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Abstract 

Real options theory applies techniques known from finance theory to the valuation of 

capital investments. The present paper investigates further into this analogy, considering 

the case of a portfolio of real options. An implementation of real option models in 

practice will mostly be concerned with a portfolio of real options, so the analysis of 

portfolio aspects is of both academic and practical interest. Is a portfolio of real options 

special? In order to shed some light on this question, the present paper will outline the 

relevant features of a portfolio of real options. It will show that the analogy to financial 

options remains great if compound option models are applied. As a result, a portfolio of 

real options, and therefore the firm as such, generally is to be understood as one single 

compound, real option.  
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Portfolio-aspects in real options management 

1 Introduction 

In the last two decades finance theory has received important insights from the growing 

real options literature. The idea behind the real options approach is simple and 

straightforward. Simple, because "real options [...] are opportunities to purchase real 

assets on possibly favorable terms".1 Real options arise from a decision maker's degrees 

of freedom in choosing what actions to take, contingent on future events. Straightforward, 

because the theory of valuing the optionality in financial contracts, "option pricing 

theory", supplies powerful tools that can be turned to good use for valuing real options. 

All in all, the appeal of real options consists in quantifying the value created by the 

flexibility inherent in the management of investment projects, thereby providing a correct 

basis for making strategic investment decisions.  

The body of real options literature has grown ample, modelling various and most 

complex settings of real options.2 Yet the attribute "real" indicates that real options must 

finally aim at giving practitioners instruments which they can apply to their "real" 

problems. A practitioner normally is confronted with a vast opportunity set. In other 

words, if she wants to employ the real options theory, she has not only one real option to 

assess, but rather a myriad of real options, a portfolio of real options.  

At first sight, one would expect value additivity for real options, just like it is the case for 

financial options. This intuition is wrong. Financial options only define distribution rights 

of a given number of titles whose value itself is generally not affected by the existence of 

the options. On the contrary, real options can have an impact on the underlying assets. 

Ownership of the underlying asset may be a prerequisite for owning the option, and 

exercising the option may modify the underlying asset. An intuitive example is an option 

to shut down a plant. When exercised, all other options die, i.e. become worthless. It is 

obvious that value additivity does not hold, since the options interact. 

Few authors have addressed this issue. If so, their objective was mainly to solve a 

concrete problem where they had to consider interactions, not explicitly tackling the 

interaction phenomenon.3 Outstanding are Trigeorgis4 and Kulatilaka5, who have focused 

                                                 
1  Myers (1977), p. 163. 
2  For a detailed literature review, see Lander/Pinches (1998). 
3  See e.g. Brennan/Schwartz (1985) and Kulatilaka (1993). 
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on options interactions, and demonstrated that multiple real options in one project may not 

be valued separately. Kester6 examines the case of sequenced product introductions 

(growth options) which lead to synergies and learning effects. Childs/Ott/Triantis7 

discuss two projects that can be developed in parallel, but of which only one can be 

implemented. Whereas these papers do consider portfolios of real options, there is none 

which explicitly addresses the valuation problem of a portfolio of real options in general. 

The present paper borrows from the existing literature and expands the idea of options 

interactions towards the general real options setting most corporate decision makers are 

confronted with: multiple underlyings with multiple real options.8 It shows in how far a 

stand-alone analysis is different from a portfolio-analysis in the context of real options 

and develops the associated portfolio problem by structuring the arising effects. Via a 

simple numerical example, it demonstrates the consequences for the valuation of a 

portfolio of real options.  

In other words, the questions to be answered are: In which regards a portfolio of real 

options is special? What kind of interactions may be encountered? Which significance 

must be attributed to diversification, which to budgets? What are the consequences for the 

valuation of a portfolio of real options?  

The paper is organised as follows. Section 2 develops the relevant portfolio-aspects of a 

portfolio of real options on an abstract basis. Section 3 applies the obtained results to a 

numerical example and will show how the general case of a portfolio of real options 

needs to be priced. Section 4 summarizes the results and concludes.  

2 Portfolio-aspects in a real options-world 

2.1 Assumptions and definitions 

In order to build a sound basis for the following analyses throughout this paper, some 

assumptions are in place. First, it is assumed that all considered investment projects are 

at least in part irreversible, i.e. there are sunk costs. This assumption is necessary for 

interpreting these projects as options, otherwise most options would be worthless since 

                                                 
4  See Trigeorgis (1993). 
5  See Kulatilaka (1995). 
6  See Kester (1993). 
7  See Childs/Ott/Triantis (1998). 
8 As an example, Faiz from Texaco Inc. stresses the need of considering portfolio aspects in the 

management of real options. See Faiz (1999).  
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current actions could be unwound later without costs. Second, the relevant markets are 

assumed to be frictionless and complete, which implies that there is a spanning portfolio 

for all underlying real assets. In fact, the complete markets assumption is crucial for every 

real options framework and is treated differently in the literature;9 by supposing complete 

markets, this paper leaves it up to the reader how to treat this problem. 

A set of additional assumptions will conveniently focus the following analyses. 

Nonetheless it is stressed that their relaxation is possible and very often of utmost 

interest. All options are european-type, there are no dividends during the life of the 

options, the risk-free rate of interest is known, constant and identical for all maturities. 

