecting the successful implementation of high 

speed long haul optical fibre networks operating at bit rates of 10Gb/s and above. PMD 

measurements are thus important for quality control during manufacturing and cabling 

processes. It is also useful for network operators planning to upgrade bitrates in existing 

networks to 10Gb/s and beyond. In an optical fibre link, sections with particularly high PMD 

may act to increase the entire PMD of the link. Identifying and replacing such sections can 

greatly reduce the PMD of the link.  

PMD measurements can be forward or single-end. In forward measurements, both ends of the 

fibre are used for input and detection. In single-end configuration, only one end of the fibre is 

used. For this reason, single-end measurements are more practical for the field where fibre 

ends are situated several kilometres apart. Single-end techniques can be implemented with a 

continuous wave for non-local PMD measurements (by Fresnel reflection). If a pulsed wave 

is used, local measurements can be achieved (by total power due to Rayleigh scattering). 

Two single-end schemes, one based on Fresnel reflection and the other due to Rayleigh 

scattering have been applied to measure non-local and local PMD of standard single mode 

optical fibres. For the non-local PMD measurements, the general interferometric technique 

(GINTY) was modified to operate in a round-trip configuration. In this configuration, the 

fibre was treated as a concatenation of two identical fibre segments. Three different sets of 

fibres were investigated, each set representing a particular mode coupling regime. For 

polarization maintaining fibres, (PMFs), with no mode coupling, a factor of two was found 

between forward and single-end measurements. For long single mode fibres in the long 

length regime, the factor was 1.4. For a combination of PMF and single mode fibres, a factor 

of 1.6 was obtained. The method which is accurate, repeatable, low cost and robust is very 

suitable for field applications. 

The second method is the polarization optical time domain reflectometric (P-OTDR) 

technique.  This technique performs local birefringence measurements by measuring the 

evolution of the states of polarization (SOP). The birefringence information from such 

measurements was extracted and analysed to characterise four different fibres. Beat lengths 

and correlation lengths extracted from the P-OTDR were used to calculate the differential 
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group delay (DGD) of the fibres. Next an expression for the root-mean-square differential 

group delay was derived and applied to the birefringence measurements to calculate the 

DGDs at a single wavelength. This method which operates at a single wavelength has a huge 

advantage. Firstly it is able to measure completely all the fibre characteristic parameters. 

Secondly it can measure mean DGD, root mean square DGD and instantaneous DGD. A plot 

of instantaneous DGD vs. length enables one to identify and eliminate sections with 

particularly high DGD. Finally since the P-OTDR system operates with a single wavelength, 

real time monitoring of PMD is possible via multiplexing. The results obtained are 

repeatable, accurate and are in good agreement with the standard Jones Matrix Eigenanalysis 

(JME) technique. 
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CHAPTER 1 

INTRODUCTION 

It has always been the desire of humans to communicate and do so in the fastest and most 

efficient way possible. This need has always driven scientists and engineers to conduct 

research into various ways and methods of communication- from fire, electricity, through 

microwave, radio and currently light. The motivation is to increase speed, capacity/size of 

information to be transmitted in the shortest time possible. The desire also is to send the 

information to the furthest distance at minimum loss and cost. 

A long standing observation is that the industrial development of a country is closely 

dependent on the country’s communications infrastructure (Androuchko et al., 1990). 

According to Hardy (1980) and Hudson (1987) while economic growth contributes to 

telecommunications investment, telecommunications growth also makes a small but 

significant contribution to economic growth. The clear implication is that investment in 

telecommunications should facilitate economic growth.  Investment in the communications 

infrastructure of a nation also implies the modernization of the transmission systems that 

form the existing communication networks. 

Every communication system is made up of three parts, a transmitter, a medium of 

transmission and a receiver. The invention of the laser in the 1960s aroused the interest of 

scientists and engineers to explore its coherent nature for optical communication. Following 

this development there was the need to develop a low loss waveguide to carry the light signal, 

as well as detectors and other passive optical components. One major problem for developing 

practical optical communications systems was the lack of a good transmission medium. Many 

approaches for optical systems were suggested, such as sending laser through air, confocal 

optical waveguides with regularly spaced lenses, hollow optical waveguides made of 

reflective pipes, and dielectric optical fibres (Ming-Jun et al., 2008, 2009). Kao and  

Hockham (1966) proposed for the first time that glass fibre could be a good medium for the 

transmission of information. They predicted that the fundamental limit for practical optical 

communication for transparent glass was 20dB/km. The optical fibre, which is a thin, 

transparent, cylindrical dielectric material (mostly made from silica) was identified as a 

carrier waveguide for optical communications.  Kapron et al (1970), produced a low loss 

glass fibre with a 20dB/km attenuation in 1970. Following this development, optical fibre 
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technology advanced rapidly. In 1979, Miya et al. demonstrated that an attenuation of 

0.2dB/km in fibres was possible. 

The rapid evolution of optical fibre over the past three decades has been closely linked with 

developments in optical components and transmission systems. It therefore stands to reason 

that the driver for the evolution would alternate between fibre capabilities and system 

performance.  A key example of this linkage is the development of light sources, modulation 

formats and detectors. Optical fibres have developed from multimode in the 1970s, single -

mode in the 1980s and 1990s to bend insensitive fibres today (Li 2008). Optical sources have 

evolved from Light emitting diodes (LEDs) and semiconductor lasers to vertical-cavity 

surface-emitting lasers (VCSLs) and distributed feed-back (DFB) lasers, corresponding to 

ordinary binary non-return-to-zero (NZR) and return-to-zero (RZ) to more advanced forms 

such as carrier-supressed-return-to-zero (CSRZ) and dense-quadrature-phase-shift-keying 

(DQPSK). Another major milestone was the development of the (EDFA) erbium-doped fibre 

amplifier (Mears, 1987). This made it possible to increase carrier capacity and transmission 

distance. More channels can now be transmitted through dense wavelength division 

multiplexing (DWDM). Transmission rates of 10 and 40Gb/s are now in operation with next 

generation systems expected to run at 100Gb/s and beyond. Indeed, transmissions of 432GB/s 

over a distance of 400km in a standard single-mode fibre have been recently reported (Dong, 

et al. 2011). 

The above developments have been driven by demand for high speed high capacity 

transmission by network operators and customers for many applications. Optical 

communication is the choice because it satisfies these demands and even more. It offers 

transmission rates close to the speed of light, high bandwidth, adequate security as well as 

lower attenuation rates per kilometre compared to other communication systems. Optical 

communication has been embraced with applications ranging from data, internet, voice and 

live video just to mention a few. Long haul applications have brought the world closer. Today 

people can run companies and attend board meetings from any part of the globe via video 

conferencing. Internet lectures for educational purposes, mobile and internet banking as well 

as live video streaming for entertainment are but a few of the benefits of optical 

communications.  
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In the developed world, the systems mentioned above are already in place.  The challenge 

now is for the developing world and Africa in particular to tap into this technology to harness 

its full benefits.  In order to catch up, developing countries might be thought of as requiring 

four types of optical systems (Androuchko, 1990): 

- High capacity systems for junction networks between exchanges in cities or large towns      

where explosive population growth is producing high demand for communications. 

- High capacity systems from exchanges to link other systems such as radio and satellite earth 

stations sited some distance away from the exchange station to attain the best transmission 

path. 

-High capacity systems for trunk networks where installation costs are not prohibitive and the 

large traffic density ensures competitiveness of fibre optics over other media. 

-Low capacity, long distance systems for use in urban and rural areas of low population 

density. These would offer a better quality service with the possibility of expansion to higher 

density or enhanced service, but with a considerable initial cost. 

Like any communication system, optical communications systems must meet certain basic 

criteria including network upgradability. Upgradability of optical communications systems 

has posed many challenges. In the early years the challenge was signal attenuation and 

chromatic dispersion. The problem of chromatic dispersion has been addressed by the 

introduction of dispersion shifted fibres (DSFs) and dispersion compensating fibres (DCFs). 

Signal attenuation has also been addressed by improvements in laser technology and 

components as stated in the previous paragraphs.  

Today, the major challenge limiting network upgradability of long haul optical fibre 

transmission systems for operations at 10Gb/s and beyond is polarization mode dispersion 

(PMD). This phenomenon has become important because most existing optical fibre 

networks especially in Africa include legacy fibres (ITUT-G.652, G.653 and G.655) which 

were laid a few years ago when demand for bandwidth was low and fibre manufacturing 

systems were not advanced enough. Although fibre manufacturing technologies have again 

been used to reduce polarization mode dispersion to below 0.1ps/km1/2, it is expensive to 

replace legacy fibre plants. It has therefore fallen on network designers and operators to study 

and manage the effect of PMD. 
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Under ideal conditions, a pulse of light entering a perfectly circular fibre splits into two 

polarization states which are expected to travel with the same speeds through the fibre. This 

however does not happen in reality and the two polarization modes propagate with different 

speeds. The difference in arrival times, which is known as the differential group delay is the 

magnitude of polarization mode dispersion (PMD). PMD causes the spreading of the optical 

pulse and the consequent distortion of transmitted data at the receiver. Polarization mode 

dispersion originates from random birefringence and mode coupling. Birefringence causes a 

variation of refractive index in a waveguide with a corresponding variation in the propagation 

speed of light. Birefringence may be caused by several random intrinsic and extrinsic factors. 

An example of an intrinsic cause of birefringence is core asymmetry which may happen 

during manufacturing. External stress due to bending and twists during cabling and 

deployment are some of the causes of extrinsic birefringence. Within the optical fibre, there 

may exist random perturbation points where interchanges between the two propagation 

modes of previous segments may occur. This phenomenon known as mode coupling also 

contributes to PMD. Environmental factors such as temperature and vibrations caused by 

wind especially on aerial fibres may also cause birefringence resulting in PMD. 

To increase capacity on legacy fibres, methods including PMD compensation have been 

proposed and implemented (Gibbon, 2008). Most PMD compensation schemes require 

monitoring of the states of polarization of the propagating pulse. These rates of evolution of 

the principal states may occur at speeds which may be difficult to track. For these and other 

reasons PMD compensation schemes are difficult to achieve and implement.  

It is known that, the total polarization mode dispersion of an optical fibre link may be 

affected by sections within the link with particularly high contributions (Visser et al. 2003). 

Locating and replacing such ‘bad’ sections offers a more practical and cost effective solution 

to the problem.  

This thesis addresses the problem of PMD by applying practical single-end reflectometric 

techniques. The aim is to characterize fibre PMD and identify the factors that cause it.  

Single-end techniques are advantageous because they make use of only one end of the fibre 

and both the transmitter and detector are located at the same point. This makes them practical 

and cost effective, especially for the field where fibre ends are usually separated by several 

kilometres. The thesis discusses two single-end methods for characterizing PMD, which are 
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suitable for both the laboratory and the field measurements of PMD. The first method, which 

is a variation of the standard generalized interferometric method (GINTY), is capable of 

measuring the mean DGD of an entire optical fibre link.  

The second method, is the polarization sensitive reflectometric (P-OTDR) technique, and is 

able to completely characterize an optical fibre. By measuring the round-trip birefringence of 

a fibre as a function of distance, the total information about the fibre is derived. It is able to 

measure fibre parameters such as beat length, correlation length and differential group delay 

can be measured from a single P-OTDR trace. Mean DGD, instantaneous DGD and root 

mean square DGD are measured at a single wavelength. Distributed measurements of 

instantaneous DGD as a function of distance provides information about sections of the fibre 

where PMD is particularly high.  

This thesis is organized as follows: 

Chapter 2 describes the nature of light and propagation through an optical fibre including 

concepts of polarization, Stokes and Jones vectors, birefringence and loss mechanisms, such 

as dispersion and nonlinear effects. In chapter 3 polarization mode dispersion and 

birefringence effects are discussed. The chapter also considers the fundamental principles 

underlying various PMD measurement techniques. Chapter 4 introduces the concepts of 

reflectometric measurement techniques. A theoretical overview of reflectometric 

measurement techniques and their advantages are presented. The main experimental results of 

this research are presented in chapters 5 to 7. In chapter 5, a single-end interferometric 

technique for measuring the total PMD of an entire link is presented. In the chapter, three 

different fibre types namely, polarization maintaining fibres, spooled and cabled fibres are 

analysed using the single-end inteferometric technique. In chapter 6 characterization of 

optical fibres using P-OTDR is presented. In the chapter, four optical fibres are completely 

characterized in terms of beat length, correlation length and DGD.  Measurements of 

instantaneous and root mean square differential group delay using P-OTDR are presented in 

chapter 7. The concluding remarks of this research work are presented in chapter 8. 
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CHAPTER 2 

LIGHT PROPAGATION AND OPTICAL FIBRE CHARACTERISTICS 

2.1 Nature of light 

Light is an electromagnetic wave which propagates as a vector field, with the electric and 

magnetic fields vibrating in a direction perpendicular to the direction of the advancing wave 

(figure 2.1). The relationship between the propagating electric and magnetic fields is given by 

a set of equations known as Maxwell’s equations. For a linear, isotropic, lossless dielectric 

with no charges and currents, the set of Maxwell’s equations are given by, 

∇ × 𝑬 = −𝜕𝑩
𝜕𝑡

                                                                                    (2.1) 

∇.𝑫 = 0                                                                                            (2.2) 

∇ × 𝑯 = 𝜕𝑫
𝜕𝑡

                                                                                       (2.3) 

  ∇.𝑩 = 0                  (2.4) 

where 𝑫 = 𝜖𝑯   and  𝑩 = 𝜇𝑯, 𝝐 is the permittivity or dielectric constant and 𝜇 is the 

permeability of the medium. Equation 2.3 shows that an alternating electric field gives rise to 

a magnetic field. Equation 2.2 indicates the absence of magnetic charges while equation 2.4 

asserts the absence of static electric field. 

These equations can be decoupled to obtain new equations in terms of only magnetic and 

electric field by applying vector calculus to yield (Keiser, 2000); 

∇2𝑬 = 𝜖𝜇 𝜕2𝑬
𝜕𝑡2

                 (2.5) 

∇2𝑯 = 𝜖𝜇 𝜕2𝑯
𝜕𝑡2

                             (2.6) 

Equations 2.5 and 2.6 are similar to the three dimensional standard wave equation of the 

form; 

∇2𝝆 = 1 𝜕2𝝆
𝜐2𝜕𝑡2

                    (2.7) 
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where 𝜐 = 𝑐 𝑛𝑛⁄  is the propagation velocity in the medium of refractive index n with c being 

the speed of light in vacuum.  

Comparing terms of equation 2.7 with equations 2.5 and 2.6, implies that an electromagnetic 

wave propagates in a medium with a velocity given by, 

𝜐 = 1

√𝜖𝜇
                                                                                              (2.8) 

Considering a waveguide with a varying refractive index 𝑛𝑛 in the x and y directions (but 

fixed in the z-direction of propagation), the solutions to equation 2.5 for a propagating 

electromagnetic wave is of the form: 

𝐸𝐸(𝑟, 𝑡) = 𝑒𝑖(𝛽𝑧−𝜔𝜔)𝑡                                                                           (2.9) 

where 𝛽(𝜔𝜔) = 𝜔𝜔
𝑐
𝑛𝑛(𝜔𝜔) is the propagation constant and 𝜔𝜔 is the angular frequency of the 

propagating light. 

Substituting equation 2.9 into 2.5 and simplifying yields: 

� 𝜕2

𝜕𝑥𝑥2
+ 𝜕2

𝜕𝑦𝑦2
� 𝐸𝐸(𝑥,𝑦) + 𝐾𝐸𝐸(𝑥,𝑦) = 0                                              (2.10) 

where, 𝐾 = (𝜖𝜇𝜔𝜔2 − 𝛽2). 

Equation 2.10 is a scalar three dimensional equation whose solution may either be 

exponential or sinusoidal varying depending on the sign of the factor K. According to 

eq.2.10, the frequency of the propagating light and the refractive index profile of a waveguide 

are important parameters, since they determine the sign of K. This analysis will be applied 

later in section 2.3.2 to explain the concept of guided modes in an optical fibre. 

2.2 Polarization concepts 

The inclination of the directions of the vibration of an electromagnetic field is called its 

polarization. The interaction between light and a medium may cause a change in the 

characteristics of the medium and the light itself. These changes can be observed by 

observing the difference in the polarization properties of the light before and after the 

interaction. It is therefore important to describe light in terms of its polarization. 
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Figure 2.1: Plane wave propagating as a superposition of two orthogonal 

components 𝐸𝐸𝑥𝑥 and 𝐸𝐸𝑦𝑦. 

As depicted in figure 2.1, the electric field of a plane polarized light wave  𝐸𝐸(𝑧, 𝑡) 

propagating in the z direction may be represented by the superposition of the two orthogonal 

sinusoidal time varying components, 𝐸𝐸𝑥𝑥  and 𝐸𝐸𝑦𝑦  given by, 

                                      𝐸𝐸(𝑧, 𝑦) = 𝐸𝐸𝑥𝑥(𝑧, 𝑡) + 𝐸𝐸𝑦𝑦(𝑧, 𝑡)                                                       (2.11) 

The two orthogonal electric field components in the x and y directions are given by, 

 𝐸𝐸𝑥𝑥(𝑧, 𝑡) = 𝐸𝐸𝑜𝑜𝑥𝑥cos (𝛽(𝜔𝜔)𝑧 − 𝜔𝜔𝑡 + 𝛿𝛿𝑥𝑥)𝑥�                                       (2.12) 

 𝐸𝐸𝑦𝑦(𝑧, 𝑡) = 𝐸𝐸𝑜𝑜𝑦𝑦cos (𝛽(𝜔𝜔)𝑧 − 𝜔𝜔𝑡 + 𝛿𝛿𝑦𝑦)𝑦�                                       (2.13) 

where 𝐸𝐸𝑜𝑜𝑥𝑥 and 𝐸𝐸𝑜𝑜𝑦𝑦 are the amplitudes and 𝛿𝛿𝑥𝑥 and 𝛿𝛿𝑦𝑦 represent the phase angles respectively. 

From equations 2.12 and 2.13, the equation of the path traced out by the tip of the electric 

field vector z=constant can be deduced. To achieve this we substitute 𝛽(𝜔𝜔)𝑧 − 𝜔𝜔𝑡 = 𝜏𝜏 into 

equations 2.12 and 2.13 to yield; 

𝐸𝐸𝑥𝑥(𝑧, 𝑡) = 𝐸𝐸0𝑥𝑥(𝑐𝑜𝑝𝑝τ𝑐𝑜𝑝𝑝𝛿𝛿𝑥𝑥 − 𝑝𝑝𝑖𝑛𝑛τ𝑝𝑝𝑖𝑛𝑛𝛿𝛿𝑥𝑥)                                      (2.14) 

𝐸𝐸𝑥𝑥(𝑧, 𝑡) = 𝐸𝐸0𝑥𝑥(𝑐𝑜𝑝𝑝τ𝑐𝑜𝑝𝑝𝛿𝛿𝑥𝑥 − 𝑝𝑝𝑖𝑛𝑛τ𝑝𝑝𝑖𝑛𝑛𝛿𝛿𝑥𝑥)                                      (2.15) 

Simplifying and rearranging eq. 2.14 and 2.15 gives; 

� 𝐸𝑥
𝐸𝑜𝑥
�
2

+ � 𝐸𝑦
𝐸𝑜𝑦
�
2
− 2 𝐸𝑥𝐸𝑦

𝐸𝑜𝑥𝐸𝑜𝑦
cos�𝛿𝛿𝑦𝑦 − 𝛿𝛿𝑥𝑥� = 𝑝𝑝𝑖𝑛𝑛2�𝛿𝛿𝑦𝑦 − 𝛿𝛿𝑥𝑥�          (2.16) 

Ex 
X  

y Ey 

Z  
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where 𝛿𝛿 = 𝛿𝛿𝑦𝑦 − 𝛿𝛿𝑥𝑥 is the relative phase difference between the two orthogonal electric field 

vectors 𝐸𝐸𝑥𝑥 and 𝐸𝐸𝑦𝑦. 

 

 

 

 

 

 

Figure 2.2: Polarization ellipse for which the states of polarization are 
determined by 𝜒𝜒 and 𝜓𝜓. 

 

Figure 2.2 shows the behaviour of equation 2.16. It represents an ellipse inscribed in a 

rectangle with sides 2𝐸𝐸𝑜𝑜𝑥𝑥 and 2𝐸𝐸𝑜𝑜𝑦𝑦  on the x and y axes respectively. Hence in the general 

case, the tip of the electric field of a propagating monochromatic light wave traces out an 

ellipse in the x-y pane (z=constant). Such a wave is called an elliptically polarized wave.  

The orientation of the electric field is known as the state of polarization (SOP) of the light. 

The nature of the polarization ellipse depends on the amplitudes 𝐸𝐸𝑜𝑜𝑥𝑥 and 𝐸𝐸𝑜𝑜𝑦𝑦 and the relative 

phase difference, 𝛿𝛿 = 𝛿𝛿𝑦𝑦 − 𝛿𝛿𝑥𝑥 between the two orthogonal components. For an isotropic 

medium, as 𝜔𝜔𝑡 varies between 0 − 360𝑜𝑜 , the phase difference 𝛿𝛿, causes the shape of the 

ellipse to change. While tracing the elliptical path, the tip of the electric field vector rotates 

either clockwise or anticlockwise. These two cases are defined as right-handed polarization 

(clockwise when facing the light source) and left-handed polarization (anticlockwise when 

facing the source). These directions are defined by the sign of the relative phase difference 𝛿𝛿. 

For  0 < 𝛿𝛿 < 180𝑜𝑜  , the light exhibits right-handed polarization. Similarly, the light exhibits 

left-handed polarization for the interval 180𝑜𝑜 < 𝛿𝛿 < 360𝑜𝑜 . For integral multiples of the 

relative phase difference, ( 𝛿𝛿 = 180𝑜𝑜𝑚𝑚, 𝑚𝑚 = 0, ±1, ±2, ….) the light is linearly polarized. A 

special case of circular polarization occurs when the amplitudes 𝐸𝐸𝑜𝑜𝑥𝑥 and 𝐸𝐸𝑜𝑜𝑦𝑦 are equal 

(𝐸𝐸𝑜𝑜𝑥𝑥=𝐸𝐸𝑜𝑜𝑦𝑦) and the relative phase difference = 180𝑜𝑜 𝑚𝑚 2⁄  , m= ±1,±3, ±5.. (Akhmanov 1997). 

