
Aspects of strong correlations
in low dimensions

Dissertation
zu Erlangung des Doktorgrades

der Naturwissenschaften

vorgelegt beim Fachbereich Physik
der Johann Wolfgang Goethe-Universität

in Frankfurt am Main

von
Florian Schütz
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Abstract of the thesis

The challenging intricacies of strongly correlated electronic systems necessitate
the use of a variety of complementary theoretical approaches. In this thesis, we
analyze two distinct aspects of strong correlations and develop further or adapt
suitable techniques.

First, we discuss magnetization transport in insulating one-dimensional spin
rings described by a Heisenberg model in an inhomogeneous magnetic field. Due
to quantum mechanical interference of magnon wave functions, persistent mag-
netization currents are shown to exist in such a geometry in analogy to persistent
charge currents in mesoscopic normal metal rings.

The second, longer part is dedicated to a new aspect of the functional renor-
malization group technique for fermions. By decoupling the interaction via a
Hubbard-Stratonovich transformation, we introduce collective bosonic variables
from the beginning and analyze the hierarchy of flow equations for the coupled
field theory. The possibility of a cutoff in the momentum transfer of the in-
teraction leads to a new flow scheme, which we will refer to as the interaction
cutoff scheme. Within this approach, Ward identities for forward scattering prob-
lems are conserved at every instant of the flow leading to an exact solution of
a whole hierarchy of flow equations. This way the known exact result for the
single-particle Green’s function of the Tomonaga-Luttinger model is recovered.

- v -
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1

Chapter 1:

Overview

1.1 Persistent spin currents

The first part of this work is dedicated to transport of magnetization in meso-
scopic magnetic insulators subject to spatially inhomogeneous magnetic fields.
We develop a formulation of spin-wave theory adapted to this situation and clar-
ify the proper definition of the spin current operator in Heisenberg magnets.
We argue that only the components of the naive “current operator” JijSi × Sj

in the plane spanned by the local order parameters 〈Si〉 and 〈Sj〉 are related
to transport of magnetization. Spin currents are then a direct manifestation of
quantum correlations and vanish within a mean field approximation or in the
classical ground state. The electric dipole fields generated by a stationary flow
of magnetic dipoles are discussed and a Biot-Savart type law is derived.

We then specialize to mesoscopic Heisenberg rings in inhomogeneous mag-
netic fields that span a finite solid angle Ω as one moves around the ring. We
show that in analogy to the magnetic flux for persistent charge currents, the
solid angle Ω can act as a geometric flux and drive persistent magnetization
currents. For a mesoscopic ferromagnetic ring at low temperatures T in an in-
homogeneous magnetic field with magnitude B we calculate the spin current in
leading-order spin-wave theory. Under optimal conditions it can be as large as
gµB(T/~) exp[−2π(gµBB/∆)1/2], where g is the gyromagnetic factor, µB is the
Bohr magneton, and ∆ is the energy gap between the ground state and the first
spin-wave excitation. A rough estimate shows that a measurement of a potential
drop on the order of nanovolts across the size of the mesoscopic ring would be
required for an experimental detection of the generated electric dipole field.

Antiferromagnetic rings can also exhibit persistent circulating spin currents.
We show this for integer-spin Haldane-gap systems by using a modified spin-wave
approach. Due to quantum fluctuations the current has a finite limit on the order
of (−gµB)c/L at zero temperature, provided the staggered correlation length
ξ exceeds the circumference L of the ring, in close analogy to ballistic charge
currents in mesoscopic normal-metal rings. Here c is the spin-wave velocity, g is
the gyromagnetic ratio, and µB is the Bohr magneton. For ξ � L the current is
exponentially suppressed.
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1.2 Functional renormalization group with col-

lective fields

In the second part, we develop a new formulation of the functional renormal-
ization group (RG) for interacting fermions. Our approach unifies the purely
fermionic formulation based on the Grassmannian functional integral, which has
been used in recent years by many authors, with the traditional Wilsonian RG
approach to quantum systems pioneered by Hertz [Hertz, 1976], which attempts
to describe the infrared behavior in terms of an effective bosonic theory associ-
ated with the soft modes of the underlying fermionic problem. In our approach,
we decouple the interaction by means of a suitable Hubbard-Stratonovich trans-
formation (following the Hertz approach), but do not eliminate the fermions;
instead, we derive an exact hierarchy of RG flow equations for the irreducible
vertices of the resulting coupled field theory involving both fermionic and bosonic
fields. The freedom of choosing a momentum transfer cutoff for the bosonic soft
modes in addition to the usual band cutoff for the fermions opens the possi-
bility of new RG schemes. In particular, we show how the exact solution of the
Tomonaga-Luttinger model (i.e., one-dimensional fermions with linear energy dis-
persion and interactions involving only small momentum transfers) emerges from
the functional RG if one works with a momentum transfer cutoff. Then the Ward
identities associated with the local particle conservation at each Fermi point are
valid at every stage of the RG flow and provide a solution of an infinite hierar-
chy of flow equations for the irreducible vertices. The RG flow equation for the
irreducible single-particle self-energy can then be closed and can be reduced to a
linear integro-differential equation, the solution of which yields the result familiar
from bosonization. We suggest new truncation schemes of the exact hierarchy of
flow equations, which might be useful even outside the weak coupling regime.



Part I

Persistent spin currents
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Chapter 2:

Introduction

With the rapid pace of miniaturization in microelectronics, device dimensions will
reach a fundamental limit in the near future. Moore’s empirical “law” [Moore,
1965] predicting the doubling of the number of transistors on an integrated circuit
about every two to three years has guided the development for the last forty
years. Yet, atomic length scales are a natural limit to this exponential trend and
by simple extrapolation should be reached in commercial chip fabrication in only
about one or two decades. Advances in fabrication technology can keep up the
“law” for the time being, but conventional design will eventually not suffice.

Looking beyond these difficulties, the quantum-mechanical coherence that be-
comes important at these length scales also offers possibilities for new computa-
tional schemes [Feynman, 1982]. The ultimate goal is a quantum computer which
would exploit the coherent quantum-mechanical time evolution of a large number
of coupled quantum bits (qubits). To date, experimental realizations provide a
proof of principle, but are far from any scalable physical realization of quantum
computation. Nevertheless, the goal furnishes a strong motivation for research in
the field, since quantum algorithms [Shor, 1994] promise an exponential speed-up
in computation time for certain classes of problems.

On the way towards a quantum computer, a catalog of extremely challenging
experimental problems has to be resolved [DiVincenzo, 2000]. Among a multitude
of proposals, solid state realizations offer the best potential for scalability [Cerletti
et al., 2005]. Yet, decoherence is a problem due to inevitable coupling to a
huge number of extraneous degrees of freedom such as phonons, nuclear spins,
etc. Decoherence times are generally larger for spin than for charge degrees of
freedom. Therefore, electron spins on quantum dots have been proposed as a good
realization for qubits [Loss and DiVincenzo, 1998]. In this context, the spin states
of molecular magnets are also being considered as candidates for qubits [Meier
et al., 2003,Leuenberger and Loss, 2001].

For more conventional electronic devices, the use of spin degrees of freedom
in addition to or as a substitute for the charge of the electron may eventually
lead to a great improvement of performance. The activities in this field are
subsumed under the name of spintronics (spin-based electronics) [Wolf et al.,
2001,Awschalom et al., 2002]. Products that are already commercially available
or almost ready for marketing comprise read heads for hard drives based on the
giant magnetoresistance (GMR) effect as well as non-volatile magnetic random
access memory (MRAM). More ambitious proposals aim at a complete electric
control of the creation, the processing and the read-out of spin states and spin
currents. A possible approach to achieve this goal exploits the Rashba spin-
orbit coupling in semi-conducting inversion layers that can be controlled by an
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applied gate voltage. To implement information processing based on spin degrees
of freedom, the problem of magnetization transport has generally received a lot
of attention [Awschalom et al., 2002]. The focus lays mainly on systems where
spin currents are carried by itinerant electrons [Loss et al., 1990,Stern, 1992,Gao
and Qian, 1993, König et al., 2001,Tatara and Kohno, 2003,Mal’shukov et al.,
2003, Shen and Xie, 2003], but magnetic insulators also show interesting spin
transport phenomena [Gorelik et al., 2003,Meier and Loss, 2003]. Recently, Meier
and Loss [Meier and Loss, 2003] calculated the mesoscopic spin conductance for
Heisenberg-type systems in a two-terminal geometry.

For device dimensions below the strongly temperature dependent coherence
length Lφ the quantum states have to be described by coherent wave functions
extending over the entire system. For currently achievable device sizes of a few
tens of nanometers the systems are mesoscopic at low temperatures [Imry, 1997],
from the greek ’meso’ meaning ’intermediate’ or ’in the middle’, in the sense
that device dimensions are still above atomic length scales, but small enough for
quantum-mechanical interference effects to be important. A well known example
for mesoscopic phenomena are persistent currents in normal metal rings threaded
by a magnetic flux [Imry, 1997]. The experimental detection of this prototypical
quantum mechanical interference effect is a clear demonstration of quantum-
mechanical coherence.

In this first part of the thesis we present a new mesoscopic interference effect
in Heisenberg spin rings subject to inhomogeneous magnetic fields. It is a spin-
current analogue of the persistent charge currents in mesoscopic rings, and is
driven by a geometric Berry phase associated with the solid angle subtended by
the inhomogeneous field.

2.1 Persistent currents in normal metal rings

The phenomenon of persistent currents in normal metal rings is closely related
to the Aharonov-Bohm effect [Aharonov and Bohm, 1956] and was theoretically
predicted long ago [Hund, 1938, Büttiker et al., 1983]. Yet, the experimental
detection of the effect had to await advances in fabrication technology. In the
1990s, the difficulties in measuring persistent currents were overcome and an os-
cillating magnetization as a function of the magnetic flux was observed under
various conditions [Lévy et al., 1990, Chandrasekhar et al., 1991, Mailly et al.,
1993,Reulet et al., 1995,Rabaud et al., 2001,Jariwala et al., 2001]. Surprisingly,
for metallic rings in the diffusive regime the observed currents were much larger
than predicted by theory [Imry, 1997]. Despite a considerable amount of theoret-
ical work, a consistent theoretical description of the experiments in the diffusive
regime is still lacking [Eckern and Schwab, 2002]. The interplay of disorder and
electron-electron interaction is believed to be responsible for the observed ampli-
tude of the current. But different assumptions about the nature of the dominant
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Figure 2.1: Normal metal ring pierced by a magnetic flux.

interaction mechanism lead to incompatible estimates [Ambegaokar and Eckern,
1990,Schechter et al., 2003,Chau and Kopietz, 2004].

In contrast, in the ballistic regime [Mailly et al., 1993] the order of magnitude
of the observed current can be explained with a simple model of free fermions
moving on a ring pierced by a magnetic flux φ, as depicted in Fig. 2.1. In later
chapters, we will perform a spin-wave calculation along the same lines. In real
space, the Hamiltonian for a single electron reads

H(x) =
1

2m∗

[

~

i
∇ +

e

c
A(x)

]2

, (2.1)

where A(x) is the vector potential which is assumed to be time independent,
and m∗ is the effective mass of the electrons. The time-independent Schrödinger
equation

H(x)ψ(x) = Eψ(x) , (2.2)

is then invariant under the gauge transformation

A(x) → A(x) − c

e
∇χ(x) = A′(x) (2.3)

ψ(x) → eiχ(�)/
�

ψ(x) = ψ′(x) . (2.4)

When the magnetic field B = ∇×A vanishes inside the conductor, we can make
the vector potential disappear in the Hamiltonian by the choice

χ(x) =
e

~c

∫ �

�0

A(x) · dx , (2.5)

where the integral is along a path connecting x to a reference point x0. For a
singly connected geometry the function χ obtained in this way does not depend
on the chosen path, since B = ∇×A = 0. However, for a doubly-connected ring
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geometry, the function χ defined in Eq. (2.5) is not single-valued. We can then
still choose a gauge in which the vector potential vanishes, but a new boundary
condition has to be introduced at an imaginary plane splitting the ring in a way
that a singly connected volume results, see Fig. 2.1. For the jump of χ at the
boundary, one obtains

[χ(x+) − χ(x−)]/~ =
e

~c

∮

A(x) · dx =
e

~c

∫

da · B(x) =
2πφ

φ0
, (2.6)

where φ is the magnetic flux through the ring, and φ0 = hc/e is the flux quantum.
Stokes’ theorem has been used to express the line integral in terms of a surface
integral over a surface spanned by the ring. This results in the following boundary
condition for the wave function in the new gauge,

ψ′(x+) = ei[χ(�+)−χ(�−)]/
�

ψ′(x−) = e2πiφ/φ0ψ′(x−) . (2.7)

When the motion of the electrons is restricted to a very narrow ring, it is ef-
fectively one-dimensional. The Hamiltonian in the gauge with vanishing vector
potential and the boundary condition are given by

H(s) = − ~
2

2m∗

d2

ds2
, ψ′(L) = e2πiφ/φ0ψ′(0) , (2.8)

where s is the coordinate along the ring, and L is the circumference. The single-
particle eigenstates are then plane waves with the energies

εn =
~

2k2
n

2m∗
, (2.9)

where the quantized wavevectors are given by

kn =
2π

L

(

n+
φ

φ0

)

n = 0,±1,±2, . . . . (2.10)

One may then calculate the current at constant chemical potential as a derivative
of the flux-dependent part of the grand-canonical potential Ωgc(φ) [Cheung et al.,
1988],

I = −c∂Ωgc(φ)

∂φ
. (2.11)

At finite temperature T one obtains for spinless fermions

I =
−e
L

∑

n

vn
e(εn−µ)/T + 1

, (2.12)

where vn = ~kn/m∗. At zero temperature Eq. (2.12) reduces to a sawtooth
function. For an even number of electrons at T = 0 one obtains

I = (−e)vF
L

(

1 − 2φ

φ0

)

, 0 <
φ

φ0

< 1 , (2.13)
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Figure 2.2: Heisenberg spin ring in an inhomogeneous magnetic field.

where vF is the Fermi velocity. The amplitude (−e)vF/L of this current is in
agreement with the experiments in the ballistic regime [Mailly et al., 1993].

Finite temperature, disorder, and phase-breaking scattering all have a similar
effect on the persistent charge current [Cheung et al., 1988]. For a weak pertur-
bation, they smooth the discontinuity around φ = 0 and with increasing strength
higher harmonics are exponentially suppressed such that a sinusoidal shape is ap-
proached. In the limit of a very strong perturbation the current is exponentially
suppressed with the relevant length or energy scale, i.e., the current becomes pro-
portional to exp(−T/T ∗), exp(−L/Lξ), or exp(−L/Lφ) under the influence of a
non-zero temperature, strong disorder or strong inelastic scattering, respectively.
Here T ∗ is the temperature scale associated with the discrete level spacing, Lξ is
the localization length, and Lφ is the phase-coherence length. Yet, as mentioned
above the interplay of disorder and interaction still needs further investigation.

2.2 Analogue in mesoscopic spin rings

In the following chapters, we will show that Heisenberg spin chains in inhomo-
geneous magnetic fields can be used to realize a spin-current analogue of the
persistent currents in mesoscopic normal metal rings. We treat mesoscopic ferro-
magnetic rings as well as antiferromagnetic rings with integer spin S using linear
spin-wave theory. We find a persistent magnetization current that is carried by
magnons and that endows the rings with an electric dipole field, which is the
counterpart of the magnetic dipole fields associated with the persistent charge
current in a normal metal ring. For realistic parameters the spin analogues of the
experiments in Refs. [Lévy et al., 1990,Chandrasekhar et al., 1991,Mailly et al.,
1993] would require the detection of a potential drop on the order of nanovolts.
Furthermore, for the antiferromagnetic ring, we find that the correlation length
ξ is the relevant length scale to which the size L of the ring has to be compared.
The interference effect is only detectable for L . ξ and becomes exponentially
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êz
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Figure 2.3: Crown-shaped magnetic field geometry.

suppressed for L � ξ. We also briefly comment on the creation of spin currents
by inhomogeneous electric fields [Cao et al., 1997] in the presence of spin-orbit
coupling, due to the Aharonov-Casher effect [Aharonov and Casher, 1984].

The systems we have in mind are described by an isotropic Heisenberg Hamil-
tonian in an inhomogeneous magnetic field

Ĥ =

N
∑

i=1

[

JŜi · Ŝi+1 − hi · Ŝi

]

. (2.14)

Here, Ŝi are spin-S operators localized on equally spaced sites ri of a ring as
depicted in Fig. 2.2. They are normalized as Ŝ2

i = S(S + 1). Periodic boundary
conditions ŜN+1 = Ŝ1 are used, and hi = gµBB(ri) is the magnetic field at the
site i of the ring, where g is the gyromagnetic ratio and µB is the Bohr magneton.
For a ferromagnetic ring the exchange integral J is negative, whereas for an
antiferromagnetic ring J is positive. Furthermore, we will assume a magnetic
field that is constant in magnitude |hi| = h, but inhomogeneous in direction. The
precise form of the inhomogeneity is irrelevant, since the leading contribution to
the persistent magnetization current will only depend on the solid angle spanned
by the field as one moves once around the ring. For illustrative purposes, however,
we will repeatedly use the crown-shaped field geometry shown in Fig. 2.3. The
local direction of the field is then given by

hi = h

[

cos(ϑ)êz + sin(ϑ) cos

(

2π

L
li

)

êx + sin(ϑ) sin

(

2π

L
li

)

êy

]

, (2.15)

where i = 1, . . . , N , the unit vectors êx/y/z point along the coordinate axes, and
li is the position of site ri measured along the circumference of the ring. With an
appropriately chosen origin of the coordinate system, as shown in Fig. 2.3, the
magnetic field is radial, since hi = hri/|ri|.
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The rest of part I is organized as follows. In Chap. 3, we derive a formulation
of spin-wave theory which is appropriate for the case of a non-collinear classical
ground state. We also explain the concept of gauge freedom associated with the
choice of the transverse quantization axis. In the following chapter, we then clarify
the definition of the spin current operator in such a geometry. Some subtleties are
discussed that are not widely appreciated in the literature. The electric dipole
fields generated by a current of magnetic moments are also analyzed. Chaps. 5
and 6 are dedicated to the details of the spin-wave calculation for ferromagnetic
and antiferromagnetic rings, respectively. In Chap. 7, we briefly comment on
the possibility of driving persistent magnetization currents with inhomogeneous
electric fields. Finally, we give a summary of part I in Chap. 8.

Most of the results of part I are published in [Schütz et al., 2003,Schütz et al.,
2004a,Schütz et al., 2004b].





13

Chapter 3:

Spin-wave theory

Spin-wave theory, with its long history, has become a standard tool in solid state
physics [Auerbach, 1994]. The concept of a spin wave was invented by Bloch
[Bloch, 1930] to describe the magnetization of a ferromagnet at low temperatures.
In this case, spin waves are nothing but a wave-like superposition of states with
a single spin deviation from the fully polarized state. Later on, spin-wave theory
was formalized using representations of the spin operators in terms of bosonic
creation and annihilation operators [Holstein and Primakoff, 1940,Maleyev, 1957].
Such representations underline the fact that spin waves are bosonic quasi-particles
and simplify the study of their interaction. These interactions were rigorously
shown to be weak for a three dimensional ferromagnet, such that spin-waves can
be used to derive asymptotic low-energy expansions of thermodynamic quantities
[Dyson, 1956a,Dyson, 1956b].

For three-dimensional antiferromagnets spin-wave theory was developed in
the 1950s [Anderson, 1952,Kubo, 1952,Oguchi, 1960]. Here, the ground state is
no longer identical with the classical Néel state and quantum fluctuations occur.
Technically, this is manifest in the linear spin-wave Hamiltonian by the appear-
ance of anomalous terms that necessitate a Bogoliubov transformation for its
diagonalization. Corrections to the linear spin-wave theory can be systematically
calculated by an expansion in the inverse magnitude of the spins 1/S. Therefore,
spin-wave theory has evolved into a powerful computational tool [Harris et al.,
1971].

Interest in spin-wave theory was renewed with the discovery of high tempera-
ture superconductivity in doped cuprates [Bednorz and Müller, 1986]. Since the
undoped parent compounds are layered antiferromagnets, it is essential to under-
stand the elementary excitations of two-dimensional antiferromagnets [Manou-
sakis, 1991]. The nature of the ground state and the low-temperature behavior
in two-dimensional antiferromagnets was thoroughly investigated using the renor-
malization group [Chakravarty et al., 1988a,Chakravarty et al., 1988b]. At zero
temperature the square-lattice antiferromagnet is ordered and spin-wave the-
ory is well suited for detailed calculations [Singh and Huse, 1989, Castilla and
Chakravarty, 1991,Igarashi, 1992,Canali et al., 1992]. In the renormalized classi-
cal regime at finite temperature, spin waves are still well defined at length scales
that are short compared to the correlation length [Kopietz, 1990] and spin-wave
theory remains a powerful tool. As another example of low-dimensional systems,
one-dimensional spin chains were also intensively studied. Here, long-range order
does no longer occur even at T = 0. Still, a modified spin-wave theory can be
used for ferromagnets as well as for antiferromagnets with integer spin S, as will
be further discussed in Chap. 6.
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Despite the long history of spin-wave theory, there are still open conceptual
problems. For example antiferromagnets in a magnetic field lead to instabilities
that require further analysis [Zhitomirsky and Nikuni, 1998, Zhitomirsky and
Chernyshev, 1999,Maleyev, 2000, Syromyatnikov and Maleyev, 2002]. Recently,
we have developed a modified spin-wave theory to discuss the finite temperature
properties of a Heisenberg antiferromagnet on a special lattice in the presence of
a finite magnetic field [Spremo et al., 2005].

Here, we develop a formulation of spin-wave theory that is suitable for non-
collinear spin arrangements. For conceptual clarity, we consider a more general
Heisenberg Hamiltonian than in Eq. (2.14). In the presence of an inhomogeneous
magnetic field it reads

Ĥ =
1

2

∑

i,j

ŜT
i JijŜj −

∑

i

hi · Ŝi . (3.1)

Here, Ŝi are spin-S operators localized on lattice sites ri normalized such that
Ŝ2
i = S(S + 1), and T denotes transposition in coordinate space. The spin oper-

ators obey the standard commutation relations of angular momentum operators

[

Ŝαi , Ŝ
β
j

]

= i δij εαβγ Ŝ
γ
i . (3.2)

For distinct indices i and j, the square matrices Jij of dimension three represent
the exchange coupling between the spins at distinct sites ri and rj . In principle,
Jii gives the strength of the single ion anisotropy, but such terms will be excluded
from now on. Under the summation, we can assume Jji = JTij .

As an example consider the isotropic Heisenberg model with nearest-neighbor
exchange coupling J . In this case, we have

Jij =

{

J1 for (i, j) nearest neighbors
0 otherwise

. (3.3)

The last term in Eq. (3.1) is the Zeeman energy which tends to align the spins
with the local magnetic field. The inhomogeneous magnetic field hi is related to
the magnetic induction at the site of the spin by hi = gµBB(ri), where µB is the
Bohr magneton and g is the gyromagnetic ratio. With the conventions used in
Eq. (3.1), the exchange couplings as well as the magnetic fields hi have units of
energy.

3.1 Associated classical problem

Spin-wave theory is an expansion around the classical limit S → ∞. Hence, as
a first step, we consider the associated classical problem. The thermodynam-
ics is uniquely specified by the classical energy H which is obtained from the
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Hamiltonian in Eq. (3.1) by the replacement

Ŝi −→ Ωi , (3.4)

where Ωi are classical vectors of length S, i.e. |Ωi| = S. At zero temperature,
classical spins freeze into the configuration of lowest energy. This classical ground
state is obtained by minimizing the energy with respect to the orientation of all
vectors Ωi = Sm̂i. Alternatively, we can minimize with respect to all compo-
nents of the unit vectors m̂i and introduce Lagrange multipliers to ensure the
constraints m̂2

i = 1. In this way we obtain a necessary condition for an extremum
of the classical energy,

m̂i × heff
i = 0 , heff

i := hi − S
∑

j

Jijm̂j . (3.5)

As expected, the magnetization aligns parallel to an effective field defined in the
second equality which contains the external field as well as an exchange field. For
given hi and Jij , this is a system of non-linear equations for the spin directions
m̂i in the classical ground state. To ensure that the set of unit vectors m̂i indeed
leads to a minimum of the classical energy, we need to analyze the behavior of
H for small deviations from the supposed ground state. These deviations are
conveniently parameterized as

Ωi = Ω
‖
i m̂i + Ω⊥

i , (3.6)

where Ω⊥
i is in the plane orthogonal to m̂i, i.e. Ω⊥

i · m̂i = 0. The length of the
vector Ωi is fixed by choosing

Ω
‖
i =

√

S2 − |Ω⊥
i |2 . (3.7)

The classical Hamiltonian can then be decomposed as

H = H‖ +H⊥ +H ′ , (3.8)

H‖ =
1

2

∑

ij

m̂T
i Jijm̂jΩ

‖
iΩ

‖
j −

∑

i

hi · m̂iΩ
‖
i , (3.9)

H⊥ =
1

2

∑

ij

(Ω⊥
i )TJijΩ

⊥
j , (3.10)

H ′ = −
∑

i

Ω⊥
i · (hi −

∑

j

Jijm̂jΩ
‖
j ) . (3.11)

We now expand the energy H in powers of the transverse vectors Ω⊥
i . The first

order terms
H(1) = −

∑

i

heff
i · Ω⊥

i (3.12)
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vanish due to the condition (3.5). Second order terms are given by

H(2) =
1

2S

[

∑

i

(heff
i · m̂i)|Ω⊥

i |2 + S
∑

ij

Ω⊥
i · JijΩ⊥

j

]

. (3.13)

It is now useful to decompose the transverse vectors in a site-dependent basis of
unit vectors ê1

i and ê2
i chosen in a way that {ê1

i , ê
2
i , m̂i} defines a right-handed

triad. With the representation

Ω⊥
i =

∑

α=1,2

Xα
i êαi , (3.14)

the second-order terms in the classical Hamiltonian can be written as

H(2) =
1

2S

∑

iα,jβ

Xα
i H

(2)
iα;jβX

β
j . (3.15)

Here, we have defined the symmetric matrix H(2) with elements

H
(2)
iα;jβ = δijδαβh

eff
i · m̂i + Sêαi · Jijêβj . (3.16)

The spin configuration specified by the vectors m̂i leads to a minimum of the
classical energy, if H(2) is positive definite, i.e., if all eigenvalues are positive. In
real situations there are often degenerate ground-state configurations that are
related to each other by a continuous global symmetry transformation, as for
example a simultaneous rotation of all spins. As a result, the energy matrix H(2)

has an eigenvalue zero. To avoid this situation, one can introduce an additional
magnetic field to break the global symmetry and shift all eigenvalues to strictly
positive values. At the end of the calculation, this extra field should be taken to
zero.

At the classical level, the thermodynamics is specified by the energy alone
and the spin dynamics is completely decoupled. Nevertheless, as a preparation
to the semi-classical treatment in the next section, it is instructive to consider
the dynamics generated by the Poisson brackets

{

Ωα
i ,Ω

β
j

}

= δijεαβγΩ
γ
i . (3.17)

One then obtains an equation of motion for the time-dependent classical spin
vectors Ωi(t),

dΩi

dt
= {H,Ωi} = −Ωi ×

[

hi −
∑

j

JijΩj

]

. (3.18)

Note that the ground-state configuration Ωi = Sm̂i yields a stationary solu-
tion of Eq. (3.18). The dynamics of states that deviate only slightly from the
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classical ground state can be studied by using a time-dependent version of the
decomposition (3.6) and by expanding Eq. (3.18) to first order in the Ω⊥

i ,

dΩ⊥
i

dt
= heff

i ×Ω⊥
i + Sm̂i ×

∑

j

JijΩ
⊥
j . (3.19)

If we further use the representation (3.14) in terms of transverse basis vectors,
we obtain

dX

dt
= −MH(2)X . (3.20)

Here, we have defined the skew-symmetric matrix M as

Miα;jβ = δij [δα,1δβ,2 − δα,2δβ,1] = i δijσ
y
αβ , (3.21)

where σy is the usual Pauli matrix. We can also explicitly exhibit the block
structure in the (upper) spin index by writing

M =

(

0 1

−1 0

)

, (3.22)

where 1 is an N by N unit matrix in the (lower) spatial index. From this
representation the following symmetry relations are obvious

M2 = −1 , MT = −M . (3.23)

A general solution of the linearized equation of motion (3.20) can be obtained by
a transformation to eigenmodes. To achieve this goal, we note that the square
root of the matrix H(2) can be taken, since it was shown to be symmetric and
positive definite. Using this, we can rewrite Eq. (3.20) in the form

dY

dt
= iQY , (3.24)

where we have defined

Q = i
√

H(2)M
√

H(2) , Y =
√

H(2)X . (3.25)

The matrix Q+ = Q is Hermitian and has a complete set of eigenvectors, i.e., a
unitary matrix U exists such that

QU = UW , U+U = UU+ = 1 , (3.26)

where W is diagonal and contains the eigenvalues on the diagonal. Since Q∗ =
−Q and the eigenvalues of a Hermitian operator are real, we have

QU∗ = −U∗W . (3.27)
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Thus, the complex conjugate of an eigenvector of Q with eigenvalue ω yields an
eigenvector with eigenvalue −ω. Hence, eigenfrequencies always occur in pairs
(ω,−ω). Note that ω = 0 does not occur, since this would imply that H(2) also
had a zero eigenvalue which we have excluded above. By arranging eigenvectors
with positive eigenvalues in the first N rows of U and their complex conjugates
in the next N rows, we can then write

W =

(

ω 0

0 −ω

)

, ω = diag(ω1, . . . , ωN) . (3.28)

In this representation, we also have

U∗ = U

(

0 1

1 0

)

. (3.29)

By going to the eigenbasis of Q, we can further simplify Eq. (3.24),

dZ

dt
= iWZ . (3.30)

Here the transformation of variables is given by

Z = |W|−
1
2 U+Y = R−1X . (3.31)

The normalization factor has been introduced for later convenience. It contains
the matrix |W| defined as

|W| =

(

ω 0

0 ω

)

. (3.32)

The complete transformation matrix R is given by

R = [H(2)]−
1
2 U |W|

1
2 . (3.33)

Furthermore, from Eq. (3.29), we can deduce the relation

R∗ = R

(

0 1

1 0

)

. (3.34)

This relation, together with the fact that X is real, insures that Z contains two
complex conjugate parts, and we can write

Z =

(

β

β∗

)

,
dβ

dt
= iωβ . (3.35)

This is the representation of the small-amplitude dynamics in terms of eigenmodes
announced above.



3.2 Semi-classical expansion 19

3.2 Semi-classical expansion

The quantum nature of the spins can be taken into account in a spin-wave ex-
pansion around the classical limit. For this purpose, one formally assumes large
S and performs an expansion in powers of S−1. Because statics and dynamics are
inextricably linked in the quantum system, the energies of the spin-wave modes
in the leading approximation are identical to the eigenfrequencies of the classi-
cal small amplitude dynamics, as we will show in detail below. In analogy to
the classical case, it is convenient to first decompose the spin operators into a
component parallel to the m̂i in the classical ground state and a transverse part
as

Ŝi = Ŝ
‖
i m̂i + Ŝ⊥

i , (3.36)

where Ŝ⊥
i · m̂i = 0. Again, the Hamiltonian contains contributions Ĥ‖ and Ĥ⊥

for the longitudinal and transverse degrees of freedom as well as a mixing term
H ′:

Ĥ = Ĥ‖ + Ĥ⊥ + Ĥ ′ , (3.37)

Ĥ‖ =
1

2

∑

ij

m̂T
i Jijm̂jŜ

‖
i Ŝ

‖
j −

∑

i

hi · m̂iŜ
‖
i , (3.38)

Ĥ⊥ =
1

2

∑

ij

(Ŝ⊥
i )TJijŜ

⊥
j , (3.39)

Ĥ ′ = −
∑

i

Ŝ⊥
i · (hi −

∑

j

Jijm̂jŜ
‖
j ) . (3.40)

We further decompose the transverse spin operators Ŝ⊥
i using the site dependent

transverse basis vectors ê1
i and ê2

i which are chosen such that {ê1
i , ê

2
i , m̂i} form

a local right-handed triad of unit vectors. Defining spherical basis vectors as
e
p
i = ê1

i + ipê2
i , p = ±, we can express the transverse spin operators as

Ŝ⊥
i =

1

2

∑

p=±

ê
p
i Ŝ

−p
i . (3.41)

With this decomposition, the transverse Hamiltonian becomes

Ĥ⊥ =
1

8

∑

i,j

∑

p,p′

Jpp
′

ij Ŝ
−p
i Ŝ−p′

j , (3.42)

where we have defined the matrix elements

Jpp
′

ij = ê
p
i · Jijêp

′

j . (3.43)

Technically, small fluctuations around the classical ground state are treated with
bosonic transformations, which represent the algebra of the spin operators by
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bose operators b̂i obeying standard commutation relations [̂bi, b̂
+
j ] = δij . The

most common representations are the Holstein-Primakoff (HP) or the Dyson-
Maleyev (DM) transformations. In the DM approach, the spin operators are
represented as

Ŝ
‖
i = S − b̂+i b̂i , (3.44)

Ŝ+
i =

√
2S

(

1 − n̂i
2S

)

b̂i , (3.45)

Ŝ−
i =

√
2S b̂+i , (3.46)

where the occupation number operators are n̂i = b̂+i b̂i. Alternatively, a Holstein-
Primakoff transformation would read

Ŝ
‖
i = S − b†ibi (3.47)

Ŝ+
i =

√

2S − n̂i b̂i (3.48)

Ŝ−
i = b̂+i

√

2S − n̂i . (3.49)

The Dyson-Maleyev transformation has the advantage that, as a power series in
n̂i/S, the Hamiltonian is finite, whereas it contains an infinite number of terms
in the Holstein-Primakoff formalism. Yet, it is not formally hermitian in the DM
approach. In later chapters, we will only consider the leading order spin-wave
expansion for which both representations coincide. For concreteness, we will from
now on assume a DM transformation. After ordering terms with respect to the
number of boson operators the transformed Hamiltonian reads:

Ĥ(0) =
1

2

∑

ij

m̂T
i S

2Jijm̂j −
∑

i

Shi · m̂i , (3.50)

Ĥ(1) = −
√

2S

2

∑

i

(e+
i b̂

+
i + e−

i b̂i) · heff
i , (3.51)

Ĥ(2) =
∑

i

(heff
i · m̂i)n̂i +

S

4

∑

ij

{

J++
ij b̂+i b̂

+
j + J−−

ij b̂ib̂j +

J+−
ij b̂+i b̂j + J−+

ij b̂ib̂
+
j

}

, (3.52)
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Ĥ(3) = −
√

2S

2

∑

ij

(e+
i b̂

+
i + e−

i b̂i) · (Jijm̂j)n̂j

+
(2S)−

1
2

2

∑

i

(ê−
i · heff

i )n̂ib̂i , (3.53)

Ĥ(4) =
1

2

∑

ij

(m̂T
i Jijm̂j)n̂in̂j −

1

8

∑

ij

{

J−−
ij (n̂ib̂ib̂j + b̂in̂j b̂j)

+J+−
ij b̂+i n̂ib̂j + J−+

ij n̂ib̂ib̂
+
j

}

(3.54)

Ĥ(5) =
(2S)−

1
2

2

∑

ij

(e−
i · Jijm̂j)n̂ib̂in̂j , (3.55)

Ĥ(6) =
(2S)−1

8

∑

ij

J−−
ij n̂ib̂in̂j b̂j . (3.56)

Note, that ordering terms with respect to the number of boson operators auto-
matically leads to an expansion ofH in powers of 1/S. As it stands, the expansion
is valid for an arbitrary choice of the unit vectors m̂i. If the m̂i satisfy the nec-
essary condition (3.5) for a minimum of the classical energy, the linear term Ĥ(1)

in the Hamiltonian vanishes, as well as the second term in Ĥ(3).