All real options are proprietary, i.e. the option holder has an exclusive right to exercise 

the option and does not have to consider the competitors' behaviour. There are no agency-

conflicts, so that the optimal option exercise policy will be implemented and therefore the 

theoretical option value will be realized and translated into market value of the firm. 

There is no capital rationing.10 Finally, the decision maker can specify all existing real 

options. Their origin and creation are not considered. 

In this paper, options to invest, options to expand and options to abandon will be 

treated.11 An option to invest enables a decision maker to acquire a real asset in exchange 

for the investment outlay which is the strike of this call option. An option to expand is 

similar, allowing to expand the scope of an existing asset. An option to abandon allows to 

quit a project, e.g. shut down a plant, possibly for a salvage value which is the strike of 

this put option. Options to expand or to abandon are labelled "operating" options, since in 

our context they deal with an asset in place. 

The term "portfolio" is understood in the most general manner: a portfolio is a set of 

elements, a portfolio of real options is a set of real options. "Portfolio-aspects" are 

regarded as the properties of the set which differ from the properties of the separate 

elements. In this sense, portfolio-aspects emerge by putting together real options into a 

portfolio.  

A "project" is defined as a real asset, including all operating options that go together with 

it. The complete markets assumption yields that the market value of a project without any 

                                                 
9  See e.g. Copeland/Koller/Murrin (1994), p.460; Luehrman (1998), p. 52; Kasanen/Trigeorgis 

(1994). 
10  See section 2.4 for this assumption, which might astonish the reader used to capital budgets. 
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operating options, called "separate project", is known. The objective of this paper is to 

quantify the value that can be created by combining separate projects with operating 

options. For all analyses, the firm is assumed to maximize its market value, so value 

creation is always to be understood in terms of additional market value.  

In the following, the portfolio aspects of a portfolio of real options are discussed, namely 

diversification, direct and indirect qualitative interactions, options interactions and 

correlation. 

2.2 Portfolio-aspects and a portfolio of real assets: diversification 

The assessment of a particular investment opportunity in a risky world has to take into 

account the stochastic correlation of this opportunity with all other opportunities. This 

implies that an optimal global strategy can only be found by considering all relevant 

alternatives simultaneously.12  

A famous model of investment management is the model of portfolio selection by 

Markowitz.13 He shows that, as long as there is no perfect positive correlation between 

the returns of the analyzed securities, risk can be reduced through diversification so that 

covariance is the only relevant measure in a portfolio analysis. This is a portfolio-aspect 

consisting solely in the diversification which results from the stochastic relationship 

between risky returns. As a consequence, it is purely stochastic in nature. 

Leaving the finance department of the firm, the "investment program" is a set of real asset 

investments that a firm is planning to undertake. Of course this program is a portfolio, a 

set of elements, in which diversification should be relevant, since the cash-flow profiles 

of separate projects show correlations that in general are not perfectly positive. This 

implies that just like a portfolio of securities, a marginal project has to be assessed only 

by the covariance between its returns and the return of the rest of the portfolio. If an 

additional project is added to the portfolio, the aggregate risk normally will grow by less 

than the risk of the separate project. Furthermore, real investments normally last more 

than just one period, so that new projects can only be evaluated by taking into account 

simultaneously all other new projects and all projects in place, more specifically: the 

                                                 
11  In the literature, the terminology is very homogeneous. The reader may refer to Trigeorgis (1996), 

pp. 9-14 for an introduction.  
12  See Franke/Hax (1999), p. 306. 
13  For the whole paragraph, see Markowi tz (1952). 
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covariances of their future cash-flows. This relationship, again, is purely stochastic in 

nature. 

We retain that generally speaking, diversification is a relevant portfolio-aspect of a 

portfolio of investments in real assets, in analogy to a portfolio of securities. 

Diversification appears as a legitimate goal for a risk-averse entrepreneur whose capital 

is mainly employed in his firm. Yet, if this were the case, the firm would maximize the 

entrepreneur's utility, not its market value. Here, a firm maximizing its market value is 

explicitly assumed. This firm cannot create value by diversification, because its 

shareholders can and will diversify their personal portfolios. Furthermore, it is assumed 

that market values of the separate projects exist. Consequently, on a perfect capital market 

the market value of a portfolio of such projects must equal the sum of the parts.14 

It is concluded that diversification and, implicitly, the correlation of the market values of 

the separate projects without operating options, are not a relevant portfolio-aspect in the 

first place. However, considering real options, the correlation becomes relevant when the 

new market value that can be generated by combining separate projects with operating 

options is to be assessed. This will be shown in section 2.6. 

Beyond these stochastic relationships, projects can affect each other on an technical or 

physical level. It may then become important to consider which projects are operated at 

the same time. In order to clearly distinguish them from the stochastic relationships 

encountered so far, they are defined as "qualitative interactions".  

2.3 Portfolio-aspects and a portfolio of real assets: direct qualitative interactions 

Developing the classification of Betge,15 "direct qualitative interactions" are those 

qualitative interactions which have their origin in the investment-plan16 as such or which 

result from interactions with investments already undertaken and still producing cash-

flows. Direct qualitative interactions do not result from stochastic relationships, but from 

physical properties of the projects. This is why they cannot be avoided in any way 

comparable to diversification. 