𝜒𝜒 

𝜓𝜓 

a 
b 

2𝐸𝐸0𝑦𝑦 

2𝐸𝐸0𝑥𝑥 
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The various states of polarization are illustrated in figures 2.3-2.5, where the amplitudes 𝐸𝐸𝑜𝑜𝑥𝑥 

and 𝐸𝐸𝑜𝑜𝑦𝑦 have been set to unity for simplicity. 

 

Figure 2.3: (a) Linear states of Polarization for even integral multiples of the relative 

phase, and (b) odd multiples. 

Figure 2.3 shows two cases of linear polarization. In figure 2.3(a), the relative phase 

difference between the two orthogonal components,  𝛿𝛿 = 00 = 3600  while in (b), 𝛿𝛿 = 1800. 

For 𝛿𝛿 = 1800𝑚𝑚,  where m= ± 1, ± 2,.., the path traced by the tip of the electric field is 

linearly polarized and its orientation is like that of figure 2.3 (a) if m is even. If m is odd, the 

path traced out is linear and its orientation is like that of figure 2.3(b). 

 

Figure 2.4: Circularly polarized light; (a) right circular polarization, (b) left circular 

polarization 

(b) (a) 

𝛿𝛿 = 00 = 3600 𝛿𝛿 = 1800 

𝛿𝛿 = 2700 
𝛿𝛿 = 900 
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Figure 2.4 shows two cases of circular polarization, (a) right circular polarization and (b) left 

circular polarization. The polarization is right circular if 𝛿𝛿 = 900 + 2𝑚𝑚(1800) and left 

circular, if = −900 + 2𝑚𝑚(1800) , m = ± 1, ±3, ±5… 

 

Figure 2.5: Elliptical polarization states; (a) clockwise of the electric field for 
𝛿𝛿 = 450 and anticlockwise rotation for  𝛿𝛿 = 3150, (b) clockwise rotation of the 
electric field for 𝛿𝛿 = 1350 and anticlockwise rotation for 𝛿𝛿 = 2250. 

 

Figure 2.5 depicts the general case of the paths traced by the electric field. The path is 

generally elliptical for any other relative phase differences between the two orthogonal 

electric fields. Figure 2.5(a) shows selected examples elliptical polarization states, for 

𝛿𝛿 = 450 , 3150 and 1350 , 2250. The orientation of the ellipses for the phase angles 𝛿𝛿 =

450 , 3150 are the same but their directions of rotation different, clockwise for 450 , and 

anticlockwise for 3150. The same situation occurs for phase angles 1350 (clockwise rotation) 

and 2250 (anticlockwise rotation). 

The concept of polarization ellipse is therefore useful for describing light in all the possible 

polarization states. It has been shown in the examples above that the light traces out an ellipse 

in the x-y plane (z=0) as it propagates in the z-direction. The ellipse is defined by the 

magnitudes of the orthogonal electric fields and their phase difference. 

2.2.1 Jones vector formalism 

The concept of polarization has been dealt with in an isotropic medium. However in many 

real life situations, such as an optical fibre, light propagation may be complex. The refractive 

index of the fibre may vary along the fibre length. It is therefore prudent to use simplified 

𝛿𝛿 = 450, 3150 𝛿𝛿 = 1350, 2250 
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mathematical formalisms that accounts for the changes in polarization of the light as it 

propagates through the medium. 

Equations 2.11-2.13 can be rewritten in an exponential complex forms as: 

𝐸𝐸(𝑧, 𝑡) = 𝑒̂𝑥𝑥𝐸𝐸𝑥𝑥(𝑧, 𝑡) + 𝑒̂𝑦𝑦𝐸𝐸𝑦𝑦(𝑧, 𝑡)                                                  (2.16) 

where the two orthogonal time dependent components of the electric field are given by; 

𝐸𝐸𝑥𝑥 = 𝐸𝐸0𝑥𝑥𝑒𝑖(𝛽(𝜔𝜔)𝑧−𝜔𝜔𝑡+𝛿𝑥)                                                                (2.17) 

𝐸𝐸𝑥𝑥 = 𝐸𝐸0𝑦𝑦𝑒𝑖(𝛽(𝜔𝜔)𝑧−𝜔𝜔𝑡+𝛿𝑦)                                                                (2.18) 

In equations 2.16-2.18  𝑒̂𝑥𝑥  and  𝑒̂𝑦𝑦 are unit vectors in the x and y directions respectively, 𝐸𝐸0𝑥𝑥 

and 𝐸𝐸0𝑦𝑦 represents the amplitude, and 𝛿𝛿𝑥𝑥 and 𝛿𝛿𝑦𝑦 are the phase angles. The z and t  

dependence on E have been dropped for simplicity. 

Substituting equations 2.17 and 2.18 into equation 2.16 yields 

𝐸𝐸 = �𝑒̂𝑥𝑥𝐸𝐸0𝑥𝑥𝑒𝑖𝛿𝑥 + 𝑒̂𝑦𝑦𝐸𝐸0𝑦𝑦𝑦�𝑒𝑖(𝛽(𝜔𝜔)𝑧−𝜔𝜔𝑡) = 𝐸𝐸0𝑒𝑖(𝛽(𝜔𝜔)𝑧−𝜔𝜔𝑡)           (2.19) 

where 𝐸𝐸0 is the complex amplitude for the polarized wave. The states of polarization are 

completely described by the relative amplitudes and the phases of the two orthogonal 

components. According to equation 2.19, the complex amplitude can be written in 

normalized vector form as (Jones, 1941); 

𝐸𝐸0 = �
𝐸𝐸0𝑥𝑥
𝐸𝐸0𝑦𝑦

� = 1

�𝐸0𝑥2 +𝐸0𝑦2
�
𝐸𝐸0𝑥𝑥𝑒𝑖𝛿𝑥
𝐸𝐸0𝑦𝑦𝑒𝑖𝛿𝑦

�                                                   (2.20) 

Jones vector notation may be used to describe different linear states of polarization. An 

example is horizontally polarised light for which 𝐸𝐸0𝑥𝑥 = 𝐴,𝐸𝐸0𝑦𝑦 = 0  and  𝛿𝛿𝑥𝑥 = 0; in this case, 

the Jones vector is given by  𝐸𝐸0 = 𝐴 �10�. 

The transmission properties of a two port optical system can be described by a two-by-two 

Jones matrix which relates the input and output Jones vectors. The Jones formalism can be 

used to measure polarization dependent effects on optical systems by measuring three output 

Jones vectors in response to three known input stimulus linear polarizations (Derickson  

1998). Jones vector formalism is limited to the description of fully polarized light. 
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2.2.2 Stokes vector formalism and the Poincaré sphere 

It is difficult to measure the electric field of a light wave but it is easy to measure the 

intensity. The Stokes formalism is another method for representing the states of polarization 

of light in terms of its intensity. Unlike the Jones vector, it deals with both partially and 

totally polarized light. As indicated in figure 2.2, each polarization ellipse may be described 

in terms of the two angles, 0 ≤ 𝜓𝜓 ≤ 𝜋 and −𝜋 4⁄ ≤ 𝜒𝜒 ≤ 𝜋 4⁄ . The state of polarization of a 

light wave with intensity 𝐸𝐸2, having orthogonal components with amplitudes 𝐸𝐸0𝑥𝑥, 𝐸𝐸0𝑦𝑦 and 

relative phase 𝛿𝛿 can be written in terms of the ellipse angles 𝜒𝜒 and 𝜓𝜓 ( Born, 1999). The four 

Stokes parameters can then be written as; 

𝑝𝑝𝑜𝑜 = 𝐸2

𝐸02
                                                                                            (2.21) 

𝑝𝑝1 =
𝐸0𝑥2 −𝐸0𝑦2

𝐸02
= 𝑐𝑜𝑝𝑝2𝜒𝜒𝑐𝑜𝑝𝑝2𝜓𝜓                                                          (2.22) 

𝑝𝑝2 = 2𝐸0𝑥𝐸0𝑦𝑐𝑜𝑜𝑠𝛿
𝐸02

= 𝑐𝑜𝑝𝑝2𝜒𝜒𝑝𝑝𝑖𝑛𝑛2𝜓𝜓                                                    (2.23) 

𝑝𝑝3 = 2𝐸0𝑥𝐸0𝑦𝑐𝑜𝑜𝑠𝛿
𝐸02

= 𝑝𝑝𝑖𝑛𝑛2𝜒𝜒                                                               (2.24) 

where 𝐸𝐸02 = 𝐸𝐸0𝑥𝑥2 + 𝐸𝐸0𝑦𝑦2  is the intensity of the polarized component of the light wave. 

The Stokes parameters  𝑝𝑝1 , 𝑝𝑝2 and 𝑝𝑝3 describe a point on the surface of a unit sphere as 

shown in fig. 2.6. The sphere is known as the Poincaré sphere and the three dimensional 

space is known as the Stokes space. The Stokes space provides a geometrical representation 

of the states of polarization (SOPs). Each point on the sphere represents a unique SOP. The 

poles represent circular polarization, while linear polarization lies on the equator. Left-

handed polarization is located in the southern hemisphere while right-handed polarization is 

located in the northern hemisphere. For fully polarized light, 𝐸𝐸 = 𝐸𝐸0 and so, 

𝑝𝑝𝑜𝑜2 = 𝑝𝑝12 + 𝑝𝑝22 + 𝑝𝑝32                                                                          (2.25) 

For partially polarized light, 𝐸𝐸 < 𝐸𝐸𝑜𝑜  and the degree of polarization (DOP) is given by, 

𝐷𝑂𝑃𝑃 =
�𝑠12+𝑠22+𝑠32

𝑠0
                                                                           (2.26) 
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 Figure 2.6: Stokes’ parameters representation on the Poincaré sphere. 

 

In agreement with equation 2.26, the light wave can exhibit various degrees of polarization. 

The 𝐷𝑂𝑃𝑃 = 1 when the light is fully (100%) polarized. The light exhibits partial (less than 

100%) polarization when the  𝐷𝑂𝑃𝑃 < 1. When the  𝐷𝑂𝑃𝑃 = 0, the light is not polarized 

(depolarized). In the case of normalized Stokes vectors, (𝑝𝑝1 𝑝𝑝𝑜𝑜⁄  , 𝑝𝑝2 𝑝𝑝𝑜𝑜⁄  , 𝑝𝑝3 𝑝𝑝0⁄ ), fully 

polarized light will be located by a point on the surface of the Poincaré’s sphere. Partially 

polarized light will be represented within the Poincaré sphere. The DOP is the distance 

between the point and the origin (O) of the Stokes space. The relationship between Stokes 

space and Jones space can be found in appendix A of this thesis. 

2.3 The optical fibre  

The optical fibre is a cylindrical waveguide usually made of silica (i.e, Glass) or plastic. It 

consists of a central core region surrounded by an outer cladding that has a slightly different 

refractive (𝑛𝑛1) index from that of the core (𝑛𝑛2)  as shown in figure 2.7.  

 

            

                

                                       Figure 2.7: An optical fibre cross-section 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑺𝟎 

2𝜒𝜒 𝑺𝟐𝟐 

𝑺𝟑 

𝒙 

𝑺𝟏𝟏 

𝑶 
2𝜓𝜓 

𝒛 

𝒚 

Cladding 
Core 

n2 

n1 

𝑛𝑛2 > 𝑛𝑛1 



15 

 

The core is doped with germanium to make its refractive index slightly higher than that of the 

surrounding cladding. Germanium is used as a dopant because of its absorption 

characteristics. It absorbs less energy at 1300nm and 1500nm, which are the operating 

wavelengths of most optical communication systems. The difference in refractive index 

enables the fibre to confine light to the core for transmission according to the principles of 

total internal reflection. 

2.3.1 Fibre geometry and light guiding requirements 

Fibre types are specified and characterised by their refractive index (RI) profiles.  This 

depends on the variation of the RI from the centre of the core to the core cladding boundary 

as well as the dimensions of the core and the cladding. 

The propagation of light through an optical fibre can be described in terms of a set of guided 

electromagnetic waves known as modes of the waveguide (Keiser, 2000, p. 35). Each guided 

mode is a pattern of electromagnetic and magnetic field distributions that is repeated along 

the fibre at specific intervals. Only a certain discrete number of modes are allowed according 

to the homogeneous wave equation and the boundary conditions at the core cladding 

interfaces. 

The number of allowed modes is related to the dimensions of the fibre and the operating 

wavelength of the fibre. In terms of the mode concept, optical fibres can be classified into 

single mode and multimode fibres. Ideally, single mode fibres as the name suggests transmit 

only one mode while multimode fibres transmit many modes. Standard single mode fibres 

have core diameters of 9µm and cladding diameters of 125µm (Hecht, 1999).  A typical 

multimode fibre has a core diameter of 100µm and a cladding diameter of 140µm. Fibre 

transmission characteristics are also dictated by their refractive index profiles. On this basis, 

fibres can be classified into step index and graded index according to the refractive index 

variation in the core (figure 2.8). Other special fibres such as dispersion shifted (DSF) and 

large effective area fibres LEAF have more complex RI profiles (Li et al, 2008). 
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Figure 2.8: Refractive index profiles of optical fibre; (a) Step index, (b) Graded index, 
and (c) Dispersion shifted. 

 

Figure 2.8 show the RI profile of some fibres. The basic difference is how the RI varies from 

the centre of the core to the cladding. For a step index profile as in Figure 2.8 (a), the RI is 

constant and changes abruptly at the core-cladding interface.  For a graded index profile, the 

RI changes gradually from the centre of the core to the core-cladding interface as shown in 

Figure 2.8 (b). The graded index fibres are used to reduce material dispersion. The RI profile 

of the dispersion shifted fibre has been modified in the core as shown in figure 2.8 (c). 

Dispersion shifted fibres were developed to reduce the effects of chromatic dispersion. 

2.3.2 Transmission characteristics of an optical fibre 

Light is confined and transmitted in the core of an optical fibre based on the principle of total 

internal reflection. This is due to the difference in the refractive index of the core and the 

cladding, with the core having a slightly higher index than the cladding. Using the ray model 

and Snell’s law (Ghatak, 2000), light entering the core at a critical angle 𝜃𝜃𝑐 will undergo 

multiple reflections at the core-cladding interface and hence continue to propagate in the core 

according to the relation; 

 𝜃𝜃𝑐 = 𝑝𝑝𝑖𝑛𝑛−1 �𝑛1
𝑛2
�                                                   (2.27) 

where 𝑛𝑛2 is the core refractive index and 𝑛𝑛1 is the cladding refractive index. 

As discussed in Section 2.3.1, an optical fibre can support the transmission of many modes. 

The modes are special solutions to the boundary conditions and have the specific property 

Core Cladding 

(a) (b) (c) 
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that their spatial distributions remain constant during propagation. An important waveguide 

parameter known as the normalised frequency or simply the V-number specifies the cut off 

conditions for single mode transmission. The V-number for a fibre of core diameter ɑ , core 

refractive index 𝑛𝑛2, cladding refractive index 𝑛𝑛1 which is operating at a wavelength 𝜆 is 

given by (Ghatak, 2000); 

 𝑉 = 2𝜋𝑎
𝜆
�𝑛𝑛22 − 𝑛𝑛12                                             (2.28) 

For single mode transmission, V < 2.405. According to equation 2.28, the fundamental  𝐻𝐸𝐸11 

mode has no cut off and only vanishes when the fibre core diameter, ɑ is zero. The V-

parameter can also serve as a guide in fibre design since it captures all the fibre parameters as 

well as the operating wavelength. Essentially, if the operating wavelength and the refractive 

index difference (𝑛𝑛2 − 𝑛𝑛1), are known, then the parameter that can be varied to achieve 

single-mode or multi-mode transmission is the core diameter ɑ.  

The mode theory can also be analysed using equation 2.10, which may be rewritten as;  

                                   � 𝜕
2

𝜕𝑥𝑥2
+ 𝜕2

𝜕𝑦𝑦2
� 𝐸𝐸(𝑥,𝑦) + [𝑘𝑜𝑜2𝑛𝑛2(𝑟) − 𝛽2]𝐸𝐸(𝑥,𝑦) = 0                       (2.29) 

where 𝑘𝑜𝑜2 ≡ 𝜔𝜔2𝜇𝜖 = (2𝜋 𝜆⁄ )2. 

For the sake of mathematical simplicity, the solution to equation 2.29 can be solved for a 

planar wave guide and the results for the three identified regions are as follows (Yariv, 1997); 

Region I (RI is 𝑛𝑛1)         𝜕
2

𝜕𝑦𝑦2
𝐸𝐸(𝑥, 𝑦) + [𝑘𝑜𝑜2𝑛𝑛12 − 𝛽2]𝐸𝐸(𝑥, 𝑦) = 0                                     (2.29a)                   

Region II (RI is 𝑛𝑛2)        𝜕
2

𝜕𝑦𝑦2
𝐸𝐸(𝑥,𝑦) + [𝑘𝑜𝑜2𝑛𝑛32 − 𝛽2]𝐸𝐸(𝑥,𝑦) = 0                                    (2.29b) 

Region III (RI is 𝑛𝑛3)       𝜕
2

𝜕𝑦𝑦2
𝐸𝐸(𝑥, 𝑦) + [𝑘𝑜𝑜2𝑛𝑛32 − 𝛽2]𝐸𝐸(𝑥, 𝑦) = 0                                    (2.29c) 
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 Figure 2.9: Propagating modes in a planar wave guide for the three regions (equation 
2.29a-c) showing the field distributions corresponding to the different values of the 
propagating constant [after Yariv, 1997]. 

 

For the analysis of the planar waveguide, it is assumed that 𝑛𝑛2 > 𝑛𝑛3 > 𝑛𝑛1. In the first 

instance, suppose that 𝛽 > 𝑘𝑜𝑜𝑛𝑛2, then (1 𝐸𝐸⁄ )(𝜕2𝐸𝐸 𝜕𝑥2⁄ ) > 0 everywhere, implying that 

𝐸𝐸(𝑥) is exponential in all three layers (Yariv,1997). For this solution, there should be 

continuity at the boundary. The resulting field distribution is as shown in figure 2.9(a). This 

solution is not physically possible since the field keeps increasing exponentially and does not 

correspond to a real wave. 
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For 𝑘𝑜𝑜𝑛𝑛3 < 𝛽 < 𝑘𝑜𝑜𝑛𝑛2, the solution is sinusoidal in region II since (1 𝐸𝐸⁄ )(𝜕2𝐸𝐸 𝜕𝑥2⁄ ) < 0 , 

but has an exponential solution in regions I and II. This results in two possible distributions 

as depicted in figures 2.9 (b and c) where the energy of the modes are confined to region II, 

the region with the highest index of refraction. 

In the situation where  𝑘𝑜𝑜𝑛𝑛1 < 𝑘𝑜𝑜𝑛𝑛3 , the solution is exponential in region I but sinusoidal in 

regions II and III as shown in figure 2.9(d). These modes are known as substrate radiation 

modes. Finally as illustrated in figure 2.9(e), the case where 0 < 𝛽 < 𝑘𝑜𝑜𝑛𝑛3  , gives rise to a 

sinusoidal behaviour in all the regions resulting in radiation modes. 

From the above analysis, it can be deduced that the allowed values of 𝛽 in the propagation 

region 𝑘𝑜𝑜𝑛𝑛3 < 𝛽 < 𝑘𝑜𝑜𝑛𝑛2 are discrete. The number of allowed confined modes depends on 

the thickness (t) of region II, the frequency and the refractive indices of the three regions. As 

the thickness t increase, the number of confined modes also increases. 

2.4 Optical fibre loss mechanisms 

In order to achieve optimum performance of an optical communication system, it is crucial 

that an optical signal propagates through a fibre with minimal distortion. In general, a signal 

propagating in an optical fibre experiences some losses resulting in signal degradation. The 

losses may occur as a result of the material make-up of the fibre, the shape of the fibre as well 

as the polarization properties of the propagating light signal. This section discusses fibre loss 

mechanisms which include attenuation, dispersion and nonlinear effects. 

2.4.1 Attenuation 

As light travels through a fibre, its optical power decreases exponentially with distance (z). 

This loss in energy is known as attenuation. If the optical power 𝑃𝑃(0) is the optical power at 

the origin (input, 𝑧 = 0), then the power at a distance 𝑧 further down the fibre is given by 

(Keiser,  2000, p.92); 

   𝑃𝑃(𝑧) = 𝑃𝑃(0)𝑒−𝛼𝑝𝑧                                                                      (2.30a) 

where  

   𝛼𝑝 = 1
𝑧
𝑙𝑛𝑛 �𝑃(0)

𝑃(𝑧)
�                                                                             (2.30b) 
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 In equation 2.30b, 𝛼𝑝 is the fibre attenuation coefficient in units of  𝑘𝑚𝑚−1. 

For simplicity in calculating optical signal attenuation in an optical fibre, it is conventional to 

express the attenuation coefficient in units of decibels per kilometre (dB/km) as; 

   𝛼(𝑑𝐵 𝑘𝑚𝑚)⁄ = 10
𝑧
𝑙𝑜𝑔 �𝑃(0)

𝑃(𝑧)
�                                                           (2.30c) 

Attenuation plays an important role in the design of an optical system because it determines 

the maximum transmission distance between a transmitter and a receiver. Attenuation is 

basically caused by absorption, scattering and radiative losses of the optical energy. 

Absorption losses are due to the nature of the fibre material while scattering losses may be 

attributed to both the fibre material and structural imperfections of the fibre. Attenuation due 

to radiative effects occurs as a result of perturbations (both microscopic and macroscopic) of 

the fibre geometry such as bending. 

Absorption may occur as a result of defects in the atoms or impurities in the glass material. 

Atomic defects of the fibre glass occur when the fibre is exposed to radiation, which changes 

the internal structure of the material. The impurities become a major source of absorption. 

OH ion impurity in particular is known to cause high attenuation at particular wavelengths 

where its presence results in high absorption peaks on the wavelength-attenuation curve 

(Keiser 2000). 

Scattering in the fibre occurs mainly as a result of variations in the material density, 

compositional fluctuations and structural in-homogeneities or defects which may arise during 

the fibre manufacturing process. Variations in the molecular density and compositional 

fluctuations due to the presence of oxides cause variations in the refractive index within the 

fibre over distances which are small compared to the order of magnitude of wavelength. The 

index variations causes Rayleigh scattering of the light, which has a wavelength dependence 

of  𝜆−4. As a result of this wavelength dependence, scattering losses decrease considerably 

with an increase in wavelength. Losses due to fibre geometry will be discussed in chapter 3.  

