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ABSTRACT

Malaria an infectious disease caused by a group of parasitic organisms of the Plasmodium 

genus remains a severe public health problem in Africa, South America and parts of Asia. 

The leading causes for the persistence of malaria are the emergence of drug resistance to 

common antimalarial drugs, lack of effective vaccines and the inadequate control of mosquito 

vectors. Worryingly, accumulating evidence shows that the parasite has developed resistant 

to the current first-line treatment based on artemisinin. Hence, the identification and 

characterization of novel drug targets and drugs with unique mode of action remains an 

urgent priority. The successful sequencing and assembly of genomes from several 

Plasmodium species has opened an opportune window for the identification of new drug 

targets. Cysteine proteases are one of the major drug targets to be identified so far. The use of 

cysteine protease inhibitors coupled with gene manipulation studies has defined specific and 

putative roles of cysteine proteases which include hemoglobin degradation, erythrocyte 

rupture, immune evasion and erythrocyte invasion, steps which are central for the completion 

of the Plasmodium parasite life cycle.

In an aim to discover potential novel antimalarials, this thesis focussed on falcipains (FPs), a 

group of four papain-like cysteine proteases from Plasmodium falciparum. Two of these 

enzymes, FP-2 and FP-3 are the major hemoglobinases and have been validated as drug 

targets. For the successful elimination of malaria, drugs must be safe and target both human 

and wild Plasmodium infective forms. Thus, an incipient aim was to identify protein 

homologs of these two proteases from other Plasmodium species and the host (human). From 

BLASTP analysis, up to 16 FP-2 and FP-3 homologs were identified (13 plasmodial 

proteases and 3 human cathepsins). Using in silico characterization approaches, the intra and 

inter group sequence, structural, phylogenetic and physicochemical differences were 

determined. To extend previous work (MSc student) involving docking studies on the
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identified proteins using known FP-2 and FP-3 inhibitors, a South African natural compound 

and its ZINC analogs, molecular dynamics and binding free energy studies were performed to 

determine the stabilities and quantification of the strength of interactions between the 

different protein-ligand complexes. From the results, key structural elements that regulate the 

binding and selectivity of non-peptidic compounds onto the different proteins were 

deciphered. Interaction fingerprints and energy decomposition analysis identified key 

residues and energetic terms that are central for effective ligand binding.

This research presents novel insight essential for the structure-based molecular drug design of 

more potent antimalarial drugs.
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THESIS OVERVIEW

The central theme of this thesis is the use of in silico (computational) approaches to 

determine the potentiality of plasmodial cysteine proteases as drug targets.

The introductory chapter presents the malarial problem and the current considerations being 

pursued to free the world of malaria. In consideration to the continued mortality and 

morbidity effects from the disease, a detailed timeline of events, advances made and intrigues 

encountered in the fight against the disease is reviewed. As chemotherapy is still the leading 

approach in combatting the disease, an emphasis is given to drug resistance, which is a major 

hurdle in the eradication of the disease. In addition, the current state of the antimalarial drug 

pipeline which ensures, that efficacious and safe antimalarials are always available is 

reviewed. The ongoing search for compounds to eradicate malaria has recently been up

scaled through initiatives and partnerships involving private organizations, academia and 

pharmaceutical companies. In this chapter computational technology, genomics and structural 

biology in modern drug development and discovery are also reviewed. Genomics initiatives 

and bioinformatics in the discovery and elucidation of new drug targets are also reviewed. A 

major advance is the identification of potential drug targets that can be considered in the 

development of new antimalarial drugs.

This thesis mainly focusses of falcipains (FPs) and homologs, cysteine proteases used to 

degrade haemoglobin and other proteins to their constituent amino acids in Plasmodium 

species. FPs have been identified: FP-1, FP-2, FP2’ and FP-3. FP-2 and FP-3 are considered 

valid drug targets.

Chapter 2 mainly focuses on identifying homologs (related proteins) of FP-2 and FP-3 from 

other Plasmodium species that infect humans and laboratory model organisms such as mice 

or rats. As these proteins are closely related to human cathepsins, BLASTP search tool was
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used to identify human homologs. Understanding protein structure is key in elucidating its 

mechanism of action, and how it can be therapeutically targeted. Thus, several in silico 

approaches were used to determine differences in the sequence, structure, evolution and 

physicochemical properties between the two classes of proteases (plasmodial proteases and 

human cathepsins). Several sequence, structural and physicochemical similarities and 

differences were established between the plasmodial and human proteins and also within the 

individual classes.

Chapter 3 describes the use of GROMACS, a molecular dynamics (MD) simulation software 

to study the time depended stability and evolution of protein-ligand complexes. This was a 

continuation of previous work by a former MSc student who performed docking studies using 

two sets of compounds: Cyanopyrimidine nitrile derivatives (CPs) and a South African 

natural compound (5PGA) and its Zinc Is Not Commercial (ZINC) analogs. For the CPs, 10 

nanoseconds (ns) simulations were performed while for the 5PGA and its analogs the 

simulation runs were for 20 ns. The dynamic ligand binding process was analysed. This led to 

the identification of residues critical to ligand binding of the ligands and the binding modes 

of the different ligands. Additional work describing a pipeline to allow for the automation of 

MD simulation previously published is also described.

Chapter 4 mainly describes the quantification of the energetics between the different protein- 

ligand systems studied in Chapter 3 using MD simulations. Using single trajectory approach 

method through the g_mmpbsa tool, the overall binding free energy (BFE) between each 

protein-ligand complex is studied. The overall BFE was decomposed to determine the 

individual contributions of the van der Waals, electrostatic, polar solvation and solvent 

accessible surface area energy terms. In addition, the individual contribution of each amino 

acid (aa) in the proteins was determined to identify key binding residues. Part of this work
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and corresponding results from Chapter 3 has been published in the Journal of Biomolecular 

Structure and Dynamics while the rest in the Nature Scientific Reports Journal.

Chapter 5 is work in progress including the mining of non-peptide natural compounds with 

inhibitory activity against plasmodial proteases from the South African Natural Compounds 

Database (SANCDB). This is a fully referenced growing chemical database developed by 

members (myself included) of Research Unit of Bioinformatics (RUBi) and has previously 

been published. Presently, potential hits against FP-2 and FP-3 and their homologs from P. 

knowlesi, Knowlesipain-2 (KP-2) and Knowlesipain-3 (KP-3) have been identified. The 

newly identified hits are predicted to have better inhibition potencies compared to previously 

tested compound from South Africa against the already tested proteins.

Finally, Chapter 6 summarizes up the major findings while also presenting the future 

prospects.
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CHAPTER 1

Malaria

Malaria is a two word name with a Latin prefix ‘mala ’ and Italian suffix ‘aria’ together 

meaning bad air. It was initially referred to as the “marsh fever " as it was associated with 

marshland or swampy areas. Malaria is an infectious disease caused by a group o f obligate 

single-cell parasitic organisms o f the Plasmodium genus and remains a serious global health 

problem. In 2014, the World Health Organization (WHO) estimated that about 97 countries 

and territories had ongoing active transmission o f malaria with 3 billion people being at a 

risk o f infection globally. The majority o f these areas are in tropics o f Africa, Asia and South 

America. In 2013, ~0.5 million people died o f malaria with Africa accounting for more than 

90% o f these. This chapter reviews malaria, the global strategies adopted to eliminate the 

disease, the major hurdles in achieving a malaria free world and the current state o f the 

antimalarial drug discovery pipeline. Technological advances in research and development 

(R&D) o f drugs and the resulting gains will also be discussed.
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1.1 Malaria: The ever elusive global health challenge

Malaria remains an exigent problem in global public health with roughly half of the world 

population living in malaria endemic regions, mainly tropical and subtropical regions of 

Africa, South America and Asia1. Malaria is the most prevalent and severe tropical disease 

causing more than a half a million deaths annually, 90% of which are pregnant mothers and 

children under five years from Africa1. Malaria is caused by a group of obligate erythrocytic 

protozoan parasites of the genus Plasmodium that infect vertebrate hosts such as reptiles, 

birds and mammals. Each plasmodial species however, has a narrow host range such that in 

vivo infection studies of species targeting humans can only be performed on primates . 

Transmission occurs after a bite from an infected female mosquito from ~30 Anopheles 

species, which introduces sporozoites into the host blood stream. In humans, malaria is 

caused by five distantly related species viz. P. falciparum (Pf), P. vivax (Pv), P. ovale (Po), P. 

knowlesi (Pk) and P. malariae (Pm)1,3,4. Pk was originally known as the malarial pathogen of 

the pig-tailed (Macaca nemestrina) and long tailed macaques (Macaca fasicularis) but has 

recently been reported to infect humans in Asia5,6. The initial forms of Pk have close 

morphological similarity with Pm . However, it has a shorter life cycle of 24 hours (hrs) 

compared to Pm such that delayed treatment may lead to life threatening complications due to
o

an increased parasite load in the host blood stream and kidney dysfunction . Highly adaptable 

P f is the most virulent species accounting for most death and disease cases in Africa1,3,4. It 

binds to the endothelium lining during the erythrocytic phase of infection and accumulates in 

organs including the brain9. Evolutionarily, P f  and its closest relative P. reichenowi (Pr), 

which infects chimpanzees, form a separate taxonomic group known as the hominid clade . 

Pv is the mostly widely distributed human parasite. However, the prevalence of the Duffy 

negative trait in African populations lowers the threat of Pv which causes benign malaria in 

temperate regions of the world. Po and Pm are less prevalent and less lethal than P f and Pv.
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In addition to the human-specificplasmodia, several species that infect non-human laboratory

animals used as models to understand the parasite biology, host-parasite interactions and for

antimalarial drug development10. These include P. berghei (Pb), P. chabaudi (Pc) and P.

yoelii (Py) that infect mice and rats.

1.2 Plasmodium life cycle

Salivary
gland

Merosomes

Sporozoites

Ookinete

Gametes ’Gametocytes

Scmzoint

Hvpnozoitc

Oocvst

I ropnozoite

Host

Vector A -  PRE-ERYTHROCYTIC (LIVER) STAGE
B -  ERYTHROCYTIC (BLOOD) STAGE
C -SPO K O G O N IC  STAG E

Figure 1.1: Plasmodium parasite life cycle. A schematic representation of the plasmodial 
life stages in vector and host. During mosquito feeding, sporozoites are inoculated into the 
host circulatory system by an infected female Anopheles mosquito and invade hepatocytes 
(A). Sporozoites then divide into haploid merozoites which are released back into the 
circulatory system to initiate the blood stage (B). Merozoites invade RBCs where the 
reproduce asexually leading to the release of thousands of merozoite progeny which invade 
uninfected erythrocytes. A fraction of the circulating merozoites in iRBCs develop to sexual 
gametocytes for ingestion by a feeding vector. In the midgut of the mosquito, the 
gametocytes mature into gametes marking the beginning of the sexual or sporogonic phase 
(C). After fertilization, a diploid zygote is formed which develops to an oocyst through a 
mobile ookinete. The oocysts grow and divide into thousands of active haploid sporozoites. 
Finally the oocyst ruptures releasing sporozoites into the vector hemocoel from where they 
migrate into the salivary glands for transmission to a vertebrate host. Adapted from Winzeler 
EA, 200811.
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Plasmodium is a multi-stage protozoan with an intricate life cycle alternating between an 

arthropod vector and a vertebrate host such as humans . The incubation period varies 

between seven and 30 days depending on the plasmodial species with P f  having the shortest 

and Pm the longest. The life cycle consists of three phases: a pre-erythrocytic (liver or 

hepatic), an erythrocytic (blood), and a sporogonic (vector) stage accompanied by a series of 

morphological and biochemical transformations (Figure 1.1). During the liver and the blood 

stage the parasite life is intracellular in hepatocytes and erythrocytes respectively. The 

sporogonic or asexual reproductive stage occurs in the infected female mosquito giving rise 

to plasmodial sporozoites which are injected into the host blood stream during a blood 

feeding sessions.

To avoid blood clotting and pain, the mosquito saliva contains anti-hemostatic enzymes and 

anti-inflammatory chemicals14. Sporozoites are nucleated highly motile cells with a single 

mitochondrion, an apicoplast and a single microtubule interconnected by tethering proteins. 

In the blood stream, sporozoites migrate to the liver, cross several Kupffer cells and invade 

the hepatocytes15. Sporozoites carry “sporozoite surface proteins” such as thrombospondin- 

related anonymous protein (TRAP) and circumsporozoite protein (CSP) thought to function 

in recognition and anchoring during the hepatocytes entry process15. In the hepatocytes, 

sporozoites proliferate asexually and form merosomes containing thousands of haploid 

spindle-shaped merozoites. Depending on the parasite species, this process may take weeks to 

months. In P f and Pm., the maturation process takes one to two weeks. In Pv and Po 

sporozoites remain in the human hepatocyte for months to years as hypnozoites before 

maturing and causing late malaria lapses16. The merosomes are released into the blood stream 

where they disintegrate releasing merozoites, which in turn invade erythrocytes initiating the 

erythrocytic stage. During the pre-erythrocytic stage, the disease has no clinical
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manifestations of the disease. The host immune defence mechanisms are thus not activated 

allowing the circulating merozoites to survive.

The erythrocyte invasion process by merozoites is mediated by an association of proteins 

from both the merozoites and host red blood cell (RBC). Proteins involved include the 

merozoites surface proteins (MSP) 1, 7 and 9 which in turn bind to the erythrocyte band 3 

protein . At the apex of the merozoites are rhoptries and micronemes, a mixture of 

proteinases and metabolic enzymes that help in the invasion process through the erythrocyte 

membrane. In Pv, invasion requires the recognition of the Duffy blood group antigen, a 

known receptor for the Interleukin-8 (IL-8). After invasion, the erythrocytic stage begins, and 

merozoites undergo a trophic period during which they enlarge losing their apical rings, 

conoid, and rhopteries structures while their nuclei become lobulated. The early trophozoite 

is referred to as ‘ring form’. Its enlargement is accompanied by active metabolism involving 

ingestion of host cytosol and degradation of haemoglobin into its constituent aa residues. A 

by-product of the degradation is iron containing protoporphyrin IX which could generate 

potentially toxic reactive oxygen species (ROS) though the Fenton reaction19,20. Despite 

lacking heme oxygenases, Plasmodium parasites convert the free heme to unreactive dark, 

crystalline hemozoin (Hz). Lin et a l, (2015) established that Pb mutant parasites lacking 

haemoglobin degradation enzymes still develop into schizoints and gametocytes without 

forming Hz . The trophic stage is characterized by multiple rounds of nuclear division 

without cytokinesis leading to round schizoints, each of which contains 12-16 merozoites9. 

Upon rupture of the infected red blood cell (iRBC), the merozoites are released into the blood 

stream to initiate another round of replication.

The invasion of RBC, degradation of haemoglobin and the ultimate rupturing are dependent 

on proteases22. These proteases constitute the main focus of this thesis. To avoid parasite 

clearance by the spleen, P f  has evolved a mechanism known as cytoadherance whereby
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trophozoites and schizoints bind host endothelial receptors such as P f  erythrocyte membrane 

protein (PfEMP) remaining in capillary venules leading to malaria complications such as 

cerebral and placental malaria . Rupturing of iRBC releases Hz. Hz, initially thought to be a 

metabolic waste product only, can accumulate in the lung, liver, brain and spleen leading to 

malaria immunopathogenesis . The erythrocytic stage is responsible for the clinically 

observed pathological symptoms such as cycles of fever paroxysms, nausea, abdominal and 

back pains. P f  infection can also lead to acute renal failure, cerebral malaria, metabolic 

acidosis, hemoglobinuria, blood coagulation abnormalities, hypoglycemia and acute 

respiratory distress syndrome (ARDS) . A small proportion of released merozoites develop 

into male (microgametocytes) and female (macrogametocytes) gametocytes, the sexual forms 

of the parasite, although the mediators of this process largely remain unknown. The sexual 

cycle or gametogenesis starts with gametocyte ingestion by a mosquito. Male gametocytes 

form microgametes through exflagellation while the female gametocytes form the 

macrogametes. In the mosquito mid gut, the microgametes fertilize the forming a zygote, 

which later develops into a motile ookinete which penetrates the gut epithelial cells and forms 

an oocyst. The oocyst undergoes several rounds of asexual replication producing sporozoites 

released into the mosquito hemocoel and from where they eventually migrate to the mosquito 

salivary glands to inoculate a new human host during the next blood meal perpetuating the 

parasitic life cycle (Figure 1.1).

1.3 Antimalarial drug history

1.3.1 The role of natural products in antimalarial drug discovery

Malaria has killed humans throughout recorded history. Many advances have been made in 

developing drugs against malaria. Natural products provided lead compounds for different 

drugs26-29. Natural products have complex molecular architectures with unique arrangement

6



of functional groups. Their structural diversity and chemical properties are critical to drug

30discovery. The main antimalarial drugs have all been developed from natural products .

Figure 1.2: 2D chemical structures of the early antimalarial drugs. A) Plasmodicidal 
natural 4-methanolquinoline alkaloids quinine (1) and quinidine (2) from the Cinchona tree. 
B) The first synthetic forms of antimalarial drugs from Methylene blue (3). Adapted from 
Schlitzer M, 200731. Structures were drawn using ChemDraw Ultra 10.032.

In the 1620s, Jesuit missionaries discovered the healing powers of cinchona tree (Cinchona

calisaya) bark in Peru and Bolivia forests. A century later, the active compounds quinine (1)

and cinchonine (2) were isolated by Caventou Joseph and Pierre Pelletier (Figure 1.2) . Due

to war related embargos and the heavy demand for cinchona, William Henry Perkins

attempted to synthesise quinine in 1856. He synthesized textile dye named ‘mauve’ starting a

dye industry in Germany, several of which were used in medicine while microbiologists used
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them to identify and classify organisms. In 1880, Plasmodium itself was discovered by 

Charles Louis Alphonse, a French army surgeon. In 1886, Camillo Golgi established that 

there were two forms of malaria based on the symptoms and number of merozoites in the 

blood stream. The first species to be classified were Pv and Pm in 1890 by Giovanni Batista 

and Raimondo Filetti34 Mosquitoes were identified as the vector fifteen years later by Ronald 

Ross . In 1891, Paul Ehrlich used methylene blue (3) to stain malaria parasites and proposed 

that the dye could be used to kill the parasites. His hypothesis was confirmed when he cured 

two malarial patients using methylene blue36.

In the 1920s, scientists at the chemical company Bayer modified methylene blue by replacing 

its side methyl groups with unique heterocyclic groups. This created the first aminoquinoline 

named plasmoquine or pamaquine (4) and several other derivatives (Figure 1.2). Due to its 

severe toxic side effects, pamaquine was discontinued in 1925 and replaced by primacune (7) 

three decades later, a more tolerated derivative. Another derivative mepacrine (5) or trade 

name Atebrin® was obtained by fusing the diethylaminoisopentylamino side group with an 

acridine heterocycle. At the time, Japan had invaded Indonesia blocking the supply of 

quinine. American, Australian and British scientists collaborated to develop novel medicines 

to fight malaria, a threat to their soldiers. About 20,000 quinine derivatives were synthesised 

and tested identifying a far superior compound named as resochin. Although initially 

abandoned due to severe side effects, it was later reviewed and finally accepted in 1946 under 

new name, chloroquine [CQ] (6) eventually replacing quinine . CQ is highly effective in 

clearing the asexual blood forms of major parasites, but it was found to have a very small 

therapeutic index with a 30 mg/kg being considered lethal .

For more than two decades after its discovery in 1946, chloroquine was the most successful 

antimalarial drug and became a mainstay for malaria treatment. The drug was initially mixed
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with table salt and distributed an approach commonly referred to as the “Pinotti’s method”40. 

A decade after CQ was introduced, resistant malarial (CQR) strains were detected in the 

Cambodia and Thailand. The wide-spread application of sub-therapeutic doses of CQ are 

believed to have led to the emergence of drug resistance41. Today CQR strains are present in 

essentially all regions with active malaria.

Figure 1.3: Artemisinin and its derivatives which are the basis of current antimalarial
therapies. Boxed is Artemisinin, the parent compound of all artemisinin based combination 
therapies (ACT) derivatives.

The search for new drugs to address CQR identified an interesting new natural product from 

Artemisia annua (sweet wormwood or qinghao) leaves by Chinese scientists in 1971 led by
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the 2015 Nobel laureate of medicine and physiology Youyou Tu. This was named 

“qinghaosu” translating to the essence of qinghao . In 1972, the pure crystalline form of the 

sesquiterpene lactone was isolated and its structure reported in 1979 under the name 

artemisinin (9)43,44. Due to its higher therapeutic index than CQ and its efficacy in clearing 

CQR strains, artemisinin was considered a “magic bullet” against malaria45,46. Due to its 

inherent poor bioavailability, semisynthetic derivatives viz. dihydroartemisinin (10), 

artemether (11), arteether (12), artesunate (13) and artelinate (14) have been developed 

(Figure 1.3)47.

The unique endoperoxide group or the 1,2,3-trioxane scaffold is the basis for the antimalarial 

activity of artemisinin and its derivatives. Under resolution WHA60.18, the WHO in 2007 

banned the use of artemisinin-based monotherapies, and recommended the use of artemisinin 

based combination therapies (ACTs) to mantain the efficacy of artemisinin . Since 2015, 

five ACTs have been approved by the WHO for the use to treat uncomplicated malaria

cases49,50

1.3.2 Other antimalarial natural products
Owing to the importance of natural products as source of leads for the development of drugs 

against diseases, a well-documented literature of plants with antimalarial activity 

exists26,27,30,51. Many communities in the tropics have identified plants whose crude extracts 

are used to treat malaria. However, the safety and efficacy of such extracts need to be 

checked in order to determine their potential as source of lead compounds for antimalarial 

drugs.

Using high-throughput screening systems (HTS) and in silico approaches, many research 

groups are determining the active compounds of various plant extracts. This has given rise to 

several private and public relational databases of natural compounds such as NAPRALERT ,
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TCM-ID53, NuBBEDB54, ConMedNP55, AfroDB56 and the South African Natural Compound 

Database (SANCDB)29.

A 2003 review by Saxena et al., listed 127 alkaloids, 18 quassioids, 27 triterpenoids, 23 

sesquiterpenes, 21 flavonoids and xanthones, 9 quinones and 25 assorted compounds with 

potential antimalarial activity57. Another listed 31 indole alkaloids with in vitro and in vivo 

anti plasmodial IC50 values in the pM range and desirable selectivity . Another review 

focusing on the ten year window from 1998-2008 of natural compounds provided 266 anti 

plasmodial compounds from a variety of chemical classes59. Several natural compounds with 

high in vivo plasmodia clearance have been identified and may constitute novel antimalarial 

drugs once approved. These include borrelidin, a natural antibiotic compound that inhibits 

threonyl-tRNA synthetase60 and a trioxolane with a peroxide pharmacophore which has also 

shown promising results in clinical trials. It targets all asexual blood stages of P f61.

1.3.3 Synthetic antimalarial drugs
Antimalarials from natural sources such as cinchona and sweet wormwood trees raise 

concerns as supply of their bioactive components cannot be sustained overtime. Various 

synthetic drugs based on quinine or artemisinin have been developed. The continued use of a 

single drug leads to plasmodial drug resistance. The adoption of synthetic chemistry to 

modify the main antimalarial prototypes and synthesize novel derivatives is critical. This is to 

address the drug resistance, increase the bioavailability, half-life, efficacy and safety of 

antimalarials.

1.3.3.1 Classification of available antimalarial drugs
Malarial drugs are classified either to reflect the stage in the malarial life cycle they target or 

their chemical structure and function (Table 1.1).
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Table 1.1: Classification of known antimalarial drugs62,63

Ty p e Class Details

1
8?

-a

Prim ary tissue 
schizontocides

Target pre-erythrocytic form s of Pf and P . N ot w idely used since it is hard 
to predict malarial infection before the erythrocytic symptoms. Include 
pyrim etham ine and prim aquine.

B lood schizontocides
Target the blood asexual form s o f  all malarial species. M ost com m on 
antimalarials. Include m efloquine, quinine, m ecaprine and 4- 
am inoquinolines, sulfones, tetracycline, halofantrine).

*8
g

Gam etocytocides
Target the sexual form s o f  the malarial parasite to block infection to the 
vector. Include the 8-aminoquinolines.

§
Sporontocidal

B lock the sporogonic phase o f  the parasite cycle thus preventing infection 
to the host. Include proguanil, pyrim etham ine and chloroguanide.

Secondary tissue 
schizontocides

Target the hypnozoites o f  Po  and P v  preventing a relapse o f  reactivation 
o f  residual parasites. Adm inistered as a  follow  up o f  the treatm ent after a 
prim ary attack. Include pamaquine, and primaquine).

8-am inoquinolines
First synthetic antim alarial prim aquine and its derivatives tafenoquine and 
bulaquine.

C
he

m
ic

al
 s

tr
uc

tu
re

 a
nd

 o
r f

un
ct

io
n 4-am inoquinolines

D eveloped to overcome chloroquine resistance. Include amodiaquine, 
ferroquine, isoquine, pyronaridine and naphthoquine

Aryl amino alcohols
The natural alkaloid quinine and derivatives mefloquine, halofantrine and 
lumefantrine.

Folate synthesis inhibitors
Type 1: Competitive dihydropteroate synthase inhibitors. Include 
sulfachrysoidine and sulfadoxine. Type 2: Inhibit dihydrofolate reductase. 
Include pyrim etham ine (fansidar), cycloguanil and dapsone.

Protein synthesis inhibitors
Target the protein synthesis in  apicoplasts. Include tetracycline, 
doxycycline, clindam ycin, azithrom ycin, m acrolides lincosamides, 
chloram phenicol and thiazole antibiotics.

Peroxides
A rtem isinin and its derivatives. M ode o f  action not clear bu t thought to 
involve reactive C-radicals. Include artem ether, arteether, artesunate, 
artelinic acid and dihydroartemisinin.

Respiratory chain blockers M ostly napthaquinones. Include atovaquone and buparvaquone.
Iron chelators Deplete iron  for m etabolism  Include desfem oxam ine.