3.3 Linear spin-wave theory

Let us analyze the leading spin-wave Hamiltonian Ĥ(2) a little further for the
general case. Instead of the bosonic operators, we can also define the operators

X̂1
i =

1√
2

(

b̂i + b̂+i

)

, X̂2
i =

1√
2i

(

b̂i − b̂+i

)

, (3.57)

which are directly related to fluctuations in the direction of the transverse basis
vectors. They fulfill the commutation relations

[

X̂α
i , X̂

β
j

]

= iMiα;jβ , (3.58)

with M given by Eq. (3.21). In particular, X̂1
i and X̂2

i have the commutator
[X̂1

i , X̂
2
i ] = i and thus play a role similar to position and momentum operators

X̂ and P̂ in canonical quantum mechanics. With these operators, the spin-wave
Hamiltonian can be written as

Ĥ(2) =
1

2

∑

iα;jβ

X̂α
i H

(2)
iα;jβX̂

β
j − 1

2

∑

i

heff
i · m̂i =

1

2
X̂TH(2)X̂ + Ẽqc , (3.59)
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with H(2) as in Eq. (3.16). The quasi-particle energies of this Hamiltonian can
be obtained from the considerations regarding the small-amplitude classical dy-
namics in Sec. (3.1). To show this, we derive the Heisenberg equation of motion
for the new operators:

dX̂

dt
= −MH(2)X̂ . (3.60)

This is simply an operator version of the classical equation of motion (3.20). We
can use the results derived above to write

dẐ

dt
= iWẐ , (3.61)

where the transformation of variables is given by

X̂ = RẐ , (3.62)

and the matrix R is defined in Eq. (3.33). Since the operators X̂α
i are Hermitian,

the transformed operator contains two Hermitian conjugate parts,

Z =

(

β̂

β̂+

)

, β = (β1, . . . , βN)T . (3.63)

The operators β̂+
i and β̂i create or annihilate the physical magnons. They obey

canonical commutation relations, provided that the transformation matrix R

fulfills the following relation,

RMRT = iM . (3.64)

It is readily checked that the transformation matrix defined in Eq. (3.33) does
indeed satisfy this property. Here, the normalization anticipated in Eq. (3.33)
is important. With the matrix properties derived in Sec. 3.1, the spin-wave
Hamiltonian can be written in the form

Ĥ(2) = Ẽqc +
1

2

N
∑

l=1

ωl(β̂
+
l β̂l + β̂lβ̂

+
l ) = Eqc +

N
∑

l=1

ωlβ̂
+
l β̂l . (3.65)

Here, the correction to the ground-state energy due to quantum fluctuations is
given by

Eqc =
1

2

N
∑

l=1

[

ωl − heff
l · m̂l

]

. (3.66)

The procedure described in this section constitutes a generalized Bogoliubov
transformation. It is always applicable provided that one starts from a ground-
state spin configuration m̂i that leads to a minimum of the classical energy. In
summary, we have reduced the derivation of the transformation to two successive
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matrix diagonalization. The first diagonalization is required to take the square
root of the symmetric positive definite matrix H(2) defined in Eq. (3.16). In a
second step we need to diagonalize the Hermitian matrix Q defined in Eq. (14.29)
and arrange the eigenvalues as specified above Eq. (3.28). The overall transforma-
tion matrix R is then given by Eq. (3.33). For finite systems, this procedure could
be implemented numerically using standard diagonalization routines. When the
underlying lattice and the applied local magnetic fields have a spatial symme-
try, the procedure can be simplified. The energy matrix H(2) can then be block
diagonalized by an orthogonal transformation that acts on spatial indices alone.
The (generalized) Bogoliubov transformation can then be applied separately to
each block. For system with translational invariance this block diagonalization
is performed by a Fourier transformation. In Chaps. 5 and 6, we will treat ferro-
magnetic and antiferromagnetic spin rings.

3.4 Gauge invariance

While the longitudinal directions of quantization m̂i in the spin-wave expansion
are fixed by the classical ground-state condition in Eq. (3.5), the choice of the
transverse basis is not unique. There is a remaining local U(1) gauge freedom
associated with the rotation of the vectors ê1

i and ê2
i around the classical mag-

netization direction m̂i. Let us rewrite the matrix elements Jpp
′

ij in a way that
the local gauge invariance is manifest. For each site i and j of the given link, we
fix a transverse reference basis {ẽ1

i , ẽ
2
i } and {ẽ1

j , ẽ
2
j} by demanding that ẽ2

i and
ẽ2
j be equal. For non-collinear directions m̂i and m̂j, this can only be achieved

if ẽ2
i = ẽ2

j is parallel to m̂i × m̂j , i.e., if it points along the intersecting line of
the two transverse planes as depicted in Fig. 3.1. The original transverse basis
{ê1

i , ê
2
i } is then related to the reference basis by a rotation about an angle ωi→j

around the local normal m̂i. For the spherical basis vectors, this leads to

e
p
i = eipωi→j ẽ

p
i . (3.67)

Note that the reference basis ẽ
p
i does not only depend on the site i but also on

the link (i, j). In general it is therefore not possible to choose e
p
i = ẽ

p
i . With

the convention for the rotation angle in Eq. (3.67) the matrix elements for the
spin-wave Hamiltonian can be written as

Jpp
′

ij = exp[ipωi→j + ip′ωj→i]J̃
pp′

ij , (3.68)

where J̃pp
′

ij = ẽ
p
i ·Jij ẽp

′

j does not depend on the choice of transverse basis anymore,
but is solely determined by the m̂i. E.g., for the isotropic Heisenberg model with
Jij = Jij1, we have

J̃pp
′

ij = Jij [m̂i · m̂j − pp′] . (3.69)
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Figure 3.1: Different sets of local transverse basis vectors and gauge fields ωi→j.
For details see text.

The transverse Hamiltonian reads

Ĥ⊥ =
1

8

∑

i,j

[

ei(ωi→j−ωj→i)J̃+−
ij S−

i S
+
j + ei(ωi→j+ωj→i)J̃++

ij S−
i S

−
j + H.c.

]

. (3.70)

Alternatively, we can consider the leading order spin-wave Hamiltonian

Ĥ(2) =
∑

i

(heff
i · m̂i)n̂i +

S

4

∑

ij

{

ei(ωi→j+ωj→i)J̃++
ij b̂+i b̂

+
j +

ei(ωi→j−ωj→i)J̃+−
ij b̂+i b̂j + H.c.

}

. (3.71)

Here it is clearly seen that the angles ωi→j act as gauge fields. A specific gauge
corresponds to a choice of orientation of the transverse basis and a rotation
of the local tranverse basis vectors by an angle αi around m̂i is thus a gauge
transformation. In the spin-wave language such a transformation reads

ωi→j → ωi→j + αi , b̂i → eiαi b̂i , (3.72)

or alternatively for the spin ladder operators S±
i → S±

i e
±iαi .

In the special case of an isotropic Heisenberg ring in an inhomogeneous mag-
netic field, we can write the leading order spin-wave Hamiltonian as

Ĥ
(2)
ring =

∑

i

{

(heff
i · m̂i)b̂

+
i b̂i +

JS

2

[

(1 + m̂i · m̂i+1)e
i(ωi→i+1−ωi+1→i)b̂+i b̂i+1

−(1 − m̂i · m̂i+1)e
i(ωi→i+1+ωi+1→i)b̂+i b̂

+
i+1 + H.c.

]}

. (3.73)
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This Hamiltonian will be further analyzed in Chaps. 5 and 6.
A more general gauge-invariant formulation of the Heisenberg model is dis-

cussed in [Chandra et al., 1990] (see also [Kopietz and Castilla, 1991]). In these
works, an O(3) gauge field Ai→j was introduced in a rather formal manner to
write the Heisenberg model in a gauge-invariant way and to obtain the spin stiff-
ness tensor by means of differentiation with respect to the gauge field [Singh and
Huse, 1989].





27

Chapter 4:

Spin currents in inhomogeneous

magnetic fields

In this chapter, we discuss the definition of a spin-current operator for Heisen-
berg magnets with non-collinear spin configurations generated by inhomogeneous
magnetic fields. Problems arise in this context which have not been noticed in the
literature. They are due to the fact that the magnetization as a vector quantity
is not conserved in the presence of an inhomogeneous field. Yet, for smoothly
varying fields, the longitudinal component of the magnetization is locally almost
conserved. Thus, the intuitive concept of magnetization transport should still
be useful in this case. This leads us to define an effective current operator that
describes the flow of the longitudinal component. From this point of view it is
clear that the concept of a transverse spin current is meaningless.

In more technical terms, we start from the microscopic equation of motion for
the spin operators in Sec. 4.1. It contains only the (lattice) divergence of the spin
current operator which is not sufficient to fix its rotational part. A mean-field
argument is given in Sec. 4.2, before we show generally in Sec. 4.3 that a certain
part of the operator

∑

j Si×JijSj can be incorporated in a renormalization of the
effective magnetic field and should therefore not be included into the definition of
the spin current operator. Consequently, we argue that only the projection Ĩi→j

of the naive “current operator” Ii→j = Si× JijSj onto the plane spanned by the
local order parameters 〈Si〉 and 〈Sj〉 is related to real transport of magnetiza-
tion. This physical spin current vanishes within a mean-field approximation or
in the classical ground state where only a purely static twist in the spin config-
uration exists. Thus, finite spin currents are a direct manifestation of quantum
correlations in the system.

Similar conceptual problems arise in the definition of the spin-current oper-
ator in semi-conducting electronic systems with strong spin-orbit interactions.
Recently, Rashba [Rashba, 2003] pointed out that for this case the precise mean-
ing of the spin current is also subtle. In particular, he emphasized that spin
currents in thermodynamic equilibrium, predicted with the standard definition
of the spin-current operator used in the literature, are unphysical and should be
regarded as background currents which do not correspond to real transport of
magnetization. Clearly, for the burgeoning field of spintronics an understanding
of this concept is essential.

In this context, it is also interesting to note that in effective low-energy models
for ferromagnets involving only spin degrees of freedom even the concept of linear
momentum is not well defined [Volovik, 1987]. In general, the dynamical equation
for the spin degrees of freedom have to be supplemented by kinetic equations for
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the underlying fermionic excitations.
For itinerant systems the spin is an intrinsic property of the charge carriers

and is transported accordingly. Here, we consider localized spin models, so that
charge degrees are not available to transfer magnetization between different sites.
Transport of spin is then a consequence of the time evolution of the magnetization.
In special cases the transport can be ascribed to the movement of quasi-particles
such as magnons or spinons and again a simple physical picture emerges [Meier
and Loss, 2003]. With the spin-wave theory developed in the previous chapter,
a description of transport in terms of magnons is also possible in the presence of
inhomogeneous fields. In Sec. 4.3 we will explain how the gauge symmetry for the
leading order spin-wave Hamiltonian then automatically leads to an acceptable
definition of the spin-current operator. Within the spin-wave approximation, it
is identical to the effective spin-current operator introduced before.

Finally, in Sec. 4.4 we discuss the electric fields generated by a stationary
flow of magnetization. We derive a Biot-Savart-type law for the scalar electric
potential and evaluate it explicitly for the case of a crown-shaped current loop.

4.1 Naive definition of the spin current operator

The standard definition of the spin-current operator in magnetic insulators does
no longer apply in the presence of an inhomogeneous magnetic field. To show
this, we consider again the Heisenberg model in Eq. (3.1), but restrict ourselves
to the isotropic case Jij = Jij1. We assume that the magnetic field hi is strong

enough to induce permanent magnetic dipole moments mi = gµB〈Ŝi〉 which are
not necessarily parallel to hi. The brackets 〈. . . 〉 denote the usual thermal av-
erage. Let us also introduce the associated unit vectors m̂i = mi/|mi|. These
are generalizations of the directions of the classical ground state introduced in
Sec. 3.1 as a starting point for the spin-wave theory, and we will therefore use the
same notation. As an illustration one should bear in mind the example of a fer-
romagnetic ring in a crown-shaped field geometry mentioned in the introduction
(see Fig 2.3), but our arguments are not limited to this case. The Hamiltonian
(3.1) implies the equation of motion

~
∂Si

∂t
+ hi × Si +

∑

j

Ii→j = 0 , (4.1)

where we have defined
Ii→j = Si × JijSj . (4.2)

Eq. (4.1) shows an obvious similarity with the discrete lattice version of the
equation of continuity for charge currents. Thus, it is tempting to identify Ii→j

with the operator whose expectation value gives the spin current from site i to
site j. Here, we argue that this identification is only correct for a homogeneous
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magnetic field, for which the equilibrium expectation values 〈Ŝi〉 of the spins
are all collinear and aligned to the spatially constant direction of the field, i.e.
hi × 〈Si〉 = 0. For this special case, using that equilibrium averages are time
independent, d

dt
〈Si〉 = 0, the average of the equation of motion (4.1) reduces to

∑

j

〈Ii→j〉 = 0 . (4.3)

Hence, the lattice divergence of the spin current in the presence of a homoge-
neous magnetic field vanishes. For a one-dimensional ring with nearest neighbor
hopping this implies at an arbitrary site i

〈Ii→i+1〉 + 〈Ii→i−1〉 = 〈Ii→i+1〉 − 〈Ii−1→i〉 = 0 , (4.4)

so that the same spin current 〈I〉 = 〈Ii→i+1〉 flows through all links of the ring.
However, the equation of motion contains only the divergence of the current and
does not fix the value of 〈I〉 itself. This is due to the fact known from elementary
vector analysis, that both the divergence and the curl are necessary to uniquely
specify a vector field up to an overall constant. Because the equation of motion
contains only the divergence, circulating spin currents cannot be calculated with
it. In fact, even the definition of the spin current operator in a geometry per-
mitting circulating spin currents cannot be deduced. Of course, for a ring with a
collinear spin configuration we know that 〈I〉 = 0, so that there are no circulating
currents.

When a non-uniform magnetic field is present, the spin current operator is
not simply given by Eq. (4.2). In general, the spin configuration in the ground
state is then inhomogeneous as well. For the example of the ferromagnetic ring
in a crown-shaped field forming an angle ϑ with the central axis, the magnetic
moments will also arrange in the form of a crown with a slightly smaller angle
ϑm as described in more detail in Sec. 5.1 and shown in Fig. 5.1. To illustrate
that in this case the expectation value of Ii→j is not the physical spin current, we
further specialize to a star-shaped magnetic field, corresponding to ϑm = ϑ = π/2
in Fig. 5.1. If we treat the spins as classical vectors and assume a ring with N
evenly spaced sites and a nearest neighbor exchange coupling J , Eq. (4.2) yields
at zero temperature

Ii→i+1 = Jez sin(2π/N) . (4.5)

Yet, at the classical level the statics and dynamics of a Heisenberg magnet are
completely decoupled. Because the classical ground state does not have any
intrinsic dynamics, a spin current, corresponding to moving magnetic dipoles,
should not exist. Furthermore, if the classical Heisenberg model is provided with
Poisson bracket dynamics, as described in Sec. 3.1, the classical ground state
yields a stationary solution. Clearly, such a completely stationary state cannot be
used to transport magnetization. We conclude that for twisted spin configurations
Eq. (4.2) is not a physically meaningful definition of the spin current operator.
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4.2 Effective spin currents with correct classical

limit

To get our hands on a better definition, let us have a glimpse at a non-equilibrium
situation. Thus, we start with a given density matrix at time t = 0 and let the
system evolve according to the unitary dynamics generated by the Hamiltonian
in Eq. (3.1). The equation of motion (4.1) then directly translates to a relation
for the local and instantaneous order parameter

∂t〈Si〉t + hi × 〈Si〉t +
∑

j

〈Ii→j〉t = 0 . (4.6)

Here, 〈. . . 〉t denotes an average with respect to the time dependent density ma-
trix. It is then reasonable to demand that a transport current can lead to an
accumulation of magnetization, i.e., a change in the magnitude of the local order
parameter in time. For this magnitude, we obtain the equation of motion

∂t|〈Si〉t| +
∑

j

m̂i(t) · 〈Ii→j〉t = 0 , (4.7)

where m̂i(t) = 〈Si〉t/|〈Si〉t| is the time dependent direction of the order param-
eter. Note that only the longitudinal component of the naive “current operator”
appears in this continuity equation without source terms.

The transverse components lead to a change in the direction of the local order
parameter, but they are largely compensated by the magnetic field term that
acts as a source and generates a precession. We want to discuss the electric fields
generated by the magnetization dynamics. To do so, one either has to take into
account both the current Ii→j and the local precessional motion, or devise a way
to make the cancellation explicit by including part of the “transverse current” in
an effective magnetic field. We will follow the second route here.

A simple approximate calculation can give an indication of how to proceed.
In the classical ground state, the magnetization aligns parallel to the sum of the
external and the exchange field as shown in Eq. (3.5). Written in terms of classical
expectation values, the necessary condition for a minimum of the classical energy
reads

heff
i × 〈Si〉 = 0 , heff

i = hi −
∑

j

Jij〈Sj〉 . (4.8)

Note that the effective magnetic field contains a part of the exchange interaction.
To avoid double counting, this part should not be included into the definition of
the spin current operator. The exact equation of motion (4.1) can be rewritten
in terms of the effective magnetic field heff

i defined in Eq. (4.8). This yields

~
∂Si

∂t
+ heff

i × Si +
∑

j

Ieff
i→j = 0 , (4.9)
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where the effective current operator is defined as

Ieff
i→j = JijSi × [Sj − 〈Sj〉] . (4.10)

The expectation value of this effective current operator is given by

〈Ieff
i→j〉 = Jij [〈Si × Sj〉 − 〈Si〉 × 〈Sj〉] . (4.11)

Obviously, it vanishes identically both in the classical ground state and if the
spins are treated within the mean-field approximation, where the spin correlator
factorizes. Physically, this is due to the fact that within the mean-field approxi-
mation the Heisenberg exchange interaction is replaced by an effective magnetic
field, so that the different sites are uncorrelated and there are no degrees of
freedom to transfer magnetization between them.

4.3 New definition of the spin current operator

The definition of Ieff
i→j in Eq. (4.10) has the disadvantage of not being antisym-

metric with respect to the exchange of site labels, although its expectation value
is obviously antisymmetric. In order to solve this problem and to generalize the
concept of an effective current operator beyond the mean-field description, we
propose the following definition,

Ĩi→j = Ii→j − γij(γij · Ii→j) , (4.12)

with the unit vector

γij =
mi × mj

|mi × mj |
. (4.13)

Thus, we interpret only the projection of Ii→j onto the plane spanned by the
two local order parameters mi and mj as a physical transport current. The
contribution subtracted in Eq. (4.12) can be incorporated in an effective magnetic
field. More precisely, the equilibrium expectation value of the exact equation of
motion (4.1) can be rewritten as

heff
i × 〈Si〉 +

∑

j

〈Ĩi→j〉 = 0 , (4.14)

with the effective magnetic field now defined as

heff
i = hi −

∑

j

〈Si × JijSj〉 · γij
[〈Si〉 × 〈Sj〉] · γij

〈Sj〉 . (4.15)

This reduces to Eq. (4.8) for the classical ground state or at the mean-field level,
where the correlation function in the numerator is factorized. The spin-current
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operator defined in Eq. (4.12) is manifestly antisymmetric under the exchange
of the labels, as it should be. It implicitly depends on the spin configuration
via the unit vector γij, so that in twisted spin configurations the spin current
operator is a rather complicated functional of the exchange couplings. The fact
that the current operator of an interacting many body system is a complicated
functional of the interaction is well known from the theory of interacting Fermi
systems [Pines and Nozières, 1989]. In particular, when the effective interaction
does not only involve densities the construction of the current operator is not
straightforward [Metzner et al., 1998].

For explicit calculations, we use the decomposition of the spin operators in a
site-dependent basis, as explained in Sec. 3.2. With the notation introduced in
the previous chapter, we obtain the following representation for the effective spin
current operator,

Ĩi→j =
Jij
2i

[

S−
i S

+
j e

i(ωi→j−ωj→i)
m̂i + m̂j

2
− S−

i S
−
j e

i(ωi→j+ωj→i)
m̂i − m̂j

2

+S
‖
i S

−
j e

iωi→j (γij × m̂i) − S−
i S

‖
j e
iωj→i(γij × m̂j) − H.c.

]

.

The third and fourth terms in this expression couple longitudinal and transverse
degrees of freedom and therefore do not contribute to leading order in a spin-
wave calculation. The first and second terms are dominant for ferromagnetic and
antiferromagnetic rings respectively and will be discussed in detail in Chaps. 5
and 6. For a magnetic field that varies smoothly as one moves through the system,
the magnetic moments on neighboring lattice sites are almost collinear, so that
in both cases the component of the naive “current operator” Ii→j along the local
order parameter is the one that corresponds to the transport of magnetization.

Alternatively, an effective current operator can also be derived by making use
of the gauge freedom in the choice of the transverse quantization axis discussed
in Sec. 3.4. The partition function Z has to be independent of the chosen gauge.
By performing a transformation on the gauge fields ωi→j as in Eq. (3.72) and
expanding in the rotation angles αi, we obtain the relation

Z[{ω}] = Z[{ω+α}] = tr
[

e−βH[{ω+α}]
]

= Z[{ω}]
(

1 +
∑

i

αi

〈

∂H

∂αi

〉

+ O(α2)

)

.

(4.16)
Because the αi are arbitrary, the expectation values of the derivatives of the
Hamiltonian with respect to αi have to vanish individually. In the leading spin-
wave approximation, the Hamiltonian Ĥ ′, which describes the coupling between
longitudinal and transverse degrees of freedom, can be neglected. Since Ĥ‖ does
not depend on the gauge fields, the derivative of the full Hamiltonian is then
identical to the derivative of the transverse part alone,

∂Ĥ⊥

∂αi
=
∑

j

∂Ĥ⊥

∂ωi→j
=
∑

j

Ii→j = −
∑

j

Jijm̂i ·
(

S⊥
i × S⊥

j

)

. (4.17)
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Figure 4.1: Charge versus magnetization currents. For charge currents (left
panel), particles with a charge qi move with a velocity vi. The current den-
sity is then a vector and the total current through the surface element da is a
scalar. For magnetization currents (right panel), particles with a magnetic dipole
moment mi move with a velocity vi. The current density is now a tensor and
the total current through the surface element da is still a vector.

This is again the lattice divergence of an effective longitudinal current operator
Ii→j. The equilibrium expectation value of this divergence vanishes according to
Eq. (4.16). Since no magnetic field terms appear, we can directly identify Ii→j

as the relevant current operator. Alternatively, we can also derive the equation
of motion for the longitudinal components of the spin operators,

~
∂S

‖
i

∂t
= −

∑

j

Jijm̂i ·
(

S⊥
i × S⊥

j

)

− S⊥
i ·
[

m̂i × (hi −
∑

j

JijS
‖
j m̂j)

]

. (4.18)

Due to the condition (3.5) for the classical ground state, the second term vanishes

within the leading spin-wave approximation, i.e., when S
‖
j is replaced by S. Thus,

we obtain the same continuity equation for the effective longitudinal current
operator. By expanding the transverse spin operators in a spherical basis as in
Eq. (3.41), we can show that within linear spin-wave theory, we have

〈

∂Ĥ⊥

∂ωi→j

〉

= −
〈

m̂i · Ĩi→j

〉

. (4.19)

Thus, for a spin configuration with a spatially smoothly varying direction we again
arrive at the conclusion that only the longitudinal current operator is relevant
for magnetization transport. Hence, in subsequent spin-wave calculations, we
will use the scalar current operator Ii→j. Eq. (4.19) shows that within linear
spin-wave theory this is equivalent to using the effective current operator Ĩi→j.

4.4 Electrodynamics of spin currents

The flow of magnetic moments generates electric dipole fields which possibly allow
an experimental detection of magnetization currents. The currents predicted in
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this work are due to the collective dynamics of localized spins. Yet, the electric
fields are independent of this mechanism. Equivalently, we consider a set of
magnetic moments m̂i at positions ri that move with velocities vi and generate
the same magnetization current. This situation is compared in Fig. 4.1 with the
one for ordinary charge transport. Note that due to the vector character of the
magnetization, the magnetization current density is a tensor and the total current
through a surface is still a vector. The spatially varying magnetization is given
by

M(r) =
∑

i

δ(r − ri)mi . (4.20)

It is generated by an effective current density

j(r) = c∇× M(r) . (4.21)

If the magnetization is moving with velocity v(r), the current distribution is
dragged along. A Lorentz boost from the rest frame of the magnetic dipoles to
the laboratory frame then shows that the magnetization current is accompanied
by a polarization

P (r) =
v(r)

c
× M(r) , (4.22)

to leading order in v(r)/c [Hirsch, 1999]. The polarization corresponds to a
charge density

ρ(r) = −∇ · P (r) , (4.23)

which in turn generates an electric field

E(r) = −∇φ(r) . (4.24)

Here, the scalar potential is given by

φ(r) =

∫

d3r′
ρ(r′)

|r − r′| =
1

c

∫

d3r′[v(r′) × M(r′)] · (r − r′)

|r − r′|3

=
Im
c

∮

[dr′ × m̂(r′)] · r − r′

|r − r′|3 . (4.25)

The last equality is valid for a current loop, where v|M |d3r = Imdr. Eq. (4.25)
is a generalized Biot-Savart law for magnetization currents. For a current of
magnetic dipoles oriented in the z direction and flowing along the infinite x axis,
we obtain the following scalar potential,

Φ(x) = −2Im
c

y

x2 + y2 + z2
. (4.26)

This result has already been discussed in [Meier and Loss, 2003].
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Figure 4.2: Lines of constant electric potential due to a magnetization current
circulating around a ring with radius R and an angle ϑm = 30◦ between the
direction of the magnetization an the z axis as in Fig. 2.3. The left graph is on
a more expanded scale showing clearly the local dipole character of the field in
close vicinity of the ring, whereas the right graph shows the resulting dipole field
in the far zone.

Consider now the case of a crown-shaped current loop, which can be imagined
as being generated by rotating the magnetization crown shown in Fig. 5.1 at a
constant angular velocity around the central axis. The line integral around the
ring can be expressed in terms of standard elliptic integrals. For the electric
potential we obtain

Φ(r, θ) = −Im
c

1

(r2 +R2)3/2

{

[R cos(ϑm) + r cos(θ) sin(ϑm)] f1(λ)

−r sin(θ) cos(ϑm)f2(λ)
}

, (4.27)

where λ = 2rR
r2+R2 sin(θ), and the elliptic integrals are defined as

f1(λ) =

∫ 2π

0

dφ
1

[1 − λ cos(φ)]3/2
, f2(λ) =

∫ 2π

0

dφ
cos(φ)

[1 − λ cos(φ)]3/2
. (4.28)

The resulting equipotential lines are shown in Fig. 4.2. Close to the ring, the
electric field is identical to that of an electric dipole orthogonal to the direction
of the magnetization. In the far zone, the electric field approaches again a dipole
field with potential

φ(r) =
p · r
|r|3 , (4.29)

and dipole moment

p = −êz
Im
c
L sin θm . (4.30)



36 Chapter 4. Spin currents in inhomogeneous magnetic fields

This result will be used in the next chapter to estimate the order of magnitude
of the electric field generated by the persistent magnetization current in a ferro-
magnetic ring.
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Chapter 5:

Persistent spin currents in

ferromagnetic Heisenberg rings

In this chapter, we explicitly calculate the persistent magnetization current for a
ferromagnetic Heisenberg ring in an inhomogeneous magnetic field. The Hamil-
tonian of the ring is given in Eq. (2.14) with an exchange coupling J < 0. We
assume that the field encloses a solid angle Ω as one moves around the ring. The
classical ground state for a crown-shaped field geometry is determined in Sec. 5.1.
In Sec. 5.2, we obtain the spin-wave spectrum in the linear approximation. This
spectrum will explicitly depend on a magnetic flux Ω whose geometric signifi-
cance as a defect angle of classical parallel transport is analyzed in more detail
in Sec. 5.3. In the following section, we derive an expression for the persistent
magnetization current. In Sec. 5.5, we finally estimate the strength of the electric
dipole field generated by the persistent magnetization current.

5.1 Classical ground state

The following spin-wave calculation is applicable for any magnetic field that has a
constant magnitude h and a smoothly varying spatially inhomogeneous direction.
The field then generates a spin configuration in the classical ground state that
spans a solid angle Ω as one moves around the ring. For concreteness, we consider
again the crown-shaped field arrangement depicted in Fig. 2.3. The classical
ground state then exhibits the same rotational symmetry around the z-axis and
also forms a crown with a slightly smaller angle ϑm, as shown in Fig. 5.1. From
the general equation (3.5), we obtain a condition for the angle ϑm,

sin(ϑ− ϑm) =
|J |S
h

[1 − cos(2π/N)] sin(2ϑm) . (5.1)

For a sufficiently strong magnetic field h the deviation of ϑm from ϑ becomes small
and the classical spin configuration approaches the direction of the magnetic field.
In contrast, for vanishing h the angle ϑm is also zero and all spins align along the
z axis. This spin configuration has the same energy as all other ferromagnetically
aligned arrangements that can be obtained by rotating all spins simultaneously.
Note that for a finite magnetic field h no such degeneracy of the classical ground
state exists.
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Figure 5.1: Classical ground state of a ferromagnetic Heisenberg ring in a crown-
shaped magnetic field.

5.2 Spin-wave spectrum

For a large ferromagnetic ring, i.e. for N � 1, and for a smooth spatial variation
of the magnetic field on the scale of a lattice spacing, neighboring spins are almost
parallel in the classical spin configuration. E.g., for the crown-shaped geometry
discussed above we easily see that

m̂i · m̂i+1 = 1 −O
(

N−2
)

. (5.2)

Therefore, we assume that the anomalous terms in the spin-wave Hamiltonian in
Eq. (3.73), i.e., the second term in square brackets and its hermitian conjugate,
can be neglected. Thus the dominant influence of the inhomogeneity is captured
by the phase factors alone. This is similar to an adiabatic approximation for
magnons, since spin deviations now have to follow the local classical directions as
they hop from site to site. Furthermore, for a sufficiently strong magnetic field
the unit vectors m̂i are almost parallel to the applied local field. Therefore, we
will replace hi · m̂i = h− 2JS in Eq. (3.73), independent of the site index i.

With these approximations the spin-wave Hamiltonian in Eq. (3.73) can be
written as

Ĥ
(2)
FM =

N
∑

i=1

{

[

2|J |S + h
]

b̂+i b̂i − |J |S
[

ei(ωi→i+1−ωi+1→i)b̂+i b̂i+1 + H.c.
]

}

, (5.3)

where periodic boundary conditions b̂N+1 = b̂1 apply, and the sign of the fer-
romagnetic exchange interaction J = −|J | is explicitly shown. This spin-wave
Hamiltonian is standard for a ferromagnetic ring, except for the appearance of
the phase factors in front of the hopping terms b̂+i b̂i±1. These phases can be
eliminated in favor of twisted boundary conditions by a gauge transformation as
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described in Eq. (3.72) with the local rotation angles

αj =

j−1
∑

i=1

(ωi→i+1 − ωi+1→i) . (5.4)

This yields the new boundary condition b̂N+1 = eiΩb̂1 where

Ω = αN+1 =

N
∑

i=1

(ωi→i+1 − ωi+1→i). (5.5)

Thus, we have shown that within the adiabatic approximation the physics de-
pends on the texture of the magnetic field only via the single parameter Ω, which
is manifestly gauge invariant.

In the special gauge where the phase factors have been eliminated, the spin-
wave Hamiltonian is readily diagonalized by the Fourier transformation

b̂i =
1√
N

∑

k

eikli b̂k , b̂k =
1√
N

∑

i

e−ikli b̂i . (5.6)

The diagonal Hamiltonian reads

H =
∑

k

εkb
†
kbk, (5.7)

with the standard tight-binding dispersion for the magnons

εk = 2|J |S[1 − cos(ka)] + h . (5.8)

Due to the twisted boundary condition, the quantized wave vectors are shifted
by the quantity Ω,

kn =
2π

Na

(

n +
Ω

2π

)

, n = 0, . . . , N − 1. (5.9)

The dispersion relation together with the allowed wave vectors is depicted in
Fig. 5.2. The close analogy of the derivation in this section to the calculation
of persistent charge currents should be evident. A comparison of Eq. (5.9) with
Eq. (2.10) in the introductory chapter shows that the geometric quantity Ω is the
analog of the magnetic flux.

5.3 Parallel transport and geometric flux

The geometrical significance of the quantity Ω is best understood in the special
gauge where the phase factors in Eq. (5.3) vanish, i.e. where

ωi→i+1 − ωi+1→i = 0 . (5.10)
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Figure 5.2: Magnon dispersion for a ferromagnetic ring in the presence of an
inhomogeneous magnetic field of strength h subtending a solid angle Ω. The
quantized wave vectors are shown for a ring with only N = 10 sites for better
visibility.

This condition implies that the local basis vectors at site i+1 are obtained from
those at site i by a rotation around m̂i×m̂i+1 (see Fig. 5.3). If one connects the
corresponding transverse unit vectors at the sites i and i+ 1 by geodesics on the
unit sphere, then these connections are shortest in the special gauge defined by
Eq. (5.10). Thus, the basis at i is rotated in the most direct way into the basis
at i+ 1. For other choices of transverse basis vectors an additional twist around
m̂i+1 needs to be applied. Thus, once the transverse basis vector e1

1 is chosen,
the basis at all other sites are fixed by the gauge condition (5.10), yielding the
recursion relation

ê1
i+1 = exp

(

γi,i+1
m̂i × m̂i+1

|m̂i × m̂i+1|
×
)

ê1
i , (5.11)

and equivalently for ê2
i . Here, the rotation angles are γi,i+1 = ∠(m̂i, m̂i+1) =

arcsin |m̂i × m̂i+1|, and the exponential e
�
× denotes an SO(3) rotation matrix

acting on a vector m according to

e
�
×m = θ̂(θ̂ · m) + (θ̂ × m) sin θ − θ̂ × (θ̂ × m) cos θ , (5.12)

with θ = θθ̂. Eq. (5.11) describes a discrete version of parallel transport of a
tangential vector on the surface of the unit sphere [Shapere and Wilczek, 1989].
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Figure 5.3: Sets of transverse basis vectors at sites i and i + 1 that are related
by discrete parallel transport.