2.4.2 Dispersion effects 

Dispersion effects in an optical fibre distort an input optical pulse by causing a broadening of 

the pulse at the output. There are several dispersive effects which occur in an optical fibre, 

the most common being modal, chromatic and polarization mode dispersion. 
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In multimode fibres, modal dispersion occurs as a result of the difference in the velocities of 

the various modes. Modal dispersion may viewed as the dispersive effect caused by the 

discrete electromagnetic wave patterns travelling through different paths, hence causing a 

dispersion of the modes with time. This effect is minimal in single mode fibres. 

Chromatic dispersion is a combination of material and waveguide dispersion. This effect 

occurs as a result of the group velocity being a function of wavelength. Material dispersion 

arises from the variation of the group velocity as a function of wavelength. Material 

dispersion occurs as a result of the variation of the fibre core refractive index as a function of 

wavelength. Since material dispersion results from the wavelength dependence of the group 

velocity, it follows that the pulse dispersion will still occur even if all the wavelengths 

contained in a propagating pulse follow the same path. Waveguide dispersion occurs as a 

result of fibre design. Approximately 80% of the optical power propagates in the core while 

the remaining 20% propagates in the cladding at a faster rate. The difference in the 

propagating speeds in the cladding and core results in the waveguide dispersion. Chromatic 

dispersion can be controlled by adjusting waveguide dispersion to cancel out the effects of 

material dispersion during fibre design. These kinds of fibres are known as dispersion shifted 

fibres. 

Due to the cylindrical shape of the optical fibre, an optical pulse launched into it propagates 

as two identical orthogonal polarization modes. A distortion of the shape or a variation in the 

refractive index of the fibre may cause a delay between the two orthogonal polarization 

modes. The variation in the refractive index is known as optical birefringence. The time delay 

between the two propagating polarization modes (the differential group delay), is the 

magnitude of the dispersive effect known as polarization mode dispersion (PMD). The 

differential group delay is usually in the order of picoseconds. Effects which may vary the 

fibre birefringence are bending and twisting as well as environmental factors such as 

temperature variation and wind. The coupling of the light between fibre sections with 

different refractive indices (birefringence sections), is known as mode coupling. Mode 

coupling effects may complicate the effects of birefringence since travel times of the two 

orthogonal polarization modes may keep varying from one birefringence segment to the 

other. In line with the theme of this thesis, a more detailed background of polarization mode 

dispersion is presented in chapter 3. 
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2.4.3 Nonlinear effects 

Under normal conditions, light waves or photons which propagate through an optical fibre 

have little interaction with each other, and do not vary much during propagation except for 

the changes introduced by absorption and scattering. However a phenomenon known as 

nonlinear effect occurs when high optical powers are concentrated at a small area of dielectric 

materials. The result of this effect is that output optical power and input optical power are no 

longer proportional. Two nonlinear effects may be identified. The first is a result of nonlinear 

inelastic scattering processes, while the second nonlinear effect is caused by the intensity 

dependent variations of the refractive index of the fibre. 

Stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS) processes are 

nonlinear inelastic scattering effects. These effects reduce the intensity of some channels 

while providing gain to others, resulting in crosstalk between wavelength channels. SRS 

reveals how light waves interact with the vibrational modes of the molecules. When a photon 

is incident on a molecule with a bond having a particular frequency, the molecule absorbs 

some of the energy leaving the photon with a lower energy and frequency. If an already 

existing frequency is the same as the new frequency, the SRS light is amplified. Hence SRS 

causes a reduction for shorter wavelengths and a gain for longer wavelengths. 

SBS occurs as a result of scattering of light waves from acoustic waves. The resultant 

scattered waves propagate in a backward direction in single mode fibres (Keiser, 2000). The 

backscattered light gains energy from the forward propagating light, leading to a depletion of 

optical signal power. The frequency of the backscattered light experiences a Doppler shift 

that is dependent on the refractive index and the velocity of sound in the dielectric material. 

Non-linear effects which occur as a result of intensity-dependent variations of the refractive 

index produce effects such as self-phase modulation (SPM), cross-phase modulation (XPM) 

and four-wave mixing (FWM). SPM and XPM alter the phase of the optical signal leading to 

chirping of optical signals. In general, the refractive index increases with intensity and its 

corresponding nonlinearity is known as the Kerr nonlinear effect. Kerr non-linear effects 

produce a self-phase modulation where the fluctuating optical power of the light wave is 

converted to phase fluctuations of the same wave. XPM converts power fluctuations in a 

particular channel signal to phase fluctuations in other co-propagating channel signals. When 

SPM and XPM spectral broadening is combined with dispersion, the effect can be a major 
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limitation to long haul transmission links. FWM may occur as a result of the interaction 

between three co-propagating frequencies. The interaction produces a new frequency, wave 

whose frequency is dependent on the three original frequencies. This new frequency can 

result in serious crosstalk. A detailed analysis of the subject of non-linear effects can be 

found in Keiser (2000). 

In this chapter, the nature of light, including its propagation through a waveguide has been 

discussed. In addition some of the loss mechanisms encountered by a light wave propagating 

within a medium have also been treated. As the focus of this thesis, polarization mode 

dispersion which is a major loss mechanism is treated in detail in the next chapter. 
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CHAPTER 3 

POLARIZATION MODE DISPERSION 

3.1 Introduction 

As already mentioned in Section 2.4.2, polarization mode dispersion (PMD) is a dispersive 

effect resulting from the combined effects of optical birefringence and mode coupling.  PMD 

is an important concept to study because it causes serious capacity impairments including 

pulse broadening and signal fading in high speed digital systems as well as signal distortion 

in analogue systems. During data transmission the PMD of a fibre changes the polarization 

state of each frequency differently, adding a polarization modulation component to the signal. 

PMD is a stochastic phenomenon which varies randomly with time. This chapter discusses 

the characteristics and measurements of polarization mode dispersion. 

3.2 The origin of PMD 

Any arbitrary optical signal with a particular state of polarization (SOP), upon entering a 

single mode fibre may be regarded as a linear superposition of two fundamental 𝐻𝐸𝐸11 modes 

(Poole, 1997). In an ideal situation, these two modes are degenerate and orthogonal and 

propagate with the same phase and group velocities.  In real single mode optical fibres 

however, the effects of optical birefringence may result in a difference in phase and group 

velocity of the degenerate modes. The difference in phase velocity, results in a change in the 

SOP of the light. Group velocity changes give rise to dispersion, leading to a broadening of 

the output pulse as shown in figure 3.1a. The mode with a higher group velocity is known as 

the fast mode while the one with a lower group velocity is known as the slow mode. The 

magnitude of the PMD vector, known as the differential group delay (DGD), is the difference 

in the times of flight of the two propagating modes through the fibre. Signal fading and inter-

symbol interference may occur if the DGD exceeds a significant fraction of bit period. Signal 

fading and inter-symbol interference lead to system or network outages. 

For deployed or long single mode fibres, the magnitude and orientation of the birefringence 

axes vary randomly along the fibre as shown in figure 3.1b. The random changes in the 

birefringence axes are known as mode coupling. Environmental conditions further complicate 

the random variation of birefringence and mode coupling as a function of time.  
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The combined effects of birefringence and mode coupling are responsible for polarization 

mode dispersion. 

 

 

   

 

 

 

 

 

 

 

 

 

Figure 3.1: Dispersive broadening of an optical pulse in a single mode fibre due 

 to birefringence;(b) Randomly varying birefringence sections along an optical fibre. 

 

3.2.1 Birefringence  

Birefringence in a single mode optical fibre can be caused by both extrinsic and intrinsic 

factors as illustrated in figure 3.2.  Intrinsic factors such cause permanent characteristic 

features of the fibre and are accidentally introduced during the manufacturing process. These 

include core asymmetry and non-uniform stress in the cladding. A non-circular core is gives 

rise to geometrical birefringence while non-uniform stress fields result in stress birefringence 

(Rashleigh, 1983). During the fibre manufacturing process, the core (which is doped to 

slightly increase its index of refraction) attains a different thermal coefficient of expansion 

from that of the cladding. This difference gives rise to some significant amount of radial 

stress during cooling of the fibre after it has been drawn from the preform (Kaminow, 1981). 
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If the fibre is perfectly circular, as expected in an ideal case, then these fields would be 

symmetrical and would not cause any anisotropy in the fibre. However, if the core or the 

cladding is not circular as desired, then the fibre will have some non-uniform internal stress 

fields. Such stress fields introduce anisotropies in the core which result in birefringence. 

 

                         

 

 

 

 

 

 

   Figure 3.2: Intrinsic and extrinsic factors, responsible for birefringence. 

 

Currently, due to improved fibre manufacturing processes, intrinsic birefringence is greatly 

reduced, making it possible to realise low PMD coefficients as low as 0.05ps/km1/2  or less, in 

single mode fibres (Nelson, 2005). Birefringence however can be introduced by external 

factors during cabling and deployment. These extrinsic factors may include lateral stress, 

bending and twisting. Environmental factors such as temperature and wind may also cause 

birefringence, giving rise to PMD in deployed fibres (Cameron et al, 1998). 

In order to understand the effect of birefringence on a light wave system, consider a single 

birefringent segment of a single mode fibre such as one of the concatenated segments in 

figure 3.1(b).  Let the propagation vectors of the slow and the fast HE11 modes be 𝛽𝑠 and 𝛽𝑓𝑓 

respectively. Then the birefringence can be expressed as the difference between the 

propagating vectors: 

∆𝛽 = 𝛽𝑠 − 𝛽𝑓𝑓 = 𝜔𝜔Δ𝑛
𝑐

                                                                        (3.1) 
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where 𝜔𝜔 = 2𝜋𝑐
𝜆

 is the angular frequency of the light, 𝑛𝑛𝑠 and 𝑛𝑛𝑓𝑓 are the indices of refraction for 

the slow and fast modes respectively,  Δ𝑛𝑛 = 𝑛𝑛𝑠 − 𝑛𝑛𝑓𝑓 is the differential index of refraction and 

c is the speed of light in vacuum (Poole, 1997). 

The induced birefringence causes a difference between the times of flight of the fast and the 

slow polarization modes, known as the differential group delay (DGD), Δ𝜏𝜏. The DGD can be 

expressed in terms of the angular frequency derivative of the fibre as (Kogelnik, 2002): 

Δ𝜏
𝐿

= 𝑑
𝑑𝜔𝜔
�Δ𝑛𝜔𝜔

𝑐
� = Δ𝑛

𝑐
+ 𝜔𝜔

𝑐
𝑑Δn
𝑑𝜔𝜔

                                                             (3.2) 

where L is the length of the fibre section. In the absence of mode coupling the DGD is 

wavelength independent (provided that the differential index of refraction is wavelength 

independent). For polarization maintaining fibres (PMFs) and short single mode fibres (no 

mode coupling), the DGD increases linearly with fibre length and the PMD coefficient is 

reported in units of ps/km. 

Birefringence further acts to alter the states of polarization (SOP) of a propagating light. For 

an input light wave which is not aligned to any of the birefringent axes, the SOP evolves in a 

cyclic manner as the light propagates along the fibre.  

 

 

 

 

 

 

 

Figure .3.3: (a) Evolution of SOP of a light wave propagating through a birefringent optical 
fibre without mode coupling; (b) Concatenation of randomly oriented birefringent segments, 
representing a long length of single mode fibre with mode coupling. 
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Figure 3.3a illustrates how the SOP of a light wave launched midway between the two 

birefringent axes evolves. The propagation distance for which the phase difference equals 

integral multiples of 2π and the SOP repeats itself, is referred to as the beat-length (LB). For a 

propagating light with wavelength  𝜆 , and differential index  Δ𝑛𝑛 , the beat-length is given by 

𝐿𝐵𝐵 = 𝜆 Δ𝑛𝑛⁄  (Kogelnik, 2002). Standard telecommunication fibres can have beat lengths of 

~10𝑚𝑚 (Galtarossa et al., 2000). Generally the input and output SOPs of a propagating wave 

at a fixed wavelength will be different unless of course the fibre length is an integral multiple 

of the beat-length or the input light is aligned to one of the birefringent axes. 

If the input SOP of a propagating wave, with a fixed wavelength, is aligned with one of the 

birefringent axes, then the output SOP will be independent of wavelength. Consider on the 

other hand, a fixed input SOP which is not aligned to the either of the birefringent axes. If the 

wavelength is altered, the output SOP evolves in a cyclic manner, similar to that of the 

evolution of the SOP of a light wave propagating along the length of a fibre. The rate of 

change of the output SOP with respect to change in wavelength depends on the birefringence. 

This is the basis of frequency domain DGD measurement techniques such as the Poincaré 

sphere arc and Jones Matrix Eigenanalysis (JME) methods (see sections 3.4.1 and 3.4.2). 

3.2.2 Combined effects of birefringence and mode coupling 

As depicted in figure 3.3(b), a long length of single mode fibre can be treated as a 

concatenation of many birefringent segments, each with a unique length and a birefringence. 

The orientation of the birefringent axes varies for each segment creating mode coupling 

interfaces between adjacent segments. Mode coupling may occur due to variations in fibre 

geometry, composition and strain. These geometric perturbations may originate from the 

fibre preform, during drawing, or cabling. Fibre twists and splices along a fibre link are 

further extrinsic sources of mode coupling (Kaminow, 1981).  

The combined effects of mode coupling and birefringence are different from the case where 

the fibre is only affected by birefringence.  With the introduction of mode coupling, the 

effective birefringent axes and the DGD of a fibre link become wavelength dependent. 

Generally the output SOP changes in response to a variation of a fixed input wavelength, 

however at each wavelength, there exists an orthogonal pair of input SOP whose output SOPs 

remain constant for small changes in the input wavelength (Poole, 1986). These input 

polarization states are known as the principal states of polarization (PSPs). The PSPs are 
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orthogonal only in the absence of polarization dependence loss (PDL). The pair of PSPs at 

each wavelength is analogous to the idea of slow and fast axis; the only difference is that for 

fibre with mode coupling, the PSPs vary with wavelength. Furthermore, the PSPs need not be 

linear states and the output SOP need not be the same as an input SOP aligned with a PSP 

(Gibbon, 2007).  The DGD at a given time is defined as the difference in propagation times 

associated with the two PSPs at that particular wavelength.  

PMD values are typically reported as either the root mean square (RMS) or the mean of the 

DGD over a wavelength range. PMD does not accumulate linearly in long single mode fibres. 

Due to the random nature of mode coupling, the individual birefringent section constituting a 

fibre may either add or subtract depending on the orientation of their respective birefringent 

axes. This idea is positively exploited in modern telecommunication fibres where mode 

coupling is intentionally introduced by periodically spinning the fibre preform back and forth 

during the drawing process (Li 2008). The spinning introduces right-handed and left-handed 

circular polarization states, with linear polarization states in between.  Although the spinning 

process is imperfect, the residual PMD due to the induced mode coupling in a spun fibre is 

much less than the PMD without spinning.  The accumulation of the PMD is analogous to a 

random walk process and the PMD value (RMS of the DGD) is proportional to the square 

root of the fibre length (Gisin et al, 1991). As such the PMD coefficient of a long span of 

single mode fibre is defined as the PMD value normalized to the square root of the fibre 

length, and is reported in units of ps/km1/2. 

3.3 Definition of the PMD vector and second-order PMD 

Polarization mode dispersion at a specific wavelength is a vector completely defined by the 

DGD (its magnitude) and the PSPs (the direction). It is traditional to represent PMD to the 

first order with a vector in three dimensional Stokes space as: 

𝜏𝜏 = 𝜏𝜏𝑞𝑞�                                                                                               (3.3) 

where 𝜏𝜏 is the DGD and 𝑞𝑞� is a unit vector pointing in the direction of the slow PSP 

(Kogelnik, 2002). The notation of 𝜏𝜏 is used to represent the DGD instead of ∆𝜏𝜏 for simplicity. 

The vector −𝑞𝑞� which is oriented 180o from 𝑞𝑞� in Stokes space represents the fast PSP.   There 

are minor variations in the definition of PMD vector in literature with regards to whether it is 

aligned with the fast or slow PSP. For instance Poole defined the PMD vector to point in the 
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direction of the fast PSP with left circular polarization in Stokes space (Poole et al, 1988a). 

The definition used here applies to right circular polarization in Stokes space, which is 

denoted by (001). 

Polarization mode dispersion can also be affected by changes in angular frequency. This 

results in second-order PMD (SOPMD) which refers to the change in PMD vector with 

respect to optical angular frequency, expressed as: 

𝜏𝜏𝜔𝜔 = 𝑑𝜏�
𝑑𝜔𝜔
𝑞𝑞� + 𝜏𝜏 𝑑𝑞�

𝑑𝜔𝜔
= 𝜏𝜏𝜔𝜔𝑞𝑞� + 𝜏𝜏𝑞𝑞�𝜔𝜔                                                        (3.4) 

A geometric vector analysis of SOPMD is shown in figure 3.4. The first term, 𝜏𝜏𝜔𝜔𝑞𝑞�,  in eq.3.4 

is a vector parallel to the differential delay 𝜏𝜏  in Stokes space. It denotes the change in DGD 

with wavelength and is responsible for polarization chromatic dispersion (PCD). The sign of 

PCD is positive when the PCD vector points in the direction of  𝜏𝜏 and negative when it points 

in the opposite direction of  𝜏𝜏 . The 𝜏𝜏𝑞𝑞�𝜔𝜔 term indicates a rotation of the PSP in Stokes space 

with a change in angular frequency and is referred to as the PSP depolarization term. The 

vector 𝑞𝑞�𝜔𝜔 has a magnitude of 𝑑𝜙𝜙 𝑑𝜔𝜔⁄ , where 𝜙𝜙 is the angle swept through by the PMD 

vector with changing angular frequency.  

 

 

 

 

 

 

 

Figure 3.4: A schematic diagram of the PMD vector 𝜏𝜏(𝜔𝜔) and the second order components 
showing how 𝜏𝜏(𝜔𝜔) changes with frequency. Depolarization, 𝜏𝜏𝑞𝑞�𝜔𝜔, and PCD, 𝜏𝜏𝜔𝜔𝑞𝑞�  are the 
orthogonal components of the second order PMD vector 𝜏𝜏𝜔𝜔.b [after Kogelnik,2002} 

 

Since the PCD and the depolarization vectors are orthogonal to one another, the magnitude of 

the SOPMD vector is given by: 
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|𝜏𝜏𝜔𝜔| = �|𝜏𝜏𝜔𝜔𝑞𝑞�|2 + |𝜏𝜏𝑞𝑞�𝜔𝜔|2                                                                 (3.5) 

It has been shown both by theory and experiment that depolarization is the more dominant 

SOPMD component with an expectation: 𝐸𝐸(|𝜏𝜏𝑞𝑞�𝜔𝜔|2) = 8
9
𝐸𝐸(|𝜏𝜏𝜔𝜔|2), where E denotes the 

expectation operator (Foschini, 1991; Nelson , 1999). It has been shown by Nelson (1999) 

that high depolarization is usually associated with relatively small DGD values. Generally 

first-order PMD is known to pose more problems in terms of limiting network performance 

than SOPMD. SOPMD can however severely limit the performance of high speed networks 

for which the PMD varies significantly within the signal bandwidth. This is particularly the 

case when the DGD value is small and the depolarization is large. This is usually the case 

when first-order PMD is compensated for in a link with an initially high DGD before 

compensation (Gibbon, 2007). 

3.4 PMD measurement techniques 

The interaction of light with matter (a dielectric medium) may either change the properties of 

the light or that of the medium. In measuring polarization mode dispersion, the properties of 

light (frequency, phase, and polarization) before and after interaction with the fibre are very 

crucial. In single-mode fibres, the DGD (PMD magnitude) can also be measured as the 

difference between the transient times of the fast and the slow modes as they propagate 

through the fibre. PMD measurements can thus be classified into time domain and frequency 

domain measurement techniques. Frequency domain techniques includes the Jones Matrix 

Eigenanalysis (JME) method (Heffner, 1992, 1993), the Poincaré sphere arc method 

(Andersciani, 1987; Poole, 1988), the Poincaré sphere analysis (PSA) method (Cyr 1999, 

1999a), the fixed analyser method (Poole, 1994; Gisin, 1994) and the Mueller matrix method 

(Williams 2005; Jopson, 1999). Time domain measurement techniques include the time of 

flight method (Williams, 2005), interferometric methods (Gisin, 1991) and polarization 

optical time domain reflectometric techniques (Rogers, 1981; Galtarossa, 2005).  Commercial 

PMD instruments are available and such instruments were applied in the measurement of 

PMD in this thesis. This chapter gives a brief background of some of the measurement 

techniques mentioned above which are applied later in this thesis.  
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3.4.1 The Poincaré sphere arc method 

Due to the effects of PMD, a light wave with a given SOP (𝑝̂𝑝)   at the input of the fibre will 

vary from the output SOP (𝑡̂) according to the relation, 𝑡̂ = 𝑅𝑝̂𝑝, where R is a 3x3 Mueller 

rotation matrix describing  the transformation in Stokes space. In a similar manner, a change 

in the wavelength of a fixed SOP (𝑝̂𝑝)   will result in a change in the output SOP (𝑡̂)   which 

can be expressed as (Nelson, 2005): 

𝑡̂𝜔𝜔 = 𝑑𝑡̂
𝑑𝜔𝜔

= 𝜏𝜏 × 𝑡̂                                                                               (3.6) 

where 𝜏𝜏 ×= 𝑅𝜔𝜔𝑅𝑇 and 𝑅𝑇 is the transpose of the Mueller rotation matrix.  

Equation  3.6 is in accordance with the so called law of infinitesimal rotation and it describes 

the circular rotation of the output SOP about the PMD vector (𝜏𝜏) as the angular 

frequency/wavelength of a fixed input SOP is varied. This is illustrated in figure 3.5 for a 

birefringent fibre with mode coupling. As the angular frequency of a fixed SOP changes from 

𝜔𝜔1 to 𝜔𝜔1 the output SOP traces out an arc about the PMD vector. Due to the effect of mode 

coupling, the orientation of the PMD vector changes with changing angular frequency. Hence 

the output SOP traces out a seemingly random trajectory on the surface of the Poincaré 

sphere.  Any two points on the trajectory traced by the output SOP, representing a change in 

angular frequency (∆𝜔𝜔 = 𝜔𝜔1 − 𝜔𝜔2), is section of a circular arc about the PMD vector in 

accordance with the law of infinitesimal rotation.  