                                                 
14  See Bodie/Kane/Marcus (1999), pp. 258f. 
15  See Betge (1995), p.11. 
16  The investment-plan comprises all investments that are to be undertaken. Together with all other 

plans of the firm, e.g. the financing-plan, the overall plan of the corporation is obtained. See Betge 
(1995), p.11 and Perridon/Steiner (1997), p.605f. 



 6

On the one hand, projects can exclude each other, e.g. when they have an identical 

technical function. In this case they are strictly substitutive. On the other hand, projects 

may require that other projects exist at the same time, as e.g. in a production line. They 

are strictly complementary. These two relationships can also be gradual in the sense that 

the cash-flow profile of one project can be positively or negatively affected by the 

existence of other projects. An example for a positive gradual interaction is a plant whose 

productivity rises because of synergies with another plant. Furthermore, the interaction 

can always be mutual or just one-way. For example, it is mutual when both of two plants 

benefit from synergies, or one-way when one of the two plants is completely unaffected 

by the existence of the other. Other combinations are of course conceivable, such as two 

plants where one is positively and one is negatively affected by each other. In short, 

interaction can affect the profitability of projects or even their feasibility as such. If there 

is no interaction, the projects are independent. All theses cases together can be visualized 

as a continuum: 

Exhibit 1: Continuum of direct qualitative interaction 

strictly 
substitutive

strictly
complementaryindependent  

Hax states that the analysis of interacting projects may be focused on strictly 

complementary projects without loss of generality.17 This is consistent with the concepts 

that we have developed so far, since the interaction can take place in different ways and 

degrees, yet the principle of interaction remains the same. This is why section 3.4 will 

consider the case of a positive gradual interaction, representative for the whole 

continuum. 

2.4 Portfolio-aspects and a portfolio of real assets: indirect qualitative interactions 

The term "indirect qualitative interaction" covers those qualitative interactions which 

result from incongruities between plans. If plans are not perfectly harmonised, one plan 

may become a bottleneck, resulting in projects competing for the limited resources and 

entering into interaction via this competition. This interaction is beyond the investment-

plan, like for example binding capital restrictions, or budgets. Due to the shortage of 

capital, not all profitable investments can be supported. 
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This kind of interaction is qualitative, because it is not inferred by simple stochastic 

relationships. It is indirect, because it results from general conditions and restrictions that 

do not necessarily go hand in hand with the investment projects and therefore could be 

avoided, e.g. by finding additional financing resources. 

In the current context, shortage of financial resources is equivalent to all shortages in 

other plans than the investment-plan, because for example a lack of qualified personnel is 

as binding a constraint as a lack of money. Indirect interactions will not be allowed for in 

the present paper for two reasons. Firstly, if restrictive plans were assumed, the dynamics 

("interactions") between current plans, investment choice and future plans would have to 

be modelled, a task that is beyond the scope of this paper. Secondly, the indirect 

interactions result from frictions in the relevant markets or from a voluntarily chosen 

organisational design of the corporation. These frictions can hardly be explained in the 

otherwise perfect world that is assumed: either they lead to suboptimal solutions, or 

alternatively they are not binding and thus irrelevant. 

As a result, the relevance of portfolio-aspects following from indirect qualitative 

interactions is ambiguous. Henceforth, these portfolio-aspects are excluded from the 

analysis.    

2.5 Portfolio-aspects and a portfolio of real options: options interactions 

So far different kinds of interaction on the level of real assets have been developed. Now 

the analysis will focus on a portfolio of real options, so that the real assets are the 

underlying assets of the real options. This way, the previously developed interactions are 

implicit to the further analysis. In the following sections, interactions on the level of real 

options will be analyzed. 18 

Financial options exhibit value additivity. This is due to the fact that they generally do not 

affect the underlying asset: they merely define a distribution of a given number of titles 

whose value itself is generally not affected by the existence of the options. On the 

contrary, real options are often inseparably interconnected with the underlying asset in the 

sense that ownership of the underlying asset is a prerequisite for owning the option, and 

that exercising the option has an impact on the asset and its value. This is by definition the 

case of operating real options. Since these affect the asset, they interact. 

                                                 
17  See Hax (1985), p. 39. 
18  For this whole section, see Trigeorgis (1996), pp. 234-237. 
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For a comprehensive understanding of the interaction of options, consider two european-

style, operating options on the same underlying asset, but with different maturities. The 

option maturing first is the "first" option, the other one the "second". A valuation of these 

two options has to take place simultaneously, yet the effects on each option can be 

showed separately, in a static way. 

On the one hand, if the second option is added, the first option is affected because the 

value of its underlying is not only the value of the real asset, but the value of the asset plus 

the second option. Since an option value can never be negative, the value of the 

underlying asset will be unchanged or higher with the second option. If the first option is 

a call (put), its value increases (decreases) with the arrival of the second option. As an 

example, the value of an option to expand will increase if the second option is an option 

to abandon. This is quite plausible: the second option serves as an insurance against 

negative outcomes in the future, so that the decision maker, ceteris paribus, is more 

willing to exercise the option to expand. As a consequence, the first option can only be 

priced when the second one is taken into account. 

On the other hand, exercising the first option might modify the underlying asset and its 

value, which is also the underlying of the second option. Because of this modification, it 

is possible that after exercising the option to expand, it is less probable that the option to 

abandon will be exercised so that the value of the second option decreases. This shows 

that the second option cannot be priced without considering the first one. 