When the basis vectors are transported once around the closed ring by this se-
quence of finite rotations, they do in general not coincide with the original basis.
The quantity Ω defined in Eq. (5.5) is the defect angle between the transported
and the original basis,

Ω = ∠(ê1
N+1, ê

1
1) = ∠(ê2

N+1, ê
2
1). (5.13)

To clarify the relation between the recursion relation (5.11) and classical parallel
transport, we consider the basis vectors to be continuous functions of the position
on the ring,

m̂i = m̂(li) , êαi = êα(li) , (5.14)

where α = 1, 2. For a classical ground-state that varies smoothly on the scale of
the lattice spacing a, one can use an expansion in powers of a to obtain

m̂i × m̂i+1 = m̂(li) × m̂(li + a) ≈ a m̂(li) ×
∂m̂

∂l
(li) + O(a2). (5.15)

In the limit a→ 0 the recursion relation (5.11) turns into the differential equations
for classical parallel transport [Shapere and Wilczek, 1989],

∂êα

∂l
= ω(l) × êα(l) , ω(l) = m̂(l) × ∂m̂

∂l
. (5.16)
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Figure 5.4: Discrete parallel transport for crown-shaped geometry.

This differential transport law exactly reproduces the discrete result (5.11) pro-
vided the m̂(l) between the sites i and i + 1 are chosen along the shortest path
connecting m̂i and m̂i+1 on the unit sphere, i.e., along a geodesic. For the
crown-shaped geometry, this is shown in Fig. 5.4

The defect angle associated with the parallel transport (5.16) is known to be
equal to the solid angle subtended by the closed path of m̂(l) on the unit sphere.
In the discrete case, Ω is thus the solid angle subtended by the closed path of
geodesics connecting the classical ground-state vectors.

5.4 Evaluation of the persistent magnetization

current Im

As explained in Sec. 4.3, the relevant current operator for the transport of mag-
netization can be obtained in the spin-wave approximation by a derivative of the
Hamiltonian with respect to the gauge field ωi→i+1. The equilibrium expectation
value of the longitudinal spin current can then be written as a gauge invariant
derivative with respect to the geometric flux Ω,

Is = −|J |〈m̂i ·
(

S⊥
i × S⊥

i+1

)

〉 = −
〈

∂Ĥ⊥

∂ωi→i+1

〉

= −∂Fs(Ω)

∂Ω
, (5.17)

where Fs(Ω) is the flux dependent part of the free energy. For the gas of free
magnons described by the Hamiltonian in Eq. (5.7) it is given by

Fs(Ω) = T
∑

k

ln
[

1 − e−εk/T
]

. (5.18)
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The current of magnetic moments around the ring contains contributions from
all occupied momentum states,

Im =
gµB

~
Is = −gµB

L

∑

k

vk nk , (5.19)

where the magnon velocity vk and the Bose occupation factor nk are defined by

vk =
1

~

∂εk
∂k

, nk = nB(εk/T ) , nB(x) =
1

ex − 1
. (5.20)

For an analytic evaluation of Eq. (5.19), we note that magnon states are only
thermally excited. At low temperatures only low-energy magnons will therefore
contribute to the current and it is possible to expand the magnon dispersion
around its minimum,

εn = εkn ≈ |J |S(kna)
2 + h = ∆

(

n+
Ω

2π

)2

+ h , (5.21)

where ∆ =
(

2π
N

)2 |J |S is the level splitting between the lowest-lying magnon states
without a geometric flux, i.e. ∆ = [ε1 − ε0]Ω=0. With this quadratic dispersion
the persistent magnetization current can be written as

Im =
∞
∑

n=−∞

I
(

n+
Ω

2π

)

, I(x) =
gµB

~

∆

π

x

e(x2+h̃)/t − 1
. (5.22)

Here we have introduced a dimensionless magnetic field h̃ = h/∆ and temperature
t = T/∆. From the structure of the sum, it is clear that Im is periodic in the
flux Ω with period 2π. Therefore, we can decompose it into Fourier components,

Im(Ω) =

∞
∑

−∞

Ĩle
iΩl . (5.23)

Before performing the integral for the inverse transformation the integration vari-
able can be shifted in each summand and the sum over the integrals can be com-
bined into one integration. This procedure is known under the name of Poisson
summation formula [Cheung et al., 1988] and yields

Ĩl =

∫ 2π

0

dΩ

2π
Im(Ω)e−iΩl =

∫ ∞

l=−∞

dx I(x) e−2πixl . (5.24)

To carry out the integration, we further use a representation of the Bose function
by a Matsubara sum as

nB(y/t) =
1

ey/t − 1
= −t

∞
∑

n=−∞

e−iω̃n0+

iω̃n − y
, (5.25)
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where ω̃n = 2πtn are dimensionless bosonic Matsubara frequencies. This yields

Ĩl =
gµB

~

T

π

∞
∑

n=−∞

∫ ∞

−∞

dx
xe−2πixl

x2 + h̃− iω̃n
. (5.26)

Performing a contour integration, we obtain

Ĩl = −isgn(l)
gµB

~
T

∞
∑

n=−∞

e−2π|l|zn , (5.27)

where

sgn(l) =







1 for l > 0
0 for l = 0
−1 for l < 0

, (5.28)

and

zn =

√

h̃− iω̃n =

√

h− 2πiTn

∆
. (5.29)

Here, the sign of the complex square root is chosen such that its real part is
positive. Carrying out the Fourier sums separately for the contribution of each
Matsubara frequency, we obtain

Im(Ω) =
gµBT

~

{

sin(Ω)

cosh(2π
√

h/∆) − cos(Ω)
(5.30)

+
∞
∑

n=1

[ sin(Ω + 2πzIn)

cosh(2πzRn ) − cos(Ω + 2πzIn)
+

sin(Ω − 2πzIn)

cosh(2πzRn ) − cos(Ω − 2πzIn)

]

}

,

where zRn and zIn denote the real and imaginary parts of the square root factors
in Eq. (5.29).

For the spin-wave theory to be applicable, we must have T � JS. On the
other hand, the temperature has to be well above the level spacing, i.e. T � ∆,
in order to excite a sizeable number of magnons. From the last condition together
with Eq. (5.29), we conclude that terms in the sum in Eq. (5.31) are exponentially
suppressed. Hence, we finally obtain

Im =
gµBT

~

sin Ω

cosh(2π
√

h/∆) − cos Ω
+O(e−2π

√
2πT/∆) . (5.31)

From this result, we also conclude that the current is exponentially small for h�
∆. A small magnetic field is thus favorable for a large persistent magnetization
current. On the contrary, a sufficiently strong magnetic field is necessary to
create the inhomogeneous classical ground state as shown in Sec. 5.1. Therefore,
a magnetic field h of the order of the level spacing should be applied for a maximal
spin current.
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5.5 Estimated experimental parameters

Persistent magnetization currents endow the ring with an electric dipole field
as discussed in Sec. 4.4. Let us estimate the order of magnitude of the electric
field that needs to be measured for an experimental detection of the effect. As
reasonable parameters for a mesoscopic S = 1/2 Heisenberg ring, we assume g =
2, N = 100, and J = 100K. Then the condition gµB|B| ≈ ∆ is satisfied for |B| ≈
0.1T. To obtain a sizable Ω one should generate inhomogeneous directions of the
magnetic field in the submicron range. In the dipole approximation Eq. (4.29)
the potential drop between two points located a distance d above and below the
loop on the z-axis is given by

U ≈ 2gµBkB
~c

TL

d2
≈ 0.5nV · TL

d2
· nm

K
, (5.32)

where we have used the prefactor in Eq. (5.31) to estimate the maximal amplitude
of the magnetization current Im. For T = 60K and d = L = 100nm this yields
a potential drop of U ≈ 0.3nV. The experimental detection of this tiny voltage
as well as the creation of the inhomogeneous field are certainly very challenging.
Yet, with the rapid development of nanotechnology these tasks might be within
experimental reach in the near future.
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Chapter 6:

Persistent spin currents in

antiferromagnet Heisenberg rings

In this chapter, we consider persistent magnetization currents in antiferromag-
netic rings. The results in Eq. (5.19) shows that the persistent magnetization
current in a ferromagnetic ring vanishes for T → 0. Physically, this is due to
the fact that no quantum fluctuations are present in the ferromagnetic ground
state. At T = 0 there are thus no magnons to carry the spin current. One may
speculate that an antiferromagnetic Heisenberg ring can support a finite persis-
tent spin current even at T = 0 due to quantum fluctuations. In this chapter,
we show that this is indeed the case and present a quantitative calculation of
the spin current using the leading spin-wave approximation. In contrast to the
ferromagnetic case, the orientations of the classical ground state of an antiferr-
magnet in an inhomogeneous field are orthogonal to the local field direction for
small magnetic fields h. Therefore, h no longer leads to a gap in the spin-wave
dispersion and the usual spin-wave theory breaks down due to the absence of
long-range order in one dimension. Yet, for integer spin S correlation effects lead
to a finite spin-correlation length ξ and a Haldane gap of the order of ~c/ξ [Hal-
dane, 1983a, Haldane, 1983b, Affleck, 1989], where c is the spin-wave velocity.
These features are correctly captured by a modified spin-wave theory [Takahashi,
1986,Takahashi, 1987,Takahashi, 1989,Hirsch and Tang, 1989,Kollar et al., 2003]
which we use here for explicit calculations. This approach is only appropriate for
integer spin S, where the low-energy excitations can be viewed as renormalized
spin waves. In contrast, for half-integer S the spectrum is gapless and spin cor-
relations decay algebraically [Auerbach, 1994]. The elementary excitations are
then spinons and the modified spin-wave theory does not correctly reproduce the
low energy physics. In this case, the effective low energy theory is the Tomonaga-
Luttinger model that will be introduced in Chap. 9. Bosonization is the method
of choice in this case and was used recently to analyze persistent spin currents in
half-integer antiferromagnetic Heisenberg rings [Schmeltzer et al., 2004]. Meier
and Loss [Meier and Loss, 2003] also used such a model to discuss spin currents
in S = 1

2
antiferromagnetic spins chains for a two-terminal geometry.

Similar to the case of a ferromagnet, we find a persistent magnetization current
that is carried by magnons. They are subject to mesoscopic interference due to
the geometric phase associated with the inhomogeneous nature of the classical
ground state. Our result in Eq. (6.26) for the ground-state current in rings
with a circumference L smaller that the correlation length ξ shows a remarkable
similarity with the saw-tooth shaped persistent charge current of ballistic non-
interacting electrons. More precisely, Eq. (2.13) in the introduction is identical



48 Chapter 6. Persistent spin currents in antiferromagnet Heisenberg rings

êz
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Figure 6.1: Classical ground state of an antiferromagnetic Heisenberg ring in
a crown-shaped magnetic field; m̂A

i and m̂B
i are the directions of the spins on

sublattices A and B.

to our results in Eq. (6.26) when we carry out the replacements e→ gµB, vF → c
and φ/φ0 → Ω/2π for the charge, the velocity and the magnetic flux, respectively.
Here, Ω is the solid angle spanned by the inhomogeneous local Néel vector as one
moves once around the ring.

6.1 Classical ground state

We start again from the Hamiltonian of a Heisenberg spin ring in Eq. (2.14), now
with an antiferromagnetic exchange coupling J > 0. We further assume that the
number of sites N is even. For a smoothly varying magnetic field that is weak
compared to the exchange interaction, the spins in the classical ground state will
be almost antiparallel on neighboring sites and orthogonal to the local direction
of the magnetic field. This state will locally resemble a Néel state that changes
its direction smoothly with the direction of the inhomogeneous field.

To see this more explicitly we consider again the crown-shaped field geometry
in Eq. (2.15) shown in Fig. 6.1 for the antiferromagnet. For very strong fields h
the classical unit vectors m̂i will be aligned parallel to the field and the ground
state will have the full rotational symmetry of the applied field. Below a critical
spin-flip field hc(ϑ) it will be energetically favorable to form two sublattices with

different angles ϑ
A/B
m to the z-axis (see Fig. 6.1). Introducing the relative and

average angles

δ =
1

2
(ϑAm − ϑBm) ϑ̄ =

1

2
(ϑAm + ϑBm) , (6.1)
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a minimum of the classical energy is reached for

sin(ϑ− ϑ̄) cos(δ) = −JS
h
ε− sin(2ϑ̄) (6.2)

cos(ϑ− ϑ̄) sin(δ) = +
JS

h
ε+ sin(2δ) , (6.3)

where we have defined ε± = 1 ± cos(2π/N). For very strong magnetic fields
h > hc, we have δ = 0 and Eq. (6.2) reduces to its ferromagnetic analogue (see
Eq. (14) in I). For δ 6= 0 the two equations can be combined to give

sin(2(ϑ− ϑ̄)) = −
(

2JS

h

)2

sin2(2π/N) sin(2ϑ̄) . (6.4)

Thus for large rings the magnetic field h ∼ JS/N necessary to produce an in-
homogeneous classical ground state is well below the spin-flip field hc ∼ JS.
For h ∼ JS/N � JS we have δ ∼ π/2 and the classical ground state locally
resembles a Néel state as conjectured above.

6.2 Spin-wave spectrum

For such a classical ground state, the local Néel vector n̂i = (−1)i+1m̂i varies
smoothly as a function of position on the lattice and is oriented almost orthogonal
to the local direction of the magnetic field. We thus have

m̂i · m̂i+1 = −1 +O(N−2) , (6.5)

and the terms involving the combination b̂+i b̂i+1 in the spin-wave Hamiltonian
(3.73) can be neglected to leading order in 1/N . This approximation is again
similar to an adiabatic approximation, since now a local spin deviation follows the
direction of the classical ground state as it moves around the ring. The resulting
quadratic bosonic Hamiltonian is standard for an antiferromagnetic ring with
nearest-neighbor interactions except for the appearance of phase factors in front
of the anomalous hopping terms b̂+i b̂

+
i+1,

Ĥ
(2)
AFM =

N
∑

i=1

{

[

2JS + hs
]

b̂+i b̂i − JS
[

ei(ωi→i+1+ωi+1→i)b̂+i b̂
+
i+1 + H.c.

]

}

. (6.6)

Here, periodic boundary conditions b̂N+1 = b̂1 apply, and we have introduced an
additional staggered field hs in the direction of the classical ground-state vectors
as an auxiliary tool for the discussion in Sec. 6.4.

The geometrical phase factors are accumulated as a spin deviation is moving
around the ring leading to interference effects in its wave function in close analogy
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to Aharonov-Bohm interference in charge transport. These phase factors can be
eliminated by a gauge transformation with the local rotation angles

αj =

j−1
∑

i=1

(−1)j+i(ωi→i+1 + ωi+1→i) . (6.7)

This leads to the new boundary condition

b̂i+N = e±iΩb̂i , Ω = αN+1 , (6.8)

where the upper/lower sign is valid for sublattice A/B (odd/even i). In the

gauge with vanishing phase factors in Eq. (6.6) the spin-wave Hamiltonian Ĥ
(2)
AFM

is diagonalized as usual by first performing Fourier transformations with different
signs on the two sublattices:

âk =

√

2

N

∑

i∈A

e−ikli b̂i , b̂k =

√

2

N

∑

i∈B

e+ikli b̂i , (6.9)

where the quantized wave vectors are given by

kn =
2π

L

(

n+
Ω

2π

)

, n = 0, . . . ,
N

2
− 1 . (6.10)

The diagonal form of HAFM is then achieved by the Bogoliubov transformation

(

âk
b̂+k

)

=

(

cosh θk sinh θk
sinh θk cosh θk

)(

α̂k
β̂+
k

)

, (6.11)

with

tanh(2θk) =
cos(ka)

1 + h̃s
, h̃s = hs/2JS . (6.12)

The diagonal Hamiltonian contains constant terms due to quantum fluctuations,

Ĥ
(2)
AFM =

∑

k

εk(α̂
+
k α̂k + β̂+

k β̂k + 1) −NJS(1 + h̃s) , (6.13)

where the quasiparticle energies are given by

εk = 2JS
√

∆2 + sin2(ka) , ∆2 = h̃s(h̃s + 2) , (6.14)

and the free energy is obtained from

Fsw(Ω) = 2T
∑

k

ln
[

2 sinh
εk
2T

]

−NJS(1 + h̃s) . (6.15)
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Figure 6.2: Dispersion of antiferromagnetic magnons and allowed wave-numbers
in the presence of twisted boundary conditions. The full curve is valid in the
presence of a staggered field, whereas for the dotted curve hs = 0.

Thus we have shown that thermodynamic quantities depend on the inhomogene-
ity of the field only via the single phase Ω. Geometrically, Ω is the anholonomy
associated with the parallel transport of a vector orthogonal to the local Néel vec-
tor, in analogy to the ferromagnetic case. To see this more clearly, we consider for
each bond (ij) two additional sets of local right-handed triads containing the Néel
vector n̂i instead of m̂i. These triads are given by {ē1

i = e1
i , ē

2
i = (−1)i+1e2

i , n̂i}
and {˜̄e1

i , ˜̄e
2
i = n̂i × n̂j, n̂i}, and are related by a rotation around n̂i. For the

associated spherical vectors this reads

ē±
i = e±iω̄i→j ˜̄e±

i , (6.16)

where the rotation angles ω̄i→j are given by

ω̄i→j = iπ + (−1)i+1ωi→j for j = i± 1. (6.17)

We can now express Ω as

Ω =

N
∑

i=1

(ω̄i→i+1 − ω̄i+1→i) mod 2π , (6.18)

which is of the same form as the anholonomy for the ferromagnet in Eq. (5.5).
Ω is thus the anholonomy of a vector orthogonal to the local Néel vector that is
transported around the ring by discrete rotations around n̂i×n̂i+1. Alternatively,
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a continuous parallel transport can be used around a path of geodesics connecting
the unit vectors n̂i on the unit sphere. Ω is therefore equal to the solid angle
subtended by this closed path of geodesics.

6.3 Persistent magnetization current

In Sec. 4.3 we have shown that the relevant current operator for magnetization
transport is obtained within the spin-wave approximation from a derivative of
the Hamiltonian with respect to the gauge field ωi→i+1. For an antiferromagnet
the longitudinal spin current is conveniently defined in the direction of the local
Néel vector and can be written as a gauge-invariant derivative of the free energy

Is = 〈n̂i · Ii→i+1〉 = −(−1)i+1

〈

∂Hsw

∂ωi→i+1

〉

= −∂Fsw

∂Ω
, (6.19)

where Ii→i+1 = JSi×Si+1. This spin current Is corresponds to a current of mag-
netic dipoles that are locally oriented in the direction of the Néel vector n̂i, which
varies smoothly as we move along the ring. The spin current generates an elec-
tric dipole field which has the form discussed in Sec. 4.4. For the magnetization
current we obtain

Im =
gµB

~
Is = −2gµB

L

∑

k

ck

[

nk +
1

2

]

, (6.20)

where ck = ~
−1∂εk/∂k is the velocity of a magnon with wave vector k and nk =

nB(εk/T ) is the Bose occupation factor. The extra factor of 2 is due to the
two degenerate spin-wave modes. Equation (6.20) is the antiferromagnetic spin
analog of Eq. (2.12). It clearly shows that the magnetization current is carried
by antiferromagnetic magnons, which at this level of approximation are the only
quasiparticles available for transport. The current has a finite limit, even for
vanishing Bose occupation factors, due to quantum fluctuations.

From Eq. (6.20) the current is clearly seen to be a periodic function of Ω,
so that the finite momentum sum can be further evaluated using the Poisson
summation formula as described for the ferromagnet in Sec. 5.4. From now on,
we will only consider the T = 0 limit in more detail. Eq. (6.20) can then be
written in the form

Im
I0
m

=

N/2−1
∑

n=0

f

(

2π

N

(

n+
Ω

2π

))

, (6.21)

where f(k) = d/d(ka)(εk/2JS) is a periodic function of its argument with f(x+
π) = f(x) = −f(−x), and I0

m = −gµBc/L is the magnetization current carried
by a single magnon with the spin-wave velocity c = ck→0+ at the center of the
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Brillouin zone. The Fourier coefficients Cν of the magnetization current are then
given by

Im
I0
m

=
∞
∑

ν=−∞

Cνe
iνΩ . (6.22)

By appropriate substitutions in the corresponding integral one eliminates the
finite momentum sum and obtains

Cν = −νN
2∆

2i
gνN
(

−∆−2
)

, (6.23)

where g2l+1 is zero and g2l is given by

g2l(z) =

∫ 2π

0

dω

2π

√

1 − z sin2 ω e−i2lω

=

(

1
2

l

)

(z

4

)l

2F1

(

l − 1

2
, l +

1

2
; 2l + 1; z

)

= (−1)l
√

1 − z g2l

(

z

z − 1

)

. (6.24)

The second line follows from expanding the integral in powers of z and identifying
the resulting series with the hypergeometric function, whereas the last equality
can be derived by elementary manipulations of the integral, or follows from a
hypergeometric identity.

For a vanishing staggered field hs and therefore a vanishing gap ∆ in the
exitation spectrum, the integral is elementary, and we obtain

Cν = −1

π

iνN2

1 − ν2N2
≈ − 1

iπ

1

ν
, (6.25)

where the last relation is valid for N � 1 and m 6= 0. For this case, the sum in
the Fourier series for the spin current can be performed to yield

Im = I0
m

(

1 − Ω

π

)

, 0 <
Ω

2π
< 1 . (6.26)

The sawtooth shape (see the solid line in Fig. 6.3) of the current in Eq. (6.26)
is reminiscent of Eq. (2.13) for charge transport. Indeed, for T = 0 Eq. (6.20)
is formally equivalent to Eq. (2.12) for charge transport when the Fermi edge is
replaced by the lower edge of the magnon band.

6.4 Modified spin-wave theory

The usual spin-wave theory employed so far is inconsistent when zero modes
appear. Although the spin current remains finite, the sublattice magnetization
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Figure 6.3: Magnetization current in a ring with 100 spins for different values of
the energy-gap parameter ∆. The plots are produced by numerically evaluating
Eq. (6.20). For ∆ = 10−3 the curve is indistinguishable from the approximate
expression in Eq. (6.30), and Eq. (6.31) provides a good approximation for ∆ =
2 × 10−2.

diverges in the limit Ω → 0. This failure is related to the absence of long-
range order in one-dimensional systems. It can be resolved by a modified spin-
wave theory which was first used by Takahashi for a one-dimensional ferromagnet
[Takahashi, 1986, Takahashi, 1987] and then extended to various spin systems
without long-range order, including antiferromagnets [Hirsch and Tang, 1989,
Takahashi, 1989]. The constraint that is introduced in these theories was recently
shown to follow naturally from a calculation at constant order parameter [Kollar
et al., 2003]. In the present context, we introduce the additional constraint

∑

i

〈Si · m̂i〉 = 0 , (6.27)

which suppresses Néel order on average. This constraint is enforced via the stag-
gered field hs in Eq. (6.6) which acts as a Lagrange multiplier. The expectation
value in Eq. (6.27) can be evaluated from ∂Fsw/∂hs, yielding the self-consistency
condition

2

N

∑

k

∂εk
∂hs

[

nk +
1

2

]

= S +
1

2
. (6.28)

Although the self-consistently determined hs is itself a periodic function of the
geometric flux Ω, the leading order for large N is a constant and can be deter-
mined by replacing the sum in Eq. (6.28) by an integral. For T = 0 the solution
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of Eq. (6.28) yields the Haldane gap 2JS∆, which is inversely proportional to
the staggered correlation length ξ [Auerbach, 1994],

∆ = 4 e−π(S+1/2) =
a√
2ξ
. (6.29)

The functional form of the magnetization current shows a crossover between the
two qualitatively different regimes ξ � L and ξ � L (see Fig. 6.3). In the former
case ∆ � 2π/N and at most one wave vector can be in the region −∆ < k < ∆
where the dispersion relation deviates strongly from the dispersion in the limit
∆ = 0. When the contribution from this single wave vector is taken into account
separately, we obtain

Im
I0
m

=
sin(2Ω/N)

2
√

∆2 + sin2(Ω/N)
− Ω

π
, −π < Ω < π . (6.30)

In the case ∆ = 0 this reduces to Eq. (6.26), provided N � 1. Thus, the effect of
a finite ∆ is to remove the discontinuity at Ω = 0, 2π. On the other hand, in the
limit ξ � L many k values are affected by the energy gap. Using an asymptotic
expansion of the hypergeometric function [Watson, 1918] for large l, we derive an
expression for the spin current for large system sizes. In particular, the condition
that the leading term in the expansion be sufficient can be shown to be equivalent
to L/ξ � O(1). After some algebra we obtain

Im
I0
m

=

√

2

π

(

L√
2ξ

)1/2

exp

(

− L√
2ξ

)

sin(Ω) , (6.31)

implying that the sinusoidal magnetization current is exponentially suppressed
in the bulk limit, L� ξ.
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Magnetization currents in

electric fields

In this chapter, we show that persistent magnetization currents can also be driven
by inhomogeneous electric fields. For a ferromagnetic ring in a radial electric field,
this was discussed in [Cao et al., 1997]. Here, we will consider the same setup for
an antiferromagnetic ring.

Moving magnetic dipoles represent an electric dipole moment [Hirsch, 1999]
and are therefore affected by electric fields. Due to this relativistic effect, which
is essentially equivalent to spin-orbit coupling, the magnetic moments acquire
an Aharonov-Casher phase [Aharonov and Casher, 1984]. For localized spin sys-
tems described by a Heisenberg Hamiltonian, the electric field can be taken into
account phenomenologically by a substitution in the interaction term,

Si · Sj −→ Si · e
�
ij×Sj , (7.1)

as long as the electric field varies only weakly on the scale of the lattice spacing.
Here,

θij =
gµB

~c2

∫ lj

li

dl × E(l) , (7.2)

and the notation e
�
× for an SO(3) rotation matrix is defined in Eq. (5.12). For

ferromagnetic coupling, inhomogeneous electric fields can lead to persistent mag-
netization currents [Cao et al., 1997] and a spin analog of the Hall effect was also
shown to exist in electric fields [Meier and Loss, 2003].

We now consider the antiferromagnetic ring in an electric field in the x-y plane,
e.g. produced by a charged line in the z direction (see Fig. 7.1). The rotation
vectors θi,i+1 = θi,i+1ê

z are then all parallel to the z axis and the Hamiltonian
for vanishing magnetic field becomes

H = J
∑

i

[

1

2
(eiθi,i+1S+

i S
−
i+1 + h.c.) + Szi S

z
i+1

]

. (7.3)

The classical ground state is easily shown to be a doubly degenerate Néel state
with m̂i = ±êz. The spin-wave expansion is thus straightforward. If a gauge
transformation is used to eliminate the phase factors, we again obtain the stan-
dard bosonic Hamiltonian HAFM of Eq. (6.6) with the boundary condition (6.8),
where Ω is replaced by the total Aharonov-Casher phase

ΩAC =
∑

i

θi,i+1 =
gµB

~c2

∮

dl · [êz × E(l)] . (7.4)
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^ze

E

Figure 7.1: Antiferromagnetic Heisenberg ring in the electric field produced by a
line charge.

The spin current then only has a z component which can be written as a gauge-
invariant derivative of the free energy,

Im = −∂FAFM

∂ΩAC
. (7.5)

This leads again to Eq. (6.20) with Ω replaced by ΩAC and all the results derived
in the previous sections are also applicable in this context.

It is also interesting to note that the situation of a radial electric field with
θi,i+1 = 2π

N
and an additional homogeneous magnetic field tilted with respect to

the z-axis can be formally mapped onto a crown-shaped magnetic field alone via
the transformation

S
′

i = e
2π
N

ˆ�z×Si . (7.6)

It would therefore be interesting to further investigate the combined effect of
arbitrary inhomogeneous magnetic and electric fields on the produced spin cur-
rents to find situations that could be realized more easily in the laboratory for a
possible experimental detection of the effect.
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Conclusions

In this part of the thesis, we have considered mesoscopic Heisenberg rings to
predict a new quantum mechanical interference effect which is analogous to per-
sistent charge currents in mesoscopic normal metal rings threaded by a magnetic
flux. More precisely, we have shown that inhomogeneous magnetic fields as well
as radial electric fields can drive persistent circulating magnetization currents.
The current is carried by magnons and endows the ring with an electric dipole
moment that might allow for an experimental detection of the effect. For ferro-
magnetic rings, magnons are only thermally excited and the current is propor-
tional to the temperature T at low temperature. For antiferromagnetic rings,
quantum fluctuations lead to ground-state currents, but fluctuations in low di-
mensions also produce exponential damping when the circumference L of the ring
becomes larger than the staggered correlation length ξ. Explicit calculations were
performed within leading order spin-wave theory. For antiferromagnetic rings, a
modified spin-wave theory has been used that is valid for integer spin S, i.e. for
Haldane-gap systems, and accounts for the absence of long-range order in one
dimension.

A new definition of the spin-current operator has been proposed that is appli-
cable for non-collinear spin configurations. To further substantiate this proposal
for an effective current operator, it would be interesting to look for a more micro-
scopic derivation by starting from a model involving charge degrees of freedom.
It would also be instructive to explicitly investigate non-equilibrium situations
with time-dependent magnetization.

We have only considered clean systems, i.e., we have focused on the ballistic
regime. Since for persistent charge currents disorder is known to be important,
it would also be very interesting to consider persistent magnetization currents in
the diffusive regime of disordered magnets. In this context, it is interesting to
note that also without impurities, a spatially varying magnitude of the effective
magnetic field provides an intrinsic impurity potential for magnon excitations.

An experimental detection of the persistent magnetization currents is cer-
tainly very challenging. It requires well-characterized rings with a large isotropic
Heisenberg coupling J . Furthermore, rather strong magnetic fields with varying
directions on the submicron scale have to be created and a potential drop on
the order of nanovolts over a length scale comparable to the circumference of the
ring has to be detected. Screening of this tiny electric field is also a problem. A
detailed estimate of the orders of magnitude was given in Sec. 5.5.

However, the emerging field of spintronics already faces similar challenges.
For applications to quantum computing, highly anisotropic magnetic fields are
also required for single-qubit operations. Furthermore, a purely electric control of
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spin degrees of freedom is being developed using the Rashba spin-orbit coupling
in two-dimensional semi-conducting structures. Thus, in view of the rapid de-
velopment of spintronics, it is not unreasonable to expect that new experimental
techniques will be developed in the near future that might overcome the difficul-
ties mentioned above. Persistent magnetization currents could then be used as
a quantitative measure for the degree of quantum coherence in mesoscopic spin
systems.



Part II

Functional renormalization group

with collective fields
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Chapter 9:

Introduction

Systems of strongly interacting electrons in one or two spatial dimensions con-
tinue to pose interesting challenges to theoretical and experimental condensed
matter physicists. The extremely rich phenomenology of these systems includes
phases with broken symmetry such as superconductivity and charge or spin den-
sity wave states as well as metallic phases with unconventional properties. The
high-temperature superconductors [Bednorz and Müller, 1986] provide the most
prominent experimental realization for which, despite a tremendous amount of
work in the field, eq:any aspects of the phase diagram are still not completely
understood. Other well-known examples of strongly correlated systems include
highly anisotropic quasi one-dimensional organic and anorganic conductors as
well as heavy-fermion systems.

Whereas in three dimensions mean-field theory or a description by quasi-
particles of a Landau Fermi liquid is often appropriate [Pines and Nozières, 1989],
strong fluctuations invalidate these approaches in low dimensions. Thus, new
concepts and calculational tools are needed. For one-dimensional conductors
the paradigm of Luttinger liquids was developed [Haldane, 1981] to describe
the low energy properties. In this context, bosonization is widely used as a
calculational tool and provides solutions for correlation functions. Yet, it relies
on assumptions that restrict its validity to the very low energy sector. Relaxing
these assumptions to assess the limitations of the Luttinger liquid picture has been
notoriously difficult. Experimentally, many signs of non-Fermi liquid behaviour
are seen also in (quasi) two-dimensionsal systems. Thus, many workers tried to
find a generalization of the Luttinger liquid concept to two spatial dimensions.
Yet, except for rather artificial models a consistent theory for Luttinger liquid
behavior in two dimension could not be given so far.

Various theoretical approaches are still being developed for strongly corre-
lated electron systems. One promising method is the renormalization group that
has already been extensively used to analyze the low-energy behavior of low-
dimensional interacting Fermi systems.

9.1 Functional renormalization group

The renormalization group (RG) was designed to deal with problems in which
fluctuations on many length scales are important. This usually leads to divergent
expressions for Feynman diagrams and diagrammatic perturbation theory breaks
down at low energies or long wavelengths. Originally, a renormalization procedure
was developed in the field-theoretical context as a device to control these diver-
gencies [Amit, 1984,Zinn-Justin, 2002], and finite results are obtained for renor-
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malizable field theories when all parameters are expressed in terms of physically
measurable quantities. Later, building on previous work by Kadanoff [Kadanoff
et al., 1967], Wilson incorporated the ideas of scaling and transformation of length
scales. This led to a thorough understanding of (classical) critical phenomena in
terms of renormalization group flows in a large space of possible Hamiltonians and
especially the fixed points of this flow [Wilson and Kogut, 1974,Ma, 1976,Fisher,
1998]. Spatial dimensionality plays an important role and leads to well-defined
calculational schemes when one uses an expansion about the upper critical dimen-
sion above which mean-field theory yields the correct critical behavior [Wilson,
1972,Wilson and Fisher, 1972]. For the standard φ4 theory such an expansion is
in powers of ε, where the dimension is D = 4 − ε. Alternatively, it is sometimes
also useful to consider an expansion about the lower critical dimension (using
D = 2 + ε), below which the order is destroyed by strong fluctuations. The
common idea involved in all renormalization group methods is the dependence
of physical quantities on the length scale at which they are considered. Scale-
dependent coupling constants are introduced and their evolution is analyzed as
the scale is changed. Yet, the practical implementation of this idea varies strongly
in different versions of the RG.

Formally exact versions of the renormalization group transformation were de-
veloped early on [Wilson and Kogut, 1974]. The treatment was formalized by
considering infinitesimal RG steps. The first of these infinitesimal generators was
introduced by Wegner and Houghton [Wegner and Houghton, 1973]. Problems
with the sharp cutoff limit arose that were dealt with by using discrete momenta.
A seminal work by Polchinski [Polchinski, 1984] showed the usefulness of con-
tinuous flow equations for the Wilsonian effective action to simplify the proof of
perturbative renormalizability. This triggered the development of various versions
of functional renormalization group (fRG) equations for different generating func-
tionals (for overviews, see e.g. [Bagnuls and Bervillier, 2002, Salmhofer, 1999]).
In all of these schemes, the cutoff has a dual interpretation [Morris, 1994]. It
acts as an ultraviolett cutoff for the low energy modes, such that the generating
functional is the effective actions for the modes that still need to be integrated.
At the same time it generates the correlation functions of a theory with an in-
frared cutoff. The use of the generating functionals for irreducible vertices was
made popular by the works by Wetterich and by Morris [Wetterich, 1993,Morris,
1994], although advantages of this scheme were realized earlier [DiCastro et al.,
1974,Nicoll et al., 1976,Nicoll and Chang, 1977].