The speed with which the output SOP rotates about the PMD vector depends on the DGD of 

the fibre and is expressed as: 

𝜏𝜏 = �∆𝜃
∆𝜔𝜔
�                                                                                             (3.7) 

where ∆𝜃𝜃 denotes the rotation angle in radians. The output SOPs rotate about the PSP axis 

due to an incremental change in the input optical frequency, ∆𝜔𝜔 = 𝜔𝜔1 − 𝜔𝜔2 (Poole 1998). 

During a single measurement step, the DGD and the PSP about which the rotation occurs are 

determined and assigned to a particular wavelength corresponding to an angular frequency 

midway between  𝜔𝜔1 and 𝜔𝜔2. 
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Fig.3.6: Illustration of how the PMD vector is determined using the Poincaré sphere 
arc method.  

                                                                                                                

A systematic stepping of the angular frequency of a fixed input SOP in incremental steps 

over a desired wavelength range makes it possible to measure both the DGD and PSP as a 

function of wavelength. 

The Poincaré sphere arc method works well for fibres with negligible mode coupling. In the 

case of random mode coupling where PSPs vary rapidly with wavelength, the method leads 

to inaccurate results. Errors are further introduced accidentally when an input SOP 

corresponds to (or close to) a PSP. In this case the output SOP remains unchanged for an 

incremental change in wavelength, thus introducing measurement errors. Due to these 

shortcomings, the JME method and PSA method are generally preferred when DGD and PSP 

are to be measured as a function of wavelength. 

3.4.2 The Jones Matrix Eigenanalysis method (JME)  

Following the results in section 2.2.3, the transmission of a monochromatic light wave 

through a linear medium such as an optical fibre can be represented in Jones space as 

𝐸𝐸𝑜𝑜𝑢𝑡 = 𝑇(𝜔𝜔)𝐸𝐸𝑖𝑛 , where 𝑇(𝜔𝜔) is an independent transfer matrix that characterizes the 

medium. By measuring the transfer matrix of the medium, it is possible to determine the 

DGD and PSP of the fibre. The DGD at an angular frequency midway between the two 

closely spaced angular frequencies, 𝜔𝜔1 and 𝜔𝜔2, is given by: 
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𝜏𝜏 = �
𝐴𝑟𝑔�𝜌1 𝜌2� �

𝜔𝜔2−𝜔𝜔1
�                                                                                 (3.8) 

where 𝜌1 and 𝜌2 are the eigenvalues of the matrix product 𝑇(𝜔𝜔2)𝑇−𝑇(𝜔𝜔1) and  Arg is the 

argument function defined as; 𝐴𝑟𝑔�𝑎𝑒𝑖𝜃� = 𝜃𝜃. Furthermore, the fast and the slow PSPs of 

the fibre are given by the two eigenvectors of 𝑇(𝜔𝜔2)𝑇−𝑇(𝜔𝜔1)  (Heffner 1992, 1993). 

\ 

 

 

 

 

Figure 3.7: A typical experimental setup of a Jones Matrix Eigenanalysis method 
used to measure PMD.    

 

Figure 3.7 shows a typical experimental setup of a JME method for determining PMD. The 

tunable laser is incrementally stepped across a carefully chosen wavelength range. After each 

step, the transmission matrix of the fibre at that wavelength is determined by measuring the 

output SOPs (via the polarimeter) of three known input SOPs.  The calculations involved in 

the computation of the transfer matrix are simplified when three linear input states of 

polarization such as 00,450 and 900 are chosen. In principle any three distinct known input 

SOPs may be used (Derickson 1998). The DGD and PSPs at intermediate wavelengths 

corresponding to angular frequencies of �𝜔𝜔𝑛+𝜔𝜔𝑛−1

2
� are then determined across the 

measurement range from the eigenvalues and eigenvectors of  𝑇(𝜔𝜔𝑛)𝑇−𝑇(𝜔𝜔𝑛−1). In addition, 

the PCD and depolarization can also be determined from the angular frequency derivative of 

the PMD vector according to equation 3.4. The JME measurement technique is a standard 

PMD measurement technique and it is applied later as a reference test method in chapters 6 

and 7 to measure mean DGD and root mean square DGD values of four fibres. 
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3.4.3 Mueller matrix method  

The Mueller matrix method (MMM) (Jopson et al, 1999) determines the PMD in a similar 

manner to the JME technique, with a few differences. The fundamental difference is that 

calculations are carried out in Stokes space for MMM while JME uses Jones space. Further, 

during MMM measurements the absence of PDL is assumed entirely, contrary to the JME 

technique which assumes the absence of PDL only during the last step when the DGD is 

being calculated. Because of these basic differences in measurement principle, the algorithm 

for the MMM is much more simplified compared to the JME technique. For the MMM the 

PMD vector is calculated in Stokes space using the Mueller rotation matrix instead of the 

Jones space where the Jones transfer matrix is used. Hence the MMM uses only two different 

input SOPs at each wavelength, unlike the JME method where three known input SOPs must 

be used. A major advantage with the MMM is that, the two input SOPs need not be known. 

This leads to greater measurement accuracy, making the MMM more suitable for the 

measurement of second-order PMD, where an accurate determination of the PMD vector is 

desired. The major drawback of this method is that it is susceptible to errors in the presence 

PDL, unlike the JME method which remains exact in the presence of PDL. The reader is 

referred to Jopson et al. (1999) and Williams (2004, 2005) for further details. 

3.4.4 Time of flight technique 

The time of flight technique is an intuitive time domain measurement technique. Figure 3.8 

shows how narrow pulses of light propagate through a non-mode coupled device of DGD 

∆𝜏𝜏 = 𝜏𝜏𝑠 − 𝜏𝜏𝑓𝑓 , where subscripts s and f denote slow and fast. The propagation delay through 

the device will be 𝜏𝜏𝑠 (if it is polarized along the slow PSP), or  𝜏𝜏𝑓𝑓  (if it is polarized along the 

fast PSP). If the polarization state of the input pulse lies in between the slow and the fast PSP, 

the pulse breaks into two components with delays, 𝜏𝜏𝑠 and 𝜏𝜏𝑓𝑓  and the relative intensities 

weighted according to the projection of the input polarization state on the PSP.  
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Figure 3.8: Illustration of input pulses launched simultaneously into the fast and the slow 
PSPs of a device. The difference in the emergence times of the pulses corresponds to the 
differential group delay.  

 

Figure 3.8 shows a narrow pulse of light launched into a non-mode coupled fibre of DGD ∆𝜏𝜏. 

In this method, short optical pulses are launched into the fibre and detected at the output. A 

fast oscilloscope plots the arrival time of the pulses as the input polarisation state is changed. 

This method is commonly found in literature (Poole, 1988a; Namihira and Maeda 1992; 

Williams 2005), but it is impractical because the pulse width limits temporal resolution. 

Narrow pulse widths on the order of the desired DGD are a requirement for this technique. 

3.4.5 The interferometric technique 

Interferometric methods for determining PMD are similar to the time of flight method 

discussed in section 3.3.4, however it is more practical.  The technique is very popular for 

field work since it facilitates the rapid and accurate determination of PMD even in the 

presence of fibre movements and vibrations. Furthermore, it has an advantage over 

polarimetric methods such as the Poincaré sphere arc method and the JME which are time 

consuming and requires stability of the fibre during measurements. Polarimetric techniques 

are thus unsuitable for measurements in the field especially in the case of aerial fibres.  

Varied forms of the interferometric technique such as the traditional interferometric 

technique (TINTY) and the generalized interferometric technique (GINTY) are available 

commercially. The grounding theory behind this technique however is interferometry. In 

most cases, a Michelson interferometer is used.  A detailed description of this technique is 

reported in Chapter 5 (sections 5.1 and 5.2) of this thesis where it is applied to measure PMD 

of different fibre types. 

slow axis 

fast axis 

∆𝜏𝜏 
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Apart from classification into frequency and time domain techniques, PMD measurements 

can also be classified into single-end and forward measurements. In forward measurements, 

both ends of the fibre are required. The optical source is placed at one end of the fibre and 

detected at the other end. In single-end measurements only one end of the fibre is required, 

thus the source and the detector are located at the same position. By this classification the 

measurement techniques discussed in this section fall under forward measurement 

techniques. Single-end measurement techniques make use of both Rayleigh backscattered 

signal within the fibre as well as the Fresnel reflection at the fibre far end.   

Single-end techniques which are also known as reflectometric measurement techniques 

include optical time domain reflectometry, polarization sensitive optical time domain 

reflectometry (P-OTDR), and polarization optical frequency domain reflectometry (O-FDR). 

An overview of reflectometric measurement techniques is presented in chapter 4 of this 

thesis.  
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CHAPTER 4 

REVIEW OF REFLECTOMETRIC MEASUREMENT TECHNIQUES 

4.1 Introduction 

Most standard optical fibre loss measurement techniques including polarization mode 

dispersion require the use of both fibre ends for input and output light in order to make 

measurements. These measurement techniques may be destructive, requiring a piece of the 

fibre to be cut off (e.g. the cut back technique). These standard methods known as forward 

measurements are not very practical for use in the field where fibre ends are separated several 

kilometres apart. Mostly fibres have to be looped in order to make measurements or monitor 

installed fibre. In the case of PMD these techniques only provide the total or mean value for 

the entire link over a range of wavelengths or frequencies. PMD may be high at specific 

sections of the link and measuring it on a global scale may be deceptive (Cameron 1999). In 

recent years single-end reflectometric measurement techniques have been developed and 

applied extensively to measure and characterize optical fibre including its differential group 

delay and birefringence. Single-end optical time domain reflectometric (OTDR) techniques 

were pioneered by Rogers, 1980; Brinkmeyer, 1980; Nakazawa, 1983 and Heatly, 1985.  By 

the end of the 1990s, Corsi, 1998, 1999a,b,c;   Galtarossa, 1999; Hurtner 1999 had developed 

polarization sensitive optical domain reflectoctometry (P-OTDR) techniques extensively. 

More recently (Dong, 2007; Galtarossa, 2008; Fosuhene, 2010; and Palmieri 2011) have 

applied the technique to measure instantaneous differential group delay and root mean square 

differential group delay. Some of the practical advantages of single-end measurement 

techniques are that: 

a) they make use of only one end of the fibre during measurements; 

b) they are easy to use in the field; 

c) they measure local DGD as well as beat length and correlation length. 

Thus the main attraction of these techniques is that they are non- destructive but yet effective 

for evaluating fibre characteristics. Most OTDR techniques are time-domain based such as 

the single pulse OTDR and the correlation OTDR. On the other hand, frequency-domain 

techniques (OFDRs) provide higher resolution even to the sub-centimetre level and can 

therefore reveal more information about the fibre in terms of its loss profile and mechanisms. 
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4.1.1 Basic principles 

When a probe signal is launched into a fibre, a certain quantity of the signal is backscattered 

or reflected back towards the input end of the fibre, depending on the physical structure of its 

core. Since its original development, OTDR techniques have undergone many subsequent 

developments due to improvements in optical sources and detection techniques. It is now 

possible to measure several fibre parameters and characteristics from a single OTDR trace. 

The signal backscattered in the fibre is due mainly to two effects, Rayleigh scattering of the 

signal as it encounters inhomogeneous sections in the fibre as well as the Fresnel reflection at 

glass-air interface at the fibre end face. The basic idea is to monitor the time dependence and 

distribution of the attenuation signal backscattered by a short pulse of light through a fibre. 

These same techniques can be applied for sensing the spatial distribution of the external fields 

which affect the light propagation conditions such as electric, magnetic, stress, strain and 

temperature.  

4.1.2 Theoretical description of the conventional OTDR 

A basic OTDR launches a short input pulse into the fibre and measures the returned signal as 

a function of time. The fraction of the signal being returned is due to its interaction with both 

Rayleigh scattering and Fresnel reflection sites within the fibre. Measurement of the arrival 

time of the signal, offers the opportunity to determine the magnitudes and location of faults 

within the fibre link. An OTDR trace (signature) is a backscatter impulse response of the 

fibre response and characterizes the fibre loss profile. Figure 4.1 shows a block diagram of a 

conventional OTDR. It esentially consists of a pulse generation system made up of a laser 

diode and a pulse generator which is triggered by the signal processor to modulate the 

intensity of the laser. In most cases the signal is a single square pulse with width between 5ns 

and 10µs depending on  sensitivity  and spartial resolution requirements. Some OTDRs are 

equipped with two lasers via wavelength division multiplexing in order to probe with 

different wavelengths (typically 1310nm and 1550nm). The input signal is coupled into the 

fibre via the bidirectional coupler with a 50:50 split ratio at the measurement wavelength. In 

principle any other three port component  such as a beam splitter, isolator or a circulator 

could be applied, the basic requirement being a sufficient isolation between ports. 
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Figure 4.1: Block diagram of an OTDR measurement set-up. 

The launch pulse is fed into the coupler at point 1, enters the fibre under test via point 2 of the 

circulator. The backscattered signal is then received at the detection system via point 3 of the 

circulator.  The detection system consists of a photodetector and an amplifier. The detector is 

required to exhibit high dynamic range and sensitivity for detection of signals covering 

several orders of magnitude.  An analogue-to-digital convertor (ADC) interfaces measured 

data to the processor for processing and computing after which it is displayed digitally. The 

function of the ADC is to provide the required sampling rates between adjacent data samples. 

The sampling rates determine the spatial resolution of the system. 

4.1.3 OTDR backscatter signal and analysis 

The total attenuation (α) that constitutes an OTDR signal includes both absorption (αɑ) and 

Rayleigh scattering (αs) and can be expressed as   

 𝛼 = 𝛼𝑎 + 𝛼𝑠                                           (4.1)                                                    

The relationship between the transmitted power P(x) and incident power P(0) at a distance x 

is given by,  

     𝑃𝑃(𝑥) = 𝑃𝑃(0). exp (−αx)                                                                  (4.2) 
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where α is the attenuation coefficient measured in km -1 units. If the attenuation coefficient is 

expressed in terms of dB unit as is more commonly the case for loss measurements, the above 

expression becomes, 

 𝑃𝑃(𝑥) = 𝑃𝑃(0). 10
−𝛼𝑑𝐵
10 𝑥𝑥               (4.3) 

where 

                          𝛼𝑑𝐵𝐵 = 10
𝑙𝑛10

𝛼 ≈ 4.34𝛼                                                                    (4.4) 

In the above analysis the attenuation limit is bounded by  𝛼𝑠; 0 ≤ 𝛼𝑎 ≪ 𝛼𝑠. 

                         

 

 

 

                           Figure 4.2: Scattering inside a fibre element of length L. 

Consider a pulse with a temporal duration τ which experiences scattering in an optical fibre 

of elemental length L as depicted by figure 4.2. The distance L traversed by the pulse within 

the segment is given by 

 𝐿 = 𝜏𝜏𝑣𝑣𝑔 = 𝜏𝜏 𝑐
𝑛𝑔

                                                                                 (4.5) 

where 𝑣𝑣𝑔is the group velocity, c is the speed of light in vacuum and 𝑛𝑛𝑔 is the group refractive 

index of the glass fibre. 

The scattered power 𝑑𝑃𝑃𝑠  with respect to distance at a position x within an infinitesimally 

small element 𝑑𝑥 is related to the pulse power P(x) by, 

    

                       𝑑𝑃𝑃𝑠 = 𝑘𝑃𝑃(𝑝𝑝)𝑑𝑥                                                             (4.6) 

L 
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where 𝑘 = 𝑆𝑆𝛼𝑠 and 𝛼𝑠~ 1
𝜆4

 is the scattering coefficient. 

The backscatter capture coefficient S which represents the fraction of light guided back into 

the OTDR in all directions is given by the equation (Neuemann,  1980; Brinkmmeyer, 1980 

and Nakazawa, 1983), 

 

                     𝑆𝑆 = �𝑁𝐴
𝑛0
�
2 1
𝑚

                                                                                   (4.7) 

where NA is the numerical aperture of the fibre, 𝑛𝑛0 is the refractive index of the fibre core 

and m (typically 4.55 for single mode fibres) depends on the refractive index profile 

(Derickson, 1998). 

Now consider the backscatter response caused by a rectangular pulse of width W with a 

leading edge located at 𝐿 = 𝑇𝑣𝑣𝑔 (figure 4.3a-c). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Backscatter round trip time for three different scenarios (t=2T) (after, 
Derickson 1998). 
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In figure 4.3(a) light is backscattered from the leading edge and it reaches the front point of 

the OTDR in a round trip time of t=2T after covering exactly the same distance.  At time 

𝑡 = 𝑇 + 𝜏𝜏/2, where the trailing edge hits the distance 𝐿 −𝑊/2  (figure 4.3b), the light will 

travel with a time of 𝑡 = 𝑇 − 𝜏𝜏/2 back to the input point of the OTDR covering a round-trip 

time of t=2T. Now consider a short ΔW lagging the pulse leading edge by 2Δx at time 

t=T+Δt (figure 4.3c). The backscattered light now travels with time t=T-Δt back to the OTDR 

input again covering a round trip time of t=2T. We can therefore generalize from the above 

scenarios that at any particular time t=2T, the backscattered power collected by the OTDR 

will be an integral sum of the backscatter signal within the interval; 𝐿 − 𝑊
2

< 𝑥 < 𝐿 when 

probing with a pulse of width W. 

Applying this idea to the signal power equation and taking note of attenuation and 

simplifying yields (Derickson, 1998); 

 𝑃𝑃𝑠(𝐿) = ∫ 𝑆𝑆𝛼𝑠
𝑊
0 𝑃𝑃(0)𝑒𝑥𝑝𝑝 �−2𝛼 �𝐿 + 𝑥𝑥

2
�� 𝑑𝑥                                 (4.8) 

 = 𝑆𝑆 𝛼𝑠
𝛼
𝑃𝑃(0)𝑒𝑥𝑝𝑝(−2𝛼𝐿)(1− exp(−𝛼𝑊))                                      (4.9) 

with  𝐿 ≥ 𝑊/𝐿,  and 𝑡 ≥ 𝜏𝜏 

For distances within the interval [0,W/2],  

 𝑃𝑃𝑠(𝐿) = 𝑆𝑆 𝛼𝑠
𝛼
𝑃𝑃(0)𝑒𝑥𝑝𝑝(−𝛼𝑊)(1 − exp(−𝛼𝐿))                            (4.10) 

The initial backscattered power P(i) can be approximately estimated for L=W/2 from the 

previous equation by conversions between exponential functions and polynomials yielding 

 𝑃𝑃(𝑖) = 𝑃𝑃𝑠 �
𝑊
2
� ≈ 𝑆𝑆𝛼𝑠𝑃𝑃(0)𝑊                                                         (4.11)  

For short pulses (𝛼𝑊 ≪ 1), hence, 

 𝑃𝑃(𝑖) = 𝑃𝑃𝑠 �
𝑊
2
� ≈ 𝑆𝑆𝛼𝑠𝑃𝑃(0)exp (−2𝛼𝐿)                                         (4.12) 

The above equations indicate the important parameters for the effective operation of the 

OTDR. For narrow pulses, the backscatter power is proportional to the pulse duration τ. 
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These equations are therefore important for the selection of an appropriate pulse width in 

order to achieve the right accuracy in terms of resolution of a measurement. 

4.1.4 OTDR fibre trace  

A diagram of a generic OTDR measurement is shown in figure 4.4. The vertical scale is the 

back-reflected signal level in decibels (logarithmic scale), and the horizontal axis represents 

the distance between the OTDR and a location along the fibre. This is a linear scale and it is 

converted to distance from the time measurements of the backscattered data. Typically, a 

conversion factor of 10µs/km is used as the round trip propagation delay of light within an 

optical fibre. From calculations indicated above in previous equations, the accuracy depends 

on exact timing and the fibre’s group index. There are various variations of the OTDR 

(Healy, 1986) depending on the detection type or the kind optical source being applied. 

The backscattered response of the fibre has four major features: 

1. A large initial peak resulting from Fresnel reflection at the input end of the 

fibre. 

2. Straight lines caused by the Rayleigh scattering along the length of the fibre, 

3. Steps or abrupt shifts along the straight line due to losses at fibre joints or 

connectors, or bends. 

4. Positive spikes from Fresnel reflections at the end of the far end of the fibre, 

some fibre joints, breaks and imperfections.  
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Figure 4.4: An OTDR trace of two fibre spools of lengths 5km each measured at the 

N.M.M.U optical fibre laboratory by the author. 

The first event seen on any OTDR trace is the reflection from the connection of the 

instrument to the fibre input end. This Fresnel reflection is brought about when light enters a 

medium with a different refractive index. OTDRs are joined to the test fibre by a connector. 

A clean high quality connector is important to give low reflectance as some information may 

be hidden at the front end of the fibre. The open end of a non-terminated fibre causes strong 

Fresnel reflections depending on the condition of the fibre end. A perfect fibre end reflects 

about 4% of light incident on it. This is usually seen at the end of the OTDR fibre trace, 

where since no optical power is detected, the signal drops to the noise level of the detector.  

The straight lines give the attenuation of the fibre in dB/km since the plot is that of power 

(dB) verses distance. Fusion splices causes a sudden drop in the backscattered level of the 

plot, and the size of the drop is the “insertion loss” of the splice. A similar drop in the power 

level on the plot is produced by a bend, but in this case, the drop in power level is not so 

sudden as opposed to the sharp drop of the fusion splice. In the case where the sudden drop in 

power level has a spike superimposed on it, or even on the straight portion of the trace, it is a 

mechanical splice, a connector or a crack in the fibre. These are known as reflective events 

whilst the bends and fusion splice are non-reflective events.  

bend 

Front connector 

Fusion splice Fibre end 
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There are situations whereby reflective events can cause features known as “ghost’’ events. If 

the fibre being tested has connectors or any device along the link that gives high reflectance, 

echoes generated from multiple reflections from the device can give spikes at false locations 

on the trace. An echo pulse moving from the fibre to the OTDR is partially reflected at the 

front connector of the OTDR back into the fibre, thus acting as an additional delayed pulse. 

The repetition rate of the pulse if too fast and not adapted to the fibre, would overlap at the 

detector giving rise to wrong data. If connectors are clean and well maintained, the echo is 

too small to give “ghost” features. Ghost features are located at twice the actual reflective 

event if the first reflective event is taken to be at the front connector of the OTDR. 