Since both options affect each other, they have to be priced simultaneously: the value of 

the first call increases because of the value of the second put, but to find the value of the 

call we need the value of the put and vice versa. The extreme case of negative interaction 

can be that the value of the portfolio equals the value of the most valuable option in 

isolation. This is the lower limit of value, because in the worst case all other options 

simply would not be exercised. The other extreme is super-additivity: the value of the 

portfolio is higher than the sum of the option values in isolation. Finally, it is conceivable 

that there is no interaction at all. Considering these cases together results in all possible 

options interactions being outlined. If more than two options on the same underlying asset 

exist, the problem becomes much more complex, but the principle of interaction remains 

the same: all options have to be priced simultaneously.  
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This result resembles a compound option, an option on an option where the underlying of 

the first option is the second option. It is obvious that these two options have to be priced 

simultaneously: the strike is a necessary pricing input, and here the strike equals the 

unknown value of another option. Yet the analogy between the demonstrated real options 

feature and an option that is compound in the strict sense is limited, because the described 

real options do not only come into existence by exercising another option. For a clear 

distinction, the following terms are introduced. The general interaction effect between 

real options is defined as "time compoundness", given that they refer to the same 

underlying asset over time. In exchange, the special case of a compound option in the 

strict sense is described as "causal compoundness", because the first option, if exercised, 

gives birth to the second.  

Both forms of compoundness are relevant portfolio-aspects of a portfolio of real options 

and will be discussed in what follows. 

2.6 Portfolio-aspects and a portfolio of real options: correlation 

As we have seen in section 2.2, the correlation of market values of the separate projects 

is irrelevant in the sense that a possible diversification would not create additional value. 

These market values are exogenous factors in the given setting. Here we seek to 

determine the new market value which is reached by combining separate projects, just 

like they can be acquired on the relevant markets, with operating options. The difference 

between the new and the old market value is the value created by the firm. 

We have seen that a project, i.e. separate project plus operating options, has to be priced 

as a compound option in a real options framework. Now consider more than just one 

project. If theses projects are completely independent of each other, the correlation of 

project values is of course irrelevant. On the contrary, if these projects exhibit any kind of 

interaction and thus have to be priced simultaneously, correlations are of importance. 

When pricing many projects, as many stochastic processes for the value of the respective 

underlyings must be modelled, including their correlation. The valuation has to take into 

account how these processes move together; this is analogous to pricing standard 

financial compound options. Even for only two stochastic processes, and taking a model 

as simple as the binomial model, the calculus is very demanding. The binomial tree 

becomes three-dimensional, with one time- and two underlying-dimensions. Contingent 
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risk-neutral probabilities are required, which have to be determined by an iterative 

numerical algorithm.19 

Generally speaking, the correlation can be constant or changing over time. It might be 

affected by the exercise of real options. This can be a side effect, but it is also 

conceivable that there is an option whose only aim is to influence the correlation. This 

can be the case if by exercising the option, the sensitivity of project value towards the 

value of the underlying is changed, so that this option in fact serves to react to price 

movements. A well-known example for this is a dual-fuel steam boiler.20 

The present paper aims at showing how a portfolio of real options is to be priced. With 

regards to complexity and in order to focus on the main issues of this paper, all further 

analyses will suppose perfect positive correlation for the case of two projects. This is 

legitimate, because this simplified setting leads on its own to a new form of 

compoundness which embraces projects and therefore is called "inter-project 

compoundness". If more complex correlations are permitted, the result of this paper is 

even more prominent, because the correlation alone would demand a simultaneous, 

"compound" pricing. 

The correlation of the stochastic processes of the values of the underlying assets is a 

relevant portfolio-aspect of a portfolio of real options. For simplicity and without loss of 

generality, it will not be treated explicitly in the further analyses. 

3 Pricing a portfolio of real options 

3.1 Overview 

The goal of this section is to price a portfolio of real options which incorporates all 

relevant portfolio aspects. For this purpose, a simple numerical example will 

successively be developed towards the general portfolio case. This will be carried out in 

three stages. Stage 1 will show a basic real options configuration: one project with one 

operating option. Complexity will then increase in stage 2, where a second operative 

option is added. Finally, stage 3 investigates the general portfolio case, asking what 

happens if two interacting projects with two operative options are to be modelled.  

                                                 
19  In particular, see Boyle (1988). 
20  See Kulatilaka, N. (1993). 
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3.2 Stage 1: One project with one operating option 

The most simple composition of a portfolio of real options is an investment opportunity 

which gives one operating option once the initial investment has been undertaken.21 This 

serves as the starting point and benchmark for the later stages. 

Example 1: 
Suppose a firm has the opportunity to acquire a plant whose market value is stochastic 

and perfectly positively correlated with the oil price. The oil price and therefore the 

value of the plant are assumed to follow a two-period binomial process with the jump 

parameters u = 1.3 and d = 0.7. The initial market value of the plant is 10022. The 

investment decision is now-or-never, and the plant can be run immediately after investing. 

If the plant is run, the firm has the option to expand, increasing the capacity and market 

value of the plant by 60% for a strike of 50. 