1.4 Antimalarial drug resistance

As a result of co-evolution within their hosts, plasmodia have acquired complicate strategies 

and molecular structures similar to those of the host. Consequently, the selective targeting of 

the parasites has been an extremely daunting task and thus continue to exercise their witty 

nature as colonists to their hosts64,65. Global elimination of malaria is greatly hampered by the 

parasite ability to develop resistance to all available drugs66. Major drug resistance involves 

single or multiple aa substitutions due to insufficient drug levels. Mutations decrease affinity 

to drugs, amplify target production, decrease drug activation or change drug accessibility.
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South East Asia has seen major drug resistance develop due to low immunity and non

compliant use of drugs67. The analyses of Plasmodium resistant strains by molecular, genetic 

and pharmacological techniques have identified key mutations in enzymes or transporters that 

confer drug resistance (Table 1.2).

Table 1.2: Key genes in P. falciparum and aa mutations leading to drug resistance

Drug G ene (M utation) Reference
Chloroquine P fcrt (K76T), Pfcg2, P fcm drl (N86Y) 6 8

Quinine P fcrt (K76T), p fm d r l (N1042D), p fn h e l 6 9 - 7 1

Atovaquone Cytochrome b gene  (Y268S) 7 2

Am odiaquine P fcrt (K76T), P fcm drl (N86Y) 7 3

M efloquine P fm drl 7 3

Sulfonam ides Pfdhfr, p fdhps 7 4

Lum efantrine Pfcrt, p fm d r l 7 5

Piperaquine P fcrt 7 6

Antifolates Pfdhfr  (N51I, C59R, S108N, and I164L) 77

Artem esinins P f  kelch13  (C580Y), PfATPase6  (A623E) 7 8

Pfcrt = Pf chloroquine transporter, Pfmdr1 = Pf multidrug resistance transporter1, Pfdhfr 
= Pf dihydrofolate reductase, Pfdhps = Pf dihydropteroate synthase and Pfnhe1 = Pf 
sodium/proton exchanger 1

21Pb mutants lacking haemoglobin degrading enzymes mature to schizoints and gametocytes 

and are resistant to CQ with major implications for drug development especially against Pv 

and Po that grow inside reticulocytes.

1.5 Antimalarial drug development in the post genomic era

Genome sequencing technologies over the past two decades have determined genome of 

humans (2001)79, Pf (2002) 80 and Anopheles gambiae (Ag) in 200281, a major boost to the 

field of medical sciences . Before, drug development was laborious as target identification 

required cellular studies, pharmacological models and protein biochemical assays. The 

availability of appropriate genomes has allowed comparative genomics and data mining 

identify druggable targets central to the antimalarial drug discovery process.

In 1991, Nobel laureate Walter Gilbert predicted of paradigm shift in biological research in 

the 21st century as genes would be available in electronic databases85. Accordingly genomes
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of many important organisms have been assembled and annotated. Hybrid computational 

methods and conventional drug discovery techniques are being used to develop antimalarial 

drugs. Although a range of drugs have already been developed in the past, more are required 

to overcome malaria. Genomic and protein structural data allow drug targets unique to the

parasites to be focussed on86,87.

1.5.1 Establishing a drug target in antimalarial drug development
A binding pocket in a molecular structure does not automatically guarantee the suitability of

this structure as a drug target. In this thesis, a drug target will be defined as an essential 

protein (receptor, channel, transporter or enzyme) involved in the signalling, transport or 

metabolic pathway whose inhibition may lead to the elimination of the parasite. It is thus 

considered to be essential in the survival of the parasite. To validate a potential drug target, a 

biological explanation of its therapeutic value is critical. In addition, druggability profile of 

the target must be defined to indicate that drug-like molecules can target the binding site with 

sufficient affinity and specificity. An ideal binding pocket should be buried to increase 

interaction surface and be of appropriate size to accommodate a drug-like compound. Several 

methods for assessing druggability have been established that rely on sequence, structure, and 

precedence. Potential drug targets are mostly proteins of essential metabolic pathways or 

transport channels. Bioinformatics together with systems biology, microarray studies, 

comparative proteomics, transcriptome studies, gene network studies, structural studies, 

molecular docking, molecular dynamics and evolutionary studies may be used to identify 

new drug targets88-91.

1.5.2 Antimalarial drug targets
Differences between metabolic pathways of host and Plasmodium offers a plethora of drug 

targets that can be utilised for novel antimalarial drug development ’ . Of great interest is 

events following plasmodia invasion of erythrocytes which include heme degradation and
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detoxification, fatty acid biosynthesis, nucleic acid metabolism, and the oxidative stress . 

Similarly, the blood stage has attracted significant interest. After invading an erythrocyte, 

Plasmodium degrades up to 75% of haemoglobin to its constituent aa. It does so as 1) a 

source of essential aa and energy as the parasite lacks the ability to synthesize them 2) to 

regulate osmotic pressure and 3) to create space for growth and replication94,95. Many endo- 

and exo-peptidases participate to degrade a and P chains of haemoglobin including proteases 

(aspartic, cysteine, serine, threonine, metallo and mixed), plasmepsin I, II, III and IV and 

aminopeptidases96,97. Due to their critical importance, this thesis focuses on P f falcipains 

(FPs), homologs from other plasmodial species as well as human homologs. These enzymes 

belong to the group of cysteine proteases, and will be discussed at length in the following 

chapters. Also of a major attention are the enzymes involved in converting haemoglobin to 

hemozoin. These include histidine-rich proteins, heme detoxification protein (HDP), heme 

binding proteins and reduced glutathione molecule ’ . The parasite primes the RBC 

membranes by introducing specialised ion and transport channels for fuel uptake and waste 

disposal. Only hours after post- infection, iRBC will contain both parasitophorous vacuolar 

membrane (PFM) and plasmodial surface anion channel (PSAC) which are commissioned 

for nutrient acquisition99,100. Several transporters for nutrient uptake including Pf-encoded 

facilitative hexose transporter (PfHT) are localised in the parasite’s plasma membrane to take 

up glucose its primary source of energy during the intra-erythrocytic stage of the parasite 

development.101.

A second major by-product of haemoglobin degradation alongside heme that could kill the 

parasite . For a redox equilibrium, plasmodia utilise a redox system involving several 

enzymes viz. glutathione synthetase, glutathione reductase, glutathione-S-transferase, 

superoxide dismutase, y-glutamyl-cysteine synthetase, glutamate dehydrogenase and

93
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103_107thioredoxin reductase . These enzymes are correspondingly important drug targets and

47endoperoxide antimalarial drugs such as artemisinin works by inducing oxidative stress .

As plasmodia are auxotrophic for purine bases, they must source host nucleotides for DNA 

and RNA during growth and replication as the parasites lack a de novo biosynthetic pathway 

of purines (nucleotide building blocks)108,109. On the contrary, plasmodia must synthesise 

pyrimidine nucleotides from the scratch as they cannot salvage host’s pyrimidine bases108,109. 

Hence, the enzymes; inosine dehydrogenase, hypoxanthine-guanine phosphoribosyl 

transferase and adenyl succinate synthase110,111, carbamoyl phosphate synthase,

dihydroorotase, aspartate transcarbamylase, orotatephosphoribosyl transferase, 

dihydroorotate dehydrogenase, and orotidine 5-phosphate decarboxylase involved in the 

purine salvage and pyrimidine biosynthetic pathways respectively are important drug targets.

Another requirement of the growing parasites is phospholipid biosynthesis for membranes114. 

The parasites utilise two pathways: de novo choline pathway also known as Kennedy 

pathway where choline kinase is a major antimalarial drug target and the serine 

decarboxylation-phospho-ethanolamine methylation pathway115.

The asexual division and replication stages of malaria parasites are mediated by a group of 

enzymes known as cyclin dependent kinases (CDKs). Comparing sequences of Plasmodium 

and host CDKs reveal aa residue substitutions especially at their binding pocket which can be 

potential drug targets116.

The invasion and subsequent release of the parasite yield further potential drug targets. To 

invade RBCs, plasmodia merozoites utilise an array of invasion apparatuses first to degrade 

the protective cage known as parasitophorous vacuole and subsequently the erythrocyte cell 

membrane ’ ’ . Several secondary interactions such as the Duffy binding like proteins that

mediate the invasion process have been identified, and are attractive targets for the
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development of protective vaccines. In Pf, signal peptide peptidase (SPP) which is an aspartyl 

protease binds to RBC band 3 receptor marking the onset of the invasion process . Through 

chemical studies, inhibiting SPP using L-685 leads to inhibition of the invasion process and 

the resulting downstream processes including replication and release of parasite progeny . 

After replication, the iRBCs rupture releases mature merozoites. Several proteases have been 

identified as key players in degrading the iRBCs membrane and leading to its eventual 

rupturing. These include the serine repeat antigen (SERA), cysteine proteases like FPs and 

dipeptidyl peptidase 3 (DPAP3)96,119. Several cysteine protease inhibitors such as calpeptin, 

leupeptin (a general serine and cysteine protease inhibitor) and E-64 ((1S,2S)-2-(((S)-1-((4- 

guanidinobutyl)amino)-4-methyl-1 -oxopentan-2-yl)carbamoyl)cyclopropanecarboxylic acid) 

have been identified. However, the named inhibitors are yet to be approved as drugs . 

Hence, a complete understanding of the complex biochemical pathways should offer novel 

solutions in the design and discovery of novel drugs.

1.5.3 Drug development pipeline and the place of modern computer technology
Drug R&D process is an extremely protracted and expensive enterprise with the development

of a single drug taking up to 10-15 years and US$ 500-800 million122-124. This forces 

pharmaceutical companies to concentrate on drugs with guaranteed fiscal returns. In 2011, 

only ~3% of pharmaceutical research budgets were targeted to controlling major 

infections . Besides the expensive nature, the process is aggravated by the numerous 

failures. For every 7,500 drug candidates entering the development pipeline, only one or none 

gets to the approval. Over the last three decades, the R&D process has evolved tremendously 

from basic science characterised by trial and error to a more complicated interdisciplinary 

approach that is rational. Computer-aided drug design (CADD) was firstly covered by 

Fortune magazine (October 5th 1981) under the title “Next Industrial Revolution: Designing 

Drugs by Computer at Merck” . Since then, more technological innovations embedded on
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several disciplines viz. biology, chemistry, pharmacology, mathematics, computer science, 

and molecular modelling have been developed with substantial gains being witnessed in the

129_131field of pharmaceutics .

Figure 1.4: Modern drug discovery pipeline. A representation of the sequential steps, cost 
estimate, timeline of events and major activities involved in the drug discovery and 
development. Modified from Roses AD, 2008132

1.5.4 The current status of the antimalarial drug pipeline
BIO Ventures for Global Health in 2014 estimated that, 43 drugs were being developed to 

fight malaria infections. Majority of these drugs are targeted only against P f Up to six 

formulations, mostly based on artemisinin, were undergoing phase III clinical trials and eight 

phase II. Table 1.2 lists the names of drug candidates in pre-clinical and clinical trials. The 

number of compounds entering the pipeline have increased over the past years mostly due to 

public-private partnerships (PPP’s)134 involving pharmaceutical companies (GSK and 

Novartis), universities and non-profit organizations. Medicines for Malaria Venture (MMV) 

started in 1999 is a prime example. HTS initiatives have identified 20,000 compounds with 

antimalarial activity. They are deposited in the ChEMBL neglected tropical diseases 

archive . MMV has also established Malaria Box _ a representative selection of 400
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compounds obtained from the >20,000 hits to further promote the investigation of these

compounds136.

Table 1.3: Antimalarial drug candidates undergoing (pre-) clinical trials. Bold are drug 
candidates with new indications and regimens (adapted from BIO Ventures for Global 
Health)133

Phase Compound

Pre-clinical

BCX4945 (Pf), CDRI 99/411 (Pf), LMK235 (Pf), JPC-2997(Pf), MMV121 
(Pf Pv), NPC1161B (Pf Pv), P218 DHFR inhibitor (Pf), Pyrazoles 21A092 
(Pf), Quinolones (Pf, Pv), Reversed chloroquine molecules (Pf), 
Trioxaquines (Pf), Trimethoprim/Sulfamethoxazole (Pf), OZ439-Ferroquine 
(Pf), OZ439-Piperaquine (Pf), Tinidazole (Pv)

Phase I ACT451840 (Pf), Aminopyrdinel (Pf), Allocryptopine-Protopine-Berberine 
(Pf), CDRI/63 + CDRI 97/98 (Pf), GSK369796 (Pf), SJ733 (Pf)

Phase II
AQ-13 (Pf), Artemisone (Pf, Pv), DSM265 (Pf), Ferroquine (Pf), 
Fosmidomycin-Piperaquine (Pf), KAF 156 (Pf, Pv), Cipargamin (Pf, Pv), 
Artefenomel (Pf), OZ439-Piperaquine (Pf), Tinidazole (Pv)

Phase III
Artemether spray (Pf), Azithromycin-Chloroquine (Pf, Pv), Pediatric 
Dihydroartemisinin-Piperaquine (Pf), Intra-rectal Artesunate (Pf, Pv), 
Tefanoquine (Pv), OZ439-Ferroquine (Pf)

1.6 Problem statement and justification

Malaria remains a major public health concern with highest burdens in the tropical and 

subtropical regions. Approaches to combat malaria include vaccination, chemotherapy and 

vector control (biological, landscaping and use of insect treated nets). Although vaccination is 

the most effective disease protection strategy, a malaria vaccine has remained elusive . The 

European Medicines Agency approved Mosquirix™ as the first ever malaria vaccine in July 

2015. However, the low protective efficacy (< 50%) and limited target group (children 

between 1.5-17 months) indicates it to be far from ideal. Annual fatalities from malaria are 

about 0.5 million in 20141. This drop compared to the previous years is due to the increased 

availability of ACTs and use of treated mosquito nets (TMNs) ’ .
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However, the gains attained so far in the containment of malaria infections and transmissions 

are greatly being hampered by the continued development of drug resistance by the 

plasmodia to virtually all antimalarial drugs designed. There is a growing fear that ACTs 

could be rendered ineffective as artemisinin resistance is spreading in Asia resulting in newer 

malarial infections and transmissions49,140,141. Similarly the resistance to insecticides in the 

vector which is contributing to the disease resurgence . Large pharma companies have lost 

their interest in research and development of newer antimalarial agents due to the cost 

developing new drugs143. Besides drug resistance and cost of production, toxicity resulting 

from undesirable side effects is a major public health concern. Moreover, the identification of 

effective drugs for all human groups is also a pressing need. Based on these factors, the 

search for new, cheap, effective and safe drugs to replenish the malarial drug pipeline 

remains a top priority. This could prevent the development of resistance as was with 

pyrimethamine-sulfadoxine (Fansidar®) in the 1980s.

From Table 1.2, majority of the available drugs and drug candidates undergoing testing are 

only effective against Pf. Importantly, for the successful elimination of malaria, novel drugs 

must have exclusive efficacy not only against the human plasmodial parasites but also the 

circulating wild types which may infect humans due to mutations. Therefore, careful 

identification of a drug target common to major Plasmodium species of interest is vital in 

achieving the elimination of malaria. Key metabolic pathways utilized by plasmodia for 

growth and replication are currently drawing intense research leading to the identification of 

molecular structures central to the functioning of this pathways. These include the 

haemoglobin degradation pathway and the subsequent heme group detoxification, fatty acid 

biosynthesis, oxidative stress and nucleic acid metabolism.

The genomes of vector, host and several Plasmodium species have been sequenced. This has 

allowed for the identification of drug targets which can be used in the R&D process. The Pf
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genome contains ~100 proteases as potential antimalarial drug targets144,145. One group of 

these proteases is the FPs, critical to plasmodia life cycle mainly in the blood stage. Owing to 

the importance of these proteins in the development of malarial parasites, identification of 

small compounds that can modulate the activity of these proteases presents a unique window 

of opportunity to newer antimalarial drugs.

The advancement of computer technologies coupled with genomic data in recent times

expedited the discovery and characterization of newer drugs89,146,147. Combining

bioinformatics in high throughput virtual screening allows millions of compounds to be 

screened yielding a small subset of hit compounds. The rich biodiversity of South Africa 

(SA) can be an important source of hit compounds against FPs and its homologs from other 

plasmodial species. The recent development of SANCDB is expected to facilitate in the 

identification of potential hits for antimalarial drug discovery. Overall, the adoption of these 

computational approaches leading to the identification of novel chemotypes which might 

further be developed to potential antimalarial leads is important in the fight against malaria.

1.7 Hypothesis

Plasmodial cysteine proteases can be targeted with small non-peptide compounds leading to 

identification of potential antimalarial drug hits.

1.8 Research aim

The main aim of this study was to use computational approaches to determine the in silico 

antimalarial potency of selected compounds from the literature and identify related hits from 

South African natural sources with inhibitory activity against plasmodial cysteine proteases. 

To achieve this, the study is subdivided into the following specific objectives:
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1) Structurally compare FP-2 and FP-3 with homologs from other plasmodial species 

and human to determine the function features of these diverse enzymes (Chapter 2).

2) Docking of compounds from the literature, South African natural sources and “Zinc Is 

Not Commercial (ZINC)” into plasmodial and human proteins was performed by a 

previous MSc student. Molecular dynamic studies using GROMACS to determine the 

stability of these protein-ligand complexes. Additionally, establishment of a 

computational pipeline to perform molecular dynamic studies automatically to 

facilitate in the hit identification process (Chapter 3).

3) Binding free energy calculations between the protein-ligand complexes to 

quantitatively and qualitatively determine the strength and type of interactions 

involved and select the most promising hits (Chapter 4).

4) Use SANCDB, a chemical database recently established by RUBi to identify more 

chemical compounds which can be potential inhibitors against FPs and other 

plasmodial homologs (Chapter 5).
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CHAPTER 2

P la sm o d ia l cysteine proteases: In  silico  characterization

Haemoglobin degradation occurs exclusively in the digestive food vacuole, a digestive 

lysosome-like compartment of blood-stage plasmodia. Proteases involved include 

plasmepsins, histo-aspartic proteases and falcipains (FPs). In addition, the plasmodia 

invasion and rupture processes are characterised with abundance of proteolytic activity. This 

thesis focusses on FPs from Pf and other plasmodial species. Four FPs (FP-1, 2, 2 ’ and 3) 

have been isolated allowing FP-2 and 3 to be validated as drug targets due to their 

developmental role for the parasites in the host. To facilitate the development of 

chemotherapies against these proteases, a better understanding of their structure, 

distribution and physicochemical properties is critical. This chapter focuses on the 

identification of FP-2 and FP-3 homologs from other plasmodial species and understanding 

their primary and tertiary structure besides analysing their physicochemical properties using 

in silico approaches. Human (host) cathepsins-L like proteases, homologous to plasmodial 

proteases, were also identified and compared in sequence, structure and biochemistry to 

identify differences exploitable for drug selectivity.
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2.1 Proteases

Proteases (peptide hydrolases) are enzymes that hydrolyse peptide bonds of proteins and 

polypeptides. Proteases are continuously and universally produced all organisms. Depending 

on their specificity, these molecular scissors may target protein termini (exopeptidases) or cut 

within the peptide (endopeptidases). Proteases are grouped based on the principal catalytic 

residue: glutamate, serine, threonine, aspartate, cysteine and mixed148,149. Each group is 

subdivided into clans and families. Proteases catalyze a wide array of biological reactions 

ranging from those involved in metabolic homeostasis to disease pathogenicity.

Genetic analysis has identified proteases as drivers of pathogenicity in parasitic diseases150. 

The genome of P. falciparum codes for ~100 putative proteases of which ~30 are cysteine 

proteases145. Pharmaceutical research initiatives have targeted this group151,152. In 

Plasmodium, cysteine proteases activate pro-enzymes, degrade haemoglobin and participate 

in immunoevasion, tissue and cellular invasion as well as excystment148,153-155. This 

functional diversity is due to the nucleophilicity of the cysteine, their stability and wide 

substrate range . Proteases specifically position the substrate on to the active site where the 

binding efficiency relies on the chemical environment of the subsite and the nature of the 

portion of the substrate peptide interacting directly with the active site groove148. Despite the 

fact that during catalysis process only one peptide is hydrolyzed, a number of aa residues 

adjacent to the site of cleavage are crucial in determining the specificity and register of an 

enzyme . In cysteine proteases, a catalytic cysteine acts as the nucleophile. The additional 

electron shell of the Cys sulphur atom improves its nucleophilicity. The active Cys is 

deprotonated by an adjacent histidine. The resulting thiolate-imidazolium diad is often 

stabilized by an asparagine 148 (Figure 2.1). A glutamine creates an oxyanion hole to stabilize 

the tetrahedral intermediate. Cysteine proteases have a broad pH range due to the thiolate- 

imidazolium diad with a pKa of 4.0 for Cys and 8.5 for His.
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Figure 2.1: Catalytic mechanism of cysteine proteases. A schematic representation of the 
flow of electrons (arrows) and participating residues cleaving a peptide bond. Cys is the 
catalytic residue positioned near a proton withdrawing His group. Adapted from Erez et al., 
2009156.

2.1.1 Cysteine protease nomenclature
Cysteine proteases are diverse with respect to sequence and structure. They are grouped

157according to their catalytic mechanism accounting for distinct evolutionary origins . They 

are divided into clans which are further divided into families using sequence homology, 

inserted loops and structural similarity158. The MEROPS database of peptidases159 lists 110 

different cysteine protease families in 14 clans (Figure 2.2).

Groups most relevant to drug development are clans CA, CD and CE119. The papain and 

related human cathepsins of clan CA (papain-like proteases)160 have been studied most 

intensively. Ten human cathepsins have been identified namely Cat B, C, F, H, K, L (L1 and 

L2) O, S, W and X or Z. They are expressed ubiquitously with Cat L participating mainly in 

the intracellular protein turnover. Clan CA proteases have a Cys-His-Asn triad conserved in 

their primary structure. The CA clan of Pf has four FPs, three dipeptidyl peptidases, nine 

serine-rich antigen (SERA) related proteins and a calpain homolog119,144. This thesis focusses
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on FPs, including FP-1, FP-2, FP-2’ and FP-3119. Clan CD with a catalytic His-Cys dyad 

includes caspases and analysis of their sequences suggests that members of the C13 and C14 

families are also present in Plasmodium. Clan CE proteases contain catalytic residues His, 

Glu (or Asp) and Cys in this order in the primary structure.

Cysteine proteases

Host (Homo sapiens} Plasmodium falciparum

□  Cathepsin L-like □  Falcipain s
Cathepsins L, V, S, K and Falcipain 1,2, T  and 3

LI Dipeptidyl peptidases
□  Cathepsin B-like Dpapi, dpap2 and dpap3

Cathepsins C and Z
□  SERA like proteins

□  Cathepsin F-like SERA 1-9
Cathepsins F and W Papain-family (Family

ci) ' □  Calpain homolog

*Clan CA “Papain-hke

Clan CD Clan PA

*Clan CE Clan PB

Clan CF Clan PC

Clan CE Clan PD

Clan CM Clan PE
Clan CM Clan CO Clan CP

Figure 2.2: Nomenclature of cysteine (thiol) proteases. Clans with Cys as their catalytic 
nucleophile begin with a “C”, mixed nucleophiles a "P". The second letter is sequential. 
Several cysteine proteases have not yet been classified. Clans of medical importance research 
are marked by an asterisk. Human and plasmodial papain-family proteases are also compared 
in the upper boxes.

2.2 Roles of plasmodial cysteine proteases

Plasmodial proteases production is strictly regulated with respect to time and location. 

Proteases are further controlled by endogenous inhibitors161. Cysteine proteases are essential 

for the survival and multiplication of the parasite making them prime drug targets for novel
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antimalarial therapies162. Known protease inhibitors have provided much functional 

information for plasmodial cysteine proteases119. FP-2 gene disruption studies and timed 

additions of inhibitors Leupeptin and E-64 have confirmed the essentiality of FP-2 and FP- 

397,119,163,164. They function in parasite invasion and egression from the host cell, haemoglobin 

degradation, and intracellular development (Figure 2.3).

a and 13- 
chainsHaemoglobin

Plasmodium

Plasmepsins & 
FP-2 and 3

_Fe2 "
Heme + Globinlemozoin

E-64 & 
Leupeptin +
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Falcilysin &
Histo-aspartic
proteases

Food vacuole 
(FV)hydrolysis

Oligopcpti dcs 
Dipeptides 
Amino acids
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peptides

Merozoite RBC
invasion

Parasite

Infected RBC
(iRBC)

IRBC rupture
& release ot merozoites

Figure 2.3: The role of cysteine proteases in the Plasmodium erythrocytic stage.
Chemical inhibition and gene disruption studies identified proteases involved in haemoglobin 
degradation. FP mediated processes are shown in orange.

2.2.1 Haemoglobin hydrolysis
Plasmodium parasites lack aa synthetic pathway, and are solely dependent on host aa for 

growth and development. Merozoites invading erythrocytes consume more than half of the 

haemoglobin. The protein is taken up through a specialized organelle, the cytostome, and 

degraded in an acidic lysosome-like food vacuole by an array of proteases165. Like lysosomes 

the food vacuole contains lysosomal cysteine proteases Cat B, H, L, K, S.

The globin is hydrolyzed to its constituent aa166,167 and cysteine proteases are central to the

24process . Plasmodium parasites treated with cysteine protease inhibitors E-64 and Leupeptin
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successfully transport the erythrocyte cytosol to the food vacuole but are then unable to 

degrade the haemoglobin . While several proteases participate in haemoglobin hydrolysis, 

the specific role of each enzyme and the sequence of events remains to be clarified162. Based 

on in vitro studies, several theories of haemoglobin degradation have been postulated. One 

proposed mechanism, aspartic proteases plasmepsin I and plasmepsin II were thought to 

initiate haemoglobin hydrolysis through degradation of the peptide bonds in the main chain 

residues of native haemoglobin releasing the heme moiety and the globin component which is 

further degraded by FPs119,166. However, this explanation is faced by several limitations as it 

has been found that only cysteine protease inhibitors cause the swelling of the food vacuole 

an indicating blocked haemoglobin degradation168. In vivo studies concur that cysteine 

proteases initiate haemoglobin hydrolysis169.