More recently, renormalization group methods were also applied to interact-
ing fermionic systems. Here, the low-energy modes that lead to divergencies
are related to gapless excitations in the vicinity of the Fermi surface. For one-
dimensional systems, the Fermi ’surface’ actually reduces to two separated points
in momentum space and the Wilsonian RG can directly be applied [Shankar,
1994]. For a spatial dimension D > 1, the Fermi surface is a D − 1 dimensional
manifold and a full Wilsonian RG including integration of high-energy modes as
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well as rescaling of momenta, frequencies and fields is more involved [Shankar,
1994, Kopietz and Busche, 2001]. The functional version of the renormaliza-
tion group is especially well-suited to deal with the coupling functions that
have to be considered for Fermi systems with D > 1. Due to its relevance
for the high-temperature superconductors, the two-dimensional Hubbard model
was extensively studied [Zanchi and Schulz, 1996,Zanchi and Schulz, 1998,Zanchi
and Schulz, 2000, Zanchi, 2001,Halboth and Metzner, 2000b,Halboth and Met-
zner, 2000a,Honerkamp, 2001,Honerkamp and Salmhofer, 2001b,Honerkamp and
Salmhofer, 2001a,Honerkamp et al., 2001,Honerkamp et al., 2004,Katanin et al.,
2005,Kampf and Katanin, 2003,Katanin and Kampf, 2003,Katanin and Kampf,
2004b,Katanin and Kampf, 2004a,Binz et al., 2002]. Using various versions of
the functional RG for different types of vertices and a discretization of the Fermi
surface, these authors studied the one-loop flow of the two-particle scattering ver-
tex starting from a model which is weakly coupled at the microscopic scale. The
flow is then driven by the competing instabilities of the system. They invariably
find a divergence in the flow at some finite cutoff. The nature and the symmetry
of the most singular couplings are taken as an indication on the dominant in-
stability, leading to phase diagrams. Yet, since the flow exhibits a divergence, it
cannot be continued down to lower energies and the true low-energy theory is not
accessible. Furthermore, to obtain a numerically manageable number of coupling
constants, power counting arguments are used to project the momenta in the ver-
tex functions onto the Fermi surface. For the same reasons, frequency dependen-
cies are neglected. The runaway flow to strong coupling in these weak-coupling
approaches leaves two principal scenarios for the very low-energy behavior. The
more conventional view assumes that symmetry breaking occurs in the channel
identified as most singular by the one-loop flow equations. Symmetry-breaking
terms in the action then regulate the flow at low energies. For the reduced BCS
model the flow could indeed be continued into the symmetry-broken regime by
introducing some finite symmetry breaking field [Salmhofer et al., 2004]. Another
scenario is also possible at least for special Fermi surface geometries. At low en-
ergies anomalous exponents can lead to a vanishing quasiparticle weight and thus
to non-Fermi liquid behavior. This was indeed found in a two-loop treatment for
a Fermi surface with flat parts via the field-theoretical version of the RG [Freire
et al., 2005,Ferraz, 2003b,Ferraz, 2003a]. Two-loop calculations within the fRG
formalism are extremely challenging and have not yet been performed consistently
for fermions in two dimensions. Thus, one might look for alternative methods
that are better suited to describe the very low energy physics.

A recently very popular approach to interacting many-fermion systems starts
from the vicinity of a quantum critical point [Sachdev, 1999]. This approach was
pioneered by Hertz and Millis [Hertz, 1976,Millis, 1993]. Technically, an order
parameter is introduced by performing a Hubbard-Stratonovich transformation
in the Grassmannian functional integral. Subsequently, the fermionic fields are
integrated out and the system is described in terms of the bosonic fluctuating
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order parameter alone. A Wilsonian momentum-shell RG is then used to describe
the critical behavior of the soft bosonic modes.

In this context, it is also interesting to note that the fRG was successfully
applied to weakly interacting bosonic systems [Hasselmann et al., 2004,Ledowski
et al., 2004,Blaizot et al., 2004]. In these works, the complete scaling function for
the single-particle self-energy could be obtained leading to a result for the shift
of the critical temperature.

In the second part of the thesis, we set up a functional renormalization group
scheme that is intermediate between the purely fermionic version and a treatment
in terms of the order parameter alone. We also use a Hubbard-Stratonovich trans-
formation to introduce collective bosonic fields. However, instead of integrating
out the fermions, we derive a hierarchy of flow equations for the irreducible ver-
tices of the coupled Fermi-Bose theory. A closely related method has been de-
veloped in [Baier et al., 2004,Baier et al., 2005] to study antiferromagnetic order
in the two-dimensional Hubbard model. For the Coulomb gas, similar flow equa-
tions were also written down in [Correia et al., 2002]. Nevertheless, due to the
freedom in the choice of the cutoff in the mixed theory, our method differs con-
siderably from other approaches. Furthermore, we pay particular attention to
Ward identities in forward scattering problems. By choosing a cutoff only in the
momentum transfer of the interaction, we can then show how the exact solution
for the single-particle Green’s function of the Tomonaga-Luttinger model can be
obtained entirely within the fRG formalism.

9.2 Electrons in one dimension

Electrons in one spatial dimension provide one of the few examples where exact
results for an interacting many-body system may be obtained. Although in the
original fermionic language the model seems untractable, an ingenious mapping
to bosonic variables related to density fluctuations reduces it to quadratic form.
For the ranges of parameters where it is applicable, this bosonization procedure
leads to exact solutions for correlation functions. The bosonic degrees of freedom
are thus the appropriate variables to describe the system.

The importance of bosonic modes in the low-energy excitation spectrum of
one-dimensional electrons was first realized by Bloch [Bloch, 1933] for the case
of non-interacting electrons. In a seminal paper, Tomonaga [Tomonaga, 1950]
showed how the Hamiltonian of a system of interacting one-dimensional elec-
trons can be approximately diagonalized in bosonic variables when the energy
dispersion is linearized and long-range interactions (in real space) are considered.
By a complicated treatment using Toeplitz determinants, Luttinger [Luttinger,
1963] discovered that the momentum distribution function no longer has a fi-
nite step at the Fermi points, but exhibits a power-law behavior indicative of a
breakdown of the Fermi liquid picture. Subsequently, this important result was
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confirmed by Mattis and Lieb [Mattis and Lieb, 1965] using a rigorous version
of bosonization. They also pointed out a mistake in Luttinger’s paper due to an
incorrect treatment of anomalous commutators associated with a filled Dirac sea
in a model without bandwidth cutoff. Luther and Peschel [Luther and Peschel,
1974] obtained the single-particle spectral function by means of what is now
called the ’bosonization of the field operator’. In a seminal paper Haldane [Hal-
dane, 1981] pointed out that the low-energy behaviour found in the exact so-
lution of the Tomonaga-Luttinger model is expected to be a general property
of interacting one-dimensional electrons and coined the term ’Luttinger liquid’.
From bosonization the single-particle Green’s function is obtained in real space,
whereas experimental probes such as angle resolved photoemission spectroscopy
(ARPES) measure it as a function of frequency and momentum. The Fourier
transformation is highly non-trivial, but can be done with the help of an asymp-
totic analysis [Meden and Schönhammer, 1992]. The resulting spectral function
shows spin-charge separation and anomalous scaling at low energies.

A number of reviews [Schönhammer, 1997, Schönhammer, 2003, v. Delft and
Schoeller, 1998,Stone, 1994] describe the details of the bosonization method which
we will not discuss any further. Nevertheless, we will review briefly certain ap-
proximations on which these exact solutions rely, as they will also be necessary
in our exact treatment via the functional renormalization group. Starting from
a kinetic energy term

H0 =
∑

kσ

εkĉ
+
kσĉkσ (9.1)

with a general dispersion εk it is assumed that εk can be linearized in the vicinity
of the two Fermi points, i.e.,

εk → εpα = αvFp+ εF , (9.2)

where α = ± labels the right (α = +) or left (α = −) Fermi point, εF = ε±kF
is the Fermi energy and p = k − αkF measures the distance from the respective
Fermi point. This linearization is shown in Fig. 9.1.

Naturally, Eq. (9.2) is only a valid approximation close to the Fermi points,
i.e., for small p. To ensure this, a bandwidth cutoff Λ has to be introduced such
that |p| ≤ Λ. Interactions that are sufficiently short ranged in momentum space,
i.e., long ranged in real space, will not affect states deep inside the Fermi sea
or high above it. For the low-energy physics those states should therefore be
irrelevant.

For a general class of models, the electron-electron interaction depends only
on the distance in real space. After Fourier transformation it is a function of the
transferred momentum and is given by

Hint =
1

2V

∑

k,k′,k̄

∑

σσ′

v(k̄)ĉ+
k+k̄σ

ĉ+
k′−k̄,σ′

ĉk′σ′ ĉkσ , (9.3)
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FΛFΛFΛFΛ
−kF

Figure 9.1: Linearization of the dispersion relation for one-dimensional electrons.
A bandwidth cutoff ΛF has to be introduced to restrict the available single particle
states to the vicinity of the Fermi points.

where V is the volume of the system and k̄ denotes a bosonic momentum, i.e., a
difference of two fermionic momenta, as explained in detail in the next chapter.
In diagrammatic perturbation theory such an interaction is represented by the
vertex

v(k)

. (9.4)

When the initial and final states are restricted to regions around the two Fermi
points, the interaction can be classified according to the different combination of
patch labels of incoming and outgoing particles. This gives rise to four different
coupling parameters denoted by g1 to g4 in the so-called g-ology classification
[Solyom, 1979], as shown in Fig. 9.2.

So far, we have started from a microscopic model and simply neglected single
particle states far away from the Fermi points. This procedure can be put on
firmer grounds by invoking the renormalization group to integrate out the high
energy states. In principle, a low-energy Hamiltonian of the g-ology form can be
obtained in this way, where now the couplings should be regarded as effective pa-
rameters. Compared to the couplings of the microscopic model they contain finite
renormalizations due to high-energy states. Once the regime is reached where the
g-ology classification is applicable, the change of the coupling parameters as the
cutoff is further reduced is easily derived [Solyom, 1979, Shankar, 1994]. As an
example, let us consider the one-loop flow in the case of spinless fermions. When
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Figure 9.2: Classification of interaction terms according to the g-ology convention.
Full and dashed lines represent electrons on different branches of the dispersion.
Forward scattering on the same or between different branches is given by g4 and
g2, respectively. The coupling g1 describes backward scattering, and g3 gives the
strength of umklapp scattering which is only important in lattice models with
special fillings.

coupling constants are used, the couplings g2 and g4 describe the same physical
processes in this case. Since the umklapp term g3 is only important for lattice
models at special filling factors, we will neglect it here. The flow equations for
the two remaining couplings are then given by

−ΛF
dg1

dΛF
= − 1

πvF
g2
1 , −ΛF

dg2

dΛF
= − 1

2πvF
g2
1 , (9.5)

From this one concludes that 2g2 − g1 is an invariant of the flow. For a repulsive
initial coupling g1 > 0 the flow eventually reaches the line of fixed points with
g1 = 0. Similarly, it can be shown for the full model including spin that the
manifold with g1 = g3 = 0 is fixed under the RG transformation. This conclusion
is not altered by higher order corrections in the flow equations and can even
be shown to hold to all orders by using Ward identities [DiCastro and Metzner,
1991]. On the fixed-point manifold a pure forward scattering problem remains.
Let us slightly change our notation and denote the branch label α and the spin
index σ by a single composite index that will also be denoted by σ from now on.
The fixed-point interaction can then be written as

Hint =
1

2V

∑

k̄σσ′

fσσ
′

k̄ ρ̂−k̄σρ̂k̄σ′ , (9.6)

where we have defined the following matrix of coupling functions (the order of



70 Chapter 9. Introduction

indices is (+ ↑,+ ↓,− ↑,− ↓)):

fk̄ =









g4‖(k̄) g4⊥(k̄) g2‖(k̄) g2⊥(k̄)
g4⊥(k̄) g4‖(k̄) g2⊥(k̄) g2‖(k̄)
g2‖(k̄) g2⊥(k̄) g4‖(k̄) g4⊥(k̄)
g2⊥(k̄) g2‖(k̄) g4⊥(k̄) g4‖(k̄)









, (9.7)

and the density operators in momentum space are given by

ρ̂k̄σ =
∑

k

ĉ+kσĉk+k̄,σ . (9.8)

Bosonization can be used to solve the fixed-point problem. This can only be
carried out in a mathematically rigorous way [Mattis and Lieb, 1965] if the band-
width cutoff is removed, i.e. ΛF → ∞, and if a cutoff in the maximal momentum
transfer ΛB of the interaction is used, i.e., fk̄ 6= 0 only for |k̄| < ΛB. The result-
ing Hamiltonian has no lower bound in the single-particle energies and a filled
Dirac sea of negative energy states has to be imposed as a constraint on the
Hilbert space. Meticulous care is required for a proper treatment of the associ-
ated anomalous commutators [Mattis and Lieb, 1965].

The fixed-point Hamiltonian that contains only the forward scattering terms
g2 and g4 is known as the Tomonaga-Luttinger model. Its exact solubility is
due to a special symmetry. Namely, the number of electrons with a given spin
and branch index is conserved separately by the forward scattering processes g2

and g4. It is not surprising that the additional symmetry can also be exploited
by other methods. In particular, Dzyaloshinskii and Larkin [Dzyaloshinskii and
Larkin, 1974] derived a Ward identity for a vertex function that is directly related
to the symmetry. Combining this identity with a skeleton expansion for the self-
energy yields a closed integral equation for the single-particle Green’s function.
Solving this in real space they obtained the exact single-particle Green’s function
for the first time. A detailed discussion of Ward identities and their relevance
for the renormalizability using the field theoretic RG was also given in [DiCastro
and Metzner, 1991,Metzner and DiCastro, 1992]. As Ward identities and skeleton
diagrams will be derived in detail later on, we will not discuss this approach any
further here.

Higher-dimensional generalizations of the forward scattering problem have
been considered by many authors (for a review see [Metzner et al., 1998]). The
Fermi surface is then devided into different patches within which the disper-
sion is linearized with respect to the central point [Kopietz, 1997]. When the
maximal momentum transfer of the interaction is much smaller than the patch
size, “around the corner” scattering processes that take an electron from one
patch to another can be neglected. The problem then reduces to Eq. (9.6),
however with more than two patch labels. For these higher-dimensional general-
izations of bosonization, a formulation in terms of functional integrals is better
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suited [Kopietz and Schönhammer, 1996, Kopietz et al., 1995, Kopietz, 1997].
The density-density interaction in Eq. (9.6) is then decoupled by a Hubbard-
Stratonovich transformation. Subsequently, the fermions are integrated out as
in the Hertz approach. For a linearized energy dispersion, the closed-loop theo-
rem [Bohr, 1981,Kopietz et al., 1995] guarantees that the resulting bosonic action
is quadratic. Correlation functions for higher dimensional Luttinger liquids aris-
ing from singular interactions where studied with this method in [Bartosch and
Kopietz, 1999]. In principle, when the curvature of the dispersion is taken into
account, corrections to the non-interacting boson picture can be systematically
calculated [Kopietz et al., 1995, Busche and Kopietz, 2000], but the resulting
expressions are rather cumbersome and have only been evaluated for a few cases.

Recently, the fermionic version of the functional RG was used to go beyond the
flow of a few coupling constants. By an approximate iterative two-loop solution of
the hierarchy of flow equations, the single-particle scaling function was calculated
[Busche et al., 2002,Busche, 2003]. At the Fermi points, the exact scaling behavior
was correctly recovered. For momenta away from the Fermi points, anomalous
scaling was found, but with an exponent slightly different from the exact one.

In this context, it is also interesting to note that the functional RG has very
successfully been applied to analyze scaling behaviour and transport properties
in finite size chains with impurities [Meden et al., 2002,Andergassen et al., 2004].

9.3 Outline

In part II of the thesis, we develop a formulation of the functional renormalization
group that includes bosonic modes from the outset. In Chap. 10, we introduce the
notation for the action in the functional-integral formalism. An interaction of the
density-density type is considered and is decoupled by a Hubbard-Stratonovich
transformation. Subsequently, the field-theoretical formalism of generating func-
tionals is reviewed in Chap. 11 and the functional RG equations are derived in a
very general notation. In Chap. 12, we analyze symmetries of the action of the
coupled Fermi-Bose theories and obtain important identities for the generating
functionals. In Chap. 13, we then define physical vertex functions that explicitly
respect these symmetry relations. Possible choices of cutoff procedures are dis-
cussed and we derive the infinite hierarchy of flow equations for the vertices. We
discuss the rescaling of momenta and fields to classify the vertices and propose a
truncation that contains only the leading elements of the skeleton expansion. In
Chap. 14, we present a flow scheme that takes only the momentum-transfer of the
interaction as a running cutoff. For linearized dispersion in a forward scattering
problem, the resulting flow equations can be sufficiently simplified to allow for
an exact solution by an infinite set of Ward identities. We will then recover the
exact solution of the TLM within the functional RG formalism. A summary and
outlook is given in Chap. 15.
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Most of the material of this part of the thesis is published in [Schütz et al.,
2005].
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Chapter 10:

Interacting fermions as coupled

Fermi-Bose systems

This chapter introduces the notation used in the rest of this work. The action
in the functional integral representation is presented in Sec. 10.1 and the nor-
malization of the fields is explained. We consider a density-density interaction
and decouple it by a Hubbard-Stratonovich transformation in Sec. 10.2. The
interaction is then mediated by an additional bosonic field. To keep track of
the different fields and their propagators a shorthand notation is introduced in
Sec. 10.3 which will be used throughout the next chapter before going back to
more physical variables in Chap. 13.

10.1 Path-integral formulation

We consider a normal fermionic many-body system with two-particle density-
density interactions. In the usual Grassmannian functional integral approach
[Negele and Orland, 1988] the grand-canonical partition function and all (imagi-
nary)-time-ordered Green’s functions can be represented as functional averages
involving the following Euclidean action,

S[c̄, c] =

∫ β

0

dτ
{

∑

kσ

c̄kσ(τ + 0+)[∂τ + ξkσ]ckσ(τ)

+
1

2V

∑

k,k′,k̄,σ,σ′

fσσ
′

k̄
c̄k+k̄,σ(τ + 0+)c̄k′−k̄,σ′(τ + 0+)ck′σ′(τ)ckσ(τ)

}

. (10.1)

Here β = 1/T denotes the inverse temperature and V is the volume of the
system. The Grassmann variables c̄kσ and ckσ are associated with the creation
and annihilation operators ĉ+kσ and ĉkσ of a particle with wave vector k and
spin projection σ. The energy dispersion ξkσ = εkσ − µ is measured relative
to the chemical potential µ, and fσσ

′

k̄
are the momentum-dependent interaction

parameters introduced in the previous chapter. The discrete index σ is formally
written as a spin projection, but will later on also serve to distinguish different
patches on the Fermi surface. This is why a dependence of the dispersion ξkσ and
the interaction fσσ

′

k̄
on spin indices has been kept. In the case of the Tomonaga-

Luttinger model, σ denotes the spin projection as well as the right or left moving
character of the field.

With the action in Eq. (10.1) the grand-canonical partition function is given
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by the functional integral

Z =

∫

D[c̄, c] e−S[c̄,c] , (10.2)

where the functional measure is defined by

D[c̄, c] =
∏

kσ

∏

τ=0,∆τ,

...,β−∆τ

dc̄kσ(τ)dckσ(τ) . (10.3)

Here, the limit ∆τ → 0 has to be taken at the end of the calculation. In this limit,
the action is formally given by Eq. (10.1), but in case of doubt the underlying
discrete version has to be used [Negele and Orland, 1988]. The notation τ +0+ is
a reminder that in the discrete case, the Grassmann variables c̄kσ are to be taken
at a later time step than ckσ. This leads to convergence factors in Hartree and
Fock type diagrams, but can otherwise be ignored.

Let us now perform a Fourier transformation to a frequency representation
including an appropriate normalization for the thermodynamic (V → ∞) and
zero-temperature (β → ∞) limits

ckσ(τ) =
1

β
√
V

∑

ω

e−iωτψKσ . (10.4)

The summation is over fermionic Matsubara frequencies ω = (2n + 1)πT (n =
0,±1,±2, . . . ) to ensure antiperiodic boundary conditions ckσ(β) = −ckσ(0). A
composite frequency-momentum index K = (iω,k) has been introduced. The
inverse transformation is given by

ψKσ =
√
V

∫ β

0

dτ eiωτ ckσ(τ) . (10.5)

The transformed action then reads

S[ψ̄, ψ] = S0[ψ̄, ψ] + Sint[ψ̄, ψ] , (10.6)

S0[ψ̄, ψ] =
∑

σ

∫

K

ψ̄Kσ[−iω + ξkσ]ψKσ , (10.7)

Sint[ψ̄, ψ] =
1

2

∑

σσ′

∫

K̄

fσσ
′

k̄
ρ̄K̄σρK̄σ′ . (10.8)

Here, the composite frequency-momentum index K̄ = (iω̄, k̄) contains a bosonic
Matsubara frequency ω̄ = 2πTn (n = 0,±1,±2, . . . ). Throughout this work
we will use the convention of putting a bar over bosonic frequency and momen-
tum labels, while labels without a bar refer to fermionic quantities. With this
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normalization of the Grassmann fields ψKσ and ψ̄Kσ the integration measure in
Eq. (10.6) is

∫

K

=
1

βV

∑

ω,k

β,V→∞−→
∫

dω

2π

dDk

(2π)D
, (10.9)

The Fourier components of the density are represented by the following composite
field

ρK̄σ =

∫

K

ψ̄KσψK+K̄,σ , (10.10)

which implies ρ̄K̄σ = ρ−K̄σ. In terms of the new variables, the functional measure
reads

D[c̄, c] = D[ψ̄, ψ] =
∏

Kσ

dψ̄KσdψKσ
βV∆τ

, (10.11)

which is again defined as a limit τ → 0 of a finite integral with the same number
of variables as in the imaginary time formulation in Eq. (10.3). Thus, the product
in Eq. (10.11) is only over a finite number Nt = β/∆τ of Matsubara frequencies.
Strictly speaking, a discrete version of the Fourier transformation has to be used,
which in the limit ∆τ → 0 turns into Eq. (10.5). In case of need, the discrete
version always yields the correct convergence factors.

10.2 Hubbard-Stratonovich transformation

The interaction is bilinear in the densities and can be decoupled by means of a
Hubbard-Stratonovich transformation [Stratonovich, 1957,Hubbard, 1959,Kopi-
etz, 1997]. This makes use of standard identities for Gaussian integrals over the
components zi or xi of a complex vector z or a real vector x

∫

∏

i

dzRi dz
I
i

π
e−�+A�−i�+�−i�+�

= [det(A)]−1e−�+A−1�
, (10.12)

∫

∏

i

dxi√
π
e−

1
2

�TB�−i�T � = [det(B)]−
1
2 e−

1
2
�TB−1� . (10.13)

Applying these identities, one has to avoid double counting of K̄ and −K̄. This
can be done by writing all sums in terms of just one of them denoted by K̄ > 0.
We treat K̄ = 0 separately and rewrite the fermionic interaction as

Sint[ψ̄, ψ] =
∑

σσ′

∫

K̄>0

fσσ
′

k̄ ρ̄K̄σρK̄σ′ +
1

2

∑

σσ′

1

βV
fσσ

′

0 ρ0σρ0σ′ (10.14)

The first term can be decoupled using Eq. (10.12) once for every value of K̄,
while for the second term we use the Gaussian integral in Eq. (10.13). The result
for both contributions can be recombined in the form

e−S[ψ̄,ψ] =
1

Zϕ

∫

Dϕ e−S[ψ̄,ψ,ϕ] , (10.15)
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The interaction is then mediated by a real bosonic field ϕ and the resulting action
reads

S[ψ̄, ψ, ϕ] = S0[ψ̄, ψ] + S0[ϕ] + S1[ψ̄, ψ, ϕ] , (10.16)

where the free bosonic part is given by

S0[ϕ] =
1

2

∑

σσ′

∫

K̄

[f−1
k̄

]σσ
′

ϕ∗
K̄σϕK̄σ′ , (10.17)

and the coupling between Fermi and Bose fields is

S1[ψ̄, ψ, ϕ] = i
∑

σ

∫

K̄

ρ̄K̄σϕK̄σ = i
∑

σ

∫

K

∫

K̄

ψ̄K+K̄,σψKσϕK̄σ . (10.18)

For convenience, we have defined ϕ−K̄σ = ϕ∗
K̄σ

, such that ϕK̄σ are the Fourier
components of a real field. The integration measure in Eq. (10.15) is given by

Dϕ =
dϕ0σ√
π

∏

K̄>0,σ

dϕR
K̄σ
dϕI

K̄σ

π
. (10.19)

Furthermore, the formal free partition function of the ϕ field is defined as

Zϕ =

∫

Dϕ e−S0[ϕ] . (10.20)

In a strict sense, the integration for Zϕ does not exist separately in the continuum
limit Nτ → ∞. Only the combination in Eq. (10.15) is finite in this limit, such
that Zϕ could also have been incorporated into the functional measure. One
might further object that the inverse interaction f−1

k̄
is not well defined in all

cases. However, our final flow equations below will only depend on the interaction
fk̄ itself. For intermediate steps one should then appropriately regularize fk̄ in a
way that all inverses exist.

10.3 Compact notation for Fermi and Bose fields

For the manipulations in the next chapter it will prove advantageous to further
condense the notation and collect the fields in a vector Φ = (ψ, ψ̄, ϕ). The
quadratic part of the action can then be written in the symmetric form

S0[Φ] = S0[ψ̄, ψ] + S0[ϕ] = −1

2

(

Φ, [G0]
−1 Φ

)

= −1

2

∫

α

∫

α′

Φα [G0]
−1
αα′ Φα′ ,

(10.21)
where G0 is now a matrix in frequency, momentum, spin and field-type indices,
and α is a “super label” for all of these indices. The symbol

∫

α
denotes integration



10.3 Compact notation for Fermi and Bose fields 77

over the continuous components and summation over the discrete components of
α. The matrix G−1

0 has the block structure

G−1
0 =





0 ζ [Ĝ−1
0 ]T 0

Ĝ−1
0 0 0

0 0 −F̂−1
0



 , (10.22)

where Ĝ0 and F̂0 are infinite matrices in frequency, momentum and spin space,
with matrix elements

[Ĝ0]Kσ,K ′σ′ = δK,K ′δσσ′G0,σ(K) , (10.23)

[F̂0]K̄σ,K̄ ′σ′ = δK̄+K̄ ′,0F0,σσ′(K̄) , (10.24)

where

G0,σ(K) = [iω − ξkσ]
−1 , (10.25)

F0,σσ′(K̄) = fσσ
′

k̄
. (10.26)

To keep the notation general, we have introduced ζ = −1 in Eq. (10.22) appropri-
ate for fermions, which we will exclusively consider in this work. Yet, most of the
formulas derived below are also valid for bosons if one sets ζ = 1. The Kronecker
δK,K ′ = βV δω,ω′δk,k′ appearing in Eqs. (10.23,10.24) is normalized such that it
reduces to Dirac δ-functions

δK,K ′ → (2π)D+1δ(ω − ω′)δ(D)(k − k′) (10.27)

in the limit β, V → ∞. Note that the bare interaction plays the role of a
free bosonic Green’s function. For later reference, we note that the inverse of
Eq. (10.22) is

G0 =





0 Ĝ0 0

ζĜT
0 0 0

0 0 −F̂0



 , (10.28)

and that the transpose of G0 satisfies

GT
0 = ZG0 = G0Z , (10.29)

where the “statistics matrix” Z is defined by

[Z]αα′ = δαα′ζα . (10.30)

Here, ζα = −1 if the super-index α refers to a Fermi field, and ζα = 1 if α labels
a Bose field. With this compact notation, the partition function can be written
as

Z

Z0
=

1

Z0

∫

DΦ e−S[Φ] , (10.31)
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where Z0 is the free partition function without interaction, given by

Z0 = Zψ =

∫

D[ψ̄, ψ] e−S0[ψ̄,ψ] , (10.32)

and Z0 = ZψZϕ.
To define generating functionals in the next section, we need to add a source

term to the action which in the compact notation reads

(J,Φ) =

∫

α

JαΦα . (10.33)

Functional derivatives with respect to the sources are defined by appropriate
normalization of ordinary partial derivatives

δ

δJα
= βV

∂

∂Jα
. (10.34)

Conventionally, the source terms for fields of different types are written out ex-
plicitly in the form [Negele and Orland, 1988]

(J,Φ) = (̄, ψ) + (ψ̄, j) + (J∗, ϕ) (10.35)

=
∑

σ

∫

K

̄KσψKσ +
∑

σ

∫

K

ψ̄KσjKσ +
∑

σ

∫

K̄

J∗
K̄σϕK̄σ ,

A comparison between Eq. (10.33) and Eq. (10.36) shows that the sources in the
compact notation are related to the standard ones by J = (̄, ζj, J∗).

It is instructive to undo the Hubbard-Stratonovich transformation after the
introduction of sources and integrate out the bosonic fields,

1

Zϕ

∫

Dϕ e−S[ψ̄,ψ,ϕ]+(J∗,ϕ) = e−
1
2
(J,F̂0J)e−S[ψ̄,ψ]+i(J,F̂0ρ) . (10.36)

Thus, except for the trivial prefactor, sources for the field ϕ in the mixed theory
are equivalent to sources for the composite density fields in the purely fermionic
language.

Finally, note that for purely fermionic systems the notation introduced in this
section is identical to the one used in [Salmhofer and Honerkamp, 2001].
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Field-theoretical formalism in

compact notation

We would now like to derive the functional renormalization group flow equa-
tions. Before we do this in Sec. 11.2, we review the field-theoretical formalism of
generating functionals for various types of vertices and give relations among the
different functionals in Sec. 11.1. Throughout this chapter, we use the short-hand
notation introduced in Sec. 10.3, but we do not refer to the precise realization
in our mixed Fermi-Bose theory. Consequently, our general formalism presented
here can be applied to theories containing any combination of fermionic, bosonic,
real, or even Majorana fields. The following two chapters will then be concerned
with the application of this formalism to our physical situation at hand.

11.1 Generating functionals

The action is assumed to be of the form S = S0 + S1, where the interaction part
S1 is at least cubic in the fields Φ and the free part is given by

S0[Φ] = −1

2

(

Φ, [G0]
−1 Φ

)

, (11.1)

as in Sec. 10.3. The free propagator again fulfills the symmetry relation GT
0 =

ZG0, with the diagonal statistics matrix Z defined in Eq. (10.30). However,
no reference to the precise block structure of G0 is necessary in this chapter.
Hence, in principle, anomalous (superconducting) propagators or other symmetry
breaking terms are also allowed.

11.1.1 Connected Green’s functions

To define generating functionals, we introduce source fields Jα which have the
same character (fermionic, bosonic, real or Majorana) as the associated fields
Φα. Green’s functions are then generated by the functional

G[J ] = eGc[J ] =
1

Z0

∫

DΦ e−S0[Φ]−S1[Φ]+(J,Φ) . (11.2)

Here, Gc[J ] is the generating functional for connected Green’s functions and the
free partition function Z0 is given by the Gaussian integral

Z0 =

∫

DΦ e−S0[Φ] . (11.3)
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The connected n-line Green’s functions G(n)
c,α1...αn are defined as coefficients in the

functional Taylor expansion of Gc[J ]:

Gc[J ] =

∞
∑

n=0

1

n!

∫

α1

. . .

∫

αn

G(n)
c,α1...αnJα1 · . . . · Jαn . (11.4)

This implies the relation

G(n)
c,α1...αn

=
δ(n)Gc[J ]

δJαn . . . δJα1

∣

∣

∣

∣

J=0

. (11.5)

An analogous functional Taylor expansion for G generates the n-line Green’s
functions G(n)

α1...αn . The functional integration in Eq. (11.2) becomes Gaussian in
the non-interacting limit (S1 → 0) and is easily carried out by completing the
square in the exponent. We obtain

G0[J ] = eGc,0[J ] =
1

Z0

∫

DΦ e
1
2(Φ,[G0]

−1Φ)+(J,Φ) = e−
1
2(J,G

T
0 J) . (11.6)

Therefore, the free propagator can be obtained as a functional derivative of Gc,0:

[G0]αα′ = − δ(2)Gc,0
δJαδJα′

. (11.7)

Likewise, the full propagator of the interacting system is defined as

[G]αα′ = − δ(2)Gc
δJαδJα′

∣

∣

∣

∣

J=0

= −G(2)
c,α′α . (11.8)

The matrix element [G]αα′ will only be non-zero if α and α′ both refer to either
fermionic or bosonic fields. The commuting or anti-commuting property of the
functional derivative then imply that the full Green’s function also fulfills the
symmetry relation

GT = ZG = GZ . (11.9)

Interaction corrections to the free propagator can be parameterized by the self-
energy matrix Σ which is defined by Dyson’s equation

G−1 = G−1
0 − Σ . (11.10)

The Green’s functions can be formally expanded in a power series of the
interaction. This perturbation theory is derived by replacing exp(S1[Φ]) →
exp(S1[

δ
δJ

]) in Eq. (11.2), such that the exponential of the interaction can be
taken out of the functional integral. The remaining integration is Gaussian and
has been carried out in Eq. (11.6). This yields

G[J ] = eGc[J ] = e−S1[ δδJ ]e−
1
2(J,GT

0 J) . (11.11)
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Here, one can expand the first exponential in powers of the interaction S1. Acting
with the derivatives on the second exponential creates pairwise contractions with
the propagator G0. It is straightforward to write down diagrammatic represen-
tations of the Green’s functions. Standard arguments, as for example the replica
trick (see [Zinn-Justin, 2002]), show that only connected diagrams contribute to

the vertices G(n)
c .

11.1.2 Amputated connected Green’s functions

Below, we will need to determine the initial condition for the renormalization
group flow of the generating functionals. This initial condition corresponds to
the limit G0 → 0 of a vanishing propagator. From Eq. (11.11), we see that
Gc → 0 in this case. This is not a sensible starting point for the flow. Instead, it
will be useful to consider the generating functional Gac of amputated connected
Green’s functions defined by

eGac[J ] =
1

Z0

∫

DΦ e−S0[Φ]−S1[Φ+J ] . (11.12)

A shift Φ → Φ− J in the integration variables together with the explicit form of
the free action allows us to express Gc in terms of Gac:

Gc[J ] = Gac[−GT
0 J ] − 1

2

(

J,GT
0 J
)

. (11.13)

Another useful relation is derived by the use of an additional source field in an
intermediate step,

eGac[J ] = e−S1[ δ
δJ̃

] 1

Z0

∫

DΦ e−S0[Φ]+(J̃ ,Φ+J)

∣

∣

∣

∣

J̃=0

= e−S1[ δ
δJ̃

]e−
1
2(Z

δ
δJ
,GT

0 Z δ
δJ )e(J̃ ,J)

∣

∣

∣

J̃=0
.