Generally speaking, an option can be modelled and priced via dynamic programming, 

because it implies the pricing of future rights to choose. For this, dynamic programming 

determines contingent partial plans. In the current context, these plans are sequences of 

exercise decisions. This is why the present valuation problem could be visualized by a 

decision tree and solved by an algorithm of dynamic programming such as the "roll-back 

algorithm".23 Exhibit 2 depicts the decision tree for example 1: 

Exhibit 2: Decision tree on stage 1 

Invest?

yes

no

t = 0

t = 1

end

Chance
event

u

d

Exercise option
to expand?

State node; Chance node

t = 1

value 
of the

respective
strategy

yes

yes
no

no

 

                                                 
21  This portfolio contains two options: an option to invest, i.e. to make the initial investment, and an 

operating option. In the following the option to invest is trivial, since market values are known and a 
decision has to be made immediately. The goal of the following sections is to price the operating 
option(s).  

22  To focus the analysis, no currency nor unit is specified throughout the paper.  
23  See Dixit/Pindyck (1994), pp. 120-124. For dynamic programming and decision trees, see Magee 

(1964) and Laux (1971). 
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Qualitatively, pricing the project with dynamic programming is equivalent to pricing it 

with an option pricing model. Throughout this paper, the discrete binomial model by 

Cox/Ross/Rubinstein will be used.24 Assuming a risk-free rate of interest of 6%, the 

value of the project, denominated as I, is depicted as follows:25 

Exhibit 3: Value of project I 

I0

)506.1130;130max(I1
1 −⋅=

)506.170;70max(I0
1 −⋅=

p

1-p  

The risk-neutral probabilities p and (1-p) are: 

(1) 4.0p1and6.0)7.03.1/()7.006.1()du/()dr1(p =−=−−=−−+= 26  

Application of the risk-neutral probabilities yields I0: 

(2) { } 85.11506.1/)506.170;70max(4.0)506.1130;130max(6.0I0 =−⋅⋅+−⋅⋅= . 

The value of the project in t = 0 is 115.85, the option to expand is only exercised after 

one up-jump. As the market value of the separate project is 100, the additional value 

created by the option to expand is 15.85. 

Example 2: 
All else equal, instead of the option to expand the plant is combined with an european-

style option to abandon, permitting to sell the plant in t = 2 for a strike of 100, 

independent of the state of the oil price. In other words, the plant is suitable for an 

alternative use whose value is non-stochastic. The binomial tree comprises two periods 

now, but can still be solved with a simple backward induction. 

The project is denominated as J. Starting with )100;169max(J 2
2 = , )100;91max(J1

2 =  

and )100;49max(J 0
2 = , the induction yields 4.133J1

1 =  and 3.94J0
1 = , and finally 

11.111J0 = . 

The value created by the option to abandon is thus 111.11 -100 = 11.11. The "naive" sum 

of the two option values, put and call, is 15.85 (call) + 11.11 (put) = 26.96. This value 

                                                 
24  See Cox/Ross/Rubinstein (1979). 
25  The notation is as follows: the figure in subscript counts the periods, the figure in superscript 

counts the number of up-jumps.  
26  The risk-neutral probabilities will be the same in all examples, because the jump coefficients and 

the risk-free interest rate are the same. 
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would be obtained if the portfolio of the firm consisted of these two options and if there 

were no interactions. 

3.3 Stage 2: One project with two operating options 

3.3.1 Causal Compoundness 
Up to now, the project could be priced by the help of a simple backward induction, 

because there was only one option. Now two operating options will be analysed, and it 

will be found that the algorithm needs to be modified. 

Example 3: 
The plant still gives the specified option to expand. If and only if this call is exercised, 

the previously specified option to abandon is obtained. As defined in section 2.5, there is 

a causal compoundness. An example for this setting is a plant which can only be turned to 

a different use after its modification, which is the consequence of exercising the call. 

Again, a decision tree allows us to demonstrate the features of the project. If the call is 

not exercised and therefore there is no put, the value of the project equals the market 

value of the separate project, as there is no further flexibility. The decision tree is given 

in exhibit 4: 

Exhibit 4: Decision tree on stage 2 

Invest?

yes

no

u

d

Excercise call?

no put

no put

Exercise put?

u

d

u

d

yes

yes yes

yes

yes

yes

no

no no

no

no

no

 

This project, called K, cannot be priced by the simple backward induction employed so 

far. A modified recursive procedure is needed. First, suppose the call is exercised in 

t = 1, so that there is a put. This yields: 
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(3) 4.270)100;6.1169max(.)ex(K2
2 =⋅= ; 

(4) 6.145)100;6.191max(.)ex(K1
2 =⋅= , and  

(5) 100)100;6,149max(.)ex(K0
2 =⋅= . 

The put is only exercised after two down-jumps. Applying the given risk-neutral 

probabilities, one obtains 208.)ex(K1
1 =  and 2.120.)ex(K0

1 = . Second, suppose the call 

has not been exercised, so there is no further option. As the plant is not modified in this 

case, its value equals the known market value: 130.)ex.n(K1
1 =  and 70.)ex.n(K0

1 = .  

Third, it is to be determined if exercising the call is advantageous: 

(6) 158.))ex.n(K;50.)ex(Kmax(K 1
1

1
1

1
1 =−= , and  

(7) 2.70.))ex.n(K;50.)ex(Kmax(K 0
1

0
1

0
1 =−= .  