2.2.2 Tissue and erythrocyte invasion
During pre and erythrocytic stages, Plasmodium only grows and replicate within host cell 

such as hepatocytes and RBCs. For coordinated transmigration through different host tissues 

and cellular membranes plasmodial parasites require lytic enzymes to degrade the 

cytoskeleton ’ . In hepatocytes, cysteine proteases are highly regulated to prevent

174premature apoptosis of infected cells. P f  inhibitor of cysteine proteases (PfCP or falstatin) 

and Pb inhibitor of cysteine proteases (PbICP) expression in P f and Pb respectively during

pre-erythrocytic stage suggests that there exists cysteine protease activity. However, they do 

not affect erythrocyte invasion by merozoites while serine protease inhibitors do119. A 

specific FP-1 inhibitor does block invasion reviving the debate on the role of cysteine 

proteases in invasion . Overall the serine proteases dominate in erythrocyte invasion while

39cysteine protease participation is uncertain .
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2.2.3 Erythrocyte rupture
The erythrocytic cycle terminates in the rupturing of the infected erythrocyte releasing 

numerous merozoites. Cysteine protease inhibitors prevent erythrocyte rupture119. Leupeptin 

treatment of parasite cultures resulted in the accumulation of mature schizoints120,176. 

Similarly E-64 blocks the lysis of the parasitophorous vacuole membrane surrounding the 

intraerythrocytic parasite by mature schizoints, implicating cysteine proteases in merozoites 

release . Antipain and Leupeptin also block erythrocyte membrane lysis . The proteases 

dipeptidyl peptidase 3 (DPAP3) and P f  serine protease subtilisin-like protease 1 (PfSUB1) 

centrally regulate egression process. For merozoite release, cysteine proteases thus first 

degrade protein networks of the parasitophorous vacuole followed by those of the iRBC .

2.2.4 Immunoevasion

Plasmodial cysteine proteases may either degrade host immune molecules or interfere with 

cellular immune responses leading to immune evasion . In vitro data involving protozoan 

parasites show that cysteine proteases can interfere with the antigen presentation process. For 

example, in Trypanosoma cruzi (Tc) and Entamoeba histolytica, cysteine proteases degrade 

host antibodies . Tc also blocks macrophage activation by blocking the NF-kB P65 pathway

178via cysteine protease .

2.2.5 Exo-erythrocytic parasite stages
Data on cysteine proteases participation in non-erythrocytic parasite stages is minimal. One 

example is the hydrolysis of gametocyte surface protein Pfs230. The cleavage is blocked by 

E-64 indicating cysteine protease involvement . In addition, deletion of the gene encoding 

FP-159 and E-6460 treatment of sexual-stage parasites decreased oocyst production, 

suggesting a specific role of this protease.
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2.3 FPs cysteine proteases

FPs cysteine proteases of P. falciparum are related to papain family enzymes in sequence and 

function155. Compared to other papain members they have longer prodomains and a 14 aa 

insertion in the carboxyl terminus of the catalytic domain . They are critical for the 

completion of the parasite lifecycle182. Four known FPs: FP-1, FP-2, FP-2’ and FP-3 have 

been characterized biochemically . The gene encoding FP-1 is located on chromosome 14 

of the others on chromosome 11119 The FP-1 catalytic domain has a sequence identity of 

only 40% to other FPs and its function in plasmodia development remain unknown . FP-2 

and FP-2’ are identical except for three aa away from the binding pocket . FP-2 and FP-3 

share 68% sequence identity and have similarly sized prodomains. FP-2 and FP-3 also share 

N-terminal extension of the catalytic domain absent in FP-1119. FPs thus fall into distinct sub

families, FP-1 and FP-2/FP-3119. P. vivax encodes a homolog of FP-1 that shares 72% 

sequence identity in its catalytic domain and 60-70% with the three homologs of FP- 

2/3.186. We have identified additional FP-2/3 homologs from other Plasmodium species. 

These will be reported in the results section of the current chapter.

2.3.1 FPs expression profiles in iRBCs
i87 189Plasmodial gene expression is tightly regulated . Of the four FPs, FP-2 and FP-3 appear 

to be the major hemoglobinases responsible for the degradation of haemoglobin in the food 

vacuole155. FPs are produced at different times during the blood stage and can functionally 

compensate for each190. Immunoblotting data shows that FP-1 is expressed throughout the 

erythrocytic cycle and is active during the invasive merozoite stage as determined by 

immunofluorescence microscopy191 while FP-2 is maximally expressed in early trophozoites 

and the late trophozoites for FP-3164,181. FP-2 accounts for over 90% of the cysteine protease 

activity in trophozoites180.
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2.3.2 Biochemical characterization of FPs
FP-2 and FP-3 exhibit very similar but not identical biochemical features, a sign of potential 

differences in functions. Both have low pH optima consistent with activity in the acidic food 

vacuole119. The specificity of papain-family proteases is determined by the P2 position in the 

binding pocket and the two proteases (FP-2 and FP-3) possess a Leu amino residue in this 

position explaining their preference to peptidyl substrates119. FP-2 and FP-3 are produced as 

zymogens in specific cellular compartments and are activated at different rates . There is no 

observable biochemical difference between FP-2 and its near-identical relative FP-2’. 

However, they have different expression profiles and the knockout of FP-2, but not FP-2’ has 

a distinct phenotype. Thus, FP-2 cannot functionally be replaced by FP-2’ whose function 

still remain unknown119. The biochemical evaluation of FP-1 is hampered by its low 

heterologous expression levels193,194.

2.3.3 The structure and functions of the different FPs domains
Many clan CA cysteine proteases, including of FPs, are synthesized zymogens with a 

prodomain and a mature or active domain (Figure 2.4)119,155. The FP-2 proenzyme for 

example is sized as a single 484 residues polypeptide whose N-terminal 243 aa prodomain is 

proteolytically removed during its transport to the food vacuole via the endoplasmic 

reticulum-golgi system. The pro-region inhibits premature cleavage of the catalytic domain, 

assists protein folding and acts as a signal for intracellular targeting . Removal of 

prodomain releases the activated mature enzyme155. The prodomain consists of several 

conserved motifs while the mature domain may be subdivided into a left (L) and a right (R) 

subdomain. This thesis focusses on the catalytic domain. The catalytic residues Cys42, 

His174 and Asn205 are found in a cleft between the L and R domains155. FP-2 and FP-3 share 

a “nose-like” projection connecting the L and R sub domains and a C-terminal arm195.
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Figure 2.4: Papain proteases structure. Key structural elements and their position in FPs, 
cathepsins and papain (prototype). Key residues forming the catalytic triad are marked with 
an asterisk. Adapted from Pandey KC and Dixit R, 2012155.

2.3.3.1 Falcipain prodomain
The prodomain controls the activity of the catalytic domain of FPs and homologs before 

activation and the N-terminal part is responsible for the trafficking of FPs into the food 

vacuole155. The prodomain consists of a 35 aa cytoplasmic part, a 20 aa transmembrane a- 

helix and a 188 aa luminal part155 (Figure 2.4). Green fluorescence protein (GFP) fusions of 

FP-2 and FP-3 lacking the transmembrane part of the prodomain localized to the cytoplasm. 

Serial truncation experiments implicated 20 aa of the luminal domain and 10 aa of the 

cytoplasmic domain in controlling proper localization155. Gene constructs encoding different 

parts of the prodomain in combination with FP-2196 indicated that the C-terminus of the 

prodomain endogenously inhibits FP-2 with two highly conserved motifs ERFNIN and 

GNFD particularly crucial. These motifs conserved in all FPs, their homologs and cathepsin
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L subfamily proteases. Together with hydrophobic residues Phe and Trp, the two motifs 

further ensure the secondary structure of the prodomain is maintained. The secondary 

structure of the inhibitory domain (Leu155-Asp243) is not retained when the prodomain lacks 

the sequence downstream of the ERFNIN and GNFD motifs or in a peptide fragment 

spanning the two motifs155.

2.3.3.2 Mature domain
Successful trafficking of FPs and prodomain processing yields the mature domain 

encompassing residues 244-484 for FP-2 and 243-492196 for FP-3. The catalytic domains of 

FP-2, FP-3 and some plasmodial homologs are the only papain-family proteases successfully 

re-folded under alkaline conditions without their prodomains ’ . For correct folding of FP-

2 in vitro, 17 residues preceding the N-terminus of the catalytic domain are required199. 

Interestingly, this polypeptide mediates folding when covalently linked to the catalytic 

domain or when added to the buffer200. Despite function conservation of the FPs refolding 

domains, their sequence identity is only 20-45%. Refolding domains of other plasmodial 

proteases induce correct folding of FP-2 with similar kinetics as the wild-type peptide 

indicating that N-terminal extensions are functionally equivalent155. FP-2 and FP-3 folding 

domains though a small part of the prodomains still adopt a defined secondary structure. 

Stabilization of the catalytic domain by the folding peptide involves a buried hydrogen bond 

between Tyr13 and Glu120 and a salt bridge of Arg5 residue195. FPs has a 14-residue insertion 

near its C-terminus ’ sandwiched between the active site His and Asn. It helps to bind 

haemoglobin155,201 and is found in all plasmodial FPs with a weak aa conservation.

2.4 Structural basis of falcipain inhibition

Cysteine proteases are central to the erythrocytic parasite life cycle, and hence constitute 

potential drug targets for the development of novel antimalarial drugs155. Both in vitro and in 

vivo studies confirm the antimalarial potency of protease inhibitors ’ . FP-2 is the main
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trophozoite cysteine protease and although its deletion is not lethal, it prevents haemoglobin 

cleavage, and increases parasite susceptibility to cysteine proteases inhibitors. FP-3 knock

out, by contrast, is lethal making it an important drug target. Structural analysis of FP-2 and 

FP-3 has demonstrated small molecules and protein inhibitors as leads in antimalarial drug 

discovery201. Both FP-2 and FP-3 are validated drug targets204. Both peptide and non-peptide 

inhibitors of pathogen proteases are possible whether reversible or irreversible162. Most FP-2 

and FP-3 inhibitors are peptidic and include a-ketoamides , E-64 epoxysuccinyl 

derivatives and peptidyl aldehydes . However, non-peptidic compounds could overcome 

the degradation of peptide based inhibitors. Crystal structures of FP-2 in complex with 

cystatin and E-64 as well as FP-3 with Leupeptin and K11017, a vinyl sulfone inhibitor have 

indicated this to be possible163,208. These structures identified an FPnose and an FParm involved 

in the protease folding and haemoglobin interaction respectively. A crystal structure of the 

falcipain-haemoglobin complex is not yet available. Computer simulations for drug 

development is becoming increasingly important209. Thus, it is of interest to utilize both 

ligand and structure guided drug design methods to probe the structural requirements of 

potent falcipain inhibitors which may provide lead molecule to obtaining novel efficacious 

antimalarials210.

2.5 Proposed work

FP-2, FP-3 as well as plasmodial and human homologs will be compared in structure and 

sequence using phylogenetics, sequence alignment, physicochemical properties and motif 

signatures to identify any significant differences.
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2.6 Methodology

Several web based bioinformatics tools and databases were used for analysis or data source 

(Appendix 1A). Figure 2.5 summarizes the workflow the in silico approach of this chapter.

Figure 2.5: Analytic approaches applied to FP-2, FP-3 and homologs.

2.6.1 Data acquisition

2.6.1.1 Protein aa sequence retrieval
FP-2 and FP-3 protein sequences (accession numbers: PF3D7_1115700 and 

PF3D7_11154400) were retrieved from PlasmoDB211. Using BLASTP, these sequences were 

used to identify other plasmodial and human homologs in PlasmoDB and NCBI databases 

using default parameters. A reverse BLAST search was performed to ascertain if the 

retrieved hits were the true orthologs. Sequences with E-value below 10-5 and with significant 

query coverage were selected (Appendix 1B).

2.6.1.2 Retrieval of 3D protein structures
Coordinate files for the crystal structures of FPs (FP-2 [PDB ID: 2OUL] FP-3 [PDB ID: 

3BWK]) and human cathepsins (Cat K [PDB ID: 3OVZ], Cat L [PDB ID: 3OF8 and Cat S 

[PDB ID: 1NPZ]) were retrieved from the Protein Data Bank (PDB)214. For other plasmodial
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proteases, homology models previously prepared by an MSc student using MODELLER 

version 9.10216 were used.

2.6.2 Multiple sequence alignment and subsite composition analysis
Multiple sequence alignment (MSA) of FP-2, FP-3 and other plasmodial homologs were

performed using online servers MAFFT217 and PROMALS3D218 (Appendix 1C). As 

alignments of sequences are inherently uncertain219, MSA outputs were compared to 

determine their alignment accuracy. For MAFFT, the following sequence alignment 

parameters were used; BLOSUM62 scoring matrix was used as substitution matrix with a gap 

opening and extension penalty of 1.53 and 0.123. All other parameters were set as default. 

The number of tree building steps was set to 2 with a maximum iteration set of 2. For 

PROMALS3D, default parameters were used with an exception of PSI-BLAST expect value 

which was adjusted to 0.0001. FP-2 [2OUL] and FP-3 3D [3BWK] structures were used to 

add constraints to the alignment. The catalytic domains of the proteases were obtained by 

trimming the prodomains using JalView software ’ . The remaining mature (catalytic)

domains were realigned to increase accuracy. JalView tools were used to determine the 

sequence identities, similarities and visualize conserved regions. To determine subsite aa 

conservation and variation, all subsite residues from each protease were extracted from the 

alignment into a Fasta file and visualized using WebLogo webserver .

2.6.3 Phylogenetic analysis
Determining the best substitution models for evolutionary inference is the first step for

223correct phylogenetic analysis. Using MEGA5.2 (Molecular Evolutionary Genetic Analysis) 

software the evolutionary relationship the catalytic domains of all proteases (plasmodial and 

human cathepsins) was determined. The following analysis preferences were set; Neighbor

joining tree, statistical method (Maximum Likelihood), and substitution model (aa 

substitution type). Up to 48 aa substitution models were calculated for both the complete

215
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(100%) and partial (95%) deletion. The best three models, selected according to lowest BIC 

scores are shown in Appendix 1D. Phylogenetic tree construction for each of the selected 

models was performed and compared to determine the robustness of the tree construction 

process. Gamma (G) evolutionary distance correction value was set as determined for each of 

the models and Nearest-Neighbor Interchange (NNI) chosen as the tree inference method. For 

each model, complete or partial deletion method of gap (missing data) treatment and 

bootstrap value of 1000 was used for tree construction.

2.6.4 Motif discovery
To identify the existence and distribution of motifs within FP-2, FP-3 and their homologs, a 

standalone MEME suite (version 4.10.2) was used under Linux operating system. On the 

command line, a Fasta file containing all the sequences was parsed to the MEME analysis 

software with the following analysis preferences; -nostatus -time 18000 -maxsize 160000 - 

mod zoops -nmotifs X -minw 6 -maxw 50. Where -nmotifs X was varied until no more 

motifs were discoverable. Using an in-house Python script viz. motifanalyzer.py (Appendix 

2A), a heatmap representing the distribution of the different motifs was generated. Using 

PyMOL (The PyMOL Molecular Graphics System, Version 1.6.0.0 Schrodinger, LLC.), the 

different motifs were mapped onto the protein structures.

2.6.5 Physicochemical properties
To determine the aa composition and physicochemical properties viz. molecular weight (Mr), 

pI (theoretical isoelectric point), aromaticity, instability index, aliphatic index and GRAVY 

(Grand Average of Hydropathy) of all key proteases, an ad hoc Python script viz. props.py 

(Appendix 2B) utilizing the Biopython module was used. Appendix 1E is the three and one 

letter annotation of all residues.
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2.7 Results and Discussion

2.7.1 Sequence analysis
2.7.1.1 Protein sequences
Using the query sequences of FP-2 and FP-3, up to 13 plasmodial and three human homologs 

were retrieved from the PlasmoDB and NCBI databases. From the reverse BLAST results, all 

the retrieved sequences were FP-2 and FP-3 true orthologs. Interestingly, in most reverse 

BLAST results, the first hit was to FP-3 even when FP-2 was used as the query sequence 

indicating inaccurate annotation of these homologs in literature. Table 2.1 shows FP-2 and 

FP-3 identified homologs from significant Plasmodium species and human cathepsins and 

their corresponding sequence identities. For a complete list of all identified homologs and 

their corresponding source organism (Appendix 1B).

Table 2.1: Key FP-2 and FP-3 homologs from different plasmodial proteases. Adapted from 
Musyoka TM et al, 2015224.

Accession number
Common name 
(Abbreviation)

Source organism 
(Abbreviation)

% SI
FP-2 FP-3

PF3D7_1115700 Falcipain-2 (FP-2) § 
Falcipain-3 (FP-3) §

P. falciparum (Pf)
100 66

PF3D7_1115400 66 100
PVX_091415 Vivapain-2 (VP-2)

P. vivax (Pv)
62 66

PVX_091410 Vivapain-3 (VP-3) 57 57
PCHAS_091190 Chaubaudipain-2* (CP-2) P. chabaudi (Pc) 50 48
PKH_091250 Knowlesipain-2* (KP-2)

P. knowlesi (Pk)
57 57

PVX-091260 Knowlesipain-3* (KP-3) 57 60
PBANKA_093240 Berghepain-2* (BP-2) P. berghei (Pb) 51 47
PY00783 Yoelipain-2* (YP-2) P. yoelii (Py) 48 47
gi | 157830076 Cathepsin-K (Cat K) 38 41
gi | 313754424 Cathepsin-L (Cat L) H. sapiens 37 38
gi | 30749675 Cathepsin-S (Cat S) 36 37
* = adopted nam es fo r  iconvenience
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2.7.1.2 Multiple sequence analysis
Table 2.2 shows the position of the catalytic domain in the whole length of the corresponding 

protein as well as numbering adopted in the thesis (for convenience purposes). After minor 

manual adjustments, MAFFT MSA output was considered to be the best as it aligned key 

residues correctly. The query-hit sequence identities and residue conservation were 

determined (Table 2.1 and Figure 2.6a).

Table 2.2: The position of the catalytic domain within the whole protein sequences of 
different FP-2 and FP-3 homologs. Adapted from Musyoka TM et al., 2015224.

Protein Position in whole sequence Mature domain numbering
FP-2 244-484 1-243
FP-3 250-492 1-249
VP-2 246-487 1-242
VP-3 253-493 1-241
KP-2 252-495 1-244
KP-3 240-479 1-240
CP-2 231-471 1-241
BP-2 228-468 1-241
YP-2 232-472 1-241
Cat K 115-329 1-215
Cat L 113-333 1-221
Cat S 115-331 1-217

MSA results identified that up to 45 aa (highlighted in green) which included the clan C1A 

characteristic catalytic triad residues namely Cys, His and Asn (marked with an asterisk) and 

the Gly-Cys-X-Gly-Gly motif were fully conserved in all protein sequences. Up to 18 aa 

positions were conserved in the plasmodial proteases only (highlighted in blue) while the 

human cathepsins had 23 unique aa (highlighted in black). The rodent plasmodial homologs 

had 34 aa positions exclusively conserved (highlighted in grey). On the other hand, the 

human plasmodial proteases had only 4 unique aa positions (highlighted in red).
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Figure 2.6: Sequence analysis. a) MSA output from MAFFT alignment software. Marked 
with an asterick is the characteristic catalytic triad residues while the solid red line shows the 
GCXGG motif. Highlighted in green are aa positions that 100 % conserved in all sequences, 
blue, black, red and grey showing only aa positions exclusively conserved in plasmodial, 
human cathepsins, human and rodent plasmodial homologues in that order. The two inserts 
characteristic of the plasmodial proteases are enclosed with a broken line b) Individual 
subsite composition (table) and corresponding aa conservation (weblogo). From Musyoka 
TM et al., 2015224.

As has been the case with FP-2 and FP-3, two aa inserts were also present only in the 

plasmodial proteases (boxed). The first commonly referred to as the nose consists of
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approximately 17 aa occurred at the N-terminus while the second, the arm was near the C- 

terminus. Pandey et al, previously established that the nose was responsible for the correct 

folding of the catalytic domains in FP-2 and FP-3155. The arm which consists of 

approximately 14 aa forms a highly flexible P-hairpin. This has been linked to the 

haemoglobin (substrate) binding . The arm aa composition is fairly conserved within the 

FPs with significant variations being observed in other plasmodial orthologues. As 

determined in FP-2 and FP-3, the functions of the inserts may play identical roles in the other 

plasmodial homologs although this has to be determined. Notable was the varied aa 

composition between the human plasmodial homologs and the rodent counterparts.

Disulphide bonds play critical role in the determination of the overall 3D structure of proteins 

formed through the ER pathway . Besides the main catalytic Cys centre, up to 8 other Cys 

residues were observed in the plasmodial proteases and participate in the formation of 4 

disulphide linkages. In contrast, the human homologs have only 3 pair of disulphide cysteine 

forming residues.

2.7.1.3 Structure and composition of the binding pocket of cysteine proteases 
Determining the structure of an enzyme as well as understanding its specificity are

indispensable for structure-based drug design226. Thus, evaluating aa composition, shape, size

and volume is critical in designing inhibitors with selective activity for plasmodial proteases.

The binding pocket of cysteine proteases is situated in a cleft between the structurally

conserved R and L domains. The aa surrounding the catalytic Cys residue are organized into

4 subsite viz. S1, S2, S3 and S1’163. It is of paramount importance to determine the

differential aa composition of the active site of the human cathepsins and plasmodial cysteine

proteases. This establishes important aa differences that can be targeted for attaining drug

selectivity. From the literature, residues forming the subsites of FP-2, FP-3, and VP-2 have

been established. From the alignment, subsite residues of other homologs have been
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identified by mapping those of the known proteases. WebLogo analysis results revealed that 

the S1 and S3 subsite residues were fairly conserved across all the plasmodial proteases. 

However, S2 and a portion of S1’ are highly varied (Figure 2.6b). In all proteases, aa residues 

polarizing His174 (S1’) during hydrolysis namely Gln36 (S1), Asn173 (S2) and Asn204 

(S1’) are conserved with the exception of the S2 position of Cat L which has an Asp residue 

(numbering as per FP-2 catalytic domain). The two conserved cysteine residues in S1 namely 

Cys39 and Cys80 form a disulphide bridge critical in stabilizing the proteins . Another 

residue conserved in all proteases except rodent proteases is Gly40 residue. In the rodent 

homologs it is replaced by Ala. The fifth position of S1 is highly variable although all 

residues were all polar suggesting a conserved function. S2, the major pocket determining 

ligand specificity in cysteine proteases is mainly hydrophobic155. The hollow (deepest) end of 

S2 in human plasmodial homologs has a polar charged residue. In contrast, the rest of 

homologs including the cathepsins have a small uncharged residue at the same position. S2 of 

human cathepsins was composed entirely of hydrophobic residues .

For structure guided drug design is the volume of the active site is critical as this determines 

the ligand specificity. The S2 pocket volume differs between FP-2 and FP-3 as well as VP-2 

and VP-3. In FP-2, the S2 opening groove is formed by smaller Leu84 and Leu172 whereas 

in FP-3, more bulkier Tyr86 and Pro174 exist narrowing the distal end228. For VP-2, the S2 is 

broader than in VP-3 as the region in between S1’ and S2 subsites of VP-3 is hanging 

inwards making its S2 narrower . The location of the subsites in cathepsins and plasmodial 

homologues is shown in Figure 2.7.
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Figure 2.7: The structure of the cathepsins and FPs. A surface representation i) and 
cartoon representation ii) of Cat L (a) and FP-2 (b). The different subsites that form the 
binding pocket of the proteases (i) are highlighted as blue (S1), green (S2), S3 (magenta) and 
S1’ (magenta). Marked with red is the catalytic Cys residue. Clan C1 enzymes structural fold 
consists of the left and right domain (ii). The unique features (nose and B hairpin) that are 
characteristic of the FPs and other plasmodial homologues are highlighted in green (bii).

The S2 opening of rodent plasmodial homologs has highly conserved less bulky Ile85 and 

Ala173 aa on either side. In all proteases, S3 has a highly conserved Gly-rich component 

which is critical in the stabilization of substrates via hydrogen bonding . A highly 

conserved Trp residue is positioned at the opening of the cleft in all the protease and 

participates in the formation of hydrogen bonding with substrates .

2.7.2 Phylogenetic analysis
Plasmodial proteases and human cathepsins share a common proteolytic mechanism with 

other papain-like cysteine proteases230. To infer evolutionary differences between the two 

protease classes, both defined proteins (Figure 2.8) and all proteins (Appendix 1F) were
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investigated phylogenetically. This may reveal evolutionary differences important in 

designing inhibitors exclusively targeting plasmodial proteases to achieve inhibitor 

selectivity.

Figure 2.8: Evolution analysis. A phylogram of human and plasmodial FP-2 and FP-3 and 
homologs catalytic domain using MEGA5.2.2. The evolutionary relationship was inferred 
using a maximum likelihood version of the Whelan And Goldman (WAG) model231. Initial 
trees for the heuristic search were obtained using the Neighbor-Joining method to a matrix of 
pairwise distances estimated using a JTT model. A discrete y distribution (+G) parameter of 2 
was used to model evolutionary rate differences among sites while the rate variation model 
allowed for some sites to be evolutionarily invariable ([+I], 6.5% sites). All positions 
containing gaps were completely eliminated. The level of bootstrap support was inferred by 
1000 resampling of the alignment. Numbers on branches represent posterior probabilities as 
percentages (cut off > 50%). The scale bar represents the number of aa substitutions per site.

In the phylogenetic tree, the most notable observation was the distinct clustering of the 

human and plasmodial homologs into two discrete groups (Figure 2.8). A similar clustering 

of human cathepsins in phylogenetic studies of (Appendix 1F). This is consistent with the 

low sequence identity observed between FP-2 and human cathepsins (Table 2.1 and 

Appendix 1B). Rodent associated plasmodial enzymes also form a separate group from their
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human plasmodial counterparts, a fact supported by the differences observed from the MSA 

(Figure 2.6a, Appendix 1F). The clustering is important as rodent models are used develope 

human antimalarial drugs. Understanding the differences in inhibitor interaction of human 

plasmodial FPs is invaluble. Notably, Cat H with both exopeptidase and endopeptidase 

activity evolved away from Cat K, L and S with the endopeptidase activity only. A gene 

speciation event may have caused the separation of primate and murine enzymes. 

Interestingly, Cynomolgipain-2 (CyP-2), a FP-2 homolog appears the most evolved followed 

by and VP-2. The two species share phenotypic, biological and genetic characteristics 

compared to Pk . Among FPs, FP-2 and FP-3 form a distinct group possibly due to high 

sequence identity between the two. VP-2 and KP-3, form a separate group and closest to FP-2 

and FP-3 cluster (Figure 2.8). Interestingly, human infecting Pm and Po proteases, 

Malariaepain-2 (MP-2) and Ovalepain-2 (OP-2) group with Gallinacepain-2 (GP-2) [birds] 

and Reichenopain-2 (RP-2) [Chimpanzee] (Appendix 1F).