(11.14)
For the second equality, the Gaussian integration over Φ has been carried out
and the J̃ has been replaced by derivatives with respect to J . The first two
exponential factors can now be interchanged and we finally obtain

eGac[J ] = e−
1
2(

δ
δJ
,GT

0
δ
δJ )e−S1[J ] . (11.15)

Similar to Eq. (11.11), this expression can be used to derive perturbative rep-
resentations for the amputated connected Green’s functions generated by Gac.
Formally, one obtains a power series in the free propagator. For an interaction
which is a monomial in the fields, this is equivalent to a power series in S1. Since
in Eq. (11.15) J appears in the interaction S1, external lines are attached directly
to interaction vertices without a connecting free propagator, whence the name
“amputated connected”. From Eq. (11.15), we obtain Gac[J ] = −S1[J ] in the
limit G0 → 0, which is a robust starting point for the renormalization group
flow.
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11.1.3 One-line irreducible vertices

The perturbative series for the connected Green’s functions contains diagrams
that can be separated in two parts by cutting a single propagator line. These
diagrams will be called one-line reducible. In order to sum infinite subsets of
diagrams as well as for renormalization group treatments, it is often advantageous
to work with one-line irreducible vertices. To obtain the generating functional of
these irreducible vertices we perform a Legendre transformation with respect to
all fields. Thus, we introduce the classical field

Φα =
δGc
δJα

. (11.16)

For the sake of simplicity, we use the same symbol for the dummy integration
field in the definition of the generating functional as well as for the classical field.
The latter is technically the expectation value of the former in the presence of
the sources. From the context it will always be clear which field is referred to.
After inverting the relation (11.16) for J = J [Φ] we can calculate the Legendre
effective action

L[Φ] = (J [Φ],Φ) − Gc[J [Φ]] . (11.17)

From this we obtain

Jα = ζα
δL
δΦα

, (11.18)

which we may write in compact matrix notation as

J = Z
δL
δΦ

. (11.19)

In this notation the chain rule simply reads

δ

δΦ
=
δ(2)L
δΦδΦ

Z
δ

δJ
. (11.20)

Applying this to both sides of Eq. (11.16) we obtain

1 =
δΦ

δΦ
=
δ(2)L
δΦδΦ

Z
δ(2)Gc
δJδJ

. (11.21)

For vanishing fields Φ and J this yields

δ(2)L
δΦδΦ

∣

∣

∣

∣

Φ=0

= −ZG−1 = −[G−1]T . (11.22)

The advantage of our compact notation is now obvious: the minus signs associated
with the Grassmann fields can be neatly collected in the “statistics matrix” Z.
If the Grassmann sources are introduced in the conventional way [Negele and
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Figure 11.1: Graphical representation of the symmetrized one-line irreducible
n-point vertex. Because for fermions the order of the indices is important, the
circles representing the irreducible vertices have an arrow that points to the leg
corresponding to the first index. Subsequent indices are arranged in the order
indicated by the arrow.

Orland, 1988], the minus signs generated by commuting two Grassmann fields are
distributed in a more complicated manner in the matrices of second derivatives
[Kopietz and Busche, 2001,Correia et al., 2002].

As the irreducible two-point function is nothing but the self-energy Σ, it
is evident from Eq. (11.22) that L[Φ] is not yet the generating functional for
irreducible vertex functions. In order to obtain this functional Γ, we need to
subtract the free action from L[Φ]:

Γ[Φ] = L[Φ] − S0[Φ] = L[Φ] +
1

2
(Φ, [G−1

0 ]Φ) . (11.23)

Using the Dyson equation (11.10), we obtain

δ(2)Γ

δΦδΦ

∣

∣

∣

∣

Φ=0

=
δ(2)L
δΦδΦ

∣

∣

∣

∣

Φ=0

+ [G−1
0 ]T = −[G−1]T + [G−1

0 ]T = ΣT . (11.24)

In general, the one-line irreducible vertices are defined as coefficients in an ex-
pansion of Γ[Φ] in powers of the fields,

Γ[Φ] =

∞
∑

n=0

1

n!

∫

α1

. . .

∫

αn

Γ(n)
α1,...,αn

Φα1 · . . . · Φαn . (11.25)

The vertices Γ(n) have the same symmetry with respect to interchange of the
indices as the monomial in the fields, i.e., the interchange of two neighboring
Fermi fields yields a minus sign. Graphically, we represent the vertices Γ(n) by
an oriented circle with n external legs, as shown in Fig. 11.1. With the defini-
tion (11.25) and Eq. (11.24) we have

Γ
(2)
αα′ = [Σ]α′α . (11.26)

The fact that also the higher-order vertices Γ(n) defined in Eq. (11.25) are indeed
one-line irreducible will be explicitly shown in the next section.



84 Chapter 11. Field-theoretical formalism in compact notation

11.1.4 Tree expansion

We now derive explicit relations between the connected and the irreducible vertex
functions G

(n)
c and Γ(n) respectively. It will turn out that the connected Green’s

functions can be graphically expressed by linking irreducible vertices with full
propagator lines. Since no loops occur in these diagrams the expansion of the
connected Green’s functions in terms of the irreducible ones is called a “tree
expansion”. The structure of this expansion also provides an explicit proof for
the one-line irreducibility of the vertices Γ(n).

Usually [Negele and Orland, 1988], the expansion is derived graphically by
taking higher-order derivatives of the relation (11.21) between the second func-
tional derivatives of L[Φ] and Gc[J ]. With the help of our compact notation we
can even give the tree expansion in closed form. To do so, it is advantageous to
define the functional

U =

[

δ(2)Γ

δΦδΦ
− δ(2)Γ

δΦδΦ

∣

∣

∣

∣

Φ=0

]T

=

[

δ(2)Γ

δΦδΦ

]T

− Σ , (11.27)

which is a matrix in super-index space. Note that for a mixed Fermi-Bose theory
U can have matrix elements containing an odd number of Grassmann fields, in
contrast to the purely fermionic case. With the definition (11.27), we have

δ(2)L
δΦδΦ

= UT − [G−1]T , (11.28)

so that
[

δ(2)L
δΦδΦ

]−1

= −GT [1 − UTGT ]−1 = −
∞
∑

l=0

GT (UTGT )l . (11.29)

From Eq. (11.21) we obtain

δ(2)Gc
δJδJ

= Z

[

δ(2)L
δΦδΦ

]−1

= −ZGT [1 − UTGT ]−1

= −
∞
∑

l=0

ZGT (UTGT )l . (11.30)

We now expand both sides of Eq. (11.30) in powers of the sources J and compare
coefficients. For the matrix on the left-hand side we obtain from Eq. (11.4)

δ(2)Gc
δJδJ

=
∞
∑

n=0

1

n!

∫

α1

. . .

∫

αn

[

G(n+2)
c,α1...αn

]T
Jα1 · . . . · Jαn , (11.31)

where the matrix G
(n+2)
c,α1...αn is defined by

[G(n+2)
c,α1...αn

]αα′ = G(n+2)
c,αα′α1...αn

. (11.32)
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On the right-hand side we use Eqs. (11.27) and (11.25) to write

U =
∞
∑

n=1

1

n!

∫

α1

. . .

∫

αn

Γ(n+2)
α1,...,αn

Φα1 · . . . · Φαn , (11.33)

where
[Γ(n+2)

α1,...,αn
]αα′ = Γ

(n+2)
αα′α1...αn

. (11.34)

To compare terms with the same powers of the sources J on both sides of
Eq. (11.30), we need to express the fields Φα on the right-hand side of Eq. (11.33)
in terms of the sources, using Eqs. (11.4) and (11.16),

Φα =
δGc
δJα

=
∞
∑

m=0

1

m!

∫

β1

. . .

∫

βm

G(m+1)
c,αβ1...βm

Jβ1 . . . Jβm . (11.35)

Substituting Eqs. (11.31), (11.33) and (11.35) into Eq. (11.30) and comparing
terms with the same powers of the sources (after symmetrization), we obtain a
general relation between the connected and the one-line irreducible correlation
functions

G
(n+2)
c,β1,...,βn

= −
∞
∑

l=0

∞
∑

n1,...,nl=1

1

n1! · . . . · nl!

∫

α1
1

. . .

∫

α1
n1

. . .

∫

αl1

. . .

∫

αlnl

×
∞
∑

m1
1,...,m

1
n1

=1

. . .
∞
∑

ml1,...,m
l
nl

=1

δn,� l
i=1 �

ni
j=1m

i
j

[

ZGTΓ
(n1+2) T

α1
1,...,α

1
n1

GT · . . . ·GTΓ
(nl+2) T

αl1,...,α
l
nl

GT
]T

×Sβ1,...,βm1
1
;...;β

n−mlnl
+1
,...,βn

{

G(m1
1+1)

c,α1
1,β1,...,βm1

1

· . . . · G(mlnl
+1)

c,αlnl
,β
n−mlnl

+1
,...,βn

}

.(11.36)

On the right-hand side of this rather cumbersome expression, only connected
correlation functions with degrees smaller than that of the Green’s functions
on left-hand side appear. One can therefore recursively express all connected
correlation functions via their one-line irreducible counterparts. Only a finite
number of terms contribute on the right-hand side. The operator S symmetrizes
the expression in curly brackets with respect to indices on different correlation
functions, i.e., it generates all permutations of the indices with appropriate signs,
counting expressions only once that are generated by permutations of indices on
the same vertex. Thus, it acts on an expression already symmetric in the index
groups separated by semi-colons to generate an expression symmetric also with
respect to the exchange of indices between different groups. More precisely the
action of S is given by (m =

∑l
i=1mi)

Sα1,...,αm1 ;...;αm−ml+1,...,αm{Aα1,...,αm} =
1

∏

imi!

∑

P

sgnζ(P )AαP (1),...,αP (m)
, (11.37)
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Figure 11.2: Graphical representation of the relation between connected Green’s
functions and one-line irreducible vertices up to the four-point functions. The
irreducible vertices are represented by shaded oriented circles with the appropri-
ate number of legs, see Fig. 11.1. The connected Green’s functions are drawn as
empty oriented circles with a number indicating the number of external legs.

where P denotes a permutation of {1, . . . , m} and sgnζ is the sign created by
permuting field variables according to the permutation P , i.e.,

Φα1 · . . . · Φαm = sgnζ(P ) ΦαP (1)
· . . . · ΦαP (m)

. (11.38)

A diagrammatic representation of the first few terms of the tree expansion gen-
erated by Eq. (11.36) is given in Fig. 11.2. Note that the right-hand sides contain
only irreducible vertices, full Green functions, but no loops. Let us look at the
corresponding analytic expressions: If we set n = 0 in Eq. (11.36) then only the
term with l = 0 contributes and we obtain

G(2)
c = −ZG = −GT , (11.39)

which is the matrix form of Eq. (11.8). For n = 1 the single term with l = 1,
n1 = 1,m1

1 = 1 contributes on the right-hand side of Eq. (11.36). Using ZG = GT
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the tree expansion of the connected Green’s function with three external legs can
be written as

G(3)
c,β1β2β3

=

∫

α1

∫

α2

∫

α3

[G]β1α1 [G]β2α2 [G]β3α3Γ
(3)
α1α2α3

. (11.40)

Finally, consider the connected Green’s function with four external legs, corre-
sponding to n = 2 in Eq. (11.36). In this case the following three terms contribute,

term l ni mi
j

1.) 1 n1 = 1 m1
1 = 2

2.) 1 n1 = 2 m1
1 = m1

2 = 1
3.) 2 n1 = n2 = 1 m1

1 = m2
1 = 1

The corresponding analytic expression is

G(4)
c,β1β2β3β4

= −
∫

α1

. . .

∫

α4

[G]β1α1 [G]β2α2 [G]β3α3 [G]β4α4Γ
(4)
α1α2α3α4

(11.41)

−
∫

α1

. . .

∫

α6

[G]β1α1 [G]β2α2 [G]β3α3 [G]β4α4Γ
(3)
α1α2α5

[G]α5α6Γ
(3)
α6α3α4

−
∫

α1

. . .

∫

α6

Sβ3;β4

{

[G]β1α1 [G]β2α2 [G]β3α3 [G]β4α4Γ
(3)
α1α5α4

[G]α5α6Γ
(3)
α6α2α3

}

.

11.2 Functional RG flow equations

Diagrammatic perturbation theory often suffers from infrared divergencies due
to gapless low-energy modes and breaks down at low temperatures. As discussed
in the introduction the renormalization group provides a way to treat these di-
vergencies by taking degrees of freedom into account iteratively starting from
high-energy modes and proceeding to lower and lower energies. Performing these
iterations in infinitesimal steps leads to differential flow equations for the vertices
which we derive in this section.

In our compact notation, a cutoff can be formally introduced by the following
replacement for the propagator

[G0]αβ −→ Θα(Λ) [G0]αβ = Θβ(Λ) [G0]αβ . (11.42)

Here, Θα(Λ) is a function that suppresses low-energy modes in the bare propa-
gator. It vanishes if α refers to such a low-energy mode whereas it is close to
1 for high energy modes. The cutoff Λ defines the limit between low and high
energy modes. For Λ → 0, we have Θα(Λ = 0) = 1 and the theory without an
infrared cutoff is recovered. The precise realization depends off course on the
physical system and the types of divergencies that occur. For our mixed theory,
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possible choices for a cutoff will be discussed in Sec. 13.2. The bare propagator
will always be diagonal in the relevant indices that determine the ’energy’ so that
it does not matter which of the two indices α or β is used in Eq. (11.42) to intro-
duce the cutoff. For the derivation of the flow equations the functions θα(Λ) has
to be differentiable, i.e., sufficiently smooth. In the final flow equations for the
vertices, the limit of a sharp cutoff can be taken as discussed by Morris [Morris,
1994].

Together with the bare propagators all generating functionals depend on the
cutoff and we can follow their evolution as we change Λ. Differentiation of
Eq. (11.2) with respect to Λ yields for the generating functional of the Green’s
functions,

∂ΛG =

{

1

2

(

δ

δJ
, ∂Λ[G−1

0 ]
δ

δJ

)

− ∂Λ lnZ0

}

G . (11.43)

For the connected version Gc[J ] = lnG[J ] we obtain

∂ΛGc =
1

2

(

δGc
δJ

, ∂Λ[G−1
0 ]

δGc
δJ

)

+
1

2
Tr

(

∂Λ[G−1
0 ]

[

δ(2)Gc
δJδJ

]T
)

− ∂Λ lnZ0 . (11.44)

In the derivation of flow equations for L or Γ [see Eqs. (11.17) and (11.23)], we
should keep in mind that in these functionals the fields Φ are held constant rather
than the sources J . Hence, Eq. (11.17) implies

∂ΛL[Φ] = − ∂ΛGc[J ]|J=JΛ[Φ] . (11.45)

Using this and Eq. (11.44) we obtain for the functional Γ[Φ] = L[Φ] − S0[Φ],

∂ΛΓ = −1

2
Tr

(

∂Λ[G−1
0 ]

[

δ(2)Gc
δJδJ

]T
)

+ ∂Λ lnZ0 . (11.46)

To derive a closed equation for Γ, we express the matrix δ(2)Gc
δJδJ

in terms of deriva-
tives of Γ using Eq. (11.30). After some rearrangements we obtain the exact flow
equation for the generating functional Γ[Φ] of the one-line irreducible vertices

∂ΛΓ = −1

2
Tr
[

ZĠTUT
{

1 − GTUT
}−1
]

−1

2
Tr
[

ZĠT
0 ΣT

{

1 −GT
0 ΣT

}−1
]

, (11.47)

where the matrix U[Φ] is the field-dependent part of the second functional deriva-
tive of Γ[Φ], as defined in Eq. (11.27). For convenience we have introduced the
single-scale propagator Ġ as

Ġ = −G∂Λ[G−1
0 ]G = [1 − G0Σ]−1 (∂ΛG0) [1 − ΣG0]

−1 , (11.48)
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G and Ġ represent the exact matrix propagator G and the single-scale propagator
Ġ. The dot on the left-hand side denotes the derivative ∂Λ.

which reduces to Ġ0 = ∂ΛG0 in the absence of interactions.
The second line in Eq. (11.47) does not depend on the fields any longer

and therefore represents the flow of the interaction correction Γ(0) to the grand-
canonical potential,

∂ΛΓ(0) = −1

2
Tr
[

ZĠT
0 ΣT

{

1 −GT
0 ΣT

}−1
]

. (11.49)

On the other hand, the first line on the right-hand side of Eq. (11.47) gives the flow
of one-line irreducible vertices. We can generate their hierarchy of flow equations
by expanding both sides in powers of the fields. On the left-hand side, we simply
insert the functional Taylor expansion (11.25) of Γ[Φ], while on the right-hand
side we substitute the expansion of U[Φ] given in Eq. (11.33). For a comparison
of the coefficients on both sides, the right-hand side has to be symmetrized with
respect to external lines on different vertices. We can write down the resulting
infinite system of flow equations for the one-line irreducible vertices Γ(n) with
n ≥ 1 in the following closed form,

∂ΛΓ(n)
α1,...,αn = (11.50)

−1

2

∞
∑

l=1

∞
∑

m1,...,ml=1

δn,m1+...+ml Sα1,...,αm1 ;αm1+1,...,αm1+m2 ;...;αm1+...+ml−1+1,...,αn

{

×Tr
[

ZĠTΓ(m1+2)T
α1,...,αm1

GTΓ(m2+2)T
αm1+1,...,αm1+m2

GT . . .Γ(ml+2)T
αm1+...+ml−1+1,...,αn

]}

.

Here the matrices Γ
(m+2)
α1...αm are given in Eq. (11.34) and the symmetrization oper-

ator S is defined in Eq. (11.37).
Figs. 11.3, 11.4, and 11.5 show a graphical representation of the flow of the

vertices Γ(2), Γ(3), and Γ(4). Note how a change of the cutoff Λ generates higher-
order vertices contracted in a loop by propagators G and Ġ.

With the graphical notation for the totally symmetric vertices introduced in
Fig. 11.1 all the signs and combinatorics have a graphical representation. In the
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Figure 11.4: Graphical representation of the flow of the totally symmetric three-
point vertex.

next two chapters we will leave the shorthand notation and go back to more
physical vertices, explicitly exhibiting the different types of fields. All this can be
done on a graphical level and involves only straightforward combinatorics. In this
sense the derivation of higher flow equations is at the same level of complexity
as ordinary Feynman graph expansions.
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Chapter 12:

Symmetries of the Fermi-Bose

theory

In this chapter, we return to the mixed Fermi-Bose theory which we have derived
in Chap. 10 by a Hubbard-Stratonovich transformation and explore the conse-
quences of symmetries of the action. This leads to identities for the generating
functionals which are known as Ward identities. When the generating function-
als are expanded in powers of the fields, one obtains Ward identities among the
vertices. Momentum and particle number conservation is discussed in Secs. 12.1
and 12.2. It will be explicitly used in the next chapter for the definition of the
physical vertex functions.

Dyson-Schwinger equations of motion are derived in Sec. 12.3. Although they
are not related to a special symmetry of the action, their derivation proceeds
along the same line as for the functional Ward identities. Therefore, they are
also discussed in this chapter.

In Sec. 12.4, we consider local gauge transformations which lead to Ward
identities involving current and charge vertices. When the dispersion can be lin-
earized about a given point on the Fermi surface, current and charge vertices are
proportional to each other for small momentum transfers. This can be exploited
for a solution of the forward scattering problem [Metzner et al., 1998]. For the
Tomonaga-Luttinger model the dispersion is strictly linear and the Ward identi-
ties yield exact equalities expressing higher correlation functions in terms of lower
ones. Combined with skeleton diagrams this leads to an integral equation for the
single-particle Green’s function [Dzyaloshinskii and Larkin, 1974]. Yet, in the
limit of an infinite bandwidth cutoff ΛF a linear dispersion is not bounded from
below and the theory is not well defined without regularization. The resulting
anomaly is briefly discussed.

Here, we only derive symmetry relations that are explicitly used in later chap-
ters. Other symmetries, as, e.g., rotational invariance in spin space could be dis-
cussed along the same lines, leading to further constraints on the parametrization
of vertex functions.

12.1 Translational invariance

The vertex functions of a system that is translationally invariant in space and
time obey momentum and frequency conservation. To show this, we perform a
Fourier transformation of the fields of our mixed Fermi-Bose theory to real space



94 Chapter 12. Symmetries of the Fermi-Bose theory

and imaginary time. The transformation reads

ψσ(X) =

∫

K

ψKσ e
iK·X , ψ̄σ(X) =

∫

K

ψ̄Kσ e
−iK·X , ϕσ(X) =

∫

K̄

ϕK̄σ e
iK̄·X ,

(12.1)
where the composite position index isX = (τ, r), and the scalar product is defined
as K ·X = k · r − ωτ . The inverse Fourier transformation is given by

ψKσ =

∫

X

ψσ(X) e−iK·X , ψ̄Kσ =

∫

X

ψ̄σ(X) eiK·X , ϕK̄σ =

∫

X

ϕσ(X) e−iK̄·X .

(12.2)
Remember that K̄ = (iω̄, k̄) contains a bosonic Matsubara frequency. The inte-
gration over space and time is given by

∫

X

=

∫

dDr

∫ β

0

dτ . (12.3)

We now perform a shift in imaginary time and real space,

ψσ(X) → ψσ(X + A) , ψ̄σ(X) → ψ̄σ(X + A) , ϕσ(X) → ϕσ(X + A) ,
(12.4)

where the shift vector has time and space components, A = (a0, a). In Fourier
space, this transformation is equivalent to

ψKσ → eiA·KψKσ , ψ̄Kσ → e−iA·Kψ̄Kσ , ϕK̄σ → eiA·K̄ϕK̄σ . (12.5)

It is straightforward to check that this transformation does not change the action
S[ψ̄, ψ, ϕ] in Eq. (10.16). To first order in A, the source terms in the functional
integral for the generating functional G transform as

(ψ̄, j) + (̄, ψ) + (J∗, ϕ) → (ψ̄, j) + (̄, ψ) + (J∗, ϕ)

+iA ·
[

−
∑

Kσ

K ψ̄KσjKσ +
∑

Kσ

K ̄KσψKσ +
∑

K̄σ

K̄ J∗
K̄σϕK̄σ

]

. (12.6)

Furthermore, the functional measure D[ψ̄, ψ, ϕ] is also invariant under the trans-
formation (12.5). Expanding the functional integral to first order in A, we obtain

0 = A ·
∫

D[ψ̄, ψ, ϕ]e−S[ψ̄,ψ,ϕ]+(ψ̄,j)+(̄,ψ)+(J∗,ϕ)

×
[

−
∑

Kσ

K ψ̄KσjKσ +
∑

Kσ

K ̄KσψKσ +
∑

K̄σ

K̄ J∗
K̄σϕK̄σ

]

. (12.7)

If the fields ψ and ψ̄ in the square brackets in the lower line are replaced by
derivatives with respect to the sources ̄ and j, they can be pulled out of the
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functional integral. Remember that in explicit notation the generating functional
for Green’s functions is given by

G[̄, j, J ] =
1

Z0

∫

D[ψ̄, ψ, ϕ]e−S[ψ̄,ψ,ϕ]+(̄,ψ)+(ψ̄,j)+(J∗,ϕ) . (12.8)

Since A is arbitrary, Eq. (12.7) leads to a functional identity for G,

[

−
∑

Kσ

K jKσ
δ

δjKσ
+
∑

Kσ

K ̄Kσ
δ

δ̄Kσ
+
∑

K̄σ

K̄ J∗
K̄σ

δ

δJ∗
K̄σ

]

G = 0 . (12.9)

Note that monomials in the fields are eigenoperators of the differential operator
in square brackets. The eigenvalue is the total momentum of all the fields with
the appropriate signs. Eq. (12.9) thus states that an expansion of the generating
functional in powers of the fields can only contain terms with vanishing total mo-
mentum. Thus, the Green’s functions which are the coefficients in this expansion
obey momentum conservation. Since Eq. (12.9) is linear in the derivatives, the
generating functional Gc = lnG fulfills the same relation. Translating this into
an expression for the generating functional Γ, we obtain

[

−
∑

Kσ

K ψ̄Kσ
δ

δψ̄Kσ
+
∑

Kσ

K ψKσ
δ

δψKσ
+
∑

K̄σ

K̄ ϕK̄σ
δ

δϕK̄σ

]

Γ = 0 . (12.10)

Thus, connected and irreducible vertices also obey momentum and frequency
conservation, as expected.

12.2 Global gauge invariance

When no superconducting symmetry breaking occurs, non-relativistic systems
conserve the total particle number. This symmetry is related to the global gauge
transformation

ψKσ → eiαψKσ , ψ̄Kσ → e−iαψ̄Kσ , (12.11)

which is easily seen to leave the action S[ψ̄, ψ, ϕ] invariant. Following the same
steps as in the last section, we obtain the global Ward identity

[

−
∑

Kσ

ψ̄Kσ
δ

δψ̄Kσ
+
∑

Kσ

ψKσ
δ

δψKσ

]

Γ = 0 . (12.12)

The differential operators in the square brackets simply count the numbers of ψ̄
and ψ fields in a monomial. Thus, Eq. (12.12) states that an expansion of Γ in
powers of the fields only contains terms with an equal number of ψ̄ and ψ fields.
Naturally, similar relations apply to G and Gc. Thus, all vertices conserve the
particle number.
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12.3 Dyson-Schwinger equations

The generating functional G of the Green’s functions is also invariant with respect
to infinitesimal shifts in the integration variables Φα. In the compact notation,
this implies the Dyson-Schwinger equations of motion [Zinn-Justin, 2002]

(

ζαJα −
δS

δΦα

[

δ

δJα

])

G[Jα] = 0 . (12.13)

For our coupled Fermi-Bose system with Euclidean action S[ψ̄, ψ, ϕ] given by
Eq. (10.16) and involving three types of fields, Eq. (12.13) is equivalent to the
following three equations,

(

J−K̄σ −
∑

σ′

[f−1
k̄

]σ
′σ δ

δJK̄σ′

)

G − iζ

∫

K

δ(2)G
δjK+K̄σδ̄Kσ

= 0 , (12.14)

(

ζ̄Kσ + [iω − ξkσ]
δ

δjKσ

)

G − i

∫

K̄

δ(2)G
δjK+K̄σδJ−K̄σ

= 0 , (12.15)

(

jKσ + [iω − ξkσ]
δ

δ̄Kσ

)

G − i

∫

K̄

δ(2)G
δ̄K−K̄σδJ−K̄σ

= 0 . (12.16)

Expressing these equations in terms of the generating functionals Gc of the con-
nected Green’s functions and the generating functional Γ of the irreducible ver-
tices defined in Eq. (11.23), we obtain the Dyson-Schwinger equations of motion
in the following form,

δΓ

δϕK̄σ
− i

∫

K

[

ψ̄K+K̄,σψKσ +
δ(2)Gc

δ̄KσδjK+K̄,σ

]

= 0 , (12.17)

δΓ

δψKσ
− i

∫

K̄

[

ζψ̄K+K̄,σϕK̄σ +
δ(2)Gc

δjK+K̄,σδJ−K̄σ

]

= 0 , (12.18)

δΓ

δψ̄Kσ
− i

∫

K̄

[

ψK−K̄,σϕK̄σ +
δ(2)Gc

δ̄K−K̄,σδJ−K̄σ

]

= 0 . (12.19)

The second functional derivatives of Gc can be expressed in terms of the irreducible
vertices using Eq. (11.30) to obtain an equation in terms of Γ only. In Sec. 13.5.1,
we will obtain skeleton relations between irreducible vertices from Eqs. (12.17–
12.19).

12.4 Local gauge transformations

We now analyze the consequences of gauge transformations that are local in space
and time. To do this, we rewrite the parts of the action involving the fermionic
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fields ψ̄ and ψ in real space and imaginary time using the Fourier transformation
in Eq. (12.2). The Euclidean action reads

S[ψ̄, ψ, ϕ] = S0[ψ̄, ψ] + S0[ϕ] + S1[ψ̄, ψ, ϕ]

S0[ψ̄, ψ] =
∑

σ

∫

X

ψ̄σ(X)∂τψσ(X)

+
∑

σ

∫

dτ

∫

dDr

∫

dDr′ ψ̄σ(τ, r)ξσ(r − r′)ψσ(τ, r
′) , (12.20)

S1[ψ̄, ψ, ϕ] = i
∑

σ

∫

X

ψ̄σ(X)ψσ(X)ϕσ(X) , (12.21)

where we have defined the Fourier transform of the dispersion

ξσ(r) =

∫

dDk

(2π)D
ξkσ e

ik·r . (12.22)

Suppose we perform the following local gauge transformation on the fermion
fields,

ψσ(X) → eiασ(X)ψσ(X) , ψ̄σ(X) → e−iασ(X)ψ̄σ(X) , (12.23)

where ασ(X) is an arbitrary real function. To linear order in ασ(X), the action
(12.21) transforms as

S[ψ̄, ψ, ϕ] → S[e−iαψ̄, eiαψ, ϕ] = S[ψ̄, ψ, ϕ] + i
∑

σ

∫

X

ψ̄σ(X)[∂τασ(X)]ψσ(X)

− i
∑

σ

∫

dτ

∫

dDr

∫

dDr′ ψ̄σ(τ, r)[ασ(τ, r) − ασ(τ, r
′)]ξσ(r− r′)ψσ(τ, r

′) . (12.24)

Using this relation and the fact the functional measure is invariant under the
transformation (12.23), we obtain

0 =
1

Z0

∫

D[ψ̄, ψ, ϕ]e−S[ψ̄,ψ,ϕ]+(̄,ψ)+(ψ̄,j)+(J,ϕ)

{

+
∑

σ

∫

dτ

∫

dDr

∫

dDr′ ψ̄σ(τ, r)[ασ(τ, r) − ασ(τ, r
′)]ξσ(r − r′)ψσ(τ, r

′)

−
∑

σ

∫

X

ψ̄σ(X)[∂τασ(X)]ψσ(X) + (̄, αψ) − (ψ̄α, j)

}

. (12.25)

Taking the functional derivative of this equation with respect to ασ(X) and trans-
forming back to Fourier space,

0 =

∫

K

{

[

iω̄ − ξk+k̄,σ + ξkσ
] δ(2)G
δ̄KσδjK+K̄σ

+ ̄K+K̄σ

δG
δ̄Kσ

−jKσ
δG

δjK+K̄σ

}

. (12.26)
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This equation can also be expressed in terms of the generating functional Gc =
lnG of connected Green’s functions and the generating functional Γ of irreducible
vertices. We obtain the following master Ward identity,

0 =

∫

K

{

[

iω̄ − ξk+k̄,σ + ξkσ
] δ(2)Gc
δ̄KσδjK+K̄σ

+ ψKσ
δΓ

δψK+K̄σ

− ψ̄K+K̄σ

δΓ

δψ̄Kσ

}

.

(12.27)
Alternatively, using the Dyson-Schwinger equation (12.17), we may rewrite this
as

0 = iω̄

[

δΓ

δϕK̄σ
− i

∫

K

ψ̄K+K̄σψKσ

]

− i

∫

K

(ξk+k̄,σ − ξkσ)
δ(2)Gc

δ̄KσδjK+K̄σ

+i

∫

K

[

ψKσ
δΓ

δψK+K̄σ

− ψ̄K+K̄σ

δΓ

δψ̄Kσ

]

. (12.28)

If we are interested in vertices involving at least one fermionic momentum and if
the momentum transfered by the interaction is small, our master Ward identities
(12.27) and (12.28) can be further simplified. Then all fermionic momenta lie
close to a given point kF,σ on the Fermi surface so that Eqs. (12.27) and (12.28)
become simpler if we assume asymptotic velocity conservation. This means that
we replace under the integral sign

ξk+k̄,σ − ξkσ → vF,σ · k̄ , (12.29)

This approximation amounts to the linearization of the energy dispersion relative
to the point kF,σ on the Fermi surface. Using again Eq. (12.17), our master Ward
identity becomes

0 = (iω̄ − vF,σ · k̄)

[

δΓ

δϕK̄σ
− i

∫

K

ψ̄K+K̄σψKσ

]

+i

∫

K

[

ψKσ
δΓ

δψK+K̄σ

− ψ̄K+K̄σ

δΓ

δψ̄Kσ

]

. (12.30)

This simplified master Ward identity will be used in Sec. 14.3 to derive Ward
identities for irreducible vertices with two external fermion lines and an arbitrary
number of boson lines.

For the Tomonaga-Luttinger model (TLM) with an infinite bandwidth cutoff
ΛF → ∞, the dispersion is strictly linear and one might expect that Eq. (12.30)
becomes exact. Note, however, that Eq. (12.30) then predicts a vanishing po-
larization δ2Γ/δϕK̄σδϕ−K̄σ. This is a consequence of the well-known anomaly of
the TLM due to the fact that the energy dispersion is not bounded from below.
Thus, without further regularization, the model does not have a well defined
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ground state [Mattis and Lieb, 1965]. In the operator formalism this problem
can be resolved by working in a Hilbert space of states with only a finite number
of holes with respect to the non-interacting ground state. In other words, there
is an infinite Dirac sea of filled states with negative energy. As a consequence,
the density operators ρ̂k̄σ defined in the introduction no longer commute, but, af-
ter proper normalization, they obey canonical commutation relations of bosonic
creation and annihilation operators. This fact constitutes the basis of the op-
erator version of bosonization. Alternatively, the anomalous commutators can
be obtained by keeping a finite but large bandwidth cutoff ΛF and by sending
ΛF → ∞ only at the very end [Metzner and DiCastro, 1992]. In the functional
integral formalism, the anomaly appears through the Jacobian of the transfor-
mation (12.23). Although it always vanishes for a finite bandwidth cutoff, it is
a priori not well defined in the limit ΛF → ∞. In the field-theoretical litera-
ture [Fujikawa, 1980] a method has been developed to regularize the functional
integral in a way that allows a correct treatment of the Jacobian for ΛF → ∞.
The same anomaly as in the operator formalism is recovered (see [Stone, 1994]).
In Chap. 14, we will use Eq. (12.30) to derive Ward identities only for irreducible
vertices with two Fermi lines and an arbitrary number of bosonic lines. In these
relations the anomaly does not appear. Furthermore, we show that these Ward
identities constitute a solution of a hierarchy of flow equations by an inductive
argument entirely within the formalism of the fRG. The purely bosonic vertices
will be treated by a reference to diagrammatics in the form of the closed-loop
theorem which treats the polarization correctly.
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Chapter 13:

Functional RG for mixed field

theory

Here, the general formalism of Chap. 11 is applied to the coupled Fermi-Bose
theory derived in Chap. 10. The physical vertices can be defined in a way that
explicitly displays particle number and momentum conservation as discussed in
the last chapter. The dependence of connected and one-line-irreducible vertices
on indices of different field type is spelled out in detail in Sec. 13.1. Further-
more, we give graphical representations of the first terms of the tree expansion.
As a preparation for the functional renormalization group treatment, we dis-
cuss different ways of introducing a cutoff in Sec. 13.2. Subsequently, we derive
the hierarchy of functional RG equations for the one-line irreducible vertices in
Sec. 13.3. Rescaling of momenta, frequencies and fields is performed in Sec. 13.4
in order to classify the vertices according to their scaling dimensions. In the fol-
lowing section, we then propose a new truncation scheme involving the building
blocks of the skeleton diagrams for fermionic and bosonic two-point functions.
As a preparation, a digression is made to derive skeleton expansions from the
Dyson-Schwinger equations obtained in Sec. 12.3.