The call is always exercised. Finally, application of the risk-neutral probabilities yields 

91.115K0 = . 

Deduction of the market value of the separate project yields a combined option value of 

115.91-100 = 15.91. It is remarkable that the value of the two options, precisely: of the 

compound option, only slightly exceeds the value of the call alone, which is 15.85. This 

is because the put only activates after exercising the call, which boosts the value of the 

underlying asset for the put. The probability that the put will be exercised, contingent on 

exercise of the call, is very small.  

This section has demonstrated that decision trees can be employed for modelling a 

compound option-problem. Putting the trivial case of independent decisions aside, one 

can generalize that a decision tree always models a compound-problem. This is because 

the tree contains all possible combinations of actions and realizations of the stochastic 

variables. Therefore one can qualify the decision tree as an exhaustive form of the 

binomial tree: it explicitly incorporates the iterative feature of the binomial tree, because 

the decision tree distinguishes the cases of exercising and not exercising the call as 

separate branches. In addition, it has been shown that causal compoundness can lead to 

significant deviations from value additivity.  

3.3.2 Time Compoundness 
The compoundness analysed so far is no particular feature of real options and rather 

well-known from financial compound options. Consequently, this section will treat the 
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case of time compoundness, showing that it demands the iterative recursion known from 

causal compoundness. 

Example 4: 
Now the plant gives the two previously specified options to expand and to abandon. The 

option to abandon (maturity t = 2) always exists, regardless of whether the option to 

expand (maturity t = 1) has been exercised or not. One can imagine the option to abandon 

again as an alternative use of the plant, but now this use is not affected by exercising the 

other option. The decision tree is almost identical to that of Example 3, except that the put 

exists in both state nodes of period two. 

The same iterative recursive procedure as in example 3 has to be applied, because one 

still has to take into account the existence of the put when deciding whether the call is to 

be exercised. Since the decision tree changes only in part, similarly only a part of the 

calculations must be repeated. The project is denominated as L. 

If the call is exercised, the resulting problem becomes identical to Example 3, due to the 

existence of the put. Therefore, 208.)ex(K.)ex(L 1
1

1
1 == and 2.120.)ex(K.)ex(L 0

1
0
1 == . 

The values in the case when the call is not exercised have to be computed anew, because 

the put still exists in this case. Yet since the value of the underlying asset is not modified, 

the problem is identical to Example 2. Therefore, 4.133J.)ex.n(L 1
1

1
1 ==  and 

3.94J.)ex.n(L 0
1

0
1 == . These two intermediate results now must be put together as in 

Example 3, checking whether or not exercise of the call is advantageous. Thus the 

problem is solved by: 

(8) { } 03.12506.1/)3.94;502.120max(4.0)4.133;50208max(6.0L0 =−⋅+−⋅= . 

The option value in the case of time compoundness is 125.03-100 = 25.03, clearly 

exceeding the value of 15.91 in the case of causal compoundness. This makes sense, since 

the put protects against negative outcomes when the call is not exercised. In that sense the 

two options complement each other, the call allowing to profit from positive outcomes 

and the put protecting against negative ones. Nevertheless, there is still sub-additivity, the 

option value differing by 1.92 from the naive sum of the parts of 26.96, which is 

approximately 7%.  

As a result, time compoundness has to be priced just like causal compoundness. This 

explains why it should be considered as a compound problem despite the qualitative 
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differences. The numerical example shows that a naive pricing approach can lead to an 

incorrect project valuation. 

3.4 Stage 3: Two projects with two operating option 

3.4.1 Analogy to decision trees 
The idea of compoundness will now be expanded towards the case of two projects with 

direct qualitative interactions. A setting is chosen which will unite all portfolio-aspects 

identified in this paper and therefore is to be considered as the general case of a portfolio 

of real options. 

Example 5: 
The firm has to decide at t = 0 whether to realize two projects A and B which do not 

exclude each other. Both separate project values depend on the oil price as in example 1 

and therefore are perfectly positively correlated. To facilitate the calculation, both 

separate projects have an initial market value of 100. Project A is the known plant with 

the option to expand at t = 1. Project B is another plant, giving the known option to 

abandon at t = 2, if and only if the call on A is exercised. This is a causal compoundness 

which is incorporated in many projects. That is why it is defined as "interproject  

compoundness". Furthermore, there is a direct qualitative interaction of the form that if 

and only if the call on A is exercised, the market value of plant B immediately rises by 

20%. Consequently, each project as such is taken from stage 1, because in a stand-alone 

form A is identical to example 1 and B contains no options. Because of the interactions, 

the ensemble  constitutes stage 3. As argued in section 2.3, this setting is representative 

for all direct qualitative interactions. One can imagine this setting as follows: 

Modification of A brings with it a new technology which can also be put to good use in B, 

for example via a better productivity which leads to a higher market value. Only with this 

new technology an alternative use for B is possible. 

Of course each project can be modelled by a separate decision tree. Yet these trees have 

to be assessed simultaneously, which can be visualized by a decision tree on two levels. 