2.7.3 Motif analysis
Protein sequence motifs are aa sequence patterns that often carry biological function in 

homologous proteins. They are frequently used to classify proteins. The programme 

MEME is widely used to find motifs in DNA or protein sequences. Finding motifs in a 

group of protein families and their occurrence can provide important insights into the protein 

functions. A coherent approach is required to identify unique motifs. The maximal number of 

unique motifs discoverable within our set of sequences was determined and ranked based on 

the MAST E-value (a product of number of sequences in a database and combined position p- 

value of each sequence) . Here proteases listed in Table 2.1 were used. Up to 9 unique 

motifs of different lengths (max width = 50 aa, min width = 8 aa) were identified (Appendix 

1G). These motifs M1, M3 and M5 were present in both plasmodial and human proteases and 

indicate a conserved functionality (Figure 2.9). Human cathepsins have two (M7 and M8)
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and human and rodent plasmodial proteases four unique motifs (M2, M4, M6 and M9) 

although FP-2 lacks M6.

Figure 2.9: Motif analysis. A heatmap and “regular expressions” of motifs of FP-2 and FP-3 
and their homologs (plasmodial and human) identified by MEME software. Proteins lacking 
the named motif are shown in white. The color code shows the level of motif conservation 
with red and blue being the highest and lowest respectively.

To better understand the function of the identified motifs, they were mapped onto the 

respective protein structures using PyMOL (Figure 2.10). Interestingly, widely conserved 

motifs M1, M3 and M5 mapped to the L-domain while the R-domain harbours motifs that 

differentiate the two groups of proteases (human and plasmodial proteases). Using the best 

possible match of regular expression (Appendix 1G), the PROSITE webserver was used to 

determine the functional importance of identified motifs. M1 encompasses three functional 

sites PS00139 (QQnCGSCWAfST) with the catalytic cysteine, PS00008 (GScwAF or 

GVvesSQ) with N-myristoyl and PS00006 with a casein kinase II phosphorylation site 

(SslE). M3 contains an N-myristoylation site and protein kinase C phosphorylation site. M5 

includes two phosphorylation sites PS00005 forProtein kinase C and PS00004 for cAMP or 

cGMP-dependent protein kinase plus N-myristoylation site.
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Figure 2.10: Location of motifs. The location of identified sequence motifs the structures of 
FP-2 and FP-3 and their homologs (plasmodial and human). Motifs concerved in: a) all 
proteins, b) human cathepsins only and c) plasmodial proteases.

For M2 and M6, only N-myristoylation site and a casein kinase II phosphorylation site were 

found respectively, while no modification site was detected for M4. For the motifs unique to 

human cathepsins M7, bears a thiol protease asparagine active site (PS00640) and a casein 

kinase II phosphorylation site while no functional site was detected for M8. Protein 

phosphorylation is key in protein regulation through a series of signalling cascades. In Pf, a 

kinome of ~99 protein kinases regulate key steps affecting all the stages of the parasite 

cycle . However, the relevance of the identified phosphorylation sites within the FPs and 

their homologs remains unclear. N-myristoylation of FPs has not been investigated. However, 

N-myristoyltransferase (NMT) is a validated implying direct relevance . In other 

apicomplexan parasites such as Trypanosoma brucei (Tb) and Tc and Leishmania, the process 

of myristoylation is critical for parasite growth. NMT inhibitors correspondingly allowed 

clearing Tb parasites from infected rodents236.

47



2.7.4 Physicochemical properties
Protease function is governed by different factors ranging from their structure to their 

surrounding chemical environment. These factors seem to be highly depended on the 

sequence information of a particular protein. Although the proteins under study belong to the 

same group of enzymes, plasmodial proteases and human cathepsins differ from each other. 

This difference is mainly based on the sequential order of the constituting aa, number and 

their nature.

Table 2.3: A summary of the different physicochemical properties for FP-2, FP-3 and their 
homologs

Name Aromaticity GRAVY Instability index pI Molecular weight
FP-2 0.13 -0.59 34.98 7.11 55925.19
FP-3 0.13 -0.57 32.76 6.59 56663.97
VP-2 0.13 -0.48 29.78 5.66 55206.20
VP-3 0.13 -0.44 25.96 8.29 56641.75
KP-2 0.13 -0.50 25.13 7.43 56836.52
KP-3 0.13 -0.58 24.76 6.33 55152.13
BP-2 0.13 -0.57 40.40 6.02 54456.60
CP-2 0.13 -0.54 46.76 7.03 54605.15
YP-2 0.13 -0.56 41.37 6.38 55024.47
Cat K 0.10 -0.54 31.48 8.92 23494.57
Cat L 0.12 -0.54 34.58 4.64 24297.87
Cat S 0.12 -0.45 24.29 7.64 23992.04
Mean 0.12 -0.53 32.69 6.84 47691.37

SD 0.01 0.05 7.31 1.17 14352.46
Green =human plasmodial proteases, sky blue = rodent homologs and human cathepsins = yellow.

Despite low sequence identity between human cathepsins and plasmodial proteases, the 

proteins share almost the same aromaticity (0.12 ± 0.01) and GRAVY (-0.53 ± 0.05). Based 

on the hydropathic scale by Kyte and Doolittle , all the proteins analysed were hydrophilic 

an indication that they could interact well with water (Table 2.3). All proteins had a positive 

instability index (32.69 ± 7.31), an indication that they were highly stable. Interestingly, the 

rodent plasmodial homologs had higher values than the rest of the proteases including human
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cathepsins. The proteins had a varied range of pI values ranging from acidic to basic (6.84 ± 

1.17). In the case of the plasmodial proteases, VP-3 had the highest pI value of 8.29 while 

VP-2 had the lowest (5.66). Overall, Cat L was the most acidic with a pI of 4.64 while Cat K 

had the highest at 8.92. The observed differential pI profiles might be explained by the 

localization aspect of the cathepsins. Cat K is predominantly extracellular (osteoclasts) while 

cat L is the major lysosomal endopeptidase. Plasmodial proteases had a higher molecular 

weight than human cathepsins. This was due to the longer chain length of the mature domains 

of the plasmodial proteases due to the two unique inserts.

Protein name

Figure 2.11: Protein composition analysis. The quantitative and qualitative aa composition 
of FPs and their homologs.

The aa composition varied where the occurrence and distribution of charged aa (Figure 2.11): 

for positively charged, Lys (K) was more common than Arg (R) in all proteins for negatively 

charged, the distribution Glu (E) seemed to be equal to that of Asn (N). The occurrence of 

Gly (G) was most common in human cathepsins than in plasmodial proteases. Occurrence of

49



Phe (F) is lowest in human cathepsins, followed by rodent proteases and the human 

plasmodial proteases. The proportion of Pro is higher in human cathepsins than in the 

plasmodial proteases; Trp (W) was the most infrequent aa which was expected since it is the 

most bioenergetically expensive aa in nature and is only used when necessary. For polar aa, 

the occurrence of Ser (S) was higher in all proteins compared to Thr (T). Presently, the 

correlation between the occurrence of specific aa and individual protein function could not be 

established and further studies by protein chemists are necessary.

2.8 Chapter conclusion

The current chapter presents an in depth sequence and structural analysis of FPs and their 

human and plasmodial homologs. The database search identified 13 plasmodial homologs of 

FPs were identified from different plasmodal species with focus being drawn to the human 

and laboratory infective species. Four human FPs homologs were identified for comparative 

purposes. Human Cat H is distinct from other cathepsins, such that this analyses concentrated 

on Cat K, L and S. MSA identified key features that distinguish plasmodial homologs from 

human cathepsins. Particularly relevant is the distinct nature of the binding pocket subsites 

leading to separate clustering of the proteases. The effect of this difference for inhibitor 

selectivity at present remains uncertain. From the physicochemical analysis, no striking 

differences were observed between the human cathepsins and the plasmodial proteases. From 

the aa qualitative and quantitative analyses, several differences which account to observed 

individual protein physicochemical properties were noted.

In the next chapter, work involving the interaction of known FPs non-peptide compounds and 

an identified natural compound from South Africa will aim to determine if these differences 

can be exploited to attain drug selectivity.
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CHAPTER 3

Molecular Dynamics Simulation Studies

Drug discovery is greatly hampered by the limited understanding of the relationship between 

protein sequence, structure and function. Protein-ligand (substrate or inhibitor) interactions 

are central to many biological processes. The study of the interactions involved in molecular 

recognition is important in the modern drug development process. Despite much genomic 

and structural data, further analysis to define the functions of proteins is necessary. As 

proteins are structurally dynamic entities, studying their conformational evolutions 

(structural changes) may provide information of their mechanism for computer aided drug 

design (CADD). Studying protein dynamics is challenging as most methods provide static 

information. However, computers can model protein dynamics up to an atomic scale. Here, 

in silico molecular dynamics (MD) simulations will be used to study FPs and homologs in 

complex with small non-peptide compounds to provide information on the conformational 

flexibility of these proteases which can be valuable towards the design of novel antimalarial 

drugs. The findings will be compared to various structural differences between plasmodial 

and human homologs identified in Chapter 2.
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3.1 Introduction

Life processes are mediated by biomolecular molecules called proteins. These systems 

consist of a vast quantity of molecules and atoms which are organised into highly defined 3D 

structures. For proteins to function as biological catalysts, signalling molecules, transporters, 

sensors and mechanical effectors, they need to be flexible and be able to adapt to the ever- 

changing conditions within the cellular environment. The activity and interactions of proteins 

depends on their structure stability, dynamics and flexibility of their constituent atoms, aa, 

side chains groups, Ca-backbone and domains. To understand protein properties and function 

we need to determine their dynamics at atomic level. Conformation changes may involve 

domain movements or subtle side chain oscillations and molecular vibrations.

3.1.1 Methods for studying protein dynamics

Two broad approaches to describing protein dynamics include experimental and 

computational techniques. The chosen approach depends on the type of and complexity of the 

system. Experimental approaches include electron microscopy (EM)238, nuclear magnetic 

resonance (NMR) relaxation experiments , X-ray crystallography , atomic force 

microscopy (AFM)243,244 and Forster resonance energy transfer (FRET)245,246. However, each 

can be time consuming and expensive. Also they provide limited resolution in space and time 

and yield an averaged picture of the protein properties (Figure 3.1).

To describe protein dynamics, computational simulations provide details of proteins at the 

finest level possible. Biophysics or the “application ofphysics laws biologicaly” allows three 

methods of quantifying protein energy, namely quantum mechanics (QM), molecular 

mechanics (MM) and hybrid models (QM/MM). These are also used in classical MD 

simulations. Starting at a given point in time they simulate possible changes. MD is the 

computational study of the positions and velocities of atoms in a system such as a solvated
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protein with a ligand due to intermolecular forces by the application of the Newton's laws of 

motion. The central focus of this chapter will be on MD simulations (at an MM level).

Figure 3.1: Biophysical techniques and their applications. The coloured boxes show the 
spatiotemporal resoulution of each technique. Shown in dotted line are intermidiate 
timescales that NMR is limited leading to inadequate information. Also shown below the x- 
axis are the timescale of key molecular and physiological processes. Resolution increases in 
the direction of the red lines. Adapted from Dror et al.,238.

3.1.2 MD limitations
Despite simulating the biophysical behaviour of a system, MD is faced with two major 

limitations; inadequate sampling due to time limitation thus affecting the precision by which 

quantities can be estimated; and the lack of appropriate force field functions (where MM is 

used) and parameters thus affecting the accuracy of the simulations239,240. In relation to time, 

a good example would be one witnessed during the initial stages of this study. To obtain a 

single 10 ns run in this study (on a 55.93 kDa protein in a triclinic box of size 17.5 A 

containing ~21,000 water molecules) using a modern workstation with 4 processors and a 

random access memory (RAM) ~32 GB, an average wall time of 192 hours (8 days) was 

required thus making it impossible for large scale runs to be undertaken. To increase the
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sampling effectiveness, several techniques beyond the scope of this thesis have been

241 242developed. These include coarse-grained MD , metadynamics and conformational 

sampling . However, the implementation of these techniques leads to loss of information 

compared to the conventional MD processes. Using QM principles, the development of force 

fields for MM that are accurate for their use in MD simulations is ongoing. It is important to 

mention that for successful MD run to be realised, the force field chosen must be carefully 

determined and validated240.

3.1.3 MD simulations history in chemistry and biology

The simulation of many-atom systems predates the advent of modern computers244. Since the 

1950s when Alder and Wainwright performed the first proper simulation on the assembly of 

hard spheres , MD methods have developed significantly enabling the elucidation of the 

thermodynamics, structural and dynamic properties of complex biomolecular systems. One of 

the ground breaking achievements was work done by a South African born scientist involving 

the computational simulation of protein folding in 1975246. This work formed the foundation 

of protein MD simulations and led to a sequel of many others that made Michael Levitt and 

his associates Martin Karplus and Arieh Warshel be awarded with the 2013 Nobel Prize in 

chemistry. This was due to their contribution in the development of multiscale combined 

quantum and classical mechanics models for elucidating the course of complex chemical 

systems through computers.

Since then more complex simulations have been realised, making MD an attractive method in 

structure-function elucidation. Examples of notable breakthroughs include; thermodynamic 

fluctuations in a protein (1976) ; the first MD simulation of a protein, bovine pancreatic

trypsin inhibitor (BPTI) in 1977 for 9.7 picoseconds (ps) ; dynamics of ligand binding to 

heme protein (1979)249; a geometric approach to macromolecule-ligand interaction (1982)250; 

dynamical theory of activated processes in globular proteins (1982)251; normal modes and
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252fluctuations in BPTI (1983) ; accurate simulations of protein dynamics in solutions

253 254(1988) ; determination of transition paths in macromolecules (1995) ; role of hydration

and water structure in biological and colloidal interactions (1996) ; assembly of protein

tertiary structures from fragments (1997)256; contact order, transition state placement and 

refolding rates of single domain proteins (1998) ; unfolding of titin immunoglobulin

domains by steered molecular dynamics (1998) ; replica-exchange molecular dynamics

method of protein folding (1999)259; energetics of ion conduction through the K+ channel 

(2001)260; Kemp elimination catalysts by computational enzyme design (2008)261. 

Importantly to note is that with the advancement of computational speed and efficiency, MD 

simulations of more complex systems can be performed at extended time scales of up to 

millisecond time scale262 (Figure 3.2). Recently, the longest ever MD simulation to be 

realised was that of a DNA complex done for a duration of 44 p,s263.

Figure 3.2: The time evolution of key developments in MD simulation and the resulting
effects in simulation length of BPTI. The grey dotted arrow highlights the increased 
capability of simulation period over the last ~30 years. Adapted from work by Bou-Rabee N, 
2014264.
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Due to their size, MD simulations involving proteins are inherently computer expensive and 

the resulting accuracy and timescales are dependent on the available resources. Despite the 

major breakthroughs attained so far, the search of better computational architectures to 

handle more complex systems and for longer time scales is still ongoing. This include the 

establishment of parallel computing platforms such as the Generalized-Ensemble Simulation 

System (GENESIS)265, Titan266, BlueGene/L267 and Anton 2268 supercomputers. In addition, 

the development of accelerators such as cell processors and graphic processing units (GPUs) 

has led to the speeding up of non-bonded interaction computations. New MD software with 

GPUs enabled capability and varied ability depending on the problem at hand has also been 

developed as shown in Figure 3.3.

Figure 3.3: Commonly used MD software. A wide range of MD simulation software have 
been developed. User choice depends on the problem and type of distribution (proprietary or 
open source).

These MD tools have sophisticated techniques for the sole purpose of attaining reliable MD 

results. These include the ability to control temperature and pressure. The choice MD 

software is problem depended and its distribution type (open source under GNU distribution 

or proprietary). In this thesis, GROningen MAchine for Chemical Simulations (GROMACS) 

was chosen as it is a open source software besides its outstanding performance capability, 

adaptability (can be integrated with other software), state-of-the-art algorithms, and the well
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loaded post-dynamic analysis tool kit. YASARA (Yet Another Scientific Artificial Reality 

Application) is suited for membranous proteins and peptides simulations as it has unique 

force fields. Despite its user intuitive interface, majority of its modelling and dynamics tools 

are commercial and cannot be utilised via a command line thus making it impossible to 

achieve automated workflows.

3.1.4 MD dynamics in drug design

The adoption of MD has changed the study of medicinal chemistry significantly with an 

emphasis to the elucidation of protein interactions (ligand or protein) and transport of 

substances within the cell. By definition drug development is an iterative process which has 

adopted several computational approaches with an aim of lowering the attrition rate (of drugs 

in screening) by ensuring only potential compounds get through the initial screening stages. 

Using MD, both qualitative (how, where and when of the drug binding process) and 

quantitative (strength of interaction and kinetics) information can be obtained. Using the 

restrictive search words “molecular dynamics” and “inhibitors”, it was determined that more 

than 14,000 studies have been studied in the last 5 years thus signifying how great MD is 

embedded in the biomedical research. Initially, the process of ligand binding was conjectured 

to occur via the lock and key which never accounted for conformational changes. However, 

this has been replaced by newer models that account for not only definite changes in the 

structure but random structural adjustments of both the receptor and the ligand - .

Examples of areas where MD is appreciated in the drug development process include; 3D 

(experimental or theoretical model) structure refinement , determination of protein cryptic

273 275 276and allosteric binding sites - , binding mode determination , the transport process of 

inside channels, role of mutations in drug resistance or disease pathogenesis and the 

individual changes in aa conformation during the ligand binding process.
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3.2 Conventional MD simulations

Computer mediated MD modelling has recently become a very powerful toolbox and an 

integral part in the study of the dynamics and properties of complex systems. It has found its 

applications in various fields including material science, chemistry and biology thus 

demonstrating its versatility. An important application of MD is in drug discovery where 

insights at atomic scale are deciphered and are used in the R&D of novel therapies. In 

conventional MD simulations, large systems are handled with classical physics laws (MM, as 

opposed to QM) thus speeding up the simulations. This is in contrast with the quantum 

mechanics (ab initio and semi-empirical) where the properties of a system is achieved by 

solving the Schrodinger equation. This latter method although more accurate has a major 

drawback in that it can only handle systems composed of few atoms at equilibrium. In 

classical mechanics, all the nuclei in a system are treated as classical particles according to 

Ehrenfest theorem . By giving the system an initial set of phase-coordinates and in a step 

wise manner numerically integrating the laws of motion, a trajectory of the system is 

achieved. The trajectory consists of time-ordered states of a dynamical system which can be 

post-analysed to determine the time dependent evolution of the system behaviour. There are 

several fundamental requirements that have to be met for any MD simulation to be successful 

as detailed below.

3.2.1 A model of the system

MD simulation studies require the availability of a 3D protein structure that has either been 

resolved via X-ray crystallography or NMR and in cases where these two are not available, 

theoretical homology models. Importantly to note is that a careful analysis of the structure is 

necessary beforehand. Where necessary, the structure is first refined to get rid of local steric 

clashes using an iterative minimization algorithm .
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3.2.2 Force fields
In molecular modelling, a force field is an empirical potential which replaces the Schrodinger 

equation used in ab initio dynamics. It is mathematical equation consisting of several 

potential parameters obtained either from semi-empirical QM, ab initio or from experimental 

data and an analytical form describing the interatomic potential energy . Figure 3.4 

illustrates the different types of potentials that constitute a system’s potential energy function. 

Successful definition of classical potentials require two main approximations; the treatment 

of atom nuclei as having mass and point charges that follow the Newtonian laws of motion. A 

key reference to reference for the current section is the GROMACS 4.5.5 user manual .

Figure 3.4: A schematic view of force field interactions in a molecular system. The
different types of potentials that describe the total energy of a system in a force field. The 
VCoul (Coulombic potential) describes the electrostatic interactions between oppositely 
charged points, VLJ (Lennard-Jones potential) represents non-bonded contributions for van 
der Waals (vdW) interactions. Bonded interaction consist of bond stretching (Vbond), angle 
bending (Vangle) and torsion around angles (VDih).
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In ab initio molecular dynamics the Born-Oppenheimer approximation is often used which is 

based on the differential speed between electrons and nuclei thus allowing the decoupling of 

their motions. The use of QM is often used separately and prior to simulations to investigate 

force constants and equilibrium distances/angles between atoms of interest. This has aided 

the generation of additional parameters for various force fields with GROningen MOlecular 

Simulation (GROMOS), Assisted Model building with Energy Refinement (AMBER) and 

Chemistry at HARvard Molecular Mechanics (CHARMM) being the most commonly used 

force fields in MD simulations involving biological systems. As shown in equation (eqn) 3.1, 

the sum total of force field terms is made up of different adjustable parameters including an 

electrostatic term and a functional form of potential energy (potential function) that consists 

of bonded and non-bonded terms as defined by Lifson and Warshel282.

V R ) — Vbond + Vangle — Vto. ■ VLJ + VColoumb

— Z  T< l — + Z  ^  — f t , ) 2 + £  ^ (1 + cos(nt — S)Y (3.1)
bonds angles dihedrals

Z  4e
f V2 f  6"

1 — I__
1 J 1

0?pairs (i, j )

where the bonded contributions consists of harmonic functions for bond stretching (Vbond) 

according to Hooke’s law, angle bending (angle) and torsion around dihedral angles (Vda). 

The non-bonded interactions are from the Lennard-Jones (Vlj) and Coulombic potentials 

(Vcoloumb) . Denoted with kb, keke, and le, are bond, angle bond parameters, equilibrium angles 

and equilibrium bond lengths respectively. The torsion potential is denoted by n, while Vn 

and S describes its barrier height and phase. The LJ parameters are denoted by Stj and sij . 

All the MD simulations in this thesis utilised the AMBER force field (eqn 3.2) in its derived

form of AMBER96284

60



E t o a i  — Z —(l — li,0)2 + Z —k  — k  0)2 + Z Vn(1 + cos(nw — r ))
bonds angles torsions

N  N

+ZZ
i—1 j  — i+1

f [ /  \ 1 2 f  \  6 1

4 e , j l - I  — s  I

I
+ q q

V R i j  J l  R j  J  J 4 n s or,j

(3.2)

3.2.3 Integration of Newtonian equation of motion

During MD simulations a series of successive configurations depending on the set time step 

are generated from an initial configuration whose atoms position and velocities are known. 

By integrating the laws of motion for each particle, their position and velocities are known in 

each resulting configuration leading to a trajectory. Hence, by solving Newton’s second of 

motion (eqn 3.3), the time evolution of an atomic system whose individual particles are of 

mass mi can be determined along a coordinate ri when a force Fri has been applied.

F — ma 
d 2 r F (3.3)
dt2 m;

A derivative of the force potential V(ri) with respect to the coordinate can be equated to the 

force acting on the particle at each position Fri.

—dV (r )F  — ■
dr (3.4)

By solving equation 3.4 above, the time depended (t + St) position and velocities of each 

particle can be determined and so is the respective forces acting on the particles. To be able to 

continually integrate the equations of motion during a simulation, suitable algorithms are 

necessary. Numerous integrators with varied capabilities have been developed. Examples 

include the Verlet, leap-frog and Velocity Verlet algorithm. These are dependent on the 

Taylors theorem as described below (eqn 3.5) where v (velocity), a (acceleration), b is the 

first, second and third derivative of the particle position in respect to time (t) in that order.
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(3.5)

1 2r (t + St) — r (t) + v (t )St + —a (t )St + ...

1 2v(t + St) — v(t) + a (t )St + —b(t )St + ...

a(t + St) — a(t) + b(t )St + ...

To determine new positions (t + At), the Verlet algorithm considers the positions and 

acceleration of system particles at time t and that of the previous step (t -  At). Although it is 

the simplest of all, it has several drawbacks; precision loss, requirement of an additional input 

in order to obtain the first updated list of positions, and lack of an explicit term for velocity. 

An alternative to overcoming these drawbacks is introduction of a velocity explicit 

expression through the leap-frog algorithm. As the name suggests, particle positions and 

velocities leap over each other. To calculate new velocities of particles v(t + 0.5At), it 

considers the velocity at t - 0.5t and acceleration at time t. The main drawback of this system 

is that additional calculations are necessary to determine the energy of the system due to the 

asynchronous nature of individual particle positions and velocities. The development of the 

velocity-Verlet algorithm has made it possible for the updating of a system position and its 

velocities without the Verlet and leap-frog associated problems as it calculates new forces 

from the current position.

3.2.4 Solvation models

Proteins exist predominantly in aqueous environments. Thus, to accurately perform MD 

simulation involving biological systems, realistic solvent models are necessary286-288. The 

importance of influence of bulk solvent (usually water) on solute molecule has been 

confirmed by the poor results from in vacuo MD modelling. Two broad approaches have 

been developed; explicit and implicit models . Implicit models treat the solvent molecules 

as a uniform polarisable medium having a defined dielectric constant (s) hence they are also 

known as continuum models290. Several implicit models have been described; surface area 

and generalised Born ’ . On the other hand, explicit solvent models are the mostly used
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and rely on discrete number of solvent molecules around the system being studied. Due to the 

large numbers of particles and interactions involved the calculations converge slowly 

compared to those from the implicit model. A large fraction of CPU wall time is dedicated in 

handling the solvent molecules. Several explicit water models have been defined depending 

on site points, polarization effects and the type of bonds involved. These include single point 

charge (SPC), SPC/E (extended), TIP3P, TIPS all which are three-site models. In addition, 

four-site models such as TIPS2, TIP4P, TIP4P-Ew, TIP4P/Ice, BF, TIP4P/2005 and five-site 

models TIP5P, TIP5P-E, BNS and ST2 exist293. In the current work, all runs adopted the 

explicit approach with the flexible SPC water model.

3.3 Proposed work

Figure 3.5: 2D structures of known FP-2 and/or FP-3 non-peptidic compounds. From 
available literature, small compounds with varied inhibitory profiles against FP-2 and or FP-3 
were selected for docking. This was to determine their binding mode and evaluate their in 
silico antimalarial activity against FP-2, FP-3 and their homologs from other plasmodial 
species as well as selectivity on human cathepsins. From the docking results, a set of 
rececently reported heteroaryl nitrile derivatives were determined to be the most potent and 
selected for further studies via MD simulations. Adapted from Musyoka TM et al., 2015 .
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The work in this chapter is a continuation of a project by a preceding MSc student (2013) 

in which docking studies using different set of compounds against FP-2, FP-3 and identified 

homologs (human and plasmodial) were performed (Figure 3.5 and Figure 3.6). Initially, a 

set of known, non-peptide FP-2 and FP-3 inhibitors of the chemical class chalcones294, 

isoquinolenes295, thiosemicarbazones296-298 and 5-substituted-2-cyanopyrimidine nitriles 

(CPs) were docked onto the listed proteases. This was to determine their inhibitory potency 

against the plasmodial proteases and selectivity on the human cathepsins. Of these 

compounds, the CPs were identified as the best inhibitors (Figure 3.5 and Appendix 1H) 

consistent with available experimental data .