13.1 Definition of physical vertices

The general vertices defined in Chap. 11 are not suitable for practical calculations.
Usually, the generating functionals are rather expanded in terms of correlation
functions which respect the symmetries of particle number conservation as well
as momentum and frequency conservation discussed in the previous chapter. Ad-
ditionally, the vertices are conventionally not symmetrized with respect to the
exchange of legs involving different types of fields. Particle number conservation
implies that in- and outgoing particle fields, ψ and ψ̄ respectively, always oc-
cur in pairs. If we explicitly display momentum and frequency conservation, the
expansion for Γ reads

Γ[ψ̄, ψ, ϕ] =
∞
∑

n=0

∞
∑

m=0

1

(n!)2m!

∫

K ′

1σ
′

1

. . .

∫

K ′

nσ
′

n

∫

K1σ1

. . .

∫

Knσn

∫

K̄1σ̄1

. . .

∫

K̄mσ̄m

×δK ′

1+...+K
′

n,K1+...+Kn+K̄1+...+K̄m

×Γ(2n,m)(K ′
1σ

′
1, . . . , K

′
nσ

′
n;K1σ1, . . . , Knσn; K̄1σ̄1, . . . , K̄mσ̄m)

×ψ̄K ′

1σ
′

1
· . . . · ψ̄K ′

nσ
′

n
ψK1σ1 · . . . · ψKnσnϕK̄1σ̄1

· . . . · ϕK̄mσ̄m . (13.1)
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Figure 13.1: Pictorial dictionary to translate graphs involving totally sym-
metrized vertices to those involving physical vertices, which are only symmetrized
within fields of the same type. Relations are given for a) the irreducible vertices,
b) the connected Green’s functions and c) the full propagators and single scale
propagators. The diagrams on the right hand sides in c) represent G, Ġ, F and
Ḟ respectively. Note the slash on the lines for the single scale propagators.

Naturally, this expansion assumes that the symmetries are not spontaneously
broken, and thus anomalous such as superconducting correlation functions are
excluded from now on. Diagrammatically, we represent a physical vertex Γ(2n,m)

involving 2n external fermion legs and m external boson legs by a shaded triangle
as in Fig. 13.1a. A triangle is used to emphasize that our theory contains three
types of fields, and the shading distinguishes it from the diagrams for connected
vertices defined below. We represent a leg associated with a ψ̄ field by an arrow
pointing outwards, a leg for ψ by an arrow pointing inwards, and a leg for ϕ
with a wiggly line without an arrow. Recall that our Bose field is real because
it couples to the density, so that it should be represented graphically by an
undirected line. Apart from the energy and momentum conserving delta function,
the totally symmetric vertices defined by the expansion (11.25) coincide with the
non-symmetric ones in Eq. (13.1) for the same order of the indices, i.e.,

Γ
(2n+m)

(ψ̄,K ′

1,σ
′

1),...,(ψ̄,K
′

n,σ
′

n),(ψ,K1,σ1),...,(ψ,Kn,σn),(ϕ,K̄1,σ̄1),...,(ϕ,K̄m,σ̄m)
=

δK ′

1+...+K
′

n,K1+...+Kn+K̄1+...+K̄mΓ(2n,m)(K ′
1σ

′
1, . . . , K̄mσ̄m) , (13.2)
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where components of the multi-indices are enclosed in brackets and the first
(greek) letter indicates the field type. This relation is represented diagrammati-
cally in Fig. 13.1a.

Similarly, the connected Green’s functions are defined by the functional ex-
pansion of Gc

Gc[̄, j, J ] =
∞
∑

n=0

∞
∑

m=0

1

(n!)2m!

∫

K ′

1σ
′

1

. . .

∫

K ′

nσ
′

n

∫

K1σ1

. . .

∫

Knσn

∫

K̄1σ̄1

. . .

∫

K̄mσ̄m

×δK ′

1+...+K ′

n,K1+...+Kn+K̄1+...+K̄m

×G(2n,m)
c (K ′

1σ
′
1, . . . , K

′
nσ

′
n;K1σ1, . . . , Knσn; K̄1σ̄1, . . . , K̄mσ̄m)

×̄K ′

1σ
′

1
· . . . · ̄K ′

nσ
′

n
jK1σ1 · . . . · jKnσnJK̄1σ̄1

· . . . · JK̄mσ̄m . (13.3)

An analogous expansion for G defines the (not necessarily connected) Green’s
functions G(2n,m). With this definition, the connected correlation function are
equivalent to the following connected functional averages with respect to the full
action

δK ′

1+...+K
′

n,K1+...+Kn+K̄1+...+K̄mG(2n,m)
c (K ′

1σ
′
1, . . . . . . , K̄mσ̄m)

= 〈ψK ′

1σ1
· . . . · ψK ′

nσnψ̄K1σ′1
· . . . · ψ̄Knσ′nϕ−K̄1σ̄1

· . . . · ϕ−K̄mσ̄m〉c
= ζnG(2n+m)

c,(ψ,K ′

1,σ
′

1),...,(ψ,K
′

n,σ
′

n),(ψ̄,K1,σ1),...,(ψ̄,Kn,σn),(ϕ,−K̄1,σ̄1),...,(ϕ,−K̄m,σ̄m)
, (13.4)

where for the last equality we have explicitly used the relation J = (̄, ζj, J∗)
between the sources in the compact notation of the last chapter and the sources
in the more explicit notation of this chapter. The definition of the prefactor of the
Green’s function is arbitrary, but for purely fermionic vertices the convention used
here is the same as in the textbook [Negele and Orland, 1988]. Diagrammatically,

we represent the Green’s functions G(2n,m)
c by empty triangles as in Fig. 13.1b.

The legs associated with a source ̄ are represented by an arrow pointing outward,
the legs associated with a source j point inwards and J is represented by a wiggly
line. Note that the source ̄ has a field type index ψ such that when connected
and irreducible vertices are linked by a matrix multiplication an outgoing line is
linked to an ingoing line and vice versa. Likewise, a leg associated with JK̄σ has
a multi-index (ϕ,−K̄, σ) and is linked to a leg associated with ϕK̄σ with a multi-
index (ϕ, K̄, σ). The different sign of the composite momentum and frequency
index K̄ assures that the flow of momentum and frequency can be consistently
labeled in a diagram, since an outgoing momentum of K̄ on one vertex becomes
an ingoing momentum on the next vertex.

For systems with particle number conservation which are considered here, the
full Green’s function has the same block structure as the free Green’s function

G = − δ(2)Gc
δJδJ

∣

∣

∣

∣

J=0

=





0 Ĝ 0

ζĜT 0 0

0 0 −F̂



 . (13.5)
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Likewise, from Dyson’s Eq. (11.10) it is evident that the self-energy Σ has the
same block structure as the inverse free Green’s function. The matrix Σ contains
the one-fermion-line irreducible self-energy Σσ(K) and the one-interaction-line
irreducible polarization Πσ(K̄) in the following blocks,

Σ =





0 ζ [Σ̂]T 0

Σ̂ 0 0

0 0 Π̂



 , (13.6)

where

[Σ̂]Kσ,K ′σ′ = δK,K ′δσσ′Σσ(K
′) , (13.7)

[Π̂]K̄σ,K̄ ′σ′ = δK̄+K̄ ′,0δσσ′ Πσ(K̄
′) . (13.8)

One-interaction line irreducibility implies that the diagrams for Πσ(K̄) cannot
be separated in two parts by cutting a single interaction line, as explain in detail
below. These matrices are spin-diagonal because the bare coupling S1[ψ̄, ψ, ϕ]
between Fermi and Bose fields in Eq. (10.18) is diagonal in the spin index. The
blocks of the full Green’s function matrix G in Eq. (13.5) contain the exact
single-particle Green’s function and the effective (screened) interaction,

[Ĝ]Kσ,K ′σ′ = δK,K ′δσσ′Gσ(K) , (13.9)

[F̂ ]K̄σ,K̄ ′σ′ = δK̄+K̄ ′,0 Fσσ′(K̄) , (13.10)

with

Gσ(K) = [G−1
0,σ(K) − Σσ(K)]−1 , (13.11)

Fσσ′(K̄) =
[

F̂−1
0 + Π̂

]−1

K̄σ,−K̄σ′
. (13.12)

Diagrammatically, the full Green’s function Gσ(K) and the effective interaction
Fσσ′ are represented by bold directed or wiggly lines respectively. This is depicted
in Fig. 13.1c. Also shown are the analogous relations for the single-scale prop-
agators. Again, the matrix Ġ has the same block structure as G in Eq. (13.5).

The corresponding blocks are denoted by
˙̂
G and

˙̂
F and are given by

[
˙̂
G]Kσ,K ′σ′ = δK,K ′δσσ′Ġσ(K) , (13.13)

[
˙̂
F ]K̄σ,K̄ ′σ′ = δK̄+K̄ ′,0 Ḟσσ′(K̄) . (13.14)

Diagrammatic perturbation theory for the mixed theory contains both fermionic
and bosonic propagator lines. This can be seen explicitly from the relation (11.11)
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’σ
K

σσ’

k

0,σ
Kσ

if
σ

−G (K)

Figure 13.2: Diagrammatic perturbation theory for the physical vertex functions
G(2n,m). In addition to the elements shown here, there is an overall factors of
(−1)r from Eq. (13.15). Moreover, ζL+T appears, where L is the number of
fermion loops in the diagram. Since particle number is conserved, there are n
continuous fermion paths connecting ingoing and outgoing particle lines. Here,
T = 0 or T = 1 depending on wether the mapping of ingoing onto outgoing lines
defined in this way leads to an even or odd permutation.

applied to our situation. For the Green’s functions this yields:

δK ′

1+...+K
′

n,K1+...+Kn+K̄1+...+K̄m

×G(2n,m)(K ′
1σ

′
1, . . . , K

′
nσ

′
n;Knσn, . . . , K1σ1; K̄1σ̄1, . . . , K̄mσ̄m)

= ζn
δ(2n+m)

δJK̄mσ̄m · . . . · δJK̄1σ̄1
δ̄K ′

nσ
′

n
δjKnσn · . . . · δ̄K ′

1σ
′

1
δjK1σ1

×
∞
∑

r=0

(−1)r

r!

[

i
∑

σ

∫

K

∫

K̄

δ(3)

δ̄KσδjK+K̄σδJ
∗
K̄σ

]r

× exp

[

−
∑

σ

∫

K

̄KσG0,σ(K)jKσ +
1

2

∑

σσ′

∫

K̄

fσσ
′

k̄
J∗
K̄σJK̄σ′

]∣

∣

∣

∣

∣

sources=0

(13.15)

The action of the functional derivatives on the last exponential creates contrac-
tions containing the free particle propagator G0,σ(K) as well as the bare interac-
tion fσσ

′

k̄
. The resulting diagrammatic rules are summarized in Fig. 13.2.

One-line irreducibility then implies that the diagrams for the corresponding
vertices cannot be split in parts by cutting one of either type of propagator line.
One should keep in mind that a boson line represents the two-body electron-
electron interaction which is screened by zero-sound bubbles for small momentum
transfers. Except for the irreducible polarization itself, our irreducible vertices
can thus not be separated in parts by cutting both lines of a zero-sound bubble. In
the fermionic language, our vertices are therefore not only one-particle irreducible
but are also two-particle irreducible in the zero-sound channel in the sense that
particle-hole bubbles are eliminated in favor of the effective bosonic propagator.

With the help of the pictorial dictionary in Fig. 13.1 it is straightforward
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Figure 13.3: Tree expansion for the physical vertices obtained by specializing the
general graphs in Fig. 11.2.
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to translate the general relations for the symmetrized vertices in Chap. 11 to
relations for the physical vertices. First, a definite realization of the external
legs has to be chosen. Then the internal sums over the different field species are
carried out graphically by replacing the internal lines by lines for the different
field types in all possible ways, i.e., by either an oriented solid line (fermions) with
two possible orientations or by a wiggly line (bosons). Next, one has to order
all the legs on the vertices in an appropriate way keeping track of signs for the
interchange of two neighboring fermion legs. Finally, we can use the replacement
rules in the pictorial dictionary in Fig. 13.1 to obtain diagrams involving physical
correlation functions. By this procedure, we can obtain the leading diagrams of
the tree expansion for the physical vertices shown in Fig. 13.3 from the general
diagrams in Fig. 11.2. We will derive the RG flow equations for the physical
vertices in the same way. Before we do so, we will discuss in more detail the
possible choices of the cutoff in the mixed field theory.

13.2 Cutoff schemes

Since the original interaction now appears as a propagator of the field ϕ, it is
possible to introduce a momentum-transfer cutoff in the interaction on the same
footing as a bandwidth cutoff. Let us discuss both possibilities in more detail.

A bandwidth cutoff ΛF restricts the relevant fermionic degrees of freedom
to the vicinity of the Fermi surface, and is most natural in the RG approach
to fermions in one spatial dimension [Solyom, 1979]. In higher dimensions,
the Wilsonian idea of eliminating the degrees of freedom in the vicinity of the
Fermi surface is implemented by defining for each momentum k an associated kF
by means of a suitable projection onto the Fermi surface [Kopietz and Busche,
2001] and then integrating over fields with momenta in the energy shell v0ΛF <
|εk − εkF | < v0ΛF,0, where εk is the energy dispersion in the absence of interac-
tions. Here v0 is some suitably defined velocity (for example some average Fermi
velocity), which we introduce to give ΛF units of momentum. Formally, we in-
troduce such a cutoff into our theory by the following substitution for the free
fermionic Green’s function in Eq. (10.25):

G0,σ(K) −→ Θ(ΛF < DK < ΛF,0)G0,σ(K)

=
Θ(ΛF < DK < ΛF,0)

iω − ξkσ
, (13.16)

with

DK = |εk − εkF |/v0 . (13.17)

Here, Θ(ΛF < x < ΛF,0) = 1 if the logical expression in the brackets is true, and
Θ(Λ < x < Λ0) = 0 otherwise. Ambiguities associated with the sharp Θ-function
cutoff can be avoided by using smooth versions of the Θ-function and by taking
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the sharp cutoff limit at the end of the calculation [Morris, 1994]. In order to
construct a consistent scaling theory, the kF in Eq. (13.17) should refer to the true
Fermi surface of the interacting system, which can be obtained self-consistently
from the condition that the RG flows into a fixed point [Kopietz and Busche,
2001,Ledowski and Kopietz, 2003,Ledowski et al., 2005].

The bandwidth cutoff has several disadvantages. On the one hand, for any
finite value of the cutoff parameter ΛF the Ward identities are violated [Katanin,
2004]. Moreover, the RG flow of two-particle response functions probing the re-
sponse at small momentum transfers (such as the compressibility or the uniform
magnetic susceptibility) is artificially suppressed by the bandwidth cutoff. To
cure the latter problem, various other parameters have been proposed to serve
as flow parameters for the RG, such as temperature [Honerkamp and Salmhofer,
2001b] or even the interaction strength [Honerkamp et al., 2004]. While for
practical calculations these new cutoff schemes certainly have advantages, the
intuitively appealing RG picture that the coarse-grained parameters of the renor-
malized theory contain the effect of the degrees of freedom at shorter length scales
and higher energies is lost.

To avoid these inconveniences, we can alternatively work with a momentum
cutoff ΛB in the bosonic sector of our theory. This amounts to the replacement

F0,σσ′(K̄) −→ Θ(ΛB < D̄K̄ < ΛB,0)F0,σσ′(K̄)

= Θ(ΛB < D̄K̄ < ΛB,0) f
σσ′

k̄
, (13.18)

where
D̄K̄ = |k̄| . (13.19)

Keeping in mind that the bosonic field mediates the effective interaction, it is
clear that ΛB is a cutoff for the momentum transfer of the interaction. This is
the same cutoff scheme employed in the seminal work by Hertz [Hertz, 1976],
who discussed also more general frequency-dependent cutoffs for the labels of the
bosonic Hubbard-Stratonovich fields, corresponding to more complicated func-
tions D̄K̄ than the one given in Eq. (13.19). For one-dimensional electrons, the
two possibilities for a cutoff have already been reviewed by Solyom [Solyom, 1979].
Moreover, in the exact solution of the Tomonaga-Luttinger model by means of
a careful application of the bosonization method the maximal momentum trans-
fered by the interaction appears as the natural cutoff scale [Schönhammer, 2003].

In our RG approach we have the freedom of keeping both or only one of the
two cutoffs: The bandwidth cutoff ΛF or the momentum-transfer cutoff ΛB. In
particular, we may even get rid of the bandwidth cutoff completely and work with
a momentum-transfer cutoff only. We show below that if the interaction transfers
only small momenta, then the pure interaction cutoff scheme indeed regularizes
all infrared singularities in one dimension. Moreover and most importantly, in-
troducing a cutoff only in the interaction leads to RG flow equations which do
not violate the Ward identities responsible for the exact solubility of the TLM.
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Given this fact, it is not surprising that we can solve the infinite hierarchy of RG
flow equations and obtain the exact single-particle Green’s function of the TLM
within the framework of the functional RG.

In the limit of a sharp Θ-function cutoff [Morris, 1994] the blocks of the single
scale propagator are explicitly given by Eqs. (13.13) and (13.14) with

Ġσ(K) = − δ(Λ −DK)

iω − ξkσ − Σσ(K)
, (13.20)

Ḟσσ′(K̄) = −δ(Λ − D̄K̄)
[

F̂−1
0 + Π̂

]−1

K̄σ,−K̄σ′
, (13.21)

where on the right-hand side of Eq. (13.21) it is understood that the Θ-function
cutoff should be omitted from the matrix elements of F̂0. Furthermore, for the
definition of the derivatives in the single scale propagators, we set Λ = ΛF in
Eq. (13.20), whereas in Eq. (13.21) we set Λ = ΛB. To derive flow equations for
the physical vertices, we formally set Λ = ΛF = ΛB from now on. Flow equations
for the case that only one of the cutoffs is varied are easily obtained by leaving
out terms that do not contain the appropriate single scale propagator Ġσ(K) or
Ḟσσ′(K̄), respectively.

13.3 Flow equations for physical vertices

Renormalization group flow equations for the physical vertex functions are ob-
tained from the flow equations in the general notation of Chap. 11 by the graph-
ical procedure outlined at the end of Sec. 13.1. In this way, we obtain from
the diagram for the completely symmetric two-point vertex shown in Fig. 11.3
the diagram for the fermionic self-energy in Fig. 13.4 as well as the diagram for
the irreducible polarization shown in Fig. 13.5. Moreover, if two of the external
legs in the diagram for the completely symmetric three-legged vertex shown in
Fig. 11.4 are fermion legs and one is a boson leg, we obtain the flow equation for
the three-legged vertex shown in Fig. 13.6.

The flow equation for the vertex correction in Fig. 13.6 looks rather compli-
cated. In Chap. 14, we will work with an interaction cutoff only and all diagrams
in Figs. 13.4, 13.5, and 13.6 containing a fermionic single-scale propagator (i.e,
a slash on a fermionic line) will vanish. For certain initial conditions this al-
lows for the exact solubility of a whole hierarchy of flow equations. For now we
nevertheless proceed without specifying a particular cutoff scheme.

13.4 Rescaling and classification of vertices

For approximate solutions, the infinite hierarchy of flow equations has to be trun-
cated. An analysis of scaling dimensions indicates which terms are most relevant
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Figure 13.4: Flow of the irreducible fermionic self-energy. The diagrams are
obtained from the diagrams shown in Fig. 11.3 by specifying the external legs to
be one outgoing and one incoming fermion leg.

in the low-energy limit. Technically, this is performed by rescaling momenta,
frequencies and fields at every step of the RG transformation in order to allow
for the possibility of fixed points. The rescaling is not unique but depends on the
nature of the fixed point we are looking for. Let us be general here and assume
that in the bosonic sector the relation between momentum and frequency is char-
acterized by a bosonic dynamic exponent zϕ (this is the exponent z introduced
by Hertz [Hertz, 1976]), while in the fermionic sector the corresponding dynamic
exponent is zψ. Rescaled dimensionless bosonic momenta q̄ and frequencies ε̄ are
then introduced as usual [Hertz, 1976]

q̄ = k̄/Λ , ε̄ = ω̄/Ω̄Λ , Ω̄Λ ∝ Λzϕ . (13.22)

For convenience, we choose the factor Ω̄Λ such that it has units of energy; ε̄ is
then dimensionless.

The proper rescaling of the fermionic momenta is not so obvious. Certainly,
all momenta should be measured with respect to suitable points kF on the Fermi
surface. One possibility is to rescale only the component k‖ = (k− kF ) · v̂F of a
given momentum that is parallel to the local Fermi velocity vF (and hence perpen-
dicular to the Fermi surface) [Shankar, 1994,Kopietz and Busche, 2001]. Unfortu-
nately, in dimensions D > 1 this leads to rather complicated geometric construc-
tions, because the component k‖ that need to be rescaled is measured in a coordi-
nate systems that varies as one moves along the Fermi surface. Thus, momentum
conservation has a cumbersome form in the new variables. However, if the initial
momentum-transfer cutoff ΛB,0 in Eq. (13.18) is small compared with the typi-
cal radius of the Fermi surface, the initial and final momenta associated with a
scattering process lie both on nearby points on the Fermi surface. It is then nat-
ural to use a sectorization of the Fermi surface as depicted in Fig. 13.7. For each
patch a fixed reference point kF,σ on the Fermi surface is picked, and all fermionic
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Figure 13.5: Flow of the irreducible polarization, obtained from the totally sym-
metric diagram in Fig. 11.3 by setting both external legs equal to boson legs.
Note that each closed fermion loop gives rise to an additional factor of ζ = −1.

momentum labels ki and k′
i in Γ(2n,m)(K ′

1, . . . , K
′
n;K1, . . . , Kn; K̄1, . . . , K̄m) are

measured relative to this kF,σ. Here, the index σ labels the different points on
the Fermi surface, for example in one dimension σ = ±1, with kF,±1 = ±kF . We
then define rescaled fermionic momenta q and frequencies ε as follows

q = (k − kF,σ)/Λ , ε = ω/ΩΛ , ΩΛ ∝ Λzψ . (13.23)

The factor ΩΛ should again have units of energy such that ε is dimension-
less. Iterating the usual RG steps of mode elimination and rescaling, we then
coarse grain the degrees of freedom in a sphere around the chosen point kF,σ.
Because by assumption the maximal momentum transfer mediated by the in-
teraction is small compared with |kF,σ|, the fermionic momenta appearing in
Γ(2n,m)(K ′

1, . . . , K
′
n;K1, . . . , Kn; K̄1, . . . , K̄m) are all in the vicinity of the chosen

kF,σ. This property is also responsible for the approximate validity of the closed
loop theorem for interacting fermions with dominant forward scattering in arbi-
trary dimensions [Kopietz et al., 1995,Kopietz, 1997,Metzner et al., 1998].

Apart from the rescaling of momenta and frequencies, we have to specify the
rescaling of the fields. As usual, we require that the Gaussian part S0[Φ] =
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Figure 13.7: Patches on the Fermi surface. Momenta in a given patch σ are
measured with respect to central point kF,σ.

S0[ψ̄, ψ] + S0[ϕ] of our effective action is invariant under rescaling. For the
fermionic part this is achieved by defining renormalized fields ψ̃Qσ in D dimen-
sions via

ψKσ =

(

Z

ΛDΩ2
Λ

)1/2

ψ̃Qσ , (13.24)

where Z is the fermionic wave-function renormalization factor and Q = (q, iε)
denotes the rescaled fermionic momenta and Matsubara frequencies as defined
in Eq. (13.23). With this rescaling the wave-function renormalization and the
Fermi velocity have a vanishing scaling dimension (corresponding to marginal
couplings), while the momentum- and frequency-independent part of the self-
energy is relevant with scaling dimension +1, see [Kopietz and Busche, 2001].
Analogously, we find that the bosonic Gaussian part of the action is invariant
under rescaling if we express it in terms of the renormalized bosonic field ϕ̃Q̄σ
defined by

ϕK̄σ =

(

Z̄

ΛDΩ̄Λν0

)1/2

ϕ̃Q̄σ , (13.25)

where Z̄ is the bosonic wave-function renormalization factor, Q̄ = (q̄, iε̄) denotes
the rescaled bosonic momenta and Matsubara frequencies defined in Eq. (13.22),
and ν0 is the non-interacting density of states at the Fermi surface. We introduce
the factor of ν0 for convenience to make all rescaled vertices dimensionless. By
construction Eq. (13.25) assigns vanishing scaling dimensions to the bare interac-
tion parameters fσσ

′

k̄
, corresponding to marginal Landau interaction parameters.

We now express each term in the expansion of the generating functional
Γ[ψ̄, ψ, ϕ] given in Eq. (13.1) in terms of the rescaled variables defined above
and use the fact that Γ is dimensionless. The coefficients in an expansion of Γ
in terms of the rescaled fields then yield the rescaled vertices. In order to be
able to compare coefficients and to express the rescaled vertices in terms of the
unrescaled ones, we need to pull the scale factors out of the frequency and mo-
mentum conserving δ-function. For zψ ≤ zϕ the bosonic frequencies are not more
relevant than the fermionic ones, and we pull out a fermionic scale factor ΩΛ.
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Thus, for zψ ≤ zϕ and omitting the degeneracy label σ, we define the rescaled
vertices,

Γ̃
(2n,m)
l (Q′

1, . . . , Q
′
n;Q1, . . . , Qn; Q̄1, . . . , Q̄m) = (13.26)

ν
−m/2
0 ΛD(n−1+m/2)Ω−1

Λ Ω̄
m/2
Λ ZnZ̄m/2Γ

(2n,m)
Λ (K ′

1, . . . , K
′
n;K1, . . . , Kn; K̄1, . . . , K̄m) ,

On the contrary, for zϕ < zψ we pull out a bosonic scale factor amounting to
the replacement Ω−1

Λ → Ω̄−1
Λ . In Eq. (13.27), we have to exclude the cases of

purely bosonic vertices (n = 0) as well as the fermionic two-point vertex (i.e., the
rescaled irreducible self-energy, corresponding to n = 1 and m = 0), which both
need separate definitions. For the purely bosonic vertices (n = 0) we set

Γ̃
(0,m)
l (Q̄1, . . . , Q̄m) = ν

−m/2
0 (ΛDΩ̄Λ)−1+m/2Z̄m/2Γ

(0,m)
Λ (K̄1, . . . , K̄m) ,

while for the fermionic two-point vertex we should subtract the exact fixed point
self-energy Σ∗(kF,σ, i0) at the Fermi-surface reference-point kF,σ and vanishing
frequency as a counterterm [Kopietz and Busche, 2001, Ledowski and Kopietz,
2003],

Γ̃
(2,0)
l (Q;Q) ≡ Σ̃l(Q) =

Z

ΩΛ

[Σ(K) − Σ∗(kF,σ, i0)] . (13.27)

If necessary, the counterterm Σ∗(kF,σ, i0) can be reconstructed from the condition
that the constant part r̃l = Σ̃l(0) of the self-energy flows into an RG fixed point.
We consider the rescaled vertices to be functions of the logarithmic flow parameter
l = − ln(Λ/Λ0). Introducing the flowing anomalous dimensions associated with
the fermionic and bosonic fields,

ηl = −∂l lnZ , η̄l = −∂l ln Z̄ , (13.28)

we can then write down the flow equations for the rescaled vertices. Omitting
the arguments, we obtain for n ≥ 1 the flow equation

∂lΓ̃
(2n,m)
l =

[

(1 − n)D + zmin −
m

2
(D + zϕ) − nηl −

m

2
η̄l

−
n
∑

i=1

(Q′
i ·

∂

∂Q′
i

+Qi ·
∂

∂Qi

) −
m
∑

i=1

Q̄i ·
∂

∂Q̄i

]

Γ̃
(2n,m)
l

+ ˙̃Γ
(2n,m)
l , (13.29)

where zmin = min{zϕ, zψ}. For n = 0 we obtain from Eq. (13.27),

∂lΓ̃
(0,m)
l =

[

(1 − m

2
)(D + zϕ) −

m

2
η̄l −

m
∑

i=1

Q̄i ·
∂

∂Q̄i

]

Γ̃
(0,m)
l + ˙̃Γ

(0,m)
l , (13.30)
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where we have introduced the notation

Q · ∂

∂Q
≡ q · ∇q + zψ ε

∂

∂ε
, (13.31)

Q̄ · ∂

∂Q̄
≡ q̄ · ∇q̄ + zϕ ε̄

∂

∂ε̄
. (13.32)

The inhomogeneities in Eqs. (13.29) and (13.30) are given by the rescaled version
of the right-hand sides of the flow equations for the unrescaled vertices, i.e., for
n ≥ 1, and zψ ≤ zϕ,

˙̃Γ
(2n,m)
l (Q′

1, . . . , Q
′
n;Q1, . . . , Q

′
n; Q̄1, . . . , Q̄m) =

ν
−m/2
0 ΛD(n−1+m/2)Ω−1

Λ Ω̄
m/2
Λ ZnZ̄m/2 [−Λ∂ΛΓ

(2n,m)
Λ (

{

K ′
i;Ki; K̄i

}

)] ,(13.33)

and for n = 0,

˙̃Γ
(0,m)
l (Q̄1, . . . , Q̄m) =

ν
−m/2
0 (ΛDΩ̄Λ)−1+m/2Z̄m/2 [−Λ∂ΛΓ

(0,m)
Λ (K̄1, . . . , K̄m)] .(13.34)

By properly counting all factors it is then not difficult to see that the explicit
expressions for the inhomogeneities in Eqs. (13.33) and (13.34) can be simply
obtained from their unrescaled counterparts by replacing all vertices and propa-
gators with their rescaled analogues, where the rescaled propagators are defined
by

G(K) =
Z

ΩΛ

G̃(Q) , F (K̄) =
Z̄

ν0

F̃ (Q̄) , (13.35)

and the corresponding rescaled single scale propagators are defined via

ΛĠ(K) = − Z

ΩΛ

˙̃G(Q) , ΛḞ (K̄) = − Z̄

ν0

˙̃F (Q̄) . (13.36)

From Eqs. (13.29) and (13.30) we can read off the scaling dimensions of the
vertices: the scaling dimension of Γ̃(2n,m) in D dimensions is

D(2n,m) =

{

(1 − n)D + zmin − (D + zϕ)m/2 for n ≥ 1
(D + zϕ)(1 −m/2) for n = 0

. (13.37)

In the particular case of the Tomonaga-Luttinger model, where D = 1 and zψ =
zϕ = 1, we haveD(2n,m) = 2−n−m. Hence, in this case Γ̃(2,0)(Q = 0) and Γ̃(0,1) are
relevant with scaling dimension +1, while Γ̃(4,0)(Qi = 0) and Γ̃(2,1)(Qi = Q̄i = 0)
are marginal. All other vertices are irrelevant. Of course, the linear terms in the
expansion of Γ̃(2,0)(Q;Q) for smallQ are also marginal. These terms determine the
wave-function renormalization factor Z and the Fermi velocity renormalization
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ṽl, see Eqs. (14.34) and (14.39) below. Note that for short-range interactions
the dispersion of the zero-sound mode is linear in any dimension [Kopietz, 1997].
Hence, as long as the density response is dominated by the zero-sound mode,
Eq. (13.37) remains valid for D > 1 with zψ = zψ = 1. In this case the scaling
dimension of the purely fermionic four-point vertex is D(4,0) = 1 − D and the
scaling dimension of the three-legged vertex with two fermion legs and one boson
leg is D(2,1) = (1−D)/2. Both vertices become irrelevant in D > 1. As discussed
in the following section, this means that the random-phase approximation (RPA)
for the effective interaction, as well as the so-called GW-approximation [Hedin,
1965] for the fermionic self-energy, are qualitatively correct in D > 1.

13.5 Truncation to skeleton elements of

two-point functions

In order to solve the flow equations explicitly, in almost all cases one is forced to
truncate the infinite hierarchy of flow equations. In the one-particle irreducible
version of the purely fermionic functional RG it is common practice to retain
only vertices up to the four-point vertex and set all higher order vertices equal
to zero (see references in Sec. 9.1). Our approach offers new possibilities for
the choice of truncation schemes. Consider the skeleton graphs [Nozières, 1964]
for the one-particle irreducible fermionic self-energy and the one-interaction-line
irreducible polarization shown in Fig. 13.8a and b. The skeleton graphs contain
three basic elements: the exact fermionic Green’s function, the exact bosonic
Green’s function (i.e., the effective screened interaction), and the three-legged
vertex with two fermion legs and one boson leg. Although the skeleton graphs
are usually written down directly from topological considerations of the structure
of diagrammatic perturbation theory [Nozières, 1964], it is instructive to see how
the skeleton expansion of the irreducible vertices can be derived formally within
our functional integral approach. Thus, let us make a short digression to show
this.