Level A consists of project A with the call at t = 1. Level B is project B as in example 1, 

with the difference that there is no call. The newly introduced feature is the link between 

these levels, visualized by arrows: the decision on the call on level A determines on 

level B whether the market value goes up, and whether there is a put. The two-level 

decision tree can be found in exhibit 5: 
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Exhibit 5: Decision Tree on stage 3 
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On a first step, the arrows make it impossible to apply a simple induction. Nevertheless, 

a new exhaustive tree on one level could easily be obtained, modelling each project 

combination as a separate branch: "A only", "B only", "A and B", "no investment". The 

branches of this new tree would be as in the examples described before, with the 

exception of "A and B": after the branch "exercise call on A", there is a new decision 

node for the put on B, taking into account the increased value of the underlying asset. This 

new tree could easily be solved by a simple backward induction.  

The new decision tree obviously brings together interacting decisions. As a decision tree 

generally is a way of modelling a compound problem, it is demonstrated on an intuitive 

level that the possibility of investing in the two interacting projects A and B is a 

compound option. Therefore it should be possible to price example 5 by the help of the 

developed iterative recursion. This will be demonstrated in the following section. 

3.4.2 Pricing the option on stage 3 
It directly follows from the argumentation in the preceding section that there is an 

additional iteration which consists of comparing {"A", "B", "A &  B", "no investment"}. 

"A" is project I with an option value of 15.85, "B" alone has no option and therefore no 

option value, and the same is of course true for "no investment". Consequently, only 

"A & B" is left to be assessed. 
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The project is denominated as M. First, consider the case when the call on A is 

exercised. The value of A increases by 60%, at the same time the value of B increases by 

20% and there is a put on B in t = 2. This yields: 

(9) 2.473)100;2.1169max(6.1169.)ex(M 2
2 =⋅+⋅=  (put not exercised), 

(10) 8.254)100;2.191max(6.191.)ex(M1
2 =⋅+⋅=  (put not exercised), 

(11) 4.178)100;2.149max(6.149.)ex(M 0
2 =⋅+⋅=  (put exercised). 

Using the binomial model one obtains 36406.1/)M4.0M6.0(.)ex(M 1
2

2
2

1
1 =⋅+⋅= and 

analogously 55.211.)ex(M 0
1 = . 

If the call is not exercised, there is no interaction anymore. Therefore, the value of the 

portfolio of  the two projects equals the sum of the parts: 2601302.)ex.n(M1
1 =⋅=  and 

140.)ex.n(M 0
1 = . Comparing the values for exercising and not exercising the call, yields 

314.)ex.n(M;50.)ex(Mmax(M 1
1

1
1

1
1 =−=  (exercise call) and analogously 55.161M 0

1 =  

(exercise call). Finally, 70.238M 0 =  is obtained. 

After deduction of the market values of the separate projects, the option value when 

implementing both projects is 38,7. Comparing this with the other values gives 

max(38.7; 15.85; 0) = 38.7. Project A and B are to be undertaken simultaneously. 

A comparative-static analysis may start with the option value of the call as in example 1, 

which is 15.85. If the exercise of the call only caused an increase in the value of B 

without activating the put, an analogous application of the algorithm would yield 32.83. 

The increase in value of 16.98 is the consequence of the interproject direct qualitative 

interaction. The marginal value contribution of the put is then only about half of the value 

of the put in isolation (38.7-15.85-16.98 = 5.87; 5.87/11.11=52,8%). So, taking into 

account the interproject causal compoundness of the put, one finds a sub-additivity of 

5.24/(5.24+38.7)=11.9%. The results are resumed as follows:  

Table 1: Comparative-static analysis of value interaction 
 1. Option value call alone 15.85  

 2. Value contribution direct qualitative interaction 16.98  

 3. Option value put alone 11.11  

 4. Sub-additivity put  -5.24  
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 Overall value (=1+2+3+4) 38.70  

 
It can be concluded that the valuation of stage 3 required the algorithm of a compound 

option valuation. This demonstrates in a straightforward way that it is necessary to 

qualify stage 3 as a compound option. An analysis of the different value effects has 

proved that the compoundness leads to considerable deviations from value additivity. 

4 Conclusion 

This paper has analyzed the portfolio aspects of a portfolio of real options. At the 

beginning, the possible portfolio-aspects were structured in an argumentative way, 

providing a sound basis for the following analyses. It found that the relevant portfolio-

aspects are direct qualitative interactions, options interactions (time and causal 

compoundness) and correlation. Then, a simple numerical example illustrated the 

developed portfolio aspects and demonstrated the uniqueness of a portfolio of real 

options. For this, the example was developed towards the most general and complex 

setting in three successive stages. Generally speaking, the elements of a portfolio of real 

options can come from all three stages. A portfolio can consist of several projects (or 

only one) from stage 1 among which no interactions exist. In this case value additivity 

would be obtained, but this is not the general case. Stage 2 demonstrates that due to time 

compoundness, a compound option pricing model is required for the valuation of a 

portfolio of real options. A portfolio consisting of several projects from stage 2, without 

further interaction between projects, would allow us to price each project as a compound 

option and then add up their values. This again is only a special case. 

Stage 3 showed a new form of compoundness, namely interproject compoundness. It 

incorporated all relevant portfolio aspects of a portfolio of real options. Correlation 

effects have not explicitly been modelled in the numerical example but could be 

integrated in the proposed algorithm with some effort. Since even the presented case of 

perfectly positively correlated assets leads to an interproject compoundness, this effect is 

even more prominent when correlations are less strong or change over time. 