Due to the importance of natural products in drug discovery26,299, a subsequent docking study 

was conducted on a set of 23 non-peptide natural compounds from SA. A small sterol-like 

compound 5a-Pregna-1,20-dien-3-one (5PGA), was identified as a potential hit. The 

identified hit was used to perform a ligand based virtual screening (LBVS) on the Zinc Is Not 

Commercial (ZINC) chemical database identifying 186 compounds analogous to 5PGA.

The current investigated the potential of these compounds as antimalarial hits using MD 

simulations. To reduce the ZINC set of compounds identified via LBVS to only include the 

compounds with the highest inhibitory potential. Based on the docking energy and the broad 

activity against the plasmodial proteases, a subsequent filtering of the hits resulted to five 

potential hits with good inhibitory profiles (Figure 3.6 and Appendix 1I and 1J). The main 

focus of this chapter was to determine the stability between the CPs and the identified hits 

(5PGA and ZINC) when docked onto FP-2, FP-3 and the various homologs studied 

previously in Chapter 2 using MD simulations. Also studied was the effect of the various 

structural and aa composition differences between the plasmodial and human cathepsins 

observed previously (Chapter 2) on the dynamical binding of these ligands. This was to
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identify structural and chemical features that could be utilised in improving their activity 

against the plasmodial proteases and or selectivity on the human proteases.

Figure 3.6: 5a-Pregna-1,20-dien-3-one and its anologues from the ZINC database. A set
of compounds derived from SA natural sources were selected to identify compounds with 
similar activity as the CPs. Of 23 compounds, one inhibited plasmodial proteases with 
desirable selectivity on the human cathepsins (marked with an asterick). Through LBVS, up 
to five potent compounds analogous to the SA natural hit were also identified. This set of 
compounds together with the CPs (previous figure) were selected for MD simulations. 
Adapted from Musyoka et al., 2016300.
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3.4 Methodology

The stages involved of MD simulation and the tools used are summarized in Figure 3.7. 

Initially used individually, they were combined into a one standalone tool, 

MD_automated.py, using Python scripting to allow the automation of the whole process of 

simulation (Appendix 2C). Through available literature, appropriate parameters such as 

forcefield, box dimension and the various simulation requirements were determined. To 

optimise the parameters, pre-MD runs were performed and the thermodynamic states of the 

systems evaluated. The most suitable parameters are specified (Appendix 2C and 2D). For 

the equilibration and production steps, required system specifications were prepared into 

single parameter files (Appendix 2D).

Figure 3.7: MD simulation overview. The different stages utilised for MD simulations. 
Using Python and Perl programming languages, the different GROMACS tools have been 
wrapped into an in-house fully automated MD simulation software. Adapted from Brown DK 
et al, 20 1 5301.
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3.4.1 Preparation of Protein-Ligand Complexes
Using DS-Discovery Studio version 3.5 (Accelrys Software Inc. Discovery Studio Modelling 

Environment, San Diego: 2011), complexes of the best docking pose for the selected ligands 

(CPs, 5PGA, and ZINC hits) and the different proteins were prepared. The protein utility 

module in DS was used to ionize all the protein’s titratable residues at a pH of 5.0 and 

complexes saved in the 3D file format. This was to mimic the lysosomal (human cathepsins) 

and food vacuole (plasmodial proteases) acidic environment where the proteins natively 

reside . To ascertain that the system was appropriate for MD work a careful evaluation was 

performed beforehand. This was achieved via visualization using PyMOL. This is to identify 

the numbering of residues (necessary during analysis step) and where necessary re-number to 

start from 1“one”. In cases where missing residue(s) are detected, they must be modelled via 

suitable homology modelling software as GROMACS will not accept incomplete structures. 

The identification of any hetero atoms (ligands or metallic ions) present is also necessary as 

these need ligand parametrization.

3.4.2 MD Simulation

3.4.2.1 System set up
A fundamental requirement of MD simulations is the availability of a 3D structure file. As 

mentioned in Chapter 2, the 3D structures of FP-2, FP-3, Cat K, Cat L and Cat S had already 

been resolved via X-ray means. The rest of the proteins had their structures calculated via 

homology modelling and all were used for molecular docking. GROMACS force fields are 

developed to handle protein atoms, and thus it is necessary to parametrize ligand atoms using 

external software to a form that can be recognised by the simulation software. Consequently, 

using a Python script ligand separator.py, each protein-ligand complex prepared by DS was 

split into corresponding protein and ligand separate coordinate files (Appendix 2E). This was 

based on the “record name” index (0:6) of all line entries in each protein-ligand complex file 

where protein entries start with the word “ATOM” while “HETAM” are for the ligand.
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3.4.2.2 Preparation ofprotein and ligand topology files
All the 15 ligands (nine CPs, 5PGA and five ZINC hits) used in this work were not part of the 

AMBER99 force field parameters. Thus, their force field parameters had to be determined 

accordingly and placed in a format recognizable by GROMACS. This may be achieved by 

either using already established external software or through de novo build up. A careful 

consideration is required depending on the complexity of the ligands being studied. De novo 

ligand parametrization is uncommon as it may take years to successfully derive parameters 

for a single compound. Luckily, several ligand parametrization tools have been established 

and the choice is dependent on the MD simulation software and force field to be used. These 

include; Antechamber which utilizes the Generalized Amber Force Field (GAFF); CGenFF 

and The Force Field Toolkit (ffTK)303 which are for CHARMM compatible parameters; 

PRODRG304 and automated topology builder (ATB)305 which are for the GROMOS87/96 

force field; and Topolbuild and TOpoloGen specifically for the OPLS-AA (Optimized 

Potentials for Liquid Simulation -  all atom) force field. In this work, the antechamber was 

selected as the resulting ligand parameters were compatible with the AMBER96 force field 

which was used for the simulation process. In addition, it has a Python interface, 

AnteChamber PYthon Parser interfacE (ACPYPE)306 which allows for automated generation 

of the necessary files. Using a Python script, antechamber and ACPYPE were used to 

generate the partial charges as well as the force field parameters for each of the 14 selected 

ligands. At first the ligand atoms were renumbered to correspond to the standard AMBER

307method. Subsequently, using semi-emprical QM calculations the Mulliken partial charges 

of each ligand atom were calculated. The end result was the generation of a GROMACS 

compatible (.gro) file, residue topology file (.top) and a corresponding parameter file (.itp). 

For each protein, a corresponding topology file was generated using the GROMACS utility 

named pdb2gmx. A topology file represents a static description of all atoms and interactions 

in a system.
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3.4.2.3 Explicit solvent simulation parameters
All atom MD simulations were performed using the GROMACS 4.5.5 package and 

employed the AMBER96 force field. This was done in two phases; initially simulations of up 

to 10 ns were performed for the proteins in complex with the CPs set of compounds and 

subsequently 20 ns for the 5PGA together with the ZINC analogs. The longer simulation time 

was necessary for the second set of compounds as 10 ns runs seemed to be inadequate for 

statistical sampling compared to those of CPs. To create an infinite simulation environment, 

all MD runs were performed under periodic boundary conditions (PBC) using a triclinic box. 

Cubic boxes are known to hold more solvent molecules than non-cubic ones of same size 

dimensions resulting to bulkier system which reduces the computational efficiency of the 

simulation. To ensure that the box was large enough to accommodate each system, the 

selection of its dimensions was done via serial trial runs until a dimension of 17.5 A (L) was 

determined as the most appropriate for all systems. Allowing adequate space around the 

protein minimizes periodic artefacts (protein atoms interacting with its neighbours) that will 

arise from due to unphysical topology during simulation. This allows the creation of an 

infinite continuous system. Using the flexible SPC water model, an explicit water model was 

used to solvate the systems. Depending on the overall net charge of each system, a definite 

numbers of Na+ (sodium) and Cl- (chloride) ions were added randomly to the solvent to 

neutralise the system. Deprived of any constraints, the systems were subsequently subjected 

to a steep descent energy minimization up to a tolerance of 1,000 kJ mol-1 nm-1. This was 

necessary in order to remove any steric clashes resulting from the added counter ions and 

water molecules as well get the systems to a local energy minima. Prior to the production run, 

systems were equilibrated using the canonical (NVT) followed by the isothermal-isobaric 

(NPT) ensemble for 200 ps (picoseconds) at each stage. This is necessary so as to scale the 

systems towards the desired thermodynamic state point. For the NVT ensemble, the systems 

were slowly heated up to a final constant reference temperature of 300 K within a fixed box
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volume (V=L ). Thermostating was achieved by application of the velocity rescaling (V- 

rescale) algorithm309. For the NPT ensemble, the Parrinello-Rahman barostat algorithm310 

was used to maintain the pressure of the systems at 1.0 bar in all directions with a pressure 

coupling constant (tP ) of 2.0 ps. The values of the isothermal compressibility were set at 4.5 

x 10-5 bar-1 for water simulations. The pre-equilibrated systems were then subjected to the 

production run of either 10 or 20 ns as already explained. Using the leap-frog dynamics 

integrator, the laws of motion were integrated with a 2 femtoseconds (fs) time step while 

maintaining temperature and pressure. At each time step, coordinate resetting was performed 

leading to constraining of solute atoms. All bond lengths during the equilibration and 

production runs were enforced by applying the LINCS algorithm . Long range electrostatic 

interactions were calculated using the particle-mesh Ewald algorithm with PBC, a Fourier 

grid spacing of 0.16 nm and a fourth order cubic interpolation while the cut-off distances for 

calculation of Coulomb and vdW interactions were set at 1.4 nm. During the sampling 

process, trajectory snapshots were stored at every 2 ps for structural analysis.

3.4.3 Post-dynamic analysis
Once MD productions runs were completed, the convergence of thermodynamic parameters 

for each system was monitored for quality assurance. These included temperature, total 

kinetic and potential energies. Using visual molecular dynamics (VMD) visualization 

software, the behaviour of each system was examined. To determine the dynamic evolution 

for the different studied protein-ligand systems over the simulation period, the resulting 

trajectories were first processed using GROMACS trjconv tool. This is necessary to: centre 

system in the box; remove any periodic artefacts; progressive fitting of system atoms to 

reference structure (starting 3D coordinate) and to reduce the number of frames. To obtain 

specific groups (apo, ligand and protein-ligand complex structures) that are important for 

analysis, corresponding index files were generated. Several GROMACS observables viz. root
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mean square deviation (RMSD), radius of gyration (Rg) and root mean square fluctuations 

were calculated from the each trajectory and plotted through Xmgrace of Grace 5.1.21. All 

the listed analysis steps are included in a Python script, md analysis.py (Appendix 2F). To 

study the type of interactions between each ligand and the protein binding pocket residues, an 

ad hoc Perl and Python scripts utilizing LigPlot+ subroutines was used to analyse the 3D 

structures obtained during MD runs. For visualization, PyMOL version 1.6.0.0 was utilised.

3.4.4 System specifications
Preparation of protein-ligand complexes was done using a Linux Intel Xenon workstation 

with an E3-1220V2 quad core processor running at 3.10 GHz, 31.1 GB RAM and Quadro 

K600/PCIe/SSE2 graphics card. In the case of MD simulations, system set up, solvation, 

neutralization, and equilibration steps were done on a local cluster. All MD production runs 

due to their computationally expensive nature were performed on the Tsessebe cluster (Sun) 

at the Centre of High Performance Computing (CHPC) Unit314 in Cape Town, SA.

3.4.5 Drug-likeness of identified hits
Table 3.1: Key physicochemical properties for drug-like molecules
Physicochemical property Accepted value
Molecular weight (Mwt) < 500 Da
Number of H-bond donors < 5
Number of H-bond acceptors < 10
cLogP < 5
Polar surface area < 140 A2
Number of rotatable bonds < 10
Sources: Lipinski et al. (2001)3,15, Veber et al. (2002)316,and Keller et al. (2006)il1.

318DrugLito , an open source virtual screening tool was used to determine if the identified hits 

had drug-like properties. The software determines these properties based on various drug- 

likeness rules such as the Lipinski’s rule of five, Ghose filter, BBB rule, Veber rule, CMC-50 

likeness (QED) and the MDDR-like rules (Table 3.1). To determine each descriptor, the 

software utilises a Java library known as the chemistry development kit (CDK). Prior to
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analysis, all the ligand PDB files were converted to a Tripos Mol2 format using the Open

319Babel software .

3.4.6 MD pipeline

To build a fully automated workflow for MD simulations, GROMACS tools (GROMACS

3014.5.5) previously used were incorporated into the JMS (job management system) . This was 

to achieve a logical flow of all steps necessary for a successful MD simulation in a single 

pipeline. For sequential flow, stage dependencies were set to ensure that a step could only be 

executed when its input files have been successfully been generated successfully by the 

antecent stage. The pipeline consist of up to 18 tools which can be grouped into seven 

different stages namely 1) initial preparation; 2) force field conversion; 3) solvation; 4) 

neutralization; 5) energy minimization; 6) equilibration and 7) final production run.

3.4.6.1 Initial preparation

Figure 3.8: The ligand separator interface which acts as the first stage in the MD 
simulation process. This stage requires the ligandseparator Python script.
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This is a crucial stage which processes the input file into either one (protein only) or two 

(protein and ligand) files depending on the nature of problem being studied as defined by the 

user. No parameters are required to run this particular as everything is handled by a Python 

script (ligand separator.py) as shown in Figure 3.8.

Figure 3.9: The force field conversion interface. A) Converts protein from the PDB format 
to a GROMACS compatible format besides creating topology and parameter files. B) Acpype 
tool which only handle any non-protein molecules whose parameters are not included in the 
GROMACS force field list. C) Combines the protein and ligand GROMACS compatible files 
into a single complex just like the initial PDB input file. D) During the conversion by acpype, 
ligand atoms chemical formulae are written in a non-standard form which is unrecognizable 
by GROMACS.

3.4.6.2 Force field conversion
This processes the input files into GROMACS compatible files which can be handled by the 

specific force field defined by the user. MD simulations involving protein structures only, 

require the pdb2gmx functionality from GROMACS whereas if a ligand is involved, two 

additional steps are required. The first involves the acpype tool which prepares the ligand file 

into a format that can be handled by GROMACS via a process called parametrization. A user

7 3



must specify the charge option to be used by acpype tool otherwise the default AM1-BCC 

will be adopted. The last step incorporates the combination of the protein and ligand into a 

single file while taking care of the connection information between individual atoms.

3.4.6.3 Solvation
This is a binary step stage with the first being the creation of a suitable box using editconf. 

The system requires the user to have prior information regarding the shape and dimension of 

the box. The other step involves the addition of suitable solvent molecules into the box using 

genbox.

Figure 3.10: The solvation interface where A) the editconf tool defines the box shape and 
its dimensions and B) genbox fills the box with solvent molecules as specified by the 
user.

3.4.6.4 Neutralization
A zero net charge system is a requirement for successful MD simulations. This stage 

determines the charge of the system and by neutralizes the system by randomly placing 

enough counter ions in the solvent molecules via genion. Only sodium (Na+) and (Cl-) ions 

are allowed. In most cases, a salt concentration of 0.15 M is adequate to achieve the 

neutralization while maintaining the normal physiological conditions.

3.4.6.5 Energy minimization
A common problem with MD simulations is ‘blowing up’, a situation where simulations fail 

due to steric clashes resulting from the added water molecules and ions. Also causing this
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problem is high energy within the system. The user need to correctly specify the energy 

tolerance (local minimum) and the minimization method to be adopted (steepest or conjugate 

descent).

Figure 3.11: Genion tool interface and the required parameters for the charge 
neutralization.

Figure 3.12: The energy minimization tool. A) Grompp tool requires a user to supply a 
parameter file with the necessary settings in order to prepare a single input file for the mdrun 
tool which performs the minimization process (B). The type of minimization, energy step and 
the desired energy tolerance (local minimum) are specified in the parameter file.
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3.4.6.6 Equilibration
Prior to production run, the system are equilibrated through a bi-phase process namely nvt 

(isothermal) and npt (isobaric) ensemble. Prior to each of this step, grompp tool is used to 

generate a single input file which acts as the input for the mdrun tool. The length and 

temperature among other settings are specified in a parameter file.

Figure 3.13: Temperature equilibration tool. A) Grompp first prepares a single parameter 
file which acts as an input to the mdrun tool for simulation (B).

Figure 3.14: The isobaric equilibration tool. A) User defined settings are used by grompp 
to prepare a single input file. B) Parameter file is used by mdrun to equilibrate the system to 
the required pressure.

3.4.6.7 Final production run
This is the ultimate stage of MD simulations. Just like any other mdrun depended stage, the 

grompp tool is used to prepare a single parameter to be used by the former. All required 

controls like the extent of the simulation and each time step are supplied in form of a 

parameter file.
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Figure 3.15: Production tool interface. This is used for the actual simulation process and is 
composed of a grompp tool (A) and the mdrun simulation tool (B).

3.5 Results and Discussion

In this chapter, nine CPs and one SA natural compound with its five ZINC analogs docked to 

12 and 11 proteins respectively were successfully studied using MD simulations. The results 

herein explore the protein dynamics involved in the binding process to the proteins. Also 

reported is the successful development of a MD simulation pipeline. The analysis is divided 

into two sections; first for the CPs followed by that of 5PGA and its selected ZINC analogs. 

To determine the stability of the protein-ligand complexes during simulation, the 

convergence of each resulting MD trajectory per system was determined. Using a Python 

script, the system thermodynamic properties and important observables such as RMSD, 

RMSF and Rg for all the complexes were determined. The average RMSD of the apo, holo 

and ligand and the radius of gyrations of all systems was determined. The results showed that 

all the ligands studied were bound to the proteins in a stable manner.

Of great importance was to determine the dynamical footprint of residues involved in the 

binding of the ligands. All residues forming interactions with the ligands were determined. 

Also of interest was to establish binding differences of the identified compounds in relation to
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the observed structural and sequence differences between the human and plasmodial 

proteases identified in Chapter 2 which can be useful in obtaining drug selectivity.

3.5.1 Quality assurance
As MD simulations are aimed in imitating biological conditions, it is critical to ensure 

simulations are done in a controlled environment where thermodynamic properties such as 

pressure, temperature, and density are controlled comparable to the natural environment 

where the proteins exist.

Table 3.2: The average of different thermodynamic properties during a 10 ns run of different 
proteins complexed with compound CPG. Simulations were set at a reference temperature of 
300 K and a pressure of 1 bar.__________________________________________________

System Temperature (K) Pressure (bar)
Cat K 299.0 ± 0.2 1.1 ± 0.2
Cat L 300.0 ± 0.4 1.0 ± 0.3
Cat S 301.0 ± 0.3 1.4 ± 0.5
FP-2 300.0 ± 0.3 0.9 ± 0.2
FP-3 299.0 ± 0.4 1.1 ± 0.3
VP-2 300.0 ± 0.5 1.1 ± 0.4
VP-3 300.0 ± 0.4 1.0 ± 0.2
KP-2 300.0 ± 0.4 1.0 ± 0.3
KP-3 300.0 ± 0.4 1.2 ± 0.1
BP-2 300.0 ± 0.4 1.0 ± 0.3
CP-2 300.0 ± 0.4 1.1 ± 0.2
YP-2 300.0 ± 0.4 1.2 ± 0.2

For all simulations performed herein, the systems behaviour and properties were analysed to 

ensure the reliability and integrity of each system were maintained throughout the 

simulations. Table 3.2 shows the average of the main properties of the different proteins in 

complex with CPG as determined over a 10 ns simulation. The convergence of the kinetic 

energy profiles of FP-2, FP-3 and the human cathepsins when in complex with compound 

CPG, CPH and CPI in shown in Figure 3.16. The results indicated that the simulations 

proceeded in the desirable thermodynamic conditions and further analysis could be 

performed.

7 8



Figure 3.16: Kinetic energy of FP-2, FP-3 and human cathepsins when complexed with 
compound CPG, CPH and CPI during the last 8 ns of MD simulation.

3.5.2 Visualization
Using VMD, the trajectories of each simulation were visualised to establish the stability of 

the ligand within the binding pockets of the proteases. Despite minimal flip-flop movements 

at the rotational bonds, all the ligands remained stably bound to the interacting aa of each 

protein. Figure 3.17 is an example of a single frame of a simulation system of FP-3 in 

complex with CPG.
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Figure 3.17: A triclinic simulation box of FP-3 (cartoon) and CPG (red) submerged in a 
box of water molecules (short lines) with Na+ (light green) and Cl- (blue) ions.

3.5.3 CPs
Through a sequential lead optimization process on a group of compounds belonging to the 

heteroaryl nitrile class, Coteron et al., identified a series of derivatives herein abbreviated as 

CPs (5-substituted-2-cyanopyrimidine nitriles). These compounds have been vouched as the 

most potent hitherto. Wet laboratory assays showed that they had picomolar to nanomolar 

inhibitory activity against FP-2 and FP3 and whole plasmodium parasites respectively . 

From docking studies three compounds namely CPG, CPH and CPI had the lowest binding 

energies.
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3.5.3.1 RMSD
In MD simulations, RMSD is the most commonly used quantitative measure of the global 

conformational diversity in reference to a starting structure using the Ca atomic co-ordinates 

allowing for the determination of spatial differences in an ensemble of structures. This is by 

solving the following equation (eqn 3.6);

RMSD(t) m lr(t) - Kef I2 (3.6)

where M=Yjmi and r(t) represent the position of an atom i at the time t after least square 

fitting the structure to the reference structure (rref). The RMSD of the different systems 

increased rapidly for the first 2 ns of each run and stabilised thereafter. Occasionally, minimal 

fluctuations were observed and were linked to the characteristic loop regions present in all the 

proteins under study (Figure 3.18a,b). For the apo structures; human cathepsins exhibited the 

lowest RMSD values ranging from 0.10 to 0.14 nm compared to the plasmodial homologs 

which had RMSD values ranging from 0.14 to 0.24 nm. Similar results with FP-3 have been 

obtained previously209. Interestingly, rodent plasmodial proteases exhibited a higher RMSD 

values than human plasmodial homologs in most cases. This may indicate that the former 

may have greater fluctuations around the loop regions compared to the latter (discussed under 

RMSF). It has not yet been established if the observed higher RMSD values associated with 

the rodent plasmodium homologs are in any way associated with the corresponding higher 

instability index values observed previously (Chapter 2). To determine the effect of ligand 

binding onto the different proteins, the RMSD of the holo forms of each corresponding 

protein was determined. From the holo RMSD values, the cathepsins had values ranging from 

0.15 to 0.19 nm while the plasmodial homologs had values ranging from 0.18 to 0.29 nm. 

This slight change in RMSD between the apo and holo forms may be linked to the small size
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of the CPs. Shown below in Figure 3.19 are the trajectory plots of different apo systems 

during the last 6 ns of MD simulation.

Figure 3.18: Global conformational diversity of plasmodial and human proteases when 
in complex with CPs. The average and SD of the RMSD of the apo (a) and holo (b) systems 
as determined by the g_rms tool for the simulation period from 4 -  10 ns. The error bars 
indicate the standard deviation of RMSD per system over the last 6 ns of simulation. Adapted 
from Musyoka, TM et al., 2015224.

The different ligands exhibited different RMSD values with the largest being from 

compounds CPG-CPI due to their high number of rotational bonds (8 or 9) compared to the 

rest which had either 6 or 7 (Figure 3.20). Although these ligands had high RMSD values, 

they have minimal influence on the overall complex RMSD as seen in Fig. 3.18. The process 

of ligand binding onto a protein may lead to its stabilization or otherwise and from the small 

difference between the apo and holo RMSD values these ligands never destabilised the 

proteins.
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Figure 3.19: Trajectory plots showing RMSD fluctuations of the apo structures of 
cathepsins (Cat K and L) and falcipains (FP-2 and 3) during the last 6 ns of a MD 
simulation.

3.5.3.2 Rg
Using GROMACS gmx_gyrate tool, the Rg of each molecule about the x, y and z axes as a 

function of time was calculated by solving the following eqn. 3.7.

V I r I2 m
Rg = -R) (3.7)

I ,  m

where mi is the mass of atom i and its position in respect to the center of mass is shown by rt. 

This helps us to determine the intermolecular compactness or spread of a molecule as stable 

structures show a steady Rg and vice versa . From Figure 3.21, all proteins were highly
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stable with no unfolding witnessed throughout the simulation. Human cathepsins had the 

least Rg with values of 1.68 ± 0.3 nm. The plasmodial homologs had nearly identical Rg 

values of 1.83 ± 0.2 nm. The difference in Rg between the human cathepsins and the 

plasmodial homologs is as a result of the presence of the arm region only present in the latter.

Figure 3.20: Ligand RMSD fluctuations. The average RMSD of the different ligand for the 
last 6 ns of MD simulations. The error bars indicate the standard deviation f RMSD per224system over the last 6 ns of simulation. Adapted from Musyoka, TM et al., 2015 .

Figure 3.21: Compactness of the different protein-ligand complexes. The radius of 
gyration of the different systems during the last 6 ns of MD simulations. Error bars indicate224Rg standard deviation per system. Adapted from Musyoka, TM et al., 2015 .
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3.5.3.3 RMSF
Using the g rm sf  tool in GROMACS, the local fluctuation of all aa during the MD 

simulations were calculated.

This is achieved by solving eqn. 3.8;

RMSFi = Z  | r (t,) -  rref |2 (3.8)
t,=

where T is the averaging time while the reference position of particle i is denoted by riref. 

From the RMSF plots, all aa within loop regions exhibited huge local conformational 

fluctuations with the plasmodial P-hairpin (aa ~175 - 200) residues (Chapter 2) exhibiting the 

largest fluctuations. As the human cathepsins lack this characteristic feature, they had lower 

fluctuations around this area. The rodent plasmodial homologs exhibited larger MD 

fluctuations within the loop regions a fact that may explain the reason why they showed 

higher RMSD values than the human plasmodial forms (Figure 3.22).