13.5.1 Skeleton graphs

The skeleton diagrams for the two-point functions and the three-legged vertex in
Fig. 13.8 can be formally derived from the Dyson-Schwinger equations of motion.
Taking derivatives of Eqs. (12.17–12.19) with respect to the fields and then setting
the fields equal to zero we obtain the desired skeleton expansions of the irreducible
vertices. Let us start with the skeleton diagram for the self-energy shown in
Fig. 13.8a. To derive this, we simply differentiate Eq. (12.19) with respect to
ψK ′σ. Using

δ(2)Γ

δψK ′σδψ̄Kσ

∣

∣

∣

∣

fields=0

= δK,K ′Σσ(K) , (13.38)
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Figure 13.8: Skeleton diagrams for (a) the one-particle irreducible fermionic self-
energy; (b) the one-interaction-line irreducible polarization; and (c) the three-
legged vertex with two fermion legs and one boson leg. The small black circle
denotes the bare three-legged vertex. Thin lines are external legs. The other
graphical elements are the same as in Fig. 13.1.

we obtain

δK,K ′Σσ(K) = i

∫

K̄

δ(3)Gc
δψK ′σδ̄K−K̄,σδJ−K̄σ

∣

∣

∣

∣

fields=0

. (13.39)

From the l = 1 term in the expansion (11.30) it is easy to show that

δ(3)Gc
δψK ′σδ̄K−K̄,σδJ−K̄σ

∣

∣

∣

∣

fields=0

= δK,K ′Fσσ(K̄)Gσ(K + K̄)Γ(2,1)(K + K̄σ;Kσ; K̄σ) ,

(13.40)
so that

Σσ(K) = i

∫

K̄

Fσσ(K̄)Gσ(K + K̄)Γ(2,1)(K + K̄σ;Kσ; K̄σ) , (13.41)

which is the analytic expression for the skeleton graph shown in Fig. 13.8a. Sim-
ilarly, we obtain the skeleton expansion of the irreducible polarization by differ-
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entiating Eq. (12.17) with respect to ϕ−K̄σ,

Πσ(K̄) = i

∫

K

δ(3)Gc
δϕ−K̄σδ̄K,σδjK+K̄σ

∣

∣

∣

∣

fields=0

= −iζ
∫

K

Gσ(K)Gσ(K + K̄)Γ(2,1)(K + K̄σ;Kσ; K̄σ) , (13.42)

which is shown diagrammatically in Fig. 13.8b. Finally, applying the operator
δ(2)

δψ̄K+K̄σδψKσ
to Eq. (12.17) and subsequently setting the fields equal to zero we

obtain the skeleton expansion of the three-legged vertex shown in Fig. 13.8 (c),

Γ(2,1)(K + K̄σ;Kσ; K̄σ)

= i− iζ

∫

K ′

Gσ(K
′)Gσ(K

′ + K̄)Γ(4,0)(K + K̄σ,K ′σ;K ′ + K̄σ,Kσ) . (13.43)

Skeleton expansions for higher order vertices can be obtained in an analogous
way from the appropriate functional derivatives of Eqs. (12.17–12.19).

13.5.2 Truncation scheme

Let us now go back and analyze the proposed truncation scheme. One advantage
of our RG approach (as compared with more conventional methods involving
only fermionic fields) is that it yields directly the flow equations for basic ele-
ments appearing in the skeleton graphs for the self-energy and the polarization
shown in Fig. 13.8. Of course, in principle the three-legged vertex can be ob-
tained from the vertex with four fermion legs with the help of the skeleton graph
shown in Fig. 13.8c. However, calculating the three-legged vertex from the four-
legged vertex in this way involves an intermediate integration, which requires the
knowledge of the momentum and frequency dependence of the four-legged vertex.
Unfortunately, in practice the purely fermionic functional RG equations have to
be severely truncated so that up to now it was not possible to keep track of the
frequency dependence of the four-legged fermion vertex.

To obtain a closed system of RG equations involving only the skeleton ele-
ments, let us retain only the vertices Σσ(K), Πσ(K̄) and Γ(2,1)(K+ K̄σ;Kσ; K̄σ)
on the right-hand sides of the exact flow equations for these quantities shown in
Figs. 13.4, 13.5, and 13.6, and set all other vertices to zero. The resulting closed
system of flow equations is shown graphically in Fig. 13.9. Explicitly, the flow
equations are

∂ΛΣσ(K) =

∫

K̄

[

Ḟσσ(K̄)Gσ(K + K̄) + Fσσ(K̄)Ġσ(K + K̄)
]

×Γ(2,1)(K + K̄σ;Kσ; K̄σ)Γ(2,1)(Kσ;K + K̄σ;−K̄σ) , (13.44)
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∂ΛΠσ(K̄) = −ζ
∫

K

[

Ġσ(K)Gσ(K + K̄) +Gσ(K)Ġσ(K + K̄)
]

×Γ(2,1)(K + K̄σ;Kσ; K̄σ)Γ(2,1)(Kσ;K + K̄σ;−K̄σ) , (13.45)

∂ΛΓ(2,1)(K + K̄σ;Kσ; K̄σ) =

∫

K̄ ′

[

Ḟσσ(K̄
′)Gσ(K + K̄ ′)Gσ(K + K̄ + K̄ ′)

+Fσσ(K̄
′)Ġσ(K + K̄ ′)Gσ(K + K̄ + K̄ ′)

+Fσσ(K̄
′)Gσ(K + K̄ ′)Ġσ(K + K̄ + K̄ ′)

]

×Γ(2,1)(K + K̄σ;K + K̄ + K̄ ′σ;−K̄ ′σ)Γ(2,1)(K + K̄ + K̄ ′σ;K + K̄ ′σ; K̄σ)

×Γ(2,1)(K + K̄ ′σ;Kσ; K̄ ′σ) . (13.46)

These equations form a closed system of integro-differential equations that can
in principle be solved numerically. If the initial momentum-transfer cutoff Λ0 is
chosen larger than the maximal momentum transfered by the bare interaction,
and if the initial bandwidth cutoff v0Λ0 is larger than the bandwidth of the bare
energy dispersion, then the initial conditions are Σσ(K)Λ0 = 0, Πσ(K̄)Λ0 = 0, and
Γ(2,1)(K + K̄σ;Kσ; K̄σ)Λ0 = i. A numerical solution of these coupled equations
seems to be a difficult task, which we shall not attempt in this work. Note, how-
ever, that in Sec. 13.4 we have argued that for regular interactions in dimensions
D > 1 the three-legged vertex is actually irrelevant in the RG sense. Hence, we
expect that the qualitatively correct behavior of the fermionic self-energy and
of the polarization can be obtained by ignoring the flow of the three-legged ver-
tex, setting Γ(2,1) → i. If we further ignore interaction corrections to the internal
propagators in the flow equation (13.45) for the polarization, it is easy to see that
the solution of this equation is nothing but the non-interacting polarization. This
is equivalent with the RPA for the effective interaction. Substituting this into the
flow equation (13.44) for the self-energy and ignoring again self-energy corrections
to the internal Green’s functions, we obtain the non-self-consistent GW approx-
imation [Hedin, 1965] for the fermionic self-energy. For regular interactions in
D > 1 we therefore expect that the RPA and the GW approximation are qual-
itatively correct. However, for strong bare interactions quantitatively accurate
results can only be expected if the vertex corrections described by Eq. (13.46)
are at least approximately taken into account.

We shall consider this problem again in Sec. 14.5, where we discuss trunca-
tions of an expansion based on relevance in the RG sense. To lowest order, this
approximation will agree with Eqs. (13.44–13.46) when the dependence of the
vertex Γ(2,1) on momenta and frequencies is ignored. There we use the result-
ing equations to calculate an approximation to the electronic Green’s function
of the one-dimensional Tomonaga-Luttinger model. Amazingly, this simple trun-
cation is sufficient to reproduce the correct anomalous dimension known from
bosonization even for large values of the bare coupling.
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Figure 13.9: Truncation of the flow equations for (a) fermionic self-energy, (b)
irreducible polarization, and (c) three-legged vertex which sets all other vertices
equal to zero. The internal lines are full propagators, which depend on the self-
energies Γ(2,0) = Σ and Γ(0,2) = Π.
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Interaction cutoff scheme

A finite bandwidth cutoff ΛF breaks the gauge symmetry of the action, and Ward
identities are generally violated in renormalization group schemes based on ΛF

as the flow parameter [Katanin, 2004,Enss, 2005]. Modified symmetry relations
among the vertices can still be derived even in the presence of such a cutoff,
but compared to the Ward identities without cutoff they acquire complicated
correction terms that are difficult to deal with. Moreover, if the hierarchy of
flow equations is truncated, Ward identities are generally only fulfilled to the
order of the truncation [Katanin, 2004]. A modified flow scheme that improves
this situation was proposed by Katanin [Katanin, 2004] and was important for
certain applications [Hedden et al., 2004,Salmhofer et al., 2004]. Alternative flow
schemes have been used based on the temperature [Honerkamp and Salmhofer,
2001a] or the strength of the interaction [Honerkamp et al., 2004] as the flow
parameter. Although these schemes do not violate the gauge symmetry, the
intuitive RG picture of integrating out modes successively in order of decreasing
energy is lost.

Here, we show that a new gauge invariant flow scheme is obtained when a
cutoff ΛB in the momentum transfer of the interaction is used as a flow parameter
and the bandwidth cutoff ΛF is removed from the outset. For purely bosonic
vertices the resulting infinite hierarchy of flow equations is an exact version of
the RG equations analyzed by Hertz [Hertz, 1976]. Thus, the scheme integrates
out collective fluctuations in order of decreasing energy. We show that Ward
identities are valid at every step of the flow.

The Ward identities and the underlying asymptotic conservation laws are
crucial for the exact solubility of the Tomonaga-Luttinger model [Dzyaloshinskii
and Larkin, 1974,Bohr, 1981] and its higher-dimensional generalization [Metzner
et al., 1998,Kopietz, 1997,Bartosch and Kopietz, 1999]. In the interaction cutoff
scheme a solution of an infinite hierarchy of flow equations is provided by Ward
identities. Thus, we can derive a closed flow equation for the single-particle
Green’s function and recover the exact solution of the Tomonaga-Luttinger model.

14.1 Exact flow equations for an interaction

cutoff

Let us now derive the hierarchy of flow equations for the interaction cutoff scheme.
Thus, we consider only Λ = ΛB as a running cutoff and set the bandwidth cutoff
to zero, ΛF = 0, from the beginning. As a consequence, the fermionic part Ġσ(K)
of the single-scale propagator vanishes. As already briefly mentioned at the end
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Figure 14.1: Exact flow equations for (a) the fermionic self-energy and (b) the
irreducible polarization in the interaction cutoff scheme.

of Sec. 13.3, we should then omit all diagrams with a slash on internal fermionic
lines on the right-hand sides of the exact flow equations shown in Figs. 13.4,
13.5, and 13.6. The exact flow equations for the electronic self-energy and the
irreducible polarization then reduce to

∂ΛΣσ(K) =
1

2

∫

K̄

Ḟσσ(K̄)Γ(2,2)(Kσ;Kσ; K̄σ,−K̄σ)

+

∫

K̄

Ḟσσ(K̄)Gσ(K + K̄)Γ(2,1)(K + K̄σ;Kσ; K̄σ)

×Γ(2,1)(Kσ;K + K̄σ;−K̄σ) , (14.1)

∂ΛΠσ(K̄) =
1

2

∫

K̄ ′

Ḟσσ(K̄)Γ(0,4)(K̄ ′σ,−K̄ ′σ, K̄σ,−K̄σ)

−
∫

K̄ ′

Ḟσσ(K̄
′)Fσσ(K̄ + K̄ ′)Γ(0,3)(−K̄σ, K̄ + K̄ ′σ,−K̄ ′σ)

×Γ(0,3)(K̄ ′σ,−K̄ − K̄ ′σ, K̄σ) . (14.2)
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Figure 14.2: Exact flow equations for the three-legged vertex with two fermion
legs and one boson leg in the interaction cutoff scheme.
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 P(1)

P(2)P(m)

...

1 2 m

0,m = Σ
P

Figure 14.3: Initial condition for the pure boson vertices in the momentum trans-
fer cutoff scheme. The sum is taken over the m! permutations of the labels of
the external legs. For linearized energy dispersion all symmetrized closed fermion
loops with more than two external legs vanish.

These equations are shown graphically in Fig. 14.1. The diagrams for the corre-
sponding exact flow equation of the three-legged vertex are presented in Fig. 14.2.
These flow equations still look deceivingly complicated. They can nevertheless be
further simplified for certain cases by specifying the initial condition for the flow.
For a linear dispersion and an interaction that transfers only small momenta, we
will see in the next section that pure bosonic vertices with more then two external
legs vanish and do not contribute to the flow.

14.2 Initial condition

The initial condition for the flow in the interaction-cutoff scheme corresponds to
a situation in which interaction lines are turned off while particle propagator lines
are fully functional. In addition to the bare three-leg interaction vertex, the only
one-line-irreducible diagrams that can be drawn in this case are closed loops of
fermionic propagators. These loops have to be symmetrized with respect to the
exchange of external bosonic legs in order to obtain the initial condition for the
purely bosonic vertices as shown in Fig. 14.3.

A more formal route to the initial condition for Γ follows the procedure out-
lined in Secs. 11.1.2 and 11.1.3. Yet, since now only the interaction f vanishes
initially, it is convenient to define a generating functional for partially amputated-
connected Green’s functions for which only external interaction lines are ampu-
tated,

eGpac[̄,j,J ] =
1

Z0

∫

D[ψ̄, ψ, ϕ]e−S0[ψ̄,ψ]−S0[ϕ]−S1[ψ̄,ψ,ϕ+J ]+(̄,ψ)+(ψ̄,j) . (14.3)
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By a manipulation similar to Eq. (11.14) using an additional intermediate source
field, we can show the identity

eGpac[̄,j,J ] = e
1
2(

δ
δJ
,F̂0

δ
δJ )

1

Zψ

∫

D[ψ̄, ψ]e−S0[ψ̄,ψ]−S1[ψ̄,ψ,J ]+(̄,ψ)+(ψ̄,j) . (14.4)

Here, F̂0 is the matrix of the bare interaction defined in Eq. (10.24) and Zψ is
the partition function for non-interacting particles. In Eq. (14.4) the limit of a
vanishing interaction can readily be taken. The remaining functional integral is
Gaussian and yields

Gf→0
pac [J, ̄, j] = Tr{ln[1̂ − iĜ0Ĵ ]} − (̄, [1̂ − iĜ0Ĵ ]−1Ĝ0j) , (14.5)

where we use a matrix Ĵ of bosonic sources containing the matrix elements

[Ĵ ]Kσ,K ′σ′ = δσσ′JK−K ′,σ . (14.6)

The first term in Eq. (14.5) generates the closed loops of fermion propagators
in Fig. 14.3 when expanded in powers of the bosonic sources. The second term
generates diagrams that contain a continuous fermionic path linking two external
fermionic legs. An arbitrary number of external bosonic legs are then directly
attached to this line. The latter diagrams are not one-line-irreducible and will
cancel in the expression for Γ. However, before we can perform the Legendre
transformation, we first need a relation between Gpac and the generating func-
tional Gc for connected Green’s functions. This is achieved by a shift ϕ→ ϕ− J
in the integration variables in Eq. (14.3) and yields

Gc[̄, j, J ] = S0[J̃ ] + Gpac[̄, j, J̃ ] , (14.7)

where we have defined J̃ = F̂0J . The classical field ϕ is then given by

ϕ =
δGc
δJ

= J̃ + F̂0
δGpac
δJ̃

[̄, j, J̃ ]
f→0
= J̃ . (14.8)

In the limit of a vanishing interaction the classical field ϕ thus becomes identical
to the source field J̃ . Since Gf→0

pac is quadratic in the fermionic sources, the
inversion necessary to obtain the sources ̄ and j as a function of the classical
fields involves just a matrix inversion. The remaining Legendre transformation
can then be explicitly performed and we obtain

Γf→0[ψ̄, ψ, ϕ] = i(ψ̄, ϕ̂ψ) + Tr{ln[1̂ − iĜ0ϕ̂]} , (14.9)

where we have defined a matrix ϕ̂ of bosonic fields in analogy to Eq. (14.6). The
first term is nothing but the bare interaction S1 whereas the second generates the
closed Fermi loops. To be a little more explicit, we expand Eq. (14.9) in powers
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of the fields and symmetrize with respect to interchange of bosonic fields. This
yields

Γf→0[ψ̄, ψ, ϕ] = i
∑

σ

∫

K

∫

K̄

ψ̄K+K̄,σψKσϕK̄σ

+
∞
∑

n=1

1

n!

∑

σ

∫

K̄1

. . .

∫

K̄n

δK̄1+···+K̄n,0 L
(n)
σ (K̄1, . . . , K̄n) , (14.10)

where the symmetrized Fermi loop is defined by

L(n)
σ (K̄1, . . . , K̄n) =

in

n

∑

P

∫

K

G0(Kσ)G0(K + K̄P (1), σ) · . . .

. . . ·G0(K + K̄P (1) + . . .+ K̄P (n−1), σ) , (14.11)

and the summation is over all permutations P of {1, . . . , n}. Comparing Eq.
(14.10) to the general Taylor expansion in Eq. (13.1), we can identify the initial
condition for the one-line-irreducible vertices as

Γ(2,1)(K + K̄, σ;Kσ; K̄σ) = i , (14.12)

Γ(0,m)(K̄1, σ; . . . ; K̄mσ) = L(m)
σ (K̄1, . . . , K̄m) . (14.13)

All other one-line-irreducible vertices vanish initially.
An essential simplification occurs if we linearize the energy dispersion rela-

tive to the Fermi surface. If the initial momentum transfer cutoff Λ0 = ΛB,0

is small compared with the typical Fermi momentum, then we may set all pure
boson vertices Γ(0,m) with more than two external boson legs (m ≥ 2) equal to
zero. This is nothing but the closed loop theorem [Dzyaloshinskii and Larkin,
1974,Bohr, 1981,Kopietz, 1997,Kopietz et al., 1995,Metzner et al., 1998], which
is valid exactly for the one-dimensional TLM (where the energy dispersion is lin-
ear by definition). In higher dimensions, the closed loop theorem is valid to a
very good approximation as long as the linearization of the energy dispersion is
justified within a given sectorization of the Fermi surface and scattering processes
that transfer momentum between different sectors of the Fermi surface can be
neglected [Kopietz et al., 1995,Kopietz, 1997]. Note that the closed loop theo-
rem is consistent with the momentum-transfer cutoff flow, because pure boson
vertices Γ(0,m) with m ≥ 3 are not generated if they vanish initially.

Assuming the validity of the closed loop theorem, the right-hand side of the
flow equation (14.2) for the polarization vanishes identically, because it depends
only on boson vertices with more than two external legs. Physically, this means
that there are no corrections to the non-interacting polarization, so that the
RPA for the effective interaction is exact. This is of course well-known since the
pioneering work by Dzyaloshinskii and Larkin [Dzyaloshinskii and Larkin, 1974].
Moreover, the last three diagrams in the flow equation for Γ(2,1) shown in Fig. 14.2
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Figure 14.4: Diagrammatic representation of the flow equation (14.14) of vertices
with two fermion legs and a general number of boson legs provided the pure boson
vertices with more than two external legs vanish, as implied by the closed loop
theorem.

also vanish, because they contain the vertex Γ(0,3). The remaining diagrams in
Fig. 14.1a and Fig. 14.2 are part of an infinite hierarchy of flow equations for
vertices with two external fermion legs and an arbitrary number of boson legs. In
the next subsection we show that the structure of this infinite system of coupled
integro-differential equations is simple enough to be solved exactly.

14.3 Ward identities as solutions of the infinite

hierarchy of flow equations

Let us consider the terms on the right-hand sides of the flow equations for the
vertices Γ(2,m) with two external fermion legs and an arbitrary number of boson
legs. Assuming the validity of the closed loop theorem, all pure boson vertices
Γ(0,m) with m ≥ 2 vanish. From Fig. 14.1 (a) and Fig. 14.2 it is clear that in
general the right-hand side of the flow equation for ∂ΛΓ(2,m) depends on Γ(2,m+2)

and on all Γ(2,m′) with m′ ≤ m. In fact, from our general expression for the flow
of the totally symmetrized vertices given in Eq. (11.51) we can derive the flow
equations for the vertices Γ(2,m) with arbitrary m in closed form (we omit for
simplicity the degeneracy index σ),

∂ΛΓ(2,m)(K ′;K; K̄1, . . . , K̄m) =
1

2

∫

K̄

Ḟσσ(K̄)Γ(2,m+2)(K ′;K;−K̄, K̄, K̄1, . . . , K̄m)

+

∞
∑

l=2

∞
∑

m1,...,ml=1

δm,� imi
∏

imi!

∑

P

∫

K̄

Ḟ (K̄)Γ(2,m1+1)
(

K ′; K̃1; K̄P (1), . . . , K̄P (m1),−K̄
)

×G(K̃1)Γ
(2,m2)

(

K̃1; K̃2; K̄P (m1+1), . . . , K̄P (m1+m2)

)

G(K̃2) · . . . ·G(K̃l−1)

×Γ(2,ml+1)
(

K̃l−1;K; K̄, K̄P (m−ml+1), . . . , K̄P (m)

)

, (14.14)

where we have defined

K ′ = K +

m
∑

i=1

K̄i , K̃i = K ′ + K̄ −
m1+...+mi
∑

j=1

K̄P (j) , (14.15)
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and P denotes a permutation of {1, . . . , m}. In Fig. 14.4, a graphical representa-
tion of Eq. (14.14) is shown. Note that the flow equation (14.1) for the irreducible
self-energy is a special case of Eq. (14.14) for m = 0.

We are now facing the problem of solving the infinite hierarchy of coupled flow
equations given by Eq. (14.14). In view of the fact that these equations are exact
and that in one dimension the single-particle Green’s function of the TLM can be
calculated exactly via bosonization, we expect that this infinite hierarchy of flow
equations can also be solved exactly. Indeed, the solutions of these equations are
nothing but infinitely many Ward identities relating the vertex Γ(2,m) with two
fermion legs and m boson legs to the vertex Γ(2,m−1) with one fewer boson leg.

These Ward identities for the vertex functions can be obtained from the “mas-
ter Ward identities” in Eqs. (12.27) and (12.28) by functional differentiation. For
example, taking the derivative δ

δϕ
−K̄σ

of Eq. (12.28) we obtain

iω̄Πσ(K̄) − Πc
σ(K̄) = 0 , (14.16)

where we have defined

Πc
σ(K̄) = −iζ

∫

K

(ξk+k̄,σ − ξkσ)Gσ(K)Gσ(K + K̄)Γ(2,1)(K + K̄σ;Kσ; K̄σ) .

(14.17)
Eq. (14.16) is a relation between response functions, which follows more directly
from the equation of continuity.

The simplified “master Ward identitiy” in Eq. (12.30) can be used if at least
one fermionic momentum is involved. Differention with respect to the fields using
the relation (13.38) as well as

δ(3)Γ

δϕK̄σδψKσδψ̄K+K̄σ

∣

∣

∣

∣

fields=0

= Γ(2,1)(K + K̄σ;Kσ; K̄σ) , (14.18)

δ(4)Γ

δϕK̄1σδϕK̄2σδψKσδψ̄K+K̄1+K̄2σ

∣

∣

∣

∣

fields=0

= Γ(2,2)(K + K̄1 + K̄2σ;Kσ; K̄1σ, K̄2σ) ,

(14.19)
and so on, we obtain Ward identities for the irreducible vertices. For m = 1 the
Ward identity is well known [Dzyaloshinskii and Larkin, 1974,Bohr, 1981,Metzner
et al., 1998,Kopietz, 1997]

G(K+K̄)Γ(2,1)(K+K̄;K; K̄)G(K) =
−i

iω̄ − vF,σ · k̄
[

G(K+K̄)−G(K)
]

. (14.20)

Here vF,σ is the Fermi velocity associated with the independent fermionic label
K = (k, iω), where |k − kF,σ| � |kF,σ|. The Ward identity (14.20) has been
used in [Dzyaloshinskii and Larkin, 1974] and [Metzner et al., 1998] to close the
skeleton equation for the self-energy and thus obtain the exact Green’s function
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of the TLM without invoking the machinery of bosonization. A Ward identity
for Γ(4,1) has also been used to prove the vanishing of the renormalization group
β function for the TLM [DiCastro and Metzner, 1991]. However, for solving the
TLM within the framework of the functional RG, we need the Ward identities
for all vertices Γ(2,m) with m ≥ 1. For these, we obtain

Γ(2,m)
(

K ′;K; K̄1, . . . , K̄m

)

=

−i
iω̄l − vF,σ · k̄l

[

Γ(2,m−1)
(

K ′;K + K̄l; K̄1, . . . , K̄l−1, K̄l+1, . . . , K̄m

)

−Γ(2,m−1)
(

K ′ − K̄l;K; K̄1, . . . , K̄l−1, K̄l+1, . . . , K̄m

)

]

, (14.21)

where 1 ≤ l ≤ m. For clarity let us write down here the special case m = 2,

Γ(2,2)
(

K + K̄1 + K̄2;K; K̄1, K̄2

)

(14.22)

=
−i

iω̄1 − vF,σ · k̄1

[

Γ(2,1)
(

K + K̄1 + K̄2;K + K̄1; K̄2

)

− Γ(2,1)
(

K + K̄2;K; K̄2

)]

=
−i

iω̄2 − vF,σ · k̄2

[

Γ(2,1)
(

K + K̄1 + K̄2;K + K̄2; K̄1

)

− Γ(2,1)
(

K + K̄1;K; K̄1

)]

.

Diagrammatic representations of the Ward identities given in Eqs. (14.20) and
(14.21) are shown in Fig. 14.5. Although the Ward identity (14.20) for the three-
legged vertex is well-known [Dzyaloshinskii and Larkin, 1974,Bohr, 1981,Metzner
et al., 1998,Kopietz, 1997], it seems that the higher order Ward identities given
in Eqs. (14.21) and (14.23) cannot be found anywhere in the literature.

Of course, other Ward identities, e.g., the Ward identity for Γ(4,1) discussed
in [Benfatto and Mastropietro, 2005], can also be obtained from Eq. (12.30). If
the dispersion is not linearized as in Eq. (12.29), the master Ward identity (12.30)
should be replaced by the more general master Ward identity (12.28), so that the
Ward identities (14.20,14.21,14.23) for the vertices acquire correction terms. The
effect of these correction terms on the Ward identities for Γ(2,1) and Γ(4,1) has
very recently been studied in a mathematically rigorous way by Benfatto and
Mastropietro [Benfatto and Mastropietro, 2005]

Once the form of the higher Ward identities is known, we can also show by
induction that they provide a solution of the infinite hierarchy of flow equations
in Eqs. (14.1) and (14.14). This can be done entirely within the fRG formalism
without referring to the derivation via local gauge transformations. In the initial
condition, i.e., for ΛB = ΛB,0, the Ward identities are almost trivially fulfilled.
More precisely, vertices Γ(2,m) with m > 1 vanish, whereas a difference of inverse
free propagators for a linearized dispersion cancels the denominator in Eq. (14.20)
and this Ward identity is also fulfilled. To show that the flow equations respect
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Figure 14.5: (a) Diagrammatic representation of the Ward identity (14.20) for
the three-legged vertex and (b) of the Ward identity (14.21) for the vertex with
two fermion legs and m > 1 boson legs. The small arrow indicates the place
in the diagram where the external bosonic energy-momentum enters. A double-
slash to the right of an arrow means that the bosonic momentum is added before
the corresponding Green’s function, while a double-slash to the left of an arrow
means that the momentum is added after the Green’s function.

the Ward identities, we then substitute them on the right hand side of the exact
flow equation for Γ(2,m+1). Graphically, we indicate the place where the bosonic
momentum enters the vertex by a double-slash, as shown in Fig. 14.5. The impor-
tant point is now that all diagrams with double-slashes attached to intermediate
Green’s functions cancel due to the fact that all vertices Γ(2,m′) can be expressed
in terms of a difference of vertices Γ(2,m′−1), with a same prefactor that is inde-
pendent of m′. Graphically, only the diagrams with a double-slash attached to
the leftmost or rightmost Green’s function survive. We end up with diagrams
that are present on the right hand side of the flow equations for Γ(2,m). In this
way, we can show from the fRG flow equations that the derivative of the Ward
identities with respect to Λ is fulfilled. This completes the inductive proof, since
if the Ward identities are fulfilled initially and the flow respects them, they hold
at all stages of the RG flow.

14.4 Exact fRG solution of the Tomonaga-

Luttinger model

Given the cascade of Ward identities (14.20) and (14.21) we can close the integro-
differential equation (14.1) for the irreducible self-energy. Note that this equation
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involves both the three-legged vertex and the four-legged vertex with two fermion
legs and two boson legs, so that the Ward identity (14.20) is not sufficient to
close the flow equation. Of course, if one is only interested in calculating the
Green’s function of the TLM, it is simpler to start from the skeleton equation
for the self-energy shown in Fig. 13.8, which can be closed by means of the Ward
identity (14.20) for the three-legged vertex only. Nevertheless, it is instructive to
see how the exact solution emerges within the framework of the functional RG.
Substituting Eqs. (14.20) and (14.23) into Eq. (14.1), we obtain the following
integrodifferential equation for the electronic self-energy,

∂ΛΣσ(K) = G−2
σ (K)

∫

K̄

Ḟσσ(K̄)

(iω̄ − vF,σ · k̄)2

[

Gσ(K) −Gσ(K + K̄)
]

. (14.23)

Remember that the index σ labels not only the different spin species, but also
the different patches of the sectorized Fermi surface. For example, for the spin-
less case σ = ±kF . Using the fact that in the momentum-transfer cutoff scheme
G2∂ΛΣ = ∂ΛG we can alternatively write Eq. (14.23) as a linear integro-differential
equation for the fermionic Green’s function,

∂ΛGσ(K) =

∫

K̄

Ḟσσ(K̄)

(iω̄ − vF,σ · k̄)2

[

Gσ(K) −Gσ(K + K̄)
]

.

If we had simply set the vertex Γ(2,2) equal to zero in Eq (14.1) and had then
closed this equation by means of the Ward identity (14.20), we would have ob-
tained a non-linear equation. Thus, the linearity of Eq. (14.24) is the result of
a cancellation of non-linear terms arising from both Ward identities (14.20) and
(14.23). Because the second term on the right hand side of Eq. (14.24) is a convo-
lution, we can easily solve this equation by a Fourier transformation to imaginary
time and real space. Defining

Gσ(X) =

∫

K

ei(k·r−ωτ)Gσ(K) , (14.24)

HΛ,σ(X) =

∫

K̄

ei(k̄·r−ω̄τ)
Ḟσσ(K̄)

(iω̄ − vF,σ · k̄)2
, (14.25)

where X = (τ, r), the flow equation (14.24) is transformed to

[

∂Λ +HΛ,σ(X) −HΛ,σ(0)
]

Gσ(X) = 0 . (14.26)

This implies the conservation law

∂Λ

[

exp

{
∫ Λ

0

dΛ′ [HΛ′,σ(X) −HΛ′,σ(0)]

}

Gσ(X)

]

= 0 . (14.27)
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Integrating from Λ = 0 to Λ = Λ0, we obtain

Gσ(X) = G0,σ(X) exp [Qσ(X)] , (14.28)

with
Qσ(X) = Sσ(0) − Sσ(X) , (14.29)

and

Sσ(X) = −
∫ Λ0

0

dΛ′HΛ′,σ(X) =

∫

K̄

Θ(Λ0 − |k̄|)Fσσ(K̄)

(iω̄ − vF,σ · k̄)2
cos(k̄ · r − ω̄τ) , (14.30)

where we have used the invariance of the RPA interaction F (K̄) under K̄ →
−K̄. The solution in Eqs. (14.28)–(14.30) is well known from the functional
integral approach to bosonization [Kopietz, 1997,Kopietz et al., 1995, Fogedby,
1976, Lee and Chen, 1988] where Qσ(X) arises as a Debye-Waller factor from
Gaussian averaging over the distribution of the Hubbard-Stratonovich field. In
one dimension, Eqs. (14.28)–(14.30) can be shown [Kopietz, 1997] to be equivalent
to the exact solution for the Green’s function of the Tomonaga-Luttinger model
obtained via conventional bosonization. We have thus succeeded to calculate the
single-particle Green’s function of the TLM entirely within the framework of the
functional RG.

14.5 Truncation scheme based on relevance

The structure of the exact Green’s function of the TLM and the corresponding
spectral function A(k, ω) = −π−1ImG(k, ω + i0) depend crucially on the Ward
identities discussed above, which in turn are only valid if the energy dispersion
is strictly linear. In order to assess the validity of the linearization of the energy
dispersion, it is important to develop truncations of the exact hierarchy of flow
equations which do not explicitly make use of Ward identities. We now propose
such a truncation scheme.

The coefficients generated in the expansion of a given vertex Γ(2n,m) in powers
of frequencies and momenta have decreasing scaling dimensions, so that the most
relevant part of any vertex is obtained by setting all momenta and frequencies
equal to zero. This classification leads to a simple truncation scheme: We re-
tain only those vertices whose leading (momentum- and frequency-independent)
part has a positive or vanishing scaling dimension, corresponding to relevant
or marginal couplings in the usual RG jargon. In the context of calculating
the critical temperature of the weakly interacting Bose gas in three dimensions,
such a truncation procedure has recently been shown to give very accurate re-
sults [Ledowski et al., 2004].

To begin with, let us classify all couplings according to their relevance. With
the rescaling defined in Sec. 13.4, for D = zψ = zϕ = 1, the scaling dimensions of
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the vertices Γ̃(2n,m) are D(2n,m) = 2 − n −m, see Eq. (13.37). Hence the vertex
Γ̃(2,2) as well as the vertices Γ̃(0,3) and Γ̃(0,4), whose unrescaled versions appear
on the right-hand sides of Eqs. (14.1) and (14.2), are irrelevant in the RG sense.
In contrast, the momentum- and frequency-independent part of the three-legged
vertex,

γ̃l = Γ̃(2,1)(0; 0; 0) =

(

Λ

ν0ΩΛ

)1/2

ZlΓ
(2,1)(KF ;KF ; 0) , (14.31)

is marginal [Ueda and Rice, 1984]. Here KF = (±kF , ω = 0). From the general
flow equations (13.29) and (13.33) for the rescaled vertices we obtain the following
exact flow equation for the rescaled self-energy defined in Eq. (13.27),

∂lΣ̃l(Q) =

(

1 − ηl +Q · ∂

∂Q

)

Σ̃l(Q) + ˙̃Γ
(2,0)
l (Q) , (14.32)

with [see Eq. (13.33)]

˙̃Γ
(2,0)
l (Q) = − Zl

ΩΛ
Λ∂ΛΓ

(2,0)
Λ (K) . (14.33)

We restrict ourselves to spinless fermions here and choose ΩΛ = Ω̄Λ = vFΛ, so that
with ν0 = (πvF )−1 the prefactor in Eq. (14.31) turns out to be ( Λ

ν0ΩΛ
)1/2 = π1/2.