Whereas the arguments of section 2 are of general nature, the examples in section 3 do not 

pretend generality. Nevertheless, it is a proof by existence: since one example with value 

interaction on stages 2 and 3 can be found, the possibility of interaction is proved. A 

portfolio of real options generally does not exhibit value additivity. 
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In conclusion, stage 3 is the general portfolio problem when managing real options. If 

there are any of the described interactions, a firm must consider its portfolio of real 

options as one single compound option. Managing this option consists in pricing it 

repeatedly over time and implementing the implicitly generated optimal exercise policy.  

The absence of interaction between projects cannot be supposed a priori, at least some 

kind of interaction seems to be a realistic hypothesis for most real cases. If a corporation 

uses capital budgets, no assumption is required, because there is automatically 

interaction. Since we know that interaction converts a real option-problem into a 

compound real option-problem, the finding of this paper, in answer to the last of the 

questions raised in the introduction, can be generalized as follows: a firm is a compound 

option. This has to be taken into account when assessing single projects or when valuing 

the whole firm. It appears as an interesting future field of research to test this finding 

empirically.  

 



 21

References 

Betge, Peter (1995), Investitionsplanung: Methoden - Modelle - Anwendungen, 2nd ed. 
Boyle, Phelim P. (1988), A Lattice Framework for Option Pricing with Two State 

Variables, in: Journal of Financial and Quantitative Analysis, vol. 23 no. 1,  
pp. 1-12. 

Bodie, Zvi / Kane, Alex / Marcus, Alan J. (1999), Investments, 4th ed.. 
Brennan, Michael J. / Schwartz, Eduardo S. (1985), Evaluating Natural Resource 

Investments, in: Journal of Business, vol. 58 no. 2, pp. 135-157. 
Childs, Paul D. / Ott, Steven H. / Triantis, Alexander J. (1998), Capital Budgeting for 

Interrelated Projects: A Real Options Approach, in: Journal of Financial and 
Quantitative Analysis, vol. 33 no. 3, pp. 305-334. 

Copeland, Thomas E. / Koller, Tim / Murrin, Jack (1994), Valuation: Measuring and 
Managing the Value of Companies, 2nd ed. 

Cox, John C. / Ross, Stephen A. / Rubinstein, Mark (1979), Option Pricing: A Simplified 
Approach, in: Journal of Financial Economics, vol. 7 no. 3, pp. 229-263. 

Dixit, Avinash K. / Pindyck, Robert S. (1994), Investment under Uncertainty. 
Faiz, Soussan (1999), Real Options Application: From Successes in Asset Valuation to 

Challenges in Portfolio Optimization, presentation at the 3rd Annual International 
Conference on Real Options: Theory Meets Practice, june 1999, Wassenaar/Leiden, 
Netherlands, URL: http://www.real-options.com, download from the 26.08.1999. 

Franke, Günter / Hax, Herbert (1999), Finanzwirtschaft des Unternehmens und 
Kapitalmarkt, 4th ed. 

Hax, Herbert (1985), Investitionstheorie. 
Kasanen, Eero / Trigeorgis, Lenos (1994), A Market Utility Approach to Investment 

Valuation, in: European Journal of Operational Research, Special Issue on Financial 
Modelling, vol. 74 no. 2, pp. 294-309. 

Kester, Carl W. (1993), Turning Growth Options into Real Assets, in: Aggarwal, Raj 
(ed.), Capital Budgeting under Uncertainty", pp. 187-207. 

Kulatilaka, Nalin (1993), The Value of Flexibility: The Case of a Dual-Fuel Industrial 
Steam Boiler, in: Financial Management, vol. 22 no. 3, pp. 271-280. 

Kulatilaka, Nalin (1995), Operating Flexibilities in Capital Budgeting: Substitutability 
and Complementarity in Real Options, in: Trigeorgis, Lenos (ed.), Real Options in 
Capital Investment: Models, Strategies, and Applications, pp. 121-132. 

Lander, Diane M. / Pinches, George E. (1998), Challenges to the Practical 
Implementation of Modeling und Valuing Real Options, in: Quarterly Review of 
Economics and Finance, vol. 38, Special Issue Real Options: Developments and 
Applications, pp. 537-567. 

Luehrman, Timothy A. (1998), Investment Opportunities as Real Options: Getting Started 
on the Numbers, in: Harvard Business Review, July/August,  
pp. 51-67. 

Magee, John F. (1964), How to Use Decision Trees in Capital Investment, in: Harvard 
Business Review, September/October, pp. 79-96  

Markowitz, Harry M. (1952), Portfolio Selection, in: Journal of Finance, vol. 7, pp. 77-
91. 



 22

Myers, Stewart C. (1977), Determinants of Corporate Borrowing, in: Journal of 
Financial Economics, vol. 5, pp. 147-175. 

Perridon, Louis / Steiner, Manfred (1997), Finanzwirtschaft der Unternehmung, 9th ed. 
Trigeorgis, Lenos (1993), The Nature of Option Interactions and the Valuation of 

Investments with Multiple Real Options, in: Journal of Financial and Quantitative 
Analysis, vol. 28 no.1, pp. 1-20. 

Trigeorgis, Lenos (1996), Real Options: Managerial Flexibility and Strategy in Resource 
Allocation, 4th ed. 