OTDRs are used as estimators of the above fibre parameters but to ensure accuracy, it is 

always good to measure the fibre at both ends and some averaging should be performed.  

OTDRs are only good for estimating some system loss mechanisms. However for measuring 

the PMD, and other fibre characteristics such as beat length and coupling length, the setup 

needs to be improved to achieve these purposes. The next few sections deal with these issues. 

4.2 Polarization sensitive optical time domain reflectometry (P-OTDR) 

This is another form of the reflectometric technique but it is modified to be polarization 

sensitive. A.J. Rogers (1981) observed that by monitoring the evolution of the states of 

polarization (SOPs) backscattered by an OTDR signal, the changes in birefringence effects 

caused by any external perturbations can be inferred. The P-OTDR was originally designed 

as a sensor, but has been applied extensively to characterize single mode optical fibres 

(Galtarossa ,2003, 2004;  Wuilpart,  2002;  Dong ,  2007; Palmieri et al 2011). The advantage 

of the technique is that, once the birefringence is extracted, many of the fibre’s parameters 

including polarization mode dispersion, correlation length, beat length and even polarization 

dependent loss can be deduced. Again, the measurement is spatially resolved so point to point 

information can be obtained from the birefringence information. Figure 4.5(a) shows a typical 

P-OTDR signal showing how birefringence is distributed along the fibre. Magnified sections 

of the same trace are shown in figures 4.5(a) and 4.5(b).  Compared to the OTDR signal such 

in figure4.4, the P-OTDR gives more detailed information about the fibre.  
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Figure 4.5: (a) A P-OTDR 7racel showing how birefringence varies with distance for a 3.5 
km fibre (measured by the author in Padova, Italy June 2009); (b) first 600km of same fibre, 
(c) last 600m of same fibre. 

 

Figure 4.5 indicates how birefringence which is the cause of PMD may be high at certain 

sections of a link giving rise to high PMD at such sections. Hence P-OTDR can be used to 

map out the birefringence distribution along an optical fibre link.  Regions of high PMD 

along and optical fibre link corresponding to regions of high birefringence can thus be 
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identified and replaced in order to reduce the total PMD. The P-OTDR technique is thus more 

versatile compared to the ordinary OTDR technique.  

4.2.1 Principle of measurement of a P-OTDR 

Fundamentally, by measuring the evolution of the SOPs or degree of polarization (DOP) of a 

backscattered signal, any of the known techniques can be applied to extract the PMD. In most 

cases the measurements are qualitative and give an idea about places of high and low PMD 

sections along a link (Huttner, 1999). Figure 4.6 shows a schematic diagram of a P-OTDR 

setup. 

 

 

 

 

 

 

   Figure 4.6:  Schematic diagram of a P-OTDR setup.  

 

Figure 4.6 depicts a typical P-OTDR setup. The main frame of the OTDR usually drives a 

suitable laser emitting optical pulses (10-100ns). The principle is the same as the OTDR 

described above except that the detected signal goes through a polarization analyser into a 

fast detector. The detected signals are the three Stokes parameters  𝑝𝑝1  𝑝𝑝2  𝑝𝑝3 and the total 

intensity 𝑝𝑝0 and hence the state of polarization with respect to time is obtained.  In most cases 

(Huttner, 1999) the instrument measures only the beat-length and coupling length and 

extracts the PMD from them. It has been demonstrated that the degree of polarization is 

sometimes a more relevant parameter of the back scattered pulse due to depolarization 

(Hutner, 1999). Care has to be taken however not to confuse depolarization caused by the 

OTDR laser line-width and the temporal depolarization caused by the local birefringence of 

the fibre which forms the basis of the measurements.  

Fibre under 
test (FUT) 

Pulsed laser 
Coupler 

OTDR 
mainframe 

Polarization 
analyser 



49 

 

4.2.2 Measurement of PMD through coupling length/ beat length  

Rayleigh back scattered signals are retrieved by the polarization analyser as a function of 

distance from scattering point. This is best represented by the SOP on the evolution of a 

Poincaré sphere. The SOP of the light in a birefringent fibre rotates around the birefringence 

axis. The velocity of the rotation is equal to the local birefringence β which is related to the 

beat-length  𝐿𝑏 by the relation;                            

 𝐿𝑏 = 𝜆
𝛽𝑐

                                                                                       (4.13) 

where  𝜆 is the wavelength. 

The beat-length indicates the periodicity of the rotation about the axis. The distance after 

which the birefringence moves significantly is known as the coupling length ℎ. The spatial 

correlation for the birefringence vector is given by equation 4.14, with  𝛽(𝑧) = 𝛽(𝑧)𝑢�  where 

β is the birefringence and 𝑢� is the birefringence axis on the Poincare sphere; 

1
𝐿 ∫ 𝛽𝐿0 (𝑧).𝛽(𝑧 + Δ)𝑑𝑧 = 𝛽̅2exp (−2 |Δ|

ℎ
)                                  (4.14) 

where 𝛽̅ is the root mean square average of the birefringence over a length L and is obtained 

by substituting Δ = 0 . 

By plotting the SOPs on a Poincaré sphere and looking at the displacement as a function of 

distance, one can infer the beat length. The value of  ℎ can be derived by finding the rotation 

axis at all points. This involves differentiation and therefore any noise or inaccuracy in 

finding SOP will create difficulties in the accurate determination of ℎ.  

PMD is not a local parameter, but by measuring the parameters, which are the beat length and 

coupling length, for a section say 𝑙, the PMD can be calculated as (Gisin, 1991); 

 𝑃𝑃𝑀𝐷 = 𝜆
𝐿𝑏𝑐

√𝑙ℎ                                                                              (4.15) 

For a total link of 𝑁 concatenations with 𝑖 sections the total PMD is given by 

 𝑃𝑃𝑀𝐷 = �∑ 𝑃𝑃𝑀𝐷𝑖2𝑁
𝑖=1                                    (4.16) 
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The above equations show that the beat length and the correlation length control the PMD in 

opposite ways. A high 𝐿𝑏 means a smaller PMD while a large ℎ means a high PMD. It is thus 

crucial to know these parameters separately. For most commercial fibres (including old ones), 

the range of the variation of these parameters is  

0.5 ≤ 𝐿𝑏 ≤ 20𝑚𝑚 

5 ≤ ℎ ≤ 500𝑚𝑚 

It has been observed that older fibres with high PMD have longer coupling lengths than 

newer fibres (Huttner et al. 1999).  

It should be noted that it is difficult to measure fibres which exhibit very high birefringence 

such as polarization maintaining fibres and fibres with circular birefringence.  P-OTDRs can 

achieve spatial resolutions of about 0.5m in measurements of fibres ranging tens of 

kilometres. 

4.3 Optical frequency domain reflectometry 

Optical frequency domain reflectometry is usually applied to shorter fibres and achieves 

much better resolution. It permits the determination of beat-lengths of a few millimetres and 

was first developed for fibre component testing (Froggatt, 2006; Von der Weid, 1997). Most 

of the previous OFDR techniques applied Fourier transforms to calculate beat-length from the 

time-domain amplitude data, but currently the methods apply autocorrelation of the 

distributed scattered signal.  The use of the distributed autocorrelation Rayleigh signal of the 

fibre under test (FUT) to calculate the group birefringence enhances the OFDRs, resolution. 

Currently these techniques have been varied to measure strain induced birefringence of 

optical fibres due to twist (Galtarossa, 2009). 

A basic set of the technique is shown in Figure 4.6. The measurement setup consists of a 

tuneable laser source and a reference interferometer with polarization controller (PC1 to 

prevent fringe fading. The delay line L determines the sampling increments on the S and P 

modes. Polarization controller 2 (PC2) ensures that the reference power splits equally on the 

polarisation beam splitter (PBS) between the P and S modes. 
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Figure 4.7: A schematic of an OFDR system (after Froggatt, 2006) 

 

The tuneable laser sweeps over a range of wavelengths to produce high resolution. The 

polarization states of the backscattered signal are arbitrary so a polarization diversity 

detection system is employed (PC2). PC2 adjusts the polarization of the light in the path of 

the reference interferometer such that light is split between the two states of the reference 

interferometer.  The reference interferometer provides a high resolution tuning of the laser 

resulting in high resolution transform data. A fast Fourier transform is then performed to 

convert the data from frequency domain into time domain. The two channels recorded for 

each polarization state ensure detection of the total power reflected from the DUT. The 

scatter profile from the core of the fibre is assumed to be a set of complex numbers, based on 

which beat-length measurements are constructed. Further analysis and applications of this 

technique can be found in Huttner, 1999 and Froggatt, 2006. 

3.4 Summary 

In this chapter reflectometric techniques (single-end) for characterizing optical fibre loss have 

been discussed. While an ordinary OTDR is limited to measuring specific losses, P-OTDR 

can measure and characterize almost all fibre losses. Further OFDR techniques offer better 

measurement resolution but for shorter fibres. In the next chapters we present experimental 

results based on P-OTDR techniques. 
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CHAPTER 5 

SINGLE-END INTERFEROMETRIC THECHNIQUE 

5.1 Introduction 

Over the years, interferometric methods for measuring PMD have proved to be highly 

accurate and applicable to a wide range of fibre types (Gisin, 1991, Oberson, 1997). Due to 

its robustness it is very suitable for measurements in the field for both aerial and buried 

fibres.  Interferometric techniques have proved to be simple and easy to implement.  As such 

both traditional interferometry (TINTY) and generalized interferometric techniques (GINTY) 

have been extensively used to measure PMD across South Africa by the NMMU optical fibre 

research unit (Gibbon, 2005; Mudau, 2007 and Wu, 2006, Fosuhene, 2011).  In this chapter, 

the ideas of low coherence interferometry are applied to make single-end measurements of 

polarization mode dispersion. The aim was to modify GINTY such that it can be more 

suitable for field measurements. The basic instrument is the EXFO-5500B PMD analyser 

(GINTY).  A brief theory of the general measurement principles of the Michelson 

interferometer and the generalized interferometric technique is presented. The measurement 

method is applied to three sets of fibre types in different coupling regimes (nine fibres in 

total). A relationship is then established between measurements in forward and single-end for 

three different fibre types.   

5.2 Background of interferometric techniques 

The two standard interferometric techniques for measuring PMD, classified as time domain 

measurements are based on the principles of low coherence inteferometry (TIA/EIA 455-

124A 2004). The traditional technique (TINTY) was the first one to be developed. Later it 

was modified and renamed the generalized interferometric technique GINTY (Cyr, 2004).  

Interferometric techniques make use of a broadband source to measure the delay between two 

arms of an interferometer. The accuracy of the measurement depends on the coherence time 

(𝑇𝑐 ) of the source. The coherence time is the duration within which the characteristics of the 

source are stable and remain in a predictable phase (Hecht, 2002).  

 

Some of the results in this chapter have been reported by the author in, Fosuhene et al, 2011 
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For a time domain measurement, the coherence time  𝑇𝑐  of the source should satisfy the 

conditions (Williams, 2004, 2005); 

∆𝜏𝜏 < 𝑇𝑐                                                                                              (5.1)                           

𝑇𝑐 ∝ 𝜆2/𝑐Δ𝜆                                                                                      (5.2) 

where,  ∆𝜆  is the differential group delay,  𝜆  is the centre wavelength of the optical source, c 

is the speed of light and ∆𝜆 is the full-width at half-maximum of the coherence source.  

The proportionality sign in equation 5.2 could be eliminated by multiplying the right-hand 

side of the equation by a factor depending on the spectrum shape - 0.44, 0.88 and 1.2 for a 

Lorentzian, Gaussian and rectangular spectrum respectively (Derickson, 1998). According to 

equation 5.2 the resolution of the measurement can be influenced by choosing an optical 

source with the appropriate frequency spectrum. 

Figure 5.1 shows a traditional Michelson interferometer. Light from the source S is split into 

the two arms of the interferometer and recombine at the detector D after reflections from the 

stationary and movable mirrors respectively. Constructive interference occurs when light 

reflected from both arms of the interferometer have travelled equal path lengths.  

 

 

                                                                                           

                                                                                                          

 

                                                                                                                              

   

 

Figure 5.1: A schematic diagram of a typical Michelson interferometer; S is the   
optical source, BS is a beam splitter, while  𝑚𝑚1 and 𝑚𝑚2  are stationary and movable 
mirrors respectively.   

BS 
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In the case where there is a fibre under test (FUT) inserted before the interferometer, 

interference peaks appear at positions where the delay in the FUT is compensated by the 

delay in the moving arm of the interferometer.  

Delays in the FUT are expressed as (Derickson, 1998); 

∆𝜏𝜏 = 2∆𝑥𝑥
𝑐

                                                                                            (5.3) 

where c is the speed of light, ∆𝜏𝜏 is the delay time of the FUT and ∆𝑥 is the displacement of 

the movable mirror from the balanced mirror position. The factor of 2 in equation 5.3 occurs 

because distance refers to one way excursion along the test wave guide but delay includes 

traveling both ways.  

5.2.1 TINTY vs. GINTY 

Both TINTY and GINTY operate on the general principles of the Michelson interferometer 

described above, but with some additions. In determining PMD of fibres, polarization effects 

have to be considered. Real fibres are mode coupled devices and there is constant coupling 

between modes during transmission resulting in a complicated interference waveform (Gisin, 

1991;  Gibbon, 2003).  In principle there is not much difference between GINTY and TINTY. 

The major differences are the underlying assumptions and how the interferograms are 

obtained and analysed.  

Firstly, TINTY assumes that the FUT is a randomly mode coupled device of infinite coupling 

ratio and the PMD is larger than the source coherence time. It calculates the interferogram 

(Gaussian) as a statistical average of all possible occurrences with a given conceptual PMD 

value (Gisin, 1991; Heffner, 1996). These tight assumptions affect the PMD calculations in 

the event where the interferogram from an FUT deviates from a Gaussian. In addition, 

TINTY was not considered suitable for long haul amplified links (IEC6280-4-4). According 

to Cyr, 2003 when components such as amplifiers, isolators or filters are added to a link some 

of the underlying conditions of the analysis of the interferograms are not met. 

The GINTY technique, introduced by Cyr (2003, 2004), is devoid of such assumptions. The 

underlying theory is mathematically exact and ideal for all coupling regimes, irrespective of 

the shape of the interferogram. The only assumption that is retained is that of negligible 

polarization dependent loss (PDL).  It is based on these arguments that we favoured to work 
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with GINTY. In the next section we present a brief background of the GINTY based on the 

account of Cyr (2004). 

5.3 GINTY: Theory and principle of operation 

 

 

 

 

 

 

 

 

Figure 5.2: Schematic diagram of GINTY; PBS is a polarization beam splitter, which 
splits the interferograms into two orthogonal polarizations 𝑃𝑃𝑜𝑜(𝜏𝜏), 𝑃𝑃𝑥𝑥(𝜏𝜏) which are 
detected by detecctor1 and detector 2 respectively. 

 

A schematic diagram of the GINTY (EXFO FTB 5500B) measurement technique is depicted 

in figure 5.2. The Michelson interferometer configuration is represented by the movable 

mirror (𝑚𝑚2), stationary mirror (𝑚𝑚1) and a polarization beam splitter BS. The detection system 

consists of a polarization beam splitter (PBS) and two separate detectors - polarization 

diversity detection. The interferogram from the Michelson interferometer is split into two by 

the (PBS) and then detected separately. The detected signals  𝑃𝑃0(𝜏𝜏) and   𝑃𝑃𝑥𝑥(𝜏𝜏)  have 

mutually orthogonal polarization states of polarizations (SOPs). If we consider a signal 𝑝𝑝(𝑣𝑣) 

emerging from a FUT and entering an analyser aligned at  𝑆𝑆𝑎 , it emerges as a Fourier 

transform with a constant SOP independent autocorrelation part and a cross correlation (SOP 

dependent) part. The autocorrelation  (𝐸𝐸𝑎(𝜏𝜏) )  and cross correlation ( 𝐸𝐸𝑐(𝜏𝜏)) are calculated as 

the sum and difference between the two orthogonal pairs respectively as,  

𝐸𝐸𝑎(𝜏𝜏) = |𝑃𝑃𝑜𝑜(𝜏𝜏) + 𝑃𝑃𝑥𝑥(𝜏𝜏)|                                                                   (5.4) 
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𝐸𝐸𝑐(𝜏𝜏) = |𝑃𝑃𝑜𝑜(𝜏𝜏) − 𝑃𝑃𝑥𝑥(𝜏𝜏)|                                                                   (5.5) 

Equation 5.4 and equation 5.5 refer to a single envelope of input /output (I/O) pairs of states 

polarization. For an entire ensemble of (I/O) pairs such as in the case of polarization 

scrambling, averaging is recommended. 

The PMD is calculated for the FUT from the cross and auto correlation by (TIA-455-124-A) 

𝑃𝑃𝑀𝐷 = �3
2

(𝜎𝜎2 − 𝜎𝜎02)                                                                      (5.6) 

where 𝜎𝜎2 is the root mean square (RMS) width of the cross correlation envelope and   𝜎𝜎𝑜𝑜2  is 

the RMS width of the autocorrelation envelope. The envelopes are given by  

𝜎𝜎2 = ∫ 𝜏2𝐸𝑐2(𝜏)𝑑𝜏
∫𝐸𝑐2(𝜏)𝑑𝜏

                                                                                 (5.7) 

𝜎𝜎𝑜𝑜2 = ∫ 𝜏2𝐸𝑎2(𝜏)𝑑𝜏
∫𝐸𝑎2(𝜏)𝑑𝜏

                                                                                 (5.8) 

PMD measurements are sensitive to polarization and therefore in order to obtain an accurate 

knowledge of the PMD of an FUT, it is necessary to cover a good number of possible I/O 

SOPs. This procedure is known as polarization scrambling. Scrambling is performed to 

obtain an ensemble of PMD values upon which a reliable PMD value is obtained. Scrambling 

can be scan-to-scan or continuous. In scan-to-scan, the scramblers are varied independently 

for every interferometer setting. For continuous scrambling, it takes place while the 

interferometer is still scanning. Generally, the uncertainty of a single scan measurement is 

given by (Mankga, 2007);  

𝜎𝜎𝑠𝑖𝑛𝑔𝑙𝑒−𝑠𝑐𝑎𝑛 = ��(1 − 8
3𝜋

) 1

�1+14(𝑃𝑀𝐷𝑚𝑒𝑎𝑛
𝜎𝐴

)2
�                                   (5.9) 

where 𝜎𝜎𝐴 is the RMS width of the autocorrelation of the light source and 𝑃𝑃𝑀𝐷𝑚𝑒𝑎𝑛  is the 

mean PMD calculated from an ensemble of SOP variations.  For N number of I/O scan-to-

scan measurements, the uncertainty (𝜎𝜎) incurred in this case is; 

𝜎𝜎 = 𝜎𝜎_(𝑝𝑝𝑖𝑛𝑛𝑔𝑙𝑒 − 𝑝𝑝𝑐𝑎𝑛𝑛)/√𝑁                                                      (5.10) 
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5.3.1 Single-end measurements with GINTY 

In this section single-end measurements based on GINTY are presented. Measurements were 

made on three different categories of FUTs. The optical broadband source was the EXFO–

FLS 5800 and the GINTY analyser was the EXFO-FTB5500B.  Both source and detector 

operate within the O (1260-1360nm), C (1530-1565nm) and L (1565-1625nm) bands of the 

optical spectrum. The analyser has a sensitivity of up to ~ (-45dB) and a dynamic range of 

about 50dB. It can measure PMD between 0-115ps. Such a dynamic range implies that the 

system can measure up to about 250km (for a fibre with 0.2bB/km). The uncertainty of this 

system is given by (Mudau, 2008); 

𝜎𝜎 = (0.02 + 2%𝑃𝑃𝑀𝐷)−
+                                                                           (5.11) 

5.3.2 Experimental set-up 

 

            

     

 

 

Figure 5.3. Set up for single-end and forward measurements using GINTY, the optical 
path for forward measurement is 1-2-4a-4b to 5a, and that for single-end is 1-2-4a-4b 
and back through 4a-2-3 to 5b. 

 

Figure.5.3 shows the experimental scheme of how GINTY is adapted to measure in both 

single- end and forward configurations. A circulator with ports 1, 2, and 3 was used. Light 

travels through the ports in the directions 1-2 and 2-3. In the forward configuration the light 

travelled from the source through port 1-2, through points 4a-4b and then from 4b-5a. For a 

single-end measurement, the connection 4b-5a is eliminated and the GINTY is now 

connected at 5b via port 3 of the circulator. Light undergoes Fresnel reflection at the fibre end 

face at point 4b. The optical path for this configuration is therefore 1-2, 2-4a, 4a-4b and then 

back through 4a-2, 2-3 and then detected via 3-5b. To ensure stability and accuracy of 

measurements all patch cords were firmly fixed on the experimental bench. Measurements 
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were taken for both forward and single-end configurations without any significant 

disturbance of the set-up which could affect results. 

5.3.3 Calculation of PMD 

The magnitude of PMD which is the differential group delay (DGD) of two fibre sections 

with DGDs ∆𝜏𝜏1 and ∆𝜏𝜏2 can be estimated as Cyr (2004); 

∆𝜏𝜏𝑡𝑜𝑜𝑡 = �(∆𝜏𝜏12 + ∆𝜏𝜏22 + 2∆𝜏𝜏1∆𝜏𝜏2 cos𝜃𝜃)                                                 (5.12) 

where 𝜃𝜃 is the angle between three SOP axes on the Poincaré sphere indicating the coupling 

between the two fibres.  