As usual, the fermionic wave-function renormalization factor Zl is defined via

Zl =

[

1 − ∂Σ(K)

∂(iω)

∣

∣

∣

∣

K=0

]−1

= 1 +
∂Σ̃l(Q)

∂(iε)

∣

∣

∣

∣

∣

Q=0

. (14.34)

According to Eq. (13.28) the wave-function renormalization Zl satisfies the flow
equation

∂lZl = −ηlZl , (14.35)

where the flowing anomalous dimension of the fermion fields is given by

ηl = − ∂ ˙̃Γ
(2,0)
l (Q)

∂(iε)

∣

∣

∣

∣

∣

Q=0

. (14.36)

According to Eq. (14.32) the constant part of the self-energy,

r̃l = Σ̃l(0) , (14.37)

is relevant and satisfies

∂lr̃l = (1 − ηl) r̃l +
˙̃Γ
(2,0)
l (0) . (14.38)
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In general, r̃l will only flow into the fixed point if the initial coupling r̃0 is properly
fine-tuned. Apart from Zl, there are two more marginal couplings. The first is
the Fermi velocity renormalization factor [Busche et al., 2002]

ṽl = Zl +
∂Σ̃l(Q)

∂q

∣

∣

∣

∣

∣

Q=0

, (14.39)

and the second marginal coupling is the momentum- and frequency-independent
part γ̃l of the rescaled three-legged vertex given in Eq. (14.31). The exact flow
equations for ṽl and γ̃l are

∂lṽl = −ηlṽl +
∂ ˙̃Γ

(2,0)
l (Q)

∂q

∣

∣

∣

∣

∣

Q=0

, (14.40)

and
∂lγ̃l = −ηlγ̃l + ˙̃Γ

(2,1)
l (0; 0; 0) . (14.41)

If we retain only relevant and marginal couplings, then in the momentum-transfer
cutoff scheme the rescaled fermionic Green’s function defined in Eq. (13.35) is in
D = 1 simply approximated by

G̃(Q) ≈ 1

iε− ṽlq − r̃l
. (14.42)

In order to make progress, we have to approximate the inhomogeneities ˙̃Γ
(2,0)
l (Q)

and ˙̃Γ
(2,1)
l (0; 0; 0). In Sec. 13.5 we have proposed an approximation scheme which

retains only the skeleton elements of the two-point functions. In the momentum-
transfer cutoff scheme, the corresponding flow equations (13.44,13.45, 13.46) fur-
ther simplify because we should omit all terms involving the fermionic single-scale
propagator. Unfortunately, the resulting non-linear integro-differential equations
still cannot be solved analytically. In order to simplify these equations further,
let us replace the three-legged vertex on the right-hand sides of these equations
by its marginal part. In this approximation we obtain from Eq. (13.44)

˙̃Γ
(2,0)
l (Q) ≈ γ̃2

l

∫

Q̄

˙̃F (Q̄)G̃(Q+ Q̄) , (14.43)

and from Eq. (13.46)

˙̃Γ
(2,1)
l (0; 0; 0) ≈ γ̃3

l

∫

Q̄

˙̃F (Q̄)G̃2(Q̄) . (14.44)

In order to be consistent, we should approximate G̃(Q) in Eqs. (14.43) and (14.44)
by Eq. (14.42). Then it is easy to see that the second term on the right-hand
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sides of the flow equations (14.40) and (14.41) exactly cancels the contribution
from the anomalous dimension, so that

∂lγ̃l = 0 , ∂lṽl = 0 . (14.45)

For explicit calculations, let us assume that the coupling parameters of the TLM
defined in the introduction are g2 = g4 = f0, so that

˙̃F (Q̄) = δ(1 − |q̄|) f̃0(q̄
2 + ε̄2)

(1 + f̃0)q̄2 + ε̄2
, (14.46)

where f̃0 = ν0f0. From Eqs. (14.36) and (14.43) we then find that the anomalous
dimension η = ηl does not flow and is given by

η =
f̃ 2

0

2

√

1 + f̃0

[

√

1 + f̃0 + 1

]2 , (14.47)

which agrees exactly with the bosonization result [Kopietz, 1997]. We emphasize
that Eq. (14.47) is the correct anomalous dimension of the TLM even for f̃0 � 1,
so that, at least as far as the calculation of η is concerned, the validity of our
simple truncation is not restricted to the weak coupling regime. Recall that the re-
striction to weak coupling is one of the shortcomings of the conventional fermionic
functional RG, which was implemented for the TLM in Ref. [Busche et al., 2002].
Because η is finite, the running vertex Γ(2,1)(KF ;KF ; 0) without wave-function
renormalization actually diverges for Λ → 0. However, the properly renormalized
vertex γ̃l ∝ ZlΓ

(2,1)(KF ;KF ; 0) remains finite due to the vanishing wave-function
renormalization

Zl = e−ηl =

(

Λ

Λ0

)η

(14.48)

for l → ∞. Integrating the flow equation (14.32) for the self-energy with the
inhomogeneity approximated by Eqs. (14.43) and (14.42), we obtain, after going
back to physical variables

Σ(kF + k, iω) =

−
∫ Λ0

−Λ0

dk̄

2π

∫ ∞

−∞

dω̄

2π

(

Λ0

|k̄|

)η
fRPA(k̄, iω̄)

i(ω + ω̄) − vF (k + k̄)
,

(14.49)

where the RPA screened interaction is

fRPA(k̄, iω̄) = f0
v2
F k̄

2 + ω̄2

v2
c k̄

2 + ω̄2
. (14.50)
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Here vc = vF

√

1 + f̃0 is the velocity of collective charge excitations. Eq. (14.49)

resembles the GW approximation, [Hedin, 1965] but with the RPA interaction
multiplied by an additional singular vertex correction (Λ0/|k̄|)η. The explicit
evaluation of Eq. (14.49) is rather tedious and will not be further discussed in
this work. The resulting spectral function A(k, ω) agrees at k = kF with the
bosonization result (even at strong coupling), but has the wrong threshold singu-
larities for |ω| → vc|(k ± kF )|. So far we have not been able to find a reasonably
simple truncation of the exact flow equations which completely produces the spec-
tral line shape of A(k, ω), as predicted by bosonization or by our exact solution
presented in the previous section. Whether a self-consistent numerical solution of
the truncation discussed in Sec. 13.5 [see Eqs. (13.44)-(13.46)] would reproduce
the correct spectral line-shape or not remains an open problem. The numerical
solution of these equations seems to be rather difficult and is beyond the scope
of this work.
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Chapter 15:

Summary and outlook

In the second part of this thesis we have developed a new formulation of the
functional renormalization group (fRG) for interacting fermions, which is based
on the explicit introduction of collective bosonic degrees of freedom via a suit-
able Hubbard-Stratonovich transformation. Our method unifies two well-known
approaches to interacting Fermi systems. On the one hand, the purely fermionic
version of the fRG has been used by many authors during the last decade to
analyze the phase diagram of the two-dimensional Hubbard model and its exten-
sions. On the other hand, a renormalization group treatment of a theory con-
taining only a fluctuating order parameter is often appropriate in the vicinity of
a quantum critical point. In the latter approach the fermionic degrees of freedom
are integrated out after introducing a bosonic order parameter via a Hubbard-
Stratonovich transformation. In contrast, we explicitly kept the fermionic vari-
ables and derived a hierarchy of flow equations for the vertex functions of the
coupled theory containing fermionic as well as bosonic fields. In this formula-
tion, the interaction of the purely fermionic model appears as a propagator of the
bosonic fields, and a cutoff in the momentum transfer of the interaction can be
introduced on the same footing as a bandwidth cutoff. It is then quite natural
to work with vertices which are one-line-irreducible and cannot be split in half
by cutting either a particle propagator line or a line representing the interaction.
Irreducibility with respect to the interaction line is closely related to two-particle
irreducibility in the zero-sound channel, and an extension of our approach to
other interaction channels would bring us closer to full two-particle irreducibility.
A similar strategy has been used previously in Refs. [Correia et al., 2002], [Wet-
terich, 2004] and [Baier et al., 2004]. However, on a technical level the practical
implementation of the method presented here differs considerably from previous
works.

We have presented the theoretical foundation of our approach and developed
an efficient method to keep track of all terms. As an important application, we
have considered interactions that are dominated by small momentum transfers.
In these forward scattering problems Ward identities play a crucial role. We have
presented a fRG scheme that uses only a cutoff in the momentum transfer of
the interaction. Within this scheme, we have shown that the RG flow does not
violate the Ward identities. In fact, Ward identities emerged as the solution of
the infinite hierarchy of coupled RG flow equations for the one-line irreducible
vertices involving two external fermion legs and an arbitrary number of boson
legs. We could obtain a closed linear integro-differential equation for the single-
particle Green’s function which was solved by a Fourier transformation to real
space and imaginary time. The solution has the form familiar from the functional
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version of bosonization [Kopietz, 1997]. In one dimension, this form is known to
be equivalent to the solution obtained from the operator version of bosonization.
Hence, the Tomonaga-Luttinger model (TLM) has been solved exactly within the
fRG formalism.

In addition, a truncation scheme of the infinite hierarchy of flow equations
has been developed based on the leading terms in an expansion in relevance.
This rather simple truncation was sufficient to obtain the exact anomalous di-
mension of the spinless TLM for arbitrary strength of the interaction. Note that
in the purely fermionic RG, a two loop calculation is necessary to obtain the
leading perturbative contribution to the anomalous dimension. Also, frequency
dependencies of the fermionic four point vertex have to be taken into account,
which is quite intractable in numerical solutions of the flow equations. In our ap-
proach, the effective interaction acquires a frequency dependence even within the
lowest-order approximation. In fact, if we ignore vertex corrections, the effective
interaction is simply given by the RPA. Hence, strong coupling fixed points might
be accessible within our approach. Furthermore, the truncation lead to the cor-
rect scaling behavior of the single particle Green’s function for momenta k = ±kF
at the Fermi points. On the other hand, the threshold singularities for k 6= ±kF
are not correctly reproduced within this approximation. Nevertheless, the result
for the anomalous dimension is quite promising and more elaborate truncation
schemes should therefore be analyzed to obtain accurate results for the spectral
properties. Such truncations would be extremely valuable for situations where
Ward identities are not valid.

The development of a reliable truncation could for example lead to an un-
derstanding of non-universal effects in one-dimensional metals. If the energy
dispersion is not linearized, there should be a finite momentum scale kc (de-
pending on the interaction and the band curvature) below which typical scaling
behavior predicted by the TLM emerges. The calculation of kc as well as the
non-universal spectral line-shape are difficult within bosonization [Busche and
Kopietz, 2000]. On the other hand, within the framework of the functional RG
the inclusion of irrelevant coupling parameters should be possible. Note that
an entire crossover scaling function between the critical regime and the short-
wavelength regime of interacting bosons in D = 3 was recently calculated within
the fRG formalism [Ledowski et al., 2004,Hasselmann et al., 2004].

Our approach might also be useful for the treatment of quantum phase transi-
tions in situations where the fermions cannot be completely integrated out. The
traditional Landau-Ginzburg-Wilson approach in terms of the order parameter
alone breaks down when generic non-critical soft modes are present [Belitz et al.,
2004,Belitz et al., 2001a,Belitz et al., 2001b]. In the purely fermionic fRG sym-
metry breaking manifests itself via the divergence of the relevant order-parameter
susceptibility. The symmetry broken phase itself is difficult to describe within
this approach, although for the simplified case of the reduced BCS model the flow
could recently be continued into the symmetry broken phase [Salmhofer et al.,
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2004]. On the other hand, in our approach the order parameter can be intro-
duced explicitly as a bosonic field, which acquires a vacuum expectation value in
the symmetry broken phase. Previously, a similar approach has been developed
in Ref. [Baier et al., 2004] to study antiferromagnetism in the two-dimensional
Hubbard model.

In summary, we believe that the new formalism presented in this part of the
thesis and possible extensions will be useful for various physical situations.
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Deutsche Zusammenfassung

Diese Dissertation diskutiert in zwei Teilen unterschiedliche Aspekte stark korre-
lierter Elektronensysteme. Neben der Untersuchung physikalischer Fragestellun-
gen werden dabei Vielteilchenmethoden neu entwickelt und angepasst.

Im ersten Teil behandeln wir Magnetisierungstransport in eindimensionalen
Spinringen, die durch ein Heisenbergmodell in einem inhomogenen Magnetfeld
beschrieben werden. In Analogie zu Ladungsdauerströmen in mesoskopischen nor-
malleitenden Metallringen können in einer solchen Geometrie aufgrund quanten-
mechanischer Interferenz der Magnon-Wellenfunktionen Spindauerströme auftre-
ten.

Der zweite Teil der Arbeit beschäftigt sich mit neuen Aspekten der funktiona-
len Renormierungsgruppe für Fermionen. Durch eine Entkopplung der Wechsel-
wirkung mittels einer geeigneten Hubbard-Stratonovich-Transformation führen
wir kollektive bosonische Felder ein und analysieren die Hierarchie von Fluss-
gleichungen für die gekoppelte Feldtheorie. Die Möglichkeit eines Cutoffs im
Impulsübertrag der Wechselwirkung führt zu einer neuen Technik, die wir als
“Wechselwirkungs-Fluss” bezeichnen. In diesem Zugang sind Ward-Identitäten
für Vorwärtsstreuung zu jedem Zeitpunkt des Renormierungsgruppenflusses
gültig, und liefern eine exakte Lösung für eine komplette Hierarchie von Fluss-
gleichungen. Auf diese Weise erhalten wir das bekannte exakte Ergebnis für die
Einteilchen Greensche Funktion des Tomonaga-Luttinger Modells.

I. Spindauerströme in Heisenberg-Ringen

Die fortschreitende Miniaturisierung mikroelektronischer Bauelemente wird in na-
her Zukunft an die fundamentale Grenze atomarer Dimensionen stoßen. Jenseits
von traditionellem Chipdesign gewinnen quantenmechanische Interferenzeffekte
für Systeme an Bedeutung, die kleiner sind als die stark temperaturabhängige
Kohärenzlänge Lφ. Das Fernziel eines Quantencomputers, basierend auf der
kohärenten Zeitentwicklung einer grossen Zahl von Quanten-Bits (Qubits), ver-
spricht eine exponentielle Leistungssteigerung für spezielle Problemklassen. Ein
wichtiges Hindernis bei der Realisierung eines Quantencomputers in Festkörper-
systemen ist die Dekohärenz durch den Einfluss der Umgebung. Dekohärenzzeiten
sind in der Regel für Spin- größer als für Ladungsfreiheitsgerade. Daher gelten iso-
lierte Spins auf Quantenpunkten sowie Spinzustände von molekularen Magneten
als vielversprechende Kandidaten für Qubits. Zudem umfasst das neuentstan-
dende Gebiet der Spintronik (Spin-Elektronik) auch die Nutzung von Spinfrei-
heitsgraden in konventionelleren Bauelementen. Die Untersuchung von Magneti-
sierungstransport erfährt allgemein in letzter Zeit große Aufmerksamkeit, insbe-
sondere in Systemen in denen Spin-Ströme durch itinerante Elektronen getragen
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Abbildung 1: Klassischer Grundzustand eines ferromagnetischen Heisenbergrings
in einem radialen Magnetfeld.

werden. Darüber hinaus zeigen auch auch magnetische Isolatoren interessante
Spin-Transport-Phänomene. So berechneten Meier und Loss kürzlich die Spin-
Leitfähigkeit für Heisenberg-Systeme in einer Zwei-Terminal Geometrie [Meier
and Loss, 2003].

Mesoskopische Systeme besitzen noch keine atomaren Dimensionen, sind
aber klein genug, dass sie durch kohärente Wellenfunktionen beschrieben wer-
den müssen, die sich über das gesamte System erstrecken. Ein wichtiges me-
soskopisches Phänomen ist der Dauerstrom in normalleitenden Metallringen, die
von einem magnetischen Fluss durchsetzt sind. Dieses Phänomen basiert auf dem
Aharonov-Bohm Effekt [Aharonov and Bohm, 1956] und wurde bereits vor langer
Zeit theoretisch vorhergesagt [Hund, 1938,Büttiker et al., 1983]. Die experimentel-
len Schwierigkeiten wurden erst zu Beginn der 1990er Jahre überwunden, als ein
oszillierendes magnetisches Moment als Funktion des angelegten Flusses nachge-
wiesen werden konnte. Trotz vieler theoretischer Arbeiten konnte die Amplitude
des experimentell gemessenen Stroms in diffusiven Leitern nicht befriedigend er-
klärt werden. Im ballistischen Regime genügt jedoch schon ein einfaches Modell
freier Elektronen, um die Größenordnung des beobachteten Stroms zu erklären.

In Analogie zu Ladungsdauerströmen in normalleitenden Metallringen zeigen
wir, dass Spindauerströme in Heisenberg-Ringen auftreten können. Dazu betrach-
ten wir mesoskopische Heisenberg-Ringe in Magnetfeldern, die räumlich derart
inhomogen sind, dass das lokale Feld einen endlichen Raumwinkel bei Umlaufen
des Ringes aufspannt. Das einfachste Beispiel ist ein radiales Feld wie in Abb. 1 ge-
zeigt. Analog zum magnetischen Fluss für Ladungs-Dauerströme kann der Raum-
winkel Ω als geometrischer Fluss fungieren und Magnetisierungs-Dauerströme
hervorrufen. Zur theoretischen Beschreibung dieses Phänomens passen wir die
Formulierung der Spinwellentheorie an diese Situation an. Startpunkt ist der
sogenannte klassische Grundzustand, d.h. die Spinkonfiguration, die die klassi-
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sche Energie minimiert. Für den Fall eines räumlich inhomogenen Magnetfeld
ist dieser klassische Grundzustand in der Regel auch inhomogen (siehe Abb. 1).
In einer semi-klassischen Entwicklung werden nun lokale Quantisierungsachsen
so gewählt, dass die lokale z-Achse in Richtung des klassischen Grundzustandes
zeigt. Die Spinoperatoren werden in dieser Basis durch bosonische Erzeugungs-
und Vernichtungsoperatoren dargestellt [Holstein and Primakoff, 1940,Maleyev,
1957]. Im Gegensatz zur lokalen z-Achse sind die transversalen Quantisierungs-
achsen durch den klassischen Grundzustand nicht eindeutig festgelegt. Vielmehr
führt eine beliebe Rotation um die lokale z-Achse zu einer ebenso akzeptablen
transversalen Basis. Dies führt zu einer Eichfreiheit im Spinwellen-Hamilton-
Operator. Eine spezielle Eichung wird durch ein Eichfeld beschrieben, das den
Winkel der transversalen Quantisierungsachsen zu einer festen Referenzrichtung
angibt.

Die Definition des Spinstrom-Operators in Heisenberg-Magneten in inhomo-
genen Magnetfelder erfordert besondere Sorgfalt. Wir zeigen, dass nur die Kom-
ponente des naiven “Strom-Operators” JijSi × Sj in der Ebene, die durch die
lokalen Ordnungsparameter 〈Si〉 und 〈Sj〉 aufgespannt wird, mit dem Transport
von Magnetisierung verbunden ist. Spinströme sind somit ein direkter Ausdruck
von Quantenkorrelationen und verschwinden in einer Molekularfeldnäherung oder
im klassischen Grundzustand. In führender Ordnung der Spinwellentheorie kann
der Spinstrom-Operator als Ableitung des Hamilton-Operators nach dem Eichfeld
berechnet werden. Für die elektrischen Dipolfelder, die durch einen stationären
Fluss von magnetischen Dipolen erzeugt werden, leiten wir ein Biot-Savart-artiges
Gesetz her.

Für einen mesoskopischen ferromagnetischen Ring bei tiefen Temperaturen T
in einem inhomogenen Magnetfeld der Stärke B berechnen wir den Spin-Strom in
führender Ordnung der Spinwellen-Theorie. Unter optimalen Bedingungen kann
dieser den Wert gµB(T/~) exp[−2π(gµBB/∆)1/2] erreichen, wobei g das gyroma-
gnetische Verhältnis, µB das Bohrsche Magneton und ∆ die Energielücke zwi-
schen dem Grundzustand und der ersten Spinwellenanregung ist. Zur Bewer-
tung der experimentellen Detektierbarkeit des beschriebenen Effekts liefern wir
eine Abschätzung der Größenordnung der generierten elektrischen Dipolfelder.
So kommen wir zu dem Schluss, dass die Messung eines Potenzialabfalls in der
Größenordnung eines Nanovolts über die Grösse des mesoskopischen Ringes er-
forderlich ist.

Antiferromagnetische Ringe können ebenfalls Spin-Dauerströme tragen. Wir
zeigen dies für sogenannte Haldane-Gap Systeme, d.h. für Spinsysteme mit
ganzzahligem Spin S, mittels einer modifizierten Spinwellentheorie. Aufgrund
von Quantenfluktuationen hat der Strom einen endlichen Grenzwert von der
Größenordnung (−gµN)c/L bei verschwindender Temperatur, in enger Analo-
gie zu ballistischen Strömen in mesoskopischen normalleitenden Ringen. Hierbei
ist c die Spinwellen-Geschwindigkeit, g das gyromagnetische Verhältnis und µB

das Bohrsche Magneton. Dieses Ergebnis setzt voraus, dass die antiferromagne-
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tische Korrelationslänge ξ größer ist als der Umfang L des Ringes. Für ξ � L
ist der Strom exponentiell unterdrückt. Spindauerströme treten auch in inho-
mogenen elektrischen Feldern auf und können mit denselben Methoden wie für
inhomogene Magnetfelder berechnet werden.

Eine experimentelle Bestätigung des Effekt von Spindauerströmen in meso-
skopischen Heisenberg-Ringen stellt eine große Herausforderung dar. Neben der
Messung eines Potentialabfalls in der Größenordnung eines Nanovolts über die
Grösse des Rings ist die Generierung eines verhältnismäßig starken Magnetfel-
des mit Inhomogenitäten auf mesoskopischer Skala erforderlich. Ausserdem sind
wohlcharakterisierte Ringe mit großer Austauschkopplung J nötig. Angesichts der
schnellen Entwicklung im Bereich der Spintronik erscheint es aber nicht unreali-
stisch, dass in naher Zukunft Techniken zur Verfügung stehen, die den Nachweis
des hier vorhergesagten Effekts ermöglichen werden.

II. Funktionale Renormierungsgruppe mit kollek-

tiven Feldern

Stark korrelierte Elektronensysteme stellen große Herausforderungen an die theo-
retische wie auch experimentelle Festkörperphysik. Die experimentellen Systeme
umfassen z.B. die Hochtemperatur Supraleiter, organische und anorganische ani-
sotrope (quasi-) eindimensionale Leiter, sowie Schwerfermionensysteme, und zei-
gen eine extrem reichhaltige Phänomelogie verschiedener Phasen.

Wohlbewährte Konzepte in drei Dimensionen, wie die Molekularfeldtheorie
oder die Landausche Theorie der Fermiflüssigkeiten, versagen in niedrigen Di-
mensionen aufgrund von starken Fluktuationen. Für eindimensionale Leiter wur-
de das Konzept einer Luttinger-Flüssigkeit entwickelt um die Niedrigenergie-
Eigenschaften zu beschreiben. Die Technik der Bosonisierung liefert Ergebnis-
se für Korrelationsfunktionen, basiert jedoch auf Annahmen, die die Gültigkeit
auf extrem kleine Energieskalen beschränken. Eine Lockerung dieser Annah-
men zur Beschreibung der Grenzen des Luttinger-Flüssigkeits-Konzepts ist
notorisch schwierig. Experimentell werden viele Anzeichen für Nicht-Fermi-
Flüssigkeitsverhalten auch in (quasi-) zweidimensionalen Systemen beobachtet.
Viele Autoren haben somit versucht das Konzept der Luttinger-Flüssigkeit auf
zwei Raumdimensionen zu erweitern. Bis auf recht künstliche Modelle ist die
Entwicklung einer konsistenten Theorie für Luttinger-Flüssigkeiten in zwei Di-
mensionen jedoch bisher nicht gelungen.

Zur theoretischen Modellierung stark korrelierter Systeme werden weiter-
hin verschiedenartige Zugänge entwickelt. Ein vielversprechendes Verfahren
zur Untersuchung der Niedrigenergie-Eigenschaften wechselwirkender niedrigdi-
mensionaler Systeme ist die Renormierungsgruppe (RG). Ursprünglich wurden
Renormierungsgruppen-Methoden als formales Werkzeug in der Quantenfeldtheo-
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rie entwickelt, um Divergenzen in der diagrammatischen Störungstheorie zu kon-
trollieren. Der Zusammenhang mit dem Verhalten der Theorien unter der Trans-
formation von Längenskalen wurde später von Wilson ausgearbeitet und führte
zu einem detailierten Verständnis von (klassischen) kritischen Phänomenen durch
RG-Flüsse in einem großen Raum möglicher Hamilton-Operatoren. Formal exak-
te Versionen von RG-Transformationen wurden schon früh hergeleitet und später
elegant in der sogenannten funktionalle Renormierungsgruppe (fRG) formuliert,
die auf kontinuierlichen Flussgleichungen für verschiedene erzeugende Funktiona-
le basiert.

In den letzten zehn Jahren wurde die Renormierungsgruppe verstärkt
auch auf fermionische Systeme angewandt. Die Niedrigenergie-Moden, die in
Störungstheorie zu Divergenzen führen, sind hierbei mit lückenlosen Anregun-
gen in der Nähe der Fermi-Fläche vebunden, die in Raumdimensionen D > 1
eine D − 1 dimensionale Manigfaltigkeit bildet. Die funktionale Version der
Renormierungsgruppe ist besonders geeignet, um die Kopplungsfunktionen zu
behandeln, die für D > 1 betrachtet werden müssen. Mit der fRG-Technik
wurde das zweidimensionale Hubbard-Modell intensiv studiert. In allen Rech-
nungen wird eine Divergenz der fließenden Kopplungen bei niedrigen Energi-
en beobachtet. Die Art und Symmetrie der singulärsten Kopplungen werden als
Hinweis auf die dominante Instabilität interpretiert, und so können Phasendia-
gramme gewonnen werden. Aufgrund des divergenten Flusses ist die tatsächliche
Niedrigenergie-Physik jedoch nicht direkt zugänglich. Neben dem Szenario der
Symmetriebrechung besteht zumindest für spezielle Geometrien der Fermi-Fläche
auch die Möglichkeit von Nicht-Fermi-Flüssigkeits-Verhalten mit verschwinden-
den Quasiteilchen-Gewichten an der Fermifläche. Es stellt sich somit die Frage,
ob nicht alternative Methoden zur Beschreibung der Physik bei sehr niedrigen
Energien entwickelt werden können.

Ein weiterer Zugang zu wechselwirkenden Fermi-Systemen beschreibt die Um-
gebung eines quantenkritischen Punktes. In diesem von Hertz und Millis initiier-
ten Zugang [Hertz, 1976, Millis, 1993] wird das System allein durch einen bo-
sonischen fluktuierenden Ordnungsparameter beschrieben, nachdem die fermio-
nischen Freiheitsgrade ausintegriert wurden. Eine Wilsonsche Impulsschalen-RG
wird anschließend benutzt, um das kritische Verhalten der weichen bosonischen
Moden zu beschreiben.

Bosonische kollektive Moden sind von besonderer Bedeutung in eindimen-
sionalen Systemen, in denen sie die natürlichen Quasiteilchen-Anregungen dar-
stellen. Wird die Dispersion in der Nähe der Fermipunkte linearisiert, so lie-
fert die Technik der Bosonisierung exakte Lösungen für Korrelationsfunktio-
nen. Neben der weit verbreiteten Operator-Variante kann die Bosonisierung
auch in der Sprache der Funktionalintegrale formuliert werden, und so auch auf
höhere Dimensionen verallgemeinert werden [Kopietz, 1997]. In dieser Formulie-
rung wird die Dichte-Dichte-Wechselwirkung mittels einer Hubbard-Stratonovich-
Transformation entkoppelt und die Fermionen anschließend, wie im Hertz-
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Zugang, ausintegriert. Für eine linearisierte Dispersion garantiert dann das soge-
nannte Closed-Loop-Theorem, dass die generierte bosonische Wirkung quadra-
tisch ist.

Im zweiten Teil dieser Arbeit entwickeln wir eine neue Formulierung der
funktionalen Renormierungsgruppe für wechselwirkende Fermionen, die auf der
expliziten Einführung kollektiver bosonischer Freiheitsgrade durch eine geeigne-
te Hubbard-Stratonovich-Transformation beruht. Unser Zugang vereint die rein
fermionische Formulierung mittels Grassmannscher Funktionalintegrale mit dem
Hertz-Zugang. Im Gegensatz zum Hertz-Zugang eliminieren wir jedoch nicht die
Fermionen, sondern leiten eine exakte Hierarchie von RG Flussgleichungen für
die Vertizes der so entstandenen gekoppelten Feldtheorie her, die sowohl fermio-
nische als auch bosonische Felder enthält. In dieser Formulierung erscheint die
Wechselwirkung des rein fermionischen Modells als Propagator des bosonischen
Feldes. Ein Cutoff im Impulsübertrag der Wechselwirkung kann somit gleich-
berechtig zum üblichen Band-Cutoff eingeführt werde. In unserer Formulierung
werden Vertizes zu benutzen, die sowohl irreduzibel bzgl. des Teilchen-Propator
als auch der Wechselwirkungslinie sind. Irreduzibilität bzgl. der Wechselwirkungs-
linie is eng verbunden mit Irreduzibilität im Zero-Sound-Kanal und eine Erwei-
terung unseres Zugang auf andere Kanäle der Wechselwirkung könnte uns näher
an eine vollständige Zweiteilchen-Irreduzibilität bringen. Ein ähnliche Strategie
wurde zuvor schon in [Correia et al., 2002], [Wetterich, 2004] und [Baier et al.,
2004] vorgeschlagen. Auf der technischen Ebene unterscheidet sich die praktische
Implementierung der hier vorgestellten Methode jedoch beträchtlich von verher-
gehenden Arbeiten.

Wir behandeln hauptsächlich das theoretische Fundament unseres Zugangs
und entwickeln eine effiziente Methode zur übersichtlichen Darstellung aller auf-
tretenden Terme. Als eine wichtige Anwendung betrachten wir Wechselwirkun-
gen, die durch kleine Impulsüberträge dominiert werden und für die Ward-
Identitäten eine entscheidende Rolle. Wir stellen eine fRG-Methode vor, die nur
einen Cutoff im Impulsübertrag der Wechselwirkung verwendet. Im Rahmen die-
ser Methode zeigen wir, dass der RG-Fluss die Ward-Identitäten nicht verletzt.
Vielmehr treten Ward-Identitäten als Lösung einer unendlichen Hierarchie von
gekoppelten RG-Flussgleichungen für einlinien-irreduzible Vertizes auf, die zwei
externe Fermi-Beinchen und eine beliebige Anzahl von Bose-Beinchen besitzen.
Wir erhalten eine geschlossene Integro-Differenzial-Gleichung für die Einteilchen
Greensche Funktion, die durch eine Fourier-Transformation in den Realraum und
zu imaginärer Zeit gelöst werden kann. Die Lösung hat die aus funktionalen Bo-
sonisierung bekannte Form [Kopietz, 1997]. Es ist weiterhin bekannt, dass diese
Form in einer Dimension äquivalent zum Ergebnis der Operator-Version der Bo-
sonisierung ist. Somit ist es gelungen, das Tomonaga-Luttinger-Modell (TLM) im
Rahmen der fRG exakt zu lösen.

Außerdem entwickeln wir ein Trunkierungsschema für die unendliche Hier-
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archie von Flussgleichungen basierend auf den führenden Termen einer Ent-
wicklung nach Relevanz. Diese vergleichsweise einfache Trunkierung ist schon
ausreichend, um die exakte anomale Dimension des spinlosen TLM für beliebi-
ge Wechselwirkungsstärken zu erhalten. Dies sollte mit der rein fermionischen
Formulierung der RG verglichen werden, im Rahmen derer eine Zweischleifen-
Rechnung nötig ist, um den führenden störungstheoretischen Beitrag zur anoma-
len Dimension zu erhalten. Weiterhin müssen Frequenzabhängigkeiten des fer-
mionischen Vierpunkt-Vertex bestimmt werden, was in numerischen Lösungen
der Flussgleichungen derzeit nicht möglich ist. In unserem Zugang entstehen
Frequenzabhängigkeiten schon in der führenden Näherung. Wenn Vertexkorrek-
turen vernachlässigt werden, ist die effektive Wechselwirkung durch die RPA-
Näherung gegeben. Daher sind Starkkopplungs-Fixpunkte mit unserem Verfahren
möglicherweise zugänglich. Weiterhin führte die Trunkierung zum korrekten Ska-
lenverhalten für die die Einteilchen Greensche Funktion für Impulse k = ±kF an
den Fermi-Punkten. Allerding werden in dieser Näherung die algebraischen Sin-
gulariatäten für k 6= ±kF nicht korrekt reproduziert. Trotzdem ist das Ergebnis
für die anomale Dimension vielversprechend und erweiterte Trunkierungsschema-
ta sollten untersucht werden, um bessere Ergebnisse für spektrale Eigenschaften
zu erhalten. Derartige Trunkierungen wären extrem wertvoll in Situationen in
denen Ward Identitäten nicht gelten.

Die Entwicklung verlässlicher Trunkierungen könnte zum Beispiel zu einem
Verständnis von nicht-universellen Effekten in eindimensionalen Metallen führen.
Wenn die Energiedispersion nicht linearisiert wird, sollte eine endliche Impuls-
skala kc, abhängig von der Wechselwirkung und der Bandkrümmung, existieren
unterhalb derer das Skalenverhalten des TLM auftritt. Die Berechnung von kc so-
wie der nicht-universelle spektralen Linienform ist im Rahmen der Bosonisierung
schwierig [Busche and Kopietz, 2000]. Im Rahmen der funktionalen RG sollte eine
Einbeziehung irrelevanter Kopplungen jedoch möglich sein. In diesem Zusammen-
hang verweisen wir darauf, dass eine komplette Crossover-Skalenfunktion zwi-
schen dem kritischen Regime und dem Regime kurzer Wellenlängen kürzlich für
wechselwirkende Bosonen in D = 3 mit dem fRG-Formalismus gelungen ist [Le-
dowski et al., 2004,Hasselmann et al., 2004].

Unser Zugang könnte auch nützlich zur Beschreibung von quantenkritischen
Phänomenen in Situationen werden, die ein Ausintegrieren der Fermionen nicht
erlauben. Der traditionelle Landau-Wilson-Ginzburg Zugang allein über einen
Ordnungsparameter bricht zusammen, wenn generische, nicht-kritische weiche
Moden existieren [Belitz et al., 2004, Belitz et al., 2001a, Belitz et al., 2001b].
In der rein fermionischen fRG tritt Symmetriebrechung durch die Divergenz der
relevanten Suszeptibilität für den Ordnungsparameter in Erscheinung. Die sym-
metriegebrochene Phase selbst ist in diesem Zugang schwer zu beschreiben, ob-
wohl es für den einfacheren Fall des reduzierten BCS-Modells kürzlich gelungen
ist, den Fluss in die symmetriegebrochene Phase fortzusetzen [Salmhofer et al.,
2004]. Andererseits kann in unserem Zugang der Ordnungsparameter explizit als
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bosonisches Feld eingeführt werden. Dieser erhält dann einen Vakuumerwartungs-
wert in der symmetriegebrochenen Phase. Ein ähnlicher Zugang wurde kürzlich
in Ref. [Baier et al., 2004] entwickelt, um Antiferromagnetismus im zweidimen-
sionalen Hubbard-Modell zu untersuchen.

Zusammenfassend glauben wir, dass der im zweiten Teil der Arbeit vorge-
stellte neue Formalismus und seine möglichen Erweiterungen für eine Vielzahl
physikalischer Situationen nützlich sein werden.
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Kopietz, Y. Molodtsova, O. Shchegolikhina, N. Auner, and J. Bats,
Structural and magnetic investigations on a new molecular quantum ma-
gnet,
J. Mag. Magn. Mat. 272-276, e755 (2004).
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