All residues that form the binding pockets (refer to Chapter 2) were highly stable (< 0.1 nm) 

an indication that the recorded local fluctuation movements could not interfere with 

compound binding process (Figure 3.23).
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Figure 3.23: The average local fluctuations of the subsite residues for a subset of 
proteins (shown on the table) when bound to CPG, CPH and CPI. The red line depicts 
the least average global fluctuations (RMSD).

3.5.3.4 Solvent Accessible Surface Area (SASA)
To determine structural packing, the GROMACS tool g_sas was used to determine the 

hydrophobic, hydrophilic, total and SASA. The SASA factor is used to determine protein 

stability with greater thermodynamic stability associated with lower SASA values.

Table 3.3: g sas output of the different systems_________________________________
Protein Hydrophobic Hydrophilic Total SASA D Gsolv

nm2 nm2 nm2 kJ/mol/ nm2

Cat K 39. 87 ± 1.19 73 .85 ± 1.41 113 71 ± 2.06 340 33 ± 12.81
Cat L 42 45 ± 0.86 72.71 ± 1.31 115 16 ± 1.67 348 46 ± 7.94
Cat S 40. 32 ± 1.02 72.52 ± 1.35 112 84 ± 1.84 351 72 ± 8.70
FP-2 48 23 ± 0.94 82.53 ± 1.53 130 76 ± 2.01 413 85 ± 9.31
FP-3 49 52 ± 1.39 83 .07 ± 1.62 132 60 ± 2.68 428 69 ± 12.98
VP-2 50. 97 ± 1.39 82.25 ± 1.62 133 22 ± 2.68 428 69 ± 12.98
VP-3 52.37 ± 0.98 83 .83 ± 1.73 136 20 ± 2.20 444 05 ± 9.99
KP-2 52.20 ± 1.02 85 .60 ± 1.28 137 81 ± 1.75 451. 85 ± 8.66
KP-3 49 45 ± 1.02 86.56 ± 1.38 136 01 ± 1.85 428 36 ± 9.29
BP-2 44 42 ± 1.34 87.66 ± 1.24 132 08 ± 2.11 414. 97 ± 12.52
CP-2 47 74 ± 1.24 84.01 ± 1.26 131 75 ± 1.91 414. 72 ± oo'

YP-2 49 05 ± 1.57 89.99 ± 1.54 139 04 ± 2.33 460 17 ± 12.56
From Table 3.3, human cathepsins exhibited lower hydrophobic, hydrophilic and SASA

values compared to the plasmodial proteases thus an indication they are more

thermodynamically stable compared to the latter. This was in agreement with the results

obtained from the Rg, RMSF and RMSD analysis.
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3.5.3.5 Binding mode
The binding process of a ligand onto a protein binding site is determined by an array of 

intermolecular interactions between the aa lining the binding pocket and the ligand atoms. In 

addition, the stability of a bound ligand on the binding pocket is controlled by interplay of 

specific and non-specific forces. These forces are depended on the nature of chemical groups 

within a ligand and those of the surrounding environment. The size of the binding pocket and 

subsites also determines the entry of the ligand. To gain more insights on the observed 

activity, the binding modes of compound CPG, CPH and CPI (compounds with lowest 

docking energies = best binders) were evaluated. From structure visualization using PyMOL, 

the ligands fitted well onto the S1, S2 S3 and S1’ subsites (Figure 3.24). Their extended 

nature enabled them to interact with virtually all subsite residues within the trench-like 

binding pocket. A detailed analysis on the effect of these interactions to the binding 

energetics will be discussed at length in the following chapter (Chapter 4).

Figure 3.24: The docking pose of CPG (blue), CPH (magenta) and CPI (green) in the 
binding pocket of human cathepsins and plasmodial proteases. Used in Musyoka, TM et
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3.5.3.6 Structural chemical features of binding
One goal of MD simulations is to determine if the interactions that are critical in the binding 

of a ligand are stable throughout the simulation period. Here in, the interactions of CPs with 

protein residues were determined at time 0 ns (docking state) and thereafter during the 

simulation at a 2 ns interval. Using a Perl script utilizing LigPlot++ subroutines, the specific 

aa-ligand atoms interaction fingerprint were identified throughout the simulation (Figure 

3.25). From the interaction fingerprint (Table 3.3, Appendix 1K), the major interactions 

involved in binding of the ligands were vdW forces.

Figure 3.25: The residues interacting with CPG (blue), CPH (magenta) and CPI (green) 
in the binding pocket of human cathepsins and plasmodial proteases during the docking 
stage.

In addition, several hydrogen bonds were formed although in most cases they were not stable 

(Appendix 1K, Figure 3.26). To understand the differential binding profiles, it is important 

we understand their chemical structures in details. All CPs had a common central scaffold to 

which two sets of chemical groups (R1 and R2) were attached. Each set had three different
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substitutions in which R1 was of varied lengths while R2 differed in terms of their cyclization 

(cyclopentyl and cyclohexyl). In all cases, compounds CPD, CPE and CPF established fewer 

vdW and hydrogen interactions compared to the rest of CPs, an observation that could be 

explained by the short length of R1 (see Figure 3.5). In contrast, CPG, CPH and CPI 

maintained vdW interactions with most subsite aa residues mainly because of their extended 

chemical nature of R1. It is well known that hydrogen bonds play critical roles in the 

stabilization of protein-ligand complexes. From H-bond analysis, the human cathepsins 

exhibited low unstable hydrogen bond occupancy compared to majority of the plasmodial 

homologs, a factor that can explain the differential docking energies observed (Appendix 

1H).

Figure 3.26: Hydrogen bond dynamic profiles of different protein homologs when in 
complex with CPG during the entire MD simulation period.

3.5.3.7 Conformational changes during simulation
Understanding the dynamic changes of both a ligand and protein is essential in drug 

design322. To determine the conformational changes occurring throughout the simulations,
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protein-ligand complexes were generated at 2 ns time interval and then visualised via 

PyMOL. Shown in Figure 3.27 is an example illustrating the conformational changes at 

specific time points of compound CPG in complex with Cat K (a) and FP-2 (b). To maintain 

interactions between a ligand and interacting residues, its conformation must be kept steady. 

From the results, CPG attains a stable conformation all through from 6 ns. Both the R1 and 

R2 chemical groups maintained stable interactions with the S1’ and S2 subsites respectively. 

These results were observed in the other proteins when in complex with CPG-CPI. Also 

shown are the zoomed view of interacting residues and their corresponding subsites. A key 

observation was that CPG interacted with both proteases mainly via vdW and hydrogen 

interactions. Majority of the vdW interactions were as a result of S1’ residues.

Figure 3.27: Ligand conformational changes over time. Dynamical evolution of 
compound CPG (ball and stick representation) when in complex with Cat K (a) and FP-2 (b) 
at the start (0 ns), 6 8 and 10 ns. Highlighted in red is the S1’ subsite. The corresponding 
panels on the right depict the interacting residues with CPG either through vdW or hydrogen 
bonds (yellow dashes). Used in Musyoka TM et al., 2015224.
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3.5.4 5PGA and selected ZINC hits
Previous docking studies using a set of 23 compounds identified a single potential hit named 

5a-Pregna-1,20-dien-3-one (5PGA) from Capnella thyrsoidea. Form literature, the sterol like 

compound had never been tested previously for antimalarial activity. However, a different 

study established that it had the ability to elicit inflammatory response in the neutrophils of 

rabbit cells via the release of superoxide ions . To further study its potentiality as a potential 

hit for antimalarial drug discovery, it was used to search for similar compounds from the 

ZINC chemical database through the LBVS approach. This led to 186 similar compounds 

which were screened for activity against the plasmodial and human proteases. A filtering 

approach based on the docking energy results was applied and the compounds with lowest 

energy and with strong activity and selectivity profiles against multiple plasmodial and 

human cathepsins respectively selected. Ultimately, five analogs of 5PGA from ZINC were 

selected for further studies.

A total of 66 MD simulation runs each of 20 ns involving 11 proteins and six ligands viz. 

5PGA (SA natural compound), ZINC36371307, ZINC03869631, ZINC04532950,

ZINC04579000 and ZINC05247724 (ZINC hits) were performed. To determine the stability 

and mechanistic aspects of the protein-ligand interactions, the RMSD, RMSF and radius of 

gyration (Rg) of each system were determined. However, in comparison with the previous 

class of compounds, the determination of these observables was from the last 12 ns of every 

trajectory. The results of this section have been published (Musyoka et al., 2016).

3.5.4.2 RMSD
To determine the global stability of the different protein-ligand systems throughout the entire 

simulation periods, the RMSD of their Ca atoms for the apo, holo and ligand structures were 

determined with the reference being the initial structure. During the first 4 ns, the RMSD
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values in all the systems dramatically increased to ~ 0.22 ± 0.2 nm after which they started to 

converge (Figure 3.28).

Figure 3.28: The RMSD plots of human cathepsins (Cat K and Cat L) and the FPs (FP- 
2 and FP-3) when in complex with a natural SA compound (5PGA) and selected analogs 
from the ZINC database during a 20 ns MD simulations.

Just like with CPs, the Apo forms of the human cathepsins had the least RMSD values with 

Cat K having a values of 0.10 ± 0.1 nm while Cat L 0.14 ± 0.1 nm. For the plasmodial 

proteases, the RMSD values were 0.18 ± 0.3 nm (Figure 3.29A). From Figure 3.29B, the 

process of ligand binding slightly increased the overall complex RMSD with Cat K having

values of 0.16 ± 0.2 nm, Cat L of 0.20 ± 0.2 nm while the plasmodial proteases had values

ranging between 0.23 ± 0.3 nm. All these results were in the same range as with the previous 

set of compounds (CPs).
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Figure 3.29: The average RMSD values of the apo (a) and holo (b) systems for the time 
period between 8 and 20 ns. Error bars indicate RMSD standard deviation per system 
over a 12 ns timescale.

Ligand RMSD

Compound

Figure 3.30: The average RMSD values of 5PGA and its ZINC analogs for the time 
period between 8 and 20 ns. Error bars indicate RMSD standard deviation per ligand 
over a 12 ns timescale.

From the ligand RMSD (Figure 3.30), both 5PGA and ZINC36371307 had the least RMSD 

values of ~0.05 and ~0.85 nm respectively. This was in relation to their planar chemical 

structure of and the lack of rotational bonds. In ZINC04532950, ZINC04579000, and
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ZINC05247724, more fluctuations were observed a fact linked to the increased presence of 

rotational bonds within their structures. A comparison of the recorded ligand RMSDs and 

those of the respective holo structures together with the apo proteins, it can be concluded that 

ligand binding did not affect the proteins’ overall conformational diversity significantly.

3.5.4.3 Rg
All the protein structures remained compact during the entire simulation as depicted by the 

Rg plot (Figure 3.31). From the results, Cat K had the lowest Rg of ~ 1.65 when in complex 

with all the compounds while Cat L had values in the range of 1.69 ± 0.2 nm. Both the human 

and rodentplasmodial proteases had very similar RMSD values.

Figure 3.31: The average compactness of the different proteins when in complex with 
5PGA and its analogs for the time period between 8 and 20 ns. Error bars indicate Rg 
standard deviation per ligand over a 12 ns timescale.

9 5



3.5.4.4 RMSF
To better understand the protein inherent flexibility, RMSF of the Ca backbone was 

calculated. As was with the CPs set of compounds, greater fluctuations were recorded in the 

loop regions (Figure 3.32). Plasmodial proteases exhibited the largest flexibility around the 

characteristic inherent high fluctuating P-hairpin loop feature.

Figure 3.32: Local residue fluctuations of falcipains (red and black) and cathepsins 
(green and blue) when complexed with 5PGA during the last 12 ns of a MD 
simulations.Cartoon representation shows the different loop regions that are responsible for 
the observed high fluctuations. Color code corresponds to that of the RMSF plots.

3.5.4.5 Hydrogen bonding
The ghbond  tool in GROMACS was used to determine the number of hydrogen bonds and 

their occupancy. In most cases, the hydrogen bonds at the docking level (Table 3.3) were 

maintained during the MD simulations. An important feature to note was the differential bond 

occupancy between the human cathepsins and the plasmodial proteases (Figure 3.33 - 3.36). 

VMD was used to visualise hydrogen bond dynamics during simulation. Cathepsins exhibited 

lower hydrogen bond occupancy compared to the plasmodial homologs. For example, during 

the first 0.8 ns of MD simulation, a hydrogen bond formed between Gln143 and 

ZINC03869631 in Cat K was stable but thereafter the bond distance changed substantially 

leading to its breaking (Figure 3.33).
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Table 3.4. A summary of interacting residues with the various ligands under study. Enclosed 
in brackets are residues forming H-bonds. Residue numbers are according to catalytic 
domains.

Cmpd/
Protein 5PGA

36371307 03869631

ZINC

04532950 04579000 05247724

Cat K W184,
(N187)

W26,Y67,A13
4,L160,H162,
A163,L209

W26,W67,A134,
A137,N161,H162,
A163,W184,
(Q143)

W26,Y67,A134,Q1 
43,N161,H162A163 
,W184, (Q143)

Q21,W26,Y67,
A134,N161,H16
2,A163

Q21,W26,Y6
7,A134,,A163

Cat L
W27,L70,
A136,M16
2

Q20,Q22,L14
5,H164,W190
,W194

W27,L70,A136,A
139,D163,H164,
W190

W27,L70,A136,M1
62,D163,H164,W19
0

Q22,L145,F146, 
H164,W190,W1 
94, (Q20,H164)

W27,L70,A13
9,D163,H164,
W190

FP-2

W43,L84,I
85,N173,A
175,D234,
F236

W43,L84,I85,
L172,H174,A
175,D234

W43,L84,I85,V15 
2,L172,N173,H17 
4,A175, (I85)

W43,L84,I85,V152, 
N173,H174,A175, 
W206, (I85)

N81,L84,I85,Q1 
71,L172,N173, 
A175, (I85)

W43,L84,I85, 
V152,N173,H 
174,A175,W2 
06 (I85)

FP-3
W45,Y86, 
N175,A17 
7 (I87)

W45,Y83,Y86
,I87,P174,A17
7

W45,Y86,I87,P17 
4,N175,H176,A17 
7,W208, (I87)

W45,Y86,I87,P174, 
N175,H176,A177, 
W208, (I87)

W45,Y86,I87,P 
174,N175,A177 
,W208, (I87)

W45,Y86,I87, 
P174,H176,A 
177, (I87)

VP-2

W44,Y82,
F85,I86,N
174,A176,
E235
((I86)

W44,Y82,F85
,I86,P173,N17
4,A176

W44,F85,I86,V15
3,P173,N174,H17
5,A176,W207,
(I86)

W44,F85,I86,V153, 
P173,N174,H175,A 
176, (I86)

W82,F85,I86,P1
73,N174,A176,
W207,E235,
(I86)

W44,F85,I86, 
V153,P173,N 
174,H175,A1 
76,W207,E23 
5, (I86)

VP-3
Q36,N38,
V157,W20
6,W210

N38,A152,V1
57,H174,W20
6,W210

W43,I85,A152,V
157,N173,H174,A
175,W206

W43,N84,I85,A152,
V157,N173,H174,A
175,W206

W43,N84,I85,P
172,N173,H174
,A175,Q234

Q36,N38,V15
7,H174,W206
,K209,W210,
(H174)

KP-2
W44,L85,I 
86,N174,A 
176 (I86)

W44,L85,I86,
P173,N174,A
176

W44,L85,I86,P17
3,N174,H175,A17
6,W207,E235,
(I86)

W44,L85,I86,P173, 
N174,H175,A176, 
W207,E235, (I86)

L85,I86,P173,N 
174,A176,W207 
,E235, (I86)

W44,L85,I86, 
P173,N174,H 
175,A176,207 
,E235, (I86)

KP-3

W42,F84, 
N148,T17 
1,N172,A1 
74 (I84, 
N148)

W42,F83,I84,
N148,T171,N
172,A174

W42,F83,I84,N14
8,T171,N172,H17
3,A174,W205,
(I84)

W42,F83,I84,N148,
V151,T171,N172,H
173,A174,W205,
(I84,N148)

W42,D80,F83,I
84,N148,T171,
N172,A174,
(I84)

W42,F83,I84, 
N148,T171,N 
172,H173,A1 
74, (I84)

BP-2
Q37,A41,
E158,W20
7,W211

K39,A41,V15
3,E158,H175,
W207,W211

Q37,A41,W44,L8
6,A150,V153,N17
4,H175,A176,W2
07

Q37,A41,W44,V15
3N174,H175,A176,
W207

Q37,A41,W44,
V153,E158,N17
4,H175,A176,W
207

Q37,A41,W4
4,V153,N174,
H175,A176,
W207

CP-2

A41,W44,
I85,L86,P
87,150A,N
174,A176,
Q234,Y23
6

Q37,R39,A41,
Q158,H175,W
207,W211

A41,W44,I85,L86
,A150,F172,A173
,N174,H175,A176
,W207,Q234

A41,W44,I85,L86,
A150,F172,A173,N
174,H175,A176,W2
07,Q234

Q37,A41,W44,
L86,A150,A173
,N174,A176,W2
06

Q37,A41,W4
4,A153,Q158,
H175,W207

YP-2

Q37,K39,
A41,V153,
W207,
(K39)

A41,W44,I85,
L86,A150,Y1
72,A173,N17
4,A176,Q234

Q37,A41,W44,I8
5,L86V153,Y172,
N174,H175,A176,
W207

A41,W44,I85,V153,
Y172,A173,H175,A
176,W207,Q234,
(Q234)

Q37,A41,W44,
V153,N174,H17
5,A176,W207

Q37,A41,W4
4,V153,N174,
H175,A176,
W207

At docking stage, no hydrogen bond was observed in 5PGA-Cat L complex. However, after 8 

ns of MD simulations, 5PGA carbonyl oxygen changed orientation forming a weak hydrogen 

bond with Lys118 (non-subsite residue). In Cat K, 5PGA formed a hydrogen bond with
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Asn187 (non-subsite aa) which had a high occupancy during MD simulations (Figure 3.33a). 

For ZINC03869631, a H-bond with Gln143 (S1’ residue) of Cat K was on for less than 0.5 ns 

during equilibration while in Cat L, there was no H-bond formed during the entire simulation 

(Figure 3.34).

Figure 3.33: The number and evolution of intermolecular H-bonds of a) Cat K and b) Cat
L in complex with 5PGA, ZINC03869631, ZINC04532950 and ZINC05247724 during a 20 
ns MD simulation.

For ZINC04532950 and ZINC05247724, a similar trend of unstable H-bond formation was 

observed. However, in plasmodial proteases, the hydrogen bond occupancy was higher 

except in FP-2 when in complex with 5PGA. The hydrogen bonds formed between FP-2 and 

FP-3 with ZINC03869631, ZINC04532950 and ZINC05247724 showed greater stability 

(Figure 3.35).
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Figure 3.34: The evolution of H-bond length between Cat K Gln143 and ZINC03869631 
and ligand orientation at different time points during MD simulation.

Figure 3.35: The quantitative and qualitative analysis of H-bonds of a) FP-2 and b) FP-3 
in complex with 5PGA, ZINC03869631, ZINC04532950 and ZINC05247724.
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Figure 3.36: Evolution of H-bond length between FP-2 Ile85 and ZINC03869631 and 
ligand orientation at different time points during MD simulation.

Figure 3.36 shows the evolution of the only bond between FP-2 and ZINC03869631. The 

observed differences in hydrogen bond formation can be of valuable use in the design of 

further derivatives with better binding affinities and selectivity for the plasmodial and human 

cathepsins respectively.

3.5.4.6 Secondary structure element stability
DSSP algorithm was used to get some insights concerning the stability of the various protein- 

ligand systems by evaluating the number and changes in secondary structure during MD 

simulations. In all systems, there were no significant changes in structural elements observed 

during the entire simulation time (Figure 3.37). do dssp tool in GROMACS 4.6.5 was 

utilised as GROMACS 4.5.5 is devoid of the program.
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Figure 3.37: Conformational evolution of secondary structure elements of a) FP-2 and 
b) Cat L in complex with 5PGA, ZINC03869631 and ZINC05247724 during the last 12 
ns of MD simulation as determined by do_dssp tool.

As seen with FP-2 and Cat L in association with 5PGA, ZINC03869631 and ZINC05247724, 

the helical and P-sheet content remained constant during the MD simulations (Figure 3.37). 

This further confirmed the stability of the proteins as previously determined by GROMACS 

observables. Similar results were obtained with other plasmodial proteases.

3.5.4.7 Binding mode
From the ligand binding results, aa residues critical process can be determined. Differential 

binding profiles of 5PGA and best ZINC hits (ZINC03869631, ZINC04532950, and 

ZINC05247724) between human Cat L and FPs (Figure 3.38) were observed. In Cat L, the 

ligands showed diverse binding poses in comparison with plasmodial proteases. In FPs, all 

the ligands consistently bound with the same pose with an exception of FP-2-5PGA. In Cat L, 

Trp27, Leu70 (S2), Ala136 (S2), Asp163 (S2) and His164 (S2) were the main residues
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involved in ligand binding. In FP-2 and FP-3, Ile85 and Ile 87 (S2 residues) respectively 

participated in hydrogen bond formation with a oxygen atom present across the ligand cohort.

Figure 3.38: Binding poses of 5PGA (green), ZINC03869631 (magenta), ZINC04532950 
(blue) and ZINC05247724 (cyan) in relation to the various subsites of cysteine proteases. 
S1 is shown in pale yellow, S2 in brick red, S3 in green while S1’ in orange.

Figure 3.39: Binding pocket aa residue interactions patterns of bound 5PGA, 
ZINC03869631, ZINC04532950, and ZINC05247724 with Cat L (blue), FP-2 (yellow) 
and FP-3 (magenta). Hydrogen bonds are depicted in a yellow dotted line.
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The main residues involved in binding of the different compounds were determined (Figure 

3.39). These were the same residues as was with CPs although in the current set of 

compounds, fewer hydrophobic and hydrogens were observed. This was as a result of the 

smaller size and chemical nature of the current compounds.

3.5.5 Chemical modifications necessary for hit to lead compounds
Determination of drug-likeness of compounds has become a integral part of the drug 

development process especially during the early stages324. Majorly, this is to reduce the 

attrition rate at later stages as well as cut down the cost involved in the development process 

as only compounds with preferred pharmacokinetics properties are allowed to proceed with 

the process. By considering the physicochemical properties of a compound using in silico 

approaches, its molecular impact in vivo can be accessed which is mainly determined by its 

bioavailability and toxicity. Drug-likeness evaluation established that the identified hits 

violated some of the acceptable rules necessary for drug development (Table 3.4). CPs were 

the most drug-like compared to the rest of the hits studied. In the case of CPs CPG, CPH and 

CPI had slightly higher molecular weights than the acceptable (500 daltons). This resulted to 

higher octanol-water partition coefficient (LogP) and AlogP values which were within the 

acceptable range (<5). Despite having only one hydrogen bond donor (HbD), CPs had 

excellent number of hydrogen bond acceptors (HbA) thus explaining their high propensity in 

forming H-bonds with protein residues. For 5PGA and the ZINC hits, despite having 

acceptable molecular weights, their LogP values were higher that the acceptable value of 5. 

In addition, these compounds were devoid of hydrogen bond donors and had only one HbA. 

This explains their limited ability to form H-bonds with the protein residues. The net effect of 

this observation will be discussed in the next chapter. Compared to CPs, these compounds 

had comparable number of atoms. Thus, by comparing the molecular weight of these two set 

of compounds, it can be noted that 5PGA and its analogs had higher number of H atoms.
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Chemical modifications are necessary to replace these inert H-atoms with more functional 

groups. Hence, these results indicate that necessary chemical modifications must be effected 

in order to render the compounds important leads for further development of antimalarial 

drugs.

Table 3.5: Drug like properties of CPs, 5PGA and ZINC hits

Com pound M wgt L ogP AlogP H BA
Property

HBD TPSA N oR natom TPSA
CPA 497.2 1.9 -1.3 8.0 1.0 87.3 7.0 60 87.3
CPB 483.1 1.4 -0.6 8.0 1.0 87.3 6.0 57 87.3
CPC 497.2 1.8 -2.4 8.0 1.0 87.3 6.0 60 87.3
CPD 489.1 1.7 -0.7 7.0 1.0 95.6 7.0 58 95.6
CPE 475.1 1.0 -1.6 7.0 1.0 95.6 6.0 55 95.6
CPF 489.1 1.8 -0.3 7.0 1.0 95.6 6.0 58 95.6
CPG 587.2 2.9 1.5 8.0 1.0 87.3 9.0 73 87.3
CPH 573.2 2.3 0.7 8.0 1.0 87.3 8.0 70 87.3
CPI 587.2 2.9 0.4 8.0 1.0 87.3 8.0 73 87.3

5PG A 298.2 7.4 1.6 1.0 0.0 17.1 1.0 52 17.1
ZINC36371307 424.4 11.8 3.2 1.0 0.0 17.1 1.0 79 17.1
ZINC03869631 384.3 10.5 2.2 1.0 0.0 17.1 5.0 72 17.1
ZINC04532950 370.3 10.0 1.5 1.0 0.0 17.1 5.0 69 17.1
ZINC04579000 410.4 11.1 1.9 1.0 0.0 17.1 5.0 76 17.1
ZINC05247724 412.4 11.6 2.0 1.0 0.0 17.1 6.0 78 17.1

3.5.6 MD pipeline

An advantage of in silico approaches is the ability to build up automated pipelines or 

workflows consisting of a diverse set of algorithms and subroutines that accept and process 

an input into results. With the introduction of grid computing and availability of high 

performance computer clusters, MD simulations can now be performed on a large scale. 

However, MD simulations are known to be complex and multistage processes that require 

prior knowledge in computer programming. To carry out a simulation successfully, one has 

to go through a rigorous process of system setup and execution which involves intensive 

manual control. This is a great challenge to experimentalists without any prior programming 

knowledge. Thus, a MD pipeline wrapped into a simple interface which allows MD 

neophytes to perform simulations in a automated mode is necessary.
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Up to a total of 18 tools consisting of a set of in-house scripts and different GROMACS tools 

were wrapped into a single MD pipeline (Figure 3.40). This has since been established in the 

job management system (JMS) which is a workflow management system and web-based 

cluster front end for higher performance computing recently developed by RUBi . This is 

part of an ongoing plan to establish a fully integrated pipeline that will allow biologists to 

perform and analyse MD simulations with ease depending on the availability of 

computational resources. The only necessary requirements will be the availability of either an 

apo or holo structure and user defined parameters (force field, box dimensions, length of MD 

run etc) as these vary depending on the problem at hand. The MD pipeline is divided into 

seven major stages as shown in Figure 3.40 below. The user needs to have a 3D input of 

either a protein only (X-ray or homology model) or protein-ligand complex (docking 

experiments). By allowing the user to select different simulation parameters one can easily 

determine which of these parameters are more appropriate.