We consider our single-end measurement as a two-section device with DGDs ∆𝜏𝜏1 = ∆𝜏𝜏2 =

∆𝜏𝜏. That is, the signal travels to one end of the fibre and is coupled back into it. In this case 

equation 5.12 then becomes, 

∆𝜏𝜏𝑡𝑜𝑜𝑡 = �(2∆𝜏𝜏2 + 2∆𝜏𝜏2 cos𝜃𝜃)                                                                (5.13) 

The value of ∆𝜏𝜏𝑡𝑜𝑜𝑡 can then be estimated as  

∆𝜏𝜏𝑡𝑜𝑜𝑡 = √2∆𝜏𝜏�√1 + 𝑐𝑜𝑝𝑝𝜃𝜃�                                                                       (5.14) 

For a continuous wave system such as ours, Fresnel reflection is more dominant (Corsi, 1999) 

and so we consider the angle 𝜃𝜃 in the interval  0 < 𝜃𝜃 < 90  (0 < cos 𝜃𝜃 < 1). Then we may 

expect √2∆𝜏𝜏 < ∆𝜏𝜏𝑡𝑜𝑜𝑡 < 2∆𝜏𝜏.  Moreover, for Fresnel reflection the relationship between the 

forward and single-end measurement is given by (Galtarossa, 2003, 2004; Corsi, 1999) 

∆𝜏𝜏𝐵𝐵 = 𝜋
2
Δ𝜏𝜏𝑓𝑓                                                                                                (5.15) 

where ∆𝜏𝜏𝐵𝐵 is the round trip (single-end)  DGD and ∆𝜏𝜏𝑓𝑓 is the forward DGD measurement. 

In the next sections we present results obtained for various FUTs. The experimental results 

obtained were compared with expected theoretical results according to equation 5.15. 

5.3.4 Measurements on polarization maintaining fibres (PMFs) 

Polarization maintaining fibres are specially made to retain a constant delay between the two 

orthogonal Eigen modes within the fibre. They are considered non-mode coupled if they are 
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not concatenated or coupled with other fibres. Measurements were made on two PMF fibres 

of length 1m and 2m respectively both in forward and single-end modes. The two fibres were 

then concatenated and measured again. Results are shown and summarised in figure 5.4 and 

Table 5.1 respectively. 

 

     

 

Figure 5.4: Interferograms for: (a) 1m PMF, (b) 2m PMF and (c) concatenation of 1m and 
2m PMFs, Solid lines indicate forward measurements and dashed lines indicate single-end 
measurements. 
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Table 5.1: Delays for 1m PMF, 2m PMF and concatenation of the two segments. 

Uncertainty was calculated according to equation 5.11. 

FUT Forward 
∆𝜏𝜏𝑓𝑓(𝑝𝑝𝑝𝑝) 

 Single- end 
∆𝜏𝜏𝐵𝐵 (𝑝𝑝𝑝𝑝) 

Ratio Uncertainty 
 (Forward) 

±𝜎𝜎𝑓𝑓 

Uncertainty 
(Single-end) 

±𝜎𝜎𝐵𝐵 
1m PMF 1.38ps 2.74ps 1.99 0.05 0.07 
2mPMF 2.73ps 5.48ps 1.99 0.07 0.11 

2mPMF+1mPMF 4.10ps 8.20ps 2.00 0.08 0.18 

Sum of PMF1n2 4.11ps 8.22ps 2.00 0.08 0.18 

 

From figure 5.4, it was observed that the forward measurements of the 1m and 2m PMFs 

show one peak each on the left and the right of the central peak (solid curve). The distance 

between each peak to the centre is the DGD of the FUT. This is characteristic of none mode 

coupled devices with a constant delay (equation 5.3). The single-end measurement (red 

dashed curves) shifts the peaks to twice their original positions (2∆𝜏𝜏𝑓𝑓 = ∆𝜏𝜏𝐵𝐵).  In figure 

5.4(c) which is a concatenation of the two segments, both DGDs for the two lengths are 

present together with a total DGD due to the combination of the two segments. The single-

end delay of the 1m PMF coincides with the forward delay for a 2m PMF. It thus behaves 

like a 2m PMF. It is also interesting to note that both the forward and single-end indicate 

three peaks representing the two individual sections and a combination of the two and in each 

case, the single-end is twice the forward. The values in table 5.1 agree very well with 

equation (5.14) when 𝜃𝜃 = 0, with the reflected signal coupling back into the fibre along the 

same axes as the forward. Further since the three PMFs and their concatenations can be 

treated as non- mode coupled devices and operating in the short length regime, the DGD 

grows linearly with length unlike the long length regime where it scales as the square root of 

the length (see section 3.1.1 and 3.1.2 of chapter 3). Again the low uncertainty values 

(between ±0.05 and ± 0.18) in Table 5.1 confirms that the experimental results agree very 

well with theory. 

5.3.5 Measurements on low PMD single mode fibres 

PMD measurements were performed on three standard single mode fibres: fibre1, fibre2 and 

fibre3. Fibre1 and fibre 2 are two spools of standard single mode fibres of lengths 3km and 
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23km respectively while fibre3 is a 24km cabled fibre on a drum. Forward and single-end 

measurements were performed for an average of 10 I/O scrambling positions on the Poincaré 

sphere. A total of 50 scans were performed for each fibre, i.e. 5 averaged scans for each 

position. 

             

 

 

Figure 5.5: Some interferograms for the three weakly mode coupled fibres: (a), (c), (e) 
represents forward measurements while (b), (d), (f) represent single-end measurements for 
fibre1, fibre2 and fibre3, respectively. The DGD could be estimated from the FWHM of the 
Gaussian fits to the interferograms.  
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Figure 5.5 (on previous page) shows some interferograms for the three different fibres in both 

forward and single end configurations. Each interferogram represent an average of five scans. 

In the figure, (a) and (b) represent forward and single end configurations for fibre1 

respectively, (c) and (d) for fibre 2 and (e) and (f) fibre 3. Figure 5.6 shows the scrambling 

positions on a Poincaré sphere and a plot of forward vs. single end DGDs for the three fibres.  

The results are summarised in Table 5. 2. 

 

Figure 5.6: (a) A plot of  I/O SOP scrambling positions on the Poincaré sphere; (b) A plot of 
forward measured DGDs ∆𝜏𝜏𝑓𝑓  (𝑝𝑝𝑝𝑝) vs. single-end DGDs ∆𝜏𝜏𝐵𝐵 (𝑝𝑝𝑝𝑝) for the three fibres, solid 
line represents experiment while dashed line represents theory. 

        

Table 5.2: Forward and single-end measurements for the three fibres. Uncertainties were 
calculated according to equation 5.11. 

 

FUT 

DGD 

(forward) 

∆𝜏𝜏𝑓𝑓(𝑝𝑝𝑝𝑝) 

DGD (single-end) 

∆𝜏𝜏𝐵𝐵(𝑝𝑝𝑝𝑝) 

Expt.                       Theory 

Uncertainty 

(forward) 

±𝜎𝜎𝐵𝐵 

Uncertainty 

(single-end) 

±𝜎𝜎𝑓𝑓 

Fibre1 0.18 0.25 0.28 0.03 0.02 

Fibre2 0.14 0.20 0.22 0.02 0.02 

Fibre3 0.64 0.92 1.00 0.04 0.03 
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The I/O scrambling was done to indicate some of the possible polarization states of the light 

source as indicated on the Poincaré sphere in figure 5.6. In Table 5.2 it can be observed that 

fibre1 and fibre 2 which are uncabled have mean DGD values lower than fibre 3 which is 

cabled. This could be due to some induced birefringence introduced during the cabling 

process as explained under section 3.1.1 of chapter 3. Figure 5.6(b) indicates the relationship 

between forward and single end measurements. Solid lines represent experimental values 

while dashed lines represent theory.  The ratio between the single-end the forward 

measurement is about 1.43 while the expected theoretical value is 1.57, indicating very good 

agreement between theory and experiment. The slight difference in the theoretical and 

experimental values is due to the effects of random mode coupling, which can act to reduce 

or increase PMD depending on the mode coupling angles (see section 3.1.2 of chapter 3).   

The maximum and minimum uncertainty for this set of measurements is 0.02 and 0.04 

respectively. This implies that measurements are accurate and repeatable. 

5.3.6 Measurements on High PMD fibres 

Measurements were finally carried out on three highly mode coupled fibres comprising 

concatenations of single mode fibres and polarization maintaining fibres spliced together 

randomly. The interferograms in figure 5.8 reveals the nature of the mode coupling events 

and the resulting DGDs for these FUTs. A plot of the forward vs. single-end DGDs are 

presented in figure 5.7 together while summary of the results are presented in Table 5.3. 

 

 

 

Figure 5.7: A plot of forward measured DGDs ∆𝜏𝜏𝑓𝑓 (𝑝𝑝𝑝𝑝) vs. single-end DGDs 
∆𝜏𝜏𝐵𝐵 (𝑝𝑝𝑝𝑝) for three highly mode coupled FUTs. The solid line represents experiment 
while dashed line represents theory. 
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Figure 5.8:  Some interferograms representing the three highly mode coupled FUTs: (a), (c) 
and (e) represents forward measurements for fibres 4,5and 6 while (b) (d) and (f) represent 
single end measurements. Each interferogram represents an average of five scans. 
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Table 5.3: Forward and single-end measurements for the three highly mode coupled FUTs. 
Uncertainties were calculated according to equation.5.11. 

 

FUT 

DGD 

(forward) 

∆𝜏𝜏𝑓𝑓(𝑝𝑝𝑝𝑝) 

DGD (single-end) 

∆𝜏𝜏𝐵𝐵(𝑝𝑝𝑝𝑝) 

Expt.                      Theory 

Uncertainty 

(forward) 

𝜎𝜎𝐵𝐵 

Uncertainty 

(single-end) 

𝜎𝜎𝑓𝑓 

Fibre4 6.42 10.96 10.10 0.15 0.24 

Fibre5 4.62 6.84 7.25 0.11 0.15 

Fibre6 6.94 11.65 10.90 0.16 0.26 

 

The interferograms presented in figure 5.8 shows the nature of mode coupling in FUTs under 

consideration here, where the FUTs  consists of PMF and single mode fibres (SMF) 

randomly spliced together. Each interference peak represents a delay between the two arms of 

the interferometer. The DGD values are a high due to the random mode coupling at the 

spliced points between the single mode fibres and the polarization maintaining fibre. In this 

case, there is random coupling between a high birefringence segment and low birefringence 

segment when the light travels from a PMF segment to a SMF segment. As has been 

explained earlier, the PMD of the PMF segments grows linearly with length while that of the 

longer SMF segments scale as the square root of the length. A combination of the two thus 

produces the observed results presented in figure 5.7, 5.8 and Table 5.3. It can be observed 

from Table 5.3 and figure 5.7 that the experimental values are still in very good agreement 

with the expected theoretical values. Here the ratio between the forward and the single-end is 

1.64 which is falls within that of the high and low PMD fibres. 

5.3.7 Discussions 

The results from the above measurements show the difference between DGDs of different 

FUTs for both forward and single-end configurations using GINTY. For the non-mode 

coupled FUTs, the DGDs for the single-end measurements are twice that of the forward 

measurements. For these FUTs the single-end regime acts like the same fibre having twice 

the length. This is also because they are quite short and in the short length regime the PMD 
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grows linearly with length. For the three low PMD fibres (fibre1, fibre2 and fibre3), the ratio 

between the single-end and the forward measurements is about 1.4. In this case the fibres are 

considered to be in the long length regime and the PMDs scale as the square root of the fibre 

lengths (Derickson, 1998). Again the DGD can be viewed as the mean DGDs resulting from 

various mode coupling sites which could vary the total DGD depending on the coupling 

angles. For the high PMD concatenated fibres, the ratio between the single-end and forward 

measurements is about 1.64. This also falls within the expected range according to equation 

5.14. The value is slightly higher than that of the low PMD fibres and lower than that of the 

PMFs. This is because the FUTs are a combination between the two fibre types and therefore 

should exhibit both characteristics. Random coupling between PMFs and single mode fibres 

act together to produce total PMD values which lie in between that of the different segments. 

5.4 Summary 

In this chapter single-end measurements have been applied to the general intereferometric 

method (GINTY). Three different types of FUTs were explored. The interferograms indicate 

the type of coupling regime. The PMFs have constant DGDs and could represent delays due 

to devices in a system. The low PMD FUTs show different interferograms with fewer peaks 

due to their stability and mode coupling regime. The characteristics of these FUTs are similar 

those used in stable environments, such as the laboratory (fibre1 & fibre2) and that of buried 

fibre (fibre3). The interferograms of the third category also reveal the random nature of the 

DGDs due to the random mode coupling. Their characteristics could be related to that of 

fibres in an unstable environment such as aerial fibres, which are very much affected by 

environmental conditions such as wind and temperature.  

GINTY is a standard test method which is robust and suitable for almost all PMD 

measurements including aerial fibres, hence a single-end measurement technique based on it 

has a great potential. The only limitation to this method may be distance but even so, in 

principle, it should be able to measure distances close to 100km which may be adequate for 

measurements on metropolitan networks.  

It has been demonstrated through experiment and theory that GINTY can be applied to 

measure PMD in single-end configuration. The key factor is to identify the FUT being 

measured and to choose the right ratios as discussed above in order to estimate the actual 

DGD. This novel method is cost effective, and simple to implement.   
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CHAPTER 6 

                    CHARACTERIZATION OF SINGLE-MODE OPTICAL FIBRE USING 

P-OTDR TECHNIQUES 

6.1 Introduction 

An optical fibre can be characterized by its response to light. One of these characteristics is 

polarization mode dispersion. This effect is due to optical birefringence. The birefringence 

which can be extrinsic or intrinsic is a statistical phenomenon (Gisin et al, 1996; Galtarossa 

2004b). Birefringence can be estimated by measuring the evolution of the states of 

polarization (SOP) or degree of polarization (DOP) of a signal as the light propagates through 

the fibre (Huttner 1999; Wai, 1996; Galtarossa, 2001). From the birefringence measurements, 

two important characteristics can also be estimated: the beat length and the correlation length. 

Thus a fibre can be completely characterized by determining the birefringence, beat-length, 

correlation length and eventually the polarization mode dispersion (PMD). In this chapter a 

polarization optical time domain reflectometric technique (P-OTDR) was applied to 

completely characterize four optical fibres. Birefringence, beat length and correlation lengths 

are determined statistically. PMD is again measured for the four fibres using the standard 

Jones matrix eigenanalysis (JME) method discussed under section 3.3.2 of chapter 3. The 

PMD values obtained from these two methods were then compared. 

6.2 Background 

Reflectometric measurements can be applied by either employing a continuous wave or a 

pulsed wave. A continuous wave permits easier experimental set-up but cannot perform local 

measurements. When a continuous optical wave is injected into a fibre, the total back 

scattered power is given by the sum of the contributions of the Rayleigh scattering and the 

Fresnel reflection at the fibre far-end face, with the contributions from the Fresnel reflection 

being the dominant power (Corsi et al, 1999a). On the other hand if a pulsed laser is applied, 

local measurements can be achieved, because the Rayleigh scattering accounts for the local 

birefringent effects within the fibre. This means that a CW system can only estimate the 

round -trip differential group delay (DGD) while a pulsed laser can estimate DGD at various 

sections of the fibre. The P-OTDR used in this experiment applies a pulsed laser to achieve 

local measurements.  

The author acknowledges the support of Prof. Andrea Galtarossa and Dr. Luca Palmieri of the Department of Information 
Engineering, University of Padova, Italy, where this research work was conducted. 
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6.3 Local birefringence properties 

The principle of the reflectometric technique is based on the relationship between the 

evolution of the states of polarization of the backscattered field and the fibre birefringence. 

The birefringence vector contains all the information about the perturbation acting on the 

fibre. It therefore characterizes all the polarization mode dispersion sources.  

 

Let us assume an input signal 𝑝̂𝑝0 and the propagating signal 𝑝̂𝑝. Then according to Galtarossa 

et al (2003, 2004a), the relationship between the two can be expressed by the Mueller/ Stokes 

formalism as: 

𝑝̂𝑝(𝑧) = 𝑅(𝑧)𝑝̂𝑝0                                                                                              (6.1) 

 

where 𝑅(𝑧) is the Mueller matrix representing the fibre. 

Taking the derivative of the above equation with respect to distance yields: 

 
𝑑𝑠̂
𝑑𝑧

= 𝑑𝑅
𝑑𝑧
𝑅−1𝑝̂𝑝 = 𝛽̅ × 𝑝̂𝑝                                                                                  (6.2) 

 

where 𝛽̅ = (𝛽1 ,𝛽2, 𝛽3)  is the local birefringence vector according to Poole et al (1992). It 

summarizes all the perturbations causing PMD in the fibre.  

Consider a launched pulse in a fibre, which propagates to a point, undergoes Rayleigh 

scattering and then propagates back to the launch point. Such propagation can be represented 

by: 

 

𝑝̂𝑝𝐵𝐵(𝑧) = 𝑅𝐵𝐵(𝑧)𝑝̂𝑝0 = 𝑀𝑅𝑇(𝑧)𝑅(𝑧)𝑝̂𝑝0                                                            (6.3) 

 

where 𝑅𝐵𝐵(𝑧) is the Mueller matrix representing the round-trip propagation. Making 

assumptions of reciprocity (Ulrich et al, 1979) and perfect reflection for a Rayleigh scattering 

(Corsi et al 1999a), the following differential equation results: 

 
𝑑𝑠̂𝐵
𝑑𝑧

= 𝛽𝐵̅𝐵 × 𝑝̂𝑝𝐵𝐵                                                                                                (6.4) 

It can be showed that the ‘round-trip’ birefringence vector 𝛽̅𝐵𝐵 is related to the fibre properties 

by the expression: 
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𝛽𝐵̅𝐵 = 2𝑀𝑅𝑇(𝑧)𝛽𝐿̅ = 2𝑀𝑅𝑇(𝑧)�
𝛽1
𝛽2
0
�                                                           (6.5) 

�𝛽𝐵̅𝐵� = 2|𝛽𝐿|                                                                                                 (6.6)   

 

where 𝛽𝐿̅ = �
𝛽1
𝛽2
0
� is the linear component of the birefringence according to the random  

modulus model of birefringence (Wai et al  1996 ). 

Equation 6.5 indicates that the modulus of 𝛽𝐵̅𝐵 is twice the modulus of 𝛽𝐿̅ . This is due to the 

fact that M and R(z) are orthogonal matrices and the round trip birefringence does not depend 

explicitly on the third component of the birefringence vector. 

Equation 6.4 has the same form as the evolution of the forward propagating SOP as a 

function of angular frequency(𝜔𝜔) (Corsi et al, 1999a). Since there is a dualism between 

frequency and distance,   it is valid to apply eq.6.4 to any of the techniques used to measure 

PMD to measure the round-trip birefringence vector  𝛽̅𝐵𝐵  . One such method is the Mueller 

matrix method (Jopson et a.l 1999a), which does not require a complete knowledge of the 

input SOP, the only requirement being that the system suffers negligible polarization 

dependent loss. The above, local measurements were performed on four single-mode fibres 

using the experimental setup shown in figure 6.1. 

 

6.3.1 Experimental setup  

 

         Figure 6.1: A schematic diagram of a P-OTDR (after Galtarossa et al., 2000) 
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The P-OTDR set up is similar to the standard OTDR except that an external cavity laser 

directly driven by an electric pulse generator acts as the probing signal in this case. In order 

to increase the dynamic range, the erbium-doped fibre amplifier (EDFA) amplifies polarized 

pulses emerging from a polarization controller. The acousto-optic modulator is employed to 

reduce effects of amplified spontaneous emission (ASE) from the EDFA, by opening a 

temporal window to allow the pulses to pass while stopping the ASE.  

 

6.3.2 Experimental Procedure 

 

The probe signal was set to 5ns and with peak power of 23dBm. This allowed a spatial 

resolution of 0.5m and an uncertainty 2% on the SOP measurements. The maximum 

measurement range is in the order of 20km. The input signal was launched into the fibre 

under test via a circulator/directional coupler. After backscattering the pulse passes through a 

quarter wave plate (to be rotated at any angle) followed by a fixed linear polarizer. Since the 

backscattered signal is polarized, the evolution of its polarization is converted into power 

fluctuations, detected and stored by the OTDR. Measurements were made for five different 

quarter wave plate orientations and the round SOPs, 𝑝̂𝑝𝐵𝐵(𝑧). The information from the raw 

data was then analysed to calculate the evolution of the states of polarization in order to 

extract the birefringence as stated above. During the experiment the fibres were maintained 

firmly at a fixed position in order not to change their position with respect to the laboratory 

frame of reference. PMD measurements were performed using the standard JME technique. 

A wavelength window of 1500nm-1620nm in steps of 1 nm was used. Results are presented 

in the following sections. 

 

6.4. Results for birefringence evolution 

Figure 6.2 shows the evolution of the round-trip birefringence vectors along four 3.5km 

single-mode fibres retrieved from single P-OTDR measurements. In the figure, (a) shows the 

evolution along the total lengths while (b) shows a section of 500m between 1km and 1.5km 

sections of the same fibres. These local measurements were obtained due to the validity of 

equation 6.4.   
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Figure 6.2: Modulus of the round-trip birefringence vector �𝛽̅𝐵𝐵� [𝑚𝑚−1]  vs. distance z [km] for 
the four single-mode fibres, A, B, C and D: (a) full length 3.5km, (b) 500m sections between 
1km and 1.5km of the same fibres. 
 

Figure 6.2 (b) also shows that the local properties of the link can be monitored by the            

P-OTDR technique, and that section by section analysis of birefringence is possible. The 

graph shows a plot of birefringence vs. distance (distributed/local).From such a birefringence 

distance plot, portions with high birefringence which contributes high PMD values to a link 

can be identified and replaced. This is thus a practical solution towards reducing the total 

PMD within a link. As an example, in the figure (6.2b), an area with high birefringence has 

been indicated with an arrow. 

 

6.4.1 Birefringence models and statistics 

Birefringence in optical fibres is random in nature and therefore it is necessary to study its 

statistical process and to represent it by some model. Generally three models have been 

suggested in literature. All of the models assume that there is no circular birefringence (𝛽3=0). 