Figure 3.40: The automated MD simulation pipeline. The different GROMACS tools and 
ad hoc scripts (shown in sky blue) showing the flow of simulation steps during a classical 
MD experiment. Shown in orange are decision stages depending on the type of MD 
simulation (apo or holo) while in green indicates stages requiring user input and magenta 
being parameter files that determine how the MD runs will proceed. Used in Brown, DK et 
al, 2015301.
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A user can quickly construct a sequential workflow of the different steps and indicate the 

dependency of each level as shown in Figure 3.41.

Figure 3.41: A diagramatic representation of how the different GROMACS tools for the 
MD pipeline tool are linked and the dependancies of each step. The blue arows indicate 
the sequential flow of the different MD process and the input/output requirement of each step 
(level). Used in Brown, DK et al., 2015301.

Although this is still in the development phase, a major technical touch to improve its 

performance, efficiency and adaptability is needed. Currently, developments aiming to 

combine MD simulations, analysis and binding free energy (BFE) which will be dealt in the 

next chapter are ongoing. More details in regards to the future of the pipeline will be 

addressed in the concluding chapter (Chapter 6).

3.6 Chapter conclusion

The importance of MD simulations in the study of protein functioning cannot be 

underestimated. Proteins are dynamically fluctuating entities and thus experimental 

techniques like X-ray provide only a point of a high-dimensional configuration space that a 

protein could explore. Through MD simulation studies, conformational evolution of how the
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different compounds studied was determined. Key factors that influence the binding of the 

ligands onto the different proteases were identified. These included ligand size, protein 

binding pocket size and chemical constituents of the ligand. This work emphasizes on the 

importance of MD studies in drug design. While docking data provides static interactions 

information between the compound and the receptor, it turns out to be inadequate in 

characterization of protein-ligand interactions. Although MD simulations offer a wealth of 

insight about the dynamical evolution of a protein-compound ligand complex, they lack 

accurate means to quantify the strength of association in the complex. Thus, the next chapter 

will focus on determining the strength of interactions between the complexes of each protein 

and ligand studied.
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CHAPTER 4

Binding free energy calculations

The determination of binding free energy (BFE) between a protein and a ligand (substrate or 

inhibitor) is integral in understanding the principles that govern molecular recognition and 

conformational equilibrium. This is of central importance in medicinal chemistry and the 

pharmaceutical industry as free energy property determines the fate of a biophysical 

reaction. The past one decade has seen major advancements in the BFE determination 

methods. This is mainly due to the increase in computational power and the successful 

development of various methods for determining BFE with better efficiency and accuracy. 

Despite these developments, accurate determination of BFE still remains elusive. Here, BFE 

of association in all protein-compounds complexes (CPs, 5PGA and selected ZINC hits) 

studied in Chapter 3 will be determined. A comparison will be made with the docking 

energies and MD results to determine if there is any correlation in the three methods.
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4.1 Protein molecular recognition

The existence of a cell is depended on array of chemical reaction processes with different 

paths . Essential in regulation of these reactions are enzymes which present themselves as 

important drug targets326. During molecular recognition, proteins interact with a wide range 

of different other entities with a high degree of specificity and affinity . To 

pharmacologically target these biomolecular structures, a complete understanding of their 

interactions is essential. Profiling the energetics between a protein and a ligand forms the 

basis of deciphering the molecular recognition processes. This involves qualitative and 

quantitative description of all the kinetics, thermodynamics and forces that govern formation 

of the specific molecular association. One characteristic feature with these biological 

catalysts is the occurrence of active sites which have steric and electrostatic features which 

enable ligand binding. It is important to characterise the energetic events that occur within 

this specific portion of the protein. As outlined by Copeland , active sites have salient 

features such as their inherent volume always smaller than that of the whole protein, have a 

precise 3D arrangement of residues and cofactors with respect to that of the substrate, non

covalent interactions initiators of a binding event, located in a crevice or cleft for purposes of 

excluding solvent effects and the complementary structure of the ligand and the pocket shape 

determines their specificity. All these features have a contributory effect to the various 

processes and energetics involved in binding of a ligand.

An important application of understanding enzyme interactions is in the pharmaceutical 

industry. To achieve a therapeutic effect, a drug must stably interact with its target (usually a 

protein). Characterizing the strength of association as well as the structure of molecular 

complexes between a protein and a ligand offers invaluable insight in the structure-based of 

newer drugs of better efficacy and safety. During the drug development process, the 

determination of BFE plays a critical role in the identification of lead compounds. With the
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continuous development of computational power and the improvement of various 

methodologies coupled with modelling tools, robust BFE studies can be achieved with 

reliable predictions. Several methods for determining the strength of protein-ligand 

interactions have been developed. These are broadly divided into experimental and 

computational approaches. This thesis is mainly focused on the latter.

4.2 Computational methods for BFE determination

Experimental techniques for BFE determination are quite expensive both financially and 

timewise. A better alternative is the use of computational approaches which have mainly been 

facilitated by the technical computational developments and better understanding of the 

binding theory . However, despite these developments, determining absolute BFE 

remains elusive mainly . This is majorly due to the failure to capture fully the translational, 

rotational and conformational entropies during molecular simulation which are also finite.

A range of computational approaches have been established to predict the binding affinities 

between a protein and a putative ligand. These range from more rigorous approaches that are 

based on molecular force fields to less rigorous methods that estimate BFE using simple 

energy functions . An important factor to determine when selecting the method for BFE 

analysis is the cost involved (computational and time). When performing virtual screening of 

large compound libraries, it is more practical to utilise less rigorous methods to identify hits 

that have desirable BFE profiles.

4.2.1 Empirical methods for BFE calculations
These methods use statistical scoring approaches based on simple energy functions or 

information from interactions between atom pairs . Determine BFE by either counting 

the number of receptor atoms in contact with those of ligand or by calculating the change in 

solvent accessible surface area in the complex vis a vis of the uncomplexed protein and
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ligand. As a result of using simplified energy functions as well as the treatment of solvent 

molecules in an explicit manner coupled with deficit of conformational sampling, these 

methods are fast but less accurate336. Include docking and several scoring functions have been 

developed such as Fscore, Xscore, Chemscore and FlexX function

4.2.2 Molecular force field methods for BFE calculations
These approaches which are considered rigorous and time consuming utilise MD or Monte 

Carlo simulation data to generate an ensemble of structures and determine the energy 

transformations occurring between different states336. Despite the lack of computational 

power, the statistical mechanical framework for BFE calculations together with several 

approximations were established a long time ago . However, their application to 

biochemical systems was not until in the 1980’s. The use of force fields in determination of 

BFE has been facilitated by the continued development of computational power owing to the 

expensive (computer resource) of this method. The first application of this method was 

reported in 1984 by Warshel, in which the energetics involved in proton transfer in lysozyme 

were determined . At the same time, Tembe and McCammon described the binding of 

different ligands onto a receptor by the combination of free energy simulations coupled with 

thermodynamic cycles . As there was an agreement between the computational and 

experimental results, these BFE methods became widely used. However, to achieve reliable 

and accurate results, there is a lot of efforts have been adopted to improve these methods336. 

Some rigorous methods include free energy perturbation (FEP) and thermodynamic 

integration (TI), umbrella sampling and potential of mean force (PMF).

4.3 Motivation

The work in this chapter is a continuation of the previous MD simulation studies (Chapter 3). 

As MD simulations lack accurate means to determine the energetics involved in binding, 

there is a need to determine both qualitatively and quantitatively the different forces involved
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in binding of the identified hits. Here in, g_mmpbsa340, an open source BFE calculation tool 

that utilizes the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) approach 

was used to determine the interaction energies between the various plasmodial and human 

proteases studied and the different hits (CPs, 5PGA and selected ZINC compounds). MM- 

PBSA, an attractive AMBER method originally developed by Kollman in the late 90s 

determines the strength of interaction between reagents and final product. It was first used to 

study the stability of RNA and DNA fragments341. However, it has been modified in the 

recent years to determine the free energy of protein-ligand complexes based on the analysis 

of MD trajectories using a continuum solvent approach is gaining phase.
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4.4 Methodology

Using the g_mmpbsa tool version 1.6, strength of interactions between different set of 

protein-ligand complexes was evaluated. A requirement of g_mmpbsa is availability of 

Adaptive Poisson-Boltzmann Solver (APBS) which determines the solvation energy 

properties of a system and GROMACS.

4.4.1 Preparation of input files
For successful BFE analysis, g_mmpbsa requires three input files namely; 1) a trajectory file 

which contains system snapshots during a MD simulation 2) an index file that contains the 

group of interest (in this case protein and ligand atoms in the system) and a parameter file 

containing necessary conditions and controls adopted for analysis. Pre-processing of the 

trajectory file to remove any periodic boundary conditions that results to unnecessary system 

jumps is necessary. Herein, this step was accomplished previously during the MD analysis 

step. An example of a parameter file is shown in Appendix 2G.

4.4.2 Executing g_mmpbsa

g_mpbsa is a command based console application. For purposes of automation, a Bash script 

per every protein-ligand system was generated using a Python script, pbsa_automate.py (refer 

to Appendix 2H). A total of 174 runs; 108 for CPs (12 proteins and nine compounds), 11 for 

5PGA (11 proteins and one compound) and 55 for ZINC hits (11 proteins and five 

compounds) were studied. Only the stable trajectory sections after equilibration were 

considered for the BFE calculations. A total of 4,000 and 6,000 system snapshots for each 

complex with the CPs and 5PGA together with its ZINC analogs were used for the BFE

calculations respectively. Using the single trajectory approach the BFE ( AGbind) of each 

system snapshot was determined as follows:

A G b i n d  =  A G  c o m p le x  -  ( G  r e c e p to r  +  A G l ig a n d  )  (4.1)
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where the free energies of the holo-protein, apo-protein and ligands are denoted by A Gcompiex, 

AGreceptor and AGligand respectively. These are obtaining by averaging of all snapshot 

geometries in a MD trajectory. In a gas-phase together with the solvation energy (Gsoiv) and 

entropy term (TS), the free energy (G) of each state was calculated as follows:

G = Egas + GSoiv -TS  (4.2)

T is system temperature which was set at 300 K. The gas phase energy (Egas) is a sum of 

bonded (Eint) and nonbonded terms (Evdw and Eele) as shown in equation 4.3 below. Internal 

energy (Eint) comprises of contributions from bond, angle and torsion energies (equation 4.4).

E g a s  E int +  E v d W  +  E ele (4.3)

E t = Eb d  +E l  + E.int b o n d  a n g le  to r s io n (4.4)

G s o l v  =  G p o l  +  G n p (4.5)

Gnp = ySASA + b (4.6)

The solvation term (Gsolv) is composed of a polar solvation (Gpol) and nonpolar (Gnp) energy 

components (equation 4.5). Polar solvation energies were determined by solving the Poisson- 

Boltzmann linear equation while nonpolar solvation through the solvent accessible surface 

area with an offset value (b) of 3.84928 kJ.mol-1 and surface tension proportionality (y) set at 

0.0226778 kJ.mol-1.A-2 (equation 4.6).

4.4.3 Analysis
To decipher the contribution of each energetic term involved in ligand binding process, the 

overall BFE term was decomposed to its individual components namely vdW forces, 

electrostatic energy, as well as polar and non-polar solvation energy. This was attained using 

a Bash script, BFE_decomposition.sh (Appendix 2I). A detailed per-residue decomposition

1 1 4



analysis to determine key protein residues contributing to the three components of BFE was 

also determined. Using a set of ad hoc batch scripts, the BFE runs together with 

corresponding analysis were automated.

4.4.4 System specifications
As the process of BFE analysis is highly expensive in terms of computational resources, all 

energy calculations were performed on the Tsessebe cluster (Sun) at the Centre of High 

Performance Computing (CHPC) Unit in Cape Town, SA.

4.5 Results and discussion

To determine how strong the interactions, the BFE of 108 CPs, 11 5PGA and 55 ZINC 

complexes was evaluated. In addition, the individual contributions by the various BFE 

energetic terms and aa were calculated to get a detailed picture of factors influencing ligand 

binding process. The energetic terms included vdW contributions, electrostatic (ele) 

interactions, polar solvation (PB) and entropy (SASA).

4.5.1 Role of BFE terms in the ligand binding process
In all the complexes studied, binding process was majorly favoured by vdW and electrostatic 

interactions while polar solvation impaired it. For vdW, this was acceptable as the binding 

pocket of the proteins being studied majorly consist of hydrophobic residues as seen in 

Chapter 2. In the case of electrostatic interactions, hydrogen bonds between the ligand and 

the receptor are the main contributors. Thus the propensity of different ligands to form 

hydrogen bonds as determined by number of hydrogen bond donors and acceptors mainly 

controlled this energetic term (Table 3.4). A summary of the overall BFE underlying the 

binding of CPs, 5PGA and its ZINC analogs to FP-2 and FP-3 as well as their homologs is 

shown in Table 4.1 and Table 4.2 respectively.

1 1 5



In the case of CPs (Table 4.1), the overall interaction energies followed a similar trend as the 

docking results . Compound CPG, CPH and CPI had the lowest binding energies in most 

cases, an indication of stronger interactions compared to the other CPs. From the different 

energetic contributions (Figure 4.1 and Appendix 1L), it was evidently clear that vdW and 

electrostatic energetic components enhanced binding of the ligands while the polar solvation 

impaired it. From MD studies, these compounds exhibited highest number of vdW and 

hydrogen bonds when compared to the rest (Chapter 3). The nonpolar solvation energies 

which correspond to the burial of solvent-accessible-surface area (SASA) upon binding 

enhanced the binding process in all complexes were almost of the same order. As it was in 

the case with docking and MD studies, both plasmodial proteases and human cathepsins 

bound the CPs with comparable affinities. In the case of Cat L, it exhibited the strongest 

interactions with the compounds except with CPC. From the BFE decomposition results, 

vdW interactions were weaker in this case compared with the rest of the compounds thus the 

observed differential binding result.

Table 4.1: Protein-CP complexes overall binding free energy (AGbind) in kJ.mol-1 as 
determined by g mmpbsa tool.__________________________________________________

Compound
Protein ---------------------------------------------------------------------------------------------------------

CPA CPB CPC CPD CPE CPF CPG CPH CPI
FP-2 -84.9±0.2 -71.8±0.3 -80.8±0.2 -91.1±2.7 -93.1±0.2 -80.5±0.2 -131.5±0.2 -103.4±0.2 -99.6±0.2
FP-3 -77.0±0.2 -67.1±0.2 -66.7±0.2 -74.2±0.2 -74.7±0.2 -102.8±0.4 -87.6±0.2 -111.7±0.2 -105.7±0.3
VP-2 -95.0±0.2 -78.7±0.2 -60.6±0.2 -85.8±0.2 -72.4±0.6 -77.7±0.3 -116.2±0.3 -81.8±0.2 -93.0±0.2
VP-3 -112.4±0.2 -72.6±0.2 -59.0±0.5 -98.6±0.3 -55.0±0.2 -62.1±0.3 -104.8±0.2 -93.7±0.2 -85.7±0.2
PK-2 -115.5±0.3 -68.8±0.3 -68.8±0.4 -92.8±0.3 -99.0±0.2 -85.7±0.3 -129.2±0.2 -61.9±0.3 -86.8±0.2
PK-3 -80.3±0.4 -63.0±0.2 -81.7±0.3 -82.1±0.2 -80.4±0.2 -80.9±0.2 -68.5±0.3 -76.2±0.3 -80.9±0.3
BP-2 -92.9±0.2 -92.1±0.4 -82.8±0.4 -133.3±0.5 -80.5±0.5 -85.0±0.3 -135.4±0.4 -131.7±0.3 -94.9±0.3
CP-2 -73.0±0.2 -85.4±0.2 -71.9±0.1 -108.3±0.3 -122.6±0.3 -83.7±0.3 -103.9±0.4 -103.4±0.3 -98.1±0.3
YP-2 -91.6±0.3 -67.0±0.3 -82.1±0.2 -103.0±0.2 -114.6±0.3 -89.1±0.3 -92.3±0.2 -104.8±0.2 -97.8±0.3
Cat S -97.7±0.2 -72.2±0.2 -83.9±0.3 -85.8±0.3 -85.6±0.2 -84.9±0.3 -93.8±0.3 -98.2±0.3 -81.8±0.3
Cat K -86.4±0.3 -91.3±0.2 -93.6±0.2 -90.8±0.3 -104.1±0.2 -76.6±0.3 -96.3±0.3 -80.0±0.2 -81.8±0.2
Cat L -132.4±0.3 -99.2±0.2 -44.7±0.5 -129.2±0.3 -117.5±0.2 -111.8±0.3 -117.3±0.3 -149.7±0.3 -147.6±0.2
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Figure 4.1: Box plots showing the distribution of the various BFE terms of CPs when 
bound to different proteins.

For 5PGA and its analogs, their BFE followed similar trend as with docking where ZINC hits 

exhibited stronger interactions compared to 5PGA (Table 4.2 and Appendix 1M). A detailed 

explanation of this observation will be discussed in the next section.

Table 4.2: The overall binding free energy (AGbind) in kJ.mol-1 of the various proteases with 
5PGA and selected ZINC compounds as determined by g_mmpbsa tool.

Protein ■
Compound

5PGA ZINC36371307 ZINC03869631 ZINC04532950 ZINC04579000 ZINC05247724

Cat K -78.6 ± 0.2 -113.0 ± 0.2 -99.2 ± 0.1 -91.8 ± 0.2 -81.3 ± 0.2 -93.4 ± 0.2

Cat L -93.2 ± 0.2 -88.4 ± 0.1 -96.7 ± 0.2 -136.7 ± 0.2 -99.4 ± 0.2 -125.0 ± 0.2

FP-2 -86.7 ± 0.1 -81.2 ± 0.1 -86.7 ± 0.2 -83.8 ± 0.2 -70.6 ± 0.2 -80.1 ± 0.2

FP-3 -62.1 ± 0.2 -93.1 ± 0.2 -91.4 ± 0.2 -96.7 ± 0.2 -102.3 ± 0.2 -92.1 ± 0.2

VP-2 -65.3 ± 0.2 -101.7 ± 0.2 -91.3 ± 0.2 -92.3 ± 0.2 -81.6 ± 0.2 -107.9 ± 0.2

VP-3 -71.5 ± 0.1 -78.2 ± 0.2 -66.8 ± 0.2 -73.9 ± 0.2 -121.7 ± 0.7 -101.7 ± 0.2

KP-2 -68.2 ± 0.2 -109.9 ± 0.2 -91.4 ± 0.2 -81.9 ± 0.2 -68.0 ± 0.2 -71.5 ± 0.1

KP-3 -44.5 ± 0.2 -81.8 ± 0.2 -68.2 ± 0.2 -55.3 ± 0.2 -70.6 ± 0.1 -69.8 ± 0.2

BP-2 -65.6 ± 0.2 -90.1 ± 0.2 -92.7 ± 0.2 -84.0 ± 0.2 -74.2 ± 0.2 -82.7 ± 0.2

CP-2 -75.4 ± 0.1 -89.8 ± 0.2 -100.2 ± 0.2 -103.0 ± 0.2 -119.1 ± 0.3 -91.8 ± 0.2

YP-2 -62.9 ± 0.2 -76.6 ± 0.2 -84.7 ± 0.1 -96.7 ± 0.2 -86.4 ± 0.2 -79.3 ± 0.1
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As was with the CPs, vdW and electrostatic contributions favoured the binding of 5PGA and 

its analogs (Figure 4.2). However, the resulting contributions were much lesser a fact that can 

be linked to their chemical nature and size (discussed in the next section).

Figure 4.2: Box plots showing the distribution of the various energy terms of the 
different proteins when bound to 5PGA and its ZINC analogs.

4.5.2 Subsites contribution to BFE
To determine the important residues influencing the strength of interactions in each of the 

protein-ligand complexes, the final BFE per each discrete system was further decomposed 

individual residue contributions. Figure 4.3 and 4.4 and Appendix 1N show key residues that 

influence the BFE either positively or negatively for various proteases when complexed with 

CPs (CPG, CPH and CPI), 5PGA and ZINC hits (ZINC03869631, ZINC04532950 and 

ZINC05247724).
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Figure 4.3: A detailed per-residue fingerprint showing the individual aa energy 
contributions to the binding of CPG (black), CPH (red) and CPI (green) with (a) Cat K
(b) Cat L (c) FP-2 (d) FP-3 (e) VP-2 and (f) VP-3. Positive values indicate residues that 
impair binding and vice versa. Used in Musyoka TM et al, 2015 .
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Figure 4.4: Per-residue decomposition analysis of 5PGA and the selected ZINC 
compounds when in complex with a) Cat K, b) Cat L, c) FP-2 and d) FP-3. Residues with 
values > 0 kcal.mol-1 impairs binding and vice versa.

To determine how the different subsites contributed to the BFE per ligand (Figure 2.6), net 

contribution of all residues per subsite was determined. Subsite S1, S2 and S3 exhibited
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varying net energies (positive or negative) while S1’ contributed to negative energy scores 

for the complexes of the three ligands and all proteases used in the study (Figure 4.5). As 

determined by the dynamical fingerprints obtained during MD simulations, majority of the 

S1’ residues were directly involved in the formation of hydrogen or hydrophobic interactions 

with the ligands (Appendix 1K). In FP-2, S1 residues and S3 residues entirely contributed to 

a net positive energy as opposed to S2 and S1’ for the three compounds. As for cathepsins, all 

the four subsites exhibited negative net energies in majority of the compounds an indication 

of poor selectivity. However, S2 and S3 residues in all non-human plasmodial proteases 

when in complex with CPG, CPH and CPI contributed to negative energies (Figure 4.5b and 

4.5c). As seen in Figure 2.6, the composition of S2 is highly varied especially between 

human and plasmodial proteases. Thus by considering the observed contribution of the 

residues forming these subsites, essential structural and chemical information that should be 

present in ligands to achieve stronger interactions can be realised. . This is important in the 

rational drug design process of novel plasmodial cysteine protease inhibitors with increased 

selectivity towards the human proteases.

4.5.3 Structural features affecting BFE
Several ligand features that affected strength of interactions were observed. From the BFE 

results, the two sets of compounds (CPs and 5PGA-ZINC analogs) studied exhibited varying 

interaction energies mainly with the vdW and electrostatic energy terms. CPs exhibited lower 

vdW and electrostatic interactions compared to 5PGA and ZINC analogs thus stronger 

interactions. The vdW term was mainly influenced by size of the ligands which in turn 

affected the number of residues (Table 3.3 and Appendix K).
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Figure 4.5: A detailed per-residue fingerprint showing the individual aa energy 
contributions to the binding of CPG (black), CPH (red) and CPI (green) with (a) Cat K 
(b) Cat L (c) FP-2 (d) FP-3 (e) VP-2 and (f) VP-3. Used in Musyoka TM et al, 2015224.

For the electrostatic term, CPs exhibited lower values compared to 5PGA and its analogs. 

This was mainly determined by the number of hydrogen bonds formed between binding 

pocket residues and ligand atoms (Chapter 3 and Appendix 1K). CPs had the highest number 

of hydrogen bonds acceptors and donors thus contributing to higher electrostatic interactions.
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4.6 Chapter conclusion
In line with the overall objective of this thesis, the current work aimed in characterizing the 

interactions between the various proteins and ligands so far studied. From the BFE results, a 

correlation between the chemical nature of the individual proteins studied (residue 

composition) and that of the ligands in association with their size was established. As the 

binding pockets of the proteins under study are mainly composed of hydrophobic residues, 

vdW interaction was identified as the main energetic term that promotes the binding of the 

ligands. In addition, the important value of hydrogen bonds (formed through hydrogen bond 

acceptors and donors) in enhancing the binding of the ligands was determined. An increased 

ability of a ligand to form hydrogen bonding with protein residues promoted binding. Thus 

the incorporation of hydrogen bonding centres in a ligand while designing is crucial in 

enhancing its potency. However, this should be carefully done in consideration to the 

acceptable numbers of such centres in a drug molecule (Table 3.1).

The subsequent decomposition of BFE to per residue contribution identified the key role of 

the different subsite residues. In all the proteins studied, S2 residues cumulatively contributed 

to a negative energy an indication of the significant role they play in enhancing ligand 

binding. An interesting feature observed in the case of S2 and S3 was the differential 

contribution by the S2 and S3 residues between human cathepsins (inhibited binding) and 

plasmodial proteases (promoted binding). This information is key and helpful in the CADD 

process of novel antimalarials against plasmodial proteases and with selectivity towards the 

human cathepsins. Although the binding free energies of the different complexes were 

successfully estimated via computational approaches, there is also a need to confirm these 

results via experimental techniques such as protein affinity studies or through more rigorous 

computational approaches such thermodynamic integration (TI).
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CHAPTER 5

Docking studies: New p la sm o d ia l cysteine inhibitors from

SANCDB

Over the last two decades, molecular docking has become one of the important strategies 

employed in the computer aided drug design (CADD) process mainly in the virtual screening 

stage. This is a computational approach used to determine how a putative ligand binds to an 

active pocket of a molecular target (protein). By this, the pose of a ligand (its orientation and 

conformational geometry) and binding affinity are determined via a search and scoring 

algorithm. Motivated by the results of a previous docking study using a set of 23 non-peptide 

compounds from South African natural sources where one potential hit was identified 

(5PGA), the current chapter aims to search for more similar hits from the South African 

Natural Compound Database (SANCDB). As this work is still ongoing, reported herein are 

the preliminary docking results of SANCDB compounds on four plasmodial proteins. These 

include the falcipains (FP-2 and FP-3) and knowlesipains (KP-2 and KP-3). Progressing 

studies will evaluate the activity of these compounds on the remaining plasmodial proteases 

as well as their selectivity on the human cathepsins. Additional studies to further characterize 

identified potential hits will be performed.
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5.1 Introduction

To cut down on the huge costs involved in drug discovery, integrated efforts characterised by 

innovativeness and technology have been adopted in the pharmaceutical R&D . To meet the 

current economic pressure of availing drugs to the market, pharmaceutical companies in 

collaboration with academia have adopted a complex paradigm in the discovery of effective 

remedies to diseases. This involves the search of novel drug targets and new lead 

compounds . One of the major pharmaceutical investments was the establishment of HTS 

technologies to identify new drug hits. This entails testing of large compound libraries for 

activity against selected biological targets using miniaturised assays coupled with large scale 

data analysis via automated platforms. Despite its substantial contributions in modern drug- 

discovery attempts, it has habitually failed in identification of potential leads344,345.