In the first model, one component of the linear birefringence is constant and deterministic 

while, the second component varies as a white noise process giving rise to the random 

perturbations (Foschini, 1991). The second model proposed by Wai et al. (1996) assumes a 

constant modulus of the birefringence while its orientation varies as a Weiner process. The 

last model, known as the random modulus model (RMM) also proposed by Wai, assumes that 

the birefringence varies in both modulus and orientation. In RMM the first two components 

1 2 3

1

2

3

4

5

I β
BI [

m
-1

z [km]
1 2 3

2

4

6

z [km]

I β
BI [

m
-1

1 2 3
0

5

10

z [km]

I β
BI [

m
-1

1 2 3

2
4
6
8

10
12

z [km]

I β
BI [

m
-1

Fib BFib A

Fib C Fib D

1 1.1 1.2 1.3 1.4
0

2

4

6

I β
BI [

m
-1

]

z [m]
1 1.1 1.2 1.3 1.4

0

1

2

3

4

z [m]

I β
BI [

m
- 1

]

1 1.1 1.2 1.3 1.4
0

5

10

15

z [m]

I β
BI [

m
- 1

]

1 1.1 1.2 1.3 1.4
0

5

10

z [m]

I β
BI  

[m
- 1

]

FIB A FIB B

FIB C FIB D

(a) (b) 

High birefringence 
 



72 

 

of the local birefringence are considered as some random Gaussian processes which are 

statistically independent of each other, with zero mean and the same standard deviation. As a 

result the modulus of the linear birefringence (𝛽𝐿) follows a Rayleigh distribution. Following 

the RMM, it has been shown that the autocorrelation function of the components of (𝛽𝐿) is 

given by Galtarossa, (2004a&b): 

𝑟𝛽(𝑧, 𝑢) = [𝛽𝑖(𝑧)𝛽𝑖(𝑧 + 𝑢)] = 8𝜋
𝐿𝐵
2 exp �− |𝑢|

𝐿𝐹
�                                             (6.7) 

 

where 𝐿𝐵𝐵 = 2𝜋
〈𝛽𝐿〉�  is the beat-length and 𝐿𝐹 is the birefringence, correlation length. 

The beat length describes the amplitude of the local birefringence vector. 

 

6.4.2 Experimental results for statistical distribution of birefringence 

 

 

 
  

Figure  6.3: Probability density functions (PDF) for the round-trip birefringence vectors 𝛽̅𝐵𝐵 
of the four single-mode fibres: (a) for the full lengths of 3.5km (b) 500m section between 1km 
and 1.5km. Histograms represent experimental data while curves represent best theoretical 
fit. 
 

Figure 6.3 shows the statistical distributions of the round-trip birefringence vector. The 

histogram represents experimental data while the smooth curve represents the theoretical best 

fit using the Rayleigh distribution given by (Galtarossa, 2004a): 

                                    𝑓𝛽𝐵 = 𝜋𝑎
2〈𝛽𝐵〉2

𝑒𝑥𝑝𝑝 �− 𝜋𝑎2

4〈𝛽𝐵〉2
�  ,    𝑎 ≥ 0                                              (6.8) 
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In figure 6.3 the distributions of the round-trip birefringence vectors of the four fibres fit very 

well with the random modulus model. Figure 6.3(a) is for the entire lengths of the fibres and 

(b) is for the sections of 500m. In both cases the experimental data agrees very well with the 

theoretical fit. The mean values of the local birefringence are summarized in Table 6.1 

     Table 6.1.Mean values of the distributions of the round trip birefringence vectors〈𝛽𝐵̅𝐵〉 

Fibre Full length 3.5km 

〈𝛽𝐵̅𝐵〉 𝑚𝑚−1  

500m section 

〈𝛽𝐵̅𝐵〉 𝑚𝑚−1 

Fib A 1.10 1.03 

Fib B 1.09 0.96 

Fib C 1.79 1.82 

Fib D 1.89 1.79 

 

From the table it can be observed that some of the mean values of the round-trip 

birefringence for the entire fibre lengths differ from those of the sections. This further 

confirms that birefringence is indeed localized. 

6.5 Beat length measurement  

Following the random modulus model and equation 6.7, it is evident that the beat length 𝐿𝐵𝐵 

can be estimated from the round trip birefringence vector. This is achieved by making use of 

the fact that the round-trip birefringence vector is twice the linear birefringence vector. The 

beat-length can also be calculated using other methods as described below. 

6.5.1 Level crossing (LCR) method 

The beat length could also be estimated from the power of the round-trip SOP signal 𝑝𝑝𝐵𝐵 . This 

is known as the level crossing (LCR) method (Corsi et al 1999b, Galtarossa, 2000a; Poole et 

al. 1994). Using this approach the power of the signal is calculated as, 

𝑇(𝑧) = 1
2

(1 + 3〈𝑝̂𝑝𝐵𝐵(𝑧)〉. 𝑝̂𝑝𝐵𝐵(𝑧))                                                        (6.9) 

where 〈𝑝̂𝑝𝐵𝐵(𝑧)〉 is the average value of 𝑝̂𝑝𝐵𝐵(𝑧) along z.  
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It has also been shown in the above reference that, the input SOP 𝑝𝑝0, and the average round-

trip vector 〈𝑝̂𝑝𝐵𝐵(𝑧)〉 are related by, 〈𝑝̂𝑝𝐵𝐵(𝑧)〉 = 𝑀𝑠̂0
3

  . This condition and eq.6.9 makes it possible 

to calculate explicitly the beatlength from ‘level crossing’ rate as (Galtarossa 2003, 2004a), 

𝑛𝑛(𝑣𝑣) = 2
𝜋
〈𝛽𝐿〉√𝑣𝑣  and 𝐿𝐵𝐵 = 4√𝑣

𝑛(𝑣)
                                                     (6.10) 

The level crossing rate (LCR) 𝑛𝑛(𝑣𝑣) is the mean number of times 𝑇(𝑧) a given level 𝑣𝑣. 

 

     

     

Fig.6.4: (a) Plots of beat-length 𝐿𝐵𝐵  [𝑚𝑚] vs. distance 𝑧 [𝑚𝑚] obtained by the level crossing 
method. (b) Plots indicating how the level crossing rate  𝐿𝐵𝐵𝑛𝑛(𝑣𝑣) evolves with the level. Smooth 
curves represent experimental data while dashed curves represent theoretical fit; (a), (b) 
represents full length (3.5km) while (c) and (d) represent 500m section between 1km and 
1.5km respectively. 

 

Figure 6.4 (a) shows how the beat length changes along the fibre length. The figure indicates 

how various sections along the fibre links contribute to the total beat length of an entire link. 
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Sections with higher beat lengths correspond with sections with lower PMD according to 

equation 6.13. The plot of the evolution of beat length 𝐿𝐵𝐵𝑛𝑛(𝑣𝑣) vs. level 𝑣𝑣 in figure 6.4a 

validates equation 6.10, where the level rate, 𝐿𝐵𝐵𝑛𝑛(𝑣𝑣)  is proportional to the level. In the 

figure (c) and (d) corresponds to 500m sections between 1km and 1.5km of the fibres. The 

plots in figure 6.4(b) indicate a very good agreement between experiment and theory. It can 

thus be concluded that the level crossing method applied in the P-OTDR technique is a valid 

method for estimating the beat length of a fibre link. 

6.5.2 Power spectral density (PSD) analysis 

Another method for calculating the beat length via the spatial frequency power 𝑇(𝑧) is by 

evaluating the variance 𝜎𝜎𝐵𝐵 of the power spectral density (Galtarossa et al, 2004a; Heffner et 

al, 1996). Corsi et al (1999a) have proved that the variance of the power density is  𝜎𝜎𝛽2 =

3 〈𝛽𝐿2〉 (4𝜋2)⁄  . By applying Fourier calculus (Corsi et al, 1999b) and recalling that 𝛽𝐿 is a 

Rayleigh distributed variable, the beat length   𝐿𝐵𝐵 reads: 

𝐿𝐵𝐵 = �
12
𝜋𝜎𝛽

2                                                                                      (6.11) 

All the three methods for determining the beat length were applied to experimental data. The 

results will be summarized and presented in Table 6.2. 

6.6 Birefringence correlation length measurement 

The random modulus model also offers an opportunity to determine the birefringence 

correlation length 𝐿𝐹  from the round trip birefringence vector. According to Huttner et al. 

(1998), the auto correlation function of the linear birefringence vector (𝛽𝐿) is a bilateral 

exponential with a decay constant, 𝐿𝐹. Since the linear birefringence vector is related to the 

round-trip birefringence vector, it is possible to apply autocorrelation theory to the round-trip 

birefringence vector to determine,  𝐿𝐹 from a P-OTDR measurement. The autocorrelation 

function of the round trip birefringence vector 𝛽𝐵𝐵,𝑖 (i=1,2,3) is given by (Galtarossa 

2001,2004a): 

𝑟𝛽𝐵𝐵(𝑧, 𝑢) = 𝐸𝐸[𝛽𝐵𝐵,𝑖(𝑧)𝛽𝐵𝐵,𝑖(𝑧 + 𝑢)]  

= 64𝜋
3𝐿𝐵

2 𝑒𝑥𝑝𝑝 �−
|𝑢|
𝐿𝐹
�                                                                (6.12)   
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Comparing equation 6.7 and equation 6.12, 𝑟𝛽(𝑧, 𝑢) and 𝑟𝛽𝐵𝐵(𝑧,𝑢) have the same decay 

constant hence by measuring the correlation of the round-trip birefringence vector, it is 

possible to determine 𝐿𝐹  and  𝐿𝐵𝐵 .   

The above derivations made use of stochastic differential equations and hold for the condition 

that, there is no circular birefringence. 

 

 

    

Figure 6.5: Autocorrelation correlation of the round-trip birefringence vector 𝛽𝐵𝐵(𝑧) for the 
four fibres: (a) is for the full lengths of 3.5km and (b) for a section of 500m, solid line 
indicates experimental values while dashed lines represent theoretical best fits. 

  

Figure 6.5 show autocorrelation functions of the four fibres. The auto correlation function is 

the expectation of the signal multiplied by itself after a given instance in space. It thus reveals 

how quickly the signal decays exponentially and this happens very quickly. In the figure, it 

can be observed that the autocorrelation plots in (a) representing the entire fibre link are 

nearly identical to those in (b) which represents the 500m sections. This indicates that the 

fibre undergoes similar decays at the various sections and hence the determination of the 

correlation length using equation 6.12 is valid. 
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6.6.1 Measurement of differential group delay (DGD) 〈𝚫𝝉〉  

Following the determination of the correlation length 𝐿𝐹 and the beat-length 𝐿𝐵𝐵, the mean 

differential group delay (DGD) can be calculated as (Wai,1996): 

〈∆𝜏𝜏〉2 = 1
3
�8𝜆𝐿𝐹
𝜋𝑐𝐿𝐵

�
2
�𝑒𝑥𝑝𝑝 − 𝐿 𝐿𝐹⁄ + 𝐿

𝐿𝐹
− 1�                                    (6.13) 

where L is the fibre length, 𝜆 is the wavelength of light and c the speed of light. 

As a result of this the mean DGD can be evaluated from a single wavelength once the beat 

length and the correlation length have been estimated from the P-OTDR measurements.  

Mean DGDs have been estimated for the four fibres, both for the full length and the 500m 

section. Mean differential delays were also measured using the standard JME technique 

(Heffner, 1992). Table 6.2 summarizes the results obtained for all the measurements. 

               Table 6.2: Summary of results: measured  𝐿𝐵𝐵 ,𝐿𝐹, and  〈𝛥𝜏𝜏〉ps. 

Measurements for full length (3.5km) 

Fibre Measurements of 𝐿𝐵𝐵[𝑚𝑚] using;  

𝐿𝐹 [𝑚𝑚] 

P-OTDR 

〈Δ𝜏𝜏〉 𝑝𝑝𝑝𝑝 
JME 

〈Δ𝜏𝜏〉 𝑝𝑝𝑝𝑝 𝛽𝐵𝐵 LCR PSD 〈𝐿𝐵𝐵〉 

Fib A 11.4 12.5 16.0 13.3 13.0 0.12 0.11 

Fib B 11.5 12.5 15.1 13.0 14.5 0.13 0.18 

Fib C 7.0 7.2 8.8 7.7 4.7 0.13 0.16 

Fib D 6.7 7.5 8.9 7.7 17.9 0.24 0.33 

                                     Measurements for section (500m) 

Fib A 12.0 13.3 15.7 13.7 6.7 0.03 - 

Fib B 13.0 14.0 17.0 14.7 9.9 0.04 - 

Fib C 6.9 7.1 8.6 7.5 4.4 0.05 - 

Fid D 7.1 7.7 9.1 8.0 12.9 0.07 - 

 

Table 6.2 shows results obtained with the P-OTDR measurements. The table shows 

measurements for both full length of 3.5km and also for 500m segments of the links. The 

DGD was calculated via equation 6.13. The beat lengths were calculated using all three 

methods discussed above. The measurements show that the parameters of the fibre may vary 
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along its length. It is evident that the DGD varies according to the fibre’s local parameters. 

This can be observed for Fib A in the table. The beat length and the correlation length for the 

entire 3.5km length are respectively 13.3m and 13.0m and for the 500m section, 13.7m and 

6.7m respectively. These values obviously yield two different values of the differential group 

delay. Thus local DGD may vary from that of the entire fibre link. Since the methods used to 

determine the correlation length and beat-length have been validated, it follows that the 

calculated PMD values are valid.  

6.7 Summary 

P-OTDR technique has been applied to characterize completely four standard G652 optical 

fibres. The method has made it possible to evaluate the factors affecting polarization mode 

dispersion namely, birefringence, beat length and the correlation length. It can also be 

observed from equation 6.13 and Table 6.2 that the two parameters, 𝐿𝐵𝐵  and 𝐿𝐹 together with 

the fibre length determine the differential group delay (DGD). While the fibre length is 

constant, the parameters 𝐿𝐵𝐵 and 𝐿𝐹 vary along the fibre length. This is due to the statistical 

nature of the birefringence vector. To be able to characterize the birefringence, the random 

modulus model was adopted.  Thus from a single measurement of the round-trip state of 

polarization (SOP) it was possible to evaluate completely the parameters characterizing the 

fibres.  

The method also permitted one to characterize 500m subsections of the fibres. It was 

observed that the fibre characteristics vary at different sections of the fibre. As a 

consequence, the DGD also varies. From equation 6.13, two values of the DGD are possible; 

one value due to an accumulation from the input point to the subsection and the other due 

exclusively to the subsection (L=500m). In Table 6.2, the DGD for the 500m subsection is 

due exclusively to that subsection. It was not possible to measure the 500m subsection with 

the JME due to obvious reasons. The only way to do such a measurement is the destructive 

method of cutting that subsection. 

In concluding, distributed measurements using a P-OTDR have been applied to characterize 

optical fibre properties. Differential group delay values calculated were in good agreement 

with standard measurement values. The method is non-destructive, repeatable and is capable 

of completely characterizing an optical fibre link. 
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CHAPTER 7 

MEASUREMENTS OF INSTANTANEOUS AND ROOT-MEAN-SQUARE 

DIFFERENTIAL GROUP DELAY USING P-OTDR 

7.1 Introduction 

As has been discussed in the previous chapter, the birefringence vector information 

determined from the round-trip P-OTDR signal contains all the information about the fibre 

including the polarization mode dispersion. Special attention has been given to the 

measurements of differential group delay since it would allow bad sections of installed fibre 

to be identified. Until recently however, reflectometric measurements had been applied 

successfully to measure only the mean differential group delay (DGD). This was due to the 

assumptions made when establishing the measurements, such as no circular birefringence. 

Currently, it has become of interest to determine the instantaneous differential group delay in 

fibre links (Dong et al, 2007; Galtarossa et al, 2008; Fosuhene et al. 2010; Palmieri et al. 

2011). The instantaneous value of the DGD may be useful in the real time monitoring of 

links.  

In this chapter, the P-OTDR measurement technique such as described in the previous 

chapter is applied to determine the instantaneous and root-mean-square values of the DGD. A 

theoretical background is given which is validated by experimental results. Finally 

measurements made with the P-OTDR are compared to measurements made with the 

standard JME technique. 

7.2 Determination of instantaneous differential group delay 

 

 

 

 

Figure 7.1: Schematic diagram showing optical path in a P-OTDR system. 
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Some of the results presented in this chapter have already been published by the author in references; Fosuhene et al  2010 (a), 2010(b). 
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Figure 7.1 depicts the optical path followed by a P-OTDR signal. The P-OTDR scheme is 

based on the one already described in chapter 6. It is assumed that the fibre is reciprocal and 

there is no polarization dependent loss in the system. The analysis is also restricted to the 

polarized components backscattered field since it contributes over 90% of the total 

backscattered power.  

Under these conditions the polarization properties of an optical fibre can be described by the 

Stokes-Mueller formalisms. Let 𝑭(𝒛𝟎) be the Mueller Matrix for a forward propagation 

vector from the P-OTDR source (point 1) to any arbitrary point 𝑍𝑍0 within the fibre link, 

𝑩(𝒁𝟎) the back propagation vector from 𝑍𝑍0 to the P-OTDR detector (point 3) and 𝑾(𝒁𝟎;𝒁) 

be the forward propagation between 𝑍𝑍0 and 𝑍𝑍. 

The round-trip propagation from point 1 to z and back may then be represented by 

(Galtarossa et al, 2005): 

𝑹(𝒁) = 𝑩(𝒁𝟎)𝑴𝑻(𝒁; 𝒁𝟎)𝑴𝑾(𝒁;𝒁𝟎)𝑭(𝒁𝟎)                                  (7.1) 

where M=diag (1,1,-1) is a diagonal matrix. 

All the matrices above are in general angular frequency dependent except M. For the forward 

propagation, the W dependence of distance (z) and angular frequency (𝜔𝜔)  can be expressed 

as (Gordon et al, 2000): 

𝜕𝑾
𝜕𝑍

= 𝜷� × 𝑾                   (7.2) 

𝜕𝑾
𝜕𝜔𝜔

= 𝛀� × 𝑾                   (7.3) 

where 𝛽̅(𝑍𝑍,𝜔𝜔) is the birefringence vector and 𝛀�(𝑍𝑍,𝜔𝜔) is the polarization mode dispersion 

(PMD) vector. 

Similarly, the R dependence on Z and 𝜔𝜔 describing the round-trip propagation is given by, 

𝜕𝑹
𝜕𝑍

= 𝜷�𝑩 × 𝑹                   (7.4) 

𝜕𝑹
𝜕𝜔𝜔

= 𝛀�𝑩 × 𝑹                  (7.5) 
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where 𝜷�𝑩 = 2𝑩(𝑍𝑍0)𝑴𝑾𝑻(𝑍𝑍;𝑍𝑍0)𝜷�𝑳(𝑍𝑍) represents the round-trip birefringence vector and 

𝛀�𝑩(𝑧) is the round trip PMD vector.  

As discussed in the previous chapter, almost all the PMD information is contained in the 

birefringence vector. By assuming that the linear birefringence vector 𝛽̅ is parallel to its 𝜔𝜔 

derivative, Dong et al (2007) showed that in principle the instantaneous DGD can be 

calculated from 𝛽̅𝐵𝐵, 𝜕𝛽𝐵𝐵 𝜕𝜔𝜔⁄ , Ω�𝐵𝐵 and 𝜕𝑅𝐵𝐵 𝜕𝑍𝑍⁄ . This assumption however was only applied 

using Fresnel reflection from the fibre far end. Consequently Galtarossa et al, (2008) 

provided an alternative solution using a distributed approach. Following this approach, 

consider propagation from a point 𝑍𝑍 ≥ 𝑍𝑍0 to the detector of the P-OTDR. Such propagation 

can be described by the matrix 𝑷(𝒁) = 𝑩(𝒁𝟎)𝑴𝑾𝑻(𝒁; 𝒁𝟎)𝑴 with a corresponding PMD 

vector reading, 

Π�(𝑍𝑍) = Π�(𝑍𝑍0) + 𝐵(𝑍𝑍0)𝑀𝑊𝑇(𝑍𝑍;𝑍𝑍0)Ω(𝑍𝑍;𝑍𝑍0)              (7.6) 

where  Ω(𝑍𝑍;𝑍𝑍0) represents the forward propagation between  𝑍𝑍0 and Z.  

The dependence of  Π(𝑍𝑍)  on Z can be calculated as  

𝜕𝚷�(𝑍)
𝜕𝑍

= 𝑩(𝑍𝑍0)𝑴𝜕𝛀�𝒊𝒏
𝜕𝑍

= 𝑩(𝑍𝑍0)𝑴𝑾𝑻(𝑍𝑍, 𝑍𝑍0) 𝜕𝛽
�

𝜕𝜔𝜔
            (7.7) 

where 𝛀𝒊𝒏(𝑍𝑍;𝑍𝑍0) = 𝑾𝑻(𝑍𝑍,𝑍𝑍0)Ω�(𝑍𝑍,𝑍𝑍0) is the input PMD vector of the fibre portion between 

positions  𝑍𝑍0 and 𝑍𝑍 .  

Assuming linear birefringence (𝜷� = 𝜷�𝑳) while applying the approximation (𝜕𝜷�𝑳 𝜕𝜔𝜔⁄ =

𝜷�𝑳 𝜔𝜔⁄ ), then  

𝜕𝛀�𝒊𝒏
𝜕𝑍

= 1
2
𝑴𝑩𝑻(𝑍𝑍0)𝛽𝐵̅𝐵(Z)               (7.8) 

By integrating equation 7.8 and finding the modulus of 𝛀�𝒊𝒏(𝑍𝑍,𝑍𝑍0), the instantaneous DGD  

between 𝑍𝑍 and 𝑍𝑍0 yields (Galtarossa et al ,2008), 

Δ𝜏𝜏(𝑍𝑍, 𝑍𝑍0) = 1
2𝜔𝜔
�∫ 𝛽𝐵̅𝐵(𝑡)𝑑𝑡𝑍
𝑍0

�                (7.9) 

The above equation indicates that the DGD of any arbitrary section of the fibre link can be 

calculated by integrating the round-trip birefringence vector. This is quite significant since 
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the DGD can be calculated from a single P-OTDR measurement at a single frequency. This 

will be applied in section 7.3.2 where experimental data is analysed.  

7.3 Determination of the root-mean-square differential group delay 

As has been discussed so far, polarization mode dispersion is a statistical phenomenon due to 

the random nature of the optical birefringence that causes it. The different measurement 

techniques that are employed to measure the DGD use averaging either as the mean DGD or 

the root-mean-square (RMS) DGD (Gisin et al, 1991; Heffner et al, 1992, Pool et al, 1994). 

The averaging is either done over wavelength or over time. These measurement conditions 

impose limitations to the accuracy of measurement because the statistical representation of 

DGD implies that, the measurement is limited to a finite sample set. The only hope of 

improving accuracy is to expand the sample size by either increasing wavelength range or 

measurement time (Gisin et al, 1996). In practice however, the optical frequency range is 

limited by laser tunability and the dependence of modal birefringence on wavelength. In this 

section a single-end technique for estimating the RMS DGD from a single wavelength or 

optical frequency is developed and applied using P-OTDR. The technique also applies 

autocorrelation techniques to the component of the birefringence vector.  