An alternative and at times complimentary strategy to HTS that has also found its way in 

drug discovery process is use of virtual screening (VS) approach346 which is more 

information-rich compared to its predecessor. VS uses a combination of computational 

approaches to identify hits against specific targets. There are two main approaches used in 

VS viz. ligand based (LBVS) and structure based (SBVS). LBVS methods extrapolate from 

known active compounds which are used to search for structurally diverse compounds from 

chemical databases (known or in-house) with similar biological activity . This is based on 

the similarity property principle by Johnson and Maggiora which postulates that similar 

structures have similar biological activity . Through methods like fingerprint and 

pharmacophore based strategies, quantitative structure-activity relationship (QSAR), 

similarity searching and comparative molecular field analysis (CoMFA) large chemical 

databases can be screened leading to the identification of hits. Various similarity metrics and 

coefficients such as the Tanimoto coefficient349 are used to determine the likeness between
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the query compound and the identified hit. A major characteristic of LBVS is that it does not 

require 3D structure of the specific molecular receptor.

For SBVS, it utilises information from the structure of a molecular target to identify hits 

which form energetically favourable interactions with the receptor’s binding pocket 

residues350. This chapter will exclusively involve the SBVS approach to identify novel 

antimalarial hits. CADD has continuously adopted numerous computational modelling 

approaches to study the structure activity relationship (SAR) between molecules351. 

Molecular docking is one of the most heavily used computational approach in SBVS whose 

main aim is to define the electrostatic and stereochemical attributes of a ligand within the 

constraints of the binding site of a receptor and to correctly approximate the binding 

affinity ’ . For successful docking process, 3D structural information of the receptor must

be available, a major draw backs to this approach. However, modern biomolecular 

spectroscopic (X-ray crystallography and NMR) and computational methodologies 

(homology modelling) are continuously providing a solution by availing reliable structures. 

Up to date, over 100,000 structures of macromolecular targets have been resolved through 

these methods providing vital structural information about key macromolecular drug targets. 

To identify lead compounds with high affinity on the drug targets, pharmaceutical companies 

analyse large compound libraries using docking approaches. This is important as it reduces 

the costs involved in chemical assays as all compounds without any desirable interactions 

profiles are dropped out. At the end of the process, only few compounds with high 

potentiality of becoming active leads are synthesized, assayed and if necessary optimized via 

chemical modification.

5.2 South African Natural Compound Database (SANCDB)
This is a growing fully referenced chemical database of compounds isolated from South

African plant and marine sources . Currently, the database has 624 compounds (as of
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January 2016) exhibiting a range of medicinal properties ranging from antimicrobial, 

anticancer and antidiabetic among others. So far, the database has shown to be an important 

resource in the search of hits against various drug targets ranging from human heat shock 

proteins (Hsp90)354, human cathepsins (unpublished work by an honours student), 

Trypanasoma Cat B-like proteins and human immunodeficiency virus proteases (unpublished 

work by a masters student). In the current work, which is still ongoing, SANCDB is used to 

mine for potential hits against plasmodial proteases.

5.3 Docking software

Up to date, over 60 docking programs and more than 30 scoring algorithms have been 

developed with varied accuracy and computational efficiency levels . These can be 

classified into three major categories namely: those that utilise MD simulations and solvation 

models to determine absolute BFE (deterministic approaches), tools that use knowledge- 

based statistical potentials and those of empirical approaches based on regression approach. 

Most of these software treat the receptor as rigid and consider only the ligand flexibility 

which consist of translational and rotational degree of freedom. The most commonly used 

software tools include Automated Docking of Ligands to Macromolecules (AutoDock)356, 

DOCK357, Flexible Docking Method Using an Incremental Construction Algorithm 

(FlexX)358, Surflex-Dock359, Fast rigid exhaustive docking (FRED)360, Glide and Genetic 

Optimization for Ligand Docking (GOLD)361. The original DOCK software first uses surface 

spheres to fill the binding pocket and their centers used to match atoms during rigid docking. 

Several subsequent modifications of DOCK have been implemented. These include DOCK

3.0 (molecular-mechanics force field scoring), DOCK 3.5 (energy minimization) and DOCK

4.0 which uses genetic algorithm (GA) leading to ligand conformational flexibility. In 

GOLD, both the ligand and the protein area around the binding site are set flexible. To 

determine the best docking result, the software evaluates the internal energy of the ligand,
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sum of H-bonding and hydrophobic energies. A characteristic feature of all docking software 

established so far is that they consist of two key components; a search and a scoring 

algorithm. The search algorithm performs posing which includes the proper placement and 

positioning of a ligand within a putative binding site . Commonly used docking tools 

determine the best structure by using simple scoring functions to sample the conformational 

space. This in turn affects the end result. To reduce these inaccuracies, classical physics has 

been incorporated in developing MD based algorithms. A good example of this category is 

CDOCKER which is based on the CHARMM force field.

5.4 AutoDock

Herein, AutoDock, an excellent and widely used open source (GNU General Public Licence 

and Apache Open Source License) program was explicitly used to perform docking studies. 

Since 1990 when it was first released, AutoDock has proven to be an effective tool and 

several other superior versions have been released the latest being AutoDock 4.2. It consists 

of three sub-tools namely AutoDock, AutoTors and AutoGrid. AutoTors which is the most 

simplest defines the rotatable bonds inherent in a given ligand. This in turn determines the 

degrees of freedom which determine the complexity of the simulations. Docking simulations 

involving ligands with < 6 rotatable bonds are usually accurate and reasonably fast while 

those involving large ligands are prone to inaccuracies and computationally slow353,362. Using 

AMBER force field and based on the macromolecular target, AutoGrid determines a 3D grid 

of interaction energy. AutoDock in turn performs the simulation by moving a ligand in any of 

the degrees of freedom followed by calculation of the new state’s energy. It utilises a hybrid 

GA and Lamarckian genetic algorithm (LGA) to perform a local search at each new 

generation.
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To determine the BFE, AutoDock scoring function uses a rather inexpensive force field 

consisting of both semi-empirical and molecular mechanics terms. To evaluate binding, the 

scoring function estimates the intramolecular energetics involved in the transition from the 

unbound to bound conformation of the protein (P) and ligand (L). The force field includes the 

conformational entropy lost during binding (JSconf) six pair-wise energetic tems (V) as shown 

in equation 5.1. Each term includes evaluation for desolvaton, electrostatics, hydrogen 

bonding, dispersion and repulsion.

A G  =  ( V L—  — V L —  )  +  ( V P —  — V P —  )  +  ( Vv bound " unbound /  v bound " unbound /  v b
rL -L P - P

bound
r P -P tP -L

bound
- V P —  + A S  )

unbound conf (5.1)

A recent successor of AutoDock is Vina which has a knowledge-based statistical scoring 

function which improves its prediction speed. This is by utilizing a simplified scoring 

function and multi-threading in cases where multiple computer cores are available363.

5.5 Docking types

There are three main docking approaches namely rigid and flexible ligand and flexible 

docking364. In rigid docking, both the internal geometry of the protein and the ligand are kept 

fixed. It is based on the lock and key theorem proposed by Fischer in 1890. In flexible ligand 

docking the ligand is kept flexible and the energies from different conformations determined. 

So far, these two approaches are the most commonly used. In flexible docking, both the 

receptor and the ligands flexibility are considered. Developing algorithms that can effectively 

determine the flexibility of a ligand and a receptor has remained a big challenge owing to the 

expensive nature of such simulations. To emulate receptor flexibility, an ensemble of static 

structures of a given receptor with different conformations are experimentally determined and 

then used in the docking process365. An alternative to this is to generate rotamer libraries of 

binding pocket residues side chains and search for energetically accurate protein 

conformation366.
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5.6 Methodology

Figure 5.1 shows a workflow of the approaches used in this study.

592 ready to dock
South African natural

non-peptidic compounds
(SANCDB)

Plasmodial proteases 3D structures
(FP-2, FP-3, KP-2 and KP-3)

SBVS

Molecular Docking
AutoDOCK 4.2

Analysis of Docking output
PLIP, Discovery Studio, PyMOL

Python and Perl scripts (in-house)

Figure 5.1: A diagramatic representation of the different steps and tools used for 
docking studies. Adapted from Musyoka et al., 2016300.

5.6.1 Protein structure data and ligands
Crystallographic structure files for FPs (FP-2 [2OUL] and FP-3 [3BWK]) were retrieved 

from the Protein Data Bank (PDB). High quality homology models of KPs (KP-2 and KP-3) 

were previously calculated using MODELLER version 9.10 as described by Musyoka et al., 

2015 . Prior to docking, all crystallographic water molecules and bound ligands were

removed on all 3D structures obtained from PDB. A set of 592 compounds (some compounds 

could not be minimized due to their huge size) were retrieved from SANCDB in the PDB 

format. These compounds were ready to dock as they had been minimised previously using 

the General Atomic and Molecular Electronic Structure System (GAMESS)367
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5.6.2 Docking studies
Docking simulations using AutoDock 4.2 consists of three major steps namely; preparation of 

protein and ligand files, determination of affinity maps via a 3D grid and docking simulation 

under predefined parameters. An important preparatory process known as docking validation 

is crucial in order to ascertain if the docking parameters adopted are accurate. This involves 

extracting and redocking a ligand co-cry stallised with a 3D structure of the protein being 

studied. However, in the current work, this process had been accomplished previously .

5.6.2.1 Preparation of protein and ligand files
Using AutoDock Python scripts (prepare receptor4.py and prepare _ligand4.py), polar 

hydrogens were first added to all ligand (L.pdb) and protein (P.pdb) files generating 

corresponding LH.pdb and PH.pdb files. Subsequently, charge (Gasteiger-Huckel) and atom 

type information were added coupled with the merging of all non-polar hydrogens for 

calculation of affinity maps. The hydrogenised pdb files were finally converted to rigid 

conformations known as pdbqt files. For the ligands, torsions around the rotatable bonds were 

automatically set during the conversion process356.

5.6.2.2 Grid evaluation and affinity maps determinations
Based on the each protein coordinates, AutoGrid 4.2 was used to determine 3D grid of 

interaction energies using AMBER force field. Interaction energies between the probe and 

surrounding residues at each grid point were determined and stored in a table. The grid box 

dimensions were set as 70, 70, 65 (A) along the x, y and z directions and a spacing of 0.3472 

A. This ensured that each atom types from the ligands and those for dispersion/repulsion and 

electrostatic interactions were chosen sufficiently large enough not just to cover the active 

site but also important surrounding areas. Cys42 of FP-2 (131.759, 83.811, -180.551) and 

corresponding positions in FP-3 (6.856, -20.322, 44.439), KP-2 (5.225, -18.497, 36.209) and 

KP-3 (-0.498, -12.204, 32.183) were chosen to be the centroid point of the grid boxes. The
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grid box spanned an area of residues around a 12A radius. Using an ad hoc Python script, the 

process was fully automated.

5.6.3 Docking simulation

For each ligand and protein, a docking parameter file (DPF) was generated using an 

AutoDock Python script (autodpf.py). The parameters selected for docking were: GA was 

used for conformational space search while for protein-ligand conformational search, LGA 

was utilised. The population size was set at 150, 100 GA runs, maximum energy evaluations 

of 450,000 and maximum number of generations set at 27,000. Cluster analysis for docked 

results was done using a root mean square (RMS) tolerance of 2.0 A.

5.6.4 Analysis
Using AutoDock Python scripts namely autodlganalyzer.py and 

write_lowest_energy_ligand.py were used to determine the best conformation and 

corresponding estimated interaction energy. A summary file containing the energy score of 

each pose calculated was generated for each ligand using a AutoDock Python script, 

summarizedocking.py. Using an ad hoc Python script, all docking files (dlg) were parsed in 

an automated manner to extract the conformation of each ligand with lowest energy for each 

protein. The output was parsed on to another python script (write_lowest_energy_ligand.py) 

to determine the ligand with lowest energy overall. Also determined by AutoDock is the 

inhibition constant (Ki) which is exp(deltaG/(R*T)) where T is temperature and R is gas 

constant. Best ligand conformation was converted to PDB format using the Python script 

pdbqt_to_pdb.py and Discovery Studio version 4.1 (Accelrys Software Inc. San Diego) and 

protein-ligand interaction profiler (PLIP)368 were used to determine the type of interactions 

such as hydrogen bonds, hydrophobic as well as n-n interactions and residues involved. For 

visualization, PyMOL was utilised.

1 3 1



5.6.5 System specifications
All docking experiments were performed on an in house Linux cluster pre-installed with the 

required AutoDock 4.2 software.

5.7 Results and Discussion

5.7.1 Identification of best hits

Table 5.1: Best hits against plasmodial cysteine proteases identified from SANCDB with 
interaction energy of < -10.0 kcal/mol

Protein Compound SANCDB ID Interaction energy (kcal/mol)
SANC00686 -10.12

FP-2 SANC00220 -10.23
SANC00518* -10.24
SANC00454 -10.52
SANC00388 -10.03
SANC00478 -10.11
SANC00491 -10.11
SANC00288 -10.27

FP-3 SANC00511 -10.44
SANC00289 -10.45
SANC00287 -10.46
SANC00290 -10.58

SANC00518* -10.60
SANC00518* -10.02

KP-2 SANC00421 -10.08
SANC00616 -10.35
SANC00511 -10.07
SANC00480 -10.35

KP-3 SANC00512 -10.46
SANC00389 -10.79

SANC00518* -10.95
*Compound with common activity. Highlighted are the best hits and corresponding

To screen for antimalarial activity, all SANCDB compounds (at that time) were docked 

against four plasmodial cysteine proteases. It was not a prerequisite that the natural 

compounds used had antimalarial activity tested before. Based on the docking energies,
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several potential hits with interesting inhibitory profiles on plasmodial proteases tested were 

identified. Table 5.1 shows hits with interaction energies of < -10.00 kcal/mol against FP-2, 

FP-3, KP-2 and KP-3. Interestingly, compound SANC00518 had high in silico activity 

against all the four proteases utilised for screening. For FP-2, the best hit was compound 

SANC00454 with interaction energy of -10.52 kcal/mol while in KP-2 it was SANC00616 

with interaction energy of -10.35 kcal/mol. SANC00518 was the best hit for both FP-3 and 

KP-3 with interaction energies of -10.60 and -10.95 kcal/mol respectively.

5.7.2 Molecular interactions of best hits

Figure 5.2: A stacked column chart showing the type and percentage of residues 
interacting with the best three hits identified per protein as determined by protein- 
ligand interaction profiler (PLIP) analysis software. Indicated with star is ligand 
exhibiting n-n interaction.

All the identified hits fitted perfectly on the “trench” like active site of the proteases studies 

thus the excellent interaction energies. Majority of the interactions formed between the 

protein residues and ligand atoms were mainly hydrophobic in nature (Figure 5.2). As seen in 

Table 5.1, the identified hits bound to the different proteins with the same strength as defined 

by the interaction energies. A comparison of the best three hits per protein and their resulting 

interactions with corresponding protein residue shows that the quantity of the main 

interactions (hydrogen and hydrophobic) were comparable. In FP-2 (Figure 5.3A & B), 

SANC00454 mainly formed hydrophobic bonds with S2 residues (L84, I85, L172, A175 and 

D234). This is an interesting feature as it has been shown that S2 residues besides being key
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players in the ligand binding process, they also confer selectivity as seen in Chapter 4. One 

terminal end of SANC00454 interacted with the deepest residue of the binding pocket 

(D234). Other major hydrophobic interactions were formed with S1’ residues (V152 and 

W206). In addition to hydrophobic interactions, two hydrogen bonds were formed with 

residues I85 (S2) and W206 (S1’). Cumulatively, these interactions resulted to an inhibition 

constant of nanomolar range (19.46 nM). In FP-3 (Figure 5.3C & D), SANC00518 interacted 

with all subsite residues except S3 via hydrophobic interactions [Q38 (S1), I87, A177 (S2), 

H176 and W208 (S1’)]. H176 in addition formed hydrogen bonding and n-stack interactions 

with the ligand. Estimated inhibition constant of this ligand was also up to the nanomolar 

level (17.04 nM). SANC00616 and KP-2 exhibited the highest number of the hydrophobic 

interactions and hydrogen bonds (Figure 5.4A and B). The subsite interacting residues were 

Q37, D82 (S1), L85, I86, P173, N174, A176, E235 (S2), and W207 (S1’). In addition, key 

subsite residues including Q37, C40, D82 (S1), I86, E235 (S2) and H175, W207 (S1’) were 

involved in the formation of hydrogen bonding with the ligand. The estimated inhibition 

constant was 25.72 nM. For KP-3, SANC00518 never exhibited hydrophobic interactions 

with S1 and S3 subsites residues which are known to impair binding thus the low observed 

docking inhibition of 9.37 nM (Figure 5.4C and D) . It mainly interacted with S2 residues 

(F83, I84, N148, T171, N172 and A174). Although docking studies using other proteins is 

yet to be performed, it will be interesting to find how the identified ligand would interact with 

corresponding S2 residues especially in human Cat K and L (Chapter 2).

The identified hits had no previous record of antimalarial activity identified. For 

SANC00454, whose name is Pregn-5-en-20-one and closely related to 5a-Pregna-1,20-dien- 

3-one (5PGA [SANC00146]), previously shown to possess potential activity against 

plasmodial proteases (Chapter 4). They both belong to the pregnadiene sterol group of 

compounds although they were isolated from different source organisms; Capnella

224
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thyrsoidea (SANC00146) and Hoodia gordonii (SANC00454). The latter is known to be an 

appetite suppressant according to information from SA folkmedicine369.£uclea natalensis is 

the source of 20(29)-Lupene-3P-isoferulate (SANC00518), a terpenoid with no known 

medicinal value. SANC00616 (Cholest-5-en-22-One), a glycoside from Ornithogalum 

saundersiae has shown to possess anticancer properties .

Figure 5.3: A surface presentation and corresponding binding pocket residue 
interaction network of FP-2 (A and B) and FP-3 (C and D) when docked with 
SANC00454 and SANC00518 respectively. Dotted green lines depict hydrogen bonding 
while grey hydrophobic interactions.
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Figure 5.4: A surface presentation and corresponding 2D interaction map of KP-2 (A 
and B) and KP-3 (C and D) when docked with SANC00616 and SANC00518 
respectively. Dotted green lines depict hydrogen bonding while grey hydrophobic 
interactions.

5.7.3 Comparison with CPs, 5PGA and ZINC hits

A comparison of current docking results with those of the previously studied compounds 

(CPs, 5PGA and its analogs), the following can be established; 1) the best hits from CPs 

(CPG, CPH and CPI) have similar interaction energies as those of the newly identified hits 

between corresponding proteins. 2) the size and the chemical groups present in a given ligand 

are the key factors affecting its potency. 3) the compounds identified in this chapter present 

themselves as better alternatives to 5PGA and its ZINC analogs which require further 

assessment on their suitability as novel antimalarial hits.
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Both CPs and the newly identified had an extended structure which enabled them to interact 

with majority of the subsite residues leading to stronger interactions (Figure 3.5). This was in 

comparison to 5PGA and its analogs. In terms of aa interaction network, the compounds 

interacted with same residues as with the CPs. It will be important to investigate if the same 

residues contribute to the BFE in a similar manner when interacting with the new set of 

ligands (Figure 3.24 and Chapter 4).

5.8 Chapter conclusion

Although the current work reported herein is still ongoing, interesting hits with better 

inhibitory potencies against plasmodial proteases compared to those of 5PGA and its analogs 

have already been identified. Thus, the present results indicate novel compounds with 

inhibitory activity against plasmodial cysteine proteases can be mined from SANCDB. This 

underscores the importance of SANCDB as a tool in the drug discovery process. To 

determine if identified hits can target homologs from other Plasmodium spp., the docking 

process is currently being extended to VP-2, VP-3, CP-2, BP-2 and YP-2. In addition, it also 

necessary to determine the inhibitory profiles of selected hits against Cat K and Cat L. This is 

essential to evaluate their selectivity towards host’s proteases machinery. Additional wet 

laboratory assays involving collaborations with other research groups may be undertaken in 

the near future to confirm the findings. Where necessary chemical modifications to enhance 

hit inhibitory activity and selectivity will be performed.
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CHAPTER 6

Conclusions and future prospects

To determine the potentiality of plasmodium cysteine proteases as drug targets and try to 

identify novel non-peptide inhibitors using in silico approaches. Through various in silico 

approaches namely docking, sequence and structural analysis, MD simulation and BFE 

studies key insight to CADD process of new inhibitors against the proteases were identified. 

This chapter summarises the key findings identified. Also, future prospects utilizing both in 

silico and in vivo approaches for the validation of the current findings and attainment of 

newer hits will be addressed.
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6.1 Conclusions
For the first time, the present work presents a detailed in silico approach towards the 

discovery of novel protease inhibitors targeting malarial proteins from different Plasmodium 

species. Although FP-2 and FP-3 have been considered as attractive targets for antimalarial 

drug development, there has never been a drug developed against them despite numerous 

attempts. Previous attempts mainly resulted in peptidic compounds ’ . However, due to

their inherent chemical and pharmacological profiles, the results were futile as the 

compounds were prone to degradation by host enzymes and where excessively large.

To overcome these challenges, the search for non-peptidic compounds with inhibitory 

potency against plasmodial cysteine proteases is gaining momentum . However, these 

studies mainly target FP-2 and or FP-3 thus not solving the problem at hand exclusively. In 

addition, the use of dockings solely for drug discovery and development is not adequate 

enough as protein are dynamic structures. The current work being first of its kind goes 

beyond these limitations and successfully introduces the aspect of MD simulations, 

determination of energy of intermolecular associations. In addition, another unique feature of 

this study is the targeting of several other plasmodial proteases besides FP-2 and FP-3. The 

role of such complex computational experiments (MD simulations and BFE calculations) 

cannot be ignored.

As FP-2 and FP-3 are close homologs to human cathepsins and that they both share more or 

less catalytic mechanism, a detailed analysis involving structural information, 

physiochemical properties, phylogenetic and motif elucidation was performed. This was to 

determine any vital difference that would be useful in the attainment of drug selectivity. From 

the results (Chapter 2); there exists sequence variation between plasmodial proteases and 

human cathepsins. This can be confirmed by the SI values (Table 2.1), MSA information 

(Figure 2.6) and phylogenetic output (Figure 2.8). In addition, differences between individual
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sequences of either groups (plasmodial or human cathepsins) were also observed which can 

be clearly seen in the dendrogram (Figure 2.8). Differential location and distribution of 

motifs was also observed, with human cathepsins and plasmodial proteases having two and 

three unique motifs respectively. The distinguishing motifs were located in the R-domain of 

the protein structures. The functional significance of this is not clear and further analysis is 

needed to ascertain if this could be utilised in attaining drug selectivity. Of the 

physicochemical properties studied, aromaticity, GRAVY were fairly similar while 

significant differences where observed with the molecular weight and pI properties (Table 

2.2). For molecular weight, the observed difference was expected as plasmodial sequences 

are longer (possess two inserts) compared to cathepsins. In terms of pI, there was no clear 

difference or trend between the two groups. Further investigation for the wide variation of 

plasmodial protease pi is necessary. However, in the case of cathepsins, Cat L which is the 

main lysosomal cathepsins had pi that matched its native environment (pI=4.64), while Cat K 

and S which are mainly localized on other body cells such as osteoclasts had high pI values 

(8.92 and 7.64 respectively.

Despite the observed differences, there was little or no selectivity observed when the 

proteinsligand complexes were studied via MD simulations and BFE calculations. However, 

previous pre-clinical studies involving cysteine protease inhibitors targeting trypanosomal 

and plasmodial parasites and with little or no selectivity were well tolerated in animal 

models. This was because cathepsins are present in higher concentrations compared to that 

from the parasite and the redundant nature of mammalian cysteine proteases family inhibiting 

the roles of one cathepsin, its roles will be played by another . The findings of this study 

could be extended to the generation of novel drugs against cathepsins as they have been 

found to play roles in antigen presentation, bone resorption and pro-hormone activation.
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These processes have been found to play a role in the progression of a variety of disease 

states such as rheumatoid arthritis, osteoporosis and autoimmune maladies.

Using a different approach to mine for FP-2 inhibitors, Catia et al., performed a 3D-QSAR on 

peptidyl vinyl sulfone derivatives and determined the major structural requirements necessary 

for optimal activity of ligands binding its pocket374. A similar approach by Wang et al., using 

heteroarylnitrile derivatives made similar observations where different subsites preferred 

chemical groups with certain properties209. A great consistency exists between the previous 

findings and our current results from docking, MD and BFE analysis. In the per-residue 

energy decomposition of F2-CPI, a total of 10 residues including Asp35, Cys42, Leu84, 

Val152, Ser153, Asp154, Asp155, Asn173, His174 and Ala175 were identified as key to the 

binding process as observed with the 3D-QSAR approach.

6.2 Future prospects
In order to confirm the reliability of the identified hits identified through the current in silico 

approaches (molecular docking, MD simulations and BFE studies), incorporation of wet 

laboratory assays involving whole parasites and recombinant proteases is necessary. This will 

be performed through collaborative initiatives with research groups working with the listed 

models.

To improve their drug-likeness, hit optimization through additional chemical modifications 

are necessary. In the case of CPG, CPH and CPI their molecular weights need to be lowered 

to the acceptable values. For 5PGA and its ZINC analogs, the elongation of their main chains 

and introduction of additional side groups to increase their molecular size while increasing 

the number of hydrogen bond donors and hydrogen bond acceptors are important. This 

should be done carefully whilst lowering their high LogP values.
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To facilitate screening of large chemical databases for potential antimalarial hits, the MD- 

pipeline needs to be equipped with BFE evaluation part and a complete analysis tools leading 

to a complete standalone MD-BFE analysis tool. This is ongoing process currently.

The docking of SANCDB compound dataset will be performed to the other proteins and 

subsequently perform MD and BFE calculations.
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