7.3.1 Derivation of RMS DGD 

Proceeding from the previous section and using equation 7.9, the RMS DGD can be written 

as (Fosuhene et al, 2010; Palmieri et al, 2011); 

∫ ∫ 〉⋅〈=〉∆〈
z

z

z

z
B

T
Bo

o o

dtdtzz ττββ
ω

ωτ )()(
4

1);,( 2
2             (7.10) 

where 〈𝛽𝐵̅𝐵𝑇(𝑡)𝛽𝐵̅𝐵(𝜏𝜏)〉 is the autocorrelation function of the round-trip birefringence vector. 

 Essentially, the autocorrelation of a random signal is the expectation of the product of such a 

random signal with itself at two different points in a given space. It reveals how quickly the 

random process changes at different   points and whether it has a periodic component and 

expected frequency.  

For this analysis, the components of the round-trip birefringence vector are assumed to be 

asymptotically stationary with each other and have the same autocorrelation function 
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(Galtarossa et al., 2001). The autocorrelation which is typically in the order of a few meters is 

comparable to the stationary regime. 

Using the above requirement, the components of the birefringence vector 𝛽𝐵̅𝐵 can be assumed 

to be stationary. Consequently applying autocorrelation theory results in the following,  

 〈𝛽𝐵̅𝐵𝑇(𝑡)𝛽𝐵̅𝐵(𝜏𝜏)〉 = 3𝑟(𝜏𝜏 − 𝑡)             (7.11) 

   

and making substitutions for  ut +=τ  into 7.11 yields 
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where, .3,2,1,)()()( ,,, =〉+⋅〈= iuttur iBiBi βββ  

 

Expanding  equation 7.12 and simplifying gives, 

 

     

































−

+









+−

=〉∆〈

∫ ∫

∫ ∫

−

−

−

−

0

0

0

0

2
2

)()(

)()()(

4
3);,(

zz

zz

zz

zz
o

o

o

o

o

o

duuurduuur

duurduurzz

zz

ββ

ββ

ω
ωτ

          (7.13)         
 

 

By applying the identity ∫ ∫−=
b

a

a

b

dxxFdxxF )()( , equation 7.13 becomes  
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 By applying the properties of auto correlation and making substituting for uu ′−=  ,

uddu ′−=   and using )()( urur ′−= ββ  , 
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  Making substitutions for  uddu ′−=   to the previous equation and simplifying, 
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  where the substitution that  ozzZ −=  has been made. Physically, this implies that the RMS 

DGD between any arbitrary points 𝑍𝑍0 and Z,  𝑍𝑍 > 𝑍𝑍0 can be calculated. In equation 7.14 as 

∞→Z  the following results; 
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Making substitutions and simplifying, 
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)(β . 

 

In the above discussions, both integrals, 𝐶0 and C approach an asymptotically finite value as 

Z increases. The second term, C tends to be negligible with respect to the first because the 

first term 𝐶0 increases linearly with the section length Z. Furthermore the auto correlation 
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function goes to zero in a length scale comparable to the auto correlation length. This implies 

that when Z is longer than a few meters, the second integral becomes negligible hence; 

                                   )(
2

32
oZC

ω
ττ ≈∆=∆                                     (7.15)                      

The above expression (equation7.15) can be used to estimate the squared DGD 〈∆τ���〉 of the 

link. Following these results, Palmieri et al, (2011) have shown that the RMS can also be 

expressed in terms of the power spectral density PSD as; 

∆𝜏𝜏��� = √∆𝜏𝜏2 ≈ √3
2𝜔𝜔
�𝑅(0)𝑍𝑍               (7.16)    

where  𝑅(𝑓)   is the power spectral density, which is also the Fourier transform of the auto 

correlation function  𝑟(𝑢) . 

The auto correlation function is usually calculated as the inverse Fourier transform of the 

power spectral density which can be estimated from experimental data with different methods 

as the periodogram (Kay,1988), which may be rather complicated. It is therefore more 

practical to use equation (7.15).     

7.3.2 Experimental determination of instantaneous and root-mean-square DGD 

To test the proposed technique, the instantaneous and root mean squared DGD of four 

standard G.652 single mode fibres each of length 3.5km were measured. The values obtained 

were compared to the standard Jones-matrix eigenanalysis method. The fibres are labelled 

FibA-FibD.  

The round trip-birefringence vector was measured using the same P-OTDR scheme described 

in chapter 6 (Galtarossa et al., 2001). The probe signal was set at 5ns with a peak pulse power 

of 23dBm. The spatial resolution of about 0.5m and SOP measurement uncertainty of 2% was 

achieved with a maximum measurement range of 20km.  The instantaneous DGD and root 

mean square DGD were evaluated at a wavelength of 1536nm. Results are presented in 

Figures 7.1-7.4 and summarized in Table 7.1. 
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7.3.3 Instantaneous DGD 

 

Figure 7.2:  Instantaneous DGD as a function of fibre length cumulated along the 

four fibre links. 

Figure 7.2 shows the instantaneous DGD as a function of distance, cumulated along each of 

the four fibres according to equation (7.9). The figure shows how the local DGD can be 

measured. This is remarkable considering the fact that measurements were done at a single 

wavelength. Though the DGD is a random phenomenon with statistical properties, this 

measurement reduces the limit imposed on its measurements due to spectral width.    

While this technique is also limited by the bandwidth of the erbium-doped fibre amplifier 

(EDFA), it is still valid and eliminates wavelength averaging.  From such a figure portions 

with high DGD along the link are easily identifiable for mitigation. This can be useful for real 

time monitoring of both installed links and for quality control during the manufacturing 

process. 
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7.4 Calculation of root mean square DGD 

 

 

Figure 7.3: Estimate of the auto correlation functions of the round-trip birefringence, on the 
four fibres; solid lines indicate theoretical best fits while dashed lines indicate experimental 
data. 

 

Figure 7.3 shows the autocorrelation functions (ACF) of the four fibres used to estimate the 

root-mean-square DGD. It can be observed that the functions tend to zero rapidly (a few 

meters). Further the ACFs approaches zero at different speeds for the fibres due to their 

different correlation lengths. This confirms the round-trip birefringence is asymptotically 

stationary and not correlated.  

Figure 7.4 shows plots of the integral of the autocorrelation function in figure 7.3 with 

respect to length Z. For the same reasons stated above, the integral ∫ 𝑟𝛽
𝑍
0 (𝑢)𝑑𝑢 approaches a 

constant value as Z increases. The constant asymptotic values were then applied to equation 

7.14 to estimate the RMS DGD. The instantaneous DGD and RMS DGD values resulting 

from the P-OTDR measurements are summarized and compared to the JME measurements in 

Table 7.1. 
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Figure 7.4:  plots of ∫ 𝑟𝛽(𝑢)𝑑𝑢𝑍
0  as a function of Z for each of the autocorrelation functions 

in figure 7.3; the asymptotic values are used to estimate the RMS DGD. 

 

Figure 7.5 shows the JME measurements for the fibres. Measurements were performed within 

a wavelength window of 1500nm-1620nm in steps of 1 nm. The instantaneous DGD at 

1536nm as well as their RMS DGD values are summarized and compared to the P-OTDR 

measurements in Table 7.1. In the JME case, the RMS value has been obtained by squaring 

and averaging the instantaneous DGD values. The uncertainty in the JME measurements 

were calculated using (Karlsson et al, 1999); 

 

𝜎𝜎 ≈ 0.9�〈∆𝜏〉
∆𝜔𝜔

         (7.17)  

 

where ∆𝜔𝜔 is the frequency range over which the instantaneous DGD was measured.  
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Figure 7.5: Plot of DGD vs. wavelength for the four fibres using the JME technique over a 
wave length span of 120nm in steps of 1nm. 

 

Table 7. 1: Summary of results; comparing RMS and instantaneous DGD for  

P-OTDR and JME measurements 

Fibre Instantaneous DGD (𝜆 =1536nm) 

    P-OTDR                JME 

     )( psτ∆               )( psτ∆            

Root mean squared  DGD   

  P-OTDR              JME 

  )(2
1

2 p sτ∆      psτ∆                               

 

             

)( psσ  

Fib A 0.10 0.09 0.13 0.12 0.03 

Fib B 0.19 0.18 0.16 0.18 0.04 

Fib C 0.10 0.11 0.16 0.17 0.04 

Fib D 0.33 0.28 0.28 0.35 0.06 

 

The RMS and instantaneous DGD measurements shown in Table 7.1 indicates that there is a 

very good agreement between the two measurement techniques. The P-OTDR measurement 

technique uses a single wavelength to achieve these results while the JME measurement 

technique uses a wavelength range. Again due to the use of a single wavelength, it is possible 

to implement the P-OTDR technique on live fibre through multiplexing. This is not possible 

with the JME technique which uses a wavelength range, some of which may interfere with 

other channels in a multiplexed system. Table 7.1 further validates and confirms the 

repeatability of the P-OTDR technique. This is because the measurements were repeated on 

four different fibres, and all of these measurements are in very good agreement with the 

1500 1520 1540 1560 1580 1600 1620
0

0.1

0.2

0.3

0.4

0.5

 

 

λ(nm)

∆
τ
 (

p
s
)

FibC
FibD
FibA
FibB

mailto:DGD@1536nm


90 

 

standard JME technique. For these reasons, the P-OTDR technique is more suitable for field 

measurements.  

7.5 Summary 

In this chapter P-OTDR technique has been successfully applied to calculate the 

instantaneous and RMS DGD of optical fibre links. Theoretical analysis has been validated 

by experimental data. The technique has many advantages. Firstly it is single-end and 

therefore offers a practical application for field measurements. Secondly it utilizes a fixed 

wavelength of an optical source to achieve a high accuracy and therefore avoids the errors 

introduced by wavelength averaging methods. According to the analysis deduced, the method 

can be applied to any arbitrary subsection of a fibre link.  

Another advantage is that the technique is based on birefringence measurements; hence real 

time monitoring of DGD may be achieved together with an assessment of the statistics of the 

PMD of an entire link. This means that the method can be applied to completely characterize 

the instantaneous DGD and RMS DGD of link (or subsection) at a fixed wavelength with a 

single P-OTDR measurement. 
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CHAPTER 8 

CONCLUDIND REMARKS 

With the growth in demand for high speed long haul optical communication links, 

polarization mode dispersion still remains a major limiting factor. Although improved fibre 

manufacturing techniques have reduced PMD in modern fibres, PMD still remains a 

challenge to legacy fibres. PMD compensation which is one solution to the problem is 

extremely challenging and difficult to implement. The most cost effective solution is to 

identify and eliminate high PMD sections within a link. During manufacturing, the later 

solution can be applied as a quality control method. It can also be applied to deployed fibres 

to mitigate PMD effects. In this PhD thesis, novel single-end measurement techniques 

capable of measuring the entire PMD of a link as well as locating sections with high PMD 

within a link have been investigated. The innovative experimental and analytical techniques 

developed and implemented in this thesis are cost effective ways of measuring and managing 

PMD in optical fibre links. Two single-end PMD measurement techniques were implemented 

in this thesis, the single-end interferometric (which is a modification to the generalized 

interferometric technique) and the polarization sensitive optical time domain reflectometric 

technique.  

In Section 5.3.1, the standard generalized interferometric technique (GINTY-EXFO FTB 

5500B) was modified to measure PMD in single-end configuration. This innovation was 

achieved by introducing a three-way coupler and polarization scramblers to form a round-trip 

set-up. The technique can measure values of PMD between 0-115ps, and a maximum link 

length of about 80km and above, at 0.2bB/km attenuation. The method was applied to 

measure different fibre types to test capabilities of the fibre. The ratios between the forward 

measurements and single-end measurements were calculated and compared with theory. 

In order to test the agreement between theory developed in section 5.3.3, and experimental 

result, two PMF fibres were first measured in both forward and single-end configuration. 

According to the results presented in section 5.4, a factor of 2 was obtained as the ratio 

between the single-end measurement and the forward measurement. The same result was 

obtained when the PMFs were concatenated to form a single segment. It was therefore 

deduced that the single-end treats a single PMF section as two concatenated birefringent 

segments with no or little birefringence. In such a case the DGD is expected to grow linearly 
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with length. Thus the factor of 2 between the single-end and forward measurement was 

consistent with theory. 

Next, three standard single mode fibres (two uncabled and one cabled) were measured in 

section 5.3.5. For these FUTs a ratio of ~1.4 between the single-end and forward 

configuration was obtained. There was a remarkable difference between the observed 

interferograms. The cabled fibre was characterised by closely packed interference peaks.  The 

interferograms for the two uncabled fibres were quite broad with a few lobes. It was observed 

that the cabling process introduced some birefringence and mode coupling resulting in the 

nature of the observed interferogram for the cabled fibre. It was further observed that the  

factor ~1.4 falls within the theoretical expected range derived in section 5.3.3. 

Finally, three fibres consisting of randomly spliced single mode and PMF were measured in 

section 5.3.6. A factor of, ~ 1.6 was obtained from the plot of single-end and forward 

measurements. The characteristics of these fibres were exhibited in their respective 

interferograms. The sharp closely packed interference peaks indicates the presence of both 

mode coupling and birefringence.  

These three sets of results prove that the single-end interferometric technique is capable of 

measuring different types of optical fibres. The technique is thus suitable for measuring PMD 

in the field and the laboratory. The general interferometric technique is a standard PMD 

measurement technique which is robust and suitable for almost all PMD measurements 

including aerial fibres, hence a single-end measurement technique based on it possesses the 

same qualities. Although the single end-technique is limited in length compared to the 

forward technique, it can still be used to measure metropolitan networks (within 100km 

spans). 

It was observed in literature that high PMD sections within an optical fibre link act to 

increase the total PMD of the link. For this reason, identifying and replacing such high PMD 

sections within a fibre link is an effective and cost effective way of countering the effects of 

PMD. Polarization sensitive optical time domain reflectometry (P-OTDR) techniques 

investigated in chapters 6 and 7 offer such a solution. 

P-OTDR technique is a single-end reflectometric technique capable of completely 

characterizing an optical fibre in terms of the parameters responsible for PMD. Fibre PMD 



93 

 

occurs as a result of local birefringence effects. High birefringence indicates high PMD. It 

therefore follows that knowledge of the birefringence map within an optical fibre link 

provides useful information about its local PMD. The birefringence within a section of an 

optical fibre can be estimated by measuring the evolution of the states of polarization or 

degree of polarization of the signal as it propagates through a fibre.  

Once the birefringence has been estimated, the beat-length and correlation length which are 

two important characteristic of the fibre can be estimated.  Thus a fibre is completely 

characterized when these parameters are determined.  The P-OTDR technique measures the 

round-trip birefringence of a fibre by monitoring the evolution of the states of polarization of 

the backscattered signal. The relationship between the round-trip birefringence and the SOP 

were presented in section 6.3. The information about the birefringence is contained in the 

optical power of the backscattered field as it propagates through a fibre. The technique is 

therefore able to retrieve birefringence information as a function of length. The P-OTDR used 

in this research work uses a pulse of 5ns with a peak power of 23dB. A spatial resolution of 

0.5 was attained with an uncertainty of 2% on an SOP measurement. The maximum 

measurement range was in the order of 20km. 

In section 6.4.1 various models for estimating the birefringence were discussed. Four 

standard single mode fibres were characterized. In section 6.4.2, it was observed that the 

statistics of the round trip birefringence vectors are Rayleigh distributed and fits well with the 

random modulus model. Following the determination of the birefringence vector, the beat 

length was estimated. Two other methods for determining beat-length were applied. Finally 

the correlation length was estimated from the autocorrelation of the round trip birefringence 

vectors. The mean DGD of the fibres were calculated from the already calculated beat-length 

and correlation lengths. To demonstrate the possibility of local measurements, subsections of 

lengths 500m each were also analysed and characterized. The estimated DGD values of the 

fibres were found to be in very good agreement with measurements made with the standard 

JME technique. 

 

The estimated DGD values in chapter 6 represent the average DGD of the entire fibre or a 

sub section. In chapter 7, P-OTDR techniques were further explored to estimate the 

instantaneous DGD and root mean square DGD of the same set of fibres. In this section an 
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expression for estimating the root mean square differential group delay was derived and 

applied. This was done by applying autocorrelation theory to an expression involving the 

instantaneous DGD and the linear birefringence vector. Both of these measurements were 

implemented at a single wavelength. From the plots of instantaneous DGD vs. distance, the 

DGD accumulated within any segment of the fibre can be obtained. The root mean square 

differential, even though evaluated at a single wavelength, is still valid and represents the 

statistical mean of the fibre DGD. Both the instantaneous DGD and the root mean square 

DGD values measured with the P-OTDR technique agree very well with the standard JME 

technique. 

Two novel single-end measurement techniques have been studied and implemented in this 

thesis. The advantages of these methods are that they are non-destructive, and cost effective. 

The interferometric technique is limited in terms of its inability to perform local 

measurement. However it is advantageous in terms of robustness, cost and higher PMD 

measurement range. The P-OTDR technique has many advantages. Firstly, it was able to 

characterizing fibre completely in terms of its birefringence, correlation length, beat length 

and DGD. From the instantaneous DGD plot, sections contributing particularly high DGDs 

can be identified and eliminated in order to reduce PMD. Since the P-OTDR operates at a 

single wavelength, it is possible to monitor or characterize live fibre via multiplexing. Both 

measurement techniques were found to be repeatable, accurate and agree with standard test 

measurements. 
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APPENDIX  A 
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

















0
0
1
1

 

 
 









00
01

 

 
Linear ŷ  

 









1
0

 


















−

0
0
1

1

 

 









10
00

 

 
Linear at 045±  

 









±1
1

2
1

 



















±
0
1

0
1

 

 









11
11

2
1

 

 
Right-hand circular  

 









j
1

2
1

 



















1
0
0
1

 

 








 −
1

1
2
1

j
j

 

 
Left-hand circular 

 









− j
1

2
1

 



















−1
0
0
1

 

 









− 1
1

2
1

j
j

 

 
Elliptical 

 









φχ

χ
je sin

cos
 



















ε
αε
αε

sin2
cos2 cos2
cos2 2cos

1

 

 








 −

2

2

ssce
scec

j

j

φ

φ

 

χ
χ

sin
cos

=
=

s
c

 

 
 
 
Unpolarized 

 
 

none 



















0
0
0
1

 

 









10
01

2
1

 

 
 
 

All vectors are normalized to a Jones vector of unit length. 
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APPENDIX B 

ACRONYMS 

  ASE   Amplified spontaneous emission 

  CD   Chromatic dispersion 

  CSRZ   Carrier suppressed return-to-zero 

  CW   Continuous wave 

  DFB   Distributed feed back 

  DGD   differential group delay 

  DOP   Degree of polarization 

  DPSK   Differential phase-shift keying 

  DQSK   Differential Quadrature phase-shift keying 

  DSF   Dispersion shifted fibre 

  DWDM  Dense wavelength division multiplexing 

  EDFA   Erbium doped fibre amplifier 

  FWHM  Full width at half maximum 

  FWM   four wave mixing 

  JME   Jones Matrix Eigenanalysis  

  LEAF   Large effective area fibre 

  LED   Light emitting diode 

  MMM   Mueller matrix method 

  NRZ   Non-return-to-zero modulation 

  OFDR   Optical frequency-domain reflectometry 

  OOK   On-off-keying 

  OSNR   Optical signal-to-noise ratio 

  OTDR   Optical time-domain reflectometry 

  P-OTDR  Polarization optical time-domain reflectometry 



97 

 

  PC   Polarization controller  

  PCD   Polarization dependent chromatic dispersion 

  pdf   Probability density function 

  PDL   Polarization dependent loss 

  PMF   polarization-maintaining fibre 

  PMD   Polarization mode dispersion 

  PSK   phase shift keying 

  PSP   Principal states of polarization 

  RI   Refractive index 

  RMM   Random modulus model 

  RMS   Root-mean-square 

  RZ   Return-to-zero 

  SOP   State of polarization 

  VCSL   Vertical cavity-surface-emitting Laser  

  WDM   Wavelength division multiplexing 

  XPM   Cross-phase modulation 
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APPENDIX C 
RESEARCH OUTPUTS 

 

2012 

Vitalis Musara, Winston T. Ireeta, Samuel K. Fosuhene, Lorinda Wu and Andrew W.R. Leitch 
‘Tunable polarization mode dispersion emulator: Fixed polarization maintaining fiber sections and 
rotatable polarization orientations,’ Optik, vol.123, pp. 228-234 (2012). 

 

2011 

Vitalis  Musara,  Samuel K. Fosuhene, Winston T. Ireeta, Lorinda Wu and Andrew W.R. 
Leitch ‘Emulator with inverse trend and in first-order and second-order polarization mode 
dispersion,’ Optics Communications, vol. 284, pp. 2690-2694 (2011).  

L. Palmieri, S.K. Fosuhene, A.W.R. Leitch and A. Galtarossa, ‘Single-end measurement of 
root mean square Differential group delay in single mode fibres by polarization optical time-
domain reflectometry,’ IEEE Photonics Technology Letters, vol. 23, no.4, pp. 260-262 
(2011). 

Samuel. K. Fosuhene, Timothy B. Gibbon and Andrew W. R. Leitch, ‘Single-end 
measurement of Polarization mode dispersion based on interferometry’, proc., South African 
Telecommunications Network and Applications Conference, (SATNAC 2011), Premier 
Hotel, East London, South Africa (4th to 7th September 2011). Published in the conference 
proceeding, ISBN: 9780-0-620-50893-3, Paper 246.  

 

2010 

Samuel K. Fosuhene, L. Palmieri, A.W.R. Leitch and A. Galtarossa, ‘Single-end measure of 
differential group delay in optical fibre links,’ Proc.12th Southern Africa Telecommunication 
Networks and Applications Conference (SATNAC 2010), Spier Estate, Stellenbosch, South 
Africa (5th to 8th September 2010). Published in the Conference Proceedings, pp.256-260, 
ISBN: 978-0-620-47934-9.  

Samuel K. Fosuhene, L. Palmieri, A.W.R. Leitch and A. Galtarossa, ‘Single-end 
measurement of root mean square differential group delay in single mode fibres,’36th 
European Conference on Optical Communications (ECOC 2010). Published in conference 
proceedings, ISBN: 978-1-42444-8535-2, IEEE catalogue number CFP10425-ART, paper 
P1.05.  
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